From b2feda451ccfbeaed02dce9088d6dd228cf15861 Mon Sep 17 00:00:00 2001 From: Bonface Date: Tue, 13 Feb 2024 23:52:26 -0600 Subject: Update dataset RTF Files. --- general/datasets/AILPublish/specifics.rtf | 1 - general/datasets/AILPublish/summary.rtf | 1 - general/datasets/AXBXAGeno/acknowledgment.rtf | 15 - general/datasets/AXBXAGeno/cases.rtf | 25 - general/datasets/AXBXAGeno/summary.rtf | 1 - general/datasets/Ailpublish/specifics.rtf | 1 + general/datasets/Ailpublish/summary.rtf | 1 + general/datasets/Akxdgeno/summary.rtf | 1 + general/datasets/Axbxageno/acknowledgment.rtf | 15 + general/datasets/Axbxageno/cases.rtf | 25 + general/datasets/Axbxageno/summary.rtf | 1 + general/datasets/B139_k_1206_m/citation.rtf | 1 + general/datasets/B139_k_1206_m/contributors.rtf | 1 + .../datasets/B139_k_1206_m/experiment-design.rtf | 3 + general/datasets/B139_k_1206_m/experiment-type.rtf | 1 + general/datasets/B139_k_1206_m/summary.rtf | 1 + general/datasets/B139_k_1206_r/citation.rtf | 1 + general/datasets/B139_k_1206_r/contributors.rtf | 1 + .../datasets/B139_k_1206_r/experiment-design.rtf | 3 + general/datasets/B139_k_1206_r/experiment-type.rtf | 1 + general/datasets/B139_k_1206_r/summary.rtf | 1 + general/datasets/B150_k_0406_r/citation.rtf | 1 + general/datasets/B150_k_0406_r/contributors.rtf | 1 + .../datasets/B150_k_0406_r/experiment-design.rtf | 3 + general/datasets/B150_k_0406_r/experiment-type.rtf | 1 + general/datasets/B150_k_0406_r/summary.rtf | 1 + general/datasets/B1li0809m5/summary.rtf | 1 + general/datasets/B1li0809r/summary.rtf | 1 + general/datasets/B1mi0809m5/summary.rtf | 1 + general/datasets/B1mi0809r/summary.rtf | 1 + general/datasets/B30_k_1206_m/acknowledgment.rtf | 3 + general/datasets/B30_k_1206_m/cases.rtf | 1748 ++ general/datasets/B30_k_1206_m/citation.rtf | 11 + .../datasets/B30_k_1206_m/experiment-design.rtf | 62 + general/datasets/B30_k_1206_m/experiment-type.rtf | 1 + general/datasets/B30_k_1206_m/notes.rtf | 14 + general/datasets/B30_k_1206_m/platform.rtf | 3 + general/datasets/B30_k_1206_m/processing.rtf | 49 + general/datasets/B30_k_1206_m/summary.rtf | 5 + general/datasets/B30_k_1206_m/tissue.rtf | 9 + general/datasets/B30_k_1206_r/acknowledgment.rtf | 3 + general/datasets/B30_k_1206_r/cases.rtf | 1748 ++ general/datasets/B30_k_1206_r/citation.rtf | 11 + .../datasets/B30_k_1206_r/experiment-design.rtf | 62 + general/datasets/B30_k_1206_r/experiment-type.rtf | 1 + general/datasets/B30_k_1206_r/notes.rtf | 14 + general/datasets/B30_k_1206_r/platform.rtf | 3 + general/datasets/B30_k_1206_r/processing.rtf | 49 + general/datasets/B30_k_1206_r/summary.rtf | 5 + general/datasets/B30_k_1206_r/tissue.rtf | 9 + general/datasets/B30_k_1206_rn/acknowledgment.rtf | 3 + general/datasets/B30_k_1206_rn/cases.rtf | 1748 ++ general/datasets/B30_k_1206_rn/citation.rtf | 11 + .../datasets/B30_k_1206_rn/experiment-design.rtf | 62 + general/datasets/B30_k_1206_rn/experiment-type.rtf | 1 + general/datasets/B30_k_1206_rn/notes.rtf | 14 + general/datasets/B30_k_1206_rn/platform.rtf | 3 + general/datasets/B30_k_1206_rn/processing.rtf | 49 + general/datasets/B30_k_1206_rn/summary.rtf | 5 + general/datasets/B30_k_1206_rn/tissue.rtf | 9 + general/datasets/B6D2ONCILM_0412/summary.rtf | 1 - general/datasets/B6D2RIPublish/specifics.rtf | 1 - general/datasets/B6D2RIPublish/summary.rtf | 1 - .../datasets/B6btbrf2publish/acknowledgment.rtf | 1 + general/datasets/B6btbrf2publish/summary.rtf | 5 + .../datasets/B6d2oncilm_0412/experiment-type.rtf | 1 + general/datasets/B6d2oncilm_0412/summary.rtf | 1 + general/datasets/B6d2ripublish/specifics.rtf | 1 + general/datasets/B6d2ripublish/summary.rtf | 1 + general/datasets/BXDGeno/acknowledgment.rtf | 11 - general/datasets/BXDGeno/summary.rtf | 59 - general/datasets/BXDPublish/summary.rtf | 40 - general/datasets/BXD_BonePublish/specifics.rtf | 1 - general/datasets/BXD_BonePublish/summary.rtf | 1 - .../datasets/BXD_HarvestedPublish/specifics.rtf | 1 - general/datasets/BXD_HarvestedPublish/summary.rtf | 1 - general/datasets/Bhhbf2geno/summary.rtf | 1 + general/datasets/Br_m2_1106_r/acknowledgment.rtf | 3 + general/datasets/Br_m2_1106_r/cases.rtf | 5 + general/datasets/Br_m2_1106_r/contributors.rtf | 1 + general/datasets/Br_m2_1106_r/notes.rtf | 2 + general/datasets/Br_m2_1106_r/platform.rtf | 3 + general/datasets/Br_m2_1106_r/processing.rtf | 7 + general/datasets/Br_m2_1106_r/summary.rtf | 5 + general/datasets/Br_m2_1106_r/tissue.rtf | 2751 ++ general/datasets/Br_u_0303_m/acknowledgment.rtf | 1 + general/datasets/Br_u_0303_m/cases.rtf | 230 + general/datasets/Br_u_0303_m/experiment-type.rtf | 1 + general/datasets/Br_u_0303_m/notes.rtf | 1 + general/datasets/Br_u_0303_m/platform.rtf | 1 + general/datasets/Br_u_0303_m/processing.rtf | 27 + general/datasets/Br_u_0303_m/summary.rtf | 1 + general/datasets/Br_u_0303_m/tissue.rtf | 1 + .../datasets/Br_u_0304_dpmmr/acknowledgment.rtf | 1 + general/datasets/Br_u_0304_dpmmr/cases.rtf | 232 + general/datasets/Br_u_0304_dpmmr/notes.rtf | 1 + general/datasets/Br_u_0304_dpmmr/platform.rtf | 14 + general/datasets/Br_u_0304_dpmmr/processing.rtf | 11 + general/datasets/Br_u_0304_dpmmr/summary.rtf | 1 + general/datasets/Br_u_0304_dpmmr/tissue.rtf | 1 + general/datasets/Br_u_0304_dpmr/acknowledgment.rtf | 1 + general/datasets/Br_u_0304_dpmr/cases.rtf | 232 + general/datasets/Br_u_0304_dpmr/notes.rtf | 1 + general/datasets/Br_u_0304_dpmr/platform.rtf | 14 + general/datasets/Br_u_0304_dpmr/processing.rtf | 11 + general/datasets/Br_u_0304_dpmr/summary.rtf | 1 + general/datasets/Br_u_0304_dpmr/tissue.rtf | 1 + general/datasets/Br_u_0304_r/acknowledgment.rtf | 1 + general/datasets/Br_u_0304_r/cases.rtf | 232 + general/datasets/Br_u_0304_r/notes.rtf | 1 + general/datasets/Br_u_0304_r/platform.rtf | 14 + general/datasets/Br_u_0304_r/processing.rtf | 11 + general/datasets/Br_u_0304_r/summary.rtf | 1 + general/datasets/Br_u_0304_r/tissue.rtf | 1 + general/datasets/Br_u_0304_rr/acknowledgment.rtf | 1 + general/datasets/Br_u_0304_rr/cases.rtf | 232 + general/datasets/Br_u_0304_rr/notes.rtf | 1 + general/datasets/Br_u_0304_rr/platform.rtf | 14 + general/datasets/Br_u_0304_rr/processing.rtf | 11 + general/datasets/Br_u_0304_rr/summary.rtf | 1 + general/datasets/Br_u_0304_rr/tissue.rtf | 1 + general/datasets/Br_u_0405_ss/acknowledgment.rtf | 1 + general/datasets/Br_u_0405_ss/cases.rtf | 232 + general/datasets/Br_u_0405_ss/notes.rtf | 1 + general/datasets/Br_u_0405_ss/platform.rtf | 14 + general/datasets/Br_u_0405_ss/processing.rtf | 11 + general/datasets/Br_u_0405_ss/summary.rtf | 1 + general/datasets/Br_u_0405_ss/tissue.rtf | 1 + general/datasets/Br_u_0503_m/acknowledgment.rtf | 3 + general/datasets/Br_u_0503_m/cases.rtf | 216 + general/datasets/Br_u_0503_m/experiment-type.rtf | 1 + general/datasets/Br_u_0503_m/notes.rtf | 5 + general/datasets/Br_u_0503_m/platform.rtf | 16 + general/datasets/Br_u_0503_m/processing.rtf | 14 + general/datasets/Br_u_0503_m/summary.rtf | 1 + general/datasets/Br_u_0503_m/tissue.rtf | 1 + general/datasets/Br_u_0603_m/acknowledgment.rtf | 1 + general/datasets/Br_u_0603_m/cases.rtf | 230 + general/datasets/Br_u_0603_m/experiment-type.rtf | 1 + general/datasets/Br_u_0603_m/notes.rtf | 1 + general/datasets/Br_u_0603_m/platform.rtf | 1 + general/datasets/Br_u_0603_m/processing.rtf | 27 + general/datasets/Br_u_0603_m/summary.rtf | 1 + general/datasets/Br_u_0603_m/tissue.rtf | 1 + general/datasets/Br_u_0803_m/acknowledgment.rtf | 1 + general/datasets/Br_u_0803_m/cases.rtf | 230 + general/datasets/Br_u_0803_m/experiment-type.rtf | 1 + general/datasets/Br_u_0803_m/notes.rtf | 1 + general/datasets/Br_u_0803_m/platform.rtf | 1 + general/datasets/Br_u_0803_m/processing.rtf | 27 + general/datasets/Br_u_0803_m/summary.rtf | 1 + general/datasets/Br_u_0803_m/tissue.rtf | 1 + general/datasets/Br_u_0805_m/acknowledgment.rtf | 1 + general/datasets/Br_u_0805_m/cases.rtf | 232 + general/datasets/Br_u_0805_m/notes.rtf | 1 + general/datasets/Br_u_0805_m/platform.rtf | 14 + general/datasets/Br_u_0805_m/processing.rtf | 11 + general/datasets/Br_u_0805_m/summary.rtf | 1 + general/datasets/Br_u_0805_m/tissue.rtf | 1 + general/datasets/Br_u_0805_p/acknowledgment.rtf | 1 + general/datasets/Br_u_0805_p/cases.rtf | 232 + general/datasets/Br_u_0805_p/notes.rtf | 1 + general/datasets/Br_u_0805_p/platform.rtf | 14 + general/datasets/Br_u_0805_p/processing.rtf | 11 + general/datasets/Br_u_0805_p/summary.rtf | 1 + general/datasets/Br_u_0805_p/tissue.rtf | 1 + general/datasets/Br_u_0805_r/acknowledgment.rtf | 1 + general/datasets/Br_u_0805_r/cases.rtf | 232 + general/datasets/Br_u_0805_r/notes.rtf | 1 + general/datasets/Br_u_0805_r/platform.rtf | 14 + general/datasets/Br_u_0805_r/processing.rtf | 11 + general/datasets/Br_u_0805_r/summary.rtf | 1 + general/datasets/Br_u_0805_r/tissue.rtf | 1 + general/datasets/Br_u_0903_dpm/acknowledgment.rtf | 1 + general/datasets/Br_u_0903_dpm/cases.rtf | 230 + general/datasets/Br_u_0903_dpm/notes.rtf | 1 + general/datasets/Br_u_0903_dpm/platform.rtf | 1 + general/datasets/Br_u_0903_dpm/processing.rtf | 27 + general/datasets/Br_u_0903_dpm/summary.rtf | 1 + general/datasets/Br_u_0903_dpm/tissue.rtf | 1 + general/datasets/Br_u_0903_dpmm/acknowledgment.rtf | 1 + general/datasets/Br_u_0903_dpmm/cases.rtf | 230 + general/datasets/Br_u_0903_dpmm/notes.rtf | 1 + general/datasets/Br_u_0903_dpmm/platform.rtf | 1 + general/datasets/Br_u_0903_dpmm/processing.rtf | 27 + general/datasets/Br_u_0903_dpmm/summary.rtf | 1 + general/datasets/Br_u_0903_dpmm/tissue.rtf | 1 + general/datasets/Br_u_0903_m/acknowledgment.rtf | 1 + general/datasets/Br_u_0903_m/cases.rtf | 230 + general/datasets/Br_u_0903_m/notes.rtf | 1 + general/datasets/Br_u_0903_m/platform.rtf | 1 + general/datasets/Br_u_0903_m/processing.rtf | 27 + general/datasets/Br_u_0903_m/summary.rtf | 1 + general/datasets/Br_u_0903_m/tissue.rtf | 1 + general/datasets/Br_u_0903_p/acknowledgment.rtf | 1 + general/datasets/Br_u_0903_p/cases.rtf | 230 + general/datasets/Br_u_0903_p/experiment-type.rtf | 1 + general/datasets/Br_u_0903_p/notes.rtf | 1 + general/datasets/Br_u_0903_p/platform.rtf | 1 + general/datasets/Br_u_0903_p/processing.rtf | 27 + general/datasets/Br_u_0903_p/summary.rtf | 1 + general/datasets/Br_u_0903_p/tissue.rtf | 1 + general/datasets/Br_u_0903_r/acknowledgment.rtf | 1 + general/datasets/Br_u_0903_r/cases.rtf | 230 + general/datasets/Br_u_0903_r/notes.rtf | 1 + general/datasets/Br_u_0903_r/platform.rtf | 1 + general/datasets/Br_u_0903_r/processing.rtf | 27 + general/datasets/Br_u_0903_r/summary.rtf | 1 + general/datasets/Br_u_0903_r/tissue.rtf | 1 + general/datasets/Br_u_1105_p/acknowledgment.rtf | 1 + general/datasets/Br_u_1105_p/cases.rtf | 232 + general/datasets/Br_u_1105_p/notes.rtf | 1 + general/datasets/Br_u_1105_p/platform.rtf | 14 + general/datasets/Br_u_1105_p/processing.rtf | 11 + general/datasets/Br_u_1105_p/summary.rtf | 1 + general/datasets/Br_u_1105_p/tissue.rtf | 1 + general/datasets/Br_u_1105_r/acknowledgment.rtf | 1 + general/datasets/Br_u_1105_r/cases.rtf | 232 + general/datasets/Br_u_1105_r/notes.rtf | 1 + general/datasets/Br_u_1105_r/platform.rtf | 14 + general/datasets/Br_u_1105_r/processing.rtf | 11 + general/datasets/Br_u_1105_r/summary.rtf | 1 + general/datasets/Br_u_1105_r/tissue.rtf | 1 + general/datasets/Br_u_1203_dpm/acknowledgment.rtf | 1 + general/datasets/Br_u_1203_dpm/cases.rtf | 232 + general/datasets/Br_u_1203_dpm/notes.rtf | 1 + general/datasets/Br_u_1203_dpm/platform.rtf | 14 + general/datasets/Br_u_1203_dpm/processing.rtf | 11 + general/datasets/Br_u_1203_dpm/summary.rtf | 1 + general/datasets/Br_u_1203_dpm/tissue.rtf | 1 + general/datasets/Br_u_1203_dpmm/acknowledgment.rtf | 1 + general/datasets/Br_u_1203_dpmm/cases.rtf | 232 + general/datasets/Br_u_1203_dpmm/notes.rtf | 1 + general/datasets/Br_u_1203_dpmm/platform.rtf | 14 + general/datasets/Br_u_1203_dpmm/processing.rtf | 11 + general/datasets/Br_u_1203_dpmm/summary.rtf | 1 + general/datasets/Br_u_1203_dpmm/tissue.rtf | 1 + .../datasets/Br_u_1203_dpmmr/acknowledgment.rtf | 1 + general/datasets/Br_u_1203_dpmmr/cases.rtf | 232 + general/datasets/Br_u_1203_dpmmr/notes.rtf | 1 + general/datasets/Br_u_1203_dpmmr/platform.rtf | 14 + general/datasets/Br_u_1203_dpmmr/processing.rtf | 11 + general/datasets/Br_u_1203_dpmmr/summary.rtf | 1 + general/datasets/Br_u_1203_dpmmr/tissue.rtf | 1 + general/datasets/Br_u_1203_dpmr/acknowledgment.rtf | 1 + general/datasets/Br_u_1203_dpmr/cases.rtf | 232 + general/datasets/Br_u_1203_dpmr/notes.rtf | 1 + general/datasets/Br_u_1203_dpmr/platform.rtf | 14 + general/datasets/Br_u_1203_dpmr/processing.rtf | 11 + general/datasets/Br_u_1203_dpmr/summary.rtf | 1 + general/datasets/Br_u_1203_dpmr/tissue.rtf | 1 + general/datasets/Br_u_1203_h2/acknowledgment.rtf | 1 + general/datasets/Br_u_1203_h2/cases.rtf | 232 + general/datasets/Br_u_1203_h2/notes.rtf | 1 + general/datasets/Br_u_1203_h2/platform.rtf | 14 + general/datasets/Br_u_1203_h2/processing.rtf | 11 + general/datasets/Br_u_1203_h2/summary.rtf | 1 + general/datasets/Br_u_1203_h2/tissue.rtf | 1 + general/datasets/Br_u_1203_m/acknowledgment.rtf | 1 + general/datasets/Br_u_1203_m/cases.rtf | 232 + general/datasets/Br_u_1203_m/notes.rtf | 1 + general/datasets/Br_u_1203_m/platform.rtf | 14 + general/datasets/Br_u_1203_m/processing.rtf | 11 + general/datasets/Br_u_1203_m/summary.rtf | 1 + general/datasets/Br_u_1203_m/tissue.rtf | 1 + general/datasets/Br_u_1203_mr/acknowledgment.rtf | 1 + general/datasets/Br_u_1203_mr/cases.rtf | 232 + general/datasets/Br_u_1203_mr/notes.rtf | 1 + general/datasets/Br_u_1203_mr/platform.rtf | 14 + general/datasets/Br_u_1203_mr/processing.rtf | 11 + general/datasets/Br_u_1203_mr/summary.rtf | 1 + general/datasets/Br_u_1203_mr/tissue.rtf | 1 + general/datasets/Br_u_1203_p/acknowledgment.rtf | 1 + general/datasets/Br_u_1203_p/cases.rtf | 232 + general/datasets/Br_u_1203_p/notes.rtf | 1 + general/datasets/Br_u_1203_p/platform.rtf | 14 + general/datasets/Br_u_1203_p/processing.rtf | 11 + general/datasets/Br_u_1203_p/summary.rtf | 1 + general/datasets/Br_u_1203_p/tissue.rtf | 1 + general/datasets/Br_u_1203_pr/acknowledgment.rtf | 1 + general/datasets/Br_u_1203_pr/cases.rtf | 232 + general/datasets/Br_u_1203_pr/notes.rtf | 1 + general/datasets/Br_u_1203_pr/platform.rtf | 14 + general/datasets/Br_u_1203_pr/processing.rtf | 11 + general/datasets/Br_u_1203_pr/summary.rtf | 1 + general/datasets/Br_u_1203_pr/tissue.rtf | 1 + general/datasets/Br_u_1203_r/acknowledgment.rtf | 1 + general/datasets/Br_u_1203_r/cases.rtf | 232 + general/datasets/Br_u_1203_r/notes.rtf | 1 + general/datasets/Br_u_1203_r/platform.rtf | 14 + general/datasets/Br_u_1203_r/processing.rtf | 11 + general/datasets/Br_u_1203_r/summary.rtf | 1 + general/datasets/Br_u_1203_r/tissue.rtf | 1 + general/datasets/Br_u_1203_rr/acknowledgment.rtf | 1 + general/datasets/Br_u_1203_rr/cases.rtf | 232 + general/datasets/Br_u_1203_rr/notes.rtf | 1 + general/datasets/Br_u_1203_rr/platform.rtf | 14 + general/datasets/Br_u_1203_rr/processing.rtf | 11 + general/datasets/Br_u_1203_rr/summary.rtf | 1 + general/datasets/Br_u_1203_rr/tissue.rtf | 1 + general/datasets/Brf2_m_0304_m/acknowledgment.rtf | 3 + general/datasets/Brf2_m_0304_m/cases.rtf | 3 + general/datasets/Brf2_m_0304_m/citation.rtf | 21 + general/datasets/Brf2_m_0304_m/contributors.rtf | 7 + .../datasets/Brf2_m_0304_m/experiment-design.rtf | 1 + general/datasets/Brf2_m_0304_m/notes.rtf | 5 + general/datasets/Brf2_m_0304_m/platform.rtf | 1154 + general/datasets/Brf2_m_0304_m/processing.rtf | 16 + general/datasets/Brf2_m_0304_m/summary.rtf | 1 + general/datasets/Brf2_m_0304_m/tissue.rtf | 1 + general/datasets/Brf2_m_0304_p/acknowledgment.rtf | 3 + general/datasets/Brf2_m_0304_p/cases.rtf | 3 + general/datasets/Brf2_m_0304_p/citation.rtf | 21 + general/datasets/Brf2_m_0304_p/contributors.rtf | 7 + .../datasets/Brf2_m_0304_p/experiment-design.rtf | 1 + general/datasets/Brf2_m_0304_p/notes.rtf | 5 + general/datasets/Brf2_m_0304_p/platform.rtf | 1154 + general/datasets/Brf2_m_0304_p/processing.rtf | 16 + general/datasets/Brf2_m_0304_p/summary.rtf | 1 + general/datasets/Brf2_m_0304_p/tissue.rtf | 1 + general/datasets/Brf2_m_0304_r/acknowledgment.rtf | 3 + general/datasets/Brf2_m_0304_r/cases.rtf | 3 + general/datasets/Brf2_m_0304_r/citation.rtf | 21 + general/datasets/Brf2_m_0304_r/contributors.rtf | 7 + .../datasets/Brf2_m_0304_r/experiment-design.rtf | 1 + general/datasets/Brf2_m_0304_r/notes.rtf | 5 + general/datasets/Brf2_m_0304_r/platform.rtf | 1154 + general/datasets/Brf2_m_0304_r/processing.rtf | 16 + general/datasets/Brf2_m_0304_r/summary.rtf | 1 + general/datasets/Brf2_m_0304_r/tissue.rtf | 1 + general/datasets/Brf2_m_0805_m/acknowledgment.rtf | 5 + general/datasets/Brf2_m_0805_m/cases.rtf | 3 + general/datasets/Brf2_m_0805_m/citation.rtf | 15 + general/datasets/Brf2_m_0805_m/contributors.rtf | 7 + general/datasets/Brf2_m_0805_m/notes.rtf | 3 + general/datasets/Brf2_m_0805_m/platform.rtf | 1154 + general/datasets/Brf2_m_0805_m/processing.rtf | 26 + general/datasets/Brf2_m_0805_m/summary.rtf | 1 + general/datasets/Brf2_m_0805_m/tissue.rtf | 1 + general/datasets/Brf2_m_0805_p/acknowledgment.rtf | 5 + general/datasets/Brf2_m_0805_p/cases.rtf | 3 + general/datasets/Brf2_m_0805_p/citation.rtf | 15 + general/datasets/Brf2_m_0805_p/contributors.rtf | 7 + general/datasets/Brf2_m_0805_p/notes.rtf | 3 + general/datasets/Brf2_m_0805_p/platform.rtf | 1154 + general/datasets/Brf2_m_0805_p/processing.rtf | 26 + general/datasets/Brf2_m_0805_p/summary.rtf | 1 + general/datasets/Brf2_m_0805_p/tissue.rtf | 1 + general/datasets/Brf2_m_0805_r/acknowledgment.rtf | 5 + general/datasets/Brf2_m_0805_r/cases.rtf | 3 + general/datasets/Brf2_m_0805_r/citation.rtf | 15 + general/datasets/Brf2_m_0805_r/contributors.rtf | 7 + general/datasets/Brf2_m_0805_r/notes.rtf | 3 + general/datasets/Brf2_m_0805_r/platform.rtf | 1154 + general/datasets/Brf2_m_0805_r/processing.rtf | 26 + general/datasets/Brf2_m_0805_r/summary.rtf | 1 + general/datasets/Brf2_m_0805_r/tissue.rtf | 1 + general/datasets/Bxd_bonepublish/specifics.rtf | 1 + general/datasets/Bxd_bonepublish/summary.rtf | 1 + .../datasets/Bxd_gla_0911/experiment-design.rtf | 9 + general/datasets/Bxd_gla_0911/summary.rtf | 58 + .../datasets/Bxd_harvestedpublish/specifics.rtf | 1 + general/datasets/Bxd_harvestedpublish/summary.rtf | 1 + general/datasets/Bxdgeno/acknowledgment.rtf | 11 + general/datasets/Bxdgeno/summary.rtf | 59 + general/datasets/Bxdpublish/summary.rtf | 40 + general/datasets/CANDLE_Meth27_0313/platform.rtf | 1 - general/datasets/CANDLE_Meth27_0313/processing.rtf | 1 - general/datasets/CANDLE_Meth_0313/platform.rtf | 1 - general/datasets/CANDLE_Meth_0313/processing.rtf | 1 - general/datasets/CCGeno/cases.rtf | 1 - general/datasets/CCGeno/platform.rtf | 1 - general/datasets/CCGeno/specifics.rtf | 1 - general/datasets/CCGeno/summary.rtf | 9 - general/datasets/CCGeno/tissue.rtf | 1 - general/datasets/CCPublish/acknowledgment.rtf | 1 - general/datasets/CCPublish/cases.rtf | 3 - general/datasets/CCPublish/experiment-design.rtf | 1 - general/datasets/CCPublish/specifics.rtf | 1 - general/datasets/CCPublish/summary.rtf | 11 - general/datasets/CCPublish/tissue.rtf | 1 - general/datasets/CMMTUBCBXDCerILM0513/summary.rtf | 1 - .../datasets/CMMTUBCBXDG12CerILM0513/summary.rtf | 1 - .../datasets/CMMTUBCBXDG15CerILM0513/summary.rtf | 1 - .../datasets/CMMTUBCBXDG18CerILM0513/summary.rtf | 1 - .../datasets/CMMTUBCBXDP03CerILM0513/summary.rtf | 1 - .../datasets/CMMTUBCBXDP06CerILM0513/summary.rtf | 1 - .../datasets/CMMTUBCBXDP09CerILM0513/summary.rtf | 1 - general/datasets/CMS_Hipp1115/cases.rtf | 992 - .../datasets/CMS_Hipp1115/experiment-design.rtf | 9 - general/datasets/CMS_Hipp1115/processing.rtf | 3 - general/datasets/CMS_Hipp1115/summary.rtf | 1 - general/datasets/CMS_Hipp1115/tissue.rtf | 1 - general/datasets/CMS_Hipp_ZScr_1115/cases.rtf | 992 - .../CMS_Hipp_ZScr_1115/experiment-design.rtf | 9 - general/datasets/CMS_Hipp_ZScr_1115/processing.rtf | 3 - general/datasets/CMS_Hipp_ZScr_1115/specifics.rtf | 1 - general/datasets/CMS_Hipp_ZScr_1115/summary.rtf | 1 - general/datasets/CMS_Hipp_ZScr_1115/tissue.rtf | 1 - .../CRTD_HipPreCell1214/acknowledgment.rtf | 1 - general/datasets/CRTD_HipPreCell1214/cases.rtf | 1 - .../CRTD_HipPreCell1214/experiment-design.rtf | 1 - general/datasets/CRTD_HipPreCell1214/notes.rtf | 3 - general/datasets/CRTD_HipPreCell1214/platform.rtf | 1 - .../datasets/CRTD_HipPreCell1214/processing.rtf | 1 - general/datasets/CRTD_HipPreCell1214/summary.rtf | 1 - general/datasets/CRTD_HipPreCell1214/tissue.rtf | 1 - .../datasets/CUBr_rna_0219/experiment-design.rtf | 1 - general/datasets/CUBr_rna_0219/notes.rtf | 1 - general/datasets/CUBr_rna_0219/specifics.rtf | 1 - general/datasets/CUBr_rna_0219/summary.rtf | 1 - general/datasets/Candle_meth27_0313/platform.rtf | 1 + general/datasets/Candle_meth27_0313/processing.rtf | 1 + general/datasets/Candle_meth_0313/platform.rtf | 1 + general/datasets/Candle_meth_0313/processing.rtf | 1 + general/datasets/Candle_nb_0711/acknowledgment.rtf | 14 + general/datasets/Candle_nb_0711/cases.rtf | 1 + general/datasets/Candle_nb_0711/citation.rtf | 9 + .../datasets/Candle_nb_0711/experiment-type.rtf | 1 + general/datasets/Candle_nb_0711/summary.rtf | 9 + general/datasets/Candle_nb_0711/tissue.rtf | 1 + general/datasets/Cb_m_0104_m/acknowledgment.rtf | 15 + general/datasets/Cb_m_0104_m/cases.rtf | 7 + general/datasets/Cb_m_0104_m/notes.rtf | 3 + general/datasets/Cb_m_0104_m/platform.rtf | 3 + general/datasets/Cb_m_0104_m/processing.rtf | 17 + general/datasets/Cb_m_0104_m/summary.rtf | 3 + general/datasets/Cb_m_0104_m/tissue.rtf | 376 + general/datasets/Cb_m_0104_p/acknowledgment.rtf | 15 + general/datasets/Cb_m_0104_p/cases.rtf | 7 + general/datasets/Cb_m_0104_p/notes.rtf | 3 + general/datasets/Cb_m_0104_p/platform.rtf | 3 + general/datasets/Cb_m_0104_p/processing.rtf | 17 + general/datasets/Cb_m_0104_p/summary.rtf | 3 + general/datasets/Cb_m_0104_p/tissue.rtf | 376 + general/datasets/Cb_m_0104_r/acknowledgment.rtf | 15 + general/datasets/Cb_m_0104_r/cases.rtf | 7 + general/datasets/Cb_m_0104_r/notes.rtf | 3 + general/datasets/Cb_m_0104_r/platform.rtf | 3 + general/datasets/Cb_m_0104_r/processing.rtf | 17 + general/datasets/Cb_m_0104_r/summary.rtf | 3 + general/datasets/Cb_m_0104_r/tissue.rtf | 376 + general/datasets/Cb_m_0204_p/acknowledgment.rtf | 1 + general/datasets/Cb_m_0204_p/cases.rtf | 3 + general/datasets/Cb_m_0204_p/notes.rtf | 1 + general/datasets/Cb_m_0204_p/platform.rtf | 1 + general/datasets/Cb_m_0204_p/processing.rtf | 29 + general/datasets/Cb_m_0204_p/summary.rtf | 1 + general/datasets/Cb_m_0204_p/tissue.rtf | 261 + general/datasets/Cb_m_0204_r/acknowledgment.rtf | 1 + general/datasets/Cb_m_0204_r/cases.rtf | 3 + general/datasets/Cb_m_0204_r/notes.rtf | 1 + general/datasets/Cb_m_0204_r/platform.rtf | 1 + general/datasets/Cb_m_0204_r/processing.rtf | 29 + general/datasets/Cb_m_0204_r/summary.rtf | 1 + general/datasets/Cb_m_0204_r/tissue.rtf | 261 + general/datasets/Cb_m_0305_m/acknowledgment.rtf | 15 + general/datasets/Cb_m_0305_m/cases.rtf | 5 + general/datasets/Cb_m_0305_m/notes.rtf | 5 + general/datasets/Cb_m_0305_m/platform.rtf | 1 + general/datasets/Cb_m_0305_m/processing.rtf | 13 + general/datasets/Cb_m_0305_m/summary.rtf | 1 + general/datasets/Cb_m_0305_m/tissue.rtf | 1370 + general/datasets/Cb_m_0305_p/acknowledgment.rtf | 15 + general/datasets/Cb_m_0305_p/cases.rtf | 5 + general/datasets/Cb_m_0305_p/notes.rtf | 5 + general/datasets/Cb_m_0305_p/platform.rtf | 1 + general/datasets/Cb_m_0305_p/processing.rtf | 13 + general/datasets/Cb_m_0305_p/summary.rtf | 1 + general/datasets/Cb_m_0305_p/tissue.rtf | 1370 + general/datasets/Cb_m_0305_r/acknowledgment.rtf | 15 + general/datasets/Cb_m_0305_r/cases.rtf | 5 + general/datasets/Cb_m_0305_r/notes.rtf | 5 + general/datasets/Cb_m_0305_r/platform.rtf | 1 + general/datasets/Cb_m_0305_r/processing.rtf | 13 + general/datasets/Cb_m_0305_r/summary.rtf | 1 + general/datasets/Cb_m_0305_r/tissue.rtf | 1370 + general/datasets/Cb_m_1003_m/acknowledgment.rtf | 15 + general/datasets/Cb_m_1003_m/cases.rtf | 7 + general/datasets/Cb_m_1003_m/notes.rtf | 3 + general/datasets/Cb_m_1003_m/platform.rtf | 3 + general/datasets/Cb_m_1003_m/processing.rtf | 17 + general/datasets/Cb_m_1003_m/summary.rtf | 3 + general/datasets/Cb_m_1003_m/tissue.rtf | 376 + general/datasets/Cb_m_1004_m/acknowledgment.rtf | 15 + general/datasets/Cb_m_1004_m/cases.rtf | 7 + general/datasets/Cb_m_1004_m/notes.rtf | 3 + general/datasets/Cb_m_1004_m/platform.rtf | 3 + general/datasets/Cb_m_1004_m/processing.rtf | 17 + general/datasets/Cb_m_1004_m/summary.rtf | 3 + general/datasets/Cb_m_1004_m/tissue.rtf | 376 + general/datasets/Cb_m_1004_p/acknowledgment.rtf | 15 + general/datasets/Cb_m_1004_p/cases.rtf | 7 + general/datasets/Cb_m_1004_p/notes.rtf | 3 + general/datasets/Cb_m_1004_p/platform.rtf | 3 + general/datasets/Cb_m_1004_p/processing.rtf | 17 + general/datasets/Cb_m_1004_p/summary.rtf | 3 + general/datasets/Cb_m_1004_p/tissue.rtf | 376 + general/datasets/Cb_m_1004_r/acknowledgment.rtf | 15 + general/datasets/Cb_m_1004_r/cases.rtf | 7 + general/datasets/Cb_m_1004_r/notes.rtf | 3 + general/datasets/Cb_m_1004_r/platform.rtf | 3 + general/datasets/Cb_m_1004_r/processing.rtf | 17 + general/datasets/Cb_m_1004_r/summary.rtf | 3 + general/datasets/Cb_m_1004_r/tissue.rtf | 376 + general/datasets/Ccgeno/cases.rtf | 1 + general/datasets/Ccgeno/contributors.rtf | 1 + general/datasets/Ccgeno/platform.rtf | 1 + general/datasets/Ccgeno/specifics.rtf | 1 + general/datasets/Ccgeno/summary.rtf | 9 + general/datasets/Ccgeno/tissue.rtf | 1 + general/datasets/Ccpublish/acknowledgment.rtf | 1 + general/datasets/Ccpublish/cases.rtf | 3 + general/datasets/Ccpublish/contributors.rtf | 5 + general/datasets/Ccpublish/experiment-design.rtf | 1 + general/datasets/Ccpublish/specifics.rtf | 1 + general/datasets/Ccpublish/summary.rtf | 11 + general/datasets/Ccpublish/tissue.rtf | 1 + general/datasets/Cmmtubcbxdcerilm0513/summary.rtf | 1 + .../datasets/Cmmtubcbxdg12cerilm0513/summary.rtf | 1 + .../datasets/Cmmtubcbxdg15cerilm0513/summary.rtf | 1 + .../datasets/Cmmtubcbxdg18cerilm0513/summary.rtf | 1 + .../datasets/Cmmtubcbxdp03cerilm0513/summary.rtf | 1 + .../datasets/Cmmtubcbxdp06cerilm0513/summary.rtf | 1 + .../datasets/Cmmtubcbxdp09cerilm0513/summary.rtf | 1 + general/datasets/Cms_hipp1115/cases.rtf | 992 + general/datasets/Cms_hipp1115/contributors.rtf | 1 + .../datasets/Cms_hipp1115/experiment-design.rtf | 9 + general/datasets/Cms_hipp1115/processing.rtf | 3 + general/datasets/Cms_hipp1115/summary.rtf | 1 + general/datasets/Cms_hipp1115/tissue.rtf | 1 + general/datasets/Cms_hipp_zscr_1115/cases.rtf | 992 + .../datasets/Cms_hipp_zscr_1115/contributors.rtf | 1 + .../Cms_hipp_zscr_1115/experiment-design.rtf | 9 + general/datasets/Cms_hipp_zscr_1115/processing.rtf | 3 + general/datasets/Cms_hipp_zscr_1115/specifics.rtf | 1 + general/datasets/Cms_hipp_zscr_1115/summary.rtf | 1 + general/datasets/Cms_hipp_zscr_1115/tissue.rtf | 1 + .../Crtd_hipprecell1214/acknowledgment.rtf | 1 + general/datasets/Crtd_hipprecell1214/cases.rtf | 1 + general/datasets/Crtd_hipprecell1214/citation.rtf | 1 + .../datasets/Crtd_hipprecell1214/contributors.rtf | 1 + .../Crtd_hipprecell1214/experiment-design.rtf | 1 + general/datasets/Crtd_hipprecell1214/notes.rtf | 3 + general/datasets/Crtd_hipprecell1214/platform.rtf | 1 + .../datasets/Crtd_hipprecell1214/processing.rtf | 1 + general/datasets/Crtd_hipprecell1214/summary.rtf | 1 + general/datasets/Crtd_hipprecell1214/tissue.rtf | 1 + general/datasets/Cubr_rna_0219/citation.rtf | 5 + general/datasets/Cubr_rna_0219/contributors.rtf | 1 + .../datasets/Cubr_rna_0219/experiment-design.rtf | 1 + general/datasets/Cubr_rna_0219/notes.rtf | 1 + general/datasets/Cubr_rna_0219/specifics.rtf | 1 + general/datasets/Cubr_rna_0219/summary.rtf | 1 + .../datasets/DBA2J-ONH-1212/experiment-design.rtf | 9 + general/datasets/DBA2J-ONH-1212/summary.rtf | 58 + .../datasets/DBA2J_ONH_1212/experiment-design.rtf | 9 - general/datasets/DBA2J_ONH_1212/summary.rtf | 58 - .../DOD_BXD_Ind_PFC_CD_RNA_Seq_1019/specifics.rtf | 3 - .../DOD_BXD_Ind_PFC_CD_RNA_Seq_1019/summary.rtf | 9 - .../specifics.rtf | 1 - .../summary.rtf | 9 - .../DOD_BXD_Ind_PFC_CTL_RNA_Seq_1019/specifics.rtf | 3 - .../DOD_BXD_Ind_PFC_CTL_RNA_Seq_1019/summary.rtf | 9 - .../specifics.rtf | 1 - .../summary.rtf | 9 - .../DOD_BXD_Ind_PFC_DFP_RNA_Seq_1019/specifics.rtf | 3 - .../DOD_BXD_Ind_PFC_DFP_RNA_Seq_1019/summary.rtf | 9 - .../specifics.rtf | 1 - .../summary.rtf | 9 - .../DOD_BXD_PFC_CD_RNA_Seq_1019/specifics.rtf | 1 - .../DOD_BXD_PFC_CD_RNA_Seq_1019/summary.rtf | 9 - .../DOD_BXD_PFC_CD_RNA_Seq_ComB_1019/specifics.rtf | 3 - .../DOD_BXD_PFC_CD_RNA_Seq_ComB_1019/summary.rtf | 9 - .../DOD_BXD_PFC_CTL_RNA_Seq_1019/specifics.rtf | 1 - .../DOD_BXD_PFC_CTL_RNA_Seq_1019/summary.rtf | 9 - .../specifics.rtf | 3 - .../DOD_BXD_PFC_CTL_RNA_Seq_ComB_1019/summary.rtf | 9 - .../DOD_BXD_PFC_DFP_RNA_Seq_1019/specifics.rtf | 1 - .../DOD_BXD_PFC_DFP_RNA_Seq_1019/summary.rtf | 9 - .../specifics.rtf | 3 - .../DOD_BXD_PFC_DFP_RNA_Seq_ComB_1019/summary.rtf | 9 - .../datasets/Dba2j_onh_1212/experiment-design.rtf | 9 + general/datasets/Dba2j_onh_1212/summary.rtf | 58 + .../DevNeocortex_ILM6.2P14RInv_1110/cases.rtf | 3 + .../experiment-design.rtf | 3 + .../DevNeocortex_ILM6.2P14RInv_1110/summary.rtf | 16 + .../DevNeocortex_ILM6.2P14RInv_1110/tissue.rtf | 536 + .../DevNeocortex_ILM6.2P14RInv_1111/cases.rtf | 3 + .../experiment-design.rtf | 3 + .../DevNeocortex_ILM6.2P14RInv_1111/summary.rtf | 16 + .../DevNeocortex_ILM6.2P14RInv_1111/tissue.rtf | 536 + .../DevNeocortex_ILM6.2P3RInv_1110/cases.rtf | 3 + .../experiment-design.rtf | 3 + .../DevNeocortex_ILM6.2P3RInv_1110/summary.rtf | 16 + .../DevNeocortex_ILM6.2P3RInv_1110/tissue.rtf | 536 + .../DevNeocortex_ILM6.2P3RInv_1111/cases.rtf | 3 + .../experiment-design.rtf | 3 + .../DevNeocortex_ILM6.2P3RInv_1111/summary.rtf | 16 + .../DevNeocortex_ILM6.2P3RInv_1111/tissue.rtf | 536 + .../DevNeocortex_ILM6_2P14RInv_1110/cases.rtf | 3 - .../experiment-design.rtf | 3 - .../DevNeocortex_ILM6_2P14RInv_1110/summary.rtf | 16 - .../DevNeocortex_ILM6_2P14RInv_1110/tissue.rtf | 536 - .../DevNeocortex_ILM6_2P14RInv_1111/cases.rtf | 3 - .../experiment-design.rtf | 3 - .../DevNeocortex_ILM6_2P14RInv_1111/summary.rtf | 16 - .../DevNeocortex_ILM6_2P14RInv_1111/tissue.rtf | 536 - .../DevNeocortex_ILM6_2P3RInv_1110/cases.rtf | 3 - .../experiment-design.rtf | 3 - .../DevNeocortex_ILM6_2P3RInv_1110/summary.rtf | 16 - .../DevNeocortex_ILM6_2P3RInv_1110/tissue.rtf | 536 - .../DevNeocortex_ILM6_2P3RInv_1111/cases.rtf | 3 - .../experiment-design.rtf | 3 - .../DevNeocortex_ILM6_2P3RInv_1111/summary.rtf | 16 - .../DevNeocortex_ILM6_2P3RInv_1111/tissue.rtf | 536 - .../DevStriatum_ILM6.2P14RInv_1110/cases.rtf | 1 + .../experiment-design.rtf | 1 + .../DevStriatum_ILM6.2P14RInv_1110/processing.rtf | 1 + .../DevStriatum_ILM6.2P14RInv_1110/summary.rtf | 10 + .../DevStriatum_ILM6.2P14RInv_1110/tissue.rtf | 534 + .../DevStriatum_ILM6.2P14RInv_1111/cases.rtf | 1 + .../experiment-design.rtf | 1 + .../DevStriatum_ILM6.2P14RInv_1111/processing.rtf | 1 + .../DevStriatum_ILM6.2P14RInv_1111/summary.rtf | 10 + .../DevStriatum_ILM6.2P14RInv_1111/tissue.rtf | 534 + .../DevStriatum_ILM6.2P3RInv_1110/cases.rtf | 1 + .../experiment-design.rtf | 1 + .../DevStriatum_ILM6.2P3RInv_1110/processing.rtf | 1 + .../DevStriatum_ILM6.2P3RInv_1110/summary.rtf | 10 + .../DevStriatum_ILM6.2P3RInv_1110/tissue.rtf | 534 + .../DevStriatum_ILM6.2P3RInv_1111/cases.rtf | 1 + .../experiment-design.rtf | 1 + .../DevStriatum_ILM6.2P3RInv_1111/processing.rtf | 1 + .../DevStriatum_ILM6.2P3RInv_1111/summary.rtf | 10 + .../DevStriatum_ILM6.2P3RInv_1111/tissue.rtf | 534 + .../DevStriatum_ILM6_2P14RInv_1110/cases.rtf | 1 - .../experiment-design.rtf | 1 - .../DevStriatum_ILM6_2P14RInv_1110/processing.rtf | 1 - .../DevStriatum_ILM6_2P14RInv_1110/summary.rtf | 10 - .../DevStriatum_ILM6_2P14RInv_1110/tissue.rtf | 534 - .../DevStriatum_ILM6_2P14RInv_1111/cases.rtf | 1 - .../experiment-design.rtf | 1 - .../DevStriatum_ILM6_2P14RInv_1111/processing.rtf | 1 - .../DevStriatum_ILM6_2P14RInv_1111/summary.rtf | 10 - .../DevStriatum_ILM6_2P14RInv_1111/tissue.rtf | 534 - .../DevStriatum_ILM6_2P3RInv_1110/cases.rtf | 1 - .../experiment-design.rtf | 1 - .../DevStriatum_ILM6_2P3RInv_1110/processing.rtf | 1 - .../DevStriatum_ILM6_2P3RInv_1110/summary.rtf | 10 - .../DevStriatum_ILM6_2P3RInv_1110/tissue.rtf | 534 - .../DevStriatum_ILM6_2P3RInv_1111/cases.rtf | 1 - .../experiment-design.rtf | 1 - .../DevStriatum_ILM6_2P3RInv_1111/processing.rtf | 1 - .../DevStriatum_ILM6_2P3RInv_1111/summary.rtf | 10 - .../DevStriatum_ILM6_2P3RInv_1111/tissue.rtf | 534 - .../Devneocortex_ilm6_2p14rinv_1110/cases.rtf | 3 + .../experiment-design.rtf | 3 + .../Devneocortex_ilm6_2p14rinv_1110/summary.rtf | 16 + .../Devneocortex_ilm6_2p14rinv_1110/tissue.rtf | 536 + .../Devneocortex_ilm6_2p14rinv_1111/cases.rtf | 3 + .../experiment-design.rtf | 3 + .../Devneocortex_ilm6_2p14rinv_1111/summary.rtf | 16 + .../Devneocortex_ilm6_2p14rinv_1111/tissue.rtf | 536 + .../Devneocortex_ilm6_2p3rinv_1110/cases.rtf | 3 + .../experiment-design.rtf | 3 + .../Devneocortex_ilm6_2p3rinv_1110/summary.rtf | 16 + .../Devneocortex_ilm6_2p3rinv_1110/tissue.rtf | 536 + .../Devneocortex_ilm6_2p3rinv_1111/cases.rtf | 3 + .../experiment-design.rtf | 3 + .../Devneocortex_ilm6_2p3rinv_1111/summary.rtf | 16 + .../Devneocortex_ilm6_2p3rinv_1111/tissue.rtf | 536 + .../Devstriatum_ilm6_2p14rinv_1110/cases.rtf | 1 + .../experiment-design.rtf | 1 + .../Devstriatum_ilm6_2p14rinv_1110/processing.rtf | 1 + .../Devstriatum_ilm6_2p14rinv_1110/summary.rtf | 10 + .../Devstriatum_ilm6_2p14rinv_1110/tissue.rtf | 534 + .../Devstriatum_ilm6_2p14rinv_1111/cases.rtf | 1 + .../experiment-design.rtf | 1 + .../Devstriatum_ilm6_2p14rinv_1111/processing.rtf | 1 + .../Devstriatum_ilm6_2p14rinv_1111/summary.rtf | 10 + .../Devstriatum_ilm6_2p14rinv_1111/tissue.rtf | 534 + .../Devstriatum_ilm6_2p3rinv_1110/cases.rtf | 1 + .../experiment-design.rtf | 1 + .../Devstriatum_ilm6_2p3rinv_1110/processing.rtf | 1 + .../Devstriatum_ilm6_2p3rinv_1110/summary.rtf | 10 + .../Devstriatum_ilm6_2p3rinv_1110/tissue.rtf | 534 + .../Devstriatum_ilm6_2p3rinv_1111/cases.rtf | 1 + .../experiment-design.rtf | 1 + .../Devstriatum_ilm6_2p3rinv_1111/processing.rtf | 1 + .../Devstriatum_ilm6_2p3rinv_1111/summary.rtf | 10 + .../Devstriatum_ilm6_2p3rinv_1111/tissue.rtf | 534 + .../DoDCMMRPRetMoGene2Ex_0515/acknowledgment.rtf | 1 - .../datasets/DoDCMMRPRetMoGene2Ex_0515/cases.rtf | 5 - .../experiment-design.rtf | 3 - .../datasets/DoDCMMRPRetMoGene2Ex_0515/notes.rtf | 1 - .../DoDCMMRPRetMoGene2Ex_0515/platform.rtf | 1 - .../DoDCMMRPRetMoGene2Ex_0515/specifics.rtf | 1 - .../datasets/DoDCMMRPRetMoGene2Ex_0515/summary.rtf | 3 - .../datasets/DoDCMMRPRetMoGene2Ex_0515/tissue.rtf | 1 - .../DoDCMMRPRetMoGene2_0515/acknowledgment.rtf | 1 - general/datasets/DoDCMMRPRetMoGene2_0515/cases.rtf | 5 - .../DoDCMMRPRetMoGene2_0515/experiment-design.rtf | 3 - general/datasets/DoDCMMRPRetMoGene2_0515/notes.rtf | 1 - .../datasets/DoDCMMRPRetMoGene2_0515/platform.rtf | 1 - .../datasets/DoDCMMRPRetMoGene2_0515/summary.rtf | 3 - .../datasets/DoDCMMRPRetMoGene2_0515/tissue.rtf | 1 - .../datasets/DoDRetBlastvsNormalEx_0416/cases.rtf | 9 - .../experiment-design.rtf | 3 - .../datasets/DoDRetBlastvsNormalEx_0416/notes.rtf | 10 - .../DoDRetBlastvsNormalEx_0416/platform.rtf | 1 - .../DoDRetBlastvsNormalEx_0416/specifics.rtf | 1 - .../DoDRetBlastvsNormalEx_0416/summary.rtf | 5 - .../datasets/DoDRetBlastvsNormalEx_0416/tissue.rtf | 13 - .../DoDRetBlastvsNormal_0416/acknowledgment.rtf | 1 - .../datasets/DoDRetBlastvsNormal_0416/cases.rtf | 1728 -- .../datasets/DoDRetBlastvsNormal_0416/platform.rtf | 1 - .../DoDRetBlastvsNormal_0416/processing.rtf | 1 - .../DoDRetBlastvsNormal_0416/specifics.rtf | 1 - .../datasets/DoDRetBlastvsNormal_0416/summary.rtf | 1 - .../datasets/DoDRetBlastvsNormal_0416/tissue.rtf | 1 - .../DoDTATRCRetBLExMoGene2_1213/acknowledgment.rtf | 1 - .../datasets/DoDTATRCRetBLExMoGene2_1213/cases.rtf | 1728 -- .../DoDTATRCRetBLExMoGene2_1213/platform.rtf | 1 - .../DoDTATRCRetBLExMoGene2_1213/processing.rtf | 1 - .../DoDTATRCRetBLExMoGene2_1213/summary.rtf | 1 - .../DoDTATRCRetBLExMoGene2_1213/tissue.rtf | 1 - .../DoDTATRCRetBLMoGene2E_0316/acknowledgment.rtf | 1 - .../datasets/DoDTATRCRetBLMoGene2E_0316/cases.rtf | 1728 -- .../DoDTATRCRetBLMoGene2E_0316/platform.rtf | 1 - .../DoDTATRCRetBLMoGene2E_0316/processing.rtf | 1 - .../DoDTATRCRetBLMoGene2E_0316/summary.rtf | 1 - .../datasets/DoDTATRCRetBLMoGene2E_0316/tissue.rtf | 1 - .../DoDTATRCRetBLMoGene2_0316/acknowledgment.rtf | 1 - .../datasets/DoDTATRCRetBLMoGene2_0316/cases.rtf | 1728 -- .../DoDTATRCRetBLMoGene2_0316/platform.rtf | 1 - .../DoDTATRCRetBLMoGene2_0316/processing.rtf | 1 - .../datasets/DoDTATRCRetBLMoGene2_0316/summary.rtf | 1 - .../datasets/DoDTATRCRetBLMoGene2_0316/tissue.rtf | 1 - .../DoDTATRCRetBLMoGene2_1213/acknowledgment.rtf | 1 - .../datasets/DoDTATRCRetBLMoGene2_1213/cases.rtf | 1728 -- .../DoDTATRCRetBLMoGene2_1213/platform.rtf | 1 - .../DoDTATRCRetBLMoGene2_1213/processing.rtf | 1 - .../datasets/DoDTATRCRetBLMoGene2_1213/summary.rtf | 1 - .../datasets/DoDTATRCRetBLMoGene2_1213/tissue.rtf | 1 - .../datasets/DoDTATRCRetExMoGene2_0315/cases.rtf | 9 - .../experiment-design.rtf | 3 - .../datasets/DoDTATRCRetExMoGene2_0315/notes.rtf | 10 - .../DoDTATRCRetExMoGene2_0315/platform.rtf | 1 - .../datasets/DoDTATRCRetExMoGene2_0315/summary.rtf | 5 - .../datasets/DoDTATRCRetExMoGene2_0315/tissue.rtf | 13 - .../DoDTATRCRetExMoGene2_1313/acknowledgment.rtf | 1 - .../datasets/DoDTATRCRetExMoGene2_1313/cases.rtf | 1728 -- .../DoDTATRCRetExMoGene2_1313/platform.rtf | 1 - .../DoDTATRCRetExMoGene2_1313/processing.rtf | 1 - .../datasets/DoDTATRCRetExMoGene2_1313/summary.rtf | 1 - .../datasets/DoDTATRCRetExMoGene2_1313/tissue.rtf | 1 - general/datasets/DoDTATRCRetMoGene2_0315/cases.rtf | 9 - .../DoDTATRCRetMoGene2_0315/experiment-design.rtf | 3 - general/datasets/DoDTATRCRetMoGene2_0315/notes.rtf | 10 - .../datasets/DoDTATRCRetMoGene2_0315/platform.rtf | 1 - .../datasets/DoDTATRCRetMoGene2_0315/summary.rtf | 5 - .../datasets/DoDTATRCRetMoGene2_0315/tissue.rtf | 13 - .../DoDTATRCRetMoGene2_1313/acknowledgment.rtf | 1 - general/datasets/DoDTATRCRetMoGene2_1313/cases.rtf | 1728 -- .../datasets/DoDTATRCRetMoGene2_1313/platform.rtf | 1 - .../DoDTATRCRetMoGene2_1313/processing.rtf | 1 - .../datasets/DoDTATRCRetMoGene2_1313/summary.rtf | 1 - .../datasets/DoDTATRCRetMoGene2_1313/tissue.rtf | 1 - .../Dod_bxd_ind_pfc_cd_rna_seq_1019/specifics.rtf | 3 + .../Dod_bxd_ind_pfc_cd_rna_seq_1019/summary.rtf | 9 + .../specifics.rtf | 1 + .../summary.rtf | 9 + .../Dod_bxd_ind_pfc_ctl_rna_seq_1019/specifics.rtf | 3 + .../Dod_bxd_ind_pfc_ctl_rna_seq_1019/summary.rtf | 9 + .../specifics.rtf | 1 + .../summary.rtf | 9 + .../Dod_bxd_ind_pfc_dfp_rna_seq_1019/specifics.rtf | 3 + .../Dod_bxd_ind_pfc_dfp_rna_seq_1019/summary.rtf | 9 + .../specifics.rtf | 1 + .../summary.rtf | 9 + .../Dod_bxd_pfc_cd_rna_seq_1019/specifics.rtf | 1 + .../Dod_bxd_pfc_cd_rna_seq_1019/summary.rtf | 9 + .../Dod_bxd_pfc_cd_rna_seq_comb_1019/specifics.rtf | 3 + .../Dod_bxd_pfc_cd_rna_seq_comb_1019/summary.rtf | 9 + .../Dod_bxd_pfc_ctl_rna_seq_1019/specifics.rtf | 1 + .../Dod_bxd_pfc_ctl_rna_seq_1019/summary.rtf | 9 + .../specifics.rtf | 3 + .../Dod_bxd_pfc_ctl_rna_seq_comb_1019/summary.rtf | 9 + .../Dod_bxd_pfc_dfp_rna_seq_1019/specifics.rtf | 1 + .../Dod_bxd_pfc_dfp_rna_seq_1019/summary.rtf | 9 + .../specifics.rtf | 3 + .../Dod_bxd_pfc_dfp_rna_seq_comb_1019/summary.rtf | 9 + .../Dodcmmrpretmogene2_0515/acknowledgment.rtf | 1 + general/datasets/Dodcmmrpretmogene2_0515/cases.rtf | 5 + .../datasets/Dodcmmrpretmogene2_0515/citation.rtf | 36 + .../Dodcmmrpretmogene2_0515/contributors.rtf | 1 + .../Dodcmmrpretmogene2_0515/experiment-design.rtf | 3 + general/datasets/Dodcmmrpretmogene2_0515/notes.rtf | 1 + .../datasets/Dodcmmrpretmogene2_0515/platform.rtf | 1 + .../datasets/Dodcmmrpretmogene2_0515/summary.rtf | 3 + .../datasets/Dodcmmrpretmogene2_0515/tissue.rtf | 1 + .../Dodcmmrpretmogene2ex_0515/acknowledgment.rtf | 1 + .../datasets/Dodcmmrpretmogene2ex_0515/cases.rtf | 5 + .../Dodcmmrpretmogene2ex_0515/citation.rtf | 36 + .../Dodcmmrpretmogene2ex_0515/contributors.rtf | 1 + .../experiment-design.rtf | 3 + .../datasets/Dodcmmrpretmogene2ex_0515/notes.rtf | 1 + .../Dodcmmrpretmogene2ex_0515/platform.rtf | 1 + .../Dodcmmrpretmogene2ex_0515/specifics.rtf | 1 + .../datasets/Dodcmmrpretmogene2ex_0515/summary.rtf | 3 + .../datasets/Dodcmmrpretmogene2ex_0515/tissue.rtf | 1 + .../Dodretblastvsnormal_0416/acknowledgment.rtf | 1 + .../datasets/Dodretblastvsnormal_0416/cases.rtf | 1728 ++ .../datasets/Dodretblastvsnormal_0416/citation.rtf | 3 + .../Dodretblastvsnormal_0416/contributors.rtf | 1 + .../datasets/Dodretblastvsnormal_0416/platform.rtf | 1 + .../Dodretblastvsnormal_0416/processing.rtf | 1 + .../Dodretblastvsnormal_0416/specifics.rtf | 1 + .../datasets/Dodretblastvsnormal_0416/summary.rtf | 1 + .../datasets/Dodretblastvsnormal_0416/tissue.rtf | 1 + .../datasets/Dodretblastvsnormalex_0416/cases.rtf | 9 + .../Dodretblastvsnormalex_0416/contributors.rtf | 9 + .../experiment-design.rtf | 3 + .../datasets/Dodretblastvsnormalex_0416/notes.rtf | 10 + .../Dodretblastvsnormalex_0416/platform.rtf | 1 + .../Dodretblastvsnormalex_0416/specifics.rtf | 1 + .../Dodretblastvsnormalex_0416/summary.rtf | 5 + .../datasets/Dodretblastvsnormalex_0416/tissue.rtf | 13 + .../Dodtatrcretblexmogene2_1213/acknowledgment.rtf | 1 + .../datasets/Dodtatrcretblexmogene2_1213/cases.rtf | 1728 ++ .../Dodtatrcretblexmogene2_1213/citation.rtf | 3 + .../Dodtatrcretblexmogene2_1213/contributors.rtf | 1 + .../Dodtatrcretblexmogene2_1213/platform.rtf | 1 + .../Dodtatrcretblexmogene2_1213/processing.rtf | 1 + .../Dodtatrcretblexmogene2_1213/summary.rtf | 1 + .../Dodtatrcretblexmogene2_1213/tissue.rtf | 1 + .../Dodtatrcretblmogene2_0316/acknowledgment.rtf | 1 + .../datasets/Dodtatrcretblmogene2_0316/cases.rtf | 1728 ++ .../Dodtatrcretblmogene2_0316/citation.rtf | 3 + .../Dodtatrcretblmogene2_0316/contributors.rtf | 1 + .../Dodtatrcretblmogene2_0316/platform.rtf | 1 + .../Dodtatrcretblmogene2_0316/processing.rtf | 1 + .../datasets/Dodtatrcretblmogene2_0316/summary.rtf | 1 + .../datasets/Dodtatrcretblmogene2_0316/tissue.rtf | 1 + .../Dodtatrcretblmogene2_1213/acknowledgment.rtf | 1 + .../datasets/Dodtatrcretblmogene2_1213/cases.rtf | 1728 ++ .../Dodtatrcretblmogene2_1213/citation.rtf | 3 + .../Dodtatrcretblmogene2_1213/contributors.rtf | 1 + .../Dodtatrcretblmogene2_1213/platform.rtf | 1 + .../Dodtatrcretblmogene2_1213/processing.rtf | 1 + .../datasets/Dodtatrcretblmogene2_1213/summary.rtf | 1 + .../datasets/Dodtatrcretblmogene2_1213/tissue.rtf | 1 + .../Dodtatrcretblmogene2e_0316/acknowledgment.rtf | 1 + .../datasets/Dodtatrcretblmogene2e_0316/cases.rtf | 1728 ++ .../Dodtatrcretblmogene2e_0316/citation.rtf | 3 + .../Dodtatrcretblmogene2e_0316/contributors.rtf | 1 + .../Dodtatrcretblmogene2e_0316/platform.rtf | 1 + .../Dodtatrcretblmogene2e_0316/processing.rtf | 1 + .../Dodtatrcretblmogene2e_0316/summary.rtf | 1 + .../datasets/Dodtatrcretblmogene2e_0316/tissue.rtf | 1 + .../datasets/Dodtatrcretexmogene2_0315/cases.rtf | 9 + .../Dodtatrcretexmogene2_0315/contributors.rtf | 9 + .../experiment-design.rtf | 3 + .../datasets/Dodtatrcretexmogene2_0315/notes.rtf | 10 + .../Dodtatrcretexmogene2_0315/platform.rtf | 1 + .../datasets/Dodtatrcretexmogene2_0315/summary.rtf | 5 + .../datasets/Dodtatrcretexmogene2_0315/tissue.rtf | 13 + .../Dodtatrcretexmogene2_1313/acknowledgment.rtf | 1 + .../datasets/Dodtatrcretexmogene2_1313/cases.rtf | 1728 ++ .../Dodtatrcretexmogene2_1313/citation.rtf | 3 + .../Dodtatrcretexmogene2_1313/contributors.rtf | 1 + .../Dodtatrcretexmogene2_1313/platform.rtf | 1 + .../Dodtatrcretexmogene2_1313/processing.rtf | 1 + .../datasets/Dodtatrcretexmogene2_1313/summary.rtf | 1 + .../datasets/Dodtatrcretexmogene2_1313/tissue.rtf | 1 + general/datasets/Dodtatrcretmogene2_0315/cases.rtf | 9 + .../Dodtatrcretmogene2_0315/contributors.rtf | 9 + .../Dodtatrcretmogene2_0315/experiment-design.rtf | 3 + general/datasets/Dodtatrcretmogene2_0315/notes.rtf | 10 + .../datasets/Dodtatrcretmogene2_0315/platform.rtf | 1 + .../datasets/Dodtatrcretmogene2_0315/summary.rtf | 5 + .../datasets/Dodtatrcretmogene2_0315/tissue.rtf | 13 + .../Dodtatrcretmogene2_1313/acknowledgment.rtf | 1 + general/datasets/Dodtatrcretmogene2_1313/cases.rtf | 1728 ++ .../datasets/Dodtatrcretmogene2_1313/citation.rtf | 3 + .../Dodtatrcretmogene2_1313/contributors.rtf | 1 + .../datasets/Dodtatrcretmogene2_1313/platform.rtf | 1 + .../Dodtatrcretmogene2_1313/processing.rtf | 1 + .../datasets/Dodtatrcretmogene2_1313/summary.rtf | 1 + .../datasets/Dodtatrcretmogene2_1313/tissue.rtf | 1 + .../EBI_MKK_Liv_TPM_Log2_0621/acknowledgment.rtf | 1 - .../EBI_MKK_Liv_TPM_Log2_0621/specifics.rtf | 1 - .../datasets/EBI_MKK_Liv_TPM_Log2_0621/summary.rtf | 3 - .../datasets/EBI_MKK_Liv_TPM_Log2_0621/tissue.rtf | 1 - .../EL_BXDCDHFDScWAT_0216/acknowledgment.rtf | 11 - general/datasets/EL_BXDCDHFDScWAT_0216/cases.rtf | 11 - .../EL_BXDCDHFDScWAT_0216/experiment-design.rtf | 11 - .../datasets/EL_BXDCDHFDScWAT_0216/platform.rtf | 5 - .../datasets/EL_BXDCDHFDScWAT_0216/processing.rtf | 11 - .../datasets/EL_BXDCDHFDScWAT_0216/specifics.rtf | 1 - general/datasets/EL_BXDCDHFDScWAT_0216/summary.rtf | 11 - general/datasets/EL_BXDCDHFDScWAT_0216/tissue.rtf | 11 - .../datasets/EL_BXDCDScWAT_0216/acknowledgment.rtf | 11 - general/datasets/EL_BXDCDScWAT_0216/cases.rtf | 11 - .../EL_BXDCDScWAT_0216/experiment-design.rtf | 11 - general/datasets/EL_BXDCDScWAT_0216/platform.rtf | 5 - general/datasets/EL_BXDCDScWAT_0216/processing.rtf | 11 - general/datasets/EL_BXDCDScWAT_0216/summary.rtf | 11 - general/datasets/EL_BXDCDScWAT_0216/tissue.rtf | 11 - .../EL_BXDHFDScWAT_0216/acknowledgment.rtf | 11 - general/datasets/EL_BXDHFDScWAT_0216/cases.rtf | 11 - .../EL_BXDHFDScWAT_0216/experiment-design.rtf | 11 - general/datasets/EL_BXDHFDScWAT_0216/platform.rtf | 5 - .../datasets/EL_BXDHFDScWAT_0216/processing.rtf | 11 - general/datasets/EL_BXDHFDScWAT_0216/specifics.rtf | 1 - general/datasets/EL_BXDHFDScWAT_0216/summary.rtf | 11 - general/datasets/EL_BXDHFDScWAT_0216/tissue.rtf | 11 - general/datasets/EPFLADEL1013/acknowledgment.rtf | 1 - general/datasets/EPFLADEL1013/cases.rtf | 1 - .../datasets/EPFLADEL1013/experiment-design.rtf | 1 - general/datasets/EPFLADEL1013/platform.rtf | 1 - general/datasets/EPFLADEL1013/processing.rtf | 1 - general/datasets/EPFLADEL1013/summary.rtf | 1 - general/datasets/EPFLADEL1013/tissue.rtf | 1 - general/datasets/EPFLADGL1013/acknowledgment.rtf | 1 - general/datasets/EPFLADGL1013/cases.rtf | 1 - .../datasets/EPFLADGL1013/experiment-design.rtf | 1 - general/datasets/EPFLADGL1013/platform.rtf | 1 - general/datasets/EPFLADGL1013/processing.rtf | 1 - general/datasets/EPFLADGL1013/summary.rtf | 1 - general/datasets/EPFLADGL1013/tissue.rtf | 1 - general/datasets/EPFLBXDprotCDRPN0214/cases.rtf | 1 - general/datasets/EPFLBXDprotCDRPN0214/notes.rtf | 16 - general/datasets/EPFLBXDprotCDRPN0214/platform.rtf | 1 - general/datasets/EPFLBXDprotCDRPN0214/summary.rtf | 5 - general/datasets/EPFLBXDprotCDRPN0214/tissue.rtf | 1 - .../datasets/EPFLBXDprotCD_CDHFDRPN0214/cases.rtf | 1 - .../datasets/EPFLBXDprotCD_CDHFDRPN0214/notes.rtf | 16 - .../EPFLBXDprotCD_CDHFDRPN0214/platform.rtf | 1 - .../EPFLBXDprotCD_CDHFDRPN0214/summary.rtf | 5 - .../datasets/EPFLBXDprotCD_CDHFDRPN0214/tissue.rtf | 1 - general/datasets/EPFLBXDprotHFDRPN0214/cases.rtf | 1 - general/datasets/EPFLBXDprotHFDRPN0214/notes.rtf | 16 - .../datasets/EPFLBXDprotHFDRPN0214/platform.rtf | 1 - general/datasets/EPFLBXDprotHFDRPN0214/summary.rtf | 5 - general/datasets/EPFLBXDprotHFDRPN0214/tissue.rtf | 1 - general/datasets/EPFLBXDprotRPN0513/cases.rtf | 1 - general/datasets/EPFLBXDprotRPN0513/notes.rtf | 16 - general/datasets/EPFLBXDprotRPN0513/platform.rtf | 1 - general/datasets/EPFLBXDprotRPN0513/summary.rtf | 5 - general/datasets/EPFLBXDprotRPN0513/tissue.rtf | 1 - general/datasets/EPFLETHZBXDprotCD0514/notes.rtf | 16 - .../datasets/EPFLETHZBXDprotCD_LS1114/notes.rtf | 16 - general/datasets/EPFLETHZBXDprotHFD0514/notes.rtf | 16 - .../datasets/EPFLETHZBXDprotHF_LS1114/notes.rtf | 16 - .../EPFLMouseLiverBothExRMA0413/acknowledgment.rtf | 1 - .../datasets/EPFLMouseLiverBothExRMA0413/cases.rtf | 1 - .../EPFLMouseLiverBothExRMA0413/platform.rtf | 1 - .../EPFLMouseLiverBothExRMA0413/processing.rtf | 1 - .../EPFLMouseLiverBothExRMA0413/summary.rtf | 1 - .../EPFLMouseLiverBothExRMA0413/tissue.rtf | 1 - .../EPFLMouseLiverCDEx0413/acknowledgment.rtf | 1 - general/datasets/EPFLMouseLiverCDEx0413/cases.rtf | 1 - .../datasets/EPFLMouseLiverCDEx0413/platform.rtf | 1 - .../datasets/EPFLMouseLiverCDEx0413/processing.rtf | 1 - .../datasets/EPFLMouseLiverCDEx0413/specifics.rtf | 1 - .../datasets/EPFLMouseLiverCDEx0413/summary.rtf | 1 - general/datasets/EPFLMouseLiverCDEx0413/tissue.rtf | 1 - .../EPFLMouseLiverCDHFDRMA0818/acknowledgment.rtf | 1 - .../datasets/EPFLMouseLiverCDHFDRMA0818/cases.rtf | 1 - .../EPFLMouseLiverCDHFDRMA0818/platform.rtf | 1 - .../EPFLMouseLiverCDHFDRMA0818/processing.rtf | 1 - .../EPFLMouseLiverCDHFDRMA0818/specifics.rtf | 1 - .../EPFLMouseLiverCDHFDRMA0818/summary.rtf | 1 - .../datasets/EPFLMouseLiverCDHFDRMA0818/tissue.rtf | 1 - .../EPFLMouseLiverCDRMA0413/acknowledgment.rtf | 1 - general/datasets/EPFLMouseLiverCDRMA0413/cases.rtf | 1 - .../datasets/EPFLMouseLiverCDRMA0413/platform.rtf | 1 - .../EPFLMouseLiverCDRMA0413/processing.rtf | 1 - .../datasets/EPFLMouseLiverCDRMA0413/summary.rtf | 1 - .../datasets/EPFLMouseLiverCDRMA0413/tissue.rtf | 1 - .../EPFLMouseLiverCDRMA0818/acknowledgment.rtf | 1 - general/datasets/EPFLMouseLiverCDRMA0818/cases.rtf | 1 - .../datasets/EPFLMouseLiverCDRMA0818/platform.rtf | 1 - .../EPFLMouseLiverCDRMA0818/processing.rtf | 1 - .../datasets/EPFLMouseLiverCDRMA0818/specifics.rtf | 1 - .../datasets/EPFLMouseLiverCDRMA0818/summary.rtf | 1 - .../datasets/EPFLMouseLiverCDRMA0818/tissue.rtf | 1 - .../EPFLMouseLiverHFCEx0413/acknowledgment.rtf | 1 - general/datasets/EPFLMouseLiverHFCEx0413/cases.rtf | 1 - .../datasets/EPFLMouseLiverHFCEx0413/platform.rtf | 1 - .../EPFLMouseLiverHFCEx0413/processing.rtf | 1 - .../datasets/EPFLMouseLiverHFCEx0413/specifics.rtf | 1 - .../datasets/EPFLMouseLiverHFCEx0413/summary.rtf | 1 - .../datasets/EPFLMouseLiverHFCEx0413/tissue.rtf | 1 - .../EPFLMouseLiverHFDRMA0413/acknowledgment.rtf | 1 - .../datasets/EPFLMouseLiverHFDRMA0413/cases.rtf | 1 - .../datasets/EPFLMouseLiverHFDRMA0413/platform.rtf | 1 - .../EPFLMouseLiverHFDRMA0413/processing.rtf | 1 - .../EPFLMouseLiverHFDRMA0413/specifics.rtf | 1 - .../datasets/EPFLMouseLiverHFDRMA0413/summary.rtf | 1 - .../datasets/EPFLMouseLiverHFDRMA0413/tissue.rtf | 1 - .../EPFLMouseLiverHFDRMA0818/acknowledgment.rtf | 1 - .../datasets/EPFLMouseLiverHFDRMA0818/cases.rtf | 1 - .../datasets/EPFLMouseLiverHFDRMA0818/platform.rtf | 1 - .../EPFLMouseLiverHFDRMA0818/processing.rtf | 1 - .../EPFLMouseLiverHFDRMA0818/specifics.rtf | 65 - .../datasets/EPFLMouseLiverHFDRMA0818/summary.rtf | 1 - .../datasets/EPFLMouseLiverHFDRMA0818/tissue.rtf | 1 - .../EPFLMouseLiverRMA0413/acknowledgment.rtf | 1 - general/datasets/EPFLMouseLiverRMA0413/cases.rtf | 1 - .../datasets/EPFLMouseLiverRMA0413/platform.rtf | 1 - .../datasets/EPFLMouseLiverRMA0413/processing.rtf | 1 - general/datasets/EPFLMouseLiverRMA0413/summary.rtf | 1 - general/datasets/EPFLMouseLiverRMA0413/tissue.rtf | 1 - .../EPFLMouseMuscleCDRMAEx1112/summary.rtf | 10 - .../datasets/EPFLMouseMuscleCDRMAEx1112/tissue.rtf | 25 - .../EPFLMouseMuscleHFDRMAEx1112/summary.rtf | 10 - .../EPFLMouseMuscleHFDRMAEx1112/tissue.rtf | 25 - general/datasets/EPFL_AdiMitPro0416/summary.rtf | 1 - general/datasets/EPFL_AdiPro0416/summary.rtf | 1 - .../EPFL_ETHZ_BXD_LivProtAvg_CD_1119/specifics.rtf | 1 - .../EPFL_ETHZ_BXD_LivProtAvg_CD_1119/summary.rtf | 1 - .../specifics.rtf | 1 - .../summary.rtf | 1 - .../specifics.rtf | 1 - .../EPFL_ETHZ_BXD_LivProtAvg_HFD_1119/summary.rtf | 1 - .../EPFL_ETHZ_BXD_LivProtCD_HF_1119/specifics.rtf | 1 - .../EPFL_ETHZ_BXD_LivProtCD_HF_1119/summary.rtf | 1 - .../EPFL_LISPBXDHeCD0114/acknowledgment.rtf | 1 - general/datasets/EPFL_LISPBXDHeCD0114/cases.rtf | 1 - .../EPFL_LISPBXDHeCD0114/experiment-design.rtf | 1 - general/datasets/EPFL_LISPBXDHeCD0114/platform.rtf | 1 - .../datasets/EPFL_LISPBXDHeCD0114/processing.rtf | 1 - general/datasets/EPFL_LISPBXDHeCD0114/summary.rtf | 1 - general/datasets/EPFL_LISPBXDHeCD0114/tissue.rtf | 1 - .../EPFL_LISPBXDHeCDEx0114/acknowledgment.rtf | 1 - general/datasets/EPFL_LISPBXDHeCDEx0114/cases.rtf | 1 - .../EPFL_LISPBXDHeCDEx0114/experiment-design.rtf | 1 - .../datasets/EPFL_LISPBXDHeCDEx0114/platform.rtf | 1 - .../datasets/EPFL_LISPBXDHeCDEx0114/processing.rtf | 1 - .../datasets/EPFL_LISPBXDHeCDEx0114/summary.rtf | 1 - general/datasets/EPFL_LISPBXDHeCDEx0114/tissue.rtf | 1 - .../EPFL_LISPBXDHeHFD0114/acknowledgment.rtf | 1 - general/datasets/EPFL_LISPBXDHeHFD0114/cases.rtf | 1 - .../EPFL_LISPBXDHeHFD0114/experiment-design.rtf | 1 - .../datasets/EPFL_LISPBXDHeHFD0114/platform.rtf | 1 - .../datasets/EPFL_LISPBXDHeHFD0114/processing.rtf | 1 - general/datasets/EPFL_LISPBXDHeHFD0114/summary.rtf | 1 - general/datasets/EPFL_LISPBXDHeHFD0114/tissue.rtf | 1 - .../EPFL_LISPBXDHeHFDEx0114/acknowledgment.rtf | 1 - general/datasets/EPFL_LISPBXDHeHFDEx0114/cases.rtf | 1 - .../EPFL_LISPBXDHeHFDEx0114/experiment-design.rtf | 1 - .../datasets/EPFL_LISPBXDHeHFDEx0114/platform.rtf | 1 - .../EPFL_LISPBXDHeHFDEx0114/processing.rtf | 1 - .../datasets/EPFL_LISPBXDHeHFDEx0114/summary.rtf | 1 - .../datasets/EPFL_LISPBXDHeHFDEx0114/tissue.rtf | 1 - .../EPFL_LISP_BXD_Col_CD0917/specifics.rtf | 1 - .../datasets/EPFL_LISP_BXD_Col_CD0917/summary.rtf | 1 - .../EPFL_LISP_BXD_Col_CD_HFD0917/specifics.rtf | 1 - .../EPFL_LISP_BXD_Col_CD_HFD0917/summary.rtf | 1 - .../EPFL_LISP_BXD_Col_HFD0917/specifics.rtf | 1 - .../datasets/EPFL_LISP_BXD_Col_HFD0917/summary.rtf | 1 - general/datasets/EPFL_LISP_LivPMetCD1213/cases.rtf | 1 - .../EPFL_LISP_LivPMetCD1213/processing.rtf | 3 - .../datasets/EPFL_LISP_LivPMetCD1213/summary.rtf | 1 - .../datasets/EPFL_LISP_LivPMetCDHFD1213/cases.rtf | 1 - .../EPFL_LISP_LivPMetCDHFD1213/processing.rtf | 3 - .../EPFL_LISP_LivPMetCDHFD1213/summary.rtf | 1 - .../datasets/EPFL_LISP_LivPMetHFD1213/cases.rtf | 1 - .../EPFL_LISP_LivPMetHFD1213/processing.rtf | 3 - .../datasets/EPFL_LISP_LivPMetHFD1213/summary.rtf | 1 - .../datasets/EPFL_LISP_LivPMetlog2CD1213/cases.rtf | 1 - .../EPFL_LISP_LivPMetlog2CD1213/processing.rtf | 3 - .../EPFL_LISP_LivPMetlog2CD1213/summary.rtf | 1 - .../EPFL_LISP_LivPMetlog2HFD1213/cases.rtf | 1 - .../EPFL_LISP_LivPMetlog2HFD1213/processing.rtf | 3 - .../EPFL_LISP_LivPMetlog2HFD1213/summary.rtf | 1 - .../EPFL_LISP_MusPMetCD1213/acknowledgment.rtf | 1 - general/datasets/EPFL_LISP_MusPMetCD1213/cases.rtf | 1 - .../datasets/EPFL_LISP_MusPMetCD1213/platform.rtf | 1 - .../EPFL_LISP_MusPMetCD1213/processing.rtf | 1 - .../datasets/EPFL_LISP_MusPMetCD1213/summary.rtf | 1 - .../datasets/EPFL_LISP_MusPMetCD1213/tissue.rtf | 3 - .../EPFL_LISP_MusPMetCDHFD1213/acknowledgment.rtf | 1 - .../datasets/EPFL_LISP_MusPMetCDHFD1213/cases.rtf | 1 - .../EPFL_LISP_MusPMetCDHFD1213/platform.rtf | 1 - .../EPFL_LISP_MusPMetCDHFD1213/processing.rtf | 1 - .../EPFL_LISP_MusPMetCDHFD1213/summary.rtf | 1 - .../datasets/EPFL_LISP_MusPMetCDHFD1213/tissue.rtf | 3 - .../EPFL_LISP_MusPMetHFD1213/acknowledgment.rtf | 1 - .../datasets/EPFL_LISP_MusPMetHFD1213/cases.rtf | 1 - .../datasets/EPFL_LISP_MusPMetHFD1213/platform.rtf | 1 - .../EPFL_LISP_MusPMetHFD1213/processing.rtf | 1 - .../datasets/EPFL_LISP_MusPMetHFD1213/summary.rtf | 1 - .../datasets/EPFL_LISP_MusPMetHFD1213/tissue.rtf | 3 - .../Ebi_mkk_liv_tpm_log2_0621/acknowledgment.rtf | 1 + .../Ebi_mkk_liv_tpm_log2_0621/specifics.rtf | 1 + .../datasets/Ebi_mkk_liv_tpm_log2_0621/summary.rtf | 3 + .../datasets/Ebi_mkk_liv_tpm_log2_0621/tissue.rtf | 1 + .../El_bxdcdhfdscwat_0216/acknowledgment.rtf | 11 + general/datasets/El_bxdcdhfdscwat_0216/cases.rtf | 11 + .../datasets/El_bxdcdhfdscwat_0216/citation.rtf | 11 + .../El_bxdcdhfdscwat_0216/contributors.rtf | 11 + .../El_bxdcdhfdscwat_0216/experiment-design.rtf | 11 + .../datasets/El_bxdcdhfdscwat_0216/platform.rtf | 5 + .../datasets/El_bxdcdhfdscwat_0216/processing.rtf | 11 + .../datasets/El_bxdcdhfdscwat_0216/specifics.rtf | 1 + general/datasets/El_bxdcdhfdscwat_0216/summary.rtf | 11 + general/datasets/El_bxdcdhfdscwat_0216/tissue.rtf | 11 + .../datasets/El_bxdcdscwat_0216/acknowledgment.rtf | 11 + general/datasets/El_bxdcdscwat_0216/cases.rtf | 11 + general/datasets/El_bxdcdscwat_0216/citation.rtf | 11 + .../datasets/El_bxdcdscwat_0216/contributors.rtf | 11 + .../El_bxdcdscwat_0216/experiment-design.rtf | 11 + general/datasets/El_bxdcdscwat_0216/platform.rtf | 5 + general/datasets/El_bxdcdscwat_0216/processing.rtf | 11 + general/datasets/El_bxdcdscwat_0216/summary.rtf | 11 + general/datasets/El_bxdcdscwat_0216/tissue.rtf | 11 + .../El_bxdhfdscwat_0216/acknowledgment.rtf | 11 + general/datasets/El_bxdhfdscwat_0216/cases.rtf | 11 + general/datasets/El_bxdhfdscwat_0216/citation.rtf | 11 + .../datasets/El_bxdhfdscwat_0216/contributors.rtf | 11 + .../El_bxdhfdscwat_0216/experiment-design.rtf | 11 + general/datasets/El_bxdhfdscwat_0216/platform.rtf | 5 + .../datasets/El_bxdhfdscwat_0216/processing.rtf | 11 + general/datasets/El_bxdhfdscwat_0216/specifics.rtf | 1 + general/datasets/El_bxdhfdscwat_0216/summary.rtf | 11 + general/datasets/El_bxdhfdscwat_0216/tissue.rtf | 11 + general/datasets/Epfl_adimitpro0416/summary.rtf | 1 + general/datasets/Epfl_adipro0416/summary.rtf | 1 + .../Epfl_ethz_bxd_livprotavg_cd_1119/specifics.rtf | 1 + .../Epfl_ethz_bxd_livprotavg_cd_1119/summary.rtf | 1 + .../specifics.rtf | 1 + .../summary.rtf | 1 + .../specifics.rtf | 1 + .../Epfl_ethz_bxd_livprotavg_hfd_1119/summary.rtf | 1 + .../Epfl_ethz_bxd_livprotcd_hf_1119/specifics.rtf | 1 + .../Epfl_ethz_bxd_livprotcd_hf_1119/summary.rtf | 1 + .../Epfl_lisp_bxd_col_cd0917/specifics.rtf | 1 + .../datasets/Epfl_lisp_bxd_col_cd0917/summary.rtf | 1 + .../Epfl_lisp_bxd_col_cd_hfd0917/specifics.rtf | 1 + .../Epfl_lisp_bxd_col_cd_hfd0917/summary.rtf | 1 + .../Epfl_lisp_bxd_col_hfd0917/specifics.rtf | 1 + .../datasets/Epfl_lisp_bxd_col_hfd0917/summary.rtf | 1 + general/datasets/Epfl_lisp_livpmetcd1213/cases.rtf | 1 + .../Epfl_lisp_livpmetcd1213/processing.rtf | 3 + .../datasets/Epfl_lisp_livpmetcd1213/summary.rtf | 1 + .../datasets/Epfl_lisp_livpmetcdhfd1213/cases.rtf | 1 + .../Epfl_lisp_livpmetcdhfd1213/processing.rtf | 3 + .../Epfl_lisp_livpmetcdhfd1213/summary.rtf | 1 + .../datasets/Epfl_lisp_livpmethfd1213/cases.rtf | 1 + .../Epfl_lisp_livpmethfd1213/processing.rtf | 3 + .../datasets/Epfl_lisp_livpmethfd1213/summary.rtf | 1 + .../datasets/Epfl_lisp_livpmetlog2cd1213/cases.rtf | 1 + .../Epfl_lisp_livpmetlog2cd1213/processing.rtf | 3 + .../Epfl_lisp_livpmetlog2cd1213/summary.rtf | 1 + .../Epfl_lisp_livpmetlog2hfd1213/cases.rtf | 1 + .../Epfl_lisp_livpmetlog2hfd1213/processing.rtf | 3 + .../Epfl_lisp_livpmetlog2hfd1213/summary.rtf | 1 + .../Epfl_lisp_muspmetcd1213/acknowledgment.rtf | 1 + general/datasets/Epfl_lisp_muspmetcd1213/cases.rtf | 1 + .../datasets/Epfl_lisp_muspmetcd1213/citation.rtf | 3 + .../Epfl_lisp_muspmetcd1213/contributors.rtf | 1 + .../datasets/Epfl_lisp_muspmetcd1213/platform.rtf | 1 + .../Epfl_lisp_muspmetcd1213/processing.rtf | 1 + .../datasets/Epfl_lisp_muspmetcd1213/summary.rtf | 1 + .../datasets/Epfl_lisp_muspmetcd1213/tissue.rtf | 3 + .../Epfl_lisp_muspmetcdhfd1213/acknowledgment.rtf | 1 + .../datasets/Epfl_lisp_muspmetcdhfd1213/cases.rtf | 1 + .../Epfl_lisp_muspmetcdhfd1213/citation.rtf | 3 + .../Epfl_lisp_muspmetcdhfd1213/contributors.rtf | 1 + .../Epfl_lisp_muspmetcdhfd1213/platform.rtf | 1 + .../Epfl_lisp_muspmetcdhfd1213/processing.rtf | 1 + .../Epfl_lisp_muspmetcdhfd1213/summary.rtf | 1 + .../datasets/Epfl_lisp_muspmetcdhfd1213/tissue.rtf | 3 + .../Epfl_lisp_muspmethfd1213/acknowledgment.rtf | 1 + .../datasets/Epfl_lisp_muspmethfd1213/cases.rtf | 1 + .../datasets/Epfl_lisp_muspmethfd1213/citation.rtf | 3 + .../Epfl_lisp_muspmethfd1213/contributors.rtf | 1 + .../datasets/Epfl_lisp_muspmethfd1213/platform.rtf | 1 + .../Epfl_lisp_muspmethfd1213/processing.rtf | 1 + .../datasets/Epfl_lisp_muspmethfd1213/summary.rtf | 1 + .../datasets/Epfl_lisp_muspmethfd1213/tissue.rtf | 3 + .../Epfl_lispbxdhecd0114/acknowledgment.rtf | 1 + general/datasets/Epfl_lispbxdhecd0114/cases.rtf | 1 + general/datasets/Epfl_lispbxdhecd0114/citation.rtf | 1 + .../datasets/Epfl_lispbxdhecd0114/contributors.rtf | 1 + .../Epfl_lispbxdhecd0114/experiment-design.rtf | 1 + general/datasets/Epfl_lispbxdhecd0114/platform.rtf | 1 + .../datasets/Epfl_lispbxdhecd0114/processing.rtf | 1 + general/datasets/Epfl_lispbxdhecd0114/summary.rtf | 1 + general/datasets/Epfl_lispbxdhecd0114/tissue.rtf | 1 + .../Epfl_lispbxdhecdex0114/acknowledgment.rtf | 1 + general/datasets/Epfl_lispbxdhecdex0114/cases.rtf | 1 + .../datasets/Epfl_lispbxdhecdex0114/citation.rtf | 1 + .../Epfl_lispbxdhecdex0114/contributors.rtf | 1 + .../Epfl_lispbxdhecdex0114/experiment-design.rtf | 1 + .../datasets/Epfl_lispbxdhecdex0114/platform.rtf | 1 + .../datasets/Epfl_lispbxdhecdex0114/processing.rtf | 1 + .../datasets/Epfl_lispbxdhecdex0114/summary.rtf | 1 + general/datasets/Epfl_lispbxdhecdex0114/tissue.rtf | 1 + .../Epfl_lispbxdhehfd0114/acknowledgment.rtf | 1 + general/datasets/Epfl_lispbxdhehfd0114/cases.rtf | 1 + .../datasets/Epfl_lispbxdhehfd0114/citation.rtf | 1 + .../Epfl_lispbxdhehfd0114/contributors.rtf | 1 + .../Epfl_lispbxdhehfd0114/experiment-design.rtf | 1 + .../datasets/Epfl_lispbxdhehfd0114/platform.rtf | 1 + .../datasets/Epfl_lispbxdhehfd0114/processing.rtf | 1 + general/datasets/Epfl_lispbxdhehfd0114/summary.rtf | 1 + general/datasets/Epfl_lispbxdhehfd0114/tissue.rtf | 1 + .../Epfl_lispbxdhehfdex0114/acknowledgment.rtf | 1 + general/datasets/Epfl_lispbxdhehfdex0114/cases.rtf | 1 + .../datasets/Epfl_lispbxdhehfdex0114/citation.rtf | 1 + .../Epfl_lispbxdhehfdex0114/contributors.rtf | 1 + .../Epfl_lispbxdhehfdex0114/experiment-design.rtf | 1 + .../datasets/Epfl_lispbxdhehfdex0114/platform.rtf | 1 + .../Epfl_lispbxdhehfdex0114/processing.rtf | 1 + .../datasets/Epfl_lispbxdhehfdex0114/summary.rtf | 1 + .../datasets/Epfl_lispbxdhehfdex0114/tissue.rtf | 1 + general/datasets/Epfladel1013/acknowledgment.rtf | 1 + general/datasets/Epfladel1013/cases.rtf | 1 + general/datasets/Epfladel1013/citation.rtf | 1 + general/datasets/Epfladel1013/contributors.rtf | 1 + .../datasets/Epfladel1013/experiment-design.rtf | 1 + general/datasets/Epfladel1013/platform.rtf | 1 + general/datasets/Epfladel1013/processing.rtf | 1 + general/datasets/Epfladel1013/summary.rtf | 1 + general/datasets/Epfladel1013/tissue.rtf | 1 + general/datasets/Epfladgl1013/acknowledgment.rtf | 1 + general/datasets/Epfladgl1013/cases.rtf | 1 + general/datasets/Epfladgl1013/citation.rtf | 1 + general/datasets/Epfladgl1013/contributors.rtf | 1 + .../datasets/Epfladgl1013/experiment-design.rtf | 1 + general/datasets/Epfladgl1013/platform.rtf | 1 + general/datasets/Epfladgl1013/processing.rtf | 1 + general/datasets/Epfladgl1013/summary.rtf | 1 + general/datasets/Epfladgl1013/tissue.rtf | 1 + general/datasets/Epflbxdprot0513/cases.rtf | 1 + general/datasets/Epflbxdprot0513/contributors.rtf | 1 + general/datasets/Epflbxdprot0513/notes.rtf | 16 + general/datasets/Epflbxdprot0513/platform.rtf | 1 + general/datasets/Epflbxdprot0513/summary.rtf | 5 + general/datasets/Epflbxdprot0513/tissue.rtf | 1 + general/datasets/Epflbxdprotcd0513/cases.rtf | 1 + .../datasets/Epflbxdprotcd0513/contributors.rtf | 1 + general/datasets/Epflbxdprotcd0513/notes.rtf | 16 + general/datasets/Epflbxdprotcd0513/platform.rtf | 1 + general/datasets/Epflbxdprotcd0513/summary.rtf | 5 + general/datasets/Epflbxdprotcd0513/tissue.rtf | 1 + .../datasets/Epflbxdprotcd_cdhfdrpn0214/cases.rtf | 1 + .../Epflbxdprotcd_cdhfdrpn0214/contributors.rtf | 1 + .../datasets/Epflbxdprotcd_cdhfdrpn0214/notes.rtf | 16 + .../Epflbxdprotcd_cdhfdrpn0214/platform.rtf | 1 + .../Epflbxdprotcd_cdhfdrpn0214/summary.rtf | 5 + .../datasets/Epflbxdprotcd_cdhfdrpn0214/tissue.rtf | 1 + general/datasets/Epflbxdprotcdrpn0214/cases.rtf | 1 + .../datasets/Epflbxdprotcdrpn0214/contributors.rtf | 1 + general/datasets/Epflbxdprotcdrpn0214/notes.rtf | 16 + general/datasets/Epflbxdprotcdrpn0214/platform.rtf | 1 + general/datasets/Epflbxdprotcdrpn0214/summary.rtf | 5 + general/datasets/Epflbxdprotcdrpn0214/tissue.rtf | 1 + general/datasets/Epflbxdprotcdrpn0513/cases.rtf | 1 + .../datasets/Epflbxdprotcdrpn0513/contributors.rtf | 1 + general/datasets/Epflbxdprotcdrpn0513/notes.rtf | 16 + general/datasets/Epflbxdprotcdrpn0513/platform.rtf | 1 + general/datasets/Epflbxdprotcdrpn0513/summary.rtf | 5 + general/datasets/Epflbxdprotcdrpn0513/tissue.rtf | 1 + general/datasets/Epflbxdprothfd0513/cases.rtf | 1 + .../datasets/Epflbxdprothfd0513/contributors.rtf | 1 + general/datasets/Epflbxdprothfd0513/notes.rtf | 16 + general/datasets/Epflbxdprothfd0513/platform.rtf | 1 + general/datasets/Epflbxdprothfd0513/summary.rtf | 5 + general/datasets/Epflbxdprothfd0513/tissue.rtf | 1 + general/datasets/Epflbxdprothfdrpn0214/cases.rtf | 1 + .../Epflbxdprothfdrpn0214/contributors.rtf | 1 + general/datasets/Epflbxdprothfdrpn0214/notes.rtf | 16 + .../datasets/Epflbxdprothfdrpn0214/platform.rtf | 1 + general/datasets/Epflbxdprothfdrpn0214/summary.rtf | 5 + general/datasets/Epflbxdprothfdrpn0214/tissue.rtf | 1 + general/datasets/Epflbxdprothfdrpn0513/cases.rtf | 1 + .../Epflbxdprothfdrpn0513/contributors.rtf | 1 + general/datasets/Epflbxdprothfdrpn0513/notes.rtf | 16 + .../datasets/Epflbxdprothfdrpn0513/platform.rtf | 1 + general/datasets/Epflbxdprothfdrpn0513/summary.rtf | 5 + general/datasets/Epflbxdprothfdrpn0513/tissue.rtf | 1 + general/datasets/Epflbxdprotrpn0513/cases.rtf | 1 + .../datasets/Epflbxdprotrpn0513/contributors.rtf | 1 + general/datasets/Epflbxdprotrpn0513/notes.rtf | 16 + general/datasets/Epflbxdprotrpn0513/platform.rtf | 1 + general/datasets/Epflbxdprotrpn0513/summary.rtf | 5 + general/datasets/Epflbxdprotrpn0513/tissue.rtf | 1 + general/datasets/Epflethzbxdprotcd0514/notes.rtf | 16 + .../datasets/Epflethzbxdprotcd_ls1114/notes.rtf | 16 + .../datasets/Epflethzbxdprothf_ls1114/notes.rtf | 16 + general/datasets/Epflethzbxdprothfd0514/notes.rtf | 16 + .../Epflmouseliverbothexrma0413/acknowledgment.rtf | 1 + .../datasets/Epflmouseliverbothexrma0413/cases.rtf | 1 + .../Epflmouseliverbothexrma0413/citation.rtf | 1 + .../Epflmouseliverbothexrma0413/contributors.rtf | 1 + .../Epflmouseliverbothexrma0413/platform.rtf | 1 + .../Epflmouseliverbothexrma0413/processing.rtf | 1 + .../Epflmouseliverbothexrma0413/summary.rtf | 1 + .../Epflmouseliverbothexrma0413/tissue.rtf | 1 + .../Epflmouselivercdex0413/acknowledgment.rtf | 1 + general/datasets/Epflmouselivercdex0413/cases.rtf | 1 + .../datasets/Epflmouselivercdex0413/citation.rtf | 1 + .../Epflmouselivercdex0413/contributors.rtf | 1 + .../datasets/Epflmouselivercdex0413/platform.rtf | 1 + .../datasets/Epflmouselivercdex0413/processing.rtf | 1 + .../datasets/Epflmouselivercdex0413/specifics.rtf | 1 + .../datasets/Epflmouselivercdex0413/summary.rtf | 1 + general/datasets/Epflmouselivercdex0413/tissue.rtf | 1 + .../Epflmouselivercdhfdrma0818/acknowledgment.rtf | 1 + .../datasets/Epflmouselivercdhfdrma0818/cases.rtf | 1 + .../Epflmouselivercdhfdrma0818/citation.rtf | 1 + .../Epflmouselivercdhfdrma0818/contributors.rtf | 1 + .../Epflmouselivercdhfdrma0818/platform.rtf | 1 + .../Epflmouselivercdhfdrma0818/processing.rtf | 1 + .../Epflmouselivercdhfdrma0818/specifics.rtf | 1 + .../Epflmouselivercdhfdrma0818/summary.rtf | 1 + .../datasets/Epflmouselivercdhfdrma0818/tissue.rtf | 1 + .../Epflmouselivercdrma0413/acknowledgment.rtf | 1 + general/datasets/Epflmouselivercdrma0413/cases.rtf | 1 + .../datasets/Epflmouselivercdrma0413/citation.rtf | 1 + .../Epflmouselivercdrma0413/contributors.rtf | 1 + .../datasets/Epflmouselivercdrma0413/platform.rtf | 1 + .../Epflmouselivercdrma0413/processing.rtf | 1 + .../datasets/Epflmouselivercdrma0413/summary.rtf | 1 + .../datasets/Epflmouselivercdrma0413/tissue.rtf | 1 + .../Epflmouselivercdrma0818/acknowledgment.rtf | 1 + general/datasets/Epflmouselivercdrma0818/cases.rtf | 1 + .../datasets/Epflmouselivercdrma0818/citation.rtf | 1 + .../Epflmouselivercdrma0818/contributors.rtf | 1 + .../datasets/Epflmouselivercdrma0818/platform.rtf | 1 + .../Epflmouselivercdrma0818/processing.rtf | 1 + .../datasets/Epflmouselivercdrma0818/specifics.rtf | 1 + .../datasets/Epflmouselivercdrma0818/summary.rtf | 1 + .../datasets/Epflmouselivercdrma0818/tissue.rtf | 1 + .../Epflmouseliverhfcex0413/acknowledgment.rtf | 1 + general/datasets/Epflmouseliverhfcex0413/cases.rtf | 1 + .../datasets/Epflmouseliverhfcex0413/citation.rtf | 1 + .../Epflmouseliverhfcex0413/contributors.rtf | 1 + .../datasets/Epflmouseliverhfcex0413/platform.rtf | 1 + .../Epflmouseliverhfcex0413/processing.rtf | 1 + .../datasets/Epflmouseliverhfcex0413/specifics.rtf | 1 + .../datasets/Epflmouseliverhfcex0413/summary.rtf | 1 + .../datasets/Epflmouseliverhfcex0413/tissue.rtf | 1 + .../Epflmouseliverhfdrma0413/acknowledgment.rtf | 1 + .../datasets/Epflmouseliverhfdrma0413/cases.rtf | 1 + .../datasets/Epflmouseliverhfdrma0413/citation.rtf | 1 + .../Epflmouseliverhfdrma0413/contributors.rtf | 1 + .../datasets/Epflmouseliverhfdrma0413/platform.rtf | 1 + .../Epflmouseliverhfdrma0413/processing.rtf | 1 + .../Epflmouseliverhfdrma0413/specifics.rtf | 1 + .../datasets/Epflmouseliverhfdrma0413/summary.rtf | 1 + .../datasets/Epflmouseliverhfdrma0413/tissue.rtf | 1 + .../Epflmouseliverhfdrma0818/acknowledgment.rtf | 1 + .../datasets/Epflmouseliverhfdrma0818/cases.rtf | 1 + .../datasets/Epflmouseliverhfdrma0818/citation.rtf | 1 + .../Epflmouseliverhfdrma0818/contributors.rtf | 1 + .../datasets/Epflmouseliverhfdrma0818/platform.rtf | 1 + .../Epflmouseliverhfdrma0818/processing.rtf | 1 + .../Epflmouseliverhfdrma0818/specifics.rtf | 65 + .../datasets/Epflmouseliverhfdrma0818/summary.rtf | 1 + .../datasets/Epflmouseliverhfdrma0818/tissue.rtf | 1 + .../Epflmouseliverrma0413/acknowledgment.rtf | 1 + general/datasets/Epflmouseliverrma0413/cases.rtf | 1 + .../datasets/Epflmouseliverrma0413/citation.rtf | 1 + .../Epflmouseliverrma0413/contributors.rtf | 1 + .../datasets/Epflmouseliverrma0413/platform.rtf | 1 + .../datasets/Epflmouseliverrma0413/processing.rtf | 1 + general/datasets/Epflmouseliverrma0413/summary.rtf | 1 + general/datasets/Epflmouseliverrma0413/tissue.rtf | 1 + .../datasets/Epflmousemusclecdrma1211/citation.rtf | 3 + .../datasets/Epflmousemusclecdrma1211/summary.rtf | 10 + .../datasets/Epflmousemusclecdrma1211/tissue.rtf | 25 + .../Epflmousemusclecdrmaex1112/citation.rtf | 3 + .../Epflmousemusclecdrmaex1112/summary.rtf | 10 + .../datasets/Epflmousemusclecdrmaex1112/tissue.rtf | 25 + .../Epflmousemusclehfdrma1211/citation.rtf | 3 + .../datasets/Epflmousemusclehfdrma1211/summary.rtf | 10 + .../datasets/Epflmousemusclehfdrma1211/tissue.rtf | 25 + .../Epflmousemusclehfdrmaex1112/citation.rtf | 3 + .../Epflmousemusclehfdrmaex1112/summary.rtf | 10 + .../Epflmousemusclehfdrmaex1112/tissue.rtf | 25 + .../datasets/Epflmousemusclerma1211/citation.rtf | 3 + .../datasets/Epflmousemusclerma1211/summary.rtf | 10 + general/datasets/Epflmousemusclerma1211/tissue.rtf | 25 + .../Epflmousemusclerma_ex1112/citation.rtf | 3 + .../datasets/Epflmousemusclerma_ex1112/summary.rtf | 10 + .../datasets/Epflmousemusclerma_ex1112/tissue.rtf | 25 + .../Eye_axbxa_1008_rankinv/acknowledgment.rtf | 11 + general/datasets/Eye_axbxa_1008_rankinv/cases.rtf | 1 + .../datasets/Eye_axbxa_1008_rankinv/citation.rtf | 9 + .../datasets/Eye_axbxa_1008_rankinv/platform.rtf | 7 + .../datasets/Eye_axbxa_1008_rankinv/processing.rtf | 5 + .../datasets/Eye_axbxa_1008_rankinv/specifics.rtf | 1 + .../datasets/Eye_axbxa_1008_rankinv/summary.rtf | 769 + general/datasets/Eye_m2_0406_m/acknowledgment.rtf | 1 + general/datasets/Eye_m2_0406_m/cases.rtf | 50 + general/datasets/Eye_m2_0406_m/notes.rtf | 18 + general/datasets/Eye_m2_0406_m/platform.rtf | 3 + general/datasets/Eye_m2_0406_m/processing.rtf | 20 + general/datasets/Eye_m2_0406_m/summary.rtf | 3 + general/datasets/Eye_m2_0406_m/tissue.rtf | 7112 +++++ general/datasets/Eye_m2_0406_p/acknowledgment.rtf | 1 + general/datasets/Eye_m2_0406_p/cases.rtf | 50 + general/datasets/Eye_m2_0406_p/notes.rtf | 18 + general/datasets/Eye_m2_0406_p/platform.rtf | 3 + general/datasets/Eye_m2_0406_p/processing.rtf | 20 + general/datasets/Eye_m2_0406_p/summary.rtf | 3 + general/datasets/Eye_m2_0406_p/tissue.rtf | 7112 +++++ general/datasets/Eye_m2_0406_r/acknowledgment.rtf | 1 + general/datasets/Eye_m2_0406_r/cases.rtf | 50 + general/datasets/Eye_m2_0406_r/notes.rtf | 18 + general/datasets/Eye_m2_0406_r/platform.rtf | 3 + general/datasets/Eye_m2_0406_r/processing.rtf | 20 + general/datasets/Eye_m2_0406_r/summary.rtf | 3 + general/datasets/Eye_m2_0406_r/tissue.rtf | 7112 +++++ general/datasets/Eye_m2_0608_r/summary.rtf | 1 + general/datasets/Eye_m2_0906_r/acknowledgment.rtf | 1 + general/datasets/Eye_m2_0906_r/cases.rtf | 50 + general/datasets/Eye_m2_0906_r/notes.rtf | 18 + general/datasets/Eye_m2_0906_r/platform.rtf | 3 + general/datasets/Eye_m2_0906_r/processing.rtf | 20 + general/datasets/Eye_m2_0906_r/summary.rtf | 3 + general/datasets/Eye_m2_0906_r/tissue.rtf | 7112 +++++ general/datasets/Eye_m2_0908_r/acknowledgment.rtf | 3 + general/datasets/Eye_m2_0908_r/cases.rtf | 57 + general/datasets/Eye_m2_0908_r/citation.rtf | 1 + general/datasets/Eye_m2_0908_r/contributors.rtf | 1 + .../datasets/Eye_m2_0908_r/experiment-design.rtf | 1 + general/datasets/Eye_m2_0908_r/experiment-type.rtf | 1 + general/datasets/Eye_m2_0908_r/notes.rtf | 1 + general/datasets/Eye_m2_0908_r/platform.rtf | 11 + general/datasets/Eye_m2_0908_r/processing.rtf | 3381 +++ general/datasets/Eye_m2_0908_r/summary.rtf | 12 + general/datasets/Eye_m2_0908_r/tissue.rtf | 2058 ++ .../datasets/Eye_m2_0908_r_mt/acknowledgment.rtf | 3 + general/datasets/Eye_m2_0908_r_mt/cases.rtf | 57 + general/datasets/Eye_m2_0908_r_mt/citation.rtf | 1 + general/datasets/Eye_m2_0908_r_mt/contributors.rtf | 1 + .../Eye_m2_0908_r_mt/experiment-design.rtf | 1 + general/datasets/Eye_m2_0908_r_mt/notes.rtf | 1 + general/datasets/Eye_m2_0908_r_mt/platform.rtf | 11 + general/datasets/Eye_m2_0908_r_mt/processing.rtf | 3381 +++ general/datasets/Eye_m2_0908_r_mt/summary.rtf | 12 + general/datasets/Eye_m2_0908_r_mt/tissue.rtf | 2058 ++ .../datasets/Eye_m2_0908_r_nb/acknowledgment.rtf | 3 + general/datasets/Eye_m2_0908_r_nb/cases.rtf | 57 + general/datasets/Eye_m2_0908_r_nb/citation.rtf | 1 + general/datasets/Eye_m2_0908_r_nb/contributors.rtf | 1 + .../Eye_m2_0908_r_nb/experiment-design.rtf | 1 + general/datasets/Eye_m2_0908_r_nb/notes.rtf | 1 + general/datasets/Eye_m2_0908_r_nb/platform.rtf | 11 + general/datasets/Eye_m2_0908_r_nb/processing.rtf | 3381 +++ general/datasets/Eye_m2_0908_r_nb/summary.rtf | 12 + general/datasets/Eye_m2_0908_r_nb/tissue.rtf | 2058 ++ .../datasets/Eye_m2_0908_r_nd/acknowledgment.rtf | 3 + general/datasets/Eye_m2_0908_r_nd/cases.rtf | 57 + general/datasets/Eye_m2_0908_r_nd/citation.rtf | 1 + general/datasets/Eye_m2_0908_r_nd/contributors.rtf | 1 + .../Eye_m2_0908_r_nd/experiment-design.rtf | 1 + general/datasets/Eye_m2_0908_r_nd/notes.rtf | 1 + general/datasets/Eye_m2_0908_r_nd/platform.rtf | 11 + general/datasets/Eye_m2_0908_r_nd/processing.rtf | 3381 +++ general/datasets/Eye_m2_0908_r_nd/summary.rtf | 12 + general/datasets/Eye_m2_0908_r_nd/tissue.rtf | 2058 ++ .../datasets/Eye_m2_0908_r_wt/acknowledgment.rtf | 3 + general/datasets/Eye_m2_0908_r_wt/cases.rtf | 57 + general/datasets/Eye_m2_0908_r_wt/citation.rtf | 1 + general/datasets/Eye_m2_0908_r_wt/contributors.rtf | 1 + .../Eye_m2_0908_r_wt/experiment-design.rtf | 1 + general/datasets/Eye_m2_0908_r_wt/notes.rtf | 1 + general/datasets/Eye_m2_0908_r_wt/platform.rtf | 11 + general/datasets/Eye_m2_0908_r_wt/processing.rtf | 3381 +++ general/datasets/Eye_m2_0908_r_wt/summary.rtf | 12 + general/datasets/Eye_m2_0908_r_wt/tissue.rtf | 2058 ++ .../datasets/Eye_m2_0908_wtwt/acknowledgment.rtf | 3 + general/datasets/Eye_m2_0908_wtwt/cases.rtf | 57 + general/datasets/Eye_m2_0908_wtwt/citation.rtf | 1 + general/datasets/Eye_m2_0908_wtwt/contributors.rtf | 1 + .../Eye_m2_0908_wtwt/experiment-design.rtf | 1 + general/datasets/Eye_m2_0908_wtwt/notes.rtf | 1 + general/datasets/Eye_m2_0908_wtwt/platform.rtf | 11 + general/datasets/Eye_m2_0908_wtwt/processing.rtf | 3381 +++ general/datasets/Eye_m2_0908_wtwt/summary.rtf | 12 + general/datasets/Eye_m2_0908_wtwt/tissue.rtf | 2058 ++ general/datasets/Eye_m2_1105_m/acknowledgment.rtf | 1 + general/datasets/Eye_m2_1105_m/cases.rtf | 51 + general/datasets/Eye_m2_1105_m/notes.rtf | 7 + general/datasets/Eye_m2_1105_m/platform.rtf | 3 + general/datasets/Eye_m2_1105_m/processing.rtf | 11 + general/datasets/Eye_m2_1105_m/summary.rtf | 3 + general/datasets/Eye_m2_1105_m/tissue.rtf | 1554 ++ general/datasets/Eye_m2_1105_p/acknowledgment.rtf | 1 + general/datasets/Eye_m2_1105_p/cases.rtf | 51 + general/datasets/Eye_m2_1105_p/notes.rtf | 7 + general/datasets/Eye_m2_1105_p/platform.rtf | 3 + general/datasets/Eye_m2_1105_p/processing.rtf | 11 + general/datasets/Eye_m2_1105_p/summary.rtf | 3 + general/datasets/Eye_m2_1105_p/tissue.rtf | 1554 ++ general/datasets/Eye_m2_1105_r/acknowledgment.rtf | 1 + general/datasets/Eye_m2_1105_r/cases.rtf | 51 + general/datasets/Eye_m2_1105_r/notes.rtf | 7 + general/datasets/Eye_m2_1105_r/platform.rtf | 3 + general/datasets/Eye_m2_1105_r/processing.rtf | 11 + general/datasets/Eye_m2_1105_r/summary.rtf | 3 + general/datasets/Eye_m2_1105_r/tissue.rtf | 1554 ++ general/datasets/FGUCAS_BAdip0516/summary.rtf | 1 - general/datasets/Fgucas_badip0516/summary.rtf | 1 + general/datasets/Ft_2a_0605_rz/acknowledgment.rtf | 1 + general/datasets/Ft_2a_0605_rz/cases.rtf | 7 + general/datasets/Ft_2a_0605_rz/notes.rtf | 3 + general/datasets/Ft_2a_0605_rz/platform.rtf | 1 + general/datasets/Ft_2a_0605_rz/processing.rtf | 25 + general/datasets/Ft_2a_0605_rz/summary.rtf | 16 + general/datasets/Ft_2a_0605_rz/tissue.rtf | 542 + general/datasets/Ft_2a_0805_m/acknowledgment.rtf | 1 + general/datasets/Ft_2a_0805_m/cases.rtf | 7 + general/datasets/Ft_2a_0805_m/notes.rtf | 3 + general/datasets/Ft_2a_0805_m/platform.rtf | 1 + general/datasets/Ft_2a_0805_m/processing.rtf | 25 + general/datasets/Ft_2a_0805_m/summary.rtf | 16 + general/datasets/Ft_2a_0805_m/tissue.rtf | 542 + .../G2heioncretilm6_0911/acknowledgment.rtf | 13 + general/datasets/G2heioncretilm6_0911/cases.rtf | 14 + .../datasets/G2heioncretilm6_0911/contributors.rtf | 1 + .../G2heioncretilm6_0911/experiment-design.rtf | 12 + .../G2heioncretilm6_0911/experiment-type.rtf | 1 + general/datasets/G2heioncretilm6_0911/notes.rtf | 1 + general/datasets/G2heioncretilm6_0911/platform.rtf | 1 + .../datasets/G2heioncretilm6_0911/processing.rtf | 2654 ++ general/datasets/G2heioncretilm6_0911/summary.rtf | 50 + general/datasets/G2heioncretilm6_0911/tissue.rtf | 32 + .../G2nei_ilm_retina_bxd_ri0410/acknowledgment.rtf | 13 + .../datasets/G2nei_ilm_retina_bxd_ri0410/cases.rtf | 14 + .../G2nei_ilm_retina_bxd_ri0410/contributors.rtf | 1 + .../experiment-design.rtf | 12 + .../experiment-type.rtf | 1 + .../datasets/G2nei_ilm_retina_bxd_ri0410/notes.rtf | 1 + .../G2nei_ilm_retina_bxd_ri0410/platform.rtf | 1 + .../G2nei_ilm_retina_bxd_ri0410/processing.rtf | 2654 ++ .../G2nei_ilm_retina_bxd_ri0410/summary.rtf | 50 + .../G2nei_ilm_retina_bxd_ri0410/tissue.rtf | 32 + general/datasets/GITrMetPublish/summary.rtf | 1 - general/datasets/GRNG_GSE23545HLT0613/summary.rtf | 15 - .../GSE15745_GPL6104_Cer0510/experiment-design.rtf | 1 - .../datasets/GSE15745_GPL6104_Cer0510/summary.rtf | 1 - .../GSE15745_GPL6104_PFC0510/experiment-design.rtf | 1 - .../datasets/GSE15745_GPL6104_PFC0510/summary.rtf | 1 - .../GSE15745_GPL6104_Po0510/experiment-design.rtf | 1 - .../datasets/GSE15745_GPL6104_Po0510/summary.rtf | 1 - general/datasets/GSE23546HLT0613/summary.rtf | 15 - general/datasets/GTEXv5_AdiVis_0915/cases.rtf | 5 - .../GTEXv5_AdiVis_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_AdiVis_0915/platform.rtf | 3 - general/datasets/GTEXv5_AdiVis_0915/processing.rtf | 102 - general/datasets/GTEXv5_AdiVis_0915/specifics.rtf | 1 - general/datasets/GTEXv5_AdiVis_0915/summary.rtf | 3 - general/datasets/GTEXv5_AdiVis_0915/tissue.rtf | 3 - general/datasets/GTEXv5_AdipSub_0915/cases.rtf | 5 - .../GTEXv5_AdipSub_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_AdipSub_0915/platform.rtf | 3 - .../datasets/GTEXv5_AdipSub_0915/processing.rtf | 102 - general/datasets/GTEXv5_AdipSub_0915/specifics.rtf | 1 - general/datasets/GTEXv5_AdipSub_0915/summary.rtf | 3 - general/datasets/GTEXv5_AdipSub_0915/tissue.rtf | 3 - general/datasets/GTEXv5_AdrGla_0915/cases.rtf | 5 - .../GTEXv5_AdrGla_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_AdrGla_0915/platform.rtf | 3 - general/datasets/GTEXv5_AdrGla_0915/processing.rtf | 102 - general/datasets/GTEXv5_AdrGla_0915/specifics.rtf | 10 - general/datasets/GTEXv5_AdrGla_0915/summary.rtf | 3 - general/datasets/GTEXv5_AdrGla_0915/tissue.rtf | 3 - general/datasets/GTEXv5_Amy_0915/cases.rtf | 5 - .../datasets/GTEXv5_Amy_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_Amy_0915/platform.rtf | 3 - general/datasets/GTEXv5_Amy_0915/processing.rtf | 102 - general/datasets/GTEXv5_Amy_0915/specifics.rtf | 10 - general/datasets/GTEXv5_Amy_0915/summary.rtf | 3 - general/datasets/GTEXv5_Amy_0915/tissue.rtf | 3 - general/datasets/GTEXv5_AntCtx_0915/cases.rtf | 5 - .../GTEXv5_AntCtx_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_AntCtx_0915/platform.rtf | 3 - general/datasets/GTEXv5_AntCtx_0915/processing.rtf | 102 - general/datasets/GTEXv5_AntCtx_0915/specifics.rtf | 10 - general/datasets/GTEXv5_AntCtx_0915/summary.rtf | 3 - general/datasets/GTEXv5_AntCtx_0915/tissue.rtf | 3 - general/datasets/GTEXv5_ArtAor_0915/cases.rtf | 5 - .../GTEXv5_ArtAor_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_ArtAor_0915/platform.rtf | 3 - general/datasets/GTEXv5_ArtAor_0915/processing.rtf | 102 - general/datasets/GTEXv5_ArtAor_0915/specifics.rtf | 10 - general/datasets/GTEXv5_ArtAor_0915/summary.rtf | 3 - general/datasets/GTEXv5_ArtAor_0915/tissue.rtf | 3 - general/datasets/GTEXv5_ArtCor_0915/cases.rtf | 5 - .../GTEXv5_ArtCor_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_ArtCor_0915/platform.rtf | 3 - general/datasets/GTEXv5_ArtCor_0915/processing.rtf | 102 - general/datasets/GTEXv5_ArtCor_0915/specifics.rtf | 1 - general/datasets/GTEXv5_ArtCor_0915/summary.rtf | 3 - general/datasets/GTEXv5_ArtCor_0915/tissue.rtf | 3 - general/datasets/GTEXv5_BM_0915/cases.rtf | 5 - .../datasets/GTEXv5_BM_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_BM_0915/platform.rtf | 3 - general/datasets/GTEXv5_BM_0915/processing.rtf | 102 - general/datasets/GTEXv5_BM_0915/specifics.rtf | 10 - general/datasets/GTEXv5_BM_0915/summary.rtf | 3 - general/datasets/GTEXv5_BM_0915/tissue.rtf | 3 - general/datasets/GTEXv5_BrCe_0915/cases.rtf | 5 - .../GTEXv5_BrCe_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_BrCe_0915/platform.rtf | 3 - general/datasets/GTEXv5_BrCe_0915/processing.rtf | 102 - general/datasets/GTEXv5_BrCe_0915/specifics.rtf | 10 - general/datasets/GTEXv5_BrCe_0915/summary.rtf | 3 - general/datasets/GTEXv5_BrCe_0915/tissue.rtf | 3 - general/datasets/GTEXv5_BrMa_0915/cases.rtf | 5 - .../GTEXv5_BrMa_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_BrMa_0915/platform.rtf | 3 - general/datasets/GTEXv5_BrMa_0915/processing.rtf | 102 - general/datasets/GTEXv5_BrMa_0915/specifics.rtf | 10 - general/datasets/GTEXv5_BrMa_0915/summary.rtf | 3 - general/datasets/GTEXv5_BrMa_0915/tissue.rtf | 3 - general/datasets/GTEXv5_CTF_0915/cases.rtf | 5 - .../datasets/GTEXv5_CTF_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_CTF_0915/platform.rtf | 3 - general/datasets/GTEXv5_CTF_0915/processing.rtf | 102 - general/datasets/GTEXv5_CTF_0915/specifics.rtf | 1 - general/datasets/GTEXv5_CTF_0915/summary.rtf | 3 - general/datasets/GTEXv5_CTF_0915/tissue.rtf | 3 - general/datasets/GTEXv5_ColSig_0915/cases.rtf | 5 - .../GTEXv5_ColSig_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_ColSig_0915/platform.rtf | 3 - general/datasets/GTEXv5_ColSig_0915/processing.rtf | 102 - general/datasets/GTEXv5_ColSig_0915/specifics.rtf | 10 - general/datasets/GTEXv5_ColSig_0915/summary.rtf | 3 - general/datasets/GTEXv5_ColSig_0915/tissue.rtf | 3 - general/datasets/GTEXv5_GastJun_0915/cases.rtf | 5 - .../GTEXv5_GastJun_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_GastJun_0915/platform.rtf | 3 - .../datasets/GTEXv5_GastJun_0915/processing.rtf | 102 - general/datasets/GTEXv5_GastJun_0915/specifics.rtf | 10 - general/datasets/GTEXv5_GastJun_0915/summary.rtf | 3 - general/datasets/GTEXv5_GastJun_0915/tissue.rtf | 3 - general/datasets/GTEXv5_HAA_0915/cases.rtf | 5 - .../datasets/GTEXv5_HAA_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_HAA_0915/platform.rtf | 3 - general/datasets/GTEXv5_HAA_0915/processing.rtf | 102 - general/datasets/GTEXv5_HAA_0915/specifics.rtf | 10 - general/datasets/GTEXv5_HAA_0915/summary.rtf | 3 - general/datasets/GTEXv5_HAA_0915/tissue.rtf | 3 - general/datasets/GTEXv5_Hip_0915/cases.rtf | 5 - .../datasets/GTEXv5_Hip_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_Hip_0915/platform.rtf | 3 - general/datasets/GTEXv5_Hip_0915/processing.rtf | 102 - general/datasets/GTEXv5_Hip_0915/specifics.rtf | 10 - general/datasets/GTEXv5_Hip_0915/summary.rtf | 3 - general/datasets/GTEXv5_Hip_0915/tissue.rtf | 3 - general/datasets/GTEXv5_Hiptha_0915/cases.rtf | 5 - .../GTEXv5_Hiptha_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_Hiptha_0915/platform.rtf | 3 - general/datasets/GTEXv5_Hiptha_0915/processing.rtf | 102 - general/datasets/GTEXv5_Hiptha_0915/specifics.rtf | 10 - general/datasets/GTEXv5_Hiptha_0915/summary.rtf | 3 - general/datasets/GTEXv5_Hiptha_0915/tissue.rtf | 3 - general/datasets/GTEXv5_Kidn_0915/cases.rtf | 5 - .../GTEXv5_Kidn_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_Kidn_0915/platform.rtf | 3 - general/datasets/GTEXv5_Kidn_0915/processing.rtf | 102 - general/datasets/GTEXv5_Kidn_0915/specifics.rtf | 10 - general/datasets/GTEXv5_Kidn_0915/summary.rtf | 3 - general/datasets/GTEXv5_Kidn_0915/tissue.rtf | 3 - general/datasets/GTEXv5_Liv_0915/cases.rtf | 5 - .../datasets/GTEXv5_Liv_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_Liv_0915/platform.rtf | 3 - general/datasets/GTEXv5_Liv_0915/processing.rtf | 102 - general/datasets/GTEXv5_Liv_0915/specifics.rtf | 10 - general/datasets/GTEXv5_Liv_0915/summary.rtf | 3 - general/datasets/GTEXv5_Liv_0915/tissue.rtf | 3 - general/datasets/GTEXv5_MuSk_0915/cases.rtf | 5 - .../GTEXv5_MuSk_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_MuSk_0915/platform.rtf | 3 - general/datasets/GTEXv5_MuSk_0915/processing.rtf | 102 - general/datasets/GTEXv5_MuSk_0915/specifics.rtf | 10 - general/datasets/GTEXv5_MuSk_0915/summary.rtf | 3 - general/datasets/GTEXv5_MuSk_0915/tissue.rtf | 3 - general/datasets/GTEXv5_Ov_0915/cases.rtf | 5 - .../datasets/GTEXv5_Ov_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_Ov_0915/platform.rtf | 3 - general/datasets/GTEXv5_Ov_0915/processing.rtf | 102 - general/datasets/GTEXv5_Ov_0915/specifics.rtf | 10 - general/datasets/GTEXv5_Ov_0915/summary.rtf | 3 - general/datasets/GTEXv5_Ov_0915/tissue.rtf | 3 - general/datasets/GTEXv5_Pit_0915/cases.rtf | 5 - .../datasets/GTEXv5_Pit_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_Pit_0915/platform.rtf | 3 - general/datasets/GTEXv5_Pit_0915/processing.rtf | 102 - general/datasets/GTEXv5_Pit_0915/specifics.rtf | 10 - general/datasets/GTEXv5_Pit_0915/summary.rtf | 3 - general/datasets/GTEXv5_Pit_0915/tissue.rtf | 3 - general/datasets/GTEXv5_Prost_0915/cases.rtf | 5 - .../GTEXv5_Prost_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_Prost_0915/platform.rtf | 3 - general/datasets/GTEXv5_Prost_0915/processing.rtf | 102 - general/datasets/GTEXv5_Prost_0915/specifics.rtf | 10 - general/datasets/GTEXv5_Prost_0915/summary.rtf | 3 - general/datasets/GTEXv5_Prost_0915/tissue.rtf | 3 - general/datasets/GTEXv5_SalGl_0915/cases.rtf | 5 - .../GTEXv5_SalGl_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_SalGl_0915/platform.rtf | 3 - general/datasets/GTEXv5_SalGl_0915/processing.rtf | 102 - general/datasets/GTEXv5_SalGl_0915/specifics.rtf | 10 - general/datasets/GTEXv5_SalGl_0915/summary.rtf | 3 - general/datasets/GTEXv5_SalGl_0915/tissue.rtf | 3 - general/datasets/GTEXv5_SkS_0915/cases.rtf | 5 - .../datasets/GTEXv5_SkS_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_SkS_0915/platform.rtf | 3 - general/datasets/GTEXv5_SkS_0915/processing.rtf | 102 - general/datasets/GTEXv5_SkS_0915/specifics.rtf | 10 - general/datasets/GTEXv5_SkS_0915/summary.rtf | 3 - general/datasets/GTEXv5_SkS_0915/tissue.rtf | 3 - general/datasets/GTEXv5_Sto_0915/cases.rtf | 5 - .../datasets/GTEXv5_Sto_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_Sto_0915/platform.rtf | 3 - general/datasets/GTEXv5_Sto_0915/processing.rtf | 102 - general/datasets/GTEXv5_Sto_0915/specifics.rtf | 10 - general/datasets/GTEXv5_Sto_0915/summary.rtf | 3 - general/datasets/GTEXv5_Sto_0915/tissue.rtf | 3 - general/datasets/GTEXv5_Test_0915/cases.rtf | 5 - .../GTEXv5_Test_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_Test_0915/platform.rtf | 3 - general/datasets/GTEXv5_Test_0915/processing.rtf | 102 - general/datasets/GTEXv5_Test_0915/specifics.rtf | 10 - general/datasets/GTEXv5_Test_0915/summary.rtf | 3 - general/datasets/GTEXv5_Test_0915/tissue.rtf | 3 - general/datasets/GTEXv5_Thy_0915/cases.rtf | 5 - .../datasets/GTEXv5_Thy_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_Thy_0915/platform.rtf | 3 - general/datasets/GTEXv5_Thy_0915/processing.rtf | 102 - general/datasets/GTEXv5_Thy_0915/specifics.rtf | 10 - general/datasets/GTEXv5_Thy_0915/summary.rtf | 3 - general/datasets/GTEXv5_Thy_0915/tissue.rtf | 3 - general/datasets/GTEXv5_Ut_0915/cases.rtf | 5 - .../datasets/GTEXv5_Ut_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_Ut_0915/platform.rtf | 3 - general/datasets/GTEXv5_Ut_0915/processing.rtf | 102 - general/datasets/GTEXv5_Ut_0915/specifics.rtf | 10 - general/datasets/GTEXv5_Ut_0915/summary.rtf | 3 - general/datasets/GTEXv5_Ut_0915/tissue.rtf | 3 - general/datasets/GTEXv5_Wbl_0915/cases.rtf | 5 - .../datasets/GTEXv5_Wbl_0915/experiment-design.rtf | 1 - general/datasets/GTEXv5_Wbl_0915/platform.rtf | 3 - general/datasets/GTEXv5_Wbl_0915/processing.rtf | 102 - general/datasets/GTEXv5_Wbl_0915/specifics.rtf | 10 - general/datasets/GTEXv5_Wbl_0915/summary.rtf | 3 - general/datasets/GTEXv5_Wbl_0915/tissue.rtf | 3 - general/datasets/GTEx_AMY_0314/cases.rtf | 5 - .../datasets/GTEx_AMY_0314/experiment-design.rtf | 1 - general/datasets/GTEx_AMY_0314/platform.rtf | 3 - general/datasets/GTEx_AMY_0314/processing.rtf | 102 - general/datasets/GTEx_AMY_0314/summary.rtf | 3 - general/datasets/GTEx_AMY_0314/tissue.rtf | 3 - general/datasets/GTEx_Adren_0414/cases.rtf | 5 - .../datasets/GTEx_Adren_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Adren_0414/platform.rtf | 3 - general/datasets/GTEx_Adren_0414/processing.rtf | 102 - general/datasets/GTEx_Adren_0414/summary.rtf | 3 - general/datasets/GTEx_Adren_0414/tissue.rtf | 3 - general/datasets/GTEx_Anter_0414/cases.rtf | 5 - .../datasets/GTEx_Anter_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Anter_0414/platform.rtf | 3 - general/datasets/GTEx_Anter_0414/processing.rtf | 102 - general/datasets/GTEx_Anter_0414/summary.rtf | 3 - general/datasets/GTEx_Anter_0414/tissue.rtf | 3 - general/datasets/GTEx_Aorta_0414/cases.rtf | 5 - .../datasets/GTEx_Aorta_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Aorta_0414/platform.rtf | 3 - general/datasets/GTEx_Aorta_0414/processing.rtf | 102 - general/datasets/GTEx_Aorta_0414/summary.rtf | 3 - general/datasets/GTEx_Aorta_0414/tissue.rtf | 3 - general/datasets/GTEx_Blood_0414/cases.rtf | 5 - .../datasets/GTEx_Blood_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Blood_0414/platform.rtf | 3 - general/datasets/GTEx_Blood_0414/processing.rtf | 102 - general/datasets/GTEx_Blood_0414/summary.rtf | 3 - general/datasets/GTEx_Blood_0414/tissue.rtf | 3 - general/datasets/GTEx_Breas_0414/cases.rtf | 5 - .../datasets/GTEx_Breas_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Breas_0414/platform.rtf | 3 - general/datasets/GTEx_Breas_0414/processing.rtf | 102 - general/datasets/GTEx_Breas_0414/summary.rtf | 3 - general/datasets/GTEx_Breas_0414/tissue.rtf | 3 - general/datasets/GTEx_CER_0314/cases.rtf | 5 - .../datasets/GTEx_CER_0314/experiment-design.rtf | 1 - general/datasets/GTEx_CER_0314/platform.rtf | 3 - general/datasets/GTEx_CER_0314/processing.rtf | 102 - general/datasets/GTEx_CER_0314/summary.rtf | 3 - general/datasets/GTEx_CER_0314/tissue.rtf | 3 - general/datasets/GTEx_Cauda_0414/cases.rtf | 5 - .../datasets/GTEx_Cauda_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Cauda_0414/platform.rtf | 3 - general/datasets/GTEx_Cauda_0414/processing.rtf | 102 - general/datasets/GTEx_Cauda_0414/summary.rtf | 3 - general/datasets/GTEx_Cauda_0414/tissue.rtf | 3 - general/datasets/GTEx_CellsEBV_0414/cases.rtf | 5 - .../GTEx_CellsEBV_0414/experiment-design.rtf | 1 - general/datasets/GTEx_CellsEBV_0414/platform.rtf | 3 - general/datasets/GTEx_CellsEBV_0414/processing.rtf | 102 - general/datasets/GTEx_CellsEBV_0414/summary.rtf | 3 - general/datasets/GTEx_CellsEBV_0414/tissue.rtf | 3 - .../GTEx_CellsLe_0414/experiment-design.rtf | 1 - general/datasets/GTEx_CellsLe_0414/summary.rtf | 1 - general/datasets/GTEx_CellsTr_0414/cases.rtf | 5 - .../GTEx_CellsTr_0414/experiment-design.rtf | 1 - general/datasets/GTEx_CellsTr_0414/platform.rtf | 3 - general/datasets/GTEx_CellsTr_0414/processing.rtf | 102 - general/datasets/GTEx_CellsTr_0414/summary.rtf | 3 - general/datasets/GTEx_CellsTr_0414/tissue.rtf | 3 - general/datasets/GTEx_CerebC_0414/cases.rtf | 5 - .../GTEx_CerebC_0414/experiment-design.rtf | 1 - general/datasets/GTEx_CerebC_0414/platform.rtf | 3 - general/datasets/GTEx_CerebC_0414/processing.rtf | 102 - general/datasets/GTEx_CerebC_0414/summary.rtf | 3 - general/datasets/GTEx_CerebC_0414/tissue.rtf | 3 - general/datasets/GTEx_CerebH_0414/cases.rtf | 5 - .../GTEx_CerebH_0414/experiment-design.rtf | 1 - general/datasets/GTEx_CerebH_0414/platform.rtf | 3 - general/datasets/GTEx_CerebH_0414/processing.rtf | 102 - general/datasets/GTEx_CerebH_0414/summary.rtf | 3 - general/datasets/GTEx_CerebH_0414/tissue.rtf | 3 - general/datasets/GTEx_Colon_0414/cases.rtf | 5 - .../datasets/GTEx_Colon_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Colon_0414/platform.rtf | 3 - general/datasets/GTEx_Colon_0414/processing.rtf | 102 - general/datasets/GTEx_Colon_0414/summary.rtf | 3 - general/datasets/GTEx_Colon_0414/tissue.rtf | 3 - general/datasets/GTEx_Coron_0414/cases.rtf | 5 - .../datasets/GTEx_Coron_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Coron_0414/platform.rtf | 3 - general/datasets/GTEx_Coron_0414/processing.rtf | 102 - general/datasets/GTEx_Coron_0414/summary.rtf | 3 - general/datasets/GTEx_Coron_0414/tissue.rtf | 3 - general/datasets/GTEx_EsophMuc_0414/cases.rtf | 5 - .../GTEx_EsophMuc_0414/experiment-design.rtf | 1 - general/datasets/GTEx_EsophMuc_0414/platform.rtf | 3 - general/datasets/GTEx_EsophMuc_0414/processing.rtf | 102 - general/datasets/GTEx_EsophMuc_0414/summary.rtf | 3 - general/datasets/GTEx_EsophMuc_0414/tissue.rtf | 3 - general/datasets/GTEx_EsophMus_0414/cases.rtf | 5 - .../GTEx_EsophMus_0414/experiment-design.rtf | 1 - general/datasets/GTEx_EsophMus_0414/platform.rtf | 3 - general/datasets/GTEx_EsophMus_0414/processing.rtf | 102 - general/datasets/GTEx_EsophMus_0414/summary.rtf | 3 - general/datasets/GTEx_EsophMus_0414/tissue.rtf | 3 - general/datasets/GTEx_Fallo_0414/cases.rtf | 5 - .../datasets/GTEx_Fallo_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Fallo_0414/platform.rtf | 3 - general/datasets/GTEx_Fallo_0414/processing.rtf | 102 - general/datasets/GTEx_Fallo_0414/summary.rtf | 3 - general/datasets/GTEx_Fallo_0414/tissue.rtf | 3 - general/datasets/GTEx_Front_0414/cases.rtf | 5 - .../datasets/GTEx_Front_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Front_0414/platform.rtf | 3 - general/datasets/GTEx_Front_0414/processing.rtf | 102 - general/datasets/GTEx_Front_0414/summary.rtf | 3 - general/datasets/GTEx_Front_0414/tissue.rtf | 3 - general/datasets/GTEx_HIP_0314/cases.rtf | 5 - .../datasets/GTEx_HIP_0314/experiment-design.rtf | 1 - general/datasets/GTEx_HIP_0314/platform.rtf | 3 - general/datasets/GTEx_HIP_0314/processing.rtf | 102 - general/datasets/GTEx_HIP_0314/summary.rtf | 3 - general/datasets/GTEx_HIP_0314/tissue.rtf | 3 - general/datasets/GTEx_HeartAt_0414/cases.rtf | 5 - .../GTEx_HeartAt_0414/experiment-design.rtf | 1 - general/datasets/GTEx_HeartAt_0414/platform.rtf | 3 - general/datasets/GTEx_HeartAt_0414/processing.rtf | 102 - general/datasets/GTEx_HeartAt_0414/summary.rtf | 3 - general/datasets/GTEx_HeartAt_0414/tissue.rtf | 3 - general/datasets/GTEx_HeartLV_0414/cases.rtf | 5 - .../GTEx_HeartLV_0414/experiment-design.rtf | 1 - general/datasets/GTEx_HeartLV_0414/platform.rtf | 3 - general/datasets/GTEx_HeartLV_0414/processing.rtf | 102 - general/datasets/GTEx_HeartLV_0414/summary.rtf | 3 - general/datasets/GTEx_HeartLV_0414/tissue.rtf | 3 - general/datasets/GTEx_Hypot_0414/cases.rtf | 5 - .../datasets/GTEx_Hypot_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Hypot_0414/platform.rtf | 3 - general/datasets/GTEx_Hypot_0414/processing.rtf | 102 - general/datasets/GTEx_Hypot_0414/summary.rtf | 3 - general/datasets/GTEx_Hypot_0414/tissue.rtf | 3 - general/datasets/GTEx_Kidne_0414/cases.rtf | 5 - .../datasets/GTEx_Kidne_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Kidne_0414/platform.rtf | 3 - general/datasets/GTEx_Kidne_0414/processing.rtf | 102 - general/datasets/GTEx_Kidne_0414/summary.rtf | 3 - general/datasets/GTEx_Kidne_0414/tissue.rtf | 3 - general/datasets/GTEx_Liver_0414/cases.rtf | 5 - .../datasets/GTEx_Liver_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Liver_0414/platform.rtf | 3 - general/datasets/GTEx_Liver_0414/processing.rtf | 102 - general/datasets/GTEx_Liver_0414/summary.rtf | 3 - general/datasets/GTEx_Liver_0414/tissue.rtf | 3 - general/datasets/GTEx_Lung__0414/cases.rtf | 5 - .../datasets/GTEx_Lung__0414/experiment-design.rtf | 1 - general/datasets/GTEx_Lung__0414/platform.rtf | 3 - general/datasets/GTEx_Lung__0414/processing.rtf | 102 - general/datasets/GTEx_Lung__0414/summary.rtf | 3 - general/datasets/GTEx_Lung__0414/tissue.rtf | 3 - general/datasets/GTEx_Muscl_0414/cases.rtf | 5 - .../datasets/GTEx_Muscl_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Muscl_0414/platform.rtf | 3 - general/datasets/GTEx_Muscl_0414/processing.rtf | 102 - general/datasets/GTEx_Muscl_0414/summary.rtf | 3 - general/datasets/GTEx_Muscl_0414/tissue.rtf | 3 - general/datasets/GTEx_Nerve_0414/cases.rtf | 5 - .../datasets/GTEx_Nerve_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Nerve_0414/platform.rtf | 3 - general/datasets/GTEx_Nerve_0414/processing.rtf | 102 - general/datasets/GTEx_Nerve_0414/summary.rtf | 3 - general/datasets/GTEx_Nerve_0414/tissue.rtf | 3 - general/datasets/GTEx_Nucle_0414/cases.rtf | 5 - .../datasets/GTEx_Nucle_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Nucle_0414/platform.rtf | 3 - general/datasets/GTEx_Nucle_0414/processing.rtf | 102 - general/datasets/GTEx_Nucle_0414/summary.rtf | 3 - general/datasets/GTEx_Nucle_0414/tissue.rtf | 3 - general/datasets/GTEx_Ovary_0414/cases.rtf | 5 - .../datasets/GTEx_Ovary_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Ovary_0414/platform.rtf | 3 - general/datasets/GTEx_Ovary_0414/processing.rtf | 102 - general/datasets/GTEx_Ovary_0414/summary.rtf | 3 - general/datasets/GTEx_Ovary_0414/tissue.rtf | 3 - general/datasets/GTEx_Pancr_0414/cases.rtf | 5 - .../datasets/GTEx_Pancr_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Pancr_0414/platform.rtf | 3 - general/datasets/GTEx_Pancr_0414/processing.rtf | 102 - general/datasets/GTEx_Pancr_0414/summary.rtf | 3 - general/datasets/GTEx_Pancr_0414/tissue.rtf | 3 - general/datasets/GTEx_Pitui_0414/cases.rtf | 5 - .../datasets/GTEx_Pitui_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Pitui_0414/platform.rtf | 3 - general/datasets/GTEx_Pitui_0414/processing.rtf | 102 - general/datasets/GTEx_Pitui_0414/summary.rtf | 3 - general/datasets/GTEx_Pitui_0414/tissue.rtf | 3 - general/datasets/GTEx_Prost_0414/cases.rtf | 5 - .../datasets/GTEx_Prost_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Prost_0414/platform.rtf | 3 - general/datasets/GTEx_Prost_0414/processing.rtf | 102 - general/datasets/GTEx_Prost_0414/summary.rtf | 3 - general/datasets/GTEx_Prost_0414/tissue.rtf | 3 - general/datasets/GTEx_Putam_0414/cases.rtf | 5 - .../datasets/GTEx_Putam_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Putam_0414/platform.rtf | 3 - general/datasets/GTEx_Putam_0414/processing.rtf | 102 - general/datasets/GTEx_Putam_0414/summary.rtf | 3 - general/datasets/GTEx_Putam_0414/tissue.rtf | 3 - general/datasets/GTEx_SkinE_0414/cases.rtf | 5 - .../datasets/GTEx_SkinE_0414/experiment-design.rtf | 1 - general/datasets/GTEx_SkinE_0414/platform.rtf | 3 - general/datasets/GTEx_SkinE_0414/processing.rtf | 102 - general/datasets/GTEx_SkinE_0414/summary.rtf | 3 - general/datasets/GTEx_SkinE_0414/tissue.rtf | 3 - general/datasets/GTEx_SkinN_0414/cases.rtf | 5 - .../datasets/GTEx_SkinN_0414/experiment-design.rtf | 1 - general/datasets/GTEx_SkinN_0414/platform.rtf | 3 - general/datasets/GTEx_SkinN_0414/processing.rtf | 102 - general/datasets/GTEx_SkinN_0414/summary.rtf | 3 - general/datasets/GTEx_SkinN_0414/tissue.rtf | 3 - general/datasets/GTEx_Spina_0414/cases.rtf | 5 - .../datasets/GTEx_Spina_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Spina_0414/platform.rtf | 3 - general/datasets/GTEx_Spina_0414/processing.rtf | 102 - general/datasets/GTEx_Spina_0414/summary.rtf | 3 - general/datasets/GTEx_Spina_0414/tissue.rtf | 3 - general/datasets/GTEx_Stoma_0414/cases.rtf | 5 - .../datasets/GTEx_Stoma_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Stoma_0414/platform.rtf | 3 - general/datasets/GTEx_Stoma_0414/processing.rtf | 102 - general/datasets/GTEx_Stoma_0414/summary.rtf | 3 - general/datasets/GTEx_Stoma_0414/tissue.rtf | 3 - general/datasets/GTEx_Subcu_0414/cases.rtf | 5 - .../datasets/GTEx_Subcu_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Subcu_0414/platform.rtf | 3 - general/datasets/GTEx_Subcu_0414/processing.rtf | 102 - general/datasets/GTEx_Subcu_0414/summary.rtf | 3 - general/datasets/GTEx_Subcu_0414/tissue.rtf | 3 - general/datasets/GTEx_Subst_0414/cases.rtf | 5 - .../datasets/GTEx_Subst_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Subst_0414/platform.rtf | 3 - general/datasets/GTEx_Subst_0414/processing.rtf | 102 - general/datasets/GTEx_Subst_0414/summary.rtf | 3 - general/datasets/GTEx_Subst_0414/tissue.rtf | 3 - general/datasets/GTEx_Testi_0414/cases.rtf | 5 - .../datasets/GTEx_Testi_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Testi_0414/platform.rtf | 3 - general/datasets/GTEx_Testi_0414/processing.rtf | 102 - general/datasets/GTEx_Testi_0414/summary.rtf | 3 - general/datasets/GTEx_Testi_0414/tissue.rtf | 3 - general/datasets/GTEx_Thyro_0414/cases.rtf | 5 - .../datasets/GTEx_Thyro_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Thyro_0414/platform.rtf | 3 - general/datasets/GTEx_Thyro_0414/processing.rtf | 102 - general/datasets/GTEx_Thyro_0414/summary.rtf | 3 - general/datasets/GTEx_Thyro_0414/tissue.rtf | 3 - general/datasets/GTEx_Tibia_0414/cases.rtf | 5 - .../datasets/GTEx_Tibia_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Tibia_0414/platform.rtf | 3 - general/datasets/GTEx_Tibia_0414/processing.rtf | 102 - general/datasets/GTEx_Tibia_0414/summary.rtf | 3 - general/datasets/GTEx_Tibia_0414/tissue.rtf | 3 - general/datasets/GTEx_Uteru_0414/cases.rtf | 5 - .../datasets/GTEx_Uteru_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Uteru_0414/platform.rtf | 3 - general/datasets/GTEx_Uteru_0414/processing.rtf | 102 - general/datasets/GTEx_Uteru_0414/summary.rtf | 3 - general/datasets/GTEx_Uteru_0414/tissue.rtf | 3 - general/datasets/GTEx_Vagin_0414/cases.rtf | 5 - .../datasets/GTEx_Vagin_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Vagin_0414/platform.rtf | 3 - general/datasets/GTEx_Vagin_0414/processing.rtf | 102 - general/datasets/GTEx_Vagin_0414/summary.rtf | 3 - general/datasets/GTEx_Vagin_0414/tissue.rtf | 3 - general/datasets/GTEx_Visce_0414/cases.rtf | 5 - .../datasets/GTEx_Visce_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Visce_0414/platform.rtf | 3 - general/datasets/GTEx_Visce_0414/processing.rtf | 102 - general/datasets/GTEx_Visce_0414/summary.rtf | 3 - general/datasets/GTEx_Visce_0414/tissue.rtf | 3 - general/datasets/GTEx_Whole_0414/cases.rtf | 5 - .../datasets/GTEx_Whole_0414/experiment-design.rtf | 1 - general/datasets/GTEx_Whole_0414/platform.rtf | 3 - general/datasets/GTEx_Whole_0414/processing.rtf | 102 - general/datasets/GTEx_Whole_0414/summary.rtf | 3 - general/datasets/GTEx_Whole_0414/tissue.rtf | 3 - general/datasets/GTEx_log2_AMY_0314/cases.rtf | 5 - .../GTEx_log2_AMY_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_AMY_0314/platform.rtf | 3 - general/datasets/GTEx_log2_AMY_0314/processing.rtf | 102 - general/datasets/GTEx_log2_AMY_0314/summary.rtf | 3 - general/datasets/GTEx_log2_AMY_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Adren_0314/cases.rtf | 5 - .../GTEx_log2_Adren_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Adren_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Adren_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Adren_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Adren_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Anter_0314/cases.rtf | 5 - .../GTEx_log2_Anter_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Anter_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Anter_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Anter_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Anter_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Aorta_0314/cases.rtf | 5 - .../GTEx_log2_Aorta_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Aorta_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Aorta_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Aorta_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Aorta_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Blood_0314/cases.rtf | 5 - .../GTEx_log2_Blood_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Blood_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Blood_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Blood_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Blood_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Breas_0314/cases.rtf | 5 - .../GTEx_log2_Breas_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Breas_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Breas_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Breas_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Breas_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_CER_0314/cases.rtf | 5 - .../GTEx_log2_CER_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_CER_0314/platform.rtf | 3 - general/datasets/GTEx_log2_CER_0314/processing.rtf | 102 - general/datasets/GTEx_log2_CER_0314/summary.rtf | 3 - general/datasets/GTEx_log2_CER_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Cauda_0314/cases.rtf | 5 - .../GTEx_log2_Cauda_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Cauda_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Cauda_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Cauda_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Cauda_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_CellsEBV_0314/cases.rtf | 5 - .../GTEx_log2_CellsEBV_0314/experiment-design.rtf | 1 - .../datasets/GTEx_log2_CellsEBV_0314/platform.rtf | 3 - .../GTEx_log2_CellsEBV_0314/processing.rtf | 102 - .../datasets/GTEx_log2_CellsEBV_0314/summary.rtf | 3 - .../datasets/GTEx_log2_CellsEBV_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_CellsLe_0314/cases.rtf | 5 - .../GTEx_log2_CellsLe_0314/experiment-design.rtf | 1 - .../datasets/GTEx_log2_CellsLe_0314/platform.rtf | 3 - .../datasets/GTEx_log2_CellsLe_0314/processing.rtf | 102 - .../datasets/GTEx_log2_CellsLe_0314/summary.rtf | 3 - general/datasets/GTEx_log2_CellsLe_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_CellsTr_0314/cases.rtf | 5 - .../GTEx_log2_CellsTr_0314/experiment-design.rtf | 1 - .../datasets/GTEx_log2_CellsTr_0314/platform.rtf | 3 - .../datasets/GTEx_log2_CellsTr_0314/processing.rtf | 102 - .../datasets/GTEx_log2_CellsTr_0314/summary.rtf | 3 - general/datasets/GTEx_log2_CellsTr_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_CerebC_0314/cases.rtf | 5 - .../GTEx_log2_CerebC_0314/experiment-design.rtf | 1 - .../datasets/GTEx_log2_CerebC_0314/platform.rtf | 3 - .../datasets/GTEx_log2_CerebC_0314/processing.rtf | 102 - general/datasets/GTEx_log2_CerebC_0314/summary.rtf | 3 - general/datasets/GTEx_log2_CerebC_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_CerebH_0314/cases.rtf | 5 - .../GTEx_log2_CerebH_0314/experiment-design.rtf | 1 - .../datasets/GTEx_log2_CerebH_0314/platform.rtf | 3 - .../datasets/GTEx_log2_CerebH_0314/processing.rtf | 102 - general/datasets/GTEx_log2_CerebH_0314/summary.rtf | 3 - general/datasets/GTEx_log2_CerebH_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Colon_0314/cases.rtf | 5 - .../GTEx_log2_Colon_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Colon_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Colon_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Colon_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Colon_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Coron_0314/cases.rtf | 5 - .../GTEx_log2_Coron_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Coron_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Coron_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Coron_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Coron_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_EsophMuc_0314/cases.rtf | 5 - .../GTEx_log2_EsophMuc_0314/experiment-design.rtf | 1 - .../datasets/GTEx_log2_EsophMuc_0314/platform.rtf | 3 - .../GTEx_log2_EsophMuc_0314/processing.rtf | 102 - .../datasets/GTEx_log2_EsophMuc_0314/summary.rtf | 3 - .../datasets/GTEx_log2_EsophMuc_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_EsophMus_0314/cases.rtf | 5 - .../GTEx_log2_EsophMus_0314/experiment-design.rtf | 1 - .../datasets/GTEx_log2_EsophMus_0314/platform.rtf | 3 - .../GTEx_log2_EsophMus_0314/processing.rtf | 102 - .../datasets/GTEx_log2_EsophMus_0314/summary.rtf | 3 - .../datasets/GTEx_log2_EsophMus_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Fallo_0314/cases.rtf | 5 - .../GTEx_log2_Fallo_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Fallo_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Fallo_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Fallo_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Fallo_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Front_0314/cases.rtf | 5 - .../GTEx_log2_Front_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Front_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Front_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Front_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Front_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_HIP_0314/cases.rtf | 5 - .../GTEx_log2_HIP_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_HIP_0314/platform.rtf | 3 - general/datasets/GTEx_log2_HIP_0314/processing.rtf | 102 - general/datasets/GTEx_log2_HIP_0314/summary.rtf | 3 - general/datasets/GTEx_log2_HIP_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_HeartAt_0314/cases.rtf | 5 - .../GTEx_log2_HeartAt_0314/experiment-design.rtf | 1 - .../datasets/GTEx_log2_HeartAt_0314/platform.rtf | 3 - .../datasets/GTEx_log2_HeartAt_0314/processing.rtf | 102 - .../datasets/GTEx_log2_HeartAt_0314/summary.rtf | 3 - general/datasets/GTEx_log2_HeartAt_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_HeartLV_0314/cases.rtf | 5 - .../GTEx_log2_HeartLV_0314/experiment-design.rtf | 1 - .../datasets/GTEx_log2_HeartLV_0314/platform.rtf | 3 - .../datasets/GTEx_log2_HeartLV_0314/processing.rtf | 102 - .../datasets/GTEx_log2_HeartLV_0314/summary.rtf | 3 - general/datasets/GTEx_log2_HeartLV_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Hypot_0314/cases.rtf | 5 - .../GTEx_log2_Hypot_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Hypot_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Hypot_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Hypot_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Hypot_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Kidne_0314/cases.rtf | 5 - .../GTEx_log2_Kidne_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Kidne_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Kidne_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Kidne_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Kidne_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Liver_0314/cases.rtf | 5 - .../GTEx_log2_Liver_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Liver_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Liver_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Liver_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Liver_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Lung_0314/cases.rtf | 5 - .../GTEx_log2_Lung_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Lung_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Lung_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Lung_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Lung_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Muscle_0314/cases.rtf | 5 - .../GTEx_log2_Muscle_0314/experiment-design.rtf | 1 - .../datasets/GTEx_log2_Muscle_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Muscle_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Muscle_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Muscle_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Nerve_0314/cases.rtf | 5 - .../GTEx_log2_Nerve_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Nerve_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Nerve_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Nerve_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Nerve_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Nucle_0314/cases.rtf | 5 - .../GTEx_log2_Nucle_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Nucle_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Nucle_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Nucle_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Nucle_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Ovary_0314/cases.rtf | 5 - .../GTEx_log2_Ovary_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Ovary_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Ovary_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Ovary_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Ovary_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Pancr_0314/cases.rtf | 5 - .../GTEx_log2_Pancr_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Pancr_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Pancr_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Pancr_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Pancr_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Pitui_0314/cases.rtf | 5 - .../GTEx_log2_Pitui_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Pitui_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Pitui_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Pitui_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Pitui_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Prost_0314/cases.rtf | 5 - .../GTEx_log2_Prost_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Prost_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Prost_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Prost_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Prost_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Putam_0314/cases.rtf | 5 - .../GTEx_log2_Putam_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Putam_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Putam_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Putam_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Putam_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_SkinE_0314/cases.rtf | 5 - .../GTEx_log2_SkinE_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_SkinE_0314/platform.rtf | 3 - .../datasets/GTEx_log2_SkinE_0314/processing.rtf | 102 - general/datasets/GTEx_log2_SkinE_0314/summary.rtf | 3 - general/datasets/GTEx_log2_SkinE_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_SkinN_0314/cases.rtf | 5 - .../GTEx_log2_SkinN_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_SkinN_0314/platform.rtf | 3 - .../datasets/GTEx_log2_SkinN_0314/processing.rtf | 102 - general/datasets/GTEx_log2_SkinN_0314/summary.rtf | 3 - general/datasets/GTEx_log2_SkinN_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Spina_0314/cases.rtf | 5 - .../GTEx_log2_Spina_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Spina_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Spina_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Spina_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Spina_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Stoma_0314/cases.rtf | 5 - .../GTEx_log2_Stoma_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Stoma_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Stoma_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Stoma_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Stoma_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Subcu_0314/cases.rtf | 5 - .../GTEx_log2_Subcu_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Subcu_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Subcu_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Subcu_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Subcu_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Subst_0314/cases.rtf | 5 - .../GTEx_log2_Subst_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Subst_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Subst_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Subst_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Subst_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Testi_0314/cases.rtf | 5 - .../GTEx_log2_Testi_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Testi_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Testi_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Testi_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Testi_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Thyro_0314/cases.rtf | 5 - .../GTEx_log2_Thyro_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Thyro_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Thyro_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Thyro_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Thyro_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Tibial_0314/cases.rtf | 5 - .../GTEx_log2_Tibial_0314/experiment-design.rtf | 1 - .../datasets/GTEx_log2_Tibial_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Tibial_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Tibial_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Tibial_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Uterus_0314/cases.rtf | 5 - .../GTEx_log2_Uterus_0314/experiment-design.rtf | 1 - .../datasets/GTEx_log2_Uterus_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Uterus_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Uterus_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Uterus_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Vagin_0314/cases.rtf | 5 - .../GTEx_log2_Vagin_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Vagin_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Vagin_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Vagin_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Vagin_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_Visce_0314/cases.rtf | 5 - .../GTEx_log2_Visce_0314/experiment-design.rtf | 1 - general/datasets/GTEx_log2_Visce_0314/platform.rtf | 3 - .../datasets/GTEx_log2_Visce_0314/processing.rtf | 102 - general/datasets/GTEx_log2_Visce_0314/summary.rtf | 3 - general/datasets/GTEx_log2_Visce_0314/tissue.rtf | 3 - general/datasets/GTEx_log2_WholeB_0314/cases.rtf | 5 - .../GTEx_log2_WholeB_0314/experiment-design.rtf | 1 - .../datasets/GTEx_log2_WholeB_0314/platform.rtf | 3 - .../datasets/GTEx_log2_WholeB_0314/processing.rtf | 102 - general/datasets/GTEx_log2_WholeB_0314/summary.rtf | 3 - general/datasets/GTEx_log2_WholeB_0314/tissue.rtf | 3 - general/datasets/Gcb_m2_0505_m/acknowledgment.rtf | 1 + general/datasets/Gcb_m2_0505_m/cases.rtf | 3 + general/datasets/Gcb_m2_0505_m/notes.rtf | 1 + general/datasets/Gcb_m2_0505_m/platform.rtf | 1 + general/datasets/Gcb_m2_0505_m/processing.rtf | 15 + general/datasets/Gcb_m2_0505_m/summary.rtf | 3 + general/datasets/Gcb_m2_0505_m/tissue.rtf | 13 + general/datasets/Gcb_m2_0505_p/acknowledgment.rtf | 1 + general/datasets/Gcb_m2_0505_p/cases.rtf | 3 + general/datasets/Gcb_m2_0505_p/notes.rtf | 1 + general/datasets/Gcb_m2_0505_p/platform.rtf | 1 + general/datasets/Gcb_m2_0505_p/processing.rtf | 15 + general/datasets/Gcb_m2_0505_p/summary.rtf | 3 + general/datasets/Gcb_m2_0505_p/tissue.rtf | 13 + general/datasets/Gcb_m2_0505_r/acknowledgment.rtf | 1 + general/datasets/Gcb_m2_0505_r/cases.rtf | 3 + general/datasets/Gcb_m2_0505_r/notes.rtf | 1 + general/datasets/Gcb_m2_0505_r/platform.rtf | 1 + general/datasets/Gcb_m2_0505_r/processing.rtf | 15 + general/datasets/Gcb_m2_0505_r/summary.rtf | 3 + general/datasets/Gcb_m2_0505_r/tissue.rtf | 13 + .../GenEx_BXD_CerebEt_RMA_0213/summary.rtf | 1 - .../GenEx_BXD_CerebEt_RMA_M_0213/summary.rtf | 1 - .../GenEx_BXD_CerebSal_RMA_0213/summary.rtf | 1 - .../GenEx_BXD_CerebSal_RMA_F_0213/cases.rtf | 5 - .../experiment-design.rtf | 1 - .../GenEx_BXD_CerebSal_RMA_F_0213/platform.rtf | 3 - .../GenEx_BXD_CerebSal_RMA_F_0213/processing.rtf | 102 - .../GenEx_BXD_CerebSal_RMA_F_0213/summary.rtf | 3 - .../GenEx_BXD_CerebSal_RMA_F_0213/tissue.rtf | 3 - .../GenEx_BXD_CerebSal_RMA_M_0213/summary.rtf | 1 - .../Genex_bxd_cerebet_rma_0213/summary.rtf | 1 + .../Genex_bxd_cerebet_rma_m_0213/summary.rtf | 1 + .../Genex_bxd_cerebsal_rma_0213/summary.rtf | 1 + .../Genex_bxd_cerebsal_rma_f_0213/cases.rtf | 5 + .../Genex_bxd_cerebsal_rma_f_0213/contributors.rtf | 1 + .../experiment-design.rtf | 1 + .../Genex_bxd_cerebsal_rma_f_0213/platform.rtf | 3 + .../Genex_bxd_cerebsal_rma_f_0213/processing.rtf | 102 + .../Genex_bxd_cerebsal_rma_f_0213/summary.rtf | 3 + .../Genex_bxd_cerebsal_rma_f_0213/tissue.rtf | 3 + .../Genex_bxd_cerebsal_rma_m_0213/summary.rtf | 1 + .../datasets/Genex_bxd_liveret_m5_0912/notes.rtf | 3 + .../datasets/Genex_bxd_liveret_m5_0912/summary.rtf | 29 + .../datasets/Genex_bxd_liveret_m5f_0912/notes.rtf | 3 + .../Genex_bxd_liveret_m5f_0912/summary.rtf | 29 + .../datasets/Genex_bxd_liveret_m5m_0912/notes.rtf | 3 + .../Genex_bxd_liveret_m5m_0912/summary.rtf | 29 + .../datasets/Genex_bxd_liveret_rma_0211/notes.rtf | 3 + .../Genex_bxd_liveret_rma_0211/summary.rtf | 29 + .../Genex_bxd_liveret_rma_f_0211/notes.rtf | 3 + .../Genex_bxd_liveret_rma_f_0211/summary.rtf | 29 + .../Genex_bxd_liveret_rma_m_0211/notes.rtf | 3 + .../Genex_bxd_liveret_rma_m_0211/summary.rtf | 29 + .../datasets/Genex_bxd_liversal_rma_0211/notes.rtf | 3 + .../Genex_bxd_liversal_rma_0211/summary.rtf | 29 + .../Genex_bxd_liversal_rma_f_0211/notes.rtf | 3 + .../Genex_bxd_liversal_rma_f_0211/summary.rtf | 29 + .../Genex_bxd_liversal_rma_m_0211/notes.rtf | 3 + .../Genex_bxd_liversal_rma_m_0211/summary.rtf | 29 + general/datasets/Gitrmetpublish/summary.rtf | 1 + general/datasets/Gn10/acknowledgment.rtf | 3 + general/datasets/Gn10/cases.rtf | 57 + general/datasets/Gn10/citation.rtf | 1 + general/datasets/Gn10/contributors.rtf | 1 + general/datasets/Gn10/experiment-design.rtf | 1 + general/datasets/Gn10/experiment-type.rtf | 1 + general/datasets/Gn10/notes.rtf | 1 + general/datasets/Gn10/platform.rtf | 11 + general/datasets/Gn10/processing.rtf | 3381 +++ general/datasets/Gn10/summary.rtf | 12 + general/datasets/Gn10/tissue.rtf | 2058 ++ general/datasets/Grng_gse23545hlt0613/citation.rtf | 1 + .../datasets/Grng_gse23545hlt0613/contributors.rtf | 1 + general/datasets/Grng_gse23545hlt0613/summary.rtf | 15 + .../Gse15222_f_a_ri_0409/acknowledgment.rtf | 1 + general/datasets/Gse15222_f_a_ri_0409/cases.rtf | 3290 +++ .../datasets/Gse15222_f_a_ri_0409/contributors.rtf | 1 + .../Gse15222_f_a_ri_0409/experiment-design.rtf | 5 + .../Gse15222_f_a_ri_0409/experiment-type.rtf | 1 + general/datasets/Gse15222_f_a_ri_0409/notes.rtf | 6 + general/datasets/Gse15222_f_a_ri_0409/platform.rtf | 5 + general/datasets/Gse15222_f_a_ri_0409/summary.rtf | 9 + .../Gse15222_f_n_ri_0409/acknowledgment.rtf | 1 + general/datasets/Gse15222_f_n_ri_0409/cases.rtf | 3290 +++ .../datasets/Gse15222_f_n_ri_0409/contributors.rtf | 1 + .../Gse15222_f_n_ri_0409/experiment-design.rtf | 5 + .../Gse15222_f_n_ri_0409/experiment-type.rtf | 1 + general/datasets/Gse15222_f_n_ri_0409/notes.rtf | 6 + general/datasets/Gse15222_f_n_ri_0409/platform.rtf | 5 + general/datasets/Gse15222_f_n_ri_0409/summary.rtf | 9 + .../datasets/Gse15222_f_ri_0409/acknowledgment.rtf | 1 + general/datasets/Gse15222_f_ri_0409/cases.rtf | 3290 +++ .../datasets/Gse15222_f_ri_0409/contributors.rtf | 1 + .../Gse15222_f_ri_0409/experiment-design.rtf | 5 + .../Gse15222_f_ri_0409/experiment-type.rtf | 1 + general/datasets/Gse15222_f_ri_0409/notes.rtf | 6 + general/datasets/Gse15222_f_ri_0409/platform.rtf | 5 + general/datasets/Gse15222_f_ri_0409/summary.rtf | 9 + .../datasets/Gse15745_gpl6104_cer0510/citation.rtf | 1 + .../Gse15745_gpl6104_cer0510/experiment-design.rtf | 1 + .../datasets/Gse15745_gpl6104_cer0510/summary.rtf | 1 + .../datasets/Gse15745_gpl6104_pfc0510/citation.rtf | 1 + .../Gse15745_gpl6104_pfc0510/experiment-design.rtf | 1 + .../datasets/Gse15745_gpl6104_pfc0510/summary.rtf | 1 + .../datasets/Gse15745_gpl6104_po0510/citation.rtf | 1 + .../Gse15745_gpl6104_po0510/experiment-design.rtf | 1 + .../datasets/Gse15745_gpl6104_po0510/summary.rtf | 1 + .../Gse16780_ucla_ml0911/acknowledgment.rtf | 1 + general/datasets/Gse16780_ucla_ml0911/cases.rtf | 1 + general/datasets/Gse16780_ucla_ml0911/citation.rtf | 1 + .../datasets/Gse16780_ucla_ml0911/contributors.rtf | 1 + .../Gse16780_ucla_ml0911/experiment-design.rtf | 3 + .../Gse16780_ucla_ml0911/experiment-type.rtf | 1 + general/datasets/Gse16780_ucla_ml0911/notes.rtf | 1 + general/datasets/Gse16780_ucla_ml0911/platform.rtf | 5 + .../datasets/Gse16780_ucla_ml0911/processing.rtf | 1 + general/datasets/Gse16780_ucla_ml0911/summary.rtf | 1 + general/datasets/Gse16780_ucla_ml0911/tissue.rtf | 1 + .../datasets/Gse16780ab_ucla_ml0911/summary.rtf | 1 + .../datasets/Gse16780bxh_ucla_ml0911/summary.rtf | 1 + .../datasets/Gse16780mdp_ucla_ml0911/summary.rtf | 11 + general/datasets/Gse23546hlt0613/citation.rtf | 1 + general/datasets/Gse23546hlt0613/contributors.rtf | 1 + general/datasets/Gse23546hlt0613/summary.rtf | 15 + .../datasets/Gse5281_f_rma0709/acknowledgment.rtf | 1 + general/datasets/Gse5281_f_rma0709/citation.rtf | 2 + .../datasets/Gse5281_f_rma0709/contributors.rtf | 1 + .../Gse5281_f_rma0709/experiment-design.rtf | 13 + .../datasets/Gse5281_f_rma0709/experiment-type.rtf | 9 + general/datasets/Gse5281_f_rma0709/platform.rtf | 3 + general/datasets/Gse5281_f_rma0709/summary.rtf | 1484 + .../Gse5281_f_rma_alzh_0709/acknowledgment.rtf | 1 + .../datasets/Gse5281_f_rma_alzh_0709/citation.rtf | 2 + .../Gse5281_f_rma_alzh_0709/contributors.rtf | 1 + .../Gse5281_f_rma_alzh_0709/experiment-design.rtf | 13 + .../Gse5281_f_rma_alzh_0709/experiment-type.rtf | 9 + .../datasets/Gse5281_f_rma_alzh_0709/platform.rtf | 3 + .../datasets/Gse5281_f_rma_alzh_0709/summary.rtf | 1484 + .../Gse5281_f_rma_n_0709/acknowledgment.rtf | 1 + general/datasets/Gse5281_f_rma_n_0709/citation.rtf | 2 + .../datasets/Gse5281_f_rma_n_0709/contributors.rtf | 1 + .../Gse5281_f_rma_n_0709/experiment-design.rtf | 13 + .../Gse5281_f_rma_n_0709/experiment-type.rtf | 9 + general/datasets/Gse5281_f_rma_n_0709/platform.rtf | 3 + general/datasets/Gse5281_f_rma_n_0709/summary.rtf | 1484 + .../datasets/Gse5281_rma0709/acknowledgment.rtf | 1 + general/datasets/Gse5281_rma0709/citation.rtf | 2 + general/datasets/Gse5281_rma0709/contributors.rtf | 1 + .../datasets/Gse5281_rma0709/experiment-design.rtf | 13 + .../datasets/Gse5281_rma0709/experiment-type.rtf | 9 + general/datasets/Gse5281_rma0709/platform.rtf | 3 + general/datasets/Gse5281_rma0709/summary.rtf | 1484 + general/datasets/Gtex_adren_0414/cases.rtf | 5 + general/datasets/Gtex_adren_0414/contributors.rtf | 1 + .../datasets/Gtex_adren_0414/experiment-design.rtf | 1 + general/datasets/Gtex_adren_0414/platform.rtf | 3 + general/datasets/Gtex_adren_0414/processing.rtf | 102 + general/datasets/Gtex_adren_0414/summary.rtf | 3 + general/datasets/Gtex_adren_0414/tissue.rtf | 3 + general/datasets/Gtex_amy_0314/cases.rtf | 5 + general/datasets/Gtex_amy_0314/contributors.rtf | 1 + .../datasets/Gtex_amy_0314/experiment-design.rtf | 1 + general/datasets/Gtex_amy_0314/platform.rtf | 3 + general/datasets/Gtex_amy_0314/processing.rtf | 102 + general/datasets/Gtex_amy_0314/summary.rtf | 3 + general/datasets/Gtex_amy_0314/tissue.rtf | 3 + general/datasets/Gtex_anter_0414/cases.rtf | 5 + general/datasets/Gtex_anter_0414/contributors.rtf | 1 + .../datasets/Gtex_anter_0414/experiment-design.rtf | 1 + general/datasets/Gtex_anter_0414/platform.rtf | 3 + general/datasets/Gtex_anter_0414/processing.rtf | 102 + general/datasets/Gtex_anter_0414/summary.rtf | 3 + general/datasets/Gtex_anter_0414/tissue.rtf | 3 + general/datasets/Gtex_aorta_0414/cases.rtf | 5 + general/datasets/Gtex_aorta_0414/contributors.rtf | 1 + .../datasets/Gtex_aorta_0414/experiment-design.rtf | 1 + general/datasets/Gtex_aorta_0414/platform.rtf | 3 + general/datasets/Gtex_aorta_0414/processing.rtf | 102 + general/datasets/Gtex_aorta_0414/summary.rtf | 3 + general/datasets/Gtex_aorta_0414/tissue.rtf | 3 + general/datasets/Gtex_blood_0414/cases.rtf | 5 + general/datasets/Gtex_blood_0414/contributors.rtf | 1 + .../datasets/Gtex_blood_0414/experiment-design.rtf | 1 + general/datasets/Gtex_blood_0414/platform.rtf | 3 + general/datasets/Gtex_blood_0414/processing.rtf | 102 + general/datasets/Gtex_blood_0414/summary.rtf | 3 + general/datasets/Gtex_blood_0414/tissue.rtf | 3 + general/datasets/Gtex_breas_0414/cases.rtf | 5 + general/datasets/Gtex_breas_0414/contributors.rtf | 1 + .../datasets/Gtex_breas_0414/experiment-design.rtf | 1 + general/datasets/Gtex_breas_0414/platform.rtf | 3 + general/datasets/Gtex_breas_0414/processing.rtf | 102 + general/datasets/Gtex_breas_0414/summary.rtf | 3 + general/datasets/Gtex_breas_0414/tissue.rtf | 3 + general/datasets/Gtex_cauda_0414/cases.rtf | 5 + general/datasets/Gtex_cauda_0414/contributors.rtf | 1 + .../datasets/Gtex_cauda_0414/experiment-design.rtf | 1 + general/datasets/Gtex_cauda_0414/platform.rtf | 3 + general/datasets/Gtex_cauda_0414/processing.rtf | 102 + general/datasets/Gtex_cauda_0414/summary.rtf | 3 + general/datasets/Gtex_cauda_0414/tissue.rtf | 3 + general/datasets/Gtex_cellsebv_0414/cases.rtf | 5 + .../datasets/Gtex_cellsebv_0414/contributors.rtf | 1 + .../Gtex_cellsebv_0414/experiment-design.rtf | 1 + general/datasets/Gtex_cellsebv_0414/platform.rtf | 3 + general/datasets/Gtex_cellsebv_0414/processing.rtf | 102 + general/datasets/Gtex_cellsebv_0414/summary.rtf | 3 + general/datasets/Gtex_cellsebv_0414/tissue.rtf | 3 + general/datasets/Gtex_cellsle_0414/citation.rtf | 1 + .../datasets/Gtex_cellsle_0414/contributors.rtf | 1 + .../Gtex_cellsle_0414/experiment-design.rtf | 1 + general/datasets/Gtex_cellsle_0414/summary.rtf | 1 + general/datasets/Gtex_cellstr_0414/cases.rtf | 5 + .../datasets/Gtex_cellstr_0414/contributors.rtf | 1 + .../Gtex_cellstr_0414/experiment-design.rtf | 1 + general/datasets/Gtex_cellstr_0414/platform.rtf | 3 + general/datasets/Gtex_cellstr_0414/processing.rtf | 102 + general/datasets/Gtex_cellstr_0414/summary.rtf | 3 + general/datasets/Gtex_cellstr_0414/tissue.rtf | 3 + general/datasets/Gtex_cer_0314/cases.rtf | 5 + general/datasets/Gtex_cer_0314/contributors.rtf | 1 + .../datasets/Gtex_cer_0314/experiment-design.rtf | 1 + general/datasets/Gtex_cer_0314/platform.rtf | 3 + general/datasets/Gtex_cer_0314/processing.rtf | 102 + general/datasets/Gtex_cer_0314/summary.rtf | 3 + general/datasets/Gtex_cer_0314/tissue.rtf | 3 + general/datasets/Gtex_cerebc_0414/cases.rtf | 5 + general/datasets/Gtex_cerebc_0414/contributors.rtf | 1 + .../Gtex_cerebc_0414/experiment-design.rtf | 1 + general/datasets/Gtex_cerebc_0414/platform.rtf | 3 + general/datasets/Gtex_cerebc_0414/processing.rtf | 102 + general/datasets/Gtex_cerebc_0414/summary.rtf | 3 + general/datasets/Gtex_cerebc_0414/tissue.rtf | 3 + general/datasets/Gtex_cerebh_0414/cases.rtf | 5 + general/datasets/Gtex_cerebh_0414/contributors.rtf | 1 + .../Gtex_cerebh_0414/experiment-design.rtf | 1 + general/datasets/Gtex_cerebh_0414/platform.rtf | 3 + general/datasets/Gtex_cerebh_0414/processing.rtf | 102 + general/datasets/Gtex_cerebh_0414/summary.rtf | 3 + general/datasets/Gtex_cerebh_0414/tissue.rtf | 3 + general/datasets/Gtex_colon_0414/cases.rtf | 5 + general/datasets/Gtex_colon_0414/contributors.rtf | 1 + .../datasets/Gtex_colon_0414/experiment-design.rtf | 1 + general/datasets/Gtex_colon_0414/platform.rtf | 3 + general/datasets/Gtex_colon_0414/processing.rtf | 102 + general/datasets/Gtex_colon_0414/summary.rtf | 3 + general/datasets/Gtex_colon_0414/tissue.rtf | 3 + general/datasets/Gtex_coron_0414/cases.rtf | 5 + general/datasets/Gtex_coron_0414/contributors.rtf | 1 + .../datasets/Gtex_coron_0414/experiment-design.rtf | 1 + general/datasets/Gtex_coron_0414/platform.rtf | 3 + general/datasets/Gtex_coron_0414/processing.rtf | 102 + general/datasets/Gtex_coron_0414/summary.rtf | 3 + general/datasets/Gtex_coron_0414/tissue.rtf | 3 + general/datasets/Gtex_esophmuc_0414/cases.rtf | 5 + .../datasets/Gtex_esophmuc_0414/contributors.rtf | 1 + .../Gtex_esophmuc_0414/experiment-design.rtf | 1 + general/datasets/Gtex_esophmuc_0414/platform.rtf | 3 + general/datasets/Gtex_esophmuc_0414/processing.rtf | 102 + general/datasets/Gtex_esophmuc_0414/summary.rtf | 3 + general/datasets/Gtex_esophmuc_0414/tissue.rtf | 3 + general/datasets/Gtex_esophmus_0414/cases.rtf | 5 + .../datasets/Gtex_esophmus_0414/contributors.rtf | 1 + .../Gtex_esophmus_0414/experiment-design.rtf | 1 + general/datasets/Gtex_esophmus_0414/platform.rtf | 3 + general/datasets/Gtex_esophmus_0414/processing.rtf | 102 + general/datasets/Gtex_esophmus_0414/summary.rtf | 3 + general/datasets/Gtex_esophmus_0414/tissue.rtf | 3 + general/datasets/Gtex_fallo_0414/cases.rtf | 5 + general/datasets/Gtex_fallo_0414/contributors.rtf | 1 + .../datasets/Gtex_fallo_0414/experiment-design.rtf | 1 + general/datasets/Gtex_fallo_0414/platform.rtf | 3 + general/datasets/Gtex_fallo_0414/processing.rtf | 102 + general/datasets/Gtex_fallo_0414/summary.rtf | 3 + general/datasets/Gtex_fallo_0414/tissue.rtf | 3 + general/datasets/Gtex_front_0414/cases.rtf | 5 + general/datasets/Gtex_front_0414/contributors.rtf | 1 + .../datasets/Gtex_front_0414/experiment-design.rtf | 1 + general/datasets/Gtex_front_0414/platform.rtf | 3 + general/datasets/Gtex_front_0414/processing.rtf | 102 + general/datasets/Gtex_front_0414/summary.rtf | 3 + general/datasets/Gtex_front_0414/tissue.rtf | 3 + general/datasets/Gtex_heartat_0414/cases.rtf | 5 + .../datasets/Gtex_heartat_0414/contributors.rtf | 1 + .../Gtex_heartat_0414/experiment-design.rtf | 1 + general/datasets/Gtex_heartat_0414/platform.rtf | 3 + general/datasets/Gtex_heartat_0414/processing.rtf | 102 + general/datasets/Gtex_heartat_0414/summary.rtf | 3 + general/datasets/Gtex_heartat_0414/tissue.rtf | 3 + general/datasets/Gtex_heartlv_0414/cases.rtf | 5 + .../datasets/Gtex_heartlv_0414/contributors.rtf | 1 + .../Gtex_heartlv_0414/experiment-design.rtf | 1 + general/datasets/Gtex_heartlv_0414/platform.rtf | 3 + general/datasets/Gtex_heartlv_0414/processing.rtf | 102 + general/datasets/Gtex_heartlv_0414/summary.rtf | 3 + general/datasets/Gtex_heartlv_0414/tissue.rtf | 3 + general/datasets/Gtex_hip_0314/cases.rtf | 5 + general/datasets/Gtex_hip_0314/contributors.rtf | 1 + .../datasets/Gtex_hip_0314/experiment-design.rtf | 1 + general/datasets/Gtex_hip_0314/platform.rtf | 3 + general/datasets/Gtex_hip_0314/processing.rtf | 102 + general/datasets/Gtex_hip_0314/summary.rtf | 3 + general/datasets/Gtex_hip_0314/tissue.rtf | 3 + general/datasets/Gtex_hypot_0414/cases.rtf | 5 + general/datasets/Gtex_hypot_0414/contributors.rtf | 1 + .../datasets/Gtex_hypot_0414/experiment-design.rtf | 1 + general/datasets/Gtex_hypot_0414/platform.rtf | 3 + general/datasets/Gtex_hypot_0414/processing.rtf | 102 + general/datasets/Gtex_hypot_0414/summary.rtf | 3 + general/datasets/Gtex_hypot_0414/tissue.rtf | 3 + general/datasets/Gtex_kidne_0414/cases.rtf | 5 + general/datasets/Gtex_kidne_0414/contributors.rtf | 1 + .../datasets/Gtex_kidne_0414/experiment-design.rtf | 1 + general/datasets/Gtex_kidne_0414/platform.rtf | 3 + general/datasets/Gtex_kidne_0414/processing.rtf | 102 + general/datasets/Gtex_kidne_0414/summary.rtf | 3 + general/datasets/Gtex_kidne_0414/tissue.rtf | 3 + general/datasets/Gtex_liver_0414/cases.rtf | 5 + general/datasets/Gtex_liver_0414/contributors.rtf | 1 + .../datasets/Gtex_liver_0414/experiment-design.rtf | 1 + general/datasets/Gtex_liver_0414/platform.rtf | 3 + general/datasets/Gtex_liver_0414/processing.rtf | 102 + general/datasets/Gtex_liver_0414/summary.rtf | 3 + general/datasets/Gtex_liver_0414/tissue.rtf | 3 + general/datasets/Gtex_log2_adren_0314/cases.rtf | 5 + .../datasets/Gtex_log2_adren_0314/contributors.rtf | 1 + .../Gtex_log2_adren_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_adren_0314/platform.rtf | 3 + .../datasets/Gtex_log2_adren_0314/processing.rtf | 102 + general/datasets/Gtex_log2_adren_0314/summary.rtf | 3 + general/datasets/Gtex_log2_adren_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_amy_0314/cases.rtf | 5 + .../datasets/Gtex_log2_amy_0314/contributors.rtf | 1 + .../Gtex_log2_amy_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_amy_0314/platform.rtf | 3 + general/datasets/Gtex_log2_amy_0314/processing.rtf | 102 + general/datasets/Gtex_log2_amy_0314/summary.rtf | 3 + general/datasets/Gtex_log2_amy_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_anter_0314/cases.rtf | 5 + .../datasets/Gtex_log2_anter_0314/contributors.rtf | 1 + .../Gtex_log2_anter_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_anter_0314/platform.rtf | 3 + .../datasets/Gtex_log2_anter_0314/processing.rtf | 102 + general/datasets/Gtex_log2_anter_0314/summary.rtf | 3 + general/datasets/Gtex_log2_anter_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_aorta_0314/cases.rtf | 5 + .../datasets/Gtex_log2_aorta_0314/contributors.rtf | 1 + .../Gtex_log2_aorta_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_aorta_0314/platform.rtf | 3 + .../datasets/Gtex_log2_aorta_0314/processing.rtf | 102 + general/datasets/Gtex_log2_aorta_0314/summary.rtf | 3 + general/datasets/Gtex_log2_aorta_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_blood_0314/cases.rtf | 5 + .../datasets/Gtex_log2_blood_0314/contributors.rtf | 1 + .../Gtex_log2_blood_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_blood_0314/platform.rtf | 3 + .../datasets/Gtex_log2_blood_0314/processing.rtf | 102 + general/datasets/Gtex_log2_blood_0314/summary.rtf | 3 + general/datasets/Gtex_log2_blood_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_breas_0314/cases.rtf | 5 + .../datasets/Gtex_log2_breas_0314/contributors.rtf | 1 + .../Gtex_log2_breas_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_breas_0314/platform.rtf | 3 + .../datasets/Gtex_log2_breas_0314/processing.rtf | 102 + general/datasets/Gtex_log2_breas_0314/summary.rtf | 3 + general/datasets/Gtex_log2_breas_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_cauda_0314/cases.rtf | 5 + .../datasets/Gtex_log2_cauda_0314/contributors.rtf | 1 + .../Gtex_log2_cauda_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_cauda_0314/platform.rtf | 3 + .../datasets/Gtex_log2_cauda_0314/processing.rtf | 102 + general/datasets/Gtex_log2_cauda_0314/summary.rtf | 3 + general/datasets/Gtex_log2_cauda_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_cellsebv_0314/cases.rtf | 5 + .../Gtex_log2_cellsebv_0314/contributors.rtf | 1 + .../Gtex_log2_cellsebv_0314/experiment-design.rtf | 1 + .../datasets/Gtex_log2_cellsebv_0314/platform.rtf | 3 + .../Gtex_log2_cellsebv_0314/processing.rtf | 102 + .../datasets/Gtex_log2_cellsebv_0314/summary.rtf | 3 + .../datasets/Gtex_log2_cellsebv_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_cellsle_0314/cases.rtf | 5 + .../Gtex_log2_cellsle_0314/contributors.rtf | 1 + .../Gtex_log2_cellsle_0314/experiment-design.rtf | 1 + .../datasets/Gtex_log2_cellsle_0314/platform.rtf | 3 + .../datasets/Gtex_log2_cellsle_0314/processing.rtf | 102 + .../datasets/Gtex_log2_cellsle_0314/summary.rtf | 3 + general/datasets/Gtex_log2_cellsle_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_cellstr_0314/cases.rtf | 5 + .../Gtex_log2_cellstr_0314/contributors.rtf | 1 + .../Gtex_log2_cellstr_0314/experiment-design.rtf | 1 + .../datasets/Gtex_log2_cellstr_0314/platform.rtf | 3 + .../datasets/Gtex_log2_cellstr_0314/processing.rtf | 102 + .../datasets/Gtex_log2_cellstr_0314/summary.rtf | 3 + general/datasets/Gtex_log2_cellstr_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_cer_0314/cases.rtf | 5 + .../datasets/Gtex_log2_cer_0314/contributors.rtf | 1 + .../Gtex_log2_cer_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_cer_0314/platform.rtf | 3 + general/datasets/Gtex_log2_cer_0314/processing.rtf | 102 + general/datasets/Gtex_log2_cer_0314/summary.rtf | 3 + general/datasets/Gtex_log2_cer_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_cerebc_0314/cases.rtf | 5 + .../Gtex_log2_cerebc_0314/contributors.rtf | 1 + .../Gtex_log2_cerebc_0314/experiment-design.rtf | 1 + .../datasets/Gtex_log2_cerebc_0314/platform.rtf | 3 + .../datasets/Gtex_log2_cerebc_0314/processing.rtf | 102 + general/datasets/Gtex_log2_cerebc_0314/summary.rtf | 3 + general/datasets/Gtex_log2_cerebc_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_cerebh_0314/cases.rtf | 5 + .../Gtex_log2_cerebh_0314/contributors.rtf | 1 + .../Gtex_log2_cerebh_0314/experiment-design.rtf | 1 + .../datasets/Gtex_log2_cerebh_0314/platform.rtf | 3 + .../datasets/Gtex_log2_cerebh_0314/processing.rtf | 102 + general/datasets/Gtex_log2_cerebh_0314/summary.rtf | 3 + general/datasets/Gtex_log2_cerebh_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_colon_0314/cases.rtf | 5 + .../datasets/Gtex_log2_colon_0314/contributors.rtf | 1 + .../Gtex_log2_colon_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_colon_0314/platform.rtf | 3 + .../datasets/Gtex_log2_colon_0314/processing.rtf | 102 + general/datasets/Gtex_log2_colon_0314/summary.rtf | 3 + general/datasets/Gtex_log2_colon_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_coron_0314/cases.rtf | 5 + .../datasets/Gtex_log2_coron_0314/contributors.rtf | 1 + .../Gtex_log2_coron_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_coron_0314/platform.rtf | 3 + .../datasets/Gtex_log2_coron_0314/processing.rtf | 102 + general/datasets/Gtex_log2_coron_0314/summary.rtf | 3 + general/datasets/Gtex_log2_coron_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_esophmuc_0314/cases.rtf | 5 + .../Gtex_log2_esophmuc_0314/contributors.rtf | 1 + .../Gtex_log2_esophmuc_0314/experiment-design.rtf | 1 + .../datasets/Gtex_log2_esophmuc_0314/platform.rtf | 3 + .../Gtex_log2_esophmuc_0314/processing.rtf | 102 + .../datasets/Gtex_log2_esophmuc_0314/summary.rtf | 3 + .../datasets/Gtex_log2_esophmuc_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_esophmus_0314/cases.rtf | 5 + .../Gtex_log2_esophmus_0314/contributors.rtf | 1 + .../Gtex_log2_esophmus_0314/experiment-design.rtf | 1 + .../datasets/Gtex_log2_esophmus_0314/platform.rtf | 3 + .../Gtex_log2_esophmus_0314/processing.rtf | 102 + .../datasets/Gtex_log2_esophmus_0314/summary.rtf | 3 + .../datasets/Gtex_log2_esophmus_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_fallo_0314/cases.rtf | 5 + .../datasets/Gtex_log2_fallo_0314/contributors.rtf | 1 + .../Gtex_log2_fallo_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_fallo_0314/platform.rtf | 3 + .../datasets/Gtex_log2_fallo_0314/processing.rtf | 102 + general/datasets/Gtex_log2_fallo_0314/summary.rtf | 3 + general/datasets/Gtex_log2_fallo_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_front_0314/cases.rtf | 5 + .../datasets/Gtex_log2_front_0314/contributors.rtf | 1 + .../Gtex_log2_front_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_front_0314/platform.rtf | 3 + .../datasets/Gtex_log2_front_0314/processing.rtf | 102 + general/datasets/Gtex_log2_front_0314/summary.rtf | 3 + general/datasets/Gtex_log2_front_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_heartat_0314/cases.rtf | 5 + .../Gtex_log2_heartat_0314/contributors.rtf | 1 + .../Gtex_log2_heartat_0314/experiment-design.rtf | 1 + .../datasets/Gtex_log2_heartat_0314/platform.rtf | 3 + .../datasets/Gtex_log2_heartat_0314/processing.rtf | 102 + .../datasets/Gtex_log2_heartat_0314/summary.rtf | 3 + general/datasets/Gtex_log2_heartat_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_heartlv_0314/cases.rtf | 5 + .../Gtex_log2_heartlv_0314/contributors.rtf | 1 + .../Gtex_log2_heartlv_0314/experiment-design.rtf | 1 + .../datasets/Gtex_log2_heartlv_0314/platform.rtf | 3 + .../datasets/Gtex_log2_heartlv_0314/processing.rtf | 102 + .../datasets/Gtex_log2_heartlv_0314/summary.rtf | 3 + general/datasets/Gtex_log2_heartlv_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_hip_0314/cases.rtf | 5 + .../datasets/Gtex_log2_hip_0314/contributors.rtf | 1 + .../Gtex_log2_hip_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_hip_0314/platform.rtf | 3 + general/datasets/Gtex_log2_hip_0314/processing.rtf | 102 + general/datasets/Gtex_log2_hip_0314/summary.rtf | 3 + general/datasets/Gtex_log2_hip_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_hypot_0314/cases.rtf | 5 + .../datasets/Gtex_log2_hypot_0314/contributors.rtf | 1 + .../Gtex_log2_hypot_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_hypot_0314/platform.rtf | 3 + .../datasets/Gtex_log2_hypot_0314/processing.rtf | 102 + general/datasets/Gtex_log2_hypot_0314/summary.rtf | 3 + general/datasets/Gtex_log2_hypot_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_kidne_0314/cases.rtf | 5 + .../datasets/Gtex_log2_kidne_0314/contributors.rtf | 1 + .../Gtex_log2_kidne_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_kidne_0314/platform.rtf | 3 + .../datasets/Gtex_log2_kidne_0314/processing.rtf | 102 + general/datasets/Gtex_log2_kidne_0314/summary.rtf | 3 + general/datasets/Gtex_log2_kidne_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_liver_0314/cases.rtf | 5 + .../datasets/Gtex_log2_liver_0314/contributors.rtf | 1 + .../Gtex_log2_liver_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_liver_0314/platform.rtf | 3 + .../datasets/Gtex_log2_liver_0314/processing.rtf | 102 + general/datasets/Gtex_log2_liver_0314/summary.rtf | 3 + general/datasets/Gtex_log2_liver_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_lung_0314/cases.rtf | 5 + .../datasets/Gtex_log2_lung_0314/contributors.rtf | 1 + .../Gtex_log2_lung_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_lung_0314/platform.rtf | 3 + .../datasets/Gtex_log2_lung_0314/processing.rtf | 102 + general/datasets/Gtex_log2_lung_0314/summary.rtf | 3 + general/datasets/Gtex_log2_lung_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_muscle_0314/cases.rtf | 5 + .../Gtex_log2_muscle_0314/contributors.rtf | 1 + .../Gtex_log2_muscle_0314/experiment-design.rtf | 1 + .../datasets/Gtex_log2_muscle_0314/platform.rtf | 3 + .../datasets/Gtex_log2_muscle_0314/processing.rtf | 102 + general/datasets/Gtex_log2_muscle_0314/summary.rtf | 3 + general/datasets/Gtex_log2_muscle_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_nerve_0314/cases.rtf | 5 + .../datasets/Gtex_log2_nerve_0314/contributors.rtf | 1 + .../Gtex_log2_nerve_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_nerve_0314/platform.rtf | 3 + .../datasets/Gtex_log2_nerve_0314/processing.rtf | 102 + general/datasets/Gtex_log2_nerve_0314/summary.rtf | 3 + general/datasets/Gtex_log2_nerve_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_nucle_0314/cases.rtf | 5 + .../datasets/Gtex_log2_nucle_0314/contributors.rtf | 1 + .../Gtex_log2_nucle_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_nucle_0314/platform.rtf | 3 + .../datasets/Gtex_log2_nucle_0314/processing.rtf | 102 + general/datasets/Gtex_log2_nucle_0314/summary.rtf | 3 + general/datasets/Gtex_log2_nucle_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_ovary_0314/cases.rtf | 5 + .../datasets/Gtex_log2_ovary_0314/contributors.rtf | 1 + .../Gtex_log2_ovary_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_ovary_0314/platform.rtf | 3 + .../datasets/Gtex_log2_ovary_0314/processing.rtf | 102 + general/datasets/Gtex_log2_ovary_0314/summary.rtf | 3 + general/datasets/Gtex_log2_ovary_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_pancr_0314/cases.rtf | 5 + .../datasets/Gtex_log2_pancr_0314/contributors.rtf | 1 + .../Gtex_log2_pancr_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_pancr_0314/platform.rtf | 3 + .../datasets/Gtex_log2_pancr_0314/processing.rtf | 102 + general/datasets/Gtex_log2_pancr_0314/summary.rtf | 3 + general/datasets/Gtex_log2_pancr_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_pitui_0314/cases.rtf | 5 + .../datasets/Gtex_log2_pitui_0314/contributors.rtf | 1 + .../Gtex_log2_pitui_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_pitui_0314/platform.rtf | 3 + .../datasets/Gtex_log2_pitui_0314/processing.rtf | 102 + general/datasets/Gtex_log2_pitui_0314/summary.rtf | 3 + general/datasets/Gtex_log2_pitui_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_prost_0314/cases.rtf | 5 + .../datasets/Gtex_log2_prost_0314/contributors.rtf | 1 + .../Gtex_log2_prost_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_prost_0314/platform.rtf | 3 + .../datasets/Gtex_log2_prost_0314/processing.rtf | 102 + general/datasets/Gtex_log2_prost_0314/summary.rtf | 3 + general/datasets/Gtex_log2_prost_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_putam_0314/cases.rtf | 5 + .../datasets/Gtex_log2_putam_0314/contributors.rtf | 1 + .../Gtex_log2_putam_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_putam_0314/platform.rtf | 3 + .../datasets/Gtex_log2_putam_0314/processing.rtf | 102 + general/datasets/Gtex_log2_putam_0314/summary.rtf | 3 + general/datasets/Gtex_log2_putam_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_skine_0314/cases.rtf | 5 + .../datasets/Gtex_log2_skine_0314/contributors.rtf | 1 + .../Gtex_log2_skine_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_skine_0314/platform.rtf | 3 + .../datasets/Gtex_log2_skine_0314/processing.rtf | 102 + general/datasets/Gtex_log2_skine_0314/summary.rtf | 3 + general/datasets/Gtex_log2_skine_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_skinn_0314/cases.rtf | 5 + .../datasets/Gtex_log2_skinn_0314/contributors.rtf | 1 + .../Gtex_log2_skinn_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_skinn_0314/platform.rtf | 3 + .../datasets/Gtex_log2_skinn_0314/processing.rtf | 102 + general/datasets/Gtex_log2_skinn_0314/summary.rtf | 3 + general/datasets/Gtex_log2_skinn_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_spina_0314/cases.rtf | 5 + .../datasets/Gtex_log2_spina_0314/contributors.rtf | 1 + .../Gtex_log2_spina_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_spina_0314/platform.rtf | 3 + .../datasets/Gtex_log2_spina_0314/processing.rtf | 102 + general/datasets/Gtex_log2_spina_0314/summary.rtf | 3 + general/datasets/Gtex_log2_spina_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_stoma_0314/cases.rtf | 5 + .../datasets/Gtex_log2_stoma_0314/contributors.rtf | 1 + .../Gtex_log2_stoma_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_stoma_0314/platform.rtf | 3 + .../datasets/Gtex_log2_stoma_0314/processing.rtf | 102 + general/datasets/Gtex_log2_stoma_0314/summary.rtf | 3 + general/datasets/Gtex_log2_stoma_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_subcu_0314/cases.rtf | 5 + .../datasets/Gtex_log2_subcu_0314/contributors.rtf | 1 + .../Gtex_log2_subcu_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_subcu_0314/platform.rtf | 3 + .../datasets/Gtex_log2_subcu_0314/processing.rtf | 102 + general/datasets/Gtex_log2_subcu_0314/summary.rtf | 3 + general/datasets/Gtex_log2_subcu_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_subst_0314/cases.rtf | 5 + .../datasets/Gtex_log2_subst_0314/contributors.rtf | 1 + .../Gtex_log2_subst_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_subst_0314/platform.rtf | 3 + .../datasets/Gtex_log2_subst_0314/processing.rtf | 102 + general/datasets/Gtex_log2_subst_0314/summary.rtf | 3 + general/datasets/Gtex_log2_subst_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_testi_0314/cases.rtf | 5 + .../datasets/Gtex_log2_testi_0314/contributors.rtf | 1 + .../Gtex_log2_testi_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_testi_0314/platform.rtf | 3 + .../datasets/Gtex_log2_testi_0314/processing.rtf | 102 + general/datasets/Gtex_log2_testi_0314/summary.rtf | 3 + general/datasets/Gtex_log2_testi_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_thyro_0314/cases.rtf | 5 + .../datasets/Gtex_log2_thyro_0314/contributors.rtf | 1 + .../Gtex_log2_thyro_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_thyro_0314/platform.rtf | 3 + .../datasets/Gtex_log2_thyro_0314/processing.rtf | 102 + general/datasets/Gtex_log2_thyro_0314/summary.rtf | 3 + general/datasets/Gtex_log2_thyro_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_tibial_0314/cases.rtf | 5 + .../Gtex_log2_tibial_0314/contributors.rtf | 1 + .../Gtex_log2_tibial_0314/experiment-design.rtf | 1 + .../datasets/Gtex_log2_tibial_0314/platform.rtf | 3 + .../datasets/Gtex_log2_tibial_0314/processing.rtf | 102 + general/datasets/Gtex_log2_tibial_0314/summary.rtf | 3 + general/datasets/Gtex_log2_tibial_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_uterus_0314/cases.rtf | 5 + .../Gtex_log2_uterus_0314/contributors.rtf | 1 + .../Gtex_log2_uterus_0314/experiment-design.rtf | 1 + .../datasets/Gtex_log2_uterus_0314/platform.rtf | 3 + .../datasets/Gtex_log2_uterus_0314/processing.rtf | 102 + general/datasets/Gtex_log2_uterus_0314/summary.rtf | 3 + general/datasets/Gtex_log2_uterus_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_vagin_0314/cases.rtf | 5 + .../datasets/Gtex_log2_vagin_0314/contributors.rtf | 1 + .../Gtex_log2_vagin_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_vagin_0314/platform.rtf | 3 + .../datasets/Gtex_log2_vagin_0314/processing.rtf | 102 + general/datasets/Gtex_log2_vagin_0314/summary.rtf | 3 + general/datasets/Gtex_log2_vagin_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_visce_0314/cases.rtf | 5 + .../datasets/Gtex_log2_visce_0314/contributors.rtf | 1 + .../Gtex_log2_visce_0314/experiment-design.rtf | 1 + general/datasets/Gtex_log2_visce_0314/platform.rtf | 3 + .../datasets/Gtex_log2_visce_0314/processing.rtf | 102 + general/datasets/Gtex_log2_visce_0314/summary.rtf | 3 + general/datasets/Gtex_log2_visce_0314/tissue.rtf | 3 + general/datasets/Gtex_log2_wholeb_0314/cases.rtf | 5 + .../Gtex_log2_wholeb_0314/contributors.rtf | 1 + .../Gtex_log2_wholeb_0314/experiment-design.rtf | 1 + .../datasets/Gtex_log2_wholeb_0314/platform.rtf | 3 + .../datasets/Gtex_log2_wholeb_0314/processing.rtf | 102 + general/datasets/Gtex_log2_wholeb_0314/summary.rtf | 3 + general/datasets/Gtex_log2_wholeb_0314/tissue.rtf | 3 + general/datasets/Gtex_lung__0414/cases.rtf | 5 + general/datasets/Gtex_lung__0414/contributors.rtf | 1 + .../datasets/Gtex_lung__0414/experiment-design.rtf | 1 + general/datasets/Gtex_lung__0414/platform.rtf | 3 + general/datasets/Gtex_lung__0414/processing.rtf | 102 + general/datasets/Gtex_lung__0414/summary.rtf | 3 + general/datasets/Gtex_lung__0414/tissue.rtf | 3 + general/datasets/Gtex_muscl_0414/cases.rtf | 5 + general/datasets/Gtex_muscl_0414/contributors.rtf | 1 + .../datasets/Gtex_muscl_0414/experiment-design.rtf | 1 + general/datasets/Gtex_muscl_0414/platform.rtf | 3 + general/datasets/Gtex_muscl_0414/processing.rtf | 102 + general/datasets/Gtex_muscl_0414/summary.rtf | 3 + general/datasets/Gtex_muscl_0414/tissue.rtf | 3 + general/datasets/Gtex_nerve_0414/cases.rtf | 5 + general/datasets/Gtex_nerve_0414/contributors.rtf | 1 + .../datasets/Gtex_nerve_0414/experiment-design.rtf | 1 + general/datasets/Gtex_nerve_0414/platform.rtf | 3 + general/datasets/Gtex_nerve_0414/processing.rtf | 102 + general/datasets/Gtex_nerve_0414/summary.rtf | 3 + general/datasets/Gtex_nerve_0414/tissue.rtf | 3 + general/datasets/Gtex_nucle_0414/cases.rtf | 5 + general/datasets/Gtex_nucle_0414/contributors.rtf | 1 + .../datasets/Gtex_nucle_0414/experiment-design.rtf | 1 + general/datasets/Gtex_nucle_0414/platform.rtf | 3 + general/datasets/Gtex_nucle_0414/processing.rtf | 102 + general/datasets/Gtex_nucle_0414/summary.rtf | 3 + general/datasets/Gtex_nucle_0414/tissue.rtf | 3 + general/datasets/Gtex_ovary_0414/cases.rtf | 5 + general/datasets/Gtex_ovary_0414/contributors.rtf | 1 + .../datasets/Gtex_ovary_0414/experiment-design.rtf | 1 + general/datasets/Gtex_ovary_0414/platform.rtf | 3 + general/datasets/Gtex_ovary_0414/processing.rtf | 102 + general/datasets/Gtex_ovary_0414/summary.rtf | 3 + general/datasets/Gtex_ovary_0414/tissue.rtf | 3 + general/datasets/Gtex_pancr_0414/cases.rtf | 5 + general/datasets/Gtex_pancr_0414/contributors.rtf | 1 + .../datasets/Gtex_pancr_0414/experiment-design.rtf | 1 + general/datasets/Gtex_pancr_0414/platform.rtf | 3 + general/datasets/Gtex_pancr_0414/processing.rtf | 102 + general/datasets/Gtex_pancr_0414/summary.rtf | 3 + general/datasets/Gtex_pancr_0414/tissue.rtf | 3 + general/datasets/Gtex_pitui_0414/cases.rtf | 5 + general/datasets/Gtex_pitui_0414/contributors.rtf | 1 + .../datasets/Gtex_pitui_0414/experiment-design.rtf | 1 + general/datasets/Gtex_pitui_0414/platform.rtf | 3 + general/datasets/Gtex_pitui_0414/processing.rtf | 102 + general/datasets/Gtex_pitui_0414/summary.rtf | 3 + general/datasets/Gtex_pitui_0414/tissue.rtf | 3 + general/datasets/Gtex_prost_0414/cases.rtf | 5 + general/datasets/Gtex_prost_0414/contributors.rtf | 1 + .../datasets/Gtex_prost_0414/experiment-design.rtf | 1 + general/datasets/Gtex_prost_0414/platform.rtf | 3 + general/datasets/Gtex_prost_0414/processing.rtf | 102 + general/datasets/Gtex_prost_0414/summary.rtf | 3 + general/datasets/Gtex_prost_0414/tissue.rtf | 3 + general/datasets/Gtex_putam_0414/cases.rtf | 5 + general/datasets/Gtex_putam_0414/contributors.rtf | 1 + .../datasets/Gtex_putam_0414/experiment-design.rtf | 1 + general/datasets/Gtex_putam_0414/platform.rtf | 3 + general/datasets/Gtex_putam_0414/processing.rtf | 102 + general/datasets/Gtex_putam_0414/summary.rtf | 3 + general/datasets/Gtex_putam_0414/tissue.rtf | 3 + general/datasets/Gtex_skine_0414/cases.rtf | 5 + general/datasets/Gtex_skine_0414/contributors.rtf | 1 + .../datasets/Gtex_skine_0414/experiment-design.rtf | 1 + general/datasets/Gtex_skine_0414/platform.rtf | 3 + general/datasets/Gtex_skine_0414/processing.rtf | 102 + general/datasets/Gtex_skine_0414/summary.rtf | 3 + general/datasets/Gtex_skine_0414/tissue.rtf | 3 + general/datasets/Gtex_skinn_0414/cases.rtf | 5 + general/datasets/Gtex_skinn_0414/contributors.rtf | 1 + .../datasets/Gtex_skinn_0414/experiment-design.rtf | 1 + general/datasets/Gtex_skinn_0414/platform.rtf | 3 + general/datasets/Gtex_skinn_0414/processing.rtf | 102 + general/datasets/Gtex_skinn_0414/summary.rtf | 3 + general/datasets/Gtex_skinn_0414/tissue.rtf | 3 + general/datasets/Gtex_spina_0414/cases.rtf | 5 + general/datasets/Gtex_spina_0414/contributors.rtf | 1 + .../datasets/Gtex_spina_0414/experiment-design.rtf | 1 + general/datasets/Gtex_spina_0414/platform.rtf | 3 + general/datasets/Gtex_spina_0414/processing.rtf | 102 + general/datasets/Gtex_spina_0414/summary.rtf | 3 + general/datasets/Gtex_spina_0414/tissue.rtf | 3 + general/datasets/Gtex_stoma_0414/cases.rtf | 5 + general/datasets/Gtex_stoma_0414/contributors.rtf | 1 + .../datasets/Gtex_stoma_0414/experiment-design.rtf | 1 + general/datasets/Gtex_stoma_0414/platform.rtf | 3 + general/datasets/Gtex_stoma_0414/processing.rtf | 102 + general/datasets/Gtex_stoma_0414/summary.rtf | 3 + general/datasets/Gtex_stoma_0414/tissue.rtf | 3 + general/datasets/Gtex_subcu_0414/cases.rtf | 5 + general/datasets/Gtex_subcu_0414/contributors.rtf | 1 + .../datasets/Gtex_subcu_0414/experiment-design.rtf | 1 + general/datasets/Gtex_subcu_0414/platform.rtf | 3 + general/datasets/Gtex_subcu_0414/processing.rtf | 102 + general/datasets/Gtex_subcu_0414/summary.rtf | 3 + general/datasets/Gtex_subcu_0414/tissue.rtf | 3 + general/datasets/Gtex_subst_0414/cases.rtf | 5 + general/datasets/Gtex_subst_0414/contributors.rtf | 1 + .../datasets/Gtex_subst_0414/experiment-design.rtf | 1 + general/datasets/Gtex_subst_0414/platform.rtf | 3 + general/datasets/Gtex_subst_0414/processing.rtf | 102 + general/datasets/Gtex_subst_0414/summary.rtf | 3 + general/datasets/Gtex_subst_0414/tissue.rtf | 3 + general/datasets/Gtex_testi_0414/cases.rtf | 5 + general/datasets/Gtex_testi_0414/contributors.rtf | 1 + .../datasets/Gtex_testi_0414/experiment-design.rtf | 1 + general/datasets/Gtex_testi_0414/platform.rtf | 3 + general/datasets/Gtex_testi_0414/processing.rtf | 102 + general/datasets/Gtex_testi_0414/summary.rtf | 3 + general/datasets/Gtex_testi_0414/tissue.rtf | 3 + general/datasets/Gtex_thyro_0414/cases.rtf | 5 + general/datasets/Gtex_thyro_0414/contributors.rtf | 1 + .../datasets/Gtex_thyro_0414/experiment-design.rtf | 1 + general/datasets/Gtex_thyro_0414/platform.rtf | 3 + general/datasets/Gtex_thyro_0414/processing.rtf | 102 + general/datasets/Gtex_thyro_0414/summary.rtf | 3 + general/datasets/Gtex_thyro_0414/tissue.rtf | 3 + general/datasets/Gtex_tibia_0414/cases.rtf | 5 + general/datasets/Gtex_tibia_0414/contributors.rtf | 1 + .../datasets/Gtex_tibia_0414/experiment-design.rtf | 1 + general/datasets/Gtex_tibia_0414/platform.rtf | 3 + general/datasets/Gtex_tibia_0414/processing.rtf | 102 + general/datasets/Gtex_tibia_0414/summary.rtf | 3 + general/datasets/Gtex_tibia_0414/tissue.rtf | 3 + general/datasets/Gtex_uteru_0414/cases.rtf | 5 + general/datasets/Gtex_uteru_0414/contributors.rtf | 1 + .../datasets/Gtex_uteru_0414/experiment-design.rtf | 1 + general/datasets/Gtex_uteru_0414/platform.rtf | 3 + general/datasets/Gtex_uteru_0414/processing.rtf | 102 + general/datasets/Gtex_uteru_0414/summary.rtf | 3 + general/datasets/Gtex_uteru_0414/tissue.rtf | 3 + general/datasets/Gtex_vagin_0414/cases.rtf | 5 + general/datasets/Gtex_vagin_0414/contributors.rtf | 1 + .../datasets/Gtex_vagin_0414/experiment-design.rtf | 1 + general/datasets/Gtex_vagin_0414/platform.rtf | 3 + general/datasets/Gtex_vagin_0414/processing.rtf | 102 + general/datasets/Gtex_vagin_0414/summary.rtf | 3 + general/datasets/Gtex_vagin_0414/tissue.rtf | 3 + general/datasets/Gtex_visce_0414/cases.rtf | 5 + general/datasets/Gtex_visce_0414/contributors.rtf | 1 + .../datasets/Gtex_visce_0414/experiment-design.rtf | 1 + general/datasets/Gtex_visce_0414/platform.rtf | 3 + general/datasets/Gtex_visce_0414/processing.rtf | 102 + general/datasets/Gtex_visce_0414/summary.rtf | 3 + general/datasets/Gtex_visce_0414/tissue.rtf | 3 + general/datasets/Gtex_whole_0414/cases.rtf | 5 + general/datasets/Gtex_whole_0414/contributors.rtf | 1 + .../datasets/Gtex_whole_0414/experiment-design.rtf | 1 + general/datasets/Gtex_whole_0414/platform.rtf | 3 + general/datasets/Gtex_whole_0414/processing.rtf | 102 + general/datasets/Gtex_whole_0414/summary.rtf | 3 + general/datasets/Gtex_whole_0414/tissue.rtf | 3 + general/datasets/Gtexv5_adipsub_0915/cases.rtf | 5 + .../datasets/Gtexv5_adipsub_0915/contributors.rtf | 1 + .../Gtexv5_adipsub_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_adipsub_0915/platform.rtf | 3 + .../datasets/Gtexv5_adipsub_0915/processing.rtf | 102 + general/datasets/Gtexv5_adipsub_0915/specifics.rtf | 1 + general/datasets/Gtexv5_adipsub_0915/summary.rtf | 3 + general/datasets/Gtexv5_adipsub_0915/tissue.rtf | 3 + general/datasets/Gtexv5_adivis_0915/cases.rtf | 5 + .../datasets/Gtexv5_adivis_0915/contributors.rtf | 1 + .../Gtexv5_adivis_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_adivis_0915/platform.rtf | 3 + general/datasets/Gtexv5_adivis_0915/processing.rtf | 102 + general/datasets/Gtexv5_adivis_0915/specifics.rtf | 1 + general/datasets/Gtexv5_adivis_0915/summary.rtf | 3 + general/datasets/Gtexv5_adivis_0915/tissue.rtf | 3 + general/datasets/Gtexv5_adrgla_0915/cases.rtf | 5 + .../datasets/Gtexv5_adrgla_0915/contributors.rtf | 1 + .../Gtexv5_adrgla_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_adrgla_0915/platform.rtf | 3 + general/datasets/Gtexv5_adrgla_0915/processing.rtf | 102 + general/datasets/Gtexv5_adrgla_0915/specifics.rtf | 10 + general/datasets/Gtexv5_adrgla_0915/summary.rtf | 3 + general/datasets/Gtexv5_adrgla_0915/tissue.rtf | 3 + general/datasets/Gtexv5_amy_0915/cases.rtf | 5 + general/datasets/Gtexv5_amy_0915/contributors.rtf | 1 + .../datasets/Gtexv5_amy_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_amy_0915/platform.rtf | 3 + general/datasets/Gtexv5_amy_0915/processing.rtf | 102 + general/datasets/Gtexv5_amy_0915/specifics.rtf | 10 + general/datasets/Gtexv5_amy_0915/summary.rtf | 3 + general/datasets/Gtexv5_amy_0915/tissue.rtf | 3 + general/datasets/Gtexv5_antctx_0915/cases.rtf | 5 + .../datasets/Gtexv5_antctx_0915/contributors.rtf | 1 + .../Gtexv5_antctx_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_antctx_0915/platform.rtf | 3 + general/datasets/Gtexv5_antctx_0915/processing.rtf | 102 + general/datasets/Gtexv5_antctx_0915/specifics.rtf | 10 + general/datasets/Gtexv5_antctx_0915/summary.rtf | 3 + general/datasets/Gtexv5_antctx_0915/tissue.rtf | 3 + general/datasets/Gtexv5_artaor_0915/cases.rtf | 5 + .../datasets/Gtexv5_artaor_0915/contributors.rtf | 1 + .../Gtexv5_artaor_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_artaor_0915/platform.rtf | 3 + general/datasets/Gtexv5_artaor_0915/processing.rtf | 102 + general/datasets/Gtexv5_artaor_0915/specifics.rtf | 10 + general/datasets/Gtexv5_artaor_0915/summary.rtf | 3 + general/datasets/Gtexv5_artaor_0915/tissue.rtf | 3 + general/datasets/Gtexv5_artcor_0915/cases.rtf | 5 + .../datasets/Gtexv5_artcor_0915/contributors.rtf | 1 + .../Gtexv5_artcor_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_artcor_0915/platform.rtf | 3 + general/datasets/Gtexv5_artcor_0915/processing.rtf | 102 + general/datasets/Gtexv5_artcor_0915/specifics.rtf | 1 + general/datasets/Gtexv5_artcor_0915/summary.rtf | 3 + general/datasets/Gtexv5_artcor_0915/tissue.rtf | 3 + general/datasets/Gtexv5_bm_0915/cases.rtf | 5 + general/datasets/Gtexv5_bm_0915/contributors.rtf | 1 + .../datasets/Gtexv5_bm_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_bm_0915/platform.rtf | 3 + general/datasets/Gtexv5_bm_0915/processing.rtf | 102 + general/datasets/Gtexv5_bm_0915/specifics.rtf | 10 + general/datasets/Gtexv5_bm_0915/summary.rtf | 3 + general/datasets/Gtexv5_bm_0915/tissue.rtf | 3 + general/datasets/Gtexv5_brce_0915/cases.rtf | 5 + general/datasets/Gtexv5_brce_0915/contributors.rtf | 1 + .../Gtexv5_brce_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_brce_0915/platform.rtf | 3 + general/datasets/Gtexv5_brce_0915/processing.rtf | 102 + general/datasets/Gtexv5_brce_0915/specifics.rtf | 10 + general/datasets/Gtexv5_brce_0915/summary.rtf | 3 + general/datasets/Gtexv5_brce_0915/tissue.rtf | 3 + general/datasets/Gtexv5_brma_0915/cases.rtf | 5 + general/datasets/Gtexv5_brma_0915/contributors.rtf | 1 + .../Gtexv5_brma_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_brma_0915/platform.rtf | 3 + general/datasets/Gtexv5_brma_0915/processing.rtf | 102 + general/datasets/Gtexv5_brma_0915/specifics.rtf | 10 + general/datasets/Gtexv5_brma_0915/summary.rtf | 3 + general/datasets/Gtexv5_brma_0915/tissue.rtf | 3 + general/datasets/Gtexv5_colsig_0915/cases.rtf | 5 + .../datasets/Gtexv5_colsig_0915/contributors.rtf | 1 + .../Gtexv5_colsig_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_colsig_0915/platform.rtf | 3 + general/datasets/Gtexv5_colsig_0915/processing.rtf | 102 + general/datasets/Gtexv5_colsig_0915/specifics.rtf | 10 + general/datasets/Gtexv5_colsig_0915/summary.rtf | 3 + general/datasets/Gtexv5_colsig_0915/tissue.rtf | 3 + general/datasets/Gtexv5_ctf_0915/cases.rtf | 5 + general/datasets/Gtexv5_ctf_0915/contributors.rtf | 1 + .../datasets/Gtexv5_ctf_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_ctf_0915/platform.rtf | 3 + general/datasets/Gtexv5_ctf_0915/processing.rtf | 102 + general/datasets/Gtexv5_ctf_0915/specifics.rtf | 1 + general/datasets/Gtexv5_ctf_0915/summary.rtf | 3 + general/datasets/Gtexv5_ctf_0915/tissue.rtf | 3 + general/datasets/Gtexv5_gastjun_0915/cases.rtf | 5 + .../datasets/Gtexv5_gastjun_0915/contributors.rtf | 1 + .../Gtexv5_gastjun_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_gastjun_0915/platform.rtf | 3 + .../datasets/Gtexv5_gastjun_0915/processing.rtf | 102 + general/datasets/Gtexv5_gastjun_0915/specifics.rtf | 10 + general/datasets/Gtexv5_gastjun_0915/summary.rtf | 3 + general/datasets/Gtexv5_gastjun_0915/tissue.rtf | 3 + general/datasets/Gtexv5_haa_0915/cases.rtf | 5 + general/datasets/Gtexv5_haa_0915/contributors.rtf | 1 + .../datasets/Gtexv5_haa_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_haa_0915/platform.rtf | 3 + general/datasets/Gtexv5_haa_0915/processing.rtf | 102 + general/datasets/Gtexv5_haa_0915/specifics.rtf | 10 + general/datasets/Gtexv5_haa_0915/summary.rtf | 3 + general/datasets/Gtexv5_haa_0915/tissue.rtf | 3 + general/datasets/Gtexv5_hip_0915/cases.rtf | 5 + general/datasets/Gtexv5_hip_0915/contributors.rtf | 1 + .../datasets/Gtexv5_hip_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_hip_0915/platform.rtf | 3 + general/datasets/Gtexv5_hip_0915/processing.rtf | 102 + general/datasets/Gtexv5_hip_0915/specifics.rtf | 10 + general/datasets/Gtexv5_hip_0915/summary.rtf | 3 + general/datasets/Gtexv5_hip_0915/tissue.rtf | 3 + general/datasets/Gtexv5_hiptha_0915/cases.rtf | 5 + .../datasets/Gtexv5_hiptha_0915/contributors.rtf | 1 + .../Gtexv5_hiptha_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_hiptha_0915/platform.rtf | 3 + general/datasets/Gtexv5_hiptha_0915/processing.rtf | 102 + general/datasets/Gtexv5_hiptha_0915/specifics.rtf | 10 + general/datasets/Gtexv5_hiptha_0915/summary.rtf | 3 + general/datasets/Gtexv5_hiptha_0915/tissue.rtf | 3 + general/datasets/Gtexv5_kidn_0915/cases.rtf | 5 + general/datasets/Gtexv5_kidn_0915/contributors.rtf | 1 + .../Gtexv5_kidn_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_kidn_0915/platform.rtf | 3 + general/datasets/Gtexv5_kidn_0915/processing.rtf | 102 + general/datasets/Gtexv5_kidn_0915/specifics.rtf | 10 + general/datasets/Gtexv5_kidn_0915/summary.rtf | 3 + general/datasets/Gtexv5_kidn_0915/tissue.rtf | 3 + general/datasets/Gtexv5_liv_0915/cases.rtf | 5 + general/datasets/Gtexv5_liv_0915/contributors.rtf | 1 + .../datasets/Gtexv5_liv_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_liv_0915/platform.rtf | 3 + general/datasets/Gtexv5_liv_0915/processing.rtf | 102 + general/datasets/Gtexv5_liv_0915/specifics.rtf | 10 + general/datasets/Gtexv5_liv_0915/summary.rtf | 3 + general/datasets/Gtexv5_liv_0915/tissue.rtf | 3 + general/datasets/Gtexv5_musk_0915/cases.rtf | 5 + general/datasets/Gtexv5_musk_0915/contributors.rtf | 1 + .../Gtexv5_musk_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_musk_0915/platform.rtf | 3 + general/datasets/Gtexv5_musk_0915/processing.rtf | 102 + general/datasets/Gtexv5_musk_0915/specifics.rtf | 10 + general/datasets/Gtexv5_musk_0915/summary.rtf | 3 + general/datasets/Gtexv5_musk_0915/tissue.rtf | 3 + general/datasets/Gtexv5_ov_0915/cases.rtf | 5 + general/datasets/Gtexv5_ov_0915/contributors.rtf | 1 + .../datasets/Gtexv5_ov_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_ov_0915/platform.rtf | 3 + general/datasets/Gtexv5_ov_0915/processing.rtf | 102 + general/datasets/Gtexv5_ov_0915/specifics.rtf | 10 + general/datasets/Gtexv5_ov_0915/summary.rtf | 3 + general/datasets/Gtexv5_ov_0915/tissue.rtf | 3 + general/datasets/Gtexv5_pit_0915/cases.rtf | 5 + general/datasets/Gtexv5_pit_0915/contributors.rtf | 1 + .../datasets/Gtexv5_pit_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_pit_0915/platform.rtf | 3 + general/datasets/Gtexv5_pit_0915/processing.rtf | 102 + general/datasets/Gtexv5_pit_0915/specifics.rtf | 10 + general/datasets/Gtexv5_pit_0915/summary.rtf | 3 + general/datasets/Gtexv5_pit_0915/tissue.rtf | 3 + general/datasets/Gtexv5_prost_0915/cases.rtf | 5 + .../datasets/Gtexv5_prost_0915/contributors.rtf | 1 + .../Gtexv5_prost_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_prost_0915/platform.rtf | 3 + general/datasets/Gtexv5_prost_0915/processing.rtf | 102 + general/datasets/Gtexv5_prost_0915/specifics.rtf | 10 + general/datasets/Gtexv5_prost_0915/summary.rtf | 3 + general/datasets/Gtexv5_prost_0915/tissue.rtf | 3 + general/datasets/Gtexv5_salgl_0915/cases.rtf | 5 + .../datasets/Gtexv5_salgl_0915/contributors.rtf | 1 + .../Gtexv5_salgl_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_salgl_0915/platform.rtf | 3 + general/datasets/Gtexv5_salgl_0915/processing.rtf | 102 + general/datasets/Gtexv5_salgl_0915/specifics.rtf | 10 + general/datasets/Gtexv5_salgl_0915/summary.rtf | 3 + general/datasets/Gtexv5_salgl_0915/tissue.rtf | 3 + general/datasets/Gtexv5_sks_0915/cases.rtf | 5 + general/datasets/Gtexv5_sks_0915/contributors.rtf | 1 + .../datasets/Gtexv5_sks_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_sks_0915/platform.rtf | 3 + general/datasets/Gtexv5_sks_0915/processing.rtf | 102 + general/datasets/Gtexv5_sks_0915/specifics.rtf | 10 + general/datasets/Gtexv5_sks_0915/summary.rtf | 3 + general/datasets/Gtexv5_sks_0915/tissue.rtf | 3 + general/datasets/Gtexv5_sto_0915/cases.rtf | 5 + general/datasets/Gtexv5_sto_0915/contributors.rtf | 1 + .../datasets/Gtexv5_sto_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_sto_0915/platform.rtf | 3 + general/datasets/Gtexv5_sto_0915/processing.rtf | 102 + general/datasets/Gtexv5_sto_0915/specifics.rtf | 10 + general/datasets/Gtexv5_sto_0915/summary.rtf | 3 + general/datasets/Gtexv5_sto_0915/tissue.rtf | 3 + general/datasets/Gtexv5_test_0915/cases.rtf | 5 + general/datasets/Gtexv5_test_0915/contributors.rtf | 1 + .../Gtexv5_test_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_test_0915/platform.rtf | 3 + general/datasets/Gtexv5_test_0915/processing.rtf | 102 + general/datasets/Gtexv5_test_0915/specifics.rtf | 10 + general/datasets/Gtexv5_test_0915/summary.rtf | 3 + general/datasets/Gtexv5_test_0915/tissue.rtf | 3 + general/datasets/Gtexv5_thy_0915/cases.rtf | 5 + general/datasets/Gtexv5_thy_0915/contributors.rtf | 1 + .../datasets/Gtexv5_thy_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_thy_0915/platform.rtf | 3 + general/datasets/Gtexv5_thy_0915/processing.rtf | 102 + general/datasets/Gtexv5_thy_0915/specifics.rtf | 10 + general/datasets/Gtexv5_thy_0915/summary.rtf | 3 + general/datasets/Gtexv5_thy_0915/tissue.rtf | 3 + general/datasets/Gtexv5_ut_0915/cases.rtf | 5 + general/datasets/Gtexv5_ut_0915/contributors.rtf | 1 + .../datasets/Gtexv5_ut_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_ut_0915/platform.rtf | 3 + general/datasets/Gtexv5_ut_0915/processing.rtf | 102 + general/datasets/Gtexv5_ut_0915/specifics.rtf | 10 + general/datasets/Gtexv5_ut_0915/summary.rtf | 3 + general/datasets/Gtexv5_ut_0915/tissue.rtf | 3 + general/datasets/Gtexv5_wbl_0915/cases.rtf | 5 + general/datasets/Gtexv5_wbl_0915/contributors.rtf | 1 + .../datasets/Gtexv5_wbl_0915/experiment-design.rtf | 1 + general/datasets/Gtexv5_wbl_0915/platform.rtf | 3 + general/datasets/Gtexv5_wbl_0915/processing.rtf | 102 + general/datasets/Gtexv5_wbl_0915/specifics.rtf | 10 + general/datasets/Gtexv5_wbl_0915/summary.rtf | 3 + general/datasets/Gtexv5_wbl_0915/tissue.rtf | 3 + general/datasets/HBTRC-MLC_0611/acknowledgment.rtf | 1 + general/datasets/HBTRC-MLC_0611/cases.rtf | 4156 +++ .../datasets/HBTRC-MLC_0611/experiment-design.rtf | 1 + general/datasets/HBTRC-MLC_0611/notes.rtf | 6 + general/datasets/HBTRC-MLC_0611/summary.rtf | 1 + .../datasets/HBTRC-MLC_AD_0611/acknowledgment.rtf | 1 + general/datasets/HBTRC-MLC_AD_0611/cases.rtf | 4156 +++ .../HBTRC-MLC_AD_0611/experiment-design.rtf | 1 + general/datasets/HBTRC-MLC_AD_0611/notes.rtf | 6 + general/datasets/HBTRC-MLC_AD_0611/summary.rtf | 1 + .../datasets/HBTRC-MLC_HD_0611/acknowledgment.rtf | 1 + general/datasets/HBTRC-MLC_HD_0611/cases.rtf | 4156 +++ .../HBTRC-MLC_HD_0611/experiment-design.rtf | 1 + general/datasets/HBTRC-MLC_HD_0611/notes.rtf | 6 + general/datasets/HBTRC-MLC_HD_0611/summary.rtf | 1 + .../datasets/HBTRC-MLC_N_0611/acknowledgment.rtf | 1 + general/datasets/HBTRC-MLC_N_0611/cases.rtf | 4156 +++ .../HBTRC-MLC_N_0611/experiment-design.rtf | 1 + general/datasets/HBTRC-MLC_N_0611/notes.rtf | 6 + general/datasets/HBTRC-MLC_N_0611/summary.rtf | 1 + .../datasets/HBTRC-MLPFC_0611/acknowledgment.rtf | 1 + general/datasets/HBTRC-MLPFC_0611/cases.rtf | 4166 +++ .../HBTRC-MLPFC_0611/experiment-design.rtf | 1 + general/datasets/HBTRC-MLPFC_0611/notes.rtf | 6 + general/datasets/HBTRC-MLPFC_0611/platform.rtf | 1 + general/datasets/HBTRC-MLPFC_0611/processing.rtf | 1 + general/datasets/HBTRC-MLPFC_0611/summary.rtf | 1 + general/datasets/HBTRC-MLPFC_0611/tissue.rtf | 1 + .../HBTRC-MLPFC_AD_0611/acknowledgment.rtf | 1 + general/datasets/HBTRC-MLPFC_AD_0611/cases.rtf | 4166 +++ .../HBTRC-MLPFC_AD_0611/experiment-design.rtf | 1 + general/datasets/HBTRC-MLPFC_AD_0611/notes.rtf | 6 + general/datasets/HBTRC-MLPFC_AD_0611/platform.rtf | 1 + .../datasets/HBTRC-MLPFC_AD_0611/processing.rtf | 1 + general/datasets/HBTRC-MLPFC_AD_0611/summary.rtf | 1 + general/datasets/HBTRC-MLPFC_AD_0611/tissue.rtf | 1 + .../HBTRC-MLPFC_HD_0611/acknowledgment.rtf | 1 + general/datasets/HBTRC-MLPFC_HD_0611/cases.rtf | 4166 +++ .../HBTRC-MLPFC_HD_0611/experiment-design.rtf | 1 + general/datasets/HBTRC-MLPFC_HD_0611/notes.rtf | 6 + general/datasets/HBTRC-MLPFC_HD_0611/platform.rtf | 1 + .../datasets/HBTRC-MLPFC_HD_0611/processing.rtf | 1 + general/datasets/HBTRC-MLPFC_HD_0611/summary.rtf | 1 + general/datasets/HBTRC-MLPFC_HD_0611/tissue.rtf | 1 + .../datasets/HBTRC-MLPFC_N_0611/acknowledgment.rtf | 1 + general/datasets/HBTRC-MLPFC_N_0611/cases.rtf | 4166 +++ .../HBTRC-MLPFC_N_0611/experiment-design.rtf | 1 + general/datasets/HBTRC-MLPFC_N_0611/notes.rtf | 6 + general/datasets/HBTRC-MLPFC_N_0611/platform.rtf | 1 + general/datasets/HBTRC-MLPFC_N_0611/processing.rtf | 1 + general/datasets/HBTRC-MLPFC_N_0611/summary.rtf | 1 + general/datasets/HBTRC-MLPFC_N_0611/tissue.rtf | 1 + .../datasets/HBTRC-MLVC_0611/acknowledgment.rtf | 1 + general/datasets/HBTRC-MLVC_0611/cases.rtf | 4166 +++ general/datasets/HBTRC-MLVC_0611/notes.rtf | 6 + general/datasets/HBTRC-MLVC_0611/summary.rtf | 1 + .../datasets/HBTRC-MLVC_AD_0611/acknowledgment.rtf | 1 + general/datasets/HBTRC-MLVC_AD_0611/cases.rtf | 4166 +++ general/datasets/HBTRC-MLVC_AD_0611/notes.rtf | 6 + general/datasets/HBTRC-MLVC_AD_0611/summary.rtf | 1 + .../datasets/HBTRC-MLVC_HD_0611/acknowledgment.rtf | 1 + general/datasets/HBTRC-MLVC_HD_0611/cases.rtf | 4166 +++ general/datasets/HBTRC-MLVC_HD_0611/notes.rtf | 6 + general/datasets/HBTRC-MLVC_HD_0611/summary.rtf | 1 + .../datasets/HBTRC-MLVC_N_0611/acknowledgment.rtf | 1 + general/datasets/HBTRC-MLVC_N_0611/cases.rtf | 4166 +++ general/datasets/HBTRC-MLVC_N_0611/notes.rtf | 6 + general/datasets/HBTRC-MLVC_N_0611/summary.rtf | 1 + general/datasets/HBTRC_MLC_0611/acknowledgment.rtf | 1 - general/datasets/HBTRC_MLC_0611/cases.rtf | 4156 --- .../datasets/HBTRC_MLC_0611/experiment-design.rtf | 1 - general/datasets/HBTRC_MLC_0611/notes.rtf | 6 - general/datasets/HBTRC_MLC_0611/summary.rtf | 1 - .../datasets/HBTRC_MLC_AD_0611/acknowledgment.rtf | 1 - general/datasets/HBTRC_MLC_AD_0611/cases.rtf | 4156 --- .../HBTRC_MLC_AD_0611/experiment-design.rtf | 1 - general/datasets/HBTRC_MLC_AD_0611/notes.rtf | 6 - general/datasets/HBTRC_MLC_AD_0611/summary.rtf | 1 - .../datasets/HBTRC_MLC_HD_0611/acknowledgment.rtf | 1 - general/datasets/HBTRC_MLC_HD_0611/cases.rtf | 4156 --- .../HBTRC_MLC_HD_0611/experiment-design.rtf | 1 - general/datasets/HBTRC_MLC_HD_0611/notes.rtf | 6 - general/datasets/HBTRC_MLC_HD_0611/summary.rtf | 1 - .../datasets/HBTRC_MLC_N_0611/acknowledgment.rtf | 1 - general/datasets/HBTRC_MLC_N_0611/cases.rtf | 4156 --- .../HBTRC_MLC_N_0611/experiment-design.rtf | 1 - general/datasets/HBTRC_MLC_N_0611/notes.rtf | 6 - general/datasets/HBTRC_MLC_N_0611/summary.rtf | 1 - .../datasets/HBTRC_MLPFC_0611/acknowledgment.rtf | 1 - general/datasets/HBTRC_MLPFC_0611/cases.rtf | 4166 --- .../HBTRC_MLPFC_0611/experiment-design.rtf | 1 - general/datasets/HBTRC_MLPFC_0611/notes.rtf | 6 - general/datasets/HBTRC_MLPFC_0611/platform.rtf | 1 - general/datasets/HBTRC_MLPFC_0611/processing.rtf | 1 - general/datasets/HBTRC_MLPFC_0611/summary.rtf | 1 - general/datasets/HBTRC_MLPFC_0611/tissue.rtf | 1 - .../HBTRC_MLPFC_AD_0611/acknowledgment.rtf | 1 - general/datasets/HBTRC_MLPFC_AD_0611/cases.rtf | 4166 --- .../HBTRC_MLPFC_AD_0611/experiment-design.rtf | 1 - general/datasets/HBTRC_MLPFC_AD_0611/notes.rtf | 6 - general/datasets/HBTRC_MLPFC_AD_0611/platform.rtf | 1 - .../datasets/HBTRC_MLPFC_AD_0611/processing.rtf | 1 - general/datasets/HBTRC_MLPFC_AD_0611/summary.rtf | 1 - general/datasets/HBTRC_MLPFC_AD_0611/tissue.rtf | 1 - .../HBTRC_MLPFC_HD_0611/acknowledgment.rtf | 1 - general/datasets/HBTRC_MLPFC_HD_0611/cases.rtf | 4166 --- .../HBTRC_MLPFC_HD_0611/experiment-design.rtf | 1 - general/datasets/HBTRC_MLPFC_HD_0611/notes.rtf | 6 - general/datasets/HBTRC_MLPFC_HD_0611/platform.rtf | 1 - .../datasets/HBTRC_MLPFC_HD_0611/processing.rtf | 1 - general/datasets/HBTRC_MLPFC_HD_0611/summary.rtf | 1 - general/datasets/HBTRC_MLPFC_HD_0611/tissue.rtf | 1 - .../datasets/HBTRC_MLPFC_N_0611/acknowledgment.rtf | 1 - general/datasets/HBTRC_MLPFC_N_0611/cases.rtf | 4166 --- .../HBTRC_MLPFC_N_0611/experiment-design.rtf | 1 - general/datasets/HBTRC_MLPFC_N_0611/notes.rtf | 6 - general/datasets/HBTRC_MLPFC_N_0611/platform.rtf | 1 - general/datasets/HBTRC_MLPFC_N_0611/processing.rtf | 1 - general/datasets/HBTRC_MLPFC_N_0611/summary.rtf | 1 - general/datasets/HBTRC_MLPFC_N_0611/tissue.rtf | 1 - .../datasets/HBTRC_MLVC_0611/acknowledgment.rtf | 1 - general/datasets/HBTRC_MLVC_0611/cases.rtf | 4166 --- general/datasets/HBTRC_MLVC_0611/notes.rtf | 6 - general/datasets/HBTRC_MLVC_0611/summary.rtf | 1 - .../datasets/HBTRC_MLVC_AD_0611/acknowledgment.rtf | 1 - general/datasets/HBTRC_MLVC_AD_0611/cases.rtf | 4166 --- general/datasets/HBTRC_MLVC_AD_0611/notes.rtf | 6 - general/datasets/HBTRC_MLVC_AD_0611/summary.rtf | 1 - .../datasets/HBTRC_MLVC_HD_0611/acknowledgment.rtf | 1 - general/datasets/HBTRC_MLVC_HD_0611/cases.rtf | 4166 --- general/datasets/HBTRC_MLVC_HD_0611/notes.rtf | 6 - general/datasets/HBTRC_MLVC_HD_0611/summary.rtf | 1 - .../datasets/HBTRC_MLVC_N_0611/acknowledgment.rtf | 1 - general/datasets/HBTRC_MLVC_N_0611/cases.rtf | 4166 --- general/datasets/HBTRC_MLVC_N_0611/notes.rtf | 6 - general/datasets/HBTRC_MLVC_N_0611/summary.rtf | 1 - general/datasets/HET3_ITPPublish/specifics.rtf | 1 - general/datasets/HET3_ITPPublish/summary.rtf | 5 - .../HMS_mm8_MDP_Spl_CD4_1116/experiment-design.rtf | 1 - .../HMS_mm8_MDP_Spl_CD4_1116/specifics.rtf | 1 - .../datasets/HMS_mm8_MDP_Spl_CD4_1116/summary.rtf | 1 - general/datasets/HRDPPublish/specifics.rtf | 1 - general/datasets/HRDPPublish/summary.rtf | 1 - general/datasets/HSNIH_PalmerPublish/specifics.rtf | 1 - general/datasets/HSNIH_PalmerPublish/summary.rtf | 1 - .../HSNIH_Rat_Acbc_RSeq_0818/specifics.rtf | 1 - .../datasets/HSNIH_Rat_Acbc_RSeq_0818/summary.rtf | 1 - .../HSNIH_Rat_Acbc_RSeqlog2_0818/specifics.rtf | 1 - .../HSNIH_Rat_Acbc_RSeqlog2_0818/summary.rtf | 1 - .../datasets/HSNIH_Rat_IL_RSeq_0818/specifics.rtf | 1 - .../datasets/HSNIH_Rat_IL_RSeq_0818/summary.rtf | 1 - .../HSNIH_Rat_IL_RSeqlog2_0818/specifics.rtf | 1 - .../HSNIH_Rat_IL_RSeqlog2_0818/summary.rtf | 1 - .../datasets/HSNIH_Rat_LHB_RSeq_0818/specifics.rtf | 1 - .../datasets/HSNIH_Rat_LHB_RSeq_0818/summary.rtf | 1 - .../HSNIH_Rat_LHB_RSeqlog2_0818/specifics.rtf | 1 - .../HSNIH_Rat_LHB_RSeqlog2_0818/summary.rtf | 1 - .../datasets/HSNIH_Rat_PL_RSeq_0818/specifics.rtf | 1 - .../datasets/HSNIH_Rat_PL_RSeq_0818/summary.rtf | 1 - .../HSNIH_Rat_PL_RSeqlog2_0818/specifics.rtf | 1 - .../HSNIH_Rat_PL_RSeqlog2_0818/summary.rtf | 1 - .../HSNIH_Rat_VoLo_RSeq_0818/specifics.rtf | 1 - .../datasets/HSNIH_Rat_VoLo_RSeq_0818/summary.rtf | 1 - .../HSNIH_Rat_VoLo_RSeqlog2_0818/specifics.rtf | 1 - .../HSNIH_Rat_VoLo_RSeqlog2_0818/summary.rtf | 1 - general/datasets/HZI_LTCF_0313/acknowledgment.rtf | 1 - general/datasets/HZI_LTCF_0313/cases.rtf | 1 - general/datasets/HZI_LTCF_0313/notes.rtf | 1 - general/datasets/HZI_LTCF_0313/processing.rtf | 1 - general/datasets/HZI_LTCF_0313/summary.rtf | 3 - general/datasets/HZI_LTCF_0313/tissue.rtf | 1 - .../HZI_LungBXD_RNA_Seq_1116/acknowledgment.rtf | 1 - .../datasets/HZI_LungBXD_RNA_Seq_1116/cases.rtf | 1 - .../datasets/HZI_LungBXD_RNA_Seq_1116/notes.rtf | 1 - .../datasets/HZI_LungBXD_RNA_Seq_1116/platform.rtf | 1 - .../HZI_LungBXD_RNA_Seq_1116/processing.rtf | 1 - .../HZI_LungBXD_RNA_Seq_1116/specifics.rtf | 1 - .../datasets/HZI_LungBXD_RNA_Seq_1116/summary.rtf | 3 - .../datasets/HZI_LungBXD_RNA_Seq_1116/tissue.rtf | 1 - general/datasets/HZI_PR8M_F_1014/processing.rtf | 3 - general/datasets/HZI_PR8M_F_1014/summary.rtf | 1 - general/datasets/HZI_PR8M_F_1113/processing.rtf | 3 - general/datasets/HZI_PR8M_F_1113/summary.rtf | 1 - .../datasets/HZI_PR8M_F_freq1_1014/processing.rtf | 3 - general/datasets/HZI_PR8M_F_freq1_1014/summary.rtf | 1 - .../datasets/HZI_PR8M_Q_0612/acknowledgment.rtf | 1 - general/datasets/HZI_PR8M_Q_0612/cases.rtf | 1 - general/datasets/HZI_PR8M_Q_0612/notes.rtf | 1 - general/datasets/HZI_PR8M_Q_0612/processing.rtf | 1 - general/datasets/HZI_PR8M_Q_0612/summary.rtf | 3 - general/datasets/HZI_PR8M_Q_0612/tissue.rtf | 1 - general/datasets/Hbtrc_mlc_0611/acknowledgment.rtf | 1 + general/datasets/Hbtrc_mlc_0611/cases.rtf | 4156 +++ .../datasets/Hbtrc_mlc_0611/experiment-design.rtf | 1 + general/datasets/Hbtrc_mlc_0611/notes.rtf | 6 + general/datasets/Hbtrc_mlc_0611/summary.rtf | 1 + .../datasets/Hbtrc_mlc_ad_0611/acknowledgment.rtf | 1 + general/datasets/Hbtrc_mlc_ad_0611/cases.rtf | 4156 +++ .../Hbtrc_mlc_ad_0611/experiment-design.rtf | 1 + general/datasets/Hbtrc_mlc_ad_0611/notes.rtf | 6 + general/datasets/Hbtrc_mlc_ad_0611/summary.rtf | 1 + .../datasets/Hbtrc_mlc_hd_0611/acknowledgment.rtf | 1 + general/datasets/Hbtrc_mlc_hd_0611/cases.rtf | 4156 +++ .../Hbtrc_mlc_hd_0611/experiment-design.rtf | 1 + general/datasets/Hbtrc_mlc_hd_0611/notes.rtf | 6 + general/datasets/Hbtrc_mlc_hd_0611/summary.rtf | 1 + .../datasets/Hbtrc_mlc_n_0611/acknowledgment.rtf | 1 + general/datasets/Hbtrc_mlc_n_0611/cases.rtf | 4156 +++ .../Hbtrc_mlc_n_0611/experiment-design.rtf | 1 + general/datasets/Hbtrc_mlc_n_0611/notes.rtf | 6 + general/datasets/Hbtrc_mlc_n_0611/summary.rtf | 1 + .../datasets/Hbtrc_mlpfc_0611/acknowledgment.rtf | 1 + general/datasets/Hbtrc_mlpfc_0611/cases.rtf | 4166 +++ general/datasets/Hbtrc_mlpfc_0611/citation.rtf | 7 + general/datasets/Hbtrc_mlpfc_0611/contributors.rtf | 1 + .../Hbtrc_mlpfc_0611/experiment-design.rtf | 1 + general/datasets/Hbtrc_mlpfc_0611/notes.rtf | 6 + general/datasets/Hbtrc_mlpfc_0611/platform.rtf | 1 + general/datasets/Hbtrc_mlpfc_0611/processing.rtf | 1 + general/datasets/Hbtrc_mlpfc_0611/summary.rtf | 1 + general/datasets/Hbtrc_mlpfc_0611/tissue.rtf | 1 + .../Hbtrc_mlpfc_ad_0611/acknowledgment.rtf | 1 + general/datasets/Hbtrc_mlpfc_ad_0611/cases.rtf | 4166 +++ general/datasets/Hbtrc_mlpfc_ad_0611/citation.rtf | 7 + .../datasets/Hbtrc_mlpfc_ad_0611/contributors.rtf | 1 + .../Hbtrc_mlpfc_ad_0611/experiment-design.rtf | 1 + general/datasets/Hbtrc_mlpfc_ad_0611/notes.rtf | 6 + general/datasets/Hbtrc_mlpfc_ad_0611/platform.rtf | 1 + .../datasets/Hbtrc_mlpfc_ad_0611/processing.rtf | 1 + general/datasets/Hbtrc_mlpfc_ad_0611/summary.rtf | 1 + general/datasets/Hbtrc_mlpfc_ad_0611/tissue.rtf | 1 + .../Hbtrc_mlpfc_hd_0611/acknowledgment.rtf | 1 + general/datasets/Hbtrc_mlpfc_hd_0611/cases.rtf | 4166 +++ general/datasets/Hbtrc_mlpfc_hd_0611/citation.rtf | 7 + .../datasets/Hbtrc_mlpfc_hd_0611/contributors.rtf | 1 + .../Hbtrc_mlpfc_hd_0611/experiment-design.rtf | 1 + general/datasets/Hbtrc_mlpfc_hd_0611/notes.rtf | 6 + general/datasets/Hbtrc_mlpfc_hd_0611/platform.rtf | 1 + .../datasets/Hbtrc_mlpfc_hd_0611/processing.rtf | 1 + general/datasets/Hbtrc_mlpfc_hd_0611/summary.rtf | 1 + general/datasets/Hbtrc_mlpfc_hd_0611/tissue.rtf | 1 + .../datasets/Hbtrc_mlpfc_n_0611/acknowledgment.rtf | 1 + general/datasets/Hbtrc_mlpfc_n_0611/cases.rtf | 4166 +++ general/datasets/Hbtrc_mlpfc_n_0611/citation.rtf | 7 + .../datasets/Hbtrc_mlpfc_n_0611/contributors.rtf | 1 + .../Hbtrc_mlpfc_n_0611/experiment-design.rtf | 1 + general/datasets/Hbtrc_mlpfc_n_0611/notes.rtf | 6 + general/datasets/Hbtrc_mlpfc_n_0611/platform.rtf | 1 + general/datasets/Hbtrc_mlpfc_n_0611/processing.rtf | 1 + general/datasets/Hbtrc_mlpfc_n_0611/summary.rtf | 1 + general/datasets/Hbtrc_mlpfc_n_0611/tissue.rtf | 1 + .../datasets/Hbtrc_mlvc_0611/acknowledgment.rtf | 1 + general/datasets/Hbtrc_mlvc_0611/cases.rtf | 4166 +++ general/datasets/Hbtrc_mlvc_0611/notes.rtf | 6 + general/datasets/Hbtrc_mlvc_0611/summary.rtf | 1 + .../datasets/Hbtrc_mlvc_ad_0611/acknowledgment.rtf | 1 + general/datasets/Hbtrc_mlvc_ad_0611/cases.rtf | 4166 +++ general/datasets/Hbtrc_mlvc_ad_0611/notes.rtf | 6 + general/datasets/Hbtrc_mlvc_ad_0611/summary.rtf | 1 + .../datasets/Hbtrc_mlvc_hd_0611/acknowledgment.rtf | 1 + general/datasets/Hbtrc_mlvc_hd_0611/cases.rtf | 4166 +++ general/datasets/Hbtrc_mlvc_hd_0611/notes.rtf | 6 + general/datasets/Hbtrc_mlvc_hd_0611/summary.rtf | 1 + .../datasets/Hbtrc_mlvc_n_0611/acknowledgment.rtf | 1 + general/datasets/Hbtrc_mlvc_n_0611/cases.rtf | 4166 +++ general/datasets/Hbtrc_mlvc_n_0611/notes.rtf | 6 + general/datasets/Hbtrc_mlvc_n_0611/summary.rtf | 1 + general/datasets/Hc_m2_0606_m/acknowledgment.rtf | 50 + general/datasets/Hc_m2_0606_m/cases.rtf | 56 + general/datasets/Hc_m2_0606_m/citation.rtf | 1 + general/datasets/Hc_m2_0606_m/contributors.rtf | 46 + .../datasets/Hc_m2_0606_m/experiment-design.rtf | 1 + general/datasets/Hc_m2_0606_m/notes.rtf | 12 + general/datasets/Hc_m2_0606_m/platform.rtf | 1 + general/datasets/Hc_m2_0606_m/processing.rtf | 37 + general/datasets/Hc_m2_0606_m/summary.rtf | 3 + general/datasets/Hc_m2_0606_m/tissue.rtf | 3721 +++ general/datasets/Hc_m2_0606_mdp/summary.rtf | 1 + general/datasets/Hc_m2_0606_p/acknowledgment.rtf | 50 + general/datasets/Hc_m2_0606_p/cases.rtf | 56 + general/datasets/Hc_m2_0606_p/citation.rtf | 1 + general/datasets/Hc_m2_0606_p/contributors.rtf | 46 + .../datasets/Hc_m2_0606_p/experiment-design.rtf | 1 + general/datasets/Hc_m2_0606_p/experiment-type.rtf | 1 + general/datasets/Hc_m2_0606_p/notes.rtf | 12 + general/datasets/Hc_m2_0606_p/platform.rtf | 1 + general/datasets/Hc_m2_0606_p/processing.rtf | 37 + general/datasets/Hc_m2_0606_p/summary.rtf | 3 + general/datasets/Hc_m2_0606_p/tissue.rtf | 3721 +++ general/datasets/Hc_m2_0606_r/acknowledgment.rtf | 50 + general/datasets/Hc_m2_0606_r/cases.rtf | 56 + general/datasets/Hc_m2_0606_r/citation.rtf | 1 + general/datasets/Hc_m2_0606_r/contributors.rtf | 46 + .../datasets/Hc_m2_0606_r/experiment-design.rtf | 1 + general/datasets/Hc_m2_0606_r/notes.rtf | 12 + general/datasets/Hc_m2_0606_r/platform.rtf | 1 + general/datasets/Hc_m2_0606_r/processing.rtf | 37 + general/datasets/Hc_m2_0606_r/summary.rtf | 3 + general/datasets/Hc_m2_0606_r/tissue.rtf | 3721 +++ general/datasets/Hc_m2_1005_m/acknowledgment.rtf | 54 + general/datasets/Hc_m2_1005_m/cases.rtf | 60 + .../datasets/Hc_m2_1005_m/experiment-design.rtf | 3252 +++ general/datasets/Hc_m2_1005_m/notes.rtf | 15 + general/datasets/Hc_m2_1005_m/platform.rtf | 1 + general/datasets/Hc_m2_1005_m/processing.rtf | 40 + general/datasets/Hc_m2_1005_m/summary.rtf | 1 + general/datasets/Hc_m2_1005_m/tissue.rtf | 7 + general/datasets/Hc_m2_1005_p/acknowledgment.rtf | 54 + general/datasets/Hc_m2_1005_p/cases.rtf | 60 + .../datasets/Hc_m2_1005_p/experiment-design.rtf | 3252 +++ general/datasets/Hc_m2_1005_p/notes.rtf | 15 + general/datasets/Hc_m2_1005_p/platform.rtf | 1 + general/datasets/Hc_m2_1005_p/processing.rtf | 40 + general/datasets/Hc_m2_1005_p/summary.rtf | 1 + general/datasets/Hc_m2_1005_p/tissue.rtf | 7 + general/datasets/Hc_m2_1005_r/acknowledgment.rtf | 54 + general/datasets/Hc_m2_1005_r/cases.rtf | 60 + .../datasets/Hc_m2_1005_r/experiment-design.rtf | 3252 +++ general/datasets/Hc_m2_1005_r/notes.rtf | 15 + general/datasets/Hc_m2_1005_r/platform.rtf | 1 + general/datasets/Hc_m2_1005_r/processing.rtf | 40 + general/datasets/Hc_m2_1005_r/summary.rtf | 1 + general/datasets/Hc_m2_1005_r/tissue.rtf | 7 + general/datasets/Hc_m2_1205_p/acknowledgment.rtf | 54 + general/datasets/Hc_m2_1205_p/cases.rtf | 60 + .../datasets/Hc_m2_1205_p/experiment-design.rtf | 3252 +++ general/datasets/Hc_m2_1205_p/notes.rtf | 15 + general/datasets/Hc_m2_1205_p/platform.rtf | 1 + general/datasets/Hc_m2_1205_p/processing.rtf | 40 + general/datasets/Hc_m2_1205_p/summary.rtf | 1 + general/datasets/Hc_m2_1205_p/tissue.rtf | 7 + general/datasets/Hc_m2_1205_r/acknowledgment.rtf | 54 + general/datasets/Hc_m2_1205_r/cases.rtf | 60 + .../datasets/Hc_m2_1205_r/experiment-design.rtf | 3252 +++ general/datasets/Hc_m2_1205_r/notes.rtf | 15 + general/datasets/Hc_m2_1205_r/platform.rtf | 1 + general/datasets/Hc_m2_1205_r/processing.rtf | 40 + general/datasets/Hc_m2_1205_r/summary.rtf | 1 + general/datasets/Hc_m2_1205_r/tissue.rtf | 7 + general/datasets/Hc_m2_1206_r/acknowledgment.rtf | 61 + general/datasets/Hc_m2_1206_r/cases.rtf | 3791 +++ general/datasets/Hc_m2_1206_r/contributors.rtf | 3 + .../datasets/Hc_m2_1206_r/experiment-design.rtf | 9 + general/datasets/Hc_m2_1206_r/notes.rtf | 1 + general/datasets/Hc_m2_1206_r/platform.rtf | 3 + general/datasets/Hc_m2_1206_r/processing.rtf | 41 + general/datasets/Hc_m2_1206_r/summary.rtf | 5 + general/datasets/Hc_m2_1206_r/tissue.rtf | 7 + general/datasets/Hc_m2cb_1005_m/acknowledgment.rtf | 50 + general/datasets/Hc_m2cb_1005_m/cases.rtf | 56 + general/datasets/Hc_m2cb_1005_m/citation.rtf | 1 + general/datasets/Hc_m2cb_1005_m/contributors.rtf | 46 + .../datasets/Hc_m2cb_1005_m/experiment-design.rtf | 1 + general/datasets/Hc_m2cb_1005_m/notes.rtf | 12 + general/datasets/Hc_m2cb_1005_m/platform.rtf | 1 + general/datasets/Hc_m2cb_1005_m/processing.rtf | 37 + general/datasets/Hc_m2cb_1005_m/summary.rtf | 3 + general/datasets/Hc_m2cb_1005_m/tissue.rtf | 3721 +++ general/datasets/Hc_m2cb_1005_p/acknowledgment.rtf | 50 + general/datasets/Hc_m2cb_1005_p/cases.rtf | 56 + general/datasets/Hc_m2cb_1005_p/citation.rtf | 1 + general/datasets/Hc_m2cb_1005_p/contributors.rtf | 46 + .../datasets/Hc_m2cb_1005_p/experiment-design.rtf | 1 + general/datasets/Hc_m2cb_1005_p/notes.rtf | 12 + general/datasets/Hc_m2cb_1005_p/platform.rtf | 1 + general/datasets/Hc_m2cb_1005_p/processing.rtf | 37 + general/datasets/Hc_m2cb_1005_p/summary.rtf | 3 + general/datasets/Hc_m2cb_1005_p/tissue.rtf | 3721 +++ general/datasets/Hc_m2cb_1005_r/acknowledgment.rtf | 50 + general/datasets/Hc_m2cb_1005_r/cases.rtf | 56 + general/datasets/Hc_m2cb_1005_r/citation.rtf | 1 + general/datasets/Hc_m2cb_1005_r/contributors.rtf | 46 + .../datasets/Hc_m2cb_1005_r/experiment-design.rtf | 1 + general/datasets/Hc_m2cb_1005_r/notes.rtf | 12 + general/datasets/Hc_m2cb_1005_r/platform.rtf | 1 + general/datasets/Hc_m2cb_1005_r/processing.rtf | 37 + general/datasets/Hc_m2cb_1005_r/summary.rtf | 3 + general/datasets/Hc_m2cb_1005_r/tissue.rtf | 3721 +++ general/datasets/Hc_m2cb_1205_p/acknowledgment.rtf | 50 + general/datasets/Hc_m2cb_1205_p/cases.rtf | 56 + general/datasets/Hc_m2cb_1205_p/citation.rtf | 1 + general/datasets/Hc_m2cb_1205_p/contributors.rtf | 46 + .../datasets/Hc_m2cb_1205_p/experiment-design.rtf | 1 + general/datasets/Hc_m2cb_1205_p/notes.rtf | 12 + general/datasets/Hc_m2cb_1205_p/platform.rtf | 1 + general/datasets/Hc_m2cb_1205_p/processing.rtf | 37 + general/datasets/Hc_m2cb_1205_p/summary.rtf | 3 + general/datasets/Hc_m2cb_1205_p/tissue.rtf | 3721 +++ general/datasets/Hc_m2cb_1205_r/acknowledgment.rtf | 50 + general/datasets/Hc_m2cb_1205_r/cases.rtf | 56 + general/datasets/Hc_m2cb_1205_r/citation.rtf | 1 + general/datasets/Hc_m2cb_1205_r/contributors.rtf | 46 + .../datasets/Hc_m2cb_1205_r/experiment-design.rtf | 1 + general/datasets/Hc_m2cb_1205_r/notes.rtf | 12 + general/datasets/Hc_m2cb_1205_r/platform.rtf | 1 + general/datasets/Hc_m2cb_1205_r/processing.rtf | 37 + general/datasets/Hc_m2cb_1205_r/summary.rtf | 3 + general/datasets/Hc_m2cb_1205_r/tissue.rtf | 3721 +++ general/datasets/Hc_u_0303_m/acknowledgment.rtf | 5 + general/datasets/Hc_u_0303_m/cases.rtf | 5 + general/datasets/Hc_u_0303_m/citation.rtf | 17 + general/datasets/Hc_u_0303_m/experiment-design.rtf | 7 + general/datasets/Hc_u_0303_m/experiment-type.rtf | 1 + general/datasets/Hc_u_0303_m/notes.rtf | 5 + general/datasets/Hc_u_0303_m/processing.rtf | 30 + general/datasets/Hc_u_0303_m/summary.rtf | 1 + general/datasets/Hc_u_0303_m/tissue.rtf | 3 + general/datasets/Hc_u_0304_r/acknowledgment.rtf | 5 + general/datasets/Hc_u_0304_r/cases.rtf | 5 + general/datasets/Hc_u_0304_r/citation.rtf | 17 + general/datasets/Hc_u_0304_r/experiment-design.rtf | 7 + general/datasets/Hc_u_0304_r/notes.rtf | 5 + general/datasets/Hc_u_0304_r/processing.rtf | 30 + general/datasets/Hc_u_0304_r/summary.rtf | 1 + general/datasets/Hc_u_0304_r/tissue.rtf | 3 + general/datasets/Hc_u_0903_m/acknowledgment.rtf | 5 + general/datasets/Hc_u_0903_m/cases.rtf | 5 + general/datasets/Hc_u_0903_m/citation.rtf | 17 + general/datasets/Hc_u_0903_m/experiment-design.rtf | 7 + general/datasets/Hc_u_0903_m/experiment-type.rtf | 17 + general/datasets/Hc_u_0903_m/notes.rtf | 5 + general/datasets/Hc_u_0903_m/processing.rtf | 30 + general/datasets/Hc_u_0903_m/summary.rtf | 1 + general/datasets/Hc_u_0903_m/tissue.rtf | 3 + .../Heioncvscretilm6_0911/acknowledgment.rtf | 13 + general/datasets/Heioncvscretilm6_0911/cases.rtf | 14 + .../Heioncvscretilm6_0911/contributors.rtf | 1 + .../Heioncvscretilm6_0911/experiment-design.rtf | 12 + .../Heioncvscretilm6_0911/experiment-type.rtf | 1 + general/datasets/Heioncvscretilm6_0911/notes.rtf | 1 + .../datasets/Heioncvscretilm6_0911/platform.rtf | 1 + .../datasets/Heioncvscretilm6_0911/processing.rtf | 2654 ++ general/datasets/Heioncvscretilm6_0911/summary.rtf | 50 + general/datasets/Heioncvscretilm6_0911/tissue.rtf | 32 + general/datasets/Het3_itppublish/citation.rtf | 18 + general/datasets/Het3_itppublish/specifics.rtf | 1 + general/datasets/Het3_itppublish/summary.rtf | 5 + .../Hipp_illumina_rank_1006/acknowledgment.rtf | 8 + general/datasets/Hipp_illumina_rank_1006/cases.rtf | 5 + .../Hipp_illumina_rank_1006/experiment-design.rtf | 2123 ++ general/datasets/Hipp_illumina_rank_1006/notes.rtf | 1 + .../datasets/Hipp_illumina_rank_1006/platform.rtf | 9 + .../Hipp_illumina_rank_1006/processing.rtf | 13 + .../datasets/Hipp_illumina_rank_1006/summary.rtf | 14 + .../datasets/Hipp_illumina_rank_1006/tissue.rtf | 7 + .../Hipp_illumina_rankinv_0507/acknowledgment.rtf | 8 + .../datasets/Hipp_illumina_rankinv_0507/cases.rtf | 5 + .../experiment-design.rtf | 2123 ++ .../datasets/Hipp_illumina_rankinv_0507/notes.rtf | 1 + .../Hipp_illumina_rankinv_0507/platform.rtf | 9 + .../Hipp_illumina_rankinv_0507/processing.rtf | 13 + .../Hipp_illumina_rankinv_0507/summary.rtf | 14 + .../datasets/Hipp_illumina_rankinv_0507/tissue.rtf | 7 + .../Hipp_illumina_rankinv_1006/acknowledgment.rtf | 8 + .../datasets/Hipp_illumina_rankinv_1006/cases.rtf | 5 + .../experiment-design.rtf | 2123 ++ .../datasets/Hipp_illumina_rankinv_1006/notes.rtf | 1 + .../Hipp_illumina_rankinv_1006/platform.rtf | 9 + .../Hipp_illumina_rankinv_1006/processing.rtf | 13 + .../Hipp_illumina_rankinv_1006/summary.rtf | 14 + .../datasets/Hipp_illumina_rankinv_1006/tissue.rtf | 7 + general/datasets/Hlc_0311/acknowledgment.rtf | 6 + general/datasets/Hlc_0311/citation.rtf | 1 + general/datasets/Hlc_0311/contributors.rtf | 1 + general/datasets/Hlc_0311/experiment-design.rtf | 1 + general/datasets/Hlc_0311/experiment-type.rtf | 1 + general/datasets/Hlc_0311/platform.rtf | 1 + general/datasets/Hlc_0311/summary.rtf | 5 + general/datasets/Hlcf_0311/acknowledgment.rtf | 6 + general/datasets/Hlcf_0311/citation.rtf | 1 + general/datasets/Hlcf_0311/contributors.rtf | 1 + general/datasets/Hlcf_0311/experiment-design.rtf | 1 + general/datasets/Hlcf_0311/experiment-type.rtf | 1 + general/datasets/Hlcf_0311/platform.rtf | 1 + general/datasets/Hlcf_0311/summary.rtf | 5 + general/datasets/Hlcm_0311/acknowledgment.rtf | 6 + general/datasets/Hlcm_0311/citation.rtf | 1 + general/datasets/Hlcm_0311/contributors.rtf | 1 + general/datasets/Hlcm_0311/experiment-design.rtf | 1 + general/datasets/Hlcm_0311/experiment-type.rtf | 6 + general/datasets/Hlcm_0311/platform.rtf | 1 + general/datasets/Hlcm_0311/summary.rtf | 5 + .../Hms_mm8_mdp_spl_cd4_1116/contributors.rtf | 8 + .../Hms_mm8_mdp_spl_cd4_1116/experiment-design.rtf | 1 + .../Hms_mm8_mdp_spl_cd4_1116/specifics.rtf | 1 + .../datasets/Hms_mm8_mdp_spl_cd4_1116/summary.rtf | 1 + .../Hqfneoc_0208_rankinv/acknowledgment.rtf | 6 + general/datasets/Hqfneoc_0208_rankinv/cases.rtf | 54 + .../Hqfneoc_0208_rankinv/experiment-design.rtf | 937 + .../Hqfneoc_0208_rankinv/experiment-type.rtf | 1 + general/datasets/Hqfneoc_0208_rankinv/platform.rtf | 7 + .../datasets/Hqfneoc_0208_rankinv/processing.rtf | 3 + general/datasets/Hqfneoc_0208_rankinv/summary.rtf | 16 + general/datasets/Hqfneoc_0208_rankinv/tissue.rtf | 9 + .../Hqfneoc_1210_rankinv/acknowledgment.rtf | 6 + general/datasets/Hqfneoc_1210_rankinv/cases.rtf | 54 + .../Hqfneoc_1210_rankinv/experiment-design.rtf | 937 + .../Hqfneoc_1210_rankinv/experiment-type.rtf | 1 + general/datasets/Hqfneoc_1210_rankinv/platform.rtf | 7 + .../datasets/Hqfneoc_1210_rankinv/processing.rtf | 3 + general/datasets/Hqfneoc_1210_rankinv/summary.rtf | 16 + general/datasets/Hqfneoc_1210_rankinv/tissue.rtf | 9 + .../Hqfneoc_1210v2_rankinv/acknowledgment.rtf | 6 + general/datasets/Hqfneoc_1210v2_rankinv/cases.rtf | 54 + .../Hqfneoc_1210v2_rankinv/experiment-design.rtf | 937 + .../Hqfneoc_1210v2_rankinv/experiment-type.rtf | 1 + .../datasets/Hqfneoc_1210v2_rankinv/platform.rtf | 7 + .../datasets/Hqfneoc_1210v2_rankinv/processing.rtf | 3 + .../datasets/Hqfneoc_1210v2_rankinv/summary.rtf | 16 + general/datasets/Hqfneoc_1210v2_rankinv/tissue.rtf | 9 + general/datasets/Hrdppublish/specifics.rtf | 1 + general/datasets/Hrdppublish/summary.rtf | 1 + general/datasets/Hsnih_palmerpublish/specifics.rtf | 1 + general/datasets/Hsnih_palmerpublish/summary.rtf | 1 + .../Hsnih_rat_acbc_rseq_0818/specifics.rtf | 1 + .../datasets/Hsnih_rat_acbc_rseq_0818/summary.rtf | 1 + .../Hsnih_rat_acbc_rseqlog2_0818/specifics.rtf | 1 + .../Hsnih_rat_acbc_rseqlog2_0818/summary.rtf | 1 + .../datasets/Hsnih_rat_il_rseq_0818/specifics.rtf | 1 + .../datasets/Hsnih_rat_il_rseq_0818/summary.rtf | 1 + .../Hsnih_rat_il_rseqlog2_0818/specifics.rtf | 1 + .../Hsnih_rat_il_rseqlog2_0818/summary.rtf | 1 + .../datasets/Hsnih_rat_lhb_rseq_0818/specifics.rtf | 1 + .../datasets/Hsnih_rat_lhb_rseq_0818/summary.rtf | 1 + .../Hsnih_rat_lhb_rseqlog2_0818/specifics.rtf | 1 + .../Hsnih_rat_lhb_rseqlog2_0818/summary.rtf | 1 + .../datasets/Hsnih_rat_pl_rseq_0818/specifics.rtf | 1 + .../datasets/Hsnih_rat_pl_rseq_0818/summary.rtf | 1 + .../Hsnih_rat_pl_rseqlog2_0818/specifics.rtf | 1 + .../Hsnih_rat_pl_rseqlog2_0818/summary.rtf | 1 + .../Hsnih_rat_volo_rseq_0818/specifics.rtf | 1 + .../datasets/Hsnih_rat_volo_rseq_0818/summary.rtf | 1 + .../Hsnih_rat_volo_rseqlog2_0818/specifics.rtf | 1 + .../Hsnih_rat_volo_rseqlog2_0818/summary.rtf | 1 + general/datasets/Human_1008/citation.rtf | 1 + general/datasets/Human_1008/contributors.rtf | 3 + .../datasets/Hxb_adrenal_1208/acknowledgment.rtf | 1 + general/datasets/Hxb_adrenal_1208/cases.rtf | 7 + general/datasets/Hxb_adrenal_1208/citation.rtf | 1 + general/datasets/Hxb_adrenal_1208/contributors.rtf | 1 + .../Hxb_adrenal_1208/experiment-design.rtf | 1 + general/datasets/Hxb_adrenal_1208/notes.rtf | 9 + general/datasets/Hxb_adrenal_1208/platform.rtf | 1 + general/datasets/Hxb_adrenal_1208/processing.rtf | 3 + general/datasets/Hxb_adrenal_1208/summary.rtf | 19 + general/datasets/Hxb_adrenal_1208/tissue.rtf | 530 + general/datasets/Hxb_heart_1208/acknowledgment.rtf | 1 + general/datasets/Hxb_heart_1208/cases.rtf | 7 + general/datasets/Hxb_heart_1208/citation.rtf | 1 + general/datasets/Hxb_heart_1208/contributors.rtf | 1 + .../datasets/Hxb_heart_1208/experiment-design.rtf | 3 + general/datasets/Hxb_heart_1208/notes.rtf | 21 + general/datasets/Hxb_heart_1208/platform.rtf | 3 + general/datasets/Hxb_heart_1208/processing.rtf | 4 + general/datasets/Hxb_heart_1208/summary.rtf | 19 + general/datasets/Hxb_heart_1208/tissue.rtf | 530 + general/datasets/Hxb_liver_1208/acknowledgment.rtf | 1 + general/datasets/Hxb_liver_1208/citation.rtf | 1 + general/datasets/Hxb_liver_1208/contributors.rtf | 1 + general/datasets/Hxb_liver_1208/platform.rtf | 3 + general/datasets/Hxb_liver_1208/summary.rtf | 14 + general/datasets/Hxbbxhgeno/citation.rtf | 1 + general/datasets/Hxbbxhgeno/summary.rtf | 7 + general/datasets/Hzi_0408_m/cases.rtf | 784 + general/datasets/Hzi_0408_m/summary.rtf | 37 + general/datasets/Hzi_0408_r/cases.rtf | 784 + general/datasets/Hzi_0408_r/summary.rtf | 37 + general/datasets/Hzi_ltcf_0313/acknowledgment.rtf | 1 + general/datasets/Hzi_ltcf_0313/cases.rtf | 1 + general/datasets/Hzi_ltcf_0313/citation.rtf | 1 + general/datasets/Hzi_ltcf_0313/contributors.rtf | 1 + general/datasets/Hzi_ltcf_0313/notes.rtf | 1 + general/datasets/Hzi_ltcf_0313/processing.rtf | 1 + general/datasets/Hzi_ltcf_0313/summary.rtf | 3 + general/datasets/Hzi_ltcf_0313/tissue.rtf | 1 + .../Hzi_lungbxd_rna_seq_1116/acknowledgment.rtf | 1 + .../datasets/Hzi_lungbxd_rna_seq_1116/cases.rtf | 1 + .../datasets/Hzi_lungbxd_rna_seq_1116/citation.rtf | 3 + .../Hzi_lungbxd_rna_seq_1116/contributors.rtf | 1 + .../datasets/Hzi_lungbxd_rna_seq_1116/notes.rtf | 1 + .../datasets/Hzi_lungbxd_rna_seq_1116/platform.rtf | 1 + .../Hzi_lungbxd_rna_seq_1116/processing.rtf | 1 + .../Hzi_lungbxd_rna_seq_1116/specifics.rtf | 1 + .../datasets/Hzi_lungbxd_rna_seq_1116/summary.rtf | 3 + .../datasets/Hzi_lungbxd_rna_seq_1116/tissue.rtf | 1 + general/datasets/Hzi_pr8m_f_1014/processing.rtf | 3 + general/datasets/Hzi_pr8m_f_1014/summary.rtf | 1 + general/datasets/Hzi_pr8m_f_1113/processing.rtf | 3 + general/datasets/Hzi_pr8m_f_1113/summary.rtf | 1 + .../datasets/Hzi_pr8m_f_freq1_1014/processing.rtf | 3 + general/datasets/Hzi_pr8m_f_freq1_1014/summary.rtf | 1 + .../datasets/Hzi_pr8m_q_0612/acknowledgment.rtf | 1 + general/datasets/Hzi_pr8m_q_0612/cases.rtf | 1 + general/datasets/Hzi_pr8m_q_0612/citation.rtf | 1 + general/datasets/Hzi_pr8m_q_0612/contributors.rtf | 1 + .../datasets/Hzi_pr8m_q_0612/experiment-type.rtf | 1 + general/datasets/Hzi_pr8m_q_0612/notes.rtf | 1 + general/datasets/Hzi_pr8m_q_0612/processing.rtf | 1 + general/datasets/Hzi_pr8m_q_0612/summary.rtf | 3 + general/datasets/Hzi_pr8m_q_0612/tissue.rtf | 1 + general/datasets/INIA_Adrenal_RMA_0612/cases.rtf | 771 - .../INIA_Adrenal_RMA_0612/experiment-design.rtf | 3 - .../datasets/INIA_Adrenal_RMA_0612/platform.rtf | 1 - .../datasets/INIA_Adrenal_RMA_0612/processing.rtf | 1 - general/datasets/INIA_Adrenal_RMA_0612/summary.rtf | 17 - general/datasets/INIA_Adrenal_RMA_0612/tissue.rtf | 1 - .../datasets/INIA_Adrenal_RMA_Ex_0612/cases.rtf | 771 - .../INIA_Adrenal_RMA_Ex_0612/experiment-design.rtf | 3 - .../datasets/INIA_Adrenal_RMA_Ex_0612/platform.rtf | 1 - .../INIA_Adrenal_RMA_Ex_0612/processing.rtf | 1 - .../datasets/INIA_Adrenal_RMA_Ex_0612/summary.rtf | 17 - .../datasets/INIA_Adrenal_RMA_Ex_0612/tissue.rtf | 1 - general/datasets/INIA_Adrenal_RMA_F_0612/cases.rtf | 771 - .../INIA_Adrenal_RMA_F_0612/experiment-design.rtf | 3 - .../datasets/INIA_Adrenal_RMA_F_0612/platform.rtf | 1 - .../INIA_Adrenal_RMA_F_0612/processing.rtf | 1 - .../datasets/INIA_Adrenal_RMA_F_0612/summary.rtf | 17 - .../datasets/INIA_Adrenal_RMA_F_0612/tissue.rtf | 1 - general/datasets/INIA_Adrenal_RMA_M_0612/cases.rtf | 771 - .../INIA_Adrenal_RMA_M_0612/experiment-design.rtf | 3 - .../datasets/INIA_Adrenal_RMA_M_0612/platform.rtf | 1 - .../INIA_Adrenal_RMA_M_0612/processing.rtf | 1 - .../datasets/INIA_Adrenal_RMA_M_0612/summary.rtf | 17 - .../datasets/INIA_Adrenal_RMA_M_0612/tissue.rtf | 1 - .../datasets/INIA_Amg_BLA_Ex-RMA_1110/cases.rtf | 3 + .../INIA_Amg_BLA_Ex-RMA_1110/experiment-design.rtf | 1152 + .../datasets/INIA_Amg_BLA_Ex-RMA_1110/platform.rtf | 1 + .../INIA_Amg_BLA_Ex-RMA_1110/processing.rtf | 16 + .../INIA_Amg_BLA_Ex-RMA_1110/specifics.rtf | 1 + .../datasets/INIA_Amg_BLA_Ex-RMA_1110/summary.rtf | 1 + .../datasets/INIA_Amg_BLA_Ex-RMA_1110/tissue.rtf | 12 + .../datasets/INIA_Amg_BLA_Ex_RMA_1110/cases.rtf | 3 - .../INIA_Amg_BLA_Ex_RMA_1110/experiment-design.rtf | 1152 - .../datasets/INIA_Amg_BLA_Ex_RMA_1110/platform.rtf | 1 - .../INIA_Amg_BLA_Ex_RMA_1110/processing.rtf | 16 - .../INIA_Amg_BLA_Ex_RMA_1110/specifics.rtf | 1 - .../datasets/INIA_Amg_BLA_Ex_RMA_1110/summary.rtf | 1 - .../datasets/INIA_Amg_BLA_Ex_RMA_1110/tissue.rtf | 12 - .../INIA_BXD_LivDNAm_1119/experiment-design.rtf | 1 - .../datasets/INIA_BXD_LivDNAm_1119/platform.rtf | 1 - .../datasets/INIA_BXD_LivDNAm_1119/processing.rtf | 1 - .../datasets/INIA_BXD_LivDNAm_1119/specifics.rtf | 1 - general/datasets/INIA_BXD_LivDNAm_1119/summary.rtf | 1 - .../experiment-design.rtf | 1 - .../INIA_BXD_LivDNAminfi_1020/platform.rtf | 1 - .../INIA_BXD_LivDNAminfi_1020/processing.rtf | 1 - .../INIA_BXD_LivDNAminfi_1020/specifics.rtf | 1 - .../datasets/INIA_BXD_LivDNAminfi_1020/summary.rtf | 1 - .../datasets/INIA_Hyp_PCA_0813/acknowledgment.rtf | 1 - general/datasets/INIA_Hyp_PCA_0813/cases.rtf | 916 - .../INIA_Hyp_PCA_0813/experiment-design.rtf | 6 - general/datasets/INIA_Hyp_PCA_0813/platform.rtf | 1 - general/datasets/INIA_Hyp_PCA_0813/processing.rtf | 1 - general/datasets/INIA_Hyp_PCA_0813/summary.rtf | 16 - .../INIA_Hyp_PCA_0813_v2/acknowledgment.rtf | 1 - general/datasets/INIA_Hyp_PCA_0813_v2/cases.rtf | 916 - .../INIA_Hyp_PCA_0813_v2/experiment-design.rtf | 6 - general/datasets/INIA_Hyp_PCA_0813_v2/platform.rtf | 1 - .../datasets/INIA_Hyp_PCA_0813_v2/processing.rtf | 1 - general/datasets/INIA_Hyp_PCA_0813_v2/summary.rtf | 16 - .../INIA_Hyp_PCA_0813_v3/acknowledgment.rtf | 1 - general/datasets/INIA_Hyp_PCA_0813_v3/cases.rtf | 916 - .../INIA_Hyp_PCA_0813_v3/experiment-design.rtf | 6 - general/datasets/INIA_Hyp_PCA_0813_v3/platform.rtf | 1 - .../datasets/INIA_Hyp_PCA_0813_v3/processing.rtf | 1 - general/datasets/INIA_Hyp_PCA_0813_v3/summary.rtf | 16 - .../INIA_Hyp_RMA_Ex-1110/acknowledgment.rtf | 1 + general/datasets/INIA_Hyp_RMA_Ex-1110/cases.rtf | 916 + .../INIA_Hyp_RMA_Ex-1110/experiment-design.rtf | 6 + general/datasets/INIA_Hyp_RMA_Ex-1110/platform.rtf | 1 + .../datasets/INIA_Hyp_RMA_Ex-1110/processing.rtf | 1 + general/datasets/INIA_Hyp_RMA_Ex-1110/summary.rtf | 16 + .../INIA_Hyp_RMA_Ex_1110/acknowledgment.rtf | 1 - general/datasets/INIA_Hyp_RMA_Ex_1110/cases.rtf | 916 - .../INIA_Hyp_RMA_Ex_1110/experiment-design.rtf | 6 - general/datasets/INIA_Hyp_RMA_Ex_1110/platform.rtf | 1 - .../datasets/INIA_Hyp_RMA_Ex_1110/processing.rtf | 1 - general/datasets/INIA_Hyp_RMA_Ex_1110/summary.rtf | 16 - general/datasets/INIA_LCMB_1215/acknowledgment.rtf | 1 - general/datasets/INIA_LCMB_1215/cases.rtf | 1 - general/datasets/INIA_LCMB_1215/platform.rtf | 11 - general/datasets/INIA_LCMB_1215/processing.rtf | 5 - general/datasets/INIA_LCMB_1215/summary.rtf | 1 - general/datasets/INIA_LCMB_1215/tissue.rtf | 5 - general/datasets/INIA_LCM_1215/acknowledgment.rtf | 1 - general/datasets/INIA_LCM_1215/cases.rtf | 1 - general/datasets/INIA_LCM_1215/platform.rtf | 11 - general/datasets/INIA_LCM_1215/processing.rtf | 5 - general/datasets/INIA_LCM_1215/summary.rtf | 1 - general/datasets/INIA_LCM_1215/tissue.rtf | 5 - .../datasets/INIA_LCM_CAB_1215/acknowledgment.rtf | 1 - general/datasets/INIA_LCM_CAB_1215/cases.rtf | 1 - general/datasets/INIA_LCM_CAB_1215/platform.rtf | 11 - general/datasets/INIA_LCM_CAB_1215/processing.rtf | 5 - general/datasets/INIA_LCM_CAB_1215/specifics.rtf | 17 - general/datasets/INIA_LCM_CAB_1215/summary.rtf | 1 - general/datasets/INIA_LCM_CAB_1215/tissue.rtf | 5 - .../datasets/INIA_PG_RMA_0612/acknowledgment.rtf | 1 - general/datasets/INIA_PG_RMA_0612/cases.rtf | 840 - .../INIA_PG_RMA_0612/experiment-design.rtf | 10 - general/datasets/INIA_PG_RMA_0612/platform.rtf | 1 - general/datasets/INIA_PG_RMA_0612/processing.rtf | 1 - general/datasets/INIA_PG_RMA_0612/summary.rtf | 3 - general/datasets/INIA_PG_RMA_0612/tissue.rtf | 1 - .../INIA_PG_RMA_Ex_0612/acknowledgment.rtf | 1 - general/datasets/INIA_PG_RMA_Ex_0612/cases.rtf | 840 - .../INIA_PG_RMA_Ex_0612/experiment-design.rtf | 10 - general/datasets/INIA_PG_RMA_Ex_0612/platform.rtf | 1 - .../datasets/INIA_PG_RMA_Ex_0612/processing.rtf | 1 - general/datasets/INIA_PG_RMA_Ex_0612/summary.rtf | 3 - general/datasets/INIA_PG_RMA_Ex_0612/tissue.rtf | 1 - .../INIA_Pituitary_RMA_F_0612/acknowledgment.rtf | 1 - .../datasets/INIA_Pituitary_RMA_F_0612/cases.rtf | 840 - .../experiment-design.rtf | 10 - .../INIA_Pituitary_RMA_F_0612/platform.rtf | 1 - .../INIA_Pituitary_RMA_F_0612/processing.rtf | 1 - .../datasets/INIA_Pituitary_RMA_F_0612/summary.rtf | 3 - .../datasets/INIA_Pituitary_RMA_F_0612/tissue.rtf | 1 - .../INIA_Pituitary_RMA_M_0612/acknowledgment.rtf | 1 - .../datasets/INIA_Pituitary_RMA_M_0612/cases.rtf | 840 - .../experiment-design.rtf | 10 - .../INIA_Pituitary_RMA_M_0612/platform.rtf | 1 - .../INIA_Pituitary_RMA_M_0612/processing.rtf | 1 - .../datasets/INIA_Pituitary_RMA_M_0612/summary.rtf | 3 - .../datasets/INIA_Pituitary_RMA_M_0612/tissue.rtf | 1 - .../INIA_UTHSC_Hip_AffyMTA1_May17/summary.rtf | 1 - .../INIA_UTHSC_Mid_AffyMTA1_Apr17/cases.rtf | 857 - .../INIA_UTHSC_Mid_AffyMTA1_Apr17/specifics.rtf | 1 - .../INIA_UTHSC_Mid_AffyMTA1_Apr17/summary.rtf | 31 - .../INIA_UTHSC_Mid_AffyMTA1_Ex_May17/cases.rtf | 857 - .../INIA_UTHSC_Mid_AffyMTA1_Ex_May17/specifics.rtf | 1 - .../INIA_UTHSC_Mid_AffyMTA1_Ex_May17/summary.rtf | 31 - .../INIA_UTHSC_PFC_AffyMTA1_May17/summary.rtf | 1 - .../INIA_UTHSC_Str_AffyMTA1_May17/summary.rtf | 1 - general/datasets/IRCM_AXBXA_HRI0213/summary.rtf | 1 - general/datasets/Ibr_m_0106_p/acknowledgment.rtf | 1 + general/datasets/Ibr_m_0106_p/cases.rtf | 5 + general/datasets/Ibr_m_0106_p/notes.rtf | 3 + general/datasets/Ibr_m_0106_p/platform.rtf | 3 + general/datasets/Ibr_m_0106_p/processing.rtf | 20 + general/datasets/Ibr_m_0106_p/summary.rtf | 3 + general/datasets/Ibr_m_0106_p/tissue.rtf | 977 + general/datasets/Ibr_m_0106_r/acknowledgment.rtf | 1 + general/datasets/Ibr_m_0106_r/cases.rtf | 5 + general/datasets/Ibr_m_0106_r/notes.rtf | 3 + general/datasets/Ibr_m_0106_r/platform.rtf | 3 + general/datasets/Ibr_m_0106_r/processing.rtf | 20 + general/datasets/Ibr_m_0106_r/summary.rtf | 3 + general/datasets/Ibr_m_0106_r/tissue.rtf | 977 + general/datasets/Ibr_m_0204_m/acknowledgment.rtf | 1 + general/datasets/Ibr_m_0204_m/cases.rtf | 3 + general/datasets/Ibr_m_0204_m/notes.rtf | 1 + general/datasets/Ibr_m_0204_m/platform.rtf | 1 + general/datasets/Ibr_m_0204_m/processing.rtf | 29 + general/datasets/Ibr_m_0204_m/summary.rtf | 1 + general/datasets/Ibr_m_0204_m/tissue.rtf | 261 + general/datasets/Ibr_m_0405_m/acknowledgment.rtf | 1 + general/datasets/Ibr_m_0405_m/cases.rtf | 5 + general/datasets/Ibr_m_0405_m/notes.rtf | 3 + general/datasets/Ibr_m_0405_m/platform.rtf | 3 + general/datasets/Ibr_m_0405_m/processing.rtf | 20 + general/datasets/Ibr_m_0405_m/summary.rtf | 3 + general/datasets/Ibr_m_0405_m/tissue.rtf | 977 + general/datasets/Ibr_m_0405_p/acknowledgment.rtf | 1 + general/datasets/Ibr_m_0405_p/cases.rtf | 5 + general/datasets/Ibr_m_0405_p/notes.rtf | 3 + general/datasets/Ibr_m_0405_p/platform.rtf | 3 + general/datasets/Ibr_m_0405_p/processing.rtf | 20 + general/datasets/Ibr_m_0405_p/summary.rtf | 3 + general/datasets/Ibr_m_0405_p/tissue.rtf | 977 + general/datasets/Ibr_m_0405_r/acknowledgment.rtf | 1 + general/datasets/Ibr_m_0405_r/cases.rtf | 5 + general/datasets/Ibr_m_0405_r/notes.rtf | 3 + general/datasets/Ibr_m_0405_r/platform.rtf | 3 + general/datasets/Ibr_m_0405_r/processing.rtf | 20 + general/datasets/Ibr_m_0405_r/summary.rtf | 3 + general/datasets/Ibr_m_0405_r/tissue.rtf | 977 + general/datasets/Ibr_m_0606_r/acknowledgment.rtf | 1 + general/datasets/Ibr_m_0606_r/cases.rtf | 5 + general/datasets/Ibr_m_0606_r/notes.rtf | 3 + general/datasets/Ibr_m_0606_r/platform.rtf | 3 + general/datasets/Ibr_m_0606_r/processing.rtf | 20 + general/datasets/Ibr_m_0606_r/summary.rtf | 3 + general/datasets/Ibr_m_0606_r/tissue.rtf | 977 + general/datasets/Ibr_m_1004_m/acknowledgment.rtf | 1 + general/datasets/Ibr_m_1004_m/cases.rtf | 3 + general/datasets/Ibr_m_1004_m/notes.rtf | 1 + general/datasets/Ibr_m_1004_m/platform.rtf | 1 + general/datasets/Ibr_m_1004_m/processing.rtf | 29 + general/datasets/Ibr_m_1004_m/summary.rtf | 1 + general/datasets/Ibr_m_1004_m/tissue.rtf | 261 + general/datasets/Ibr_m_1004_p/acknowledgment.rtf | 1 + general/datasets/Ibr_m_1004_p/cases.rtf | 3 + general/datasets/Ibr_m_1004_p/notes.rtf | 1 + general/datasets/Ibr_m_1004_p/platform.rtf | 1 + general/datasets/Ibr_m_1004_p/processing.rtf | 29 + general/datasets/Ibr_m_1004_p/summary.rtf | 1 + general/datasets/Ibr_m_1004_p/tissue.rtf | 261 + general/datasets/Ibr_m_1004_r/acknowledgment.rtf | 1 + general/datasets/Ibr_m_1004_r/cases.rtf | 3 + general/datasets/Ibr_m_1004_r/notes.rtf | 1 + general/datasets/Ibr_m_1004_r/platform.rtf | 1 + general/datasets/Ibr_m_1004_r/processing.rtf | 29 + general/datasets/Ibr_m_1004_r/summary.rtf | 1 + general/datasets/Ibr_m_1004_r/tissue.rtf | 261 + general/datasets/Illum_bxd_pbl_1108/summary.rtf | 1 + general/datasets/Illum_bxd_spl_1108/summary.rtf | 1 + general/datasets/Illum_bxd_thy_1108/summary.rtf | 1 + .../Illum_lxs_hipp_loess0807/acknowledgment.rtf | 3 + .../datasets/Illum_lxs_hipp_loess0807/cases.rtf | 2140 ++ .../datasets/Illum_lxs_hipp_loess0807/citation.rtf | 3 + .../Illum_lxs_hipp_loess0807/contributors.rtf | 5 + .../Illum_lxs_hipp_loess0807/experiment-design.rtf | 1 + .../datasets/Illum_lxs_hipp_loess0807/notes.rtf | 3 + .../datasets/Illum_lxs_hipp_loess0807/platform.rtf | 5 + .../Illum_lxs_hipp_loess0807/processing.rtf | 3 + .../datasets/Illum_lxs_hipp_loess0807/summary.rtf | 33 + .../datasets/Illum_lxs_hipp_loess0807/tissue.rtf | 9 + .../Illum_lxs_hipp_loess_nb0807/acknowledgment.rtf | 3 + .../datasets/Illum_lxs_hipp_loess_nb0807/cases.rtf | 2140 ++ .../Illum_lxs_hipp_loess_nb0807/citation.rtf | 3 + .../Illum_lxs_hipp_loess_nb0807/contributors.rtf | 5 + .../experiment-design.rtf | 1 + .../datasets/Illum_lxs_hipp_loess_nb0807/notes.rtf | 3 + .../Illum_lxs_hipp_loess_nb0807/platform.rtf | 5 + .../Illum_lxs_hipp_loess_nb0807/processing.rtf | 3 + .../Illum_lxs_hipp_loess_nb0807/summary.rtf | 33 + .../Illum_lxs_hipp_loess_nb0807/tissue.rtf | 9 + .../datasets/Illum_lxs_hipp_noe_1008/summary.rtf | 1 + .../datasets/Illum_lxs_hipp_non_1008/summary.rtf | 1 + .../datasets/Illum_lxs_hipp_nos_1008/summary.rtf | 1 + .../Illum_lxs_hipp_quant0807/acknowledgment.rtf | 3 + .../datasets/Illum_lxs_hipp_quant0807/cases.rtf | 2140 ++ .../datasets/Illum_lxs_hipp_quant0807/citation.rtf | 3 + .../Illum_lxs_hipp_quant0807/contributors.rtf | 5 + .../Illum_lxs_hipp_quant0807/experiment-design.rtf | 1 + .../datasets/Illum_lxs_hipp_quant0807/notes.rtf | 3 + .../datasets/Illum_lxs_hipp_quant0807/platform.rtf | 5 + .../Illum_lxs_hipp_quant0807/processing.rtf | 3 + .../datasets/Illum_lxs_hipp_quant0807/summary.rtf | 33 + .../datasets/Illum_lxs_hipp_quant0807/tissue.rtf | 9 + .../Illum_lxs_hipp_quant_nb0807/acknowledgment.rtf | 3 + .../datasets/Illum_lxs_hipp_quant_nb0807/cases.rtf | 2140 ++ .../Illum_lxs_hipp_quant_nb0807/citation.rtf | 3 + .../Illum_lxs_hipp_quant_nb0807/contributors.rtf | 5 + .../experiment-design.rtf | 1 + .../datasets/Illum_lxs_hipp_quant_nb0807/notes.rtf | 3 + .../Illum_lxs_hipp_quant_nb0807/platform.rtf | 5 + .../Illum_lxs_hipp_quant_nb0807/processing.rtf | 3 + .../Illum_lxs_hipp_quant_nb0807/summary.rtf | 33 + .../Illum_lxs_hipp_quant_nb0807/tissue.rtf | 9 + .../datasets/Illum_lxs_hipp_rse_1008/summary.rtf | 1 + .../Illum_lxs_hipp_rsn0807/acknowledgment.rtf | 3 + general/datasets/Illum_lxs_hipp_rsn0807/cases.rtf | 2140 ++ .../datasets/Illum_lxs_hipp_rsn0807/citation.rtf | 3 + .../Illum_lxs_hipp_rsn0807/contributors.rtf | 5 + .../Illum_lxs_hipp_rsn0807/experiment-design.rtf | 1 + general/datasets/Illum_lxs_hipp_rsn0807/notes.rtf | 3 + .../datasets/Illum_lxs_hipp_rsn0807/platform.rtf | 5 + .../datasets/Illum_lxs_hipp_rsn0807/processing.rtf | 3 + .../datasets/Illum_lxs_hipp_rsn0807/summary.rtf | 33 + general/datasets/Illum_lxs_hipp_rsn0807/tissue.rtf | 9 + .../Illum_lxs_hipp_rsn_nb0807/acknowledgment.rtf | 3 + .../datasets/Illum_lxs_hipp_rsn_nb0807/cases.rtf | 2140 ++ .../Illum_lxs_hipp_rsn_nb0807/citation.rtf | 3 + .../Illum_lxs_hipp_rsn_nb0807/contributors.rtf | 5 + .../experiment-design.rtf | 1 + .../datasets/Illum_lxs_hipp_rsn_nb0807/notes.rtf | 3 + .../Illum_lxs_hipp_rsn_nb0807/platform.rtf | 5 + .../Illum_lxs_hipp_rsn_nb0807/processing.rtf | 3 + .../datasets/Illum_lxs_hipp_rsn_nb0807/summary.rtf | 33 + .../datasets/Illum_lxs_hipp_rsn_nb0807/tissue.rtf | 9 + .../datasets/Illum_lxs_hipp_rss_1008/summary.rtf | 1 + .../acknowledgment.rtf | 13 + .../Illum_retina_bxd_rankinv0410/cases.rtf | 14 + .../Illum_retina_bxd_rankinv0410/contributors.rtf | 1 + .../experiment-design.rtf | 12 + .../experiment-type.rtf | 1 + .../Illum_retina_bxd_rankinv0410/notes.rtf | 1 + .../Illum_retina_bxd_rankinv0410/platform.rtf | 1 + .../Illum_retina_bxd_rankinv0410/processing.rtf | 2654 ++ .../Illum_retina_bxd_rankinv0410/summary.rtf | 50 + .../Illum_retina_bxd_rankinv0410/tissue.rtf | 32 + general/datasets/Inia_adrenal_rma_0612/cases.rtf | 771 + .../Inia_adrenal_rma_0612/experiment-design.rtf | 3 + .../Inia_adrenal_rma_0612/experiment-type.rtf | 1 + .../datasets/Inia_adrenal_rma_0612/platform.rtf | 1 + .../datasets/Inia_adrenal_rma_0612/processing.rtf | 1 + general/datasets/Inia_adrenal_rma_0612/summary.rtf | 17 + general/datasets/Inia_adrenal_rma_0612/tissue.rtf | 1 + .../datasets/Inia_adrenal_rma_ex_0612/cases.rtf | 771 + .../Inia_adrenal_rma_ex_0612/experiment-design.rtf | 3 + .../datasets/Inia_adrenal_rma_ex_0612/platform.rtf | 1 + .../Inia_adrenal_rma_ex_0612/processing.rtf | 1 + .../datasets/Inia_adrenal_rma_ex_0612/summary.rtf | 17 + .../datasets/Inia_adrenal_rma_ex_0612/tissue.rtf | 1 + general/datasets/Inia_adrenal_rma_f_0612/cases.rtf | 771 + .../Inia_adrenal_rma_f_0612/experiment-design.rtf | 3 + .../datasets/Inia_adrenal_rma_f_0612/platform.rtf | 1 + .../Inia_adrenal_rma_f_0612/processing.rtf | 1 + .../datasets/Inia_adrenal_rma_f_0612/summary.rtf | 17 + .../datasets/Inia_adrenal_rma_f_0612/tissue.rtf | 1 + general/datasets/Inia_adrenal_rma_m_0612/cases.rtf | 771 + .../Inia_adrenal_rma_m_0612/experiment-design.rtf | 3 + .../datasets/Inia_adrenal_rma_m_0612/platform.rtf | 1 + .../Inia_adrenal_rma_m_0612/processing.rtf | 1 + .../datasets/Inia_adrenal_rma_m_0612/summary.rtf | 17 + .../datasets/Inia_adrenal_rma_m_0612/tissue.rtf | 1 + .../datasets/Inia_amg_bla_ex_rma_1110/cases.rtf | 3 + .../Inia_amg_bla_ex_rma_1110/contributors.rtf | 1 + .../Inia_amg_bla_ex_rma_1110/experiment-design.rtf | 1152 + .../datasets/Inia_amg_bla_ex_rma_1110/platform.rtf | 1 + .../Inia_amg_bla_ex_rma_1110/processing.rtf | 16 + .../Inia_amg_bla_ex_rma_1110/specifics.rtf | 1 + .../datasets/Inia_amg_bla_ex_rma_1110/summary.rtf | 1 + .../datasets/Inia_amg_bla_ex_rma_1110/tissue.rtf | 12 + general/datasets/Inia_amg_bla_rma_1110/cases.rtf | 3 + .../Inia_amg_bla_rma_1110/contributors.rtf | 1 + .../Inia_amg_bla_rma_1110/experiment-design.rtf | 1152 + .../datasets/Inia_amg_bla_rma_1110/platform.rtf | 1 + .../datasets/Inia_amg_bla_rma_1110/processing.rtf | 16 + .../datasets/Inia_amg_bla_rma_1110/specifics.rtf | 1 + general/datasets/Inia_amg_bla_rma_1110/summary.rtf | 1 + general/datasets/Inia_amg_bla_rma_1110/tissue.rtf | 12 + general/datasets/Inia_amg_bla_rma_f_1110/cases.rtf | 3 + .../Inia_amg_bla_rma_f_1110/contributors.rtf | 1 + .../Inia_amg_bla_rma_f_1110/experiment-design.rtf | 1152 + .../datasets/Inia_amg_bla_rma_f_1110/platform.rtf | 1 + .../Inia_amg_bla_rma_f_1110/processing.rtf | 16 + .../datasets/Inia_amg_bla_rma_f_1110/summary.rtf | 1 + .../datasets/Inia_amg_bla_rma_f_1110/tissue.rtf | 12 + general/datasets/Inia_amg_bla_rma_m_1110/cases.rtf | 3 + .../Inia_amg_bla_rma_m_1110/contributors.rtf | 1 + .../Inia_amg_bla_rma_m_1110/experiment-design.rtf | 1152 + .../datasets/Inia_amg_bla_rma_m_1110/platform.rtf | 1 + .../Inia_amg_bla_rma_m_1110/processing.rtf | 16 + .../datasets/Inia_amg_bla_rma_m_1110/specifics.rtf | 1 + .../datasets/Inia_amg_bla_rma_m_1110/summary.rtf | 1 + .../datasets/Inia_amg_bla_rma_m_1110/tissue.rtf | 12 + general/datasets/Inia_amgcoh_0311/cases.rtf | 3 + general/datasets/Inia_amgcoh_0311/contributors.rtf | 1 + .../Inia_amgcoh_0311/experiment-design.rtf | 1152 + general/datasets/Inia_amgcoh_0311/platform.rtf | 1 + general/datasets/Inia_amgcoh_0311/processing.rtf | 16 + general/datasets/Inia_amgcoh_0311/summary.rtf | 1 + general/datasets/Inia_amgcoh_0311/tissue.rtf | 12 + .../Inia_bxd_livdnam_1119/experiment-design.rtf | 1 + .../datasets/Inia_bxd_livdnam_1119/platform.rtf | 1 + .../datasets/Inia_bxd_livdnam_1119/processing.rtf | 1 + .../datasets/Inia_bxd_livdnam_1119/specifics.rtf | 1 + general/datasets/Inia_bxd_livdnam_1119/summary.rtf | 1 + .../experiment-design.rtf | 1 + .../Inia_bxd_livdnaminfi_1020/platform.rtf | 1 + .../Inia_bxd_livdnaminfi_1020/processing.rtf | 1 + .../Inia_bxd_livdnaminfi_1020/specifics.rtf | 1 + .../datasets/Inia_bxd_livdnaminfi_1020/summary.rtf | 1 + .../Inia_hyp_f_rma_1110/acknowledgment.rtf | 1 + general/datasets/Inia_hyp_f_rma_1110/cases.rtf | 916 + general/datasets/Inia_hyp_f_rma_1110/citation.rtf | 1 + .../datasets/Inia_hyp_f_rma_1110/contributors.rtf | 15 + .../Inia_hyp_f_rma_1110/experiment-design.rtf | 6 + general/datasets/Inia_hyp_f_rma_1110/platform.rtf | 1 + .../datasets/Inia_hyp_f_rma_1110/processing.rtf | 1 + general/datasets/Inia_hyp_f_rma_1110/summary.rtf | 16 + .../Inia_hyp_m_rma_1110/acknowledgment.rtf | 1 + general/datasets/Inia_hyp_m_rma_1110/cases.rtf | 916 + general/datasets/Inia_hyp_m_rma_1110/citation.rtf | 1 + .../datasets/Inia_hyp_m_rma_1110/contributors.rtf | 15 + .../Inia_hyp_m_rma_1110/experiment-design.rtf | 6 + general/datasets/Inia_hyp_m_rma_1110/platform.rtf | 1 + .../datasets/Inia_hyp_m_rma_1110/processing.rtf | 1 + general/datasets/Inia_hyp_m_rma_1110/summary.rtf | 16 + .../datasets/Inia_hyp_pca_0813/acknowledgment.rtf | 1 + general/datasets/Inia_hyp_pca_0813/cases.rtf | 916 + general/datasets/Inia_hyp_pca_0813/citation.rtf | 1 + .../datasets/Inia_hyp_pca_0813/contributors.rtf | 15 + .../Inia_hyp_pca_0813/experiment-design.rtf | 6 + general/datasets/Inia_hyp_pca_0813/platform.rtf | 1 + general/datasets/Inia_hyp_pca_0813/processing.rtf | 1 + general/datasets/Inia_hyp_pca_0813/summary.rtf | 16 + .../Inia_hyp_pca_0813_v2/acknowledgment.rtf | 1 + general/datasets/Inia_hyp_pca_0813_v2/cases.rtf | 916 + general/datasets/Inia_hyp_pca_0813_v2/citation.rtf | 1 + .../datasets/Inia_hyp_pca_0813_v2/contributors.rtf | 15 + .../Inia_hyp_pca_0813_v2/experiment-design.rtf | 6 + general/datasets/Inia_hyp_pca_0813_v2/platform.rtf | 1 + .../datasets/Inia_hyp_pca_0813_v2/processing.rtf | 1 + general/datasets/Inia_hyp_pca_0813_v2/summary.rtf | 16 + .../Inia_hyp_pca_0813_v3/acknowledgment.rtf | 1 + general/datasets/Inia_hyp_pca_0813_v3/cases.rtf | 916 + general/datasets/Inia_hyp_pca_0813_v3/citation.rtf | 1 + .../datasets/Inia_hyp_pca_0813_v3/contributors.rtf | 15 + .../Inia_hyp_pca_0813_v3/experiment-design.rtf | 6 + general/datasets/Inia_hyp_pca_0813_v3/platform.rtf | 1 + .../datasets/Inia_hyp_pca_0813_v3/processing.rtf | 1 + general/datasets/Inia_hyp_pca_0813_v3/summary.rtf | 16 + .../Inia_hyp_pca_0813_v4/acknowledgment.rtf | 1 + general/datasets/Inia_hyp_pca_0813_v4/cases.rtf | 916 + general/datasets/Inia_hyp_pca_0813_v4/citation.rtf | 1 + .../datasets/Inia_hyp_pca_0813_v4/contributors.rtf | 15 + .../Inia_hyp_pca_0813_v4/experiment-design.rtf | 6 + general/datasets/Inia_hyp_pca_0813_v4/platform.rtf | 1 + .../datasets/Inia_hyp_pca_0813_v4/processing.rtf | 1 + general/datasets/Inia_hyp_pca_0813_v4/summary.rtf | 16 + .../datasets/Inia_hyp_rma_1110/acknowledgment.rtf | 1 + general/datasets/Inia_hyp_rma_1110/cases.rtf | 916 + general/datasets/Inia_hyp_rma_1110/citation.rtf | 1 + .../datasets/Inia_hyp_rma_1110/contributors.rtf | 15 + .../Inia_hyp_rma_1110/experiment-design.rtf | 6 + general/datasets/Inia_hyp_rma_1110/platform.rtf | 1 + general/datasets/Inia_hyp_rma_1110/processing.rtf | 1 + general/datasets/Inia_hyp_rma_1110/summary.rtf | 16 + .../Inia_hyp_rma_ex_1110/acknowledgment.rtf | 1 + general/datasets/Inia_hyp_rma_ex_1110/cases.rtf | 916 + general/datasets/Inia_hyp_rma_ex_1110/citation.rtf | 1 + .../datasets/Inia_hyp_rma_ex_1110/contributors.rtf | 15 + .../Inia_hyp_rma_ex_1110/experiment-design.rtf | 6 + general/datasets/Inia_hyp_rma_ex_1110/platform.rtf | 1 + .../datasets/Inia_hyp_rma_ex_1110/processing.rtf | 1 + general/datasets/Inia_hyp_rma_ex_1110/summary.rtf | 16 + general/datasets/Inia_lcm_1215/acknowledgment.rtf | 1 + general/datasets/Inia_lcm_1215/cases.rtf | 1 + general/datasets/Inia_lcm_1215/contributors.rtf | 5 + general/datasets/Inia_lcm_1215/platform.rtf | 11 + general/datasets/Inia_lcm_1215/processing.rtf | 5 + general/datasets/Inia_lcm_1215/summary.rtf | 1 + general/datasets/Inia_lcm_1215/tissue.rtf | 5 + .../datasets/Inia_lcm_cab_1215/acknowledgment.rtf | 1 + general/datasets/Inia_lcm_cab_1215/cases.rtf | 1 + .../datasets/Inia_lcm_cab_1215/contributors.rtf | 5 + general/datasets/Inia_lcm_cab_1215/platform.rtf | 11 + general/datasets/Inia_lcm_cab_1215/processing.rtf | 5 + general/datasets/Inia_lcm_cab_1215/specifics.rtf | 17 + general/datasets/Inia_lcm_cab_1215/summary.rtf | 1 + general/datasets/Inia_lcm_cab_1215/tissue.rtf | 5 + general/datasets/Inia_lcmb_1215/acknowledgment.rtf | 1 + general/datasets/Inia_lcmb_1215/cases.rtf | 1 + general/datasets/Inia_lcmb_1215/contributors.rtf | 5 + general/datasets/Inia_lcmb_1215/platform.rtf | 11 + general/datasets/Inia_lcmb_1215/processing.rtf | 5 + general/datasets/Inia_lcmb_1215/summary.rtf | 1 + general/datasets/Inia_lcmb_1215/tissue.rtf | 5 + .../Inia_macfas_ac_rma_0110/experiment-type.rtf | 1 + .../datasets/Inia_macfas_ac_rma_0110/summary.rtf | 1 + .../Inia_macfas_amg_rma_0110/experiment-type.rtf | 1 + .../datasets/Inia_macfas_amg_rma_0110/summary.rtf | 1 + .../Inia_macfas_brain_rma_0110/experiment-type.rtf | 1 + .../datasets/Inia_macfas_brain_rma_0110/notes.rtf | 5 + .../Inia_macfas_brain_rma_0110/summary.rtf | 1 + .../Inia_macfas_hc_rma_0110/experiment-type.rtf | 1 + .../datasets/Inia_macfas_hc_rma_0110/summary.rtf | 1 + .../Inia_macfas_pf_rma_0110/experiment-type.rtf | 1 + .../datasets/Inia_macfas_pf_rma_0110/summary.rtf | 1 + .../datasets/Inia_pg_rma_0612/acknowledgment.rtf | 1 + general/datasets/Inia_pg_rma_0612/cases.rtf | 840 + general/datasets/Inia_pg_rma_0612/citation.rtf | 1 + general/datasets/Inia_pg_rma_0612/contributors.rtf | 1 + .../Inia_pg_rma_0612/experiment-design.rtf | 10 + .../datasets/Inia_pg_rma_0612/experiment-type.rtf | 10 + general/datasets/Inia_pg_rma_0612/platform.rtf | 1 + general/datasets/Inia_pg_rma_0612/processing.rtf | 1 + general/datasets/Inia_pg_rma_0612/summary.rtf | 3 + general/datasets/Inia_pg_rma_0612/tissue.rtf | 1 + .../Inia_pg_rma_ex_0612/acknowledgment.rtf | 1 + general/datasets/Inia_pg_rma_ex_0612/cases.rtf | 840 + general/datasets/Inia_pg_rma_ex_0612/citation.rtf | 1 + .../datasets/Inia_pg_rma_ex_0612/contributors.rtf | 1 + .../Inia_pg_rma_ex_0612/experiment-design.rtf | 10 + general/datasets/Inia_pg_rma_ex_0612/platform.rtf | 1 + .../datasets/Inia_pg_rma_ex_0612/processing.rtf | 1 + general/datasets/Inia_pg_rma_ex_0612/summary.rtf | 3 + general/datasets/Inia_pg_rma_ex_0612/tissue.rtf | 1 + .../Inia_pituitary_rma_f_0612/acknowledgment.rtf | 1 + .../datasets/Inia_pituitary_rma_f_0612/cases.rtf | 840 + .../Inia_pituitary_rma_f_0612/citation.rtf | 1 + .../Inia_pituitary_rma_f_0612/contributors.rtf | 1 + .../experiment-design.rtf | 10 + .../Inia_pituitary_rma_f_0612/platform.rtf | 1 + .../Inia_pituitary_rma_f_0612/processing.rtf | 1 + .../datasets/Inia_pituitary_rma_f_0612/summary.rtf | 3 + .../datasets/Inia_pituitary_rma_f_0612/tissue.rtf | 1 + .../Inia_pituitary_rma_m_0612/acknowledgment.rtf | 1 + .../datasets/Inia_pituitary_rma_m_0612/cases.rtf | 840 + .../Inia_pituitary_rma_m_0612/citation.rtf | 1 + .../Inia_pituitary_rma_m_0612/contributors.rtf | 1 + .../experiment-design.rtf | 10 + .../Inia_pituitary_rma_m_0612/platform.rtf | 1 + .../Inia_pituitary_rma_m_0612/processing.rtf | 1 + .../datasets/Inia_pituitary_rma_m_0612/summary.rtf | 3 + .../datasets/Inia_pituitary_rma_m_0612/tissue.rtf | 1 + .../Inia_uthsc_hip_affymta1_may17/summary.rtf | 1 + .../Inia_uthsc_mid_affymta1_apr17/cases.rtf | 857 + .../Inia_uthsc_mid_affymta1_apr17/specifics.rtf | 1 + .../Inia_uthsc_mid_affymta1_apr17/summary.rtf | 31 + .../Inia_uthsc_mid_affymta1_ex_may17/cases.rtf | 857 + .../Inia_uthsc_mid_affymta1_ex_may17/specifics.rtf | 1 + .../Inia_uthsc_mid_affymta1_ex_may17/summary.rtf | 31 + .../Inia_uthsc_pfc_affymta1_may17/summary.rtf | 1 + .../Inia_uthsc_str_affymta1_may17/summary.rtf | 1 + general/datasets/Iop_spl_rma_0509/notes.rtf | 1 + general/datasets/Iop_spl_rma_0509/summary.rtf | 1 + general/datasets/Ircm_axbxa_hri0213/summary.rtf | 1 + .../acknowledgment.rtf | 1 - .../JAX_BXD_Germ_Cells_edgeR_0820/cases.rtf | 1 - .../JAX_BXD_Germ_Cells_edgeR_0820/processing.rtf | 5 - .../JAX_BXD_Germ_Cells_edgeR_0820/specifics.rtf | 1 - .../JAX_BXD_Germ_Cells_edgeR_0820/summary.rtf | 3 - .../JAX_BXD_Germ_Cells_edgeR_0820/tissue.rtf | 7 - .../acknowledgment.rtf | 1 - .../JAX_BXD_Germ_Cells_edgeR_log2_0820/cases.rtf | 1 - .../processing.rtf | 5 - .../specifics.rtf | 1 - .../JAX_BXD_Germ_Cells_edgeR_log2_0820/summary.rtf | 3 - .../JAX_BXD_Germ_Cells_edgeR_log2_0820/tissue.rtf | 7 - .../acknowledgment.rtf | 1 - .../JAX_BXD_Germ_Cells_edgeR_log2z_0820/cases.rtf | 1 - .../processing.rtf | 5 - .../specifics.rtf | 1 - .../summary.rtf | 3 - .../JAX_BXD_Germ_Cells_edgeR_log2z_0820/tissue.rtf | 7 - .../datasets/JAX_BXD_Hip_Pro_0219/specifics.rtf | 1 - general/datasets/JAX_BXD_Hip_Pro_0219/summary.rtf | 7 - .../JAX_D2GM_RSeq_log2Z_0418/experiment-design.rtf | 1 - .../datasets/JAX_D2GM_RSeq_log2Z_0418/platform.rtf | 1 - .../JAX_D2GM_RSeq_log2Z_0418/specifics.rtf | 3 - .../datasets/JAX_D2GM_RSeq_log2Z_0418/summary.rtf | 1 - .../acknowledgment.rtf | 3 - .../experiment-design.rtf | 1 - .../processing.rtf | 5 - .../specifics.rtf | 1 - .../JAX_D2_Mono1vPBMC_Ret_RNA_Seq_0619/summary.rtf | 3 - .../acknowledgment.rtf | 3 - .../experiment-design.rtf | 1 - .../processing.rtf | 5 - .../specifics.rtf | 1 - .../JAX_D2_Mono2vPBMC_Ret_RNA_Seq_0619/summary.rtf | 3 - .../datasets/JAX_liver_agil_MDP-0113/summary.rtf | 1 + .../datasets/JAX_liver_agil_MDP_0113/summary.rtf | 1 - .../acknowledgment.rtf | 1 + .../Jax_bxd_germ_cells_edger_0820/cases.rtf | 1 + .../Jax_bxd_germ_cells_edger_0820/processing.rtf | 5 + .../Jax_bxd_germ_cells_edger_0820/specifics.rtf | 1 + .../Jax_bxd_germ_cells_edger_0820/summary.rtf | 3 + .../Jax_bxd_germ_cells_edger_0820/tissue.rtf | 7 + .../acknowledgment.rtf | 1 + .../Jax_bxd_germ_cells_edger_log2_0820/cases.rtf | 1 + .../processing.rtf | 5 + .../specifics.rtf | 1 + .../Jax_bxd_germ_cells_edger_log2_0820/summary.rtf | 3 + .../Jax_bxd_germ_cells_edger_log2_0820/tissue.rtf | 7 + .../acknowledgment.rtf | 1 + .../Jax_bxd_germ_cells_edger_log2z_0820/cases.rtf | 1 + .../processing.rtf | 5 + .../specifics.rtf | 1 + .../summary.rtf | 3 + .../Jax_bxd_germ_cells_edger_log2z_0820/tissue.rtf | 7 + .../datasets/Jax_bxd_hip_pro_0219/specifics.rtf | 1 + general/datasets/Jax_bxd_hip_pro_0219/summary.rtf | 7 + general/datasets/Jax_csb_l_0711/acknowledgment.rtf | 1 + general/datasets/Jax_csb_l_0711/cases.rtf | 1030 + general/datasets/Jax_csb_l_0711/citation.rtf | 1 + general/datasets/Jax_csb_l_0711/contributors.rtf | 1 + .../datasets/Jax_csb_l_0711/experiment-design.rtf | 3 + .../datasets/Jax_csb_l_0711/experiment-type.rtf | 1 + general/datasets/Jax_csb_l_0711/platform.rtf | 1 + general/datasets/Jax_csb_l_0711/summary.rtf | 1 + general/datasets/Jax_csb_l_0711/tissue.rtf | 1 + .../datasets/Jax_csb_l_6c_0711/acknowledgment.rtf | 1 + general/datasets/Jax_csb_l_6c_0711/cases.rtf | 1030 + general/datasets/Jax_csb_l_6c_0711/citation.rtf | 1 + .../datasets/Jax_csb_l_6c_0711/contributors.rtf | 1 + .../Jax_csb_l_6c_0711/experiment-design.rtf | 3 + .../datasets/Jax_csb_l_6c_0711/experiment-type.rtf | 1 + general/datasets/Jax_csb_l_6c_0711/platform.rtf | 1 + general/datasets/Jax_csb_l_6c_0711/summary.rtf | 1 + general/datasets/Jax_csb_l_6c_0711/tissue.rtf | 1 + .../datasets/Jax_csb_l_hf_0711/acknowledgment.rtf | 1 + general/datasets/Jax_csb_l_hf_0711/cases.rtf | 1030 + general/datasets/Jax_csb_l_hf_0711/citation.rtf | 1 + .../datasets/Jax_csb_l_hf_0711/contributors.rtf | 1 + .../Jax_csb_l_hf_0711/experiment-design.rtf | 3 + .../datasets/Jax_csb_l_hf_0711/experiment-type.rtf | 1 + general/datasets/Jax_csb_l_hf_0711/platform.rtf | 1 + general/datasets/Jax_csb_l_hf_0711/summary.rtf | 1 + general/datasets/Jax_csb_l_hf_0711/tissue.rtf | 1 + .../acknowledgment.rtf | 3 + .../citation.rtf | 1 + .../experiment-design.rtf | 1 + .../processing.rtf | 5 + .../specifics.rtf | 1 + .../Jax_d2_mono1vpbmc_ret_rna_seq_0619/summary.rtf | 3 + .../acknowledgment.rtf | 3 + .../citation.rtf | 1 + .../experiment-design.rtf | 1 + .../processing.rtf | 5 + .../specifics.rtf | 1 + .../Jax_d2_mono2vpbmc_ret_rna_seq_0619/summary.rtf | 3 + .../datasets/Jax_d2gm_rseq_log2z_0418/citation.rtf | 3 + .../Jax_d2gm_rseq_log2z_0418/experiment-design.rtf | 1 + .../datasets/Jax_d2gm_rseq_log2z_0418/platform.rtf | 1 + .../Jax_d2gm_rseq_log2z_0418/specifics.rtf | 3 + .../datasets/Jax_d2gm_rseq_log2z_0418/summary.rtf | 1 + .../Jax_liver_agil_mdp_0113/experiment-type.rtf | 13 + .../datasets/Jax_liver_agil_mdp_0113/summary.rtf | 1 + general/datasets/Ki_2a_0405_m/acknowledgment.rtf | 1 + general/datasets/Ki_2a_0405_m/cases.rtf | 7 + general/datasets/Ki_2a_0405_m/citation.rtf | 1 + general/datasets/Ki_2a_0405_m/contributors.rtf | 1 + general/datasets/Ki_2a_0405_m/notes.rtf | 3 + general/datasets/Ki_2a_0405_m/platform.rtf | 3 + general/datasets/Ki_2a_0405_m/processing.rtf | 15 + general/datasets/Ki_2a_0405_m/summary.rtf | 19 + general/datasets/Ki_2a_0405_m/tissue.rtf | 534 + general/datasets/Ki_2a_0405_r/acknowledgment.rtf | 1 + general/datasets/Ki_2a_0405_r/cases.rtf | 7 + general/datasets/Ki_2a_0405_r/citation.rtf | 1 + general/datasets/Ki_2a_0405_r/contributors.rtf | 1 + general/datasets/Ki_2a_0405_r/notes.rtf | 3 + general/datasets/Ki_2a_0405_r/platform.rtf | 3 + general/datasets/Ki_2a_0405_r/processing.rtf | 15 + general/datasets/Ki_2a_0405_r/summary.rtf | 19 + general/datasets/Ki_2a_0405_r/tissue.rtf | 534 + general/datasets/Ki_2a_0405_rz/acknowledgment.rtf | 1 + general/datasets/Ki_2a_0405_rz/cases.rtf | 7 + general/datasets/Ki_2a_0405_rz/citation.rtf | 1 + general/datasets/Ki_2a_0405_rz/contributors.rtf | 1 + general/datasets/Ki_2a_0405_rz/notes.rtf | 3 + general/datasets/Ki_2a_0405_rz/platform.rtf | 3 + general/datasets/Ki_2a_0405_rz/processing.rtf | 15 + general/datasets/Ki_2a_0405_rz/summary.rtf | 19 + general/datasets/Ki_2a_0405_rz/tissue.rtf | 534 + general/datasets/Kin_ysm_a1c_0711/cases.rtf | 88 + general/datasets/Kin_ysm_a1c_0711/citation.rtf | 3 + general/datasets/Kin_ysm_a1c_0711/contributors.rtf | 1 + .../Kin_ysm_a1c_0711/experiment-design.rtf | 3 + .../datasets/Kin_ysm_a1c_0711/experiment-type.rtf | 9 + general/datasets/Kin_ysm_a1c_0711/notes.rtf | 1 + general/datasets/Kin_ysm_a1c_0711/processing.rtf | 1 + general/datasets/Kin_ysm_a1c_0711/summary.rtf | 1 + general/datasets/Kin_ysm_a1c_0711/tissue.rtf | 109 + general/datasets/Kin_ysm_amy_0711/cases.rtf | 88 + general/datasets/Kin_ysm_amy_0711/citation.rtf | 3 + general/datasets/Kin_ysm_amy_0711/contributors.rtf | 1 + .../Kin_ysm_amy_0711/experiment-design.rtf | 3 + .../datasets/Kin_ysm_amy_0711/experiment-type.rtf | 9 + general/datasets/Kin_ysm_amy_0711/notes.rtf | 1 + general/datasets/Kin_ysm_amy_0711/processing.rtf | 1 + general/datasets/Kin_ysm_amy_0711/summary.rtf | 1 + general/datasets/Kin_ysm_amy_0711/tissue.rtf | 109 + general/datasets/Kin_ysm_cbc_0711/cases.rtf | 88 + general/datasets/Kin_ysm_cbc_0711/citation.rtf | 3 + general/datasets/Kin_ysm_cbc_0711/contributors.rtf | 1 + .../Kin_ysm_cbc_0711/experiment-design.rtf | 3 + .../datasets/Kin_ysm_cbc_0711/experiment-type.rtf | 9 + general/datasets/Kin_ysm_cbc_0711/notes.rtf | 1 + general/datasets/Kin_ysm_cbc_0711/processing.rtf | 1 + general/datasets/Kin_ysm_cbc_0711/summary.rtf | 1 + general/datasets/Kin_ysm_cbc_0711/tissue.rtf | 109 + general/datasets/Kin_ysm_dfc_0711/cases.rtf | 88 + general/datasets/Kin_ysm_dfc_0711/citation.rtf | 3 + general/datasets/Kin_ysm_dfc_0711/contributors.rtf | 1 + .../Kin_ysm_dfc_0711/experiment-design.rtf | 3 + .../datasets/Kin_ysm_dfc_0711/experiment-type.rtf | 9 + general/datasets/Kin_ysm_dfc_0711/notes.rtf | 1 + general/datasets/Kin_ysm_dfc_0711/processing.rtf | 1 + general/datasets/Kin_ysm_dfc_0711/summary.rtf | 1 + general/datasets/Kin_ysm_dfc_0711/tissue.rtf | 109 + general/datasets/Kin_ysm_hip_0711/cases.rtf | 88 + general/datasets/Kin_ysm_hip_0711/citation.rtf | 3 + general/datasets/Kin_ysm_hip_0711/contributors.rtf | 1 + .../Kin_ysm_hip_0711/experiment-design.rtf | 3 + .../datasets/Kin_ysm_hip_0711/experiment-type.rtf | 9 + general/datasets/Kin_ysm_hip_0711/notes.rtf | 1 + general/datasets/Kin_ysm_hip_0711/processing.rtf | 1 + general/datasets/Kin_ysm_hip_0711/summary.rtf | 1 + general/datasets/Kin_ysm_hip_0711/tissue.rtf | 109 + general/datasets/Kin_ysm_ipc_0711/cases.rtf | 88 + general/datasets/Kin_ysm_ipc_0711/citation.rtf | 3 + general/datasets/Kin_ysm_ipc_0711/contributors.rtf | 1 + .../Kin_ysm_ipc_0711/experiment-design.rtf | 3 + .../datasets/Kin_ysm_ipc_0711/experiment-type.rtf | 9 + general/datasets/Kin_ysm_ipc_0711/notes.rtf | 1 + general/datasets/Kin_ysm_ipc_0711/processing.rtf | 1 + general/datasets/Kin_ysm_ipc_0711/summary.rtf | 1 + general/datasets/Kin_ysm_ipc_0711/tissue.rtf | 109 + general/datasets/Kin_ysm_itc_0711/cases.rtf | 88 + general/datasets/Kin_ysm_itc_0711/citation.rtf | 3 + general/datasets/Kin_ysm_itc_0711/contributors.rtf | 1 + .../Kin_ysm_itc_0711/experiment-design.rtf | 3 + .../datasets/Kin_ysm_itc_0711/experiment-type.rtf | 9 + general/datasets/Kin_ysm_itc_0711/notes.rtf | 1 + general/datasets/Kin_ysm_itc_0711/processing.rtf | 1 + general/datasets/Kin_ysm_itc_0711/summary.rtf | 1 + general/datasets/Kin_ysm_itc_0711/tissue.rtf | 109 + general/datasets/Kin_ysm_m1c_0711/cases.rtf | 88 + general/datasets/Kin_ysm_m1c_0711/citation.rtf | 3 + general/datasets/Kin_ysm_m1c_0711/contributors.rtf | 1 + .../Kin_ysm_m1c_0711/experiment-design.rtf | 3 + .../datasets/Kin_ysm_m1c_0711/experiment-type.rtf | 9 + general/datasets/Kin_ysm_m1c_0711/notes.rtf | 1 + general/datasets/Kin_ysm_m1c_0711/processing.rtf | 1 + general/datasets/Kin_ysm_m1c_0711/summary.rtf | 1 + general/datasets/Kin_ysm_m1c_0711/tissue.rtf | 109 + general/datasets/Kin_ysm_md_0711/cases.rtf | 88 + general/datasets/Kin_ysm_md_0711/citation.rtf | 3 + general/datasets/Kin_ysm_md_0711/contributors.rtf | 1 + .../datasets/Kin_ysm_md_0711/experiment-design.rtf | 3 + .../datasets/Kin_ysm_md_0711/experiment-type.rtf | 9 + general/datasets/Kin_ysm_md_0711/notes.rtf | 1 + general/datasets/Kin_ysm_md_0711/processing.rtf | 1 + general/datasets/Kin_ysm_md_0711/summary.rtf | 1 + general/datasets/Kin_ysm_md_0711/tissue.rtf | 109 + general/datasets/Kin_ysm_mfc_0711/cases.rtf | 88 + general/datasets/Kin_ysm_mfc_0711/citation.rtf | 3 + general/datasets/Kin_ysm_mfc_0711/contributors.rtf | 1 + .../Kin_ysm_mfc_0711/experiment-design.rtf | 3 + .../datasets/Kin_ysm_mfc_0711/experiment-type.rtf | 9 + general/datasets/Kin_ysm_mfc_0711/notes.rtf | 1 + general/datasets/Kin_ysm_mfc_0711/processing.rtf | 1 + general/datasets/Kin_ysm_mfc_0711/summary.rtf | 1 + general/datasets/Kin_ysm_mfc_0711/tissue.rtf | 109 + general/datasets/Kin_ysm_ofc_0711/cases.rtf | 88 + general/datasets/Kin_ysm_ofc_0711/citation.rtf | 3 + general/datasets/Kin_ysm_ofc_0711/contributors.rtf | 1 + .../Kin_ysm_ofc_0711/experiment-design.rtf | 3 + .../datasets/Kin_ysm_ofc_0711/experiment-type.rtf | 9 + general/datasets/Kin_ysm_ofc_0711/notes.rtf | 1 + general/datasets/Kin_ysm_ofc_0711/processing.rtf | 1 + general/datasets/Kin_ysm_ofc_0711/summary.rtf | 1 + general/datasets/Kin_ysm_ofc_0711/tissue.rtf | 109 + general/datasets/Kin_ysm_s1c_0711/cases.rtf | 88 + general/datasets/Kin_ysm_s1c_0711/citation.rtf | 3 + general/datasets/Kin_ysm_s1c_0711/contributors.rtf | 1 + .../Kin_ysm_s1c_0711/experiment-design.rtf | 3 + .../datasets/Kin_ysm_s1c_0711/experiment-type.rtf | 9 + general/datasets/Kin_ysm_s1c_0711/notes.rtf | 1 + general/datasets/Kin_ysm_s1c_0711/processing.rtf | 1 + general/datasets/Kin_ysm_s1c_0711/summary.rtf | 1 + general/datasets/Kin_ysm_s1c_0711/tissue.rtf | 109 + general/datasets/Kin_ysm_stc_0711/cases.rtf | 88 + general/datasets/Kin_ysm_stc_0711/citation.rtf | 3 + general/datasets/Kin_ysm_stc_0711/contributors.rtf | 1 + .../Kin_ysm_stc_0711/experiment-design.rtf | 3 + .../datasets/Kin_ysm_stc_0711/experiment-type.rtf | 9 + general/datasets/Kin_ysm_stc_0711/notes.rtf | 1 + general/datasets/Kin_ysm_stc_0711/processing.rtf | 1 + general/datasets/Kin_ysm_stc_0711/summary.rtf | 1 + general/datasets/Kin_ysm_stc_0711/tissue.rtf | 109 + general/datasets/Kin_ysm_str_0711/cases.rtf | 88 + general/datasets/Kin_ysm_str_0711/citation.rtf | 3 + general/datasets/Kin_ysm_str_0711/contributors.rtf | 1 + .../Kin_ysm_str_0711/experiment-design.rtf | 3 + .../datasets/Kin_ysm_str_0711/experiment-type.rtf | 9 + general/datasets/Kin_ysm_str_0711/notes.rtf | 1 + general/datasets/Kin_ysm_str_0711/processing.rtf | 1 + general/datasets/Kin_ysm_str_0711/summary.rtf | 1 + general/datasets/Kin_ysm_str_0711/tissue.rtf | 109 + general/datasets/Kin_ysm_v1c_0711/cases.rtf | 88 + general/datasets/Kin_ysm_v1c_0711/citation.rtf | 3 + general/datasets/Kin_ysm_v1c_0711/contributors.rtf | 1 + .../Kin_ysm_v1c_0711/experiment-design.rtf | 3 + .../datasets/Kin_ysm_v1c_0711/experiment-type.rtf | 9 + general/datasets/Kin_ysm_v1c_0711/notes.rtf | 1 + general/datasets/Kin_ysm_v1c_0711/processing.rtf | 1 + general/datasets/Kin_ysm_v1c_0711/summary.rtf | 1 + general/datasets/Kin_ysm_v1c_0711/tissue.rtf | 109 + general/datasets/Kin_ysm_vfc_0711/cases.rtf | 88 + general/datasets/Kin_ysm_vfc_0711/citation.rtf | 3 + general/datasets/Kin_ysm_vfc_0711/contributors.rtf | 1 + .../Kin_ysm_vfc_0711/experiment-design.rtf | 3 + .../datasets/Kin_ysm_vfc_0711/experiment-type.rtf | 9 + general/datasets/Kin_ysm_vfc_0711/notes.rtf | 1 + general/datasets/Kin_ysm_vfc_0711/processing.rtf | 1 + general/datasets/Kin_ysm_vfc_0711/summary.rtf | 1 + general/datasets/Kin_ysm_vfc_0711/tissue.rtf | 109 + .../LGSM_AIG34_50_56_GBSPublish/specifics.rtf | 1 - .../LGSM_AIG34_50_56_GBSPublish/summary.rtf | 3 - .../LGSM_AI_G34_39_43_GBSPublish/specifics.rtf | 1 - .../LGSM_AI_G34_39_43_GBSPublish/summary.rtf | 1 - .../datasets/LGSM_AI_G34_APublish/specifics.rtf | 1 - general/datasets/LGSM_AI_G34_APublish/summary.rtf | 1 - .../datasets/LGSM_AI_G34_GBSPublish/specifics.rtf | 1 - .../datasets/LGSM_AI_G34_GBSPublish/summary.rtf | 1 - .../LGSM_AI_G39_43_GBSPublish/specifics.rtf | 1 - .../datasets/LGSM_AI_G39_43_GBSPublish/summary.rtf | 1 - .../datasets/LSRU_CC_ST_1219/acknowledgment.rtf | 1 - general/datasets/LSRU_CC_ST_1219/cases.rtf | 5 - .../datasets/LSRU_CC_ST_1219/experiment-design.rtf | 3 - general/datasets/LSRU_CC_ST_1219/platform.rtf | 1 - general/datasets/LSRU_CC_ST_1219/processing.rtf | 1 - general/datasets/LSRU_CC_ST_1219/specifics.rtf | 1 - general/datasets/LSRU_CC_ST_1219/summary.rtf | 13 - general/datasets/LSRU_CC_ST_1219/tissue.rtf | 1 - .../Lgsm_ai_g34_39_43_gbspublish/specifics.rtf | 1 + .../Lgsm_ai_g34_39_43_gbspublish/summary.rtf | 1 + .../datasets/Lgsm_ai_g34_apublish/specifics.rtf | 1 + general/datasets/Lgsm_ai_g34_apublish/summary.rtf | 1 + .../datasets/Lgsm_ai_g34_gbspublish/specifics.rtf | 1 + .../datasets/Lgsm_ai_g34_gbspublish/summary.rtf | 1 + .../Lgsm_ai_g39_43_gbspublish/specifics.rtf | 1 + .../datasets/Lgsm_ai_g39_43_gbspublish/summary.rtf | 1 + .../Lgsm_aig34_50_56_gbspublish/contributors.rtf | 1 + .../Lgsm_aig34_50_56_gbspublish/specifics.rtf | 1 + .../Lgsm_aig34_50_56_gbspublish/summary.rtf | 3 + general/datasets/Linsenbardt_BoehmGeno/summary.rtf | 1 - .../datasets/Linsenbardt_BoehmPublish/summary.rtf | 1 - general/datasets/Linsenbardt_boehmgeno/summary.rtf | 1 + .../datasets/Linsenbardt_boehmpublish/summary.rtf | 1 + .../datasets/Lsru_cc_st_1219/acknowledgment.rtf | 1 + general/datasets/Lsru_cc_st_1219/cases.rtf | 5 + general/datasets/Lsru_cc_st_1219/citation.rtf | 1 + general/datasets/Lsru_cc_st_1219/contributors.rtf | 5 + .../datasets/Lsru_cc_st_1219/experiment-design.rtf | 3 + general/datasets/Lsru_cc_st_1219/platform.rtf | 1 + general/datasets/Lsru_cc_st_1219/processing.rtf | 1 + general/datasets/Lsru_cc_st_1219/specifics.rtf | 1 + general/datasets/Lsru_cc_st_1219/summary.rtf | 13 + general/datasets/Lsru_cc_st_1219/tissue.rtf | 1 + general/datasets/Luca_gse23352hlt0613/citation.rtf | 1 + .../datasets/Luca_gse23352hlt0613/contributors.rtf | 1 + general/datasets/Luca_gse23352hlt0613/summary.rtf | 15 + general/datasets/Lv_g_0106_b/citation.rtf | 1 + general/datasets/Lv_g_0106_b/platform.rtf | 1 + general/datasets/Lv_g_0106_b/processing.rtf | 1 + general/datasets/Lv_g_0106_b/summary.rtf | 9 + general/datasets/Lv_g_0106_f/citation.rtf | 1 + general/datasets/Lv_g_0106_f/platform.rtf | 1 + general/datasets/Lv_g_0106_f/processing.rtf | 1 + general/datasets/Lv_g_0106_f/summary.rtf | 9 + general/datasets/Lv_g_0106_m/citation.rtf | 1 + general/datasets/Lv_g_0106_m/platform.rtf | 1 + general/datasets/Lv_g_0106_m/processing.rtf | 1 + general/datasets/Lv_g_0106_m/summary.rtf | 9 + general/datasets/Lv_g_0704_a/citation.rtf | 1 + general/datasets/Lv_g_0704_a/platform.rtf | 1 + general/datasets/Lv_g_0704_a/processing.rtf | 1 + general/datasets/Lv_g_0704_a/summary.rtf | 9 + general/datasets/Lv_g_0704_r/citation.rtf | 1 + general/datasets/Lv_g_0704_r/platform.rtf | 1 + general/datasets/Lv_g_0704_r/processing.rtf | 1 + general/datasets/Lv_g_0704_r/summary.rtf | 9 + general/datasets/Lvf2_m_0704_m/acknowledgment.rtf | 3 + general/datasets/Lvf2_m_0704_m/cases.rtf | 1 + general/datasets/Lvf2_m_0704_m/citation.rtf | 27 + general/datasets/Lvf2_m_0704_m/notes.rtf | 3 + general/datasets/Lvf2_m_0704_m/platform.rtf | 876 + general/datasets/Lvf2_m_0704_m/processing.rtf | 14 + general/datasets/Lvf2_m_0704_m/summary.rtf | 3 + general/datasets/Lvf2_m_0704_m/tissue.rtf | 3 + general/datasets/Lvf2_m_0704_r/acknowledgment.rtf | 3 + general/datasets/Lvf2_m_0704_r/cases.rtf | 1 + general/datasets/Lvf2_m_0704_r/citation.rtf | 27 + general/datasets/Lvf2_m_0704_r/notes.rtf | 3 + general/datasets/Lvf2_m_0704_r/platform.rtf | 876 + general/datasets/Lvf2_m_0704_r/processing.rtf | 14 + general/datasets/Lvf2_m_0704_r/summary.rtf | 3 + general/datasets/Lvf2_m_0704_r/tissue.rtf | 3 + general/datasets/Lxsgeno/summary.rtf | 21 + general/datasets/Lxspublish/acknowledgment.rtf | 1 + general/datasets/Lxspublish/cases.rtf | 7 + general/datasets/Lxspublish/summary.rtf | 1 + general/datasets/Ma_m2_0706_p/acknowledgment.rtf | 24 + general/datasets/Ma_m2_0706_p/cases.rtf | 44 + .../datasets/Ma_m2_0706_p/experiment-design.rtf | 1864 ++ general/datasets/Ma_m2_0706_p/notes.rtf | 3 + general/datasets/Ma_m2_0706_p/platform.rtf | 3 + general/datasets/Ma_m2_0706_p/processing.rtf | 15 + general/datasets/Ma_m2_0706_p/summary.rtf | 1 + general/datasets/Ma_m2_0706_p/tissue.rtf | 3 + general/datasets/Ma_m2_0706_r/acknowledgment.rtf | 24 + general/datasets/Ma_m2_0706_r/cases.rtf | 44 + .../datasets/Ma_m2_0706_r/experiment-design.rtf | 1864 ++ general/datasets/Ma_m2_0706_r/notes.rtf | 3 + general/datasets/Ma_m2_0706_r/platform.rtf | 3 + general/datasets/Ma_m2_0706_r/processing.rtf | 15 + general/datasets/Ma_m2_0706_r/summary.rtf | 1 + general/datasets/Ma_m2_0706_r/tissue.rtf | 3 + general/datasets/Ma_m2_0806_p/acknowledgment.rtf | 24 + general/datasets/Ma_m2_0806_p/cases.rtf | 44 + .../datasets/Ma_m2_0806_p/experiment-design.rtf | 1864 ++ general/datasets/Ma_m2_0806_p/notes.rtf | 3 + general/datasets/Ma_m2_0806_p/platform.rtf | 3 + general/datasets/Ma_m2_0806_p/processing.rtf | 15 + general/datasets/Ma_m2_0806_p/summary.rtf | 1 + general/datasets/Ma_m2_0806_p/tissue.rtf | 3 + general/datasets/Ma_m2_0806_r/acknowledgment.rtf | 24 + general/datasets/Ma_m2_0806_r/cases.rtf | 44 + .../datasets/Ma_m2_0806_r/experiment-design.rtf | 1864 ++ general/datasets/Ma_m2_0806_r/notes.rtf | 3 + general/datasets/Ma_m2_0806_r/platform.rtf | 3 + general/datasets/Ma_m2_0806_r/processing.rtf | 15 + general/datasets/Ma_m2_0806_r/summary.rtf | 1 + general/datasets/Ma_m2_0806_r/tissue.rtf | 3 + general/datasets/Ma_m2f_0706_r/acknowledgment.rtf | 24 + general/datasets/Ma_m2f_0706_r/cases.rtf | 44 + .../datasets/Ma_m2f_0706_r/experiment-design.rtf | 1864 ++ general/datasets/Ma_m2f_0706_r/notes.rtf | 3 + general/datasets/Ma_m2f_0706_r/platform.rtf | 3 + general/datasets/Ma_m2f_0706_r/processing.rtf | 15 + general/datasets/Ma_m2f_0706_r/summary.rtf | 1 + general/datasets/Ma_m2f_0706_r/tissue.rtf | 3 + general/datasets/Ma_m2m_0706_r/acknowledgment.rtf | 24 + general/datasets/Ma_m2m_0706_r/cases.rtf | 44 + .../datasets/Ma_m2m_0706_r/experiment-design.rtf | 1864 ++ general/datasets/Ma_m2m_0706_r/notes.rtf | 3 + general/datasets/Ma_m2m_0706_r/platform.rtf | 3 + general/datasets/Ma_m2m_0706_r/processing.rtf | 15 + general/datasets/Ma_m2m_0706_r/summary.rtf | 1 + general/datasets/Ma_m2m_0706_r/tissue.rtf | 3 + general/datasets/Ma_m_0704_m/acknowledgment.rtf | 1 + general/datasets/Ma_m_0704_m/cases.rtf | 4 + general/datasets/Ma_m_0704_m/notes.rtf | 1 + general/datasets/Ma_m_0704_m/platform.rtf | 643 + general/datasets/Ma_m_0704_m/processing.rtf | 15 + general/datasets/Ma_m_0704_m/summary.rtf | 1 + general/datasets/Ma_m_0704_m/tissue.rtf | 1 + general/datasets/Ma_m_0704_r/acknowledgment.rtf | 1 + general/datasets/Ma_m_0704_r/cases.rtf | 4 + general/datasets/Ma_m_0704_r/notes.rtf | 1 + general/datasets/Ma_m_0704_r/platform.rtf | 643 + general/datasets/Ma_m_0704_r/processing.rtf | 15 + general/datasets/Ma_m_0704_r/summary.rtf | 1 + general/datasets/Ma_m_0704_r/tissue.rtf | 1 + general/datasets/Mdppublish/citation.rtf | 17 + general/datasets/Mdppublish/summary.rtf | 17 + .../experiment-design.rtf | 3 - .../processing.rtf | 9 - .../specifics.rtf | 2770 -- .../tissue.rtf | 3 - .../experiment-design.rtf | 3 - .../processing.rtf | 9 - .../specifics.rtf | 1758 -- .../tissue.rtf | 3 - .../experiment-design.rtf | 3 - .../processing.rtf | 9 - .../specifics.rtf | 1 - .../tissue.rtf | 3 - .../experiment-design.rtf | 3 - .../processing.rtf | 9 - .../specifics.rtf | 1907 -- .../tissue.rtf | 3 - .../experiment-design.rtf | 3 - .../processing.rtf | 9 - .../specifics.rtf | 2302 -- .../tissue.rtf | 3 - .../NIAAA_BXD_Hip_CMS_DID_RNAseq1020/cases.rtf | 4848 ---- .../experiment-design.rtf | 7 - .../processing.rtf | 9 - .../NIAAA_BXD_Hip_CMS_DID_RNAseq1020/specifics.rtf | 1 - .../NIAAA_BXD_Hip_CMS_DID_RNAseq1020/tissue.rtf | 7 - .../NIAAA_BXD_Hip_CMS_RNAseq1020/cases.rtf | 4848 ---- .../experiment-design.rtf | 7 - .../NIAAA_BXD_Hip_CMS_RNAseq1020/processing.rtf | 9 - .../NIAAA_BXD_Hip_CMS_RNAseq1020/specifics.rtf | 1 - .../NIAAA_BXD_Hip_CMS_RNAseq1020/tissue.rtf | 7 - .../NIAAA_BXD_Hip_CTL_RNAseq1020/cases.rtf | 4848 ---- .../experiment-design.rtf | 7 - .../NIAAA_BXD_Hip_CTL_RNAseq1020/processing.rtf | 9 - .../NIAAA_BXD_Hip_CTL_RNAseq1020/specifics.rtf | 1 - .../NIAAA_BXD_Hip_CTL_RNAseq1020/tissue.rtf | 7 - .../NIAAA_BXD_Hip_DID_RNAseq1020/cases.rtf | 4848 ---- .../experiment-design.rtf | 7 - .../NIAAA_BXD_Hip_DID_RNAseq1020/processing.rtf | 9 - .../NIAAA_BXD_Hip_DID_RNAseq1020/specifics.rtf | 1 - .../NIAAA_BXD_Hip_DID_RNAseq1020/tissue.rtf | 7 - .../NIA_AgBXD_Liv_CDHFD_rna_seq_0818/specifics.rtf | 1 - .../NIA_AgBXD_Liv_CDHFD_rna_seq_0818/summary.rtf | 1 - .../NIA_AgBXD_Liv_CD_rna_seq_0818/specifics.rtf | 1 - .../NIA_AgBXD_Liv_CD_rna_seq_0818/summary.rtf | 1 - .../NIA_AgBXD_Liv_HFD_rna_seq_0818/specifics.rtf | 1 - .../NIA_AgBXD_Liv_HFD_rna_seq_0818/summary.rtf | 1 - .../datasets/Nci_agil_mam_tum_rma_0409/summary.rtf | 1 + .../Nci_mam_tum_rma_0409/experiment-type.rtf | 1 + general/datasets/Nci_mam_tum_rma_0409/summary.rtf | 1 + .../Ncsu_droswb_lc_rma_0111/acknowledgment.rtf | 1 + general/datasets/Ncsu_droswb_lc_rma_0111/cases.rtf | 3 + .../datasets/Ncsu_droswb_lc_rma_0111/citation.rtf | 1 + .../Ncsu_droswb_lc_rma_0111/contributors.rtf | 3 + .../Ncsu_droswb_lc_rma_0111/experiment-design.rtf | 5 + .../Ncsu_droswb_lc_rma_0111/experiment-type.rtf | 1 + general/datasets/Ncsu_droswb_lc_rma_0111/notes.rtf | 3 + .../datasets/Ncsu_droswb_lc_rma_0111/platform.rtf | 3 + .../Ncsu_droswb_lc_rma_0111/processing.rtf | 3 + .../datasets/Ncsu_droswb_lc_rma_0111/summary.rtf | 2 + .../datasets/Ncsu_droswb_lc_rma_0111/tissue.rtf | 1 + .../experiment-design.rtf | 3 + .../processing.rtf | 9 + .../specifics.rtf | 2770 ++ .../tissue.rtf | 3 + .../experiment-design.rtf | 3 + .../processing.rtf | 9 + .../specifics.rtf | 1758 ++ .../tissue.rtf | 3 + .../experiment-design.rtf | 3 + .../processing.rtf | 9 + .../specifics.rtf | 1 + .../tissue.rtf | 3 + .../experiment-design.rtf | 3 + .../processing.rtf | 9 + .../specifics.rtf | 1907 ++ .../tissue.rtf | 3 + .../experiment-design.rtf | 3 + .../processing.rtf | 9 + .../specifics.rtf | 2302 ++ .../tissue.rtf | 3 + .../Nia_agbxd_liv_cd_rna_seq_0818/specifics.rtf | 1 + .../Nia_agbxd_liv_cd_rna_seq_0818/summary.rtf | 1 + .../Nia_agbxd_liv_cdhfd_rna_seq_0818/specifics.rtf | 1 + .../Nia_agbxd_liv_cdhfd_rna_seq_0818/summary.rtf | 1 + .../Nia_agbxd_liv_hfd_rna_seq_0818/specifics.rtf | 1 + .../Nia_agbxd_liv_hfd_rna_seq_0818/summary.rtf | 1 + .../Niaaa_bxd_hip_cms_did_rnaseq1020/cases.rtf | 4848 ++++ .../experiment-design.rtf | 7 + .../processing.rtf | 9 + .../Niaaa_bxd_hip_cms_did_rnaseq1020/specifics.rtf | 1 + .../Niaaa_bxd_hip_cms_did_rnaseq1020/tissue.rtf | 7 + .../Niaaa_bxd_hip_cms_rnaseq1020/cases.rtf | 4848 ++++ .../experiment-design.rtf | 7 + .../Niaaa_bxd_hip_cms_rnaseq1020/processing.rtf | 9 + .../Niaaa_bxd_hip_cms_rnaseq1020/specifics.rtf | 1 + .../Niaaa_bxd_hip_cms_rnaseq1020/tissue.rtf | 7 + .../Niaaa_bxd_hip_ctl_rnaseq1020/cases.rtf | 4848 ++++ .../experiment-design.rtf | 7 + .../Niaaa_bxd_hip_ctl_rnaseq1020/processing.rtf | 9 + .../Niaaa_bxd_hip_ctl_rnaseq1020/specifics.rtf | 1 + .../Niaaa_bxd_hip_ctl_rnaseq1020/tissue.rtf | 7 + .../Niaaa_bxd_hip_did_rnaseq1020/cases.rtf | 4848 ++++ .../experiment-design.rtf | 7 + .../Niaaa_bxd_hip_did_rnaseq1020/processing.rtf | 9 + .../Niaaa_bxd_hip_did_rnaseq1020/specifics.rtf | 1 + .../Niaaa_bxd_hip_did_rnaseq1020/tissue.rtf | 7 + general/datasets/None/summary.rtf | 40 + .../datasets/OHSU_HS-CC_ILMStr_0211/summary.rtf | 2 + .../datasets/OHSU_HS_CC_ILMStr_0211/summary.rtf | 2 - .../ONCRetExMoGene2_0413/acknowledgment.rtf | 1 - general/datasets/ONCRetExMoGene2_0413/cases.rtf | 1728 -- general/datasets/ONCRetExMoGene2_0413/platform.rtf | 1 - .../datasets/ONCRetExMoGene2_0413/processing.rtf | 1 - general/datasets/ONCRetExMoGene2_0413/summary.rtf | 1 - general/datasets/ONCRetExMoGene2_0413/tissue.rtf | 1 - .../datasets/ONCRetMoGene2_0413/acknowledgment.rtf | 1 - general/datasets/ONCRetMoGene2_0413/cases.rtf | 1728 -- general/datasets/ONCRetMoGene2_0413/platform.rtf | 1 - general/datasets/ONCRetMoGene2_0413/processing.rtf | 1 - general/datasets/ONCRetMoGene2_0413/summary.rtf | 1 - general/datasets/ONCRetMoGene2_0413/tissue.rtf | 1 - .../datasets/Ohsu_hs_cc_ilmstr_0211/summary.rtf | 2 + .../Oncretexmogene2_0413/acknowledgment.rtf | 1 + general/datasets/Oncretexmogene2_0413/cases.rtf | 1728 ++ general/datasets/Oncretexmogene2_0413/citation.rtf | 3 + .../datasets/Oncretexmogene2_0413/contributors.rtf | 1 + .../Oncretexmogene2_0413/experiment-type.rtf | 3 + general/datasets/Oncretexmogene2_0413/platform.rtf | 1 + .../datasets/Oncretexmogene2_0413/processing.rtf | 1 + general/datasets/Oncretexmogene2_0413/summary.rtf | 1 + general/datasets/Oncretexmogene2_0413/tissue.rtf | 1 + .../datasets/Oncretilm6_0412/acknowledgment.rtf | 13 + general/datasets/Oncretilm6_0412/cases.rtf | 14 + general/datasets/Oncretilm6_0412/contributors.rtf | 1 + .../datasets/Oncretilm6_0412/experiment-design.rtf | 12 + .../datasets/Oncretilm6_0412/experiment-type.rtf | 1 + general/datasets/Oncretilm6_0412/notes.rtf | 1 + general/datasets/Oncretilm6_0412/platform.rtf | 1 + general/datasets/Oncretilm6_0412/processing.rtf | 2654 ++ general/datasets/Oncretilm6_0412/summary.rtf | 50 + general/datasets/Oncretilm6_0412/tissue.rtf | 32 + .../datasets/Oncretmogene2_0413/acknowledgment.rtf | 1 + general/datasets/Oncretmogene2_0413/cases.rtf | 1728 ++ general/datasets/Oncretmogene2_0413/citation.rtf | 3 + .../datasets/Oncretmogene2_0413/contributors.rtf | 1 + .../Oncretmogene2_0413/experiment-type.rtf | 3 + general/datasets/Oncretmogene2_0413/platform.rtf | 1 + general/datasets/Oncretmogene2_0413/processing.rtf | 1 + general/datasets/Oncretmogene2_0413/summary.rtf | 1 + general/datasets/Oncretmogene2_0413/tissue.rtf | 1 + general/datasets/Oxukhs_ilmhipp_ri0510/cases.rtf | 1 + .../datasets/Oxukhs_ilmhipp_ri0510/citation.rtf | 5 + .../Oxukhs_ilmhipp_ri0510/experiment-type.rtf | 1 + .../datasets/Oxukhs_ilmhipp_ri0510/platform.rtf | 1 + general/datasets/Oxukhs_ilmhipp_ri0510/summary.rtf | 1 + general/datasets/Oxukhs_ilmliver_ri0510/cases.rtf | 1 + .../datasets/Oxukhs_ilmliver_ri0510/citation.rtf | 5 + .../Oxukhs_ilmliver_ri0510/experiment-type.rtf | 1 + .../datasets/Oxukhs_ilmliver_ri0510/platform.rtf | 1 + .../datasets/Oxukhs_ilmliver_ri0510/summary.rtf | 1 + general/datasets/Oxukhs_ilmlung_ri0510/cases.rtf | 1 + .../datasets/Oxukhs_ilmlung_ri0510/citation.rtf | 5 + .../datasets/Oxukhs_ilmlung_ri0510/platform.rtf | 1 + general/datasets/Oxukhs_ilmlung_ri0510/summary.rtf | 1 + .../PGenRatBrn_rna_0520/acknowledgment.rtf | 1 - general/datasets/PGenRatBrn_rna_0520/cases.rtf | 1 - .../PGenRatBrn_rna_0520/experiment-design.rtf | 1 - general/datasets/PGenRatBrn_rna_0520/platform.rtf | 1 - .../datasets/PGenRatBrn_rna_0520/processing.rtf | 3 - general/datasets/PGenRatBrn_rna_0520/specifics.rtf | 1 - general/datasets/PGenRatBrn_rna_0520/summary.rtf | 1 - general/datasets/PGenRatBrn_rna_0520/tissue.rtf | 1 - .../PGenRatBrn_rna_z_0520/acknowledgment.rtf | 1 - general/datasets/PGenRatBrn_rna_z_0520/cases.rtf | 1 - .../PGenRatBrn_rna_z_0520/experiment-design.rtf | 1 - .../datasets/PGenRatBrn_rna_z_0520/platform.rtf | 1 - .../datasets/PGenRatBrn_rna_z_0520/processing.rtf | 3 - .../datasets/PGenRatBrn_rna_z_0520/specifics.rtf | 1 - general/datasets/PGenRatBrn_rna_z_0520/summary.rtf | 1 - general/datasets/PGenRatBrn_rna_z_0520/tissue.rtf | 1 - .../PGenRatLiv_rna_0520/acknowledgment.rtf | 1 - general/datasets/PGenRatLiv_rna_0520/cases.rtf | 1 - .../PGenRatLiv_rna_0520/experiment-design.rtf | 1 - general/datasets/PGenRatLiv_rna_0520/platform.rtf | 1 - .../datasets/PGenRatLiv_rna_0520/processing.rtf | 3 - general/datasets/PGenRatLiv_rna_0520/specifics.rtf | 1 - general/datasets/PGenRatLiv_rna_0520/summary.rtf | 1 - general/datasets/PGenRatLiv_rna_0520/tissue.rtf | 1 - .../PGenRatLiv_rna_z_0520/acknowledgment.rtf | 1 - general/datasets/PGenRatLiv_rna_z_0520/cases.rtf | 1 - .../PGenRatLiv_rna_z_0520/experiment-design.rtf | 1 - .../datasets/PGenRatLiv_rna_z_0520/platform.rtf | 1 - .../datasets/PGenRatLiv_rna_z_0520/processing.rtf | 3 - .../datasets/PGenRatLiv_rna_z_0520/specifics.rtf | 1 - general/datasets/PGenRatLiv_rna_z_0520/summary.rtf | 1 - general/datasets/PGenRatLiv_rna_z_0520/tissue.rtf | 1 - general/datasets/PSU_B6D2F2_0812/platform.rtf | 1 - general/datasets/PSU_B6D2F2_0812/summary.rtf | 1 - general/datasets/PSU_B6D2F2_M0812/platform.rtf | 1 - general/datasets/PSU_B6D2F2_M0812/summary.rtf | 1 - .../Pgenratbrn_rna_0520/acknowledgment.rtf | 1 + general/datasets/Pgenratbrn_rna_0520/cases.rtf | 1 + general/datasets/Pgenratbrn_rna_0520/citation.rtf | 1 + .../datasets/Pgenratbrn_rna_0520/contributors.rtf | 23 + .../Pgenratbrn_rna_0520/experiment-design.rtf | 1 + general/datasets/Pgenratbrn_rna_0520/platform.rtf | 1 + .../datasets/Pgenratbrn_rna_0520/processing.rtf | 3 + general/datasets/Pgenratbrn_rna_0520/specifics.rtf | 1 + general/datasets/Pgenratbrn_rna_0520/summary.rtf | 1 + general/datasets/Pgenratbrn_rna_0520/tissue.rtf | 1 + .../Pgenratbrn_rna_z_0520/acknowledgment.rtf | 1 + general/datasets/Pgenratbrn_rna_z_0520/cases.rtf | 1 + .../datasets/Pgenratbrn_rna_z_0520/citation.rtf | 1 + .../Pgenratbrn_rna_z_0520/contributors.rtf | 23 + .../Pgenratbrn_rna_z_0520/experiment-design.rtf | 1 + .../datasets/Pgenratbrn_rna_z_0520/platform.rtf | 1 + .../datasets/Pgenratbrn_rna_z_0520/processing.rtf | 3 + .../datasets/Pgenratbrn_rna_z_0520/specifics.rtf | 1 + general/datasets/Pgenratbrn_rna_z_0520/summary.rtf | 1 + general/datasets/Pgenratbrn_rna_z_0520/tissue.rtf | 1 + .../Pgenratliv_rna_0520/acknowledgment.rtf | 1 + general/datasets/Pgenratliv_rna_0520/cases.rtf | 1 + general/datasets/Pgenratliv_rna_0520/citation.rtf | 1 + .../datasets/Pgenratliv_rna_0520/contributors.rtf | 23 + .../Pgenratliv_rna_0520/experiment-design.rtf | 1 + general/datasets/Pgenratliv_rna_0520/platform.rtf | 1 + .../datasets/Pgenratliv_rna_0520/processing.rtf | 3 + general/datasets/Pgenratliv_rna_0520/specifics.rtf | 1 + general/datasets/Pgenratliv_rna_0520/summary.rtf | 1 + general/datasets/Pgenratliv_rna_0520/tissue.rtf | 1 + .../Pgenratliv_rna_z_0520/acknowledgment.rtf | 1 + general/datasets/Pgenratliv_rna_z_0520/cases.rtf | 1 + .../datasets/Pgenratliv_rna_z_0520/citation.rtf | 1 + .../Pgenratliv_rna_z_0520/contributors.rtf | 23 + .../Pgenratliv_rna_z_0520/experiment-design.rtf | 1 + .../datasets/Pgenratliv_rna_z_0520/platform.rtf | 1 + .../datasets/Pgenratliv_rna_z_0520/processing.rtf | 3 + .../datasets/Pgenratliv_rna_z_0520/specifics.rtf | 1 + general/datasets/Pgenratliv_rna_z_0520/summary.rtf | 1 + general/datasets/Pgenratliv_rna_z_0520/tissue.rtf | 1 + general/datasets/PoplarPublish/acknowledgment.rtf | 1 - general/datasets/PoplarPublish/platform.rtf | 1 - general/datasets/PoplarPublish/processing.rtf | 1 - general/datasets/PoplarPublish/summary.rtf | 8 - general/datasets/Poplarpublish/acknowledgment.rtf | 1 + general/datasets/Poplarpublish/citation.rtf | 3 + general/datasets/Poplarpublish/platform.rtf | 1 + general/datasets/Poplarpublish/processing.rtf | 1 + general/datasets/Poplarpublish/summary.rtf | 8 + .../datasets/Psu_b6d2f2_0812/experiment-type.rtf | 1 + general/datasets/Psu_b6d2f2_0812/platform.rtf | 1 + general/datasets/Psu_b6d2f2_0812/summary.rtf | 1 + general/datasets/Psu_b6d2f2_m0812/platform.rtf | 1 + general/datasets/Psu_b6d2f2_m0812/summary.rtf | 1 + .../RTI_RCMRC_BXDFecMet0814/acknowledgment.rtf | 7 - general/datasets/RTI_RCMRC_BXDFecMet0814/cases.rtf | 3 - .../RTI_RCMRC_BXDFecMet0814/experiment-design.rtf | 17 - general/datasets/RTI_RCMRC_BXDFecMet0814/notes.rtf | 5 - .../datasets/RTI_RCMRC_BXDFecMet0814/platform.rtf | 1 - .../datasets/RTI_RCMRC_BXDFecMet0814/summary.rtf | 11 - .../datasets/RTI_RCMRC_BXDFecMet0814/tissue.rtf | 1 - .../RTI_RCMRC_BXDFecMetHF0814/acknowledgment.rtf | 7 - .../datasets/RTI_RCMRC_BXDFecMetHF0814/cases.rtf | 3 - .../experiment-design.rtf | 17 - .../datasets/RTI_RCMRC_BXDFecMetHF0814/notes.rtf | 5 - .../RTI_RCMRC_BXDFecMetHF0814/platform.rtf | 1 - .../datasets/RTI_RCMRC_BXDFecMetHF0814/summary.rtf | 11 - .../datasets/RTI_RCMRC_BXDFecMetHF0814/tissue.rtf | 1 - .../acknowledgment.rtf | 7 - .../RTI_RCMRC_BXDFecMetHFlog0814/cases.rtf | 3 - .../experiment-design.rtf | 17 - .../RTI_RCMRC_BXDFecMetHFlog0814/notes.rtf | 5 - .../RTI_RCMRC_BXDFecMetHFlog0814/platform.rtf | 1 - .../RTI_RCMRC_BXDFecMetHFlog0814/summary.rtf | 11 - .../RTI_RCMRC_BXDFecMetHFlog0814/tissue.rtf | 1 - .../RTI_RCMRC_BXDFecMetLF0814/acknowledgment.rtf | 7 - .../datasets/RTI_RCMRC_BXDFecMetLF0814/cases.rtf | 3 - .../experiment-design.rtf | 17 - .../datasets/RTI_RCMRC_BXDFecMetLF0814/notes.rtf | 5 - .../RTI_RCMRC_BXDFecMetLF0814/platform.rtf | 1 - .../datasets/RTI_RCMRC_BXDFecMetLF0814/summary.rtf | 11 - .../datasets/RTI_RCMRC_BXDFecMetLF0814/tissue.rtf | 1 - .../acknowledgment.rtf | 7 - .../RTI_RCMRC_BXDFecMetLFlog0814/cases.rtf | 3 - .../experiment-design.rtf | 17 - .../RTI_RCMRC_BXDFecMetLFlog0814/notes.rtf | 5 - .../RTI_RCMRC_BXDFecMetLFlog0814/platform.rtf | 1 - .../RTI_RCMRC_BXDFecMetLFlog0814/summary.rtf | 11 - .../RTI_RCMRC_BXDFecMetLFlog0814/tissue.rtf | 1 - .../RTI_RCMRC_BXDFecMetlog0814/acknowledgment.rtf | 7 - .../datasets/RTI_RCMRC_BXDFecMetlog0814/cases.rtf | 3 - .../experiment-design.rtf | 17 - .../datasets/RTI_RCMRC_BXDFecMetlog0814/notes.rtf | 5 - .../RTI_RCMRC_BXDFecMetlog0814/platform.rtf | 1 - .../RTI_RCMRC_BXDFecMetlog0814/summary.rtf | 11 - .../datasets/RTI_RCMRC_BXDFecMetlog0814/tissue.rtf | 1 - .../experiment-design.rtf | 23 - .../Riken_Wu_BXD_CDHF_WAdip_0920/specifics.rtf | 1 - .../experiment-design.rtf | 23 - .../Riken_Wu_BXD_CD_WAdip_0920/specifics.rtf | 1 - .../experiment-design.rtf | 23 - .../Riken_Wu_BXD_HF_WAdip_0920/specifics.rtf | 1 - .../Riken_Wu_BXD_WAdip_0720/experiment-design.rtf | 23 - .../datasets/Riken_Wu_BXD_WAdip_0720/specifics.rtf | 1 - .../experiment-design.rtf | 23 + .../Riken_wu_bxd_cd_wadip_0920/specifics.rtf | 1 + .../experiment-design.rtf | 23 + .../Riken_wu_bxd_cdhf_wadip_0920/specifics.rtf | 1 + .../experiment-design.rtf | 23 + .../Riken_wu_bxd_hf_wadip_0920/specifics.rtf | 1 + .../Riken_wu_bxd_wadip_0720/experiment-design.rtf | 23 + .../datasets/Riken_wu_bxd_wadip_0720/specifics.rtf | 1 + general/datasets/Rtc_1106_r/acknowledgment.rtf | 5 + general/datasets/Rtc_1106_r/cases.rtf | 914 + general/datasets/Rtc_1106_r/experiment-design.rtf | 7 + general/datasets/Rtc_1106_r/notes.rtf | 1 + general/datasets/Rtc_1106_r/platform.rtf | 3 + general/datasets/Rtc_1106_r/processing.rtf | 6 + general/datasets/Rtc_1106_r/summary.rtf | 3 + general/datasets/Rthc_0211_r/acknowledgment.rtf | 5 + general/datasets/Rthc_0211_r/cases.rtf | 824 + general/datasets/Rthc_0211_r/experiment-design.rtf | 7 + general/datasets/Rthc_0211_r/experiment-type.rtf | 4 + general/datasets/Rthc_0211_r/notes.rtf | 1 + general/datasets/Rthc_0211_r/platform.rtf | 3 + general/datasets/Rthc_0211_r/processing.rtf | 6 + general/datasets/Rthc_0211_r/summary.rtf | 4 + .../Rti_rcmrc_bxdfecmet0814/acknowledgment.rtf | 7 + general/datasets/Rti_rcmrc_bxdfecmet0814/cases.rtf | 3 + .../datasets/Rti_rcmrc_bxdfecmet0814/citation.rtf | 1 + .../Rti_rcmrc_bxdfecmet0814/contributors.rtf | 9 + .../Rti_rcmrc_bxdfecmet0814/experiment-design.rtf | 17 + general/datasets/Rti_rcmrc_bxdfecmet0814/notes.rtf | 5 + .../datasets/Rti_rcmrc_bxdfecmet0814/platform.rtf | 1 + .../datasets/Rti_rcmrc_bxdfecmet0814/summary.rtf | 11 + .../datasets/Rti_rcmrc_bxdfecmet0814/tissue.rtf | 1 + .../Rti_rcmrc_bxdfecmethf0814/acknowledgment.rtf | 7 + .../datasets/Rti_rcmrc_bxdfecmethf0814/cases.rtf | 3 + .../Rti_rcmrc_bxdfecmethf0814/citation.rtf | 1 + .../Rti_rcmrc_bxdfecmethf0814/contributors.rtf | 9 + .../experiment-design.rtf | 17 + .../datasets/Rti_rcmrc_bxdfecmethf0814/notes.rtf | 5 + .../Rti_rcmrc_bxdfecmethf0814/platform.rtf | 1 + .../datasets/Rti_rcmrc_bxdfecmethf0814/summary.rtf | 11 + .../datasets/Rti_rcmrc_bxdfecmethf0814/tissue.rtf | 1 + .../acknowledgment.rtf | 7 + .../Rti_rcmrc_bxdfecmethflog0814/cases.rtf | 3 + .../Rti_rcmrc_bxdfecmethflog0814/citation.rtf | 1 + .../Rti_rcmrc_bxdfecmethflog0814/contributors.rtf | 9 + .../experiment-design.rtf | 17 + .../Rti_rcmrc_bxdfecmethflog0814/notes.rtf | 5 + .../Rti_rcmrc_bxdfecmethflog0814/platform.rtf | 1 + .../Rti_rcmrc_bxdfecmethflog0814/summary.rtf | 11 + .../Rti_rcmrc_bxdfecmethflog0814/tissue.rtf | 1 + .../Rti_rcmrc_bxdfecmetlf0814/acknowledgment.rtf | 7 + .../datasets/Rti_rcmrc_bxdfecmetlf0814/cases.rtf | 3 + .../Rti_rcmrc_bxdfecmetlf0814/citation.rtf | 1 + .../Rti_rcmrc_bxdfecmetlf0814/contributors.rtf | 9 + .../experiment-design.rtf | 17 + .../datasets/Rti_rcmrc_bxdfecmetlf0814/notes.rtf | 5 + .../Rti_rcmrc_bxdfecmetlf0814/platform.rtf | 1 + .../datasets/Rti_rcmrc_bxdfecmetlf0814/summary.rtf | 11 + .../datasets/Rti_rcmrc_bxdfecmetlf0814/tissue.rtf | 1 + .../acknowledgment.rtf | 7 + .../Rti_rcmrc_bxdfecmetlflog0814/cases.rtf | 3 + .../Rti_rcmrc_bxdfecmetlflog0814/citation.rtf | 1 + .../Rti_rcmrc_bxdfecmetlflog0814/contributors.rtf | 9 + .../experiment-design.rtf | 17 + .../Rti_rcmrc_bxdfecmetlflog0814/notes.rtf | 5 + .../Rti_rcmrc_bxdfecmetlflog0814/platform.rtf | 1 + .../Rti_rcmrc_bxdfecmetlflog0814/summary.rtf | 11 + .../Rti_rcmrc_bxdfecmetlflog0814/tissue.rtf | 1 + .../Rti_rcmrc_bxdfecmetlog0814/acknowledgment.rtf | 7 + .../datasets/Rti_rcmrc_bxdfecmetlog0814/cases.rtf | 3 + .../Rti_rcmrc_bxdfecmetlog0814/citation.rtf | 1 + .../Rti_rcmrc_bxdfecmetlog0814/contributors.rtf | 9 + .../experiment-design.rtf | 17 + .../datasets/Rti_rcmrc_bxdfecmetlog0814/notes.rtf | 5 + .../Rti_rcmrc_bxdfecmetlog0814/platform.rtf | 1 + .../Rti_rcmrc_bxdfecmetlog0814/summary.rtf | 11 + .../datasets/Rti_rcmrc_bxdfecmetlog0814/tissue.rtf | 1 + general/datasets/STJ_PLN_0912/summary.rtf | 1 - general/datasets/SUH_Liv_RMAEx_0611/processing.rtf | 660 - general/datasets/SUH_Liv_RMAEx_0611/summary.rtf | 22 - general/datasets/SUH_Liv_RMAEx_0611/tissue.rtf | 1 - general/datasets/Sa_m2_0405_m/acknowledgment.rtf | 3 + general/datasets/Sa_m2_0405_m/cases.rtf | 5 + .../datasets/Sa_m2_0405_m/experiment-design.rtf | 5 + general/datasets/Sa_m2_0405_m/notes.rtf | 3 + general/datasets/Sa_m2_0405_m/platform.rtf | 3 + general/datasets/Sa_m2_0405_m/processing.rtf | 17 + general/datasets/Sa_m2_0405_m/summary.rtf | 1 + general/datasets/Sa_m2_0405_m/tissue.rtf | 440 + general/datasets/Sa_m2_0405_mc/acknowledgment.rtf | 3 + general/datasets/Sa_m2_0405_mc/cases.rtf | 5 + .../datasets/Sa_m2_0405_mc/experiment-design.rtf | 5 + general/datasets/Sa_m2_0405_mc/notes.rtf | 3 + general/datasets/Sa_m2_0405_mc/platform.rtf | 3 + general/datasets/Sa_m2_0405_mc/processing.rtf | 17 + general/datasets/Sa_m2_0405_mc/summary.rtf | 1 + general/datasets/Sa_m2_0405_mc/tissue.rtf | 440 + general/datasets/Sa_m2_0405_p/acknowledgment.rtf | 3 + general/datasets/Sa_m2_0405_p/cases.rtf | 5 + .../datasets/Sa_m2_0405_p/experiment-design.rtf | 5 + general/datasets/Sa_m2_0405_p/notes.rtf | 3 + general/datasets/Sa_m2_0405_p/platform.rtf | 3 + general/datasets/Sa_m2_0405_p/processing.rtf | 17 + general/datasets/Sa_m2_0405_p/summary.rtf | 1 + general/datasets/Sa_m2_0405_p/tissue.rtf | 440 + general/datasets/Sa_m2_0405_pc/acknowledgment.rtf | 3 + general/datasets/Sa_m2_0405_pc/cases.rtf | 5 + .../datasets/Sa_m2_0405_pc/experiment-design.rtf | 5 + general/datasets/Sa_m2_0405_pc/notes.rtf | 3 + general/datasets/Sa_m2_0405_pc/platform.rtf | 3 + general/datasets/Sa_m2_0405_pc/processing.rtf | 17 + general/datasets/Sa_m2_0405_pc/summary.rtf | 1 + general/datasets/Sa_m2_0405_pc/tissue.rtf | 440 + general/datasets/Sa_m2_0405_r/acknowledgment.rtf | 3 + general/datasets/Sa_m2_0405_r/cases.rtf | 5 + .../datasets/Sa_m2_0405_r/experiment-design.rtf | 5 + general/datasets/Sa_m2_0405_r/notes.rtf | 3 + general/datasets/Sa_m2_0405_r/platform.rtf | 3 + general/datasets/Sa_m2_0405_r/processing.rtf | 17 + general/datasets/Sa_m2_0405_r/summary.rtf | 1 + general/datasets/Sa_m2_0405_r/tissue.rtf | 440 + general/datasets/Sa_m2_0405_rc/acknowledgment.rtf | 3 + general/datasets/Sa_m2_0405_rc/cases.rtf | 5 + .../datasets/Sa_m2_0405_rc/experiment-design.rtf | 5 + general/datasets/Sa_m2_0405_rc/notes.rtf | 3 + general/datasets/Sa_m2_0405_rc/platform.rtf | 3 + general/datasets/Sa_m2_0405_rc/processing.rtf | 17 + general/datasets/Sa_m2_0405_rc/summary.rtf | 1 + general/datasets/Sa_m2_0405_rc/tissue.rtf | 440 + general/datasets/Sa_m2_0405_rr/acknowledgment.rtf | 3 + general/datasets/Sa_m2_0405_rr/cases.rtf | 5 + .../datasets/Sa_m2_0405_rr/experiment-design.rtf | 5 + general/datasets/Sa_m2_0405_rr/notes.rtf | 3 + general/datasets/Sa_m2_0405_rr/platform.rtf | 3 + general/datasets/Sa_m2_0405_rr/processing.rtf | 17 + general/datasets/Sa_m2_0405_rr/summary.rtf | 1 + general/datasets/Sa_m2_0405_rr/tissue.rtf | 440 + general/datasets/Sa_m2_0405_ss/acknowledgment.rtf | 3 + general/datasets/Sa_m2_0405_ss/cases.rtf | 5 + .../datasets/Sa_m2_0405_ss/experiment-design.rtf | 5 + general/datasets/Sa_m2_0405_ss/notes.rtf | 3 + general/datasets/Sa_m2_0405_ss/platform.rtf | 3 + general/datasets/Sa_m2_0405_ss/processing.rtf | 17 + general/datasets/Sa_m2_0405_ss/summary.rtf | 1 + general/datasets/Sa_m2_0405_ss/tissue.rtf | 440 + general/datasets/Sa_m2_0905_m/acknowledgment.rtf | 5 + general/datasets/Sa_m2_0905_m/cases.rtf | 3 + general/datasets/Sa_m2_0905_m/citation.rtf | 15 + general/datasets/Sa_m2_0905_m/contributors.rtf | 7 + general/datasets/Sa_m2_0905_m/notes.rtf | 3 + general/datasets/Sa_m2_0905_m/platform.rtf | 1154 + general/datasets/Sa_m2_0905_m/processing.rtf | 26 + general/datasets/Sa_m2_0905_m/summary.rtf | 1 + general/datasets/Sa_m2_0905_m/tissue.rtf | 1 + general/datasets/Sa_m2_0905_p/acknowledgment.rtf | 5 + general/datasets/Sa_m2_0905_p/cases.rtf | 3 + general/datasets/Sa_m2_0905_p/citation.rtf | 15 + general/datasets/Sa_m2_0905_p/contributors.rtf | 7 + general/datasets/Sa_m2_0905_p/notes.rtf | 3 + general/datasets/Sa_m2_0905_p/platform.rtf | 1154 + general/datasets/Sa_m2_0905_p/processing.rtf | 26 + general/datasets/Sa_m2_0905_p/summary.rtf | 1 + general/datasets/Sa_m2_0905_p/tissue.rtf | 1 + general/datasets/Sa_m2_0905_r/acknowledgment.rtf | 5 + general/datasets/Sa_m2_0905_r/cases.rtf | 3 + general/datasets/Sa_m2_0905_r/citation.rtf | 15 + general/datasets/Sa_m2_0905_r/contributors.rtf | 7 + general/datasets/Sa_m2_0905_r/notes.rtf | 3 + general/datasets/Sa_m2_0905_r/platform.rtf | 1154 + general/datasets/Sa_m2_0905_r/processing.rtf | 26 + general/datasets/Sa_m2_0905_r/summary.rtf | 1 + general/datasets/Sa_m2_0905_r/tissue.rtf | 1 + general/datasets/Sa_m2_1104_g/acknowledgment.rtf | 3 + general/datasets/Sa_m2_1104_g/cases.rtf | 184 + .../datasets/Sa_m2_1104_g/experiment-design.rtf | 5 + general/datasets/Sa_m2_1104_g/notes.rtf | 3 + general/datasets/Sa_m2_1104_g/platform.rtf | 3 + general/datasets/Sa_m2_1104_g/processing.rtf | 11 + general/datasets/Sa_m2_1104_g/summary.rtf | 1 + general/datasets/Sa_m2_1104_m/acknowledgment.rtf | 3 + general/datasets/Sa_m2_1104_m/cases.rtf | 184 + .../datasets/Sa_m2_1104_m/experiment-design.rtf | 5 + general/datasets/Sa_m2_1104_m/notes.rtf | 3 + general/datasets/Sa_m2_1104_m/platform.rtf | 3 + general/datasets/Sa_m2_1104_m/processing.rtf | 11 + general/datasets/Sa_m2_1104_m/summary.rtf | 1 + general/datasets/Sa_m2_1104_p/acknowledgment.rtf | 3 + general/datasets/Sa_m2_1104_p/cases.rtf | 184 + .../datasets/Sa_m2_1104_p/experiment-design.rtf | 5 + general/datasets/Sa_m2_1104_p/notes.rtf | 3 + general/datasets/Sa_m2_1104_p/platform.rtf | 3 + general/datasets/Sa_m2_1104_p/processing.rtf | 11 + general/datasets/Sa_m2_1104_p/summary.rtf | 1 + general/datasets/Sa_m2_1104_r/acknowledgment.rtf | 3 + general/datasets/Sa_m2_1104_r/cases.rtf | 184 + .../datasets/Sa_m2_1104_r/experiment-design.rtf | 5 + general/datasets/Sa_m2_1104_r/notes.rtf | 3 + general/datasets/Sa_m2_1104_r/platform.rtf | 3 + general/datasets/Sa_m2_1104_r/processing.rtf | 11 + general/datasets/Sa_m2_1104_r/summary.rtf | 1 + general/datasets/ScrBXDACC4G0513/summary.rtf | 1 - general/datasets/Scrbxdacc4g0513/summary.rtf | 1 + general/datasets/Stj_pln_0912/experiment-type.rtf | 1 + general/datasets/Stj_pln_0912/summary.rtf | 1 + general/datasets/Striatum_exon_0209/cases.rtf | 947 + general/datasets/Striatum_exon_0209/notes.rtf | 1 + general/datasets/Striatum_exon_1212/cases.rtf | 947 + general/datasets/Striatum_exon_1212/notes.rtf | 1 + general/datasets/Stspl_1107_r/summary.rtf | 1 + .../datasets/Suh_liv_rma_0611/experiment-type.rtf | 158 + general/datasets/Suh_liv_rma_0611/processing.rtf | 660 + general/datasets/Suh_liv_rma_0611/summary.rtf | 22 + general/datasets/Suh_liv_rma_0611/tissue.rtf | 1 + general/datasets/Suh_liv_rmaex_0611/processing.rtf | 660 + general/datasets/Suh_liv_rmaex_0611/summary.rtf | 22 + general/datasets/Suh_liv_rmaex_0611/tissue.rtf | 1 + general/datasets/Sxmpublish/summary.rtf | 482 + .../TIGEM_hg38_ret_rna_seq_0916/acknowledgment.rtf | 1 - .../datasets/TIGEM_hg38_ret_rna_seq_0916/cases.rtf | 3 - .../experiment-design.rtf | 3 - .../TIGEM_hg38_ret_rna_seq_0916/processing.rtf | 3 - .../TIGEM_hg38_ret_rna_seq_0916/summary.rtf | 5 - .../TSRI-DRG-AffyMOE430_0113-MDP/summary.rtf | 1 + .../TSRI_DRG_AffyMOE430_0113_MDP/summary.rtf | 1 - .../Tigem_hg38_ret_rna_seq_0916/acknowledgment.rtf | 1 + .../datasets/Tigem_hg38_ret_rna_seq_0916/cases.rtf | 3 + .../Tigem_hg38_ret_rna_seq_0916/contributors.rtf | 50 + .../experiment-design.rtf | 3 + .../Tigem_hg38_ret_rna_seq_0916/processing.rtf | 3 + .../Tigem_hg38_ret_rna_seq_0916/summary.rtf | 5 + .../Tsri_drg_affymoe430_0113_mdp/summary.rtf | 1 + general/datasets/UBC_GSE23529HLT0613/summary.rtf | 15 - .../UCAMC_LXSBrEtOH_RNA_Seq_0216/specifics.rtf | 5 - .../UCAMC_LXSBrSal_RNA_Seq_0216/specifics.rtf | 5 - general/datasets/UCI_EC_0913/experiment-design.rtf | 1 - general/datasets/UCI_EC_0913/summary.rtf | 1 - general/datasets/UCI_HC_0913/experiment-design.rtf | 1 - general/datasets/UCI_HC_0913/summary.rtf | 1 - .../datasets/UCI_PCG_0913/experiment-design.rtf | 1 - general/datasets/UCI_PCG_0913/summary.rtf | 1 - general/datasets/UCI_SG_0913/experiment-design.rtf | 1 - general/datasets/UCI_SG_0913/summary.rtf | 1 - .../UCLA_AXB_BXA_Aor_Jan16/experiment-design.rtf | 1 - .../datasets/UCLA_AXB_BXA_Aor_Jan16/platform.rtf | 1 - .../datasets/UCLA_AXB_BXA_Aor_Jan16/specifics.rtf | 1 - .../datasets/UCLA_AXB_BXA_Aor_Jan16/summary.rtf | 1 - .../UCLA_AXB_BXA_Femur_0113_RSN/summary.rtf | 15 - .../UCLA_AXB_BXA_Liv_Jan16/experiment-design.rtf | 1 - .../datasets/UCLA_AXB_BXA_Liv_Jan16/platform.rtf | 1 - .../datasets/UCLA_AXB_BXA_Liv_Jan16/specifics.rtf | 1 - .../datasets/UCLA_AXB_BXA_Liv_Jan16/summary.rtf | 1 - .../UCLA_BXD-on_Femur_0113_RSN/acknowledgment.rtf | 1 + .../experiment-design.rtf | 1 + .../UCLA_BXD-on_Femur_0113_RSN/platform.rtf | 1 + .../UCLA_BXD-on_Femur_0113_RSN/processing.rtf | 1 + .../UCLA_BXD-on_Femur_0113_RSN/summary.rtf | 1 + .../UCLA_BXD_Aor_Jan16/experiment-design.rtf | 1 - general/datasets/UCLA_BXD_Aor_Jan16/platform.rtf | 1 - general/datasets/UCLA_BXD_Aor_Jan16/specifics.rtf | 1 - general/datasets/UCLA_BXD_Aor_Jan16/summary.rtf | 1 - .../UCLA_BXD_Liv_Jan16/experiment-design.rtf | 1 - general/datasets/UCLA_BXD_Liv_Jan16/platform.rtf | 1 - general/datasets/UCLA_BXD_Liv_Jan16/summary.rtf | 1 - .../UCLA_BXD_on_Femur_0113_RSN/acknowledgment.rtf | 1 - .../experiment-design.rtf | 1 - .../UCLA_BXD_on_Femur_0113_RSN/platform.rtf | 1 - .../UCLA_BXD_on_Femur_0113_RSN/processing.rtf | 1 - .../UCLA_BXD_on_Femur_0113_RSN/summary.rtf | 1 - .../datasets/UCLA_BXH_Femur_0113_RSN/summary.rtf | 1 - .../UCLA_CXB_Aor_Jan16/experiment-design.rtf | 1 - general/datasets/UCLA_CXB_Aor_Jan16/platform.rtf | 1 - general/datasets/UCLA_CXB_Aor_Jan16/specifics.rtf | 1 - general/datasets/UCLA_CXB_Aor_Jan16/summary.rtf | 1 - .../UCLA_CXB_Liv_Jan16/experiment-design.rtf | 1 - general/datasets/UCLA_CXB_Liv_Jan16/platform.rtf | 1 - general/datasets/UCLA_CXB_Liv_Jan16/specifics.rtf | 1 - general/datasets/UCLA_CXB_Liv_Jan16/summary.rtf | 1 - .../UCLA_MDP_Femur_0113_RSN/acknowledgment.rtf | 1 - .../UCLA_MDP_Femur_0113_RSN/experiment-design.rtf | 1 - .../datasets/UCLA_MDP_Femur_0113_RSN/platform.rtf | 1 - .../UCLA_MDP_Femur_0113_RSN/processing.rtf | 1 - .../datasets/UCLA_MDP_Femur_0113_RSN/summary.rtf | 1 - .../UCSD_AIL_HIP_RNA_Seq_0418/specifics.rtf | 1 - .../datasets/UCSD_AIL_HIP_RNA_Seq_0418/summary.rtf | 1 - .../UCSD_AIL_HIP_RNA_Seq_log2_0418/specifics.rtf | 1 - .../UCSD_AIL_HIP_RNA_Seq_log2_0418/summary.rtf | 1 - .../UCSD_AIL_PFC_RNA_Seq_0418/specifics.rtf | 1 - .../datasets/UCSD_AIL_PFC_RNA_Seq_0418/summary.rtf | 1 - .../UCSD_AIL_PFC_RNA_Seq_log2_0418/specifics.rtf | 1 - .../UCSD_AIL_PFC_RNA_Seq_log2_0418/summary.rtf | 1 - .../UCSD_AIL_STR_RNA_Seq_0418/specifics.rtf | 1 - .../datasets/UCSD_AIL_STR_RNA_Seq_0418/summary.rtf | 1 - .../UCSD_AIL_STR_RNA_Seq_log2_0418/specifics.rtf | 1 - .../UCSD_AIL_STR_RNA_Seq_log2_0418/summary.rtf | 1 - .../UCSD_CFW_HIP_RNA_Seq_0117/acknowledgment.rtf | 1 - .../datasets/UCSD_CFW_HIP_RNA_Seq_0117/cases.rtf | 3 - .../UCSD_CFW_HIP_RNA_Seq_0117/processing.rtf | 1 - .../UCSD_CFW_HIP_RNA_Seq_0117/specifics.rtf | 1 - .../datasets/UCSD_CFW_HIP_RNA_Seq_0117/summary.rtf | 1 - .../acknowledgment.rtf | 1 - .../UCSD_CFW_HIP_RNA_Seq_log2_0117/cases.rtf | 3 - .../UCSD_CFW_HIP_RNA_Seq_log2_0117/processing.rtf | 1 - .../UCSD_CFW_HIP_RNA_Seq_log2_0117/specifics.rtf | 5 - .../UCSD_CFW_HIP_RNA_Seq_log2_0117/summary.rtf | 1 - .../UCSD_CFW_PFC_RNA_Seq_0117/acknowledgment.rtf | 1 - .../datasets/UCSD_CFW_PFC_RNA_Seq_0117/cases.rtf | 3 - .../UCSD_CFW_PFC_RNA_Seq_0117/processing.rtf | 1 - .../UCSD_CFW_PFC_RNA_Seq_0117/specifics.rtf | 1 - .../datasets/UCSD_CFW_PFC_RNA_Seq_0117/summary.rtf | 1 - .../acknowledgment.rtf | 1 - .../UCSD_CFW_PFC_RNA_Seq_log2_0117/cases.rtf | 3 - .../UCSD_CFW_PFC_RNA_Seq_log2_0117/processing.rtf | 1 - .../UCSD_CFW_PFC_RNA_Seq_log2_0117/specifics.rtf | 3 - .../UCSD_CFW_PFC_RNA_Seq_log2_0117/summary.rtf | 1 - .../UCSD_CFW_SPL_RNA_Seq_0117/acknowledgment.rtf | 1 - .../datasets/UCSD_CFW_SPL_RNA_Seq_0117/cases.rtf | 3 - .../UCSD_CFW_SPL_RNA_Seq_0117/processing.rtf | 1 - .../UCSD_CFW_SPL_RNA_Seq_0117/specifics.rtf | 1 - .../datasets/UCSD_CFW_SPL_RNA_Seq_0117/summary.rtf | 1 - .../acknowledgment.rtf | 1 - .../UCSD_CFW_STR_RNA_Seq_log2_0117/cases.rtf | 3 - .../UCSD_CFW_STR_RNA_Seq_log2_0117/processing.rtf | 1 - .../UCSD_CFW_STR_RNA_Seq_log2_0117/specifics.rtf | 3 - .../UCSD_CFW_STR_RNA_Seq_log2_0117/summary.rtf | 1 - .../UConn_RGC_RSeq_log2_0918/specifics.rtf | 1 - .../datasets/UConn_RGC_RSeq_log2_0918/summary.rtf | 3 - .../datasets/UConn_RGC_RSeq_r_0918/specifics.rtf | 1 - general/datasets/UConn_RGC_RSeq_r_0918/summary.rtf | 3 - .../datasets/UConn_RGC_RSeq_s_0918/specifics.rtf | 1 - general/datasets/UConn_RGC_RSeq_s_0918/summary.rtf | 3 - general/datasets/UFL_MDP_Hipp0814/summary.rtf | 1 - .../UND_NIDA_HXB_BXH_IndBP_log2z8_0321/cases.rtf | 1075 - .../processing.rtf | 5 - .../specifics.rtf | 1 - .../UND_NIDA_HXB_BXH_IndBP_log2z8_0321/summary.rtf | 3 - .../UND_NIDA_HXB_BXH_IndBPep_log2z8_0321/cases.rtf | 1075 - .../processing.rtf | 5 - .../specifics.rtf | 1 - .../summary.rtf | 3 - general/datasets/UTHSCWGU88BFMG1013/summary.rtf | 1 - general/datasets/UTHSC_B6D2RI_H_0912/summary.rtf | 1 - general/datasets/UTHSC_BXDAgedEx_1116/cases.rtf | 1894 -- .../datasets/UTHSC_BXDAgedEx_1116/specifics.rtf | 1 - general/datasets/UTHSC_BXDAgedEx_1116/summary.rtf | 1 - general/datasets/UTHSC_BXDAged_0615/cases.rtf | 1894 -- general/datasets/UTHSC_BXDAged_0615/specifics.rtf | 1 - general/datasets/UTHSC_BXDAged_0615/summary.rtf | 1 - .../cases.rtf | 4336 --- .../experiment-design.rtf | 3 - .../notes.rtf | 1 - .../processing.rtf | 9 - .../specifics.rtf | 1 - .../tissue.rtf | 3 - .../cases.rtf | 4336 --- .../experiment-design.rtf | 3 - .../notes.rtf | 1 - .../processing.rtf | 9 - .../tissue.rtf | 3 - general/datasets/UTHSC_BXD_AgeHipp0515/cases.rtf | 1258 - .../UTHSC_BXD_AgeHipp0515/experiment-design.rtf | 3 - .../datasets/UTHSC_BXD_AgeHipp0515/processing.rtf | 3 - .../datasets/UTHSC_BXD_AgeHipp0515/specifics.rtf | 1 - general/datasets/UTHSC_BXD_AgeHipp0515/tissue.rtf | 3 - .../experiment-design.rtf | 1 - .../processing.rtf | 9 - .../specifics.rtf | 4332 --- .../tissue.rtf | 1 - .../experiment-design.rtf | 1 - .../processing.rtf | 9 - .../specifics.rtf | 1 - .../tissue.rtf | 1 - general/datasets/UTHSC_BXD_H_0912/cases.rtf | 1258 - .../UTHSC_BXD_H_0912/experiment-design.rtf | 3 - general/datasets/UTHSC_BXD_H_0912/processing.rtf | 3 - general/datasets/UTHSC_BXD_H_0912/specifics.rtf | 1 - general/datasets/UTHSC_BXD_H_0912/tissue.rtf | 3 - general/datasets/UTHSC_BXD_Harv_Liv_0118/cases.rtf | 1371 - .../UTHSC_BXD_Harv_Liv_0118/processing.rtf | 26883 ------------------- .../datasets/UTHSC_BXD_Harv_Liv_0118/specifics.rtf | 1 - .../datasets/UTHSC_BXD_Harv_Liv_0118/summary.rtf | 1 - general/datasets/UTHSC_BXD_Harv_Liv_1019/cases.rtf | 1371 - .../UTHSC_BXD_Harv_Liv_1019/processing.rtf | 26883 ------------------- .../datasets/UTHSC_BXD_Harv_Liv_1019/specifics.rtf | 1 - .../datasets/UTHSC_BXD_Harv_Liv_1019/summary.rtf | 1 - .../UTHSC_BXD_Harv_Liv_TPM_log2_1019/specifics.rtf | 1 - .../UTHSC_BXD_Harv_Liv_TPM_log2_1019/summary.rtf | 1 - .../UTHSC_BXD_Hip_PostD7CtrlBS_1121/specifics.rtf | 1 - .../UTHSC_BXD_Hip_PostD7CtrlBS_1121/summary.rtf | 1 - .../UTHSC_BXD_Hip_PostD7EtohBS_1121/specifics.rtf | 1 - .../UTHSC_BXD_Hip_PostD7EtohBS_1121/summary.rtf | 1 - .../UTHSC_BXD_Hip_miRNASeq0214/specifics.rtf | 1 - .../UTHSC_BXD_Hip_miRNASeq0214/summary.rtf | 1 - .../UTHSC_BXD_LivCDNAm_1119/experiment-design.rtf | 1 - .../datasets/UTHSC_BXD_LivCDNAm_1119/platform.rtf | 1 - .../UTHSC_BXD_LivCDNAm_1119/processing.rtf | 1 - .../datasets/UTHSC_BXD_LivCDNAm_1119/specifics.rtf | 1 - .../datasets/UTHSC_BXD_LivCDNAm_1119/summary.rtf | 1 - .../UTHSC_BXD_LivDNAm_1119/experiment-design.rtf | 1 - .../datasets/UTHSC_BXD_LivDNAm_1119/platform.rtf | 1 - .../datasets/UTHSC_BXD_LivDNAm_1119/processing.rtf | 1 - .../datasets/UTHSC_BXD_LivDNAm_1119/specifics.rtf | 1 - .../datasets/UTHSC_BXD_LivDNAm_1119/summary.rtf | 1 - .../UTHSC_BXD_LivHFDNAm_1119/experiment-design.rtf | 1 - .../datasets/UTHSC_BXD_LivHFDNAm_1119/platform.rtf | 1 - .../UTHSC_BXD_LivHFDNAm_1119/processing.rtf | 1 - .../UTHSC_BXD_LivHFDNAm_1119/specifics.rtf | 1 - .../datasets/UTHSC_BXD_LivHFDNAm_1119/summary.rtf | 1 - general/datasets/UTHSC_BXD_Liv_0818/specifics.rtf | 1 - general/datasets/UTHSC_BXD_Liv_0818/summary.rtf | 1 - general/datasets/UTHSC_BXD_Liv_0917/specifics.rtf | 1 - general/datasets/UTHSC_BXD_Liv_0917/summary.rtf | 1 - .../UTHSC_BXD_MamGland_ca_0322/specifics.rtf | 1 - .../UTHSC_BXD_MamGland_ca_0322/summary.rtf | 1 - .../UTHSC_BXD_MamGland_cpmNtum_0322/specifics.rtf | 1 - .../UTHSC_BXD_MamGland_cpmNtum_0322/summary.rtf | 1 - .../UTHSC_BXD_MamGland_cpm_0322/specifics.rtf | 1 - .../UTHSC_BXD_MamGland_cpm_0322/summary.rtf | 1 - .../UTHSC_BXD_MamGland_tum_0322/specifics.rtf | 1 - .../UTHSC_BXD_MamGland_tum_0322/summary.rtf | 1 - .../datasets/UTHSC_BXD_WB_RNASeqtrim1112/cases.rtf | 245 - .../datasets/UTHSC_BXD_WB_RNASeqtrim1112/notes.rtf | 23 - .../UTHSC_BXD_WB_RNASeqtrim1112/summary.rtf | 4 - .../UTHSC_BXD_WB_RNASeqtrim1_1112/cases.rtf | 245 - .../UTHSC_BXD_WB_RNASeqtrim1_1112/notes.rtf | 23 - .../UTHSC_BXD_WB_RNASeqtrim1_1112/summary.rtf | 4 - .../experiment-design.rtf | 1 - .../processing.rtf | 9 - .../specifics.rtf | 3644 --- .../tissue.rtf | 1 - .../UTHSC_EMSR_All_AffyMTA1_Mar17/specifics.rtf | 1 - .../UTHSC_EMSR_All_AffyMTA1_Mar17/summary.rtf | 1 - .../UTHSC_EMSR_EtSt_AffyMTA1_Mar17/specifics.rtf | 1 - .../UTHSC_EMSR_EtSt_AffyMTA1_Mar17/summary.rtf | 1 - .../UTHSC_EMSR_Et_AffyMTA1_Mar17/specifics.rtf | 1 - .../UTHSC_EMSR_Et_AffyMTA1_Mar17/summary.rtf | 1 - .../UTHSC_EMSR_Sal_AffyMTA1_Mar17/specifics.rtf | 1 - .../UTHSC_EMSR_Sal_AffyMTA1_Mar17/summary.rtf | 1 - .../UTHSC_EMSR_St_AffyMTA1_Mar17/specifics.rtf | 1 - .../UTHSC_EMSR_St_AffyMTA1_Mar17/summary.rtf | 1 - general/datasets/UTHSC_GutExL_0414/cases.rtf | 1696 -- general/datasets/UTHSC_GutExL_0414/platform.rtf | 1 - general/datasets/UTHSC_GutExL_0414/processing.rtf | 1 - general/datasets/UTHSC_GutExL_0414/specifics.rtf | 1 - general/datasets/UTHSC_GutExL_0414/tissue.rtf | 1 - general/datasets/UTHSC_GutGL_0414/cases.rtf | 1696 -- general/datasets/UTHSC_GutGL_0414/platform.rtf | 1 - general/datasets/UTHSC_GutGL_0414/processing.rtf | 1 - general/datasets/UTHSC_GutGL_0414/specifics.rtf | 1 - general/datasets/UTHSC_GutGL_0414/tissue.rtf | 1 - general/datasets/UTHSC_HuIslets_Mar17/platform.rtf | 1 - general/datasets/UTHSC_HuIslets_Mar17/summary.rtf | 1 - .../UTHSC_ILM_BXD_hipp_NOEb_0216/notes.rtf | 23 - .../UTHSC_ILM_BXD_hipp_NOEb_0216/summary.rtf | 39 - .../UTHSC_ILM_BXD_hipp_NOEb_0217/notes.rtf | 23 - .../UTHSC_ILM_BXD_hipp_NOEb_0217/specifics.rtf | 392 - .../UTHSC_ILM_BXD_hipp_NOEb_0217/summary.rtf | 39 - .../UTHSC_ILM_BXD_hipp_NOSb_0217/notes.rtf | 23 - .../UTHSC_ILM_BXD_hipp_NOSb_0217/specifics.rtf | 408 - .../UTHSC_ILM_BXD_hipp_NOSb_0217/summary.rtf | 39 - .../UTHSC_ILM_BXD_hipp_RSEb_0216/notes.rtf | 23 - .../UTHSC_ILM_BXD_hipp_RSEb_0216/summary.rtf | 39 - .../UTHSC_ILM_BXD_hipp_RSEb_0217/notes.rtf | 23 - .../UTHSC_ILM_BXD_hipp_RSEb_0217/specifics.rtf | 408 - .../UTHSC_ILM_BXD_hipp_RSEb_0217/summary.rtf | 39 - .../UTHSC_ILM_BXD_hipp_RSSb_0216/notes.rtf | 23 - .../UTHSC_ILM_BXD_hipp_RSSb_0216/summary.rtf | 39 - .../UTHSC_ILM_BXD_hipp_RSSb_0217/notes.rtf | 23 - .../UTHSC_ILM_BXD_hipp_RSSb_0217/specifics.rtf | 400 - .../UTHSC_ILM_BXD_hipp_RSSb_0217/summary.rtf | 39 - .../datasets/UTHSC_Neut_1014/experiment-design.rtf | 1 - general/datasets/UTHSC_Neut_1014/summary.rtf | 1 - .../UTHSC_Neut_EL_1014/experiment-design.rtf | 1 - general/datasets/UTHSC_Neut_EL_1014/summary.rtf | 1 - general/datasets/UTHSC_SPL_RMAEx_1210/cases.rtf | 3 - .../UTHSC_SPL_RMAEx_1210/experiment-design.rtf | 3 - general/datasets/UTHSC_SPL_RMAEx_1210/notes.rtf | 4 - .../datasets/UTHSC_SPL_RMAEx_1210/processing.rtf | 1932 -- general/datasets/UTHSC_SPL_RMAEx_1210/summary.rtf | 3 - general/datasets/UTHSC_SPLs1_RMA_1210/cases.rtf | 3 - .../UTHSC_SPLs1_RMA_1210/experiment-design.rtf | 3 - general/datasets/UTHSC_SPLs1_RMA_1210/notes.rtf | 4 - .../datasets/UTHSC_SPLs1_RMA_1210/processing.rtf | 1932 -- general/datasets/UTHSC_SPLs1_RMA_1210/summary.rtf | 3 - general/datasets/UTHSC_SPLs2_RMA_1210/cases.rtf | 3 - .../UTHSC_SPLs2_RMA_1210/experiment-design.rtf | 3 - general/datasets/UTHSC_SPLs2_RMA_1210/notes.rtf | 4 - .../datasets/UTHSC_SPLs2_RMA_1210/processing.rtf | 1932 -- general/datasets/UTHSC_SPLs2_RMA_1210/summary.rtf | 3 - .../acknowledgment.rtf | 1 - .../UTHSC_VGX_MmBXDHepatocytesRMA1014/cases.rtf | 266 - .../experiment-design.rtf | 3 - .../UTHSC_VGX_MmBXDHepatocytesRMA1014/platform.rtf | 1 - .../processing.rtf | 1 - .../UTHSC_VGX_MmBXDHepatocytesRMA1014/summary.rtf | 1 - .../UTHSC_VGX_MmBXDHepatocytesRMA1014/tissue.rtf | 9 - .../experiment-design.rtf | 980 - .../UTHSC_mm10_B6D2_Ret_miRNA_1116/specifics.rtf | 1 - .../UTHSC_mm10_B6D2_Ret_miRNA_1116/summary.rtf | 9 - .../datasets/UTHSC_mm9_B6D2_RetEx_0916/cases.rtf | 980 - .../UTHSC_mm9_B6D2_RetEx_0916/specifics.rtf | 1 - .../datasets/UTHSC_mm9_B6D2_RetEx_0916/summary.rtf | 9 - general/datasets/UTHSC_mm9_B6D2_Ret_0916/cases.rtf | 980 - .../datasets/UTHSC_mm9_B6D2_Ret_0916/summary.rtf | 9 - .../datasets/UT_ILM_BXD_hipp_NOE_1112/notes.rtf | 23 - .../datasets/UT_ILM_BXD_hipp_NOE_1112/summary.rtf | 39 - .../datasets/UT_ILM_BXD_hipp_RSS_1112/notes.rtf | 23 - .../datasets/UT_ILM_BXD_hipp_RSS_1112/summary.rtf | 39 - general/datasets/UT_VGX_HEL1014/acknowledgment.rtf | 1 - general/datasets/UT_VGX_HEL1014/cases.rtf | 266 - .../datasets/UT_VGX_HEL1014/experiment-design.rtf | 3 - general/datasets/UT_VGX_HEL1014/platform.rtf | 1 - general/datasets/UT_VGX_HEL1014/processing.rtf | 1 - general/datasets/UT_VGX_HEL1014/summary.rtf | 1 - general/datasets/UT_VGX_HEL1014/tissue.rtf | 9 - .../UVA_HIV_1Tg_Hip_rlog_0720/acknowledgment.rtf | 1 - .../datasets/UVA_HIV_1Tg_Hip_rlog_0720/cases.rtf | 1 - .../experiment-design.rtf | 1 - .../datasets/UVA_HIV_1Tg_Hip_rlog_0720/notes.rtf | 1 - .../UVA_HIV_1Tg_Hip_rlog_0720/platform.rtf | 1 - .../UVA_HIV_1Tg_Hip_rlog_0720/processing.rtf | 5 - .../UVA_HIV_1Tg_Hip_rlog_0720/specifics.rtf | 1 - .../datasets/UVA_HIV_1Tg_Hip_rlog_0720/summary.rtf | 3 - .../datasets/UVA_HIV_1Tg_Hip_rlog_0720/tissue.rtf | 1 - .../UVA_HIV_1Tg_PFC_rlog_0720/acknowledgment.rtf | 1 - .../datasets/UVA_HIV_1Tg_PFC_rlog_0720/cases.rtf | 1 - .../experiment-design.rtf | 1 - .../datasets/UVA_HIV_1Tg_PFC_rlog_0720/notes.rtf | 1 - .../UVA_HIV_1Tg_PFC_rlog_0720/platform.rtf | 1 - .../UVA_HIV_1Tg_PFC_rlog_0720/processing.rtf | 5 - .../UVA_HIV_1Tg_PFC_rlog_0720/specifics.rtf | 1 - .../datasets/UVA_HIV_1Tg_PFC_rlog_0720/summary.rtf | 3 - .../datasets/UVA_HIV_1Tg_PFC_rlog_0720/tissue.rtf | 1 - .../UVA_HIV_1Tg_Str_rlog_0720/acknowledgment.rtf | 1 - .../datasets/UVA_HIV_1Tg_Str_rlog_0720/cases.rtf | 1 - .../experiment-design.rtf | 1 - .../datasets/UVA_HIV_1Tg_Str_rlog_0720/notes.rtf | 1 - .../UVA_HIV_1Tg_Str_rlog_0720/platform.rtf | 1 - .../UVA_HIV_1Tg_Str_rlog_0720/processing.rtf | 5 - .../UVA_HIV_1Tg_Str_rlog_0720/specifics.rtf | 1 - .../datasets/UVA_HIV_1Tg_Str_rlog_0720/summary.rtf | 3 - .../datasets/UVA_HIV_1Tg_Str_rlog_0720/tissue.rtf | 1 - .../datasets/Uab_droswb_lc_rma_1009/citation.rtf | 1 + .../Uab_droswb_lc_rma_1009/contributors.rtf | 1 + .../datasets/Uab_droswb_lc_rma_1009/platform.rtf | 1 + .../datasets/Uab_droswb_lc_rma_1009/summary.rtf | 1 + .../datasets/Uab_droswb_le_rma_1009/citation.rtf | 1 + .../Uab_droswb_le_rma_1009/contributors.rtf | 1 + .../datasets/Uab_droswb_le_rma_1009/platform.rtf | 1 + .../datasets/Uab_droswb_le_rma_1009/summary.rtf | 1 + general/datasets/Ubc_gse23529hlt0613/citation.rtf | 1 + .../datasets/Ubc_gse23529hlt0613/contributors.rtf | 1 + general/datasets/Ubc_gse23529hlt0613/summary.rtf | 15 + .../Ucamc_lxsbretoh_rna_seq_0216/citation.rtf | 6 + .../Ucamc_lxsbretoh_rna_seq_0216/specifics.rtf | 5 + .../Ucamc_lxsbrsal_rna_seq_0216/citation.rtf | 6 + .../Ucamc_lxsbrsal_rna_seq_0216/specifics.rtf | 5 + general/datasets/Uci_ec_0913/citation.rtf | 1 + general/datasets/Uci_ec_0913/contributors.rtf | 1 + general/datasets/Uci_ec_0913/experiment-design.rtf | 1 + general/datasets/Uci_ec_0913/summary.rtf | 1 + general/datasets/Uci_hc_0913/citation.rtf | 1 + general/datasets/Uci_hc_0913/contributors.rtf | 1 + general/datasets/Uci_hc_0913/experiment-design.rtf | 1 + general/datasets/Uci_hc_0913/summary.rtf | 1 + general/datasets/Uci_pcg_0913/citation.rtf | 1 + general/datasets/Uci_pcg_0913/contributors.rtf | 1 + .../datasets/Uci_pcg_0913/experiment-design.rtf | 1 + general/datasets/Uci_pcg_0913/summary.rtf | 1 + general/datasets/Uci_sg_0913/citation.rtf | 1 + general/datasets/Uci_sg_0913/contributors.rtf | 1 + general/datasets/Uci_sg_0913/experiment-design.rtf | 1 + general/datasets/Uci_sg_0913/summary.rtf | 1 + .../datasets/Ucla_axb_bxa_aor_jan16/citation.rtf | 3 + .../Ucla_axb_bxa_aor_jan16/contributors.rtf | 1 + .../Ucla_axb_bxa_aor_jan16/experiment-design.rtf | 1 + .../datasets/Ucla_axb_bxa_aor_jan16/platform.rtf | 1 + .../datasets/Ucla_axb_bxa_aor_jan16/specifics.rtf | 1 + .../datasets/Ucla_axb_bxa_aor_jan16/summary.rtf | 1 + .../experiment-type.rtf | 1 + .../Ucla_axb_bxa_femur_0113_rsn/summary.rtf | 15 + .../datasets/Ucla_axb_bxa_liv_jan16/citation.rtf | 3 + .../Ucla_axb_bxa_liv_jan16/contributors.rtf | 1 + .../Ucla_axb_bxa_liv_jan16/experiment-design.rtf | 1 + .../datasets/Ucla_axb_bxa_liv_jan16/platform.rtf | 1 + .../datasets/Ucla_axb_bxa_liv_jan16/specifics.rtf | 1 + .../datasets/Ucla_axb_bxa_liv_jan16/summary.rtf | 1 + general/datasets/Ucla_bdf2_liver_1999/citation.rtf | 8 + .../Ucla_bdf2_liver_1999/experiment-design.rtf | 1 + general/datasets/Ucla_bdf2_liver_1999/summary.rtf | 1 + .../datasets/Ucla_bhf2_adipose_0605/citation.rtf | 5 + .../Ucla_bhf2_adipose_0605/contributors.rtf | 1 + .../Ucla_bhf2_adipose_0605/experiment-design.rtf | 1 + .../datasets/Ucla_bhf2_adipose_0605/summary.rtf | 1 + .../datasets/Ucla_bhf2_adipose_female/citation.rtf | 5 + .../Ucla_bhf2_adipose_female/contributors.rtf | 1 + .../Ucla_bhf2_adipose_female/experiment-design.rtf | 1 + .../Ucla_bhf2_adipose_female/specifics.rtf | 1 + .../datasets/Ucla_bhf2_adipose_female/summary.rtf | 1 + .../datasets/Ucla_bhf2_adipose_male/citation.rtf | 5 + .../Ucla_bhf2_adipose_male/contributors.rtf | 1 + .../Ucla_bhf2_adipose_male/experiment-design.rtf | 1 + .../datasets/Ucla_bhf2_adipose_male/specifics.rtf | 1 + .../datasets/Ucla_bhf2_adipose_male/summary.rtf | 1 + general/datasets/Ucla_bhf2_brain_0605/citation.rtf | 4 + .../datasets/Ucla_bhf2_brain_0605/contributors.rtf | 1 + .../Ucla_bhf2_brain_0605/experiment-design.rtf | 1 + general/datasets/Ucla_bhf2_brain_0605/summary.rtf | 1 + .../datasets/Ucla_bhf2_brain_female/citation.rtf | 4 + .../Ucla_bhf2_brain_female/contributors.rtf | 1 + .../Ucla_bhf2_brain_female/experiment-design.rtf | 1 + .../datasets/Ucla_bhf2_brain_female/specifics.rtf | 1 + .../datasets/Ucla_bhf2_brain_female/summary.rtf | 1 + general/datasets/Ucla_bhf2_brain_male/citation.rtf | 4 + .../datasets/Ucla_bhf2_brain_male/contributors.rtf | 1 + .../Ucla_bhf2_brain_male/experiment-design.rtf | 1 + .../datasets/Ucla_bhf2_brain_male/specifics.rtf | 1 + general/datasets/Ucla_bhf2_brain_male/summary.rtf | 1 + general/datasets/Ucla_bhf2_liver_0605/citation.rtf | 8 + .../Ucla_bhf2_liver_0605/experiment-design.rtf | 1 + general/datasets/Ucla_bhf2_liver_0605/summary.rtf | 1 + .../datasets/Ucla_bhf2_liver_female/citation.rtf | 8 + .../Ucla_bhf2_liver_female/experiment-design.rtf | 1 + .../datasets/Ucla_bhf2_liver_female/specifics.rtf | 1 + .../datasets/Ucla_bhf2_liver_female/summary.rtf | 1 + general/datasets/Ucla_bhf2_liver_male/citation.rtf | 8 + .../Ucla_bhf2_liver_male/experiment-design.rtf | 1 + .../datasets/Ucla_bhf2_liver_male/specifics.rtf | 1 + general/datasets/Ucla_bhf2_liver_male/summary.rtf | 1 + .../datasets/Ucla_bhf2_muscle_0605/citation.rtf | 4 + .../Ucla_bhf2_muscle_0605/contributors.rtf | 1 + .../Ucla_bhf2_muscle_0605/experiment-design.rtf | 1 + general/datasets/Ucla_bhf2_muscle_0605/summary.rtf | 1 + .../datasets/Ucla_bhf2_muscle_female/citation.rtf | 4 + .../Ucla_bhf2_muscle_female/contributors.rtf | 1 + .../Ucla_bhf2_muscle_female/experiment-design.rtf | 1 + .../datasets/Ucla_bhf2_muscle_female/specifics.rtf | 1 + .../datasets/Ucla_bhf2_muscle_female/summary.rtf | 1 + .../datasets/Ucla_bhf2_muscle_male/citation.rtf | 4 + .../Ucla_bhf2_muscle_male/contributors.rtf | 1 + .../Ucla_bhf2_muscle_male/experiment-design.rtf | 1 + .../datasets/Ucla_bhf2_muscle_male/specifics.rtf | 1 + general/datasets/Ucla_bhf2_muscle_male/summary.rtf | 1 + .../datasets/Ucla_bhhbf2_adipose_2005/citation.rtf | 4 + .../Ucla_bhhbf2_adipose_2005/contributors.rtf | 1 + .../Ucla_bhhbf2_adipose_2005/experiment-design.rtf | 1 + .../datasets/Ucla_bhhbf2_adipose_2005/summary.rtf | 1 + .../Ucla_bhhbf2_adipose_female/citation.rtf | 4 + .../Ucla_bhhbf2_adipose_female/contributors.rtf | 1 + .../experiment-design.rtf | 1 + .../Ucla_bhhbf2_adipose_female/specifics.rtf | 1 + .../Ucla_bhhbf2_adipose_female/summary.rtf | 1 + .../datasets/Ucla_bhhbf2_adipose_male/citation.rtf | 4 + .../Ucla_bhhbf2_adipose_male/contributors.rtf | 1 + .../Ucla_bhhbf2_adipose_male/experiment-design.rtf | 1 + .../Ucla_bhhbf2_adipose_male/specifics.rtf | 1 + .../datasets/Ucla_bhhbf2_adipose_male/summary.rtf | 1 + .../datasets/Ucla_bhhbf2_brain_2005/citation.rtf | 4 + .../Ucla_bhhbf2_brain_2005/experiment-design.rtf | 1 + .../datasets/Ucla_bhhbf2_brain_2005/summary.rtf | 1 + .../datasets/Ucla_bhhbf2_brain_female/citation.rtf | 4 + .../Ucla_bhhbf2_brain_female/experiment-design.rtf | 1 + .../Ucla_bhhbf2_brain_female/specifics.rtf | 1 + .../datasets/Ucla_bhhbf2_brain_female/summary.rtf | 1 + .../datasets/Ucla_bhhbf2_brain_male/citation.rtf | 4 + .../Ucla_bhhbf2_brain_male/experiment-design.rtf | 1 + .../datasets/Ucla_bhhbf2_brain_male/specifics.rtf | 1 + .../datasets/Ucla_bhhbf2_brain_male/summary.rtf | 1 + .../datasets/Ucla_bhhbf2_liver_2005/citation.rtf | 4 + .../Ucla_bhhbf2_liver_2005/experiment-design.rtf | 1 + .../datasets/Ucla_bhhbf2_liver_2005/summary.rtf | 1 + .../datasets/Ucla_bhhbf2_liver_female/citation.rtf | 4 + .../Ucla_bhhbf2_liver_female/experiment-design.rtf | 1 + .../Ucla_bhhbf2_liver_female/specifics.rtf | 1 + .../datasets/Ucla_bhhbf2_liver_female/summary.rtf | 1 + .../datasets/Ucla_bhhbf2_liver_male/citation.rtf | 4 + .../Ucla_bhhbf2_liver_male/experiment-design.rtf | 1 + .../datasets/Ucla_bhhbf2_liver_male/specifics.rtf | 1 + .../datasets/Ucla_bhhbf2_liver_male/summary.rtf | 1 + .../datasets/Ucla_bhhbf2_muscle_2005/citation.rtf | 4 + .../Ucla_bhhbf2_muscle_2005/experiment-design.rtf | 1 + .../datasets/Ucla_bhhbf2_muscle_2005/summary.rtf | 1 + .../Ucla_bhhbf2_muscle_female/citation.rtf | 4 + .../experiment-design.rtf | 1 + .../Ucla_bhhbf2_muscle_female/specifics.rtf | 1 + .../datasets/Ucla_bhhbf2_muscle_female/summary.rtf | 1 + .../datasets/Ucla_bhhbf2_muscle_male/citation.rtf | 4 + .../Ucla_bhhbf2_muscle_male/experiment-design.rtf | 1 + .../datasets/Ucla_bhhbf2_muscle_male/specifics.rtf | 1 + .../datasets/Ucla_bhhbf2_muscle_male/summary.rtf | 1 + general/datasets/Ucla_bxd_aor_jan16/citation.rtf | 3 + .../datasets/Ucla_bxd_aor_jan16/contributors.rtf | 1 + .../Ucla_bxd_aor_jan16/experiment-design.rtf | 1 + general/datasets/Ucla_bxd_aor_jan16/platform.rtf | 1 + general/datasets/Ucla_bxd_aor_jan16/specifics.rtf | 1 + general/datasets/Ucla_bxd_aor_jan16/summary.rtf | 1 + .../Ucla_bxd_cartilage/experiment-design.rtf | 10 + general/datasets/Ucla_bxd_cartilage/summary.rtf | 11 + .../Ucla_bxd_femur_0113_rsn/acknowledgment.rtf | 1 + .../datasets/Ucla_bxd_femur_0113_rsn/citation.rtf | 1 + .../Ucla_bxd_femur_0113_rsn/experiment-design.rtf | 1 + .../Ucla_bxd_femur_0113_rsn/experiment-type.rtf | 1 + .../datasets/Ucla_bxd_femur_0113_rsn/platform.rtf | 1 + .../Ucla_bxd_femur_0113_rsn/processing.rtf | 1 + .../datasets/Ucla_bxd_femur_0113_rsn/summary.rtf | 1 + general/datasets/Ucla_bxd_liv_jan16/citation.rtf | 3 + .../datasets/Ucla_bxd_liv_jan16/contributors.rtf | 1 + .../Ucla_bxd_liv_jan16/experiment-design.rtf | 1 + general/datasets/Ucla_bxd_liv_jan16/platform.rtf | 1 + general/datasets/Ucla_bxd_liv_jan16/summary.rtf | 1 + .../Ucla_bxd_on_femur_0113_rsn/acknowledgment.rtf | 1 + .../Ucla_bxd_on_femur_0113_rsn/citation.rtf | 1 + .../experiment-design.rtf | 1 + .../Ucla_bxd_on_femur_0113_rsn/experiment-type.rtf | 1 + .../Ucla_bxd_on_femur_0113_rsn/platform.rtf | 1 + .../Ucla_bxd_on_femur_0113_rsn/processing.rtf | 1 + .../Ucla_bxd_on_femur_0113_rsn/summary.rtf | 1 + .../Ucla_bxdbxh_cartilage/experiment-design.rtf | 10 + general/datasets/Ucla_bxdbxh_cartilage/summary.rtf | 11 + .../Ucla_bxdbxh_cartilage_v2/experiment-design.rtf | 10 + .../datasets/Ucla_bxdbxh_cartilage_v2/summary.rtf | 11 + .../Ucla_bxh_cartilage/experiment-design.rtf | 10 + general/datasets/Ucla_bxh_cartilage/summary.rtf | 11 + .../Ucla_bxh_femur_0113_rsn/experiment-type.rtf | 1 + .../datasets/Ucla_bxh_femur_0113_rsn/summary.rtf | 1 + .../Ucla_bxhbxd_cartilage/experiment-design.rtf | 10 + general/datasets/Ucla_bxhbxd_cartilage/summary.rtf | 11 + .../Ucla_bxhbxd_cartilage_v2/experiment-design.rtf | 10 + .../datasets/Ucla_bxhbxd_cartilage_v2/summary.rtf | 11 + .../Ucla_ctb6b6ctf2_adipose_2005/summary.rtf | 1 + .../Ucla_ctb6b6ctf2_adipose_female/summary.rtf | 1 + .../Ucla_ctb6b6ctf2_adipose_male/summary.rtf | 1 + .../Ucla_ctb6b6ctf2_brain_2005/summary.rtf | 1 + .../Ucla_ctb6b6ctf2_brain_female/summary.rtf | 1 + .../Ucla_ctb6b6ctf2_brain_male/summary.rtf | 1 + .../Ucla_ctb6b6ctf2_liver_2005/summary.rtf | 1 + .../Ucla_ctb6b6ctf2_liver_female/summary.rtf | 1 + .../Ucla_ctb6b6ctf2_liver_male/summary.rtf | 1 + .../Ucla_ctb6b6ctf2_muscle_2005/summary.rtf | 1 + .../Ucla_ctb6b6ctf2_muscle_female/summary.rtf | 1 + .../Ucla_ctb6b6ctf2_muscle_male/summary.rtf | 1 + general/datasets/Ucla_cxb_aor_jan16/citation.rtf | 3 + .../datasets/Ucla_cxb_aor_jan16/contributors.rtf | 1 + .../Ucla_cxb_aor_jan16/experiment-design.rtf | 1 + general/datasets/Ucla_cxb_aor_jan16/platform.rtf | 1 + general/datasets/Ucla_cxb_aor_jan16/specifics.rtf | 1 + general/datasets/Ucla_cxb_aor_jan16/summary.rtf | 1 + general/datasets/Ucla_cxb_liv_jan16/citation.rtf | 3 + .../datasets/Ucla_cxb_liv_jan16/contributors.rtf | 1 + .../Ucla_cxb_liv_jan16/experiment-design.rtf | 1 + general/datasets/Ucla_cxb_liv_jan16/platform.rtf | 1 + general/datasets/Ucla_cxb_liv_jan16/specifics.rtf | 1 + general/datasets/Ucla_cxb_liv_jan16/summary.rtf | 1 + .../Ucla_mdp_femur_0113_rsn/acknowledgment.rtf | 1 + .../datasets/Ucla_mdp_femur_0113_rsn/citation.rtf | 1 + .../Ucla_mdp_femur_0113_rsn/experiment-design.rtf | 1 + .../Ucla_mdp_femur_0113_rsn/experiment-type.rtf | 1 + .../datasets/Ucla_mdp_femur_0113_rsn/platform.rtf | 1 + .../Ucla_mdp_femur_0113_rsn/processing.rtf | 1 + .../datasets/Ucla_mdp_femur_0113_rsn/summary.rtf | 1 + .../Uconn_rgc_rseq_log2_0918/specifics.rtf | 1 + .../datasets/Uconn_rgc_rseq_log2_0918/summary.rtf | 3 + .../datasets/Uconn_rgc_rseq_r_0918/specifics.rtf | 1 + general/datasets/Uconn_rgc_rseq_r_0918/summary.rtf | 3 + .../datasets/Uconn_rgc_rseq_s_0918/specifics.rtf | 1 + general/datasets/Uconn_rgc_rseq_s_0918/summary.rtf | 3 + .../Ucsd_ail_hip_rna_seq_0418/citation.rtf | 1 + .../Ucsd_ail_hip_rna_seq_0418/contributors.rtf | 1 + .../Ucsd_ail_hip_rna_seq_0418/specifics.rtf | 1 + .../datasets/Ucsd_ail_hip_rna_seq_0418/summary.rtf | 1 + .../Ucsd_ail_hip_rna_seq_log2_0418/citation.rtf | 1 + .../contributors.rtf | 1 + .../Ucsd_ail_hip_rna_seq_log2_0418/specifics.rtf | 1 + .../Ucsd_ail_hip_rna_seq_log2_0418/summary.rtf | 1 + .../Ucsd_ail_pfc_rna_seq_0418/citation.rtf | 1 + .../Ucsd_ail_pfc_rna_seq_0418/contributors.rtf | 1 + .../Ucsd_ail_pfc_rna_seq_0418/specifics.rtf | 1 + .../datasets/Ucsd_ail_pfc_rna_seq_0418/summary.rtf | 1 + .../Ucsd_ail_pfc_rna_seq_log2_0418/citation.rtf | 1 + .../contributors.rtf | 1 + .../Ucsd_ail_pfc_rna_seq_log2_0418/specifics.rtf | 1 + .../Ucsd_ail_pfc_rna_seq_log2_0418/summary.rtf | 1 + .../Ucsd_ail_str_rna_seq_0418/citation.rtf | 1 + .../Ucsd_ail_str_rna_seq_0418/contributors.rtf | 1 + .../Ucsd_ail_str_rna_seq_0418/specifics.rtf | 1 + .../datasets/Ucsd_ail_str_rna_seq_0418/summary.rtf | 1 + .../Ucsd_ail_str_rna_seq_log2_0418/citation.rtf | 1 + .../contributors.rtf | 1 + .../Ucsd_ail_str_rna_seq_log2_0418/specifics.rtf | 1 + .../Ucsd_ail_str_rna_seq_log2_0418/summary.rtf | 1 + .../Ucsd_cfw_hip_rna_seq_0117/acknowledgment.rtf | 1 + .../datasets/Ucsd_cfw_hip_rna_seq_0117/cases.rtf | 3 + .../Ucsd_cfw_hip_rna_seq_0117/contributors.rtf | 1 + .../Ucsd_cfw_hip_rna_seq_0117/processing.rtf | 1 + .../Ucsd_cfw_hip_rna_seq_0117/specifics.rtf | 1 + .../datasets/Ucsd_cfw_hip_rna_seq_0117/summary.rtf | 1 + .../acknowledgment.rtf | 1 + .../Ucsd_cfw_hip_rna_seq_log2_0117/cases.rtf | 3 + .../contributors.rtf | 1 + .../Ucsd_cfw_hip_rna_seq_log2_0117/processing.rtf | 1 + .../Ucsd_cfw_hip_rna_seq_log2_0117/specifics.rtf | 5 + .../Ucsd_cfw_hip_rna_seq_log2_0117/summary.rtf | 1 + .../Ucsd_cfw_pfc_rna_seq_0117/acknowledgment.rtf | 1 + .../datasets/Ucsd_cfw_pfc_rna_seq_0117/cases.rtf | 3 + .../Ucsd_cfw_pfc_rna_seq_0117/contributors.rtf | 1 + .../Ucsd_cfw_pfc_rna_seq_0117/processing.rtf | 1 + .../Ucsd_cfw_pfc_rna_seq_0117/specifics.rtf | 1 + .../datasets/Ucsd_cfw_pfc_rna_seq_0117/summary.rtf | 1 + .../acknowledgment.rtf | 1 + .../Ucsd_cfw_pfc_rna_seq_log2_0117/cases.rtf | 3 + .../contributors.rtf | 1 + .../Ucsd_cfw_pfc_rna_seq_log2_0117/processing.rtf | 1 + .../Ucsd_cfw_pfc_rna_seq_log2_0117/specifics.rtf | 3 + .../Ucsd_cfw_pfc_rna_seq_log2_0117/summary.rtf | 1 + .../Ucsd_cfw_spl_rna_seq_0117/acknowledgment.rtf | 1 + .../datasets/Ucsd_cfw_spl_rna_seq_0117/cases.rtf | 3 + .../Ucsd_cfw_spl_rna_seq_0117/contributors.rtf | 1 + .../Ucsd_cfw_spl_rna_seq_0117/processing.rtf | 1 + .../Ucsd_cfw_spl_rna_seq_0117/specifics.rtf | 1 + .../datasets/Ucsd_cfw_spl_rna_seq_0117/summary.rtf | 1 + .../acknowledgment.rtf | 1 + .../Ucsd_cfw_str_rna_seq_log2_0117/cases.rtf | 3 + .../contributors.rtf | 1 + .../Ucsd_cfw_str_rna_seq_log2_0117/processing.rtf | 1 + .../Ucsd_cfw_str_rna_seq_log2_0117/specifics.rtf | 3 + .../Ucsd_cfw_str_rna_seq_log2_0117/summary.rtf | 1 + general/datasets/Ufl_mdp_hipp0814/summary.rtf | 1 + general/datasets/Uiowa_eye_rma_0906/summary.rtf | 1 + general/datasets/Umcg_0907_eryth/summary.rtf | 1 + general/datasets/Umcg_0907_eryth_ori/summary.rtf | 1 + general/datasets/Umcg_0907_hemastem/summary.rtf | 1 + .../datasets/Umcg_0907_hemastem_ori/summary.rtf | 1 + general/datasets/Umcg_0907_myeloid/summary.rtf | 1 + general/datasets/Umcg_0907_myeloid_ori/summary.rtf | 1 + general/datasets/Umcg_0907_pro/summary.rtf | 1 + general/datasets/Umcg_0907_pro_ori/summary.rtf | 1 + .../Umutaffyexon_0209_rma/acknowledgment.rtf | 1 + general/datasets/Umutaffyexon_0209_rma/cases.rtf | 1182 + .../Umutaffyexon_0209_rma/experiment-type.rtf | 1 + .../datasets/Umutaffyexon_0209_rma/processing.rtf | 9 + general/datasets/Umutaffyexon_0209_rma/summary.rtf | 3 + .../Umutaffyexon_0209_rma_mdp/experiment-type.rtf | 1 + .../datasets/Umutaffyexon_0209_rma_mdp/summary.rtf | 1 + .../Und_nida_hxb_bxh_indbp_log2z8_0321/cases.rtf | 1075 + .../processing.rtf | 5 + .../specifics.rtf | 1 + .../Und_nida_hxb_bxh_indbp_log2z8_0321/summary.rtf | 3 + .../Und_nida_hxb_bxh_indbpep_log2z8_0321/cases.rtf | 1075 + .../processing.rtf | 5 + .../specifics.rtf | 1 + .../summary.rtf | 3 + .../Ut_ceph_rankinv0909/acknowledgment.rtf | 1 + general/datasets/Ut_ceph_rankinv0909/cases.rtf | 2009 ++ .../datasets/Ut_ceph_rankinv0909/contributors.rtf | 3 + .../Ut_ceph_rankinv0909/experiment-design.rtf | 13 + .../Ut_ceph_rankinv0909/experiment-type.rtf | 6 + general/datasets/Ut_ceph_rankinv0909/platform.rtf | 1 + .../datasets/Ut_ceph_rankinv0909/processing.rtf | 3 + general/datasets/Ut_ceph_rankinv0909/summary.rtf | 7 + .../Ut_hippratex_rma_0709/acknowledgment.rtf | 1 + general/datasets/Ut_hippratex_rma_0709/cases.rtf | 1392 + general/datasets/Ut_hippratex_rma_0709/summary.rtf | 1 + general/datasets/Ut_ilm_bxd_hipp_5t_1112/notes.rtf | 23 + .../datasets/Ut_ilm_bxd_hipp_5t_1112/summary.rtf | 39 + .../datasets/Ut_ilm_bxd_hipp_noe_0909/notes.rtf | 23 + .../datasets/Ut_ilm_bxd_hipp_noe_0909/summary.rtf | 39 + .../datasets/Ut_ilm_bxd_hipp_noe_1112/notes.rtf | 23 + .../datasets/Ut_ilm_bxd_hipp_noe_1112/summary.rtf | 39 + .../Ut_ilm_bxd_hipp_non_0909/experiment-type.rtf | 1 + .../datasets/Ut_ilm_bxd_hipp_non_0909/notes.rtf | 23 + .../datasets/Ut_ilm_bxd_hipp_non_0909/summary.rtf | 39 + .../datasets/Ut_ilm_bxd_hipp_non_1112/notes.rtf | 23 + .../datasets/Ut_ilm_bxd_hipp_non_1112/summary.rtf | 39 + .../datasets/Ut_ilm_bxd_hipp_nos_0909/notes.rtf | 23 + .../datasets/Ut_ilm_bxd_hipp_nos_0909/summary.rtf | 39 + .../datasets/Ut_ilm_bxd_hipp_nos_1112/notes.rtf | 23 + .../datasets/Ut_ilm_bxd_hipp_nos_1112/summary.rtf | 39 + .../datasets/Ut_ilm_bxd_hipp_rse_0909/notes.rtf | 23 + .../datasets/Ut_ilm_bxd_hipp_rse_0909/summary.rtf | 39 + .../datasets/Ut_ilm_bxd_hipp_rse_1112/notes.rtf | 23 + .../datasets/Ut_ilm_bxd_hipp_rse_1112/summary.rtf | 39 + .../datasets/Ut_ilm_bxd_hipp_rss_0909/notes.rtf | 23 + .../datasets/Ut_ilm_bxd_hipp_rss_0909/summary.rtf | 39 + .../datasets/Ut_ilm_bxd_hipp_rss_1112/notes.rtf | 23 + .../datasets/Ut_ilm_bxd_hipp_rss_1112/summary.rtf | 39 + general/datasets/Ut_vgx_hel1014/acknowledgment.rtf | 1 + general/datasets/Ut_vgx_hel1014/cases.rtf | 266 + general/datasets/Ut_vgx_hel1014/citation.rtf | 1 + general/datasets/Ut_vgx_hel1014/contributors.rtf | 1 + .../datasets/Ut_vgx_hel1014/experiment-design.rtf | 3 + general/datasets/Ut_vgx_hel1014/platform.rtf | 1 + general/datasets/Ut_vgx_hel1014/processing.rtf | 1 + general/datasets/Ut_vgx_hel1014/summary.rtf | 1 + general/datasets/Ut_vgx_hel1014/tissue.rtf | 9 + general/datasets/Uthsc_1107_rankinv/summary.rtf | 1 + general/datasets/Uthsc_b6d2ri_h_0912/summary.rtf | 1 + .../experiment-design.rtf | 1 + .../processing.rtf | 9 + .../specifics.rtf | 4332 +++ .../tissue.rtf | 1 + general/datasets/Uthsc_bxd_agehipp0515/cases.rtf | 1258 + .../Uthsc_bxd_agehipp0515/experiment-design.rtf | 3 + .../datasets/Uthsc_bxd_agehipp0515/processing.rtf | 3 + .../datasets/Uthsc_bxd_agehipp0515/specifics.rtf | 1 + general/datasets/Uthsc_bxd_agehipp0515/tissue.rtf | 3 + .../experiment-design.rtf | 1 + .../processing.rtf | 9 + .../specifics.rtf | 1 + .../tissue.rtf | 1 + general/datasets/Uthsc_bxd_h_0912/cases.rtf | 1258 + .../Uthsc_bxd_h_0912/experiment-design.rtf | 3 + general/datasets/Uthsc_bxd_h_0912/processing.rtf | 3 + general/datasets/Uthsc_bxd_h_0912/specifics.rtf | 1 + general/datasets/Uthsc_bxd_h_0912/tissue.rtf | 3 + general/datasets/Uthsc_bxd_harev3_0912/cases.rtf | 1258 + .../Uthsc_bxd_harev3_0912/experiment-design.rtf | 3 + .../datasets/Uthsc_bxd_harev3_0912/processing.rtf | 3 + general/datasets/Uthsc_bxd_harev3_0912/tissue.rtf | 3 + general/datasets/Uthsc_bxd_harv_liv_0118/cases.rtf | 1371 + .../Uthsc_bxd_harv_liv_0118/processing.rtf | 26883 +++++++++++++++++++ .../datasets/Uthsc_bxd_harv_liv_0118/specifics.rtf | 1 + .../datasets/Uthsc_bxd_harv_liv_0118/summary.rtf | 1 + general/datasets/Uthsc_bxd_harv_liv_1019/cases.rtf | 1371 + .../Uthsc_bxd_harv_liv_1019/processing.rtf | 26883 +++++++++++++++++++ .../datasets/Uthsc_bxd_harv_liv_1019/specifics.rtf | 1 + .../datasets/Uthsc_bxd_harv_liv_1019/summary.rtf | 1 + .../Uthsc_bxd_harv_liv_tpm_log2_1019/specifics.rtf | 1 + .../Uthsc_bxd_harv_liv_tpm_log2_1019/summary.rtf | 1 + .../Uthsc_bxd_hip_mirnaseq0214/specifics.rtf | 1 + .../Uthsc_bxd_hip_mirnaseq0214/summary.rtf | 1 + .../Uthsc_bxd_hip_postd7ctrlbs_1121/specifics.rtf | 1 + .../Uthsc_bxd_hip_postd7ctrlbs_1121/summary.rtf | 1 + .../Uthsc_bxd_hip_postd7etohbs_1121/specifics.rtf | 1 + .../Uthsc_bxd_hip_postd7etohbs_1121/summary.rtf | 1 + general/datasets/Uthsc_bxd_liv_0818/specifics.rtf | 1 + general/datasets/Uthsc_bxd_liv_0818/summary.rtf | 1 + general/datasets/Uthsc_bxd_liv_0917/specifics.rtf | 1 + general/datasets/Uthsc_bxd_liv_0917/summary.rtf | 1 + .../Uthsc_bxd_livcdnam_1119/experiment-design.rtf | 1 + .../datasets/Uthsc_bxd_livcdnam_1119/platform.rtf | 1 + .../Uthsc_bxd_livcdnam_1119/processing.rtf | 1 + .../datasets/Uthsc_bxd_livcdnam_1119/specifics.rtf | 1 + .../datasets/Uthsc_bxd_livcdnam_1119/summary.rtf | 1 + .../Uthsc_bxd_livdnam_1119/experiment-design.rtf | 1 + .../datasets/Uthsc_bxd_livdnam_1119/platform.rtf | 1 + .../datasets/Uthsc_bxd_livdnam_1119/processing.rtf | 1 + .../datasets/Uthsc_bxd_livdnam_1119/specifics.rtf | 1 + .../datasets/Uthsc_bxd_livdnam_1119/summary.rtf | 1 + .../Uthsc_bxd_livhfdnam_1119/experiment-design.rtf | 1 + .../datasets/Uthsc_bxd_livhfdnam_1119/platform.rtf | 1 + .../Uthsc_bxd_livhfdnam_1119/processing.rtf | 1 + .../Uthsc_bxd_livhfdnam_1119/specifics.rtf | 1 + .../datasets/Uthsc_bxd_livhfdnam_1119/summary.rtf | 1 + .../Uthsc_bxd_mamgland_ca_0322/specifics.rtf | 1 + .../Uthsc_bxd_mamgland_ca_0322/summary.rtf | 1 + .../Uthsc_bxd_mamgland_cpm_0322/specifics.rtf | 1 + .../Uthsc_bxd_mamgland_cpm_0322/summary.rtf | 1 + .../Uthsc_bxd_mamgland_cpmntum_0322/specifics.rtf | 1 + .../Uthsc_bxd_mamgland_cpmntum_0322/summary.rtf | 1 + .../Uthsc_bxd_mamgland_tum_0322/specifics.rtf | 1 + .../Uthsc_bxd_mamgland_tum_0322/summary.rtf | 1 + general/datasets/Uthsc_bxd_wb_rnaseq1112/cases.rtf | 245 + general/datasets/Uthsc_bxd_wb_rnaseq1112/notes.rtf | 23 + .../datasets/Uthsc_bxd_wb_rnaseq1112/specifics.rtf | 1 + .../datasets/Uthsc_bxd_wb_rnaseq1112/summary.rtf | 4 + .../Uthsc_bxd_wb_rnaseqex1112/specifics.rtf | 1 + .../datasets/Uthsc_bxd_wb_rnaseqex1112/summary.rtf | 1 + .../datasets/Uthsc_bxd_wb_rnaseqtrim1112/cases.rtf | 245 + .../datasets/Uthsc_bxd_wb_rnaseqtrim1112/notes.rtf | 23 + .../Uthsc_bxd_wb_rnaseqtrim1112/summary.rtf | 4 + .../Uthsc_bxd_wb_rnaseqtrim1_1112/cases.rtf | 245 + .../Uthsc_bxd_wb_rnaseqtrim1_1112/notes.rtf | 23 + .../Uthsc_bxd_wb_rnaseqtrim1_1112/summary.rtf | 4 + .../experiment-design.rtf | 1 + .../processing.rtf | 9 + .../specifics.rtf | 3644 +++ .../tissue.rtf | 1 + general/datasets/Uthsc_bxdaged_0615/cases.rtf | 1894 ++ general/datasets/Uthsc_bxdaged_0615/specifics.rtf | 1 + general/datasets/Uthsc_bxdaged_0615/summary.rtf | 1 + general/datasets/Uthsc_bxdagedex_1116/cases.rtf | 1894 ++ .../datasets/Uthsc_bxdagedex_1116/specifics.rtf | 1 + general/datasets/Uthsc_bxdagedex_1116/summary.rtf | 1 + .../cases.rtf | 4336 +++ .../experiment-design.rtf | 3 + .../notes.rtf | 1 + .../processing.rtf | 9 + .../specifics.rtf | 1 + .../tissue.rtf | 3 + .../cases.rtf | 4336 +++ .../experiment-design.rtf | 3 + .../notes.rtf | 1 + .../processing.rtf | 9 + .../tissue.rtf | 3 + .../Uthsc_emsr_all_affymta1_mar17/specifics.rtf | 1 + .../Uthsc_emsr_all_affymta1_mar17/summary.rtf | 1 + .../Uthsc_emsr_et_affymta1_mar17/specifics.rtf | 1 + .../Uthsc_emsr_et_affymta1_mar17/summary.rtf | 1 + .../Uthsc_emsr_etst_affymta1_mar17/specifics.rtf | 1 + .../Uthsc_emsr_etst_affymta1_mar17/summary.rtf | 1 + .../Uthsc_emsr_sal_affymta1_mar17/specifics.rtf | 1 + .../Uthsc_emsr_sal_affymta1_mar17/summary.rtf | 1 + .../Uthsc_emsr_st_affymta1_mar17/specifics.rtf | 1 + .../Uthsc_emsr_st_affymta1_mar17/summary.rtf | 1 + general/datasets/Uthsc_gutexl_0414/cases.rtf | 1696 ++ general/datasets/Uthsc_gutexl_0414/platform.rtf | 1 + general/datasets/Uthsc_gutexl_0414/processing.rtf | 1 + general/datasets/Uthsc_gutexl_0414/specifics.rtf | 1 + general/datasets/Uthsc_gutexl_0414/tissue.rtf | 1 + general/datasets/Uthsc_gutgl_0414/cases.rtf | 1696 ++ general/datasets/Uthsc_gutgl_0414/platform.rtf | 1 + general/datasets/Uthsc_gutgl_0414/processing.rtf | 1 + general/datasets/Uthsc_gutgl_0414/specifics.rtf | 1 + general/datasets/Uthsc_gutgl_0414/tissue.rtf | 1 + general/datasets/Uthsc_huislets_mar17/platform.rtf | 1 + general/datasets/Uthsc_huislets_mar17/summary.rtf | 1 + .../Uthsc_ilm_bxd_hipp_noeb_0216/notes.rtf | 23 + .../Uthsc_ilm_bxd_hipp_noeb_0216/summary.rtf | 39 + .../Uthsc_ilm_bxd_hipp_noeb_0217/notes.rtf | 23 + .../Uthsc_ilm_bxd_hipp_noeb_0217/specifics.rtf | 392 + .../Uthsc_ilm_bxd_hipp_noeb_0217/summary.rtf | 39 + .../Uthsc_ilm_bxd_hipp_nosb_0217/notes.rtf | 23 + .../Uthsc_ilm_bxd_hipp_nosb_0217/specifics.rtf | 408 + .../Uthsc_ilm_bxd_hipp_nosb_0217/summary.rtf | 39 + .../Uthsc_ilm_bxd_hipp_rseb_0216/notes.rtf | 23 + .../Uthsc_ilm_bxd_hipp_rseb_0216/summary.rtf | 39 + .../Uthsc_ilm_bxd_hipp_rseb_0217/notes.rtf | 23 + .../Uthsc_ilm_bxd_hipp_rseb_0217/specifics.rtf | 408 + .../Uthsc_ilm_bxd_hipp_rseb_0217/summary.rtf | 39 + .../Uthsc_ilm_bxd_hipp_rssb_0216/notes.rtf | 23 + .../Uthsc_ilm_bxd_hipp_rssb_0216/summary.rtf | 39 + .../Uthsc_ilm_bxd_hipp_rssb_0217/notes.rtf | 23 + .../Uthsc_ilm_bxd_hipp_rssb_0217/specifics.rtf | 400 + .../Uthsc_ilm_bxd_hipp_rssb_0217/summary.rtf | 39 + .../experiment-design.rtf | 980 + .../Uthsc_mm10_b6d2_ret_mirna_1116/specifics.rtf | 1 + .../Uthsc_mm10_b6d2_ret_mirna_1116/summary.rtf | 9 + general/datasets/Uthsc_mm9_b6d2_ret_0916/cases.rtf | 980 + .../datasets/Uthsc_mm9_b6d2_ret_0916/summary.rtf | 9 + .../datasets/Uthsc_mm9_b6d2_retex_0916/cases.rtf | 980 + .../Uthsc_mm9_b6d2_retex_0916/specifics.rtf | 1 + .../datasets/Uthsc_mm9_b6d2_retex_0916/summary.rtf | 9 + .../datasets/Uthsc_neut_1014/experiment-design.rtf | 1 + general/datasets/Uthsc_neut_1014/summary.rtf | 1 + .../Uthsc_neut_el_1014/experiment-design.rtf | 1 + general/datasets/Uthsc_neut_el_1014/summary.rtf | 1 + general/datasets/Uthsc_spl_rma_1010/cases.rtf | 3 + .../Uthsc_spl_rma_1010/experiment-design.rtf | 3 + general/datasets/Uthsc_spl_rma_1010/notes.rtf | 4 + general/datasets/Uthsc_spl_rma_1010/processing.rtf | 1932 ++ general/datasets/Uthsc_spl_rma_1010/summary.rtf | 3 + general/datasets/Uthsc_spl_rma_1210/cases.rtf | 3 + .../Uthsc_spl_rma_1210/experiment-design.rtf | 3 + general/datasets/Uthsc_spl_rma_1210/notes.rtf | 4 + general/datasets/Uthsc_spl_rma_1210/processing.rtf | 1932 ++ general/datasets/Uthsc_spl_rma_1210/summary.rtf | 3 + general/datasets/Uthsc_spl_rma_1210f/cases.rtf | 3 + .../Uthsc_spl_rma_1210f/experiment-design.rtf | 3 + .../Uthsc_spl_rma_1210f/experiment-type.rtf | 1 + general/datasets/Uthsc_spl_rma_1210f/notes.rtf | 4 + .../datasets/Uthsc_spl_rma_1210f/processing.rtf | 1932 ++ general/datasets/Uthsc_spl_rma_1210f/summary.rtf | 3 + general/datasets/Uthsc_spl_rma_1210m/cases.rtf | 3 + .../Uthsc_spl_rma_1210m/experiment-design.rtf | 3 + .../Uthsc_spl_rma_1210m/experiment-type.rtf | 1 + general/datasets/Uthsc_spl_rma_1210m/notes.rtf | 4 + .../datasets/Uthsc_spl_rma_1210m/processing.rtf | 1932 ++ general/datasets/Uthsc_spl_rma_1210m/summary.rtf | 3 + general/datasets/Uthsc_spl_rmaex_1210/cases.rtf | 3 + .../Uthsc_spl_rmaex_1210/experiment-design.rtf | 3 + general/datasets/Uthsc_spl_rmaex_1210/notes.rtf | 4 + .../datasets/Uthsc_spl_rmaex_1210/processing.rtf | 1932 ++ general/datasets/Uthsc_spl_rmaex_1210/summary.rtf | 3 + general/datasets/Uthsc_spls1_rma_1210/cases.rtf | 3 + .../Uthsc_spls1_rma_1210/experiment-design.rtf | 3 + general/datasets/Uthsc_spls1_rma_1210/notes.rtf | 4 + .../datasets/Uthsc_spls1_rma_1210/processing.rtf | 1932 ++ general/datasets/Uthsc_spls1_rma_1210/summary.rtf | 3 + general/datasets/Uthsc_spls2_rma_1210/cases.rtf | 3 + .../Uthsc_spls2_rma_1210/experiment-design.rtf | 3 + general/datasets/Uthsc_spls2_rma_1210/notes.rtf | 4 + .../datasets/Uthsc_spls2_rma_1210/processing.rtf | 1932 ++ general/datasets/Uthsc_spls2_rma_1210/summary.rtf | 3 + .../datasets/Uthsc_str_rankinv_1210/summary.rtf | 1 + .../Uthsc_striatum_rankinv_1210/summary.rtf | 1 + .../acknowledgment.rtf | 1 + .../Uthsc_vgx_mmbxdhepatocytesrma1014/cases.rtf | 266 + .../Uthsc_vgx_mmbxdhepatocytesrma1014/citation.rtf | 1 + .../contributors.rtf | 1 + .../experiment-design.rtf | 3 + .../Uthsc_vgx_mmbxdhepatocytesrma1014/platform.rtf | 1 + .../processing.rtf | 1 + .../Uthsc_vgx_mmbxdhepatocytesrma1014/summary.rtf | 1 + .../Uthsc_vgx_mmbxdhepatocytesrma1014/tissue.rtf | 9 + general/datasets/Uthscwgu88bfmg1013/summary.rtf | 1 + .../datasets/Utk_bxdspl_vst_0110/contributors.rtf | 1 + .../Utk_bxdspl_vst_0110/experiment-design.rtf | 1 + general/datasets/Utk_bxdspl_vst_0110/summary.rtf | 1 + .../Uva_hiv_1tg_hip_rlog_0720/acknowledgment.rtf | 1 + .../datasets/Uva_hiv_1tg_hip_rlog_0720/cases.rtf | 1 + .../Uva_hiv_1tg_hip_rlog_0720/citation.rtf | 4 + .../Uva_hiv_1tg_hip_rlog_0720/contributors.rtf | 3 + .../experiment-design.rtf | 1 + .../datasets/Uva_hiv_1tg_hip_rlog_0720/notes.rtf | 1 + .../Uva_hiv_1tg_hip_rlog_0720/platform.rtf | 1 + .../Uva_hiv_1tg_hip_rlog_0720/processing.rtf | 5 + .../Uva_hiv_1tg_hip_rlog_0720/specifics.rtf | 1 + .../datasets/Uva_hiv_1tg_hip_rlog_0720/summary.rtf | 3 + .../datasets/Uva_hiv_1tg_hip_rlog_0720/tissue.rtf | 1 + .../Uva_hiv_1tg_pfc_rlog_0720/acknowledgment.rtf | 1 + .../datasets/Uva_hiv_1tg_pfc_rlog_0720/cases.rtf | 1 + .../Uva_hiv_1tg_pfc_rlog_0720/citation.rtf | 4 + .../Uva_hiv_1tg_pfc_rlog_0720/contributors.rtf | 3 + .../experiment-design.rtf | 1 + .../datasets/Uva_hiv_1tg_pfc_rlog_0720/notes.rtf | 1 + .../Uva_hiv_1tg_pfc_rlog_0720/platform.rtf | 1 + .../Uva_hiv_1tg_pfc_rlog_0720/processing.rtf | 5 + .../Uva_hiv_1tg_pfc_rlog_0720/specifics.rtf | 1 + .../datasets/Uva_hiv_1tg_pfc_rlog_0720/summary.rtf | 3 + .../datasets/Uva_hiv_1tg_pfc_rlog_0720/tissue.rtf | 1 + .../Uva_hiv_1tg_str_rlog_0720/acknowledgment.rtf | 1 + .../datasets/Uva_hiv_1tg_str_rlog_0720/cases.rtf | 1 + .../Uva_hiv_1tg_str_rlog_0720/citation.rtf | 4 + .../Uva_hiv_1tg_str_rlog_0720/contributors.rtf | 3 + .../experiment-design.rtf | 1 + .../datasets/Uva_hiv_1tg_str_rlog_0720/notes.rtf | 1 + .../Uva_hiv_1tg_str_rlog_0720/platform.rtf | 1 + .../Uva_hiv_1tg_str_rlog_0720/processing.rtf | 5 + .../Uva_hiv_1tg_str_rlog_0720/specifics.rtf | 1 + .../datasets/Uva_hiv_1tg_str_rlog_0720/summary.rtf | 3 + .../datasets/Uva_hiv_1tg_str_rlog_0720/tissue.rtf | 1 + .../datasets/VCU_BXD_Nac_CIE_AirZ_0416/summary.rtf | 1 - .../datasets/VCU_BXD_Nac_CIE_Air_0416/summary.rtf | 1 - .../datasets/VCU_BXD_Nac_CIE_EtZ_0416/summary.rtf | 1 - .../datasets/VCU_BXD_Nac_CIE_Et_0416/summary.rtf | 1 - .../VCU_BXD_PFC_CIE_AirZ_0416/acknowledgment.rtf | 1 - .../datasets/VCU_BXD_PFC_CIE_AirZ_0416/cases.rtf | 1 - .../experiment-design.rtf | 5 - .../VCU_BXD_PFC_CIE_AirZ_0416/platform.rtf | 1 - .../datasets/VCU_BXD_PFC_CIE_AirZ_0416/summary.rtf | 1 - .../datasets/VCU_BXD_PFC_CIE_AirZ_0416/tissue.rtf | 3 - .../VCU_BXD_PFC_CIE_Air_0416/acknowledgment.rtf | 1 - .../datasets/VCU_BXD_PFC_CIE_Air_0416/cases.rtf | 1 - .../VCU_BXD_PFC_CIE_Air_0416/experiment-design.rtf | 5 - .../datasets/VCU_BXD_PFC_CIE_Air_0416/platform.rtf | 1 - .../datasets/VCU_BXD_PFC_CIE_Air_0416/summary.rtf | 1 - .../datasets/VCU_BXD_PFC_CIE_Air_0416/tissue.rtf | 3 - .../VCU_BXD_PFC_CIE_EtZ_0416/acknowledgment.rtf | 1 - .../datasets/VCU_BXD_PFC_CIE_EtZ_0416/cases.rtf | 1 - .../VCU_BXD_PFC_CIE_EtZ_0416/experiment-design.rtf | 5 - .../datasets/VCU_BXD_PFC_CIE_EtZ_0416/platform.rtf | 1 - .../datasets/VCU_BXD_PFC_CIE_EtZ_0416/summary.rtf | 1 - .../datasets/VCU_BXD_PFC_CIE_EtZ_0416/tissue.rtf | 3 - .../VCU_BXD_PFC_CIE_Et_0416/acknowledgment.rtf | 1 - general/datasets/VCU_BXD_PFC_CIE_Et_0416/cases.rtf | 1 - .../VCU_BXD_PFC_CIE_Et_0416/experiment-design.rtf | 5 - .../datasets/VCU_BXD_PFC_CIE_Et_0416/platform.rtf | 1 - .../datasets/VCU_BXD_PFC_CIE_Et_0416/summary.rtf | 1 - .../datasets/VCU_BXD_PFC_CIE_Et_0416/tissue.rtf | 3 - general/datasets/VCU_NAc_Air_0113_R/summary.rtf | 1 - general/datasets/VCU_NAc_Et_0113_R/summary.rtf | 1 - .../datasets/Vcu_bxd_nac_cie_air_0416/summary.rtf | 1 + .../datasets/Vcu_bxd_nac_cie_airz_0416/summary.rtf | 1 + .../datasets/Vcu_bxd_nac_cie_et_0416/summary.rtf | 1 + .../datasets/Vcu_bxd_nac_cie_etz_0416/summary.rtf | 1 + .../Vcu_bxd_pfc_cie_air_0416/acknowledgment.rtf | 1 + .../datasets/Vcu_bxd_pfc_cie_air_0416/cases.rtf | 1 + .../Vcu_bxd_pfc_cie_air_0416/contributors.rtf | 1 + .../Vcu_bxd_pfc_cie_air_0416/experiment-design.rtf | 5 + .../datasets/Vcu_bxd_pfc_cie_air_0416/platform.rtf | 1 + .../datasets/Vcu_bxd_pfc_cie_air_0416/summary.rtf | 1 + .../datasets/Vcu_bxd_pfc_cie_air_0416/tissue.rtf | 3 + .../Vcu_bxd_pfc_cie_airz_0416/acknowledgment.rtf | 1 + .../datasets/Vcu_bxd_pfc_cie_airz_0416/cases.rtf | 1 + .../Vcu_bxd_pfc_cie_airz_0416/contributors.rtf | 1 + .../experiment-design.rtf | 5 + .../Vcu_bxd_pfc_cie_airz_0416/platform.rtf | 1 + .../datasets/Vcu_bxd_pfc_cie_airz_0416/summary.rtf | 1 + .../datasets/Vcu_bxd_pfc_cie_airz_0416/tissue.rtf | 3 + .../Vcu_bxd_pfc_cie_et_0416/acknowledgment.rtf | 1 + general/datasets/Vcu_bxd_pfc_cie_et_0416/cases.rtf | 1 + .../Vcu_bxd_pfc_cie_et_0416/contributors.rtf | 1 + .../Vcu_bxd_pfc_cie_et_0416/experiment-design.rtf | 5 + .../datasets/Vcu_bxd_pfc_cie_et_0416/platform.rtf | 1 + .../datasets/Vcu_bxd_pfc_cie_et_0416/summary.rtf | 1 + .../datasets/Vcu_bxd_pfc_cie_et_0416/tissue.rtf | 3 + .../Vcu_bxd_pfc_cie_etz_0416/acknowledgment.rtf | 1 + .../datasets/Vcu_bxd_pfc_cie_etz_0416/cases.rtf | 1 + .../Vcu_bxd_pfc_cie_etz_0416/contributors.rtf | 1 + .../Vcu_bxd_pfc_cie_etz_0416/experiment-design.rtf | 5 + .../datasets/Vcu_bxd_pfc_cie_etz_0416/platform.rtf | 1 + .../datasets/Vcu_bxd_pfc_cie_etz_0416/summary.rtf | 1 + .../datasets/Vcu_bxd_pfc_cie_etz_0416/tissue.rtf | 3 + general/datasets/Vcu_nac_air_0113_r/summary.rtf | 1 + general/datasets/Vcu_nac_ave_0113_ss/summary.rtf | 1 + general/datasets/Vcu_nac_et_0113_r/summary.rtf | 1 + .../datasets/Vcu_pf_air_0111_r/acknowledgment.rtf | 1 + general/datasets/Vcu_pf_air_0111_r/cases.rtf | 1 + .../datasets/Vcu_pf_air_0111_r/contributors.rtf | 1 + .../Vcu_pf_air_0111_r/experiment-design.rtf | 5 + .../datasets/Vcu_pf_air_0111_r/experiment-type.rtf | 1 + general/datasets/Vcu_pf_air_0111_r/platform.rtf | 1 + general/datasets/Vcu_pf_air_0111_r/summary.rtf | 1 + general/datasets/Vcu_pf_air_0111_r/tissue.rtf | 3 + .../datasets/Vcu_pf_ave_0111_ss/acknowledgment.rtf | 1 + general/datasets/Vcu_pf_ave_0111_ss/cases.rtf | 1 + .../datasets/Vcu_pf_ave_0111_ss/contributors.rtf | 1 + .../Vcu_pf_ave_0111_ss/experiment-design.rtf | 5 + .../Vcu_pf_ave_0111_ss/experiment-type.rtf | 1 + general/datasets/Vcu_pf_ave_0111_ss/platform.rtf | 1 + general/datasets/Vcu_pf_ave_0111_ss/summary.rtf | 1 + general/datasets/Vcu_pf_ave_0111_ss/tissue.rtf | 3 + .../datasets/Vcu_pf_et_0111_r/acknowledgment.rtf | 1 + general/datasets/Vcu_pf_et_0111_r/cases.rtf | 1 + general/datasets/Vcu_pf_et_0111_r/contributors.rtf | 1 + .../Vcu_pf_et_0111_r/experiment-design.rtf | 5 + .../datasets/Vcu_pf_et_0111_r/experiment-type.rtf | 1 + general/datasets/Vcu_pf_et_0111_r/platform.rtf | 1 + general/datasets/Vcu_pf_et_0111_r/summary.rtf | 1 + general/datasets/Vcu_pf_et_0111_r/tissue.rtf | 3 + general/datasets/Vcuet_vs_sal_0806_r/summary.rtf | 1 + .../datasets/Vcuetoh_0609_r/experiment-type.rtf | 1 + general/datasets/Vcuetoh_0609_r/notes.rtf | 1 + general/datasets/Vcuetoh_0609_r/platform.rtf | 1 + general/datasets/Vcuetoh_0609_r/specifics.rtf | 1 + general/datasets/Vcuetoh_0609_r/summary.rtf | 3 + general/datasets/Vcuetoh_0806_r/summary.rtf | 1 + .../datasets/Vcuetoh_1007_r/experiment-design.rtf | 1 + general/datasets/Vcuetoh_1007_r/processing.rtf | 1 + general/datasets/Vcuetoh_1007_r/summary.rtf | 3 + general/datasets/Vcuetoh_1206_r/acknowledgment.rtf | 1 + general/datasets/Vcuetoh_1206_r/cases.rtf | 1 + general/datasets/Vcuetoh_1206_r/contributors.rtf | 1 + .../datasets/Vcuetoh_1206_r/experiment-design.rtf | 5 + .../datasets/Vcuetoh_1206_r/experiment-type.rtf | 2 + general/datasets/Vcuetoh_1206_r/platform.rtf | 1 + general/datasets/Vcuetoh_1206_r/summary.rtf | 1 + general/datasets/Vcuetoh_1206_r/tissue.rtf | 3 + .../datasets/Vcuetvssal_0609_r/experiment-type.rtf | 1 + general/datasets/Vcuetvssal_0609_r/notes.rtf | 1 + general/datasets/Vcuetvssal_0609_r/platform.rtf | 1 + general/datasets/Vcuetvssal_0609_r/specifics.rtf | 1 + general/datasets/Vcuetvssal_0609_r/summary.rtf | 3 + general/datasets/Vcusal_0609_r/experiment-type.rtf | 1 + general/datasets/Vcusal_0609_r/notes.rtf | 1 + general/datasets/Vcusal_0609_r/platform.rtf | 1 + general/datasets/Vcusal_0609_r/specifics.rtf | 1 + general/datasets/Vcusal_0609_r/summary.rtf | 3 + general/datasets/Vcusal_0806_r/summary.rtf | 1 + general/datasets/Vcusal_1006_r/acknowledgment.rtf | 1 + general/datasets/Vcusal_1006_r/cases.rtf | 1 + general/datasets/Vcusal_1006_r/contributors.rtf | 1 + .../datasets/Vcusal_1006_r/experiment-design.rtf | 5 + general/datasets/Vcusal_1006_r/experiment-type.rtf | 5 + general/datasets/Vcusal_1006_r/platform.rtf | 1 + general/datasets/Vcusal_1006_r/summary.rtf | 1 + general/datasets/Vcusal_1006_r/tissue.rtf | 3 + .../datasets/Vcusal_1007_r/experiment-design.rtf | 1 + general/datasets/Vcusal_1007_r/processing.rtf | 1 + general/datasets/Vcusal_1007_r/summary.rtf | 3 + general/datasets/Vcusal_1206_r/acknowledgment.rtf | 1 + general/datasets/Vcusal_1206_r/cases.rtf | 1 + general/datasets/Vcusal_1206_r/contributors.rtf | 1 + .../datasets/Vcusal_1206_r/experiment-design.rtf | 5 + general/datasets/Vcusal_1206_r/experiment-type.rtf | 1 + general/datasets/Vcusal_1206_r/platform.rtf | 1 + general/datasets/Vcusal_1206_r/summary.rtf | 1 + general/datasets/Vcusal_1206_r/tissue.rtf | 3 + .../datasets/Vcusalo_1007_r/experiment-design.rtf | 1 + general/datasets/Vcusalo_1007_r/processing.rtf | 1 + general/datasets/Vcusalo_1007_r/summary.rtf | 3 + general/datasets/Vubxdmousemidbrainq0512/cases.rtf | 795 + .../Vubxdmousemidbrainq0512/experiment-type.rtf | 1 + .../datasets/Vubxdmousemidbrainq0512/summary.rtf | 1 + general/datasets/gn10/acknowledgment.rtf | 3 - general/datasets/gn10/cases.rtf | 57 - general/datasets/gn10/experiment-design.rtf | 1 - general/datasets/gn10/notes.rtf | 1 - general/datasets/gn10/platform.rtf | 11 - general/datasets/gn10/processing.rtf | 3381 --- general/datasets/gn10/summary.rtf | 12 - general/datasets/gn10/tissue.rtf | 2058 -- general/datasets/luCA_GSE23352HLT0613/summary.rtf | 15 - general/datasets/none/summary.rtf | 40 - 6471 files changed, 569738 insertions(+), 234201 deletions(-) delete mode 100644 general/datasets/AILPublish/specifics.rtf delete mode 100644 general/datasets/AILPublish/summary.rtf delete mode 100644 general/datasets/AXBXAGeno/acknowledgment.rtf delete mode 100644 general/datasets/AXBXAGeno/cases.rtf delete mode 100644 general/datasets/AXBXAGeno/summary.rtf create mode 100644 general/datasets/Ailpublish/specifics.rtf create mode 100644 general/datasets/Ailpublish/summary.rtf create mode 100644 general/datasets/Akxdgeno/summary.rtf create mode 100644 general/datasets/Axbxageno/acknowledgment.rtf create mode 100644 general/datasets/Axbxageno/cases.rtf create mode 100644 general/datasets/Axbxageno/summary.rtf create mode 100644 general/datasets/B139_k_1206_m/citation.rtf create mode 100644 general/datasets/B139_k_1206_m/contributors.rtf create mode 100644 general/datasets/B139_k_1206_m/experiment-design.rtf create mode 100644 general/datasets/B139_k_1206_m/experiment-type.rtf create mode 100644 general/datasets/B139_k_1206_m/summary.rtf create mode 100644 general/datasets/B139_k_1206_r/citation.rtf create mode 100644 general/datasets/B139_k_1206_r/contributors.rtf create mode 100644 general/datasets/B139_k_1206_r/experiment-design.rtf create mode 100644 general/datasets/B139_k_1206_r/experiment-type.rtf create mode 100644 general/datasets/B139_k_1206_r/summary.rtf create mode 100644 general/datasets/B150_k_0406_r/citation.rtf create mode 100644 general/datasets/B150_k_0406_r/contributors.rtf create mode 100644 general/datasets/B150_k_0406_r/experiment-design.rtf create mode 100644 general/datasets/B150_k_0406_r/experiment-type.rtf create mode 100644 general/datasets/B150_k_0406_r/summary.rtf create mode 100644 general/datasets/B1li0809m5/summary.rtf create mode 100644 general/datasets/B1li0809r/summary.rtf create mode 100644 general/datasets/B1mi0809m5/summary.rtf create mode 100644 general/datasets/B1mi0809r/summary.rtf create mode 100644 general/datasets/B30_k_1206_m/acknowledgment.rtf create mode 100644 general/datasets/B30_k_1206_m/cases.rtf create mode 100644 general/datasets/B30_k_1206_m/citation.rtf create mode 100644 general/datasets/B30_k_1206_m/experiment-design.rtf create mode 100644 general/datasets/B30_k_1206_m/experiment-type.rtf create mode 100644 general/datasets/B30_k_1206_m/notes.rtf create mode 100644 general/datasets/B30_k_1206_m/platform.rtf create mode 100644 general/datasets/B30_k_1206_m/processing.rtf create mode 100644 general/datasets/B30_k_1206_m/summary.rtf create mode 100644 general/datasets/B30_k_1206_m/tissue.rtf create mode 100644 general/datasets/B30_k_1206_r/acknowledgment.rtf create mode 100644 general/datasets/B30_k_1206_r/cases.rtf create mode 100644 general/datasets/B30_k_1206_r/citation.rtf create mode 100644 general/datasets/B30_k_1206_r/experiment-design.rtf create mode 100644 general/datasets/B30_k_1206_r/experiment-type.rtf create mode 100644 general/datasets/B30_k_1206_r/notes.rtf create mode 100644 general/datasets/B30_k_1206_r/platform.rtf create mode 100644 general/datasets/B30_k_1206_r/processing.rtf create mode 100644 general/datasets/B30_k_1206_r/summary.rtf create mode 100644 general/datasets/B30_k_1206_r/tissue.rtf create mode 100644 general/datasets/B30_k_1206_rn/acknowledgment.rtf create mode 100644 general/datasets/B30_k_1206_rn/cases.rtf create mode 100644 general/datasets/B30_k_1206_rn/citation.rtf create mode 100644 general/datasets/B30_k_1206_rn/experiment-design.rtf create mode 100644 general/datasets/B30_k_1206_rn/experiment-type.rtf create mode 100644 general/datasets/B30_k_1206_rn/notes.rtf create mode 100644 general/datasets/B30_k_1206_rn/platform.rtf create mode 100644 general/datasets/B30_k_1206_rn/processing.rtf create mode 100644 general/datasets/B30_k_1206_rn/summary.rtf create mode 100644 general/datasets/B30_k_1206_rn/tissue.rtf delete mode 100644 general/datasets/B6D2ONCILM_0412/summary.rtf delete mode 100644 general/datasets/B6D2RIPublish/specifics.rtf delete mode 100644 general/datasets/B6D2RIPublish/summary.rtf create mode 100644 general/datasets/B6btbrf2publish/acknowledgment.rtf create mode 100644 general/datasets/B6btbrf2publish/summary.rtf create mode 100644 general/datasets/B6d2oncilm_0412/experiment-type.rtf create mode 100644 general/datasets/B6d2oncilm_0412/summary.rtf create mode 100644 general/datasets/B6d2ripublish/specifics.rtf create mode 100644 general/datasets/B6d2ripublish/summary.rtf delete mode 100644 general/datasets/BXDGeno/acknowledgment.rtf delete mode 100644 general/datasets/BXDGeno/summary.rtf delete mode 100644 general/datasets/BXDPublish/summary.rtf delete mode 100644 general/datasets/BXD_BonePublish/specifics.rtf delete mode 100644 general/datasets/BXD_BonePublish/summary.rtf delete mode 100644 general/datasets/BXD_HarvestedPublish/specifics.rtf delete mode 100644 general/datasets/BXD_HarvestedPublish/summary.rtf create mode 100644 general/datasets/Bhhbf2geno/summary.rtf create mode 100644 general/datasets/Br_m2_1106_r/acknowledgment.rtf create mode 100644 general/datasets/Br_m2_1106_r/cases.rtf create mode 100644 general/datasets/Br_m2_1106_r/contributors.rtf create mode 100644 general/datasets/Br_m2_1106_r/notes.rtf create mode 100644 general/datasets/Br_m2_1106_r/platform.rtf create mode 100644 general/datasets/Br_m2_1106_r/processing.rtf create mode 100644 general/datasets/Br_m2_1106_r/summary.rtf create mode 100644 general/datasets/Br_m2_1106_r/tissue.rtf create mode 100644 general/datasets/Br_u_0303_m/acknowledgment.rtf create mode 100644 general/datasets/Br_u_0303_m/cases.rtf create mode 100644 general/datasets/Br_u_0303_m/experiment-type.rtf create mode 100644 general/datasets/Br_u_0303_m/notes.rtf create mode 100644 general/datasets/Br_u_0303_m/platform.rtf create mode 100644 general/datasets/Br_u_0303_m/processing.rtf create mode 100644 general/datasets/Br_u_0303_m/summary.rtf create mode 100644 general/datasets/Br_u_0303_m/tissue.rtf create mode 100644 general/datasets/Br_u_0304_dpmmr/acknowledgment.rtf create mode 100644 general/datasets/Br_u_0304_dpmmr/cases.rtf create mode 100644 general/datasets/Br_u_0304_dpmmr/notes.rtf create mode 100644 general/datasets/Br_u_0304_dpmmr/platform.rtf create mode 100644 general/datasets/Br_u_0304_dpmmr/processing.rtf create mode 100644 general/datasets/Br_u_0304_dpmmr/summary.rtf create mode 100644 general/datasets/Br_u_0304_dpmmr/tissue.rtf create mode 100644 general/datasets/Br_u_0304_dpmr/acknowledgment.rtf create mode 100644 general/datasets/Br_u_0304_dpmr/cases.rtf create mode 100644 general/datasets/Br_u_0304_dpmr/notes.rtf create mode 100644 general/datasets/Br_u_0304_dpmr/platform.rtf create mode 100644 general/datasets/Br_u_0304_dpmr/processing.rtf create mode 100644 general/datasets/Br_u_0304_dpmr/summary.rtf create mode 100644 general/datasets/Br_u_0304_dpmr/tissue.rtf create mode 100644 general/datasets/Br_u_0304_r/acknowledgment.rtf create mode 100644 general/datasets/Br_u_0304_r/cases.rtf create mode 100644 general/datasets/Br_u_0304_r/notes.rtf create mode 100644 general/datasets/Br_u_0304_r/platform.rtf create mode 100644 general/datasets/Br_u_0304_r/processing.rtf create mode 100644 general/datasets/Br_u_0304_r/summary.rtf create mode 100644 general/datasets/Br_u_0304_r/tissue.rtf create mode 100644 general/datasets/Br_u_0304_rr/acknowledgment.rtf create mode 100644 general/datasets/Br_u_0304_rr/cases.rtf create mode 100644 general/datasets/Br_u_0304_rr/notes.rtf create mode 100644 general/datasets/Br_u_0304_rr/platform.rtf create mode 100644 general/datasets/Br_u_0304_rr/processing.rtf create mode 100644 general/datasets/Br_u_0304_rr/summary.rtf create mode 100644 general/datasets/Br_u_0304_rr/tissue.rtf create mode 100644 general/datasets/Br_u_0405_ss/acknowledgment.rtf create mode 100644 general/datasets/Br_u_0405_ss/cases.rtf create mode 100644 general/datasets/Br_u_0405_ss/notes.rtf create mode 100644 general/datasets/Br_u_0405_ss/platform.rtf create mode 100644 general/datasets/Br_u_0405_ss/processing.rtf create mode 100644 general/datasets/Br_u_0405_ss/summary.rtf create mode 100644 general/datasets/Br_u_0405_ss/tissue.rtf create mode 100644 general/datasets/Br_u_0503_m/acknowledgment.rtf create mode 100644 general/datasets/Br_u_0503_m/cases.rtf create mode 100644 general/datasets/Br_u_0503_m/experiment-type.rtf create mode 100644 general/datasets/Br_u_0503_m/notes.rtf create mode 100644 general/datasets/Br_u_0503_m/platform.rtf create mode 100644 general/datasets/Br_u_0503_m/processing.rtf create mode 100644 general/datasets/Br_u_0503_m/summary.rtf create mode 100644 general/datasets/Br_u_0503_m/tissue.rtf create mode 100644 general/datasets/Br_u_0603_m/acknowledgment.rtf create mode 100644 general/datasets/Br_u_0603_m/cases.rtf create mode 100644 general/datasets/Br_u_0603_m/experiment-type.rtf create mode 100644 general/datasets/Br_u_0603_m/notes.rtf create mode 100644 general/datasets/Br_u_0603_m/platform.rtf create mode 100644 general/datasets/Br_u_0603_m/processing.rtf create mode 100644 general/datasets/Br_u_0603_m/summary.rtf create mode 100644 general/datasets/Br_u_0603_m/tissue.rtf create mode 100644 general/datasets/Br_u_0803_m/acknowledgment.rtf create mode 100644 general/datasets/Br_u_0803_m/cases.rtf create mode 100644 general/datasets/Br_u_0803_m/experiment-type.rtf create mode 100644 general/datasets/Br_u_0803_m/notes.rtf create mode 100644 general/datasets/Br_u_0803_m/platform.rtf create mode 100644 general/datasets/Br_u_0803_m/processing.rtf create mode 100644 general/datasets/Br_u_0803_m/summary.rtf create mode 100644 general/datasets/Br_u_0803_m/tissue.rtf create mode 100644 general/datasets/Br_u_0805_m/acknowledgment.rtf create mode 100644 general/datasets/Br_u_0805_m/cases.rtf create mode 100644 general/datasets/Br_u_0805_m/notes.rtf create mode 100644 general/datasets/Br_u_0805_m/platform.rtf create mode 100644 general/datasets/Br_u_0805_m/processing.rtf create mode 100644 general/datasets/Br_u_0805_m/summary.rtf create mode 100644 general/datasets/Br_u_0805_m/tissue.rtf create mode 100644 general/datasets/Br_u_0805_p/acknowledgment.rtf create mode 100644 general/datasets/Br_u_0805_p/cases.rtf create mode 100644 general/datasets/Br_u_0805_p/notes.rtf create mode 100644 general/datasets/Br_u_0805_p/platform.rtf create mode 100644 general/datasets/Br_u_0805_p/processing.rtf create mode 100644 general/datasets/Br_u_0805_p/summary.rtf create mode 100644 general/datasets/Br_u_0805_p/tissue.rtf create mode 100644 general/datasets/Br_u_0805_r/acknowledgment.rtf create mode 100644 general/datasets/Br_u_0805_r/cases.rtf create mode 100644 general/datasets/Br_u_0805_r/notes.rtf create mode 100644 general/datasets/Br_u_0805_r/platform.rtf create mode 100644 general/datasets/Br_u_0805_r/processing.rtf create mode 100644 general/datasets/Br_u_0805_r/summary.rtf create mode 100644 general/datasets/Br_u_0805_r/tissue.rtf create mode 100644 general/datasets/Br_u_0903_dpm/acknowledgment.rtf create mode 100644 general/datasets/Br_u_0903_dpm/cases.rtf create mode 100644 general/datasets/Br_u_0903_dpm/notes.rtf create mode 100644 general/datasets/Br_u_0903_dpm/platform.rtf create mode 100644 general/datasets/Br_u_0903_dpm/processing.rtf create mode 100644 general/datasets/Br_u_0903_dpm/summary.rtf create mode 100644 general/datasets/Br_u_0903_dpm/tissue.rtf create mode 100644 general/datasets/Br_u_0903_dpmm/acknowledgment.rtf create mode 100644 general/datasets/Br_u_0903_dpmm/cases.rtf create mode 100644 general/datasets/Br_u_0903_dpmm/notes.rtf create mode 100644 general/datasets/Br_u_0903_dpmm/platform.rtf create mode 100644 general/datasets/Br_u_0903_dpmm/processing.rtf create mode 100644 general/datasets/Br_u_0903_dpmm/summary.rtf create mode 100644 general/datasets/Br_u_0903_dpmm/tissue.rtf create mode 100644 general/datasets/Br_u_0903_m/acknowledgment.rtf create mode 100644 general/datasets/Br_u_0903_m/cases.rtf create mode 100644 general/datasets/Br_u_0903_m/notes.rtf create mode 100644 general/datasets/Br_u_0903_m/platform.rtf create mode 100644 general/datasets/Br_u_0903_m/processing.rtf create mode 100644 general/datasets/Br_u_0903_m/summary.rtf create mode 100644 general/datasets/Br_u_0903_m/tissue.rtf create mode 100644 general/datasets/Br_u_0903_p/acknowledgment.rtf create mode 100644 general/datasets/Br_u_0903_p/cases.rtf create mode 100644 general/datasets/Br_u_0903_p/experiment-type.rtf create mode 100644 general/datasets/Br_u_0903_p/notes.rtf create mode 100644 general/datasets/Br_u_0903_p/platform.rtf create mode 100644 general/datasets/Br_u_0903_p/processing.rtf create mode 100644 general/datasets/Br_u_0903_p/summary.rtf create mode 100644 general/datasets/Br_u_0903_p/tissue.rtf create mode 100644 general/datasets/Br_u_0903_r/acknowledgment.rtf create mode 100644 general/datasets/Br_u_0903_r/cases.rtf create mode 100644 general/datasets/Br_u_0903_r/notes.rtf create mode 100644 general/datasets/Br_u_0903_r/platform.rtf create mode 100644 general/datasets/Br_u_0903_r/processing.rtf create mode 100644 general/datasets/Br_u_0903_r/summary.rtf create mode 100644 general/datasets/Br_u_0903_r/tissue.rtf create mode 100644 general/datasets/Br_u_1105_p/acknowledgment.rtf create mode 100644 general/datasets/Br_u_1105_p/cases.rtf create mode 100644 general/datasets/Br_u_1105_p/notes.rtf create mode 100644 general/datasets/Br_u_1105_p/platform.rtf create mode 100644 general/datasets/Br_u_1105_p/processing.rtf create mode 100644 general/datasets/Br_u_1105_p/summary.rtf create mode 100644 general/datasets/Br_u_1105_p/tissue.rtf create mode 100644 general/datasets/Br_u_1105_r/acknowledgment.rtf create mode 100644 general/datasets/Br_u_1105_r/cases.rtf create mode 100644 general/datasets/Br_u_1105_r/notes.rtf create mode 100644 general/datasets/Br_u_1105_r/platform.rtf create mode 100644 general/datasets/Br_u_1105_r/processing.rtf create mode 100644 general/datasets/Br_u_1105_r/summary.rtf create mode 100644 general/datasets/Br_u_1105_r/tissue.rtf create mode 100644 general/datasets/Br_u_1203_dpm/acknowledgment.rtf create mode 100644 general/datasets/Br_u_1203_dpm/cases.rtf create mode 100644 general/datasets/Br_u_1203_dpm/notes.rtf create mode 100644 general/datasets/Br_u_1203_dpm/platform.rtf create mode 100644 general/datasets/Br_u_1203_dpm/processing.rtf create mode 100644 general/datasets/Br_u_1203_dpm/summary.rtf create mode 100644 general/datasets/Br_u_1203_dpm/tissue.rtf create mode 100644 general/datasets/Br_u_1203_dpmm/acknowledgment.rtf create mode 100644 general/datasets/Br_u_1203_dpmm/cases.rtf create mode 100644 general/datasets/Br_u_1203_dpmm/notes.rtf create mode 100644 general/datasets/Br_u_1203_dpmm/platform.rtf create mode 100644 general/datasets/Br_u_1203_dpmm/processing.rtf create mode 100644 general/datasets/Br_u_1203_dpmm/summary.rtf create mode 100644 general/datasets/Br_u_1203_dpmm/tissue.rtf create mode 100644 general/datasets/Br_u_1203_dpmmr/acknowledgment.rtf create mode 100644 general/datasets/Br_u_1203_dpmmr/cases.rtf create mode 100644 general/datasets/Br_u_1203_dpmmr/notes.rtf create mode 100644 general/datasets/Br_u_1203_dpmmr/platform.rtf create mode 100644 general/datasets/Br_u_1203_dpmmr/processing.rtf create mode 100644 general/datasets/Br_u_1203_dpmmr/summary.rtf create mode 100644 general/datasets/Br_u_1203_dpmmr/tissue.rtf create mode 100644 general/datasets/Br_u_1203_dpmr/acknowledgment.rtf create mode 100644 general/datasets/Br_u_1203_dpmr/cases.rtf create mode 100644 general/datasets/Br_u_1203_dpmr/notes.rtf create mode 100644 general/datasets/Br_u_1203_dpmr/platform.rtf create mode 100644 general/datasets/Br_u_1203_dpmr/processing.rtf create mode 100644 general/datasets/Br_u_1203_dpmr/summary.rtf create mode 100644 general/datasets/Br_u_1203_dpmr/tissue.rtf create mode 100644 general/datasets/Br_u_1203_h2/acknowledgment.rtf create mode 100644 general/datasets/Br_u_1203_h2/cases.rtf create mode 100644 general/datasets/Br_u_1203_h2/notes.rtf create mode 100644 general/datasets/Br_u_1203_h2/platform.rtf create mode 100644 general/datasets/Br_u_1203_h2/processing.rtf create mode 100644 general/datasets/Br_u_1203_h2/summary.rtf create mode 100644 general/datasets/Br_u_1203_h2/tissue.rtf create mode 100644 general/datasets/Br_u_1203_m/acknowledgment.rtf create mode 100644 general/datasets/Br_u_1203_m/cases.rtf create mode 100644 general/datasets/Br_u_1203_m/notes.rtf create mode 100644 general/datasets/Br_u_1203_m/platform.rtf create mode 100644 general/datasets/Br_u_1203_m/processing.rtf create mode 100644 general/datasets/Br_u_1203_m/summary.rtf create mode 100644 general/datasets/Br_u_1203_m/tissue.rtf create mode 100644 general/datasets/Br_u_1203_mr/acknowledgment.rtf create mode 100644 general/datasets/Br_u_1203_mr/cases.rtf create mode 100644 general/datasets/Br_u_1203_mr/notes.rtf create mode 100644 general/datasets/Br_u_1203_mr/platform.rtf create mode 100644 general/datasets/Br_u_1203_mr/processing.rtf create mode 100644 general/datasets/Br_u_1203_mr/summary.rtf create mode 100644 general/datasets/Br_u_1203_mr/tissue.rtf create mode 100644 general/datasets/Br_u_1203_p/acknowledgment.rtf create mode 100644 general/datasets/Br_u_1203_p/cases.rtf create mode 100644 general/datasets/Br_u_1203_p/notes.rtf create mode 100644 general/datasets/Br_u_1203_p/platform.rtf create mode 100644 general/datasets/Br_u_1203_p/processing.rtf create mode 100644 general/datasets/Br_u_1203_p/summary.rtf create mode 100644 general/datasets/Br_u_1203_p/tissue.rtf create mode 100644 general/datasets/Br_u_1203_pr/acknowledgment.rtf create mode 100644 general/datasets/Br_u_1203_pr/cases.rtf create mode 100644 general/datasets/Br_u_1203_pr/notes.rtf create mode 100644 general/datasets/Br_u_1203_pr/platform.rtf create mode 100644 general/datasets/Br_u_1203_pr/processing.rtf create mode 100644 general/datasets/Br_u_1203_pr/summary.rtf create mode 100644 general/datasets/Br_u_1203_pr/tissue.rtf create mode 100644 general/datasets/Br_u_1203_r/acknowledgment.rtf create mode 100644 general/datasets/Br_u_1203_r/cases.rtf create mode 100644 general/datasets/Br_u_1203_r/notes.rtf create mode 100644 general/datasets/Br_u_1203_r/platform.rtf create mode 100644 general/datasets/Br_u_1203_r/processing.rtf create mode 100644 general/datasets/Br_u_1203_r/summary.rtf create mode 100644 general/datasets/Br_u_1203_r/tissue.rtf create mode 100644 general/datasets/Br_u_1203_rr/acknowledgment.rtf create mode 100644 general/datasets/Br_u_1203_rr/cases.rtf create mode 100644 general/datasets/Br_u_1203_rr/notes.rtf create mode 100644 general/datasets/Br_u_1203_rr/platform.rtf create mode 100644 general/datasets/Br_u_1203_rr/processing.rtf create mode 100644 general/datasets/Br_u_1203_rr/summary.rtf create mode 100644 general/datasets/Br_u_1203_rr/tissue.rtf create mode 100644 general/datasets/Brf2_m_0304_m/acknowledgment.rtf create mode 100644 general/datasets/Brf2_m_0304_m/cases.rtf create mode 100644 general/datasets/Brf2_m_0304_m/citation.rtf create mode 100644 general/datasets/Brf2_m_0304_m/contributors.rtf create mode 100644 general/datasets/Brf2_m_0304_m/experiment-design.rtf create mode 100644 general/datasets/Brf2_m_0304_m/notes.rtf create mode 100644 general/datasets/Brf2_m_0304_m/platform.rtf create mode 100644 general/datasets/Brf2_m_0304_m/processing.rtf create mode 100644 general/datasets/Brf2_m_0304_m/summary.rtf create mode 100644 general/datasets/Brf2_m_0304_m/tissue.rtf create mode 100644 general/datasets/Brf2_m_0304_p/acknowledgment.rtf create mode 100644 general/datasets/Brf2_m_0304_p/cases.rtf create mode 100644 general/datasets/Brf2_m_0304_p/citation.rtf create mode 100644 general/datasets/Brf2_m_0304_p/contributors.rtf create mode 100644 general/datasets/Brf2_m_0304_p/experiment-design.rtf create mode 100644 general/datasets/Brf2_m_0304_p/notes.rtf create mode 100644 general/datasets/Brf2_m_0304_p/platform.rtf create mode 100644 general/datasets/Brf2_m_0304_p/processing.rtf create mode 100644 general/datasets/Brf2_m_0304_p/summary.rtf create mode 100644 general/datasets/Brf2_m_0304_p/tissue.rtf create mode 100644 general/datasets/Brf2_m_0304_r/acknowledgment.rtf create mode 100644 general/datasets/Brf2_m_0304_r/cases.rtf create mode 100644 general/datasets/Brf2_m_0304_r/citation.rtf create mode 100644 general/datasets/Brf2_m_0304_r/contributors.rtf create mode 100644 general/datasets/Brf2_m_0304_r/experiment-design.rtf create mode 100644 general/datasets/Brf2_m_0304_r/notes.rtf create mode 100644 general/datasets/Brf2_m_0304_r/platform.rtf create mode 100644 general/datasets/Brf2_m_0304_r/processing.rtf create mode 100644 general/datasets/Brf2_m_0304_r/summary.rtf create mode 100644 general/datasets/Brf2_m_0304_r/tissue.rtf create mode 100644 general/datasets/Brf2_m_0805_m/acknowledgment.rtf create mode 100644 general/datasets/Brf2_m_0805_m/cases.rtf create mode 100644 general/datasets/Brf2_m_0805_m/citation.rtf create mode 100644 general/datasets/Brf2_m_0805_m/contributors.rtf create mode 100644 general/datasets/Brf2_m_0805_m/notes.rtf create mode 100644 general/datasets/Brf2_m_0805_m/platform.rtf create mode 100644 general/datasets/Brf2_m_0805_m/processing.rtf create mode 100644 general/datasets/Brf2_m_0805_m/summary.rtf create mode 100644 general/datasets/Brf2_m_0805_m/tissue.rtf create mode 100644 general/datasets/Brf2_m_0805_p/acknowledgment.rtf create mode 100644 general/datasets/Brf2_m_0805_p/cases.rtf create mode 100644 general/datasets/Brf2_m_0805_p/citation.rtf create mode 100644 general/datasets/Brf2_m_0805_p/contributors.rtf create mode 100644 general/datasets/Brf2_m_0805_p/notes.rtf create mode 100644 general/datasets/Brf2_m_0805_p/platform.rtf create mode 100644 general/datasets/Brf2_m_0805_p/processing.rtf create mode 100644 general/datasets/Brf2_m_0805_p/summary.rtf create mode 100644 general/datasets/Brf2_m_0805_p/tissue.rtf create mode 100644 general/datasets/Brf2_m_0805_r/acknowledgment.rtf create mode 100644 general/datasets/Brf2_m_0805_r/cases.rtf create mode 100644 general/datasets/Brf2_m_0805_r/citation.rtf create mode 100644 general/datasets/Brf2_m_0805_r/contributors.rtf create mode 100644 general/datasets/Brf2_m_0805_r/notes.rtf create mode 100644 general/datasets/Brf2_m_0805_r/platform.rtf create mode 100644 general/datasets/Brf2_m_0805_r/processing.rtf create mode 100644 general/datasets/Brf2_m_0805_r/summary.rtf create mode 100644 general/datasets/Brf2_m_0805_r/tissue.rtf create mode 100644 general/datasets/Bxd_bonepublish/specifics.rtf create mode 100644 general/datasets/Bxd_bonepublish/summary.rtf create mode 100644 general/datasets/Bxd_gla_0911/experiment-design.rtf create mode 100644 general/datasets/Bxd_gla_0911/summary.rtf create mode 100644 general/datasets/Bxd_harvestedpublish/specifics.rtf create mode 100644 general/datasets/Bxd_harvestedpublish/summary.rtf create mode 100644 general/datasets/Bxdgeno/acknowledgment.rtf create mode 100644 general/datasets/Bxdgeno/summary.rtf create mode 100644 general/datasets/Bxdpublish/summary.rtf delete mode 100644 general/datasets/CANDLE_Meth27_0313/platform.rtf delete mode 100644 general/datasets/CANDLE_Meth27_0313/processing.rtf delete mode 100644 general/datasets/CANDLE_Meth_0313/platform.rtf delete mode 100644 general/datasets/CANDLE_Meth_0313/processing.rtf delete mode 100644 general/datasets/CCGeno/cases.rtf delete mode 100644 general/datasets/CCGeno/platform.rtf delete mode 100644 general/datasets/CCGeno/specifics.rtf delete mode 100644 general/datasets/CCGeno/summary.rtf delete mode 100644 general/datasets/CCGeno/tissue.rtf delete mode 100644 general/datasets/CCPublish/acknowledgment.rtf delete mode 100644 general/datasets/CCPublish/cases.rtf delete mode 100644 general/datasets/CCPublish/experiment-design.rtf delete mode 100644 general/datasets/CCPublish/specifics.rtf delete mode 100644 general/datasets/CCPublish/summary.rtf delete mode 100644 general/datasets/CCPublish/tissue.rtf delete mode 100644 general/datasets/CMMTUBCBXDCerILM0513/summary.rtf delete mode 100644 general/datasets/CMMTUBCBXDG12CerILM0513/summary.rtf delete mode 100644 general/datasets/CMMTUBCBXDG15CerILM0513/summary.rtf delete mode 100644 general/datasets/CMMTUBCBXDG18CerILM0513/summary.rtf delete mode 100644 general/datasets/CMMTUBCBXDP03CerILM0513/summary.rtf delete mode 100644 general/datasets/CMMTUBCBXDP06CerILM0513/summary.rtf delete mode 100644 general/datasets/CMMTUBCBXDP09CerILM0513/summary.rtf delete mode 100644 general/datasets/CMS_Hipp1115/cases.rtf delete mode 100644 general/datasets/CMS_Hipp1115/experiment-design.rtf delete mode 100644 general/datasets/CMS_Hipp1115/processing.rtf delete mode 100644 general/datasets/CMS_Hipp1115/summary.rtf delete mode 100644 general/datasets/CMS_Hipp1115/tissue.rtf delete mode 100644 general/datasets/CMS_Hipp_ZScr_1115/cases.rtf delete mode 100644 general/datasets/CMS_Hipp_ZScr_1115/experiment-design.rtf delete mode 100644 general/datasets/CMS_Hipp_ZScr_1115/processing.rtf delete mode 100644 general/datasets/CMS_Hipp_ZScr_1115/specifics.rtf delete mode 100644 general/datasets/CMS_Hipp_ZScr_1115/summary.rtf delete mode 100644 general/datasets/CMS_Hipp_ZScr_1115/tissue.rtf delete mode 100644 general/datasets/CRTD_HipPreCell1214/acknowledgment.rtf delete mode 100644 general/datasets/CRTD_HipPreCell1214/cases.rtf delete mode 100644 general/datasets/CRTD_HipPreCell1214/experiment-design.rtf delete mode 100644 general/datasets/CRTD_HipPreCell1214/notes.rtf delete mode 100644 general/datasets/CRTD_HipPreCell1214/platform.rtf delete mode 100644 general/datasets/CRTD_HipPreCell1214/processing.rtf delete mode 100644 general/datasets/CRTD_HipPreCell1214/summary.rtf delete mode 100644 general/datasets/CRTD_HipPreCell1214/tissue.rtf delete mode 100644 general/datasets/CUBr_rna_0219/experiment-design.rtf delete mode 100644 general/datasets/CUBr_rna_0219/notes.rtf delete mode 100644 general/datasets/CUBr_rna_0219/specifics.rtf delete mode 100644 general/datasets/CUBr_rna_0219/summary.rtf create mode 100644 general/datasets/Candle_meth27_0313/platform.rtf create mode 100644 general/datasets/Candle_meth27_0313/processing.rtf create mode 100644 general/datasets/Candle_meth_0313/platform.rtf create mode 100644 general/datasets/Candle_meth_0313/processing.rtf create mode 100644 general/datasets/Candle_nb_0711/acknowledgment.rtf create mode 100644 general/datasets/Candle_nb_0711/cases.rtf create mode 100644 general/datasets/Candle_nb_0711/citation.rtf create mode 100644 general/datasets/Candle_nb_0711/experiment-type.rtf create mode 100644 general/datasets/Candle_nb_0711/summary.rtf create mode 100644 general/datasets/Candle_nb_0711/tissue.rtf create mode 100644 general/datasets/Cb_m_0104_m/acknowledgment.rtf create mode 100644 general/datasets/Cb_m_0104_m/cases.rtf create mode 100644 general/datasets/Cb_m_0104_m/notes.rtf create mode 100644 general/datasets/Cb_m_0104_m/platform.rtf create mode 100644 general/datasets/Cb_m_0104_m/processing.rtf create mode 100644 general/datasets/Cb_m_0104_m/summary.rtf create mode 100644 general/datasets/Cb_m_0104_m/tissue.rtf create mode 100644 general/datasets/Cb_m_0104_p/acknowledgment.rtf create mode 100644 general/datasets/Cb_m_0104_p/cases.rtf create mode 100644 general/datasets/Cb_m_0104_p/notes.rtf create mode 100644 general/datasets/Cb_m_0104_p/platform.rtf create mode 100644 general/datasets/Cb_m_0104_p/processing.rtf create mode 100644 general/datasets/Cb_m_0104_p/summary.rtf create mode 100644 general/datasets/Cb_m_0104_p/tissue.rtf create mode 100644 general/datasets/Cb_m_0104_r/acknowledgment.rtf create mode 100644 general/datasets/Cb_m_0104_r/cases.rtf create mode 100644 general/datasets/Cb_m_0104_r/notes.rtf create mode 100644 general/datasets/Cb_m_0104_r/platform.rtf create mode 100644 general/datasets/Cb_m_0104_r/processing.rtf create mode 100644 general/datasets/Cb_m_0104_r/summary.rtf create mode 100644 general/datasets/Cb_m_0104_r/tissue.rtf create mode 100644 general/datasets/Cb_m_0204_p/acknowledgment.rtf create mode 100644 general/datasets/Cb_m_0204_p/cases.rtf create mode 100644 general/datasets/Cb_m_0204_p/notes.rtf create mode 100644 general/datasets/Cb_m_0204_p/platform.rtf create mode 100644 general/datasets/Cb_m_0204_p/processing.rtf create mode 100644 general/datasets/Cb_m_0204_p/summary.rtf create mode 100644 general/datasets/Cb_m_0204_p/tissue.rtf create mode 100644 general/datasets/Cb_m_0204_r/acknowledgment.rtf create mode 100644 general/datasets/Cb_m_0204_r/cases.rtf create mode 100644 general/datasets/Cb_m_0204_r/notes.rtf create mode 100644 general/datasets/Cb_m_0204_r/platform.rtf create mode 100644 general/datasets/Cb_m_0204_r/processing.rtf create mode 100644 general/datasets/Cb_m_0204_r/summary.rtf create mode 100644 general/datasets/Cb_m_0204_r/tissue.rtf create mode 100644 general/datasets/Cb_m_0305_m/acknowledgment.rtf create mode 100644 general/datasets/Cb_m_0305_m/cases.rtf create mode 100644 general/datasets/Cb_m_0305_m/notes.rtf create mode 100644 general/datasets/Cb_m_0305_m/platform.rtf create mode 100644 general/datasets/Cb_m_0305_m/processing.rtf create mode 100644 general/datasets/Cb_m_0305_m/summary.rtf create mode 100644 general/datasets/Cb_m_0305_m/tissue.rtf create mode 100644 general/datasets/Cb_m_0305_p/acknowledgment.rtf create mode 100644 general/datasets/Cb_m_0305_p/cases.rtf create mode 100644 general/datasets/Cb_m_0305_p/notes.rtf create mode 100644 general/datasets/Cb_m_0305_p/platform.rtf create mode 100644 general/datasets/Cb_m_0305_p/processing.rtf create mode 100644 general/datasets/Cb_m_0305_p/summary.rtf create mode 100644 general/datasets/Cb_m_0305_p/tissue.rtf create mode 100644 general/datasets/Cb_m_0305_r/acknowledgment.rtf create mode 100644 general/datasets/Cb_m_0305_r/cases.rtf create mode 100644 general/datasets/Cb_m_0305_r/notes.rtf create mode 100644 general/datasets/Cb_m_0305_r/platform.rtf create mode 100644 general/datasets/Cb_m_0305_r/processing.rtf create mode 100644 general/datasets/Cb_m_0305_r/summary.rtf create mode 100644 general/datasets/Cb_m_0305_r/tissue.rtf create mode 100644 general/datasets/Cb_m_1003_m/acknowledgment.rtf create mode 100644 general/datasets/Cb_m_1003_m/cases.rtf create mode 100644 general/datasets/Cb_m_1003_m/notes.rtf create mode 100644 general/datasets/Cb_m_1003_m/platform.rtf create mode 100644 general/datasets/Cb_m_1003_m/processing.rtf create mode 100644 general/datasets/Cb_m_1003_m/summary.rtf create mode 100644 general/datasets/Cb_m_1003_m/tissue.rtf create mode 100644 general/datasets/Cb_m_1004_m/acknowledgment.rtf create mode 100644 general/datasets/Cb_m_1004_m/cases.rtf create mode 100644 general/datasets/Cb_m_1004_m/notes.rtf create mode 100644 general/datasets/Cb_m_1004_m/platform.rtf create mode 100644 general/datasets/Cb_m_1004_m/processing.rtf create mode 100644 general/datasets/Cb_m_1004_m/summary.rtf create mode 100644 general/datasets/Cb_m_1004_m/tissue.rtf create mode 100644 general/datasets/Cb_m_1004_p/acknowledgment.rtf create mode 100644 general/datasets/Cb_m_1004_p/cases.rtf create mode 100644 general/datasets/Cb_m_1004_p/notes.rtf create mode 100644 general/datasets/Cb_m_1004_p/platform.rtf create mode 100644 general/datasets/Cb_m_1004_p/processing.rtf create mode 100644 general/datasets/Cb_m_1004_p/summary.rtf create mode 100644 general/datasets/Cb_m_1004_p/tissue.rtf create mode 100644 general/datasets/Cb_m_1004_r/acknowledgment.rtf create mode 100644 general/datasets/Cb_m_1004_r/cases.rtf create mode 100644 general/datasets/Cb_m_1004_r/notes.rtf create mode 100644 general/datasets/Cb_m_1004_r/platform.rtf create mode 100644 general/datasets/Cb_m_1004_r/processing.rtf create mode 100644 general/datasets/Cb_m_1004_r/summary.rtf create mode 100644 general/datasets/Cb_m_1004_r/tissue.rtf create mode 100644 general/datasets/Ccgeno/cases.rtf create mode 100644 general/datasets/Ccgeno/contributors.rtf create mode 100644 general/datasets/Ccgeno/platform.rtf create mode 100644 general/datasets/Ccgeno/specifics.rtf create mode 100644 general/datasets/Ccgeno/summary.rtf create mode 100644 general/datasets/Ccgeno/tissue.rtf create mode 100644 general/datasets/Ccpublish/acknowledgment.rtf create mode 100644 general/datasets/Ccpublish/cases.rtf create mode 100644 general/datasets/Ccpublish/contributors.rtf create mode 100644 general/datasets/Ccpublish/experiment-design.rtf create mode 100644 general/datasets/Ccpublish/specifics.rtf create mode 100644 general/datasets/Ccpublish/summary.rtf create mode 100644 general/datasets/Ccpublish/tissue.rtf create mode 100644 general/datasets/Cmmtubcbxdcerilm0513/summary.rtf create mode 100644 general/datasets/Cmmtubcbxdg12cerilm0513/summary.rtf create mode 100644 general/datasets/Cmmtubcbxdg15cerilm0513/summary.rtf create mode 100644 general/datasets/Cmmtubcbxdg18cerilm0513/summary.rtf create mode 100644 general/datasets/Cmmtubcbxdp03cerilm0513/summary.rtf create mode 100644 general/datasets/Cmmtubcbxdp06cerilm0513/summary.rtf create mode 100644 general/datasets/Cmmtubcbxdp09cerilm0513/summary.rtf create mode 100644 general/datasets/Cms_hipp1115/cases.rtf create mode 100644 general/datasets/Cms_hipp1115/contributors.rtf create mode 100644 general/datasets/Cms_hipp1115/experiment-design.rtf create mode 100644 general/datasets/Cms_hipp1115/processing.rtf create mode 100644 general/datasets/Cms_hipp1115/summary.rtf create mode 100644 general/datasets/Cms_hipp1115/tissue.rtf create mode 100644 general/datasets/Cms_hipp_zscr_1115/cases.rtf create mode 100644 general/datasets/Cms_hipp_zscr_1115/contributors.rtf create mode 100644 general/datasets/Cms_hipp_zscr_1115/experiment-design.rtf create mode 100644 general/datasets/Cms_hipp_zscr_1115/processing.rtf create mode 100644 general/datasets/Cms_hipp_zscr_1115/specifics.rtf create mode 100644 general/datasets/Cms_hipp_zscr_1115/summary.rtf create mode 100644 general/datasets/Cms_hipp_zscr_1115/tissue.rtf create mode 100644 general/datasets/Crtd_hipprecell1214/acknowledgment.rtf create mode 100644 general/datasets/Crtd_hipprecell1214/cases.rtf create mode 100644 general/datasets/Crtd_hipprecell1214/citation.rtf create mode 100644 general/datasets/Crtd_hipprecell1214/contributors.rtf create mode 100644 general/datasets/Crtd_hipprecell1214/experiment-design.rtf create mode 100644 general/datasets/Crtd_hipprecell1214/notes.rtf create mode 100644 general/datasets/Crtd_hipprecell1214/platform.rtf create mode 100644 general/datasets/Crtd_hipprecell1214/processing.rtf create mode 100644 general/datasets/Crtd_hipprecell1214/summary.rtf create mode 100644 general/datasets/Crtd_hipprecell1214/tissue.rtf create mode 100644 general/datasets/Cubr_rna_0219/citation.rtf create mode 100644 general/datasets/Cubr_rna_0219/contributors.rtf create mode 100644 general/datasets/Cubr_rna_0219/experiment-design.rtf create mode 100644 general/datasets/Cubr_rna_0219/notes.rtf create mode 100644 general/datasets/Cubr_rna_0219/specifics.rtf create mode 100644 general/datasets/Cubr_rna_0219/summary.rtf create mode 100644 general/datasets/DBA2J-ONH-1212/experiment-design.rtf create mode 100644 general/datasets/DBA2J-ONH-1212/summary.rtf delete mode 100644 general/datasets/DBA2J_ONH_1212/experiment-design.rtf delete mode 100644 general/datasets/DBA2J_ONH_1212/summary.rtf delete mode 100644 general/datasets/DOD_BXD_Ind_PFC_CD_RNA_Seq_1019/specifics.rtf delete mode 100644 general/datasets/DOD_BXD_Ind_PFC_CD_RNA_Seq_1019/summary.rtf delete mode 100644 general/datasets/DOD_BXD_Ind_PFC_CD_RNA_Seq_ComB_1019/specifics.rtf delete mode 100644 general/datasets/DOD_BXD_Ind_PFC_CD_RNA_Seq_ComB_1019/summary.rtf delete mode 100644 general/datasets/DOD_BXD_Ind_PFC_CTL_RNA_Seq_1019/specifics.rtf delete mode 100644 general/datasets/DOD_BXD_Ind_PFC_CTL_RNA_Seq_1019/summary.rtf delete mode 100644 general/datasets/DOD_BXD_Ind_PFC_CTL_RNA_Seq_ComB_1019/specifics.rtf delete mode 100644 general/datasets/DOD_BXD_Ind_PFC_CTL_RNA_Seq_ComB_1019/summary.rtf delete mode 100644 general/datasets/DOD_BXD_Ind_PFC_DFP_RNA_Seq_1019/specifics.rtf delete mode 100644 general/datasets/DOD_BXD_Ind_PFC_DFP_RNA_Seq_1019/summary.rtf delete mode 100644 general/datasets/DOD_BXD_Ind_PFC_DFP_RNA_Seq_ComB_1019/specifics.rtf delete mode 100644 general/datasets/DOD_BXD_Ind_PFC_DFP_RNA_Seq_ComB_1019/summary.rtf delete mode 100644 general/datasets/DOD_BXD_PFC_CD_RNA_Seq_1019/specifics.rtf delete mode 100644 general/datasets/DOD_BXD_PFC_CD_RNA_Seq_1019/summary.rtf delete mode 100644 general/datasets/DOD_BXD_PFC_CD_RNA_Seq_ComB_1019/specifics.rtf delete mode 100644 general/datasets/DOD_BXD_PFC_CD_RNA_Seq_ComB_1019/summary.rtf delete mode 100644 general/datasets/DOD_BXD_PFC_CTL_RNA_Seq_1019/specifics.rtf delete mode 100644 general/datasets/DOD_BXD_PFC_CTL_RNA_Seq_1019/summary.rtf delete mode 100644 general/datasets/DOD_BXD_PFC_CTL_RNA_Seq_ComB_1019/specifics.rtf delete mode 100644 general/datasets/DOD_BXD_PFC_CTL_RNA_Seq_ComB_1019/summary.rtf delete mode 100644 general/datasets/DOD_BXD_PFC_DFP_RNA_Seq_1019/specifics.rtf delete mode 100644 general/datasets/DOD_BXD_PFC_DFP_RNA_Seq_1019/summary.rtf delete mode 100644 general/datasets/DOD_BXD_PFC_DFP_RNA_Seq_ComB_1019/specifics.rtf delete mode 100644 general/datasets/DOD_BXD_PFC_DFP_RNA_Seq_ComB_1019/summary.rtf create mode 100644 general/datasets/Dba2j_onh_1212/experiment-design.rtf create mode 100644 general/datasets/Dba2j_onh_1212/summary.rtf create mode 100644 general/datasets/DevNeocortex_ILM6.2P14RInv_1110/cases.rtf create mode 100644 general/datasets/DevNeocortex_ILM6.2P14RInv_1110/experiment-design.rtf create mode 100644 general/datasets/DevNeocortex_ILM6.2P14RInv_1110/summary.rtf create mode 100644 general/datasets/DevNeocortex_ILM6.2P14RInv_1110/tissue.rtf create mode 100644 general/datasets/DevNeocortex_ILM6.2P14RInv_1111/cases.rtf create mode 100644 general/datasets/DevNeocortex_ILM6.2P14RInv_1111/experiment-design.rtf create mode 100644 general/datasets/DevNeocortex_ILM6.2P14RInv_1111/summary.rtf create mode 100644 general/datasets/DevNeocortex_ILM6.2P14RInv_1111/tissue.rtf create mode 100644 general/datasets/DevNeocortex_ILM6.2P3RInv_1110/cases.rtf create mode 100644 general/datasets/DevNeocortex_ILM6.2P3RInv_1110/experiment-design.rtf create mode 100644 general/datasets/DevNeocortex_ILM6.2P3RInv_1110/summary.rtf create mode 100644 general/datasets/DevNeocortex_ILM6.2P3RInv_1110/tissue.rtf create mode 100644 general/datasets/DevNeocortex_ILM6.2P3RInv_1111/cases.rtf create mode 100644 general/datasets/DevNeocortex_ILM6.2P3RInv_1111/experiment-design.rtf create mode 100644 general/datasets/DevNeocortex_ILM6.2P3RInv_1111/summary.rtf create mode 100644 general/datasets/DevNeocortex_ILM6.2P3RInv_1111/tissue.rtf delete mode 100644 general/datasets/DevNeocortex_ILM6_2P14RInv_1110/cases.rtf delete mode 100644 general/datasets/DevNeocortex_ILM6_2P14RInv_1110/experiment-design.rtf delete mode 100644 general/datasets/DevNeocortex_ILM6_2P14RInv_1110/summary.rtf delete mode 100644 general/datasets/DevNeocortex_ILM6_2P14RInv_1110/tissue.rtf delete mode 100644 general/datasets/DevNeocortex_ILM6_2P14RInv_1111/cases.rtf delete mode 100644 general/datasets/DevNeocortex_ILM6_2P14RInv_1111/experiment-design.rtf delete mode 100644 general/datasets/DevNeocortex_ILM6_2P14RInv_1111/summary.rtf delete mode 100644 general/datasets/DevNeocortex_ILM6_2P14RInv_1111/tissue.rtf delete mode 100644 general/datasets/DevNeocortex_ILM6_2P3RInv_1110/cases.rtf delete mode 100644 general/datasets/DevNeocortex_ILM6_2P3RInv_1110/experiment-design.rtf delete mode 100644 general/datasets/DevNeocortex_ILM6_2P3RInv_1110/summary.rtf delete mode 100644 general/datasets/DevNeocortex_ILM6_2P3RInv_1110/tissue.rtf delete mode 100644 general/datasets/DevNeocortex_ILM6_2P3RInv_1111/cases.rtf delete mode 100644 general/datasets/DevNeocortex_ILM6_2P3RInv_1111/experiment-design.rtf delete mode 100644 general/datasets/DevNeocortex_ILM6_2P3RInv_1111/summary.rtf delete mode 100644 general/datasets/DevNeocortex_ILM6_2P3RInv_1111/tissue.rtf create mode 100644 general/datasets/DevStriatum_ILM6.2P14RInv_1110/cases.rtf create mode 100644 general/datasets/DevStriatum_ILM6.2P14RInv_1110/experiment-design.rtf create mode 100644 general/datasets/DevStriatum_ILM6.2P14RInv_1110/processing.rtf create mode 100644 general/datasets/DevStriatum_ILM6.2P14RInv_1110/summary.rtf create mode 100644 general/datasets/DevStriatum_ILM6.2P14RInv_1110/tissue.rtf create mode 100644 general/datasets/DevStriatum_ILM6.2P14RInv_1111/cases.rtf create mode 100644 general/datasets/DevStriatum_ILM6.2P14RInv_1111/experiment-design.rtf create mode 100644 general/datasets/DevStriatum_ILM6.2P14RInv_1111/processing.rtf create mode 100644 general/datasets/DevStriatum_ILM6.2P14RInv_1111/summary.rtf create mode 100644 general/datasets/DevStriatum_ILM6.2P14RInv_1111/tissue.rtf create mode 100644 general/datasets/DevStriatum_ILM6.2P3RInv_1110/cases.rtf create mode 100644 general/datasets/DevStriatum_ILM6.2P3RInv_1110/experiment-design.rtf create mode 100644 general/datasets/DevStriatum_ILM6.2P3RInv_1110/processing.rtf create mode 100644 general/datasets/DevStriatum_ILM6.2P3RInv_1110/summary.rtf create mode 100644 general/datasets/DevStriatum_ILM6.2P3RInv_1110/tissue.rtf create mode 100644 general/datasets/DevStriatum_ILM6.2P3RInv_1111/cases.rtf create mode 100644 general/datasets/DevStriatum_ILM6.2P3RInv_1111/experiment-design.rtf create mode 100644 general/datasets/DevStriatum_ILM6.2P3RInv_1111/processing.rtf create mode 100644 general/datasets/DevStriatum_ILM6.2P3RInv_1111/summary.rtf create mode 100644 general/datasets/DevStriatum_ILM6.2P3RInv_1111/tissue.rtf delete mode 100644 general/datasets/DevStriatum_ILM6_2P14RInv_1110/cases.rtf delete mode 100644 general/datasets/DevStriatum_ILM6_2P14RInv_1110/experiment-design.rtf delete mode 100644 general/datasets/DevStriatum_ILM6_2P14RInv_1110/processing.rtf delete mode 100644 general/datasets/DevStriatum_ILM6_2P14RInv_1110/summary.rtf delete mode 100644 general/datasets/DevStriatum_ILM6_2P14RInv_1110/tissue.rtf delete mode 100644 general/datasets/DevStriatum_ILM6_2P14RInv_1111/cases.rtf delete mode 100644 general/datasets/DevStriatum_ILM6_2P14RInv_1111/experiment-design.rtf delete mode 100644 general/datasets/DevStriatum_ILM6_2P14RInv_1111/processing.rtf delete mode 100644 general/datasets/DevStriatum_ILM6_2P14RInv_1111/summary.rtf delete mode 100644 general/datasets/DevStriatum_ILM6_2P14RInv_1111/tissue.rtf delete mode 100644 general/datasets/DevStriatum_ILM6_2P3RInv_1110/cases.rtf delete mode 100644 general/datasets/DevStriatum_ILM6_2P3RInv_1110/experiment-design.rtf delete mode 100644 general/datasets/DevStriatum_ILM6_2P3RInv_1110/processing.rtf delete mode 100644 general/datasets/DevStriatum_ILM6_2P3RInv_1110/summary.rtf delete mode 100644 general/datasets/DevStriatum_ILM6_2P3RInv_1110/tissue.rtf delete mode 100644 general/datasets/DevStriatum_ILM6_2P3RInv_1111/cases.rtf delete mode 100644 general/datasets/DevStriatum_ILM6_2P3RInv_1111/experiment-design.rtf delete mode 100644 general/datasets/DevStriatum_ILM6_2P3RInv_1111/processing.rtf delete mode 100644 general/datasets/DevStriatum_ILM6_2P3RInv_1111/summary.rtf delete mode 100644 general/datasets/DevStriatum_ILM6_2P3RInv_1111/tissue.rtf create mode 100644 general/datasets/Devneocortex_ilm6_2p14rinv_1110/cases.rtf create mode 100644 general/datasets/Devneocortex_ilm6_2p14rinv_1110/experiment-design.rtf create mode 100644 general/datasets/Devneocortex_ilm6_2p14rinv_1110/summary.rtf create mode 100644 general/datasets/Devneocortex_ilm6_2p14rinv_1110/tissue.rtf create mode 100644 general/datasets/Devneocortex_ilm6_2p14rinv_1111/cases.rtf create mode 100644 general/datasets/Devneocortex_ilm6_2p14rinv_1111/experiment-design.rtf create mode 100644 general/datasets/Devneocortex_ilm6_2p14rinv_1111/summary.rtf create mode 100644 general/datasets/Devneocortex_ilm6_2p14rinv_1111/tissue.rtf create mode 100644 general/datasets/Devneocortex_ilm6_2p3rinv_1110/cases.rtf create mode 100644 general/datasets/Devneocortex_ilm6_2p3rinv_1110/experiment-design.rtf create mode 100644 general/datasets/Devneocortex_ilm6_2p3rinv_1110/summary.rtf create mode 100644 general/datasets/Devneocortex_ilm6_2p3rinv_1110/tissue.rtf create mode 100644 general/datasets/Devneocortex_ilm6_2p3rinv_1111/cases.rtf create mode 100644 general/datasets/Devneocortex_ilm6_2p3rinv_1111/experiment-design.rtf create mode 100644 general/datasets/Devneocortex_ilm6_2p3rinv_1111/summary.rtf create mode 100644 general/datasets/Devneocortex_ilm6_2p3rinv_1111/tissue.rtf create mode 100644 general/datasets/Devstriatum_ilm6_2p14rinv_1110/cases.rtf create mode 100644 general/datasets/Devstriatum_ilm6_2p14rinv_1110/experiment-design.rtf create mode 100644 general/datasets/Devstriatum_ilm6_2p14rinv_1110/processing.rtf create mode 100644 general/datasets/Devstriatum_ilm6_2p14rinv_1110/summary.rtf create mode 100644 general/datasets/Devstriatum_ilm6_2p14rinv_1110/tissue.rtf create mode 100644 general/datasets/Devstriatum_ilm6_2p14rinv_1111/cases.rtf create mode 100644 general/datasets/Devstriatum_ilm6_2p14rinv_1111/experiment-design.rtf create mode 100644 general/datasets/Devstriatum_ilm6_2p14rinv_1111/processing.rtf create mode 100644 general/datasets/Devstriatum_ilm6_2p14rinv_1111/summary.rtf create mode 100644 general/datasets/Devstriatum_ilm6_2p14rinv_1111/tissue.rtf create mode 100644 general/datasets/Devstriatum_ilm6_2p3rinv_1110/cases.rtf create mode 100644 general/datasets/Devstriatum_ilm6_2p3rinv_1110/experiment-design.rtf create mode 100644 general/datasets/Devstriatum_ilm6_2p3rinv_1110/processing.rtf create mode 100644 general/datasets/Devstriatum_ilm6_2p3rinv_1110/summary.rtf create mode 100644 general/datasets/Devstriatum_ilm6_2p3rinv_1110/tissue.rtf create mode 100644 general/datasets/Devstriatum_ilm6_2p3rinv_1111/cases.rtf create mode 100644 general/datasets/Devstriatum_ilm6_2p3rinv_1111/experiment-design.rtf create mode 100644 general/datasets/Devstriatum_ilm6_2p3rinv_1111/processing.rtf create mode 100644 general/datasets/Devstriatum_ilm6_2p3rinv_1111/summary.rtf create mode 100644 general/datasets/Devstriatum_ilm6_2p3rinv_1111/tissue.rtf delete mode 100644 general/datasets/DoDCMMRPRetMoGene2Ex_0515/acknowledgment.rtf delete mode 100644 general/datasets/DoDCMMRPRetMoGene2Ex_0515/cases.rtf delete mode 100644 general/datasets/DoDCMMRPRetMoGene2Ex_0515/experiment-design.rtf delete mode 100644 general/datasets/DoDCMMRPRetMoGene2Ex_0515/notes.rtf delete mode 100644 general/datasets/DoDCMMRPRetMoGene2Ex_0515/platform.rtf delete mode 100644 general/datasets/DoDCMMRPRetMoGene2Ex_0515/specifics.rtf delete mode 100644 general/datasets/DoDCMMRPRetMoGene2Ex_0515/summary.rtf delete mode 100644 general/datasets/DoDCMMRPRetMoGene2Ex_0515/tissue.rtf delete mode 100644 general/datasets/DoDCMMRPRetMoGene2_0515/acknowledgment.rtf delete mode 100644 general/datasets/DoDCMMRPRetMoGene2_0515/cases.rtf delete mode 100644 general/datasets/DoDCMMRPRetMoGene2_0515/experiment-design.rtf delete mode 100644 general/datasets/DoDCMMRPRetMoGene2_0515/notes.rtf delete mode 100644 general/datasets/DoDCMMRPRetMoGene2_0515/platform.rtf delete mode 100644 general/datasets/DoDCMMRPRetMoGene2_0515/summary.rtf delete mode 100644 general/datasets/DoDCMMRPRetMoGene2_0515/tissue.rtf delete mode 100644 general/datasets/DoDRetBlastvsNormalEx_0416/cases.rtf delete mode 100644 general/datasets/DoDRetBlastvsNormalEx_0416/experiment-design.rtf delete mode 100644 general/datasets/DoDRetBlastvsNormalEx_0416/notes.rtf delete mode 100644 general/datasets/DoDRetBlastvsNormalEx_0416/platform.rtf delete mode 100644 general/datasets/DoDRetBlastvsNormalEx_0416/specifics.rtf delete mode 100644 general/datasets/DoDRetBlastvsNormalEx_0416/summary.rtf delete mode 100644 general/datasets/DoDRetBlastvsNormalEx_0416/tissue.rtf delete mode 100644 general/datasets/DoDRetBlastvsNormal_0416/acknowledgment.rtf delete mode 100644 general/datasets/DoDRetBlastvsNormal_0416/cases.rtf delete mode 100644 general/datasets/DoDRetBlastvsNormal_0416/platform.rtf delete mode 100644 general/datasets/DoDRetBlastvsNormal_0416/processing.rtf delete mode 100644 general/datasets/DoDRetBlastvsNormal_0416/specifics.rtf delete mode 100644 general/datasets/DoDRetBlastvsNormal_0416/summary.rtf delete mode 100644 general/datasets/DoDRetBlastvsNormal_0416/tissue.rtf delete mode 100644 general/datasets/DoDTATRCRetBLExMoGene2_1213/acknowledgment.rtf delete mode 100644 general/datasets/DoDTATRCRetBLExMoGene2_1213/cases.rtf delete mode 100644 general/datasets/DoDTATRCRetBLExMoGene2_1213/platform.rtf delete mode 100644 general/datasets/DoDTATRCRetBLExMoGene2_1213/processing.rtf delete mode 100644 general/datasets/DoDTATRCRetBLExMoGene2_1213/summary.rtf delete mode 100644 general/datasets/DoDTATRCRetBLExMoGene2_1213/tissue.rtf delete mode 100644 general/datasets/DoDTATRCRetBLMoGene2E_0316/acknowledgment.rtf delete mode 100644 general/datasets/DoDTATRCRetBLMoGene2E_0316/cases.rtf delete mode 100644 general/datasets/DoDTATRCRetBLMoGene2E_0316/platform.rtf delete mode 100644 general/datasets/DoDTATRCRetBLMoGene2E_0316/processing.rtf delete mode 100644 general/datasets/DoDTATRCRetBLMoGene2E_0316/summary.rtf delete mode 100644 general/datasets/DoDTATRCRetBLMoGene2E_0316/tissue.rtf delete mode 100644 general/datasets/DoDTATRCRetBLMoGene2_0316/acknowledgment.rtf delete mode 100644 general/datasets/DoDTATRCRetBLMoGene2_0316/cases.rtf delete mode 100644 general/datasets/DoDTATRCRetBLMoGene2_0316/platform.rtf delete mode 100644 general/datasets/DoDTATRCRetBLMoGene2_0316/processing.rtf delete mode 100644 general/datasets/DoDTATRCRetBLMoGene2_0316/summary.rtf delete mode 100644 general/datasets/DoDTATRCRetBLMoGene2_0316/tissue.rtf delete mode 100644 general/datasets/DoDTATRCRetBLMoGene2_1213/acknowledgment.rtf delete mode 100644 general/datasets/DoDTATRCRetBLMoGene2_1213/cases.rtf delete mode 100644 general/datasets/DoDTATRCRetBLMoGene2_1213/platform.rtf delete mode 100644 general/datasets/DoDTATRCRetBLMoGene2_1213/processing.rtf delete mode 100644 general/datasets/DoDTATRCRetBLMoGene2_1213/summary.rtf delete mode 100644 general/datasets/DoDTATRCRetBLMoGene2_1213/tissue.rtf delete mode 100644 general/datasets/DoDTATRCRetExMoGene2_0315/cases.rtf delete mode 100644 general/datasets/DoDTATRCRetExMoGene2_0315/experiment-design.rtf delete mode 100644 general/datasets/DoDTATRCRetExMoGene2_0315/notes.rtf delete mode 100644 general/datasets/DoDTATRCRetExMoGene2_0315/platform.rtf delete mode 100644 general/datasets/DoDTATRCRetExMoGene2_0315/summary.rtf delete mode 100644 general/datasets/DoDTATRCRetExMoGene2_0315/tissue.rtf delete mode 100644 general/datasets/DoDTATRCRetExMoGene2_1313/acknowledgment.rtf delete mode 100644 general/datasets/DoDTATRCRetExMoGene2_1313/cases.rtf delete mode 100644 general/datasets/DoDTATRCRetExMoGene2_1313/platform.rtf delete mode 100644 general/datasets/DoDTATRCRetExMoGene2_1313/processing.rtf delete mode 100644 general/datasets/DoDTATRCRetExMoGene2_1313/summary.rtf delete mode 100644 general/datasets/DoDTATRCRetExMoGene2_1313/tissue.rtf delete mode 100644 general/datasets/DoDTATRCRetMoGene2_0315/cases.rtf delete mode 100644 general/datasets/DoDTATRCRetMoGene2_0315/experiment-design.rtf delete mode 100644 general/datasets/DoDTATRCRetMoGene2_0315/notes.rtf delete mode 100644 general/datasets/DoDTATRCRetMoGene2_0315/platform.rtf delete mode 100644 general/datasets/DoDTATRCRetMoGene2_0315/summary.rtf delete mode 100644 general/datasets/DoDTATRCRetMoGene2_0315/tissue.rtf delete mode 100644 general/datasets/DoDTATRCRetMoGene2_1313/acknowledgment.rtf delete mode 100644 general/datasets/DoDTATRCRetMoGene2_1313/cases.rtf delete mode 100644 general/datasets/DoDTATRCRetMoGene2_1313/platform.rtf delete mode 100644 general/datasets/DoDTATRCRetMoGene2_1313/processing.rtf delete mode 100644 general/datasets/DoDTATRCRetMoGene2_1313/summary.rtf delete mode 100644 general/datasets/DoDTATRCRetMoGene2_1313/tissue.rtf create mode 100644 general/datasets/Dod_bxd_ind_pfc_cd_rna_seq_1019/specifics.rtf create mode 100644 general/datasets/Dod_bxd_ind_pfc_cd_rna_seq_1019/summary.rtf create mode 100644 general/datasets/Dod_bxd_ind_pfc_cd_rna_seq_comb_1019/specifics.rtf create mode 100644 general/datasets/Dod_bxd_ind_pfc_cd_rna_seq_comb_1019/summary.rtf create mode 100644 general/datasets/Dod_bxd_ind_pfc_ctl_rna_seq_1019/specifics.rtf create mode 100644 general/datasets/Dod_bxd_ind_pfc_ctl_rna_seq_1019/summary.rtf create mode 100644 general/datasets/Dod_bxd_ind_pfc_ctl_rna_seq_comb_1019/specifics.rtf create mode 100644 general/datasets/Dod_bxd_ind_pfc_ctl_rna_seq_comb_1019/summary.rtf create mode 100644 general/datasets/Dod_bxd_ind_pfc_dfp_rna_seq_1019/specifics.rtf create mode 100644 general/datasets/Dod_bxd_ind_pfc_dfp_rna_seq_1019/summary.rtf create mode 100644 general/datasets/Dod_bxd_ind_pfc_dfp_rna_seq_comb_1019/specifics.rtf create mode 100644 general/datasets/Dod_bxd_ind_pfc_dfp_rna_seq_comb_1019/summary.rtf create mode 100644 general/datasets/Dod_bxd_pfc_cd_rna_seq_1019/specifics.rtf create mode 100644 general/datasets/Dod_bxd_pfc_cd_rna_seq_1019/summary.rtf create mode 100644 general/datasets/Dod_bxd_pfc_cd_rna_seq_comb_1019/specifics.rtf create mode 100644 general/datasets/Dod_bxd_pfc_cd_rna_seq_comb_1019/summary.rtf create mode 100644 general/datasets/Dod_bxd_pfc_ctl_rna_seq_1019/specifics.rtf create mode 100644 general/datasets/Dod_bxd_pfc_ctl_rna_seq_1019/summary.rtf create mode 100644 general/datasets/Dod_bxd_pfc_ctl_rna_seq_comb_1019/specifics.rtf create mode 100644 general/datasets/Dod_bxd_pfc_ctl_rna_seq_comb_1019/summary.rtf create mode 100644 general/datasets/Dod_bxd_pfc_dfp_rna_seq_1019/specifics.rtf create mode 100644 general/datasets/Dod_bxd_pfc_dfp_rna_seq_1019/summary.rtf create mode 100644 general/datasets/Dod_bxd_pfc_dfp_rna_seq_comb_1019/specifics.rtf create mode 100644 general/datasets/Dod_bxd_pfc_dfp_rna_seq_comb_1019/summary.rtf create mode 100644 general/datasets/Dodcmmrpretmogene2_0515/acknowledgment.rtf create mode 100644 general/datasets/Dodcmmrpretmogene2_0515/cases.rtf create mode 100644 general/datasets/Dodcmmrpretmogene2_0515/citation.rtf create mode 100644 general/datasets/Dodcmmrpretmogene2_0515/contributors.rtf create mode 100644 general/datasets/Dodcmmrpretmogene2_0515/experiment-design.rtf create mode 100644 general/datasets/Dodcmmrpretmogene2_0515/notes.rtf create mode 100644 general/datasets/Dodcmmrpretmogene2_0515/platform.rtf create mode 100644 general/datasets/Dodcmmrpretmogene2_0515/summary.rtf create mode 100644 general/datasets/Dodcmmrpretmogene2_0515/tissue.rtf create mode 100644 general/datasets/Dodcmmrpretmogene2ex_0515/acknowledgment.rtf create mode 100644 general/datasets/Dodcmmrpretmogene2ex_0515/cases.rtf create mode 100644 general/datasets/Dodcmmrpretmogene2ex_0515/citation.rtf create mode 100644 general/datasets/Dodcmmrpretmogene2ex_0515/contributors.rtf create mode 100644 general/datasets/Dodcmmrpretmogene2ex_0515/experiment-design.rtf create mode 100644 general/datasets/Dodcmmrpretmogene2ex_0515/notes.rtf create mode 100644 general/datasets/Dodcmmrpretmogene2ex_0515/platform.rtf create mode 100644 general/datasets/Dodcmmrpretmogene2ex_0515/specifics.rtf create mode 100644 general/datasets/Dodcmmrpretmogene2ex_0515/summary.rtf create mode 100644 general/datasets/Dodcmmrpretmogene2ex_0515/tissue.rtf create mode 100644 general/datasets/Dodretblastvsnormal_0416/acknowledgment.rtf create mode 100644 general/datasets/Dodretblastvsnormal_0416/cases.rtf create mode 100644 general/datasets/Dodretblastvsnormal_0416/citation.rtf create mode 100644 general/datasets/Dodretblastvsnormal_0416/contributors.rtf create mode 100644 general/datasets/Dodretblastvsnormal_0416/platform.rtf create mode 100644 general/datasets/Dodretblastvsnormal_0416/processing.rtf create mode 100644 general/datasets/Dodretblastvsnormal_0416/specifics.rtf create mode 100644 general/datasets/Dodretblastvsnormal_0416/summary.rtf create mode 100644 general/datasets/Dodretblastvsnormal_0416/tissue.rtf create mode 100644 general/datasets/Dodretblastvsnormalex_0416/cases.rtf create mode 100644 general/datasets/Dodretblastvsnormalex_0416/contributors.rtf create mode 100644 general/datasets/Dodretblastvsnormalex_0416/experiment-design.rtf create mode 100644 general/datasets/Dodretblastvsnormalex_0416/notes.rtf create mode 100644 general/datasets/Dodretblastvsnormalex_0416/platform.rtf create mode 100644 general/datasets/Dodretblastvsnormalex_0416/specifics.rtf create mode 100644 general/datasets/Dodretblastvsnormalex_0416/summary.rtf create mode 100644 general/datasets/Dodretblastvsnormalex_0416/tissue.rtf create mode 100644 general/datasets/Dodtatrcretblexmogene2_1213/acknowledgment.rtf create mode 100644 general/datasets/Dodtatrcretblexmogene2_1213/cases.rtf create mode 100644 general/datasets/Dodtatrcretblexmogene2_1213/citation.rtf create mode 100644 general/datasets/Dodtatrcretblexmogene2_1213/contributors.rtf create mode 100644 general/datasets/Dodtatrcretblexmogene2_1213/platform.rtf create mode 100644 general/datasets/Dodtatrcretblexmogene2_1213/processing.rtf create mode 100644 general/datasets/Dodtatrcretblexmogene2_1213/summary.rtf create mode 100644 general/datasets/Dodtatrcretblexmogene2_1213/tissue.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2_0316/acknowledgment.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2_0316/cases.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2_0316/citation.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2_0316/contributors.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2_0316/platform.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2_0316/processing.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2_0316/summary.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2_0316/tissue.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2_1213/acknowledgment.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2_1213/cases.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2_1213/citation.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2_1213/contributors.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2_1213/platform.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2_1213/processing.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2_1213/summary.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2_1213/tissue.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2e_0316/acknowledgment.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2e_0316/cases.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2e_0316/citation.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2e_0316/contributors.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2e_0316/platform.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2e_0316/processing.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2e_0316/summary.rtf create mode 100644 general/datasets/Dodtatrcretblmogene2e_0316/tissue.rtf create mode 100644 general/datasets/Dodtatrcretexmogene2_0315/cases.rtf create mode 100644 general/datasets/Dodtatrcretexmogene2_0315/contributors.rtf create mode 100644 general/datasets/Dodtatrcretexmogene2_0315/experiment-design.rtf create mode 100644 general/datasets/Dodtatrcretexmogene2_0315/notes.rtf create mode 100644 general/datasets/Dodtatrcretexmogene2_0315/platform.rtf create mode 100644 general/datasets/Dodtatrcretexmogene2_0315/summary.rtf create mode 100644 general/datasets/Dodtatrcretexmogene2_0315/tissue.rtf create mode 100644 general/datasets/Dodtatrcretexmogene2_1313/acknowledgment.rtf create mode 100644 general/datasets/Dodtatrcretexmogene2_1313/cases.rtf create mode 100644 general/datasets/Dodtatrcretexmogene2_1313/citation.rtf create mode 100644 general/datasets/Dodtatrcretexmogene2_1313/contributors.rtf create mode 100644 general/datasets/Dodtatrcretexmogene2_1313/platform.rtf create mode 100644 general/datasets/Dodtatrcretexmogene2_1313/processing.rtf create mode 100644 general/datasets/Dodtatrcretexmogene2_1313/summary.rtf create mode 100644 general/datasets/Dodtatrcretexmogene2_1313/tissue.rtf create mode 100644 general/datasets/Dodtatrcretmogene2_0315/cases.rtf create mode 100644 general/datasets/Dodtatrcretmogene2_0315/contributors.rtf create mode 100644 general/datasets/Dodtatrcretmogene2_0315/experiment-design.rtf create mode 100644 general/datasets/Dodtatrcretmogene2_0315/notes.rtf create mode 100644 general/datasets/Dodtatrcretmogene2_0315/platform.rtf create mode 100644 general/datasets/Dodtatrcretmogene2_0315/summary.rtf create mode 100644 general/datasets/Dodtatrcretmogene2_0315/tissue.rtf create mode 100644 general/datasets/Dodtatrcretmogene2_1313/acknowledgment.rtf create mode 100644 general/datasets/Dodtatrcretmogene2_1313/cases.rtf create mode 100644 general/datasets/Dodtatrcretmogene2_1313/citation.rtf create mode 100644 general/datasets/Dodtatrcretmogene2_1313/contributors.rtf create mode 100644 general/datasets/Dodtatrcretmogene2_1313/platform.rtf create mode 100644 general/datasets/Dodtatrcretmogene2_1313/processing.rtf create mode 100644 general/datasets/Dodtatrcretmogene2_1313/summary.rtf create mode 100644 general/datasets/Dodtatrcretmogene2_1313/tissue.rtf delete mode 100644 general/datasets/EBI_MKK_Liv_TPM_Log2_0621/acknowledgment.rtf delete mode 100644 general/datasets/EBI_MKK_Liv_TPM_Log2_0621/specifics.rtf delete mode 100644 general/datasets/EBI_MKK_Liv_TPM_Log2_0621/summary.rtf delete mode 100644 general/datasets/EBI_MKK_Liv_TPM_Log2_0621/tissue.rtf delete mode 100644 general/datasets/EL_BXDCDHFDScWAT_0216/acknowledgment.rtf delete mode 100644 general/datasets/EL_BXDCDHFDScWAT_0216/cases.rtf delete mode 100644 general/datasets/EL_BXDCDHFDScWAT_0216/experiment-design.rtf delete mode 100644 general/datasets/EL_BXDCDHFDScWAT_0216/platform.rtf delete mode 100644 general/datasets/EL_BXDCDHFDScWAT_0216/processing.rtf delete mode 100644 general/datasets/EL_BXDCDHFDScWAT_0216/specifics.rtf delete mode 100644 general/datasets/EL_BXDCDHFDScWAT_0216/summary.rtf delete mode 100644 general/datasets/EL_BXDCDHFDScWAT_0216/tissue.rtf delete mode 100644 general/datasets/EL_BXDCDScWAT_0216/acknowledgment.rtf delete mode 100644 general/datasets/EL_BXDCDScWAT_0216/cases.rtf delete mode 100644 general/datasets/EL_BXDCDScWAT_0216/experiment-design.rtf delete mode 100644 general/datasets/EL_BXDCDScWAT_0216/platform.rtf delete mode 100644 general/datasets/EL_BXDCDScWAT_0216/processing.rtf delete mode 100644 general/datasets/EL_BXDCDScWAT_0216/summary.rtf delete mode 100644 general/datasets/EL_BXDCDScWAT_0216/tissue.rtf delete mode 100644 general/datasets/EL_BXDHFDScWAT_0216/acknowledgment.rtf delete mode 100644 general/datasets/EL_BXDHFDScWAT_0216/cases.rtf delete mode 100644 general/datasets/EL_BXDHFDScWAT_0216/experiment-design.rtf delete mode 100644 general/datasets/EL_BXDHFDScWAT_0216/platform.rtf delete mode 100644 general/datasets/EL_BXDHFDScWAT_0216/processing.rtf delete mode 100644 general/datasets/EL_BXDHFDScWAT_0216/specifics.rtf delete mode 100644 general/datasets/EL_BXDHFDScWAT_0216/summary.rtf delete mode 100644 general/datasets/EL_BXDHFDScWAT_0216/tissue.rtf delete mode 100644 general/datasets/EPFLADEL1013/acknowledgment.rtf delete mode 100644 general/datasets/EPFLADEL1013/cases.rtf delete mode 100644 general/datasets/EPFLADEL1013/experiment-design.rtf delete mode 100644 general/datasets/EPFLADEL1013/platform.rtf delete mode 100644 general/datasets/EPFLADEL1013/processing.rtf delete mode 100644 general/datasets/EPFLADEL1013/summary.rtf delete mode 100644 general/datasets/EPFLADEL1013/tissue.rtf delete mode 100644 general/datasets/EPFLADGL1013/acknowledgment.rtf delete mode 100644 general/datasets/EPFLADGL1013/cases.rtf delete mode 100644 general/datasets/EPFLADGL1013/experiment-design.rtf delete mode 100644 general/datasets/EPFLADGL1013/platform.rtf delete mode 100644 general/datasets/EPFLADGL1013/processing.rtf delete mode 100644 general/datasets/EPFLADGL1013/summary.rtf delete mode 100644 general/datasets/EPFLADGL1013/tissue.rtf delete mode 100644 general/datasets/EPFLBXDprotCDRPN0214/cases.rtf delete mode 100644 general/datasets/EPFLBXDprotCDRPN0214/notes.rtf delete mode 100644 general/datasets/EPFLBXDprotCDRPN0214/platform.rtf delete mode 100644 general/datasets/EPFLBXDprotCDRPN0214/summary.rtf delete mode 100644 general/datasets/EPFLBXDprotCDRPN0214/tissue.rtf delete mode 100644 general/datasets/EPFLBXDprotCD_CDHFDRPN0214/cases.rtf delete mode 100644 general/datasets/EPFLBXDprotCD_CDHFDRPN0214/notes.rtf delete mode 100644 general/datasets/EPFLBXDprotCD_CDHFDRPN0214/platform.rtf delete mode 100644 general/datasets/EPFLBXDprotCD_CDHFDRPN0214/summary.rtf delete mode 100644 general/datasets/EPFLBXDprotCD_CDHFDRPN0214/tissue.rtf delete mode 100644 general/datasets/EPFLBXDprotHFDRPN0214/cases.rtf delete mode 100644 general/datasets/EPFLBXDprotHFDRPN0214/notes.rtf delete mode 100644 general/datasets/EPFLBXDprotHFDRPN0214/platform.rtf delete mode 100644 general/datasets/EPFLBXDprotHFDRPN0214/summary.rtf delete mode 100644 general/datasets/EPFLBXDprotHFDRPN0214/tissue.rtf delete mode 100644 general/datasets/EPFLBXDprotRPN0513/cases.rtf delete mode 100644 general/datasets/EPFLBXDprotRPN0513/notes.rtf delete mode 100644 general/datasets/EPFLBXDprotRPN0513/platform.rtf delete mode 100644 general/datasets/EPFLBXDprotRPN0513/summary.rtf delete mode 100644 general/datasets/EPFLBXDprotRPN0513/tissue.rtf delete mode 100644 general/datasets/EPFLETHZBXDprotCD0514/notes.rtf delete mode 100644 general/datasets/EPFLETHZBXDprotCD_LS1114/notes.rtf delete mode 100644 general/datasets/EPFLETHZBXDprotHFD0514/notes.rtf delete mode 100644 general/datasets/EPFLETHZBXDprotHF_LS1114/notes.rtf delete mode 100644 general/datasets/EPFLMouseLiverBothExRMA0413/acknowledgment.rtf delete mode 100644 general/datasets/EPFLMouseLiverBothExRMA0413/cases.rtf delete mode 100644 general/datasets/EPFLMouseLiverBothExRMA0413/platform.rtf delete mode 100644 general/datasets/EPFLMouseLiverBothExRMA0413/processing.rtf delete mode 100644 general/datasets/EPFLMouseLiverBothExRMA0413/summary.rtf delete mode 100644 general/datasets/EPFLMouseLiverBothExRMA0413/tissue.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDEx0413/acknowledgment.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDEx0413/cases.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDEx0413/platform.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDEx0413/processing.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDEx0413/specifics.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDEx0413/summary.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDEx0413/tissue.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDHFDRMA0818/acknowledgment.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDHFDRMA0818/cases.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDHFDRMA0818/platform.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDHFDRMA0818/processing.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDHFDRMA0818/specifics.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDHFDRMA0818/summary.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDHFDRMA0818/tissue.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDRMA0413/acknowledgment.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDRMA0413/cases.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDRMA0413/platform.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDRMA0413/processing.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDRMA0413/summary.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDRMA0413/tissue.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDRMA0818/acknowledgment.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDRMA0818/cases.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDRMA0818/platform.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDRMA0818/processing.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDRMA0818/specifics.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDRMA0818/summary.rtf delete mode 100644 general/datasets/EPFLMouseLiverCDRMA0818/tissue.rtf delete mode 100644 general/datasets/EPFLMouseLiverHFCEx0413/acknowledgment.rtf delete mode 100644 general/datasets/EPFLMouseLiverHFCEx0413/cases.rtf delete mode 100644 general/datasets/EPFLMouseLiverHFCEx0413/platform.rtf delete mode 100644 general/datasets/EPFLMouseLiverHFCEx0413/processing.rtf delete mode 100644 general/datasets/EPFLMouseLiverHFCEx0413/specifics.rtf delete mode 100644 general/datasets/EPFLMouseLiverHFCEx0413/summary.rtf delete mode 100644 general/datasets/EPFLMouseLiverHFCEx0413/tissue.rtf delete mode 100644 general/datasets/EPFLMouseLiverHFDRMA0413/acknowledgment.rtf delete mode 100644 general/datasets/EPFLMouseLiverHFDRMA0413/cases.rtf delete mode 100644 general/datasets/EPFLMouseLiverHFDRMA0413/platform.rtf delete mode 100644 general/datasets/EPFLMouseLiverHFDRMA0413/processing.rtf delete mode 100644 general/datasets/EPFLMouseLiverHFDRMA0413/specifics.rtf delete mode 100644 general/datasets/EPFLMouseLiverHFDRMA0413/summary.rtf delete mode 100644 general/datasets/EPFLMouseLiverHFDRMA0413/tissue.rtf delete mode 100644 general/datasets/EPFLMouseLiverHFDRMA0818/acknowledgment.rtf delete mode 100644 general/datasets/EPFLMouseLiverHFDRMA0818/cases.rtf delete mode 100644 general/datasets/EPFLMouseLiverHFDRMA0818/platform.rtf delete mode 100644 general/datasets/EPFLMouseLiverHFDRMA0818/processing.rtf delete mode 100644 general/datasets/EPFLMouseLiverHFDRMA0818/specifics.rtf delete mode 100644 general/datasets/EPFLMouseLiverHFDRMA0818/summary.rtf delete mode 100644 general/datasets/EPFLMouseLiverHFDRMA0818/tissue.rtf delete mode 100644 general/datasets/EPFLMouseLiverRMA0413/acknowledgment.rtf delete mode 100644 general/datasets/EPFLMouseLiverRMA0413/cases.rtf delete mode 100644 general/datasets/EPFLMouseLiverRMA0413/platform.rtf delete mode 100644 general/datasets/EPFLMouseLiverRMA0413/processing.rtf delete mode 100644 general/datasets/EPFLMouseLiverRMA0413/summary.rtf delete mode 100644 general/datasets/EPFLMouseLiverRMA0413/tissue.rtf delete mode 100644 general/datasets/EPFLMouseMuscleCDRMAEx1112/summary.rtf delete mode 100644 general/datasets/EPFLMouseMuscleCDRMAEx1112/tissue.rtf delete mode 100644 general/datasets/EPFLMouseMuscleHFDRMAEx1112/summary.rtf delete mode 100644 general/datasets/EPFLMouseMuscleHFDRMAEx1112/tissue.rtf delete mode 100644 general/datasets/EPFL_AdiMitPro0416/summary.rtf delete mode 100644 general/datasets/EPFL_AdiPro0416/summary.rtf delete mode 100644 general/datasets/EPFL_ETHZ_BXD_LivProtAvg_CD_1119/specifics.rtf delete mode 100644 general/datasets/EPFL_ETHZ_BXD_LivProtAvg_CD_1119/summary.rtf delete mode 100644 general/datasets/EPFL_ETHZ_BXD_LivProtAvg_CD_HF_1119/specifics.rtf delete mode 100644 general/datasets/EPFL_ETHZ_BXD_LivProtAvg_CD_HF_1119/summary.rtf delete mode 100644 general/datasets/EPFL_ETHZ_BXD_LivProtAvg_HFD_1119/specifics.rtf delete mode 100644 general/datasets/EPFL_ETHZ_BXD_LivProtAvg_HFD_1119/summary.rtf delete mode 100644 general/datasets/EPFL_ETHZ_BXD_LivProtCD_HF_1119/specifics.rtf delete mode 100644 general/datasets/EPFL_ETHZ_BXD_LivProtCD_HF_1119/summary.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeCD0114/acknowledgment.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeCD0114/cases.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeCD0114/experiment-design.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeCD0114/platform.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeCD0114/processing.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeCD0114/summary.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeCD0114/tissue.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeCDEx0114/acknowledgment.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeCDEx0114/cases.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeCDEx0114/experiment-design.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeCDEx0114/platform.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeCDEx0114/processing.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeCDEx0114/summary.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeCDEx0114/tissue.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeHFD0114/acknowledgment.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeHFD0114/cases.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeHFD0114/experiment-design.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeHFD0114/platform.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeHFD0114/processing.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeHFD0114/summary.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeHFD0114/tissue.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeHFDEx0114/acknowledgment.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeHFDEx0114/cases.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeHFDEx0114/experiment-design.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeHFDEx0114/platform.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeHFDEx0114/processing.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeHFDEx0114/summary.rtf delete mode 100644 general/datasets/EPFL_LISPBXDHeHFDEx0114/tissue.rtf delete mode 100644 general/datasets/EPFL_LISP_BXD_Col_CD0917/specifics.rtf delete mode 100644 general/datasets/EPFL_LISP_BXD_Col_CD0917/summary.rtf delete mode 100644 general/datasets/EPFL_LISP_BXD_Col_CD_HFD0917/specifics.rtf delete mode 100644 general/datasets/EPFL_LISP_BXD_Col_CD_HFD0917/summary.rtf delete mode 100644 general/datasets/EPFL_LISP_BXD_Col_HFD0917/specifics.rtf delete mode 100644 general/datasets/EPFL_LISP_BXD_Col_HFD0917/summary.rtf delete mode 100644 general/datasets/EPFL_LISP_LivPMetCD1213/cases.rtf delete mode 100644 general/datasets/EPFL_LISP_LivPMetCD1213/processing.rtf delete mode 100644 general/datasets/EPFL_LISP_LivPMetCD1213/summary.rtf delete mode 100644 general/datasets/EPFL_LISP_LivPMetCDHFD1213/cases.rtf delete mode 100644 general/datasets/EPFL_LISP_LivPMetCDHFD1213/processing.rtf delete mode 100644 general/datasets/EPFL_LISP_LivPMetCDHFD1213/summary.rtf delete mode 100644 general/datasets/EPFL_LISP_LivPMetHFD1213/cases.rtf delete mode 100644 general/datasets/EPFL_LISP_LivPMetHFD1213/processing.rtf delete mode 100644 general/datasets/EPFL_LISP_LivPMetHFD1213/summary.rtf delete mode 100644 general/datasets/EPFL_LISP_LivPMetlog2CD1213/cases.rtf delete mode 100644 general/datasets/EPFL_LISP_LivPMetlog2CD1213/processing.rtf delete mode 100644 general/datasets/EPFL_LISP_LivPMetlog2CD1213/summary.rtf delete mode 100644 general/datasets/EPFL_LISP_LivPMetlog2HFD1213/cases.rtf delete mode 100644 general/datasets/EPFL_LISP_LivPMetlog2HFD1213/processing.rtf delete mode 100644 general/datasets/EPFL_LISP_LivPMetlog2HFD1213/summary.rtf delete mode 100644 general/datasets/EPFL_LISP_MusPMetCD1213/acknowledgment.rtf delete mode 100644 general/datasets/EPFL_LISP_MusPMetCD1213/cases.rtf delete mode 100644 general/datasets/EPFL_LISP_MusPMetCD1213/platform.rtf delete mode 100644 general/datasets/EPFL_LISP_MusPMetCD1213/processing.rtf delete mode 100644 general/datasets/EPFL_LISP_MusPMetCD1213/summary.rtf delete mode 100644 general/datasets/EPFL_LISP_MusPMetCD1213/tissue.rtf delete mode 100644 general/datasets/EPFL_LISP_MusPMetCDHFD1213/acknowledgment.rtf delete mode 100644 general/datasets/EPFL_LISP_MusPMetCDHFD1213/cases.rtf delete mode 100644 general/datasets/EPFL_LISP_MusPMetCDHFD1213/platform.rtf delete mode 100644 general/datasets/EPFL_LISP_MusPMetCDHFD1213/processing.rtf delete mode 100644 general/datasets/EPFL_LISP_MusPMetCDHFD1213/summary.rtf delete mode 100644 general/datasets/EPFL_LISP_MusPMetCDHFD1213/tissue.rtf delete mode 100644 general/datasets/EPFL_LISP_MusPMetHFD1213/acknowledgment.rtf delete mode 100644 general/datasets/EPFL_LISP_MusPMetHFD1213/cases.rtf delete mode 100644 general/datasets/EPFL_LISP_MusPMetHFD1213/platform.rtf delete mode 100644 general/datasets/EPFL_LISP_MusPMetHFD1213/processing.rtf delete mode 100644 general/datasets/EPFL_LISP_MusPMetHFD1213/summary.rtf delete mode 100644 general/datasets/EPFL_LISP_MusPMetHFD1213/tissue.rtf create mode 100644 general/datasets/Ebi_mkk_liv_tpm_log2_0621/acknowledgment.rtf create mode 100644 general/datasets/Ebi_mkk_liv_tpm_log2_0621/specifics.rtf create mode 100644 general/datasets/Ebi_mkk_liv_tpm_log2_0621/summary.rtf create mode 100644 general/datasets/Ebi_mkk_liv_tpm_log2_0621/tissue.rtf create mode 100644 general/datasets/El_bxdcdhfdscwat_0216/acknowledgment.rtf create mode 100644 general/datasets/El_bxdcdhfdscwat_0216/cases.rtf create mode 100644 general/datasets/El_bxdcdhfdscwat_0216/citation.rtf create mode 100644 general/datasets/El_bxdcdhfdscwat_0216/contributors.rtf create mode 100644 general/datasets/El_bxdcdhfdscwat_0216/experiment-design.rtf create mode 100644 general/datasets/El_bxdcdhfdscwat_0216/platform.rtf create mode 100644 general/datasets/El_bxdcdhfdscwat_0216/processing.rtf create mode 100644 general/datasets/El_bxdcdhfdscwat_0216/specifics.rtf create mode 100644 general/datasets/El_bxdcdhfdscwat_0216/summary.rtf create mode 100644 general/datasets/El_bxdcdhfdscwat_0216/tissue.rtf create mode 100644 general/datasets/El_bxdcdscwat_0216/acknowledgment.rtf create mode 100644 general/datasets/El_bxdcdscwat_0216/cases.rtf create mode 100644 general/datasets/El_bxdcdscwat_0216/citation.rtf create mode 100644 general/datasets/El_bxdcdscwat_0216/contributors.rtf create mode 100644 general/datasets/El_bxdcdscwat_0216/experiment-design.rtf create mode 100644 general/datasets/El_bxdcdscwat_0216/platform.rtf create mode 100644 general/datasets/El_bxdcdscwat_0216/processing.rtf create mode 100644 general/datasets/El_bxdcdscwat_0216/summary.rtf create mode 100644 general/datasets/El_bxdcdscwat_0216/tissue.rtf create mode 100644 general/datasets/El_bxdhfdscwat_0216/acknowledgment.rtf create mode 100644 general/datasets/El_bxdhfdscwat_0216/cases.rtf create mode 100644 general/datasets/El_bxdhfdscwat_0216/citation.rtf create mode 100644 general/datasets/El_bxdhfdscwat_0216/contributors.rtf create mode 100644 general/datasets/El_bxdhfdscwat_0216/experiment-design.rtf create mode 100644 general/datasets/El_bxdhfdscwat_0216/platform.rtf create mode 100644 general/datasets/El_bxdhfdscwat_0216/processing.rtf create mode 100644 general/datasets/El_bxdhfdscwat_0216/specifics.rtf create mode 100644 general/datasets/El_bxdhfdscwat_0216/summary.rtf create mode 100644 general/datasets/El_bxdhfdscwat_0216/tissue.rtf create mode 100644 general/datasets/Epfl_adimitpro0416/summary.rtf create mode 100644 general/datasets/Epfl_adipro0416/summary.rtf create mode 100644 general/datasets/Epfl_ethz_bxd_livprotavg_cd_1119/specifics.rtf create mode 100644 general/datasets/Epfl_ethz_bxd_livprotavg_cd_1119/summary.rtf create mode 100644 general/datasets/Epfl_ethz_bxd_livprotavg_cd_hf_1119/specifics.rtf create mode 100644 general/datasets/Epfl_ethz_bxd_livprotavg_cd_hf_1119/summary.rtf create mode 100644 general/datasets/Epfl_ethz_bxd_livprotavg_hfd_1119/specifics.rtf create mode 100644 general/datasets/Epfl_ethz_bxd_livprotavg_hfd_1119/summary.rtf create mode 100644 general/datasets/Epfl_ethz_bxd_livprotcd_hf_1119/specifics.rtf create mode 100644 general/datasets/Epfl_ethz_bxd_livprotcd_hf_1119/summary.rtf create mode 100644 general/datasets/Epfl_lisp_bxd_col_cd0917/specifics.rtf create mode 100644 general/datasets/Epfl_lisp_bxd_col_cd0917/summary.rtf create mode 100644 general/datasets/Epfl_lisp_bxd_col_cd_hfd0917/specifics.rtf create mode 100644 general/datasets/Epfl_lisp_bxd_col_cd_hfd0917/summary.rtf create mode 100644 general/datasets/Epfl_lisp_bxd_col_hfd0917/specifics.rtf create mode 100644 general/datasets/Epfl_lisp_bxd_col_hfd0917/summary.rtf create mode 100644 general/datasets/Epfl_lisp_livpmetcd1213/cases.rtf create mode 100644 general/datasets/Epfl_lisp_livpmetcd1213/processing.rtf create mode 100644 general/datasets/Epfl_lisp_livpmetcd1213/summary.rtf create mode 100644 general/datasets/Epfl_lisp_livpmetcdhfd1213/cases.rtf create mode 100644 general/datasets/Epfl_lisp_livpmetcdhfd1213/processing.rtf create mode 100644 general/datasets/Epfl_lisp_livpmetcdhfd1213/summary.rtf create mode 100644 general/datasets/Epfl_lisp_livpmethfd1213/cases.rtf create mode 100644 general/datasets/Epfl_lisp_livpmethfd1213/processing.rtf create mode 100644 general/datasets/Epfl_lisp_livpmethfd1213/summary.rtf create mode 100644 general/datasets/Epfl_lisp_livpmetlog2cd1213/cases.rtf create mode 100644 general/datasets/Epfl_lisp_livpmetlog2cd1213/processing.rtf create mode 100644 general/datasets/Epfl_lisp_livpmetlog2cd1213/summary.rtf create mode 100644 general/datasets/Epfl_lisp_livpmetlog2hfd1213/cases.rtf create mode 100644 general/datasets/Epfl_lisp_livpmetlog2hfd1213/processing.rtf create mode 100644 general/datasets/Epfl_lisp_livpmetlog2hfd1213/summary.rtf create mode 100644 general/datasets/Epfl_lisp_muspmetcd1213/acknowledgment.rtf create mode 100644 general/datasets/Epfl_lisp_muspmetcd1213/cases.rtf create mode 100644 general/datasets/Epfl_lisp_muspmetcd1213/citation.rtf create mode 100644 general/datasets/Epfl_lisp_muspmetcd1213/contributors.rtf create mode 100644 general/datasets/Epfl_lisp_muspmetcd1213/platform.rtf create mode 100644 general/datasets/Epfl_lisp_muspmetcd1213/processing.rtf create mode 100644 general/datasets/Epfl_lisp_muspmetcd1213/summary.rtf create mode 100644 general/datasets/Epfl_lisp_muspmetcd1213/tissue.rtf create mode 100644 general/datasets/Epfl_lisp_muspmetcdhfd1213/acknowledgment.rtf create mode 100644 general/datasets/Epfl_lisp_muspmetcdhfd1213/cases.rtf create mode 100644 general/datasets/Epfl_lisp_muspmetcdhfd1213/citation.rtf create mode 100644 general/datasets/Epfl_lisp_muspmetcdhfd1213/contributors.rtf create mode 100644 general/datasets/Epfl_lisp_muspmetcdhfd1213/platform.rtf create mode 100644 general/datasets/Epfl_lisp_muspmetcdhfd1213/processing.rtf create mode 100644 general/datasets/Epfl_lisp_muspmetcdhfd1213/summary.rtf create mode 100644 general/datasets/Epfl_lisp_muspmetcdhfd1213/tissue.rtf create mode 100644 general/datasets/Epfl_lisp_muspmethfd1213/acknowledgment.rtf create mode 100644 general/datasets/Epfl_lisp_muspmethfd1213/cases.rtf create mode 100644 general/datasets/Epfl_lisp_muspmethfd1213/citation.rtf create mode 100644 general/datasets/Epfl_lisp_muspmethfd1213/contributors.rtf create mode 100644 general/datasets/Epfl_lisp_muspmethfd1213/platform.rtf create mode 100644 general/datasets/Epfl_lisp_muspmethfd1213/processing.rtf create mode 100644 general/datasets/Epfl_lisp_muspmethfd1213/summary.rtf create mode 100644 general/datasets/Epfl_lisp_muspmethfd1213/tissue.rtf create mode 100644 general/datasets/Epfl_lispbxdhecd0114/acknowledgment.rtf create mode 100644 general/datasets/Epfl_lispbxdhecd0114/cases.rtf create mode 100644 general/datasets/Epfl_lispbxdhecd0114/citation.rtf create mode 100644 general/datasets/Epfl_lispbxdhecd0114/contributors.rtf create mode 100644 general/datasets/Epfl_lispbxdhecd0114/experiment-design.rtf create mode 100644 general/datasets/Epfl_lispbxdhecd0114/platform.rtf create mode 100644 general/datasets/Epfl_lispbxdhecd0114/processing.rtf create mode 100644 general/datasets/Epfl_lispbxdhecd0114/summary.rtf create mode 100644 general/datasets/Epfl_lispbxdhecd0114/tissue.rtf create mode 100644 general/datasets/Epfl_lispbxdhecdex0114/acknowledgment.rtf create mode 100644 general/datasets/Epfl_lispbxdhecdex0114/cases.rtf create mode 100644 general/datasets/Epfl_lispbxdhecdex0114/citation.rtf create mode 100644 general/datasets/Epfl_lispbxdhecdex0114/contributors.rtf create mode 100644 general/datasets/Epfl_lispbxdhecdex0114/experiment-design.rtf create mode 100644 general/datasets/Epfl_lispbxdhecdex0114/platform.rtf create mode 100644 general/datasets/Epfl_lispbxdhecdex0114/processing.rtf create mode 100644 general/datasets/Epfl_lispbxdhecdex0114/summary.rtf create mode 100644 general/datasets/Epfl_lispbxdhecdex0114/tissue.rtf create mode 100644 general/datasets/Epfl_lispbxdhehfd0114/acknowledgment.rtf create mode 100644 general/datasets/Epfl_lispbxdhehfd0114/cases.rtf create mode 100644 general/datasets/Epfl_lispbxdhehfd0114/citation.rtf create mode 100644 general/datasets/Epfl_lispbxdhehfd0114/contributors.rtf create mode 100644 general/datasets/Epfl_lispbxdhehfd0114/experiment-design.rtf create mode 100644 general/datasets/Epfl_lispbxdhehfd0114/platform.rtf create mode 100644 general/datasets/Epfl_lispbxdhehfd0114/processing.rtf create mode 100644 general/datasets/Epfl_lispbxdhehfd0114/summary.rtf create mode 100644 general/datasets/Epfl_lispbxdhehfd0114/tissue.rtf create mode 100644 general/datasets/Epfl_lispbxdhehfdex0114/acknowledgment.rtf create mode 100644 general/datasets/Epfl_lispbxdhehfdex0114/cases.rtf create mode 100644 general/datasets/Epfl_lispbxdhehfdex0114/citation.rtf create mode 100644 general/datasets/Epfl_lispbxdhehfdex0114/contributors.rtf create mode 100644 general/datasets/Epfl_lispbxdhehfdex0114/experiment-design.rtf create mode 100644 general/datasets/Epfl_lispbxdhehfdex0114/platform.rtf create mode 100644 general/datasets/Epfl_lispbxdhehfdex0114/processing.rtf create mode 100644 general/datasets/Epfl_lispbxdhehfdex0114/summary.rtf create mode 100644 general/datasets/Epfl_lispbxdhehfdex0114/tissue.rtf create mode 100644 general/datasets/Epfladel1013/acknowledgment.rtf create mode 100644 general/datasets/Epfladel1013/cases.rtf create mode 100644 general/datasets/Epfladel1013/citation.rtf create mode 100644 general/datasets/Epfladel1013/contributors.rtf create mode 100644 general/datasets/Epfladel1013/experiment-design.rtf create mode 100644 general/datasets/Epfladel1013/platform.rtf create mode 100644 general/datasets/Epfladel1013/processing.rtf create mode 100644 general/datasets/Epfladel1013/summary.rtf create mode 100644 general/datasets/Epfladel1013/tissue.rtf create mode 100644 general/datasets/Epfladgl1013/acknowledgment.rtf create mode 100644 general/datasets/Epfladgl1013/cases.rtf create mode 100644 general/datasets/Epfladgl1013/citation.rtf create mode 100644 general/datasets/Epfladgl1013/contributors.rtf create mode 100644 general/datasets/Epfladgl1013/experiment-design.rtf create mode 100644 general/datasets/Epfladgl1013/platform.rtf create mode 100644 general/datasets/Epfladgl1013/processing.rtf create mode 100644 general/datasets/Epfladgl1013/summary.rtf create mode 100644 general/datasets/Epfladgl1013/tissue.rtf create mode 100644 general/datasets/Epflbxdprot0513/cases.rtf create mode 100644 general/datasets/Epflbxdprot0513/contributors.rtf create mode 100644 general/datasets/Epflbxdprot0513/notes.rtf create mode 100644 general/datasets/Epflbxdprot0513/platform.rtf create mode 100644 general/datasets/Epflbxdprot0513/summary.rtf create mode 100644 general/datasets/Epflbxdprot0513/tissue.rtf create mode 100644 general/datasets/Epflbxdprotcd0513/cases.rtf create mode 100644 general/datasets/Epflbxdprotcd0513/contributors.rtf create mode 100644 general/datasets/Epflbxdprotcd0513/notes.rtf create mode 100644 general/datasets/Epflbxdprotcd0513/platform.rtf create mode 100644 general/datasets/Epflbxdprotcd0513/summary.rtf create mode 100644 general/datasets/Epflbxdprotcd0513/tissue.rtf create mode 100644 general/datasets/Epflbxdprotcd_cdhfdrpn0214/cases.rtf create mode 100644 general/datasets/Epflbxdprotcd_cdhfdrpn0214/contributors.rtf create mode 100644 general/datasets/Epflbxdprotcd_cdhfdrpn0214/notes.rtf create mode 100644 general/datasets/Epflbxdprotcd_cdhfdrpn0214/platform.rtf create mode 100644 general/datasets/Epflbxdprotcd_cdhfdrpn0214/summary.rtf create mode 100644 general/datasets/Epflbxdprotcd_cdhfdrpn0214/tissue.rtf create mode 100644 general/datasets/Epflbxdprotcdrpn0214/cases.rtf create mode 100644 general/datasets/Epflbxdprotcdrpn0214/contributors.rtf create mode 100644 general/datasets/Epflbxdprotcdrpn0214/notes.rtf create mode 100644 general/datasets/Epflbxdprotcdrpn0214/platform.rtf create mode 100644 general/datasets/Epflbxdprotcdrpn0214/summary.rtf create mode 100644 general/datasets/Epflbxdprotcdrpn0214/tissue.rtf create mode 100644 general/datasets/Epflbxdprotcdrpn0513/cases.rtf create mode 100644 general/datasets/Epflbxdprotcdrpn0513/contributors.rtf create mode 100644 general/datasets/Epflbxdprotcdrpn0513/notes.rtf create mode 100644 general/datasets/Epflbxdprotcdrpn0513/platform.rtf create mode 100644 general/datasets/Epflbxdprotcdrpn0513/summary.rtf create mode 100644 general/datasets/Epflbxdprotcdrpn0513/tissue.rtf create mode 100644 general/datasets/Epflbxdprothfd0513/cases.rtf create mode 100644 general/datasets/Epflbxdprothfd0513/contributors.rtf create mode 100644 general/datasets/Epflbxdprothfd0513/notes.rtf create mode 100644 general/datasets/Epflbxdprothfd0513/platform.rtf create mode 100644 general/datasets/Epflbxdprothfd0513/summary.rtf create mode 100644 general/datasets/Epflbxdprothfd0513/tissue.rtf create mode 100644 general/datasets/Epflbxdprothfdrpn0214/cases.rtf create mode 100644 general/datasets/Epflbxdprothfdrpn0214/contributors.rtf create mode 100644 general/datasets/Epflbxdprothfdrpn0214/notes.rtf create mode 100644 general/datasets/Epflbxdprothfdrpn0214/platform.rtf create mode 100644 general/datasets/Epflbxdprothfdrpn0214/summary.rtf create mode 100644 general/datasets/Epflbxdprothfdrpn0214/tissue.rtf create mode 100644 general/datasets/Epflbxdprothfdrpn0513/cases.rtf create mode 100644 general/datasets/Epflbxdprothfdrpn0513/contributors.rtf create mode 100644 general/datasets/Epflbxdprothfdrpn0513/notes.rtf create mode 100644 general/datasets/Epflbxdprothfdrpn0513/platform.rtf create mode 100644 general/datasets/Epflbxdprothfdrpn0513/summary.rtf create mode 100644 general/datasets/Epflbxdprothfdrpn0513/tissue.rtf create mode 100644 general/datasets/Epflbxdprotrpn0513/cases.rtf create mode 100644 general/datasets/Epflbxdprotrpn0513/contributors.rtf create mode 100644 general/datasets/Epflbxdprotrpn0513/notes.rtf create mode 100644 general/datasets/Epflbxdprotrpn0513/platform.rtf create mode 100644 general/datasets/Epflbxdprotrpn0513/summary.rtf create mode 100644 general/datasets/Epflbxdprotrpn0513/tissue.rtf create mode 100644 general/datasets/Epflethzbxdprotcd0514/notes.rtf create mode 100644 general/datasets/Epflethzbxdprotcd_ls1114/notes.rtf create mode 100644 general/datasets/Epflethzbxdprothf_ls1114/notes.rtf create mode 100644 general/datasets/Epflethzbxdprothfd0514/notes.rtf create mode 100644 general/datasets/Epflmouseliverbothexrma0413/acknowledgment.rtf create mode 100644 general/datasets/Epflmouseliverbothexrma0413/cases.rtf create mode 100644 general/datasets/Epflmouseliverbothexrma0413/citation.rtf create mode 100644 general/datasets/Epflmouseliverbothexrma0413/contributors.rtf create mode 100644 general/datasets/Epflmouseliverbothexrma0413/platform.rtf create mode 100644 general/datasets/Epflmouseliverbothexrma0413/processing.rtf create mode 100644 general/datasets/Epflmouseliverbothexrma0413/summary.rtf create mode 100644 general/datasets/Epflmouseliverbothexrma0413/tissue.rtf create mode 100644 general/datasets/Epflmouselivercdex0413/acknowledgment.rtf create mode 100644 general/datasets/Epflmouselivercdex0413/cases.rtf create mode 100644 general/datasets/Epflmouselivercdex0413/citation.rtf create mode 100644 general/datasets/Epflmouselivercdex0413/contributors.rtf create mode 100644 general/datasets/Epflmouselivercdex0413/platform.rtf create mode 100644 general/datasets/Epflmouselivercdex0413/processing.rtf create mode 100644 general/datasets/Epflmouselivercdex0413/specifics.rtf create mode 100644 general/datasets/Epflmouselivercdex0413/summary.rtf create mode 100644 general/datasets/Epflmouselivercdex0413/tissue.rtf create mode 100644 general/datasets/Epflmouselivercdhfdrma0818/acknowledgment.rtf create mode 100644 general/datasets/Epflmouselivercdhfdrma0818/cases.rtf create mode 100644 general/datasets/Epflmouselivercdhfdrma0818/citation.rtf create mode 100644 general/datasets/Epflmouselivercdhfdrma0818/contributors.rtf create mode 100644 general/datasets/Epflmouselivercdhfdrma0818/platform.rtf create mode 100644 general/datasets/Epflmouselivercdhfdrma0818/processing.rtf create mode 100644 general/datasets/Epflmouselivercdhfdrma0818/specifics.rtf create mode 100644 general/datasets/Epflmouselivercdhfdrma0818/summary.rtf create mode 100644 general/datasets/Epflmouselivercdhfdrma0818/tissue.rtf create mode 100644 general/datasets/Epflmouselivercdrma0413/acknowledgment.rtf create mode 100644 general/datasets/Epflmouselivercdrma0413/cases.rtf create mode 100644 general/datasets/Epflmouselivercdrma0413/citation.rtf create mode 100644 general/datasets/Epflmouselivercdrma0413/contributors.rtf create mode 100644 general/datasets/Epflmouselivercdrma0413/platform.rtf create mode 100644 general/datasets/Epflmouselivercdrma0413/processing.rtf create mode 100644 general/datasets/Epflmouselivercdrma0413/summary.rtf create mode 100644 general/datasets/Epflmouselivercdrma0413/tissue.rtf create mode 100644 general/datasets/Epflmouselivercdrma0818/acknowledgment.rtf create mode 100644 general/datasets/Epflmouselivercdrma0818/cases.rtf create mode 100644 general/datasets/Epflmouselivercdrma0818/citation.rtf create mode 100644 general/datasets/Epflmouselivercdrma0818/contributors.rtf create mode 100644 general/datasets/Epflmouselivercdrma0818/platform.rtf create mode 100644 general/datasets/Epflmouselivercdrma0818/processing.rtf create mode 100644 general/datasets/Epflmouselivercdrma0818/specifics.rtf create mode 100644 general/datasets/Epflmouselivercdrma0818/summary.rtf create mode 100644 general/datasets/Epflmouselivercdrma0818/tissue.rtf create mode 100644 general/datasets/Epflmouseliverhfcex0413/acknowledgment.rtf create mode 100644 general/datasets/Epflmouseliverhfcex0413/cases.rtf create mode 100644 general/datasets/Epflmouseliverhfcex0413/citation.rtf create mode 100644 general/datasets/Epflmouseliverhfcex0413/contributors.rtf create mode 100644 general/datasets/Epflmouseliverhfcex0413/platform.rtf create mode 100644 general/datasets/Epflmouseliverhfcex0413/processing.rtf create mode 100644 general/datasets/Epflmouseliverhfcex0413/specifics.rtf create mode 100644 general/datasets/Epflmouseliverhfcex0413/summary.rtf create mode 100644 general/datasets/Epflmouseliverhfcex0413/tissue.rtf create mode 100644 general/datasets/Epflmouseliverhfdrma0413/acknowledgment.rtf create mode 100644 general/datasets/Epflmouseliverhfdrma0413/cases.rtf create mode 100644 general/datasets/Epflmouseliverhfdrma0413/citation.rtf create mode 100644 general/datasets/Epflmouseliverhfdrma0413/contributors.rtf create mode 100644 general/datasets/Epflmouseliverhfdrma0413/platform.rtf create mode 100644 general/datasets/Epflmouseliverhfdrma0413/processing.rtf create mode 100644 general/datasets/Epflmouseliverhfdrma0413/specifics.rtf create mode 100644 general/datasets/Epflmouseliverhfdrma0413/summary.rtf create mode 100644 general/datasets/Epflmouseliverhfdrma0413/tissue.rtf create mode 100644 general/datasets/Epflmouseliverhfdrma0818/acknowledgment.rtf create mode 100644 general/datasets/Epflmouseliverhfdrma0818/cases.rtf create mode 100644 general/datasets/Epflmouseliverhfdrma0818/citation.rtf create mode 100644 general/datasets/Epflmouseliverhfdrma0818/contributors.rtf create mode 100644 general/datasets/Epflmouseliverhfdrma0818/platform.rtf create mode 100644 general/datasets/Epflmouseliverhfdrma0818/processing.rtf create mode 100644 general/datasets/Epflmouseliverhfdrma0818/specifics.rtf create mode 100644 general/datasets/Epflmouseliverhfdrma0818/summary.rtf create mode 100644 general/datasets/Epflmouseliverhfdrma0818/tissue.rtf create mode 100644 general/datasets/Epflmouseliverrma0413/acknowledgment.rtf create mode 100644 general/datasets/Epflmouseliverrma0413/cases.rtf create mode 100644 general/datasets/Epflmouseliverrma0413/citation.rtf create mode 100644 general/datasets/Epflmouseliverrma0413/contributors.rtf create mode 100644 general/datasets/Epflmouseliverrma0413/platform.rtf create mode 100644 general/datasets/Epflmouseliverrma0413/processing.rtf create mode 100644 general/datasets/Epflmouseliverrma0413/summary.rtf create mode 100644 general/datasets/Epflmouseliverrma0413/tissue.rtf create mode 100644 general/datasets/Epflmousemusclecdrma1211/citation.rtf create mode 100644 general/datasets/Epflmousemusclecdrma1211/summary.rtf create mode 100644 general/datasets/Epflmousemusclecdrma1211/tissue.rtf create mode 100644 general/datasets/Epflmousemusclecdrmaex1112/citation.rtf create mode 100644 general/datasets/Epflmousemusclecdrmaex1112/summary.rtf create mode 100644 general/datasets/Epflmousemusclecdrmaex1112/tissue.rtf create mode 100644 general/datasets/Epflmousemusclehfdrma1211/citation.rtf create mode 100644 general/datasets/Epflmousemusclehfdrma1211/summary.rtf create mode 100644 general/datasets/Epflmousemusclehfdrma1211/tissue.rtf create mode 100644 general/datasets/Epflmousemusclehfdrmaex1112/citation.rtf create mode 100644 general/datasets/Epflmousemusclehfdrmaex1112/summary.rtf create mode 100644 general/datasets/Epflmousemusclehfdrmaex1112/tissue.rtf create mode 100644 general/datasets/Epflmousemusclerma1211/citation.rtf create mode 100644 general/datasets/Epflmousemusclerma1211/summary.rtf create mode 100644 general/datasets/Epflmousemusclerma1211/tissue.rtf create mode 100644 general/datasets/Epflmousemusclerma_ex1112/citation.rtf create mode 100644 general/datasets/Epflmousemusclerma_ex1112/summary.rtf create mode 100644 general/datasets/Epflmousemusclerma_ex1112/tissue.rtf create mode 100644 general/datasets/Eye_axbxa_1008_rankinv/acknowledgment.rtf create mode 100644 general/datasets/Eye_axbxa_1008_rankinv/cases.rtf create mode 100644 general/datasets/Eye_axbxa_1008_rankinv/citation.rtf create mode 100644 general/datasets/Eye_axbxa_1008_rankinv/platform.rtf create mode 100644 general/datasets/Eye_axbxa_1008_rankinv/processing.rtf create mode 100644 general/datasets/Eye_axbxa_1008_rankinv/specifics.rtf create mode 100644 general/datasets/Eye_axbxa_1008_rankinv/summary.rtf create mode 100644 general/datasets/Eye_m2_0406_m/acknowledgment.rtf create mode 100644 general/datasets/Eye_m2_0406_m/cases.rtf create mode 100644 general/datasets/Eye_m2_0406_m/notes.rtf create mode 100644 general/datasets/Eye_m2_0406_m/platform.rtf create mode 100644 general/datasets/Eye_m2_0406_m/processing.rtf create mode 100644 general/datasets/Eye_m2_0406_m/summary.rtf create mode 100644 general/datasets/Eye_m2_0406_m/tissue.rtf create mode 100644 general/datasets/Eye_m2_0406_p/acknowledgment.rtf create mode 100644 general/datasets/Eye_m2_0406_p/cases.rtf create mode 100644 general/datasets/Eye_m2_0406_p/notes.rtf create mode 100644 general/datasets/Eye_m2_0406_p/platform.rtf create mode 100644 general/datasets/Eye_m2_0406_p/processing.rtf create mode 100644 general/datasets/Eye_m2_0406_p/summary.rtf create mode 100644 general/datasets/Eye_m2_0406_p/tissue.rtf create mode 100644 general/datasets/Eye_m2_0406_r/acknowledgment.rtf create mode 100644 general/datasets/Eye_m2_0406_r/cases.rtf create mode 100644 general/datasets/Eye_m2_0406_r/notes.rtf create mode 100644 general/datasets/Eye_m2_0406_r/platform.rtf create mode 100644 general/datasets/Eye_m2_0406_r/processing.rtf create mode 100644 general/datasets/Eye_m2_0406_r/summary.rtf create mode 100644 general/datasets/Eye_m2_0406_r/tissue.rtf create mode 100644 general/datasets/Eye_m2_0608_r/summary.rtf create mode 100644 general/datasets/Eye_m2_0906_r/acknowledgment.rtf create mode 100644 general/datasets/Eye_m2_0906_r/cases.rtf create mode 100644 general/datasets/Eye_m2_0906_r/notes.rtf create mode 100644 general/datasets/Eye_m2_0906_r/platform.rtf create mode 100644 general/datasets/Eye_m2_0906_r/processing.rtf create mode 100644 general/datasets/Eye_m2_0906_r/summary.rtf create mode 100644 general/datasets/Eye_m2_0906_r/tissue.rtf create mode 100644 general/datasets/Eye_m2_0908_r/acknowledgment.rtf create mode 100644 general/datasets/Eye_m2_0908_r/cases.rtf create mode 100644 general/datasets/Eye_m2_0908_r/citation.rtf create mode 100644 general/datasets/Eye_m2_0908_r/contributors.rtf create mode 100644 general/datasets/Eye_m2_0908_r/experiment-design.rtf create mode 100644 general/datasets/Eye_m2_0908_r/experiment-type.rtf create mode 100644 general/datasets/Eye_m2_0908_r/notes.rtf create mode 100644 general/datasets/Eye_m2_0908_r/platform.rtf create mode 100644 general/datasets/Eye_m2_0908_r/processing.rtf create mode 100644 general/datasets/Eye_m2_0908_r/summary.rtf create mode 100644 general/datasets/Eye_m2_0908_r/tissue.rtf create mode 100644 general/datasets/Eye_m2_0908_r_mt/acknowledgment.rtf create mode 100644 general/datasets/Eye_m2_0908_r_mt/cases.rtf create mode 100644 general/datasets/Eye_m2_0908_r_mt/citation.rtf create mode 100644 general/datasets/Eye_m2_0908_r_mt/contributors.rtf create mode 100644 general/datasets/Eye_m2_0908_r_mt/experiment-design.rtf create mode 100644 general/datasets/Eye_m2_0908_r_mt/notes.rtf create mode 100644 general/datasets/Eye_m2_0908_r_mt/platform.rtf create mode 100644 general/datasets/Eye_m2_0908_r_mt/processing.rtf create mode 100644 general/datasets/Eye_m2_0908_r_mt/summary.rtf create mode 100644 general/datasets/Eye_m2_0908_r_mt/tissue.rtf create mode 100644 general/datasets/Eye_m2_0908_r_nb/acknowledgment.rtf create mode 100644 general/datasets/Eye_m2_0908_r_nb/cases.rtf create mode 100644 general/datasets/Eye_m2_0908_r_nb/citation.rtf create mode 100644 general/datasets/Eye_m2_0908_r_nb/contributors.rtf create mode 100644 general/datasets/Eye_m2_0908_r_nb/experiment-design.rtf create mode 100644 general/datasets/Eye_m2_0908_r_nb/notes.rtf create mode 100644 general/datasets/Eye_m2_0908_r_nb/platform.rtf create mode 100644 general/datasets/Eye_m2_0908_r_nb/processing.rtf create mode 100644 general/datasets/Eye_m2_0908_r_nb/summary.rtf create mode 100644 general/datasets/Eye_m2_0908_r_nb/tissue.rtf create mode 100644 general/datasets/Eye_m2_0908_r_nd/acknowledgment.rtf create mode 100644 general/datasets/Eye_m2_0908_r_nd/cases.rtf create mode 100644 general/datasets/Eye_m2_0908_r_nd/citation.rtf create mode 100644 general/datasets/Eye_m2_0908_r_nd/contributors.rtf create mode 100644 general/datasets/Eye_m2_0908_r_nd/experiment-design.rtf create mode 100644 general/datasets/Eye_m2_0908_r_nd/notes.rtf create mode 100644 general/datasets/Eye_m2_0908_r_nd/platform.rtf create mode 100644 general/datasets/Eye_m2_0908_r_nd/processing.rtf create mode 100644 general/datasets/Eye_m2_0908_r_nd/summary.rtf create mode 100644 general/datasets/Eye_m2_0908_r_nd/tissue.rtf create mode 100644 general/datasets/Eye_m2_0908_r_wt/acknowledgment.rtf create mode 100644 general/datasets/Eye_m2_0908_r_wt/cases.rtf create mode 100644 general/datasets/Eye_m2_0908_r_wt/citation.rtf create mode 100644 general/datasets/Eye_m2_0908_r_wt/contributors.rtf create mode 100644 general/datasets/Eye_m2_0908_r_wt/experiment-design.rtf create mode 100644 general/datasets/Eye_m2_0908_r_wt/notes.rtf create mode 100644 general/datasets/Eye_m2_0908_r_wt/platform.rtf create mode 100644 general/datasets/Eye_m2_0908_r_wt/processing.rtf create mode 100644 general/datasets/Eye_m2_0908_r_wt/summary.rtf create mode 100644 general/datasets/Eye_m2_0908_r_wt/tissue.rtf create mode 100644 general/datasets/Eye_m2_0908_wtwt/acknowledgment.rtf create mode 100644 general/datasets/Eye_m2_0908_wtwt/cases.rtf create mode 100644 general/datasets/Eye_m2_0908_wtwt/citation.rtf create mode 100644 general/datasets/Eye_m2_0908_wtwt/contributors.rtf create mode 100644 general/datasets/Eye_m2_0908_wtwt/experiment-design.rtf create mode 100644 general/datasets/Eye_m2_0908_wtwt/notes.rtf create mode 100644 general/datasets/Eye_m2_0908_wtwt/platform.rtf create mode 100644 general/datasets/Eye_m2_0908_wtwt/processing.rtf create mode 100644 general/datasets/Eye_m2_0908_wtwt/summary.rtf create mode 100644 general/datasets/Eye_m2_0908_wtwt/tissue.rtf create mode 100644 general/datasets/Eye_m2_1105_m/acknowledgment.rtf create mode 100644 general/datasets/Eye_m2_1105_m/cases.rtf create mode 100644 general/datasets/Eye_m2_1105_m/notes.rtf create mode 100644 general/datasets/Eye_m2_1105_m/platform.rtf create mode 100644 general/datasets/Eye_m2_1105_m/processing.rtf create mode 100644 general/datasets/Eye_m2_1105_m/summary.rtf create mode 100644 general/datasets/Eye_m2_1105_m/tissue.rtf create mode 100644 general/datasets/Eye_m2_1105_p/acknowledgment.rtf create mode 100644 general/datasets/Eye_m2_1105_p/cases.rtf create mode 100644 general/datasets/Eye_m2_1105_p/notes.rtf create mode 100644 general/datasets/Eye_m2_1105_p/platform.rtf create mode 100644 general/datasets/Eye_m2_1105_p/processing.rtf create mode 100644 general/datasets/Eye_m2_1105_p/summary.rtf create mode 100644 general/datasets/Eye_m2_1105_p/tissue.rtf create mode 100644 general/datasets/Eye_m2_1105_r/acknowledgment.rtf create mode 100644 general/datasets/Eye_m2_1105_r/cases.rtf create mode 100644 general/datasets/Eye_m2_1105_r/notes.rtf create mode 100644 general/datasets/Eye_m2_1105_r/platform.rtf create mode 100644 general/datasets/Eye_m2_1105_r/processing.rtf create mode 100644 general/datasets/Eye_m2_1105_r/summary.rtf create mode 100644 general/datasets/Eye_m2_1105_r/tissue.rtf delete mode 100644 general/datasets/FGUCAS_BAdip0516/summary.rtf create mode 100644 general/datasets/Fgucas_badip0516/summary.rtf create mode 100644 general/datasets/Ft_2a_0605_rz/acknowledgment.rtf create mode 100644 general/datasets/Ft_2a_0605_rz/cases.rtf create mode 100644 general/datasets/Ft_2a_0605_rz/notes.rtf create mode 100644 general/datasets/Ft_2a_0605_rz/platform.rtf create mode 100644 general/datasets/Ft_2a_0605_rz/processing.rtf create mode 100644 general/datasets/Ft_2a_0605_rz/summary.rtf create mode 100644 general/datasets/Ft_2a_0605_rz/tissue.rtf create mode 100644 general/datasets/Ft_2a_0805_m/acknowledgment.rtf create mode 100644 general/datasets/Ft_2a_0805_m/cases.rtf create mode 100644 general/datasets/Ft_2a_0805_m/notes.rtf create mode 100644 general/datasets/Ft_2a_0805_m/platform.rtf create mode 100644 general/datasets/Ft_2a_0805_m/processing.rtf create mode 100644 general/datasets/Ft_2a_0805_m/summary.rtf create mode 100644 general/datasets/Ft_2a_0805_m/tissue.rtf create mode 100644 general/datasets/G2heioncretilm6_0911/acknowledgment.rtf create mode 100644 general/datasets/G2heioncretilm6_0911/cases.rtf create mode 100644 general/datasets/G2heioncretilm6_0911/contributors.rtf create mode 100644 general/datasets/G2heioncretilm6_0911/experiment-design.rtf create mode 100644 general/datasets/G2heioncretilm6_0911/experiment-type.rtf create mode 100644 general/datasets/G2heioncretilm6_0911/notes.rtf create mode 100644 general/datasets/G2heioncretilm6_0911/platform.rtf create mode 100644 general/datasets/G2heioncretilm6_0911/processing.rtf create mode 100644 general/datasets/G2heioncretilm6_0911/summary.rtf create mode 100644 general/datasets/G2heioncretilm6_0911/tissue.rtf create mode 100644 general/datasets/G2nei_ilm_retina_bxd_ri0410/acknowledgment.rtf create mode 100644 general/datasets/G2nei_ilm_retina_bxd_ri0410/cases.rtf create mode 100644 general/datasets/G2nei_ilm_retina_bxd_ri0410/contributors.rtf create mode 100644 general/datasets/G2nei_ilm_retina_bxd_ri0410/experiment-design.rtf create mode 100644 general/datasets/G2nei_ilm_retina_bxd_ri0410/experiment-type.rtf create mode 100644 general/datasets/G2nei_ilm_retina_bxd_ri0410/notes.rtf create mode 100644 general/datasets/G2nei_ilm_retina_bxd_ri0410/platform.rtf create mode 100644 general/datasets/G2nei_ilm_retina_bxd_ri0410/processing.rtf create mode 100644 general/datasets/G2nei_ilm_retina_bxd_ri0410/summary.rtf create mode 100644 general/datasets/G2nei_ilm_retina_bxd_ri0410/tissue.rtf delete mode 100644 general/datasets/GITrMetPublish/summary.rtf delete mode 100644 general/datasets/GRNG_GSE23545HLT0613/summary.rtf delete mode 100644 general/datasets/GSE15745_GPL6104_Cer0510/experiment-design.rtf delete mode 100644 general/datasets/GSE15745_GPL6104_Cer0510/summary.rtf delete mode 100644 general/datasets/GSE15745_GPL6104_PFC0510/experiment-design.rtf delete mode 100644 general/datasets/GSE15745_GPL6104_PFC0510/summary.rtf delete mode 100644 general/datasets/GSE15745_GPL6104_Po0510/experiment-design.rtf delete mode 100644 general/datasets/GSE15745_GPL6104_Po0510/summary.rtf delete mode 100644 general/datasets/GSE23546HLT0613/summary.rtf delete mode 100644 general/datasets/GTEXv5_AdiVis_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_AdiVis_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_AdiVis_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_AdiVis_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_AdiVis_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_AdiVis_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_AdiVis_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_AdipSub_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_AdipSub_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_AdipSub_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_AdipSub_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_AdipSub_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_AdipSub_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_AdipSub_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_AdrGla_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_AdrGla_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_AdrGla_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_AdrGla_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_AdrGla_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_AdrGla_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_AdrGla_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_Amy_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_Amy_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_Amy_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_Amy_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_Amy_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_Amy_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_Amy_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_AntCtx_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_AntCtx_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_AntCtx_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_AntCtx_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_AntCtx_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_AntCtx_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_AntCtx_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_ArtAor_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_ArtAor_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_ArtAor_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_ArtAor_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_ArtAor_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_ArtAor_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_ArtAor_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_ArtCor_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_ArtCor_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_ArtCor_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_ArtCor_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_ArtCor_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_ArtCor_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_ArtCor_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_BM_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_BM_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_BM_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_BM_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_BM_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_BM_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_BM_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_BrCe_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_BrCe_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_BrCe_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_BrCe_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_BrCe_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_BrCe_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_BrCe_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_BrMa_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_BrMa_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_BrMa_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_BrMa_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_BrMa_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_BrMa_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_BrMa_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_CTF_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_CTF_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_CTF_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_CTF_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_CTF_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_CTF_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_CTF_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_ColSig_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_ColSig_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_ColSig_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_ColSig_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_ColSig_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_ColSig_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_ColSig_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_GastJun_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_GastJun_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_GastJun_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_GastJun_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_GastJun_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_GastJun_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_GastJun_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_HAA_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_HAA_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_HAA_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_HAA_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_HAA_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_HAA_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_HAA_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_Hip_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_Hip_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_Hip_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_Hip_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_Hip_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_Hip_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_Hip_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_Hiptha_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_Hiptha_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_Hiptha_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_Hiptha_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_Hiptha_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_Hiptha_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_Hiptha_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_Kidn_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_Kidn_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_Kidn_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_Kidn_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_Kidn_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_Kidn_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_Kidn_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_Liv_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_Liv_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_Liv_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_Liv_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_Liv_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_Liv_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_Liv_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_MuSk_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_MuSk_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_MuSk_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_MuSk_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_MuSk_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_MuSk_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_MuSk_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_Ov_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_Ov_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_Ov_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_Ov_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_Ov_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_Ov_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_Ov_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_Pit_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_Pit_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_Pit_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_Pit_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_Pit_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_Pit_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_Pit_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_Prost_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_Prost_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_Prost_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_Prost_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_Prost_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_Prost_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_Prost_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_SalGl_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_SalGl_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_SalGl_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_SalGl_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_SalGl_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_SalGl_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_SalGl_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_SkS_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_SkS_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_SkS_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_SkS_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_SkS_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_SkS_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_SkS_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_Sto_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_Sto_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_Sto_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_Sto_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_Sto_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_Sto_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_Sto_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_Test_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_Test_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_Test_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_Test_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_Test_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_Test_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_Test_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_Thy_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_Thy_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_Thy_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_Thy_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_Thy_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_Thy_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_Thy_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_Ut_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_Ut_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_Ut_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_Ut_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_Ut_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_Ut_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_Ut_0915/tissue.rtf delete mode 100644 general/datasets/GTEXv5_Wbl_0915/cases.rtf delete mode 100644 general/datasets/GTEXv5_Wbl_0915/experiment-design.rtf delete mode 100644 general/datasets/GTEXv5_Wbl_0915/platform.rtf delete mode 100644 general/datasets/GTEXv5_Wbl_0915/processing.rtf delete mode 100644 general/datasets/GTEXv5_Wbl_0915/specifics.rtf delete mode 100644 general/datasets/GTEXv5_Wbl_0915/summary.rtf delete mode 100644 general/datasets/GTEXv5_Wbl_0915/tissue.rtf delete mode 100644 general/datasets/GTEx_AMY_0314/cases.rtf delete mode 100644 general/datasets/GTEx_AMY_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_AMY_0314/platform.rtf delete mode 100644 general/datasets/GTEx_AMY_0314/processing.rtf delete mode 100644 general/datasets/GTEx_AMY_0314/summary.rtf delete mode 100644 general/datasets/GTEx_AMY_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_Adren_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Adren_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Adren_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Adren_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Adren_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Adren_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Anter_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Anter_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Anter_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Anter_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Anter_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Anter_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Aorta_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Aorta_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Aorta_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Aorta_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Aorta_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Aorta_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Blood_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Blood_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Blood_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Blood_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Blood_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Blood_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Breas_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Breas_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Breas_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Breas_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Breas_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Breas_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_CER_0314/cases.rtf delete mode 100644 general/datasets/GTEx_CER_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_CER_0314/platform.rtf delete mode 100644 general/datasets/GTEx_CER_0314/processing.rtf delete mode 100644 general/datasets/GTEx_CER_0314/summary.rtf delete mode 100644 general/datasets/GTEx_CER_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_Cauda_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Cauda_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Cauda_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Cauda_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Cauda_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Cauda_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_CellsEBV_0414/cases.rtf delete mode 100644 general/datasets/GTEx_CellsEBV_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_CellsEBV_0414/platform.rtf delete mode 100644 general/datasets/GTEx_CellsEBV_0414/processing.rtf delete mode 100644 general/datasets/GTEx_CellsEBV_0414/summary.rtf delete mode 100644 general/datasets/GTEx_CellsEBV_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_CellsLe_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_CellsLe_0414/summary.rtf delete mode 100644 general/datasets/GTEx_CellsTr_0414/cases.rtf delete mode 100644 general/datasets/GTEx_CellsTr_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_CellsTr_0414/platform.rtf delete mode 100644 general/datasets/GTEx_CellsTr_0414/processing.rtf delete mode 100644 general/datasets/GTEx_CellsTr_0414/summary.rtf delete mode 100644 general/datasets/GTEx_CellsTr_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_CerebC_0414/cases.rtf delete mode 100644 general/datasets/GTEx_CerebC_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_CerebC_0414/platform.rtf delete mode 100644 general/datasets/GTEx_CerebC_0414/processing.rtf delete mode 100644 general/datasets/GTEx_CerebC_0414/summary.rtf delete mode 100644 general/datasets/GTEx_CerebC_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_CerebH_0414/cases.rtf delete mode 100644 general/datasets/GTEx_CerebH_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_CerebH_0414/platform.rtf delete mode 100644 general/datasets/GTEx_CerebH_0414/processing.rtf delete mode 100644 general/datasets/GTEx_CerebH_0414/summary.rtf delete mode 100644 general/datasets/GTEx_CerebH_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Colon_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Colon_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Colon_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Colon_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Colon_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Colon_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Coron_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Coron_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Coron_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Coron_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Coron_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Coron_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_EsophMuc_0414/cases.rtf delete mode 100644 general/datasets/GTEx_EsophMuc_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_EsophMuc_0414/platform.rtf delete mode 100644 general/datasets/GTEx_EsophMuc_0414/processing.rtf delete mode 100644 general/datasets/GTEx_EsophMuc_0414/summary.rtf delete mode 100644 general/datasets/GTEx_EsophMuc_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_EsophMus_0414/cases.rtf delete mode 100644 general/datasets/GTEx_EsophMus_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_EsophMus_0414/platform.rtf delete mode 100644 general/datasets/GTEx_EsophMus_0414/processing.rtf delete mode 100644 general/datasets/GTEx_EsophMus_0414/summary.rtf delete mode 100644 general/datasets/GTEx_EsophMus_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Fallo_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Fallo_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Fallo_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Fallo_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Fallo_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Fallo_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Front_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Front_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Front_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Front_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Front_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Front_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_HIP_0314/cases.rtf delete mode 100644 general/datasets/GTEx_HIP_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_HIP_0314/platform.rtf delete mode 100644 general/datasets/GTEx_HIP_0314/processing.rtf delete mode 100644 general/datasets/GTEx_HIP_0314/summary.rtf delete mode 100644 general/datasets/GTEx_HIP_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_HeartAt_0414/cases.rtf delete mode 100644 general/datasets/GTEx_HeartAt_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_HeartAt_0414/platform.rtf delete mode 100644 general/datasets/GTEx_HeartAt_0414/processing.rtf delete mode 100644 general/datasets/GTEx_HeartAt_0414/summary.rtf delete mode 100644 general/datasets/GTEx_HeartAt_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_HeartLV_0414/cases.rtf delete mode 100644 general/datasets/GTEx_HeartLV_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_HeartLV_0414/platform.rtf delete mode 100644 general/datasets/GTEx_HeartLV_0414/processing.rtf delete mode 100644 general/datasets/GTEx_HeartLV_0414/summary.rtf delete mode 100644 general/datasets/GTEx_HeartLV_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Hypot_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Hypot_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Hypot_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Hypot_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Hypot_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Hypot_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Kidne_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Kidne_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Kidne_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Kidne_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Kidne_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Kidne_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Liver_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Liver_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Liver_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Liver_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Liver_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Liver_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Lung__0414/cases.rtf delete mode 100644 general/datasets/GTEx_Lung__0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Lung__0414/platform.rtf delete mode 100644 general/datasets/GTEx_Lung__0414/processing.rtf delete mode 100644 general/datasets/GTEx_Lung__0414/summary.rtf delete mode 100644 general/datasets/GTEx_Lung__0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Muscl_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Muscl_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Muscl_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Muscl_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Muscl_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Muscl_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Nerve_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Nerve_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Nerve_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Nerve_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Nerve_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Nerve_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Nucle_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Nucle_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Nucle_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Nucle_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Nucle_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Nucle_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Ovary_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Ovary_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Ovary_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Ovary_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Ovary_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Ovary_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Pancr_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Pancr_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Pancr_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Pancr_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Pancr_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Pancr_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Pitui_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Pitui_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Pitui_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Pitui_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Pitui_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Pitui_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Prost_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Prost_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Prost_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Prost_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Prost_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Prost_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Putam_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Putam_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Putam_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Putam_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Putam_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Putam_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_SkinE_0414/cases.rtf delete mode 100644 general/datasets/GTEx_SkinE_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_SkinE_0414/platform.rtf delete mode 100644 general/datasets/GTEx_SkinE_0414/processing.rtf delete mode 100644 general/datasets/GTEx_SkinE_0414/summary.rtf delete mode 100644 general/datasets/GTEx_SkinE_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_SkinN_0414/cases.rtf delete mode 100644 general/datasets/GTEx_SkinN_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_SkinN_0414/platform.rtf delete mode 100644 general/datasets/GTEx_SkinN_0414/processing.rtf delete mode 100644 general/datasets/GTEx_SkinN_0414/summary.rtf delete mode 100644 general/datasets/GTEx_SkinN_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Spina_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Spina_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Spina_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Spina_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Spina_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Spina_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Stoma_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Stoma_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Stoma_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Stoma_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Stoma_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Stoma_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Subcu_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Subcu_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Subcu_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Subcu_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Subcu_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Subcu_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Subst_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Subst_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Subst_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Subst_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Subst_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Subst_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Testi_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Testi_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Testi_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Testi_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Testi_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Testi_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Thyro_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Thyro_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Thyro_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Thyro_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Thyro_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Thyro_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Tibia_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Tibia_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Tibia_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Tibia_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Tibia_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Tibia_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Uteru_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Uteru_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Uteru_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Uteru_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Uteru_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Uteru_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Vagin_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Vagin_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Vagin_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Vagin_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Vagin_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Vagin_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Visce_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Visce_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Visce_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Visce_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Visce_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Visce_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_Whole_0414/cases.rtf delete mode 100644 general/datasets/GTEx_Whole_0414/experiment-design.rtf delete mode 100644 general/datasets/GTEx_Whole_0414/platform.rtf delete mode 100644 general/datasets/GTEx_Whole_0414/processing.rtf delete mode 100644 general/datasets/GTEx_Whole_0414/summary.rtf delete mode 100644 general/datasets/GTEx_Whole_0414/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_AMY_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_AMY_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_AMY_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_AMY_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_AMY_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_AMY_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Adren_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Adren_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Adren_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Adren_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Adren_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Adren_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Anter_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Anter_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Anter_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Anter_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Anter_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Anter_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Aorta_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Aorta_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Aorta_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Aorta_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Aorta_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Aorta_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Blood_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Blood_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Blood_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Blood_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Blood_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Blood_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Breas_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Breas_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Breas_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Breas_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Breas_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Breas_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_CER_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_CER_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_CER_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_CER_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_CER_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_CER_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Cauda_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Cauda_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Cauda_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Cauda_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Cauda_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Cauda_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_CellsEBV_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_CellsEBV_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_CellsEBV_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_CellsEBV_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_CellsEBV_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_CellsEBV_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_CellsLe_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_CellsLe_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_CellsLe_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_CellsLe_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_CellsLe_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_CellsLe_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_CellsTr_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_CellsTr_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_CellsTr_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_CellsTr_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_CellsTr_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_CellsTr_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_CerebC_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_CerebC_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_CerebC_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_CerebC_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_CerebC_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_CerebC_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_CerebH_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_CerebH_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_CerebH_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_CerebH_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_CerebH_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_CerebH_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Colon_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Colon_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Colon_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Colon_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Colon_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Colon_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Coron_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Coron_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Coron_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Coron_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Coron_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Coron_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_EsophMuc_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_EsophMuc_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_EsophMuc_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_EsophMuc_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_EsophMuc_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_EsophMuc_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_EsophMus_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_EsophMus_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_EsophMus_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_EsophMus_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_EsophMus_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_EsophMus_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Fallo_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Fallo_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Fallo_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Fallo_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Fallo_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Fallo_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Front_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Front_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Front_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Front_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Front_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Front_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_HIP_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_HIP_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_HIP_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_HIP_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_HIP_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_HIP_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_HeartAt_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_HeartAt_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_HeartAt_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_HeartAt_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_HeartAt_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_HeartAt_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_HeartLV_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_HeartLV_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_HeartLV_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_HeartLV_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_HeartLV_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_HeartLV_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Hypot_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Hypot_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Hypot_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Hypot_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Hypot_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Hypot_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Kidne_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Kidne_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Kidne_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Kidne_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Kidne_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Kidne_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Liver_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Liver_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Liver_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Liver_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Liver_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Liver_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Lung_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Lung_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Lung_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Lung_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Lung_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Lung_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Muscle_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Muscle_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Muscle_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Muscle_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Muscle_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Muscle_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Nerve_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Nerve_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Nerve_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Nerve_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Nerve_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Nerve_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Nucle_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Nucle_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Nucle_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Nucle_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Nucle_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Nucle_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Ovary_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Ovary_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Ovary_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Ovary_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Ovary_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Ovary_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Pancr_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Pancr_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Pancr_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Pancr_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Pancr_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Pancr_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Pitui_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Pitui_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Pitui_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Pitui_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Pitui_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Pitui_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Prost_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Prost_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Prost_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Prost_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Prost_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Prost_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Putam_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Putam_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Putam_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Putam_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Putam_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Putam_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_SkinE_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_SkinE_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_SkinE_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_SkinE_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_SkinE_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_SkinE_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_SkinN_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_SkinN_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_SkinN_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_SkinN_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_SkinN_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_SkinN_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Spina_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Spina_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Spina_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Spina_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Spina_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Spina_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Stoma_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Stoma_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Stoma_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Stoma_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Stoma_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Stoma_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Subcu_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Subcu_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Subcu_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Subcu_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Subcu_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Subcu_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Subst_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Subst_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Subst_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Subst_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Subst_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Subst_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Testi_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Testi_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Testi_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Testi_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Testi_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Testi_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Thyro_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Thyro_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Thyro_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Thyro_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Thyro_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Thyro_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Tibial_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Tibial_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Tibial_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Tibial_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Tibial_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Tibial_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Uterus_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Uterus_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Uterus_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Uterus_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Uterus_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Uterus_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Vagin_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Vagin_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Vagin_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Vagin_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Vagin_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Vagin_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_Visce_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_Visce_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_Visce_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_Visce_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_Visce_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_Visce_0314/tissue.rtf delete mode 100644 general/datasets/GTEx_log2_WholeB_0314/cases.rtf delete mode 100644 general/datasets/GTEx_log2_WholeB_0314/experiment-design.rtf delete mode 100644 general/datasets/GTEx_log2_WholeB_0314/platform.rtf delete mode 100644 general/datasets/GTEx_log2_WholeB_0314/processing.rtf delete mode 100644 general/datasets/GTEx_log2_WholeB_0314/summary.rtf delete mode 100644 general/datasets/GTEx_log2_WholeB_0314/tissue.rtf create mode 100644 general/datasets/Gcb_m2_0505_m/acknowledgment.rtf create mode 100644 general/datasets/Gcb_m2_0505_m/cases.rtf create mode 100644 general/datasets/Gcb_m2_0505_m/notes.rtf create mode 100644 general/datasets/Gcb_m2_0505_m/platform.rtf create mode 100644 general/datasets/Gcb_m2_0505_m/processing.rtf create mode 100644 general/datasets/Gcb_m2_0505_m/summary.rtf create mode 100644 general/datasets/Gcb_m2_0505_m/tissue.rtf create mode 100644 general/datasets/Gcb_m2_0505_p/acknowledgment.rtf create mode 100644 general/datasets/Gcb_m2_0505_p/cases.rtf create mode 100644 general/datasets/Gcb_m2_0505_p/notes.rtf create mode 100644 general/datasets/Gcb_m2_0505_p/platform.rtf create mode 100644 general/datasets/Gcb_m2_0505_p/processing.rtf create mode 100644 general/datasets/Gcb_m2_0505_p/summary.rtf create mode 100644 general/datasets/Gcb_m2_0505_p/tissue.rtf create mode 100644 general/datasets/Gcb_m2_0505_r/acknowledgment.rtf create mode 100644 general/datasets/Gcb_m2_0505_r/cases.rtf create mode 100644 general/datasets/Gcb_m2_0505_r/notes.rtf create mode 100644 general/datasets/Gcb_m2_0505_r/platform.rtf create mode 100644 general/datasets/Gcb_m2_0505_r/processing.rtf create mode 100644 general/datasets/Gcb_m2_0505_r/summary.rtf create mode 100644 general/datasets/Gcb_m2_0505_r/tissue.rtf delete mode 100644 general/datasets/GenEx_BXD_CerebEt_RMA_0213/summary.rtf delete mode 100644 general/datasets/GenEx_BXD_CerebEt_RMA_M_0213/summary.rtf delete mode 100644 general/datasets/GenEx_BXD_CerebSal_RMA_0213/summary.rtf delete mode 100644 general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/cases.rtf delete mode 100644 general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/experiment-design.rtf delete mode 100644 general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/platform.rtf delete mode 100644 general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/processing.rtf delete mode 100644 general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/summary.rtf delete mode 100644 general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/tissue.rtf delete mode 100644 general/datasets/GenEx_BXD_CerebSal_RMA_M_0213/summary.rtf create mode 100644 general/datasets/Genex_bxd_cerebet_rma_0213/summary.rtf create mode 100644 general/datasets/Genex_bxd_cerebet_rma_m_0213/summary.rtf create mode 100644 general/datasets/Genex_bxd_cerebsal_rma_0213/summary.rtf create mode 100644 general/datasets/Genex_bxd_cerebsal_rma_f_0213/cases.rtf create mode 100644 general/datasets/Genex_bxd_cerebsal_rma_f_0213/contributors.rtf create mode 100644 general/datasets/Genex_bxd_cerebsal_rma_f_0213/experiment-design.rtf create mode 100644 general/datasets/Genex_bxd_cerebsal_rma_f_0213/platform.rtf create mode 100644 general/datasets/Genex_bxd_cerebsal_rma_f_0213/processing.rtf create mode 100644 general/datasets/Genex_bxd_cerebsal_rma_f_0213/summary.rtf create mode 100644 general/datasets/Genex_bxd_cerebsal_rma_f_0213/tissue.rtf create mode 100644 general/datasets/Genex_bxd_cerebsal_rma_m_0213/summary.rtf create mode 100644 general/datasets/Genex_bxd_liveret_m5_0912/notes.rtf create mode 100644 general/datasets/Genex_bxd_liveret_m5_0912/summary.rtf create mode 100644 general/datasets/Genex_bxd_liveret_m5f_0912/notes.rtf create mode 100644 general/datasets/Genex_bxd_liveret_m5f_0912/summary.rtf create mode 100644 general/datasets/Genex_bxd_liveret_m5m_0912/notes.rtf create mode 100644 general/datasets/Genex_bxd_liveret_m5m_0912/summary.rtf create mode 100644 general/datasets/Genex_bxd_liveret_rma_0211/notes.rtf create mode 100644 general/datasets/Genex_bxd_liveret_rma_0211/summary.rtf create mode 100644 general/datasets/Genex_bxd_liveret_rma_f_0211/notes.rtf create mode 100644 general/datasets/Genex_bxd_liveret_rma_f_0211/summary.rtf create mode 100644 general/datasets/Genex_bxd_liveret_rma_m_0211/notes.rtf create mode 100644 general/datasets/Genex_bxd_liveret_rma_m_0211/summary.rtf create mode 100644 general/datasets/Genex_bxd_liversal_rma_0211/notes.rtf create mode 100644 general/datasets/Genex_bxd_liversal_rma_0211/summary.rtf create mode 100644 general/datasets/Genex_bxd_liversal_rma_f_0211/notes.rtf create mode 100644 general/datasets/Genex_bxd_liversal_rma_f_0211/summary.rtf create mode 100644 general/datasets/Genex_bxd_liversal_rma_m_0211/notes.rtf create mode 100644 general/datasets/Genex_bxd_liversal_rma_m_0211/summary.rtf create mode 100644 general/datasets/Gitrmetpublish/summary.rtf create mode 100644 general/datasets/Gn10/acknowledgment.rtf create mode 100644 general/datasets/Gn10/cases.rtf create mode 100644 general/datasets/Gn10/citation.rtf create mode 100644 general/datasets/Gn10/contributors.rtf create mode 100644 general/datasets/Gn10/experiment-design.rtf create mode 100644 general/datasets/Gn10/experiment-type.rtf create mode 100644 general/datasets/Gn10/notes.rtf create mode 100644 general/datasets/Gn10/platform.rtf create mode 100644 general/datasets/Gn10/processing.rtf create mode 100644 general/datasets/Gn10/summary.rtf create mode 100644 general/datasets/Gn10/tissue.rtf create mode 100644 general/datasets/Grng_gse23545hlt0613/citation.rtf create mode 100644 general/datasets/Grng_gse23545hlt0613/contributors.rtf create mode 100644 general/datasets/Grng_gse23545hlt0613/summary.rtf create mode 100644 general/datasets/Gse15222_f_a_ri_0409/acknowledgment.rtf create mode 100644 general/datasets/Gse15222_f_a_ri_0409/cases.rtf create mode 100644 general/datasets/Gse15222_f_a_ri_0409/contributors.rtf create mode 100644 general/datasets/Gse15222_f_a_ri_0409/experiment-design.rtf create mode 100644 general/datasets/Gse15222_f_a_ri_0409/experiment-type.rtf create mode 100644 general/datasets/Gse15222_f_a_ri_0409/notes.rtf create mode 100644 general/datasets/Gse15222_f_a_ri_0409/platform.rtf create mode 100644 general/datasets/Gse15222_f_a_ri_0409/summary.rtf create mode 100644 general/datasets/Gse15222_f_n_ri_0409/acknowledgment.rtf create mode 100644 general/datasets/Gse15222_f_n_ri_0409/cases.rtf create mode 100644 general/datasets/Gse15222_f_n_ri_0409/contributors.rtf create mode 100644 general/datasets/Gse15222_f_n_ri_0409/experiment-design.rtf create mode 100644 general/datasets/Gse15222_f_n_ri_0409/experiment-type.rtf create mode 100644 general/datasets/Gse15222_f_n_ri_0409/notes.rtf create mode 100644 general/datasets/Gse15222_f_n_ri_0409/platform.rtf create mode 100644 general/datasets/Gse15222_f_n_ri_0409/summary.rtf create mode 100644 general/datasets/Gse15222_f_ri_0409/acknowledgment.rtf create mode 100644 general/datasets/Gse15222_f_ri_0409/cases.rtf create mode 100644 general/datasets/Gse15222_f_ri_0409/contributors.rtf create mode 100644 general/datasets/Gse15222_f_ri_0409/experiment-design.rtf create mode 100644 general/datasets/Gse15222_f_ri_0409/experiment-type.rtf create mode 100644 general/datasets/Gse15222_f_ri_0409/notes.rtf create mode 100644 general/datasets/Gse15222_f_ri_0409/platform.rtf create mode 100644 general/datasets/Gse15222_f_ri_0409/summary.rtf create mode 100644 general/datasets/Gse15745_gpl6104_cer0510/citation.rtf create mode 100644 general/datasets/Gse15745_gpl6104_cer0510/experiment-design.rtf create mode 100644 general/datasets/Gse15745_gpl6104_cer0510/summary.rtf create mode 100644 general/datasets/Gse15745_gpl6104_pfc0510/citation.rtf create mode 100644 general/datasets/Gse15745_gpl6104_pfc0510/experiment-design.rtf create mode 100644 general/datasets/Gse15745_gpl6104_pfc0510/summary.rtf create mode 100644 general/datasets/Gse15745_gpl6104_po0510/citation.rtf create mode 100644 general/datasets/Gse15745_gpl6104_po0510/experiment-design.rtf create mode 100644 general/datasets/Gse15745_gpl6104_po0510/summary.rtf create mode 100644 general/datasets/Gse16780_ucla_ml0911/acknowledgment.rtf create mode 100644 general/datasets/Gse16780_ucla_ml0911/cases.rtf create mode 100644 general/datasets/Gse16780_ucla_ml0911/citation.rtf create mode 100644 general/datasets/Gse16780_ucla_ml0911/contributors.rtf create mode 100644 general/datasets/Gse16780_ucla_ml0911/experiment-design.rtf create mode 100644 general/datasets/Gse16780_ucla_ml0911/experiment-type.rtf create mode 100644 general/datasets/Gse16780_ucla_ml0911/notes.rtf create mode 100644 general/datasets/Gse16780_ucla_ml0911/platform.rtf create mode 100644 general/datasets/Gse16780_ucla_ml0911/processing.rtf create mode 100644 general/datasets/Gse16780_ucla_ml0911/summary.rtf create mode 100644 general/datasets/Gse16780_ucla_ml0911/tissue.rtf create mode 100644 general/datasets/Gse16780ab_ucla_ml0911/summary.rtf create mode 100644 general/datasets/Gse16780bxh_ucla_ml0911/summary.rtf create mode 100644 general/datasets/Gse16780mdp_ucla_ml0911/summary.rtf create mode 100644 general/datasets/Gse23546hlt0613/citation.rtf create mode 100644 general/datasets/Gse23546hlt0613/contributors.rtf create mode 100644 general/datasets/Gse23546hlt0613/summary.rtf create mode 100644 general/datasets/Gse5281_f_rma0709/acknowledgment.rtf create mode 100644 general/datasets/Gse5281_f_rma0709/citation.rtf create mode 100644 general/datasets/Gse5281_f_rma0709/contributors.rtf create mode 100644 general/datasets/Gse5281_f_rma0709/experiment-design.rtf create mode 100644 general/datasets/Gse5281_f_rma0709/experiment-type.rtf create mode 100644 general/datasets/Gse5281_f_rma0709/platform.rtf create mode 100644 general/datasets/Gse5281_f_rma0709/summary.rtf create mode 100644 general/datasets/Gse5281_f_rma_alzh_0709/acknowledgment.rtf create mode 100644 general/datasets/Gse5281_f_rma_alzh_0709/citation.rtf create mode 100644 general/datasets/Gse5281_f_rma_alzh_0709/contributors.rtf create mode 100644 general/datasets/Gse5281_f_rma_alzh_0709/experiment-design.rtf create mode 100644 general/datasets/Gse5281_f_rma_alzh_0709/experiment-type.rtf create mode 100644 general/datasets/Gse5281_f_rma_alzh_0709/platform.rtf create mode 100644 general/datasets/Gse5281_f_rma_alzh_0709/summary.rtf create mode 100644 general/datasets/Gse5281_f_rma_n_0709/acknowledgment.rtf create mode 100644 general/datasets/Gse5281_f_rma_n_0709/citation.rtf create mode 100644 general/datasets/Gse5281_f_rma_n_0709/contributors.rtf create mode 100644 general/datasets/Gse5281_f_rma_n_0709/experiment-design.rtf create mode 100644 general/datasets/Gse5281_f_rma_n_0709/experiment-type.rtf create mode 100644 general/datasets/Gse5281_f_rma_n_0709/platform.rtf create mode 100644 general/datasets/Gse5281_f_rma_n_0709/summary.rtf create mode 100644 general/datasets/Gse5281_rma0709/acknowledgment.rtf create mode 100644 general/datasets/Gse5281_rma0709/citation.rtf create mode 100644 general/datasets/Gse5281_rma0709/contributors.rtf create mode 100644 general/datasets/Gse5281_rma0709/experiment-design.rtf create mode 100644 general/datasets/Gse5281_rma0709/experiment-type.rtf create mode 100644 general/datasets/Gse5281_rma0709/platform.rtf create mode 100644 general/datasets/Gse5281_rma0709/summary.rtf create mode 100644 general/datasets/Gtex_adren_0414/cases.rtf create mode 100644 general/datasets/Gtex_adren_0414/contributors.rtf create mode 100644 general/datasets/Gtex_adren_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_adren_0414/platform.rtf create mode 100644 general/datasets/Gtex_adren_0414/processing.rtf create mode 100644 general/datasets/Gtex_adren_0414/summary.rtf create mode 100644 general/datasets/Gtex_adren_0414/tissue.rtf create mode 100644 general/datasets/Gtex_amy_0314/cases.rtf create mode 100644 general/datasets/Gtex_amy_0314/contributors.rtf create mode 100644 general/datasets/Gtex_amy_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_amy_0314/platform.rtf create mode 100644 general/datasets/Gtex_amy_0314/processing.rtf create mode 100644 general/datasets/Gtex_amy_0314/summary.rtf create mode 100644 general/datasets/Gtex_amy_0314/tissue.rtf create mode 100644 general/datasets/Gtex_anter_0414/cases.rtf create mode 100644 general/datasets/Gtex_anter_0414/contributors.rtf create mode 100644 general/datasets/Gtex_anter_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_anter_0414/platform.rtf create mode 100644 general/datasets/Gtex_anter_0414/processing.rtf create mode 100644 general/datasets/Gtex_anter_0414/summary.rtf create mode 100644 general/datasets/Gtex_anter_0414/tissue.rtf create mode 100644 general/datasets/Gtex_aorta_0414/cases.rtf create mode 100644 general/datasets/Gtex_aorta_0414/contributors.rtf create mode 100644 general/datasets/Gtex_aorta_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_aorta_0414/platform.rtf create mode 100644 general/datasets/Gtex_aorta_0414/processing.rtf create mode 100644 general/datasets/Gtex_aorta_0414/summary.rtf create mode 100644 general/datasets/Gtex_aorta_0414/tissue.rtf create mode 100644 general/datasets/Gtex_blood_0414/cases.rtf create mode 100644 general/datasets/Gtex_blood_0414/contributors.rtf create mode 100644 general/datasets/Gtex_blood_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_blood_0414/platform.rtf create mode 100644 general/datasets/Gtex_blood_0414/processing.rtf create mode 100644 general/datasets/Gtex_blood_0414/summary.rtf create mode 100644 general/datasets/Gtex_blood_0414/tissue.rtf create mode 100644 general/datasets/Gtex_breas_0414/cases.rtf create mode 100644 general/datasets/Gtex_breas_0414/contributors.rtf create mode 100644 general/datasets/Gtex_breas_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_breas_0414/platform.rtf create mode 100644 general/datasets/Gtex_breas_0414/processing.rtf create mode 100644 general/datasets/Gtex_breas_0414/summary.rtf create mode 100644 general/datasets/Gtex_breas_0414/tissue.rtf create mode 100644 general/datasets/Gtex_cauda_0414/cases.rtf create mode 100644 general/datasets/Gtex_cauda_0414/contributors.rtf create mode 100644 general/datasets/Gtex_cauda_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_cauda_0414/platform.rtf create mode 100644 general/datasets/Gtex_cauda_0414/processing.rtf create mode 100644 general/datasets/Gtex_cauda_0414/summary.rtf create mode 100644 general/datasets/Gtex_cauda_0414/tissue.rtf create mode 100644 general/datasets/Gtex_cellsebv_0414/cases.rtf create mode 100644 general/datasets/Gtex_cellsebv_0414/contributors.rtf create mode 100644 general/datasets/Gtex_cellsebv_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_cellsebv_0414/platform.rtf create mode 100644 general/datasets/Gtex_cellsebv_0414/processing.rtf create mode 100644 general/datasets/Gtex_cellsebv_0414/summary.rtf create mode 100644 general/datasets/Gtex_cellsebv_0414/tissue.rtf create mode 100644 general/datasets/Gtex_cellsle_0414/citation.rtf create mode 100644 general/datasets/Gtex_cellsle_0414/contributors.rtf create mode 100644 general/datasets/Gtex_cellsle_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_cellsle_0414/summary.rtf create mode 100644 general/datasets/Gtex_cellstr_0414/cases.rtf create mode 100644 general/datasets/Gtex_cellstr_0414/contributors.rtf create mode 100644 general/datasets/Gtex_cellstr_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_cellstr_0414/platform.rtf create mode 100644 general/datasets/Gtex_cellstr_0414/processing.rtf create mode 100644 general/datasets/Gtex_cellstr_0414/summary.rtf create mode 100644 general/datasets/Gtex_cellstr_0414/tissue.rtf create mode 100644 general/datasets/Gtex_cer_0314/cases.rtf create mode 100644 general/datasets/Gtex_cer_0314/contributors.rtf create mode 100644 general/datasets/Gtex_cer_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_cer_0314/platform.rtf create mode 100644 general/datasets/Gtex_cer_0314/processing.rtf create mode 100644 general/datasets/Gtex_cer_0314/summary.rtf create mode 100644 general/datasets/Gtex_cer_0314/tissue.rtf create mode 100644 general/datasets/Gtex_cerebc_0414/cases.rtf create mode 100644 general/datasets/Gtex_cerebc_0414/contributors.rtf create mode 100644 general/datasets/Gtex_cerebc_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_cerebc_0414/platform.rtf create mode 100644 general/datasets/Gtex_cerebc_0414/processing.rtf create mode 100644 general/datasets/Gtex_cerebc_0414/summary.rtf create mode 100644 general/datasets/Gtex_cerebc_0414/tissue.rtf create mode 100644 general/datasets/Gtex_cerebh_0414/cases.rtf create mode 100644 general/datasets/Gtex_cerebh_0414/contributors.rtf create mode 100644 general/datasets/Gtex_cerebh_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_cerebh_0414/platform.rtf create mode 100644 general/datasets/Gtex_cerebh_0414/processing.rtf create mode 100644 general/datasets/Gtex_cerebh_0414/summary.rtf create mode 100644 general/datasets/Gtex_cerebh_0414/tissue.rtf create mode 100644 general/datasets/Gtex_colon_0414/cases.rtf create mode 100644 general/datasets/Gtex_colon_0414/contributors.rtf create mode 100644 general/datasets/Gtex_colon_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_colon_0414/platform.rtf create mode 100644 general/datasets/Gtex_colon_0414/processing.rtf create mode 100644 general/datasets/Gtex_colon_0414/summary.rtf create mode 100644 general/datasets/Gtex_colon_0414/tissue.rtf create mode 100644 general/datasets/Gtex_coron_0414/cases.rtf create mode 100644 general/datasets/Gtex_coron_0414/contributors.rtf create mode 100644 general/datasets/Gtex_coron_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_coron_0414/platform.rtf create mode 100644 general/datasets/Gtex_coron_0414/processing.rtf create mode 100644 general/datasets/Gtex_coron_0414/summary.rtf create mode 100644 general/datasets/Gtex_coron_0414/tissue.rtf create mode 100644 general/datasets/Gtex_esophmuc_0414/cases.rtf create mode 100644 general/datasets/Gtex_esophmuc_0414/contributors.rtf create mode 100644 general/datasets/Gtex_esophmuc_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_esophmuc_0414/platform.rtf create mode 100644 general/datasets/Gtex_esophmuc_0414/processing.rtf create mode 100644 general/datasets/Gtex_esophmuc_0414/summary.rtf create mode 100644 general/datasets/Gtex_esophmuc_0414/tissue.rtf create mode 100644 general/datasets/Gtex_esophmus_0414/cases.rtf create mode 100644 general/datasets/Gtex_esophmus_0414/contributors.rtf create mode 100644 general/datasets/Gtex_esophmus_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_esophmus_0414/platform.rtf create mode 100644 general/datasets/Gtex_esophmus_0414/processing.rtf create mode 100644 general/datasets/Gtex_esophmus_0414/summary.rtf create mode 100644 general/datasets/Gtex_esophmus_0414/tissue.rtf create mode 100644 general/datasets/Gtex_fallo_0414/cases.rtf create mode 100644 general/datasets/Gtex_fallo_0414/contributors.rtf create mode 100644 general/datasets/Gtex_fallo_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_fallo_0414/platform.rtf create mode 100644 general/datasets/Gtex_fallo_0414/processing.rtf create mode 100644 general/datasets/Gtex_fallo_0414/summary.rtf create mode 100644 general/datasets/Gtex_fallo_0414/tissue.rtf create mode 100644 general/datasets/Gtex_front_0414/cases.rtf create mode 100644 general/datasets/Gtex_front_0414/contributors.rtf create mode 100644 general/datasets/Gtex_front_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_front_0414/platform.rtf create mode 100644 general/datasets/Gtex_front_0414/processing.rtf create mode 100644 general/datasets/Gtex_front_0414/summary.rtf create mode 100644 general/datasets/Gtex_front_0414/tissue.rtf create mode 100644 general/datasets/Gtex_heartat_0414/cases.rtf create mode 100644 general/datasets/Gtex_heartat_0414/contributors.rtf create mode 100644 general/datasets/Gtex_heartat_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_heartat_0414/platform.rtf create mode 100644 general/datasets/Gtex_heartat_0414/processing.rtf create mode 100644 general/datasets/Gtex_heartat_0414/summary.rtf create mode 100644 general/datasets/Gtex_heartat_0414/tissue.rtf create mode 100644 general/datasets/Gtex_heartlv_0414/cases.rtf create mode 100644 general/datasets/Gtex_heartlv_0414/contributors.rtf create mode 100644 general/datasets/Gtex_heartlv_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_heartlv_0414/platform.rtf create mode 100644 general/datasets/Gtex_heartlv_0414/processing.rtf create mode 100644 general/datasets/Gtex_heartlv_0414/summary.rtf create mode 100644 general/datasets/Gtex_heartlv_0414/tissue.rtf create mode 100644 general/datasets/Gtex_hip_0314/cases.rtf create mode 100644 general/datasets/Gtex_hip_0314/contributors.rtf create mode 100644 general/datasets/Gtex_hip_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_hip_0314/platform.rtf create mode 100644 general/datasets/Gtex_hip_0314/processing.rtf create mode 100644 general/datasets/Gtex_hip_0314/summary.rtf create mode 100644 general/datasets/Gtex_hip_0314/tissue.rtf create mode 100644 general/datasets/Gtex_hypot_0414/cases.rtf create mode 100644 general/datasets/Gtex_hypot_0414/contributors.rtf create mode 100644 general/datasets/Gtex_hypot_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_hypot_0414/platform.rtf create mode 100644 general/datasets/Gtex_hypot_0414/processing.rtf create mode 100644 general/datasets/Gtex_hypot_0414/summary.rtf create mode 100644 general/datasets/Gtex_hypot_0414/tissue.rtf create mode 100644 general/datasets/Gtex_kidne_0414/cases.rtf create mode 100644 general/datasets/Gtex_kidne_0414/contributors.rtf create mode 100644 general/datasets/Gtex_kidne_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_kidne_0414/platform.rtf create mode 100644 general/datasets/Gtex_kidne_0414/processing.rtf create mode 100644 general/datasets/Gtex_kidne_0414/summary.rtf create mode 100644 general/datasets/Gtex_kidne_0414/tissue.rtf create mode 100644 general/datasets/Gtex_liver_0414/cases.rtf create mode 100644 general/datasets/Gtex_liver_0414/contributors.rtf create mode 100644 general/datasets/Gtex_liver_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_liver_0414/platform.rtf create mode 100644 general/datasets/Gtex_liver_0414/processing.rtf create mode 100644 general/datasets/Gtex_liver_0414/summary.rtf create mode 100644 general/datasets/Gtex_liver_0414/tissue.rtf create mode 100644 general/datasets/Gtex_log2_adren_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_adren_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_adren_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_adren_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_adren_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_adren_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_adren_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_amy_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_amy_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_amy_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_amy_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_amy_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_amy_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_amy_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_anter_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_anter_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_anter_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_anter_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_anter_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_anter_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_anter_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_aorta_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_aorta_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_aorta_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_aorta_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_aorta_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_aorta_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_aorta_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_blood_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_blood_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_blood_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_blood_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_blood_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_blood_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_blood_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_breas_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_breas_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_breas_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_breas_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_breas_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_breas_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_breas_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_cauda_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_cauda_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_cauda_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_cauda_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_cauda_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_cauda_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_cauda_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_cellsebv_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_cellsebv_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_cellsebv_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_cellsebv_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_cellsebv_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_cellsebv_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_cellsebv_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_cellsle_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_cellsle_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_cellsle_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_cellsle_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_cellsle_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_cellsle_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_cellsle_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_cellstr_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_cellstr_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_cellstr_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_cellstr_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_cellstr_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_cellstr_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_cellstr_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_cer_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_cer_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_cer_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_cer_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_cer_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_cer_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_cer_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_cerebc_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_cerebc_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_cerebc_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_cerebc_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_cerebc_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_cerebc_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_cerebc_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_cerebh_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_cerebh_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_cerebh_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_cerebh_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_cerebh_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_cerebh_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_cerebh_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_colon_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_colon_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_colon_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_colon_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_colon_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_colon_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_colon_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_coron_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_coron_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_coron_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_coron_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_coron_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_coron_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_coron_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_esophmuc_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_esophmuc_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_esophmuc_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_esophmuc_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_esophmuc_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_esophmuc_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_esophmuc_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_esophmus_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_esophmus_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_esophmus_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_esophmus_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_esophmus_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_esophmus_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_esophmus_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_fallo_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_fallo_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_fallo_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_fallo_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_fallo_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_fallo_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_fallo_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_front_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_front_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_front_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_front_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_front_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_front_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_front_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_heartat_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_heartat_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_heartat_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_heartat_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_heartat_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_heartat_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_heartat_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_heartlv_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_heartlv_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_heartlv_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_heartlv_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_heartlv_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_heartlv_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_heartlv_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_hip_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_hip_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_hip_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_hip_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_hip_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_hip_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_hip_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_hypot_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_hypot_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_hypot_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_hypot_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_hypot_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_hypot_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_hypot_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_kidne_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_kidne_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_kidne_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_kidne_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_kidne_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_kidne_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_kidne_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_liver_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_liver_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_liver_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_liver_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_liver_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_liver_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_liver_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_lung_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_lung_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_lung_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_lung_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_lung_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_lung_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_lung_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_muscle_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_muscle_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_muscle_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_muscle_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_muscle_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_muscle_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_muscle_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_nerve_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_nerve_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_nerve_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_nerve_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_nerve_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_nerve_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_nerve_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_nucle_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_nucle_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_nucle_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_nucle_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_nucle_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_nucle_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_nucle_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_ovary_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_ovary_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_ovary_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_ovary_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_ovary_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_ovary_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_ovary_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_pancr_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_pancr_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_pancr_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_pancr_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_pancr_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_pancr_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_pancr_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_pitui_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_pitui_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_pitui_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_pitui_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_pitui_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_pitui_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_pitui_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_prost_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_prost_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_prost_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_prost_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_prost_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_prost_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_prost_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_putam_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_putam_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_putam_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_putam_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_putam_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_putam_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_putam_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_skine_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_skine_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_skine_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_skine_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_skine_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_skine_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_skine_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_skinn_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_skinn_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_skinn_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_skinn_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_skinn_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_skinn_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_skinn_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_spina_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_spina_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_spina_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_spina_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_spina_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_spina_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_spina_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_stoma_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_stoma_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_stoma_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_stoma_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_stoma_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_stoma_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_stoma_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_subcu_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_subcu_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_subcu_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_subcu_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_subcu_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_subcu_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_subcu_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_subst_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_subst_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_subst_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_subst_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_subst_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_subst_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_subst_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_testi_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_testi_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_testi_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_testi_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_testi_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_testi_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_testi_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_thyro_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_thyro_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_thyro_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_thyro_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_thyro_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_thyro_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_thyro_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_tibial_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_tibial_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_tibial_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_tibial_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_tibial_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_tibial_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_tibial_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_uterus_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_uterus_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_uterus_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_uterus_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_uterus_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_uterus_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_uterus_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_vagin_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_vagin_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_vagin_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_vagin_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_vagin_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_vagin_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_vagin_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_visce_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_visce_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_visce_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_visce_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_visce_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_visce_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_visce_0314/tissue.rtf create mode 100644 general/datasets/Gtex_log2_wholeb_0314/cases.rtf create mode 100644 general/datasets/Gtex_log2_wholeb_0314/contributors.rtf create mode 100644 general/datasets/Gtex_log2_wholeb_0314/experiment-design.rtf create mode 100644 general/datasets/Gtex_log2_wholeb_0314/platform.rtf create mode 100644 general/datasets/Gtex_log2_wholeb_0314/processing.rtf create mode 100644 general/datasets/Gtex_log2_wholeb_0314/summary.rtf create mode 100644 general/datasets/Gtex_log2_wholeb_0314/tissue.rtf create mode 100644 general/datasets/Gtex_lung__0414/cases.rtf create mode 100644 general/datasets/Gtex_lung__0414/contributors.rtf create mode 100644 general/datasets/Gtex_lung__0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_lung__0414/platform.rtf create mode 100644 general/datasets/Gtex_lung__0414/processing.rtf create mode 100644 general/datasets/Gtex_lung__0414/summary.rtf create mode 100644 general/datasets/Gtex_lung__0414/tissue.rtf create mode 100644 general/datasets/Gtex_muscl_0414/cases.rtf create mode 100644 general/datasets/Gtex_muscl_0414/contributors.rtf create mode 100644 general/datasets/Gtex_muscl_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_muscl_0414/platform.rtf create mode 100644 general/datasets/Gtex_muscl_0414/processing.rtf create mode 100644 general/datasets/Gtex_muscl_0414/summary.rtf create mode 100644 general/datasets/Gtex_muscl_0414/tissue.rtf create mode 100644 general/datasets/Gtex_nerve_0414/cases.rtf create mode 100644 general/datasets/Gtex_nerve_0414/contributors.rtf create mode 100644 general/datasets/Gtex_nerve_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_nerve_0414/platform.rtf create mode 100644 general/datasets/Gtex_nerve_0414/processing.rtf create mode 100644 general/datasets/Gtex_nerve_0414/summary.rtf create mode 100644 general/datasets/Gtex_nerve_0414/tissue.rtf create mode 100644 general/datasets/Gtex_nucle_0414/cases.rtf create mode 100644 general/datasets/Gtex_nucle_0414/contributors.rtf create mode 100644 general/datasets/Gtex_nucle_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_nucle_0414/platform.rtf create mode 100644 general/datasets/Gtex_nucle_0414/processing.rtf create mode 100644 general/datasets/Gtex_nucle_0414/summary.rtf create mode 100644 general/datasets/Gtex_nucle_0414/tissue.rtf create mode 100644 general/datasets/Gtex_ovary_0414/cases.rtf create mode 100644 general/datasets/Gtex_ovary_0414/contributors.rtf create mode 100644 general/datasets/Gtex_ovary_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_ovary_0414/platform.rtf create mode 100644 general/datasets/Gtex_ovary_0414/processing.rtf create mode 100644 general/datasets/Gtex_ovary_0414/summary.rtf create mode 100644 general/datasets/Gtex_ovary_0414/tissue.rtf create mode 100644 general/datasets/Gtex_pancr_0414/cases.rtf create mode 100644 general/datasets/Gtex_pancr_0414/contributors.rtf create mode 100644 general/datasets/Gtex_pancr_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_pancr_0414/platform.rtf create mode 100644 general/datasets/Gtex_pancr_0414/processing.rtf create mode 100644 general/datasets/Gtex_pancr_0414/summary.rtf create mode 100644 general/datasets/Gtex_pancr_0414/tissue.rtf create mode 100644 general/datasets/Gtex_pitui_0414/cases.rtf create mode 100644 general/datasets/Gtex_pitui_0414/contributors.rtf create mode 100644 general/datasets/Gtex_pitui_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_pitui_0414/platform.rtf create mode 100644 general/datasets/Gtex_pitui_0414/processing.rtf create mode 100644 general/datasets/Gtex_pitui_0414/summary.rtf create mode 100644 general/datasets/Gtex_pitui_0414/tissue.rtf create mode 100644 general/datasets/Gtex_prost_0414/cases.rtf create mode 100644 general/datasets/Gtex_prost_0414/contributors.rtf create mode 100644 general/datasets/Gtex_prost_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_prost_0414/platform.rtf create mode 100644 general/datasets/Gtex_prost_0414/processing.rtf create mode 100644 general/datasets/Gtex_prost_0414/summary.rtf create mode 100644 general/datasets/Gtex_prost_0414/tissue.rtf create mode 100644 general/datasets/Gtex_putam_0414/cases.rtf create mode 100644 general/datasets/Gtex_putam_0414/contributors.rtf create mode 100644 general/datasets/Gtex_putam_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_putam_0414/platform.rtf create mode 100644 general/datasets/Gtex_putam_0414/processing.rtf create mode 100644 general/datasets/Gtex_putam_0414/summary.rtf create mode 100644 general/datasets/Gtex_putam_0414/tissue.rtf create mode 100644 general/datasets/Gtex_skine_0414/cases.rtf create mode 100644 general/datasets/Gtex_skine_0414/contributors.rtf create mode 100644 general/datasets/Gtex_skine_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_skine_0414/platform.rtf create mode 100644 general/datasets/Gtex_skine_0414/processing.rtf create mode 100644 general/datasets/Gtex_skine_0414/summary.rtf create mode 100644 general/datasets/Gtex_skine_0414/tissue.rtf create mode 100644 general/datasets/Gtex_skinn_0414/cases.rtf create mode 100644 general/datasets/Gtex_skinn_0414/contributors.rtf create mode 100644 general/datasets/Gtex_skinn_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_skinn_0414/platform.rtf create mode 100644 general/datasets/Gtex_skinn_0414/processing.rtf create mode 100644 general/datasets/Gtex_skinn_0414/summary.rtf create mode 100644 general/datasets/Gtex_skinn_0414/tissue.rtf create mode 100644 general/datasets/Gtex_spina_0414/cases.rtf create mode 100644 general/datasets/Gtex_spina_0414/contributors.rtf create mode 100644 general/datasets/Gtex_spina_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_spina_0414/platform.rtf create mode 100644 general/datasets/Gtex_spina_0414/processing.rtf create mode 100644 general/datasets/Gtex_spina_0414/summary.rtf create mode 100644 general/datasets/Gtex_spina_0414/tissue.rtf create mode 100644 general/datasets/Gtex_stoma_0414/cases.rtf create mode 100644 general/datasets/Gtex_stoma_0414/contributors.rtf create mode 100644 general/datasets/Gtex_stoma_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_stoma_0414/platform.rtf create mode 100644 general/datasets/Gtex_stoma_0414/processing.rtf create mode 100644 general/datasets/Gtex_stoma_0414/summary.rtf create mode 100644 general/datasets/Gtex_stoma_0414/tissue.rtf create mode 100644 general/datasets/Gtex_subcu_0414/cases.rtf create mode 100644 general/datasets/Gtex_subcu_0414/contributors.rtf create mode 100644 general/datasets/Gtex_subcu_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_subcu_0414/platform.rtf create mode 100644 general/datasets/Gtex_subcu_0414/processing.rtf create mode 100644 general/datasets/Gtex_subcu_0414/summary.rtf create mode 100644 general/datasets/Gtex_subcu_0414/tissue.rtf create mode 100644 general/datasets/Gtex_subst_0414/cases.rtf create mode 100644 general/datasets/Gtex_subst_0414/contributors.rtf create mode 100644 general/datasets/Gtex_subst_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_subst_0414/platform.rtf create mode 100644 general/datasets/Gtex_subst_0414/processing.rtf create mode 100644 general/datasets/Gtex_subst_0414/summary.rtf create mode 100644 general/datasets/Gtex_subst_0414/tissue.rtf create mode 100644 general/datasets/Gtex_testi_0414/cases.rtf create mode 100644 general/datasets/Gtex_testi_0414/contributors.rtf create mode 100644 general/datasets/Gtex_testi_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_testi_0414/platform.rtf create mode 100644 general/datasets/Gtex_testi_0414/processing.rtf create mode 100644 general/datasets/Gtex_testi_0414/summary.rtf create mode 100644 general/datasets/Gtex_testi_0414/tissue.rtf create mode 100644 general/datasets/Gtex_thyro_0414/cases.rtf create mode 100644 general/datasets/Gtex_thyro_0414/contributors.rtf create mode 100644 general/datasets/Gtex_thyro_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_thyro_0414/platform.rtf create mode 100644 general/datasets/Gtex_thyro_0414/processing.rtf create mode 100644 general/datasets/Gtex_thyro_0414/summary.rtf create mode 100644 general/datasets/Gtex_thyro_0414/tissue.rtf create mode 100644 general/datasets/Gtex_tibia_0414/cases.rtf create mode 100644 general/datasets/Gtex_tibia_0414/contributors.rtf create mode 100644 general/datasets/Gtex_tibia_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_tibia_0414/platform.rtf create mode 100644 general/datasets/Gtex_tibia_0414/processing.rtf create mode 100644 general/datasets/Gtex_tibia_0414/summary.rtf create mode 100644 general/datasets/Gtex_tibia_0414/tissue.rtf create mode 100644 general/datasets/Gtex_uteru_0414/cases.rtf create mode 100644 general/datasets/Gtex_uteru_0414/contributors.rtf create mode 100644 general/datasets/Gtex_uteru_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_uteru_0414/platform.rtf create mode 100644 general/datasets/Gtex_uteru_0414/processing.rtf create mode 100644 general/datasets/Gtex_uteru_0414/summary.rtf create mode 100644 general/datasets/Gtex_uteru_0414/tissue.rtf create mode 100644 general/datasets/Gtex_vagin_0414/cases.rtf create mode 100644 general/datasets/Gtex_vagin_0414/contributors.rtf create mode 100644 general/datasets/Gtex_vagin_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_vagin_0414/platform.rtf create mode 100644 general/datasets/Gtex_vagin_0414/processing.rtf create mode 100644 general/datasets/Gtex_vagin_0414/summary.rtf create mode 100644 general/datasets/Gtex_vagin_0414/tissue.rtf create mode 100644 general/datasets/Gtex_visce_0414/cases.rtf create mode 100644 general/datasets/Gtex_visce_0414/contributors.rtf create mode 100644 general/datasets/Gtex_visce_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_visce_0414/platform.rtf create mode 100644 general/datasets/Gtex_visce_0414/processing.rtf create mode 100644 general/datasets/Gtex_visce_0414/summary.rtf create mode 100644 general/datasets/Gtex_visce_0414/tissue.rtf create mode 100644 general/datasets/Gtex_whole_0414/cases.rtf create mode 100644 general/datasets/Gtex_whole_0414/contributors.rtf create mode 100644 general/datasets/Gtex_whole_0414/experiment-design.rtf create mode 100644 general/datasets/Gtex_whole_0414/platform.rtf create mode 100644 general/datasets/Gtex_whole_0414/processing.rtf create mode 100644 general/datasets/Gtex_whole_0414/summary.rtf create mode 100644 general/datasets/Gtex_whole_0414/tissue.rtf create mode 100644 general/datasets/Gtexv5_adipsub_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_adipsub_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_adipsub_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_adipsub_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_adipsub_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_adipsub_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_adipsub_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_adipsub_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_adivis_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_adivis_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_adivis_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_adivis_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_adivis_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_adivis_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_adivis_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_adivis_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_adrgla_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_adrgla_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_adrgla_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_adrgla_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_adrgla_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_adrgla_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_adrgla_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_adrgla_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_amy_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_amy_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_amy_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_amy_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_amy_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_amy_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_amy_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_amy_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_antctx_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_antctx_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_antctx_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_antctx_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_antctx_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_antctx_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_antctx_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_antctx_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_artaor_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_artaor_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_artaor_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_artaor_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_artaor_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_artaor_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_artaor_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_artaor_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_artcor_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_artcor_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_artcor_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_artcor_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_artcor_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_artcor_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_artcor_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_artcor_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_bm_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_bm_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_bm_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_bm_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_bm_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_bm_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_bm_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_bm_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_brce_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_brce_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_brce_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_brce_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_brce_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_brce_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_brce_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_brce_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_brma_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_brma_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_brma_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_brma_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_brma_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_brma_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_brma_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_brma_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_colsig_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_colsig_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_colsig_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_colsig_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_colsig_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_colsig_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_colsig_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_colsig_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_ctf_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_ctf_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_ctf_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_ctf_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_ctf_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_ctf_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_ctf_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_ctf_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_gastjun_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_gastjun_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_gastjun_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_gastjun_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_gastjun_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_gastjun_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_gastjun_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_gastjun_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_haa_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_haa_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_haa_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_haa_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_haa_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_haa_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_haa_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_haa_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_hip_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_hip_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_hip_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_hip_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_hip_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_hip_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_hip_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_hip_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_hiptha_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_hiptha_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_hiptha_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_hiptha_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_hiptha_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_hiptha_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_hiptha_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_hiptha_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_kidn_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_kidn_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_kidn_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_kidn_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_kidn_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_kidn_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_kidn_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_kidn_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_liv_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_liv_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_liv_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_liv_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_liv_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_liv_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_liv_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_liv_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_musk_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_musk_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_musk_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_musk_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_musk_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_musk_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_musk_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_musk_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_ov_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_ov_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_ov_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_ov_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_ov_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_ov_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_ov_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_ov_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_pit_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_pit_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_pit_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_pit_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_pit_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_pit_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_pit_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_pit_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_prost_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_prost_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_prost_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_prost_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_prost_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_prost_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_prost_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_prost_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_salgl_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_salgl_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_salgl_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_salgl_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_salgl_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_salgl_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_salgl_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_salgl_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_sks_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_sks_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_sks_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_sks_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_sks_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_sks_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_sks_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_sks_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_sto_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_sto_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_sto_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_sto_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_sto_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_sto_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_sto_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_sto_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_test_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_test_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_test_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_test_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_test_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_test_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_test_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_test_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_thy_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_thy_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_thy_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_thy_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_thy_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_thy_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_thy_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_thy_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_ut_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_ut_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_ut_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_ut_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_ut_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_ut_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_ut_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_ut_0915/tissue.rtf create mode 100644 general/datasets/Gtexv5_wbl_0915/cases.rtf create mode 100644 general/datasets/Gtexv5_wbl_0915/contributors.rtf create mode 100644 general/datasets/Gtexv5_wbl_0915/experiment-design.rtf create mode 100644 general/datasets/Gtexv5_wbl_0915/platform.rtf create mode 100644 general/datasets/Gtexv5_wbl_0915/processing.rtf create mode 100644 general/datasets/Gtexv5_wbl_0915/specifics.rtf create mode 100644 general/datasets/Gtexv5_wbl_0915/summary.rtf create mode 100644 general/datasets/Gtexv5_wbl_0915/tissue.rtf create mode 100644 general/datasets/HBTRC-MLC_0611/acknowledgment.rtf create mode 100644 general/datasets/HBTRC-MLC_0611/cases.rtf create mode 100644 general/datasets/HBTRC-MLC_0611/experiment-design.rtf create mode 100644 general/datasets/HBTRC-MLC_0611/notes.rtf create mode 100644 general/datasets/HBTRC-MLC_0611/summary.rtf create mode 100644 general/datasets/HBTRC-MLC_AD_0611/acknowledgment.rtf create mode 100644 general/datasets/HBTRC-MLC_AD_0611/cases.rtf create mode 100644 general/datasets/HBTRC-MLC_AD_0611/experiment-design.rtf create mode 100644 general/datasets/HBTRC-MLC_AD_0611/notes.rtf create mode 100644 general/datasets/HBTRC-MLC_AD_0611/summary.rtf create mode 100644 general/datasets/HBTRC-MLC_HD_0611/acknowledgment.rtf create mode 100644 general/datasets/HBTRC-MLC_HD_0611/cases.rtf create mode 100644 general/datasets/HBTRC-MLC_HD_0611/experiment-design.rtf create mode 100644 general/datasets/HBTRC-MLC_HD_0611/notes.rtf create mode 100644 general/datasets/HBTRC-MLC_HD_0611/summary.rtf create mode 100644 general/datasets/HBTRC-MLC_N_0611/acknowledgment.rtf create mode 100644 general/datasets/HBTRC-MLC_N_0611/cases.rtf create mode 100644 general/datasets/HBTRC-MLC_N_0611/experiment-design.rtf create mode 100644 general/datasets/HBTRC-MLC_N_0611/notes.rtf create mode 100644 general/datasets/HBTRC-MLC_N_0611/summary.rtf create mode 100644 general/datasets/HBTRC-MLPFC_0611/acknowledgment.rtf create mode 100644 general/datasets/HBTRC-MLPFC_0611/cases.rtf create mode 100644 general/datasets/HBTRC-MLPFC_0611/experiment-design.rtf create mode 100644 general/datasets/HBTRC-MLPFC_0611/notes.rtf create mode 100644 general/datasets/HBTRC-MLPFC_0611/platform.rtf create mode 100644 general/datasets/HBTRC-MLPFC_0611/processing.rtf create mode 100644 general/datasets/HBTRC-MLPFC_0611/summary.rtf create mode 100644 general/datasets/HBTRC-MLPFC_0611/tissue.rtf create mode 100644 general/datasets/HBTRC-MLPFC_AD_0611/acknowledgment.rtf create mode 100644 general/datasets/HBTRC-MLPFC_AD_0611/cases.rtf create mode 100644 general/datasets/HBTRC-MLPFC_AD_0611/experiment-design.rtf create mode 100644 general/datasets/HBTRC-MLPFC_AD_0611/notes.rtf create mode 100644 general/datasets/HBTRC-MLPFC_AD_0611/platform.rtf create mode 100644 general/datasets/HBTRC-MLPFC_AD_0611/processing.rtf create mode 100644 general/datasets/HBTRC-MLPFC_AD_0611/summary.rtf create mode 100644 general/datasets/HBTRC-MLPFC_AD_0611/tissue.rtf create mode 100644 general/datasets/HBTRC-MLPFC_HD_0611/acknowledgment.rtf create mode 100644 general/datasets/HBTRC-MLPFC_HD_0611/cases.rtf create mode 100644 general/datasets/HBTRC-MLPFC_HD_0611/experiment-design.rtf create mode 100644 general/datasets/HBTRC-MLPFC_HD_0611/notes.rtf create mode 100644 general/datasets/HBTRC-MLPFC_HD_0611/platform.rtf create mode 100644 general/datasets/HBTRC-MLPFC_HD_0611/processing.rtf create mode 100644 general/datasets/HBTRC-MLPFC_HD_0611/summary.rtf create mode 100644 general/datasets/HBTRC-MLPFC_HD_0611/tissue.rtf create mode 100644 general/datasets/HBTRC-MLPFC_N_0611/acknowledgment.rtf create mode 100644 general/datasets/HBTRC-MLPFC_N_0611/cases.rtf create mode 100644 general/datasets/HBTRC-MLPFC_N_0611/experiment-design.rtf create mode 100644 general/datasets/HBTRC-MLPFC_N_0611/notes.rtf create mode 100644 general/datasets/HBTRC-MLPFC_N_0611/platform.rtf create mode 100644 general/datasets/HBTRC-MLPFC_N_0611/processing.rtf create mode 100644 general/datasets/HBTRC-MLPFC_N_0611/summary.rtf create mode 100644 general/datasets/HBTRC-MLPFC_N_0611/tissue.rtf create mode 100644 general/datasets/HBTRC-MLVC_0611/acknowledgment.rtf create mode 100644 general/datasets/HBTRC-MLVC_0611/cases.rtf create mode 100644 general/datasets/HBTRC-MLVC_0611/notes.rtf create mode 100644 general/datasets/HBTRC-MLVC_0611/summary.rtf create mode 100644 general/datasets/HBTRC-MLVC_AD_0611/acknowledgment.rtf create mode 100644 general/datasets/HBTRC-MLVC_AD_0611/cases.rtf create mode 100644 general/datasets/HBTRC-MLVC_AD_0611/notes.rtf create mode 100644 general/datasets/HBTRC-MLVC_AD_0611/summary.rtf create mode 100644 general/datasets/HBTRC-MLVC_HD_0611/acknowledgment.rtf create mode 100644 general/datasets/HBTRC-MLVC_HD_0611/cases.rtf create mode 100644 general/datasets/HBTRC-MLVC_HD_0611/notes.rtf create mode 100644 general/datasets/HBTRC-MLVC_HD_0611/summary.rtf create mode 100644 general/datasets/HBTRC-MLVC_N_0611/acknowledgment.rtf create mode 100644 general/datasets/HBTRC-MLVC_N_0611/cases.rtf create mode 100644 general/datasets/HBTRC-MLVC_N_0611/notes.rtf create mode 100644 general/datasets/HBTRC-MLVC_N_0611/summary.rtf delete mode 100644 general/datasets/HBTRC_MLC_0611/acknowledgment.rtf delete mode 100644 general/datasets/HBTRC_MLC_0611/cases.rtf delete mode 100644 general/datasets/HBTRC_MLC_0611/experiment-design.rtf delete mode 100644 general/datasets/HBTRC_MLC_0611/notes.rtf delete mode 100644 general/datasets/HBTRC_MLC_0611/summary.rtf delete mode 100644 general/datasets/HBTRC_MLC_AD_0611/acknowledgment.rtf delete mode 100644 general/datasets/HBTRC_MLC_AD_0611/cases.rtf delete mode 100644 general/datasets/HBTRC_MLC_AD_0611/experiment-design.rtf delete mode 100644 general/datasets/HBTRC_MLC_AD_0611/notes.rtf delete mode 100644 general/datasets/HBTRC_MLC_AD_0611/summary.rtf delete mode 100644 general/datasets/HBTRC_MLC_HD_0611/acknowledgment.rtf delete mode 100644 general/datasets/HBTRC_MLC_HD_0611/cases.rtf delete mode 100644 general/datasets/HBTRC_MLC_HD_0611/experiment-design.rtf delete mode 100644 general/datasets/HBTRC_MLC_HD_0611/notes.rtf delete mode 100644 general/datasets/HBTRC_MLC_HD_0611/summary.rtf delete mode 100644 general/datasets/HBTRC_MLC_N_0611/acknowledgment.rtf delete mode 100644 general/datasets/HBTRC_MLC_N_0611/cases.rtf delete mode 100644 general/datasets/HBTRC_MLC_N_0611/experiment-design.rtf delete mode 100644 general/datasets/HBTRC_MLC_N_0611/notes.rtf delete mode 100644 general/datasets/HBTRC_MLC_N_0611/summary.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_0611/acknowledgment.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_0611/cases.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_0611/experiment-design.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_0611/notes.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_0611/platform.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_0611/processing.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_0611/summary.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_0611/tissue.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_AD_0611/acknowledgment.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_AD_0611/cases.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_AD_0611/experiment-design.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_AD_0611/notes.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_AD_0611/platform.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_AD_0611/processing.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_AD_0611/summary.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_AD_0611/tissue.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_HD_0611/acknowledgment.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_HD_0611/cases.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_HD_0611/experiment-design.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_HD_0611/notes.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_HD_0611/platform.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_HD_0611/processing.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_HD_0611/summary.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_HD_0611/tissue.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_N_0611/acknowledgment.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_N_0611/cases.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_N_0611/experiment-design.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_N_0611/notes.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_N_0611/platform.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_N_0611/processing.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_N_0611/summary.rtf delete mode 100644 general/datasets/HBTRC_MLPFC_N_0611/tissue.rtf delete mode 100644 general/datasets/HBTRC_MLVC_0611/acknowledgment.rtf delete mode 100644 general/datasets/HBTRC_MLVC_0611/cases.rtf delete mode 100644 general/datasets/HBTRC_MLVC_0611/notes.rtf delete mode 100644 general/datasets/HBTRC_MLVC_0611/summary.rtf delete mode 100644 general/datasets/HBTRC_MLVC_AD_0611/acknowledgment.rtf delete mode 100644 general/datasets/HBTRC_MLVC_AD_0611/cases.rtf delete mode 100644 general/datasets/HBTRC_MLVC_AD_0611/notes.rtf delete mode 100644 general/datasets/HBTRC_MLVC_AD_0611/summary.rtf delete mode 100644 general/datasets/HBTRC_MLVC_HD_0611/acknowledgment.rtf delete mode 100644 general/datasets/HBTRC_MLVC_HD_0611/cases.rtf delete mode 100644 general/datasets/HBTRC_MLVC_HD_0611/notes.rtf delete mode 100644 general/datasets/HBTRC_MLVC_HD_0611/summary.rtf delete mode 100644 general/datasets/HBTRC_MLVC_N_0611/acknowledgment.rtf delete mode 100644 general/datasets/HBTRC_MLVC_N_0611/cases.rtf delete mode 100644 general/datasets/HBTRC_MLVC_N_0611/notes.rtf delete mode 100644 general/datasets/HBTRC_MLVC_N_0611/summary.rtf delete mode 100644 general/datasets/HET3_ITPPublish/specifics.rtf delete mode 100644 general/datasets/HET3_ITPPublish/summary.rtf delete mode 100644 general/datasets/HMS_mm8_MDP_Spl_CD4_1116/experiment-design.rtf delete mode 100644 general/datasets/HMS_mm8_MDP_Spl_CD4_1116/specifics.rtf delete mode 100644 general/datasets/HMS_mm8_MDP_Spl_CD4_1116/summary.rtf delete mode 100644 general/datasets/HRDPPublish/specifics.rtf delete mode 100644 general/datasets/HRDPPublish/summary.rtf delete mode 100644 general/datasets/HSNIH_PalmerPublish/specifics.rtf delete mode 100644 general/datasets/HSNIH_PalmerPublish/summary.rtf delete mode 100644 general/datasets/HSNIH_Rat_Acbc_RSeq_0818/specifics.rtf delete mode 100644 general/datasets/HSNIH_Rat_Acbc_RSeq_0818/summary.rtf delete mode 100644 general/datasets/HSNIH_Rat_Acbc_RSeqlog2_0818/specifics.rtf delete mode 100644 general/datasets/HSNIH_Rat_Acbc_RSeqlog2_0818/summary.rtf delete mode 100644 general/datasets/HSNIH_Rat_IL_RSeq_0818/specifics.rtf delete mode 100644 general/datasets/HSNIH_Rat_IL_RSeq_0818/summary.rtf delete mode 100644 general/datasets/HSNIH_Rat_IL_RSeqlog2_0818/specifics.rtf delete mode 100644 general/datasets/HSNIH_Rat_IL_RSeqlog2_0818/summary.rtf delete mode 100644 general/datasets/HSNIH_Rat_LHB_RSeq_0818/specifics.rtf delete mode 100644 general/datasets/HSNIH_Rat_LHB_RSeq_0818/summary.rtf delete mode 100644 general/datasets/HSNIH_Rat_LHB_RSeqlog2_0818/specifics.rtf delete mode 100644 general/datasets/HSNIH_Rat_LHB_RSeqlog2_0818/summary.rtf delete mode 100644 general/datasets/HSNIH_Rat_PL_RSeq_0818/specifics.rtf delete mode 100644 general/datasets/HSNIH_Rat_PL_RSeq_0818/summary.rtf delete mode 100644 general/datasets/HSNIH_Rat_PL_RSeqlog2_0818/specifics.rtf delete mode 100644 general/datasets/HSNIH_Rat_PL_RSeqlog2_0818/summary.rtf delete mode 100644 general/datasets/HSNIH_Rat_VoLo_RSeq_0818/specifics.rtf delete mode 100644 general/datasets/HSNIH_Rat_VoLo_RSeq_0818/summary.rtf delete mode 100644 general/datasets/HSNIH_Rat_VoLo_RSeqlog2_0818/specifics.rtf delete mode 100644 general/datasets/HSNIH_Rat_VoLo_RSeqlog2_0818/summary.rtf delete mode 100644 general/datasets/HZI_LTCF_0313/acknowledgment.rtf delete mode 100644 general/datasets/HZI_LTCF_0313/cases.rtf delete mode 100644 general/datasets/HZI_LTCF_0313/notes.rtf delete mode 100644 general/datasets/HZI_LTCF_0313/processing.rtf delete mode 100644 general/datasets/HZI_LTCF_0313/summary.rtf delete mode 100644 general/datasets/HZI_LTCF_0313/tissue.rtf delete mode 100644 general/datasets/HZI_LungBXD_RNA_Seq_1116/acknowledgment.rtf delete mode 100644 general/datasets/HZI_LungBXD_RNA_Seq_1116/cases.rtf delete mode 100644 general/datasets/HZI_LungBXD_RNA_Seq_1116/notes.rtf delete mode 100644 general/datasets/HZI_LungBXD_RNA_Seq_1116/platform.rtf delete mode 100644 general/datasets/HZI_LungBXD_RNA_Seq_1116/processing.rtf delete mode 100644 general/datasets/HZI_LungBXD_RNA_Seq_1116/specifics.rtf delete mode 100644 general/datasets/HZI_LungBXD_RNA_Seq_1116/summary.rtf delete mode 100644 general/datasets/HZI_LungBXD_RNA_Seq_1116/tissue.rtf delete mode 100644 general/datasets/HZI_PR8M_F_1014/processing.rtf delete mode 100644 general/datasets/HZI_PR8M_F_1014/summary.rtf delete mode 100644 general/datasets/HZI_PR8M_F_1113/processing.rtf delete mode 100644 general/datasets/HZI_PR8M_F_1113/summary.rtf delete mode 100644 general/datasets/HZI_PR8M_F_freq1_1014/processing.rtf delete mode 100644 general/datasets/HZI_PR8M_F_freq1_1014/summary.rtf delete mode 100644 general/datasets/HZI_PR8M_Q_0612/acknowledgment.rtf delete mode 100644 general/datasets/HZI_PR8M_Q_0612/cases.rtf delete mode 100644 general/datasets/HZI_PR8M_Q_0612/notes.rtf delete mode 100644 general/datasets/HZI_PR8M_Q_0612/processing.rtf delete mode 100644 general/datasets/HZI_PR8M_Q_0612/summary.rtf delete mode 100644 general/datasets/HZI_PR8M_Q_0612/tissue.rtf create mode 100644 general/datasets/Hbtrc_mlc_0611/acknowledgment.rtf create mode 100644 general/datasets/Hbtrc_mlc_0611/cases.rtf create mode 100644 general/datasets/Hbtrc_mlc_0611/experiment-design.rtf create mode 100644 general/datasets/Hbtrc_mlc_0611/notes.rtf create mode 100644 general/datasets/Hbtrc_mlc_0611/summary.rtf create mode 100644 general/datasets/Hbtrc_mlc_ad_0611/acknowledgment.rtf create mode 100644 general/datasets/Hbtrc_mlc_ad_0611/cases.rtf create mode 100644 general/datasets/Hbtrc_mlc_ad_0611/experiment-design.rtf create mode 100644 general/datasets/Hbtrc_mlc_ad_0611/notes.rtf create mode 100644 general/datasets/Hbtrc_mlc_ad_0611/summary.rtf create mode 100644 general/datasets/Hbtrc_mlc_hd_0611/acknowledgment.rtf create mode 100644 general/datasets/Hbtrc_mlc_hd_0611/cases.rtf create mode 100644 general/datasets/Hbtrc_mlc_hd_0611/experiment-design.rtf create mode 100644 general/datasets/Hbtrc_mlc_hd_0611/notes.rtf create mode 100644 general/datasets/Hbtrc_mlc_hd_0611/summary.rtf create mode 100644 general/datasets/Hbtrc_mlc_n_0611/acknowledgment.rtf create mode 100644 general/datasets/Hbtrc_mlc_n_0611/cases.rtf create mode 100644 general/datasets/Hbtrc_mlc_n_0611/experiment-design.rtf create mode 100644 general/datasets/Hbtrc_mlc_n_0611/notes.rtf create mode 100644 general/datasets/Hbtrc_mlc_n_0611/summary.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_0611/acknowledgment.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_0611/cases.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_0611/citation.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_0611/contributors.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_0611/experiment-design.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_0611/notes.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_0611/platform.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_0611/processing.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_0611/summary.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_0611/tissue.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_ad_0611/acknowledgment.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_ad_0611/cases.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_ad_0611/citation.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_ad_0611/contributors.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_ad_0611/experiment-design.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_ad_0611/notes.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_ad_0611/platform.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_ad_0611/processing.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_ad_0611/summary.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_ad_0611/tissue.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_hd_0611/acknowledgment.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_hd_0611/cases.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_hd_0611/citation.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_hd_0611/contributors.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_hd_0611/experiment-design.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_hd_0611/notes.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_hd_0611/platform.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_hd_0611/processing.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_hd_0611/summary.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_hd_0611/tissue.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_n_0611/acknowledgment.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_n_0611/cases.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_n_0611/citation.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_n_0611/contributors.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_n_0611/experiment-design.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_n_0611/notes.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_n_0611/platform.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_n_0611/processing.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_n_0611/summary.rtf create mode 100644 general/datasets/Hbtrc_mlpfc_n_0611/tissue.rtf create mode 100644 general/datasets/Hbtrc_mlvc_0611/acknowledgment.rtf create mode 100644 general/datasets/Hbtrc_mlvc_0611/cases.rtf create mode 100644 general/datasets/Hbtrc_mlvc_0611/notes.rtf create mode 100644 general/datasets/Hbtrc_mlvc_0611/summary.rtf create mode 100644 general/datasets/Hbtrc_mlvc_ad_0611/acknowledgment.rtf create mode 100644 general/datasets/Hbtrc_mlvc_ad_0611/cases.rtf create mode 100644 general/datasets/Hbtrc_mlvc_ad_0611/notes.rtf create mode 100644 general/datasets/Hbtrc_mlvc_ad_0611/summary.rtf create mode 100644 general/datasets/Hbtrc_mlvc_hd_0611/acknowledgment.rtf create mode 100644 general/datasets/Hbtrc_mlvc_hd_0611/cases.rtf create mode 100644 general/datasets/Hbtrc_mlvc_hd_0611/notes.rtf create mode 100644 general/datasets/Hbtrc_mlvc_hd_0611/summary.rtf create mode 100644 general/datasets/Hbtrc_mlvc_n_0611/acknowledgment.rtf create mode 100644 general/datasets/Hbtrc_mlvc_n_0611/cases.rtf create mode 100644 general/datasets/Hbtrc_mlvc_n_0611/notes.rtf create mode 100644 general/datasets/Hbtrc_mlvc_n_0611/summary.rtf create mode 100644 general/datasets/Hc_m2_0606_m/acknowledgment.rtf create mode 100644 general/datasets/Hc_m2_0606_m/cases.rtf create mode 100644 general/datasets/Hc_m2_0606_m/citation.rtf create mode 100644 general/datasets/Hc_m2_0606_m/contributors.rtf create mode 100644 general/datasets/Hc_m2_0606_m/experiment-design.rtf create mode 100644 general/datasets/Hc_m2_0606_m/notes.rtf create mode 100644 general/datasets/Hc_m2_0606_m/platform.rtf create mode 100644 general/datasets/Hc_m2_0606_m/processing.rtf create mode 100644 general/datasets/Hc_m2_0606_m/summary.rtf create mode 100644 general/datasets/Hc_m2_0606_m/tissue.rtf create mode 100644 general/datasets/Hc_m2_0606_mdp/summary.rtf create mode 100644 general/datasets/Hc_m2_0606_p/acknowledgment.rtf create mode 100644 general/datasets/Hc_m2_0606_p/cases.rtf create mode 100644 general/datasets/Hc_m2_0606_p/citation.rtf create mode 100644 general/datasets/Hc_m2_0606_p/contributors.rtf create mode 100644 general/datasets/Hc_m2_0606_p/experiment-design.rtf create mode 100644 general/datasets/Hc_m2_0606_p/experiment-type.rtf create mode 100644 general/datasets/Hc_m2_0606_p/notes.rtf create mode 100644 general/datasets/Hc_m2_0606_p/platform.rtf create mode 100644 general/datasets/Hc_m2_0606_p/processing.rtf create mode 100644 general/datasets/Hc_m2_0606_p/summary.rtf create mode 100644 general/datasets/Hc_m2_0606_p/tissue.rtf create mode 100644 general/datasets/Hc_m2_0606_r/acknowledgment.rtf create mode 100644 general/datasets/Hc_m2_0606_r/cases.rtf create mode 100644 general/datasets/Hc_m2_0606_r/citation.rtf create mode 100644 general/datasets/Hc_m2_0606_r/contributors.rtf create mode 100644 general/datasets/Hc_m2_0606_r/experiment-design.rtf create mode 100644 general/datasets/Hc_m2_0606_r/notes.rtf create mode 100644 general/datasets/Hc_m2_0606_r/platform.rtf create mode 100644 general/datasets/Hc_m2_0606_r/processing.rtf create mode 100644 general/datasets/Hc_m2_0606_r/summary.rtf create mode 100644 general/datasets/Hc_m2_0606_r/tissue.rtf create mode 100644 general/datasets/Hc_m2_1005_m/acknowledgment.rtf create mode 100644 general/datasets/Hc_m2_1005_m/cases.rtf create mode 100644 general/datasets/Hc_m2_1005_m/experiment-design.rtf create mode 100644 general/datasets/Hc_m2_1005_m/notes.rtf create mode 100644 general/datasets/Hc_m2_1005_m/platform.rtf create mode 100644 general/datasets/Hc_m2_1005_m/processing.rtf create mode 100644 general/datasets/Hc_m2_1005_m/summary.rtf create mode 100644 general/datasets/Hc_m2_1005_m/tissue.rtf create mode 100644 general/datasets/Hc_m2_1005_p/acknowledgment.rtf create mode 100644 general/datasets/Hc_m2_1005_p/cases.rtf create mode 100644 general/datasets/Hc_m2_1005_p/experiment-design.rtf create mode 100644 general/datasets/Hc_m2_1005_p/notes.rtf create mode 100644 general/datasets/Hc_m2_1005_p/platform.rtf create mode 100644 general/datasets/Hc_m2_1005_p/processing.rtf create mode 100644 general/datasets/Hc_m2_1005_p/summary.rtf create mode 100644 general/datasets/Hc_m2_1005_p/tissue.rtf create mode 100644 general/datasets/Hc_m2_1005_r/acknowledgment.rtf create mode 100644 general/datasets/Hc_m2_1005_r/cases.rtf create mode 100644 general/datasets/Hc_m2_1005_r/experiment-design.rtf create mode 100644 general/datasets/Hc_m2_1005_r/notes.rtf create mode 100644 general/datasets/Hc_m2_1005_r/platform.rtf create mode 100644 general/datasets/Hc_m2_1005_r/processing.rtf create mode 100644 general/datasets/Hc_m2_1005_r/summary.rtf create mode 100644 general/datasets/Hc_m2_1005_r/tissue.rtf create mode 100644 general/datasets/Hc_m2_1205_p/acknowledgment.rtf create mode 100644 general/datasets/Hc_m2_1205_p/cases.rtf create mode 100644 general/datasets/Hc_m2_1205_p/experiment-design.rtf create mode 100644 general/datasets/Hc_m2_1205_p/notes.rtf create mode 100644 general/datasets/Hc_m2_1205_p/platform.rtf create mode 100644 general/datasets/Hc_m2_1205_p/processing.rtf create mode 100644 general/datasets/Hc_m2_1205_p/summary.rtf create mode 100644 general/datasets/Hc_m2_1205_p/tissue.rtf create mode 100644 general/datasets/Hc_m2_1205_r/acknowledgment.rtf create mode 100644 general/datasets/Hc_m2_1205_r/cases.rtf create mode 100644 general/datasets/Hc_m2_1205_r/experiment-design.rtf create mode 100644 general/datasets/Hc_m2_1205_r/notes.rtf create mode 100644 general/datasets/Hc_m2_1205_r/platform.rtf create mode 100644 general/datasets/Hc_m2_1205_r/processing.rtf create mode 100644 general/datasets/Hc_m2_1205_r/summary.rtf create mode 100644 general/datasets/Hc_m2_1205_r/tissue.rtf create mode 100644 general/datasets/Hc_m2_1206_r/acknowledgment.rtf create mode 100644 general/datasets/Hc_m2_1206_r/cases.rtf create mode 100644 general/datasets/Hc_m2_1206_r/contributors.rtf create mode 100644 general/datasets/Hc_m2_1206_r/experiment-design.rtf create mode 100644 general/datasets/Hc_m2_1206_r/notes.rtf create mode 100644 general/datasets/Hc_m2_1206_r/platform.rtf create mode 100644 general/datasets/Hc_m2_1206_r/processing.rtf create mode 100644 general/datasets/Hc_m2_1206_r/summary.rtf create mode 100644 general/datasets/Hc_m2_1206_r/tissue.rtf create mode 100644 general/datasets/Hc_m2cb_1005_m/acknowledgment.rtf create mode 100644 general/datasets/Hc_m2cb_1005_m/cases.rtf create mode 100644 general/datasets/Hc_m2cb_1005_m/citation.rtf create mode 100644 general/datasets/Hc_m2cb_1005_m/contributors.rtf create mode 100644 general/datasets/Hc_m2cb_1005_m/experiment-design.rtf create mode 100644 general/datasets/Hc_m2cb_1005_m/notes.rtf create mode 100644 general/datasets/Hc_m2cb_1005_m/platform.rtf create mode 100644 general/datasets/Hc_m2cb_1005_m/processing.rtf create mode 100644 general/datasets/Hc_m2cb_1005_m/summary.rtf create mode 100644 general/datasets/Hc_m2cb_1005_m/tissue.rtf create mode 100644 general/datasets/Hc_m2cb_1005_p/acknowledgment.rtf create mode 100644 general/datasets/Hc_m2cb_1005_p/cases.rtf create mode 100644 general/datasets/Hc_m2cb_1005_p/citation.rtf create mode 100644 general/datasets/Hc_m2cb_1005_p/contributors.rtf create mode 100644 general/datasets/Hc_m2cb_1005_p/experiment-design.rtf create mode 100644 general/datasets/Hc_m2cb_1005_p/notes.rtf create mode 100644 general/datasets/Hc_m2cb_1005_p/platform.rtf create mode 100644 general/datasets/Hc_m2cb_1005_p/processing.rtf create mode 100644 general/datasets/Hc_m2cb_1005_p/summary.rtf create mode 100644 general/datasets/Hc_m2cb_1005_p/tissue.rtf create mode 100644 general/datasets/Hc_m2cb_1005_r/acknowledgment.rtf create mode 100644 general/datasets/Hc_m2cb_1005_r/cases.rtf create mode 100644 general/datasets/Hc_m2cb_1005_r/citation.rtf create mode 100644 general/datasets/Hc_m2cb_1005_r/contributors.rtf create mode 100644 general/datasets/Hc_m2cb_1005_r/experiment-design.rtf create mode 100644 general/datasets/Hc_m2cb_1005_r/notes.rtf create mode 100644 general/datasets/Hc_m2cb_1005_r/platform.rtf create mode 100644 general/datasets/Hc_m2cb_1005_r/processing.rtf create mode 100644 general/datasets/Hc_m2cb_1005_r/summary.rtf create mode 100644 general/datasets/Hc_m2cb_1005_r/tissue.rtf create mode 100644 general/datasets/Hc_m2cb_1205_p/acknowledgment.rtf create mode 100644 general/datasets/Hc_m2cb_1205_p/cases.rtf create mode 100644 general/datasets/Hc_m2cb_1205_p/citation.rtf create mode 100644 general/datasets/Hc_m2cb_1205_p/contributors.rtf create mode 100644 general/datasets/Hc_m2cb_1205_p/experiment-design.rtf create mode 100644 general/datasets/Hc_m2cb_1205_p/notes.rtf create mode 100644 general/datasets/Hc_m2cb_1205_p/platform.rtf create mode 100644 general/datasets/Hc_m2cb_1205_p/processing.rtf create mode 100644 general/datasets/Hc_m2cb_1205_p/summary.rtf create mode 100644 general/datasets/Hc_m2cb_1205_p/tissue.rtf create mode 100644 general/datasets/Hc_m2cb_1205_r/acknowledgment.rtf create mode 100644 general/datasets/Hc_m2cb_1205_r/cases.rtf create mode 100644 general/datasets/Hc_m2cb_1205_r/citation.rtf create mode 100644 general/datasets/Hc_m2cb_1205_r/contributors.rtf create mode 100644 general/datasets/Hc_m2cb_1205_r/experiment-design.rtf create mode 100644 general/datasets/Hc_m2cb_1205_r/notes.rtf create mode 100644 general/datasets/Hc_m2cb_1205_r/platform.rtf create mode 100644 general/datasets/Hc_m2cb_1205_r/processing.rtf create mode 100644 general/datasets/Hc_m2cb_1205_r/summary.rtf create mode 100644 general/datasets/Hc_m2cb_1205_r/tissue.rtf create mode 100644 general/datasets/Hc_u_0303_m/acknowledgment.rtf create mode 100644 general/datasets/Hc_u_0303_m/cases.rtf create mode 100644 general/datasets/Hc_u_0303_m/citation.rtf create mode 100644 general/datasets/Hc_u_0303_m/experiment-design.rtf create mode 100644 general/datasets/Hc_u_0303_m/experiment-type.rtf create mode 100644 general/datasets/Hc_u_0303_m/notes.rtf create mode 100644 general/datasets/Hc_u_0303_m/processing.rtf create mode 100644 general/datasets/Hc_u_0303_m/summary.rtf create mode 100644 general/datasets/Hc_u_0303_m/tissue.rtf create mode 100644 general/datasets/Hc_u_0304_r/acknowledgment.rtf create mode 100644 general/datasets/Hc_u_0304_r/cases.rtf create mode 100644 general/datasets/Hc_u_0304_r/citation.rtf create mode 100644 general/datasets/Hc_u_0304_r/experiment-design.rtf create mode 100644 general/datasets/Hc_u_0304_r/notes.rtf create mode 100644 general/datasets/Hc_u_0304_r/processing.rtf create mode 100644 general/datasets/Hc_u_0304_r/summary.rtf create mode 100644 general/datasets/Hc_u_0304_r/tissue.rtf create mode 100644 general/datasets/Hc_u_0903_m/acknowledgment.rtf create mode 100644 general/datasets/Hc_u_0903_m/cases.rtf create mode 100644 general/datasets/Hc_u_0903_m/citation.rtf create mode 100644 general/datasets/Hc_u_0903_m/experiment-design.rtf create mode 100644 general/datasets/Hc_u_0903_m/experiment-type.rtf create mode 100644 general/datasets/Hc_u_0903_m/notes.rtf create mode 100644 general/datasets/Hc_u_0903_m/processing.rtf create mode 100644 general/datasets/Hc_u_0903_m/summary.rtf create mode 100644 general/datasets/Hc_u_0903_m/tissue.rtf create mode 100644 general/datasets/Heioncvscretilm6_0911/acknowledgment.rtf create mode 100644 general/datasets/Heioncvscretilm6_0911/cases.rtf create mode 100644 general/datasets/Heioncvscretilm6_0911/contributors.rtf create mode 100644 general/datasets/Heioncvscretilm6_0911/experiment-design.rtf create mode 100644 general/datasets/Heioncvscretilm6_0911/experiment-type.rtf create mode 100644 general/datasets/Heioncvscretilm6_0911/notes.rtf create mode 100644 general/datasets/Heioncvscretilm6_0911/platform.rtf create mode 100644 general/datasets/Heioncvscretilm6_0911/processing.rtf create mode 100644 general/datasets/Heioncvscretilm6_0911/summary.rtf create mode 100644 general/datasets/Heioncvscretilm6_0911/tissue.rtf create mode 100644 general/datasets/Het3_itppublish/citation.rtf create mode 100644 general/datasets/Het3_itppublish/specifics.rtf create mode 100644 general/datasets/Het3_itppublish/summary.rtf create mode 100644 general/datasets/Hipp_illumina_rank_1006/acknowledgment.rtf create mode 100644 general/datasets/Hipp_illumina_rank_1006/cases.rtf create mode 100644 general/datasets/Hipp_illumina_rank_1006/experiment-design.rtf create mode 100644 general/datasets/Hipp_illumina_rank_1006/notes.rtf create mode 100644 general/datasets/Hipp_illumina_rank_1006/platform.rtf create mode 100644 general/datasets/Hipp_illumina_rank_1006/processing.rtf create mode 100644 general/datasets/Hipp_illumina_rank_1006/summary.rtf create mode 100644 general/datasets/Hipp_illumina_rank_1006/tissue.rtf create mode 100644 general/datasets/Hipp_illumina_rankinv_0507/acknowledgment.rtf create mode 100644 general/datasets/Hipp_illumina_rankinv_0507/cases.rtf create mode 100644 general/datasets/Hipp_illumina_rankinv_0507/experiment-design.rtf create mode 100644 general/datasets/Hipp_illumina_rankinv_0507/notes.rtf create mode 100644 general/datasets/Hipp_illumina_rankinv_0507/platform.rtf create mode 100644 general/datasets/Hipp_illumina_rankinv_0507/processing.rtf create mode 100644 general/datasets/Hipp_illumina_rankinv_0507/summary.rtf create mode 100644 general/datasets/Hipp_illumina_rankinv_0507/tissue.rtf create mode 100644 general/datasets/Hipp_illumina_rankinv_1006/acknowledgment.rtf create mode 100644 general/datasets/Hipp_illumina_rankinv_1006/cases.rtf create mode 100644 general/datasets/Hipp_illumina_rankinv_1006/experiment-design.rtf create mode 100644 general/datasets/Hipp_illumina_rankinv_1006/notes.rtf create mode 100644 general/datasets/Hipp_illumina_rankinv_1006/platform.rtf create mode 100644 general/datasets/Hipp_illumina_rankinv_1006/processing.rtf create mode 100644 general/datasets/Hipp_illumina_rankinv_1006/summary.rtf create mode 100644 general/datasets/Hipp_illumina_rankinv_1006/tissue.rtf create mode 100644 general/datasets/Hlc_0311/acknowledgment.rtf create mode 100644 general/datasets/Hlc_0311/citation.rtf create mode 100644 general/datasets/Hlc_0311/contributors.rtf create mode 100644 general/datasets/Hlc_0311/experiment-design.rtf create mode 100644 general/datasets/Hlc_0311/experiment-type.rtf create mode 100644 general/datasets/Hlc_0311/platform.rtf create mode 100644 general/datasets/Hlc_0311/summary.rtf create mode 100644 general/datasets/Hlcf_0311/acknowledgment.rtf create mode 100644 general/datasets/Hlcf_0311/citation.rtf create mode 100644 general/datasets/Hlcf_0311/contributors.rtf create mode 100644 general/datasets/Hlcf_0311/experiment-design.rtf create mode 100644 general/datasets/Hlcf_0311/experiment-type.rtf create mode 100644 general/datasets/Hlcf_0311/platform.rtf create mode 100644 general/datasets/Hlcf_0311/summary.rtf create mode 100644 general/datasets/Hlcm_0311/acknowledgment.rtf create mode 100644 general/datasets/Hlcm_0311/citation.rtf create mode 100644 general/datasets/Hlcm_0311/contributors.rtf create mode 100644 general/datasets/Hlcm_0311/experiment-design.rtf create mode 100644 general/datasets/Hlcm_0311/experiment-type.rtf create mode 100644 general/datasets/Hlcm_0311/platform.rtf create mode 100644 general/datasets/Hlcm_0311/summary.rtf create mode 100644 general/datasets/Hms_mm8_mdp_spl_cd4_1116/contributors.rtf create mode 100644 general/datasets/Hms_mm8_mdp_spl_cd4_1116/experiment-design.rtf create mode 100644 general/datasets/Hms_mm8_mdp_spl_cd4_1116/specifics.rtf create mode 100644 general/datasets/Hms_mm8_mdp_spl_cd4_1116/summary.rtf create mode 100644 general/datasets/Hqfneoc_0208_rankinv/acknowledgment.rtf create mode 100644 general/datasets/Hqfneoc_0208_rankinv/cases.rtf create mode 100644 general/datasets/Hqfneoc_0208_rankinv/experiment-design.rtf create mode 100644 general/datasets/Hqfneoc_0208_rankinv/experiment-type.rtf create mode 100644 general/datasets/Hqfneoc_0208_rankinv/platform.rtf create mode 100644 general/datasets/Hqfneoc_0208_rankinv/processing.rtf create mode 100644 general/datasets/Hqfneoc_0208_rankinv/summary.rtf create mode 100644 general/datasets/Hqfneoc_0208_rankinv/tissue.rtf create mode 100644 general/datasets/Hqfneoc_1210_rankinv/acknowledgment.rtf create mode 100644 general/datasets/Hqfneoc_1210_rankinv/cases.rtf create mode 100644 general/datasets/Hqfneoc_1210_rankinv/experiment-design.rtf create mode 100644 general/datasets/Hqfneoc_1210_rankinv/experiment-type.rtf create mode 100644 general/datasets/Hqfneoc_1210_rankinv/platform.rtf create mode 100644 general/datasets/Hqfneoc_1210_rankinv/processing.rtf create mode 100644 general/datasets/Hqfneoc_1210_rankinv/summary.rtf create mode 100644 general/datasets/Hqfneoc_1210_rankinv/tissue.rtf create mode 100644 general/datasets/Hqfneoc_1210v2_rankinv/acknowledgment.rtf create mode 100644 general/datasets/Hqfneoc_1210v2_rankinv/cases.rtf create mode 100644 general/datasets/Hqfneoc_1210v2_rankinv/experiment-design.rtf create mode 100644 general/datasets/Hqfneoc_1210v2_rankinv/experiment-type.rtf create mode 100644 general/datasets/Hqfneoc_1210v2_rankinv/platform.rtf create mode 100644 general/datasets/Hqfneoc_1210v2_rankinv/processing.rtf create mode 100644 general/datasets/Hqfneoc_1210v2_rankinv/summary.rtf create mode 100644 general/datasets/Hqfneoc_1210v2_rankinv/tissue.rtf create mode 100644 general/datasets/Hrdppublish/specifics.rtf create mode 100644 general/datasets/Hrdppublish/summary.rtf create mode 100644 general/datasets/Hsnih_palmerpublish/specifics.rtf create mode 100644 general/datasets/Hsnih_palmerpublish/summary.rtf create mode 100644 general/datasets/Hsnih_rat_acbc_rseq_0818/specifics.rtf create mode 100644 general/datasets/Hsnih_rat_acbc_rseq_0818/summary.rtf create mode 100644 general/datasets/Hsnih_rat_acbc_rseqlog2_0818/specifics.rtf create mode 100644 general/datasets/Hsnih_rat_acbc_rseqlog2_0818/summary.rtf create mode 100644 general/datasets/Hsnih_rat_il_rseq_0818/specifics.rtf create mode 100644 general/datasets/Hsnih_rat_il_rseq_0818/summary.rtf create mode 100644 general/datasets/Hsnih_rat_il_rseqlog2_0818/specifics.rtf create mode 100644 general/datasets/Hsnih_rat_il_rseqlog2_0818/summary.rtf create mode 100644 general/datasets/Hsnih_rat_lhb_rseq_0818/specifics.rtf create mode 100644 general/datasets/Hsnih_rat_lhb_rseq_0818/summary.rtf create mode 100644 general/datasets/Hsnih_rat_lhb_rseqlog2_0818/specifics.rtf create mode 100644 general/datasets/Hsnih_rat_lhb_rseqlog2_0818/summary.rtf create mode 100644 general/datasets/Hsnih_rat_pl_rseq_0818/specifics.rtf create mode 100644 general/datasets/Hsnih_rat_pl_rseq_0818/summary.rtf create mode 100644 general/datasets/Hsnih_rat_pl_rseqlog2_0818/specifics.rtf create mode 100644 general/datasets/Hsnih_rat_pl_rseqlog2_0818/summary.rtf create mode 100644 general/datasets/Hsnih_rat_volo_rseq_0818/specifics.rtf create mode 100644 general/datasets/Hsnih_rat_volo_rseq_0818/summary.rtf create mode 100644 general/datasets/Hsnih_rat_volo_rseqlog2_0818/specifics.rtf create mode 100644 general/datasets/Hsnih_rat_volo_rseqlog2_0818/summary.rtf create mode 100644 general/datasets/Human_1008/citation.rtf create mode 100644 general/datasets/Human_1008/contributors.rtf create mode 100644 general/datasets/Hxb_adrenal_1208/acknowledgment.rtf create mode 100644 general/datasets/Hxb_adrenal_1208/cases.rtf create mode 100644 general/datasets/Hxb_adrenal_1208/citation.rtf create mode 100644 general/datasets/Hxb_adrenal_1208/contributors.rtf create mode 100644 general/datasets/Hxb_adrenal_1208/experiment-design.rtf create mode 100644 general/datasets/Hxb_adrenal_1208/notes.rtf create mode 100644 general/datasets/Hxb_adrenal_1208/platform.rtf create mode 100644 general/datasets/Hxb_adrenal_1208/processing.rtf create mode 100644 general/datasets/Hxb_adrenal_1208/summary.rtf create mode 100644 general/datasets/Hxb_adrenal_1208/tissue.rtf create mode 100644 general/datasets/Hxb_heart_1208/acknowledgment.rtf create mode 100644 general/datasets/Hxb_heart_1208/cases.rtf create mode 100644 general/datasets/Hxb_heart_1208/citation.rtf create mode 100644 general/datasets/Hxb_heart_1208/contributors.rtf create mode 100644 general/datasets/Hxb_heart_1208/experiment-design.rtf create mode 100644 general/datasets/Hxb_heart_1208/notes.rtf create mode 100644 general/datasets/Hxb_heart_1208/platform.rtf create mode 100644 general/datasets/Hxb_heart_1208/processing.rtf create mode 100644 general/datasets/Hxb_heart_1208/summary.rtf create mode 100644 general/datasets/Hxb_heart_1208/tissue.rtf create mode 100644 general/datasets/Hxb_liver_1208/acknowledgment.rtf create mode 100644 general/datasets/Hxb_liver_1208/citation.rtf create mode 100644 general/datasets/Hxb_liver_1208/contributors.rtf create mode 100644 general/datasets/Hxb_liver_1208/platform.rtf create mode 100644 general/datasets/Hxb_liver_1208/summary.rtf create mode 100644 general/datasets/Hxbbxhgeno/citation.rtf create mode 100644 general/datasets/Hxbbxhgeno/summary.rtf create mode 100644 general/datasets/Hzi_0408_m/cases.rtf create mode 100644 general/datasets/Hzi_0408_m/summary.rtf create mode 100644 general/datasets/Hzi_0408_r/cases.rtf create mode 100644 general/datasets/Hzi_0408_r/summary.rtf create mode 100644 general/datasets/Hzi_ltcf_0313/acknowledgment.rtf create mode 100644 general/datasets/Hzi_ltcf_0313/cases.rtf create mode 100644 general/datasets/Hzi_ltcf_0313/citation.rtf create mode 100644 general/datasets/Hzi_ltcf_0313/contributors.rtf create mode 100644 general/datasets/Hzi_ltcf_0313/notes.rtf create mode 100644 general/datasets/Hzi_ltcf_0313/processing.rtf create mode 100644 general/datasets/Hzi_ltcf_0313/summary.rtf create mode 100644 general/datasets/Hzi_ltcf_0313/tissue.rtf create mode 100644 general/datasets/Hzi_lungbxd_rna_seq_1116/acknowledgment.rtf create mode 100644 general/datasets/Hzi_lungbxd_rna_seq_1116/cases.rtf create mode 100644 general/datasets/Hzi_lungbxd_rna_seq_1116/citation.rtf create mode 100644 general/datasets/Hzi_lungbxd_rna_seq_1116/contributors.rtf create mode 100644 general/datasets/Hzi_lungbxd_rna_seq_1116/notes.rtf create mode 100644 general/datasets/Hzi_lungbxd_rna_seq_1116/platform.rtf create mode 100644 general/datasets/Hzi_lungbxd_rna_seq_1116/processing.rtf create mode 100644 general/datasets/Hzi_lungbxd_rna_seq_1116/specifics.rtf create mode 100644 general/datasets/Hzi_lungbxd_rna_seq_1116/summary.rtf create mode 100644 general/datasets/Hzi_lungbxd_rna_seq_1116/tissue.rtf create mode 100644 general/datasets/Hzi_pr8m_f_1014/processing.rtf create mode 100644 general/datasets/Hzi_pr8m_f_1014/summary.rtf create mode 100644 general/datasets/Hzi_pr8m_f_1113/processing.rtf create mode 100644 general/datasets/Hzi_pr8m_f_1113/summary.rtf create mode 100644 general/datasets/Hzi_pr8m_f_freq1_1014/processing.rtf create mode 100644 general/datasets/Hzi_pr8m_f_freq1_1014/summary.rtf create mode 100644 general/datasets/Hzi_pr8m_q_0612/acknowledgment.rtf create mode 100644 general/datasets/Hzi_pr8m_q_0612/cases.rtf create mode 100644 general/datasets/Hzi_pr8m_q_0612/citation.rtf create mode 100644 general/datasets/Hzi_pr8m_q_0612/contributors.rtf create mode 100644 general/datasets/Hzi_pr8m_q_0612/experiment-type.rtf create mode 100644 general/datasets/Hzi_pr8m_q_0612/notes.rtf create mode 100644 general/datasets/Hzi_pr8m_q_0612/processing.rtf create mode 100644 general/datasets/Hzi_pr8m_q_0612/summary.rtf create mode 100644 general/datasets/Hzi_pr8m_q_0612/tissue.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_0612/cases.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_0612/experiment-design.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_0612/platform.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_0612/processing.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_0612/summary.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_0612/tissue.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_Ex_0612/cases.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_Ex_0612/experiment-design.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_Ex_0612/platform.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_Ex_0612/processing.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_Ex_0612/summary.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_Ex_0612/tissue.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_F_0612/cases.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_F_0612/experiment-design.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_F_0612/platform.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_F_0612/processing.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_F_0612/summary.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_F_0612/tissue.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_M_0612/cases.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_M_0612/experiment-design.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_M_0612/platform.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_M_0612/processing.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_M_0612/summary.rtf delete mode 100644 general/datasets/INIA_Adrenal_RMA_M_0612/tissue.rtf create mode 100644 general/datasets/INIA_Amg_BLA_Ex-RMA_1110/cases.rtf create mode 100644 general/datasets/INIA_Amg_BLA_Ex-RMA_1110/experiment-design.rtf create mode 100644 general/datasets/INIA_Amg_BLA_Ex-RMA_1110/platform.rtf create mode 100644 general/datasets/INIA_Amg_BLA_Ex-RMA_1110/processing.rtf create mode 100644 general/datasets/INIA_Amg_BLA_Ex-RMA_1110/specifics.rtf create mode 100644 general/datasets/INIA_Amg_BLA_Ex-RMA_1110/summary.rtf create mode 100644 general/datasets/INIA_Amg_BLA_Ex-RMA_1110/tissue.rtf delete mode 100644 general/datasets/INIA_Amg_BLA_Ex_RMA_1110/cases.rtf delete mode 100644 general/datasets/INIA_Amg_BLA_Ex_RMA_1110/experiment-design.rtf delete mode 100644 general/datasets/INIA_Amg_BLA_Ex_RMA_1110/platform.rtf delete mode 100644 general/datasets/INIA_Amg_BLA_Ex_RMA_1110/processing.rtf delete mode 100644 general/datasets/INIA_Amg_BLA_Ex_RMA_1110/specifics.rtf delete mode 100644 general/datasets/INIA_Amg_BLA_Ex_RMA_1110/summary.rtf delete mode 100644 general/datasets/INIA_Amg_BLA_Ex_RMA_1110/tissue.rtf delete mode 100644 general/datasets/INIA_BXD_LivDNAm_1119/experiment-design.rtf delete mode 100644 general/datasets/INIA_BXD_LivDNAm_1119/platform.rtf delete mode 100644 general/datasets/INIA_BXD_LivDNAm_1119/processing.rtf delete mode 100644 general/datasets/INIA_BXD_LivDNAm_1119/specifics.rtf delete mode 100644 general/datasets/INIA_BXD_LivDNAm_1119/summary.rtf delete mode 100644 general/datasets/INIA_BXD_LivDNAminfi_1020/experiment-design.rtf delete mode 100644 general/datasets/INIA_BXD_LivDNAminfi_1020/platform.rtf delete mode 100644 general/datasets/INIA_BXD_LivDNAminfi_1020/processing.rtf delete mode 100644 general/datasets/INIA_BXD_LivDNAminfi_1020/specifics.rtf delete mode 100644 general/datasets/INIA_BXD_LivDNAminfi_1020/summary.rtf delete mode 100644 general/datasets/INIA_Hyp_PCA_0813/acknowledgment.rtf delete mode 100644 general/datasets/INIA_Hyp_PCA_0813/cases.rtf delete mode 100644 general/datasets/INIA_Hyp_PCA_0813/experiment-design.rtf delete mode 100644 general/datasets/INIA_Hyp_PCA_0813/platform.rtf delete mode 100644 general/datasets/INIA_Hyp_PCA_0813/processing.rtf delete mode 100644 general/datasets/INIA_Hyp_PCA_0813/summary.rtf delete mode 100644 general/datasets/INIA_Hyp_PCA_0813_v2/acknowledgment.rtf delete mode 100644 general/datasets/INIA_Hyp_PCA_0813_v2/cases.rtf delete mode 100644 general/datasets/INIA_Hyp_PCA_0813_v2/experiment-design.rtf delete mode 100644 general/datasets/INIA_Hyp_PCA_0813_v2/platform.rtf delete mode 100644 general/datasets/INIA_Hyp_PCA_0813_v2/processing.rtf delete mode 100644 general/datasets/INIA_Hyp_PCA_0813_v2/summary.rtf delete mode 100644 general/datasets/INIA_Hyp_PCA_0813_v3/acknowledgment.rtf delete mode 100644 general/datasets/INIA_Hyp_PCA_0813_v3/cases.rtf delete mode 100644 general/datasets/INIA_Hyp_PCA_0813_v3/experiment-design.rtf delete mode 100644 general/datasets/INIA_Hyp_PCA_0813_v3/platform.rtf delete mode 100644 general/datasets/INIA_Hyp_PCA_0813_v3/processing.rtf delete mode 100644 general/datasets/INIA_Hyp_PCA_0813_v3/summary.rtf create mode 100644 general/datasets/INIA_Hyp_RMA_Ex-1110/acknowledgment.rtf create mode 100644 general/datasets/INIA_Hyp_RMA_Ex-1110/cases.rtf create mode 100644 general/datasets/INIA_Hyp_RMA_Ex-1110/experiment-design.rtf create mode 100644 general/datasets/INIA_Hyp_RMA_Ex-1110/platform.rtf create mode 100644 general/datasets/INIA_Hyp_RMA_Ex-1110/processing.rtf create mode 100644 general/datasets/INIA_Hyp_RMA_Ex-1110/summary.rtf delete mode 100644 general/datasets/INIA_Hyp_RMA_Ex_1110/acknowledgment.rtf delete mode 100644 general/datasets/INIA_Hyp_RMA_Ex_1110/cases.rtf delete mode 100644 general/datasets/INIA_Hyp_RMA_Ex_1110/experiment-design.rtf delete mode 100644 general/datasets/INIA_Hyp_RMA_Ex_1110/platform.rtf delete mode 100644 general/datasets/INIA_Hyp_RMA_Ex_1110/processing.rtf delete mode 100644 general/datasets/INIA_Hyp_RMA_Ex_1110/summary.rtf delete mode 100644 general/datasets/INIA_LCMB_1215/acknowledgment.rtf delete mode 100644 general/datasets/INIA_LCMB_1215/cases.rtf delete mode 100644 general/datasets/INIA_LCMB_1215/platform.rtf delete mode 100644 general/datasets/INIA_LCMB_1215/processing.rtf delete mode 100644 general/datasets/INIA_LCMB_1215/summary.rtf delete mode 100644 general/datasets/INIA_LCMB_1215/tissue.rtf delete mode 100644 general/datasets/INIA_LCM_1215/acknowledgment.rtf delete mode 100644 general/datasets/INIA_LCM_1215/cases.rtf delete mode 100644 general/datasets/INIA_LCM_1215/platform.rtf delete mode 100644 general/datasets/INIA_LCM_1215/processing.rtf delete mode 100644 general/datasets/INIA_LCM_1215/summary.rtf delete mode 100644 general/datasets/INIA_LCM_1215/tissue.rtf delete mode 100644 general/datasets/INIA_LCM_CAB_1215/acknowledgment.rtf delete mode 100644 general/datasets/INIA_LCM_CAB_1215/cases.rtf delete mode 100644 general/datasets/INIA_LCM_CAB_1215/platform.rtf delete mode 100644 general/datasets/INIA_LCM_CAB_1215/processing.rtf delete mode 100644 general/datasets/INIA_LCM_CAB_1215/specifics.rtf delete mode 100644 general/datasets/INIA_LCM_CAB_1215/summary.rtf delete mode 100644 general/datasets/INIA_LCM_CAB_1215/tissue.rtf delete mode 100644 general/datasets/INIA_PG_RMA_0612/acknowledgment.rtf delete mode 100644 general/datasets/INIA_PG_RMA_0612/cases.rtf delete mode 100644 general/datasets/INIA_PG_RMA_0612/experiment-design.rtf delete mode 100644 general/datasets/INIA_PG_RMA_0612/platform.rtf delete mode 100644 general/datasets/INIA_PG_RMA_0612/processing.rtf delete mode 100644 general/datasets/INIA_PG_RMA_0612/summary.rtf delete mode 100644 general/datasets/INIA_PG_RMA_0612/tissue.rtf delete mode 100644 general/datasets/INIA_PG_RMA_Ex_0612/acknowledgment.rtf delete mode 100644 general/datasets/INIA_PG_RMA_Ex_0612/cases.rtf delete mode 100644 general/datasets/INIA_PG_RMA_Ex_0612/experiment-design.rtf delete mode 100644 general/datasets/INIA_PG_RMA_Ex_0612/platform.rtf delete mode 100644 general/datasets/INIA_PG_RMA_Ex_0612/processing.rtf delete mode 100644 general/datasets/INIA_PG_RMA_Ex_0612/summary.rtf delete mode 100644 general/datasets/INIA_PG_RMA_Ex_0612/tissue.rtf delete mode 100644 general/datasets/INIA_Pituitary_RMA_F_0612/acknowledgment.rtf delete mode 100644 general/datasets/INIA_Pituitary_RMA_F_0612/cases.rtf delete mode 100644 general/datasets/INIA_Pituitary_RMA_F_0612/experiment-design.rtf delete mode 100644 general/datasets/INIA_Pituitary_RMA_F_0612/platform.rtf delete mode 100644 general/datasets/INIA_Pituitary_RMA_F_0612/processing.rtf delete mode 100644 general/datasets/INIA_Pituitary_RMA_F_0612/summary.rtf delete mode 100644 general/datasets/INIA_Pituitary_RMA_F_0612/tissue.rtf delete mode 100644 general/datasets/INIA_Pituitary_RMA_M_0612/acknowledgment.rtf delete mode 100644 general/datasets/INIA_Pituitary_RMA_M_0612/cases.rtf delete mode 100644 general/datasets/INIA_Pituitary_RMA_M_0612/experiment-design.rtf delete mode 100644 general/datasets/INIA_Pituitary_RMA_M_0612/platform.rtf delete mode 100644 general/datasets/INIA_Pituitary_RMA_M_0612/processing.rtf delete mode 100644 general/datasets/INIA_Pituitary_RMA_M_0612/summary.rtf delete mode 100644 general/datasets/INIA_Pituitary_RMA_M_0612/tissue.rtf delete mode 100644 general/datasets/INIA_UTHSC_Hip_AffyMTA1_May17/summary.rtf delete mode 100644 general/datasets/INIA_UTHSC_Mid_AffyMTA1_Apr17/cases.rtf delete mode 100644 general/datasets/INIA_UTHSC_Mid_AffyMTA1_Apr17/specifics.rtf delete mode 100644 general/datasets/INIA_UTHSC_Mid_AffyMTA1_Apr17/summary.rtf delete mode 100644 general/datasets/INIA_UTHSC_Mid_AffyMTA1_Ex_May17/cases.rtf delete mode 100644 general/datasets/INIA_UTHSC_Mid_AffyMTA1_Ex_May17/specifics.rtf delete mode 100644 general/datasets/INIA_UTHSC_Mid_AffyMTA1_Ex_May17/summary.rtf delete mode 100644 general/datasets/INIA_UTHSC_PFC_AffyMTA1_May17/summary.rtf delete mode 100644 general/datasets/INIA_UTHSC_Str_AffyMTA1_May17/summary.rtf delete mode 100644 general/datasets/IRCM_AXBXA_HRI0213/summary.rtf create mode 100644 general/datasets/Ibr_m_0106_p/acknowledgment.rtf create mode 100644 general/datasets/Ibr_m_0106_p/cases.rtf create mode 100644 general/datasets/Ibr_m_0106_p/notes.rtf create mode 100644 general/datasets/Ibr_m_0106_p/platform.rtf create mode 100644 general/datasets/Ibr_m_0106_p/processing.rtf create mode 100644 general/datasets/Ibr_m_0106_p/summary.rtf create mode 100644 general/datasets/Ibr_m_0106_p/tissue.rtf create mode 100644 general/datasets/Ibr_m_0106_r/acknowledgment.rtf create mode 100644 general/datasets/Ibr_m_0106_r/cases.rtf create mode 100644 general/datasets/Ibr_m_0106_r/notes.rtf create mode 100644 general/datasets/Ibr_m_0106_r/platform.rtf create mode 100644 general/datasets/Ibr_m_0106_r/processing.rtf create mode 100644 general/datasets/Ibr_m_0106_r/summary.rtf create mode 100644 general/datasets/Ibr_m_0106_r/tissue.rtf create mode 100644 general/datasets/Ibr_m_0204_m/acknowledgment.rtf create mode 100644 general/datasets/Ibr_m_0204_m/cases.rtf create mode 100644 general/datasets/Ibr_m_0204_m/notes.rtf create mode 100644 general/datasets/Ibr_m_0204_m/platform.rtf create mode 100644 general/datasets/Ibr_m_0204_m/processing.rtf create mode 100644 general/datasets/Ibr_m_0204_m/summary.rtf create mode 100644 general/datasets/Ibr_m_0204_m/tissue.rtf create mode 100644 general/datasets/Ibr_m_0405_m/acknowledgment.rtf create mode 100644 general/datasets/Ibr_m_0405_m/cases.rtf create mode 100644 general/datasets/Ibr_m_0405_m/notes.rtf create mode 100644 general/datasets/Ibr_m_0405_m/platform.rtf create mode 100644 general/datasets/Ibr_m_0405_m/processing.rtf create mode 100644 general/datasets/Ibr_m_0405_m/summary.rtf create mode 100644 general/datasets/Ibr_m_0405_m/tissue.rtf create mode 100644 general/datasets/Ibr_m_0405_p/acknowledgment.rtf create mode 100644 general/datasets/Ibr_m_0405_p/cases.rtf create mode 100644 general/datasets/Ibr_m_0405_p/notes.rtf create mode 100644 general/datasets/Ibr_m_0405_p/platform.rtf create mode 100644 general/datasets/Ibr_m_0405_p/processing.rtf create mode 100644 general/datasets/Ibr_m_0405_p/summary.rtf create mode 100644 general/datasets/Ibr_m_0405_p/tissue.rtf create mode 100644 general/datasets/Ibr_m_0405_r/acknowledgment.rtf create mode 100644 general/datasets/Ibr_m_0405_r/cases.rtf create mode 100644 general/datasets/Ibr_m_0405_r/notes.rtf create mode 100644 general/datasets/Ibr_m_0405_r/platform.rtf create mode 100644 general/datasets/Ibr_m_0405_r/processing.rtf create mode 100644 general/datasets/Ibr_m_0405_r/summary.rtf create mode 100644 general/datasets/Ibr_m_0405_r/tissue.rtf create mode 100644 general/datasets/Ibr_m_0606_r/acknowledgment.rtf create mode 100644 general/datasets/Ibr_m_0606_r/cases.rtf create mode 100644 general/datasets/Ibr_m_0606_r/notes.rtf create mode 100644 general/datasets/Ibr_m_0606_r/platform.rtf create mode 100644 general/datasets/Ibr_m_0606_r/processing.rtf create mode 100644 general/datasets/Ibr_m_0606_r/summary.rtf create mode 100644 general/datasets/Ibr_m_0606_r/tissue.rtf create mode 100644 general/datasets/Ibr_m_1004_m/acknowledgment.rtf create mode 100644 general/datasets/Ibr_m_1004_m/cases.rtf create mode 100644 general/datasets/Ibr_m_1004_m/notes.rtf create mode 100644 general/datasets/Ibr_m_1004_m/platform.rtf create mode 100644 general/datasets/Ibr_m_1004_m/processing.rtf create mode 100644 general/datasets/Ibr_m_1004_m/summary.rtf create mode 100644 general/datasets/Ibr_m_1004_m/tissue.rtf create mode 100644 general/datasets/Ibr_m_1004_p/acknowledgment.rtf create mode 100644 general/datasets/Ibr_m_1004_p/cases.rtf create mode 100644 general/datasets/Ibr_m_1004_p/notes.rtf create mode 100644 general/datasets/Ibr_m_1004_p/platform.rtf create mode 100644 general/datasets/Ibr_m_1004_p/processing.rtf create mode 100644 general/datasets/Ibr_m_1004_p/summary.rtf create mode 100644 general/datasets/Ibr_m_1004_p/tissue.rtf create mode 100644 general/datasets/Ibr_m_1004_r/acknowledgment.rtf create mode 100644 general/datasets/Ibr_m_1004_r/cases.rtf create mode 100644 general/datasets/Ibr_m_1004_r/notes.rtf create mode 100644 general/datasets/Ibr_m_1004_r/platform.rtf create mode 100644 general/datasets/Ibr_m_1004_r/processing.rtf create mode 100644 general/datasets/Ibr_m_1004_r/summary.rtf create mode 100644 general/datasets/Ibr_m_1004_r/tissue.rtf create mode 100644 general/datasets/Illum_bxd_pbl_1108/summary.rtf create mode 100644 general/datasets/Illum_bxd_spl_1108/summary.rtf create mode 100644 general/datasets/Illum_bxd_thy_1108/summary.rtf create mode 100644 general/datasets/Illum_lxs_hipp_loess0807/acknowledgment.rtf create mode 100644 general/datasets/Illum_lxs_hipp_loess0807/cases.rtf create mode 100644 general/datasets/Illum_lxs_hipp_loess0807/citation.rtf create mode 100644 general/datasets/Illum_lxs_hipp_loess0807/contributors.rtf create mode 100644 general/datasets/Illum_lxs_hipp_loess0807/experiment-design.rtf create mode 100644 general/datasets/Illum_lxs_hipp_loess0807/notes.rtf create mode 100644 general/datasets/Illum_lxs_hipp_loess0807/platform.rtf create mode 100644 general/datasets/Illum_lxs_hipp_loess0807/processing.rtf create mode 100644 general/datasets/Illum_lxs_hipp_loess0807/summary.rtf create mode 100644 general/datasets/Illum_lxs_hipp_loess0807/tissue.rtf create mode 100644 general/datasets/Illum_lxs_hipp_loess_nb0807/acknowledgment.rtf create mode 100644 general/datasets/Illum_lxs_hipp_loess_nb0807/cases.rtf create mode 100644 general/datasets/Illum_lxs_hipp_loess_nb0807/citation.rtf create mode 100644 general/datasets/Illum_lxs_hipp_loess_nb0807/contributors.rtf create mode 100644 general/datasets/Illum_lxs_hipp_loess_nb0807/experiment-design.rtf create mode 100644 general/datasets/Illum_lxs_hipp_loess_nb0807/notes.rtf create mode 100644 general/datasets/Illum_lxs_hipp_loess_nb0807/platform.rtf create mode 100644 general/datasets/Illum_lxs_hipp_loess_nb0807/processing.rtf create mode 100644 general/datasets/Illum_lxs_hipp_loess_nb0807/summary.rtf create mode 100644 general/datasets/Illum_lxs_hipp_loess_nb0807/tissue.rtf create mode 100644 general/datasets/Illum_lxs_hipp_noe_1008/summary.rtf create mode 100644 general/datasets/Illum_lxs_hipp_non_1008/summary.rtf create mode 100644 general/datasets/Illum_lxs_hipp_nos_1008/summary.rtf create mode 100644 general/datasets/Illum_lxs_hipp_quant0807/acknowledgment.rtf create mode 100644 general/datasets/Illum_lxs_hipp_quant0807/cases.rtf create mode 100644 general/datasets/Illum_lxs_hipp_quant0807/citation.rtf create mode 100644 general/datasets/Illum_lxs_hipp_quant0807/contributors.rtf create mode 100644 general/datasets/Illum_lxs_hipp_quant0807/experiment-design.rtf create mode 100644 general/datasets/Illum_lxs_hipp_quant0807/notes.rtf create mode 100644 general/datasets/Illum_lxs_hipp_quant0807/platform.rtf create mode 100644 general/datasets/Illum_lxs_hipp_quant0807/processing.rtf create mode 100644 general/datasets/Illum_lxs_hipp_quant0807/summary.rtf create mode 100644 general/datasets/Illum_lxs_hipp_quant0807/tissue.rtf create mode 100644 general/datasets/Illum_lxs_hipp_quant_nb0807/acknowledgment.rtf create mode 100644 general/datasets/Illum_lxs_hipp_quant_nb0807/cases.rtf create mode 100644 general/datasets/Illum_lxs_hipp_quant_nb0807/citation.rtf create mode 100644 general/datasets/Illum_lxs_hipp_quant_nb0807/contributors.rtf create mode 100644 general/datasets/Illum_lxs_hipp_quant_nb0807/experiment-design.rtf create mode 100644 general/datasets/Illum_lxs_hipp_quant_nb0807/notes.rtf create mode 100644 general/datasets/Illum_lxs_hipp_quant_nb0807/platform.rtf create mode 100644 general/datasets/Illum_lxs_hipp_quant_nb0807/processing.rtf create mode 100644 general/datasets/Illum_lxs_hipp_quant_nb0807/summary.rtf create mode 100644 general/datasets/Illum_lxs_hipp_quant_nb0807/tissue.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rse_1008/summary.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rsn0807/acknowledgment.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rsn0807/cases.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rsn0807/citation.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rsn0807/contributors.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rsn0807/experiment-design.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rsn0807/notes.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rsn0807/platform.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rsn0807/processing.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rsn0807/summary.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rsn0807/tissue.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rsn_nb0807/acknowledgment.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rsn_nb0807/cases.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rsn_nb0807/citation.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rsn_nb0807/contributors.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rsn_nb0807/experiment-design.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rsn_nb0807/notes.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rsn_nb0807/platform.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rsn_nb0807/processing.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rsn_nb0807/summary.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rsn_nb0807/tissue.rtf create mode 100644 general/datasets/Illum_lxs_hipp_rss_1008/summary.rtf create mode 100644 general/datasets/Illum_retina_bxd_rankinv0410/acknowledgment.rtf create mode 100644 general/datasets/Illum_retina_bxd_rankinv0410/cases.rtf create mode 100644 general/datasets/Illum_retina_bxd_rankinv0410/contributors.rtf create mode 100644 general/datasets/Illum_retina_bxd_rankinv0410/experiment-design.rtf create mode 100644 general/datasets/Illum_retina_bxd_rankinv0410/experiment-type.rtf create mode 100644 general/datasets/Illum_retina_bxd_rankinv0410/notes.rtf create mode 100644 general/datasets/Illum_retina_bxd_rankinv0410/platform.rtf create mode 100644 general/datasets/Illum_retina_bxd_rankinv0410/processing.rtf create mode 100644 general/datasets/Illum_retina_bxd_rankinv0410/summary.rtf create mode 100644 general/datasets/Illum_retina_bxd_rankinv0410/tissue.rtf create mode 100644 general/datasets/Inia_adrenal_rma_0612/cases.rtf create mode 100644 general/datasets/Inia_adrenal_rma_0612/experiment-design.rtf create mode 100644 general/datasets/Inia_adrenal_rma_0612/experiment-type.rtf create mode 100644 general/datasets/Inia_adrenal_rma_0612/platform.rtf create mode 100644 general/datasets/Inia_adrenal_rma_0612/processing.rtf create mode 100644 general/datasets/Inia_adrenal_rma_0612/summary.rtf create mode 100644 general/datasets/Inia_adrenal_rma_0612/tissue.rtf create mode 100644 general/datasets/Inia_adrenal_rma_ex_0612/cases.rtf create mode 100644 general/datasets/Inia_adrenal_rma_ex_0612/experiment-design.rtf create mode 100644 general/datasets/Inia_adrenal_rma_ex_0612/platform.rtf create mode 100644 general/datasets/Inia_adrenal_rma_ex_0612/processing.rtf create mode 100644 general/datasets/Inia_adrenal_rma_ex_0612/summary.rtf create mode 100644 general/datasets/Inia_adrenal_rma_ex_0612/tissue.rtf create mode 100644 general/datasets/Inia_adrenal_rma_f_0612/cases.rtf create mode 100644 general/datasets/Inia_adrenal_rma_f_0612/experiment-design.rtf create mode 100644 general/datasets/Inia_adrenal_rma_f_0612/platform.rtf create mode 100644 general/datasets/Inia_adrenal_rma_f_0612/processing.rtf create mode 100644 general/datasets/Inia_adrenal_rma_f_0612/summary.rtf create mode 100644 general/datasets/Inia_adrenal_rma_f_0612/tissue.rtf create mode 100644 general/datasets/Inia_adrenal_rma_m_0612/cases.rtf create mode 100644 general/datasets/Inia_adrenal_rma_m_0612/experiment-design.rtf create mode 100644 general/datasets/Inia_adrenal_rma_m_0612/platform.rtf create mode 100644 general/datasets/Inia_adrenal_rma_m_0612/processing.rtf create mode 100644 general/datasets/Inia_adrenal_rma_m_0612/summary.rtf create mode 100644 general/datasets/Inia_adrenal_rma_m_0612/tissue.rtf create mode 100644 general/datasets/Inia_amg_bla_ex_rma_1110/cases.rtf create mode 100644 general/datasets/Inia_amg_bla_ex_rma_1110/contributors.rtf create mode 100644 general/datasets/Inia_amg_bla_ex_rma_1110/experiment-design.rtf create mode 100644 general/datasets/Inia_amg_bla_ex_rma_1110/platform.rtf create mode 100644 general/datasets/Inia_amg_bla_ex_rma_1110/processing.rtf create mode 100644 general/datasets/Inia_amg_bla_ex_rma_1110/specifics.rtf create mode 100644 general/datasets/Inia_amg_bla_ex_rma_1110/summary.rtf create mode 100644 general/datasets/Inia_amg_bla_ex_rma_1110/tissue.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_1110/cases.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_1110/contributors.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_1110/experiment-design.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_1110/platform.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_1110/processing.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_1110/specifics.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_1110/summary.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_1110/tissue.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_f_1110/cases.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_f_1110/contributors.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_f_1110/experiment-design.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_f_1110/platform.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_f_1110/processing.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_f_1110/summary.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_f_1110/tissue.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_m_1110/cases.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_m_1110/contributors.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_m_1110/experiment-design.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_m_1110/platform.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_m_1110/processing.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_m_1110/specifics.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_m_1110/summary.rtf create mode 100644 general/datasets/Inia_amg_bla_rma_m_1110/tissue.rtf create mode 100644 general/datasets/Inia_amgcoh_0311/cases.rtf create mode 100644 general/datasets/Inia_amgcoh_0311/contributors.rtf create mode 100644 general/datasets/Inia_amgcoh_0311/experiment-design.rtf create mode 100644 general/datasets/Inia_amgcoh_0311/platform.rtf create mode 100644 general/datasets/Inia_amgcoh_0311/processing.rtf create mode 100644 general/datasets/Inia_amgcoh_0311/summary.rtf create mode 100644 general/datasets/Inia_amgcoh_0311/tissue.rtf create mode 100644 general/datasets/Inia_bxd_livdnam_1119/experiment-design.rtf create mode 100644 general/datasets/Inia_bxd_livdnam_1119/platform.rtf create mode 100644 general/datasets/Inia_bxd_livdnam_1119/processing.rtf create mode 100644 general/datasets/Inia_bxd_livdnam_1119/specifics.rtf create mode 100644 general/datasets/Inia_bxd_livdnam_1119/summary.rtf create mode 100644 general/datasets/Inia_bxd_livdnaminfi_1020/experiment-design.rtf create mode 100644 general/datasets/Inia_bxd_livdnaminfi_1020/platform.rtf create mode 100644 general/datasets/Inia_bxd_livdnaminfi_1020/processing.rtf create mode 100644 general/datasets/Inia_bxd_livdnaminfi_1020/specifics.rtf create mode 100644 general/datasets/Inia_bxd_livdnaminfi_1020/summary.rtf create mode 100644 general/datasets/Inia_hyp_f_rma_1110/acknowledgment.rtf create mode 100644 general/datasets/Inia_hyp_f_rma_1110/cases.rtf create mode 100644 general/datasets/Inia_hyp_f_rma_1110/citation.rtf create mode 100644 general/datasets/Inia_hyp_f_rma_1110/contributors.rtf create mode 100644 general/datasets/Inia_hyp_f_rma_1110/experiment-design.rtf create mode 100644 general/datasets/Inia_hyp_f_rma_1110/platform.rtf create mode 100644 general/datasets/Inia_hyp_f_rma_1110/processing.rtf create mode 100644 general/datasets/Inia_hyp_f_rma_1110/summary.rtf create mode 100644 general/datasets/Inia_hyp_m_rma_1110/acknowledgment.rtf create mode 100644 general/datasets/Inia_hyp_m_rma_1110/cases.rtf create mode 100644 general/datasets/Inia_hyp_m_rma_1110/citation.rtf create mode 100644 general/datasets/Inia_hyp_m_rma_1110/contributors.rtf create mode 100644 general/datasets/Inia_hyp_m_rma_1110/experiment-design.rtf create mode 100644 general/datasets/Inia_hyp_m_rma_1110/platform.rtf create mode 100644 general/datasets/Inia_hyp_m_rma_1110/processing.rtf create mode 100644 general/datasets/Inia_hyp_m_rma_1110/summary.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813/acknowledgment.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813/cases.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813/citation.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813/contributors.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813/experiment-design.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813/platform.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813/processing.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813/summary.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v2/acknowledgment.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v2/cases.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v2/citation.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v2/contributors.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v2/experiment-design.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v2/platform.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v2/processing.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v2/summary.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v3/acknowledgment.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v3/cases.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v3/citation.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v3/contributors.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v3/experiment-design.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v3/platform.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v3/processing.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v3/summary.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v4/acknowledgment.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v4/cases.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v4/citation.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v4/contributors.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v4/experiment-design.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v4/platform.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v4/processing.rtf create mode 100644 general/datasets/Inia_hyp_pca_0813_v4/summary.rtf create mode 100644 general/datasets/Inia_hyp_rma_1110/acknowledgment.rtf create mode 100644 general/datasets/Inia_hyp_rma_1110/cases.rtf create mode 100644 general/datasets/Inia_hyp_rma_1110/citation.rtf create mode 100644 general/datasets/Inia_hyp_rma_1110/contributors.rtf create mode 100644 general/datasets/Inia_hyp_rma_1110/experiment-design.rtf create mode 100644 general/datasets/Inia_hyp_rma_1110/platform.rtf create mode 100644 general/datasets/Inia_hyp_rma_1110/processing.rtf create mode 100644 general/datasets/Inia_hyp_rma_1110/summary.rtf create mode 100644 general/datasets/Inia_hyp_rma_ex_1110/acknowledgment.rtf create mode 100644 general/datasets/Inia_hyp_rma_ex_1110/cases.rtf create mode 100644 general/datasets/Inia_hyp_rma_ex_1110/citation.rtf create mode 100644 general/datasets/Inia_hyp_rma_ex_1110/contributors.rtf create mode 100644 general/datasets/Inia_hyp_rma_ex_1110/experiment-design.rtf create mode 100644 general/datasets/Inia_hyp_rma_ex_1110/platform.rtf create mode 100644 general/datasets/Inia_hyp_rma_ex_1110/processing.rtf create mode 100644 general/datasets/Inia_hyp_rma_ex_1110/summary.rtf create mode 100644 general/datasets/Inia_lcm_1215/acknowledgment.rtf create mode 100644 general/datasets/Inia_lcm_1215/cases.rtf create mode 100644 general/datasets/Inia_lcm_1215/contributors.rtf create mode 100644 general/datasets/Inia_lcm_1215/platform.rtf create mode 100644 general/datasets/Inia_lcm_1215/processing.rtf create mode 100644 general/datasets/Inia_lcm_1215/summary.rtf create mode 100644 general/datasets/Inia_lcm_1215/tissue.rtf create mode 100644 general/datasets/Inia_lcm_cab_1215/acknowledgment.rtf create mode 100644 general/datasets/Inia_lcm_cab_1215/cases.rtf create mode 100644 general/datasets/Inia_lcm_cab_1215/contributors.rtf create mode 100644 general/datasets/Inia_lcm_cab_1215/platform.rtf create mode 100644 general/datasets/Inia_lcm_cab_1215/processing.rtf create mode 100644 general/datasets/Inia_lcm_cab_1215/specifics.rtf create mode 100644 general/datasets/Inia_lcm_cab_1215/summary.rtf create mode 100644 general/datasets/Inia_lcm_cab_1215/tissue.rtf create mode 100644 general/datasets/Inia_lcmb_1215/acknowledgment.rtf create mode 100644 general/datasets/Inia_lcmb_1215/cases.rtf create mode 100644 general/datasets/Inia_lcmb_1215/contributors.rtf create mode 100644 general/datasets/Inia_lcmb_1215/platform.rtf create mode 100644 general/datasets/Inia_lcmb_1215/processing.rtf create mode 100644 general/datasets/Inia_lcmb_1215/summary.rtf create mode 100644 general/datasets/Inia_lcmb_1215/tissue.rtf create mode 100644 general/datasets/Inia_macfas_ac_rma_0110/experiment-type.rtf create mode 100644 general/datasets/Inia_macfas_ac_rma_0110/summary.rtf create mode 100644 general/datasets/Inia_macfas_amg_rma_0110/experiment-type.rtf create mode 100644 general/datasets/Inia_macfas_amg_rma_0110/summary.rtf create mode 100644 general/datasets/Inia_macfas_brain_rma_0110/experiment-type.rtf create mode 100644 general/datasets/Inia_macfas_brain_rma_0110/notes.rtf create mode 100644 general/datasets/Inia_macfas_brain_rma_0110/summary.rtf create mode 100644 general/datasets/Inia_macfas_hc_rma_0110/experiment-type.rtf create mode 100644 general/datasets/Inia_macfas_hc_rma_0110/summary.rtf create mode 100644 general/datasets/Inia_macfas_pf_rma_0110/experiment-type.rtf create mode 100644 general/datasets/Inia_macfas_pf_rma_0110/summary.rtf create mode 100644 general/datasets/Inia_pg_rma_0612/acknowledgment.rtf create mode 100644 general/datasets/Inia_pg_rma_0612/cases.rtf create mode 100644 general/datasets/Inia_pg_rma_0612/citation.rtf create mode 100644 general/datasets/Inia_pg_rma_0612/contributors.rtf create mode 100644 general/datasets/Inia_pg_rma_0612/experiment-design.rtf create mode 100644 general/datasets/Inia_pg_rma_0612/experiment-type.rtf create mode 100644 general/datasets/Inia_pg_rma_0612/platform.rtf create mode 100644 general/datasets/Inia_pg_rma_0612/processing.rtf create mode 100644 general/datasets/Inia_pg_rma_0612/summary.rtf create mode 100644 general/datasets/Inia_pg_rma_0612/tissue.rtf create mode 100644 general/datasets/Inia_pg_rma_ex_0612/acknowledgment.rtf create mode 100644 general/datasets/Inia_pg_rma_ex_0612/cases.rtf create mode 100644 general/datasets/Inia_pg_rma_ex_0612/citation.rtf create mode 100644 general/datasets/Inia_pg_rma_ex_0612/contributors.rtf create mode 100644 general/datasets/Inia_pg_rma_ex_0612/experiment-design.rtf create mode 100644 general/datasets/Inia_pg_rma_ex_0612/platform.rtf create mode 100644 general/datasets/Inia_pg_rma_ex_0612/processing.rtf create mode 100644 general/datasets/Inia_pg_rma_ex_0612/summary.rtf create mode 100644 general/datasets/Inia_pg_rma_ex_0612/tissue.rtf create mode 100644 general/datasets/Inia_pituitary_rma_f_0612/acknowledgment.rtf create mode 100644 general/datasets/Inia_pituitary_rma_f_0612/cases.rtf create mode 100644 general/datasets/Inia_pituitary_rma_f_0612/citation.rtf create mode 100644 general/datasets/Inia_pituitary_rma_f_0612/contributors.rtf create mode 100644 general/datasets/Inia_pituitary_rma_f_0612/experiment-design.rtf create mode 100644 general/datasets/Inia_pituitary_rma_f_0612/platform.rtf create mode 100644 general/datasets/Inia_pituitary_rma_f_0612/processing.rtf create mode 100644 general/datasets/Inia_pituitary_rma_f_0612/summary.rtf create mode 100644 general/datasets/Inia_pituitary_rma_f_0612/tissue.rtf create mode 100644 general/datasets/Inia_pituitary_rma_m_0612/acknowledgment.rtf create mode 100644 general/datasets/Inia_pituitary_rma_m_0612/cases.rtf create mode 100644 general/datasets/Inia_pituitary_rma_m_0612/citation.rtf create mode 100644 general/datasets/Inia_pituitary_rma_m_0612/contributors.rtf create mode 100644 general/datasets/Inia_pituitary_rma_m_0612/experiment-design.rtf create mode 100644 general/datasets/Inia_pituitary_rma_m_0612/platform.rtf create mode 100644 general/datasets/Inia_pituitary_rma_m_0612/processing.rtf create mode 100644 general/datasets/Inia_pituitary_rma_m_0612/summary.rtf create mode 100644 general/datasets/Inia_pituitary_rma_m_0612/tissue.rtf create mode 100644 general/datasets/Inia_uthsc_hip_affymta1_may17/summary.rtf create mode 100644 general/datasets/Inia_uthsc_mid_affymta1_apr17/cases.rtf create mode 100644 general/datasets/Inia_uthsc_mid_affymta1_apr17/specifics.rtf create mode 100644 general/datasets/Inia_uthsc_mid_affymta1_apr17/summary.rtf create mode 100644 general/datasets/Inia_uthsc_mid_affymta1_ex_may17/cases.rtf create mode 100644 general/datasets/Inia_uthsc_mid_affymta1_ex_may17/specifics.rtf create mode 100644 general/datasets/Inia_uthsc_mid_affymta1_ex_may17/summary.rtf create mode 100644 general/datasets/Inia_uthsc_pfc_affymta1_may17/summary.rtf create mode 100644 general/datasets/Inia_uthsc_str_affymta1_may17/summary.rtf create mode 100644 general/datasets/Iop_spl_rma_0509/notes.rtf create mode 100644 general/datasets/Iop_spl_rma_0509/summary.rtf create mode 100644 general/datasets/Ircm_axbxa_hri0213/summary.rtf delete mode 100644 general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/acknowledgment.rtf delete mode 100644 general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/cases.rtf delete mode 100644 general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/processing.rtf delete mode 100644 general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/specifics.rtf delete mode 100644 general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/summary.rtf delete mode 100644 general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/tissue.rtf delete mode 100644 general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/acknowledgment.rtf delete mode 100644 general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/cases.rtf delete mode 100644 general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/processing.rtf delete mode 100644 general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/specifics.rtf delete mode 100644 general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/summary.rtf delete mode 100644 general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/tissue.rtf delete mode 100644 general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/acknowledgment.rtf delete mode 100644 general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/cases.rtf delete mode 100644 general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/processing.rtf delete mode 100644 general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/specifics.rtf delete mode 100644 general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/summary.rtf delete mode 100644 general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/tissue.rtf delete mode 100644 general/datasets/JAX_BXD_Hip_Pro_0219/specifics.rtf delete mode 100644 general/datasets/JAX_BXD_Hip_Pro_0219/summary.rtf delete mode 100644 general/datasets/JAX_D2GM_RSeq_log2Z_0418/experiment-design.rtf delete mode 100644 general/datasets/JAX_D2GM_RSeq_log2Z_0418/platform.rtf delete mode 100644 general/datasets/JAX_D2GM_RSeq_log2Z_0418/specifics.rtf delete mode 100644 general/datasets/JAX_D2GM_RSeq_log2Z_0418/summary.rtf delete mode 100644 general/datasets/JAX_D2_Mono1vPBMC_Ret_RNA_Seq_0619/acknowledgment.rtf delete mode 100644 general/datasets/JAX_D2_Mono1vPBMC_Ret_RNA_Seq_0619/experiment-design.rtf delete mode 100644 general/datasets/JAX_D2_Mono1vPBMC_Ret_RNA_Seq_0619/processing.rtf delete mode 100644 general/datasets/JAX_D2_Mono1vPBMC_Ret_RNA_Seq_0619/specifics.rtf delete mode 100644 general/datasets/JAX_D2_Mono1vPBMC_Ret_RNA_Seq_0619/summary.rtf delete mode 100644 general/datasets/JAX_D2_Mono2vPBMC_Ret_RNA_Seq_0619/acknowledgment.rtf delete mode 100644 general/datasets/JAX_D2_Mono2vPBMC_Ret_RNA_Seq_0619/experiment-design.rtf delete mode 100644 general/datasets/JAX_D2_Mono2vPBMC_Ret_RNA_Seq_0619/processing.rtf delete mode 100644 general/datasets/JAX_D2_Mono2vPBMC_Ret_RNA_Seq_0619/specifics.rtf delete mode 100644 general/datasets/JAX_D2_Mono2vPBMC_Ret_RNA_Seq_0619/summary.rtf create mode 100644 general/datasets/JAX_liver_agil_MDP-0113/summary.rtf delete mode 100644 general/datasets/JAX_liver_agil_MDP_0113/summary.rtf create mode 100644 general/datasets/Jax_bxd_germ_cells_edger_0820/acknowledgment.rtf create mode 100644 general/datasets/Jax_bxd_germ_cells_edger_0820/cases.rtf create mode 100644 general/datasets/Jax_bxd_germ_cells_edger_0820/processing.rtf create mode 100644 general/datasets/Jax_bxd_germ_cells_edger_0820/specifics.rtf create mode 100644 general/datasets/Jax_bxd_germ_cells_edger_0820/summary.rtf create mode 100644 general/datasets/Jax_bxd_germ_cells_edger_0820/tissue.rtf create mode 100644 general/datasets/Jax_bxd_germ_cells_edger_log2_0820/acknowledgment.rtf create mode 100644 general/datasets/Jax_bxd_germ_cells_edger_log2_0820/cases.rtf create mode 100644 general/datasets/Jax_bxd_germ_cells_edger_log2_0820/processing.rtf create mode 100644 general/datasets/Jax_bxd_germ_cells_edger_log2_0820/specifics.rtf create mode 100644 general/datasets/Jax_bxd_germ_cells_edger_log2_0820/summary.rtf create mode 100644 general/datasets/Jax_bxd_germ_cells_edger_log2_0820/tissue.rtf create mode 100644 general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/acknowledgment.rtf create mode 100644 general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/cases.rtf create mode 100644 general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/processing.rtf create mode 100644 general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/specifics.rtf create mode 100644 general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/summary.rtf create mode 100644 general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/tissue.rtf create mode 100644 general/datasets/Jax_bxd_hip_pro_0219/specifics.rtf create mode 100644 general/datasets/Jax_bxd_hip_pro_0219/summary.rtf create mode 100644 general/datasets/Jax_csb_l_0711/acknowledgment.rtf create mode 100644 general/datasets/Jax_csb_l_0711/cases.rtf create mode 100644 general/datasets/Jax_csb_l_0711/citation.rtf create mode 100644 general/datasets/Jax_csb_l_0711/contributors.rtf create mode 100644 general/datasets/Jax_csb_l_0711/experiment-design.rtf create mode 100644 general/datasets/Jax_csb_l_0711/experiment-type.rtf create mode 100644 general/datasets/Jax_csb_l_0711/platform.rtf create mode 100644 general/datasets/Jax_csb_l_0711/summary.rtf create mode 100644 general/datasets/Jax_csb_l_0711/tissue.rtf create mode 100644 general/datasets/Jax_csb_l_6c_0711/acknowledgment.rtf create mode 100644 general/datasets/Jax_csb_l_6c_0711/cases.rtf create mode 100644 general/datasets/Jax_csb_l_6c_0711/citation.rtf create mode 100644 general/datasets/Jax_csb_l_6c_0711/contributors.rtf create mode 100644 general/datasets/Jax_csb_l_6c_0711/experiment-design.rtf create mode 100644 general/datasets/Jax_csb_l_6c_0711/experiment-type.rtf create mode 100644 general/datasets/Jax_csb_l_6c_0711/platform.rtf create mode 100644 general/datasets/Jax_csb_l_6c_0711/summary.rtf create mode 100644 general/datasets/Jax_csb_l_6c_0711/tissue.rtf create mode 100644 general/datasets/Jax_csb_l_hf_0711/acknowledgment.rtf create mode 100644 general/datasets/Jax_csb_l_hf_0711/cases.rtf create mode 100644 general/datasets/Jax_csb_l_hf_0711/citation.rtf create mode 100644 general/datasets/Jax_csb_l_hf_0711/contributors.rtf create mode 100644 general/datasets/Jax_csb_l_hf_0711/experiment-design.rtf create mode 100644 general/datasets/Jax_csb_l_hf_0711/experiment-type.rtf create mode 100644 general/datasets/Jax_csb_l_hf_0711/platform.rtf create mode 100644 general/datasets/Jax_csb_l_hf_0711/summary.rtf create mode 100644 general/datasets/Jax_csb_l_hf_0711/tissue.rtf create mode 100644 general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/acknowledgment.rtf create mode 100644 general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/citation.rtf create mode 100644 general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/experiment-design.rtf create mode 100644 general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/processing.rtf create mode 100644 general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/specifics.rtf create mode 100644 general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/summary.rtf create mode 100644 general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/acknowledgment.rtf create mode 100644 general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/citation.rtf create mode 100644 general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/experiment-design.rtf create mode 100644 general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/processing.rtf create mode 100644 general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/specifics.rtf create mode 100644 general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/summary.rtf create mode 100644 general/datasets/Jax_d2gm_rseq_log2z_0418/citation.rtf create mode 100644 general/datasets/Jax_d2gm_rseq_log2z_0418/experiment-design.rtf create mode 100644 general/datasets/Jax_d2gm_rseq_log2z_0418/platform.rtf create mode 100644 general/datasets/Jax_d2gm_rseq_log2z_0418/specifics.rtf create mode 100644 general/datasets/Jax_d2gm_rseq_log2z_0418/summary.rtf create mode 100644 general/datasets/Jax_liver_agil_mdp_0113/experiment-type.rtf create mode 100644 general/datasets/Jax_liver_agil_mdp_0113/summary.rtf create mode 100644 general/datasets/Ki_2a_0405_m/acknowledgment.rtf create mode 100644 general/datasets/Ki_2a_0405_m/cases.rtf create mode 100644 general/datasets/Ki_2a_0405_m/citation.rtf create mode 100644 general/datasets/Ki_2a_0405_m/contributors.rtf create mode 100644 general/datasets/Ki_2a_0405_m/notes.rtf create mode 100644 general/datasets/Ki_2a_0405_m/platform.rtf create mode 100644 general/datasets/Ki_2a_0405_m/processing.rtf create mode 100644 general/datasets/Ki_2a_0405_m/summary.rtf create mode 100644 general/datasets/Ki_2a_0405_m/tissue.rtf create mode 100644 general/datasets/Ki_2a_0405_r/acknowledgment.rtf create mode 100644 general/datasets/Ki_2a_0405_r/cases.rtf create mode 100644 general/datasets/Ki_2a_0405_r/citation.rtf create mode 100644 general/datasets/Ki_2a_0405_r/contributors.rtf create mode 100644 general/datasets/Ki_2a_0405_r/notes.rtf create mode 100644 general/datasets/Ki_2a_0405_r/platform.rtf create mode 100644 general/datasets/Ki_2a_0405_r/processing.rtf create mode 100644 general/datasets/Ki_2a_0405_r/summary.rtf create mode 100644 general/datasets/Ki_2a_0405_r/tissue.rtf create mode 100644 general/datasets/Ki_2a_0405_rz/acknowledgment.rtf create mode 100644 general/datasets/Ki_2a_0405_rz/cases.rtf create mode 100644 general/datasets/Ki_2a_0405_rz/citation.rtf create mode 100644 general/datasets/Ki_2a_0405_rz/contributors.rtf create mode 100644 general/datasets/Ki_2a_0405_rz/notes.rtf create mode 100644 general/datasets/Ki_2a_0405_rz/platform.rtf create mode 100644 general/datasets/Ki_2a_0405_rz/processing.rtf create mode 100644 general/datasets/Ki_2a_0405_rz/summary.rtf create mode 100644 general/datasets/Ki_2a_0405_rz/tissue.rtf create mode 100644 general/datasets/Kin_ysm_a1c_0711/cases.rtf create mode 100644 general/datasets/Kin_ysm_a1c_0711/citation.rtf create mode 100644 general/datasets/Kin_ysm_a1c_0711/contributors.rtf create mode 100644 general/datasets/Kin_ysm_a1c_0711/experiment-design.rtf create mode 100644 general/datasets/Kin_ysm_a1c_0711/experiment-type.rtf create mode 100644 general/datasets/Kin_ysm_a1c_0711/notes.rtf create mode 100644 general/datasets/Kin_ysm_a1c_0711/processing.rtf create mode 100644 general/datasets/Kin_ysm_a1c_0711/summary.rtf create mode 100644 general/datasets/Kin_ysm_a1c_0711/tissue.rtf create mode 100644 general/datasets/Kin_ysm_amy_0711/cases.rtf create mode 100644 general/datasets/Kin_ysm_amy_0711/citation.rtf create mode 100644 general/datasets/Kin_ysm_amy_0711/contributors.rtf create mode 100644 general/datasets/Kin_ysm_amy_0711/experiment-design.rtf create mode 100644 general/datasets/Kin_ysm_amy_0711/experiment-type.rtf create mode 100644 general/datasets/Kin_ysm_amy_0711/notes.rtf create mode 100644 general/datasets/Kin_ysm_amy_0711/processing.rtf create mode 100644 general/datasets/Kin_ysm_amy_0711/summary.rtf create mode 100644 general/datasets/Kin_ysm_amy_0711/tissue.rtf create mode 100644 general/datasets/Kin_ysm_cbc_0711/cases.rtf create mode 100644 general/datasets/Kin_ysm_cbc_0711/citation.rtf create mode 100644 general/datasets/Kin_ysm_cbc_0711/contributors.rtf create mode 100644 general/datasets/Kin_ysm_cbc_0711/experiment-design.rtf create mode 100644 general/datasets/Kin_ysm_cbc_0711/experiment-type.rtf create mode 100644 general/datasets/Kin_ysm_cbc_0711/notes.rtf create mode 100644 general/datasets/Kin_ysm_cbc_0711/processing.rtf create mode 100644 general/datasets/Kin_ysm_cbc_0711/summary.rtf create mode 100644 general/datasets/Kin_ysm_cbc_0711/tissue.rtf create mode 100644 general/datasets/Kin_ysm_dfc_0711/cases.rtf create mode 100644 general/datasets/Kin_ysm_dfc_0711/citation.rtf create mode 100644 general/datasets/Kin_ysm_dfc_0711/contributors.rtf create mode 100644 general/datasets/Kin_ysm_dfc_0711/experiment-design.rtf create mode 100644 general/datasets/Kin_ysm_dfc_0711/experiment-type.rtf create mode 100644 general/datasets/Kin_ysm_dfc_0711/notes.rtf create mode 100644 general/datasets/Kin_ysm_dfc_0711/processing.rtf create mode 100644 general/datasets/Kin_ysm_dfc_0711/summary.rtf create mode 100644 general/datasets/Kin_ysm_dfc_0711/tissue.rtf create mode 100644 general/datasets/Kin_ysm_hip_0711/cases.rtf create mode 100644 general/datasets/Kin_ysm_hip_0711/citation.rtf create mode 100644 general/datasets/Kin_ysm_hip_0711/contributors.rtf create mode 100644 general/datasets/Kin_ysm_hip_0711/experiment-design.rtf create mode 100644 general/datasets/Kin_ysm_hip_0711/experiment-type.rtf create mode 100644 general/datasets/Kin_ysm_hip_0711/notes.rtf create mode 100644 general/datasets/Kin_ysm_hip_0711/processing.rtf create mode 100644 general/datasets/Kin_ysm_hip_0711/summary.rtf create mode 100644 general/datasets/Kin_ysm_hip_0711/tissue.rtf create mode 100644 general/datasets/Kin_ysm_ipc_0711/cases.rtf create mode 100644 general/datasets/Kin_ysm_ipc_0711/citation.rtf create mode 100644 general/datasets/Kin_ysm_ipc_0711/contributors.rtf create mode 100644 general/datasets/Kin_ysm_ipc_0711/experiment-design.rtf create mode 100644 general/datasets/Kin_ysm_ipc_0711/experiment-type.rtf create mode 100644 general/datasets/Kin_ysm_ipc_0711/notes.rtf create mode 100644 general/datasets/Kin_ysm_ipc_0711/processing.rtf create mode 100644 general/datasets/Kin_ysm_ipc_0711/summary.rtf create mode 100644 general/datasets/Kin_ysm_ipc_0711/tissue.rtf create mode 100644 general/datasets/Kin_ysm_itc_0711/cases.rtf create mode 100644 general/datasets/Kin_ysm_itc_0711/citation.rtf create mode 100644 general/datasets/Kin_ysm_itc_0711/contributors.rtf create mode 100644 general/datasets/Kin_ysm_itc_0711/experiment-design.rtf create mode 100644 general/datasets/Kin_ysm_itc_0711/experiment-type.rtf create mode 100644 general/datasets/Kin_ysm_itc_0711/notes.rtf create mode 100644 general/datasets/Kin_ysm_itc_0711/processing.rtf create mode 100644 general/datasets/Kin_ysm_itc_0711/summary.rtf create mode 100644 general/datasets/Kin_ysm_itc_0711/tissue.rtf create mode 100644 general/datasets/Kin_ysm_m1c_0711/cases.rtf create mode 100644 general/datasets/Kin_ysm_m1c_0711/citation.rtf create mode 100644 general/datasets/Kin_ysm_m1c_0711/contributors.rtf create mode 100644 general/datasets/Kin_ysm_m1c_0711/experiment-design.rtf create mode 100644 general/datasets/Kin_ysm_m1c_0711/experiment-type.rtf create mode 100644 general/datasets/Kin_ysm_m1c_0711/notes.rtf create mode 100644 general/datasets/Kin_ysm_m1c_0711/processing.rtf create mode 100644 general/datasets/Kin_ysm_m1c_0711/summary.rtf create mode 100644 general/datasets/Kin_ysm_m1c_0711/tissue.rtf create mode 100644 general/datasets/Kin_ysm_md_0711/cases.rtf create mode 100644 general/datasets/Kin_ysm_md_0711/citation.rtf create mode 100644 general/datasets/Kin_ysm_md_0711/contributors.rtf create mode 100644 general/datasets/Kin_ysm_md_0711/experiment-design.rtf create mode 100644 general/datasets/Kin_ysm_md_0711/experiment-type.rtf create mode 100644 general/datasets/Kin_ysm_md_0711/notes.rtf create mode 100644 general/datasets/Kin_ysm_md_0711/processing.rtf create mode 100644 general/datasets/Kin_ysm_md_0711/summary.rtf create mode 100644 general/datasets/Kin_ysm_md_0711/tissue.rtf create mode 100644 general/datasets/Kin_ysm_mfc_0711/cases.rtf create mode 100644 general/datasets/Kin_ysm_mfc_0711/citation.rtf create mode 100644 general/datasets/Kin_ysm_mfc_0711/contributors.rtf create mode 100644 general/datasets/Kin_ysm_mfc_0711/experiment-design.rtf create mode 100644 general/datasets/Kin_ysm_mfc_0711/experiment-type.rtf create mode 100644 general/datasets/Kin_ysm_mfc_0711/notes.rtf create mode 100644 general/datasets/Kin_ysm_mfc_0711/processing.rtf create mode 100644 general/datasets/Kin_ysm_mfc_0711/summary.rtf create mode 100644 general/datasets/Kin_ysm_mfc_0711/tissue.rtf create mode 100644 general/datasets/Kin_ysm_ofc_0711/cases.rtf create mode 100644 general/datasets/Kin_ysm_ofc_0711/citation.rtf create mode 100644 general/datasets/Kin_ysm_ofc_0711/contributors.rtf create mode 100644 general/datasets/Kin_ysm_ofc_0711/experiment-design.rtf create mode 100644 general/datasets/Kin_ysm_ofc_0711/experiment-type.rtf create mode 100644 general/datasets/Kin_ysm_ofc_0711/notes.rtf create mode 100644 general/datasets/Kin_ysm_ofc_0711/processing.rtf create mode 100644 general/datasets/Kin_ysm_ofc_0711/summary.rtf create mode 100644 general/datasets/Kin_ysm_ofc_0711/tissue.rtf create mode 100644 general/datasets/Kin_ysm_s1c_0711/cases.rtf create mode 100644 general/datasets/Kin_ysm_s1c_0711/citation.rtf create mode 100644 general/datasets/Kin_ysm_s1c_0711/contributors.rtf create mode 100644 general/datasets/Kin_ysm_s1c_0711/experiment-design.rtf create mode 100644 general/datasets/Kin_ysm_s1c_0711/experiment-type.rtf create mode 100644 general/datasets/Kin_ysm_s1c_0711/notes.rtf create mode 100644 general/datasets/Kin_ysm_s1c_0711/processing.rtf create mode 100644 general/datasets/Kin_ysm_s1c_0711/summary.rtf create mode 100644 general/datasets/Kin_ysm_s1c_0711/tissue.rtf create mode 100644 general/datasets/Kin_ysm_stc_0711/cases.rtf create mode 100644 general/datasets/Kin_ysm_stc_0711/citation.rtf create mode 100644 general/datasets/Kin_ysm_stc_0711/contributors.rtf create mode 100644 general/datasets/Kin_ysm_stc_0711/experiment-design.rtf create mode 100644 general/datasets/Kin_ysm_stc_0711/experiment-type.rtf create mode 100644 general/datasets/Kin_ysm_stc_0711/notes.rtf create mode 100644 general/datasets/Kin_ysm_stc_0711/processing.rtf create mode 100644 general/datasets/Kin_ysm_stc_0711/summary.rtf create mode 100644 general/datasets/Kin_ysm_stc_0711/tissue.rtf create mode 100644 general/datasets/Kin_ysm_str_0711/cases.rtf create mode 100644 general/datasets/Kin_ysm_str_0711/citation.rtf create mode 100644 general/datasets/Kin_ysm_str_0711/contributors.rtf create mode 100644 general/datasets/Kin_ysm_str_0711/experiment-design.rtf create mode 100644 general/datasets/Kin_ysm_str_0711/experiment-type.rtf create mode 100644 general/datasets/Kin_ysm_str_0711/notes.rtf create mode 100644 general/datasets/Kin_ysm_str_0711/processing.rtf create mode 100644 general/datasets/Kin_ysm_str_0711/summary.rtf create mode 100644 general/datasets/Kin_ysm_str_0711/tissue.rtf create mode 100644 general/datasets/Kin_ysm_v1c_0711/cases.rtf create mode 100644 general/datasets/Kin_ysm_v1c_0711/citation.rtf create mode 100644 general/datasets/Kin_ysm_v1c_0711/contributors.rtf create mode 100644 general/datasets/Kin_ysm_v1c_0711/experiment-design.rtf create mode 100644 general/datasets/Kin_ysm_v1c_0711/experiment-type.rtf create mode 100644 general/datasets/Kin_ysm_v1c_0711/notes.rtf create mode 100644 general/datasets/Kin_ysm_v1c_0711/processing.rtf create mode 100644 general/datasets/Kin_ysm_v1c_0711/summary.rtf create mode 100644 general/datasets/Kin_ysm_v1c_0711/tissue.rtf create mode 100644 general/datasets/Kin_ysm_vfc_0711/cases.rtf create mode 100644 general/datasets/Kin_ysm_vfc_0711/citation.rtf create mode 100644 general/datasets/Kin_ysm_vfc_0711/contributors.rtf create mode 100644 general/datasets/Kin_ysm_vfc_0711/experiment-design.rtf create mode 100644 general/datasets/Kin_ysm_vfc_0711/experiment-type.rtf create mode 100644 general/datasets/Kin_ysm_vfc_0711/notes.rtf create mode 100644 general/datasets/Kin_ysm_vfc_0711/processing.rtf create mode 100644 general/datasets/Kin_ysm_vfc_0711/summary.rtf create mode 100644 general/datasets/Kin_ysm_vfc_0711/tissue.rtf delete mode 100644 general/datasets/LGSM_AIG34_50_56_GBSPublish/specifics.rtf delete mode 100644 general/datasets/LGSM_AIG34_50_56_GBSPublish/summary.rtf delete mode 100644 general/datasets/LGSM_AI_G34_39_43_GBSPublish/specifics.rtf delete mode 100644 general/datasets/LGSM_AI_G34_39_43_GBSPublish/summary.rtf delete mode 100644 general/datasets/LGSM_AI_G34_APublish/specifics.rtf delete mode 100644 general/datasets/LGSM_AI_G34_APublish/summary.rtf delete mode 100644 general/datasets/LGSM_AI_G34_GBSPublish/specifics.rtf delete mode 100644 general/datasets/LGSM_AI_G34_GBSPublish/summary.rtf delete mode 100644 general/datasets/LGSM_AI_G39_43_GBSPublish/specifics.rtf delete mode 100644 general/datasets/LGSM_AI_G39_43_GBSPublish/summary.rtf delete mode 100644 general/datasets/LSRU_CC_ST_1219/acknowledgment.rtf delete mode 100644 general/datasets/LSRU_CC_ST_1219/cases.rtf delete mode 100644 general/datasets/LSRU_CC_ST_1219/experiment-design.rtf delete mode 100644 general/datasets/LSRU_CC_ST_1219/platform.rtf delete mode 100644 general/datasets/LSRU_CC_ST_1219/processing.rtf delete mode 100644 general/datasets/LSRU_CC_ST_1219/specifics.rtf delete mode 100644 general/datasets/LSRU_CC_ST_1219/summary.rtf delete mode 100644 general/datasets/LSRU_CC_ST_1219/tissue.rtf create mode 100644 general/datasets/Lgsm_ai_g34_39_43_gbspublish/specifics.rtf create mode 100644 general/datasets/Lgsm_ai_g34_39_43_gbspublish/summary.rtf create mode 100644 general/datasets/Lgsm_ai_g34_apublish/specifics.rtf create mode 100644 general/datasets/Lgsm_ai_g34_apublish/summary.rtf create mode 100644 general/datasets/Lgsm_ai_g34_gbspublish/specifics.rtf create mode 100644 general/datasets/Lgsm_ai_g34_gbspublish/summary.rtf create mode 100644 general/datasets/Lgsm_ai_g39_43_gbspublish/specifics.rtf create mode 100644 general/datasets/Lgsm_ai_g39_43_gbspublish/summary.rtf create mode 100644 general/datasets/Lgsm_aig34_50_56_gbspublish/contributors.rtf create mode 100644 general/datasets/Lgsm_aig34_50_56_gbspublish/specifics.rtf create mode 100644 general/datasets/Lgsm_aig34_50_56_gbspublish/summary.rtf delete mode 100644 general/datasets/Linsenbardt_BoehmGeno/summary.rtf delete mode 100644 general/datasets/Linsenbardt_BoehmPublish/summary.rtf create mode 100644 general/datasets/Linsenbardt_boehmgeno/summary.rtf create mode 100644 general/datasets/Linsenbardt_boehmpublish/summary.rtf create mode 100644 general/datasets/Lsru_cc_st_1219/acknowledgment.rtf create mode 100644 general/datasets/Lsru_cc_st_1219/cases.rtf create mode 100644 general/datasets/Lsru_cc_st_1219/citation.rtf create mode 100644 general/datasets/Lsru_cc_st_1219/contributors.rtf create mode 100644 general/datasets/Lsru_cc_st_1219/experiment-design.rtf create mode 100644 general/datasets/Lsru_cc_st_1219/platform.rtf create mode 100644 general/datasets/Lsru_cc_st_1219/processing.rtf create mode 100644 general/datasets/Lsru_cc_st_1219/specifics.rtf create mode 100644 general/datasets/Lsru_cc_st_1219/summary.rtf create mode 100644 general/datasets/Lsru_cc_st_1219/tissue.rtf create mode 100644 general/datasets/Luca_gse23352hlt0613/citation.rtf create mode 100644 general/datasets/Luca_gse23352hlt0613/contributors.rtf create mode 100644 general/datasets/Luca_gse23352hlt0613/summary.rtf create mode 100644 general/datasets/Lv_g_0106_b/citation.rtf create mode 100644 general/datasets/Lv_g_0106_b/platform.rtf create mode 100644 general/datasets/Lv_g_0106_b/processing.rtf create mode 100644 general/datasets/Lv_g_0106_b/summary.rtf create mode 100644 general/datasets/Lv_g_0106_f/citation.rtf create mode 100644 general/datasets/Lv_g_0106_f/platform.rtf create mode 100644 general/datasets/Lv_g_0106_f/processing.rtf create mode 100644 general/datasets/Lv_g_0106_f/summary.rtf create mode 100644 general/datasets/Lv_g_0106_m/citation.rtf create mode 100644 general/datasets/Lv_g_0106_m/platform.rtf create mode 100644 general/datasets/Lv_g_0106_m/processing.rtf create mode 100644 general/datasets/Lv_g_0106_m/summary.rtf create mode 100644 general/datasets/Lv_g_0704_a/citation.rtf create mode 100644 general/datasets/Lv_g_0704_a/platform.rtf create mode 100644 general/datasets/Lv_g_0704_a/processing.rtf create mode 100644 general/datasets/Lv_g_0704_a/summary.rtf create mode 100644 general/datasets/Lv_g_0704_r/citation.rtf create mode 100644 general/datasets/Lv_g_0704_r/platform.rtf create mode 100644 general/datasets/Lv_g_0704_r/processing.rtf create mode 100644 general/datasets/Lv_g_0704_r/summary.rtf create mode 100644 general/datasets/Lvf2_m_0704_m/acknowledgment.rtf create mode 100644 general/datasets/Lvf2_m_0704_m/cases.rtf create mode 100644 general/datasets/Lvf2_m_0704_m/citation.rtf create mode 100644 general/datasets/Lvf2_m_0704_m/notes.rtf create mode 100644 general/datasets/Lvf2_m_0704_m/platform.rtf create mode 100644 general/datasets/Lvf2_m_0704_m/processing.rtf create mode 100644 general/datasets/Lvf2_m_0704_m/summary.rtf create mode 100644 general/datasets/Lvf2_m_0704_m/tissue.rtf create mode 100644 general/datasets/Lvf2_m_0704_r/acknowledgment.rtf create mode 100644 general/datasets/Lvf2_m_0704_r/cases.rtf create mode 100644 general/datasets/Lvf2_m_0704_r/citation.rtf create mode 100644 general/datasets/Lvf2_m_0704_r/notes.rtf create mode 100644 general/datasets/Lvf2_m_0704_r/platform.rtf create mode 100644 general/datasets/Lvf2_m_0704_r/processing.rtf create mode 100644 general/datasets/Lvf2_m_0704_r/summary.rtf create mode 100644 general/datasets/Lvf2_m_0704_r/tissue.rtf create mode 100644 general/datasets/Lxsgeno/summary.rtf create mode 100644 general/datasets/Lxspublish/acknowledgment.rtf create mode 100644 general/datasets/Lxspublish/cases.rtf create mode 100644 general/datasets/Lxspublish/summary.rtf create mode 100644 general/datasets/Ma_m2_0706_p/acknowledgment.rtf create mode 100644 general/datasets/Ma_m2_0706_p/cases.rtf create mode 100644 general/datasets/Ma_m2_0706_p/experiment-design.rtf create mode 100644 general/datasets/Ma_m2_0706_p/notes.rtf create mode 100644 general/datasets/Ma_m2_0706_p/platform.rtf create mode 100644 general/datasets/Ma_m2_0706_p/processing.rtf create mode 100644 general/datasets/Ma_m2_0706_p/summary.rtf create mode 100644 general/datasets/Ma_m2_0706_p/tissue.rtf create mode 100644 general/datasets/Ma_m2_0706_r/acknowledgment.rtf create mode 100644 general/datasets/Ma_m2_0706_r/cases.rtf create mode 100644 general/datasets/Ma_m2_0706_r/experiment-design.rtf create mode 100644 general/datasets/Ma_m2_0706_r/notes.rtf create mode 100644 general/datasets/Ma_m2_0706_r/platform.rtf create mode 100644 general/datasets/Ma_m2_0706_r/processing.rtf create mode 100644 general/datasets/Ma_m2_0706_r/summary.rtf create mode 100644 general/datasets/Ma_m2_0706_r/tissue.rtf create mode 100644 general/datasets/Ma_m2_0806_p/acknowledgment.rtf create mode 100644 general/datasets/Ma_m2_0806_p/cases.rtf create mode 100644 general/datasets/Ma_m2_0806_p/experiment-design.rtf create mode 100644 general/datasets/Ma_m2_0806_p/notes.rtf create mode 100644 general/datasets/Ma_m2_0806_p/platform.rtf create mode 100644 general/datasets/Ma_m2_0806_p/processing.rtf create mode 100644 general/datasets/Ma_m2_0806_p/summary.rtf create mode 100644 general/datasets/Ma_m2_0806_p/tissue.rtf create mode 100644 general/datasets/Ma_m2_0806_r/acknowledgment.rtf create mode 100644 general/datasets/Ma_m2_0806_r/cases.rtf create mode 100644 general/datasets/Ma_m2_0806_r/experiment-design.rtf create mode 100644 general/datasets/Ma_m2_0806_r/notes.rtf create mode 100644 general/datasets/Ma_m2_0806_r/platform.rtf create mode 100644 general/datasets/Ma_m2_0806_r/processing.rtf create mode 100644 general/datasets/Ma_m2_0806_r/summary.rtf create mode 100644 general/datasets/Ma_m2_0806_r/tissue.rtf create mode 100644 general/datasets/Ma_m2f_0706_r/acknowledgment.rtf create mode 100644 general/datasets/Ma_m2f_0706_r/cases.rtf create mode 100644 general/datasets/Ma_m2f_0706_r/experiment-design.rtf create mode 100644 general/datasets/Ma_m2f_0706_r/notes.rtf create mode 100644 general/datasets/Ma_m2f_0706_r/platform.rtf create mode 100644 general/datasets/Ma_m2f_0706_r/processing.rtf create mode 100644 general/datasets/Ma_m2f_0706_r/summary.rtf create mode 100644 general/datasets/Ma_m2f_0706_r/tissue.rtf create mode 100644 general/datasets/Ma_m2m_0706_r/acknowledgment.rtf create mode 100644 general/datasets/Ma_m2m_0706_r/cases.rtf create mode 100644 general/datasets/Ma_m2m_0706_r/experiment-design.rtf create mode 100644 general/datasets/Ma_m2m_0706_r/notes.rtf create mode 100644 general/datasets/Ma_m2m_0706_r/platform.rtf create mode 100644 general/datasets/Ma_m2m_0706_r/processing.rtf create mode 100644 general/datasets/Ma_m2m_0706_r/summary.rtf create mode 100644 general/datasets/Ma_m2m_0706_r/tissue.rtf create mode 100644 general/datasets/Ma_m_0704_m/acknowledgment.rtf create mode 100644 general/datasets/Ma_m_0704_m/cases.rtf create mode 100644 general/datasets/Ma_m_0704_m/notes.rtf create mode 100644 general/datasets/Ma_m_0704_m/platform.rtf create mode 100644 general/datasets/Ma_m_0704_m/processing.rtf create mode 100644 general/datasets/Ma_m_0704_m/summary.rtf create mode 100644 general/datasets/Ma_m_0704_m/tissue.rtf create mode 100644 general/datasets/Ma_m_0704_r/acknowledgment.rtf create mode 100644 general/datasets/Ma_m_0704_r/cases.rtf create mode 100644 general/datasets/Ma_m_0704_r/notes.rtf create mode 100644 general/datasets/Ma_m_0704_r/platform.rtf create mode 100644 general/datasets/Ma_m_0704_r/processing.rtf create mode 100644 general/datasets/Ma_m_0704_r/summary.rtf create mode 100644 general/datasets/Ma_m_0704_r/tissue.rtf create mode 100644 general/datasets/Mdppublish/citation.rtf create mode 100644 general/datasets/Mdppublish/summary.rtf delete mode 100644 general/datasets/NHLBI_BXD_Aged_Heart_CD_RNA_Seq_1120/experiment-design.rtf delete mode 100644 general/datasets/NHLBI_BXD_Aged_Heart_CD_RNA_Seq_1120/processing.rtf delete mode 100644 general/datasets/NHLBI_BXD_Aged_Heart_CD_RNA_Seq_1120/specifics.rtf delete mode 100644 general/datasets/NHLBI_BXD_Aged_Heart_CD_RNA_Seq_1120/tissue.rtf delete mode 100644 general/datasets/NHLBI_BXD_Aged_Heart_HFD_RNA_Seq_1120/experiment-design.rtf delete mode 100644 general/datasets/NHLBI_BXD_Aged_Heart_HFD_RNA_Seq_1120/processing.rtf delete mode 100644 general/datasets/NHLBI_BXD_Aged_Heart_HFD_RNA_Seq_1120/specifics.rtf delete mode 100644 general/datasets/NHLBI_BXD_Aged_Heart_HFD_RNA_Seq_1120/tissue.rtf delete mode 100644 general/datasets/NHLBI_BXD_All_Ages_Heart_RNA_Seq_1120/experiment-design.rtf delete mode 100644 general/datasets/NHLBI_BXD_All_Ages_Heart_RNA_Seq_1120/processing.rtf delete mode 100644 general/datasets/NHLBI_BXD_All_Ages_Heart_RNA_Seq_1120/specifics.rtf delete mode 100644 general/datasets/NHLBI_BXD_All_Ages_Heart_RNA_Seq_1120/tissue.rtf delete mode 100644 general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_CMS_RNA/experiment-design.rtf delete mode 100644 general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_CMS_RNA/processing.rtf delete mode 100644 general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_CMS_RNA/specifics.rtf delete mode 100644 general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_CMS_RNA/tissue.rtf delete mode 100644 general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_RNA_Seq/experiment-design.rtf delete mode 100644 general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_RNA_Seq/processing.rtf delete mode 100644 general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_RNA_Seq/specifics.rtf delete mode 100644 general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_RNA_Seq/tissue.rtf delete mode 100644 general/datasets/NIAAA_BXD_Hip_CMS_DID_RNAseq1020/cases.rtf delete mode 100644 general/datasets/NIAAA_BXD_Hip_CMS_DID_RNAseq1020/experiment-design.rtf delete mode 100644 general/datasets/NIAAA_BXD_Hip_CMS_DID_RNAseq1020/processing.rtf delete mode 100644 general/datasets/NIAAA_BXD_Hip_CMS_DID_RNAseq1020/specifics.rtf delete mode 100644 general/datasets/NIAAA_BXD_Hip_CMS_DID_RNAseq1020/tissue.rtf delete mode 100644 general/datasets/NIAAA_BXD_Hip_CMS_RNAseq1020/cases.rtf delete mode 100644 general/datasets/NIAAA_BXD_Hip_CMS_RNAseq1020/experiment-design.rtf delete mode 100644 general/datasets/NIAAA_BXD_Hip_CMS_RNAseq1020/processing.rtf delete mode 100644 general/datasets/NIAAA_BXD_Hip_CMS_RNAseq1020/specifics.rtf delete mode 100644 general/datasets/NIAAA_BXD_Hip_CMS_RNAseq1020/tissue.rtf delete mode 100644 general/datasets/NIAAA_BXD_Hip_CTL_RNAseq1020/cases.rtf delete mode 100644 general/datasets/NIAAA_BXD_Hip_CTL_RNAseq1020/experiment-design.rtf delete mode 100644 general/datasets/NIAAA_BXD_Hip_CTL_RNAseq1020/processing.rtf delete mode 100644 general/datasets/NIAAA_BXD_Hip_CTL_RNAseq1020/specifics.rtf delete mode 100644 general/datasets/NIAAA_BXD_Hip_CTL_RNAseq1020/tissue.rtf delete mode 100644 general/datasets/NIAAA_BXD_Hip_DID_RNAseq1020/cases.rtf delete mode 100644 general/datasets/NIAAA_BXD_Hip_DID_RNAseq1020/experiment-design.rtf delete mode 100644 general/datasets/NIAAA_BXD_Hip_DID_RNAseq1020/processing.rtf delete mode 100644 general/datasets/NIAAA_BXD_Hip_DID_RNAseq1020/specifics.rtf delete mode 100644 general/datasets/NIAAA_BXD_Hip_DID_RNAseq1020/tissue.rtf delete mode 100644 general/datasets/NIA_AgBXD_Liv_CDHFD_rna_seq_0818/specifics.rtf delete mode 100644 general/datasets/NIA_AgBXD_Liv_CDHFD_rna_seq_0818/summary.rtf delete mode 100644 general/datasets/NIA_AgBXD_Liv_CD_rna_seq_0818/specifics.rtf delete mode 100644 general/datasets/NIA_AgBXD_Liv_CD_rna_seq_0818/summary.rtf delete mode 100644 general/datasets/NIA_AgBXD_Liv_HFD_rna_seq_0818/specifics.rtf delete mode 100644 general/datasets/NIA_AgBXD_Liv_HFD_rna_seq_0818/summary.rtf create mode 100644 general/datasets/Nci_agil_mam_tum_rma_0409/summary.rtf create mode 100644 general/datasets/Nci_mam_tum_rma_0409/experiment-type.rtf create mode 100644 general/datasets/Nci_mam_tum_rma_0409/summary.rtf create mode 100644 general/datasets/Ncsu_droswb_lc_rma_0111/acknowledgment.rtf create mode 100644 general/datasets/Ncsu_droswb_lc_rma_0111/cases.rtf create mode 100644 general/datasets/Ncsu_droswb_lc_rma_0111/citation.rtf create mode 100644 general/datasets/Ncsu_droswb_lc_rma_0111/contributors.rtf create mode 100644 general/datasets/Ncsu_droswb_lc_rma_0111/experiment-design.rtf create mode 100644 general/datasets/Ncsu_droswb_lc_rma_0111/experiment-type.rtf create mode 100644 general/datasets/Ncsu_droswb_lc_rma_0111/notes.rtf create mode 100644 general/datasets/Ncsu_droswb_lc_rma_0111/platform.rtf create mode 100644 general/datasets/Ncsu_droswb_lc_rma_0111/processing.rtf create mode 100644 general/datasets/Ncsu_droswb_lc_rma_0111/summary.rtf create mode 100644 general/datasets/Ncsu_droswb_lc_rma_0111/tissue.rtf create mode 100644 general/datasets/Nhlbi_bxd_aged_heart_cd_rna_seq_1120/experiment-design.rtf create mode 100644 general/datasets/Nhlbi_bxd_aged_heart_cd_rna_seq_1120/processing.rtf create mode 100644 general/datasets/Nhlbi_bxd_aged_heart_cd_rna_seq_1120/specifics.rtf create mode 100644 general/datasets/Nhlbi_bxd_aged_heart_cd_rna_seq_1120/tissue.rtf create mode 100644 general/datasets/Nhlbi_bxd_aged_heart_hfd_rna_seq_1120/experiment-design.rtf create mode 100644 general/datasets/Nhlbi_bxd_aged_heart_hfd_rna_seq_1120/processing.rtf create mode 100644 general/datasets/Nhlbi_bxd_aged_heart_hfd_rna_seq_1120/specifics.rtf create mode 100644 general/datasets/Nhlbi_bxd_aged_heart_hfd_rna_seq_1120/tissue.rtf create mode 100644 general/datasets/Nhlbi_bxd_all_ages_heart_rna_seq_1120/experiment-design.rtf create mode 100644 general/datasets/Nhlbi_bxd_all_ages_heart_rna_seq_1120/processing.rtf create mode 100644 general/datasets/Nhlbi_bxd_all_ages_heart_rna_seq_1120/specifics.rtf create mode 100644 general/datasets/Nhlbi_bxd_all_ages_heart_rna_seq_1120/tissue.rtf create mode 100644 general/datasets/Nhlbi_bxd_young_adult_heart_cd_cms_rna/experiment-design.rtf create mode 100644 general/datasets/Nhlbi_bxd_young_adult_heart_cd_cms_rna/processing.rtf create mode 100644 general/datasets/Nhlbi_bxd_young_adult_heart_cd_cms_rna/specifics.rtf create mode 100644 general/datasets/Nhlbi_bxd_young_adult_heart_cd_cms_rna/tissue.rtf create mode 100644 general/datasets/Nhlbi_bxd_young_adult_heart_cd_rna_seq/experiment-design.rtf create mode 100644 general/datasets/Nhlbi_bxd_young_adult_heart_cd_rna_seq/processing.rtf create mode 100644 general/datasets/Nhlbi_bxd_young_adult_heart_cd_rna_seq/specifics.rtf create mode 100644 general/datasets/Nhlbi_bxd_young_adult_heart_cd_rna_seq/tissue.rtf create mode 100644 general/datasets/Nia_agbxd_liv_cd_rna_seq_0818/specifics.rtf create mode 100644 general/datasets/Nia_agbxd_liv_cd_rna_seq_0818/summary.rtf create mode 100644 general/datasets/Nia_agbxd_liv_cdhfd_rna_seq_0818/specifics.rtf create mode 100644 general/datasets/Nia_agbxd_liv_cdhfd_rna_seq_0818/summary.rtf create mode 100644 general/datasets/Nia_agbxd_liv_hfd_rna_seq_0818/specifics.rtf create mode 100644 general/datasets/Nia_agbxd_liv_hfd_rna_seq_0818/summary.rtf create mode 100644 general/datasets/Niaaa_bxd_hip_cms_did_rnaseq1020/cases.rtf create mode 100644 general/datasets/Niaaa_bxd_hip_cms_did_rnaseq1020/experiment-design.rtf create mode 100644 general/datasets/Niaaa_bxd_hip_cms_did_rnaseq1020/processing.rtf create mode 100644 general/datasets/Niaaa_bxd_hip_cms_did_rnaseq1020/specifics.rtf create mode 100644 general/datasets/Niaaa_bxd_hip_cms_did_rnaseq1020/tissue.rtf create mode 100644 general/datasets/Niaaa_bxd_hip_cms_rnaseq1020/cases.rtf create mode 100644 general/datasets/Niaaa_bxd_hip_cms_rnaseq1020/experiment-design.rtf create mode 100644 general/datasets/Niaaa_bxd_hip_cms_rnaseq1020/processing.rtf create mode 100644 general/datasets/Niaaa_bxd_hip_cms_rnaseq1020/specifics.rtf create mode 100644 general/datasets/Niaaa_bxd_hip_cms_rnaseq1020/tissue.rtf create mode 100644 general/datasets/Niaaa_bxd_hip_ctl_rnaseq1020/cases.rtf create mode 100644 general/datasets/Niaaa_bxd_hip_ctl_rnaseq1020/experiment-design.rtf create mode 100644 general/datasets/Niaaa_bxd_hip_ctl_rnaseq1020/processing.rtf create mode 100644 general/datasets/Niaaa_bxd_hip_ctl_rnaseq1020/specifics.rtf create mode 100644 general/datasets/Niaaa_bxd_hip_ctl_rnaseq1020/tissue.rtf create mode 100644 general/datasets/Niaaa_bxd_hip_did_rnaseq1020/cases.rtf create mode 100644 general/datasets/Niaaa_bxd_hip_did_rnaseq1020/experiment-design.rtf create mode 100644 general/datasets/Niaaa_bxd_hip_did_rnaseq1020/processing.rtf create mode 100644 general/datasets/Niaaa_bxd_hip_did_rnaseq1020/specifics.rtf create mode 100644 general/datasets/Niaaa_bxd_hip_did_rnaseq1020/tissue.rtf create mode 100644 general/datasets/None/summary.rtf create mode 100644 general/datasets/OHSU_HS-CC_ILMStr_0211/summary.rtf delete mode 100644 general/datasets/OHSU_HS_CC_ILMStr_0211/summary.rtf delete mode 100644 general/datasets/ONCRetExMoGene2_0413/acknowledgment.rtf delete mode 100644 general/datasets/ONCRetExMoGene2_0413/cases.rtf delete mode 100644 general/datasets/ONCRetExMoGene2_0413/platform.rtf delete mode 100644 general/datasets/ONCRetExMoGene2_0413/processing.rtf delete mode 100644 general/datasets/ONCRetExMoGene2_0413/summary.rtf delete mode 100644 general/datasets/ONCRetExMoGene2_0413/tissue.rtf delete mode 100644 general/datasets/ONCRetMoGene2_0413/acknowledgment.rtf delete mode 100644 general/datasets/ONCRetMoGene2_0413/cases.rtf delete mode 100644 general/datasets/ONCRetMoGene2_0413/platform.rtf delete mode 100644 general/datasets/ONCRetMoGene2_0413/processing.rtf delete mode 100644 general/datasets/ONCRetMoGene2_0413/summary.rtf delete mode 100644 general/datasets/ONCRetMoGene2_0413/tissue.rtf create mode 100644 general/datasets/Ohsu_hs_cc_ilmstr_0211/summary.rtf create mode 100644 general/datasets/Oncretexmogene2_0413/acknowledgment.rtf create mode 100644 general/datasets/Oncretexmogene2_0413/cases.rtf create mode 100644 general/datasets/Oncretexmogene2_0413/citation.rtf create mode 100644 general/datasets/Oncretexmogene2_0413/contributors.rtf create mode 100644 general/datasets/Oncretexmogene2_0413/experiment-type.rtf create mode 100644 general/datasets/Oncretexmogene2_0413/platform.rtf create mode 100644 general/datasets/Oncretexmogene2_0413/processing.rtf create mode 100644 general/datasets/Oncretexmogene2_0413/summary.rtf create mode 100644 general/datasets/Oncretexmogene2_0413/tissue.rtf create mode 100644 general/datasets/Oncretilm6_0412/acknowledgment.rtf create mode 100644 general/datasets/Oncretilm6_0412/cases.rtf create mode 100644 general/datasets/Oncretilm6_0412/contributors.rtf create mode 100644 general/datasets/Oncretilm6_0412/experiment-design.rtf create mode 100644 general/datasets/Oncretilm6_0412/experiment-type.rtf create mode 100644 general/datasets/Oncretilm6_0412/notes.rtf create mode 100644 general/datasets/Oncretilm6_0412/platform.rtf create mode 100644 general/datasets/Oncretilm6_0412/processing.rtf create mode 100644 general/datasets/Oncretilm6_0412/summary.rtf create mode 100644 general/datasets/Oncretilm6_0412/tissue.rtf create mode 100644 general/datasets/Oncretmogene2_0413/acknowledgment.rtf create mode 100644 general/datasets/Oncretmogene2_0413/cases.rtf create mode 100644 general/datasets/Oncretmogene2_0413/citation.rtf create mode 100644 general/datasets/Oncretmogene2_0413/contributors.rtf create mode 100644 general/datasets/Oncretmogene2_0413/experiment-type.rtf create mode 100644 general/datasets/Oncretmogene2_0413/platform.rtf create mode 100644 general/datasets/Oncretmogene2_0413/processing.rtf create mode 100644 general/datasets/Oncretmogene2_0413/summary.rtf create mode 100644 general/datasets/Oncretmogene2_0413/tissue.rtf create mode 100644 general/datasets/Oxukhs_ilmhipp_ri0510/cases.rtf create mode 100644 general/datasets/Oxukhs_ilmhipp_ri0510/citation.rtf create mode 100644 general/datasets/Oxukhs_ilmhipp_ri0510/experiment-type.rtf create mode 100644 general/datasets/Oxukhs_ilmhipp_ri0510/platform.rtf create mode 100644 general/datasets/Oxukhs_ilmhipp_ri0510/summary.rtf create mode 100644 general/datasets/Oxukhs_ilmliver_ri0510/cases.rtf create mode 100644 general/datasets/Oxukhs_ilmliver_ri0510/citation.rtf create mode 100644 general/datasets/Oxukhs_ilmliver_ri0510/experiment-type.rtf create mode 100644 general/datasets/Oxukhs_ilmliver_ri0510/platform.rtf create mode 100644 general/datasets/Oxukhs_ilmliver_ri0510/summary.rtf create mode 100644 general/datasets/Oxukhs_ilmlung_ri0510/cases.rtf create mode 100644 general/datasets/Oxukhs_ilmlung_ri0510/citation.rtf create mode 100644 general/datasets/Oxukhs_ilmlung_ri0510/platform.rtf create mode 100644 general/datasets/Oxukhs_ilmlung_ri0510/summary.rtf delete mode 100644 general/datasets/PGenRatBrn_rna_0520/acknowledgment.rtf delete mode 100644 general/datasets/PGenRatBrn_rna_0520/cases.rtf delete mode 100644 general/datasets/PGenRatBrn_rna_0520/experiment-design.rtf delete mode 100644 general/datasets/PGenRatBrn_rna_0520/platform.rtf delete mode 100644 general/datasets/PGenRatBrn_rna_0520/processing.rtf delete mode 100644 general/datasets/PGenRatBrn_rna_0520/specifics.rtf delete mode 100644 general/datasets/PGenRatBrn_rna_0520/summary.rtf delete mode 100644 general/datasets/PGenRatBrn_rna_0520/tissue.rtf delete mode 100644 general/datasets/PGenRatBrn_rna_z_0520/acknowledgment.rtf delete mode 100644 general/datasets/PGenRatBrn_rna_z_0520/cases.rtf delete mode 100644 general/datasets/PGenRatBrn_rna_z_0520/experiment-design.rtf delete mode 100644 general/datasets/PGenRatBrn_rna_z_0520/platform.rtf delete mode 100644 general/datasets/PGenRatBrn_rna_z_0520/processing.rtf delete mode 100644 general/datasets/PGenRatBrn_rna_z_0520/specifics.rtf delete mode 100644 general/datasets/PGenRatBrn_rna_z_0520/summary.rtf delete mode 100644 general/datasets/PGenRatBrn_rna_z_0520/tissue.rtf delete mode 100644 general/datasets/PGenRatLiv_rna_0520/acknowledgment.rtf delete mode 100644 general/datasets/PGenRatLiv_rna_0520/cases.rtf delete mode 100644 general/datasets/PGenRatLiv_rna_0520/experiment-design.rtf delete mode 100644 general/datasets/PGenRatLiv_rna_0520/platform.rtf delete mode 100644 general/datasets/PGenRatLiv_rna_0520/processing.rtf delete mode 100644 general/datasets/PGenRatLiv_rna_0520/specifics.rtf delete mode 100644 general/datasets/PGenRatLiv_rna_0520/summary.rtf delete mode 100644 general/datasets/PGenRatLiv_rna_0520/tissue.rtf delete mode 100644 general/datasets/PGenRatLiv_rna_z_0520/acknowledgment.rtf delete mode 100644 general/datasets/PGenRatLiv_rna_z_0520/cases.rtf delete mode 100644 general/datasets/PGenRatLiv_rna_z_0520/experiment-design.rtf delete mode 100644 general/datasets/PGenRatLiv_rna_z_0520/platform.rtf delete mode 100644 general/datasets/PGenRatLiv_rna_z_0520/processing.rtf delete mode 100644 general/datasets/PGenRatLiv_rna_z_0520/specifics.rtf delete mode 100644 general/datasets/PGenRatLiv_rna_z_0520/summary.rtf delete mode 100644 general/datasets/PGenRatLiv_rna_z_0520/tissue.rtf delete mode 100644 general/datasets/PSU_B6D2F2_0812/platform.rtf delete mode 100644 general/datasets/PSU_B6D2F2_0812/summary.rtf delete mode 100644 general/datasets/PSU_B6D2F2_M0812/platform.rtf delete mode 100644 general/datasets/PSU_B6D2F2_M0812/summary.rtf create mode 100644 general/datasets/Pgenratbrn_rna_0520/acknowledgment.rtf create mode 100644 general/datasets/Pgenratbrn_rna_0520/cases.rtf create mode 100644 general/datasets/Pgenratbrn_rna_0520/citation.rtf create mode 100644 general/datasets/Pgenratbrn_rna_0520/contributors.rtf create mode 100644 general/datasets/Pgenratbrn_rna_0520/experiment-design.rtf create mode 100644 general/datasets/Pgenratbrn_rna_0520/platform.rtf create mode 100644 general/datasets/Pgenratbrn_rna_0520/processing.rtf create mode 100644 general/datasets/Pgenratbrn_rna_0520/specifics.rtf create mode 100644 general/datasets/Pgenratbrn_rna_0520/summary.rtf create mode 100644 general/datasets/Pgenratbrn_rna_0520/tissue.rtf create mode 100644 general/datasets/Pgenratbrn_rna_z_0520/acknowledgment.rtf create mode 100644 general/datasets/Pgenratbrn_rna_z_0520/cases.rtf create mode 100644 general/datasets/Pgenratbrn_rna_z_0520/citation.rtf create mode 100644 general/datasets/Pgenratbrn_rna_z_0520/contributors.rtf create mode 100644 general/datasets/Pgenratbrn_rna_z_0520/experiment-design.rtf create mode 100644 general/datasets/Pgenratbrn_rna_z_0520/platform.rtf create mode 100644 general/datasets/Pgenratbrn_rna_z_0520/processing.rtf create mode 100644 general/datasets/Pgenratbrn_rna_z_0520/specifics.rtf create mode 100644 general/datasets/Pgenratbrn_rna_z_0520/summary.rtf create mode 100644 general/datasets/Pgenratbrn_rna_z_0520/tissue.rtf create mode 100644 general/datasets/Pgenratliv_rna_0520/acknowledgment.rtf create mode 100644 general/datasets/Pgenratliv_rna_0520/cases.rtf create mode 100644 general/datasets/Pgenratliv_rna_0520/citation.rtf create mode 100644 general/datasets/Pgenratliv_rna_0520/contributors.rtf create mode 100644 general/datasets/Pgenratliv_rna_0520/experiment-design.rtf create mode 100644 general/datasets/Pgenratliv_rna_0520/platform.rtf create mode 100644 general/datasets/Pgenratliv_rna_0520/processing.rtf create mode 100644 general/datasets/Pgenratliv_rna_0520/specifics.rtf create mode 100644 general/datasets/Pgenratliv_rna_0520/summary.rtf create mode 100644 general/datasets/Pgenratliv_rna_0520/tissue.rtf create mode 100644 general/datasets/Pgenratliv_rna_z_0520/acknowledgment.rtf create mode 100644 general/datasets/Pgenratliv_rna_z_0520/cases.rtf create mode 100644 general/datasets/Pgenratliv_rna_z_0520/citation.rtf create mode 100644 general/datasets/Pgenratliv_rna_z_0520/contributors.rtf create mode 100644 general/datasets/Pgenratliv_rna_z_0520/experiment-design.rtf create mode 100644 general/datasets/Pgenratliv_rna_z_0520/platform.rtf create mode 100644 general/datasets/Pgenratliv_rna_z_0520/processing.rtf create mode 100644 general/datasets/Pgenratliv_rna_z_0520/specifics.rtf create mode 100644 general/datasets/Pgenratliv_rna_z_0520/summary.rtf create mode 100644 general/datasets/Pgenratliv_rna_z_0520/tissue.rtf delete mode 100644 general/datasets/PoplarPublish/acknowledgment.rtf delete mode 100644 general/datasets/PoplarPublish/platform.rtf delete mode 100644 general/datasets/PoplarPublish/processing.rtf delete mode 100644 general/datasets/PoplarPublish/summary.rtf create mode 100644 general/datasets/Poplarpublish/acknowledgment.rtf create mode 100644 general/datasets/Poplarpublish/citation.rtf create mode 100644 general/datasets/Poplarpublish/platform.rtf create mode 100644 general/datasets/Poplarpublish/processing.rtf create mode 100644 general/datasets/Poplarpublish/summary.rtf create mode 100644 general/datasets/Psu_b6d2f2_0812/experiment-type.rtf create mode 100644 general/datasets/Psu_b6d2f2_0812/platform.rtf create mode 100644 general/datasets/Psu_b6d2f2_0812/summary.rtf create mode 100644 general/datasets/Psu_b6d2f2_m0812/platform.rtf create mode 100644 general/datasets/Psu_b6d2f2_m0812/summary.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMet0814/acknowledgment.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMet0814/cases.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMet0814/experiment-design.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMet0814/notes.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMet0814/platform.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMet0814/summary.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMet0814/tissue.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetHF0814/acknowledgment.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetHF0814/cases.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetHF0814/experiment-design.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetHF0814/notes.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetHF0814/platform.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetHF0814/summary.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetHF0814/tissue.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/acknowledgment.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/cases.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/experiment-design.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/notes.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/platform.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/summary.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/tissue.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetLF0814/acknowledgment.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetLF0814/cases.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetLF0814/experiment-design.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetLF0814/notes.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetLF0814/platform.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetLF0814/summary.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetLF0814/tissue.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/acknowledgment.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/cases.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/experiment-design.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/notes.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/platform.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/summary.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/tissue.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetlog0814/acknowledgment.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetlog0814/cases.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetlog0814/experiment-design.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetlog0814/notes.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetlog0814/platform.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetlog0814/summary.rtf delete mode 100644 general/datasets/RTI_RCMRC_BXDFecMetlog0814/tissue.rtf delete mode 100644 general/datasets/Riken_Wu_BXD_CDHF_WAdip_0920/experiment-design.rtf delete mode 100644 general/datasets/Riken_Wu_BXD_CDHF_WAdip_0920/specifics.rtf delete mode 100644 general/datasets/Riken_Wu_BXD_CD_WAdip_0920/experiment-design.rtf delete mode 100644 general/datasets/Riken_Wu_BXD_CD_WAdip_0920/specifics.rtf delete mode 100644 general/datasets/Riken_Wu_BXD_HF_WAdip_0920/experiment-design.rtf delete mode 100644 general/datasets/Riken_Wu_BXD_HF_WAdip_0920/specifics.rtf delete mode 100644 general/datasets/Riken_Wu_BXD_WAdip_0720/experiment-design.rtf delete mode 100644 general/datasets/Riken_Wu_BXD_WAdip_0720/specifics.rtf create mode 100644 general/datasets/Riken_wu_bxd_cd_wadip_0920/experiment-design.rtf create mode 100644 general/datasets/Riken_wu_bxd_cd_wadip_0920/specifics.rtf create mode 100644 general/datasets/Riken_wu_bxd_cdhf_wadip_0920/experiment-design.rtf create mode 100644 general/datasets/Riken_wu_bxd_cdhf_wadip_0920/specifics.rtf create mode 100644 general/datasets/Riken_wu_bxd_hf_wadip_0920/experiment-design.rtf create mode 100644 general/datasets/Riken_wu_bxd_hf_wadip_0920/specifics.rtf create mode 100644 general/datasets/Riken_wu_bxd_wadip_0720/experiment-design.rtf create mode 100644 general/datasets/Riken_wu_bxd_wadip_0720/specifics.rtf create mode 100644 general/datasets/Rtc_1106_r/acknowledgment.rtf create mode 100644 general/datasets/Rtc_1106_r/cases.rtf create mode 100644 general/datasets/Rtc_1106_r/experiment-design.rtf create mode 100644 general/datasets/Rtc_1106_r/notes.rtf create mode 100644 general/datasets/Rtc_1106_r/platform.rtf create mode 100644 general/datasets/Rtc_1106_r/processing.rtf create mode 100644 general/datasets/Rtc_1106_r/summary.rtf create mode 100644 general/datasets/Rthc_0211_r/acknowledgment.rtf create mode 100644 general/datasets/Rthc_0211_r/cases.rtf create mode 100644 general/datasets/Rthc_0211_r/experiment-design.rtf create mode 100644 general/datasets/Rthc_0211_r/experiment-type.rtf create mode 100644 general/datasets/Rthc_0211_r/notes.rtf create mode 100644 general/datasets/Rthc_0211_r/platform.rtf create mode 100644 general/datasets/Rthc_0211_r/processing.rtf create mode 100644 general/datasets/Rthc_0211_r/summary.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmet0814/acknowledgment.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmet0814/cases.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmet0814/citation.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmet0814/contributors.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmet0814/experiment-design.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmet0814/notes.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmet0814/platform.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmet0814/summary.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmet0814/tissue.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmethf0814/acknowledgment.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmethf0814/cases.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmethf0814/citation.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmethf0814/contributors.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmethf0814/experiment-design.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmethf0814/notes.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmethf0814/platform.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmethf0814/summary.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmethf0814/tissue.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmethflog0814/acknowledgment.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmethflog0814/cases.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmethflog0814/citation.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmethflog0814/contributors.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmethflog0814/experiment-design.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmethflog0814/notes.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmethflog0814/platform.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmethflog0814/summary.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmethflog0814/tissue.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlf0814/acknowledgment.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlf0814/cases.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlf0814/citation.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlf0814/contributors.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlf0814/experiment-design.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlf0814/notes.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlf0814/platform.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlf0814/summary.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlf0814/tissue.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlflog0814/acknowledgment.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlflog0814/cases.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlflog0814/citation.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlflog0814/contributors.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlflog0814/experiment-design.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlflog0814/notes.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlflog0814/platform.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlflog0814/summary.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlflog0814/tissue.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlog0814/acknowledgment.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlog0814/cases.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlog0814/citation.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlog0814/contributors.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlog0814/experiment-design.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlog0814/notes.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlog0814/platform.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlog0814/summary.rtf create mode 100644 general/datasets/Rti_rcmrc_bxdfecmetlog0814/tissue.rtf delete mode 100644 general/datasets/STJ_PLN_0912/summary.rtf delete mode 100644 general/datasets/SUH_Liv_RMAEx_0611/processing.rtf delete mode 100644 general/datasets/SUH_Liv_RMAEx_0611/summary.rtf delete mode 100644 general/datasets/SUH_Liv_RMAEx_0611/tissue.rtf create mode 100644 general/datasets/Sa_m2_0405_m/acknowledgment.rtf create mode 100644 general/datasets/Sa_m2_0405_m/cases.rtf create mode 100644 general/datasets/Sa_m2_0405_m/experiment-design.rtf create mode 100644 general/datasets/Sa_m2_0405_m/notes.rtf create mode 100644 general/datasets/Sa_m2_0405_m/platform.rtf create mode 100644 general/datasets/Sa_m2_0405_m/processing.rtf create mode 100644 general/datasets/Sa_m2_0405_m/summary.rtf create mode 100644 general/datasets/Sa_m2_0405_m/tissue.rtf create mode 100644 general/datasets/Sa_m2_0405_mc/acknowledgment.rtf create mode 100644 general/datasets/Sa_m2_0405_mc/cases.rtf create mode 100644 general/datasets/Sa_m2_0405_mc/experiment-design.rtf create mode 100644 general/datasets/Sa_m2_0405_mc/notes.rtf create mode 100644 general/datasets/Sa_m2_0405_mc/platform.rtf create mode 100644 general/datasets/Sa_m2_0405_mc/processing.rtf create mode 100644 general/datasets/Sa_m2_0405_mc/summary.rtf create mode 100644 general/datasets/Sa_m2_0405_mc/tissue.rtf create mode 100644 general/datasets/Sa_m2_0405_p/acknowledgment.rtf create mode 100644 general/datasets/Sa_m2_0405_p/cases.rtf create mode 100644 general/datasets/Sa_m2_0405_p/experiment-design.rtf create mode 100644 general/datasets/Sa_m2_0405_p/notes.rtf create mode 100644 general/datasets/Sa_m2_0405_p/platform.rtf create mode 100644 general/datasets/Sa_m2_0405_p/processing.rtf create mode 100644 general/datasets/Sa_m2_0405_p/summary.rtf create mode 100644 general/datasets/Sa_m2_0405_p/tissue.rtf create mode 100644 general/datasets/Sa_m2_0405_pc/acknowledgment.rtf create mode 100644 general/datasets/Sa_m2_0405_pc/cases.rtf create mode 100644 general/datasets/Sa_m2_0405_pc/experiment-design.rtf create mode 100644 general/datasets/Sa_m2_0405_pc/notes.rtf create mode 100644 general/datasets/Sa_m2_0405_pc/platform.rtf create mode 100644 general/datasets/Sa_m2_0405_pc/processing.rtf create mode 100644 general/datasets/Sa_m2_0405_pc/summary.rtf create mode 100644 general/datasets/Sa_m2_0405_pc/tissue.rtf create mode 100644 general/datasets/Sa_m2_0405_r/acknowledgment.rtf create mode 100644 general/datasets/Sa_m2_0405_r/cases.rtf create mode 100644 general/datasets/Sa_m2_0405_r/experiment-design.rtf create mode 100644 general/datasets/Sa_m2_0405_r/notes.rtf create mode 100644 general/datasets/Sa_m2_0405_r/platform.rtf create mode 100644 general/datasets/Sa_m2_0405_r/processing.rtf create mode 100644 general/datasets/Sa_m2_0405_r/summary.rtf create mode 100644 general/datasets/Sa_m2_0405_r/tissue.rtf create mode 100644 general/datasets/Sa_m2_0405_rc/acknowledgment.rtf create mode 100644 general/datasets/Sa_m2_0405_rc/cases.rtf create mode 100644 general/datasets/Sa_m2_0405_rc/experiment-design.rtf create mode 100644 general/datasets/Sa_m2_0405_rc/notes.rtf create mode 100644 general/datasets/Sa_m2_0405_rc/platform.rtf create mode 100644 general/datasets/Sa_m2_0405_rc/processing.rtf create mode 100644 general/datasets/Sa_m2_0405_rc/summary.rtf create mode 100644 general/datasets/Sa_m2_0405_rc/tissue.rtf create mode 100644 general/datasets/Sa_m2_0405_rr/acknowledgment.rtf create mode 100644 general/datasets/Sa_m2_0405_rr/cases.rtf create mode 100644 general/datasets/Sa_m2_0405_rr/experiment-design.rtf create mode 100644 general/datasets/Sa_m2_0405_rr/notes.rtf create mode 100644 general/datasets/Sa_m2_0405_rr/platform.rtf create mode 100644 general/datasets/Sa_m2_0405_rr/processing.rtf create mode 100644 general/datasets/Sa_m2_0405_rr/summary.rtf create mode 100644 general/datasets/Sa_m2_0405_rr/tissue.rtf create mode 100644 general/datasets/Sa_m2_0405_ss/acknowledgment.rtf create mode 100644 general/datasets/Sa_m2_0405_ss/cases.rtf create mode 100644 general/datasets/Sa_m2_0405_ss/experiment-design.rtf create mode 100644 general/datasets/Sa_m2_0405_ss/notes.rtf create mode 100644 general/datasets/Sa_m2_0405_ss/platform.rtf create mode 100644 general/datasets/Sa_m2_0405_ss/processing.rtf create mode 100644 general/datasets/Sa_m2_0405_ss/summary.rtf create mode 100644 general/datasets/Sa_m2_0405_ss/tissue.rtf create mode 100644 general/datasets/Sa_m2_0905_m/acknowledgment.rtf create mode 100644 general/datasets/Sa_m2_0905_m/cases.rtf create mode 100644 general/datasets/Sa_m2_0905_m/citation.rtf create mode 100644 general/datasets/Sa_m2_0905_m/contributors.rtf create mode 100644 general/datasets/Sa_m2_0905_m/notes.rtf create mode 100644 general/datasets/Sa_m2_0905_m/platform.rtf create mode 100644 general/datasets/Sa_m2_0905_m/processing.rtf create mode 100644 general/datasets/Sa_m2_0905_m/summary.rtf create mode 100644 general/datasets/Sa_m2_0905_m/tissue.rtf create mode 100644 general/datasets/Sa_m2_0905_p/acknowledgment.rtf create mode 100644 general/datasets/Sa_m2_0905_p/cases.rtf create mode 100644 general/datasets/Sa_m2_0905_p/citation.rtf create mode 100644 general/datasets/Sa_m2_0905_p/contributors.rtf create mode 100644 general/datasets/Sa_m2_0905_p/notes.rtf create mode 100644 general/datasets/Sa_m2_0905_p/platform.rtf create mode 100644 general/datasets/Sa_m2_0905_p/processing.rtf create mode 100644 general/datasets/Sa_m2_0905_p/summary.rtf create mode 100644 general/datasets/Sa_m2_0905_p/tissue.rtf create mode 100644 general/datasets/Sa_m2_0905_r/acknowledgment.rtf create mode 100644 general/datasets/Sa_m2_0905_r/cases.rtf create mode 100644 general/datasets/Sa_m2_0905_r/citation.rtf create mode 100644 general/datasets/Sa_m2_0905_r/contributors.rtf create mode 100644 general/datasets/Sa_m2_0905_r/notes.rtf create mode 100644 general/datasets/Sa_m2_0905_r/platform.rtf create mode 100644 general/datasets/Sa_m2_0905_r/processing.rtf create mode 100644 general/datasets/Sa_m2_0905_r/summary.rtf create mode 100644 general/datasets/Sa_m2_0905_r/tissue.rtf create mode 100644 general/datasets/Sa_m2_1104_g/acknowledgment.rtf create mode 100644 general/datasets/Sa_m2_1104_g/cases.rtf create mode 100644 general/datasets/Sa_m2_1104_g/experiment-design.rtf create mode 100644 general/datasets/Sa_m2_1104_g/notes.rtf create mode 100644 general/datasets/Sa_m2_1104_g/platform.rtf create mode 100644 general/datasets/Sa_m2_1104_g/processing.rtf create mode 100644 general/datasets/Sa_m2_1104_g/summary.rtf create mode 100644 general/datasets/Sa_m2_1104_m/acknowledgment.rtf create mode 100644 general/datasets/Sa_m2_1104_m/cases.rtf create mode 100644 general/datasets/Sa_m2_1104_m/experiment-design.rtf create mode 100644 general/datasets/Sa_m2_1104_m/notes.rtf create mode 100644 general/datasets/Sa_m2_1104_m/platform.rtf create mode 100644 general/datasets/Sa_m2_1104_m/processing.rtf create mode 100644 general/datasets/Sa_m2_1104_m/summary.rtf create mode 100644 general/datasets/Sa_m2_1104_p/acknowledgment.rtf create mode 100644 general/datasets/Sa_m2_1104_p/cases.rtf create mode 100644 general/datasets/Sa_m2_1104_p/experiment-design.rtf create mode 100644 general/datasets/Sa_m2_1104_p/notes.rtf create mode 100644 general/datasets/Sa_m2_1104_p/platform.rtf create mode 100644 general/datasets/Sa_m2_1104_p/processing.rtf create mode 100644 general/datasets/Sa_m2_1104_p/summary.rtf create mode 100644 general/datasets/Sa_m2_1104_r/acknowledgment.rtf create mode 100644 general/datasets/Sa_m2_1104_r/cases.rtf create mode 100644 general/datasets/Sa_m2_1104_r/experiment-design.rtf create mode 100644 general/datasets/Sa_m2_1104_r/notes.rtf create mode 100644 general/datasets/Sa_m2_1104_r/platform.rtf create mode 100644 general/datasets/Sa_m2_1104_r/processing.rtf create mode 100644 general/datasets/Sa_m2_1104_r/summary.rtf delete mode 100644 general/datasets/ScrBXDACC4G0513/summary.rtf create mode 100644 general/datasets/Scrbxdacc4g0513/summary.rtf create mode 100644 general/datasets/Stj_pln_0912/experiment-type.rtf create mode 100644 general/datasets/Stj_pln_0912/summary.rtf create mode 100644 general/datasets/Striatum_exon_0209/cases.rtf create mode 100644 general/datasets/Striatum_exon_0209/notes.rtf create mode 100644 general/datasets/Striatum_exon_1212/cases.rtf create mode 100644 general/datasets/Striatum_exon_1212/notes.rtf create mode 100644 general/datasets/Stspl_1107_r/summary.rtf create mode 100644 general/datasets/Suh_liv_rma_0611/experiment-type.rtf create mode 100644 general/datasets/Suh_liv_rma_0611/processing.rtf create mode 100644 general/datasets/Suh_liv_rma_0611/summary.rtf create mode 100644 general/datasets/Suh_liv_rma_0611/tissue.rtf create mode 100644 general/datasets/Suh_liv_rmaex_0611/processing.rtf create mode 100644 general/datasets/Suh_liv_rmaex_0611/summary.rtf create mode 100644 general/datasets/Suh_liv_rmaex_0611/tissue.rtf create mode 100644 general/datasets/Sxmpublish/summary.rtf delete mode 100644 general/datasets/TIGEM_hg38_ret_rna_seq_0916/acknowledgment.rtf delete mode 100644 general/datasets/TIGEM_hg38_ret_rna_seq_0916/cases.rtf delete mode 100644 general/datasets/TIGEM_hg38_ret_rna_seq_0916/experiment-design.rtf delete mode 100644 general/datasets/TIGEM_hg38_ret_rna_seq_0916/processing.rtf delete mode 100644 general/datasets/TIGEM_hg38_ret_rna_seq_0916/summary.rtf create mode 100644 general/datasets/TSRI-DRG-AffyMOE430_0113-MDP/summary.rtf delete mode 100644 general/datasets/TSRI_DRG_AffyMOE430_0113_MDP/summary.rtf create mode 100644 general/datasets/Tigem_hg38_ret_rna_seq_0916/acknowledgment.rtf create mode 100644 general/datasets/Tigem_hg38_ret_rna_seq_0916/cases.rtf create mode 100644 general/datasets/Tigem_hg38_ret_rna_seq_0916/contributors.rtf create mode 100644 general/datasets/Tigem_hg38_ret_rna_seq_0916/experiment-design.rtf create mode 100644 general/datasets/Tigem_hg38_ret_rna_seq_0916/processing.rtf create mode 100644 general/datasets/Tigem_hg38_ret_rna_seq_0916/summary.rtf create mode 100644 general/datasets/Tsri_drg_affymoe430_0113_mdp/summary.rtf delete mode 100644 general/datasets/UBC_GSE23529HLT0613/summary.rtf delete mode 100644 general/datasets/UCAMC_LXSBrEtOH_RNA_Seq_0216/specifics.rtf delete mode 100644 general/datasets/UCAMC_LXSBrSal_RNA_Seq_0216/specifics.rtf delete mode 100644 general/datasets/UCI_EC_0913/experiment-design.rtf delete mode 100644 general/datasets/UCI_EC_0913/summary.rtf delete mode 100644 general/datasets/UCI_HC_0913/experiment-design.rtf delete mode 100644 general/datasets/UCI_HC_0913/summary.rtf delete mode 100644 general/datasets/UCI_PCG_0913/experiment-design.rtf delete mode 100644 general/datasets/UCI_PCG_0913/summary.rtf delete mode 100644 general/datasets/UCI_SG_0913/experiment-design.rtf delete mode 100644 general/datasets/UCI_SG_0913/summary.rtf delete mode 100644 general/datasets/UCLA_AXB_BXA_Aor_Jan16/experiment-design.rtf delete mode 100644 general/datasets/UCLA_AXB_BXA_Aor_Jan16/platform.rtf delete mode 100644 general/datasets/UCLA_AXB_BXA_Aor_Jan16/specifics.rtf delete mode 100644 general/datasets/UCLA_AXB_BXA_Aor_Jan16/summary.rtf delete mode 100644 general/datasets/UCLA_AXB_BXA_Femur_0113_RSN/summary.rtf delete mode 100644 general/datasets/UCLA_AXB_BXA_Liv_Jan16/experiment-design.rtf delete mode 100644 general/datasets/UCLA_AXB_BXA_Liv_Jan16/platform.rtf delete mode 100644 general/datasets/UCLA_AXB_BXA_Liv_Jan16/specifics.rtf delete mode 100644 general/datasets/UCLA_AXB_BXA_Liv_Jan16/summary.rtf create mode 100644 general/datasets/UCLA_BXD-on_Femur_0113_RSN/acknowledgment.rtf create mode 100644 general/datasets/UCLA_BXD-on_Femur_0113_RSN/experiment-design.rtf create mode 100644 general/datasets/UCLA_BXD-on_Femur_0113_RSN/platform.rtf create mode 100644 general/datasets/UCLA_BXD-on_Femur_0113_RSN/processing.rtf create mode 100644 general/datasets/UCLA_BXD-on_Femur_0113_RSN/summary.rtf delete mode 100644 general/datasets/UCLA_BXD_Aor_Jan16/experiment-design.rtf delete mode 100644 general/datasets/UCLA_BXD_Aor_Jan16/platform.rtf delete mode 100644 general/datasets/UCLA_BXD_Aor_Jan16/specifics.rtf delete mode 100644 general/datasets/UCLA_BXD_Aor_Jan16/summary.rtf delete mode 100644 general/datasets/UCLA_BXD_Liv_Jan16/experiment-design.rtf delete mode 100644 general/datasets/UCLA_BXD_Liv_Jan16/platform.rtf delete mode 100644 general/datasets/UCLA_BXD_Liv_Jan16/summary.rtf delete mode 100644 general/datasets/UCLA_BXD_on_Femur_0113_RSN/acknowledgment.rtf delete mode 100644 general/datasets/UCLA_BXD_on_Femur_0113_RSN/experiment-design.rtf delete mode 100644 general/datasets/UCLA_BXD_on_Femur_0113_RSN/platform.rtf delete mode 100644 general/datasets/UCLA_BXD_on_Femur_0113_RSN/processing.rtf delete mode 100644 general/datasets/UCLA_BXD_on_Femur_0113_RSN/summary.rtf delete mode 100644 general/datasets/UCLA_BXH_Femur_0113_RSN/summary.rtf delete mode 100644 general/datasets/UCLA_CXB_Aor_Jan16/experiment-design.rtf delete mode 100644 general/datasets/UCLA_CXB_Aor_Jan16/platform.rtf delete mode 100644 general/datasets/UCLA_CXB_Aor_Jan16/specifics.rtf delete mode 100644 general/datasets/UCLA_CXB_Aor_Jan16/summary.rtf delete mode 100644 general/datasets/UCLA_CXB_Liv_Jan16/experiment-design.rtf delete mode 100644 general/datasets/UCLA_CXB_Liv_Jan16/platform.rtf delete mode 100644 general/datasets/UCLA_CXB_Liv_Jan16/specifics.rtf delete mode 100644 general/datasets/UCLA_CXB_Liv_Jan16/summary.rtf delete mode 100644 general/datasets/UCLA_MDP_Femur_0113_RSN/acknowledgment.rtf delete mode 100644 general/datasets/UCLA_MDP_Femur_0113_RSN/experiment-design.rtf delete mode 100644 general/datasets/UCLA_MDP_Femur_0113_RSN/platform.rtf delete mode 100644 general/datasets/UCLA_MDP_Femur_0113_RSN/processing.rtf delete mode 100644 general/datasets/UCLA_MDP_Femur_0113_RSN/summary.rtf delete mode 100644 general/datasets/UCSD_AIL_HIP_RNA_Seq_0418/specifics.rtf delete mode 100644 general/datasets/UCSD_AIL_HIP_RNA_Seq_0418/summary.rtf delete mode 100644 general/datasets/UCSD_AIL_HIP_RNA_Seq_log2_0418/specifics.rtf delete mode 100644 general/datasets/UCSD_AIL_HIP_RNA_Seq_log2_0418/summary.rtf delete mode 100644 general/datasets/UCSD_AIL_PFC_RNA_Seq_0418/specifics.rtf delete mode 100644 general/datasets/UCSD_AIL_PFC_RNA_Seq_0418/summary.rtf delete mode 100644 general/datasets/UCSD_AIL_PFC_RNA_Seq_log2_0418/specifics.rtf delete mode 100644 general/datasets/UCSD_AIL_PFC_RNA_Seq_log2_0418/summary.rtf delete mode 100644 general/datasets/UCSD_AIL_STR_RNA_Seq_0418/specifics.rtf delete mode 100644 general/datasets/UCSD_AIL_STR_RNA_Seq_0418/summary.rtf delete mode 100644 general/datasets/UCSD_AIL_STR_RNA_Seq_log2_0418/specifics.rtf delete mode 100644 general/datasets/UCSD_AIL_STR_RNA_Seq_log2_0418/summary.rtf delete mode 100644 general/datasets/UCSD_CFW_HIP_RNA_Seq_0117/acknowledgment.rtf delete mode 100644 general/datasets/UCSD_CFW_HIP_RNA_Seq_0117/cases.rtf delete mode 100644 general/datasets/UCSD_CFW_HIP_RNA_Seq_0117/processing.rtf delete mode 100644 general/datasets/UCSD_CFW_HIP_RNA_Seq_0117/specifics.rtf delete mode 100644 general/datasets/UCSD_CFW_HIP_RNA_Seq_0117/summary.rtf delete mode 100644 general/datasets/UCSD_CFW_HIP_RNA_Seq_log2_0117/acknowledgment.rtf delete mode 100644 general/datasets/UCSD_CFW_HIP_RNA_Seq_log2_0117/cases.rtf delete mode 100644 general/datasets/UCSD_CFW_HIP_RNA_Seq_log2_0117/processing.rtf delete mode 100644 general/datasets/UCSD_CFW_HIP_RNA_Seq_log2_0117/specifics.rtf delete mode 100644 general/datasets/UCSD_CFW_HIP_RNA_Seq_log2_0117/summary.rtf delete mode 100644 general/datasets/UCSD_CFW_PFC_RNA_Seq_0117/acknowledgment.rtf delete mode 100644 general/datasets/UCSD_CFW_PFC_RNA_Seq_0117/cases.rtf delete mode 100644 general/datasets/UCSD_CFW_PFC_RNA_Seq_0117/processing.rtf delete mode 100644 general/datasets/UCSD_CFW_PFC_RNA_Seq_0117/specifics.rtf delete mode 100644 general/datasets/UCSD_CFW_PFC_RNA_Seq_0117/summary.rtf delete mode 100644 general/datasets/UCSD_CFW_PFC_RNA_Seq_log2_0117/acknowledgment.rtf delete mode 100644 general/datasets/UCSD_CFW_PFC_RNA_Seq_log2_0117/cases.rtf delete mode 100644 general/datasets/UCSD_CFW_PFC_RNA_Seq_log2_0117/processing.rtf delete mode 100644 general/datasets/UCSD_CFW_PFC_RNA_Seq_log2_0117/specifics.rtf delete mode 100644 general/datasets/UCSD_CFW_PFC_RNA_Seq_log2_0117/summary.rtf delete mode 100644 general/datasets/UCSD_CFW_SPL_RNA_Seq_0117/acknowledgment.rtf delete mode 100644 general/datasets/UCSD_CFW_SPL_RNA_Seq_0117/cases.rtf delete mode 100644 general/datasets/UCSD_CFW_SPL_RNA_Seq_0117/processing.rtf delete mode 100644 general/datasets/UCSD_CFW_SPL_RNA_Seq_0117/specifics.rtf delete mode 100644 general/datasets/UCSD_CFW_SPL_RNA_Seq_0117/summary.rtf delete mode 100644 general/datasets/UCSD_CFW_STR_RNA_Seq_log2_0117/acknowledgment.rtf delete mode 100644 general/datasets/UCSD_CFW_STR_RNA_Seq_log2_0117/cases.rtf delete mode 100644 general/datasets/UCSD_CFW_STR_RNA_Seq_log2_0117/processing.rtf delete mode 100644 general/datasets/UCSD_CFW_STR_RNA_Seq_log2_0117/specifics.rtf delete mode 100644 general/datasets/UCSD_CFW_STR_RNA_Seq_log2_0117/summary.rtf delete mode 100644 general/datasets/UConn_RGC_RSeq_log2_0918/specifics.rtf delete mode 100644 general/datasets/UConn_RGC_RSeq_log2_0918/summary.rtf delete mode 100644 general/datasets/UConn_RGC_RSeq_r_0918/specifics.rtf delete mode 100644 general/datasets/UConn_RGC_RSeq_r_0918/summary.rtf delete mode 100644 general/datasets/UConn_RGC_RSeq_s_0918/specifics.rtf delete mode 100644 general/datasets/UConn_RGC_RSeq_s_0918/summary.rtf delete mode 100644 general/datasets/UFL_MDP_Hipp0814/summary.rtf delete mode 100644 general/datasets/UND_NIDA_HXB_BXH_IndBP_log2z8_0321/cases.rtf delete mode 100644 general/datasets/UND_NIDA_HXB_BXH_IndBP_log2z8_0321/processing.rtf delete mode 100644 general/datasets/UND_NIDA_HXB_BXH_IndBP_log2z8_0321/specifics.rtf delete mode 100644 general/datasets/UND_NIDA_HXB_BXH_IndBP_log2z8_0321/summary.rtf delete mode 100644 general/datasets/UND_NIDA_HXB_BXH_IndBPep_log2z8_0321/cases.rtf delete mode 100644 general/datasets/UND_NIDA_HXB_BXH_IndBPep_log2z8_0321/processing.rtf delete mode 100644 general/datasets/UND_NIDA_HXB_BXH_IndBPep_log2z8_0321/specifics.rtf delete mode 100644 general/datasets/UND_NIDA_HXB_BXH_IndBPep_log2z8_0321/summary.rtf delete mode 100644 general/datasets/UTHSCWGU88BFMG1013/summary.rtf delete mode 100644 general/datasets/UTHSC_B6D2RI_H_0912/summary.rtf delete mode 100644 general/datasets/UTHSC_BXDAgedEx_1116/cases.rtf delete mode 100644 general/datasets/UTHSC_BXDAgedEx_1116/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXDAgedEx_1116/summary.rtf delete mode 100644 general/datasets/UTHSC_BXDAged_0615/cases.rtf delete mode 100644 general/datasets/UTHSC_BXDAged_0615/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXDAged_0615/summary.rtf delete mode 100644 general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/cases.rtf delete mode 100644 general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/experiment-design.rtf delete mode 100644 general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/notes.rtf delete mode 100644 general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/processing.rtf delete mode 100644 general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/tissue.rtf delete mode 100644 general/datasets/UTHSC_BXDYgEyeRNAseq_DESeq2_rlog2_0422/cases.rtf delete mode 100644 general/datasets/UTHSC_BXDYgEyeRNAseq_DESeq2_rlog2_0422/experiment-design.rtf delete mode 100644 general/datasets/UTHSC_BXDYgEyeRNAseq_DESeq2_rlog2_0422/notes.rtf delete mode 100644 general/datasets/UTHSC_BXDYgEyeRNAseq_DESeq2_rlog2_0422/processing.rtf delete mode 100644 general/datasets/UTHSC_BXDYgEyeRNAseq_DESeq2_rlog2_0422/tissue.rtf delete mode 100644 general/datasets/UTHSC_BXD_AgeHipp0515/cases.rtf delete mode 100644 general/datasets/UTHSC_BXD_AgeHipp0515/experiment-design.rtf delete mode 100644 general/datasets/UTHSC_BXD_AgeHipp0515/processing.rtf delete mode 100644 general/datasets/UTHSC_BXD_AgeHipp0515/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXD_AgeHipp0515/tissue.rtf delete mode 100644 general/datasets/UTHSC_BXD_Aged_Eye_RNAseq_TPM_Log2_1120/experiment-design.rtf delete mode 100644 general/datasets/UTHSC_BXD_Aged_Eye_RNAseq_TPM_Log2_1120/processing.rtf delete mode 100644 general/datasets/UTHSC_BXD_Aged_Eye_RNAseq_TPM_Log2_1120/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXD_Aged_Eye_RNAseq_TPM_Log2_1120/tissue.rtf delete mode 100644 general/datasets/UTHSC_BXD_All_Ages_Eye_RNAseq_TPM_Log/experiment-design.rtf delete mode 100644 general/datasets/UTHSC_BXD_All_Ages_Eye_RNAseq_TPM_Log/processing.rtf delete mode 100644 general/datasets/UTHSC_BXD_All_Ages_Eye_RNAseq_TPM_Log/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXD_All_Ages_Eye_RNAseq_TPM_Log/tissue.rtf delete mode 100644 general/datasets/UTHSC_BXD_H_0912/cases.rtf delete mode 100644 general/datasets/UTHSC_BXD_H_0912/experiment-design.rtf delete mode 100644 general/datasets/UTHSC_BXD_H_0912/processing.rtf delete mode 100644 general/datasets/UTHSC_BXD_H_0912/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXD_H_0912/tissue.rtf delete mode 100644 general/datasets/UTHSC_BXD_Harv_Liv_0118/cases.rtf delete mode 100644 general/datasets/UTHSC_BXD_Harv_Liv_0118/processing.rtf delete mode 100644 general/datasets/UTHSC_BXD_Harv_Liv_0118/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXD_Harv_Liv_0118/summary.rtf delete mode 100644 general/datasets/UTHSC_BXD_Harv_Liv_1019/cases.rtf delete mode 100644 general/datasets/UTHSC_BXD_Harv_Liv_1019/processing.rtf delete mode 100644 general/datasets/UTHSC_BXD_Harv_Liv_1019/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXD_Harv_Liv_1019/summary.rtf delete mode 100644 general/datasets/UTHSC_BXD_Harv_Liv_TPM_log2_1019/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXD_Harv_Liv_TPM_log2_1019/summary.rtf delete mode 100644 general/datasets/UTHSC_BXD_Hip_PostD7CtrlBS_1121/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXD_Hip_PostD7CtrlBS_1121/summary.rtf delete mode 100644 general/datasets/UTHSC_BXD_Hip_PostD7EtohBS_1121/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXD_Hip_PostD7EtohBS_1121/summary.rtf delete mode 100644 general/datasets/UTHSC_BXD_Hip_miRNASeq0214/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXD_Hip_miRNASeq0214/summary.rtf delete mode 100644 general/datasets/UTHSC_BXD_LivCDNAm_1119/experiment-design.rtf delete mode 100644 general/datasets/UTHSC_BXD_LivCDNAm_1119/platform.rtf delete mode 100644 general/datasets/UTHSC_BXD_LivCDNAm_1119/processing.rtf delete mode 100644 general/datasets/UTHSC_BXD_LivCDNAm_1119/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXD_LivCDNAm_1119/summary.rtf delete mode 100644 general/datasets/UTHSC_BXD_LivDNAm_1119/experiment-design.rtf delete mode 100644 general/datasets/UTHSC_BXD_LivDNAm_1119/platform.rtf delete mode 100644 general/datasets/UTHSC_BXD_LivDNAm_1119/processing.rtf delete mode 100644 general/datasets/UTHSC_BXD_LivDNAm_1119/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXD_LivDNAm_1119/summary.rtf delete mode 100644 general/datasets/UTHSC_BXD_LivHFDNAm_1119/experiment-design.rtf delete mode 100644 general/datasets/UTHSC_BXD_LivHFDNAm_1119/platform.rtf delete mode 100644 general/datasets/UTHSC_BXD_LivHFDNAm_1119/processing.rtf delete mode 100644 general/datasets/UTHSC_BXD_LivHFDNAm_1119/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXD_LivHFDNAm_1119/summary.rtf delete mode 100644 general/datasets/UTHSC_BXD_Liv_0818/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXD_Liv_0818/summary.rtf delete mode 100644 general/datasets/UTHSC_BXD_Liv_0917/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXD_Liv_0917/summary.rtf delete mode 100644 general/datasets/UTHSC_BXD_MamGland_ca_0322/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXD_MamGland_ca_0322/summary.rtf delete mode 100644 general/datasets/UTHSC_BXD_MamGland_cpmNtum_0322/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXD_MamGland_cpmNtum_0322/summary.rtf delete mode 100644 general/datasets/UTHSC_BXD_MamGland_cpm_0322/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXD_MamGland_cpm_0322/summary.rtf delete mode 100644 general/datasets/UTHSC_BXD_MamGland_tum_0322/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXD_MamGland_tum_0322/summary.rtf delete mode 100644 general/datasets/UTHSC_BXD_WB_RNASeqtrim1112/cases.rtf delete mode 100644 general/datasets/UTHSC_BXD_WB_RNASeqtrim1112/notes.rtf delete mode 100644 general/datasets/UTHSC_BXD_WB_RNASeqtrim1112/summary.rtf delete mode 100644 general/datasets/UTHSC_BXD_WB_RNASeqtrim1_1112/cases.rtf delete mode 100644 general/datasets/UTHSC_BXD_WB_RNASeqtrim1_1112/notes.rtf delete mode 100644 general/datasets/UTHSC_BXD_WB_RNASeqtrim1_1112/summary.rtf delete mode 100644 general/datasets/UTHSC_BXD_Young_Adult_Eye_RNAseq_TPM_Log/experiment-design.rtf delete mode 100644 general/datasets/UTHSC_BXD_Young_Adult_Eye_RNAseq_TPM_Log/processing.rtf delete mode 100644 general/datasets/UTHSC_BXD_Young_Adult_Eye_RNAseq_TPM_Log/specifics.rtf delete mode 100644 general/datasets/UTHSC_BXD_Young_Adult_Eye_RNAseq_TPM_Log/tissue.rtf delete mode 100644 general/datasets/UTHSC_EMSR_All_AffyMTA1_Mar17/specifics.rtf delete mode 100644 general/datasets/UTHSC_EMSR_All_AffyMTA1_Mar17/summary.rtf delete mode 100644 general/datasets/UTHSC_EMSR_EtSt_AffyMTA1_Mar17/specifics.rtf delete mode 100644 general/datasets/UTHSC_EMSR_EtSt_AffyMTA1_Mar17/summary.rtf delete mode 100644 general/datasets/UTHSC_EMSR_Et_AffyMTA1_Mar17/specifics.rtf delete mode 100644 general/datasets/UTHSC_EMSR_Et_AffyMTA1_Mar17/summary.rtf delete mode 100644 general/datasets/UTHSC_EMSR_Sal_AffyMTA1_Mar17/specifics.rtf delete mode 100644 general/datasets/UTHSC_EMSR_Sal_AffyMTA1_Mar17/summary.rtf delete mode 100644 general/datasets/UTHSC_EMSR_St_AffyMTA1_Mar17/specifics.rtf delete mode 100644 general/datasets/UTHSC_EMSR_St_AffyMTA1_Mar17/summary.rtf delete mode 100644 general/datasets/UTHSC_GutExL_0414/cases.rtf delete mode 100644 general/datasets/UTHSC_GutExL_0414/platform.rtf delete mode 100644 general/datasets/UTHSC_GutExL_0414/processing.rtf delete mode 100644 general/datasets/UTHSC_GutExL_0414/specifics.rtf delete mode 100644 general/datasets/UTHSC_GutExL_0414/tissue.rtf delete mode 100644 general/datasets/UTHSC_GutGL_0414/cases.rtf delete mode 100644 general/datasets/UTHSC_GutGL_0414/platform.rtf delete mode 100644 general/datasets/UTHSC_GutGL_0414/processing.rtf delete mode 100644 general/datasets/UTHSC_GutGL_0414/specifics.rtf delete mode 100644 general/datasets/UTHSC_GutGL_0414/tissue.rtf delete mode 100644 general/datasets/UTHSC_HuIslets_Mar17/platform.rtf delete mode 100644 general/datasets/UTHSC_HuIslets_Mar17/summary.rtf delete mode 100644 general/datasets/UTHSC_ILM_BXD_hipp_NOEb_0216/notes.rtf delete mode 100644 general/datasets/UTHSC_ILM_BXD_hipp_NOEb_0216/summary.rtf delete mode 100644 general/datasets/UTHSC_ILM_BXD_hipp_NOEb_0217/notes.rtf delete mode 100644 general/datasets/UTHSC_ILM_BXD_hipp_NOEb_0217/specifics.rtf delete mode 100644 general/datasets/UTHSC_ILM_BXD_hipp_NOEb_0217/summary.rtf delete mode 100644 general/datasets/UTHSC_ILM_BXD_hipp_NOSb_0217/notes.rtf delete mode 100644 general/datasets/UTHSC_ILM_BXD_hipp_NOSb_0217/specifics.rtf delete mode 100644 general/datasets/UTHSC_ILM_BXD_hipp_NOSb_0217/summary.rtf delete mode 100644 general/datasets/UTHSC_ILM_BXD_hipp_RSEb_0216/notes.rtf delete mode 100644 general/datasets/UTHSC_ILM_BXD_hipp_RSEb_0216/summary.rtf delete mode 100644 general/datasets/UTHSC_ILM_BXD_hipp_RSEb_0217/notes.rtf delete mode 100644 general/datasets/UTHSC_ILM_BXD_hipp_RSEb_0217/specifics.rtf delete mode 100644 general/datasets/UTHSC_ILM_BXD_hipp_RSEb_0217/summary.rtf delete mode 100644 general/datasets/UTHSC_ILM_BXD_hipp_RSSb_0216/notes.rtf delete mode 100644 general/datasets/UTHSC_ILM_BXD_hipp_RSSb_0216/summary.rtf delete mode 100644 general/datasets/UTHSC_ILM_BXD_hipp_RSSb_0217/notes.rtf delete mode 100644 general/datasets/UTHSC_ILM_BXD_hipp_RSSb_0217/specifics.rtf delete mode 100644 general/datasets/UTHSC_ILM_BXD_hipp_RSSb_0217/summary.rtf delete mode 100644 general/datasets/UTHSC_Neut_1014/experiment-design.rtf delete mode 100644 general/datasets/UTHSC_Neut_1014/summary.rtf delete mode 100644 general/datasets/UTHSC_Neut_EL_1014/experiment-design.rtf delete mode 100644 general/datasets/UTHSC_Neut_EL_1014/summary.rtf delete mode 100644 general/datasets/UTHSC_SPL_RMAEx_1210/cases.rtf delete mode 100644 general/datasets/UTHSC_SPL_RMAEx_1210/experiment-design.rtf delete mode 100644 general/datasets/UTHSC_SPL_RMAEx_1210/notes.rtf delete mode 100644 general/datasets/UTHSC_SPL_RMAEx_1210/processing.rtf delete mode 100644 general/datasets/UTHSC_SPL_RMAEx_1210/summary.rtf delete mode 100644 general/datasets/UTHSC_SPLs1_RMA_1210/cases.rtf delete mode 100644 general/datasets/UTHSC_SPLs1_RMA_1210/experiment-design.rtf delete mode 100644 general/datasets/UTHSC_SPLs1_RMA_1210/notes.rtf delete mode 100644 general/datasets/UTHSC_SPLs1_RMA_1210/processing.rtf delete mode 100644 general/datasets/UTHSC_SPLs1_RMA_1210/summary.rtf delete mode 100644 general/datasets/UTHSC_SPLs2_RMA_1210/cases.rtf delete mode 100644 general/datasets/UTHSC_SPLs2_RMA_1210/experiment-design.rtf delete mode 100644 general/datasets/UTHSC_SPLs2_RMA_1210/notes.rtf delete mode 100644 general/datasets/UTHSC_SPLs2_RMA_1210/processing.rtf delete mode 100644 general/datasets/UTHSC_SPLs2_RMA_1210/summary.rtf delete mode 100644 general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/acknowledgment.rtf delete mode 100644 general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/cases.rtf delete mode 100644 general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/experiment-design.rtf delete mode 100644 general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/platform.rtf delete mode 100644 general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/processing.rtf delete mode 100644 general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/summary.rtf delete mode 100644 general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/tissue.rtf delete mode 100644 general/datasets/UTHSC_mm10_B6D2_Ret_miRNA_1116/experiment-design.rtf delete mode 100644 general/datasets/UTHSC_mm10_B6D2_Ret_miRNA_1116/specifics.rtf delete mode 100644 general/datasets/UTHSC_mm10_B6D2_Ret_miRNA_1116/summary.rtf delete mode 100644 general/datasets/UTHSC_mm9_B6D2_RetEx_0916/cases.rtf delete mode 100644 general/datasets/UTHSC_mm9_B6D2_RetEx_0916/specifics.rtf delete mode 100644 general/datasets/UTHSC_mm9_B6D2_RetEx_0916/summary.rtf delete mode 100644 general/datasets/UTHSC_mm9_B6D2_Ret_0916/cases.rtf delete mode 100644 general/datasets/UTHSC_mm9_B6D2_Ret_0916/summary.rtf delete mode 100644 general/datasets/UT_ILM_BXD_hipp_NOE_1112/notes.rtf delete mode 100644 general/datasets/UT_ILM_BXD_hipp_NOE_1112/summary.rtf delete mode 100644 general/datasets/UT_ILM_BXD_hipp_RSS_1112/notes.rtf delete mode 100644 general/datasets/UT_ILM_BXD_hipp_RSS_1112/summary.rtf delete mode 100644 general/datasets/UT_VGX_HEL1014/acknowledgment.rtf delete mode 100644 general/datasets/UT_VGX_HEL1014/cases.rtf delete mode 100644 general/datasets/UT_VGX_HEL1014/experiment-design.rtf delete mode 100644 general/datasets/UT_VGX_HEL1014/platform.rtf delete mode 100644 general/datasets/UT_VGX_HEL1014/processing.rtf delete mode 100644 general/datasets/UT_VGX_HEL1014/summary.rtf delete mode 100644 general/datasets/UT_VGX_HEL1014/tissue.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/acknowledgment.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/cases.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/experiment-design.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/notes.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/platform.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/processing.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/specifics.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/summary.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/tissue.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/acknowledgment.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/cases.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/experiment-design.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/notes.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/platform.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/processing.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/specifics.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/summary.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/tissue.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_Str_rlog_0720/acknowledgment.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_Str_rlog_0720/cases.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_Str_rlog_0720/experiment-design.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_Str_rlog_0720/notes.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_Str_rlog_0720/platform.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_Str_rlog_0720/processing.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_Str_rlog_0720/specifics.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_Str_rlog_0720/summary.rtf delete mode 100644 general/datasets/UVA_HIV_1Tg_Str_rlog_0720/tissue.rtf create mode 100644 general/datasets/Uab_droswb_lc_rma_1009/citation.rtf create mode 100644 general/datasets/Uab_droswb_lc_rma_1009/contributors.rtf create mode 100644 general/datasets/Uab_droswb_lc_rma_1009/platform.rtf create mode 100644 general/datasets/Uab_droswb_lc_rma_1009/summary.rtf create mode 100644 general/datasets/Uab_droswb_le_rma_1009/citation.rtf create mode 100644 general/datasets/Uab_droswb_le_rma_1009/contributors.rtf create mode 100644 general/datasets/Uab_droswb_le_rma_1009/platform.rtf create mode 100644 general/datasets/Uab_droswb_le_rma_1009/summary.rtf create mode 100644 general/datasets/Ubc_gse23529hlt0613/citation.rtf create mode 100644 general/datasets/Ubc_gse23529hlt0613/contributors.rtf create mode 100644 general/datasets/Ubc_gse23529hlt0613/summary.rtf create mode 100644 general/datasets/Ucamc_lxsbretoh_rna_seq_0216/citation.rtf create mode 100644 general/datasets/Ucamc_lxsbretoh_rna_seq_0216/specifics.rtf create mode 100644 general/datasets/Ucamc_lxsbrsal_rna_seq_0216/citation.rtf create mode 100644 general/datasets/Ucamc_lxsbrsal_rna_seq_0216/specifics.rtf create mode 100644 general/datasets/Uci_ec_0913/citation.rtf create mode 100644 general/datasets/Uci_ec_0913/contributors.rtf create mode 100644 general/datasets/Uci_ec_0913/experiment-design.rtf create mode 100644 general/datasets/Uci_ec_0913/summary.rtf create mode 100644 general/datasets/Uci_hc_0913/citation.rtf create mode 100644 general/datasets/Uci_hc_0913/contributors.rtf create mode 100644 general/datasets/Uci_hc_0913/experiment-design.rtf create mode 100644 general/datasets/Uci_hc_0913/summary.rtf create mode 100644 general/datasets/Uci_pcg_0913/citation.rtf create mode 100644 general/datasets/Uci_pcg_0913/contributors.rtf create mode 100644 general/datasets/Uci_pcg_0913/experiment-design.rtf create mode 100644 general/datasets/Uci_pcg_0913/summary.rtf create mode 100644 general/datasets/Uci_sg_0913/citation.rtf create mode 100644 general/datasets/Uci_sg_0913/contributors.rtf create mode 100644 general/datasets/Uci_sg_0913/experiment-design.rtf create mode 100644 general/datasets/Uci_sg_0913/summary.rtf create mode 100644 general/datasets/Ucla_axb_bxa_aor_jan16/citation.rtf create mode 100644 general/datasets/Ucla_axb_bxa_aor_jan16/contributors.rtf create mode 100644 general/datasets/Ucla_axb_bxa_aor_jan16/experiment-design.rtf create mode 100644 general/datasets/Ucla_axb_bxa_aor_jan16/platform.rtf create mode 100644 general/datasets/Ucla_axb_bxa_aor_jan16/specifics.rtf create mode 100644 general/datasets/Ucla_axb_bxa_aor_jan16/summary.rtf create mode 100644 general/datasets/Ucla_axb_bxa_femur_0113_rsn/experiment-type.rtf create mode 100644 general/datasets/Ucla_axb_bxa_femur_0113_rsn/summary.rtf create mode 100644 general/datasets/Ucla_axb_bxa_liv_jan16/citation.rtf create mode 100644 general/datasets/Ucla_axb_bxa_liv_jan16/contributors.rtf create mode 100644 general/datasets/Ucla_axb_bxa_liv_jan16/experiment-design.rtf create mode 100644 general/datasets/Ucla_axb_bxa_liv_jan16/platform.rtf create mode 100644 general/datasets/Ucla_axb_bxa_liv_jan16/specifics.rtf create mode 100644 general/datasets/Ucla_axb_bxa_liv_jan16/summary.rtf create mode 100644 general/datasets/Ucla_bdf2_liver_1999/citation.rtf create mode 100644 general/datasets/Ucla_bdf2_liver_1999/experiment-design.rtf create mode 100644 general/datasets/Ucla_bdf2_liver_1999/summary.rtf create mode 100644 general/datasets/Ucla_bhf2_adipose_0605/citation.rtf create mode 100644 general/datasets/Ucla_bhf2_adipose_0605/contributors.rtf create mode 100644 general/datasets/Ucla_bhf2_adipose_0605/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhf2_adipose_0605/summary.rtf create mode 100644 general/datasets/Ucla_bhf2_adipose_female/citation.rtf create mode 100644 general/datasets/Ucla_bhf2_adipose_female/contributors.rtf create mode 100644 general/datasets/Ucla_bhf2_adipose_female/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhf2_adipose_female/specifics.rtf create mode 100644 general/datasets/Ucla_bhf2_adipose_female/summary.rtf create mode 100644 general/datasets/Ucla_bhf2_adipose_male/citation.rtf create mode 100644 general/datasets/Ucla_bhf2_adipose_male/contributors.rtf create mode 100644 general/datasets/Ucla_bhf2_adipose_male/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhf2_adipose_male/specifics.rtf create mode 100644 general/datasets/Ucla_bhf2_adipose_male/summary.rtf create mode 100644 general/datasets/Ucla_bhf2_brain_0605/citation.rtf create mode 100644 general/datasets/Ucla_bhf2_brain_0605/contributors.rtf create mode 100644 general/datasets/Ucla_bhf2_brain_0605/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhf2_brain_0605/summary.rtf create mode 100644 general/datasets/Ucla_bhf2_brain_female/citation.rtf create mode 100644 general/datasets/Ucla_bhf2_brain_female/contributors.rtf create mode 100644 general/datasets/Ucla_bhf2_brain_female/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhf2_brain_female/specifics.rtf create mode 100644 general/datasets/Ucla_bhf2_brain_female/summary.rtf create mode 100644 general/datasets/Ucla_bhf2_brain_male/citation.rtf create mode 100644 general/datasets/Ucla_bhf2_brain_male/contributors.rtf create mode 100644 general/datasets/Ucla_bhf2_brain_male/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhf2_brain_male/specifics.rtf create mode 100644 general/datasets/Ucla_bhf2_brain_male/summary.rtf create mode 100644 general/datasets/Ucla_bhf2_liver_0605/citation.rtf create mode 100644 general/datasets/Ucla_bhf2_liver_0605/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhf2_liver_0605/summary.rtf create mode 100644 general/datasets/Ucla_bhf2_liver_female/citation.rtf create mode 100644 general/datasets/Ucla_bhf2_liver_female/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhf2_liver_female/specifics.rtf create mode 100644 general/datasets/Ucla_bhf2_liver_female/summary.rtf create mode 100644 general/datasets/Ucla_bhf2_liver_male/citation.rtf create mode 100644 general/datasets/Ucla_bhf2_liver_male/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhf2_liver_male/specifics.rtf create mode 100644 general/datasets/Ucla_bhf2_liver_male/summary.rtf create mode 100644 general/datasets/Ucla_bhf2_muscle_0605/citation.rtf create mode 100644 general/datasets/Ucla_bhf2_muscle_0605/contributors.rtf create mode 100644 general/datasets/Ucla_bhf2_muscle_0605/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhf2_muscle_0605/summary.rtf create mode 100644 general/datasets/Ucla_bhf2_muscle_female/citation.rtf create mode 100644 general/datasets/Ucla_bhf2_muscle_female/contributors.rtf create mode 100644 general/datasets/Ucla_bhf2_muscle_female/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhf2_muscle_female/specifics.rtf create mode 100644 general/datasets/Ucla_bhf2_muscle_female/summary.rtf create mode 100644 general/datasets/Ucla_bhf2_muscle_male/citation.rtf create mode 100644 general/datasets/Ucla_bhf2_muscle_male/contributors.rtf create mode 100644 general/datasets/Ucla_bhf2_muscle_male/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhf2_muscle_male/specifics.rtf create mode 100644 general/datasets/Ucla_bhf2_muscle_male/summary.rtf create mode 100644 general/datasets/Ucla_bhhbf2_adipose_2005/citation.rtf create mode 100644 general/datasets/Ucla_bhhbf2_adipose_2005/contributors.rtf create mode 100644 general/datasets/Ucla_bhhbf2_adipose_2005/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhhbf2_adipose_2005/summary.rtf create mode 100644 general/datasets/Ucla_bhhbf2_adipose_female/citation.rtf create mode 100644 general/datasets/Ucla_bhhbf2_adipose_female/contributors.rtf create mode 100644 general/datasets/Ucla_bhhbf2_adipose_female/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhhbf2_adipose_female/specifics.rtf create mode 100644 general/datasets/Ucla_bhhbf2_adipose_female/summary.rtf create mode 100644 general/datasets/Ucla_bhhbf2_adipose_male/citation.rtf create mode 100644 general/datasets/Ucla_bhhbf2_adipose_male/contributors.rtf create mode 100644 general/datasets/Ucla_bhhbf2_adipose_male/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhhbf2_adipose_male/specifics.rtf create mode 100644 general/datasets/Ucla_bhhbf2_adipose_male/summary.rtf create mode 100644 general/datasets/Ucla_bhhbf2_brain_2005/citation.rtf create mode 100644 general/datasets/Ucla_bhhbf2_brain_2005/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhhbf2_brain_2005/summary.rtf create mode 100644 general/datasets/Ucla_bhhbf2_brain_female/citation.rtf create mode 100644 general/datasets/Ucla_bhhbf2_brain_female/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhhbf2_brain_female/specifics.rtf create mode 100644 general/datasets/Ucla_bhhbf2_brain_female/summary.rtf create mode 100644 general/datasets/Ucla_bhhbf2_brain_male/citation.rtf create mode 100644 general/datasets/Ucla_bhhbf2_brain_male/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhhbf2_brain_male/specifics.rtf create mode 100644 general/datasets/Ucla_bhhbf2_brain_male/summary.rtf create mode 100644 general/datasets/Ucla_bhhbf2_liver_2005/citation.rtf create mode 100644 general/datasets/Ucla_bhhbf2_liver_2005/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhhbf2_liver_2005/summary.rtf create mode 100644 general/datasets/Ucla_bhhbf2_liver_female/citation.rtf create mode 100644 general/datasets/Ucla_bhhbf2_liver_female/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhhbf2_liver_female/specifics.rtf create mode 100644 general/datasets/Ucla_bhhbf2_liver_female/summary.rtf create mode 100644 general/datasets/Ucla_bhhbf2_liver_male/citation.rtf create mode 100644 general/datasets/Ucla_bhhbf2_liver_male/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhhbf2_liver_male/specifics.rtf create mode 100644 general/datasets/Ucla_bhhbf2_liver_male/summary.rtf create mode 100644 general/datasets/Ucla_bhhbf2_muscle_2005/citation.rtf create mode 100644 general/datasets/Ucla_bhhbf2_muscle_2005/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhhbf2_muscle_2005/summary.rtf create mode 100644 general/datasets/Ucla_bhhbf2_muscle_female/citation.rtf create mode 100644 general/datasets/Ucla_bhhbf2_muscle_female/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhhbf2_muscle_female/specifics.rtf create mode 100644 general/datasets/Ucla_bhhbf2_muscle_female/summary.rtf create mode 100644 general/datasets/Ucla_bhhbf2_muscle_male/citation.rtf create mode 100644 general/datasets/Ucla_bhhbf2_muscle_male/experiment-design.rtf create mode 100644 general/datasets/Ucla_bhhbf2_muscle_male/specifics.rtf create mode 100644 general/datasets/Ucla_bhhbf2_muscle_male/summary.rtf create mode 100644 general/datasets/Ucla_bxd_aor_jan16/citation.rtf create mode 100644 general/datasets/Ucla_bxd_aor_jan16/contributors.rtf create mode 100644 general/datasets/Ucla_bxd_aor_jan16/experiment-design.rtf create mode 100644 general/datasets/Ucla_bxd_aor_jan16/platform.rtf create mode 100644 general/datasets/Ucla_bxd_aor_jan16/specifics.rtf create mode 100644 general/datasets/Ucla_bxd_aor_jan16/summary.rtf create mode 100644 general/datasets/Ucla_bxd_cartilage/experiment-design.rtf create mode 100644 general/datasets/Ucla_bxd_cartilage/summary.rtf create mode 100644 general/datasets/Ucla_bxd_femur_0113_rsn/acknowledgment.rtf create mode 100644 general/datasets/Ucla_bxd_femur_0113_rsn/citation.rtf create mode 100644 general/datasets/Ucla_bxd_femur_0113_rsn/experiment-design.rtf create mode 100644 general/datasets/Ucla_bxd_femur_0113_rsn/experiment-type.rtf create mode 100644 general/datasets/Ucla_bxd_femur_0113_rsn/platform.rtf create mode 100644 general/datasets/Ucla_bxd_femur_0113_rsn/processing.rtf create mode 100644 general/datasets/Ucla_bxd_femur_0113_rsn/summary.rtf create mode 100644 general/datasets/Ucla_bxd_liv_jan16/citation.rtf create mode 100644 general/datasets/Ucla_bxd_liv_jan16/contributors.rtf create mode 100644 general/datasets/Ucla_bxd_liv_jan16/experiment-design.rtf create mode 100644 general/datasets/Ucla_bxd_liv_jan16/platform.rtf create mode 100644 general/datasets/Ucla_bxd_liv_jan16/summary.rtf create mode 100644 general/datasets/Ucla_bxd_on_femur_0113_rsn/acknowledgment.rtf create mode 100644 general/datasets/Ucla_bxd_on_femur_0113_rsn/citation.rtf create mode 100644 general/datasets/Ucla_bxd_on_femur_0113_rsn/experiment-design.rtf create mode 100644 general/datasets/Ucla_bxd_on_femur_0113_rsn/experiment-type.rtf create mode 100644 general/datasets/Ucla_bxd_on_femur_0113_rsn/platform.rtf create mode 100644 general/datasets/Ucla_bxd_on_femur_0113_rsn/processing.rtf create mode 100644 general/datasets/Ucla_bxd_on_femur_0113_rsn/summary.rtf create mode 100644 general/datasets/Ucla_bxdbxh_cartilage/experiment-design.rtf create mode 100644 general/datasets/Ucla_bxdbxh_cartilage/summary.rtf create mode 100644 general/datasets/Ucla_bxdbxh_cartilage_v2/experiment-design.rtf create mode 100644 general/datasets/Ucla_bxdbxh_cartilage_v2/summary.rtf create mode 100644 general/datasets/Ucla_bxh_cartilage/experiment-design.rtf create mode 100644 general/datasets/Ucla_bxh_cartilage/summary.rtf create mode 100644 general/datasets/Ucla_bxh_femur_0113_rsn/experiment-type.rtf create mode 100644 general/datasets/Ucla_bxh_femur_0113_rsn/summary.rtf create mode 100644 general/datasets/Ucla_bxhbxd_cartilage/experiment-design.rtf create mode 100644 general/datasets/Ucla_bxhbxd_cartilage/summary.rtf create mode 100644 general/datasets/Ucla_bxhbxd_cartilage_v2/experiment-design.rtf create mode 100644 general/datasets/Ucla_bxhbxd_cartilage_v2/summary.rtf create mode 100644 general/datasets/Ucla_ctb6b6ctf2_adipose_2005/summary.rtf create mode 100644 general/datasets/Ucla_ctb6b6ctf2_adipose_female/summary.rtf create mode 100644 general/datasets/Ucla_ctb6b6ctf2_adipose_male/summary.rtf create mode 100644 general/datasets/Ucla_ctb6b6ctf2_brain_2005/summary.rtf create mode 100644 general/datasets/Ucla_ctb6b6ctf2_brain_female/summary.rtf create mode 100644 general/datasets/Ucla_ctb6b6ctf2_brain_male/summary.rtf create mode 100644 general/datasets/Ucla_ctb6b6ctf2_liver_2005/summary.rtf create mode 100644 general/datasets/Ucla_ctb6b6ctf2_liver_female/summary.rtf create mode 100644 general/datasets/Ucla_ctb6b6ctf2_liver_male/summary.rtf create mode 100644 general/datasets/Ucla_ctb6b6ctf2_muscle_2005/summary.rtf create mode 100644 general/datasets/Ucla_ctb6b6ctf2_muscle_female/summary.rtf create mode 100644 general/datasets/Ucla_ctb6b6ctf2_muscle_male/summary.rtf create mode 100644 general/datasets/Ucla_cxb_aor_jan16/citation.rtf create mode 100644 general/datasets/Ucla_cxb_aor_jan16/contributors.rtf create mode 100644 general/datasets/Ucla_cxb_aor_jan16/experiment-design.rtf create mode 100644 general/datasets/Ucla_cxb_aor_jan16/platform.rtf create mode 100644 general/datasets/Ucla_cxb_aor_jan16/specifics.rtf create mode 100644 general/datasets/Ucla_cxb_aor_jan16/summary.rtf create mode 100644 general/datasets/Ucla_cxb_liv_jan16/citation.rtf create mode 100644 general/datasets/Ucla_cxb_liv_jan16/contributors.rtf create mode 100644 general/datasets/Ucla_cxb_liv_jan16/experiment-design.rtf create mode 100644 general/datasets/Ucla_cxb_liv_jan16/platform.rtf create mode 100644 general/datasets/Ucla_cxb_liv_jan16/specifics.rtf create mode 100644 general/datasets/Ucla_cxb_liv_jan16/summary.rtf create mode 100644 general/datasets/Ucla_mdp_femur_0113_rsn/acknowledgment.rtf create mode 100644 general/datasets/Ucla_mdp_femur_0113_rsn/citation.rtf create mode 100644 general/datasets/Ucla_mdp_femur_0113_rsn/experiment-design.rtf create mode 100644 general/datasets/Ucla_mdp_femur_0113_rsn/experiment-type.rtf create mode 100644 general/datasets/Ucla_mdp_femur_0113_rsn/platform.rtf create mode 100644 general/datasets/Ucla_mdp_femur_0113_rsn/processing.rtf create mode 100644 general/datasets/Ucla_mdp_femur_0113_rsn/summary.rtf create mode 100644 general/datasets/Uconn_rgc_rseq_log2_0918/specifics.rtf create mode 100644 general/datasets/Uconn_rgc_rseq_log2_0918/summary.rtf create mode 100644 general/datasets/Uconn_rgc_rseq_r_0918/specifics.rtf create mode 100644 general/datasets/Uconn_rgc_rseq_r_0918/summary.rtf create mode 100644 general/datasets/Uconn_rgc_rseq_s_0918/specifics.rtf create mode 100644 general/datasets/Uconn_rgc_rseq_s_0918/summary.rtf create mode 100644 general/datasets/Ucsd_ail_hip_rna_seq_0418/citation.rtf create mode 100644 general/datasets/Ucsd_ail_hip_rna_seq_0418/contributors.rtf create mode 100644 general/datasets/Ucsd_ail_hip_rna_seq_0418/specifics.rtf create mode 100644 general/datasets/Ucsd_ail_hip_rna_seq_0418/summary.rtf create mode 100644 general/datasets/Ucsd_ail_hip_rna_seq_log2_0418/citation.rtf create mode 100644 general/datasets/Ucsd_ail_hip_rna_seq_log2_0418/contributors.rtf create mode 100644 general/datasets/Ucsd_ail_hip_rna_seq_log2_0418/specifics.rtf create mode 100644 general/datasets/Ucsd_ail_hip_rna_seq_log2_0418/summary.rtf create mode 100644 general/datasets/Ucsd_ail_pfc_rna_seq_0418/citation.rtf create mode 100644 general/datasets/Ucsd_ail_pfc_rna_seq_0418/contributors.rtf create mode 100644 general/datasets/Ucsd_ail_pfc_rna_seq_0418/specifics.rtf create mode 100644 general/datasets/Ucsd_ail_pfc_rna_seq_0418/summary.rtf create mode 100644 general/datasets/Ucsd_ail_pfc_rna_seq_log2_0418/citation.rtf create mode 100644 general/datasets/Ucsd_ail_pfc_rna_seq_log2_0418/contributors.rtf create mode 100644 general/datasets/Ucsd_ail_pfc_rna_seq_log2_0418/specifics.rtf create mode 100644 general/datasets/Ucsd_ail_pfc_rna_seq_log2_0418/summary.rtf create mode 100644 general/datasets/Ucsd_ail_str_rna_seq_0418/citation.rtf create mode 100644 general/datasets/Ucsd_ail_str_rna_seq_0418/contributors.rtf create mode 100644 general/datasets/Ucsd_ail_str_rna_seq_0418/specifics.rtf create mode 100644 general/datasets/Ucsd_ail_str_rna_seq_0418/summary.rtf create mode 100644 general/datasets/Ucsd_ail_str_rna_seq_log2_0418/citation.rtf create mode 100644 general/datasets/Ucsd_ail_str_rna_seq_log2_0418/contributors.rtf create mode 100644 general/datasets/Ucsd_ail_str_rna_seq_log2_0418/specifics.rtf create mode 100644 general/datasets/Ucsd_ail_str_rna_seq_log2_0418/summary.rtf create mode 100644 general/datasets/Ucsd_cfw_hip_rna_seq_0117/acknowledgment.rtf create mode 100644 general/datasets/Ucsd_cfw_hip_rna_seq_0117/cases.rtf create mode 100644 general/datasets/Ucsd_cfw_hip_rna_seq_0117/contributors.rtf create mode 100644 general/datasets/Ucsd_cfw_hip_rna_seq_0117/processing.rtf create mode 100644 general/datasets/Ucsd_cfw_hip_rna_seq_0117/specifics.rtf create mode 100644 general/datasets/Ucsd_cfw_hip_rna_seq_0117/summary.rtf create mode 100644 general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/acknowledgment.rtf create mode 100644 general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/cases.rtf create mode 100644 general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/contributors.rtf create mode 100644 general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/processing.rtf create mode 100644 general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/specifics.rtf create mode 100644 general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/summary.rtf create mode 100644 general/datasets/Ucsd_cfw_pfc_rna_seq_0117/acknowledgment.rtf create mode 100644 general/datasets/Ucsd_cfw_pfc_rna_seq_0117/cases.rtf create mode 100644 general/datasets/Ucsd_cfw_pfc_rna_seq_0117/contributors.rtf create mode 100644 general/datasets/Ucsd_cfw_pfc_rna_seq_0117/processing.rtf create mode 100644 general/datasets/Ucsd_cfw_pfc_rna_seq_0117/specifics.rtf create mode 100644 general/datasets/Ucsd_cfw_pfc_rna_seq_0117/summary.rtf create mode 100644 general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/acknowledgment.rtf create mode 100644 general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/cases.rtf create mode 100644 general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/contributors.rtf create mode 100644 general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/processing.rtf create mode 100644 general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/specifics.rtf create mode 100644 general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/summary.rtf create mode 100644 general/datasets/Ucsd_cfw_spl_rna_seq_0117/acknowledgment.rtf create mode 100644 general/datasets/Ucsd_cfw_spl_rna_seq_0117/cases.rtf create mode 100644 general/datasets/Ucsd_cfw_spl_rna_seq_0117/contributors.rtf create mode 100644 general/datasets/Ucsd_cfw_spl_rna_seq_0117/processing.rtf create mode 100644 general/datasets/Ucsd_cfw_spl_rna_seq_0117/specifics.rtf create mode 100644 general/datasets/Ucsd_cfw_spl_rna_seq_0117/summary.rtf create mode 100644 general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/acknowledgment.rtf create mode 100644 general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/cases.rtf create mode 100644 general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/contributors.rtf create mode 100644 general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/processing.rtf create mode 100644 general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/specifics.rtf create mode 100644 general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/summary.rtf create mode 100644 general/datasets/Ufl_mdp_hipp0814/summary.rtf create mode 100644 general/datasets/Uiowa_eye_rma_0906/summary.rtf create mode 100644 general/datasets/Umcg_0907_eryth/summary.rtf create mode 100644 general/datasets/Umcg_0907_eryth_ori/summary.rtf create mode 100644 general/datasets/Umcg_0907_hemastem/summary.rtf create mode 100644 general/datasets/Umcg_0907_hemastem_ori/summary.rtf create mode 100644 general/datasets/Umcg_0907_myeloid/summary.rtf create mode 100644 general/datasets/Umcg_0907_myeloid_ori/summary.rtf create mode 100644 general/datasets/Umcg_0907_pro/summary.rtf create mode 100644 general/datasets/Umcg_0907_pro_ori/summary.rtf create mode 100644 general/datasets/Umutaffyexon_0209_rma/acknowledgment.rtf create mode 100644 general/datasets/Umutaffyexon_0209_rma/cases.rtf create mode 100644 general/datasets/Umutaffyexon_0209_rma/experiment-type.rtf create mode 100644 general/datasets/Umutaffyexon_0209_rma/processing.rtf create mode 100644 general/datasets/Umutaffyexon_0209_rma/summary.rtf create mode 100644 general/datasets/Umutaffyexon_0209_rma_mdp/experiment-type.rtf create mode 100644 general/datasets/Umutaffyexon_0209_rma_mdp/summary.rtf create mode 100644 general/datasets/Und_nida_hxb_bxh_indbp_log2z8_0321/cases.rtf create mode 100644 general/datasets/Und_nida_hxb_bxh_indbp_log2z8_0321/processing.rtf create mode 100644 general/datasets/Und_nida_hxb_bxh_indbp_log2z8_0321/specifics.rtf create mode 100644 general/datasets/Und_nida_hxb_bxh_indbp_log2z8_0321/summary.rtf create mode 100644 general/datasets/Und_nida_hxb_bxh_indbpep_log2z8_0321/cases.rtf create mode 100644 general/datasets/Und_nida_hxb_bxh_indbpep_log2z8_0321/processing.rtf create mode 100644 general/datasets/Und_nida_hxb_bxh_indbpep_log2z8_0321/specifics.rtf create mode 100644 general/datasets/Und_nida_hxb_bxh_indbpep_log2z8_0321/summary.rtf create mode 100644 general/datasets/Ut_ceph_rankinv0909/acknowledgment.rtf create mode 100644 general/datasets/Ut_ceph_rankinv0909/cases.rtf create mode 100644 general/datasets/Ut_ceph_rankinv0909/contributors.rtf create mode 100644 general/datasets/Ut_ceph_rankinv0909/experiment-design.rtf create mode 100644 general/datasets/Ut_ceph_rankinv0909/experiment-type.rtf create mode 100644 general/datasets/Ut_ceph_rankinv0909/platform.rtf create mode 100644 general/datasets/Ut_ceph_rankinv0909/processing.rtf create mode 100644 general/datasets/Ut_ceph_rankinv0909/summary.rtf create mode 100644 general/datasets/Ut_hippratex_rma_0709/acknowledgment.rtf create mode 100644 general/datasets/Ut_hippratex_rma_0709/cases.rtf create mode 100644 general/datasets/Ut_hippratex_rma_0709/summary.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_5t_1112/notes.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_5t_1112/summary.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_noe_0909/notes.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_noe_0909/summary.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_noe_1112/notes.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_noe_1112/summary.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_non_0909/experiment-type.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_non_0909/notes.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_non_0909/summary.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_non_1112/notes.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_non_1112/summary.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_nos_0909/notes.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_nos_0909/summary.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_nos_1112/notes.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_nos_1112/summary.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_rse_0909/notes.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_rse_0909/summary.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_rse_1112/notes.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_rse_1112/summary.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_rss_0909/notes.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_rss_0909/summary.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_rss_1112/notes.rtf create mode 100644 general/datasets/Ut_ilm_bxd_hipp_rss_1112/summary.rtf create mode 100644 general/datasets/Ut_vgx_hel1014/acknowledgment.rtf create mode 100644 general/datasets/Ut_vgx_hel1014/cases.rtf create mode 100644 general/datasets/Ut_vgx_hel1014/citation.rtf create mode 100644 general/datasets/Ut_vgx_hel1014/contributors.rtf create mode 100644 general/datasets/Ut_vgx_hel1014/experiment-design.rtf create mode 100644 general/datasets/Ut_vgx_hel1014/platform.rtf create mode 100644 general/datasets/Ut_vgx_hel1014/processing.rtf create mode 100644 general/datasets/Ut_vgx_hel1014/summary.rtf create mode 100644 general/datasets/Ut_vgx_hel1014/tissue.rtf create mode 100644 general/datasets/Uthsc_1107_rankinv/summary.rtf create mode 100644 general/datasets/Uthsc_b6d2ri_h_0912/summary.rtf create mode 100644 general/datasets/Uthsc_bxd_aged_eye_rnaseq_tpm_log2_1120/experiment-design.rtf create mode 100644 general/datasets/Uthsc_bxd_aged_eye_rnaseq_tpm_log2_1120/processing.rtf create mode 100644 general/datasets/Uthsc_bxd_aged_eye_rnaseq_tpm_log2_1120/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_aged_eye_rnaseq_tpm_log2_1120/tissue.rtf create mode 100644 general/datasets/Uthsc_bxd_agehipp0515/cases.rtf create mode 100644 general/datasets/Uthsc_bxd_agehipp0515/experiment-design.rtf create mode 100644 general/datasets/Uthsc_bxd_agehipp0515/processing.rtf create mode 100644 general/datasets/Uthsc_bxd_agehipp0515/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_agehipp0515/tissue.rtf create mode 100644 general/datasets/Uthsc_bxd_all_ages_eye_rnaseq_tpm_log/experiment-design.rtf create mode 100644 general/datasets/Uthsc_bxd_all_ages_eye_rnaseq_tpm_log/processing.rtf create mode 100644 general/datasets/Uthsc_bxd_all_ages_eye_rnaseq_tpm_log/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_all_ages_eye_rnaseq_tpm_log/tissue.rtf create mode 100644 general/datasets/Uthsc_bxd_h_0912/cases.rtf create mode 100644 general/datasets/Uthsc_bxd_h_0912/experiment-design.rtf create mode 100644 general/datasets/Uthsc_bxd_h_0912/processing.rtf create mode 100644 general/datasets/Uthsc_bxd_h_0912/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_h_0912/tissue.rtf create mode 100644 general/datasets/Uthsc_bxd_harev3_0912/cases.rtf create mode 100644 general/datasets/Uthsc_bxd_harev3_0912/experiment-design.rtf create mode 100644 general/datasets/Uthsc_bxd_harev3_0912/processing.rtf create mode 100644 general/datasets/Uthsc_bxd_harev3_0912/tissue.rtf create mode 100644 general/datasets/Uthsc_bxd_harv_liv_0118/cases.rtf create mode 100644 general/datasets/Uthsc_bxd_harv_liv_0118/processing.rtf create mode 100644 general/datasets/Uthsc_bxd_harv_liv_0118/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_harv_liv_0118/summary.rtf create mode 100644 general/datasets/Uthsc_bxd_harv_liv_1019/cases.rtf create mode 100644 general/datasets/Uthsc_bxd_harv_liv_1019/processing.rtf create mode 100644 general/datasets/Uthsc_bxd_harv_liv_1019/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_harv_liv_1019/summary.rtf create mode 100644 general/datasets/Uthsc_bxd_harv_liv_tpm_log2_1019/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_harv_liv_tpm_log2_1019/summary.rtf create mode 100644 general/datasets/Uthsc_bxd_hip_mirnaseq0214/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_hip_mirnaseq0214/summary.rtf create mode 100644 general/datasets/Uthsc_bxd_hip_postd7ctrlbs_1121/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_hip_postd7ctrlbs_1121/summary.rtf create mode 100644 general/datasets/Uthsc_bxd_hip_postd7etohbs_1121/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_hip_postd7etohbs_1121/summary.rtf create mode 100644 general/datasets/Uthsc_bxd_liv_0818/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_liv_0818/summary.rtf create mode 100644 general/datasets/Uthsc_bxd_liv_0917/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_liv_0917/summary.rtf create mode 100644 general/datasets/Uthsc_bxd_livcdnam_1119/experiment-design.rtf create mode 100644 general/datasets/Uthsc_bxd_livcdnam_1119/platform.rtf create mode 100644 general/datasets/Uthsc_bxd_livcdnam_1119/processing.rtf create mode 100644 general/datasets/Uthsc_bxd_livcdnam_1119/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_livcdnam_1119/summary.rtf create mode 100644 general/datasets/Uthsc_bxd_livdnam_1119/experiment-design.rtf create mode 100644 general/datasets/Uthsc_bxd_livdnam_1119/platform.rtf create mode 100644 general/datasets/Uthsc_bxd_livdnam_1119/processing.rtf create mode 100644 general/datasets/Uthsc_bxd_livdnam_1119/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_livdnam_1119/summary.rtf create mode 100644 general/datasets/Uthsc_bxd_livhfdnam_1119/experiment-design.rtf create mode 100644 general/datasets/Uthsc_bxd_livhfdnam_1119/platform.rtf create mode 100644 general/datasets/Uthsc_bxd_livhfdnam_1119/processing.rtf create mode 100644 general/datasets/Uthsc_bxd_livhfdnam_1119/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_livhfdnam_1119/summary.rtf create mode 100644 general/datasets/Uthsc_bxd_mamgland_ca_0322/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_mamgland_ca_0322/summary.rtf create mode 100644 general/datasets/Uthsc_bxd_mamgland_cpm_0322/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_mamgland_cpm_0322/summary.rtf create mode 100644 general/datasets/Uthsc_bxd_mamgland_cpmntum_0322/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_mamgland_cpmntum_0322/summary.rtf create mode 100644 general/datasets/Uthsc_bxd_mamgland_tum_0322/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_mamgland_tum_0322/summary.rtf create mode 100644 general/datasets/Uthsc_bxd_wb_rnaseq1112/cases.rtf create mode 100644 general/datasets/Uthsc_bxd_wb_rnaseq1112/notes.rtf create mode 100644 general/datasets/Uthsc_bxd_wb_rnaseq1112/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_wb_rnaseq1112/summary.rtf create mode 100644 general/datasets/Uthsc_bxd_wb_rnaseqex1112/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_wb_rnaseqex1112/summary.rtf create mode 100644 general/datasets/Uthsc_bxd_wb_rnaseqtrim1112/cases.rtf create mode 100644 general/datasets/Uthsc_bxd_wb_rnaseqtrim1112/notes.rtf create mode 100644 general/datasets/Uthsc_bxd_wb_rnaseqtrim1112/summary.rtf create mode 100644 general/datasets/Uthsc_bxd_wb_rnaseqtrim1_1112/cases.rtf create mode 100644 general/datasets/Uthsc_bxd_wb_rnaseqtrim1_1112/notes.rtf create mode 100644 general/datasets/Uthsc_bxd_wb_rnaseqtrim1_1112/summary.rtf create mode 100644 general/datasets/Uthsc_bxd_young_adult_eye_rnaseq_tpm_log/experiment-design.rtf create mode 100644 general/datasets/Uthsc_bxd_young_adult_eye_rnaseq_tpm_log/processing.rtf create mode 100644 general/datasets/Uthsc_bxd_young_adult_eye_rnaseq_tpm_log/specifics.rtf create mode 100644 general/datasets/Uthsc_bxd_young_adult_eye_rnaseq_tpm_log/tissue.rtf create mode 100644 general/datasets/Uthsc_bxdaged_0615/cases.rtf create mode 100644 general/datasets/Uthsc_bxdaged_0615/specifics.rtf create mode 100644 general/datasets/Uthsc_bxdaged_0615/summary.rtf create mode 100644 general/datasets/Uthsc_bxdagedex_1116/cases.rtf create mode 100644 general/datasets/Uthsc_bxdagedex_1116/specifics.rtf create mode 100644 general/datasets/Uthsc_bxdagedex_1116/summary.rtf create mode 100644 general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/cases.rtf create mode 100644 general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/experiment-design.rtf create mode 100644 general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/notes.rtf create mode 100644 general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/processing.rtf create mode 100644 general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/specifics.rtf create mode 100644 general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/tissue.rtf create mode 100644 general/datasets/Uthsc_bxdygeyernaseq_deseq2_rlog2_0422/cases.rtf create mode 100644 general/datasets/Uthsc_bxdygeyernaseq_deseq2_rlog2_0422/experiment-design.rtf create mode 100644 general/datasets/Uthsc_bxdygeyernaseq_deseq2_rlog2_0422/notes.rtf create mode 100644 general/datasets/Uthsc_bxdygeyernaseq_deseq2_rlog2_0422/processing.rtf create mode 100644 general/datasets/Uthsc_bxdygeyernaseq_deseq2_rlog2_0422/tissue.rtf create mode 100644 general/datasets/Uthsc_emsr_all_affymta1_mar17/specifics.rtf create mode 100644 general/datasets/Uthsc_emsr_all_affymta1_mar17/summary.rtf create mode 100644 general/datasets/Uthsc_emsr_et_affymta1_mar17/specifics.rtf create mode 100644 general/datasets/Uthsc_emsr_et_affymta1_mar17/summary.rtf create mode 100644 general/datasets/Uthsc_emsr_etst_affymta1_mar17/specifics.rtf create mode 100644 general/datasets/Uthsc_emsr_etst_affymta1_mar17/summary.rtf create mode 100644 general/datasets/Uthsc_emsr_sal_affymta1_mar17/specifics.rtf create mode 100644 general/datasets/Uthsc_emsr_sal_affymta1_mar17/summary.rtf create mode 100644 general/datasets/Uthsc_emsr_st_affymta1_mar17/specifics.rtf create mode 100644 general/datasets/Uthsc_emsr_st_affymta1_mar17/summary.rtf create mode 100644 general/datasets/Uthsc_gutexl_0414/cases.rtf create mode 100644 general/datasets/Uthsc_gutexl_0414/platform.rtf create mode 100644 general/datasets/Uthsc_gutexl_0414/processing.rtf create mode 100644 general/datasets/Uthsc_gutexl_0414/specifics.rtf create mode 100644 general/datasets/Uthsc_gutexl_0414/tissue.rtf create mode 100644 general/datasets/Uthsc_gutgl_0414/cases.rtf create mode 100644 general/datasets/Uthsc_gutgl_0414/platform.rtf create mode 100644 general/datasets/Uthsc_gutgl_0414/processing.rtf create mode 100644 general/datasets/Uthsc_gutgl_0414/specifics.rtf create mode 100644 general/datasets/Uthsc_gutgl_0414/tissue.rtf create mode 100644 general/datasets/Uthsc_huislets_mar17/platform.rtf create mode 100644 general/datasets/Uthsc_huislets_mar17/summary.rtf create mode 100644 general/datasets/Uthsc_ilm_bxd_hipp_noeb_0216/notes.rtf create mode 100644 general/datasets/Uthsc_ilm_bxd_hipp_noeb_0216/summary.rtf create mode 100644 general/datasets/Uthsc_ilm_bxd_hipp_noeb_0217/notes.rtf create mode 100644 general/datasets/Uthsc_ilm_bxd_hipp_noeb_0217/specifics.rtf create mode 100644 general/datasets/Uthsc_ilm_bxd_hipp_noeb_0217/summary.rtf create mode 100644 general/datasets/Uthsc_ilm_bxd_hipp_nosb_0217/notes.rtf create mode 100644 general/datasets/Uthsc_ilm_bxd_hipp_nosb_0217/specifics.rtf create mode 100644 general/datasets/Uthsc_ilm_bxd_hipp_nosb_0217/summary.rtf create mode 100644 general/datasets/Uthsc_ilm_bxd_hipp_rseb_0216/notes.rtf create mode 100644 general/datasets/Uthsc_ilm_bxd_hipp_rseb_0216/summary.rtf create mode 100644 general/datasets/Uthsc_ilm_bxd_hipp_rseb_0217/notes.rtf create mode 100644 general/datasets/Uthsc_ilm_bxd_hipp_rseb_0217/specifics.rtf create mode 100644 general/datasets/Uthsc_ilm_bxd_hipp_rseb_0217/summary.rtf create mode 100644 general/datasets/Uthsc_ilm_bxd_hipp_rssb_0216/notes.rtf create mode 100644 general/datasets/Uthsc_ilm_bxd_hipp_rssb_0216/summary.rtf create mode 100644 general/datasets/Uthsc_ilm_bxd_hipp_rssb_0217/notes.rtf create mode 100644 general/datasets/Uthsc_ilm_bxd_hipp_rssb_0217/specifics.rtf create mode 100644 general/datasets/Uthsc_ilm_bxd_hipp_rssb_0217/summary.rtf create mode 100644 general/datasets/Uthsc_mm10_b6d2_ret_mirna_1116/experiment-design.rtf create mode 100644 general/datasets/Uthsc_mm10_b6d2_ret_mirna_1116/specifics.rtf create mode 100644 general/datasets/Uthsc_mm10_b6d2_ret_mirna_1116/summary.rtf create mode 100644 general/datasets/Uthsc_mm9_b6d2_ret_0916/cases.rtf create mode 100644 general/datasets/Uthsc_mm9_b6d2_ret_0916/summary.rtf create mode 100644 general/datasets/Uthsc_mm9_b6d2_retex_0916/cases.rtf create mode 100644 general/datasets/Uthsc_mm9_b6d2_retex_0916/specifics.rtf create mode 100644 general/datasets/Uthsc_mm9_b6d2_retex_0916/summary.rtf create mode 100644 general/datasets/Uthsc_neut_1014/experiment-design.rtf create mode 100644 general/datasets/Uthsc_neut_1014/summary.rtf create mode 100644 general/datasets/Uthsc_neut_el_1014/experiment-design.rtf create mode 100644 general/datasets/Uthsc_neut_el_1014/summary.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1010/cases.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1010/experiment-design.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1010/notes.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1010/processing.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1010/summary.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1210/cases.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1210/experiment-design.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1210/notes.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1210/processing.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1210/summary.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1210f/cases.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1210f/experiment-design.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1210f/experiment-type.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1210f/notes.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1210f/processing.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1210f/summary.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1210m/cases.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1210m/experiment-design.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1210m/experiment-type.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1210m/notes.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1210m/processing.rtf create mode 100644 general/datasets/Uthsc_spl_rma_1210m/summary.rtf create mode 100644 general/datasets/Uthsc_spl_rmaex_1210/cases.rtf create mode 100644 general/datasets/Uthsc_spl_rmaex_1210/experiment-design.rtf create mode 100644 general/datasets/Uthsc_spl_rmaex_1210/notes.rtf create mode 100644 general/datasets/Uthsc_spl_rmaex_1210/processing.rtf create mode 100644 general/datasets/Uthsc_spl_rmaex_1210/summary.rtf create mode 100644 general/datasets/Uthsc_spls1_rma_1210/cases.rtf create mode 100644 general/datasets/Uthsc_spls1_rma_1210/experiment-design.rtf create mode 100644 general/datasets/Uthsc_spls1_rma_1210/notes.rtf create mode 100644 general/datasets/Uthsc_spls1_rma_1210/processing.rtf create mode 100644 general/datasets/Uthsc_spls1_rma_1210/summary.rtf create mode 100644 general/datasets/Uthsc_spls2_rma_1210/cases.rtf create mode 100644 general/datasets/Uthsc_spls2_rma_1210/experiment-design.rtf create mode 100644 general/datasets/Uthsc_spls2_rma_1210/notes.rtf create mode 100644 general/datasets/Uthsc_spls2_rma_1210/processing.rtf create mode 100644 general/datasets/Uthsc_spls2_rma_1210/summary.rtf create mode 100644 general/datasets/Uthsc_str_rankinv_1210/summary.rtf create mode 100644 general/datasets/Uthsc_striatum_rankinv_1210/summary.rtf create mode 100644 general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/acknowledgment.rtf create mode 100644 general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/cases.rtf create mode 100644 general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/citation.rtf create mode 100644 general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/contributors.rtf create mode 100644 general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/experiment-design.rtf create mode 100644 general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/platform.rtf create mode 100644 general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/processing.rtf create mode 100644 general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/summary.rtf create mode 100644 general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/tissue.rtf create mode 100644 general/datasets/Uthscwgu88bfmg1013/summary.rtf create mode 100644 general/datasets/Utk_bxdspl_vst_0110/contributors.rtf create mode 100644 general/datasets/Utk_bxdspl_vst_0110/experiment-design.rtf create mode 100644 general/datasets/Utk_bxdspl_vst_0110/summary.rtf create mode 100644 general/datasets/Uva_hiv_1tg_hip_rlog_0720/acknowledgment.rtf create mode 100644 general/datasets/Uva_hiv_1tg_hip_rlog_0720/cases.rtf create mode 100644 general/datasets/Uva_hiv_1tg_hip_rlog_0720/citation.rtf create mode 100644 general/datasets/Uva_hiv_1tg_hip_rlog_0720/contributors.rtf create mode 100644 general/datasets/Uva_hiv_1tg_hip_rlog_0720/experiment-design.rtf create mode 100644 general/datasets/Uva_hiv_1tg_hip_rlog_0720/notes.rtf create mode 100644 general/datasets/Uva_hiv_1tg_hip_rlog_0720/platform.rtf create mode 100644 general/datasets/Uva_hiv_1tg_hip_rlog_0720/processing.rtf create mode 100644 general/datasets/Uva_hiv_1tg_hip_rlog_0720/specifics.rtf create mode 100644 general/datasets/Uva_hiv_1tg_hip_rlog_0720/summary.rtf create mode 100644 general/datasets/Uva_hiv_1tg_hip_rlog_0720/tissue.rtf create mode 100644 general/datasets/Uva_hiv_1tg_pfc_rlog_0720/acknowledgment.rtf create mode 100644 general/datasets/Uva_hiv_1tg_pfc_rlog_0720/cases.rtf create mode 100644 general/datasets/Uva_hiv_1tg_pfc_rlog_0720/citation.rtf create mode 100644 general/datasets/Uva_hiv_1tg_pfc_rlog_0720/contributors.rtf create mode 100644 general/datasets/Uva_hiv_1tg_pfc_rlog_0720/experiment-design.rtf create mode 100644 general/datasets/Uva_hiv_1tg_pfc_rlog_0720/notes.rtf create mode 100644 general/datasets/Uva_hiv_1tg_pfc_rlog_0720/platform.rtf create mode 100644 general/datasets/Uva_hiv_1tg_pfc_rlog_0720/processing.rtf create mode 100644 general/datasets/Uva_hiv_1tg_pfc_rlog_0720/specifics.rtf create mode 100644 general/datasets/Uva_hiv_1tg_pfc_rlog_0720/summary.rtf create mode 100644 general/datasets/Uva_hiv_1tg_pfc_rlog_0720/tissue.rtf create mode 100644 general/datasets/Uva_hiv_1tg_str_rlog_0720/acknowledgment.rtf create mode 100644 general/datasets/Uva_hiv_1tg_str_rlog_0720/cases.rtf create mode 100644 general/datasets/Uva_hiv_1tg_str_rlog_0720/citation.rtf create mode 100644 general/datasets/Uva_hiv_1tg_str_rlog_0720/contributors.rtf create mode 100644 general/datasets/Uva_hiv_1tg_str_rlog_0720/experiment-design.rtf create mode 100644 general/datasets/Uva_hiv_1tg_str_rlog_0720/notes.rtf create mode 100644 general/datasets/Uva_hiv_1tg_str_rlog_0720/platform.rtf create mode 100644 general/datasets/Uva_hiv_1tg_str_rlog_0720/processing.rtf create mode 100644 general/datasets/Uva_hiv_1tg_str_rlog_0720/specifics.rtf create mode 100644 general/datasets/Uva_hiv_1tg_str_rlog_0720/summary.rtf create mode 100644 general/datasets/Uva_hiv_1tg_str_rlog_0720/tissue.rtf delete mode 100644 general/datasets/VCU_BXD_Nac_CIE_AirZ_0416/summary.rtf delete mode 100644 general/datasets/VCU_BXD_Nac_CIE_Air_0416/summary.rtf delete mode 100644 general/datasets/VCU_BXD_Nac_CIE_EtZ_0416/summary.rtf delete mode 100644 general/datasets/VCU_BXD_Nac_CIE_Et_0416/summary.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/acknowledgment.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/cases.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/experiment-design.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/platform.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/summary.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/tissue.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_Air_0416/acknowledgment.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_Air_0416/cases.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_Air_0416/experiment-design.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_Air_0416/platform.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_Air_0416/summary.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_Air_0416/tissue.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/acknowledgment.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/cases.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/experiment-design.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/platform.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/summary.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/tissue.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_Et_0416/acknowledgment.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_Et_0416/cases.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_Et_0416/experiment-design.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_Et_0416/platform.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_Et_0416/summary.rtf delete mode 100644 general/datasets/VCU_BXD_PFC_CIE_Et_0416/tissue.rtf delete mode 100644 general/datasets/VCU_NAc_Air_0113_R/summary.rtf delete mode 100644 general/datasets/VCU_NAc_Et_0113_R/summary.rtf create mode 100644 general/datasets/Vcu_bxd_nac_cie_air_0416/summary.rtf create mode 100644 general/datasets/Vcu_bxd_nac_cie_airz_0416/summary.rtf create mode 100644 general/datasets/Vcu_bxd_nac_cie_et_0416/summary.rtf create mode 100644 general/datasets/Vcu_bxd_nac_cie_etz_0416/summary.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_air_0416/acknowledgment.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_air_0416/cases.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_air_0416/contributors.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_air_0416/experiment-design.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_air_0416/platform.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_air_0416/summary.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_air_0416/tissue.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_airz_0416/acknowledgment.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_airz_0416/cases.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_airz_0416/contributors.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_airz_0416/experiment-design.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_airz_0416/platform.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_airz_0416/summary.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_airz_0416/tissue.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_et_0416/acknowledgment.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_et_0416/cases.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_et_0416/contributors.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_et_0416/experiment-design.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_et_0416/platform.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_et_0416/summary.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_et_0416/tissue.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_etz_0416/acknowledgment.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_etz_0416/cases.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_etz_0416/contributors.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_etz_0416/experiment-design.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_etz_0416/platform.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_etz_0416/summary.rtf create mode 100644 general/datasets/Vcu_bxd_pfc_cie_etz_0416/tissue.rtf create mode 100644 general/datasets/Vcu_nac_air_0113_r/summary.rtf create mode 100644 general/datasets/Vcu_nac_ave_0113_ss/summary.rtf create mode 100644 general/datasets/Vcu_nac_et_0113_r/summary.rtf create mode 100644 general/datasets/Vcu_pf_air_0111_r/acknowledgment.rtf create mode 100644 general/datasets/Vcu_pf_air_0111_r/cases.rtf create mode 100644 general/datasets/Vcu_pf_air_0111_r/contributors.rtf create mode 100644 general/datasets/Vcu_pf_air_0111_r/experiment-design.rtf create mode 100644 general/datasets/Vcu_pf_air_0111_r/experiment-type.rtf create mode 100644 general/datasets/Vcu_pf_air_0111_r/platform.rtf create mode 100644 general/datasets/Vcu_pf_air_0111_r/summary.rtf create mode 100644 general/datasets/Vcu_pf_air_0111_r/tissue.rtf create mode 100644 general/datasets/Vcu_pf_ave_0111_ss/acknowledgment.rtf create mode 100644 general/datasets/Vcu_pf_ave_0111_ss/cases.rtf create mode 100644 general/datasets/Vcu_pf_ave_0111_ss/contributors.rtf create mode 100644 general/datasets/Vcu_pf_ave_0111_ss/experiment-design.rtf create mode 100644 general/datasets/Vcu_pf_ave_0111_ss/experiment-type.rtf create mode 100644 general/datasets/Vcu_pf_ave_0111_ss/platform.rtf create mode 100644 general/datasets/Vcu_pf_ave_0111_ss/summary.rtf create mode 100644 general/datasets/Vcu_pf_ave_0111_ss/tissue.rtf create mode 100644 general/datasets/Vcu_pf_et_0111_r/acknowledgment.rtf create mode 100644 general/datasets/Vcu_pf_et_0111_r/cases.rtf create mode 100644 general/datasets/Vcu_pf_et_0111_r/contributors.rtf create mode 100644 general/datasets/Vcu_pf_et_0111_r/experiment-design.rtf create mode 100644 general/datasets/Vcu_pf_et_0111_r/experiment-type.rtf create mode 100644 general/datasets/Vcu_pf_et_0111_r/platform.rtf create mode 100644 general/datasets/Vcu_pf_et_0111_r/summary.rtf create mode 100644 general/datasets/Vcu_pf_et_0111_r/tissue.rtf create mode 100644 general/datasets/Vcuet_vs_sal_0806_r/summary.rtf create mode 100644 general/datasets/Vcuetoh_0609_r/experiment-type.rtf create mode 100644 general/datasets/Vcuetoh_0609_r/notes.rtf create mode 100644 general/datasets/Vcuetoh_0609_r/platform.rtf create mode 100644 general/datasets/Vcuetoh_0609_r/specifics.rtf create mode 100644 general/datasets/Vcuetoh_0609_r/summary.rtf create mode 100644 general/datasets/Vcuetoh_0806_r/summary.rtf create mode 100644 general/datasets/Vcuetoh_1007_r/experiment-design.rtf create mode 100644 general/datasets/Vcuetoh_1007_r/processing.rtf create mode 100644 general/datasets/Vcuetoh_1007_r/summary.rtf create mode 100644 general/datasets/Vcuetoh_1206_r/acknowledgment.rtf create mode 100644 general/datasets/Vcuetoh_1206_r/cases.rtf create mode 100644 general/datasets/Vcuetoh_1206_r/contributors.rtf create mode 100644 general/datasets/Vcuetoh_1206_r/experiment-design.rtf create mode 100644 general/datasets/Vcuetoh_1206_r/experiment-type.rtf create mode 100644 general/datasets/Vcuetoh_1206_r/platform.rtf create mode 100644 general/datasets/Vcuetoh_1206_r/summary.rtf create mode 100644 general/datasets/Vcuetoh_1206_r/tissue.rtf create mode 100644 general/datasets/Vcuetvssal_0609_r/experiment-type.rtf create mode 100644 general/datasets/Vcuetvssal_0609_r/notes.rtf create mode 100644 general/datasets/Vcuetvssal_0609_r/platform.rtf create mode 100644 general/datasets/Vcuetvssal_0609_r/specifics.rtf create mode 100644 general/datasets/Vcuetvssal_0609_r/summary.rtf create mode 100644 general/datasets/Vcusal_0609_r/experiment-type.rtf create mode 100644 general/datasets/Vcusal_0609_r/notes.rtf create mode 100644 general/datasets/Vcusal_0609_r/platform.rtf create mode 100644 general/datasets/Vcusal_0609_r/specifics.rtf create mode 100644 general/datasets/Vcusal_0609_r/summary.rtf create mode 100644 general/datasets/Vcusal_0806_r/summary.rtf create mode 100644 general/datasets/Vcusal_1006_r/acknowledgment.rtf create mode 100644 general/datasets/Vcusal_1006_r/cases.rtf create mode 100644 general/datasets/Vcusal_1006_r/contributors.rtf create mode 100644 general/datasets/Vcusal_1006_r/experiment-design.rtf create mode 100644 general/datasets/Vcusal_1006_r/experiment-type.rtf create mode 100644 general/datasets/Vcusal_1006_r/platform.rtf create mode 100644 general/datasets/Vcusal_1006_r/summary.rtf create mode 100644 general/datasets/Vcusal_1006_r/tissue.rtf create mode 100644 general/datasets/Vcusal_1007_r/experiment-design.rtf create mode 100644 general/datasets/Vcusal_1007_r/processing.rtf create mode 100644 general/datasets/Vcusal_1007_r/summary.rtf create mode 100644 general/datasets/Vcusal_1206_r/acknowledgment.rtf create mode 100644 general/datasets/Vcusal_1206_r/cases.rtf create mode 100644 general/datasets/Vcusal_1206_r/contributors.rtf create mode 100644 general/datasets/Vcusal_1206_r/experiment-design.rtf create mode 100644 general/datasets/Vcusal_1206_r/experiment-type.rtf create mode 100644 general/datasets/Vcusal_1206_r/platform.rtf create mode 100644 general/datasets/Vcusal_1206_r/summary.rtf create mode 100644 general/datasets/Vcusal_1206_r/tissue.rtf create mode 100644 general/datasets/Vcusalo_1007_r/experiment-design.rtf create mode 100644 general/datasets/Vcusalo_1007_r/processing.rtf create mode 100644 general/datasets/Vcusalo_1007_r/summary.rtf create mode 100644 general/datasets/Vubxdmousemidbrainq0512/cases.rtf create mode 100644 general/datasets/Vubxdmousemidbrainq0512/experiment-type.rtf create mode 100644 general/datasets/Vubxdmousemidbrainq0512/summary.rtf delete mode 100644 general/datasets/gn10/acknowledgment.rtf delete mode 100644 general/datasets/gn10/cases.rtf delete mode 100644 general/datasets/gn10/experiment-design.rtf delete mode 100644 general/datasets/gn10/notes.rtf delete mode 100644 general/datasets/gn10/platform.rtf delete mode 100644 general/datasets/gn10/processing.rtf delete mode 100644 general/datasets/gn10/summary.rtf delete mode 100644 general/datasets/gn10/tissue.rtf delete mode 100644 general/datasets/luCA_GSE23352HLT0613/summary.rtf delete mode 100644 general/datasets/none/summary.rtf (limited to 'general') diff --git a/general/datasets/AILPublish/specifics.rtf b/general/datasets/AILPublish/specifics.rtf deleted file mode 100644 index ab45490..0000000 --- a/general/datasets/AILPublish/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Phenotypes \ No newline at end of file diff --git a/general/datasets/AILPublish/summary.rtf b/general/datasets/AILPublish/summary.rtf deleted file mode 100644 index 1359271..0000000 --- a/general/datasets/AILPublish/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

AIL (Advanced Intercross Line) Phenotypes

diff --git a/general/datasets/AXBXAGeno/acknowledgment.rtf b/general/datasets/AXBXAGeno/acknowledgment.rtf deleted file mode 100644 index e0afa35..0000000 --- a/general/datasets/AXBXAGeno/acknowledgment.rtf +++ /dev/null @@ -1,15 +0,0 @@ -

The initial construction of this phenotype database was performed with the help of Ryan McNeive, Nathan Copeland, and Mary-Kathleen Sullivan at University of Tennessee Health Sciences Center with support by a Human Brain Project to RWW. The extension and curation of these RI phenotype files is managed by Elissa J. Chesler.

- -

References:

- -

Peleg L, Nesbitt MN (1984) Genetic control of thymus size in inbred mice. J Hered. 75:126-130.

- -

Skamene E, James SL, Meltzer MS, Nesbitt MN (1984) Genetic control of macrophage activation for killing of extracellular targets. J Leukoc Biol 35:65-69.

- -

Sampson SB, Higgins DC, Elliot RW, Taylor BA, Lueders KK, Koza RA, Paigen B (1998) An edited linkage map for the AXB and BXA recombinant inbred mouse strains. Mamm Genome 9:688-694.

- -

Williams RW, Gu J, Qi S, Lu L (2001) The genetic structure of recombinant inbred mice: High-resolution consensus maps for complex trait analysis. Genome Biology 2:RESEARCH0046.

- -

Information about this text file:

- -

This text file was originally written by EJC, March 2004. Updated by RWW, October 30, 2004, EJC June 6, 2005.

diff --git a/general/datasets/AXBXAGeno/cases.rtf b/general/datasets/AXBXAGeno/cases.rtf deleted file mode 100644 index 9159468..0000000 --- a/general/datasets/AXBXAGeno/cases.rtf +++ /dev/null @@ -1,25 +0,0 @@ -

The AXB and BXA recombinant inbred strains were derived from a reciprocal cross between A/J (A) and C57BL/6J (B6 or B). Both parental strains have been sequenced, making this a particularly powerful set of RI strains for functional and genetic analyses. Data acquired using AXB and BXA subsets should be combined; the only difference being the polarity of intercross matings that generated (A x B)F1s and (B x A)F1s. AXB and BXA strains were all produced by Muriel Nesbitt at UCSD in the mid and late 1970s and first used in the early 1980s (Skamene et al., 1984; Peleg and Nesbitt, 1984; Marshal and Paigen, 1993). The set was imported into The Jackson Laboratory by Beverly Paigen (Pgn) in the early 1990s. As of 2004, approximately 25 viable and fully independent AXB/BXA strains are available.

- -

Several nominally independent strains in the AXB and BXA sets are very closely related. These duplicates should not be used without special statistical precaution. The most obvious option is to combine and average data from these strains except when their phenotypes differ significantly (Taylor 1996; Williams et al., 2001).
-
-AXB13=AXB14: 92.74% identity in an analysis of 8429 markers. AXB14/PgnJ (JAX001684) was renamed AXB13a/PgnJ (see JAXNotes issue number 504, Winter 2006).
-AXB18=AXB19=AXB20: 97 to 99% identity (AXB18 to AXB19 = 98.16% identity, AXB18 to AXB20 = 95.72% identity, AXB19 to AXB20 = 97.34% identity n an analysis of 8429 markers). AXB18 (JAX001686) was renamed AXB19a; AXB19 (JAX001687) was NOT renamed and is still AXB19, and AXB20 (JAX001688) was renamed AXB19b (see JAXNotes issue number 504, Winter 2006).
-BXA8=BXA17: 99.79% identity in an analysis of 8429 markers. BXA17 has been discarded as a strain. The orginal BXA17 was lost between 1989 and 1990. (Updated from Williams et al. 2001; see JAXNotes issue number 504, Winter 2006).).

- -

About the genotypes associated with these strains:

- -

Please see The Genetic Structure of Recombinant Inbred Mice.

- -

About the acquisition these data:

- -

Published phenotypes were obtained through a literature search of all PubMed indexed journals. Whenever possible, exact values of graphically represented data were obtained from the authors. In all other cases graphs were measured using a vernier caliper. Additional published and unpublished phenotypes were submitted directly by investigators. These records have Record ID numbers less than 1.

- -

The special AXB/BXA genotype data set that we use in GeneNetwork may be download as a "AXBXA.geno" file and opened with any text editor or even a spreadsheet program. This file is tab-delimited and includes the approximately centimorgan and basepair (megabasepair) location of the marekers, as well as the genotypes. Genotypes for several sets of strains have been combined. To obtain the original uncombined genotypes, please link to http://www.well.ox.ac.uk/mouse/INBREDS/ .

- -

How to obtain these strains:

- -

Please see http://jaxmice.jax.org/jaxmicedb/html/rcbinbred.shtml

- -

Submitting data and reporting errors:

- -

The utility of the AXB/BXA phenotype database increases significantly as each new phenotype is incorporated. To submit new data or report errors, please contact Elissa J. Chesler and Robert W. Williams at University of Tennessee Health Science Center

diff --git a/general/datasets/AXBXAGeno/summary.rtf b/general/datasets/AXBXAGeno/summary.rtf deleted file mode 100644 index f2f2497..0000000 --- a/general/datasets/AXBXAGeno/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

Download the entire AXB/BXA genotype file used in GeneNetwork (n = 2446 unique strain distribution patterns based on a total of 8514 informative markers). We have modified the orginal Wellcome-CTC genotypes by adding selected microsatellite markers. We have also curate the data and have removed somewhat improbable double-recombinant haplotypes and by imputing genotypes for a few untyped strains using very tightly linked markers. This genotype "smoothing" may remove some genuine recombinations and may result in linkage maps that will be very slightly conservative.

diff --git a/general/datasets/Ailpublish/specifics.rtf b/general/datasets/Ailpublish/specifics.rtf new file mode 100644 index 0000000..ab45490 --- /dev/null +++ b/general/datasets/Ailpublish/specifics.rtf @@ -0,0 +1 @@ +Phenotypes \ No newline at end of file diff --git a/general/datasets/Ailpublish/summary.rtf b/general/datasets/Ailpublish/summary.rtf new file mode 100644 index 0000000..1359271 --- /dev/null +++ b/general/datasets/Ailpublish/summary.rtf @@ -0,0 +1 @@ +

AIL (Advanced Intercross Line) Phenotypes

diff --git a/general/datasets/Akxdgeno/summary.rtf b/general/datasets/Akxdgeno/summary.rtf new file mode 100644 index 0000000..c7df169 --- /dev/null +++ b/general/datasets/Akxdgeno/summary.rtf @@ -0,0 +1 @@ +

Download the entire AKXD genotype file used in GeneNetwork (n = 1352 markers with useful strain distribution pattens from a total of 5448 informative markers). We have modified the orginal Wellcome-CTC genotypes by adding selected microsatellite markers. We have also curate the data and have removed somewhat improbable double-recombinant haplotypes and by imputing genotypes for a few untyped strains using very tightly linked markers. This genotype "smoothing" may remove some genuine recombinations and may result in linkage maps that will be very slightly conservative.

diff --git a/general/datasets/Axbxageno/acknowledgment.rtf b/general/datasets/Axbxageno/acknowledgment.rtf new file mode 100644 index 0000000..e0afa35 --- /dev/null +++ b/general/datasets/Axbxageno/acknowledgment.rtf @@ -0,0 +1,15 @@ +

The initial construction of this phenotype database was performed with the help of Ryan McNeive, Nathan Copeland, and Mary-Kathleen Sullivan at University of Tennessee Health Sciences Center with support by a Human Brain Project to RWW. The extension and curation of these RI phenotype files is managed by Elissa J. Chesler.

+ +

References:

+ +

Peleg L, Nesbitt MN (1984) Genetic control of thymus size in inbred mice. J Hered. 75:126-130.

+ +

Skamene E, James SL, Meltzer MS, Nesbitt MN (1984) Genetic control of macrophage activation for killing of extracellular targets. J Leukoc Biol 35:65-69.

+ +

Sampson SB, Higgins DC, Elliot RW, Taylor BA, Lueders KK, Koza RA, Paigen B (1998) An edited linkage map for the AXB and BXA recombinant inbred mouse strains. Mamm Genome 9:688-694.

+ +

Williams RW, Gu J, Qi S, Lu L (2001) The genetic structure of recombinant inbred mice: High-resolution consensus maps for complex trait analysis. Genome Biology 2:RESEARCH0046.

+ +

Information about this text file:

+ +

This text file was originally written by EJC, March 2004. Updated by RWW, October 30, 2004, EJC June 6, 2005.

diff --git a/general/datasets/Axbxageno/cases.rtf b/general/datasets/Axbxageno/cases.rtf new file mode 100644 index 0000000..9159468 --- /dev/null +++ b/general/datasets/Axbxageno/cases.rtf @@ -0,0 +1,25 @@ +

The AXB and BXA recombinant inbred strains were derived from a reciprocal cross between A/J (A) and C57BL/6J (B6 or B). Both parental strains have been sequenced, making this a particularly powerful set of RI strains for functional and genetic analyses. Data acquired using AXB and BXA subsets should be combined; the only difference being the polarity of intercross matings that generated (A x B)F1s and (B x A)F1s. AXB and BXA strains were all produced by Muriel Nesbitt at UCSD in the mid and late 1970s and first used in the early 1980s (Skamene et al., 1984; Peleg and Nesbitt, 1984; Marshal and Paigen, 1993). The set was imported into The Jackson Laboratory by Beverly Paigen (Pgn) in the early 1990s. As of 2004, approximately 25 viable and fully independent AXB/BXA strains are available.

+ +

Several nominally independent strains in the AXB and BXA sets are very closely related. These duplicates should not be used without special statistical precaution. The most obvious option is to combine and average data from these strains except when their phenotypes differ significantly (Taylor 1996; Williams et al., 2001).
+
+AXB13=AXB14: 92.74% identity in an analysis of 8429 markers. AXB14/PgnJ (JAX001684) was renamed AXB13a/PgnJ (see JAXNotes issue number 504, Winter 2006).
+AXB18=AXB19=AXB20: 97 to 99% identity (AXB18 to AXB19 = 98.16% identity, AXB18 to AXB20 = 95.72% identity, AXB19 to AXB20 = 97.34% identity n an analysis of 8429 markers). AXB18 (JAX001686) was renamed AXB19a; AXB19 (JAX001687) was NOT renamed and is still AXB19, and AXB20 (JAX001688) was renamed AXB19b (see JAXNotes issue number 504, Winter 2006).
+BXA8=BXA17: 99.79% identity in an analysis of 8429 markers. BXA17 has been discarded as a strain. The orginal BXA17 was lost between 1989 and 1990. (Updated from Williams et al. 2001; see JAXNotes issue number 504, Winter 2006).).

+ +

About the genotypes associated with these strains:

+ +

Please see The Genetic Structure of Recombinant Inbred Mice.

+ +

About the acquisition these data:

+ +

Published phenotypes were obtained through a literature search of all PubMed indexed journals. Whenever possible, exact values of graphically represented data were obtained from the authors. In all other cases graphs were measured using a vernier caliper. Additional published and unpublished phenotypes were submitted directly by investigators. These records have Record ID numbers less than 1.

+ +

The special AXB/BXA genotype data set that we use in GeneNetwork may be download as a "AXBXA.geno" file and opened with any text editor or even a spreadsheet program. This file is tab-delimited and includes the approximately centimorgan and basepair (megabasepair) location of the marekers, as well as the genotypes. Genotypes for several sets of strains have been combined. To obtain the original uncombined genotypes, please link to http://www.well.ox.ac.uk/mouse/INBREDS/ .

+ +

How to obtain these strains:

+ +

Please see http://jaxmice.jax.org/jaxmicedb/html/rcbinbred.shtml

+ +

Submitting data and reporting errors:

+ +

The utility of the AXB/BXA phenotype database increases significantly as each new phenotype is incorporated. To submit new data or report errors, please contact Elissa J. Chesler and Robert W. Williams at University of Tennessee Health Science Center

diff --git a/general/datasets/Axbxageno/summary.rtf b/general/datasets/Axbxageno/summary.rtf new file mode 100644 index 0000000..f2f2497 --- /dev/null +++ b/general/datasets/Axbxageno/summary.rtf @@ -0,0 +1 @@ +

Download the entire AXB/BXA genotype file used in GeneNetwork (n = 2446 unique strain distribution patterns based on a total of 8514 informative markers). We have modified the orginal Wellcome-CTC genotypes by adding selected microsatellite markers. We have also curate the data and have removed somewhat improbable double-recombinant haplotypes and by imputing genotypes for a few untyped strains using very tightly linked markers. This genotype "smoothing" may remove some genuine recombinations and may result in linkage maps that will be very slightly conservative.

diff --git a/general/datasets/B139_k_1206_m/citation.rtf b/general/datasets/B139_k_1206_m/citation.rtf new file mode 100644 index 0000000..9e38a8c --- /dev/null +++ b/general/datasets/B139_k_1206_m/citation.rtf @@ -0,0 +1 @@ +

Arnis Druka , Ilze Druka , Arthur G Centeno , Hongqiang Li , Zhaohui Sun , William TB Thomas , Nicola Bonar , Brian J Steffenson , Steven E Ullrich , Andris Kleinhofs , Roger P Wise , Timothy J Close , Elena Potokina , Zewei Luo , Carola Wagner , Gunther F Schweizer , David F Marshall , Michael J Kearsey , Robert W Williams and Robbie Waugh.Towards systems genetic analyses in barley: Integration of phenotypic, expression and genotype data into GeneNetwork. BMC Genetics 2008, 9:73doi:10.1186/1471-2156-9-73. PUBMED: PMC2630324

diff --git a/general/datasets/B139_k_1206_m/contributors.rtf b/general/datasets/B139_k_1206_m/contributors.rtf new file mode 100644 index 0000000..0103ff3 --- /dev/null +++ b/general/datasets/B139_k_1206_m/contributors.rtf @@ -0,0 +1 @@ +

Arnis Druka , Ilze Druka , Arthur G Centeno , Hongqiang Li , Zhaohui Sun , William TB Thomas , Nicola Bonar , Brian J Steffenson , Steven E Ullrich , Andris Kleinhofs , Roger P Wise , Timothy J Close , Elena Potokina , Zewei Luo , Carola Wagner , Gunther F Schweizer , David F Marshall , Michael J Kearsey , Robert W Williams and Robbie Waugh.

diff --git a/general/datasets/B139_k_1206_m/experiment-design.rtf b/general/datasets/B139_k_1206_m/experiment-design.rtf new file mode 100644 index 0000000..b80f1da --- /dev/null +++ b/general/datasets/B139_k_1206_m/experiment-design.rtf @@ -0,0 +1,3 @@ +

A typical genetical genomics experiment results in four separate data sets; genotype, gene expression, higher-order phenotypic data and metadata that describe the protocols, processing and the array platform. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. Their predictive power is largely determined by the gene expression dataset where tens of millions of data points can be generated using currently available mRNA profiling technologies. Such large, multidimensional data sets often have value beyond that extracted during their initial analysis and interpretation, particularly if conducted on widely distributed reference genetic materials. Besides quality and scale, access to the data is of primary importance as accessibility potentially allows the extraction of considerable added value from the same primary dataset by the wider research community. Although the number of genetical genomics experiments in different plant species is rapidly increasing, none to date has been presented in a form that allows quick and efficient on-line testing for possible associations between genes, loci and traits of interest by an entire research community.

+ +

By integrating barley genotypic, phenotypic and mRNA abundance data sets directly within GeneNetwork's analytical environment we provide simple web access to the data for the research community. In this environment, a combination of correlation analysis and linkage mapping provides the potential to identify and substantiate gene targets for saturation mapping and positional cloning. By integrating datasets from an unsequenced crop plant (barley) in a database that has been designed for an animal model species (mouse) with a well established genome sequence, we prove the importance of the concept and practice of modular development and interoperability of software engineering for biological data sets.

diff --git a/general/datasets/B139_k_1206_m/experiment-type.rtf b/general/datasets/B139_k_1206_m/experiment-type.rtf new file mode 100644 index 0000000..585c17b --- /dev/null +++ b/general/datasets/B139_k_1206_m/experiment-type.rtf @@ -0,0 +1 @@ +A typical genetical genomics experiment results in four separate data sets; genotype, gene expression, higher-order phenotypic data and metadata that describe the protocols, processing and the array platform. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. Their predictive power is largely determined by the gene expression dataset where tens of millions of data points can be generated using currently available mRNA profiling technologies. Such large, multidimensional data sets often have value beyond that extracted during their initial analysis and interpretation, particularly if conducted on widely distributed reference genetic materials. Besides quality and scale, access to the data is of primary importance as accessibility potentially allows the extraction of considerable added value from the same primary dataset by the wider research community. Although the number of genetical genomics experiments in different plant species is rapidly increasing, none to date has been presented in a form that allows quick and efficient on-line testing for possible associations between genes, loci and traits of interest by an entire research community. \ No newline at end of file diff --git a/general/datasets/B139_k_1206_m/summary.rtf b/general/datasets/B139_k_1206_m/summary.rtf new file mode 100644 index 0000000..54d0d52 --- /dev/null +++ b/general/datasets/B139_k_1206_m/summary.rtf @@ -0,0 +1 @@ +

Using a reference population of 150 recombinant doubled haploid barley lines we generated novel phenotypic, mRNA abundance and SNP-based genotyping data sets, added them to a considerable volume of legacy trait data and entered them into the GeneNetwork http://www.genenetwork.org webcite. GeneNetwork is a unified on-line analytical environment that enables the user to test genetic hypotheses about how component traits, such as mRNA abundance, may interact to condition more complex biological phenotypes (higher-order traits). Here we describe these barley data sets and demonstrate some of the functionalities GeneNetwork provides as an easily accessible and integrated analytical environment for exploring them.

diff --git a/general/datasets/B139_k_1206_r/citation.rtf b/general/datasets/B139_k_1206_r/citation.rtf new file mode 100644 index 0000000..9e38a8c --- /dev/null +++ b/general/datasets/B139_k_1206_r/citation.rtf @@ -0,0 +1 @@ +

Arnis Druka , Ilze Druka , Arthur G Centeno , Hongqiang Li , Zhaohui Sun , William TB Thomas , Nicola Bonar , Brian J Steffenson , Steven E Ullrich , Andris Kleinhofs , Roger P Wise , Timothy J Close , Elena Potokina , Zewei Luo , Carola Wagner , Gunther F Schweizer , David F Marshall , Michael J Kearsey , Robert W Williams and Robbie Waugh.Towards systems genetic analyses in barley: Integration of phenotypic, expression and genotype data into GeneNetwork. BMC Genetics 2008, 9:73doi:10.1186/1471-2156-9-73. PUBMED: PMC2630324

diff --git a/general/datasets/B139_k_1206_r/contributors.rtf b/general/datasets/B139_k_1206_r/contributors.rtf new file mode 100644 index 0000000..0103ff3 --- /dev/null +++ b/general/datasets/B139_k_1206_r/contributors.rtf @@ -0,0 +1 @@ +

Arnis Druka , Ilze Druka , Arthur G Centeno , Hongqiang Li , Zhaohui Sun , William TB Thomas , Nicola Bonar , Brian J Steffenson , Steven E Ullrich , Andris Kleinhofs , Roger P Wise , Timothy J Close , Elena Potokina , Zewei Luo , Carola Wagner , Gunther F Schweizer , David F Marshall , Michael J Kearsey , Robert W Williams and Robbie Waugh.

diff --git a/general/datasets/B139_k_1206_r/experiment-design.rtf b/general/datasets/B139_k_1206_r/experiment-design.rtf new file mode 100644 index 0000000..b80f1da --- /dev/null +++ b/general/datasets/B139_k_1206_r/experiment-design.rtf @@ -0,0 +1,3 @@ +

A typical genetical genomics experiment results in four separate data sets; genotype, gene expression, higher-order phenotypic data and metadata that describe the protocols, processing and the array platform. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. Their predictive power is largely determined by the gene expression dataset where tens of millions of data points can be generated using currently available mRNA profiling technologies. Such large, multidimensional data sets often have value beyond that extracted during their initial analysis and interpretation, particularly if conducted on widely distributed reference genetic materials. Besides quality and scale, access to the data is of primary importance as accessibility potentially allows the extraction of considerable added value from the same primary dataset by the wider research community. Although the number of genetical genomics experiments in different plant species is rapidly increasing, none to date has been presented in a form that allows quick and efficient on-line testing for possible associations between genes, loci and traits of interest by an entire research community.

+ +

By integrating barley genotypic, phenotypic and mRNA abundance data sets directly within GeneNetwork's analytical environment we provide simple web access to the data for the research community. In this environment, a combination of correlation analysis and linkage mapping provides the potential to identify and substantiate gene targets for saturation mapping and positional cloning. By integrating datasets from an unsequenced crop plant (barley) in a database that has been designed for an animal model species (mouse) with a well established genome sequence, we prove the importance of the concept and practice of modular development and interoperability of software engineering for biological data sets.

diff --git a/general/datasets/B139_k_1206_r/experiment-type.rtf b/general/datasets/B139_k_1206_r/experiment-type.rtf new file mode 100644 index 0000000..585c17b --- /dev/null +++ b/general/datasets/B139_k_1206_r/experiment-type.rtf @@ -0,0 +1 @@ +A typical genetical genomics experiment results in four separate data sets; genotype, gene expression, higher-order phenotypic data and metadata that describe the protocols, processing and the array platform. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. Their predictive power is largely determined by the gene expression dataset where tens of millions of data points can be generated using currently available mRNA profiling technologies. Such large, multidimensional data sets often have value beyond that extracted during their initial analysis and interpretation, particularly if conducted on widely distributed reference genetic materials. Besides quality and scale, access to the data is of primary importance as accessibility potentially allows the extraction of considerable added value from the same primary dataset by the wider research community. Although the number of genetical genomics experiments in different plant species is rapidly increasing, none to date has been presented in a form that allows quick and efficient on-line testing for possible associations between genes, loci and traits of interest by an entire research community. \ No newline at end of file diff --git a/general/datasets/B139_k_1206_r/summary.rtf b/general/datasets/B139_k_1206_r/summary.rtf new file mode 100644 index 0000000..54d0d52 --- /dev/null +++ b/general/datasets/B139_k_1206_r/summary.rtf @@ -0,0 +1 @@ +

Using a reference population of 150 recombinant doubled haploid barley lines we generated novel phenotypic, mRNA abundance and SNP-based genotyping data sets, added them to a considerable volume of legacy trait data and entered them into the GeneNetwork http://www.genenetwork.org webcite. GeneNetwork is a unified on-line analytical environment that enables the user to test genetic hypotheses about how component traits, such as mRNA abundance, may interact to condition more complex biological phenotypes (higher-order traits). Here we describe these barley data sets and demonstrate some of the functionalities GeneNetwork provides as an easily accessible and integrated analytical environment for exploring them.

diff --git a/general/datasets/B150_k_0406_r/citation.rtf b/general/datasets/B150_k_0406_r/citation.rtf new file mode 100644 index 0000000..9e38a8c --- /dev/null +++ b/general/datasets/B150_k_0406_r/citation.rtf @@ -0,0 +1 @@ +

Arnis Druka , Ilze Druka , Arthur G Centeno , Hongqiang Li , Zhaohui Sun , William TB Thomas , Nicola Bonar , Brian J Steffenson , Steven E Ullrich , Andris Kleinhofs , Roger P Wise , Timothy J Close , Elena Potokina , Zewei Luo , Carola Wagner , Gunther F Schweizer , David F Marshall , Michael J Kearsey , Robert W Williams and Robbie Waugh.Towards systems genetic analyses in barley: Integration of phenotypic, expression and genotype data into GeneNetwork. BMC Genetics 2008, 9:73doi:10.1186/1471-2156-9-73. PUBMED: PMC2630324

diff --git a/general/datasets/B150_k_0406_r/contributors.rtf b/general/datasets/B150_k_0406_r/contributors.rtf new file mode 100644 index 0000000..0103ff3 --- /dev/null +++ b/general/datasets/B150_k_0406_r/contributors.rtf @@ -0,0 +1 @@ +

Arnis Druka , Ilze Druka , Arthur G Centeno , Hongqiang Li , Zhaohui Sun , William TB Thomas , Nicola Bonar , Brian J Steffenson , Steven E Ullrich , Andris Kleinhofs , Roger P Wise , Timothy J Close , Elena Potokina , Zewei Luo , Carola Wagner , Gunther F Schweizer , David F Marshall , Michael J Kearsey , Robert W Williams and Robbie Waugh.

diff --git a/general/datasets/B150_k_0406_r/experiment-design.rtf b/general/datasets/B150_k_0406_r/experiment-design.rtf new file mode 100644 index 0000000..b80f1da --- /dev/null +++ b/general/datasets/B150_k_0406_r/experiment-design.rtf @@ -0,0 +1,3 @@ +

A typical genetical genomics experiment results in four separate data sets; genotype, gene expression, higher-order phenotypic data and metadata that describe the protocols, processing and the array platform. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. Their predictive power is largely determined by the gene expression dataset where tens of millions of data points can be generated using currently available mRNA profiling technologies. Such large, multidimensional data sets often have value beyond that extracted during their initial analysis and interpretation, particularly if conducted on widely distributed reference genetic materials. Besides quality and scale, access to the data is of primary importance as accessibility potentially allows the extraction of considerable added value from the same primary dataset by the wider research community. Although the number of genetical genomics experiments in different plant species is rapidly increasing, none to date has been presented in a form that allows quick and efficient on-line testing for possible associations between genes, loci and traits of interest by an entire research community.

+ +

By integrating barley genotypic, phenotypic and mRNA abundance data sets directly within GeneNetwork's analytical environment we provide simple web access to the data for the research community. In this environment, a combination of correlation analysis and linkage mapping provides the potential to identify and substantiate gene targets for saturation mapping and positional cloning. By integrating datasets from an unsequenced crop plant (barley) in a database that has been designed for an animal model species (mouse) with a well established genome sequence, we prove the importance of the concept and practice of modular development and interoperability of software engineering for biological data sets.

diff --git a/general/datasets/B150_k_0406_r/experiment-type.rtf b/general/datasets/B150_k_0406_r/experiment-type.rtf new file mode 100644 index 0000000..585c17b --- /dev/null +++ b/general/datasets/B150_k_0406_r/experiment-type.rtf @@ -0,0 +1 @@ +A typical genetical genomics experiment results in four separate data sets; genotype, gene expression, higher-order phenotypic data and metadata that describe the protocols, processing and the array platform. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. Their predictive power is largely determined by the gene expression dataset where tens of millions of data points can be generated using currently available mRNA profiling technologies. Such large, multidimensional data sets often have value beyond that extracted during their initial analysis and interpretation, particularly if conducted on widely distributed reference genetic materials. Besides quality and scale, access to the data is of primary importance as accessibility potentially allows the extraction of considerable added value from the same primary dataset by the wider research community. Although the number of genetical genomics experiments in different plant species is rapidly increasing, none to date has been presented in a form that allows quick and efficient on-line testing for possible associations between genes, loci and traits of interest by an entire research community. \ No newline at end of file diff --git a/general/datasets/B150_k_0406_r/summary.rtf b/general/datasets/B150_k_0406_r/summary.rtf new file mode 100644 index 0000000..54d0d52 --- /dev/null +++ b/general/datasets/B150_k_0406_r/summary.rtf @@ -0,0 +1 @@ +

Using a reference population of 150 recombinant doubled haploid barley lines we generated novel phenotypic, mRNA abundance and SNP-based genotyping data sets, added them to a considerable volume of legacy trait data and entered them into the GeneNetwork http://www.genenetwork.org webcite. GeneNetwork is a unified on-line analytical environment that enables the user to test genetic hypotheses about how component traits, such as mRNA abundance, may interact to condition more complex biological phenotypes (higher-order traits). Here we describe these barley data sets and demonstrate some of the functionalities GeneNetwork provides as an easily accessible and integrated analytical environment for exploring them.

diff --git a/general/datasets/B1li0809m5/summary.rtf b/general/datasets/B1li0809m5/summary.rtf new file mode 100644 index 0000000..134e635 --- /dev/null +++ b/general/datasets/B1li0809m5/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 79, Name: Barley1 Leaf INOC TTKS (Aug09) \ No newline at end of file diff --git a/general/datasets/B1li0809r/summary.rtf b/general/datasets/B1li0809r/summary.rtf new file mode 100644 index 0000000..134e635 --- /dev/null +++ b/general/datasets/B1li0809r/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 79, Name: Barley1 Leaf INOC TTKS (Aug09) \ No newline at end of file diff --git a/general/datasets/B1mi0809m5/summary.rtf b/general/datasets/B1mi0809m5/summary.rtf new file mode 100644 index 0000000..134e635 --- /dev/null +++ b/general/datasets/B1mi0809m5/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 79, Name: Barley1 Leaf INOC TTKS (Aug09) \ No newline at end of file diff --git a/general/datasets/B1mi0809r/summary.rtf b/general/datasets/B1mi0809r/summary.rtf new file mode 100644 index 0000000..134e635 --- /dev/null +++ b/general/datasets/B1mi0809r/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 79, Name: Barley1 Leaf INOC TTKS (Aug09) \ No newline at end of file diff --git a/general/datasets/B30_k_1206_m/acknowledgment.rtf b/general/datasets/B30_k_1206_m/acknowledgment.rtf new file mode 100644 index 0000000..5d9cc73 --- /dev/null +++ b/general/datasets/B30_k_1206_m/acknowledgment.rtf @@ -0,0 +1,3 @@ +
+

Plant maintenance, tissue collection, RNA isolation, and data submission to ArrayExpress was done at SCRI by Arnis Druka with support from BBSRC/SEERAD grant SCR/910/04 The genetics of gene expression in barley' to Michael Kearsey (University of Birmingham, UK) and Robbie Waugh (SCRI, UK). Probe synthesis, labeling and hybridization were performed according to manufacturer’s protocols (Affymetrix, Santa Clara, CA) at the Iowa State University GeneChip Core facility (Rico Caldo and Roger Wise). ArrayExpress (EBI, UK) team members Tim Rayner, Helen Parkinson, and Alvis Brazma are acknowledged for excellent help with data submission to ArrayExpress.

+
diff --git a/general/datasets/B30_k_1206_m/cases.rtf b/general/datasets/B30_k_1206_m/cases.rtf new file mode 100644 index 0000000..1425413 --- /dev/null +++ b/general/datasets/B30_k_1206_m/cases.rtf @@ -0,0 +1,1748 @@ +
+

The SM cross was originally made to map barley grain quality traits; Steptoe is high-yielding barley cultivar used for animal feeding, but Morex has good malting barley characteristics (Hayes et al 1993). Many agronomic quality traits have been mapped using this population (for the lists see BeerGenes web-site http://gnome.agrenv.mcgill.ca/bg/).

+ +

The sample used in this study consists of 150 Steptoe x Morex doubled haploid recombinant lines (Kleinhofs et al. 1993) was used to obtain embryo-derived tissue. For the seedling leaf tissue a subset of 35 lines was used. This subset was selected based on evenly spaced crossovers along each of seven barley chromosomes. The expression data of 11 DH lines has been removed from both, embryo and leaf, leaving for the analysis 129 lines with embryo expression data and a subset of 30 lines with seedling leaf expression data. The lines were removed from the analysis after error checking; discrepancies with genotyping data were found. We left all 150 lines in the embryo Apr06 data set and the full data set is available from the ArrayExpress. The following table lists line IDs and corresponding CEL file IDs, also indicating:
+1) pedigree; shows the direction of the cross that was used to produce the original F1. The parental plants were given letter codes of A - Z. For example, SM1 was derived from an F1 that was generated by crossing Steptoe plant "B" as a female with Morex plant "F" as a male.
+2) 'minimapper' subset - MINI;
+3) lines that have expression data removed - ERROR:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Order #Line IDPermanent Oregon IDCross direction +
CEL file names
+
Mini-mapper setError check
embryo data-setleaf data-setembryo data-setleaf data-set
1SM0012907001Steptoe/Morex(BxF)AD_SCRI_82.CEL  OK 
2SM0022907002Steptoe/Morex(BxF)AD_SCRI_1.CEL  OK 
3SM0032907003Morex/Steptoe(CxF)AD_SCRI_19.CEL  OK 
4SM0042907004Morex/Steptoe(CxF)AD_SCRI_3.CEL0521-1_SetA1.CELSMminiOKOK
5SM0052907005Steptoe/Morex(BxH)AD_SCRI_88.CEL  OK 
6SM0062907006Morex/Steptoe(CxF)AD_SCRI_48.CEL  OK 
7SM0072907007Steptoe/Morex(BxH)AD_SCRI_35.CEL0521-2_SetA2.CELSMminiOKOK
8SM0092907009Steptoe/Morex(BxF)AD_SCRI_2.CEL  OK 
9SM0102907010Morex/Steptoe(IxE)AD_SCRI_42.CEL  OK 
10SM0112907011Steptoe/Morex(QxG)AD_SCRI_10.CEL  OK 
11SM0122907012Morex/Steptoe(CxF)AD_SCRI_45.CEL0521-3_SetA3.CELSMminiERRORERROR
12SM0132907013Morex/Steptoe(IxE)AD_SCRI_78.CEL0521-4_SetA4.CELSMminiERRORERROR
13SM0142907014Steptoe/Morex(BxH)AD_SCRI_18.CEL  OK 
14SM0152907015Steptoe/Morex(BxH)AD_SCRI_5.CEL  OK 
15SM0162907016Steptoe/Morex(BxH)AD_SCRI_21.CEL  OK 
16SM0202907020Steptoe/Morex(OxJ)AD_SCRI_77.CEL  OK 
17SM0212907021Morex/Steptoe(IxE)AD_SCRI_30.CEL  OK 
18SM0222907022Morex/Steptoe(IxE)AD_SCRI_31.CEL0521-5_SetA5.CELSMminiOKOK
19SM0232907023Steptoe/Morex(BxH)AD_SCRI_32.CEL  OK 
20SM0242907024Morex/Steptoe(IxE)AD_SCRI_33.CEL0521-6_SetA6.CELSMminiOKOK
21SM0252907025Morex/Steptoe(CxF)AD_SCRI_34.CEL  OK 
22SM0272907027Steptoe/Morex(OxJ)AD_SCRI_12.CEL0521-7_SetA7.CELSMminiOKOK
23SM0302907030Morex/Steptoe(IxE)AD_SCRI_79.CEL  OK 
24SM0312907031Steptoe/Morex(OxJ)AD_SCRI_16.CEL  OK 
25SM0322907032Morex/Steptoe(IxE)AD_SCRI_13.CEL  OK 
26SM0352907035Morex/Steptoe(CxF)AD_SCRI_15.CEL  ERROR 
27SM0392907039Morex/Steptoe(CxF)AD_SCRI_41.CEL  OK 
28SM0402907040Steptoe/Morex(BxH)AD_SCRI_83.CEL  OK 
29SM0412907041Steptoe/Morex(OxJ)AD_SCRI_11_redo.CEL0521-8_SetA8.CELSMminiOKOK
30SM0422907042Morex/Steptoe(CxF)AD_SCRI_57.CEL  OK 
31SM0432907043Morex/Steptoe(JxE)AD_SCRI_49.CEL0521-9_SetA9.CELSMminiOKOK
32SM0442907044Steptoe/Morex(OxJ)AD_SCRI_50.CEL0521-10_SetA10.CELSMminiOKOK
33SM0452907045Steptoe/Morex(BxH)AD_SCRI_51.CEL  OK 
34SM0462907046Steptoe/Morex(OxJ)AD_SCRI_52.CEL0521-11_SetA11.CELSMminiOKOK
35SM0482907048Steptoe/Morex(BxF)AD_SCRI_53.CEL  ERROR 
36SM0502907050Morex/Steptoe(IxE)AD_SCRI_46.CEL  OK 
37SM0542907054Morex/Steptoe(CxF)AD_SCRI_60.CEL  OK 
38SM0552907055Steptoe/Morex(OxJ)AD_SCRI_55.CEL  OK 
39SM0562907056Steptoe/Morex(BxH)AD_SCRI_23.CEL  OK 
40SM0572907057Morex/Steptoe(CxF)AD_SCRI_24.CEL  OK 
41SM0582907058Steptoe/Morex(BxF)AD_SCRI_22.CEL  OK 
42SM0592907059Steptoe/Morex(BxH)AD_SCRI_27.CEL  OK 
43SM0612907061Morex/Steptoe(LxF)AD_SCRI_81.CEL0521-12_SetA12.CELSMminiOKOK
44SM0622907062Morex/Steptoe(CxF)AD_SCRI_44.CEL  OK 
45SM0632907063Steptoe/Morex(OxJ)AD_SCRI_40.CEL0521-13_SetA13.CELSMminiOKOK
46SM0642907064Morex/Steptoe(CxF)AD_SCRI_87_redo.CEL  OK 
47SM0652907065Morex/Steptoe(CxF)AD_SCRI_54.CEL  OK 
48SM0672907067Steptoe/Morex(OxJ)AD_SCRI_73.CEL  OK 
49SM0682907068Steptoe/Morex(OxG)AD_SCRI_56.CEL  ERROR 
50SM0692907069Steptoe/Morex(BxH)AD_SCRI_71.CEL  OK 
51SM0702907070Steptoe/Morex(BxF)AD_SCRI_64.CEL  OK 
52SM0712907071Steptoe/Morex(BxH)AD_SCRI_58.CEL  OK 
53SM0722907072Morex/Steptoe(CxF)AD_SCRI_59.CEL  OK 
54SM0732907073Steptoe/Morex(BxF)AD_SCRI_74.CEL0521-14_SetA14.CELSMminiOKERROR
55SM0742907074Morex/Steptoe(CxF)AD_SCRI_25.CEL0521-15_SetA15.CELSMminiOKOK
56SM0752907075Steptoe/Morex(QxG)AD_SCRI_120.CEL  OK 
57SM0762907076Steptoe/Morex(BxF)AD_SCRI_112.CEL  OK 
58SM0772907077Morex/Steptoe(CxF)AD_SCRI_142.CEL  OK 
59SM0782907078Steptoe/Morex(BxF)AD_SCRI_86.CEL  OK 
60SM0792907079Morex/Steptoe(CxF)AD_SCRI_153.CEL0521-16_SetA16.CELSMminiOKERROR
61SM0802907080Steptoe/Morex(BxF)AD_SCRI_107.CEL  OK 
62SM0812907081Morex/Steptoe(CxF)AD_SCRI_105.CEL  OK 
63SM0822907082Steptoe/Morex(BxF)AD_SCRI_97.CEL  OK 
64SM0832907083Steptoe/Morex(BxF)AD_SCRI_89.CEL  OK 
65SM0842907084Morex/Steptoe(CxF)AD_SCRI_155.CEL  OK 
66SM0852907085Morex/Steptoe(IxE)AD_SCRI_149.CEL0521-17_SetA17.CELSMminiOKOK
67SM0872907087Steptoe/Morex(OxJ)AD_SCRI_113.CEL  OK 
68SM0882907088Morex/Steptoe(CxF)AD_SCRI_93.CEL0521-18_SetA18.CELSMminiOKOK
69SM0892907089Steptoe/Morex(OxJ)AD_SCRI_148.CEL0521-19_SetA19.CELSMminiOKOK
70SM0912907091Morex/Steptoe(CxF)AD_SCRI_110.CEL  OK 
71SM0922907092Steptoe/Morex(OxJ)AD_SCRI_7.CEL  OK 
72SM0932907093Steptoe/Morex(BxF)AD_SCRI_122.CEL  OK 
73SM0942907094Morex/Steptoe(CxF)AD_SCRI_150.CEL  OK 
74SM0972907097Morex/Steptoe(CxF)AD_SCRI_158.CEL  OK 
75SM0982907098Morex/Steptoe(CxF)AD_SCRI_121.CEL  OK 
76SM0992907099Steptoe/Morex(QxG)AD_SCRI_137.CEL  OK 
77SM1032907103Morex/Steptoe(IxE)AD_SCRI_156.CEL  OK 
78SM1042907104Steptoe/Morex(BxH)AD_SCRI_70.CEL  ERROR 
79SM1052907105Morex/Steptoe(IxE)AD_SCRI_69.CEL  OK 
80SM1102907110Morex/Steptoe(CxF)AD_SCRI_75.CEL  ERROR 
81SM1122907112Steptoe/Morex(BxF)AD_SCRI_84.CEL  OK 
82SM1162907116Morex/Steptoe(CxF)AD_SCRI_117.CEL0521-20_SetA20.CELSMminiOKOK
83SM1202907120Steptoe/Morex(OxJ)AD_SCRI_138.CEL  OK 
84SM1242907124Steptoe/Morex(BxF)AD_SCRI_146.CEL  OK 
85SM1252907125Morex/Steptoe(IxE)AD_SCRI_43.CEL  OK 
86SM1262907126Steptoe/Morex(OxJ)AD_SCRI_144_redo.CEL  OK 
87SM1272907127Steptoe/Morex(BxH)AD_SCRI_129.CEL  OK 
88SM1292907129Steptoe/Morex(OxJ)AD_SCRI_132.CEL  OK 
89SM1302907130Morex/Steptoe(CxF)AD_SCRI_101.CEL0521-21_SetA21.CELSMminiOKOK
90SM1312907131Steptoe/Morex(OxJ)AD_SCRI_102.CEL  OK 
91SM1322907132Steptoe/Morex(QxG)AD_SCRI_4_redo.CEL  OK 
92SM1332907133Morex/Steptoe(CxF)AD_SCRI_157.CEL  OK 
93SM1342907134Morex/Steptoe(IxE)AD_SCRI_159.CEL  OK 
94SM1352907135Steptoe/Morex(BxF)AD_SCRI_72.CEL0521-22_SetA22.CELSMminiOKOK
95SM1362907136Steptoe/Morex(QxG)AD_SCRI_123.CEL0521-23_SetA23.CELSMminiOKOK
96SM1372907137Steptoe/Morex(BxH)AD_SCRI_39.CEL  OK 
97SM1392907139Morex/Steptoe(CxF)AD_SCRI_133.CEL  OK 
98SM1402907140Morex/Steptoe(CxF)AD_SCRI_134.CEL0521-24_SetA24.CELSMminiOKOK
99SM1412907141Steptoe/Morex(BxH)AD_SCRI_136.CEL0521-25_SetA25.CELSMminiOKOK
100SM1422907142Morex/Steptoe(IxE)AD_SCRI_6.CEL  OK 
101SM1432907143Steptoe/Morex(BxH)AD_SCRI_145.CEL  OK 
102SM1442907144Steptoe/Morex(BxF)AD_SCRI_103.CEL  OK 
103SM1452907145Steptoe/Morex(QxG)AD_SCRI_108.CEL  OK 
104SM1462907146Morex/Steptoe(BxF)AD_SCRI_91.CEL0521-26_SetA26.CELSMminiOKOK
105SM1472907147Steptoe/Morex(OxJ)AD_SCRI_139.CEL  OK 
106SM1492907149Steptoe/Morex(BxF)AD_SCRI_131.CEL  ERROR 
107SM1502907150Morex/Steptoe(CxF)AD_SCRI_37.CEL  OK 
108SM1512907151Morex/Steptoe(IxE)AD_SCRI_28.CEL  OK 
109SM1522907152Steptoe/Morex(BxH)AD_SCRI_9_redo.CEL0521-27_SetA27.CELSMminiOKOK
110SM1532907153Steptoe/Morex(BxH)AD_SCRI_135.CEL  OK 
111SM1542907154Steptoe/Morex(BxH)AD_SCRI_114.CEL  OK 
112SM1552907155Steptoe/Morex(BxH)AD_SCRI_119.CEL0521-28_SetA28.CELSMminiOKOK
113SM1562907156Steptoe/Morex(BxH)AD_SCRI_140.CEL  OK 
114SM1572907157Morex/Steptoe(CxF)AD_SCRI_106_redo.CEL  OK 
115SM1582907158Morex/Steptoe(CxF)AD_SCRI_65.CEL  OK 
116SM1592907159Morex/Steptoe(IxE)AD_SCRI_168.CEL  OK 
117SM1602907160Steptoe/Morex(OxJ)AD_SCRI_47.CEL0521-29_SetA29.CELSMminiOKERROR
118SM1612907161Steptoe/Morex(BxH)AD_SCRI_76.CEL  ERROR 
119SM1622907162Morex/Steptoe(CxF)AD_SCRI_147.CEL  OK 
120SM1642907164Steptoe/Morex(OxJ)AD_SCRI_128.CEL  OK 
121SM1652907165Steptoe/Morex(BxH)AD_SCRI_143.CEL  OKOK
122SM1662907166Morex/Steptoe(CxF)AD_SCRI_115.CEL  OK 
123SM1672907167Steptoe/Morex(BxH)AD_SCRI_127.CEL0521-30_SetA30.CELSMminiOKOK
124SM1682907168Steptoe/Morex(BxH)AD_SCRI_130.CEL  OK 
125SM1692907169Morex/Steptoe(CxF)AD_SCRI_118.CEL0521-31_SetA31.CELSMminiOKOK
126SM1702907170Steptoe/Morex(BxF)AD_SCRI_151.CEL  OK 
127SM1712907171Steptoe/Morex(BxF)AD_SCRI_165.CEL  ERROR 
128SM1722907172Steptoe/Morex(OxJ)AD_SCRI_152.CEL  ERROR 
129SM1732907173Steptoe/Morex(OxJ)AD_SCRI_104.CEL0521-32_SetA32.CELSMminiOKOK
130SM1742907174Steptoe/Morex(BxH)AD_SCRI_154.CEL  OK 
131SM1762907176Morex/Steptoe(CxF)AD_SCRI_141.CEL  OK 
132SM1772907177Morex/Steptoe(CxF)AD_SCRI_111.CEL0521-33_SetA33.CELSMminiOKOK
133SM1792907179Morex/Steptoe(CxF)AD_SCRI_166.CEL  OK 
134SM1802907180Morex/Steptoe(IxE)AD_SCRI_161.CEL  OK 
135SM1812907181Morex/Steptoe(IxE)AD_SCRI_162.CEL  OK 
136SM1822907182Morex/Steptoe(CxF)AD_SCRI_163.CEL  OK 
137SM1832907183Morex/Steptoe(CxF)AD_SCRI_164.CEL  OK 
138SM1842907184Morex/Steptoe(IxE)AD_SCRI_160.CEL0521-34_SetA34.CELSMminiOKOK
139SM1852907185Morex/Steptoe(IxE)AD_SCRI_167.CEL  OK 
140SM1862907186Morex/Steptoe(IxE)AD_SCRI_62.CEL  OK 
141SM1872907187Morex/Steptoe(IxE)AD_SCRI_61.CEL  OK 
142SM1882907188Morex/Steptoe(CxF)AD_SCRI_63.CEL  OK 
143SM1892907189Steptoe/Morex(QxG)AD_SCRI_80.CEL  OK 
144SM1932907193Morex/Steptoe(IxE)AD_SCRI_36.CEL  OK 
145SM1942907194Steptoe/Morex(OxJ)AD_SCRI_29.CEL  OK 
146SM1962907196Steptoe/Morex(BxF)AD_SCRI_26.CEL  OK 
147SM1972907197Steptoe/Morex(BxF)AD_SCRI_85.CEL  OK 
148SM1982907198Morex/Steptoe(IxE)AD_SCRI_8.CEL  OK 
149SM1992907199Steptoe/Morex(BxF)AD_SCRI_20.CEL  OK 
150SM2002907200Morex/Steptoe(IxE)AD_SCRI_38.CEL0521-35_SetA35.CELSMminiOKOK
parentSteptoe  AD_SCRI_17.CEL0521-36_SetA36.CEL   
parentSteptoe  AD_SCRI_66.CEL0521-37_SetA37.CEL   
parentSteptoe  AD_SCRI_68.CEL0521-38_SetA38.CEL   
parentMorex  AD_SCRI_116.CEL0521-39_SetA39.CEL   
parentMorex  AD_SCRI_14.CEL0521-40_SetA40.CEL   
parentMorex  AD_SCRI_67.CEL0521-41_SetA41.CEL   
+ +

 

+
diff --git a/general/datasets/B30_k_1206_m/citation.rtf b/general/datasets/B30_k_1206_m/citation.rtf new file mode 100644 index 0000000..f6fcdda --- /dev/null +++ b/general/datasets/B30_k_1206_m/citation.rtf @@ -0,0 +1,11 @@ +
+

Druka A, Muehlbauer G, Druka I, Caldo R, Baumann U, Rostoks N, Schreiber A, Wise R, Close T, Kleinhofs A, Graner A, Schulman A, Langridge P, Sato K, Hayes P, McNicol J, Marshall D, Waugh R. (2006) An atlas of gene expression from seed to seed through barley development. Funct Integr Genomics, Jul;6(3):202-11.

+ +

Kleinhofs A, Kilian A, Saghai Maroof M, Biyashev R, Hayes P, Chen F, Lapitan N, Fenwick A, Blake T, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu BH, Sorrells M, Heun M, Franckowiak J, Hoffman D, Skadsen R, Steffenson B (1993) A molecular, isozyme, and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705-712.

+ +

Caldo RA, Nettleton D, Wise RP (2004) Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell 16:2514-2528.

+ +

Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP. (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960-968.

+ +

Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet 87:392-401

+
diff --git a/general/datasets/B30_k_1206_m/experiment-design.rtf b/general/datasets/B30_k_1206_m/experiment-design.rtf new file mode 100644 index 0000000..e743086 --- /dev/null +++ b/general/datasets/B30_k_1206_m/experiment-design.rtf @@ -0,0 +1,62 @@ +
+

RNA Sample Processing:

+ +

Trizol RNA isolation and RNeasy clean up protocol for whole plants (embryo-derived tissue dissected from 4 days old germinating grains) and the seedling leaves (12 days after planting).

+ +


+☐ Grind tissue (9 embryos) with a mortar and pestle in liquid nitrogen
+☐ Add 5 ml TRIzol (pre-heated to 60oC) to all samples, vortex until all the tissue is thawed, place in the 60oC waterbath..
+☐ Incubate samples at 60oC for 10 minutes, vortexing three times.
+☐ Centrifuge @ 4000 x rpm @ 4C for 30 minutes (in Eppendorf 5810R).
+☐ While centrifuging, label new set of 15 ml tubes
+☐ Transfer supernatant to 15 ml centrifuge tube
+☐ Add 1 ml of chloroform. Vortex the sample until color shade is uniform at least 5
+seconds, and incubate at room temperature for 5 minutes.
+☐ Centrifuge @ 4000 x rpm for 30 minutes @ 4oC.
+☐ While centrifuging, label new 15 ml tubes
+☐ Collect the upper aqueous layer (there will be about 3 mls) and transfer to a new 15 ml tube.
+☐ Add 0.6 volumes (2 ml) of isopropanol, mix gently, incubate at room temperature for 20 minutes.
+☐ Centrifuge @ 4000 rpm for 30 minutes @ 4oC.
+☐ Wash the pellet with 10 ml of cold 75% ethanol. Swirl & centrifuge at
+4000 rpm for 15 minutes @ 4oC.
+☐ Discard supernatant, centrifuge for 5 min, remove the rest of the ethanol
+☐ Air-dry the pellet for 10 minutes, inverted on a kimwipe.
+☐ Dissolve pellet in 400 ul of DEPC-treated H2O. Resuspend by pipeting up & down a
+few times.
+☐ Add 2 ul SuperaseIn. Incubate at 60oC for 10 minutes to resuspend.
+☐ Set water bath to 37oC.
+☐ Add 50 ul 10X DnaseI Buffer, 45 ul H2O and 5 ul of DnaseI, incubate at 37oC for 1 hr.
+☐ Prepare Buffer RLT (Rneasy Clean-up Midi Kit) by adding b-mercaptoethanol (10ul/1ml RLT).
+☐ Add 2.0 ml Buffer RLT to the RNA prep and mix thoroughly.
+☐ Add 1.4 ml ethanol (96-100%) to the diluted RNA. Mix thoroughly.
+☐ Label 15 ml tubes from the kit and place midi columns in them
+☐ Apply sample to a Midi column, close tube gently and centrifuge for 20 min at 3000 rpm.
+☐ Discard the flow-through.
+☐ Add 2.5 ml Buffer RPE to the RNA easy column, close the centrifuge tube gently,
+incubate for 3 min
+☐ Centrifuge for 10 min at 3000 rpm. Discard the flow-through.
+☐ Add another 2.5 ml Buffer RPE to the RNeasy column. Close the centrifuge tube
+gently, incubate for 3 min
+☐ Centrifuge for 10 min at 3000 rpm, remove flow-through
+☐ Centrifuge again for another 5 min.
+☐ Label new 15 ml tubes from the kit.
+☐ Transfer the RNA easy column to a new tube and pipet 250 ul volume of
+RNase-free water directly onto the RNeasy silica-membrane incubate for 1 min
+☐ Centrifuge for 5 min at 3000 rpm.
+☐ To the same tube add again 250 ul H2O, incubate for 1 min.
+☐ Centrifuge for 5 min at 3000 rpm.
+☐ Label two sets of 1.5 ml Eppendorf tubes.
+☐ Transfer 490 ul to the one tube and 10 ul to another one. Use 10 ul tube for the RNA

+ +

Detailed descriptions of these procedures can be found under the ArrayExpress (http://www.ebi.ac.uk/aerep/?) protocol P-MEXP-4631 (Caldo et al. 2004).

+ +

Replication and Sample Balance:

+ +

3 independent replicates of both parental cultivars Steptoe and Morex were generated for both tissues, embryo and seedling leaf.

+ +

Experimental Design and Batch Structure:

+
+ +
+

The following are ArrayExpress (http://www.ebi.ac.uk/aerep/?) experiment IDs: E-TABM-111 (leaf, 41 chips) and E-TABM-112 (embryo derived, 156 chips).

+
diff --git a/general/datasets/B30_k_1206_m/experiment-type.rtf b/general/datasets/B30_k_1206_m/experiment-type.rtf new file mode 100644 index 0000000..585c17b --- /dev/null +++ b/general/datasets/B30_k_1206_m/experiment-type.rtf @@ -0,0 +1 @@ +A typical genetical genomics experiment results in four separate data sets; genotype, gene expression, higher-order phenotypic data and metadata that describe the protocols, processing and the array platform. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. Their predictive power is largely determined by the gene expression dataset where tens of millions of data points can be generated using currently available mRNA profiling technologies. Such large, multidimensional data sets often have value beyond that extracted during their initial analysis and interpretation, particularly if conducted on widely distributed reference genetic materials. Besides quality and scale, access to the data is of primary importance as accessibility potentially allows the extraction of considerable added value from the same primary dataset by the wider research community. Although the number of genetical genomics experiments in different plant species is rapidly increasing, none to date has been presented in a form that allows quick and efficient on-line testing for possible associations between genes, loci and traits of interest by an entire research community. \ No newline at end of file diff --git a/general/datasets/B30_k_1206_m/notes.rtf b/general/datasets/B30_k_1206_m/notes.rtf new file mode 100644 index 0000000..46cff8f --- /dev/null +++ b/general/datasets/B30_k_1206_m/notes.rtf @@ -0,0 +1,14 @@ +
+

Arnis Druka
+Genetics Programme
+Scottish Crop Research Institute
+Invergowrie, Dundee DD2 5DA
+Angus, Scotland, United Kingdom
+Tel +44 01382 562731
+Fax +44 01382 568587
+adruka@scri.sari.ac.uk

+
+ +
+

This text file originally generated by Arnis Druka on May 8, 2006. Modified Aug1 by AD. Entered by RWW Aug 4, 2006. Modified by AD Jan 29, 2007, Feb 01, 2007.

+
diff --git a/general/datasets/B30_k_1206_m/platform.rtf b/general/datasets/B30_k_1206_m/platform.rtf new file mode 100644 index 0000000..a935318 --- /dev/null +++ b/general/datasets/B30_k_1206_m/platform.rtf @@ -0,0 +1,3 @@ +
+

Affymetrix 22K Barley1 GeneChip probe array (http://www.affymetrix.com/products/arrays/specific/barley.affx ; Affymetrix product #900515 GeneChip Barley Genome Array) representing 21,439 non-redundant Barley1 exemplar sequences was derived from worldwide contribution of 350,000 high-quality ESTs from 84 cDNA libraries, in addition to 1,145 barley gene sequences from the National Center for Biotechnology Information non-redundant database (Close et al 2004). Abbreviated annotations were created based on the exemplar sequence homology by Arnis Druka using data from the Harvest (http://harvest.ucr.edu/) data depository.

+
diff --git a/general/datasets/B30_k_1206_m/processing.rtf b/general/datasets/B30_k_1206_m/processing.rtf new file mode 100644 index 0000000..d8d039a --- /dev/null +++ b/general/datasets/B30_k_1206_m/processing.rtf @@ -0,0 +1,49 @@ +
+ + + + + + + + + + + + + + + + + + + +
+
Types of the expression data-sets
+
+
Data processing description
+
Barley1 Embryo gcRMA SCRI (Dec 06)
+ Barley1 Leaf gcRMA SCRI (Dec 06)
+

 

+ +

The Affymetrix' CEL files that were generated using MAS 5.0 Suite were imported into the GeneSpring GX 7.3 (Agilent Technologies, Palo Alto, CA) and processed using the RMA algorithm.

+ +

 

+
Barley1 Embryo MAS 5.0 SCRI (Dec 06)
+ Barley1 Leaf MAS 5.0 SCRI (Dec 06)
+

 

+ +

The MAS 5.0 values were calculated from the DAT files using Affymetrix' MAS 5.0 Suite.

+ +

 

+
Barley1 Embryo0 gcRMA SCRI (Apr 06)
+ Barley1 Leaf gcRMAn SCRI (Dec 06)
+

The Affymetrix' CEL files were imported into the GeneSpring GX 7.3 (Agilent Technologies, Palo Alto, CA) software and processed using the RMA algorithm. Per-chip and per-gene normalization was done following the standard GeneSpring procedure (citation of the GeneSpring normalization description):

+ +
    +
  1. Values below 0.01 were set to 0.01.
  2. +
  3. Each measurement was divided by the 50.0th percentile of all measurements in that sample.
  4. +
  5. Each gene was divided by the median of its measurements in all samples. If the median of the raw values was below 10 then each measurement for that gene was divided by 10 if the numerator was above 10, otherwise the measurement was thrown out.
  6. +
+
+
diff --git a/general/datasets/B30_k_1206_m/summary.rtf b/general/datasets/B30_k_1206_m/summary.rtf new file mode 100644 index 0000000..67f4fab --- /dev/null +++ b/general/datasets/B30_k_1206_m/summary.rtf @@ -0,0 +1,5 @@ +

Barley1 Leaf MAS 5.0 SCRI (Dec 06) - integrated probe set value for each gene has been calculated using MAS 5.0 algorithm which uses pixel values from both, PM and MM probes. Descriptions of probe set signal calculation can be found on this page below, section 'About Data Processing'.

+ +
+

The SCRI barley data set provides estimates of mRNA abundance in doubled haploid recombinant lines of cultivated barley. Embryo-derived tissues at four days after imbibition (150 lines) and seedling leaves at 12 days after imbibition (subset of 34 lines) and three biological replicates of each parental cultivar (Steptoe and Morex) for each tissue were used for the isolation of total RNA and hybridization to the Barley1 22K GeneChip (GEO GPL1340).

+
diff --git a/general/datasets/B30_k_1206_m/tissue.rtf b/general/datasets/B30_k_1206_m/tissue.rtf new file mode 100644 index 0000000..a8351e8 --- /dev/null +++ b/general/datasets/B30_k_1206_m/tissue.rtf @@ -0,0 +1,9 @@ +
+

Plant material according to the current plant ontologies: Embryo-derived tissues: whole plant (PO:0000003) at the development stage 1.05-coleoptile emerged from seed (GRO:0007056); Seedling leaves: primary shoot (PO:0006341) at the developmental stage 2.02-first leaf unfolded (GRO:0007060) (Druka et al. 2006).

+ +

To obtain embryo-derived tissue, growth room#2, AN building, SCRI, with the standard laboratory bench positioned in the middle of the room was used to germinate sterilized seeds. Seeds were placed between three layers of wet 3MM filter paper in the 156 10 mm Petri plates. Thirty to fifty seeds per line (per Petri plate) were used. Germination was in the dark, 16 hours at 17 deg C and 8 hours at 12 deg C. After 96 hours, embryo-derived tissue (mesocotyl, coleoptile, and seminal roots) from three grains was dissected and flash frozen in the liquid nitrogen. Germination and collection was repeated two more times. Complete randomization of the Petri plates was done for each germination event. Tissues from all three germinations (collections) were bulked before RNA isolation. Three replicates of the parental cultivars were germinated for each collection.

+ +

To obtain seedling leaves, three Microclima 1000 growth chambers (Snijders Scientific B.V., Tilburg, Holland) were used for the experiment. Each cabinet accomodated 40 (13x13 cm) pots. Humidity was set to 70%, with light conditions for 16 hours light at 17C and 8 hours dark at 12C. The cycle started at 10 am with lights on. Light intensity was 337-377 mmol m-2 s-1, measured at the beginning of the experiment, 11 cm from the light source. Measurement was done using Sky Quantium light sensor at 15oC. Plants were placed 55 cm from the light source (from the bulb to the surface of the vermiculite). Ten sterilized seeds per pot were planted and 3 pots per genotype / per cabinet were used. After 12 days, leaf blade and sheath from 5-7 the same size plants was cut off, bulked and flash frozen in the liquid nitrogen.

+ +

 

+
diff --git a/general/datasets/B30_k_1206_r/acknowledgment.rtf b/general/datasets/B30_k_1206_r/acknowledgment.rtf new file mode 100644 index 0000000..5d9cc73 --- /dev/null +++ b/general/datasets/B30_k_1206_r/acknowledgment.rtf @@ -0,0 +1,3 @@ +
+

Plant maintenance, tissue collection, RNA isolation, and data submission to ArrayExpress was done at SCRI by Arnis Druka with support from BBSRC/SEERAD grant SCR/910/04 The genetics of gene expression in barley' to Michael Kearsey (University of Birmingham, UK) and Robbie Waugh (SCRI, UK). Probe synthesis, labeling and hybridization were performed according to manufacturer’s protocols (Affymetrix, Santa Clara, CA) at the Iowa State University GeneChip Core facility (Rico Caldo and Roger Wise). ArrayExpress (EBI, UK) team members Tim Rayner, Helen Parkinson, and Alvis Brazma are acknowledged for excellent help with data submission to ArrayExpress.

+
diff --git a/general/datasets/B30_k_1206_r/cases.rtf b/general/datasets/B30_k_1206_r/cases.rtf new file mode 100644 index 0000000..1425413 --- /dev/null +++ b/general/datasets/B30_k_1206_r/cases.rtf @@ -0,0 +1,1748 @@ +
+

The SM cross was originally made to map barley grain quality traits; Steptoe is high-yielding barley cultivar used for animal feeding, but Morex has good malting barley characteristics (Hayes et al 1993). Many agronomic quality traits have been mapped using this population (for the lists see BeerGenes web-site http://gnome.agrenv.mcgill.ca/bg/).

+ +

The sample used in this study consists of 150 Steptoe x Morex doubled haploid recombinant lines (Kleinhofs et al. 1993) was used to obtain embryo-derived tissue. For the seedling leaf tissue a subset of 35 lines was used. This subset was selected based on evenly spaced crossovers along each of seven barley chromosomes. The expression data of 11 DH lines has been removed from both, embryo and leaf, leaving for the analysis 129 lines with embryo expression data and a subset of 30 lines with seedling leaf expression data. The lines were removed from the analysis after error checking; discrepancies with genotyping data were found. We left all 150 lines in the embryo Apr06 data set and the full data set is available from the ArrayExpress. The following table lists line IDs and corresponding CEL file IDs, also indicating:
+1) pedigree; shows the direction of the cross that was used to produce the original F1. The parental plants were given letter codes of A - Z. For example, SM1 was derived from an F1 that was generated by crossing Steptoe plant "B" as a female with Morex plant "F" as a male.
+2) 'minimapper' subset - MINI;
+3) lines that have expression data removed - ERROR:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Order #Line IDPermanent Oregon IDCross direction +
CEL file names
+
Mini-mapper setError check
embryo data-setleaf data-setembryo data-setleaf data-set
1SM0012907001Steptoe/Morex(BxF)AD_SCRI_82.CEL  OK 
2SM0022907002Steptoe/Morex(BxF)AD_SCRI_1.CEL  OK 
3SM0032907003Morex/Steptoe(CxF)AD_SCRI_19.CEL  OK 
4SM0042907004Morex/Steptoe(CxF)AD_SCRI_3.CEL0521-1_SetA1.CELSMminiOKOK
5SM0052907005Steptoe/Morex(BxH)AD_SCRI_88.CEL  OK 
6SM0062907006Morex/Steptoe(CxF)AD_SCRI_48.CEL  OK 
7SM0072907007Steptoe/Morex(BxH)AD_SCRI_35.CEL0521-2_SetA2.CELSMminiOKOK
8SM0092907009Steptoe/Morex(BxF)AD_SCRI_2.CEL  OK 
9SM0102907010Morex/Steptoe(IxE)AD_SCRI_42.CEL  OK 
10SM0112907011Steptoe/Morex(QxG)AD_SCRI_10.CEL  OK 
11SM0122907012Morex/Steptoe(CxF)AD_SCRI_45.CEL0521-3_SetA3.CELSMminiERRORERROR
12SM0132907013Morex/Steptoe(IxE)AD_SCRI_78.CEL0521-4_SetA4.CELSMminiERRORERROR
13SM0142907014Steptoe/Morex(BxH)AD_SCRI_18.CEL  OK 
14SM0152907015Steptoe/Morex(BxH)AD_SCRI_5.CEL  OK 
15SM0162907016Steptoe/Morex(BxH)AD_SCRI_21.CEL  OK 
16SM0202907020Steptoe/Morex(OxJ)AD_SCRI_77.CEL  OK 
17SM0212907021Morex/Steptoe(IxE)AD_SCRI_30.CEL  OK 
18SM0222907022Morex/Steptoe(IxE)AD_SCRI_31.CEL0521-5_SetA5.CELSMminiOKOK
19SM0232907023Steptoe/Morex(BxH)AD_SCRI_32.CEL  OK 
20SM0242907024Morex/Steptoe(IxE)AD_SCRI_33.CEL0521-6_SetA6.CELSMminiOKOK
21SM0252907025Morex/Steptoe(CxF)AD_SCRI_34.CEL  OK 
22SM0272907027Steptoe/Morex(OxJ)AD_SCRI_12.CEL0521-7_SetA7.CELSMminiOKOK
23SM0302907030Morex/Steptoe(IxE)AD_SCRI_79.CEL  OK 
24SM0312907031Steptoe/Morex(OxJ)AD_SCRI_16.CEL  OK 
25SM0322907032Morex/Steptoe(IxE)AD_SCRI_13.CEL  OK 
26SM0352907035Morex/Steptoe(CxF)AD_SCRI_15.CEL  ERROR 
27SM0392907039Morex/Steptoe(CxF)AD_SCRI_41.CEL  OK 
28SM0402907040Steptoe/Morex(BxH)AD_SCRI_83.CEL  OK 
29SM0412907041Steptoe/Morex(OxJ)AD_SCRI_11_redo.CEL0521-8_SetA8.CELSMminiOKOK
30SM0422907042Morex/Steptoe(CxF)AD_SCRI_57.CEL  OK 
31SM0432907043Morex/Steptoe(JxE)AD_SCRI_49.CEL0521-9_SetA9.CELSMminiOKOK
32SM0442907044Steptoe/Morex(OxJ)AD_SCRI_50.CEL0521-10_SetA10.CELSMminiOKOK
33SM0452907045Steptoe/Morex(BxH)AD_SCRI_51.CEL  OK 
34SM0462907046Steptoe/Morex(OxJ)AD_SCRI_52.CEL0521-11_SetA11.CELSMminiOKOK
35SM0482907048Steptoe/Morex(BxF)AD_SCRI_53.CEL  ERROR 
36SM0502907050Morex/Steptoe(IxE)AD_SCRI_46.CEL  OK 
37SM0542907054Morex/Steptoe(CxF)AD_SCRI_60.CEL  OK 
38SM0552907055Steptoe/Morex(OxJ)AD_SCRI_55.CEL  OK 
39SM0562907056Steptoe/Morex(BxH)AD_SCRI_23.CEL  OK 
40SM0572907057Morex/Steptoe(CxF)AD_SCRI_24.CEL  OK 
41SM0582907058Steptoe/Morex(BxF)AD_SCRI_22.CEL  OK 
42SM0592907059Steptoe/Morex(BxH)AD_SCRI_27.CEL  OK 
43SM0612907061Morex/Steptoe(LxF)AD_SCRI_81.CEL0521-12_SetA12.CELSMminiOKOK
44SM0622907062Morex/Steptoe(CxF)AD_SCRI_44.CEL  OK 
45SM0632907063Steptoe/Morex(OxJ)AD_SCRI_40.CEL0521-13_SetA13.CELSMminiOKOK
46SM0642907064Morex/Steptoe(CxF)AD_SCRI_87_redo.CEL  OK 
47SM0652907065Morex/Steptoe(CxF)AD_SCRI_54.CEL  OK 
48SM0672907067Steptoe/Morex(OxJ)AD_SCRI_73.CEL  OK 
49SM0682907068Steptoe/Morex(OxG)AD_SCRI_56.CEL  ERROR 
50SM0692907069Steptoe/Morex(BxH)AD_SCRI_71.CEL  OK 
51SM0702907070Steptoe/Morex(BxF)AD_SCRI_64.CEL  OK 
52SM0712907071Steptoe/Morex(BxH)AD_SCRI_58.CEL  OK 
53SM0722907072Morex/Steptoe(CxF)AD_SCRI_59.CEL  OK 
54SM0732907073Steptoe/Morex(BxF)AD_SCRI_74.CEL0521-14_SetA14.CELSMminiOKERROR
55SM0742907074Morex/Steptoe(CxF)AD_SCRI_25.CEL0521-15_SetA15.CELSMminiOKOK
56SM0752907075Steptoe/Morex(QxG)AD_SCRI_120.CEL  OK 
57SM0762907076Steptoe/Morex(BxF)AD_SCRI_112.CEL  OK 
58SM0772907077Morex/Steptoe(CxF)AD_SCRI_142.CEL  OK 
59SM0782907078Steptoe/Morex(BxF)AD_SCRI_86.CEL  OK 
60SM0792907079Morex/Steptoe(CxF)AD_SCRI_153.CEL0521-16_SetA16.CELSMminiOKERROR
61SM0802907080Steptoe/Morex(BxF)AD_SCRI_107.CEL  OK 
62SM0812907081Morex/Steptoe(CxF)AD_SCRI_105.CEL  OK 
63SM0822907082Steptoe/Morex(BxF)AD_SCRI_97.CEL  OK 
64SM0832907083Steptoe/Morex(BxF)AD_SCRI_89.CEL  OK 
65SM0842907084Morex/Steptoe(CxF)AD_SCRI_155.CEL  OK 
66SM0852907085Morex/Steptoe(IxE)AD_SCRI_149.CEL0521-17_SetA17.CELSMminiOKOK
67SM0872907087Steptoe/Morex(OxJ)AD_SCRI_113.CEL  OK 
68SM0882907088Morex/Steptoe(CxF)AD_SCRI_93.CEL0521-18_SetA18.CELSMminiOKOK
69SM0892907089Steptoe/Morex(OxJ)AD_SCRI_148.CEL0521-19_SetA19.CELSMminiOKOK
70SM0912907091Morex/Steptoe(CxF)AD_SCRI_110.CEL  OK 
71SM0922907092Steptoe/Morex(OxJ)AD_SCRI_7.CEL  OK 
72SM0932907093Steptoe/Morex(BxF)AD_SCRI_122.CEL  OK 
73SM0942907094Morex/Steptoe(CxF)AD_SCRI_150.CEL  OK 
74SM0972907097Morex/Steptoe(CxF)AD_SCRI_158.CEL  OK 
75SM0982907098Morex/Steptoe(CxF)AD_SCRI_121.CEL  OK 
76SM0992907099Steptoe/Morex(QxG)AD_SCRI_137.CEL  OK 
77SM1032907103Morex/Steptoe(IxE)AD_SCRI_156.CEL  OK 
78SM1042907104Steptoe/Morex(BxH)AD_SCRI_70.CEL  ERROR 
79SM1052907105Morex/Steptoe(IxE)AD_SCRI_69.CEL  OK 
80SM1102907110Morex/Steptoe(CxF)AD_SCRI_75.CEL  ERROR 
81SM1122907112Steptoe/Morex(BxF)AD_SCRI_84.CEL  OK 
82SM1162907116Morex/Steptoe(CxF)AD_SCRI_117.CEL0521-20_SetA20.CELSMminiOKOK
83SM1202907120Steptoe/Morex(OxJ)AD_SCRI_138.CEL  OK 
84SM1242907124Steptoe/Morex(BxF)AD_SCRI_146.CEL  OK 
85SM1252907125Morex/Steptoe(IxE)AD_SCRI_43.CEL  OK 
86SM1262907126Steptoe/Morex(OxJ)AD_SCRI_144_redo.CEL  OK 
87SM1272907127Steptoe/Morex(BxH)AD_SCRI_129.CEL  OK 
88SM1292907129Steptoe/Morex(OxJ)AD_SCRI_132.CEL  OK 
89SM1302907130Morex/Steptoe(CxF)AD_SCRI_101.CEL0521-21_SetA21.CELSMminiOKOK
90SM1312907131Steptoe/Morex(OxJ)AD_SCRI_102.CEL  OK 
91SM1322907132Steptoe/Morex(QxG)AD_SCRI_4_redo.CEL  OK 
92SM1332907133Morex/Steptoe(CxF)AD_SCRI_157.CEL  OK 
93SM1342907134Morex/Steptoe(IxE)AD_SCRI_159.CEL  OK 
94SM1352907135Steptoe/Morex(BxF)AD_SCRI_72.CEL0521-22_SetA22.CELSMminiOKOK
95SM1362907136Steptoe/Morex(QxG)AD_SCRI_123.CEL0521-23_SetA23.CELSMminiOKOK
96SM1372907137Steptoe/Morex(BxH)AD_SCRI_39.CEL  OK 
97SM1392907139Morex/Steptoe(CxF)AD_SCRI_133.CEL  OK 
98SM1402907140Morex/Steptoe(CxF)AD_SCRI_134.CEL0521-24_SetA24.CELSMminiOKOK
99SM1412907141Steptoe/Morex(BxH)AD_SCRI_136.CEL0521-25_SetA25.CELSMminiOKOK
100SM1422907142Morex/Steptoe(IxE)AD_SCRI_6.CEL  OK 
101SM1432907143Steptoe/Morex(BxH)AD_SCRI_145.CEL  OK 
102SM1442907144Steptoe/Morex(BxF)AD_SCRI_103.CEL  OK 
103SM1452907145Steptoe/Morex(QxG)AD_SCRI_108.CEL  OK 
104SM1462907146Morex/Steptoe(BxF)AD_SCRI_91.CEL0521-26_SetA26.CELSMminiOKOK
105SM1472907147Steptoe/Morex(OxJ)AD_SCRI_139.CEL  OK 
106SM1492907149Steptoe/Morex(BxF)AD_SCRI_131.CEL  ERROR 
107SM1502907150Morex/Steptoe(CxF)AD_SCRI_37.CEL  OK 
108SM1512907151Morex/Steptoe(IxE)AD_SCRI_28.CEL  OK 
109SM1522907152Steptoe/Morex(BxH)AD_SCRI_9_redo.CEL0521-27_SetA27.CELSMminiOKOK
110SM1532907153Steptoe/Morex(BxH)AD_SCRI_135.CEL  OK 
111SM1542907154Steptoe/Morex(BxH)AD_SCRI_114.CEL  OK 
112SM1552907155Steptoe/Morex(BxH)AD_SCRI_119.CEL0521-28_SetA28.CELSMminiOKOK
113SM1562907156Steptoe/Morex(BxH)AD_SCRI_140.CEL  OK 
114SM1572907157Morex/Steptoe(CxF)AD_SCRI_106_redo.CEL  OK 
115SM1582907158Morex/Steptoe(CxF)AD_SCRI_65.CEL  OK 
116SM1592907159Morex/Steptoe(IxE)AD_SCRI_168.CEL  OK 
117SM1602907160Steptoe/Morex(OxJ)AD_SCRI_47.CEL0521-29_SetA29.CELSMminiOKERROR
118SM1612907161Steptoe/Morex(BxH)AD_SCRI_76.CEL  ERROR 
119SM1622907162Morex/Steptoe(CxF)AD_SCRI_147.CEL  OK 
120SM1642907164Steptoe/Morex(OxJ)AD_SCRI_128.CEL  OK 
121SM1652907165Steptoe/Morex(BxH)AD_SCRI_143.CEL  OKOK
122SM1662907166Morex/Steptoe(CxF)AD_SCRI_115.CEL  OK 
123SM1672907167Steptoe/Morex(BxH)AD_SCRI_127.CEL0521-30_SetA30.CELSMminiOKOK
124SM1682907168Steptoe/Morex(BxH)AD_SCRI_130.CEL  OK 
125SM1692907169Morex/Steptoe(CxF)AD_SCRI_118.CEL0521-31_SetA31.CELSMminiOKOK
126SM1702907170Steptoe/Morex(BxF)AD_SCRI_151.CEL  OK 
127SM1712907171Steptoe/Morex(BxF)AD_SCRI_165.CEL  ERROR 
128SM1722907172Steptoe/Morex(OxJ)AD_SCRI_152.CEL  ERROR 
129SM1732907173Steptoe/Morex(OxJ)AD_SCRI_104.CEL0521-32_SetA32.CELSMminiOKOK
130SM1742907174Steptoe/Morex(BxH)AD_SCRI_154.CEL  OK 
131SM1762907176Morex/Steptoe(CxF)AD_SCRI_141.CEL  OK 
132SM1772907177Morex/Steptoe(CxF)AD_SCRI_111.CEL0521-33_SetA33.CELSMminiOKOK
133SM1792907179Morex/Steptoe(CxF)AD_SCRI_166.CEL  OK 
134SM1802907180Morex/Steptoe(IxE)AD_SCRI_161.CEL  OK 
135SM1812907181Morex/Steptoe(IxE)AD_SCRI_162.CEL  OK 
136SM1822907182Morex/Steptoe(CxF)AD_SCRI_163.CEL  OK 
137SM1832907183Morex/Steptoe(CxF)AD_SCRI_164.CEL  OK 
138SM1842907184Morex/Steptoe(IxE)AD_SCRI_160.CEL0521-34_SetA34.CELSMminiOKOK
139SM1852907185Morex/Steptoe(IxE)AD_SCRI_167.CEL  OK 
140SM1862907186Morex/Steptoe(IxE)AD_SCRI_62.CEL  OK 
141SM1872907187Morex/Steptoe(IxE)AD_SCRI_61.CEL  OK 
142SM1882907188Morex/Steptoe(CxF)AD_SCRI_63.CEL  OK 
143SM1892907189Steptoe/Morex(QxG)AD_SCRI_80.CEL  OK 
144SM1932907193Morex/Steptoe(IxE)AD_SCRI_36.CEL  OK 
145SM1942907194Steptoe/Morex(OxJ)AD_SCRI_29.CEL  OK 
146SM1962907196Steptoe/Morex(BxF)AD_SCRI_26.CEL  OK 
147SM1972907197Steptoe/Morex(BxF)AD_SCRI_85.CEL  OK 
148SM1982907198Morex/Steptoe(IxE)AD_SCRI_8.CEL  OK 
149SM1992907199Steptoe/Morex(BxF)AD_SCRI_20.CEL  OK 
150SM2002907200Morex/Steptoe(IxE)AD_SCRI_38.CEL0521-35_SetA35.CELSMminiOKOK
parentSteptoe  AD_SCRI_17.CEL0521-36_SetA36.CEL   
parentSteptoe  AD_SCRI_66.CEL0521-37_SetA37.CEL   
parentSteptoe  AD_SCRI_68.CEL0521-38_SetA38.CEL   
parentMorex  AD_SCRI_116.CEL0521-39_SetA39.CEL   
parentMorex  AD_SCRI_14.CEL0521-40_SetA40.CEL   
parentMorex  AD_SCRI_67.CEL0521-41_SetA41.CEL   
+ +

 

+
diff --git a/general/datasets/B30_k_1206_r/citation.rtf b/general/datasets/B30_k_1206_r/citation.rtf new file mode 100644 index 0000000..f6fcdda --- /dev/null +++ b/general/datasets/B30_k_1206_r/citation.rtf @@ -0,0 +1,11 @@ +
+

Druka A, Muehlbauer G, Druka I, Caldo R, Baumann U, Rostoks N, Schreiber A, Wise R, Close T, Kleinhofs A, Graner A, Schulman A, Langridge P, Sato K, Hayes P, McNicol J, Marshall D, Waugh R. (2006) An atlas of gene expression from seed to seed through barley development. Funct Integr Genomics, Jul;6(3):202-11.

+ +

Kleinhofs A, Kilian A, Saghai Maroof M, Biyashev R, Hayes P, Chen F, Lapitan N, Fenwick A, Blake T, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu BH, Sorrells M, Heun M, Franckowiak J, Hoffman D, Skadsen R, Steffenson B (1993) A molecular, isozyme, and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705-712.

+ +

Caldo RA, Nettleton D, Wise RP (2004) Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell 16:2514-2528.

+ +

Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP. (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960-968.

+ +

Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet 87:392-401

+
diff --git a/general/datasets/B30_k_1206_r/experiment-design.rtf b/general/datasets/B30_k_1206_r/experiment-design.rtf new file mode 100644 index 0000000..e743086 --- /dev/null +++ b/general/datasets/B30_k_1206_r/experiment-design.rtf @@ -0,0 +1,62 @@ +
+

RNA Sample Processing:

+ +

Trizol RNA isolation and RNeasy clean up protocol for whole plants (embryo-derived tissue dissected from 4 days old germinating grains) and the seedling leaves (12 days after planting).

+ +


+☐ Grind tissue (9 embryos) with a mortar and pestle in liquid nitrogen
+☐ Add 5 ml TRIzol (pre-heated to 60oC) to all samples, vortex until all the tissue is thawed, place in the 60oC waterbath..
+☐ Incubate samples at 60oC for 10 minutes, vortexing three times.
+☐ Centrifuge @ 4000 x rpm @ 4C for 30 minutes (in Eppendorf 5810R).
+☐ While centrifuging, label new set of 15 ml tubes
+☐ Transfer supernatant to 15 ml centrifuge tube
+☐ Add 1 ml of chloroform. Vortex the sample until color shade is uniform at least 5
+seconds, and incubate at room temperature for 5 minutes.
+☐ Centrifuge @ 4000 x rpm for 30 minutes @ 4oC.
+☐ While centrifuging, label new 15 ml tubes
+☐ Collect the upper aqueous layer (there will be about 3 mls) and transfer to a new 15 ml tube.
+☐ Add 0.6 volumes (2 ml) of isopropanol, mix gently, incubate at room temperature for 20 minutes.
+☐ Centrifuge @ 4000 rpm for 30 minutes @ 4oC.
+☐ Wash the pellet with 10 ml of cold 75% ethanol. Swirl & centrifuge at
+4000 rpm for 15 minutes @ 4oC.
+☐ Discard supernatant, centrifuge for 5 min, remove the rest of the ethanol
+☐ Air-dry the pellet for 10 minutes, inverted on a kimwipe.
+☐ Dissolve pellet in 400 ul of DEPC-treated H2O. Resuspend by pipeting up & down a
+few times.
+☐ Add 2 ul SuperaseIn. Incubate at 60oC for 10 minutes to resuspend.
+☐ Set water bath to 37oC.
+☐ Add 50 ul 10X DnaseI Buffer, 45 ul H2O and 5 ul of DnaseI, incubate at 37oC for 1 hr.
+☐ Prepare Buffer RLT (Rneasy Clean-up Midi Kit) by adding b-mercaptoethanol (10ul/1ml RLT).
+☐ Add 2.0 ml Buffer RLT to the RNA prep and mix thoroughly.
+☐ Add 1.4 ml ethanol (96-100%) to the diluted RNA. Mix thoroughly.
+☐ Label 15 ml tubes from the kit and place midi columns in them
+☐ Apply sample to a Midi column, close tube gently and centrifuge for 20 min at 3000 rpm.
+☐ Discard the flow-through.
+☐ Add 2.5 ml Buffer RPE to the RNA easy column, close the centrifuge tube gently,
+incubate for 3 min
+☐ Centrifuge for 10 min at 3000 rpm. Discard the flow-through.
+☐ Add another 2.5 ml Buffer RPE to the RNeasy column. Close the centrifuge tube
+gently, incubate for 3 min
+☐ Centrifuge for 10 min at 3000 rpm, remove flow-through
+☐ Centrifuge again for another 5 min.
+☐ Label new 15 ml tubes from the kit.
+☐ Transfer the RNA easy column to a new tube and pipet 250 ul volume of
+RNase-free water directly onto the RNeasy silica-membrane incubate for 1 min
+☐ Centrifuge for 5 min at 3000 rpm.
+☐ To the same tube add again 250 ul H2O, incubate for 1 min.
+☐ Centrifuge for 5 min at 3000 rpm.
+☐ Label two sets of 1.5 ml Eppendorf tubes.
+☐ Transfer 490 ul to the one tube and 10 ul to another one. Use 10 ul tube for the RNA

+ +

Detailed descriptions of these procedures can be found under the ArrayExpress (http://www.ebi.ac.uk/aerep/?) protocol P-MEXP-4631 (Caldo et al. 2004).

+ +

Replication and Sample Balance:

+ +

3 independent replicates of both parental cultivars Steptoe and Morex were generated for both tissues, embryo and seedling leaf.

+ +

Experimental Design and Batch Structure:

+
+ +
+

The following are ArrayExpress (http://www.ebi.ac.uk/aerep/?) experiment IDs: E-TABM-111 (leaf, 41 chips) and E-TABM-112 (embryo derived, 156 chips).

+
diff --git a/general/datasets/B30_k_1206_r/experiment-type.rtf b/general/datasets/B30_k_1206_r/experiment-type.rtf new file mode 100644 index 0000000..585c17b --- /dev/null +++ b/general/datasets/B30_k_1206_r/experiment-type.rtf @@ -0,0 +1 @@ +A typical genetical genomics experiment results in four separate data sets; genotype, gene expression, higher-order phenotypic data and metadata that describe the protocols, processing and the array platform. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. Their predictive power is largely determined by the gene expression dataset where tens of millions of data points can be generated using currently available mRNA profiling technologies. Such large, multidimensional data sets often have value beyond that extracted during their initial analysis and interpretation, particularly if conducted on widely distributed reference genetic materials. Besides quality and scale, access to the data is of primary importance as accessibility potentially allows the extraction of considerable added value from the same primary dataset by the wider research community. Although the number of genetical genomics experiments in different plant species is rapidly increasing, none to date has been presented in a form that allows quick and efficient on-line testing for possible associations between genes, loci and traits of interest by an entire research community. \ No newline at end of file diff --git a/general/datasets/B30_k_1206_r/notes.rtf b/general/datasets/B30_k_1206_r/notes.rtf new file mode 100644 index 0000000..46cff8f --- /dev/null +++ b/general/datasets/B30_k_1206_r/notes.rtf @@ -0,0 +1,14 @@ +
+

Arnis Druka
+Genetics Programme
+Scottish Crop Research Institute
+Invergowrie, Dundee DD2 5DA
+Angus, Scotland, United Kingdom
+Tel +44 01382 562731
+Fax +44 01382 568587
+adruka@scri.sari.ac.uk

+
+ +
+

This text file originally generated by Arnis Druka on May 8, 2006. Modified Aug1 by AD. Entered by RWW Aug 4, 2006. Modified by AD Jan 29, 2007, Feb 01, 2007.

+
diff --git a/general/datasets/B30_k_1206_r/platform.rtf b/general/datasets/B30_k_1206_r/platform.rtf new file mode 100644 index 0000000..a935318 --- /dev/null +++ b/general/datasets/B30_k_1206_r/platform.rtf @@ -0,0 +1,3 @@ +
+

Affymetrix 22K Barley1 GeneChip probe array (http://www.affymetrix.com/products/arrays/specific/barley.affx ; Affymetrix product #900515 GeneChip Barley Genome Array) representing 21,439 non-redundant Barley1 exemplar sequences was derived from worldwide contribution of 350,000 high-quality ESTs from 84 cDNA libraries, in addition to 1,145 barley gene sequences from the National Center for Biotechnology Information non-redundant database (Close et al 2004). Abbreviated annotations were created based on the exemplar sequence homology by Arnis Druka using data from the Harvest (http://harvest.ucr.edu/) data depository.

+
diff --git a/general/datasets/B30_k_1206_r/processing.rtf b/general/datasets/B30_k_1206_r/processing.rtf new file mode 100644 index 0000000..d8d039a --- /dev/null +++ b/general/datasets/B30_k_1206_r/processing.rtf @@ -0,0 +1,49 @@ +
+ + + + + + + + + + + + + + + + + + + +
+
Types of the expression data-sets
+
+
Data processing description
+
Barley1 Embryo gcRMA SCRI (Dec 06)
+ Barley1 Leaf gcRMA SCRI (Dec 06)
+

 

+ +

The Affymetrix' CEL files that were generated using MAS 5.0 Suite were imported into the GeneSpring GX 7.3 (Agilent Technologies, Palo Alto, CA) and processed using the RMA algorithm.

+ +

 

+
Barley1 Embryo MAS 5.0 SCRI (Dec 06)
+ Barley1 Leaf MAS 5.0 SCRI (Dec 06)
+

 

+ +

The MAS 5.0 values were calculated from the DAT files using Affymetrix' MAS 5.0 Suite.

+ +

 

+
Barley1 Embryo0 gcRMA SCRI (Apr 06)
+ Barley1 Leaf gcRMAn SCRI (Dec 06)
+

The Affymetrix' CEL files were imported into the GeneSpring GX 7.3 (Agilent Technologies, Palo Alto, CA) software and processed using the RMA algorithm. Per-chip and per-gene normalization was done following the standard GeneSpring procedure (citation of the GeneSpring normalization description):

+ +
    +
  1. Values below 0.01 were set to 0.01.
  2. +
  3. Each measurement was divided by the 50.0th percentile of all measurements in that sample.
  4. +
  5. Each gene was divided by the median of its measurements in all samples. If the median of the raw values was below 10 then each measurement for that gene was divided by 10 if the numerator was above 10, otherwise the measurement was thrown out.
  6. +
+
+
diff --git a/general/datasets/B30_k_1206_r/summary.rtf b/general/datasets/B30_k_1206_r/summary.rtf new file mode 100644 index 0000000..67f4fab --- /dev/null +++ b/general/datasets/B30_k_1206_r/summary.rtf @@ -0,0 +1,5 @@ +

Barley1 Leaf MAS 5.0 SCRI (Dec 06) - integrated probe set value for each gene has been calculated using MAS 5.0 algorithm which uses pixel values from both, PM and MM probes. Descriptions of probe set signal calculation can be found on this page below, section 'About Data Processing'.

+ +
+

The SCRI barley data set provides estimates of mRNA abundance in doubled haploid recombinant lines of cultivated barley. Embryo-derived tissues at four days after imbibition (150 lines) and seedling leaves at 12 days after imbibition (subset of 34 lines) and three biological replicates of each parental cultivar (Steptoe and Morex) for each tissue were used for the isolation of total RNA and hybridization to the Barley1 22K GeneChip (GEO GPL1340).

+
diff --git a/general/datasets/B30_k_1206_r/tissue.rtf b/general/datasets/B30_k_1206_r/tissue.rtf new file mode 100644 index 0000000..a8351e8 --- /dev/null +++ b/general/datasets/B30_k_1206_r/tissue.rtf @@ -0,0 +1,9 @@ +
+

Plant material according to the current plant ontologies: Embryo-derived tissues: whole plant (PO:0000003) at the development stage 1.05-coleoptile emerged from seed (GRO:0007056); Seedling leaves: primary shoot (PO:0006341) at the developmental stage 2.02-first leaf unfolded (GRO:0007060) (Druka et al. 2006).

+ +

To obtain embryo-derived tissue, growth room#2, AN building, SCRI, with the standard laboratory bench positioned in the middle of the room was used to germinate sterilized seeds. Seeds were placed between three layers of wet 3MM filter paper in the 156 10 mm Petri plates. Thirty to fifty seeds per line (per Petri plate) were used. Germination was in the dark, 16 hours at 17 deg C and 8 hours at 12 deg C. After 96 hours, embryo-derived tissue (mesocotyl, coleoptile, and seminal roots) from three grains was dissected and flash frozen in the liquid nitrogen. Germination and collection was repeated two more times. Complete randomization of the Petri plates was done for each germination event. Tissues from all three germinations (collections) were bulked before RNA isolation. Three replicates of the parental cultivars were germinated for each collection.

+ +

To obtain seedling leaves, three Microclima 1000 growth chambers (Snijders Scientific B.V., Tilburg, Holland) were used for the experiment. Each cabinet accomodated 40 (13x13 cm) pots. Humidity was set to 70%, with light conditions for 16 hours light at 17C and 8 hours dark at 12C. The cycle started at 10 am with lights on. Light intensity was 337-377 mmol m-2 s-1, measured at the beginning of the experiment, 11 cm from the light source. Measurement was done using Sky Quantium light sensor at 15oC. Plants were placed 55 cm from the light source (from the bulb to the surface of the vermiculite). Ten sterilized seeds per pot were planted and 3 pots per genotype / per cabinet were used. After 12 days, leaf blade and sheath from 5-7 the same size plants was cut off, bulked and flash frozen in the liquid nitrogen.

+ +

 

+
diff --git a/general/datasets/B30_k_1206_rn/acknowledgment.rtf b/general/datasets/B30_k_1206_rn/acknowledgment.rtf new file mode 100644 index 0000000..5d9cc73 --- /dev/null +++ b/general/datasets/B30_k_1206_rn/acknowledgment.rtf @@ -0,0 +1,3 @@ +
+

Plant maintenance, tissue collection, RNA isolation, and data submission to ArrayExpress was done at SCRI by Arnis Druka with support from BBSRC/SEERAD grant SCR/910/04 The genetics of gene expression in barley' to Michael Kearsey (University of Birmingham, UK) and Robbie Waugh (SCRI, UK). Probe synthesis, labeling and hybridization were performed according to manufacturer’s protocols (Affymetrix, Santa Clara, CA) at the Iowa State University GeneChip Core facility (Rico Caldo and Roger Wise). ArrayExpress (EBI, UK) team members Tim Rayner, Helen Parkinson, and Alvis Brazma are acknowledged for excellent help with data submission to ArrayExpress.

+
diff --git a/general/datasets/B30_k_1206_rn/cases.rtf b/general/datasets/B30_k_1206_rn/cases.rtf new file mode 100644 index 0000000..1425413 --- /dev/null +++ b/general/datasets/B30_k_1206_rn/cases.rtf @@ -0,0 +1,1748 @@ +
+

The SM cross was originally made to map barley grain quality traits; Steptoe is high-yielding barley cultivar used for animal feeding, but Morex has good malting barley characteristics (Hayes et al 1993). Many agronomic quality traits have been mapped using this population (for the lists see BeerGenes web-site http://gnome.agrenv.mcgill.ca/bg/).

+ +

The sample used in this study consists of 150 Steptoe x Morex doubled haploid recombinant lines (Kleinhofs et al. 1993) was used to obtain embryo-derived tissue. For the seedling leaf tissue a subset of 35 lines was used. This subset was selected based on evenly spaced crossovers along each of seven barley chromosomes. The expression data of 11 DH lines has been removed from both, embryo and leaf, leaving for the analysis 129 lines with embryo expression data and a subset of 30 lines with seedling leaf expression data. The lines were removed from the analysis after error checking; discrepancies with genotyping data were found. We left all 150 lines in the embryo Apr06 data set and the full data set is available from the ArrayExpress. The following table lists line IDs and corresponding CEL file IDs, also indicating:
+1) pedigree; shows the direction of the cross that was used to produce the original F1. The parental plants were given letter codes of A - Z. For example, SM1 was derived from an F1 that was generated by crossing Steptoe plant "B" as a female with Morex plant "F" as a male.
+2) 'minimapper' subset - MINI;
+3) lines that have expression data removed - ERROR:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Order #Line IDPermanent Oregon IDCross direction +
CEL file names
+
Mini-mapper setError check
embryo data-setleaf data-setembryo data-setleaf data-set
1SM0012907001Steptoe/Morex(BxF)AD_SCRI_82.CEL  OK 
2SM0022907002Steptoe/Morex(BxF)AD_SCRI_1.CEL  OK 
3SM0032907003Morex/Steptoe(CxF)AD_SCRI_19.CEL  OK 
4SM0042907004Morex/Steptoe(CxF)AD_SCRI_3.CEL0521-1_SetA1.CELSMminiOKOK
5SM0052907005Steptoe/Morex(BxH)AD_SCRI_88.CEL  OK 
6SM0062907006Morex/Steptoe(CxF)AD_SCRI_48.CEL  OK 
7SM0072907007Steptoe/Morex(BxH)AD_SCRI_35.CEL0521-2_SetA2.CELSMminiOKOK
8SM0092907009Steptoe/Morex(BxF)AD_SCRI_2.CEL  OK 
9SM0102907010Morex/Steptoe(IxE)AD_SCRI_42.CEL  OK 
10SM0112907011Steptoe/Morex(QxG)AD_SCRI_10.CEL  OK 
11SM0122907012Morex/Steptoe(CxF)AD_SCRI_45.CEL0521-3_SetA3.CELSMminiERRORERROR
12SM0132907013Morex/Steptoe(IxE)AD_SCRI_78.CEL0521-4_SetA4.CELSMminiERRORERROR
13SM0142907014Steptoe/Morex(BxH)AD_SCRI_18.CEL  OK 
14SM0152907015Steptoe/Morex(BxH)AD_SCRI_5.CEL  OK 
15SM0162907016Steptoe/Morex(BxH)AD_SCRI_21.CEL  OK 
16SM0202907020Steptoe/Morex(OxJ)AD_SCRI_77.CEL  OK 
17SM0212907021Morex/Steptoe(IxE)AD_SCRI_30.CEL  OK 
18SM0222907022Morex/Steptoe(IxE)AD_SCRI_31.CEL0521-5_SetA5.CELSMminiOKOK
19SM0232907023Steptoe/Morex(BxH)AD_SCRI_32.CEL  OK 
20SM0242907024Morex/Steptoe(IxE)AD_SCRI_33.CEL0521-6_SetA6.CELSMminiOKOK
21SM0252907025Morex/Steptoe(CxF)AD_SCRI_34.CEL  OK 
22SM0272907027Steptoe/Morex(OxJ)AD_SCRI_12.CEL0521-7_SetA7.CELSMminiOKOK
23SM0302907030Morex/Steptoe(IxE)AD_SCRI_79.CEL  OK 
24SM0312907031Steptoe/Morex(OxJ)AD_SCRI_16.CEL  OK 
25SM0322907032Morex/Steptoe(IxE)AD_SCRI_13.CEL  OK 
26SM0352907035Morex/Steptoe(CxF)AD_SCRI_15.CEL  ERROR 
27SM0392907039Morex/Steptoe(CxF)AD_SCRI_41.CEL  OK 
28SM0402907040Steptoe/Morex(BxH)AD_SCRI_83.CEL  OK 
29SM0412907041Steptoe/Morex(OxJ)AD_SCRI_11_redo.CEL0521-8_SetA8.CELSMminiOKOK
30SM0422907042Morex/Steptoe(CxF)AD_SCRI_57.CEL  OK 
31SM0432907043Morex/Steptoe(JxE)AD_SCRI_49.CEL0521-9_SetA9.CELSMminiOKOK
32SM0442907044Steptoe/Morex(OxJ)AD_SCRI_50.CEL0521-10_SetA10.CELSMminiOKOK
33SM0452907045Steptoe/Morex(BxH)AD_SCRI_51.CEL  OK 
34SM0462907046Steptoe/Morex(OxJ)AD_SCRI_52.CEL0521-11_SetA11.CELSMminiOKOK
35SM0482907048Steptoe/Morex(BxF)AD_SCRI_53.CEL  ERROR 
36SM0502907050Morex/Steptoe(IxE)AD_SCRI_46.CEL  OK 
37SM0542907054Morex/Steptoe(CxF)AD_SCRI_60.CEL  OK 
38SM0552907055Steptoe/Morex(OxJ)AD_SCRI_55.CEL  OK 
39SM0562907056Steptoe/Morex(BxH)AD_SCRI_23.CEL  OK 
40SM0572907057Morex/Steptoe(CxF)AD_SCRI_24.CEL  OK 
41SM0582907058Steptoe/Morex(BxF)AD_SCRI_22.CEL  OK 
42SM0592907059Steptoe/Morex(BxH)AD_SCRI_27.CEL  OK 
43SM0612907061Morex/Steptoe(LxF)AD_SCRI_81.CEL0521-12_SetA12.CELSMminiOKOK
44SM0622907062Morex/Steptoe(CxF)AD_SCRI_44.CEL  OK 
45SM0632907063Steptoe/Morex(OxJ)AD_SCRI_40.CEL0521-13_SetA13.CELSMminiOKOK
46SM0642907064Morex/Steptoe(CxF)AD_SCRI_87_redo.CEL  OK 
47SM0652907065Morex/Steptoe(CxF)AD_SCRI_54.CEL  OK 
48SM0672907067Steptoe/Morex(OxJ)AD_SCRI_73.CEL  OK 
49SM0682907068Steptoe/Morex(OxG)AD_SCRI_56.CEL  ERROR 
50SM0692907069Steptoe/Morex(BxH)AD_SCRI_71.CEL  OK 
51SM0702907070Steptoe/Morex(BxF)AD_SCRI_64.CEL  OK 
52SM0712907071Steptoe/Morex(BxH)AD_SCRI_58.CEL  OK 
53SM0722907072Morex/Steptoe(CxF)AD_SCRI_59.CEL  OK 
54SM0732907073Steptoe/Morex(BxF)AD_SCRI_74.CEL0521-14_SetA14.CELSMminiOKERROR
55SM0742907074Morex/Steptoe(CxF)AD_SCRI_25.CEL0521-15_SetA15.CELSMminiOKOK
56SM0752907075Steptoe/Morex(QxG)AD_SCRI_120.CEL  OK 
57SM0762907076Steptoe/Morex(BxF)AD_SCRI_112.CEL  OK 
58SM0772907077Morex/Steptoe(CxF)AD_SCRI_142.CEL  OK 
59SM0782907078Steptoe/Morex(BxF)AD_SCRI_86.CEL  OK 
60SM0792907079Morex/Steptoe(CxF)AD_SCRI_153.CEL0521-16_SetA16.CELSMminiOKERROR
61SM0802907080Steptoe/Morex(BxF)AD_SCRI_107.CEL  OK 
62SM0812907081Morex/Steptoe(CxF)AD_SCRI_105.CEL  OK 
63SM0822907082Steptoe/Morex(BxF)AD_SCRI_97.CEL  OK 
64SM0832907083Steptoe/Morex(BxF)AD_SCRI_89.CEL  OK 
65SM0842907084Morex/Steptoe(CxF)AD_SCRI_155.CEL  OK 
66SM0852907085Morex/Steptoe(IxE)AD_SCRI_149.CEL0521-17_SetA17.CELSMminiOKOK
67SM0872907087Steptoe/Morex(OxJ)AD_SCRI_113.CEL  OK 
68SM0882907088Morex/Steptoe(CxF)AD_SCRI_93.CEL0521-18_SetA18.CELSMminiOKOK
69SM0892907089Steptoe/Morex(OxJ)AD_SCRI_148.CEL0521-19_SetA19.CELSMminiOKOK
70SM0912907091Morex/Steptoe(CxF)AD_SCRI_110.CEL  OK 
71SM0922907092Steptoe/Morex(OxJ)AD_SCRI_7.CEL  OK 
72SM0932907093Steptoe/Morex(BxF)AD_SCRI_122.CEL  OK 
73SM0942907094Morex/Steptoe(CxF)AD_SCRI_150.CEL  OK 
74SM0972907097Morex/Steptoe(CxF)AD_SCRI_158.CEL  OK 
75SM0982907098Morex/Steptoe(CxF)AD_SCRI_121.CEL  OK 
76SM0992907099Steptoe/Morex(QxG)AD_SCRI_137.CEL  OK 
77SM1032907103Morex/Steptoe(IxE)AD_SCRI_156.CEL  OK 
78SM1042907104Steptoe/Morex(BxH)AD_SCRI_70.CEL  ERROR 
79SM1052907105Morex/Steptoe(IxE)AD_SCRI_69.CEL  OK 
80SM1102907110Morex/Steptoe(CxF)AD_SCRI_75.CEL  ERROR 
81SM1122907112Steptoe/Morex(BxF)AD_SCRI_84.CEL  OK 
82SM1162907116Morex/Steptoe(CxF)AD_SCRI_117.CEL0521-20_SetA20.CELSMminiOKOK
83SM1202907120Steptoe/Morex(OxJ)AD_SCRI_138.CEL  OK 
84SM1242907124Steptoe/Morex(BxF)AD_SCRI_146.CEL  OK 
85SM1252907125Morex/Steptoe(IxE)AD_SCRI_43.CEL  OK 
86SM1262907126Steptoe/Morex(OxJ)AD_SCRI_144_redo.CEL  OK 
87SM1272907127Steptoe/Morex(BxH)AD_SCRI_129.CEL  OK 
88SM1292907129Steptoe/Morex(OxJ)AD_SCRI_132.CEL  OK 
89SM1302907130Morex/Steptoe(CxF)AD_SCRI_101.CEL0521-21_SetA21.CELSMminiOKOK
90SM1312907131Steptoe/Morex(OxJ)AD_SCRI_102.CEL  OK 
91SM1322907132Steptoe/Morex(QxG)AD_SCRI_4_redo.CEL  OK 
92SM1332907133Morex/Steptoe(CxF)AD_SCRI_157.CEL  OK 
93SM1342907134Morex/Steptoe(IxE)AD_SCRI_159.CEL  OK 
94SM1352907135Steptoe/Morex(BxF)AD_SCRI_72.CEL0521-22_SetA22.CELSMminiOKOK
95SM1362907136Steptoe/Morex(QxG)AD_SCRI_123.CEL0521-23_SetA23.CELSMminiOKOK
96SM1372907137Steptoe/Morex(BxH)AD_SCRI_39.CEL  OK 
97SM1392907139Morex/Steptoe(CxF)AD_SCRI_133.CEL  OK 
98SM1402907140Morex/Steptoe(CxF)AD_SCRI_134.CEL0521-24_SetA24.CELSMminiOKOK
99SM1412907141Steptoe/Morex(BxH)AD_SCRI_136.CEL0521-25_SetA25.CELSMminiOKOK
100SM1422907142Morex/Steptoe(IxE)AD_SCRI_6.CEL  OK 
101SM1432907143Steptoe/Morex(BxH)AD_SCRI_145.CEL  OK 
102SM1442907144Steptoe/Morex(BxF)AD_SCRI_103.CEL  OK 
103SM1452907145Steptoe/Morex(QxG)AD_SCRI_108.CEL  OK 
104SM1462907146Morex/Steptoe(BxF)AD_SCRI_91.CEL0521-26_SetA26.CELSMminiOKOK
105SM1472907147Steptoe/Morex(OxJ)AD_SCRI_139.CEL  OK 
106SM1492907149Steptoe/Morex(BxF)AD_SCRI_131.CEL  ERROR 
107SM1502907150Morex/Steptoe(CxF)AD_SCRI_37.CEL  OK 
108SM1512907151Morex/Steptoe(IxE)AD_SCRI_28.CEL  OK 
109SM1522907152Steptoe/Morex(BxH)AD_SCRI_9_redo.CEL0521-27_SetA27.CELSMminiOKOK
110SM1532907153Steptoe/Morex(BxH)AD_SCRI_135.CEL  OK 
111SM1542907154Steptoe/Morex(BxH)AD_SCRI_114.CEL  OK 
112SM1552907155Steptoe/Morex(BxH)AD_SCRI_119.CEL0521-28_SetA28.CELSMminiOKOK
113SM1562907156Steptoe/Morex(BxH)AD_SCRI_140.CEL  OK 
114SM1572907157Morex/Steptoe(CxF)AD_SCRI_106_redo.CEL  OK 
115SM1582907158Morex/Steptoe(CxF)AD_SCRI_65.CEL  OK 
116SM1592907159Morex/Steptoe(IxE)AD_SCRI_168.CEL  OK 
117SM1602907160Steptoe/Morex(OxJ)AD_SCRI_47.CEL0521-29_SetA29.CELSMminiOKERROR
118SM1612907161Steptoe/Morex(BxH)AD_SCRI_76.CEL  ERROR 
119SM1622907162Morex/Steptoe(CxF)AD_SCRI_147.CEL  OK 
120SM1642907164Steptoe/Morex(OxJ)AD_SCRI_128.CEL  OK 
121SM1652907165Steptoe/Morex(BxH)AD_SCRI_143.CEL  OKOK
122SM1662907166Morex/Steptoe(CxF)AD_SCRI_115.CEL  OK 
123SM1672907167Steptoe/Morex(BxH)AD_SCRI_127.CEL0521-30_SetA30.CELSMminiOKOK
124SM1682907168Steptoe/Morex(BxH)AD_SCRI_130.CEL  OK 
125SM1692907169Morex/Steptoe(CxF)AD_SCRI_118.CEL0521-31_SetA31.CELSMminiOKOK
126SM1702907170Steptoe/Morex(BxF)AD_SCRI_151.CEL  OK 
127SM1712907171Steptoe/Morex(BxF)AD_SCRI_165.CEL  ERROR 
128SM1722907172Steptoe/Morex(OxJ)AD_SCRI_152.CEL  ERROR 
129SM1732907173Steptoe/Morex(OxJ)AD_SCRI_104.CEL0521-32_SetA32.CELSMminiOKOK
130SM1742907174Steptoe/Morex(BxH)AD_SCRI_154.CEL  OK 
131SM1762907176Morex/Steptoe(CxF)AD_SCRI_141.CEL  OK 
132SM1772907177Morex/Steptoe(CxF)AD_SCRI_111.CEL0521-33_SetA33.CELSMminiOKOK
133SM1792907179Morex/Steptoe(CxF)AD_SCRI_166.CEL  OK 
134SM1802907180Morex/Steptoe(IxE)AD_SCRI_161.CEL  OK 
135SM1812907181Morex/Steptoe(IxE)AD_SCRI_162.CEL  OK 
136SM1822907182Morex/Steptoe(CxF)AD_SCRI_163.CEL  OK 
137SM1832907183Morex/Steptoe(CxF)AD_SCRI_164.CEL  OK 
138SM1842907184Morex/Steptoe(IxE)AD_SCRI_160.CEL0521-34_SetA34.CELSMminiOKOK
139SM1852907185Morex/Steptoe(IxE)AD_SCRI_167.CEL  OK 
140SM1862907186Morex/Steptoe(IxE)AD_SCRI_62.CEL  OK 
141SM1872907187Morex/Steptoe(IxE)AD_SCRI_61.CEL  OK 
142SM1882907188Morex/Steptoe(CxF)AD_SCRI_63.CEL  OK 
143SM1892907189Steptoe/Morex(QxG)AD_SCRI_80.CEL  OK 
144SM1932907193Morex/Steptoe(IxE)AD_SCRI_36.CEL  OK 
145SM1942907194Steptoe/Morex(OxJ)AD_SCRI_29.CEL  OK 
146SM1962907196Steptoe/Morex(BxF)AD_SCRI_26.CEL  OK 
147SM1972907197Steptoe/Morex(BxF)AD_SCRI_85.CEL  OK 
148SM1982907198Morex/Steptoe(IxE)AD_SCRI_8.CEL  OK 
149SM1992907199Steptoe/Morex(BxF)AD_SCRI_20.CEL  OK 
150SM2002907200Morex/Steptoe(IxE)AD_SCRI_38.CEL0521-35_SetA35.CELSMminiOKOK
parentSteptoe  AD_SCRI_17.CEL0521-36_SetA36.CEL   
parentSteptoe  AD_SCRI_66.CEL0521-37_SetA37.CEL   
parentSteptoe  AD_SCRI_68.CEL0521-38_SetA38.CEL   
parentMorex  AD_SCRI_116.CEL0521-39_SetA39.CEL   
parentMorex  AD_SCRI_14.CEL0521-40_SetA40.CEL   
parentMorex  AD_SCRI_67.CEL0521-41_SetA41.CEL   
+ +

 

+
diff --git a/general/datasets/B30_k_1206_rn/citation.rtf b/general/datasets/B30_k_1206_rn/citation.rtf new file mode 100644 index 0000000..f6fcdda --- /dev/null +++ b/general/datasets/B30_k_1206_rn/citation.rtf @@ -0,0 +1,11 @@ +
+

Druka A, Muehlbauer G, Druka I, Caldo R, Baumann U, Rostoks N, Schreiber A, Wise R, Close T, Kleinhofs A, Graner A, Schulman A, Langridge P, Sato K, Hayes P, McNicol J, Marshall D, Waugh R. (2006) An atlas of gene expression from seed to seed through barley development. Funct Integr Genomics, Jul;6(3):202-11.

+ +

Kleinhofs A, Kilian A, Saghai Maroof M, Biyashev R, Hayes P, Chen F, Lapitan N, Fenwick A, Blake T, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu BH, Sorrells M, Heun M, Franckowiak J, Hoffman D, Skadsen R, Steffenson B (1993) A molecular, isozyme, and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705-712.

+ +

Caldo RA, Nettleton D, Wise RP (2004) Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell 16:2514-2528.

+ +

Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP. (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960-968.

+ +

Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet 87:392-401

+
diff --git a/general/datasets/B30_k_1206_rn/experiment-design.rtf b/general/datasets/B30_k_1206_rn/experiment-design.rtf new file mode 100644 index 0000000..e743086 --- /dev/null +++ b/general/datasets/B30_k_1206_rn/experiment-design.rtf @@ -0,0 +1,62 @@ +
+

RNA Sample Processing:

+ +

Trizol RNA isolation and RNeasy clean up protocol for whole plants (embryo-derived tissue dissected from 4 days old germinating grains) and the seedling leaves (12 days after planting).

+ +


+☐ Grind tissue (9 embryos) with a mortar and pestle in liquid nitrogen
+☐ Add 5 ml TRIzol (pre-heated to 60oC) to all samples, vortex until all the tissue is thawed, place in the 60oC waterbath..
+☐ Incubate samples at 60oC for 10 minutes, vortexing three times.
+☐ Centrifuge @ 4000 x rpm @ 4C for 30 minutes (in Eppendorf 5810R).
+☐ While centrifuging, label new set of 15 ml tubes
+☐ Transfer supernatant to 15 ml centrifuge tube
+☐ Add 1 ml of chloroform. Vortex the sample until color shade is uniform at least 5
+seconds, and incubate at room temperature for 5 minutes.
+☐ Centrifuge @ 4000 x rpm for 30 minutes @ 4oC.
+☐ While centrifuging, label new 15 ml tubes
+☐ Collect the upper aqueous layer (there will be about 3 mls) and transfer to a new 15 ml tube.
+☐ Add 0.6 volumes (2 ml) of isopropanol, mix gently, incubate at room temperature for 20 minutes.
+☐ Centrifuge @ 4000 rpm for 30 minutes @ 4oC.
+☐ Wash the pellet with 10 ml of cold 75% ethanol. Swirl & centrifuge at
+4000 rpm for 15 minutes @ 4oC.
+☐ Discard supernatant, centrifuge for 5 min, remove the rest of the ethanol
+☐ Air-dry the pellet for 10 minutes, inverted on a kimwipe.
+☐ Dissolve pellet in 400 ul of DEPC-treated H2O. Resuspend by pipeting up & down a
+few times.
+☐ Add 2 ul SuperaseIn. Incubate at 60oC for 10 minutes to resuspend.
+☐ Set water bath to 37oC.
+☐ Add 50 ul 10X DnaseI Buffer, 45 ul H2O and 5 ul of DnaseI, incubate at 37oC for 1 hr.
+☐ Prepare Buffer RLT (Rneasy Clean-up Midi Kit) by adding b-mercaptoethanol (10ul/1ml RLT).
+☐ Add 2.0 ml Buffer RLT to the RNA prep and mix thoroughly.
+☐ Add 1.4 ml ethanol (96-100%) to the diluted RNA. Mix thoroughly.
+☐ Label 15 ml tubes from the kit and place midi columns in them
+☐ Apply sample to a Midi column, close tube gently and centrifuge for 20 min at 3000 rpm.
+☐ Discard the flow-through.
+☐ Add 2.5 ml Buffer RPE to the RNA easy column, close the centrifuge tube gently,
+incubate for 3 min
+☐ Centrifuge for 10 min at 3000 rpm. Discard the flow-through.
+☐ Add another 2.5 ml Buffer RPE to the RNeasy column. Close the centrifuge tube
+gently, incubate for 3 min
+☐ Centrifuge for 10 min at 3000 rpm, remove flow-through
+☐ Centrifuge again for another 5 min.
+☐ Label new 15 ml tubes from the kit.
+☐ Transfer the RNA easy column to a new tube and pipet 250 ul volume of
+RNase-free water directly onto the RNeasy silica-membrane incubate for 1 min
+☐ Centrifuge for 5 min at 3000 rpm.
+☐ To the same tube add again 250 ul H2O, incubate for 1 min.
+☐ Centrifuge for 5 min at 3000 rpm.
+☐ Label two sets of 1.5 ml Eppendorf tubes.
+☐ Transfer 490 ul to the one tube and 10 ul to another one. Use 10 ul tube for the RNA

+ +

Detailed descriptions of these procedures can be found under the ArrayExpress (http://www.ebi.ac.uk/aerep/?) protocol P-MEXP-4631 (Caldo et al. 2004).

+ +

Replication and Sample Balance:

+ +

3 independent replicates of both parental cultivars Steptoe and Morex were generated for both tissues, embryo and seedling leaf.

+ +

Experimental Design and Batch Structure:

+
+ +
+

The following are ArrayExpress (http://www.ebi.ac.uk/aerep/?) experiment IDs: E-TABM-111 (leaf, 41 chips) and E-TABM-112 (embryo derived, 156 chips).

+
diff --git a/general/datasets/B30_k_1206_rn/experiment-type.rtf b/general/datasets/B30_k_1206_rn/experiment-type.rtf new file mode 100644 index 0000000..585c17b --- /dev/null +++ b/general/datasets/B30_k_1206_rn/experiment-type.rtf @@ -0,0 +1 @@ +A typical genetical genomics experiment results in four separate data sets; genotype, gene expression, higher-order phenotypic data and metadata that describe the protocols, processing and the array platform. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. Their predictive power is largely determined by the gene expression dataset where tens of millions of data points can be generated using currently available mRNA profiling technologies. Such large, multidimensional data sets often have value beyond that extracted during their initial analysis and interpretation, particularly if conducted on widely distributed reference genetic materials. Besides quality and scale, access to the data is of primary importance as accessibility potentially allows the extraction of considerable added value from the same primary dataset by the wider research community. Although the number of genetical genomics experiments in different plant species is rapidly increasing, none to date has been presented in a form that allows quick and efficient on-line testing for possible associations between genes, loci and traits of interest by an entire research community. \ No newline at end of file diff --git a/general/datasets/B30_k_1206_rn/notes.rtf b/general/datasets/B30_k_1206_rn/notes.rtf new file mode 100644 index 0000000..46cff8f --- /dev/null +++ b/general/datasets/B30_k_1206_rn/notes.rtf @@ -0,0 +1,14 @@ +
+

Arnis Druka
+Genetics Programme
+Scottish Crop Research Institute
+Invergowrie, Dundee DD2 5DA
+Angus, Scotland, United Kingdom
+Tel +44 01382 562731
+Fax +44 01382 568587
+adruka@scri.sari.ac.uk

+
+ +
+

This text file originally generated by Arnis Druka on May 8, 2006. Modified Aug1 by AD. Entered by RWW Aug 4, 2006. Modified by AD Jan 29, 2007, Feb 01, 2007.

+
diff --git a/general/datasets/B30_k_1206_rn/platform.rtf b/general/datasets/B30_k_1206_rn/platform.rtf new file mode 100644 index 0000000..a935318 --- /dev/null +++ b/general/datasets/B30_k_1206_rn/platform.rtf @@ -0,0 +1,3 @@ +
+

Affymetrix 22K Barley1 GeneChip probe array (http://www.affymetrix.com/products/arrays/specific/barley.affx ; Affymetrix product #900515 GeneChip Barley Genome Array) representing 21,439 non-redundant Barley1 exemplar sequences was derived from worldwide contribution of 350,000 high-quality ESTs from 84 cDNA libraries, in addition to 1,145 barley gene sequences from the National Center for Biotechnology Information non-redundant database (Close et al 2004). Abbreviated annotations were created based on the exemplar sequence homology by Arnis Druka using data from the Harvest (http://harvest.ucr.edu/) data depository.

+
diff --git a/general/datasets/B30_k_1206_rn/processing.rtf b/general/datasets/B30_k_1206_rn/processing.rtf new file mode 100644 index 0000000..d8d039a --- /dev/null +++ b/general/datasets/B30_k_1206_rn/processing.rtf @@ -0,0 +1,49 @@ +
+ + + + + + + + + + + + + + + + + + + +
+
Types of the expression data-sets
+
+
Data processing description
+
Barley1 Embryo gcRMA SCRI (Dec 06)
+ Barley1 Leaf gcRMA SCRI (Dec 06)
+

 

+ +

The Affymetrix' CEL files that were generated using MAS 5.0 Suite were imported into the GeneSpring GX 7.3 (Agilent Technologies, Palo Alto, CA) and processed using the RMA algorithm.

+ +

 

+
Barley1 Embryo MAS 5.0 SCRI (Dec 06)
+ Barley1 Leaf MAS 5.0 SCRI (Dec 06)
+

 

+ +

The MAS 5.0 values were calculated from the DAT files using Affymetrix' MAS 5.0 Suite.

+ +

 

+
Barley1 Embryo0 gcRMA SCRI (Apr 06)
+ Barley1 Leaf gcRMAn SCRI (Dec 06)
+

The Affymetrix' CEL files were imported into the GeneSpring GX 7.3 (Agilent Technologies, Palo Alto, CA) software and processed using the RMA algorithm. Per-chip and per-gene normalization was done following the standard GeneSpring procedure (citation of the GeneSpring normalization description):

+ +
    +
  1. Values below 0.01 were set to 0.01.
  2. +
  3. Each measurement was divided by the 50.0th percentile of all measurements in that sample.
  4. +
  5. Each gene was divided by the median of its measurements in all samples. If the median of the raw values was below 10 then each measurement for that gene was divided by 10 if the numerator was above 10, otherwise the measurement was thrown out.
  6. +
+
+
diff --git a/general/datasets/B30_k_1206_rn/summary.rtf b/general/datasets/B30_k_1206_rn/summary.rtf new file mode 100644 index 0000000..67f4fab --- /dev/null +++ b/general/datasets/B30_k_1206_rn/summary.rtf @@ -0,0 +1,5 @@ +

Barley1 Leaf MAS 5.0 SCRI (Dec 06) - integrated probe set value for each gene has been calculated using MAS 5.0 algorithm which uses pixel values from both, PM and MM probes. Descriptions of probe set signal calculation can be found on this page below, section 'About Data Processing'.

+ +
+

The SCRI barley data set provides estimates of mRNA abundance in doubled haploid recombinant lines of cultivated barley. Embryo-derived tissues at four days after imbibition (150 lines) and seedling leaves at 12 days after imbibition (subset of 34 lines) and three biological replicates of each parental cultivar (Steptoe and Morex) for each tissue were used for the isolation of total RNA and hybridization to the Barley1 22K GeneChip (GEO GPL1340).

+
diff --git a/general/datasets/B30_k_1206_rn/tissue.rtf b/general/datasets/B30_k_1206_rn/tissue.rtf new file mode 100644 index 0000000..a8351e8 --- /dev/null +++ b/general/datasets/B30_k_1206_rn/tissue.rtf @@ -0,0 +1,9 @@ +
+

Plant material according to the current plant ontologies: Embryo-derived tissues: whole plant (PO:0000003) at the development stage 1.05-coleoptile emerged from seed (GRO:0007056); Seedling leaves: primary shoot (PO:0006341) at the developmental stage 2.02-first leaf unfolded (GRO:0007060) (Druka et al. 2006).

+ +

To obtain embryo-derived tissue, growth room#2, AN building, SCRI, with the standard laboratory bench positioned in the middle of the room was used to germinate sterilized seeds. Seeds were placed between three layers of wet 3MM filter paper in the 156 10 mm Petri plates. Thirty to fifty seeds per line (per Petri plate) were used. Germination was in the dark, 16 hours at 17 deg C and 8 hours at 12 deg C. After 96 hours, embryo-derived tissue (mesocotyl, coleoptile, and seminal roots) from three grains was dissected and flash frozen in the liquid nitrogen. Germination and collection was repeated two more times. Complete randomization of the Petri plates was done for each germination event. Tissues from all three germinations (collections) were bulked before RNA isolation. Three replicates of the parental cultivars were germinated for each collection.

+ +

To obtain seedling leaves, three Microclima 1000 growth chambers (Snijders Scientific B.V., Tilburg, Holland) were used for the experiment. Each cabinet accomodated 40 (13x13 cm) pots. Humidity was set to 70%, with light conditions for 16 hours light at 17C and 8 hours dark at 12C. The cycle started at 10 am with lights on. Light intensity was 337-377 mmol m-2 s-1, measured at the beginning of the experiment, 11 cm from the light source. Measurement was done using Sky Quantium light sensor at 15oC. Plants were placed 55 cm from the light source (from the bulb to the surface of the vermiculite). Ten sterilized seeds per pot were planted and 3 pots per genotype / per cabinet were used. After 12 days, leaf blade and sheath from 5-7 the same size plants was cut off, bulked and flash frozen in the liquid nitrogen.

+ +

 

+
diff --git a/general/datasets/B6D2ONCILM_0412/summary.rtf b/general/datasets/B6D2ONCILM_0412/summary.rtf deleted file mode 100644 index fbe3924..0000000 --- a/general/datasets/B6D2ONCILM_0412/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -Summary of DatasetId 143, Name: B6D2 ONC Retina (April 2012) RankInv \ No newline at end of file diff --git a/general/datasets/B6D2RIPublish/specifics.rtf b/general/datasets/B6D2RIPublish/specifics.rtf deleted file mode 100644 index 323c8d7..0000000 --- a/general/datasets/B6D2RIPublish/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Mapping Crosses (individual cases) \ No newline at end of file diff --git a/general/datasets/B6D2RIPublish/summary.rtf b/general/datasets/B6D2RIPublish/summary.rtf deleted file mode 100644 index f15c54b..0000000 --- a/general/datasets/B6D2RIPublish/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

BXD Aged Hippocampus eQTL (Dresden UTHSC 2015)

diff --git a/general/datasets/B6btbrf2publish/acknowledgment.rtf b/general/datasets/B6btbrf2publish/acknowledgment.rtf new file mode 100644 index 0000000..1405628 --- /dev/null +++ b/general/datasets/B6btbrf2publish/acknowledgment.rtf @@ -0,0 +1 @@ +

This project was supported in part by NIH/NIDDK 5803701, NIH/NIDDK 66369-01 and American Diabetes Association 7-03-IG-01 to Alan D. Attie, USDA CSREES grants to the University of Wisconsin-Madison to Brian S. Yandell, and HHMI grant A-53-1200-4 to Christina Kendziorski.

diff --git a/general/datasets/B6btbrf2publish/summary.rtf b/general/datasets/B6btbrf2publish/summary.rtf new file mode 100644 index 0000000..ec934ba --- /dev/null +++ b/general/datasets/B6btbrf2publish/summary.rtf @@ -0,0 +1,5 @@ +

The Phenotypes database of August 2005 provides quantitative trait data for 24 phenotypes from a set of 110 F2 animals generated by crossing strains C57BL/6J and BTBR. All F2s are homozygous for the obese (ob) allele of leptin (Lep) on Chr 6. Data were generated at the University of Wisconsin by Alan Attie and colleagues (Stoehr et al. 2000; Lan et al. 2003). This data release complement the liver transcriptome data described in the paper of Lan and colleagues (in submission, 2005). Traits include body weight, insulin and blood sugar levels, and rtPCR results. To review a complete list of the 24 phenotypes simply type in the wildcard character * in the ANY search field. This data set includes values for all 60 selected animals whose liver mRNA has been quantified using the Affymetrix M430A and B arrays, as well as an addition 50 F2 ob/ob animals from the same cross.

+ +

The 110 F2-ob/ob mice were chosen from a larger mapping panel that we created to map diabetes related physiological phenotypes (Stoehr et al. 2000). All 110 of this subsetwere used to map mRNA abundance traits derived by quantitative real-time RT-PCR (Lan et al. 2003).

+ +

 

diff --git a/general/datasets/B6d2oncilm_0412/experiment-type.rtf b/general/datasets/B6d2oncilm_0412/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/B6d2oncilm_0412/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/B6d2oncilm_0412/summary.rtf b/general/datasets/B6d2oncilm_0412/summary.rtf new file mode 100644 index 0000000..fbe3924 --- /dev/null +++ b/general/datasets/B6d2oncilm_0412/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 143, Name: B6D2 ONC Retina (April 2012) RankInv \ No newline at end of file diff --git a/general/datasets/B6d2ripublish/specifics.rtf b/general/datasets/B6d2ripublish/specifics.rtf new file mode 100644 index 0000000..323c8d7 --- /dev/null +++ b/general/datasets/B6d2ripublish/specifics.rtf @@ -0,0 +1 @@ +Mapping Crosses (individual cases) \ No newline at end of file diff --git a/general/datasets/B6d2ripublish/summary.rtf b/general/datasets/B6d2ripublish/summary.rtf new file mode 100644 index 0000000..f15c54b --- /dev/null +++ b/general/datasets/B6d2ripublish/summary.rtf @@ -0,0 +1 @@ +

BXD Aged Hippocampus eQTL (Dresden UTHSC 2015)

diff --git a/general/datasets/BXDGeno/acknowledgment.rtf b/general/datasets/BXDGeno/acknowledgment.rtf deleted file mode 100644 index d291eb6..0000000 --- a/general/datasets/BXDGeno/acknowledgment.rtf +++ /dev/null @@ -1,11 +0,0 @@ -

The majority of SNP genotypes were generated at GeneSeek using the GigaMUGA array, at UNC using the Affymetrix mouse genotyping array, and at Illumina with support from the Wellcome Trust. The selection of markers to included in the final file was carried out by Robert W. Williams and Danny Arends in December 2017.

- -

Reference:

- -

Dietrich WF, Katz H, Lincoln SE (1992) A genetic map of the mouse suitable for typing in intraspecific crosses. Genetics 131:423-447.

- -

Taylor BA, Wnek C, Kotlus BS, Roemer N, MacTaggart T, Phillips SJ (1999) Genotyping new BXD recombinant inbred mouse strains and comparison of BXD and consensus maps. Mamm Genome 10:335-348.

- -

Williams RW, Gu J, Qi S, Lu L (2001) The genetic structure of recombinant inbred mice: High-resolution consensus maps for complex trait analysis. Genome Biology 2:RESEARCH0046

- -

Wiltshire T, Pletcher MT, Batalov S, Barnes SW, Tarantino LM, Cooke MP, Wu H, Smylie K, Santrosyan A, Copeland NG, Jenkins NA, Kalush F, Mural RJ, Glynne RJ, Kay SA, Adams MD, Fletcher CF (2003) Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proc Natl Acad Sci USA 100:3380-3385.

diff --git a/general/datasets/BXDGeno/summary.rtf b/general/datasets/BXDGeno/summary.rtf deleted file mode 100644 index cdb56ad..0000000 --- a/general/datasets/BXDGeno/summary.rtf +++ /dev/null @@ -1,59 +0,0 @@ -

(Updated July 1, 2022 by D. Ashbrook)

- -

All variants are publicly available for anyone to get whatever type and frequency of variant that they want to. The variant vcf is under analyses files in project PRJEB45429 https://www.ebi.ac.uk/ena/browser/view/PRJEB45429?show=analyses

- -

(Updated March 15, 2018 by RW Williams)

- -

BXD Genotypes file status (January 2017): From September 2016 to January 2017, Robert Williams, Jesse Ingels, Lu Lu, and Danny Arends released a new genotype file for the original BXD strains (BXD1 through BXD102) and for all of the new strains (BXD104 to BXD220). Version 1 of this genotype file (used from jan 2017 to March 13, 2018) contained data for 7324 markers and 198 strains. Version 2 of March 14, 2018 fixed some errors of marker location detected by Karl Broman (five markers were out of order in the latest mouse genome assembly). We deleted three markers and retained a final set of 7321 markers, now all in correct order based on the SNP position using the mm10 assembly.

- -

Of the 198 BXD strains, 191 are independent, whereas 7 are substrains (e.g., BXD48 and BXD48a). The file provides approximate locations of 10300 recombinations, an average of 52 per strain. Genotypes were generated using Affymetrix, MUGA, MegaMUGA, and GigaMUGA Illumina platforms. Microsatellites and eQTL genotypes were generated by the Williams/Lu laboratory. Unknown genotypes were imputed as B or D, or were called as H (heterozygous) if the genotype was uncertain. Genotypes were manually curated by RW Williams. Genotypes were smoothed to remove unlikely recombination events. Almost all recombinations are supported by multiple markers, although only one or two representative markers may be provided in this file. The original parent file (BXD_El_Grande_Master_Used_to_Proof_Final_Genotypes_2016.xlxs) contains data for approximately 37000 markers.  Genotypes for Chr Y and  Chr M are provisional and will be verified in 2017. As of 2016, many strains with higher numbers (BXD100 and above) are not fully inbred.

- -

 

- -

A link to the genotype file is provide here

- - - -

Genotypes were generated at GeneSeek (Neogen Inc) with financial support from the University of Tennessee Center for Integrative and Translational Genomics. We thank  Drs. Fernando Pardo-Manuel de Villena (University of North Carolina) and Gary Churchill (The Jackson Laboratory) for developing the GigaMUGA arreay.

- -

The new genotypes are now available in GeneNetwork as the 2017 Genotype file. All SNPs were mapped to the newer Dec 2011, mm10, GRCm38 assembly. 

- -

As of Jan 2017 GeneNetwork uses mm10 coordinates for mapping functions.  Older mm9 versions of GeneNetwork are available on the GN TimeMachine (see upper right side of Search page).

- -

BXD Genotype: The state of a gene or DNA sequence, usually used to describe a contrast between two or more states, such as that between the normal state (wildtype) and a mutant state (mutation) or between the alleles inherited from two parents. All species that are included in GeneNetwork are diploid (derived from two parents) and have two copies of most genes (genes located on the X and Y chromosomes are exceptions). As a result the genotype of a particular diploid individual is actually a pair of genotypes, one from each parents. For example, the offspring of a mating between strain A and strain B will have one copy of the A genotype and one copy of the B genotype and therefore have an A/B genotype. In contrast, offspring of a mating between a female strain A and a male strain A will inherit only A genotypes and have an A/A genotype.

- -

Genotypes can be measured or inferred in many different ways, even by visual inspection of animals (e.g. as Gregor Mendel did long before DNA was discovered). But now the typical method is to directly test DNA that has a well define chromosomal location that has been obtained from one or usually many cases using molecular tests that often rely on polymerase chain reaction steps and sequence analysis. Each case is genotyped at many chromosomal locations (loci, markers, or genes). The entire collection of genotypes (as many a 1 million for a single case) is also sometimes referred to as the cases genotype, but the word "genometype" might be more appropriate to highlight the fact that we are now dealing with a set of genotypes spanning the entire genome (all chromosomes) of the case.

- -

For gene mapping purposes, genotypes are often translated from letter codes (A/A, A/B, and B/B) to simple numerical codes that are more suitable for computation. A/A might be represented by the value -1, A/B by the value 0, and B/B by the value +1. This recoding makes it easy to determine if there is a statistically significant correlation between genotypes across of a set of cases (for example, an F2 population or a Genetic Reference Panel) and a variable phenotype measured in the same population. A sufficiently high correlation between genotypes and phenotypes is referred to as a quantitative trait locus (QTL). If the correlation is almost perfect (r > 0.9) then correlation is usually referred to as a Mendelian locus. Despite the fact that we use the term "correlation" in the preceding sentences, the genotype is actually the cause of the phenotype. More precisely, variation in the genotypes of individuals in the sample population cause the variation in the phenotype. The statistical confidence of this assertion of causality is often estimated using LOD and LRS scores and permutation methods. If the LOD score is above 10, then we can be extremely confident that we have located a genetic cause of variation in the phenotype. While the location is defined usually with a precision ranging from 10 million to 100 thousand basepairs (the locus), the individual sequence variant that is responsible may be quite difficult to extract. Think of this in terms of police work: we may know the neighborhood where the suspect lives, we may have clues as to identity and habits, but we still may have a large list of suspects.

- -

The BXD genotype file was initially upgraded in 2010-2011 using the new high density Affymetrix array (580,000 high quality SNPs) developed in the laboratories of Drs. Fernando Pardo-Manuel de Villena (University of North Carolina) and Gary Churchill (The Jackson Laboratory, see Yang H, Ding Y, Hutchins LN, Szatkiewicz J, Bell TA, Paigen BJ, Graber JH, Pardo-Manuel de Villena, F, Churchill GA (2009) A customized and verstatile high density genotyping array for the mouse. Nat Methods 6:663-666)

- -

The BXD genotype file used from June 2005 through December 2016 exploits a set of approximatey 3796 markers typed across 88 extant and extinct BXD strains (BXD1 through BXD102). The mean interval between informative markers is about 0.7 Mb. This genotype file includes all markers, both SNPs and microsatellites, with unique strain distribution patterns (SDPs), as well as pairs of markers for those SDPs represented by two or more markers. In those situations where three or more markers had the same SDP, we retained only the most proximal and distal marker in the genotype file. This particular file has also been smoothed to eliminate genotypes that are likely to be erroneous. We have also conservatively imputed a small number of missing genotypes (usually over very short intervals). Smoothing genotypes is this way reduces the total number of SDPs and also lowers the rate of false discovery. However, this procedure also may eliminate some genuine SDPs.

- -

The new smoothed BXD genotype data file (2017) can be downloaded from
-GeneNetwork at the URL http://www.genenetwork.org/genotypes/BXD.geno.

- -

Please Note: For a limited number of markers and strains, the genotypes of BXDs have been called heterozygous. This is usually done over comparatively short intervals in some of the newer strains that may not have been fully inbred when they were initially genotyped. Use of the genotype file above in external software packages such as R/qtl, requires careful treatment of this issue to prevent bias in empirical significance thresholds. It is recommended to treat these rare heterozygous loci as missing data and ensure that only the additive effects of B vs. D alleles are estimated by these packages. (note by Elissa Chesler, Dec 2010).

- -

Source of Genotypes:

- -

In collaboration with members of the CTC (Richard Mott, Jonathan Flint, and colleagues), we have helped genotype a total of 480 strains using a panel of 13,377 SNPs. These SNPs were combined with our previious microsatellite genotypes to produce the older "classic" consensus maps for the expanded set of BXD using the older mouse assemblies (Mouse Build 36 - UCSC mm8 and then mm9).  (Files were updated from mm6 to mm8 in January 2007, and from mm9 to mm10 in January 2017).

- -

A total of 198 strains have be genotyped as of Jan 2017 using the full set of SNPs, and about 7324 of these are informative. Informative in this sense simply means that the C57BL/6J and DBA/2J parental strains have different alleles. To reduce false positive errors when mapping using this ultra dense map, we have eliminated most single genotypes that generate double-recombinant haplotypes that are most commonly produced by typing errors ("smoothed" genotypes). For this reason, the genotypes used in the GeneNetwork differ from those downloaded directly from Richard Mott's web site at the Wellcome Trust, Oxford or from the Jackson Laboratory.

- -

We have genotyped all available BXD strains from The Jackson Laboratory. BXD1 through BXD32 were produced by Benjamin Taylor starting in the late 1970s. BXD33 through BXD42 were produced by Taylor in the 1990s (Taylor et al., 1999). All BXD strains with numbers higher than BXD42 (BXD43 through BXD100) were generated by Lu Lu and Robert Williams at UTHSC, and by Jeremy Peirce and Lee Silver at Princeton University. We thank Guomin Zhou for generating the advanced intercross stock used to produce most of these advanced RI strains both at UTHSC and Princeton. There are approximately 48 of these advanced BXD strains, each of which archives approximately twice the recombinations present in a typical F2-derived recombinant inbred strain (Peirce et al. 2003).

- -

Mapping Algorithm:

- -

Due to the very high density of markers, the mapping algorithm used to map BXD data sets has been modified and is a mixture of simple marker regression, linear interpolation, and standard Haley-Knott interval mapping. When two adjacent markers have identical SDPs, they will have identical linkage statistics, as will the entire interval between these two markers (assuming complete and error-free haplotype data for all strains). On a physical map the LRS and the additive effect values will therefore be constant over this physical interval. Between neighboring markers that have different SDPs and that are separated by 1 cM or more, we use a conventional interval mapping method (Haley-Knott) combined with a Haldane estimate of genetic distance. When the interval is less than 1 cM, we simply interpolate linearly between markers based on a physical scale between those markers. The result of this mixture mapping algorithm is a linkage map of a trait that has an unusal profile that is particular striking on a physical (Mb) scale, with many plateaus, abrupt linear transitions between plateaus, and a few regions with the standard graceful curves typical of interval maps.

- -

Archival Genotypes:

- -

Archival BXD Genotype file: Prior to July 2005, the marker genotypes used to map all BXD data sets consisted of a set of 779 markers described by Williams and colleagues (2001) that also included a small number of additional SNPs from Tim Wiltshire and Mathew Pletcher (GNF, La Jolla), new microsatellite markers generated by Grant Morahan and Jing Gu (Msw type markers), and a few CTC markers by Jing Gu. This old marker data set was made obsolete by the ultra high density Illumina SNP genotype data generated Spring, 2005.

- -

Download Genotypes:

- -

The entire BXD genotype data set used for mapping traits can be downloaded at BXD.geno.

diff --git a/general/datasets/BXDPublish/summary.rtf b/general/datasets/BXDPublish/summary.rtf deleted file mode 100644 index 5c22bc2..0000000 --- a/general/datasets/BXDPublish/summary.rtf +++ /dev/null @@ -1,40 +0,0 @@ -

Question: I have generated some phenotype data that I would like to put into GeneNetwork. How should I name my traits?
-
-Answer: Phenotype trait names in GeneNetwork should have this general form when possible:

- -
    -
  1. Your description should start with very short list of "approved" general category and ontology terms. These terms are used to subdivide the entire collection of phenotypes by system, organ, or level of analysis. Some examples may help: "Central nervous system", "Immune system", "Metabolism", "Development", or "Urogenital system". Capitalize this list as you would a standard English sentence. Separate terms by commas and then end the terms with a colon. For example, "Central nervous system, pharmacology, endocrinology:" is a valid set of three terms. These terms do not really describe your trait, but are used by you and other users to figure out how many traits there are in specific categories.
    -
    - Before making up your own terms, please review the current terms in GeneNetwork and find some terms/ontology categories that look good to you. If you have questions contact one of us on the GeneNetwork development team.
  2. -
  3. After the colon start with your description of the phenotype you have generated. For example: "Ethanol response..." or "Anxiety assay...", "Brain weight...". The first letter should almost always be capitalized.
  4. -
  5. Do not start with a generic uninformative word such as "Mean", "Maximum", "Mechanical", "Count", "Number", "Difference", "Baseline", "Induction", "Decrease", "New", "Adjusted", "Distance", "Right", "Left", "Bilateral", "Time", "Total", "Percentage", "Percent". The reason is that the traits should be alphabetized and categorized in a conceptually useful way; not by something "dumb" like the "total" or "percent".
  6. -
  7. Do not start with a specific instrumental assay such as "Morris water maze" or "Dowel test..." or "Porsolt test behavior". Many of these tests will be unknown to other users. Try to use a term that reflects the intent of the assay (Motor coordination test, Learning and memory assay, Allergic airway response). This may be difficult, particularly for tests such as the Porsolt swim test and the Morris water maze that measure aspects of many different traits (anxiety, activity level, spatial navigation, visual acuity etc). But in the interest of clarity of intent rather than precision of measurement, please follow this suggestion. The actual assay instrument can be listed after the primary and secondary trait descriptions.
  8. -
  9. Many traits can be difficult to categorize in a consistent way. For example a trait such as "ventral midbrain copper level in males" could be labeled "copper level in the ventral midbrain." There is no right or wrong way to do this, but the convention should be to choose the order that you think will be most useful to other users in terms of comprehension and consistency with other existing phenotypes. Review related phenotypes before you start naming your own. You will find good and bad examples.
  10. -
  11. Dose and route of drug delivery. If the phenotype is a pharmacological phenotype, whenever practical enter the doses and routes of injection in parentheses after the name of the general trait. For example, "Cocaine response (40 mg/kg ip)". We would prefer to use "ip" and "iv" rather than i.p. and i.v., but this is not a strong preference. If a protocol requires multiple treatments, please include them if possible. For example, "Cocaine response (3 x 3.2 mg/kg ip, Days 2, 3, 4),...").
  12. -
  13. Series of more precise definitions of the phenotype and the subject(s) will often follow with commas used as separators. If possible make this understandable to almost any user, even at the risk of being wordy. -

    For example, "Cocaine response (3 x 3.2 mg/kg ip, Days 2, 3, and 4), conditioned place preference (CPP), change in time in cocaine-paired compartment relative to baseline (Day 5 minus Day 1) for 50 to 90-day-old males and females [sec]"

    -
  14. -
  15. Sex. If the data are for males please write out "in males" or "of male" or "for males". Do not just add a comma such as " , males" or "(M)". This should usually go at the end of the description.
  16. -
  17. Age and condition of subjects can be added if you think it is essential or helpful. However, do not bother with a generic addition "adult" since that is what most users will reasonably assume. If you would like to add an age range then use this format "in 100 to 200-day-old males and females" or "of 3 to 4-month-old males".
  18. -
  19. Mandatory units of measurement between square brackets [min] or [sec] or [n bream breaks/10 min test]. If you are using an ordinal scale, then describe the scale within the brackets. If the units are simply a ratio or percentage then use [ratio] or [%].
  20. -
- -

Other advice on trait descriptions:

- -
    -
  1. Do Not Capitalize Each Word in a Description. (e.g, Ethanol Response, Distance traveled after saline - Distance traveled after ethanol for males and females [cm in a 0-5 min test period] )
  2. -
  3. Do not use "-" as a minus sign. The dash is too confusing and may sometimes be used as a hyphen. Spell out "minus"
  4. -
  5. No not use ALL CAP in a trait description (e.g., TOTAL)
  6. -
  7. Do use commas when appropriate. For example, Morphine response severity of abdominal constriction for males needs a comma between "response" and "severity"
  8. -
  9. Do not use extraneous words such as "time SPENT on rotarod". "time on rotarod" is good enough.
  10. -
  11. Do not start with text or abbreviations that will not be understandable to all users, such as "RSS female and male..."
  12. -
  13. Please us a space between a number and the units: Prepulse inhibition at 70 dB for females (not 70db). Please use the correct form of the abbreviation.
  14. -
  15. Use American spelling. [RWW, September 10, 2009]
  16. -
- -

Examples of accepted phenotype descriptions: (by Amelie Baud. Wellcome Trust Centre for Human Genetics, Oxford, UK.)

- -
    -
  1. Central nervous system, behavior: Anxiety assay, locomotor activity in novel cage between minutes 25 and 30 in novel cage, normalized by Box-Cox transformation [cm]
  2. -
  3. Metabolism: Glycemia (intraperitoneal glucose tolerance test), area under the curve between minutes 0 and 120 after injection, normalized by Box-Cox transformation [mM.min-1]
  4. -
diff --git a/general/datasets/BXD_BonePublish/specifics.rtf b/general/datasets/BXD_BonePublish/specifics.rtf deleted file mode 100644 index c23ed10..0000000 --- a/general/datasets/BXD_BonePublish/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -BXD Bone Individual Data \ No newline at end of file diff --git a/general/datasets/BXD_BonePublish/summary.rtf b/general/datasets/BXD_BonePublish/summary.rtf deleted file mode 100644 index 153d98d..0000000 --- a/general/datasets/BXD_BonePublish/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

In working progress...

diff --git a/general/datasets/BXD_HarvestedPublish/specifics.rtf b/general/datasets/BXD_HarvestedPublish/specifics.rtf deleted file mode 100644 index 7b317eb..0000000 --- a/general/datasets/BXD_HarvestedPublish/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -BXD-NIA-Longevity Phenotypes \ No newline at end of file diff --git a/general/datasets/BXD_HarvestedPublish/summary.rtf b/general/datasets/BXD_HarvestedPublish/summary.rtf deleted file mode 100644 index 88d835c..0000000 --- a/general/datasets/BXD_HarvestedPublish/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

BXD-NIA-Longevity Phenotypes

diff --git a/general/datasets/Bhhbf2geno/summary.rtf b/general/datasets/Bhhbf2geno/summary.rtf new file mode 100644 index 0000000..39d69d7 --- /dev/null +++ b/general/datasets/Bhhbf2geno/summary.rtf @@ -0,0 +1 @@ +

No information is available, please refer to the contact information above.

diff --git a/general/datasets/Br_m2_1106_r/acknowledgment.rtf b/general/datasets/Br_m2_1106_r/acknowledgment.rtf new file mode 100644 index 0000000..0912bce --- /dev/null +++ b/general/datasets/Br_m2_1106_r/acknowledgment.rtf @@ -0,0 +1,3 @@ +
+

Data was generated with funds from NIAAA for Gene Array Technology Center (AA013162) and from the NIAAA Integrated Neuroinformatics Resource for Alcoholism (AA013524).

+
diff --git a/general/datasets/Br_m2_1106_r/cases.rtf b/general/datasets/Br_m2_1106_r/cases.rtf new file mode 100644 index 0000000..1d1f7d8 --- /dev/null +++ b/general/datasets/Br_m2_1106_r/cases.rtf @@ -0,0 +1,5 @@ +
+

This data set includes estimates of gene expression for 50 genetically uniform lines of mice: C57BL/6J (B6 or simply B), DBA/2J (D2 or D), 30 BXD recombinant inbred (RI) strain derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations, and 18 other inbred strains of mice available from the Jackson Laboratory. All mice used were naïve males from 70-90 days old. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. Another significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

In this mRNA expression database we generally used stock obtained directly from The Jackson Laboratory between 2003 and 2005.

+
diff --git a/general/datasets/Br_m2_1106_r/contributors.rtf b/general/datasets/Br_m2_1106_r/contributors.rtf new file mode 100644 index 0000000..c6a7e8a --- /dev/null +++ b/general/datasets/Br_m2_1106_r/contributors.rtf @@ -0,0 +1 @@ +

Saba L, Bhave SV, Grahame N, Bice P, Lapadat R, Belknap J, Hoffman PL, Tabakoff B.

diff --git a/general/datasets/Br_m2_1106_r/notes.rtf b/general/datasets/Br_m2_1106_r/notes.rtf new file mode 100644 index 0000000..e379677 --- /dev/null +++ b/general/datasets/Br_m2_1106_r/notes.rtf @@ -0,0 +1,2 @@ +

This text file originally generated by RWW, YHQ, August for UTHSC Brain mRNA U74Av2 (Aug05) RMA. Updated for UC Denver Whole Brain M430v2 BXD (Nov06) RMA Data by LMS, November 2006. Updated by RWW, Feb 2008. +

diff --git a/general/datasets/Br_m2_1106_r/platform.rtf b/general/datasets/Br_m2_1106_r/platform.rtf new file mode 100644 index 0000000..bf888fd --- /dev/null +++ b/general/datasets/Br_m2_1106_r/platform.rtf @@ -0,0 +1,3 @@ +
+

Affymetrix MOE430v2 GeneChip: The expression data were generated using 248 MOE430v2 arrays. The chromosomal locations of MOE430v2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6). This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+
diff --git a/general/datasets/Br_m2_1106_r/processing.rtf b/general/datasets/Br_m2_1106_r/processing.rtf new file mode 100644 index 0000000..96eb066 --- /dev/null +++ b/general/datasets/Br_m2_1106_r/processing.rtf @@ -0,0 +1,7 @@ +
+

Probe set data: The expression data were processed by Laura Saba (UCDHSC). The original CEL files were read into the R environment (Ihaka and Gentleman 1996). Data were processed using the Robust Multichip Average (RMA) method (Irrizary et al. 2003). Values were log2 transformed within the rma function in R. This data set includes further normalization to produce final estimates of expression that can be compared directly to the other transforms.

+ +

This includes an initial quantile normalization on the RMA normalized probe set data followed by a transformation to force an array average of 8 units and stabilized standard deviation of 2 units within each array. Please see Bolstad and colleagues (2003) for a helpful comparison of RMA and two other methods of processing Affymetrix array data sets.

+
+ +

Expression estimates (strain averages) range from a low of about 3.8 for probe set 1457109_x_at to a high of 15 for Gapdh (probe set 1418625_s_at). The mean expression of 8.0 actually represents a relatively low value of expression (roughly 250 on the original scale) because it is the average of all transcripts on the array, including those that are not expressed. Nonetheless, it is possible to obtain good signal down to very low values. For example, probe set 1437432_a_at (Trim12) has an average expression of 4.56 (extremely low), but it still is associated with a strong QTL (LRS of 45) precisely at the location of the parent gene (Chr 7 at 104 Mb). This demonstrates unequivocally that the small strain differences in expression of Trim12 measured by probe set 1437432_a_at is not noise but is generated by true allelic differences in Trim12 mRNA binding to the arrays.

diff --git a/general/datasets/Br_m2_1106_r/summary.rtf b/general/datasets/Br_m2_1106_r/summary.rtf new file mode 100644 index 0000000..c57e9ff --- /dev/null +++ b/general/datasets/Br_m2_1106_r/summary.rtf @@ -0,0 +1,5 @@ +

A PhenoGen Informatics data set. Please cite: Saba L, Bhave SV, Grahame N, Bice P, Lapadat R, Belknap J, Hoffman PL, Tabakoff B (2006) Candidate genes and their regulatory elements: alcohol preference and tolerance. Mammalian Genome 17:669-688 Full Text PDF Version, Full Text HTML Version

+ +

This November 2006 data freeze provides estimates of mRNA expression in whole brains of BXD recombinant inbred mice measured using Affymetrix MOE 430 version 2 micorarrays. Data were generated at the University of Colorado at Denver and Health Science Center (UCDHSC). Single whole brain samples were hybridized to 248 individual arrays. Data were processed using the RMA protocol followed by a secondary quantile normalization at the probe set level and a scale and location adjustment to ensure an average expression level of 8 units and a standard deviation of 2 units for easy comparison to other transforms.

+ +

The PhenoGen Informatics web site provides additional analytic tools and transforms associated with these data.

diff --git a/general/datasets/Br_m2_1106_r/tissue.rtf b/general/datasets/Br_m2_1106_r/tissue.rtf new file mode 100644 index 0000000..0989cd0 --- /dev/null +++ b/general/datasets/Br_m2_1106_r/tissue.rtf @@ -0,0 +1,2751 @@ +
+

Naïve male mice were euthanized by CO2 exposure, and whole brains were removed and frozen on dry ice. Brains were stored at -70 deg C until used. The RNeasy Midi kit for lipid-rich tissues (Qiagen, Valencia, CA) was used to extract total RNA, and the RNeasy Mini kit (Qiagen) was used for cleanup. Biotin-labeled cRNA was obtained by in vitro transcription of the double-stranded cDNA that was originally synthesized from the total RNA. Each whole brain sample of biotin-labeled cRNA was fragmented and hybridized to a separate oligonucleotide array. After hybridization, the chips were stained with streptavidin-phycoerythrin conjugate and scanned using an Affymetrix GeneArray scanner.

+ +

 

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
StrainSample NumberScale
+ factor
Average
+ background
AbsentMarginalPresentAffy-bActinAffy-GAPH
BXD110.34365.5745.5%4.1%50.4%1.330.74
BXD120.36268.2646.9%4.5%48.6%1.300.76
BXD130.37566.1946.9%4.2%48.9%1.270.77
BXD140.40857.1645.0%4.0%51.1%1.270.80
BXD210.27060.5344.0%4.1%51.8%1.520.87
BXD220.28067.5745.0%4.2%50.8%1.310.75
BXD230.29567.0345.2%4.1%50.7%1.340.76
BXD240.20999.8650.0%4.7%45.3%1.240.73
BXD250.24673.2846.2%4.3%49.5%1.340.73
BXD510.24975.3447.3%4.4%48.3%1.340.73
BXD520.30670.1147.5%4.5%47.9%1.310.77
BXD530.26564.8044.8%4.3%50.9%1.330.74
BXD540.28266.0445.5%4.2%50.4%1.410.76
BXD550.21671.8746.0%3.9%50.1%3.071.01
BXD610.29466.7245.8%4.3%49.9%1.380.75
BXD620.30462.8345.8%4.2%50.0%1.250.72
BXD630.30161.8045.3%4.3%50.5%1.270.76
BXD650.27367.0444.4%4.2%51.4%1.320.76
BXD660.27266.3945.4%4.3%50.3%1.320.75
BXD810.20781.9044.0%3.9%52.1%1.330.74
BXD820.25470.1944.0%3.9%52.0%1.320.72
BXD830.30072.6146.0%4.0%50.0%1.300.74
BXD840.45752.6339.5%3.3%57.2%1.140.79
BXD850.38155.0941.2%3.4%55.4%1.120.79
BXD910.34990.3248.5%4.1%47.4%1.380.78
BXD920.24186.6651.2%4.8%44.0%1.380.75
BXD930.28467.2147.2%4.3%48.5%1.330.78
BXD940.30364.4746.9%4.5%48.6%1.320.77
BXD950.35159.4047.4%4.4%48.2%1.410.80
BXD960.31263.4146.3%4.4%49.4%1.390.76
BXD1110.26761.8544.6%4.3%51.1%1.360.75
BXD1120.31763.7645.3%4.3%50.4%1.290.79
BXD1130.30659.3544.8%4.2%51.0%1.330.79
BXD1140.22398.8451.1%4.6%44.3%1.320.73
BXD1150.29265.0345.4%4.0%50.5%1.380.78
BXD1210.35754.5042.5%3.7%53.8%1.150.76
BXD1220.37955.0542.7%3.7%53.6%1.150.76
BXD1230.34756.3443.2%3.9%52.9%1.170.74
BXD1240.54165.1643.1%3.4%53.6%1.080.79
BXD1250.17896.0443.4%4.0%52.7%1.290.74
BXD1260.23467.3243.0%3.9%53.0%1.310.75
BXD1270.25568.4142.7%4.2%53.2%1.500.76
BXD1310.28559.5145.8%4.2%49.9%1.220.75
BXD1320.27567.1944.9%4.2%50.9%1.290.76
BXD1330.27766.0545.7%4.2%50.2%1.380.79
BXD1340.21482.7348.6%4.5%46.9%1.400.78
BXD1350.23771.7346.0%4.3%49.7%1.290.77
BXD1360.30857.5847.2%4.2%48.6%1.330.74
BXD1420.37258.4246.8%4.4%48.8%1.190.74
BXD1430.35457.3945.0%4.2%50.8%1.200.72
BXD1440.29664.9645.7%4.4%49.9%1.200.69
BXD1450.25766.4644.9%4.4%50.8%1.240.72
BXD1460.41854.0347.4%4.1%48.5%1.100.74
BXD1510.39658.7743.6%3.9%52.5%1.330.78
BXD1520.270151.4252.7%4.7%42.6%1.360.73
BXD1530.36670.2644.7%3.9%51.4%1.290.79
BXD1540.40753.4043.6%4.1%52.4%1.380.79
BXD1610.38848.9843.7%4.1%52.2%1.410.79
BXD1620.35355.4843.7%4.0%52.3%1.440.82
BXD1630.33961.6045.3%4.2%50.5%1.420.80
BXD1640.24095.1550.4%4.7%44.9%1.390.73
BXD1650.27070.6346.3%4.3%49.4%1.450.75
BXD1660.28172.9947.0%4.2%48.8%1.400.77
BXD1810.38459.7845.4%4.0%50.6%1.120.71
BXD1820.28893.6749.5%4.4%46.1%1.150.70
BXD1830.28689.6445.2%4.1%50.8%1.270.71
BXD1840.29469.8544.0%4.1%51.8%1.260.70
BXD1850.41759.8047.0%4.3%48.7%1.150.72
BXD1860.37365.3045.9%4.3%49.8%1.180.74
BXD1910.36459.3546.7%4.2%49.1%1.270.73
BXD1920.41959.7746.8%4.1%49.1%1.230.74
BXD1930.30362.6646.0%4.4%49.6%1.300.74
BXD1940.28091.0051.8%4.5%43.7%1.320.68
BXD1950.30366.1847.1%4.5%48.4%1.330.72
BXD1960.38963.6147.5%4.4%48.1%1.280.73
BXD2110.35075.9344.9%3.9%51.3%1.290.77
BXD2120.33859.0043.8%4.0%52.1%1.290.77
BXD2130.30459.9444.9%4.0%51.2%1.440.77
BXD2140.23594.4451.0%4.8%44.2%1.350.73
BXD2150.31064.2246.9%4.2%48.9%1.420.77
BXD2210.36358.1045.3%3.9%50.8%1.240.80
BXD2220.38555.5844.5%4.0%51.5%1.280.80
BXD2230.34561.0346.8%4.3%48.9%1.350.81
BXD2240.24285.3653.6%4.8%41.6%1.350.75
BXD2250.31662.0247.3%4.5%48.2%1.400.77
BXD2260.32566.3847.5%4.3%48.2%1.290.78
BXD2310.27675.9945.3%4.1%50.6%1.270.75
BXD2320.33381.7647.9%4.0%48.1%1.280.78
BXD2330.275102.4647.4%3.9%48.8%1.300.77
BXD2340.178115.8350.2%4.7%45.2%1.380.73
BXD2350.25892.3847.6%4.2%48.2%1.320.77
BXD2360.25688.2346.3%4.1%49.5%1.310.74
BXD2410.34871.6944.9%4.1%51.1%1.250.74
BXD2420.32474.0544.3%4.0%51.7%1.230.80
BXD2430.40164.0845.6%4.0%50.4%1.080.74
BXD2440.24682.8445.7%4.3%50.0%1.200.75
BXD2460.38954.2844.3%4.2%51.5%1.200.67
BXD2710.50750.0843.6%3.9%52.5%1.480.81
BXD2720.46851.2944.0%3.7%52.3%1.440.90
BXD2730.52649.6743.5%3.9%52.6%1.290.94
BXD2740.53748.9243.5%3.8%52.8%1.460.91
BXD2810.28451.5844.6%4.2%51.2%1.260.80
BXD2820.32250.1644.9%4.3%50.8%1.210.76
BXD2830.39750.9745.9%4.2%49.9%1.140.78
BXD2840.33074.2651.4%4.6%44.0%1.260.72
BXD2850.28452.3444.3%4.4%51.3%1.320.73
BXD2860.34957.1447.8%4.5%47.7%1.300.79
BXD2910.42258.6844.0%3.7%52.3%1.420.86
BXD2930.40058.7243.1%3.8%53.2%1.310.89
BXD2950.36561.7946.9%4.3%48.8%1.380.91
BXD3110.37951.1045.8%4.3%50.0%1.130.75
BXD3120.33348.6443.7%4.1%52.2%1.220.71
BXD3130.51947.7148.2%4.3%47.5%1.130.72
BXD3140.24375.2448.6%4.8%46.6%1.230.71
BXD3150.32553.1946.9%4.6%48.6%1.220.75
BXD3160.32046.9844.5%4.3%51.2%1.240.74
BXD3210.25670.4345.4%3.9%50.8%1.830.87
BXD3220.28867.4444.5%4.1%51.4%1.340.77
BXD3230.36158.1344.4%4.0%51.6%1.360.77
BXD3240.36761.3944.7%4.1%51.2%1.400.78
BXD3250.32468.0445.6%4.3%50.1%1.390.75
BXD3260.26695.4950.8%4.5%44.6%1.410.73
BXD3310.34461.6544.9%3.9%51.2%1.380.82
BXD3320.35661.0444.7%4.1%51.2%1.440.79
BXD3340.38559.9244.1%3.9%52.0%1.380.82
BXD3410.29791.1352.1%4.6%43.3%1.340.70
BXD3420.50851.7944.8%3.9%51.3%1.420.76
BXD3430.28485.3350.7%4.6%44.7%1.510.72
BXD3440.29761.9544.9%4.1%51.0%1.360.77
BXD3450.51656.0246.3%4.0%49.7%1.330.74
BXD3460.54554.4645.2%3.8%51.0%1.490.87
BXD3610.43562.7448.1%4.0%47.8%1.360.73
BXD3620.33371.2448.8%4.3%46.8%1.440.72
BXD3630.32072.9748.3%4.3%47.4%1.380.74
BXD3640.39173.5849.5%4.2%46.3%1.250.75
BXD3810.30387.6839.2%3.3%57.5%1.080.82
BXD3820.34361.3939.7%3.2%57.1%1.120.82
BXD3830.45367.1941.2%3.4%55.4%1.110.83
BXD3840.42464.3641.6%3.5%55.0%1.110.82
BXD3910.35764.3647.3%4.3%48.3%1.330.78
BXD3920.33260.2346.5%4.2%49.3%1.410.80
BXD3930.33165.2746.2%4.2%49.6%1.320.75
BXD3940.36262.6045.5%4.0%50.5%1.280.80
BXD3950.34758.9746.1%4.3%49.7%1.290.79
BXD3960.32763.1246.2%4.3%49.6%1.290.77
BXD4010.37160.0145.2%4.1%50.7%1.320.77
BXD4020.24584.6949.1%4.5%46.4%1.330.72
BXD4030.32464.1746.8%4.3%48.8%1.340.73
BXD4040.28063.9745.1%4.2%50.7%1.480.74
BXD4050.27169.4045.9%4.3%49.8%1.330.74
BXD4060.30759.9945.5%4.2%50.4%1.370.76
BXD4210.42453.9145.1%4.1%50.8%1.540.83
BXD4220.21692.3446.7%4.3%49.1%1.440.76
BXD4230.24984.5245.7%4.1%50.2%1.520.80
BXD4250.23685.2946.2%4.0%49.8%1.380.77
DBA/2J10.31379.6946.8%4.2%49.0%1.240.72
DBA/2J20.29482.2746.5%4.2%49.3%1.270.73
DBA/2J30.34978.5847.8%4.3%47.8%1.310.73
DBA/2J40.38972.0248.0%4.3%47.7%1.210.77
DBA/2J50.36266.7346.5%4.4%49.1%1.230.75
DBA/2J60.34179.8846.7%4.0%49.4%1.330.74
C57BL/6J10.29482.8446.7%4.1%49.2%1.230.76
C57BL/6J20.24280.4043.1%4.1%52.8%1.290.76
C57BL/6J30.250110.9047.8%4.0%48.2%1.320.76
C57BL/6J40.289101.8847.5%4.1%48.4%1.180.75
C57BL/6J50.299114.5948.7%4.1%47.3%1.130.74
C57BL/6J60.251105.9045.8%3.8%50.4%1.300.76
129P3/J10.49659.2641.9%3.5%54.5%1.280.79
129P3/J20.55050.8342.0%3.7%54.3%1.160.78
129P3/J30.44356.0843.0%3.8%53.3%1.220.73
129P3/J40.52158.9244.8%3.8%51.4%1.300.74
129P3/J50.50358.2644.9%3.8%51.3%1.320.74
129S1/SvImJ10.31166.7647.8%3.9%48.3%2.040.97
129S1/SvImJ20.26257.6344.5%3.9%51.6%1.610.81
129S1/SvImJ30.32262.6745.3%3.8%50.9%1.700.83
129S1/SvImJ40.185119.0250.2%4.4%45.5%1.660.75
A/J10.45351.8542.6%3.6%53.8%1.200.73
A/J20.39656.6145.9%3.9%50.2%1.210.76
A/J30.42162.3447.0%4.1%48.8%1.290.72
A/J40.50861.5248.2%4.1%47.7%1.220.74
AKR/J10.33154.7041.7%3.9%54.4%1.220.74
AKR/J20.46455.4644.1%3.7%52.1%1.300.76
AKR/J40.44453.6247.6%4.0%48.4%1.230.71
AKR/J50.43958.6247.4%4.3%48.3%1.230.70
BALB/cByJ10.33675.4950.0%4.1%45.9%1.540.82
BALB/cByJ20.28067.9347.1%4.3%48.7%1.430.76
BALB/cByJ30.31273.7747.7%4.1%48.2%1.790.92
BALB/cByJ40.26279.9746.1%4.1%49.8%1.380.79
BALB/cByJ50.27681.3246.3%4.1%49.6%1.340.79
BALB/cJ10.59154.2543.2%3.5%53.3%1.150.80
BALB/cJ20.34650.3639.9%3.3%56.8%1.200.77
BALB/cJ30.33352.7940.4%3.7%55.9%1.250.77
BALB/cJ50.49554.7845.0%3.7%51.3%1.150.72
BTBR T+tf/J30.31562.8346.4%4.1%49.5%1.380.78
BTBR T+tf/J40.24390.1251.6%4.8%43.6%1.310.75
BTBR T+tf/J50.29471.2146.6%4.3%49.0%1.410.77
BTBR T+tf/J60.26867.5346.6%4.2%49.2%1.320.75
BTBR T+tf/J10.37055.4045.7%4.1%50.2%1.410.75
BTBR T+tf/J20.48850.8947.2%4.2%48.6%1.360.75
C3H/HeJ10.51159.2043.3%3.4%53.3%1.170.83
C3H/HeJ20.40579.4941.3%3.3%55.5%1.180.83
C3H/HeJ30.45459.4741.7%3.5%54.9%1.160.81
C3H/HeJ40.44856.2841.5%3.5%55.0%1.160.79
C3H/HeJ50.38950.1741.1%3.6%55.2%1.240.79
C58/J10.33656.6646.0%4.2%49.8%1.290.73
C58/J20.37258.6146.7%4.3%49.0%1.210.71
C58/J30.36664.5846.8%4.2%49.0%1.200.72
C58/J40.37152.7245.3%4.1%50.6%1.240.72
CAST/EiJ10.46755.7447.1%3.8%49.1%1.390.79
CAST/EiJ20.54550.2946.8%3.8%49.4%1.340.84
CAST/EiJ30.46955.0847.4%4.0%48.5%1.320.76
CAST/EiJ40.39083.0553.0%4.4%42.6%1.360.72
CBA/J10.29267.2544.9%4.0%51.2%1.220.76
CBA/J20.34761.9946.4%4.0%49.7%1.250.82
CBA/J30.30562.1646.3%4.3%49.4%1.310.75
CBA/J40.30364.8246.5%4.0%49.5%1.340.76
CBA/J50.31364.1545.3%4.1%50.7%1.370.78
CBA/J60.36556.8445.6%4.1%50.4%1.310.76
FVB/NJ10.49763.9944.2%3.5%52.3%1.330.79
FVB/NJ20.47555.2444.8%3.8%51.4%1.330.74
FVB/NJ30.52756.0742.6%3.5%53.9%1.310.86
FVB/NJ40.44762.5641.7%3.5%54.8%1.240.82
KK/HIJ10.30993.5449.6%4.3%46.1%1.570.74
KK/HIJ20.29863.2448.0%4.4%47.6%1.370.72
KK/HIJ40.22393.0344.7%4.0%51.3%1.390.74
KK/HIJ50.153136.6751.9%4.6%43.5%1.240.71
MOLF/EiJ10.33967.1149.1%4.3%46.6%1.550.83
MOLF/EiJ20.31980.7349.1%4.2%46.7%1.520.78
MOLF/EiJ30.38069.0349.1%4.2%46.7%1.290.82
MOLF/EiJ40.23895.1948.7%4.1%47.2%1.350.79
NOD/LtJ10.35678.4249.1%4.2%46.7%1.350.76
NOD/LtJ20.42259.7147.4%4.0%48.5%1.250.73
NOD/LtJ30.37777.8449.8%4.0%46.2%1.240.75
NOD/LtJ40.53560.8650.6%4.4%45.0%1.280.74
NOD/LtJ50.33674.5846.6%3.9%49.5%1.320.72
NZW/LacJ20.44250.3144.6%4.1%51.3%1.330.82
NZW/LacJ30.33156.8644.2%4.0%51.7%1.600.78
NZW/LacJ40.33855.2344.1%4.0%51.9%1.310.78
NZW/LacJ50.35156.9049.3%4.3%46.5%1.300.75
PWD/PhJ10.44457.6547.2%3.9%48.9%1.620.78
PWD/PhJ20.32867.5847.3%4.2%48.5%1.360.76
PWD/PhJ30.32273.9047.5%4.0%48.5%1.460.81
PWD/PhJ40.27175.7946.1%4.0%50.0%1.390.79
PWD/PhJ50.191144.7357.7%5.0%37.3%1.360.67
SJL/J10.52854.5841.1%3.4%55.4%1.160.80
SJL/J30.66356.2141.8%3.3%55.0%1.220.75
SJL/J40.64652.9640.5%3.2%56.3%1.130.81
SJL/J50.63961.9144.8%3.4%51.9%1.370.79
+
diff --git a/general/datasets/Br_u_0303_m/acknowledgment.rtf b/general/datasets/Br_u_0303_m/acknowledgment.rtf new file mode 100644 index 0000000..1efbf49 --- /dev/null +++ b/general/datasets/Br_u_0303_m/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_0303_m/cases.rtf b/general/datasets/Br_u_0303_m/cases.rtf new file mode 100644 index 0000000..38a782c --- /dev/null +++ b/general/datasets/Br_u_0303_m/cases.rtf @@ -0,0 +1,230 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +

The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. Note that this table includes six arrays dropped from the December 2003 data sets (BXD6, n=2; BXD12, BXD16, BXD40, and BXD67, n=1 each).

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀♀♀BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀♀ BXD18♀♂♀
BXD19♀♀♀BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♂♀♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀♂  
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_0303_m/experiment-type.rtf b/general/datasets/Br_u_0303_m/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Br_u_0303_m/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Br_u_0303_m/notes.rtf b/general/datasets/Br_u_0303_m/notes.rtf new file mode 100644 index 0000000..68a18e4 --- /dev/null +++ b/general/datasets/Br_u_0303_m/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, EJC, and YHQ, August 2003. Updated by RWW, October 30, 2004.

diff --git a/general/datasets/Br_u_0303_m/platform.rtf b/general/datasets/Br_u_0303_m/platform.rtf new file mode 100644 index 0000000..e8ac283 --- /dev/null +++ b/general/datasets/Br_u_0303_m/platform.rtf @@ -0,0 +1 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

diff --git a/general/datasets/Br_u_0303_m/processing.rtf b/general/datasets/Br_u_0303_m/processing.rtf new file mode 100644 index 0000000..9b386b5 --- /dev/null +++ b/general/datasets/Br_u_0303_m/processing.rtf @@ -0,0 +1,27 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 106 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
+ +

About the array probe set names:

+ +
+

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

+
diff --git a/general/datasets/Br_u_0303_m/summary.rtf b/general/datasets/Br_u_0303_m/summary.rtf new file mode 100644 index 0000000..7826a5c --- /dev/null +++ b/general/datasets/Br_u_0303_m/summary.rtf @@ -0,0 +1 @@ +

This August 2003 freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. This is data set includes six arrays which are of marginal quality. New users are encouraged to use one of the more recent data sets (December 2003 or March 2004) from which these six arrays have been excluded. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 106 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. In general, the MAS 5 transform does not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_0303_m/tissue.rtf b/general/datasets/Br_u_0303_m/tissue.rtf new file mode 100644 index 0000000..6961982 --- /dev/null +++ b/general/datasets/Br_u_0303_m/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_0304_dpmmr/acknowledgment.rtf b/general/datasets/Br_u_0304_dpmmr/acknowledgment.rtf new file mode 100644 index 0000000..b1a98cb --- /dev/null +++ b/general/datasets/Br_u_0304_dpmmr/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_0304_dpmmr/cases.rtf b/general/datasets/Br_u_0304_dpmmr/cases.rtf new file mode 100644 index 0000000..9076285 --- /dev/null +++ b/general/datasets/Br_u_0304_dpmmr/cases.rtf @@ -0,0 +1,232 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀  BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀ BXD18♀♂♀
BXD19 â™€â™€BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀ 
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_0304_dpmmr/notes.rtf b/general/datasets/Br_u_0304_dpmmr/notes.rtf new file mode 100644 index 0000000..1b8fd3d --- /dev/null +++ b/general/datasets/Br_u_0304_dpmmr/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004.

diff --git a/general/datasets/Br_u_0304_dpmmr/platform.rtf b/general/datasets/Br_u_0304_dpmmr/platform.rtf new file mode 100644 index 0000000..c6f6d68 --- /dev/null +++ b/general/datasets/Br_u_0304_dpmmr/platform.rtf @@ -0,0 +1,14 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+ +

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

diff --git a/general/datasets/Br_u_0304_dpmmr/processing.rtf b/general/datasets/Br_u_0304_dpmmr/processing.rtf new file mode 100644 index 0000000..2a34d5e --- /dev/null +++ b/general/datasets/Br_u_0304_dpmmr/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
diff --git a/general/datasets/Br_u_0304_dpmmr/summary.rtf b/general/datasets/Br_u_0304_dpmmr/summary.rtf new file mode 100644 index 0000000..e2d448f --- /dev/null +++ b/general/datasets/Br_u_0304_dpmmr/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_0304_dpmmr/tissue.rtf b/general/datasets/Br_u_0304_dpmmr/tissue.rtf new file mode 100644 index 0000000..1f09431 --- /dev/null +++ b/general/datasets/Br_u_0304_dpmmr/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_0304_dpmr/acknowledgment.rtf b/general/datasets/Br_u_0304_dpmr/acknowledgment.rtf new file mode 100644 index 0000000..b1a98cb --- /dev/null +++ b/general/datasets/Br_u_0304_dpmr/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_0304_dpmr/cases.rtf b/general/datasets/Br_u_0304_dpmr/cases.rtf new file mode 100644 index 0000000..9076285 --- /dev/null +++ b/general/datasets/Br_u_0304_dpmr/cases.rtf @@ -0,0 +1,232 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀  BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀ BXD18♀♂♀
BXD19 â™€â™€BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀ 
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_0304_dpmr/notes.rtf b/general/datasets/Br_u_0304_dpmr/notes.rtf new file mode 100644 index 0000000..1b8fd3d --- /dev/null +++ b/general/datasets/Br_u_0304_dpmr/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004.

diff --git a/general/datasets/Br_u_0304_dpmr/platform.rtf b/general/datasets/Br_u_0304_dpmr/platform.rtf new file mode 100644 index 0000000..c6f6d68 --- /dev/null +++ b/general/datasets/Br_u_0304_dpmr/platform.rtf @@ -0,0 +1,14 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+ +

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

diff --git a/general/datasets/Br_u_0304_dpmr/processing.rtf b/general/datasets/Br_u_0304_dpmr/processing.rtf new file mode 100644 index 0000000..2a34d5e --- /dev/null +++ b/general/datasets/Br_u_0304_dpmr/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
diff --git a/general/datasets/Br_u_0304_dpmr/summary.rtf b/general/datasets/Br_u_0304_dpmr/summary.rtf new file mode 100644 index 0000000..e2d448f --- /dev/null +++ b/general/datasets/Br_u_0304_dpmr/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_0304_dpmr/tissue.rtf b/general/datasets/Br_u_0304_dpmr/tissue.rtf new file mode 100644 index 0000000..1f09431 --- /dev/null +++ b/general/datasets/Br_u_0304_dpmr/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_0304_r/acknowledgment.rtf b/general/datasets/Br_u_0304_r/acknowledgment.rtf new file mode 100644 index 0000000..b1a98cb --- /dev/null +++ b/general/datasets/Br_u_0304_r/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_0304_r/cases.rtf b/general/datasets/Br_u_0304_r/cases.rtf new file mode 100644 index 0000000..9076285 --- /dev/null +++ b/general/datasets/Br_u_0304_r/cases.rtf @@ -0,0 +1,232 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀  BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀ BXD18♀♂♀
BXD19 â™€â™€BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀ 
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_0304_r/notes.rtf b/general/datasets/Br_u_0304_r/notes.rtf new file mode 100644 index 0000000..1b8fd3d --- /dev/null +++ b/general/datasets/Br_u_0304_r/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004.

diff --git a/general/datasets/Br_u_0304_r/platform.rtf b/general/datasets/Br_u_0304_r/platform.rtf new file mode 100644 index 0000000..c6f6d68 --- /dev/null +++ b/general/datasets/Br_u_0304_r/platform.rtf @@ -0,0 +1,14 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+ +

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

diff --git a/general/datasets/Br_u_0304_r/processing.rtf b/general/datasets/Br_u_0304_r/processing.rtf new file mode 100644 index 0000000..2a34d5e --- /dev/null +++ b/general/datasets/Br_u_0304_r/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
diff --git a/general/datasets/Br_u_0304_r/summary.rtf b/general/datasets/Br_u_0304_r/summary.rtf new file mode 100644 index 0000000..e2d448f --- /dev/null +++ b/general/datasets/Br_u_0304_r/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_0304_r/tissue.rtf b/general/datasets/Br_u_0304_r/tissue.rtf new file mode 100644 index 0000000..1f09431 --- /dev/null +++ b/general/datasets/Br_u_0304_r/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_0304_rr/acknowledgment.rtf b/general/datasets/Br_u_0304_rr/acknowledgment.rtf new file mode 100644 index 0000000..b1a98cb --- /dev/null +++ b/general/datasets/Br_u_0304_rr/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_0304_rr/cases.rtf b/general/datasets/Br_u_0304_rr/cases.rtf new file mode 100644 index 0000000..9076285 --- /dev/null +++ b/general/datasets/Br_u_0304_rr/cases.rtf @@ -0,0 +1,232 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀  BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀ BXD18♀♂♀
BXD19 â™€â™€BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀ 
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_0304_rr/notes.rtf b/general/datasets/Br_u_0304_rr/notes.rtf new file mode 100644 index 0000000..1b8fd3d --- /dev/null +++ b/general/datasets/Br_u_0304_rr/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004.

diff --git a/general/datasets/Br_u_0304_rr/platform.rtf b/general/datasets/Br_u_0304_rr/platform.rtf new file mode 100644 index 0000000..c6f6d68 --- /dev/null +++ b/general/datasets/Br_u_0304_rr/platform.rtf @@ -0,0 +1,14 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+ +

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

diff --git a/general/datasets/Br_u_0304_rr/processing.rtf b/general/datasets/Br_u_0304_rr/processing.rtf new file mode 100644 index 0000000..2a34d5e --- /dev/null +++ b/general/datasets/Br_u_0304_rr/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
diff --git a/general/datasets/Br_u_0304_rr/summary.rtf b/general/datasets/Br_u_0304_rr/summary.rtf new file mode 100644 index 0000000..e2d448f --- /dev/null +++ b/general/datasets/Br_u_0304_rr/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_0304_rr/tissue.rtf b/general/datasets/Br_u_0304_rr/tissue.rtf new file mode 100644 index 0000000..1f09431 --- /dev/null +++ b/general/datasets/Br_u_0304_rr/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_0405_ss/acknowledgment.rtf b/general/datasets/Br_u_0405_ss/acknowledgment.rtf new file mode 100644 index 0000000..b1a98cb --- /dev/null +++ b/general/datasets/Br_u_0405_ss/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_0405_ss/cases.rtf b/general/datasets/Br_u_0405_ss/cases.rtf new file mode 100644 index 0000000..9076285 --- /dev/null +++ b/general/datasets/Br_u_0405_ss/cases.rtf @@ -0,0 +1,232 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀  BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀ BXD18♀♂♀
BXD19 â™€â™€BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀ 
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_0405_ss/notes.rtf b/general/datasets/Br_u_0405_ss/notes.rtf new file mode 100644 index 0000000..1b8fd3d --- /dev/null +++ b/general/datasets/Br_u_0405_ss/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004.

diff --git a/general/datasets/Br_u_0405_ss/platform.rtf b/general/datasets/Br_u_0405_ss/platform.rtf new file mode 100644 index 0000000..c6f6d68 --- /dev/null +++ b/general/datasets/Br_u_0405_ss/platform.rtf @@ -0,0 +1,14 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+ +

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

diff --git a/general/datasets/Br_u_0405_ss/processing.rtf b/general/datasets/Br_u_0405_ss/processing.rtf new file mode 100644 index 0000000..2a34d5e --- /dev/null +++ b/general/datasets/Br_u_0405_ss/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
diff --git a/general/datasets/Br_u_0405_ss/summary.rtf b/general/datasets/Br_u_0405_ss/summary.rtf new file mode 100644 index 0000000..e2d448f --- /dev/null +++ b/general/datasets/Br_u_0405_ss/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_0405_ss/tissue.rtf b/general/datasets/Br_u_0405_ss/tissue.rtf new file mode 100644 index 0000000..1f09431 --- /dev/null +++ b/general/datasets/Br_u_0405_ss/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_0503_m/acknowledgment.rtf b/general/datasets/Br_u_0503_m/acknowledgment.rtf new file mode 100644 index 0000000..5f21aed --- /dev/null +++ b/general/datasets/Br_u_0503_m/acknowledgment.rtf @@ -0,0 +1,3 @@ +
+

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

+
diff --git a/general/datasets/Br_u_0503_m/cases.rtf b/general/datasets/Br_u_0503_m/cases.rtf new file mode 100644 index 0000000..bc98bcb --- /dev/null +++ b/general/datasets/Br_u_0503_m/cases.rtf @@ -0,0 +1,216 @@ +
The set of animals used for mapping (a mapping panel) consists of 30 groups of genetically uniform mice of the BXD type. The parental strains are C57BL/6J (B6 or B) and DBA/2J (D2 or D). The first generation hybrid is labeled F1. The F1 hybrids were made by crossing B6 females to D2 males. All other lines are recombinant inbred strains derived from C57BL/6J and DBA/2J crosses. BXD2 through BXD32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Dr. Taylor, but they were generated in the 1990s. Lines BXD67 and BXD68 are two partially inbred advanced recombinant strains (F8 and F9) that are part of a large set of BXD-Advanced strains being produced by Drs. Robert Williams, Lu Lu, Lee Silver, and Jeremy Peirce. There will eventually be ~45 of these strains. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html.
+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from 3 mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♂♂♀ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♀  
BXD6♀♀♀BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀♀BXD13♀  
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀♀ BXD18♀♂♀
BXD19♀♀♀BXD21♀♂♂ 
BXD22♀♀♀ BXD24♀♀ â™€
BXD25♀♀♀♀ BXD27  â™€â™€
BXD28♀♀♀BXD29♂ â™€
BXD31♀♀♀♀ BXD32♀♂♀♀
BXD33♂♀♀ BXD34♂♀♀ 
BXD39♂♀♂ BXD40♂♂♀♀  
BXD42♂♂ ♀  BXD67♀  
BXD68 (F9)♀ ♀      
+
diff --git a/general/datasets/Br_u_0503_m/experiment-type.rtf b/general/datasets/Br_u_0503_m/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Br_u_0503_m/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Br_u_0503_m/notes.rtf b/general/datasets/Br_u_0503_m/notes.rtf new file mode 100644 index 0000000..d198112 --- /dev/null +++ b/general/datasets/Br_u_0503_m/notes.rtf @@ -0,0 +1,5 @@ +

Information about this text file:

+ +
+

This text file originally generated by RWW, EJC, and YHQ, May 2003. Updated by RWW, October 30, 2004.

+
diff --git a/general/datasets/Br_u_0503_m/platform.rtf b/general/datasets/Br_u_0503_m/platform.rtf new file mode 100644 index 0000000..04f8269 --- /dev/null +++ b/general/datasets/Br_u_0503_m/platform.rtf @@ -0,0 +1,16 @@ +

About the array probe set names:

+ +
+

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

+
diff --git a/general/datasets/Br_u_0503_m/processing.rtf b/general/datasets/Br_u_0503_m/processing.rtf new file mode 100644 index 0000000..e763fc9 --- /dev/null +++ b/general/datasets/Br_u_0503_m/processing.rtf @@ -0,0 +1,14 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by MAS 5 are the 75% quantiles from a set of 36 pixel values per cell (the pixel with the 12th highest value represents the whole cell). + +Probe set data from the .TXT file: These .TXT files were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefor represents roughly a 2-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
+ +

About the chromosome and megabase position values:

+ +
The chromosomal locations of probe sets and gene markers were initially determined by BLAT analysis using the Mouse Genome Sequencing Consortium OCT 2003 Assembly (see http://genome.ucsc.edu/). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
diff --git a/general/datasets/Br_u_0503_m/summary.rtf b/general/datasets/Br_u_0503_m/summary.rtf new file mode 100644 index 0000000..2d69c8a --- /dev/null +++ b/general/datasets/Br_u_0503_m/summary.rtf @@ -0,0 +1 @@ +

This May 2003 freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. New users are encouraged to use one of the more recent data sets (December 2003 or March 2004). Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 33 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. In general, these MAS 5 transforms do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_0503_m/tissue.rtf b/general/datasets/Br_u_0503_m/tissue.rtf new file mode 100644 index 0000000..045e2a2 --- /dev/null +++ b/general/datasets/Br_u_0503_m/tissue.rtf @@ -0,0 +1 @@ +

Most expression data are averages based on three microarrays (U74Av2). Each individual array experiment involved a pool of brain tissue (forebrain plus the midbrain, but without the olfactory bulb) that was taken from three adult animals usually of the same age. A total of 97 arrays were used: 74 were female pools and 23 were male pools. Animals ranged in age from 56 to 441 days, usually with a balanced design (one pool at 8 weeks, one pool at ~20 weeks, one pool at approximately 1 year).

diff --git a/general/datasets/Br_u_0603_m/acknowledgment.rtf b/general/datasets/Br_u_0603_m/acknowledgment.rtf new file mode 100644 index 0000000..1efbf49 --- /dev/null +++ b/general/datasets/Br_u_0603_m/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_0603_m/cases.rtf b/general/datasets/Br_u_0603_m/cases.rtf new file mode 100644 index 0000000..38a782c --- /dev/null +++ b/general/datasets/Br_u_0603_m/cases.rtf @@ -0,0 +1,230 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +

The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. Note that this table includes six arrays dropped from the December 2003 data sets (BXD6, n=2; BXD12, BXD16, BXD40, and BXD67, n=1 each).

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀♀♀BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀♀ BXD18♀♂♀
BXD19♀♀♀BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♂♀♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀♂  
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_0603_m/experiment-type.rtf b/general/datasets/Br_u_0603_m/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Br_u_0603_m/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Br_u_0603_m/notes.rtf b/general/datasets/Br_u_0603_m/notes.rtf new file mode 100644 index 0000000..68a18e4 --- /dev/null +++ b/general/datasets/Br_u_0603_m/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, EJC, and YHQ, August 2003. Updated by RWW, October 30, 2004.

diff --git a/general/datasets/Br_u_0603_m/platform.rtf b/general/datasets/Br_u_0603_m/platform.rtf new file mode 100644 index 0000000..e8ac283 --- /dev/null +++ b/general/datasets/Br_u_0603_m/platform.rtf @@ -0,0 +1 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

diff --git a/general/datasets/Br_u_0603_m/processing.rtf b/general/datasets/Br_u_0603_m/processing.rtf new file mode 100644 index 0000000..9b386b5 --- /dev/null +++ b/general/datasets/Br_u_0603_m/processing.rtf @@ -0,0 +1,27 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 106 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
+ +

About the array probe set names:

+ +
+

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

+
diff --git a/general/datasets/Br_u_0603_m/summary.rtf b/general/datasets/Br_u_0603_m/summary.rtf new file mode 100644 index 0000000..7826a5c --- /dev/null +++ b/general/datasets/Br_u_0603_m/summary.rtf @@ -0,0 +1 @@ +

This August 2003 freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. This is data set includes six arrays which are of marginal quality. New users are encouraged to use one of the more recent data sets (December 2003 or March 2004) from which these six arrays have been excluded. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 106 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. In general, the MAS 5 transform does not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_0603_m/tissue.rtf b/general/datasets/Br_u_0603_m/tissue.rtf new file mode 100644 index 0000000..6961982 --- /dev/null +++ b/general/datasets/Br_u_0603_m/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_0803_m/acknowledgment.rtf b/general/datasets/Br_u_0803_m/acknowledgment.rtf new file mode 100644 index 0000000..1efbf49 --- /dev/null +++ b/general/datasets/Br_u_0803_m/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_0803_m/cases.rtf b/general/datasets/Br_u_0803_m/cases.rtf new file mode 100644 index 0000000..38a782c --- /dev/null +++ b/general/datasets/Br_u_0803_m/cases.rtf @@ -0,0 +1,230 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +

The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. Note that this table includes six arrays dropped from the December 2003 data sets (BXD6, n=2; BXD12, BXD16, BXD40, and BXD67, n=1 each).

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀♀♀BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀♀ BXD18♀♂♀
BXD19♀♀♀BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♂♀♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀♂  
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_0803_m/experiment-type.rtf b/general/datasets/Br_u_0803_m/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Br_u_0803_m/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Br_u_0803_m/notes.rtf b/general/datasets/Br_u_0803_m/notes.rtf new file mode 100644 index 0000000..68a18e4 --- /dev/null +++ b/general/datasets/Br_u_0803_m/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, EJC, and YHQ, August 2003. Updated by RWW, October 30, 2004.

diff --git a/general/datasets/Br_u_0803_m/platform.rtf b/general/datasets/Br_u_0803_m/platform.rtf new file mode 100644 index 0000000..e8ac283 --- /dev/null +++ b/general/datasets/Br_u_0803_m/platform.rtf @@ -0,0 +1 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

diff --git a/general/datasets/Br_u_0803_m/processing.rtf b/general/datasets/Br_u_0803_m/processing.rtf new file mode 100644 index 0000000..9b386b5 --- /dev/null +++ b/general/datasets/Br_u_0803_m/processing.rtf @@ -0,0 +1,27 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 106 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
+ +

About the array probe set names:

+ +
+

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

+
diff --git a/general/datasets/Br_u_0803_m/summary.rtf b/general/datasets/Br_u_0803_m/summary.rtf new file mode 100644 index 0000000..7826a5c --- /dev/null +++ b/general/datasets/Br_u_0803_m/summary.rtf @@ -0,0 +1 @@ +

This August 2003 freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. This is data set includes six arrays which are of marginal quality. New users are encouraged to use one of the more recent data sets (December 2003 or March 2004) from which these six arrays have been excluded. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 106 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. In general, the MAS 5 transform does not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_0803_m/tissue.rtf b/general/datasets/Br_u_0803_m/tissue.rtf new file mode 100644 index 0000000..6961982 --- /dev/null +++ b/general/datasets/Br_u_0803_m/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_0805_m/acknowledgment.rtf b/general/datasets/Br_u_0805_m/acknowledgment.rtf new file mode 100644 index 0000000..b1a98cb --- /dev/null +++ b/general/datasets/Br_u_0805_m/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_0805_m/cases.rtf b/general/datasets/Br_u_0805_m/cases.rtf new file mode 100644 index 0000000..9076285 --- /dev/null +++ b/general/datasets/Br_u_0805_m/cases.rtf @@ -0,0 +1,232 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀  BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀ BXD18♀♂♀
BXD19 â™€â™€BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀ 
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_0805_m/notes.rtf b/general/datasets/Br_u_0805_m/notes.rtf new file mode 100644 index 0000000..1b8fd3d --- /dev/null +++ b/general/datasets/Br_u_0805_m/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004.

diff --git a/general/datasets/Br_u_0805_m/platform.rtf b/general/datasets/Br_u_0805_m/platform.rtf new file mode 100644 index 0000000..c6f6d68 --- /dev/null +++ b/general/datasets/Br_u_0805_m/platform.rtf @@ -0,0 +1,14 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+ +

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

diff --git a/general/datasets/Br_u_0805_m/processing.rtf b/general/datasets/Br_u_0805_m/processing.rtf new file mode 100644 index 0000000..2a34d5e --- /dev/null +++ b/general/datasets/Br_u_0805_m/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
diff --git a/general/datasets/Br_u_0805_m/summary.rtf b/general/datasets/Br_u_0805_m/summary.rtf new file mode 100644 index 0000000..e2d448f --- /dev/null +++ b/general/datasets/Br_u_0805_m/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_0805_m/tissue.rtf b/general/datasets/Br_u_0805_m/tissue.rtf new file mode 100644 index 0000000..1f09431 --- /dev/null +++ b/general/datasets/Br_u_0805_m/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_0805_p/acknowledgment.rtf b/general/datasets/Br_u_0805_p/acknowledgment.rtf new file mode 100644 index 0000000..b1a98cb --- /dev/null +++ b/general/datasets/Br_u_0805_p/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_0805_p/cases.rtf b/general/datasets/Br_u_0805_p/cases.rtf new file mode 100644 index 0000000..9076285 --- /dev/null +++ b/general/datasets/Br_u_0805_p/cases.rtf @@ -0,0 +1,232 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀  BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀ BXD18♀♂♀
BXD19 â™€â™€BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀ 
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_0805_p/notes.rtf b/general/datasets/Br_u_0805_p/notes.rtf new file mode 100644 index 0000000..1b8fd3d --- /dev/null +++ b/general/datasets/Br_u_0805_p/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004.

diff --git a/general/datasets/Br_u_0805_p/platform.rtf b/general/datasets/Br_u_0805_p/platform.rtf new file mode 100644 index 0000000..c6f6d68 --- /dev/null +++ b/general/datasets/Br_u_0805_p/platform.rtf @@ -0,0 +1,14 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+ +

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

diff --git a/general/datasets/Br_u_0805_p/processing.rtf b/general/datasets/Br_u_0805_p/processing.rtf new file mode 100644 index 0000000..2a34d5e --- /dev/null +++ b/general/datasets/Br_u_0805_p/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
diff --git a/general/datasets/Br_u_0805_p/summary.rtf b/general/datasets/Br_u_0805_p/summary.rtf new file mode 100644 index 0000000..e2d448f --- /dev/null +++ b/general/datasets/Br_u_0805_p/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_0805_p/tissue.rtf b/general/datasets/Br_u_0805_p/tissue.rtf new file mode 100644 index 0000000..1f09431 --- /dev/null +++ b/general/datasets/Br_u_0805_p/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_0805_r/acknowledgment.rtf b/general/datasets/Br_u_0805_r/acknowledgment.rtf new file mode 100644 index 0000000..b1a98cb --- /dev/null +++ b/general/datasets/Br_u_0805_r/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_0805_r/cases.rtf b/general/datasets/Br_u_0805_r/cases.rtf new file mode 100644 index 0000000..9076285 --- /dev/null +++ b/general/datasets/Br_u_0805_r/cases.rtf @@ -0,0 +1,232 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀  BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀ BXD18♀♂♀
BXD19 â™€â™€BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀ 
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_0805_r/notes.rtf b/general/datasets/Br_u_0805_r/notes.rtf new file mode 100644 index 0000000..1b8fd3d --- /dev/null +++ b/general/datasets/Br_u_0805_r/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004.

diff --git a/general/datasets/Br_u_0805_r/platform.rtf b/general/datasets/Br_u_0805_r/platform.rtf new file mode 100644 index 0000000..c6f6d68 --- /dev/null +++ b/general/datasets/Br_u_0805_r/platform.rtf @@ -0,0 +1,14 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+ +

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

diff --git a/general/datasets/Br_u_0805_r/processing.rtf b/general/datasets/Br_u_0805_r/processing.rtf new file mode 100644 index 0000000..2a34d5e --- /dev/null +++ b/general/datasets/Br_u_0805_r/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
diff --git a/general/datasets/Br_u_0805_r/summary.rtf b/general/datasets/Br_u_0805_r/summary.rtf new file mode 100644 index 0000000..e2d448f --- /dev/null +++ b/general/datasets/Br_u_0805_r/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_0805_r/tissue.rtf b/general/datasets/Br_u_0805_r/tissue.rtf new file mode 100644 index 0000000..1f09431 --- /dev/null +++ b/general/datasets/Br_u_0805_r/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_0903_dpm/acknowledgment.rtf b/general/datasets/Br_u_0903_dpm/acknowledgment.rtf new file mode 100644 index 0000000..1efbf49 --- /dev/null +++ b/general/datasets/Br_u_0903_dpm/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_0903_dpm/cases.rtf b/general/datasets/Br_u_0903_dpm/cases.rtf new file mode 100644 index 0000000..38a782c --- /dev/null +++ b/general/datasets/Br_u_0903_dpm/cases.rtf @@ -0,0 +1,230 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +

The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. Note that this table includes six arrays dropped from the December 2003 data sets (BXD6, n=2; BXD12, BXD16, BXD40, and BXD67, n=1 each).

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀♀♀BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀♀ BXD18♀♂♀
BXD19♀♀♀BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♂♀♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀♂  
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_0903_dpm/notes.rtf b/general/datasets/Br_u_0903_dpm/notes.rtf new file mode 100644 index 0000000..68a18e4 --- /dev/null +++ b/general/datasets/Br_u_0903_dpm/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, EJC, and YHQ, August 2003. Updated by RWW, October 30, 2004.

diff --git a/general/datasets/Br_u_0903_dpm/platform.rtf b/general/datasets/Br_u_0903_dpm/platform.rtf new file mode 100644 index 0000000..e8ac283 --- /dev/null +++ b/general/datasets/Br_u_0903_dpm/platform.rtf @@ -0,0 +1 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

diff --git a/general/datasets/Br_u_0903_dpm/processing.rtf b/general/datasets/Br_u_0903_dpm/processing.rtf new file mode 100644 index 0000000..9b386b5 --- /dev/null +++ b/general/datasets/Br_u_0903_dpm/processing.rtf @@ -0,0 +1,27 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 106 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
+ +

About the array probe set names:

+ +
+

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

+
diff --git a/general/datasets/Br_u_0903_dpm/summary.rtf b/general/datasets/Br_u_0903_dpm/summary.rtf new file mode 100644 index 0000000..7826a5c --- /dev/null +++ b/general/datasets/Br_u_0903_dpm/summary.rtf @@ -0,0 +1 @@ +

This August 2003 freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. This is data set includes six arrays which are of marginal quality. New users are encouraged to use one of the more recent data sets (December 2003 or March 2004) from which these six arrays have been excluded. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 106 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. In general, the MAS 5 transform does not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_0903_dpm/tissue.rtf b/general/datasets/Br_u_0903_dpm/tissue.rtf new file mode 100644 index 0000000..6961982 --- /dev/null +++ b/general/datasets/Br_u_0903_dpm/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_0903_dpmm/acknowledgment.rtf b/general/datasets/Br_u_0903_dpmm/acknowledgment.rtf new file mode 100644 index 0000000..1efbf49 --- /dev/null +++ b/general/datasets/Br_u_0903_dpmm/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_0903_dpmm/cases.rtf b/general/datasets/Br_u_0903_dpmm/cases.rtf new file mode 100644 index 0000000..38a782c --- /dev/null +++ b/general/datasets/Br_u_0903_dpmm/cases.rtf @@ -0,0 +1,230 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +

The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. Note that this table includes six arrays dropped from the December 2003 data sets (BXD6, n=2; BXD12, BXD16, BXD40, and BXD67, n=1 each).

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀♀♀BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀♀ BXD18♀♂♀
BXD19♀♀♀BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♂♀♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀♂  
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_0903_dpmm/notes.rtf b/general/datasets/Br_u_0903_dpmm/notes.rtf new file mode 100644 index 0000000..68a18e4 --- /dev/null +++ b/general/datasets/Br_u_0903_dpmm/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, EJC, and YHQ, August 2003. Updated by RWW, October 30, 2004.

diff --git a/general/datasets/Br_u_0903_dpmm/platform.rtf b/general/datasets/Br_u_0903_dpmm/platform.rtf new file mode 100644 index 0000000..e8ac283 --- /dev/null +++ b/general/datasets/Br_u_0903_dpmm/platform.rtf @@ -0,0 +1 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

diff --git a/general/datasets/Br_u_0903_dpmm/processing.rtf b/general/datasets/Br_u_0903_dpmm/processing.rtf new file mode 100644 index 0000000..9b386b5 --- /dev/null +++ b/general/datasets/Br_u_0903_dpmm/processing.rtf @@ -0,0 +1,27 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 106 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
+ +

About the array probe set names:

+ +
+

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

+
diff --git a/general/datasets/Br_u_0903_dpmm/summary.rtf b/general/datasets/Br_u_0903_dpmm/summary.rtf new file mode 100644 index 0000000..7826a5c --- /dev/null +++ b/general/datasets/Br_u_0903_dpmm/summary.rtf @@ -0,0 +1 @@ +

This August 2003 freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. This is data set includes six arrays which are of marginal quality. New users are encouraged to use one of the more recent data sets (December 2003 or March 2004) from which these six arrays have been excluded. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 106 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. In general, the MAS 5 transform does not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_0903_dpmm/tissue.rtf b/general/datasets/Br_u_0903_dpmm/tissue.rtf new file mode 100644 index 0000000..6961982 --- /dev/null +++ b/general/datasets/Br_u_0903_dpmm/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_0903_m/acknowledgment.rtf b/general/datasets/Br_u_0903_m/acknowledgment.rtf new file mode 100644 index 0000000..1efbf49 --- /dev/null +++ b/general/datasets/Br_u_0903_m/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_0903_m/cases.rtf b/general/datasets/Br_u_0903_m/cases.rtf new file mode 100644 index 0000000..38a782c --- /dev/null +++ b/general/datasets/Br_u_0903_m/cases.rtf @@ -0,0 +1,230 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +

The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. Note that this table includes six arrays dropped from the December 2003 data sets (BXD6, n=2; BXD12, BXD16, BXD40, and BXD67, n=1 each).

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀♀♀BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀♀ BXD18♀♂♀
BXD19♀♀♀BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♂♀♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀♂  
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_0903_m/notes.rtf b/general/datasets/Br_u_0903_m/notes.rtf new file mode 100644 index 0000000..68a18e4 --- /dev/null +++ b/general/datasets/Br_u_0903_m/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, EJC, and YHQ, August 2003. Updated by RWW, October 30, 2004.

diff --git a/general/datasets/Br_u_0903_m/platform.rtf b/general/datasets/Br_u_0903_m/platform.rtf new file mode 100644 index 0000000..e8ac283 --- /dev/null +++ b/general/datasets/Br_u_0903_m/platform.rtf @@ -0,0 +1 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

diff --git a/general/datasets/Br_u_0903_m/processing.rtf b/general/datasets/Br_u_0903_m/processing.rtf new file mode 100644 index 0000000..9b386b5 --- /dev/null +++ b/general/datasets/Br_u_0903_m/processing.rtf @@ -0,0 +1,27 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 106 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
+ +

About the array probe set names:

+ +
+

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

+
diff --git a/general/datasets/Br_u_0903_m/summary.rtf b/general/datasets/Br_u_0903_m/summary.rtf new file mode 100644 index 0000000..7826a5c --- /dev/null +++ b/general/datasets/Br_u_0903_m/summary.rtf @@ -0,0 +1 @@ +

This August 2003 freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. This is data set includes six arrays which are of marginal quality. New users are encouraged to use one of the more recent data sets (December 2003 or March 2004) from which these six arrays have been excluded. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 106 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. In general, the MAS 5 transform does not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_0903_m/tissue.rtf b/general/datasets/Br_u_0903_m/tissue.rtf new file mode 100644 index 0000000..6961982 --- /dev/null +++ b/general/datasets/Br_u_0903_m/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_0903_p/acknowledgment.rtf b/general/datasets/Br_u_0903_p/acknowledgment.rtf new file mode 100644 index 0000000..1efbf49 --- /dev/null +++ b/general/datasets/Br_u_0903_p/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_0903_p/cases.rtf b/general/datasets/Br_u_0903_p/cases.rtf new file mode 100644 index 0000000..38a782c --- /dev/null +++ b/general/datasets/Br_u_0903_p/cases.rtf @@ -0,0 +1,230 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +

The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. Note that this table includes six arrays dropped from the December 2003 data sets (BXD6, n=2; BXD12, BXD16, BXD40, and BXD67, n=1 each).

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀♀♀BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀♀ BXD18♀♂♀
BXD19♀♀♀BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♂♀♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀♂  
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_0903_p/experiment-type.rtf b/general/datasets/Br_u_0903_p/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Br_u_0903_p/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Br_u_0903_p/notes.rtf b/general/datasets/Br_u_0903_p/notes.rtf new file mode 100644 index 0000000..68a18e4 --- /dev/null +++ b/general/datasets/Br_u_0903_p/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, EJC, and YHQ, August 2003. Updated by RWW, October 30, 2004.

diff --git a/general/datasets/Br_u_0903_p/platform.rtf b/general/datasets/Br_u_0903_p/platform.rtf new file mode 100644 index 0000000..e8ac283 --- /dev/null +++ b/general/datasets/Br_u_0903_p/platform.rtf @@ -0,0 +1 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

diff --git a/general/datasets/Br_u_0903_p/processing.rtf b/general/datasets/Br_u_0903_p/processing.rtf new file mode 100644 index 0000000..9b386b5 --- /dev/null +++ b/general/datasets/Br_u_0903_p/processing.rtf @@ -0,0 +1,27 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 106 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
+ +

About the array probe set names:

+ +
+

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

+
diff --git a/general/datasets/Br_u_0903_p/summary.rtf b/general/datasets/Br_u_0903_p/summary.rtf new file mode 100644 index 0000000..7826a5c --- /dev/null +++ b/general/datasets/Br_u_0903_p/summary.rtf @@ -0,0 +1 @@ +

This August 2003 freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. This is data set includes six arrays which are of marginal quality. New users are encouraged to use one of the more recent data sets (December 2003 or March 2004) from which these six arrays have been excluded. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 106 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. In general, the MAS 5 transform does not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_0903_p/tissue.rtf b/general/datasets/Br_u_0903_p/tissue.rtf new file mode 100644 index 0000000..6961982 --- /dev/null +++ b/general/datasets/Br_u_0903_p/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_0903_r/acknowledgment.rtf b/general/datasets/Br_u_0903_r/acknowledgment.rtf new file mode 100644 index 0000000..1efbf49 --- /dev/null +++ b/general/datasets/Br_u_0903_r/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_0903_r/cases.rtf b/general/datasets/Br_u_0903_r/cases.rtf new file mode 100644 index 0000000..38a782c --- /dev/null +++ b/general/datasets/Br_u_0903_r/cases.rtf @@ -0,0 +1,230 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +

The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. Note that this table includes six arrays dropped from the December 2003 data sets (BXD6, n=2; BXD12, BXD16, BXD40, and BXD67, n=1 each).

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀♀♀BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀♀ BXD18♀♂♀
BXD19♀♀♀BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♂♀♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀♂  
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_0903_r/notes.rtf b/general/datasets/Br_u_0903_r/notes.rtf new file mode 100644 index 0000000..68a18e4 --- /dev/null +++ b/general/datasets/Br_u_0903_r/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, EJC, and YHQ, August 2003. Updated by RWW, October 30, 2004.

diff --git a/general/datasets/Br_u_0903_r/platform.rtf b/general/datasets/Br_u_0903_r/platform.rtf new file mode 100644 index 0000000..e8ac283 --- /dev/null +++ b/general/datasets/Br_u_0903_r/platform.rtf @@ -0,0 +1 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

diff --git a/general/datasets/Br_u_0903_r/processing.rtf b/general/datasets/Br_u_0903_r/processing.rtf new file mode 100644 index 0000000..9b386b5 --- /dev/null +++ b/general/datasets/Br_u_0903_r/processing.rtf @@ -0,0 +1,27 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 106 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
+ +

About the array probe set names:

+ +
+

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

+
diff --git a/general/datasets/Br_u_0903_r/summary.rtf b/general/datasets/Br_u_0903_r/summary.rtf new file mode 100644 index 0000000..7826a5c --- /dev/null +++ b/general/datasets/Br_u_0903_r/summary.rtf @@ -0,0 +1 @@ +

This August 2003 freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. This is data set includes six arrays which are of marginal quality. New users are encouraged to use one of the more recent data sets (December 2003 or March 2004) from which these six arrays have been excluded. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 106 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. In general, the MAS 5 transform does not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_0903_r/tissue.rtf b/general/datasets/Br_u_0903_r/tissue.rtf new file mode 100644 index 0000000..6961982 --- /dev/null +++ b/general/datasets/Br_u_0903_r/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_1105_p/acknowledgment.rtf b/general/datasets/Br_u_1105_p/acknowledgment.rtf new file mode 100644 index 0000000..b1a98cb --- /dev/null +++ b/general/datasets/Br_u_1105_p/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_1105_p/cases.rtf b/general/datasets/Br_u_1105_p/cases.rtf new file mode 100644 index 0000000..9076285 --- /dev/null +++ b/general/datasets/Br_u_1105_p/cases.rtf @@ -0,0 +1,232 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀  BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀ BXD18♀♂♀
BXD19 â™€â™€BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀ 
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_1105_p/notes.rtf b/general/datasets/Br_u_1105_p/notes.rtf new file mode 100644 index 0000000..1b8fd3d --- /dev/null +++ b/general/datasets/Br_u_1105_p/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004.

diff --git a/general/datasets/Br_u_1105_p/platform.rtf b/general/datasets/Br_u_1105_p/platform.rtf new file mode 100644 index 0000000..c6f6d68 --- /dev/null +++ b/general/datasets/Br_u_1105_p/platform.rtf @@ -0,0 +1,14 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+ +

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

diff --git a/general/datasets/Br_u_1105_p/processing.rtf b/general/datasets/Br_u_1105_p/processing.rtf new file mode 100644 index 0000000..2a34d5e --- /dev/null +++ b/general/datasets/Br_u_1105_p/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
diff --git a/general/datasets/Br_u_1105_p/summary.rtf b/general/datasets/Br_u_1105_p/summary.rtf new file mode 100644 index 0000000..e2d448f --- /dev/null +++ b/general/datasets/Br_u_1105_p/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_1105_p/tissue.rtf b/general/datasets/Br_u_1105_p/tissue.rtf new file mode 100644 index 0000000..1f09431 --- /dev/null +++ b/general/datasets/Br_u_1105_p/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_1105_r/acknowledgment.rtf b/general/datasets/Br_u_1105_r/acknowledgment.rtf new file mode 100644 index 0000000..b1a98cb --- /dev/null +++ b/general/datasets/Br_u_1105_r/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_1105_r/cases.rtf b/general/datasets/Br_u_1105_r/cases.rtf new file mode 100644 index 0000000..9076285 --- /dev/null +++ b/general/datasets/Br_u_1105_r/cases.rtf @@ -0,0 +1,232 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀  BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀ BXD18♀♂♀
BXD19 â™€â™€BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀ 
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_1105_r/notes.rtf b/general/datasets/Br_u_1105_r/notes.rtf new file mode 100644 index 0000000..1b8fd3d --- /dev/null +++ b/general/datasets/Br_u_1105_r/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004.

diff --git a/general/datasets/Br_u_1105_r/platform.rtf b/general/datasets/Br_u_1105_r/platform.rtf new file mode 100644 index 0000000..c6f6d68 --- /dev/null +++ b/general/datasets/Br_u_1105_r/platform.rtf @@ -0,0 +1,14 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+ +

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

diff --git a/general/datasets/Br_u_1105_r/processing.rtf b/general/datasets/Br_u_1105_r/processing.rtf new file mode 100644 index 0000000..2a34d5e --- /dev/null +++ b/general/datasets/Br_u_1105_r/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
diff --git a/general/datasets/Br_u_1105_r/summary.rtf b/general/datasets/Br_u_1105_r/summary.rtf new file mode 100644 index 0000000..e2d448f --- /dev/null +++ b/general/datasets/Br_u_1105_r/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_1105_r/tissue.rtf b/general/datasets/Br_u_1105_r/tissue.rtf new file mode 100644 index 0000000..1f09431 --- /dev/null +++ b/general/datasets/Br_u_1105_r/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_1203_dpm/acknowledgment.rtf b/general/datasets/Br_u_1203_dpm/acknowledgment.rtf new file mode 100644 index 0000000..b1a98cb --- /dev/null +++ b/general/datasets/Br_u_1203_dpm/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_1203_dpm/cases.rtf b/general/datasets/Br_u_1203_dpm/cases.rtf new file mode 100644 index 0000000..9076285 --- /dev/null +++ b/general/datasets/Br_u_1203_dpm/cases.rtf @@ -0,0 +1,232 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀  BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀ BXD18♀♂♀
BXD19 â™€â™€BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀ 
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_1203_dpm/notes.rtf b/general/datasets/Br_u_1203_dpm/notes.rtf new file mode 100644 index 0000000..1b8fd3d --- /dev/null +++ b/general/datasets/Br_u_1203_dpm/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004.

diff --git a/general/datasets/Br_u_1203_dpm/platform.rtf b/general/datasets/Br_u_1203_dpm/platform.rtf new file mode 100644 index 0000000..c6f6d68 --- /dev/null +++ b/general/datasets/Br_u_1203_dpm/platform.rtf @@ -0,0 +1,14 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+ +

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

diff --git a/general/datasets/Br_u_1203_dpm/processing.rtf b/general/datasets/Br_u_1203_dpm/processing.rtf new file mode 100644 index 0000000..2a34d5e --- /dev/null +++ b/general/datasets/Br_u_1203_dpm/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
diff --git a/general/datasets/Br_u_1203_dpm/summary.rtf b/general/datasets/Br_u_1203_dpm/summary.rtf new file mode 100644 index 0000000..e2d448f --- /dev/null +++ b/general/datasets/Br_u_1203_dpm/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_1203_dpm/tissue.rtf b/general/datasets/Br_u_1203_dpm/tissue.rtf new file mode 100644 index 0000000..1f09431 --- /dev/null +++ b/general/datasets/Br_u_1203_dpm/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_1203_dpmm/acknowledgment.rtf b/general/datasets/Br_u_1203_dpmm/acknowledgment.rtf new file mode 100644 index 0000000..b1a98cb --- /dev/null +++ b/general/datasets/Br_u_1203_dpmm/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_1203_dpmm/cases.rtf b/general/datasets/Br_u_1203_dpmm/cases.rtf new file mode 100644 index 0000000..9076285 --- /dev/null +++ b/general/datasets/Br_u_1203_dpmm/cases.rtf @@ -0,0 +1,232 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀  BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀ BXD18♀♂♀
BXD19 â™€â™€BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀ 
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_1203_dpmm/notes.rtf b/general/datasets/Br_u_1203_dpmm/notes.rtf new file mode 100644 index 0000000..1b8fd3d --- /dev/null +++ b/general/datasets/Br_u_1203_dpmm/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004.

diff --git a/general/datasets/Br_u_1203_dpmm/platform.rtf b/general/datasets/Br_u_1203_dpmm/platform.rtf new file mode 100644 index 0000000..c6f6d68 --- /dev/null +++ b/general/datasets/Br_u_1203_dpmm/platform.rtf @@ -0,0 +1,14 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+ +

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

diff --git a/general/datasets/Br_u_1203_dpmm/processing.rtf b/general/datasets/Br_u_1203_dpmm/processing.rtf new file mode 100644 index 0000000..2a34d5e --- /dev/null +++ b/general/datasets/Br_u_1203_dpmm/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
diff --git a/general/datasets/Br_u_1203_dpmm/summary.rtf b/general/datasets/Br_u_1203_dpmm/summary.rtf new file mode 100644 index 0000000..e2d448f --- /dev/null +++ b/general/datasets/Br_u_1203_dpmm/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_1203_dpmm/tissue.rtf b/general/datasets/Br_u_1203_dpmm/tissue.rtf new file mode 100644 index 0000000..1f09431 --- /dev/null +++ b/general/datasets/Br_u_1203_dpmm/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_1203_dpmmr/acknowledgment.rtf b/general/datasets/Br_u_1203_dpmmr/acknowledgment.rtf new file mode 100644 index 0000000..b1a98cb --- /dev/null +++ b/general/datasets/Br_u_1203_dpmmr/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_1203_dpmmr/cases.rtf b/general/datasets/Br_u_1203_dpmmr/cases.rtf new file mode 100644 index 0000000..9076285 --- /dev/null +++ b/general/datasets/Br_u_1203_dpmmr/cases.rtf @@ -0,0 +1,232 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀  BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀ BXD18♀♂♀
BXD19 â™€â™€BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀ 
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_1203_dpmmr/notes.rtf b/general/datasets/Br_u_1203_dpmmr/notes.rtf new file mode 100644 index 0000000..1b8fd3d --- /dev/null +++ b/general/datasets/Br_u_1203_dpmmr/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004.

diff --git a/general/datasets/Br_u_1203_dpmmr/platform.rtf b/general/datasets/Br_u_1203_dpmmr/platform.rtf new file mode 100644 index 0000000..c6f6d68 --- /dev/null +++ b/general/datasets/Br_u_1203_dpmmr/platform.rtf @@ -0,0 +1,14 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+ +

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

diff --git a/general/datasets/Br_u_1203_dpmmr/processing.rtf b/general/datasets/Br_u_1203_dpmmr/processing.rtf new file mode 100644 index 0000000..2a34d5e --- /dev/null +++ b/general/datasets/Br_u_1203_dpmmr/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
diff --git a/general/datasets/Br_u_1203_dpmmr/summary.rtf b/general/datasets/Br_u_1203_dpmmr/summary.rtf new file mode 100644 index 0000000..e2d448f --- /dev/null +++ b/general/datasets/Br_u_1203_dpmmr/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_1203_dpmmr/tissue.rtf b/general/datasets/Br_u_1203_dpmmr/tissue.rtf new file mode 100644 index 0000000..1f09431 --- /dev/null +++ b/general/datasets/Br_u_1203_dpmmr/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_1203_dpmr/acknowledgment.rtf b/general/datasets/Br_u_1203_dpmr/acknowledgment.rtf new file mode 100644 index 0000000..b1a98cb --- /dev/null +++ b/general/datasets/Br_u_1203_dpmr/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_1203_dpmr/cases.rtf b/general/datasets/Br_u_1203_dpmr/cases.rtf new file mode 100644 index 0000000..9076285 --- /dev/null +++ b/general/datasets/Br_u_1203_dpmr/cases.rtf @@ -0,0 +1,232 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀  BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀ BXD18♀♂♀
BXD19 â™€â™€BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀ 
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_1203_dpmr/notes.rtf b/general/datasets/Br_u_1203_dpmr/notes.rtf new file mode 100644 index 0000000..1b8fd3d --- /dev/null +++ b/general/datasets/Br_u_1203_dpmr/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004.

diff --git a/general/datasets/Br_u_1203_dpmr/platform.rtf b/general/datasets/Br_u_1203_dpmr/platform.rtf new file mode 100644 index 0000000..c6f6d68 --- /dev/null +++ b/general/datasets/Br_u_1203_dpmr/platform.rtf @@ -0,0 +1,14 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+ +

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

diff --git a/general/datasets/Br_u_1203_dpmr/processing.rtf b/general/datasets/Br_u_1203_dpmr/processing.rtf new file mode 100644 index 0000000..2a34d5e --- /dev/null +++ b/general/datasets/Br_u_1203_dpmr/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
diff --git a/general/datasets/Br_u_1203_dpmr/summary.rtf b/general/datasets/Br_u_1203_dpmr/summary.rtf new file mode 100644 index 0000000..e2d448f --- /dev/null +++ b/general/datasets/Br_u_1203_dpmr/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_1203_dpmr/tissue.rtf b/general/datasets/Br_u_1203_dpmr/tissue.rtf new file mode 100644 index 0000000..1f09431 --- /dev/null +++ b/general/datasets/Br_u_1203_dpmr/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_1203_h2/acknowledgment.rtf b/general/datasets/Br_u_1203_h2/acknowledgment.rtf new file mode 100644 index 0000000..b1a98cb --- /dev/null +++ b/general/datasets/Br_u_1203_h2/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_1203_h2/cases.rtf b/general/datasets/Br_u_1203_h2/cases.rtf new file mode 100644 index 0000000..9076285 --- /dev/null +++ b/general/datasets/Br_u_1203_h2/cases.rtf @@ -0,0 +1,232 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀  BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀ BXD18♀♂♀
BXD19 â™€â™€BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀ 
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_1203_h2/notes.rtf b/general/datasets/Br_u_1203_h2/notes.rtf new file mode 100644 index 0000000..1b8fd3d --- /dev/null +++ b/general/datasets/Br_u_1203_h2/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004.

diff --git a/general/datasets/Br_u_1203_h2/platform.rtf b/general/datasets/Br_u_1203_h2/platform.rtf new file mode 100644 index 0000000..c6f6d68 --- /dev/null +++ b/general/datasets/Br_u_1203_h2/platform.rtf @@ -0,0 +1,14 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+ +

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

diff --git a/general/datasets/Br_u_1203_h2/processing.rtf b/general/datasets/Br_u_1203_h2/processing.rtf new file mode 100644 index 0000000..2a34d5e --- /dev/null +++ b/general/datasets/Br_u_1203_h2/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
diff --git a/general/datasets/Br_u_1203_h2/summary.rtf b/general/datasets/Br_u_1203_h2/summary.rtf new file mode 100644 index 0000000..e2d448f --- /dev/null +++ b/general/datasets/Br_u_1203_h2/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_1203_h2/tissue.rtf b/general/datasets/Br_u_1203_h2/tissue.rtf new file mode 100644 index 0000000..1f09431 --- /dev/null +++ b/general/datasets/Br_u_1203_h2/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_1203_m/acknowledgment.rtf b/general/datasets/Br_u_1203_m/acknowledgment.rtf new file mode 100644 index 0000000..b1a98cb --- /dev/null +++ b/general/datasets/Br_u_1203_m/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_1203_m/cases.rtf b/general/datasets/Br_u_1203_m/cases.rtf new file mode 100644 index 0000000..9076285 --- /dev/null +++ b/general/datasets/Br_u_1203_m/cases.rtf @@ -0,0 +1,232 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀  BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀ BXD18♀♂♀
BXD19 â™€â™€BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀ 
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_1203_m/notes.rtf b/general/datasets/Br_u_1203_m/notes.rtf new file mode 100644 index 0000000..1b8fd3d --- /dev/null +++ b/general/datasets/Br_u_1203_m/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004.

diff --git a/general/datasets/Br_u_1203_m/platform.rtf b/general/datasets/Br_u_1203_m/platform.rtf new file mode 100644 index 0000000..c6f6d68 --- /dev/null +++ b/general/datasets/Br_u_1203_m/platform.rtf @@ -0,0 +1,14 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+ +

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

diff --git a/general/datasets/Br_u_1203_m/processing.rtf b/general/datasets/Br_u_1203_m/processing.rtf new file mode 100644 index 0000000..2a34d5e --- /dev/null +++ b/general/datasets/Br_u_1203_m/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
diff --git a/general/datasets/Br_u_1203_m/summary.rtf b/general/datasets/Br_u_1203_m/summary.rtf new file mode 100644 index 0000000..e2d448f --- /dev/null +++ b/general/datasets/Br_u_1203_m/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_1203_m/tissue.rtf b/general/datasets/Br_u_1203_m/tissue.rtf new file mode 100644 index 0000000..1f09431 --- /dev/null +++ b/general/datasets/Br_u_1203_m/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_1203_mr/acknowledgment.rtf b/general/datasets/Br_u_1203_mr/acknowledgment.rtf new file mode 100644 index 0000000..b1a98cb --- /dev/null +++ b/general/datasets/Br_u_1203_mr/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_1203_mr/cases.rtf b/general/datasets/Br_u_1203_mr/cases.rtf new file mode 100644 index 0000000..9076285 --- /dev/null +++ b/general/datasets/Br_u_1203_mr/cases.rtf @@ -0,0 +1,232 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀  BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀ BXD18♀♂♀
BXD19 â™€â™€BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀ 
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_1203_mr/notes.rtf b/general/datasets/Br_u_1203_mr/notes.rtf new file mode 100644 index 0000000..1b8fd3d --- /dev/null +++ b/general/datasets/Br_u_1203_mr/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004.

diff --git a/general/datasets/Br_u_1203_mr/platform.rtf b/general/datasets/Br_u_1203_mr/platform.rtf new file mode 100644 index 0000000..c6f6d68 --- /dev/null +++ b/general/datasets/Br_u_1203_mr/platform.rtf @@ -0,0 +1,14 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+ +

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

diff --git a/general/datasets/Br_u_1203_mr/processing.rtf b/general/datasets/Br_u_1203_mr/processing.rtf new file mode 100644 index 0000000..2a34d5e --- /dev/null +++ b/general/datasets/Br_u_1203_mr/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
diff --git a/general/datasets/Br_u_1203_mr/summary.rtf b/general/datasets/Br_u_1203_mr/summary.rtf new file mode 100644 index 0000000..e2d448f --- /dev/null +++ b/general/datasets/Br_u_1203_mr/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_1203_mr/tissue.rtf b/general/datasets/Br_u_1203_mr/tissue.rtf new file mode 100644 index 0000000..1f09431 --- /dev/null +++ b/general/datasets/Br_u_1203_mr/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_1203_p/acknowledgment.rtf b/general/datasets/Br_u_1203_p/acknowledgment.rtf new file mode 100644 index 0000000..b1a98cb --- /dev/null +++ b/general/datasets/Br_u_1203_p/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_1203_p/cases.rtf b/general/datasets/Br_u_1203_p/cases.rtf new file mode 100644 index 0000000..9076285 --- /dev/null +++ b/general/datasets/Br_u_1203_p/cases.rtf @@ -0,0 +1,232 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀  BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀ BXD18♀♂♀
BXD19 â™€â™€BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀ 
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_1203_p/notes.rtf b/general/datasets/Br_u_1203_p/notes.rtf new file mode 100644 index 0000000..1b8fd3d --- /dev/null +++ b/general/datasets/Br_u_1203_p/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004.

diff --git a/general/datasets/Br_u_1203_p/platform.rtf b/general/datasets/Br_u_1203_p/platform.rtf new file mode 100644 index 0000000..c6f6d68 --- /dev/null +++ b/general/datasets/Br_u_1203_p/platform.rtf @@ -0,0 +1,14 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+ +

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

diff --git a/general/datasets/Br_u_1203_p/processing.rtf b/general/datasets/Br_u_1203_p/processing.rtf new file mode 100644 index 0000000..2a34d5e --- /dev/null +++ b/general/datasets/Br_u_1203_p/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
diff --git a/general/datasets/Br_u_1203_p/summary.rtf b/general/datasets/Br_u_1203_p/summary.rtf new file mode 100644 index 0000000..e2d448f --- /dev/null +++ b/general/datasets/Br_u_1203_p/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_1203_p/tissue.rtf b/general/datasets/Br_u_1203_p/tissue.rtf new file mode 100644 index 0000000..1f09431 --- /dev/null +++ b/general/datasets/Br_u_1203_p/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_1203_pr/acknowledgment.rtf b/general/datasets/Br_u_1203_pr/acknowledgment.rtf new file mode 100644 index 0000000..b1a98cb --- /dev/null +++ b/general/datasets/Br_u_1203_pr/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_1203_pr/cases.rtf b/general/datasets/Br_u_1203_pr/cases.rtf new file mode 100644 index 0000000..9076285 --- /dev/null +++ b/general/datasets/Br_u_1203_pr/cases.rtf @@ -0,0 +1,232 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀  BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀ BXD18♀♂♀
BXD19 â™€â™€BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀ 
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_1203_pr/notes.rtf b/general/datasets/Br_u_1203_pr/notes.rtf new file mode 100644 index 0000000..1b8fd3d --- /dev/null +++ b/general/datasets/Br_u_1203_pr/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004.

diff --git a/general/datasets/Br_u_1203_pr/platform.rtf b/general/datasets/Br_u_1203_pr/platform.rtf new file mode 100644 index 0000000..c6f6d68 --- /dev/null +++ b/general/datasets/Br_u_1203_pr/platform.rtf @@ -0,0 +1,14 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+ +

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

diff --git a/general/datasets/Br_u_1203_pr/processing.rtf b/general/datasets/Br_u_1203_pr/processing.rtf new file mode 100644 index 0000000..2a34d5e --- /dev/null +++ b/general/datasets/Br_u_1203_pr/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
diff --git a/general/datasets/Br_u_1203_pr/summary.rtf b/general/datasets/Br_u_1203_pr/summary.rtf new file mode 100644 index 0000000..e2d448f --- /dev/null +++ b/general/datasets/Br_u_1203_pr/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_1203_pr/tissue.rtf b/general/datasets/Br_u_1203_pr/tissue.rtf new file mode 100644 index 0000000..1f09431 --- /dev/null +++ b/general/datasets/Br_u_1203_pr/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_1203_r/acknowledgment.rtf b/general/datasets/Br_u_1203_r/acknowledgment.rtf new file mode 100644 index 0000000..b1a98cb --- /dev/null +++ b/general/datasets/Br_u_1203_r/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_1203_r/cases.rtf b/general/datasets/Br_u_1203_r/cases.rtf new file mode 100644 index 0000000..9076285 --- /dev/null +++ b/general/datasets/Br_u_1203_r/cases.rtf @@ -0,0 +1,232 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀  BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀ BXD18♀♂♀
BXD19 â™€â™€BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀ 
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_1203_r/notes.rtf b/general/datasets/Br_u_1203_r/notes.rtf new file mode 100644 index 0000000..1b8fd3d --- /dev/null +++ b/general/datasets/Br_u_1203_r/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004.

diff --git a/general/datasets/Br_u_1203_r/platform.rtf b/general/datasets/Br_u_1203_r/platform.rtf new file mode 100644 index 0000000..c6f6d68 --- /dev/null +++ b/general/datasets/Br_u_1203_r/platform.rtf @@ -0,0 +1,14 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+ +

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

diff --git a/general/datasets/Br_u_1203_r/processing.rtf b/general/datasets/Br_u_1203_r/processing.rtf new file mode 100644 index 0000000..2a34d5e --- /dev/null +++ b/general/datasets/Br_u_1203_r/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
diff --git a/general/datasets/Br_u_1203_r/summary.rtf b/general/datasets/Br_u_1203_r/summary.rtf new file mode 100644 index 0000000..e2d448f --- /dev/null +++ b/general/datasets/Br_u_1203_r/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_1203_r/tissue.rtf b/general/datasets/Br_u_1203_r/tissue.rtf new file mode 100644 index 0000000..1f09431 --- /dev/null +++ b/general/datasets/Br_u_1203_r/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Br_u_1203_rr/acknowledgment.rtf b/general/datasets/Br_u_1203_rr/acknowledgment.rtf new file mode 100644 index 0000000..b1a98cb --- /dev/null +++ b/general/datasets/Br_u_1203_rr/acknowledgment.rtf @@ -0,0 +1 @@ +

Data were generated with funds to RWW from the Dunavant Chair of Excellence, University of Tennessee Health Science Center, Department of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains.

diff --git a/general/datasets/Br_u_1203_rr/cases.rtf b/general/datasets/Br_u_1203_rr/cases.rtf new file mode 100644 index 0000000..9076285 --- /dev/null +++ b/general/datasets/Br_u_1203_rr/cases.rtf @@ -0,0 +1,232 @@ +

This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+ +
The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain +

Age

+
Strain +

Age

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
+

8 Wks

+
+

20 Wks

+
+

52 Wks

+
C57BL/6J (B6)♂♂♂♀♀DBA/2J (D2)♀♀♂♂ 
B6D2F1 (F1)♀ ♀♀ BXD1♀♀ â™€
BXD2♂♀♀BXD5♂♂♀  
BXD6♀  BXD8♀♂♀ 
BXD9♂♀♀BXD11♀♀ â™€
BXD12 â™‚♀BXD13♀   
BXD14 â™€â™€â™€BXD15♀ â™€
BXD16♀♀ BXD18♀♂♀
BXD19 â™€â™€BXD21♀♀♂♂ 
BXD22♀♀♀ BXD23♀  
BXD24♀♀ â™€BXD25♀♀ ♀♀  
BXD27  â™€â™€BXD28♀♀♀
BXD29♂ â™€BXD31♀♀♀♀ 
BXD32♀♂♀♀BXD33♂♀ 
BXD34♂♀♀ BXD38♂♀♀  
BXD39♂♀ ♂ BXD40♂♀  
BXD42♂♂ ♀  BXD67 (F8)♀ ♀ 
BXD68 (F9)♀ ♀♂     
+
diff --git a/general/datasets/Br_u_1203_rr/notes.rtf b/general/datasets/Br_u_1203_rr/notes.rtf new file mode 100644 index 0000000..1b8fd3d --- /dev/null +++ b/general/datasets/Br_u_1203_rr/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004.

diff --git a/general/datasets/Br_u_1203_rr/platform.rtf b/general/datasets/Br_u_1203_rr/platform.rtf new file mode 100644 index 0000000..c6f6d68 --- /dev/null +++ b/general/datasets/Br_u_1203_rr/platform.rtf @@ -0,0 +1,14 @@ +

Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

+ +

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

diff --git a/general/datasets/Br_u_1203_rr/processing.rtf b/general/datasets/Br_u_1203_rr/processing.rtf new file mode 100644 index 0000000..2a34d5e --- /dev/null +++ b/general/datasets/Br_u_1203_rr/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
diff --git a/general/datasets/Br_u_1203_rr/summary.rtf b/general/datasets/Br_u_1203_rr/summary.rtf new file mode 100644 index 0000000..e2d448f --- /dev/null +++ b/general/datasets/Br_u_1203_rr/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM).

diff --git a/general/datasets/Br_u_1203_rr/tissue.rtf b/general/datasets/Br_u_1203_rr/tissue.rtf new file mode 100644 index 0000000..1f09431 --- /dev/null +++ b/general/datasets/Br_u_1203_rr/tissue.rtf @@ -0,0 +1 @@ +

Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image.

diff --git a/general/datasets/Brf2_m_0304_m/acknowledgment.rtf b/general/datasets/Brf2_m_0304_m/acknowledgment.rtf new file mode 100644 index 0000000..e67d66a --- /dev/null +++ b/general/datasets/Brf2_m_0304_m/acknowledgment.rtf @@ -0,0 +1,3 @@ +

This project was supported by two Department of Veterans Affairs Merit Review Awards (to JK Belknap and R Hitzemann, respectively), AA10760 (Portland Alcohol Research Center), AA06243, AA13484, AA11034, DA05228 and MH51372.

+ +

Please contact either John Belknap or Robert Hitzemann at the Dept. of Behavioral Neuroscience, Oregon Health & Science University (L470), or Research Service (R&D5), Portland VA Medical Ctr., Portland, OR 97239 USA.

diff --git a/general/datasets/Brf2_m_0304_m/cases.rtf b/general/datasets/Brf2_m_0304_m/cases.rtf new file mode 100644 index 0000000..3d9dd38 --- /dev/null +++ b/general/datasets/Brf2_m_0304_m/cases.rtf @@ -0,0 +1,3 @@ +

Fifty-six B6D2F2 samples, each taken from a single brain hemisphere from an individual mouse, were assayed using 56 M430A Affymetrix short oligomer microarrays. [The remaining hemisphere will be used later for an anaysis of specific brain regions.] Each array ID (see table below) includes a three letter code; the first letter usually denotes sex of the case (note that we have made a few corrections and there are therefore several sex-discordant IDs), the second letter denotes the hemisphere (R or L), and the third letter is the mouse number within each cell. The F2 mice were experimentally naive, born within a 3-day period from second litters of each dam, and housed at weaning (20- to 24-days-of-age) in like-sex groups of 3 to 4 mice for females and 2 to 3 mice for males in standard mouse shoebox cages within Thoren racks. All 56 F2 mice were killed at 77 to 79 days-of-age by cervical dislocation on December 17, 2003. The brains were immediately split at the midline and then quickly frozen on dry ice. The brains were stored for about two weeks at -80 degrees C until further use.

+ +

The F2 was derived as follows: C57BL/6J (B6) and DBA/2J (D2) breeders were obtained from The Jackson Laboratory, and two generations later their progeny were crossed to produce B6D2F1 and D2B6F1 hybrid at the Portland VA Veterinary Medical Unit (AAALAC approved). The reciprocal F1s were mated to create an F2 population with both progenitor X and Y chromosomes about equally represented.

diff --git a/general/datasets/Brf2_m_0304_m/citation.rtf b/general/datasets/Brf2_m_0304_m/citation.rtf new file mode 100644 index 0000000..3c5403c --- /dev/null +++ b/general/datasets/Brf2_m_0304_m/citation.rtf @@ -0,0 +1,21 @@ +
+

Hitzemann, R, McWeeney, S, Harrington, S, Malmanger, B, Lawler, M, Belknap, JK (2004) Brain gene expression among four inbred mouse strains: The development of an analysis strategy for the integration of QTL and gene expression data. Submitted.

+
+ +
+

Irizarry, RA, Bolstad, BM, Collin, F, Cope, LM, Hobbs, B, Speed, TP (2003) Summaries of Affymetrix GeneChip probe level data. Nuc Acids Res 31:1-15.

+
+ +
+

Lincoln, SE, Lander, ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604-610.

+
+ +
+

Zhang, L, Miles, MF, Aldape, KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotech 21:818-821.

+
+ +

    Information about this text file:

+ +
+

This text file was originally generated by John Belknap, March 2004. Updated by RWW, October 31, 2004, EJC June 21, 2005. Updated with reference, NOV 2014 BY RWW.

+
diff --git a/general/datasets/Brf2_m_0304_m/contributors.rtf b/general/datasets/Brf2_m_0304_m/contributors.rtf new file mode 100644 index 0000000..92da9ca --- /dev/null +++ b/general/datasets/Brf2_m_0304_m/contributors.rtf @@ -0,0 +1,7 @@ +

PMID: 15597075

+ +

Hitzemann R, Reed C, Malmanger B, Lawler M, Hitzemann B, Cunningham B, McWeeney S, Belknap J, Harrington C, Buck K, Phillips T, Crabbe J (2004) On the integration of alcohol-related quantitative trait loci and gene expression analyses. Alcohol Clin Exp Res. ;28(10):1437-1448.

+ +

 

+ +

 

diff --git a/general/datasets/Brf2_m_0304_m/experiment-design.rtf b/general/datasets/Brf2_m_0304_m/experiment-design.rtf new file mode 100644 index 0000000..2829934 --- /dev/null +++ b/general/datasets/Brf2_m_0304_m/experiment-design.rtf @@ -0,0 +1 @@ +

Conventional F2 intercross.

diff --git a/general/datasets/Brf2_m_0304_m/notes.rtf b/general/datasets/Brf2_m_0304_m/notes.rtf new file mode 100644 index 0000000..c4a728d --- /dev/null +++ b/general/datasets/Brf2_m_0304_m/notes.rtf @@ -0,0 +1,5 @@ +

Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA or PDNN transforms.

+ +

Data were processed using the Position-Dependent Nearest Neighbor (PDNN) method developed by Zhang and colleagues (2003. To simplify comparison between transforms, PDNN values of each array were adjusted to an average of 8 units and a variance of 2 units. This data set was run as a single large batch with careful consideration to balancing samples by sex, age, and environment.

+ +

Data were processed using the RMA protocol and are presented with secondary normalization to an average expression value of 8 units. To simplify comparison between transforms, RMA values of each array were adjusted to an average of 8 units and a variance of 2 units. This data set was run as a single large batch with effort to balance samples by sex, age, and environment.

diff --git a/general/datasets/Brf2_m_0304_m/platform.rtf b/general/datasets/Brf2_m_0304_m/platform.rtf new file mode 100644 index 0000000..ecb86bc --- /dev/null +++ b/general/datasets/Brf2_m_0304_m/platform.rtf @@ -0,0 +1,1154 @@ +

All 56 430A arrays used in this project were purchased at one time and had the same Affymetrix lot number. The table below lists the arrays by Case ID, Array ID, Side, Cage ID and Sex.

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Order

+
+

CaseID

+
+

ArrayID

+
+

Side

+
+

CageID

+
+

Sex

+
+

1

+
+

20

+
+

FL10

+
+

L

+
+

H1

+
+

F

+
+

2

+
+

2

+
+

FL11

+
+

L

+
+

H2

+
+

F

+
+

3

+
+

5

+
+

FL12

+
+

L

+
+

H3

+
+

F

+
+

4

+
+

63

+
+

FL13

+
+

L

+
+

H4

+
+

F

+
+

5

+
+

6

+
+

FL14

+
+

L

+
+

K2

+
+

F

+
+

6

+
+

10

+
+

FL15

+
+

L

+
+

Q2

+
+

F

+
+

7

+
+

52

+
+

FL2

+
+

L

+
+

E1

+
+

F

+
+

8

+
+

53

+
+

FL3

+
+

L

+
+

E2

+
+

F

+
+

9

+
+

42

+
+

FL4

+
+

L

+
+

E3

+
+

F

+
+

10

+
+

31

+
+

FL5

+
+

L

+
+

E4

+
+

F

+
+

11

+
+

14

+
+

FL6

+
+

L

+
+

F1

+
+

M

+
+

12

+
+

48

+
+

FL7

+
+

L

+
+

F2

+
+

F

+
+

13

+
+

60

+
+

FL8

+
+

L

+
+

F3

+
+

M

+
+

14

+
+

54

+
+

FL9

+
+

L

+
+

F4

+
+

F

+
+

15

+
+

35

+
+

FR10

+
+

R

+
+

K3

+
+

F

+
+

16

+
+

11

+
+

FR11

+
+

R

+
+

O1

+
+

F

+
+

17

+
+

21

+
+

FR12

+
+

R

+
+

O2

+
+

F

+
+

18

+
+

23

+
+

FR13

+
+

R

+
+

Q1

+
+

F

+
+

19

+
+

15

+
+

FR14

+
+

R

+
+

Q3

+
+

F

+
+

20

+
+

4

+
+

FR15

+
+

R

+
+

Q4

+
+

F

+
+

21

+
+

41

+
+

FR2

+
+

R

+
+

A2

+
+

F

+
+

22

+
+

44

+
+

FR3

+
+

R

+
+

A3

+
+

F

+
+

23

+
+

37

+
+

FR4

+
+

R

+
+

C1

+
+

F

+
+

24

+
+

8

+
+

FR5

+
+

R

+
+

C2

+
+

F

+
+

25

+
+

19

+
+

FR6

+
+

R

+
+

C3

+
+

F

+
+

26

+
+

40

+
+

FR7

+
+

R

+
+

C4

+
+

F

+
+

27

+
+

62

+
+

FR8

+
+

R

+
+

D2

+
+

M

+
+

28

+
+

39

+
+

FR9

+
+

R

+
+

D3

+
+

F

+
+

29

+
+

13

+
+

ML1

+
+

L

+
+

B1

+
+

M

+
+

30

+
+

22

+
+

ML10

+
+

L

+
+

L2

+
+

M

+
+

31

+
+

38

+
+

ML11

+
+

L

+
+

L4

+
+

M

+
+

32

+
+

43

+
+

ML12

+
+

L

+
+

M1

+
+

M

+
+

33

+
+

58

+
+

ML13

+
+

L

+
+

N2

+
+

M

+
+

34

+
+

7

+
+

ML14

+
+

L

+
+

R1

+
+

M

+
+

35

+
+

30

+
+

ML15

+
+

L

+
+

R3

+
+

M

+
+

36

+
+

46

+
+

ML3

+
+

L

+
+

G1

+
+

M

+
+

37

+
+

57

+
+

ML4

+
+

L

+
+

G2

+
+

M

+
+

38

+
+

51

+
+

ML5

+
+

L

+
+

I1

+
+

M

+
+

39

+
+

27

+
+

ML6

+
+

L

+
+

I2

+
+

M

+
+

40

+
+

50

+
+

ML7

+
+

L

+
+

J2

+
+

M

+
+

41

+
+

16

+
+

FL1

+
+

L

+
+

O2

+
+

M

+
+

42

+
+

3

+
+

ML9

+
+

L

+
+

L1

+
+

M

+
+

43

+
+

47

+
+

MR10

+
+

R

+
+

R2

+
+

M

+
+

44

+
+

56

+
+

MR11

+
+

R

+
+

S1

+
+

M

+
+

45

+
+

1

+
+

MR12

+
+

R

+
+

S2

+
+

M

+
+

46

+
+

55

+
+

MR13

+
+

R

+
+

T1

+
+

M

+
+

47

+
+

34

+
+

MR14

+
+

R

+
+

U1

+
+

M

+
+

48

+
+

25

+
+

MR15

+
+

R

+
+

U2

+
+

M

+
+

49

+
+

59

+
+

MR2

+
+

R

+
+

J1

+
+

M

+
+

50

+
+

32

+
+

MR3

+
+

R

+
+

M2

+
+

M

+
+

51

+
+

24

+
+

MR4

+
+

R

+
+

M3

+
+

M

+
+

52

+
+

12

+
+

MR5

+
+

R

+
+

M4

+
+

M

+
+

53

+
+

9

+
+

MR6

+
+

R

+
+

N1

+
+

M

+
+

54

+
+

36

+
+

MR7

+
+

R

+
+

N3

+
+

M

+
+

55

+
+

28

+
+

MR8

+
+

R

+
+

P1

+
+

M

+
+

56

+
+

33

+
+

MR9

+
+

R

+
+

P2

+
+

M

+
+
diff --git a/general/datasets/Brf2_m_0304_m/processing.rtf b/general/datasets/Brf2_m_0304_m/processing.rtf new file mode 100644 index 0000000..002c868 --- /dev/null +++ b/general/datasets/Brf2_m_0304_m/processing.rtf @@ -0,0 +1,16 @@ +

The 56 mice were each genotyped at 309 MIT microsatellite markers distributed across the genome, including the Y chromosome. The genotyping error check routine (Lincoln and Lander, 1992) implemented within R/qtl (Broman et al., 2003) showed no likely errors at p <.01 probability. Initial genotypes were generated at OHSU. Approximately 200 genotypes were generated at UTHSC by Jing Gu and Shuhua Qi.

+ +

Probe (cell) level data from the CEL file: These CEL values produced by GCOS are the 75% quantiles from a set of 91 pixel values per cell. Probe values were processed as follows:

+ + + +

Probe set data from the TXT file: These TXT files were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

+ +

The chromosomal locations of M430A and M430B probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

diff --git a/general/datasets/Brf2_m_0304_m/summary.rtf b/general/datasets/Brf2_m_0304_m/summary.rtf new file mode 100644 index 0000000..8c926cd --- /dev/null +++ b/general/datasets/Brf2_m_0304_m/summary.rtf @@ -0,0 +1 @@ +

This March 2004 data freeze provides estimate of mRNA expression in adult brains of F2 intercross mice (C57BL/6J x DBA/2J F2) measured using Affymetrix M430A microarrays. Data were generated at The Oregon Health Sciences University (OHSU) in Portland, Oregon, by John Belknap and Robert Hitzemann. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA or PDNN transforms.

diff --git a/general/datasets/Brf2_m_0304_m/tissue.rtf b/general/datasets/Brf2_m_0304_m/tissue.rtf new file mode 100644 index 0000000..863b8e6 --- /dev/null +++ b/general/datasets/Brf2_m_0304_m/tissue.rtf @@ -0,0 +1 @@ +

Brain samples were from 31 male and 25 females and between 28 right and 28 left hemispheres distributed with good balance across the two sexes. The tissue arrayed included the forebrain, midbrain, one olfactory bulb, the cerebellum; and the rostral part of the medulla. The medulla was trimmed transversely at the caudal aspect of the cerebellum. The sagittal cut was made from a dorsal to ventral direction. (Note that several of the other brain transcriptome databases do not include olfactory bulb or cerebellum.) Total RNA was isolated with TRIZOL Reagent (Life Technologies Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer’s protocol. The extracted RNA was then purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for purity; only samples with an A260/280 ratio greater than 1.8 were used. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. Samples containing at least 10 micrograms of total RNA were sent to the OHSU Gene Microarray Shared Resource facility for analysis. The procedures used at the facility precisely follow the manufacturer’s specifications. Details can be found at http://www.ohsu.edu/gmsr/amc. Following labeling, all samples were hybridized to the GeneChip Test3 array for quality control. If target performance did not meet recommended thresholds, the sample would have been discarded. All labeled samples passed the threshold and were hybridized to the 430A array.

diff --git a/general/datasets/Brf2_m_0304_p/acknowledgment.rtf b/general/datasets/Brf2_m_0304_p/acknowledgment.rtf new file mode 100644 index 0000000..e67d66a --- /dev/null +++ b/general/datasets/Brf2_m_0304_p/acknowledgment.rtf @@ -0,0 +1,3 @@ +

This project was supported by two Department of Veterans Affairs Merit Review Awards (to JK Belknap and R Hitzemann, respectively), AA10760 (Portland Alcohol Research Center), AA06243, AA13484, AA11034, DA05228 and MH51372.

+ +

Please contact either John Belknap or Robert Hitzemann at the Dept. of Behavioral Neuroscience, Oregon Health & Science University (L470), or Research Service (R&D5), Portland VA Medical Ctr., Portland, OR 97239 USA.

diff --git a/general/datasets/Brf2_m_0304_p/cases.rtf b/general/datasets/Brf2_m_0304_p/cases.rtf new file mode 100644 index 0000000..3d9dd38 --- /dev/null +++ b/general/datasets/Brf2_m_0304_p/cases.rtf @@ -0,0 +1,3 @@ +

Fifty-six B6D2F2 samples, each taken from a single brain hemisphere from an individual mouse, were assayed using 56 M430A Affymetrix short oligomer microarrays. [The remaining hemisphere will be used later for an anaysis of specific brain regions.] Each array ID (see table below) includes a three letter code; the first letter usually denotes sex of the case (note that we have made a few corrections and there are therefore several sex-discordant IDs), the second letter denotes the hemisphere (R or L), and the third letter is the mouse number within each cell. The F2 mice were experimentally naive, born within a 3-day period from second litters of each dam, and housed at weaning (20- to 24-days-of-age) in like-sex groups of 3 to 4 mice for females and 2 to 3 mice for males in standard mouse shoebox cages within Thoren racks. All 56 F2 mice were killed at 77 to 79 days-of-age by cervical dislocation on December 17, 2003. The brains were immediately split at the midline and then quickly frozen on dry ice. The brains were stored for about two weeks at -80 degrees C until further use.

+ +

The F2 was derived as follows: C57BL/6J (B6) and DBA/2J (D2) breeders were obtained from The Jackson Laboratory, and two generations later their progeny were crossed to produce B6D2F1 and D2B6F1 hybrid at the Portland VA Veterinary Medical Unit (AAALAC approved). The reciprocal F1s were mated to create an F2 population with both progenitor X and Y chromosomes about equally represented.

diff --git a/general/datasets/Brf2_m_0304_p/citation.rtf b/general/datasets/Brf2_m_0304_p/citation.rtf new file mode 100644 index 0000000..3c5403c --- /dev/null +++ b/general/datasets/Brf2_m_0304_p/citation.rtf @@ -0,0 +1,21 @@ +
+

Hitzemann, R, McWeeney, S, Harrington, S, Malmanger, B, Lawler, M, Belknap, JK (2004) Brain gene expression among four inbred mouse strains: The development of an analysis strategy for the integration of QTL and gene expression data. Submitted.

+
+ +
+

Irizarry, RA, Bolstad, BM, Collin, F, Cope, LM, Hobbs, B, Speed, TP (2003) Summaries of Affymetrix GeneChip probe level data. Nuc Acids Res 31:1-15.

+
+ +
+

Lincoln, SE, Lander, ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604-610.

+
+ +
+

Zhang, L, Miles, MF, Aldape, KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotech 21:818-821.

+
+ +

    Information about this text file:

+ +
+

This text file was originally generated by John Belknap, March 2004. Updated by RWW, October 31, 2004, EJC June 21, 2005. Updated with reference, NOV 2014 BY RWW.

+
diff --git a/general/datasets/Brf2_m_0304_p/contributors.rtf b/general/datasets/Brf2_m_0304_p/contributors.rtf new file mode 100644 index 0000000..92da9ca --- /dev/null +++ b/general/datasets/Brf2_m_0304_p/contributors.rtf @@ -0,0 +1,7 @@ +

PMID: 15597075

+ +

Hitzemann R, Reed C, Malmanger B, Lawler M, Hitzemann B, Cunningham B, McWeeney S, Belknap J, Harrington C, Buck K, Phillips T, Crabbe J (2004) On the integration of alcohol-related quantitative trait loci and gene expression analyses. Alcohol Clin Exp Res. ;28(10):1437-1448.

+ +

 

+ +

 

diff --git a/general/datasets/Brf2_m_0304_p/experiment-design.rtf b/general/datasets/Brf2_m_0304_p/experiment-design.rtf new file mode 100644 index 0000000..2829934 --- /dev/null +++ b/general/datasets/Brf2_m_0304_p/experiment-design.rtf @@ -0,0 +1 @@ +

Conventional F2 intercross.

diff --git a/general/datasets/Brf2_m_0304_p/notes.rtf b/general/datasets/Brf2_m_0304_p/notes.rtf new file mode 100644 index 0000000..c4a728d --- /dev/null +++ b/general/datasets/Brf2_m_0304_p/notes.rtf @@ -0,0 +1,5 @@ +

Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA or PDNN transforms.

+ +

Data were processed using the Position-Dependent Nearest Neighbor (PDNN) method developed by Zhang and colleagues (2003. To simplify comparison between transforms, PDNN values of each array were adjusted to an average of 8 units and a variance of 2 units. This data set was run as a single large batch with careful consideration to balancing samples by sex, age, and environment.

+ +

Data were processed using the RMA protocol and are presented with secondary normalization to an average expression value of 8 units. To simplify comparison between transforms, RMA values of each array were adjusted to an average of 8 units and a variance of 2 units. This data set was run as a single large batch with effort to balance samples by sex, age, and environment.

diff --git a/general/datasets/Brf2_m_0304_p/platform.rtf b/general/datasets/Brf2_m_0304_p/platform.rtf new file mode 100644 index 0000000..ecb86bc --- /dev/null +++ b/general/datasets/Brf2_m_0304_p/platform.rtf @@ -0,0 +1,1154 @@ +

All 56 430A arrays used in this project were purchased at one time and had the same Affymetrix lot number. The table below lists the arrays by Case ID, Array ID, Side, Cage ID and Sex.

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Order

+
+

CaseID

+
+

ArrayID

+
+

Side

+
+

CageID

+
+

Sex

+
+

1

+
+

20

+
+

FL10

+
+

L

+
+

H1

+
+

F

+
+

2

+
+

2

+
+

FL11

+
+

L

+
+

H2

+
+

F

+
+

3

+
+

5

+
+

FL12

+
+

L

+
+

H3

+
+

F

+
+

4

+
+

63

+
+

FL13

+
+

L

+
+

H4

+
+

F

+
+

5

+
+

6

+
+

FL14

+
+

L

+
+

K2

+
+

F

+
+

6

+
+

10

+
+

FL15

+
+

L

+
+

Q2

+
+

F

+
+

7

+
+

52

+
+

FL2

+
+

L

+
+

E1

+
+

F

+
+

8

+
+

53

+
+

FL3

+
+

L

+
+

E2

+
+

F

+
+

9

+
+

42

+
+

FL4

+
+

L

+
+

E3

+
+

F

+
+

10

+
+

31

+
+

FL5

+
+

L

+
+

E4

+
+

F

+
+

11

+
+

14

+
+

FL6

+
+

L

+
+

F1

+
+

M

+
+

12

+
+

48

+
+

FL7

+
+

L

+
+

F2

+
+

F

+
+

13

+
+

60

+
+

FL8

+
+

L

+
+

F3

+
+

M

+
+

14

+
+

54

+
+

FL9

+
+

L

+
+

F4

+
+

F

+
+

15

+
+

35

+
+

FR10

+
+

R

+
+

K3

+
+

F

+
+

16

+
+

11

+
+

FR11

+
+

R

+
+

O1

+
+

F

+
+

17

+
+

21

+
+

FR12

+
+

R

+
+

O2

+
+

F

+
+

18

+
+

23

+
+

FR13

+
+

R

+
+

Q1

+
+

F

+
+

19

+
+

15

+
+

FR14

+
+

R

+
+

Q3

+
+

F

+
+

20

+
+

4

+
+

FR15

+
+

R

+
+

Q4

+
+

F

+
+

21

+
+

41

+
+

FR2

+
+

R

+
+

A2

+
+

F

+
+

22

+
+

44

+
+

FR3

+
+

R

+
+

A3

+
+

F

+
+

23

+
+

37

+
+

FR4

+
+

R

+
+

C1

+
+

F

+
+

24

+
+

8

+
+

FR5

+
+

R

+
+

C2

+
+

F

+
+

25

+
+

19

+
+

FR6

+
+

R

+
+

C3

+
+

F

+
+

26

+
+

40

+
+

FR7

+
+

R

+
+

C4

+
+

F

+
+

27

+
+

62

+
+

FR8

+
+

R

+
+

D2

+
+

M

+
+

28

+
+

39

+
+

FR9

+
+

R

+
+

D3

+
+

F

+
+

29

+
+

13

+
+

ML1

+
+

L

+
+

B1

+
+

M

+
+

30

+
+

22

+
+

ML10

+
+

L

+
+

L2

+
+

M

+
+

31

+
+

38

+
+

ML11

+
+

L

+
+

L4

+
+

M

+
+

32

+
+

43

+
+

ML12

+
+

L

+
+

M1

+
+

M

+
+

33

+
+

58

+
+

ML13

+
+

L

+
+

N2

+
+

M

+
+

34

+
+

7

+
+

ML14

+
+

L

+
+

R1

+
+

M

+
+

35

+
+

30

+
+

ML15

+
+

L

+
+

R3

+
+

M

+
+

36

+
+

46

+
+

ML3

+
+

L

+
+

G1

+
+

M

+
+

37

+
+

57

+
+

ML4

+
+

L

+
+

G2

+
+

M

+
+

38

+
+

51

+
+

ML5

+
+

L

+
+

I1

+
+

M

+
+

39

+
+

27

+
+

ML6

+
+

L

+
+

I2

+
+

M

+
+

40

+
+

50

+
+

ML7

+
+

L

+
+

J2

+
+

M

+
+

41

+
+

16

+
+

FL1

+
+

L

+
+

O2

+
+

M

+
+

42

+
+

3

+
+

ML9

+
+

L

+
+

L1

+
+

M

+
+

43

+
+

47

+
+

MR10

+
+

R

+
+

R2

+
+

M

+
+

44

+
+

56

+
+

MR11

+
+

R

+
+

S1

+
+

M

+
+

45

+
+

1

+
+

MR12

+
+

R

+
+

S2

+
+

M

+
+

46

+
+

55

+
+

MR13

+
+

R

+
+

T1

+
+

M

+
+

47

+
+

34

+
+

MR14

+
+

R

+
+

U1

+
+

M

+
+

48

+
+

25

+
+

MR15

+
+

R

+
+

U2

+
+

M

+
+

49

+
+

59

+
+

MR2

+
+

R

+
+

J1

+
+

M

+
+

50

+
+

32

+
+

MR3

+
+

R

+
+

M2

+
+

M

+
+

51

+
+

24

+
+

MR4

+
+

R

+
+

M3

+
+

M

+
+

52

+
+

12

+
+

MR5

+
+

R

+
+

M4

+
+

M

+
+

53

+
+

9

+
+

MR6

+
+

R

+
+

N1

+
+

M

+
+

54

+
+

36

+
+

MR7

+
+

R

+
+

N3

+
+

M

+
+

55

+
+

28

+
+

MR8

+
+

R

+
+

P1

+
+

M

+
+

56

+
+

33

+
+

MR9

+
+

R

+
+

P2

+
+

M

+
+
diff --git a/general/datasets/Brf2_m_0304_p/processing.rtf b/general/datasets/Brf2_m_0304_p/processing.rtf new file mode 100644 index 0000000..002c868 --- /dev/null +++ b/general/datasets/Brf2_m_0304_p/processing.rtf @@ -0,0 +1,16 @@ +

The 56 mice were each genotyped at 309 MIT microsatellite markers distributed across the genome, including the Y chromosome. The genotyping error check routine (Lincoln and Lander, 1992) implemented within R/qtl (Broman et al., 2003) showed no likely errors at p <.01 probability. Initial genotypes were generated at OHSU. Approximately 200 genotypes were generated at UTHSC by Jing Gu and Shuhua Qi.

+ +

Probe (cell) level data from the CEL file: These CEL values produced by GCOS are the 75% quantiles from a set of 91 pixel values per cell. Probe values were processed as follows:

+ + + +

Probe set data from the TXT file: These TXT files were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

+ +

The chromosomal locations of M430A and M430B probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

diff --git a/general/datasets/Brf2_m_0304_p/summary.rtf b/general/datasets/Brf2_m_0304_p/summary.rtf new file mode 100644 index 0000000..8c926cd --- /dev/null +++ b/general/datasets/Brf2_m_0304_p/summary.rtf @@ -0,0 +1 @@ +

This March 2004 data freeze provides estimate of mRNA expression in adult brains of F2 intercross mice (C57BL/6J x DBA/2J F2) measured using Affymetrix M430A microarrays. Data were generated at The Oregon Health Sciences University (OHSU) in Portland, Oregon, by John Belknap and Robert Hitzemann. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA or PDNN transforms.

diff --git a/general/datasets/Brf2_m_0304_p/tissue.rtf b/general/datasets/Brf2_m_0304_p/tissue.rtf new file mode 100644 index 0000000..863b8e6 --- /dev/null +++ b/general/datasets/Brf2_m_0304_p/tissue.rtf @@ -0,0 +1 @@ +

Brain samples were from 31 male and 25 females and between 28 right and 28 left hemispheres distributed with good balance across the two sexes. The tissue arrayed included the forebrain, midbrain, one olfactory bulb, the cerebellum; and the rostral part of the medulla. The medulla was trimmed transversely at the caudal aspect of the cerebellum. The sagittal cut was made from a dorsal to ventral direction. (Note that several of the other brain transcriptome databases do not include olfactory bulb or cerebellum.) Total RNA was isolated with TRIZOL Reagent (Life Technologies Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer’s protocol. The extracted RNA was then purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for purity; only samples with an A260/280 ratio greater than 1.8 were used. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. Samples containing at least 10 micrograms of total RNA were sent to the OHSU Gene Microarray Shared Resource facility for analysis. The procedures used at the facility precisely follow the manufacturer’s specifications. Details can be found at http://www.ohsu.edu/gmsr/amc. Following labeling, all samples were hybridized to the GeneChip Test3 array for quality control. If target performance did not meet recommended thresholds, the sample would have been discarded. All labeled samples passed the threshold and were hybridized to the 430A array.

diff --git a/general/datasets/Brf2_m_0304_r/acknowledgment.rtf b/general/datasets/Brf2_m_0304_r/acknowledgment.rtf new file mode 100644 index 0000000..e67d66a --- /dev/null +++ b/general/datasets/Brf2_m_0304_r/acknowledgment.rtf @@ -0,0 +1,3 @@ +

This project was supported by two Department of Veterans Affairs Merit Review Awards (to JK Belknap and R Hitzemann, respectively), AA10760 (Portland Alcohol Research Center), AA06243, AA13484, AA11034, DA05228 and MH51372.

+ +

Please contact either John Belknap or Robert Hitzemann at the Dept. of Behavioral Neuroscience, Oregon Health & Science University (L470), or Research Service (R&D5), Portland VA Medical Ctr., Portland, OR 97239 USA.

diff --git a/general/datasets/Brf2_m_0304_r/cases.rtf b/general/datasets/Brf2_m_0304_r/cases.rtf new file mode 100644 index 0000000..3d9dd38 --- /dev/null +++ b/general/datasets/Brf2_m_0304_r/cases.rtf @@ -0,0 +1,3 @@ +

Fifty-six B6D2F2 samples, each taken from a single brain hemisphere from an individual mouse, were assayed using 56 M430A Affymetrix short oligomer microarrays. [The remaining hemisphere will be used later for an anaysis of specific brain regions.] Each array ID (see table below) includes a three letter code; the first letter usually denotes sex of the case (note that we have made a few corrections and there are therefore several sex-discordant IDs), the second letter denotes the hemisphere (R or L), and the third letter is the mouse number within each cell. The F2 mice were experimentally naive, born within a 3-day period from second litters of each dam, and housed at weaning (20- to 24-days-of-age) in like-sex groups of 3 to 4 mice for females and 2 to 3 mice for males in standard mouse shoebox cages within Thoren racks. All 56 F2 mice were killed at 77 to 79 days-of-age by cervical dislocation on December 17, 2003. The brains were immediately split at the midline and then quickly frozen on dry ice. The brains were stored for about two weeks at -80 degrees C until further use.

+ +

The F2 was derived as follows: C57BL/6J (B6) and DBA/2J (D2) breeders were obtained from The Jackson Laboratory, and two generations later their progeny were crossed to produce B6D2F1 and D2B6F1 hybrid at the Portland VA Veterinary Medical Unit (AAALAC approved). The reciprocal F1s were mated to create an F2 population with both progenitor X and Y chromosomes about equally represented.

diff --git a/general/datasets/Brf2_m_0304_r/citation.rtf b/general/datasets/Brf2_m_0304_r/citation.rtf new file mode 100644 index 0000000..3c5403c --- /dev/null +++ b/general/datasets/Brf2_m_0304_r/citation.rtf @@ -0,0 +1,21 @@ +
+

Hitzemann, R, McWeeney, S, Harrington, S, Malmanger, B, Lawler, M, Belknap, JK (2004) Brain gene expression among four inbred mouse strains: The development of an analysis strategy for the integration of QTL and gene expression data. Submitted.

+
+ +
+

Irizarry, RA, Bolstad, BM, Collin, F, Cope, LM, Hobbs, B, Speed, TP (2003) Summaries of Affymetrix GeneChip probe level data. Nuc Acids Res 31:1-15.

+
+ +
+

Lincoln, SE, Lander, ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604-610.

+
+ +
+

Zhang, L, Miles, MF, Aldape, KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotech 21:818-821.

+
+ +

    Information about this text file:

+ +
+

This text file was originally generated by John Belknap, March 2004. Updated by RWW, October 31, 2004, EJC June 21, 2005. Updated with reference, NOV 2014 BY RWW.

+
diff --git a/general/datasets/Brf2_m_0304_r/contributors.rtf b/general/datasets/Brf2_m_0304_r/contributors.rtf new file mode 100644 index 0000000..92da9ca --- /dev/null +++ b/general/datasets/Brf2_m_0304_r/contributors.rtf @@ -0,0 +1,7 @@ +

PMID: 15597075

+ +

Hitzemann R, Reed C, Malmanger B, Lawler M, Hitzemann B, Cunningham B, McWeeney S, Belknap J, Harrington C, Buck K, Phillips T, Crabbe J (2004) On the integration of alcohol-related quantitative trait loci and gene expression analyses. Alcohol Clin Exp Res. ;28(10):1437-1448.

+ +

 

+ +

 

diff --git a/general/datasets/Brf2_m_0304_r/experiment-design.rtf b/general/datasets/Brf2_m_0304_r/experiment-design.rtf new file mode 100644 index 0000000..2829934 --- /dev/null +++ b/general/datasets/Brf2_m_0304_r/experiment-design.rtf @@ -0,0 +1 @@ +

Conventional F2 intercross.

diff --git a/general/datasets/Brf2_m_0304_r/notes.rtf b/general/datasets/Brf2_m_0304_r/notes.rtf new file mode 100644 index 0000000..c4a728d --- /dev/null +++ b/general/datasets/Brf2_m_0304_r/notes.rtf @@ -0,0 +1,5 @@ +

Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA or PDNN transforms.

+ +

Data were processed using the Position-Dependent Nearest Neighbor (PDNN) method developed by Zhang and colleagues (2003. To simplify comparison between transforms, PDNN values of each array were adjusted to an average of 8 units and a variance of 2 units. This data set was run as a single large batch with careful consideration to balancing samples by sex, age, and environment.

+ +

Data were processed using the RMA protocol and are presented with secondary normalization to an average expression value of 8 units. To simplify comparison between transforms, RMA values of each array were adjusted to an average of 8 units and a variance of 2 units. This data set was run as a single large batch with effort to balance samples by sex, age, and environment.

diff --git a/general/datasets/Brf2_m_0304_r/platform.rtf b/general/datasets/Brf2_m_0304_r/platform.rtf new file mode 100644 index 0000000..ecb86bc --- /dev/null +++ b/general/datasets/Brf2_m_0304_r/platform.rtf @@ -0,0 +1,1154 @@ +

All 56 430A arrays used in this project were purchased at one time and had the same Affymetrix lot number. The table below lists the arrays by Case ID, Array ID, Side, Cage ID and Sex.

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Order

+
+

CaseID

+
+

ArrayID

+
+

Side

+
+

CageID

+
+

Sex

+
+

1

+
+

20

+
+

FL10

+
+

L

+
+

H1

+
+

F

+
+

2

+
+

2

+
+

FL11

+
+

L

+
+

H2

+
+

F

+
+

3

+
+

5

+
+

FL12

+
+

L

+
+

H3

+
+

F

+
+

4

+
+

63

+
+

FL13

+
+

L

+
+

H4

+
+

F

+
+

5

+
+

6

+
+

FL14

+
+

L

+
+

K2

+
+

F

+
+

6

+
+

10

+
+

FL15

+
+

L

+
+

Q2

+
+

F

+
+

7

+
+

52

+
+

FL2

+
+

L

+
+

E1

+
+

F

+
+

8

+
+

53

+
+

FL3

+
+

L

+
+

E2

+
+

F

+
+

9

+
+

42

+
+

FL4

+
+

L

+
+

E3

+
+

F

+
+

10

+
+

31

+
+

FL5

+
+

L

+
+

E4

+
+

F

+
+

11

+
+

14

+
+

FL6

+
+

L

+
+

F1

+
+

M

+
+

12

+
+

48

+
+

FL7

+
+

L

+
+

F2

+
+

F

+
+

13

+
+

60

+
+

FL8

+
+

L

+
+

F3

+
+

M

+
+

14

+
+

54

+
+

FL9

+
+

L

+
+

F4

+
+

F

+
+

15

+
+

35

+
+

FR10

+
+

R

+
+

K3

+
+

F

+
+

16

+
+

11

+
+

FR11

+
+

R

+
+

O1

+
+

F

+
+

17

+
+

21

+
+

FR12

+
+

R

+
+

O2

+
+

F

+
+

18

+
+

23

+
+

FR13

+
+

R

+
+

Q1

+
+

F

+
+

19

+
+

15

+
+

FR14

+
+

R

+
+

Q3

+
+

F

+
+

20

+
+

4

+
+

FR15

+
+

R

+
+

Q4

+
+

F

+
+

21

+
+

41

+
+

FR2

+
+

R

+
+

A2

+
+

F

+
+

22

+
+

44

+
+

FR3

+
+

R

+
+

A3

+
+

F

+
+

23

+
+

37

+
+

FR4

+
+

R

+
+

C1

+
+

F

+
+

24

+
+

8

+
+

FR5

+
+

R

+
+

C2

+
+

F

+
+

25

+
+

19

+
+

FR6

+
+

R

+
+

C3

+
+

F

+
+

26

+
+

40

+
+

FR7

+
+

R

+
+

C4

+
+

F

+
+

27

+
+

62

+
+

FR8

+
+

R

+
+

D2

+
+

M

+
+

28

+
+

39

+
+

FR9

+
+

R

+
+

D3

+
+

F

+
+

29

+
+

13

+
+

ML1

+
+

L

+
+

B1

+
+

M

+
+

30

+
+

22

+
+

ML10

+
+

L

+
+

L2

+
+

M

+
+

31

+
+

38

+
+

ML11

+
+

L

+
+

L4

+
+

M

+
+

32

+
+

43

+
+

ML12

+
+

L

+
+

M1

+
+

M

+
+

33

+
+

58

+
+

ML13

+
+

L

+
+

N2

+
+

M

+
+

34

+
+

7

+
+

ML14

+
+

L

+
+

R1

+
+

M

+
+

35

+
+

30

+
+

ML15

+
+

L

+
+

R3

+
+

M

+
+

36

+
+

46

+
+

ML3

+
+

L

+
+

G1

+
+

M

+
+

37

+
+

57

+
+

ML4

+
+

L

+
+

G2

+
+

M

+
+

38

+
+

51

+
+

ML5

+
+

L

+
+

I1

+
+

M

+
+

39

+
+

27

+
+

ML6

+
+

L

+
+

I2

+
+

M

+
+

40

+
+

50

+
+

ML7

+
+

L

+
+

J2

+
+

M

+
+

41

+
+

16

+
+

FL1

+
+

L

+
+

O2

+
+

M

+
+

42

+
+

3

+
+

ML9

+
+

L

+
+

L1

+
+

M

+
+

43

+
+

47

+
+

MR10

+
+

R

+
+

R2

+
+

M

+
+

44

+
+

56

+
+

MR11

+
+

R

+
+

S1

+
+

M

+
+

45

+
+

1

+
+

MR12

+
+

R

+
+

S2

+
+

M

+
+

46

+
+

55

+
+

MR13

+
+

R

+
+

T1

+
+

M

+
+

47

+
+

34

+
+

MR14

+
+

R

+
+

U1

+
+

M

+
+

48

+
+

25

+
+

MR15

+
+

R

+
+

U2

+
+

M

+
+

49

+
+

59

+
+

MR2

+
+

R

+
+

J1

+
+

M

+
+

50

+
+

32

+
+

MR3

+
+

R

+
+

M2

+
+

M

+
+

51

+
+

24

+
+

MR4

+
+

R

+
+

M3

+
+

M

+
+

52

+
+

12

+
+

MR5

+
+

R

+
+

M4

+
+

M

+
+

53

+
+

9

+
+

MR6

+
+

R

+
+

N1

+
+

M

+
+

54

+
+

36

+
+

MR7

+
+

R

+
+

N3

+
+

M

+
+

55

+
+

28

+
+

MR8

+
+

R

+
+

P1

+
+

M

+
+

56

+
+

33

+
+

MR9

+
+

R

+
+

P2

+
+

M

+
+
diff --git a/general/datasets/Brf2_m_0304_r/processing.rtf b/general/datasets/Brf2_m_0304_r/processing.rtf new file mode 100644 index 0000000..002c868 --- /dev/null +++ b/general/datasets/Brf2_m_0304_r/processing.rtf @@ -0,0 +1,16 @@ +

The 56 mice were each genotyped at 309 MIT microsatellite markers distributed across the genome, including the Y chromosome. The genotyping error check routine (Lincoln and Lander, 1992) implemented within R/qtl (Broman et al., 2003) showed no likely errors at p <.01 probability. Initial genotypes were generated at OHSU. Approximately 200 genotypes were generated at UTHSC by Jing Gu and Shuhua Qi.

+ +

Probe (cell) level data from the CEL file: These CEL values produced by GCOS are the 75% quantiles from a set of 91 pixel values per cell. Probe values were processed as follows:

+ + + +

Probe set data from the TXT file: These TXT files were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

+ +

The chromosomal locations of M430A and M430B probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line).

diff --git a/general/datasets/Brf2_m_0304_r/summary.rtf b/general/datasets/Brf2_m_0304_r/summary.rtf new file mode 100644 index 0000000..8c926cd --- /dev/null +++ b/general/datasets/Brf2_m_0304_r/summary.rtf @@ -0,0 +1 @@ +

This March 2004 data freeze provides estimate of mRNA expression in adult brains of F2 intercross mice (C57BL/6J x DBA/2J F2) measured using Affymetrix M430A microarrays. Data were generated at The Oregon Health Sciences University (OHSU) in Portland, Oregon, by John Belknap and Robert Hitzemann. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA or PDNN transforms.

diff --git a/general/datasets/Brf2_m_0304_r/tissue.rtf b/general/datasets/Brf2_m_0304_r/tissue.rtf new file mode 100644 index 0000000..863b8e6 --- /dev/null +++ b/general/datasets/Brf2_m_0304_r/tissue.rtf @@ -0,0 +1 @@ +

Brain samples were from 31 male and 25 females and between 28 right and 28 left hemispheres distributed with good balance across the two sexes. The tissue arrayed included the forebrain, midbrain, one olfactory bulb, the cerebellum; and the rostral part of the medulla. The medulla was trimmed transversely at the caudal aspect of the cerebellum. The sagittal cut was made from a dorsal to ventral direction. (Note that several of the other brain transcriptome databases do not include olfactory bulb or cerebellum.) Total RNA was isolated with TRIZOL Reagent (Life Technologies Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer’s protocol. The extracted RNA was then purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for purity; only samples with an A260/280 ratio greater than 1.8 were used. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. Samples containing at least 10 micrograms of total RNA were sent to the OHSU Gene Microarray Shared Resource facility for analysis. The procedures used at the facility precisely follow the manufacturer’s specifications. Details can be found at http://www.ohsu.edu/gmsr/amc. Following labeling, all samples were hybridized to the GeneChip Test3 array for quality control. If target performance did not meet recommended thresholds, the sample would have been discarded. All labeled samples passed the threshold and were hybridized to the 430A array.

diff --git a/general/datasets/Brf2_m_0805_m/acknowledgment.rtf b/general/datasets/Brf2_m_0805_m/acknowledgment.rtf new file mode 100644 index 0000000..e7f05c1 --- /dev/null +++ b/general/datasets/Brf2_m_0805_m/acknowledgment.rtf @@ -0,0 +1,5 @@ +
+

This project was supported by two Department of Veterans Affairs Merit Review Awards (to JK Belknap and R Hitzemann, respectively), AA10760 (Portland Alcohol Research Center), AA06243, AA13484, AA11034, DA05228 and MH51372.

+ +

Please contact either John Belknap or Robert Hitzemann at the Dept. of Behavioral Neuroscience, Oregon Health & Science University (L470), or Research Service (R&D5), Portland VA Medical Ctr., Portland, OR 97239 USA.

+
diff --git a/general/datasets/Brf2_m_0805_m/cases.rtf b/general/datasets/Brf2_m_0805_m/cases.rtf new file mode 100644 index 0000000..4f69ca9 --- /dev/null +++ b/general/datasets/Brf2_m_0805_m/cases.rtf @@ -0,0 +1,3 @@ +

Fifty-six B6D2F2 samples, each taken from a single brain hemisphere from an individual mouse, were assayed using 56 M430A&B Affymetrix short oligomer microarrays. [The remaining hemisphere will be used later for an anaysis of specific brain regions.] Each array ID (see table below) includes a three letter code; the first letter usually denotes sex of the case (note that we have made a few corrections and there are therefore several sex-discordant IDs), the second letter denotes the hemisphere (R or L), and the third letter is the mouse number within each cell. The F2 mice were experimentally naive, born within a 3-day period from second litters of each dam, and housed at weaning (20- to 24-days-of-age) in like-sex groups of 3 to 4 mice for females and 2 to 3 mice for males in standard mouse shoebox cages within Thoren racks. All 56 F2 mice were killed at 77 to 79 days-of-age by cervical dislocation on December 17, 2003. The brains were immediately split at the midline and then quickly frozen on dry ice. The brains were stored for about two weeks at -80 degrees C until further use.

+ +

The F2 was derived as follows: C57BL/6J (B6) and DBA/2J (D2) breeders were obtained from The Jackson Laboratory, and two generations later their progeny were crossed to produce B6D2F1 and D2B6F1 hybrid at the Portland VA Veterinary Medical Unit (AAALAC approved). The reciprocal F1s were mated to create an F2 population with both progenitor X and Y chromosomes about equally represented.

diff --git a/general/datasets/Brf2_m_0805_m/citation.rtf b/general/datasets/Brf2_m_0805_m/citation.rtf new file mode 100644 index 0000000..8e8e73d --- /dev/null +++ b/general/datasets/Brf2_m_0805_m/citation.rtf @@ -0,0 +1,15 @@ +
+

Hitzemann R, Reed C, Malmanger B, Lawler M, Hitzemann B, Cunningham B, McWeeney S, Belknap J, Harrington C, Buck K, Phillips T, Crabbe J. (2004) On the integration of alcohol-related quantitative trait loci and gene expression analyses..  Alcohol Clin Exp Res. 2004 Oct;28(10):1437-48.  PMID:15597075

+
+ +
+

Irizarry, RA, Bolstad, BM, Collin, F, Cope, LM, Hobbs, B, Speed, TP (2003) Summaries of Affymetrix GeneChip probe level data. Nuc Acids Res 31:1-15.

+
+ +
+

Lincoln, SE, Lander, ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604-610.

+
+ +
+

Zhang, L, Miles, MF, Aldape, KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotech 21:818-821.

+
diff --git a/general/datasets/Brf2_m_0805_m/contributors.rtf b/general/datasets/Brf2_m_0805_m/contributors.rtf new file mode 100644 index 0000000..fa18035 --- /dev/null +++ b/general/datasets/Brf2_m_0805_m/contributors.rtf @@ -0,0 +1,7 @@ +

BACKGROUND:Quantitative trait loci (QTLs) have been detected for a wide variety of ethanol-related phenotypes, including acute and chronic ethanol withdrawal, acute locomotor activation, and ethanol preference. This study was undertaken to determine whether the process of moving from QTL to quantitative trait gene (QTG) could be accelerated by the integration of functional genomics (gene expression) into the analysis strategy.

+ +

METHODS:Six ethanol-related QTLs, all detected in C57BL/6J and DBA/2J intercrosses were entered into the analysis. Each of the QTLs had been confirmed in independent genetic models at least once; the cumulative probabilities for QTL existence ranged from 10 to 10. Brain gene expression data for the C57BL/6 and DBA/2 strains (n = 6 per strain) and an F2 intercross sample (n = 56) derived from these strains were obtained by using the Affymetrix U74Av2 and 430A arrays; additional data with the U74Av2 array were available for the extended amygdala, dorsomedial striatum, and hippocampus. Low-level analysis was performed by using multiple methods to determine the likelihood that a transcript was truly differentially expressed. For the 430A array data, the F2 sample was used to determine which of the differentially expressed transcripts within the QTL intervals were cis-regulated and, thus, strong candidates for QTGs.

+ +

RESULTS:Within the 6 QTL intervals, 39 transcripts (430A array) were identified as being highly likely to be differentially expressed between the C57BL/6 and DBA/2 strains at a false discovery rate of 0.01 or better. Twenty-eight of these transcripts showed significant (logarithm of odds > or =3.6) to highly significant (logarithm of odds >7) cis-regulation. The process correctly detected Mpdz (chromosome 4) as a candidate QTG for acute withdrawal.

+ +

CONCLUSIONS:Although improvements are needed in the expression databases, the integration of QTL and gene expression analyses seems to have potential as a high-throughput strategy for moving from QTL to QTG.

diff --git a/general/datasets/Brf2_m_0805_m/notes.rtf b/general/datasets/Brf2_m_0805_m/notes.rtf new file mode 100644 index 0000000..7fafba3 --- /dev/null +++ b/general/datasets/Brf2_m_0805_m/notes.rtf @@ -0,0 +1,3 @@ +
+

This text file was originally generated by John Belknap, March 2004. Updated by RWW, October 31, 2004, EJC June 21, 2005.

+
diff --git a/general/datasets/Brf2_m_0805_m/platform.rtf b/general/datasets/Brf2_m_0805_m/platform.rtf new file mode 100644 index 0000000..f0ee528 --- /dev/null +++ b/general/datasets/Brf2_m_0805_m/platform.rtf @@ -0,0 +1,1154 @@ +

All 56 430A&B arrays used in this project were purchased at one time and had the same Affymetrix lot number. The table below lists the arrays by Case ID, Array ID, Side, Cage ID and Sex.

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Order

+
+

CaseID

+
+

ArrayID

+
+

Side

+
+

CageID

+
+

Sex

+
+

1

+
+

20

+
+

FL10

+
+

L

+
+

H1

+
+

F

+
+

2

+
+

2

+
+

FL11

+
+

L

+
+

H2

+
+

F

+
+

3

+
+

5

+
+

FL12

+
+

L

+
+

H3

+
+

F

+
+

4

+
+

63

+
+

FL13

+
+

L

+
+

H4

+
+

F

+
+

5

+
+

6

+
+

FL14

+
+

L

+
+

K2

+
+

F

+
+

6

+
+

10

+
+

FL15

+
+

L

+
+

Q2

+
+

F

+
+

7

+
+

52

+
+

FL2

+
+

L

+
+

E1

+
+

F

+
+

8

+
+

53

+
+

FL3

+
+

L

+
+

E2

+
+

F

+
+

9

+
+

42

+
+

FL4

+
+

L

+
+

E3

+
+

F

+
+

10

+
+

31

+
+

FL5

+
+

L

+
+

E4

+
+

F

+
+

11

+
+

14

+
+

FL6

+
+

L

+
+

F1

+
+

M

+
+

12

+
+

48

+
+

FL7

+
+

L

+
+

F2

+
+

F

+
+

13

+
+

60

+
+

FL8

+
+

L

+
+

F3

+
+

M

+
+

14

+
+

54

+
+

FL9

+
+

L

+
+

F4

+
+

F

+
+

15

+
+

35

+
+

FR10

+
+

R

+
+

K3

+
+

F

+
+

16

+
+

11

+
+

FR11

+
+

R

+
+

O1

+
+

F

+
+

17

+
+

21

+
+

FR12

+
+

R

+
+

O2

+
+

F

+
+

18

+
+

23

+
+

FR13

+
+

R

+
+

Q1

+
+

F

+
+

19

+
+

15

+
+

FR14

+
+

R

+
+

Q3

+
+

F

+
+

20

+
+

4

+
+

FR15

+
+

R

+
+

Q4

+
+

F

+
+

21

+
+

41

+
+

FR2

+
+

R

+
+

A2

+
+

F

+
+

22

+
+

44

+
+

FR3

+
+

R

+
+

A3

+
+

F

+
+

23

+
+

37

+
+

FR4

+
+

R

+
+

C1

+
+

F

+
+

24

+
+

8

+
+

FR5

+
+

R

+
+

C2

+
+

F

+
+

25

+
+

19

+
+

FR6

+
+

R

+
+

C3

+
+

F

+
+

26

+
+

40

+
+

FR7

+
+

R

+
+

C4

+
+

F

+
+

27

+
+

62

+
+

FR8

+
+

R

+
+

D2

+
+

M

+
+

28

+
+

39

+
+

FR9

+
+

R

+
+

D3

+
+

F

+
+

29

+
+

13

+
+

ML1

+
+

L

+
+

B1

+
+

M

+
+

30

+
+

22

+
+

ML10

+
+

L

+
+

L2

+
+

M

+
+

31

+
+

38

+
+

ML11

+
+

L

+
+

L4

+
+

M

+
+

32

+
+

43

+
+

ML12

+
+

L

+
+

M1

+
+

M

+
+

33

+
+

58

+
+

ML13

+
+

L

+
+

N2

+
+

M

+
+

34

+
+

7

+
+

ML14

+
+

L

+
+

R1

+
+

M

+
+

35

+
+

30

+
+

ML15

+
+

L

+
+

R3

+
+

M

+
+

36

+
+

46

+
+

ML3

+
+

L

+
+

G1

+
+

M

+
+

37

+
+

57

+
+

ML4

+
+

L

+
+

G2

+
+

M

+
+

38

+
+

51

+
+

ML5

+
+

L

+
+

I1

+
+

M

+
+

39

+
+

27

+
+

ML6

+
+

L

+
+

I2

+
+

M

+
+

40

+
+

50

+
+

ML7

+
+

L

+
+

J2

+
+

M

+
+

41

+
+

16

+
+

FL1

+
+

L

+
+

O2

+
+

M

+
+

42

+
+

3

+
+

ML9

+
+

L

+
+

L1

+
+

M

+
+

43

+
+

47

+
+

MR10

+
+

R

+
+

R2

+
+

M

+
+

44

+
+

56

+
+

MR11

+
+

R

+
+

S1

+
+

M

+
+

45

+
+

1

+
+

MR12

+
+

R

+
+

S2

+
+

M

+
+

46

+
+

55

+
+

MR13

+
+

R

+
+

T1

+
+

M

+
+

47

+
+

34

+
+

MR14

+
+

R

+
+

U1

+
+

M

+
+

48

+
+

25

+
+

MR15

+
+

R

+
+

U2

+
+

M

+
+

49

+
+

59

+
+

MR2

+
+

R

+
+

J1

+
+

M

+
+

50

+
+

32

+
+

MR3

+
+

R

+
+

M2

+
+

M

+
+

51

+
+

24

+
+

MR4

+
+

R

+
+

M3

+
+

M

+
+

52

+
+

12

+
+

MR5

+
+

R

+
+

M4

+
+

M

+
+

53

+
+

9

+
+

MR6

+
+

R

+
+

N1

+
+

M

+
+

54

+
+

36

+
+

MR7

+
+

R

+
+

N3

+
+

M

+
+

55

+
+

28

+
+

MR8

+
+

R

+
+

P1

+
+

M

+
+

56

+
+

33

+
+

MR9

+
+

R

+
+

P2

+
+

M

+
+
diff --git a/general/datasets/Brf2_m_0805_m/processing.rtf b/general/datasets/Brf2_m_0805_m/processing.rtf new file mode 100644 index 0000000..8a23d84 --- /dev/null +++ b/general/datasets/Brf2_m_0805_m/processing.rtf @@ -0,0 +1,26 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are the 75% quantiles from a set of 91 pixel values per cell. Probe values were processed as follows: + + +

Probe set data from the TXT file: These TXT files were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

+
+ +

About the marker set:

+ +
+

The 56 mice were each genotyped at 309 MIT microsatellite markers distributed across the genome, including the Y chromosome. The genotyping error check routine (Lincoln and Lander, 1992) implemented within R/qtl (Broman et al., 2003) showed no likely errors at p <.01 probability. Initial genotypes were generated at OHSU. Approximately 200 genotypes were generated at UTHSC by Jing Gu and Shuhua Qi.

+
+ +

About the chromosome and megabase position values:

+ +
The chromosomal locations of M430A and M430B probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium March 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). + +

 

+
diff --git a/general/datasets/Brf2_m_0805_m/summary.rtf b/general/datasets/Brf2_m_0805_m/summary.rtf new file mode 100644 index 0000000..6f477fe --- /dev/null +++ b/general/datasets/Brf2_m_0805_m/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimate of mRNA expression in adult brains of F2 intercross mice (C57BL/6J x DBA/2J F2) measured using Affymetrix M430A and M430B microarray pairs. Data were generated at The Oregon Health Sciences University (OHSU) in Portland, Oregon, by John Belknap and Robert Hitzemann. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA or PDNN transforms.

diff --git a/general/datasets/Brf2_m_0805_m/tissue.rtf b/general/datasets/Brf2_m_0805_m/tissue.rtf new file mode 100644 index 0000000..ef85488 --- /dev/null +++ b/general/datasets/Brf2_m_0805_m/tissue.rtf @@ -0,0 +1 @@ +

Brain samples were from 31 male and 25 females and between 28 right and 28 left hemispheres distributed with good balance across the two sexes. The tissue arrayed included the forebrain, midbrain, one olfactory bulb, the cerebellum; and the rostral part of the medulla. The medulla was trimmed transversely at the caudal aspect of the cerebellum. The sagittal cut was made from a dorsal to ventral direction. (Note that several of the other brain transcriptome databases do not include olfactory bulb or cerebellum.) Total RNA was isolated with TRIZOL Reagent (Life Technologies Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer’s protocol. The extracted RNA was then purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for purity; only samples with an A260/280 ratio greater than 1.8 were used. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. Samples containing at least 10 micrograms of total RNA were sent to the OHSU Gene Microarray Shared Resource facility for analysis. The procedures used at the facility precisely follow the manufacturer’s specifications. Details can be found at http://www.ohsu.edu/gmsr/amc. Following labeling, all samples were hybridized to the GeneChip Test3 array for quality control. If target performance did not meet recommended thresholds, the sample would have been discarded. All labeled samples passed the threshold and were hybridized to the 430A and 430B array pairs.

diff --git a/general/datasets/Brf2_m_0805_p/acknowledgment.rtf b/general/datasets/Brf2_m_0805_p/acknowledgment.rtf new file mode 100644 index 0000000..e7f05c1 --- /dev/null +++ b/general/datasets/Brf2_m_0805_p/acknowledgment.rtf @@ -0,0 +1,5 @@ +
+

This project was supported by two Department of Veterans Affairs Merit Review Awards (to JK Belknap and R Hitzemann, respectively), AA10760 (Portland Alcohol Research Center), AA06243, AA13484, AA11034, DA05228 and MH51372.

+ +

Please contact either John Belknap or Robert Hitzemann at the Dept. of Behavioral Neuroscience, Oregon Health & Science University (L470), or Research Service (R&D5), Portland VA Medical Ctr., Portland, OR 97239 USA.

+
diff --git a/general/datasets/Brf2_m_0805_p/cases.rtf b/general/datasets/Brf2_m_0805_p/cases.rtf new file mode 100644 index 0000000..4f69ca9 --- /dev/null +++ b/general/datasets/Brf2_m_0805_p/cases.rtf @@ -0,0 +1,3 @@ +

Fifty-six B6D2F2 samples, each taken from a single brain hemisphere from an individual mouse, were assayed using 56 M430A&B Affymetrix short oligomer microarrays. [The remaining hemisphere will be used later for an anaysis of specific brain regions.] Each array ID (see table below) includes a three letter code; the first letter usually denotes sex of the case (note that we have made a few corrections and there are therefore several sex-discordant IDs), the second letter denotes the hemisphere (R or L), and the third letter is the mouse number within each cell. The F2 mice were experimentally naive, born within a 3-day period from second litters of each dam, and housed at weaning (20- to 24-days-of-age) in like-sex groups of 3 to 4 mice for females and 2 to 3 mice for males in standard mouse shoebox cages within Thoren racks. All 56 F2 mice were killed at 77 to 79 days-of-age by cervical dislocation on December 17, 2003. The brains were immediately split at the midline and then quickly frozen on dry ice. The brains were stored for about two weeks at -80 degrees C until further use.

+ +

The F2 was derived as follows: C57BL/6J (B6) and DBA/2J (D2) breeders were obtained from The Jackson Laboratory, and two generations later their progeny were crossed to produce B6D2F1 and D2B6F1 hybrid at the Portland VA Veterinary Medical Unit (AAALAC approved). The reciprocal F1s were mated to create an F2 population with both progenitor X and Y chromosomes about equally represented.

diff --git a/general/datasets/Brf2_m_0805_p/citation.rtf b/general/datasets/Brf2_m_0805_p/citation.rtf new file mode 100644 index 0000000..8e8e73d --- /dev/null +++ b/general/datasets/Brf2_m_0805_p/citation.rtf @@ -0,0 +1,15 @@ +
+

Hitzemann R, Reed C, Malmanger B, Lawler M, Hitzemann B, Cunningham B, McWeeney S, Belknap J, Harrington C, Buck K, Phillips T, Crabbe J. (2004) On the integration of alcohol-related quantitative trait loci and gene expression analyses..  Alcohol Clin Exp Res. 2004 Oct;28(10):1437-48.  PMID:15597075

+
+ +
+

Irizarry, RA, Bolstad, BM, Collin, F, Cope, LM, Hobbs, B, Speed, TP (2003) Summaries of Affymetrix GeneChip probe level data. Nuc Acids Res 31:1-15.

+
+ +
+

Lincoln, SE, Lander, ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604-610.

+
+ +
+

Zhang, L, Miles, MF, Aldape, KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotech 21:818-821.

+
diff --git a/general/datasets/Brf2_m_0805_p/contributors.rtf b/general/datasets/Brf2_m_0805_p/contributors.rtf new file mode 100644 index 0000000..fa18035 --- /dev/null +++ b/general/datasets/Brf2_m_0805_p/contributors.rtf @@ -0,0 +1,7 @@ +

BACKGROUND:Quantitative trait loci (QTLs) have been detected for a wide variety of ethanol-related phenotypes, including acute and chronic ethanol withdrawal, acute locomotor activation, and ethanol preference. This study was undertaken to determine whether the process of moving from QTL to quantitative trait gene (QTG) could be accelerated by the integration of functional genomics (gene expression) into the analysis strategy.

+ +

METHODS:Six ethanol-related QTLs, all detected in C57BL/6J and DBA/2J intercrosses were entered into the analysis. Each of the QTLs had been confirmed in independent genetic models at least once; the cumulative probabilities for QTL existence ranged from 10 to 10. Brain gene expression data for the C57BL/6 and DBA/2 strains (n = 6 per strain) and an F2 intercross sample (n = 56) derived from these strains were obtained by using the Affymetrix U74Av2 and 430A arrays; additional data with the U74Av2 array were available for the extended amygdala, dorsomedial striatum, and hippocampus. Low-level analysis was performed by using multiple methods to determine the likelihood that a transcript was truly differentially expressed. For the 430A array data, the F2 sample was used to determine which of the differentially expressed transcripts within the QTL intervals were cis-regulated and, thus, strong candidates for QTGs.

+ +

RESULTS:Within the 6 QTL intervals, 39 transcripts (430A array) were identified as being highly likely to be differentially expressed between the C57BL/6 and DBA/2 strains at a false discovery rate of 0.01 or better. Twenty-eight of these transcripts showed significant (logarithm of odds > or =3.6) to highly significant (logarithm of odds >7) cis-regulation. The process correctly detected Mpdz (chromosome 4) as a candidate QTG for acute withdrawal.

+ +

CONCLUSIONS:Although improvements are needed in the expression databases, the integration of QTL and gene expression analyses seems to have potential as a high-throughput strategy for moving from QTL to QTG.

diff --git a/general/datasets/Brf2_m_0805_p/notes.rtf b/general/datasets/Brf2_m_0805_p/notes.rtf new file mode 100644 index 0000000..7fafba3 --- /dev/null +++ b/general/datasets/Brf2_m_0805_p/notes.rtf @@ -0,0 +1,3 @@ +
+

This text file was originally generated by John Belknap, March 2004. Updated by RWW, October 31, 2004, EJC June 21, 2005.

+
diff --git a/general/datasets/Brf2_m_0805_p/platform.rtf b/general/datasets/Brf2_m_0805_p/platform.rtf new file mode 100644 index 0000000..f0ee528 --- /dev/null +++ b/general/datasets/Brf2_m_0805_p/platform.rtf @@ -0,0 +1,1154 @@ +

All 56 430A&B arrays used in this project were purchased at one time and had the same Affymetrix lot number. The table below lists the arrays by Case ID, Array ID, Side, Cage ID and Sex.

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Order

+
+

CaseID

+
+

ArrayID

+
+

Side

+
+

CageID

+
+

Sex

+
+

1

+
+

20

+
+

FL10

+
+

L

+
+

H1

+
+

F

+
+

2

+
+

2

+
+

FL11

+
+

L

+
+

H2

+
+

F

+
+

3

+
+

5

+
+

FL12

+
+

L

+
+

H3

+
+

F

+
+

4

+
+

63

+
+

FL13

+
+

L

+
+

H4

+
+

F

+
+

5

+
+

6

+
+

FL14

+
+

L

+
+

K2

+
+

F

+
+

6

+
+

10

+
+

FL15

+
+

L

+
+

Q2

+
+

F

+
+

7

+
+

52

+
+

FL2

+
+

L

+
+

E1

+
+

F

+
+

8

+
+

53

+
+

FL3

+
+

L

+
+

E2

+
+

F

+
+

9

+
+

42

+
+

FL4

+
+

L

+
+

E3

+
+

F

+
+

10

+
+

31

+
+

FL5

+
+

L

+
+

E4

+
+

F

+
+

11

+
+

14

+
+

FL6

+
+

L

+
+

F1

+
+

M

+
+

12

+
+

48

+
+

FL7

+
+

L

+
+

F2

+
+

F

+
+

13

+
+

60

+
+

FL8

+
+

L

+
+

F3

+
+

M

+
+

14

+
+

54

+
+

FL9

+
+

L

+
+

F4

+
+

F

+
+

15

+
+

35

+
+

FR10

+
+

R

+
+

K3

+
+

F

+
+

16

+
+

11

+
+

FR11

+
+

R

+
+

O1

+
+

F

+
+

17

+
+

21

+
+

FR12

+
+

R

+
+

O2

+
+

F

+
+

18

+
+

23

+
+

FR13

+
+

R

+
+

Q1

+
+

F

+
+

19

+
+

15

+
+

FR14

+
+

R

+
+

Q3

+
+

F

+
+

20

+
+

4

+
+

FR15

+
+

R

+
+

Q4

+
+

F

+
+

21

+
+

41

+
+

FR2

+
+

R

+
+

A2

+
+

F

+
+

22

+
+

44

+
+

FR3

+
+

R

+
+

A3

+
+

F

+
+

23

+
+

37

+
+

FR4

+
+

R

+
+

C1

+
+

F

+
+

24

+
+

8

+
+

FR5

+
+

R

+
+

C2

+
+

F

+
+

25

+
+

19

+
+

FR6

+
+

R

+
+

C3

+
+

F

+
+

26

+
+

40

+
+

FR7

+
+

R

+
+

C4

+
+

F

+
+

27

+
+

62

+
+

FR8

+
+

R

+
+

D2

+
+

M

+
+

28

+
+

39

+
+

FR9

+
+

R

+
+

D3

+
+

F

+
+

29

+
+

13

+
+

ML1

+
+

L

+
+

B1

+
+

M

+
+

30

+
+

22

+
+

ML10

+
+

L

+
+

L2

+
+

M

+
+

31

+
+

38

+
+

ML11

+
+

L

+
+

L4

+
+

M

+
+

32

+
+

43

+
+

ML12

+
+

L

+
+

M1

+
+

M

+
+

33

+
+

58

+
+

ML13

+
+

L

+
+

N2

+
+

M

+
+

34

+
+

7

+
+

ML14

+
+

L

+
+

R1

+
+

M

+
+

35

+
+

30

+
+

ML15

+
+

L

+
+

R3

+
+

M

+
+

36

+
+

46

+
+

ML3

+
+

L

+
+

G1

+
+

M

+
+

37

+
+

57

+
+

ML4

+
+

L

+
+

G2

+
+

M

+
+

38

+
+

51

+
+

ML5

+
+

L

+
+

I1

+
+

M

+
+

39

+
+

27

+
+

ML6

+
+

L

+
+

I2

+
+

M

+
+

40

+
+

50

+
+

ML7

+
+

L

+
+

J2

+
+

M

+
+

41

+
+

16

+
+

FL1

+
+

L

+
+

O2

+
+

M

+
+

42

+
+

3

+
+

ML9

+
+

L

+
+

L1

+
+

M

+
+

43

+
+

47

+
+

MR10

+
+

R

+
+

R2

+
+

M

+
+

44

+
+

56

+
+

MR11

+
+

R

+
+

S1

+
+

M

+
+

45

+
+

1

+
+

MR12

+
+

R

+
+

S2

+
+

M

+
+

46

+
+

55

+
+

MR13

+
+

R

+
+

T1

+
+

M

+
+

47

+
+

34

+
+

MR14

+
+

R

+
+

U1

+
+

M

+
+

48

+
+

25

+
+

MR15

+
+

R

+
+

U2

+
+

M

+
+

49

+
+

59

+
+

MR2

+
+

R

+
+

J1

+
+

M

+
+

50

+
+

32

+
+

MR3

+
+

R

+
+

M2

+
+

M

+
+

51

+
+

24

+
+

MR4

+
+

R

+
+

M3

+
+

M

+
+

52

+
+

12

+
+

MR5

+
+

R

+
+

M4

+
+

M

+
+

53

+
+

9

+
+

MR6

+
+

R

+
+

N1

+
+

M

+
+

54

+
+

36

+
+

MR7

+
+

R

+
+

N3

+
+

M

+
+

55

+
+

28

+
+

MR8

+
+

R

+
+

P1

+
+

M

+
+

56

+
+

33

+
+

MR9

+
+

R

+
+

P2

+
+

M

+
+
diff --git a/general/datasets/Brf2_m_0805_p/processing.rtf b/general/datasets/Brf2_m_0805_p/processing.rtf new file mode 100644 index 0000000..8a23d84 --- /dev/null +++ b/general/datasets/Brf2_m_0805_p/processing.rtf @@ -0,0 +1,26 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are the 75% quantiles from a set of 91 pixel values per cell. Probe values were processed as follows: + + +

Probe set data from the TXT file: These TXT files were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

+
+ +

About the marker set:

+ +
+

The 56 mice were each genotyped at 309 MIT microsatellite markers distributed across the genome, including the Y chromosome. The genotyping error check routine (Lincoln and Lander, 1992) implemented within R/qtl (Broman et al., 2003) showed no likely errors at p <.01 probability. Initial genotypes were generated at OHSU. Approximately 200 genotypes were generated at UTHSC by Jing Gu and Shuhua Qi.

+
+ +

About the chromosome and megabase position values:

+ +
The chromosomal locations of M430A and M430B probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium March 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). + +

 

+
diff --git a/general/datasets/Brf2_m_0805_p/summary.rtf b/general/datasets/Brf2_m_0805_p/summary.rtf new file mode 100644 index 0000000..6f477fe --- /dev/null +++ b/general/datasets/Brf2_m_0805_p/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimate of mRNA expression in adult brains of F2 intercross mice (C57BL/6J x DBA/2J F2) measured using Affymetrix M430A and M430B microarray pairs. Data were generated at The Oregon Health Sciences University (OHSU) in Portland, Oregon, by John Belknap and Robert Hitzemann. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA or PDNN transforms.

diff --git a/general/datasets/Brf2_m_0805_p/tissue.rtf b/general/datasets/Brf2_m_0805_p/tissue.rtf new file mode 100644 index 0000000..ef85488 --- /dev/null +++ b/general/datasets/Brf2_m_0805_p/tissue.rtf @@ -0,0 +1 @@ +

Brain samples were from 31 male and 25 females and between 28 right and 28 left hemispheres distributed with good balance across the two sexes. The tissue arrayed included the forebrain, midbrain, one olfactory bulb, the cerebellum; and the rostral part of the medulla. The medulla was trimmed transversely at the caudal aspect of the cerebellum. The sagittal cut was made from a dorsal to ventral direction. (Note that several of the other brain transcriptome databases do not include olfactory bulb or cerebellum.) Total RNA was isolated with TRIZOL Reagent (Life Technologies Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer’s protocol. The extracted RNA was then purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for purity; only samples with an A260/280 ratio greater than 1.8 were used. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. Samples containing at least 10 micrograms of total RNA were sent to the OHSU Gene Microarray Shared Resource facility for analysis. The procedures used at the facility precisely follow the manufacturer’s specifications. Details can be found at http://www.ohsu.edu/gmsr/amc. Following labeling, all samples were hybridized to the GeneChip Test3 array for quality control. If target performance did not meet recommended thresholds, the sample would have been discarded. All labeled samples passed the threshold and were hybridized to the 430A and 430B array pairs.

diff --git a/general/datasets/Brf2_m_0805_r/acknowledgment.rtf b/general/datasets/Brf2_m_0805_r/acknowledgment.rtf new file mode 100644 index 0000000..e7f05c1 --- /dev/null +++ b/general/datasets/Brf2_m_0805_r/acknowledgment.rtf @@ -0,0 +1,5 @@ +
+

This project was supported by two Department of Veterans Affairs Merit Review Awards (to JK Belknap and R Hitzemann, respectively), AA10760 (Portland Alcohol Research Center), AA06243, AA13484, AA11034, DA05228 and MH51372.

+ +

Please contact either John Belknap or Robert Hitzemann at the Dept. of Behavioral Neuroscience, Oregon Health & Science University (L470), or Research Service (R&D5), Portland VA Medical Ctr., Portland, OR 97239 USA.

+
diff --git a/general/datasets/Brf2_m_0805_r/cases.rtf b/general/datasets/Brf2_m_0805_r/cases.rtf new file mode 100644 index 0000000..4f69ca9 --- /dev/null +++ b/general/datasets/Brf2_m_0805_r/cases.rtf @@ -0,0 +1,3 @@ +

Fifty-six B6D2F2 samples, each taken from a single brain hemisphere from an individual mouse, were assayed using 56 M430A&B Affymetrix short oligomer microarrays. [The remaining hemisphere will be used later for an anaysis of specific brain regions.] Each array ID (see table below) includes a three letter code; the first letter usually denotes sex of the case (note that we have made a few corrections and there are therefore several sex-discordant IDs), the second letter denotes the hemisphere (R or L), and the third letter is the mouse number within each cell. The F2 mice were experimentally naive, born within a 3-day period from second litters of each dam, and housed at weaning (20- to 24-days-of-age) in like-sex groups of 3 to 4 mice for females and 2 to 3 mice for males in standard mouse shoebox cages within Thoren racks. All 56 F2 mice were killed at 77 to 79 days-of-age by cervical dislocation on December 17, 2003. The brains were immediately split at the midline and then quickly frozen on dry ice. The brains were stored for about two weeks at -80 degrees C until further use.

+ +

The F2 was derived as follows: C57BL/6J (B6) and DBA/2J (D2) breeders were obtained from The Jackson Laboratory, and two generations later their progeny were crossed to produce B6D2F1 and D2B6F1 hybrid at the Portland VA Veterinary Medical Unit (AAALAC approved). The reciprocal F1s were mated to create an F2 population with both progenitor X and Y chromosomes about equally represented.

diff --git a/general/datasets/Brf2_m_0805_r/citation.rtf b/general/datasets/Brf2_m_0805_r/citation.rtf new file mode 100644 index 0000000..8e8e73d --- /dev/null +++ b/general/datasets/Brf2_m_0805_r/citation.rtf @@ -0,0 +1,15 @@ +
+

Hitzemann R, Reed C, Malmanger B, Lawler M, Hitzemann B, Cunningham B, McWeeney S, Belknap J, Harrington C, Buck K, Phillips T, Crabbe J. (2004) On the integration of alcohol-related quantitative trait loci and gene expression analyses..  Alcohol Clin Exp Res. 2004 Oct;28(10):1437-48.  PMID:15597075

+
+ +
+

Irizarry, RA, Bolstad, BM, Collin, F, Cope, LM, Hobbs, B, Speed, TP (2003) Summaries of Affymetrix GeneChip probe level data. Nuc Acids Res 31:1-15.

+
+ +
+

Lincoln, SE, Lander, ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604-610.

+
+ +
+

Zhang, L, Miles, MF, Aldape, KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotech 21:818-821.

+
diff --git a/general/datasets/Brf2_m_0805_r/contributors.rtf b/general/datasets/Brf2_m_0805_r/contributors.rtf new file mode 100644 index 0000000..fa18035 --- /dev/null +++ b/general/datasets/Brf2_m_0805_r/contributors.rtf @@ -0,0 +1,7 @@ +

BACKGROUND:Quantitative trait loci (QTLs) have been detected for a wide variety of ethanol-related phenotypes, including acute and chronic ethanol withdrawal, acute locomotor activation, and ethanol preference. This study was undertaken to determine whether the process of moving from QTL to quantitative trait gene (QTG) could be accelerated by the integration of functional genomics (gene expression) into the analysis strategy.

+ +

METHODS:Six ethanol-related QTLs, all detected in C57BL/6J and DBA/2J intercrosses were entered into the analysis. Each of the QTLs had been confirmed in independent genetic models at least once; the cumulative probabilities for QTL existence ranged from 10 to 10. Brain gene expression data for the C57BL/6 and DBA/2 strains (n = 6 per strain) and an F2 intercross sample (n = 56) derived from these strains were obtained by using the Affymetrix U74Av2 and 430A arrays; additional data with the U74Av2 array were available for the extended amygdala, dorsomedial striatum, and hippocampus. Low-level analysis was performed by using multiple methods to determine the likelihood that a transcript was truly differentially expressed. For the 430A array data, the F2 sample was used to determine which of the differentially expressed transcripts within the QTL intervals were cis-regulated and, thus, strong candidates for QTGs.

+ +

RESULTS:Within the 6 QTL intervals, 39 transcripts (430A array) were identified as being highly likely to be differentially expressed between the C57BL/6 and DBA/2 strains at a false discovery rate of 0.01 or better. Twenty-eight of these transcripts showed significant (logarithm of odds > or =3.6) to highly significant (logarithm of odds >7) cis-regulation. The process correctly detected Mpdz (chromosome 4) as a candidate QTG for acute withdrawal.

+ +

CONCLUSIONS:Although improvements are needed in the expression databases, the integration of QTL and gene expression analyses seems to have potential as a high-throughput strategy for moving from QTL to QTG.

diff --git a/general/datasets/Brf2_m_0805_r/notes.rtf b/general/datasets/Brf2_m_0805_r/notes.rtf new file mode 100644 index 0000000..7fafba3 --- /dev/null +++ b/general/datasets/Brf2_m_0805_r/notes.rtf @@ -0,0 +1,3 @@ +
+

This text file was originally generated by John Belknap, March 2004. Updated by RWW, October 31, 2004, EJC June 21, 2005.

+
diff --git a/general/datasets/Brf2_m_0805_r/platform.rtf b/general/datasets/Brf2_m_0805_r/platform.rtf new file mode 100644 index 0000000..f0ee528 --- /dev/null +++ b/general/datasets/Brf2_m_0805_r/platform.rtf @@ -0,0 +1,1154 @@ +

All 56 430A&B arrays used in this project were purchased at one time and had the same Affymetrix lot number. The table below lists the arrays by Case ID, Array ID, Side, Cage ID and Sex.

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Order

+
+

CaseID

+
+

ArrayID

+
+

Side

+
+

CageID

+
+

Sex

+
+

1

+
+

20

+
+

FL10

+
+

L

+
+

H1

+
+

F

+
+

2

+
+

2

+
+

FL11

+
+

L

+
+

H2

+
+

F

+
+

3

+
+

5

+
+

FL12

+
+

L

+
+

H3

+
+

F

+
+

4

+
+

63

+
+

FL13

+
+

L

+
+

H4

+
+

F

+
+

5

+
+

6

+
+

FL14

+
+

L

+
+

K2

+
+

F

+
+

6

+
+

10

+
+

FL15

+
+

L

+
+

Q2

+
+

F

+
+

7

+
+

52

+
+

FL2

+
+

L

+
+

E1

+
+

F

+
+

8

+
+

53

+
+

FL3

+
+

L

+
+

E2

+
+

F

+
+

9

+
+

42

+
+

FL4

+
+

L

+
+

E3

+
+

F

+
+

10

+
+

31

+
+

FL5

+
+

L

+
+

E4

+
+

F

+
+

11

+
+

14

+
+

FL6

+
+

L

+
+

F1

+
+

M

+
+

12

+
+

48

+
+

FL7

+
+

L

+
+

F2

+
+

F

+
+

13

+
+

60

+
+

FL8

+
+

L

+
+

F3

+
+

M

+
+

14

+
+

54

+
+

FL9

+
+

L

+
+

F4

+
+

F

+
+

15

+
+

35

+
+

FR10

+
+

R

+
+

K3

+
+

F

+
+

16

+
+

11

+
+

FR11

+
+

R

+
+

O1

+
+

F

+
+

17

+
+

21

+
+

FR12

+
+

R

+
+

O2

+
+

F

+
+

18

+
+

23

+
+

FR13

+
+

R

+
+

Q1

+
+

F

+
+

19

+
+

15

+
+

FR14

+
+

R

+
+

Q3

+
+

F

+
+

20

+
+

4

+
+

FR15

+
+

R

+
+

Q4

+
+

F

+
+

21

+
+

41

+
+

FR2

+
+

R

+
+

A2

+
+

F

+
+

22

+
+

44

+
+

FR3

+
+

R

+
+

A3

+
+

F

+
+

23

+
+

37

+
+

FR4

+
+

R

+
+

C1

+
+

F

+
+

24

+
+

8

+
+

FR5

+
+

R

+
+

C2

+
+

F

+
+

25

+
+

19

+
+

FR6

+
+

R

+
+

C3

+
+

F

+
+

26

+
+

40

+
+

FR7

+
+

R

+
+

C4

+
+

F

+
+

27

+
+

62

+
+

FR8

+
+

R

+
+

D2

+
+

M

+
+

28

+
+

39

+
+

FR9

+
+

R

+
+

D3

+
+

F

+
+

29

+
+

13

+
+

ML1

+
+

L

+
+

B1

+
+

M

+
+

30

+
+

22

+
+

ML10

+
+

L

+
+

L2

+
+

M

+
+

31

+
+

38

+
+

ML11

+
+

L

+
+

L4

+
+

M

+
+

32

+
+

43

+
+

ML12

+
+

L

+
+

M1

+
+

M

+
+

33

+
+

58

+
+

ML13

+
+

L

+
+

N2

+
+

M

+
+

34

+
+

7

+
+

ML14

+
+

L

+
+

R1

+
+

M

+
+

35

+
+

30

+
+

ML15

+
+

L

+
+

R3

+
+

M

+
+

36

+
+

46

+
+

ML3

+
+

L

+
+

G1

+
+

M

+
+

37

+
+

57

+
+

ML4

+
+

L

+
+

G2

+
+

M

+
+

38

+
+

51

+
+

ML5

+
+

L

+
+

I1

+
+

M

+
+

39

+
+

27

+
+

ML6

+
+

L

+
+

I2

+
+

M

+
+

40

+
+

50

+
+

ML7

+
+

L

+
+

J2

+
+

M

+
+

41

+
+

16

+
+

FL1

+
+

L

+
+

O2

+
+

M

+
+

42

+
+

3

+
+

ML9

+
+

L

+
+

L1

+
+

M

+
+

43

+
+

47

+
+

MR10

+
+

R

+
+

R2

+
+

M

+
+

44

+
+

56

+
+

MR11

+
+

R

+
+

S1

+
+

M

+
+

45

+
+

1

+
+

MR12

+
+

R

+
+

S2

+
+

M

+
+

46

+
+

55

+
+

MR13

+
+

R

+
+

T1

+
+

M

+
+

47

+
+

34

+
+

MR14

+
+

R

+
+

U1

+
+

M

+
+

48

+
+

25

+
+

MR15

+
+

R

+
+

U2

+
+

M

+
+

49

+
+

59

+
+

MR2

+
+

R

+
+

J1

+
+

M

+
+

50

+
+

32

+
+

MR3

+
+

R

+
+

M2

+
+

M

+
+

51

+
+

24

+
+

MR4

+
+

R

+
+

M3

+
+

M

+
+

52

+
+

12

+
+

MR5

+
+

R

+
+

M4

+
+

M

+
+

53

+
+

9

+
+

MR6

+
+

R

+
+

N1

+
+

M

+
+

54

+
+

36

+
+

MR7

+
+

R

+
+

N3

+
+

M

+
+

55

+
+

28

+
+

MR8

+
+

R

+
+

P1

+
+

M

+
+

56

+
+

33

+
+

MR9

+
+

R

+
+

P2

+
+

M

+
+
diff --git a/general/datasets/Brf2_m_0805_r/processing.rtf b/general/datasets/Brf2_m_0805_r/processing.rtf new file mode 100644 index 0000000..8a23d84 --- /dev/null +++ b/general/datasets/Brf2_m_0805_r/processing.rtf @@ -0,0 +1,26 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are the 75% quantiles from a set of 91 pixel values per cell. Probe values were processed as follows: + + +

Probe set data from the TXT file: These TXT files were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

+
+ +

About the marker set:

+ +
+

The 56 mice were each genotyped at 309 MIT microsatellite markers distributed across the genome, including the Y chromosome. The genotyping error check routine (Lincoln and Lander, 1992) implemented within R/qtl (Broman et al., 2003) showed no likely errors at p <.01 probability. Initial genotypes were generated at OHSU. Approximately 200 genotypes were generated at UTHSC by Jing Gu and Shuhua Qi.

+
+ +

About the chromosome and megabase position values:

+ +
The chromosomal locations of M430A and M430B probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium March 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). + +

 

+
diff --git a/general/datasets/Brf2_m_0805_r/summary.rtf b/general/datasets/Brf2_m_0805_r/summary.rtf new file mode 100644 index 0000000..6f477fe --- /dev/null +++ b/general/datasets/Brf2_m_0805_r/summary.rtf @@ -0,0 +1 @@ +

This August 2005 data freeze provides estimate of mRNA expression in adult brains of F2 intercross mice (C57BL/6J x DBA/2J F2) measured using Affymetrix M430A and M430B microarray pairs. Data were generated at The Oregon Health Sciences University (OHSU) in Portland, Oregon, by John Belknap and Robert Hitzemann. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA or PDNN transforms.

diff --git a/general/datasets/Brf2_m_0805_r/tissue.rtf b/general/datasets/Brf2_m_0805_r/tissue.rtf new file mode 100644 index 0000000..ef85488 --- /dev/null +++ b/general/datasets/Brf2_m_0805_r/tissue.rtf @@ -0,0 +1 @@ +

Brain samples were from 31 male and 25 females and between 28 right and 28 left hemispheres distributed with good balance across the two sexes. The tissue arrayed included the forebrain, midbrain, one olfactory bulb, the cerebellum; and the rostral part of the medulla. The medulla was trimmed transversely at the caudal aspect of the cerebellum. The sagittal cut was made from a dorsal to ventral direction. (Note that several of the other brain transcriptome databases do not include olfactory bulb or cerebellum.) Total RNA was isolated with TRIZOL Reagent (Life Technologies Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer’s protocol. The extracted RNA was then purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for purity; only samples with an A260/280 ratio greater than 1.8 were used. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. Samples containing at least 10 micrograms of total RNA were sent to the OHSU Gene Microarray Shared Resource facility for analysis. The procedures used at the facility precisely follow the manufacturer’s specifications. Details can be found at http://www.ohsu.edu/gmsr/amc. Following labeling, all samples were hybridized to the GeneChip Test3 array for quality control. If target performance did not meet recommended thresholds, the sample would have been discarded. All labeled samples passed the threshold and were hybridized to the 430A and 430B array pairs.

diff --git a/general/datasets/Bxd_bonepublish/specifics.rtf b/general/datasets/Bxd_bonepublish/specifics.rtf new file mode 100644 index 0000000..c23ed10 --- /dev/null +++ b/general/datasets/Bxd_bonepublish/specifics.rtf @@ -0,0 +1 @@ +BXD Bone Individual Data \ No newline at end of file diff --git a/general/datasets/Bxd_bonepublish/summary.rtf b/general/datasets/Bxd_bonepublish/summary.rtf new file mode 100644 index 0000000..153d98d --- /dev/null +++ b/general/datasets/Bxd_bonepublish/summary.rtf @@ -0,0 +1 @@ +

In working progress...

diff --git a/general/datasets/Bxd_gla_0911/experiment-design.rtf b/general/datasets/Bxd_gla_0911/experiment-design.rtf new file mode 100644 index 0000000..f01b888 --- /dev/null +++ b/general/datasets/Bxd_gla_0911/experiment-design.rtf @@ -0,0 +1,9 @@ +

TEXT FROM GEO 

+ +

Genome-wide assessment of gene expression changes was performed in DBA/2J mice. The optic nerve head and retina from 40 DBA/2J eyes at 10.5 months of age were separately profiled. These eyes were selected as they encompassed a range of glaucoma severity. Two control groups were also included; 10 eyes from 10.5 months old D2-Gpnmb+ mice (age and strain matched, no glaucoma control) and 10 eyes from 4.5 months old DBA/2J mice (young, pre-glaucoma).

+ +

In this study that was specifically designed to identify early stages of glaucoma in DBA/2J mice, we used genome-wide expression profiling and a series of computational methods. Our methods successfully subdivided eyes with no detectable glaucoma by conventional assays into molecularly defined stages of disease. These stages represent a temporally ordered sequence of glaucoma states. Using an array of tools, we then determined networks and biological processes that are altered at these early stages. Our strategy proved very sensitive, suggesting that similar approaches will be valuable for uncovering early processes in other complex, later-onset diseases. Early changes included upregulation of both the complement cascade and endothelin system, and so we tested the therapeutic value of separately inhibiting them. Mice with a mutation in the complement component 1a gene (C1qa) were robustly protected from glaucoma with the protection being among the greatest reported. Similarly, inhibition of the endothelin system was strongly protective. Since EDN2 is potently vasoconstrictive and was produced by microglial/macrophages, our data provide a novel link between these cell types and vascular dysfunction in glaucoma. Targeting early events such as the upregulation of the complement and endothelin pathways may provide effective new treatments for human glaucoma. (text above from GEO http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26299)

+ +

 

+ +

 

diff --git a/general/datasets/Bxd_gla_0911/summary.rtf b/general/datasets/Bxd_gla_0911/summary.rtf new file mode 100644 index 0000000..09c8a43 --- /dev/null +++ b/general/datasets/Bxd_gla_0911/summary.rtf @@ -0,0 +1,58 @@ +

This is an experimental glaucoma gene expression data set of retinal tissue entered into GeneNetwork by Dr. Eldon Geisert and Robert Williams in which BXD strains have been "highjacked" with experimental and control gene expression data generated by Drs Gareth Howell, Simon John, and colleagues at the Jackson Laboratory. These data were originally entered into GeneNetwork Sept 20, 2011.

+ +

Please see the original paper by Howell et al (2011): http://www.jci.org/articles/view/44646 and GEO data at NCBI.

+ +

Gareth R. Howell, Danilo G. Macalinao, Gregory L. Sousa, Michael Walden, Ileana Soto, Stephen C. Kneeland, Jessica M. Barbay, Benjamin L. King, Jeffrey K. Marchant, Matthew Hibbs, Beth Stevens, Ben A. Barres, Abbot F. Clark, Richard T. Libby, Simon S (2011) Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest. 121:1429–1444

+ +

Each strain corresponds to a particular retinal sample as shown below (note that we have not included ten "preglaucoma control" samples, see http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26299

+ +
    +
  1. BXD1 D2-Gpnmb+ control rep1 (retina)
  2. +
  3. BXD2 D2-Gpnmb+ control rep2 (retina)
  4. +
  5. BXD5 D2-Gpnmb+ control rep3 (retina)
  6. +
  7. BXD6 D2-Gpnmb+ control rep4 (retina)
  8. +
  9. BXD8 D2-Gpnmb+ control rep5 (retina)
  10. +
  11. BXD9 D2-Gpnmb+ control rep6 (retina)
  12. +
  13. BXD11 D2-Gpnmb+ control rep7 (retina)
  14. +
  15. BXD12 D2-Gpnmb+ control rep8 (retina)
  16. +
  17. BXD13 D2-Gpnmb+ control rep9 (retina)
  18. +
  19. BXD14 D2-Gpnmb+ control rep10 (retina)
  20. +
  21. BXD15 No or early 1 rep1 (retina)
  22. +
  23. BXD16 No or early 1 rep2 (retina)
  24. +
  25. BXD18 No or early 1 rep3 (retina)
  26. +
  27. BXD19 No or early 1 rep4 (retina)
  28. +
  29. BXD20 No or early 1 rep5 (retina)
  30. +
  31. BXD22 No or early 1 rep6 (retina)
  32. +
  33. BXD23 No or early 1 rep7 (retina)
  34. +
  35. BXD25 No or early 1 rep8 (retina)
  36. +
  37. BXD27 No or early 1 rep9 (retina)
  38. +
  39. BXD28 No or early 1 rep10 (retina)
  40. +
  41. BXD29 No or early 2 rep1 (retina)
  42. +
  43. BXD30 No or early 2 rep2 (retina)
  44. +
  45. BXD31 No or early 2 rep3 (retina)
  46. +
  47. BXD32 No or early 2 rep4 (retina)
  48. +
  49. BXD33 No or early 2 rep5 (retina)
  50. +
  51. BXD34 No or early 2 rep6 (retina)
  52. +
  53. BXD35 No or early 2 rep7 (retina)
  54. +
  55. BXD36 No or early 2 rep8 (retina)
  56. +
  57. BXD37 No or early 2 rep9 (retina)
  58. +
  59. BXD38 No or early 2 rep10 (retina)
  60. +
  61. BXD39 Moderate rep1 (retina)
  62. +
  63. BXD40 Moderate rep2 (retina)
  64. +
  65. BXD41 Moderate rep3 (retina)
  66. +
  67. BXD42 Moderate rep4 (retina)
  68. +
  69. BXD43 Moderate rep7 (retina)
  70. +
  71. BXD44 Moderate rep8 (retina)
  72. +
  73. BXD45 Moderate rep9 (retina)
  74. +
  75. BXD48 Moderate rep10 (retina)
  76. +
  77. BXD49 Severe rep1 (retina)
  78. +
  79. BXD50 Severe rep2 (retina)
  80. +
  81. BXD51 Severe rep3 (retina)
  82. +
  83. BXD52 Severe rep4 (retina)
  84. +
  85. BXD53 Severe rep5 (retina)
  86. +
  87. BXD54 Severe rep6 (retina)
  88. +
  89. BXD55 Severe rep7 (retina)
  90. +
  91. BXD56 Severe rep8 (retina)
  92. +
  93. BXD59 Severe rep9 (retina)
  94. +
  95. BXD60 Severe rep10 (retina)
  96. +
diff --git a/general/datasets/Bxd_harvestedpublish/specifics.rtf b/general/datasets/Bxd_harvestedpublish/specifics.rtf new file mode 100644 index 0000000..7b317eb --- /dev/null +++ b/general/datasets/Bxd_harvestedpublish/specifics.rtf @@ -0,0 +1 @@ +BXD-NIA-Longevity Phenotypes \ No newline at end of file diff --git a/general/datasets/Bxd_harvestedpublish/summary.rtf b/general/datasets/Bxd_harvestedpublish/summary.rtf new file mode 100644 index 0000000..88d835c --- /dev/null +++ b/general/datasets/Bxd_harvestedpublish/summary.rtf @@ -0,0 +1 @@ +

BXD-NIA-Longevity Phenotypes

diff --git a/general/datasets/Bxdgeno/acknowledgment.rtf b/general/datasets/Bxdgeno/acknowledgment.rtf new file mode 100644 index 0000000..d291eb6 --- /dev/null +++ b/general/datasets/Bxdgeno/acknowledgment.rtf @@ -0,0 +1,11 @@ +

The majority of SNP genotypes were generated at GeneSeek using the GigaMUGA array, at UNC using the Affymetrix mouse genotyping array, and at Illumina with support from the Wellcome Trust. The selection of markers to included in the final file was carried out by Robert W. Williams and Danny Arends in December 2017.

+ +

Reference:

+ +

Dietrich WF, Katz H, Lincoln SE (1992) A genetic map of the mouse suitable for typing in intraspecific crosses. Genetics 131:423-447.

+ +

Taylor BA, Wnek C, Kotlus BS, Roemer N, MacTaggart T, Phillips SJ (1999) Genotyping new BXD recombinant inbred mouse strains and comparison of BXD and consensus maps. Mamm Genome 10:335-348.

+ +

Williams RW, Gu J, Qi S, Lu L (2001) The genetic structure of recombinant inbred mice: High-resolution consensus maps for complex trait analysis. Genome Biology 2:RESEARCH0046

+ +

Wiltshire T, Pletcher MT, Batalov S, Barnes SW, Tarantino LM, Cooke MP, Wu H, Smylie K, Santrosyan A, Copeland NG, Jenkins NA, Kalush F, Mural RJ, Glynne RJ, Kay SA, Adams MD, Fletcher CF (2003) Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proc Natl Acad Sci USA 100:3380-3385.

diff --git a/general/datasets/Bxdgeno/summary.rtf b/general/datasets/Bxdgeno/summary.rtf new file mode 100644 index 0000000..cdb56ad --- /dev/null +++ b/general/datasets/Bxdgeno/summary.rtf @@ -0,0 +1,59 @@ +

(Updated July 1, 2022 by D. Ashbrook)

+ +

All variants are publicly available for anyone to get whatever type and frequency of variant that they want to. The variant vcf is under analyses files in project PRJEB45429 https://www.ebi.ac.uk/ena/browser/view/PRJEB45429?show=analyses

+ +

(Updated March 15, 2018 by RW Williams)

+ +

BXD Genotypes file status (January 2017): From September 2016 to January 2017, Robert Williams, Jesse Ingels, Lu Lu, and Danny Arends released a new genotype file for the original BXD strains (BXD1 through BXD102) and for all of the new strains (BXD104 to BXD220). Version 1 of this genotype file (used from jan 2017 to March 13, 2018) contained data for 7324 markers and 198 strains. Version 2 of March 14, 2018 fixed some errors of marker location detected by Karl Broman (five markers were out of order in the latest mouse genome assembly). We deleted three markers and retained a final set of 7321 markers, now all in correct order based on the SNP position using the mm10 assembly.

+ +

Of the 198 BXD strains, 191 are independent, whereas 7 are substrains (e.g., BXD48 and BXD48a). The file provides approximate locations of 10300 recombinations, an average of 52 per strain. Genotypes were generated using Affymetrix, MUGA, MegaMUGA, and GigaMUGA Illumina platforms. Microsatellites and eQTL genotypes were generated by the Williams/Lu laboratory. Unknown genotypes were imputed as B or D, or were called as H (heterozygous) if the genotype was uncertain. Genotypes were manually curated by RW Williams. Genotypes were smoothed to remove unlikely recombination events. Almost all recombinations are supported by multiple markers, although only one or two representative markers may be provided in this file. The original parent file (BXD_El_Grande_Master_Used_to_Proof_Final_Genotypes_2016.xlxs) contains data for approximately 37000 markers.  Genotypes for Chr Y and  Chr M are provisional and will be verified in 2017. As of 2016, many strains with higher numbers (BXD100 and above) are not fully inbred.

+ +

 

+ +

A link to the genotype file is provide here

+ + + +

Genotypes were generated at GeneSeek (Neogen Inc) with financial support from the University of Tennessee Center for Integrative and Translational Genomics. We thank  Drs. Fernando Pardo-Manuel de Villena (University of North Carolina) and Gary Churchill (The Jackson Laboratory) for developing the GigaMUGA arreay.

+ +

The new genotypes are now available in GeneNetwork as the 2017 Genotype file. All SNPs were mapped to the newer Dec 2011, mm10, GRCm38 assembly. 

+ +

As of Jan 2017 GeneNetwork uses mm10 coordinates for mapping functions.  Older mm9 versions of GeneNetwork are available on the GN TimeMachine (see upper right side of Search page).

+ +

BXD Genotype: The state of a gene or DNA sequence, usually used to describe a contrast between two or more states, such as that between the normal state (wildtype) and a mutant state (mutation) or between the alleles inherited from two parents. All species that are included in GeneNetwork are diploid (derived from two parents) and have two copies of most genes (genes located on the X and Y chromosomes are exceptions). As a result the genotype of a particular diploid individual is actually a pair of genotypes, one from each parents. For example, the offspring of a mating between strain A and strain B will have one copy of the A genotype and one copy of the B genotype and therefore have an A/B genotype. In contrast, offspring of a mating between a female strain A and a male strain A will inherit only A genotypes and have an A/A genotype.

+ +

Genotypes can be measured or inferred in many different ways, even by visual inspection of animals (e.g. as Gregor Mendel did long before DNA was discovered). But now the typical method is to directly test DNA that has a well define chromosomal location that has been obtained from one or usually many cases using molecular tests that often rely on polymerase chain reaction steps and sequence analysis. Each case is genotyped at many chromosomal locations (loci, markers, or genes). The entire collection of genotypes (as many a 1 million for a single case) is also sometimes referred to as the cases genotype, but the word "genometype" might be more appropriate to highlight the fact that we are now dealing with a set of genotypes spanning the entire genome (all chromosomes) of the case.

+ +

For gene mapping purposes, genotypes are often translated from letter codes (A/A, A/B, and B/B) to simple numerical codes that are more suitable for computation. A/A might be represented by the value -1, A/B by the value 0, and B/B by the value +1. This recoding makes it easy to determine if there is a statistically significant correlation between genotypes across of a set of cases (for example, an F2 population or a Genetic Reference Panel) and a variable phenotype measured in the same population. A sufficiently high correlation between genotypes and phenotypes is referred to as a quantitative trait locus (QTL). If the correlation is almost perfect (r > 0.9) then correlation is usually referred to as a Mendelian locus. Despite the fact that we use the term "correlation" in the preceding sentences, the genotype is actually the cause of the phenotype. More precisely, variation in the genotypes of individuals in the sample population cause the variation in the phenotype. The statistical confidence of this assertion of causality is often estimated using LOD and LRS scores and permutation methods. If the LOD score is above 10, then we can be extremely confident that we have located a genetic cause of variation in the phenotype. While the location is defined usually with a precision ranging from 10 million to 100 thousand basepairs (the locus), the individual sequence variant that is responsible may be quite difficult to extract. Think of this in terms of police work: we may know the neighborhood where the suspect lives, we may have clues as to identity and habits, but we still may have a large list of suspects.

+ +

The BXD genotype file was initially upgraded in 2010-2011 using the new high density Affymetrix array (580,000 high quality SNPs) developed in the laboratories of Drs. Fernando Pardo-Manuel de Villena (University of North Carolina) and Gary Churchill (The Jackson Laboratory, see Yang H, Ding Y, Hutchins LN, Szatkiewicz J, Bell TA, Paigen BJ, Graber JH, Pardo-Manuel de Villena, F, Churchill GA (2009) A customized and verstatile high density genotyping array for the mouse. Nat Methods 6:663-666)

+ +

The BXD genotype file used from June 2005 through December 2016 exploits a set of approximatey 3796 markers typed across 88 extant and extinct BXD strains (BXD1 through BXD102). The mean interval between informative markers is about 0.7 Mb. This genotype file includes all markers, both SNPs and microsatellites, with unique strain distribution patterns (SDPs), as well as pairs of markers for those SDPs represented by two or more markers. In those situations where three or more markers had the same SDP, we retained only the most proximal and distal marker in the genotype file. This particular file has also been smoothed to eliminate genotypes that are likely to be erroneous. We have also conservatively imputed a small number of missing genotypes (usually over very short intervals). Smoothing genotypes is this way reduces the total number of SDPs and also lowers the rate of false discovery. However, this procedure also may eliminate some genuine SDPs.

+ +

The new smoothed BXD genotype data file (2017) can be downloaded from
+GeneNetwork at the URL http://www.genenetwork.org/genotypes/BXD.geno.

+ +

Please Note: For a limited number of markers and strains, the genotypes of BXDs have been called heterozygous. This is usually done over comparatively short intervals in some of the newer strains that may not have been fully inbred when they were initially genotyped. Use of the genotype file above in external software packages such as R/qtl, requires careful treatment of this issue to prevent bias in empirical significance thresholds. It is recommended to treat these rare heterozygous loci as missing data and ensure that only the additive effects of B vs. D alleles are estimated by these packages. (note by Elissa Chesler, Dec 2010).

+ +

Source of Genotypes:

+ +

In collaboration with members of the CTC (Richard Mott, Jonathan Flint, and colleagues), we have helped genotype a total of 480 strains using a panel of 13,377 SNPs. These SNPs were combined with our previious microsatellite genotypes to produce the older "classic" consensus maps for the expanded set of BXD using the older mouse assemblies (Mouse Build 36 - UCSC mm8 and then mm9).  (Files were updated from mm6 to mm8 in January 2007, and from mm9 to mm10 in January 2017).

+ +

A total of 198 strains have be genotyped as of Jan 2017 using the full set of SNPs, and about 7324 of these are informative. Informative in this sense simply means that the C57BL/6J and DBA/2J parental strains have different alleles. To reduce false positive errors when mapping using this ultra dense map, we have eliminated most single genotypes that generate double-recombinant haplotypes that are most commonly produced by typing errors ("smoothed" genotypes). For this reason, the genotypes used in the GeneNetwork differ from those downloaded directly from Richard Mott's web site at the Wellcome Trust, Oxford or from the Jackson Laboratory.

+ +

We have genotyped all available BXD strains from The Jackson Laboratory. BXD1 through BXD32 were produced by Benjamin Taylor starting in the late 1970s. BXD33 through BXD42 were produced by Taylor in the 1990s (Taylor et al., 1999). All BXD strains with numbers higher than BXD42 (BXD43 through BXD100) were generated by Lu Lu and Robert Williams at UTHSC, and by Jeremy Peirce and Lee Silver at Princeton University. We thank Guomin Zhou for generating the advanced intercross stock used to produce most of these advanced RI strains both at UTHSC and Princeton. There are approximately 48 of these advanced BXD strains, each of which archives approximately twice the recombinations present in a typical F2-derived recombinant inbred strain (Peirce et al. 2003).

+ +

Mapping Algorithm:

+ +

Due to the very high density of markers, the mapping algorithm used to map BXD data sets has been modified and is a mixture of simple marker regression, linear interpolation, and standard Haley-Knott interval mapping. When two adjacent markers have identical SDPs, they will have identical linkage statistics, as will the entire interval between these two markers (assuming complete and error-free haplotype data for all strains). On a physical map the LRS and the additive effect values will therefore be constant over this physical interval. Between neighboring markers that have different SDPs and that are separated by 1 cM or more, we use a conventional interval mapping method (Haley-Knott) combined with a Haldane estimate of genetic distance. When the interval is less than 1 cM, we simply interpolate linearly between markers based on a physical scale between those markers. The result of this mixture mapping algorithm is a linkage map of a trait that has an unusal profile that is particular striking on a physical (Mb) scale, with many plateaus, abrupt linear transitions between plateaus, and a few regions with the standard graceful curves typical of interval maps.

+ +

Archival Genotypes:

+ +

Archival BXD Genotype file: Prior to July 2005, the marker genotypes used to map all BXD data sets consisted of a set of 779 markers described by Williams and colleagues (2001) that also included a small number of additional SNPs from Tim Wiltshire and Mathew Pletcher (GNF, La Jolla), new microsatellite markers generated by Grant Morahan and Jing Gu (Msw type markers), and a few CTC markers by Jing Gu. This old marker data set was made obsolete by the ultra high density Illumina SNP genotype data generated Spring, 2005.

+ +

Download Genotypes:

+ +

The entire BXD genotype data set used for mapping traits can be downloaded at BXD.geno.

diff --git a/general/datasets/Bxdpublish/summary.rtf b/general/datasets/Bxdpublish/summary.rtf new file mode 100644 index 0000000..5c22bc2 --- /dev/null +++ b/general/datasets/Bxdpublish/summary.rtf @@ -0,0 +1,40 @@ +

Question: I have generated some phenotype data that I would like to put into GeneNetwork. How should I name my traits?
+
+Answer: Phenotype trait names in GeneNetwork should have this general form when possible:

+ +
    +
  1. Your description should start with very short list of "approved" general category and ontology terms. These terms are used to subdivide the entire collection of phenotypes by system, organ, or level of analysis. Some examples may help: "Central nervous system", "Immune system", "Metabolism", "Development", or "Urogenital system". Capitalize this list as you would a standard English sentence. Separate terms by commas and then end the terms with a colon. For example, "Central nervous system, pharmacology, endocrinology:" is a valid set of three terms. These terms do not really describe your trait, but are used by you and other users to figure out how many traits there are in specific categories.
    +
    + Before making up your own terms, please review the current terms in GeneNetwork and find some terms/ontology categories that look good to you. If you have questions contact one of us on the GeneNetwork development team.
  2. +
  3. After the colon start with your description of the phenotype you have generated. For example: "Ethanol response..." or "Anxiety assay...", "Brain weight...". The first letter should almost always be capitalized.
  4. +
  5. Do not start with a generic uninformative word such as "Mean", "Maximum", "Mechanical", "Count", "Number", "Difference", "Baseline", "Induction", "Decrease", "New", "Adjusted", "Distance", "Right", "Left", "Bilateral", "Time", "Total", "Percentage", "Percent". The reason is that the traits should be alphabetized and categorized in a conceptually useful way; not by something "dumb" like the "total" or "percent".
  6. +
  7. Do not start with a specific instrumental assay such as "Morris water maze" or "Dowel test..." or "Porsolt test behavior". Many of these tests will be unknown to other users. Try to use a term that reflects the intent of the assay (Motor coordination test, Learning and memory assay, Allergic airway response). This may be difficult, particularly for tests such as the Porsolt swim test and the Morris water maze that measure aspects of many different traits (anxiety, activity level, spatial navigation, visual acuity etc). But in the interest of clarity of intent rather than precision of measurement, please follow this suggestion. The actual assay instrument can be listed after the primary and secondary trait descriptions.
  8. +
  9. Many traits can be difficult to categorize in a consistent way. For example a trait such as "ventral midbrain copper level in males" could be labeled "copper level in the ventral midbrain." There is no right or wrong way to do this, but the convention should be to choose the order that you think will be most useful to other users in terms of comprehension and consistency with other existing phenotypes. Review related phenotypes before you start naming your own. You will find good and bad examples.
  10. +
  11. Dose and route of drug delivery. If the phenotype is a pharmacological phenotype, whenever practical enter the doses and routes of injection in parentheses after the name of the general trait. For example, "Cocaine response (40 mg/kg ip)". We would prefer to use "ip" and "iv" rather than i.p. and i.v., but this is not a strong preference. If a protocol requires multiple treatments, please include them if possible. For example, "Cocaine response (3 x 3.2 mg/kg ip, Days 2, 3, 4),...").
  12. +
  13. Series of more precise definitions of the phenotype and the subject(s) will often follow with commas used as separators. If possible make this understandable to almost any user, even at the risk of being wordy. +

    For example, "Cocaine response (3 x 3.2 mg/kg ip, Days 2, 3, and 4), conditioned place preference (CPP), change in time in cocaine-paired compartment relative to baseline (Day 5 minus Day 1) for 50 to 90-day-old males and females [sec]"

    +
  14. +
  15. Sex. If the data are for males please write out "in males" or "of male" or "for males". Do not just add a comma such as " , males" or "(M)". This should usually go at the end of the description.
  16. +
  17. Age and condition of subjects can be added if you think it is essential or helpful. However, do not bother with a generic addition "adult" since that is what most users will reasonably assume. If you would like to add an age range then use this format "in 100 to 200-day-old males and females" or "of 3 to 4-month-old males".
  18. +
  19. Mandatory units of measurement between square brackets [min] or [sec] or [n bream breaks/10 min test]. If you are using an ordinal scale, then describe the scale within the brackets. If the units are simply a ratio or percentage then use [ratio] or [%].
  20. +
+ +

Other advice on trait descriptions:

+ +
    +
  1. Do Not Capitalize Each Word in a Description. (e.g, Ethanol Response, Distance traveled after saline - Distance traveled after ethanol for males and females [cm in a 0-5 min test period] )
  2. +
  3. Do not use "-" as a minus sign. The dash is too confusing and may sometimes be used as a hyphen. Spell out "minus"
  4. +
  5. No not use ALL CAP in a trait description (e.g., TOTAL)
  6. +
  7. Do use commas when appropriate. For example, Morphine response severity of abdominal constriction for males needs a comma between "response" and "severity"
  8. +
  9. Do not use extraneous words such as "time SPENT on rotarod". "time on rotarod" is good enough.
  10. +
  11. Do not start with text or abbreviations that will not be understandable to all users, such as "RSS female and male..."
  12. +
  13. Please us a space between a number and the units: Prepulse inhibition at 70 dB for females (not 70db). Please use the correct form of the abbreviation.
  14. +
  15. Use American spelling. [RWW, September 10, 2009]
  16. +
+ +

Examples of accepted phenotype descriptions: (by Amelie Baud. Wellcome Trust Centre for Human Genetics, Oxford, UK.)

+ +
    +
  1. Central nervous system, behavior: Anxiety assay, locomotor activity in novel cage between minutes 25 and 30 in novel cage, normalized by Box-Cox transformation [cm]
  2. +
  3. Metabolism: Glycemia (intraperitoneal glucose tolerance test), area under the curve between minutes 0 and 120 after injection, normalized by Box-Cox transformation [mM.min-1]
  4. +
diff --git a/general/datasets/CANDLE_Meth27_0313/platform.rtf b/general/datasets/CANDLE_Meth27_0313/platform.rtf deleted file mode 100644 index 760018d..0000000 --- a/general/datasets/CANDLE_Meth27_0313/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

Illumina Infinium HumanMethylation27 BeadChip

diff --git a/general/datasets/CANDLE_Meth27_0313/processing.rtf b/general/datasets/CANDLE_Meth27_0313/processing.rtf deleted file mode 100644 index 8cc5d58..0000000 --- a/general/datasets/CANDLE_Meth27_0313/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/CANDLE_Meth_0313/platform.rtf b/general/datasets/CANDLE_Meth_0313/platform.rtf deleted file mode 100644 index 760018d..0000000 --- a/general/datasets/CANDLE_Meth_0313/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

Illumina Infinium HumanMethylation27 BeadChip

diff --git a/general/datasets/CANDLE_Meth_0313/processing.rtf b/general/datasets/CANDLE_Meth_0313/processing.rtf deleted file mode 100644 index 8cc5d58..0000000 --- a/general/datasets/CANDLE_Meth_0313/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/CCGeno/cases.rtf b/general/datasets/CCGeno/cases.rtf deleted file mode 100644 index 6159322..0000000 --- a/general/datasets/CCGeno/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

Mice were bred by Dr. Klaus Schughart at the HZI, Braunschweig, Germany.

diff --git a/general/datasets/CCGeno/platform.rtf b/general/datasets/CCGeno/platform.rtf deleted file mode 100644 index 0fa1383..0000000 --- a/general/datasets/CCGeno/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

MegaMUGA

diff --git a/general/datasets/CCGeno/specifics.rtf b/general/datasets/CCGeno/specifics.rtf deleted file mode 100644 index 30efa6a..0000000 --- a/general/datasets/CCGeno/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Genotypes \ No newline at end of file diff --git a/general/datasets/CCGeno/summary.rtf b/general/datasets/CCGeno/summary.rtf deleted file mode 100644 index 2533382..0000000 --- a/general/datasets/CCGeno/summary.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

Genotypes of 32 cc strains.

- -

Downloaded from http://csbio.unc.edu/CCstatus/CCGenomes/ and processed by Arthur Centeno and Zachary Sloan at the University of Tennessee.

- -

Team of Investigators:

- -

Lasse Sinkkkonen, Manuel Buttini, Yujuan Gui, and Melanie Thomas at the University of Luxembourg

- -

Data entered into GeneNetwork December 2019 by Arthur Centeno, Robert W. Williams, Yujuan Gui

diff --git a/general/datasets/CCGeno/tissue.rtf b/general/datasets/CCGeno/tissue.rtf deleted file mode 100644 index b4ef238..0000000 --- a/general/datasets/CCGeno/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Ventral midbrain

diff --git a/general/datasets/CCPublish/acknowledgment.rtf b/general/datasets/CCPublish/acknowledgment.rtf deleted file mode 100644 index c6129ca..0000000 --- a/general/datasets/CCPublish/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

LS and MB would like to thank the Luxembourg National Research Fund (FNR) for the support 663 (FNR CORE C15/BM/10406131 grant).

diff --git a/general/datasets/CCPublish/cases.rtf b/general/datasets/CCPublish/cases.rtf deleted file mode 100644 index 4a36b15..0000000 --- a/general/datasets/CCPublish/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

CC mice were bred by Dr. Klaus Schughart at the HZI, Braunschweig, Germany.

- -

C57BL/6J, A/J, and DBA/2J were bred by University of Luxembourg

diff --git a/general/datasets/CCPublish/experiment-design.rtf b/general/datasets/CCPublish/experiment-design.rtf deleted file mode 100644 index e0fbda8..0000000 --- a/general/datasets/CCPublish/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

Gas chromatography-mass spectrometry (GC-MS), immunofluorescent staining, RT-PCR

diff --git a/general/datasets/CCPublish/specifics.rtf b/general/datasets/CCPublish/specifics.rtf deleted file mode 100644 index fc3ed76..0000000 --- a/general/datasets/CCPublish/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -CC Phenotypes \ No newline at end of file diff --git a/general/datasets/CCPublish/summary.rtf b/general/datasets/CCPublish/summary.rtf deleted file mode 100644 index d4904aa..0000000 --- a/general/datasets/CCPublish/summary.rtf +++ /dev/null @@ -1,11 +0,0 @@ -

Dopamine concentration measurements [pmol/mg]: Dorsal striatums of 32 CC strains. Each strain has around 5 male and 5 female animals, 3-month old; Dorsal striatums

- -

Neuropathology: The dorsal striatum was sectioned and stained with TH or DAT. Two metrics were measured: mean grey value [mean grey value/image] and % area occupied [% area occupied/image]. Measurements were done on dorsal striatums of C57BL/6J, A/J and DBA/2J 3, 9, 15-month-old animals.

- -

RT-PCR: The total RNA was extracted from ventral midbrains and quantified by RT-PCR with markers Th, Dat, Vmat, Nr4a2, Sox6 and Otx2 [-delta Ct]. Measurements were done on dorsal striatums of C57BL/6J, A/J and DBA/2J 3, 9, 15-month-old animals.

- -

Team of Investigators:

- -

Lasse Sinkkkonen, Manuel Buttini, Yujuan Gui, and Melanie Thomas at the University of Luxembourg

- -

Data entered into GeneNetwork December 2019 by Arthur Centeno, Robert W. Williams, Yujuan Gui.

diff --git a/general/datasets/CCPublish/tissue.rtf b/general/datasets/CCPublish/tissue.rtf deleted file mode 100644 index 9869ae6..0000000 --- a/general/datasets/CCPublish/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Dorsal Striatum, ventral midbrain

diff --git a/general/datasets/CMMTUBCBXDCerILM0513/summary.rtf b/general/datasets/CMMTUBCBXDCerILM0513/summary.rtf deleted file mode 100644 index 751de1d..0000000 --- a/general/datasets/CMMTUBCBXDCerILM0513/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This dataset is private. Contact information above is available if you have questions regarding the status of data

diff --git a/general/datasets/CMMTUBCBXDG12CerILM0513/summary.rtf b/general/datasets/CMMTUBCBXDG12CerILM0513/summary.rtf deleted file mode 100644 index 751de1d..0000000 --- a/general/datasets/CMMTUBCBXDG12CerILM0513/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This dataset is private. Contact information above is available if you have questions regarding the status of data

diff --git a/general/datasets/CMMTUBCBXDG15CerILM0513/summary.rtf b/general/datasets/CMMTUBCBXDG15CerILM0513/summary.rtf deleted file mode 100644 index 751de1d..0000000 --- a/general/datasets/CMMTUBCBXDG15CerILM0513/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This dataset is private. Contact information above is available if you have questions regarding the status of data

diff --git a/general/datasets/CMMTUBCBXDG18CerILM0513/summary.rtf b/general/datasets/CMMTUBCBXDG18CerILM0513/summary.rtf deleted file mode 100644 index 751de1d..0000000 --- a/general/datasets/CMMTUBCBXDG18CerILM0513/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This dataset is private. Contact information above is available if you have questions regarding the status of data

diff --git a/general/datasets/CMMTUBCBXDP03CerILM0513/summary.rtf b/general/datasets/CMMTUBCBXDP03CerILM0513/summary.rtf deleted file mode 100644 index 751de1d..0000000 --- a/general/datasets/CMMTUBCBXDP03CerILM0513/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This dataset is private. Contact information above is available if you have questions regarding the status of data

diff --git a/general/datasets/CMMTUBCBXDP06CerILM0513/summary.rtf b/general/datasets/CMMTUBCBXDP06CerILM0513/summary.rtf deleted file mode 100644 index 751de1d..0000000 --- a/general/datasets/CMMTUBCBXDP06CerILM0513/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This dataset is private. Contact information above is available if you have questions regarding the status of data

diff --git a/general/datasets/CMMTUBCBXDP09CerILM0513/summary.rtf b/general/datasets/CMMTUBCBXDP09CerILM0513/summary.rtf deleted file mode 100644 index 751de1d..0000000 --- a/general/datasets/CMMTUBCBXDP09CerILM0513/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This dataset is private. Contact information above is available if you have questions regarding the status of data

diff --git a/general/datasets/CMS_Hipp1115/cases.rtf b/general/datasets/CMS_Hipp1115/cases.rtf deleted file mode 100644 index c201f08..0000000 --- a/general/datasets/CMS_Hipp1115/cases.rtf +++ /dev/null @@ -1,992 +0,0 @@ -

The original data set included four individuals of each strain under baseline (B) conditions and eight individuals from each strain for each of the treatment groups, chronic mild stress (C), acute restraint (R), and chronic mild stress followed by acute retraint (CR). However, some samples have been removed due to technical problems with tissue collection or microarray performance.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
MTA_IDMTA prefixGN_IDFM_IDMouse_IDCaseIdStrainStrain_CodeTreatment codeNanoDrop, ng/ulNanoDrop, 260/280NanoDrop, 260/230Agilent, ng/µlRINNotes
1BCJ 1.CMS_D-B-215-1CMS_000215215020615.01DBA/2JDB163.611.92.311308.6 
2BCJ 2.CMS_D-C-86-1CMS_00008686012115.23DBA/2JDC98.511.792.43298.8 
3BCJ 3.CMS_D-CR-94-1CMS_00009494012115.16DBA/2JDCR162.781.872.381669.2 
4BCJ 4.CMS_D-R-133-1CMS_000133133012115.14DBA/2JDR88.951.822.45908.2 
5BCJ 5.CMS_B-B-208-1CMS_000208208012215.04C57BL/6JBB129.241.862.412238.1 
6BCJ 6.CMS_B-C-101-1CMS_000101101012115.25C57BL/6JBC72.291.862.261359.2 
7BCJ 7.CMS_B-CR-109-1CMS_000109109012115.21C57BL/6JBCR158.561.72.463058.8Microarray outlier; sample removed.
8BCJ 8.CMS_B-R-143-1CMS_000143143012215.08C57BL/6JBR161.571.862.382179.3 
9BCJ 9.CMS_N-B-210-1CMS_000210210012115.04C57BL/6NJNB132.391.892.31928.5 
10BCJ 10.CMS_N-C-117-1CMS_000117117012115.30C57BL/6NJNC151.431.912.381878.8 
11BCJ 11.CMS_N-CR-126-1CMS_000126126012115.33C57BL/6NJNCR137.871.882.29769 
12BCJ 12.CMS_N-R-152-1CMS_000152152012215.29C57BL/6NJNR197.951.882.351509.1 
13BCJ 13.CMS_D-B-216-1CMS_000216216020615.02DBA/2JDB98.641.912.03608.6 
15BCJ 15.CMS_D-CR-93-1CMS_00009393012115.11DBA/2JDCR71.361.832.251098.5 
16BCJ 16.CMS_D-R-134-1CMS_000134134012115.17DBA/2JDR73.491.852.431498.2 
17BCJ 17.CMS_B-B-205-1CMS_000205205012015.02C57BL/6JBB174.782.022.212668.9 
18BCJ 18.CMS_B-C-104-1CMS_000104104012215.30C57BL/6JBC84.72.642.011689.2 
19BCJ 19.CMS_B-CR-110-1CMS_000110110012115.26C57BL/6JBCR136.71.962.161789.5 
20BCJ 20.CMS_B-R-141-1CMS_000141141012115.22C57BL/6JBR86.0420.22.532088.9 
21BCJ 21.CMS_N-B-209-1CMS_000209209012015.04C57BL/6NJNB98.31.992.351698.8 
22BCJ 22.CMS_N-C-119-1CMS_000119119012215.18C57BL/6NJNC94.631.962.361798.5 
24BCJ 24.CMS_N-R-150-1CMS_000150150012115.29C57BL/6NJNR407.341.982.244257.5Microarray outlier; sample removed.
25BCJ 25.CMS_D-B-217-1CMS_000217217020615.03DBA/2JDB84.611.822.181777.9 
26BCJ 26.CMS_D-C-85-1CMS_00008585012115.20DBA/2JDC172.861.982.272888.9 
27BCJ 27.CMS_D-CR-95-1CMS_00009595012215.16DBA/2JDCR109.81.982.471578.9 
28BCJ 28.CMS_D-R-132-1CMS_000132132012015.29DBA/2JDR140.821.912.473189 
29BCJ 29.CMS_B-B-207-1CMS_000207207012215.02C57BL/6JBB96.251.892.671768.5 
30BCJ 30.CMS_B-C-102-1CMS_000102102012115.28C57BL/6JBC129.691.892.321058.7 
31BCJ 31.CMS_B-CR-111-1CMS_000111111012215.26C57BL/6JBCR165.671.842.311769.5 
32BCJ 32.CMS_B-R-142-1CMS_000142142012115.24C57BL/6JBR116.931.842.22969.4 
33BCJ 33.CMS_N-B-211-1CMS_000211211012315.02C57BL/6NJNB1062.092.291567.4 
34BCJ 34.CMS_N-C-118-1CMS_000118118012115.32C57BL/6NJNC219.21.912.341979.2 
35BCJ 35.CMS_N-CR-127-1CMS_000127127012215.33C57BL/6NJNCR8922.561579.4 
36BCJ 36.CMS_N-R-149-1CMS_000149149012115.27C57BL/6NJNR72.911.842.141078.6 
37BCJ 37.CMS_D-B-218-1CMS_000218218020615.04DBA/2JDB154.341.991.991199.3 
38BCJ 38.CMS_D-C-87-1CMS_00008787012215.13DBA/2JDC105.31.982.211097.4 
39BCJ 39.CMS_D-CR-97-1CMS_00009797012315.05DBA/2JDCR55.851.892.41858.3 
40BCJ 40.CMS_D-R-137-1CMS_000137137012315.06DBA/2JDR128.972.012.241598.1Microarray outlier; sample removed.
41BCJ 41.CMS_B-B-206-1CMS_000206206012115.02C57BL/6JBB159.892.032.12737.8 
42BCJ 42.CMS_B-C-103-1CMS_000103103012215.15C57BL/6JBC111.791.872.451608.9 
43BCJ 43.CMS_B-CR-112-1CMS_000112112012215.31C57BL/6JBCR172.141.862.221809.4 
44BCJ 44.CMS_B-R-145-1CMS_000145145012315.12C57BL/6JBR103.742.062.17998.9 
45BCJ 45.CMS_N-B-212-1CMS_000212212012315.04C57BL/6NJNB189.51.92.42488.5 
47BCJ 47.CMS_N-CR-128-1CMS_000128128012215.34C57BL/6NJNCR90.652.072.251899.3 
48BCJ 48.CMS_N-R-154-1CMS_000154154012315.29C57BL/6NJNR114.731.942.341678.8 
49BCJ 49.CMS_D-C-88-1CMS_00008888012215.28DBA/2JDC961.762.551588.5 
50BCJ 50.CMS_D-CR-96-1CMS_00009696012215.21DBA/2JDCR133.661.782.362038.3 
51BCJ 51.CMS_D-R-138-1CMS_000138138012315.22DBA/2JDR127.131.762.24819.3 
52BCJ 52.CMS_B-C-105-1CMS_000105105012315.13C57BL/6JBC203.241.922.353107 
53BCJ 53.CMS_B-CR-113-1CMS_000113113012315.09C57BL/6JBCR168.671.822.412409.1 
55BCJ 55.CMS_N-C-120-1CMS_000120120012215.32C57BL/6NJNC73.671.932.313718.4 
56BCJ 56.CMS_N-CR-125-1CMS_000125125012115.31C57BL/6NJNCR121.931.922.26738.3 
59BCJ 59.CMS_N-C-122-1CMS_000122122012315.30C57BL/6NJNC131.741.852.421869.4 
60BCJ 60.CMS_D-C-89-1CMS_00008989012315.10DBA/2JDC781.772.32748.9 
62BCJ 62.CMS_N-CR-130-1CMS_000130130012315.34C57BL/6NJNCR100.741.712.361138.8 
65BCJ 65.CMS_B-R-144-1CMS_000144144012215.27C57BL/6JBR80.11.812.3958.9 
66BCJ 66.CMS_N-R-151-1CMS_000151151012215.12C57BL/6NJNR80.221.772.21168.6 
diff --git a/general/datasets/CMS_Hipp1115/experiment-design.rtf b/general/datasets/CMS_Hipp1115/experiment-design.rtf deleted file mode 100644 index f2d6c93..0000000 --- a/general/datasets/CMS_Hipp1115/experiment-design.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

This data set includes four experimental conditions, B (baseline, untreated), C (chronic mild stress), CR (chronic mild stress followed by acute restraint), and R (acute restraint only). 

- -

B = untreated

- -

C = 7 weeks of chronic unpredictable stress

- -

R = 30 minutes of restraint

- -

CR = 7 weeks of chronic unpredictable stress followed by 30 minutes of restraint

diff --git a/general/datasets/CMS_Hipp1115/processing.rtf b/general/datasets/CMS_Hipp1115/processing.rtf deleted file mode 100644 index 1b6ca30..0000000 --- a/general/datasets/CMS_Hipp1115/processing.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Outlier Detection. Samples 7 (J-CR-21), 24 (N-R-29), and 40 (D-R-6) were detected as outliers and have abnormal expression profiles (i.e. they do not cluster with other samples and have abnormal median and quartile ranges after normalization. These samples have been removed from the analysis.

- -

RMA Algorithm. The Robust Multichip Analysis (RMA) algorithm fits a robust linear model at the probe level to minimize the effect of probe-specific affinity differences. This approach: n Increases sensitivity to small changes between experiment and control samples. n Minimizes variance across the dynamic range, but does compress calculated fold change values. RMA consists of three steps: 1. Background adjustment 2. Quantile normalization 3. Summarization This is a multi-chip analysis approach. Therefore, all arrays intended for comparison should be included together in the summarization step. For a more detailed description of the RMA algorithm, see the publication, Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data, Biostatistics, April 2003; Vol. 4; Number 2: 249–264.

diff --git a/general/datasets/CMS_Hipp1115/summary.rtf b/general/datasets/CMS_Hipp1115/summary.rtf deleted file mode 100644 index 1fededf..0000000 --- a/general/datasets/CMS_Hipp1115/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This data set was generated to study the effects of strain and stress on hippocampal gene expression in female mice. The data set includes three inbred strains of mice and four treatment groups.

diff --git a/general/datasets/CMS_Hipp1115/tissue.rtf b/general/datasets/CMS_Hipp1115/tissue.rtf deleted file mode 100644 index 25b50be..0000000 --- a/general/datasets/CMS_Hipp1115/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

This data set includes expression data from mouse hippocampus.

diff --git a/general/datasets/CMS_Hipp_ZScr_1115/cases.rtf b/general/datasets/CMS_Hipp_ZScr_1115/cases.rtf deleted file mode 100644 index c201f08..0000000 --- a/general/datasets/CMS_Hipp_ZScr_1115/cases.rtf +++ /dev/null @@ -1,992 +0,0 @@ -

The original data set included four individuals of each strain under baseline (B) conditions and eight individuals from each strain for each of the treatment groups, chronic mild stress (C), acute restraint (R), and chronic mild stress followed by acute retraint (CR). However, some samples have been removed due to technical problems with tissue collection or microarray performance.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
MTA_IDMTA prefixGN_IDFM_IDMouse_IDCaseIdStrainStrain_CodeTreatment codeNanoDrop, ng/ulNanoDrop, 260/280NanoDrop, 260/230Agilent, ng/µlRINNotes
1BCJ 1.CMS_D-B-215-1CMS_000215215020615.01DBA/2JDB163.611.92.311308.6 
2BCJ 2.CMS_D-C-86-1CMS_00008686012115.23DBA/2JDC98.511.792.43298.8 
3BCJ 3.CMS_D-CR-94-1CMS_00009494012115.16DBA/2JDCR162.781.872.381669.2 
4BCJ 4.CMS_D-R-133-1CMS_000133133012115.14DBA/2JDR88.951.822.45908.2 
5BCJ 5.CMS_B-B-208-1CMS_000208208012215.04C57BL/6JBB129.241.862.412238.1 
6BCJ 6.CMS_B-C-101-1CMS_000101101012115.25C57BL/6JBC72.291.862.261359.2 
7BCJ 7.CMS_B-CR-109-1CMS_000109109012115.21C57BL/6JBCR158.561.72.463058.8Microarray outlier; sample removed.
8BCJ 8.CMS_B-R-143-1CMS_000143143012215.08C57BL/6JBR161.571.862.382179.3 
9BCJ 9.CMS_N-B-210-1CMS_000210210012115.04C57BL/6NJNB132.391.892.31928.5 
10BCJ 10.CMS_N-C-117-1CMS_000117117012115.30C57BL/6NJNC151.431.912.381878.8 
11BCJ 11.CMS_N-CR-126-1CMS_000126126012115.33C57BL/6NJNCR137.871.882.29769 
12BCJ 12.CMS_N-R-152-1CMS_000152152012215.29C57BL/6NJNR197.951.882.351509.1 
13BCJ 13.CMS_D-B-216-1CMS_000216216020615.02DBA/2JDB98.641.912.03608.6 
15BCJ 15.CMS_D-CR-93-1CMS_00009393012115.11DBA/2JDCR71.361.832.251098.5 
16BCJ 16.CMS_D-R-134-1CMS_000134134012115.17DBA/2JDR73.491.852.431498.2 
17BCJ 17.CMS_B-B-205-1CMS_000205205012015.02C57BL/6JBB174.782.022.212668.9 
18BCJ 18.CMS_B-C-104-1CMS_000104104012215.30C57BL/6JBC84.72.642.011689.2 
19BCJ 19.CMS_B-CR-110-1CMS_000110110012115.26C57BL/6JBCR136.71.962.161789.5 
20BCJ 20.CMS_B-R-141-1CMS_000141141012115.22C57BL/6JBR86.0420.22.532088.9 
21BCJ 21.CMS_N-B-209-1CMS_000209209012015.04C57BL/6NJNB98.31.992.351698.8 
22BCJ 22.CMS_N-C-119-1CMS_000119119012215.18C57BL/6NJNC94.631.962.361798.5 
24BCJ 24.CMS_N-R-150-1CMS_000150150012115.29C57BL/6NJNR407.341.982.244257.5Microarray outlier; sample removed.
25BCJ 25.CMS_D-B-217-1CMS_000217217020615.03DBA/2JDB84.611.822.181777.9 
26BCJ 26.CMS_D-C-85-1CMS_00008585012115.20DBA/2JDC172.861.982.272888.9 
27BCJ 27.CMS_D-CR-95-1CMS_00009595012215.16DBA/2JDCR109.81.982.471578.9 
28BCJ 28.CMS_D-R-132-1CMS_000132132012015.29DBA/2JDR140.821.912.473189 
29BCJ 29.CMS_B-B-207-1CMS_000207207012215.02C57BL/6JBB96.251.892.671768.5 
30BCJ 30.CMS_B-C-102-1CMS_000102102012115.28C57BL/6JBC129.691.892.321058.7 
31BCJ 31.CMS_B-CR-111-1CMS_000111111012215.26C57BL/6JBCR165.671.842.311769.5 
32BCJ 32.CMS_B-R-142-1CMS_000142142012115.24C57BL/6JBR116.931.842.22969.4 
33BCJ 33.CMS_N-B-211-1CMS_000211211012315.02C57BL/6NJNB1062.092.291567.4 
34BCJ 34.CMS_N-C-118-1CMS_000118118012115.32C57BL/6NJNC219.21.912.341979.2 
35BCJ 35.CMS_N-CR-127-1CMS_000127127012215.33C57BL/6NJNCR8922.561579.4 
36BCJ 36.CMS_N-R-149-1CMS_000149149012115.27C57BL/6NJNR72.911.842.141078.6 
37BCJ 37.CMS_D-B-218-1CMS_000218218020615.04DBA/2JDB154.341.991.991199.3 
38BCJ 38.CMS_D-C-87-1CMS_00008787012215.13DBA/2JDC105.31.982.211097.4 
39BCJ 39.CMS_D-CR-97-1CMS_00009797012315.05DBA/2JDCR55.851.892.41858.3 
40BCJ 40.CMS_D-R-137-1CMS_000137137012315.06DBA/2JDR128.972.012.241598.1Microarray outlier; sample removed.
41BCJ 41.CMS_B-B-206-1CMS_000206206012115.02C57BL/6JBB159.892.032.12737.8 
42BCJ 42.CMS_B-C-103-1CMS_000103103012215.15C57BL/6JBC111.791.872.451608.9 
43BCJ 43.CMS_B-CR-112-1CMS_000112112012215.31C57BL/6JBCR172.141.862.221809.4 
44BCJ 44.CMS_B-R-145-1CMS_000145145012315.12C57BL/6JBR103.742.062.17998.9 
45BCJ 45.CMS_N-B-212-1CMS_000212212012315.04C57BL/6NJNB189.51.92.42488.5 
47BCJ 47.CMS_N-CR-128-1CMS_000128128012215.34C57BL/6NJNCR90.652.072.251899.3 
48BCJ 48.CMS_N-R-154-1CMS_000154154012315.29C57BL/6NJNR114.731.942.341678.8 
49BCJ 49.CMS_D-C-88-1CMS_00008888012215.28DBA/2JDC961.762.551588.5 
50BCJ 50.CMS_D-CR-96-1CMS_00009696012215.21DBA/2JDCR133.661.782.362038.3 
51BCJ 51.CMS_D-R-138-1CMS_000138138012315.22DBA/2JDR127.131.762.24819.3 
52BCJ 52.CMS_B-C-105-1CMS_000105105012315.13C57BL/6JBC203.241.922.353107 
53BCJ 53.CMS_B-CR-113-1CMS_000113113012315.09C57BL/6JBCR168.671.822.412409.1 
55BCJ 55.CMS_N-C-120-1CMS_000120120012215.32C57BL/6NJNC73.671.932.313718.4 
56BCJ 56.CMS_N-CR-125-1CMS_000125125012115.31C57BL/6NJNCR121.931.922.26738.3 
59BCJ 59.CMS_N-C-122-1CMS_000122122012315.30C57BL/6NJNC131.741.852.421869.4 
60BCJ 60.CMS_D-C-89-1CMS_00008989012315.10DBA/2JDC781.772.32748.9 
62BCJ 62.CMS_N-CR-130-1CMS_000130130012315.34C57BL/6NJNCR100.741.712.361138.8 
65BCJ 65.CMS_B-R-144-1CMS_000144144012215.27C57BL/6JBR80.11.812.3958.9 
66BCJ 66.CMS_N-R-151-1CMS_000151151012215.12C57BL/6NJNR80.221.772.21168.6 
diff --git a/general/datasets/CMS_Hipp_ZScr_1115/experiment-design.rtf b/general/datasets/CMS_Hipp_ZScr_1115/experiment-design.rtf deleted file mode 100644 index f2d6c93..0000000 --- a/general/datasets/CMS_Hipp_ZScr_1115/experiment-design.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

This data set includes four experimental conditions, B (baseline, untreated), C (chronic mild stress), CR (chronic mild stress followed by acute restraint), and R (acute restraint only). 

- -

B = untreated

- -

C = 7 weeks of chronic unpredictable stress

- -

R = 30 minutes of restraint

- -

CR = 7 weeks of chronic unpredictable stress followed by 30 minutes of restraint

diff --git a/general/datasets/CMS_Hipp_ZScr_1115/processing.rtf b/general/datasets/CMS_Hipp_ZScr_1115/processing.rtf deleted file mode 100644 index 1b6ca30..0000000 --- a/general/datasets/CMS_Hipp_ZScr_1115/processing.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Outlier Detection. Samples 7 (J-CR-21), 24 (N-R-29), and 40 (D-R-6) were detected as outliers and have abnormal expression profiles (i.e. they do not cluster with other samples and have abnormal median and quartile ranges after normalization. These samples have been removed from the analysis.

- -

RMA Algorithm. The Robust Multichip Analysis (RMA) algorithm fits a robust linear model at the probe level to minimize the effect of probe-specific affinity differences. This approach: n Increases sensitivity to small changes between experiment and control samples. n Minimizes variance across the dynamic range, but does compress calculated fold change values. RMA consists of three steps: 1. Background adjustment 2. Quantile normalization 3. Summarization This is a multi-chip analysis approach. Therefore, all arrays intended for comparison should be included together in the summarization step. For a more detailed description of the RMA algorithm, see the publication, Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data, Biostatistics, April 2003; Vol. 4; Number 2: 249–264.

diff --git a/general/datasets/CMS_Hipp_ZScr_1115/specifics.rtf b/general/datasets/CMS_Hipp_ZScr_1115/specifics.rtf deleted file mode 100644 index 5d45792..0000000 --- a/general/datasets/CMS_Hipp_ZScr_1115/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -

Z-Score. In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data).  This removes negative values from the tables.

diff --git a/general/datasets/CMS_Hipp_ZScr_1115/summary.rtf b/general/datasets/CMS_Hipp_ZScr_1115/summary.rtf deleted file mode 100644 index 1fededf..0000000 --- a/general/datasets/CMS_Hipp_ZScr_1115/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This data set was generated to study the effects of strain and stress on hippocampal gene expression in female mice. The data set includes three inbred strains of mice and four treatment groups.

diff --git a/general/datasets/CMS_Hipp_ZScr_1115/tissue.rtf b/general/datasets/CMS_Hipp_ZScr_1115/tissue.rtf deleted file mode 100644 index 25b50be..0000000 --- a/general/datasets/CMS_Hipp_ZScr_1115/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

This data set includes expression data from mouse hippocampus.

diff --git a/general/datasets/CRTD_HipPreCell1214/acknowledgment.rtf b/general/datasets/CRTD_HipPreCell1214/acknowledgment.rtf deleted file mode 100644 index 71728a6..0000000 --- a/general/datasets/CRTD_HipPreCell1214/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

Financial support covering the breeding and supply of BXD mice was provided by the Helmholtz Virtual Institute GENESYS (German Network of Systems Genetics, VH-VI-242)

diff --git a/general/datasets/CRTD_HipPreCell1214/cases.rtf b/general/datasets/CRTD_HipPreCell1214/cases.rtf deleted file mode 100644 index 8116156..0000000 --- a/general/datasets/CRTD_HipPreCell1214/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 8 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 10 inbred (F20+) BXD lines generated by Lu and Peirce. In addition, the parental strains C57BL/6J and DBA/2J were used to yield a total of 20 genetically unique cell lines. All of these strains have been genotyped at 13,377 SNPs.

diff --git a/general/datasets/CRTD_HipPreCell1214/experiment-design.rtf b/general/datasets/CRTD_HipPreCell1214/experiment-design.rtf deleted file mode 100644 index c266448..0000000 --- a/general/datasets/CRTD_HipPreCell1214/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

Each culture was derived from between 6 and 12 mice of c. 6 weeks old and of mixed sexes. Sex ratios in each batch varied. Triplicate cultures, from the same line but of different passage numbers, were used for RNA collection. Quantile normalisation of probe-level values was performed, and data for all probes mapping to the same Entrez GeneID were merged as means. No further adjustment of the data was done.

diff --git a/general/datasets/CRTD_HipPreCell1214/notes.rtf b/general/datasets/CRTD_HipPreCell1214/notes.rtf deleted file mode 100644 index f2b1272..0000000 --- a/general/datasets/CRTD_HipPreCell1214/notes.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

This study is associated with the following records from the BXD Phenotype Database:

- -

17347, 17348, 17349

diff --git a/general/datasets/CRTD_HipPreCell1214/platform.rtf b/general/datasets/CRTD_HipPreCell1214/platform.rtf deleted file mode 100644 index bbe0b51..0000000 --- a/general/datasets/CRTD_HipPreCell1214/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

Illumina MouseWG-6 array with custom probe mapping: This data set uses a custom mapping of probes to Entrez GeneIDs. Each probe sequence on the MouseWG-6 v. 2.0 array was queried against the mm9 mouse genome using Jim Kent's BLAT program. The genomic position of probes returning a single hit was then used to assign the probe to an NCBI Entrez GeneID. Probes targeting the same GeneID were collapsed as means to yield data for 21155 unique genes.

diff --git a/general/datasets/CRTD_HipPreCell1214/processing.rtf b/general/datasets/CRTD_HipPreCell1214/processing.rtf deleted file mode 100644 index 51df24a..0000000 --- a/general/datasets/CRTD_HipPreCell1214/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

Raw data were preprocessed with quantile normalisation in R/Bioconductor using the package beadarray. After probe reannotation, data from probes targeting the same GeneID were collapsed as means. This results in a single unique probe set associated with each of the Entrez GeneIDs covered.

diff --git a/general/datasets/CRTD_HipPreCell1214/summary.rtf b/general/datasets/CRTD_HipPreCell1214/summary.rtf deleted file mode 100644 index be648f2..0000000 --- a/general/datasets/CRTD_HipPreCell1214/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This data set was generated from proliferating adherent cultures of adult hippocampus-derived precursor cells from 20 BXD strains. The dentate gyrus of the mouse hippocampus is the site of continued neural precursor proliferation and generation of new neurons in adulthood as a distinct process from the widespread embryonic and juvenile neurogenesis during development. Adult-derived precursors can be isolated and maintained in adherent culture (Babu et al., 2007, 2011) and can be differentiated into neurons, astrocytes and oligodendrocytes. In this study, cultures were established from 20 BXD strains obtained through the authors’ involvement in the GeNeSys Consortium. This data set was obtained from cultures actively proliferating in the presence of growth factors.

diff --git a/general/datasets/CRTD_HipPreCell1214/tissue.rtf b/general/datasets/CRTD_HipPreCell1214/tissue.rtf deleted file mode 100644 index f45211e..0000000 --- a/general/datasets/CRTD_HipPreCell1214/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

The mice used in this study were bred at Harlan () for the GeNeSys Consortium and were delivered to the study site in Dresden at c. 6 weeks of age. Some animals were the 1st generation offspring of the Harlan stock which were bred and raised locally at the CRTD (housed at the Medizinisch-Theoretisches Zentrum of the Technische Universität Dresden). Animals were killed the day after delivery (or at 6 weeks of age if locally bred) and the hippocampi dissected and processed for precursor cell culture (Babu et al., 2011). Proliferating cultures were maintained in the presence of EGF and FGF-2 and passaged every 3-4 days. For microarray analysis, c. 1 million cells were harvested by on-plate lysis and total RNA prepared using the RNEasy mini kit (Qiagen) following the manufacturer’s protocol (including optional on-column DNase treatment). Each strain was assayed in triplicate (from 3 different passages).

diff --git a/general/datasets/CUBr_rna_0219/experiment-design.rtf b/general/datasets/CUBr_rna_0219/experiment-design.rtf deleted file mode 100644 index 8ba40f7..0000000 --- a/general/datasets/CUBr_rna_0219/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

This dataset includes small RNA NGS sequencing data from 59 strains from the Inbred Long Sleep (ILS) and Inbred Short Sleep (ISS) Recombinant inbred mouse whole brain RNA samples. 175 mice (2-3 from each strain) were untreated (naive). The naive samples were provided by Boris Tabakoff, University of Colorado Anschutz Medical Campus. All expression data generation and analysis were conducted by the Kechris Group, University of Colorado Anschutz Medical Campus.

diff --git a/general/datasets/CUBr_rna_0219/notes.rtf b/general/datasets/CUBr_rna_0219/notes.rtf deleted file mode 100644 index 84096b8..0000000 --- a/general/datasets/CUBr_rna_0219/notes.rtf +++ /dev/null @@ -1 +0,0 @@ -

miRNA expression variance stabilized

diff --git a/general/datasets/CUBr_rna_0219/specifics.rtf b/general/datasets/CUBr_rna_0219/specifics.rtf deleted file mode 100644 index d301f7e..0000000 --- a/general/datasets/CUBr_rna_0219/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -based on ens_mirna_expression_variance_stabilized \ No newline at end of file diff --git a/general/datasets/CUBr_rna_0219/summary.rtf b/general/datasets/CUBr_rna_0219/summary.rtf deleted file mode 100644 index 57e5529..0000000 --- a/general/datasets/CUBr_rna_0219/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

We conducted a high-throughput sequencing study to measure whole brain miRNA expression levels in alcohol naïve animals in the LXS panel of recombinant inbred (RI) mouse strains. We then combined the sequencing data with genotype data, microarray gene expression data, and data on alcohol-related behavioral phenotypes such as 'Drinking in the dark', 'Sleep time', and 'Low dose activation' from the same RI panel.

diff --git a/general/datasets/Candle_meth27_0313/platform.rtf b/general/datasets/Candle_meth27_0313/platform.rtf new file mode 100644 index 0000000..760018d --- /dev/null +++ b/general/datasets/Candle_meth27_0313/platform.rtf @@ -0,0 +1 @@ +

Illumina Infinium HumanMethylation27 BeadChip

diff --git a/general/datasets/Candle_meth27_0313/processing.rtf b/general/datasets/Candle_meth27_0313/processing.rtf new file mode 100644 index 0000000..8cc5d58 --- /dev/null +++ b/general/datasets/Candle_meth27_0313/processing.rtf @@ -0,0 +1 @@ +

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/Candle_meth_0313/platform.rtf b/general/datasets/Candle_meth_0313/platform.rtf new file mode 100644 index 0000000..760018d --- /dev/null +++ b/general/datasets/Candle_meth_0313/platform.rtf @@ -0,0 +1 @@ +

Illumina Infinium HumanMethylation27 BeadChip

diff --git a/general/datasets/Candle_meth_0313/processing.rtf b/general/datasets/Candle_meth_0313/processing.rtf new file mode 100644 index 0000000..8cc5d58 --- /dev/null +++ b/general/datasets/Candle_meth_0313/processing.rtf @@ -0,0 +1 @@ +

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/Candle_nb_0711/acknowledgment.rtf b/general/datasets/Candle_nb_0711/acknowledgment.rtf new file mode 100644 index 0000000..ea399b5 --- /dev/null +++ b/general/datasets/Candle_nb_0711/acknowledgment.rtf @@ -0,0 +1,14 @@ +

Data Owner: Dr. Robert W. Williams, Dr. Ron Adkins, UTHSC Department of Pediatrics

+ +

Expression data generated by the UTHSC Molecular Resources Center with funding from the Center for Integrative and Translational Genomics

+ +

Data processing by Drs. Ron Adkins and Julia Krushkal. Data entry into GeneNetwork by Arthur Centeno and Robert W. Williams.

+ +
    +
  1. background subtraction (using Illumina's GenomeStudio)
  2. +
  3. VST transform (using lumi in Bioconductor)
  4. +
  5. quantile normalization (also using lumi)
  6. +
  7. [any outliers that did not pass QC were removed using sample clustering, MA plots, boxplots, etc.] correction for batch effects using COMBAT
  8. +
+ +

Please refer to information provided by Drs. Williams or Adkins with the data that specifies exactly which of these steps (or all of them) were included in the final data set that he provided to you.

diff --git a/general/datasets/Candle_nb_0711/cases.rtf b/general/datasets/Candle_nb_0711/cases.rtf new file mode 100644 index 0000000..c7fe664 --- /dev/null +++ b/general/datasets/Candle_nb_0711/cases.rtf @@ -0,0 +1 @@ +

A subset of neonatal cord blood samples from the CANDLE cohort.

diff --git a/general/datasets/Candle_nb_0711/citation.rtf b/general/datasets/Candle_nb_0711/citation.rtf new file mode 100644 index 0000000..941dbc5 --- /dev/null +++ b/general/datasets/Candle_nb_0711/citation.rtf @@ -0,0 +1,9 @@ +

Associated References:

+ +
    +
  1. Adkins RM, Tylavsky FA, Krushkal J (2012) Newborn umbilical blood DNA methylation and gene expression levels exhibit limited association with birth weight. Chemistry & Biodiversity 9: 888-899
  2. +
  3. Adkins RM, Thomas F, Tylavsky FA, Krushkal J (2011) Parental ages and levels of DNA methylation in the newborn are correlated. BMC Med Genet 12: 47
  4. +
  5. Adkins RM, Krushkal J, Tylavsky FA, Thomas F (2011) Racial differences in gene-specific DNA methylation levels are present at birth. Birth Defects Res A Clin Mol Teratol 91: 728-736
  6. +
+ +

 

diff --git a/general/datasets/Candle_nb_0711/experiment-type.rtf b/general/datasets/Candle_nb_0711/experiment-type.rtf new file mode 100644 index 0000000..8224239 --- /dev/null +++ b/general/datasets/Candle_nb_0711/experiment-type.rtf @@ -0,0 +1 @@ +See Ref 1 \ No newline at end of file diff --git a/general/datasets/Candle_nb_0711/summary.rtf b/general/datasets/Candle_nb_0711/summary.rtf new file mode 100644 index 0000000..df02b8b --- /dev/null +++ b/general/datasets/Candle_nb_0711/summary.rtf @@ -0,0 +1,9 @@ +

The CANDLE Study is a large multidisciplinary study of early child development that involves genetic, genomic, environmental, and large-scale behavioral evaluation of children and their families from the second trimester of development through to 4 years of age. The full study involves more than 1000 children and their mothers and fathers.

+ +

For information on genomic and genetic studies related to CANDLE, please contact: Dr. Robert W. Williams (rwilliams@uthsc.edu). These data were originally generated by Drs. Ronald M. Adkins and Julia Krushkal at UTHSC.

+ +

For information on the composition of neonatal cord blood, please see the review article by Jose N Tolosa and colleagues (2010).

+ +

For information on the overall design of CANDLE, please contact: Dr. Frances A. Tylavsky (ftylavsk at uthsc.edu).

+ +

Summary from The Urban Child Institute: "The primary goal of the CANDLE study is to study factors that affect brain development in young children. To this end, the current study will test specific hypotheses regarding factors that may negatively influence cognitive development in children. Participants in this cohort study will include 1,500 mother-child dyads, recruited during the second trimester of pregnancy and followed from birth to age 3. Data on a wide range of possible influences on children's cognitive outcomes will be collected from numerous sources, including questionnaires, interviews, psychosocial assessments, medical chart abstraction, environmental samples from the child's home environment, blood and urine samples from the mother, cord blood, and placental tissue. The primary outcomes of the current study are those associated with a poor cognitive outcome in the child. Outcomes will be measured using standardized cognitive assessments conducted at 12 months, 24 months, and 36 months of age. Epidemiological, clinical, and laboratory-based research may be undertaken using data from the project, with sub-studies including, but not limited to, molecular genetics, environmental exposure assessments, and micronutrient deficiency analyses. Results of this cohort study may provide information that will ultimately lead to improvements in the health, development, and well-being of children in Shelby County, Tennessee through interventions and policy enforcement and/or development. Full participant recruitment and complete data collection began in November 2006."

diff --git a/general/datasets/Candle_nb_0711/tissue.rtf b/general/datasets/Candle_nb_0711/tissue.rtf new file mode 100644 index 0000000..736f786 --- /dev/null +++ b/general/datasets/Candle_nb_0711/tissue.rtf @@ -0,0 +1 @@ +

Neonatal cord blood.

diff --git a/general/datasets/Cb_m_0104_m/acknowledgment.rtf b/general/datasets/Cb_m_0104_m/acknowledgment.rtf new file mode 100644 index 0000000..b048bb0 --- /dev/null +++ b/general/datasets/Cb_m_0104_m/acknowledgment.rtf @@ -0,0 +1,15 @@ +
Data were generated with funds contributed equally by The UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include: + +
diff --git a/general/datasets/Cb_m_0104_m/cases.rtf b/general/datasets/Cb_m_0104_m/cases.rtf new file mode 100644 index 0000000..f5e6bdf --- /dev/null +++ b/general/datasets/Cb_m_0104_m/cases.rtf @@ -0,0 +1,7 @@ +
We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera Discovery Systems). Chromosomes of the two parental strains have been recombined and fixed randomly in the many different BXD strains. BXD2 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were also produced by Taylor, but they were generated in the 1990s. These strains are all available from The Jackson Laboratory, Bar Harbor, Maine. +

 

+ +

In this mRNA expression data set we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+
+ +
The set of mouse strains used for mapping (a mapping panel) consists of groups of genetically unique BXD recombinant inbred strains. The ancestral strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6, and 1.5x coverage for D by Celera Genomics). Chromosomes of the two parental strains are recombined randomly in the many different BXD strains. BXD lines 2 through 32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through 42 were also produced by Dr. Taylor, but they were generated in the 1990s. All of these strains are available from The Jackson Laboratory. Lines such as BXD67, BXD68, etc. are BXD Advanced recombinant inbred strains that are part of a large set now being produced by Drs. Lu Lu, Guomin Zhou, Lee Silver, Jeremy Peirce, and Robert Williams. There will eventually be 45 of these BXD strains. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html.
diff --git a/general/datasets/Cb_m_0104_m/notes.rtf b/general/datasets/Cb_m_0104_m/notes.rtf new file mode 100644 index 0000000..5d4ac24 --- /dev/null +++ b/general/datasets/Cb_m_0104_m/notes.rtf @@ -0,0 +1,3 @@ +
+

This text file originally generated by RWW and YHQ, September 2003. Updated by RWW, October 30, 2004.

+
diff --git a/general/datasets/Cb_m_0104_m/platform.rtf b/general/datasets/Cb_m_0104_m/platform.rtf new file mode 100644 index 0000000..188038b --- /dev/null +++ b/general/datasets/Cb_m_0104_m/platform.rtf @@ -0,0 +1,3 @@ +
Affymetrix Mouse Expression 430 GeneChip set: The expression data were generated using 430A and 430B arrays. Chromosomal positions of probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

 

+
diff --git a/general/datasets/Cb_m_0104_m/processing.rtf b/general/datasets/Cb_m_0104_m/processing.rtf new file mode 100644 index 0000000..cdfa27a --- /dev/null +++ b/general/datasets/Cb_m_0104_m/processing.rtf @@ -0,0 +1,17 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +Probe set data from the CHP file: These CHP files were generated using MAS 5. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the noise level.
+ +

About the chromosome and megabase position values:

+ +
The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
diff --git a/general/datasets/Cb_m_0104_m/summary.rtf b/general/datasets/Cb_m_0104_m/summary.rtf new file mode 100644 index 0000000..8a59cc3 --- /dev/null +++ b/general/datasets/Cb_m_0104_m/summary.rtf @@ -0,0 +1,3 @@ +
+

This October 2003 freeze provides estimates of mRNA expression in cerebellum of 26 adult BXD recombinant inbred strains, as well as C57BL/6J, DBA/2J, and their F1 hybrid, measured using the Affymetrix M430A and B microarrays. Data were generated by a small consortium of investigators at St. Jude Children's Research Hospital (SJ) and the University of Tennessee Health Science Center (UT). Data were processed using the Microarray Suite 5 (<a data-cke-saved-href="http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf" href="http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf" _blank"="" class="fs14">MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. This data set was run in two large batches with careful consideration to balancing samples by sex and age. Eighteen strains have been profiled using two or three independent samples. All other strains were sampled once.

+
diff --git a/general/datasets/Cb_m_0104_m/tissue.rtf b/general/datasets/Cb_m_0104_m/tissue.rtf new file mode 100644 index 0000000..4f8e5ed --- /dev/null +++ b/general/datasets/Cb_m_0104_m/tissue.rtf @@ -0,0 +1,376 @@ +
+

The October 2003 data set was processed in two large batches. The first batch (the May 2003 data set) consists of 20 pooled samples from 20 strains run on pairs of Affymetrix 430A and 430B arrays (40 arrays total). The second batch consists of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of whole cerebellum taken from three adult animals of the same age and sex. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years.

+ +

RNA was extracted at UTHSC by Zhiping Jia and Hongtao Zhai.

+ +

All samples were subsequently processed at the Hartwell Center Affymetrix laboratory at SJCRH by Jay Morris.

+
+ +
The January04 data were processed in two large batches. The first batch (the May03 data set) consisted of samples from 20 samples and 20 strains run on Affymetrix MOE 430A and MOE430B GeneChip pairs (40 arrays total). The second batch of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of brain tissue (intact whole cerebellum) taken from three adult animals usually of the same age. RNA was extracted at UTHSC and all samples were processed at the Hartwell Center (SJCRH, Memphis). We will eventually achieve a sample with good, but not perfect, balance of samples by sex and age. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years.
+ +
The table below summarizes informaton on strain, sex, age, sample name, and batch number.
+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
StrainSexAgeSampleIDBatch
B6D2F1M127766-C12
B6D2F1M94S347-1C11
C57BL/6JF116773-C12
C57BL/6JM109S054-1C21
DBA/2JF71S175-1C11
DBA/2JF91782-C12
BXD1F57813-C12
BXD2F142751-C11
BXD2F78774-C12
BXD5F56802-C12
BXD5M71752-C11
BXD6F92719-C11
BXD8F72S173-1C11
BXD9M86737-C11
BXD11F441S200-1C11
BXD11M92790-C12
BXD12F130776-C12
BXD12M64756-C12
BXD14F190794-C12
BXD14M91758-C12
BXD16F163750-C11
BXD19F61772-C12
BXD21F116711-C11
BXD21M64803-C12
BXD22F65S174-1C11
BXD23F88814-C12
BXD24F71805-C12
BXD24M71759-C12
BXD25M90S429-1C11
BXD28F113785-C12
BXD28F427S203-1C11
BXD29F82777-C12
BXD29M76714-C12
BXD29M76714-C11
BXD31F142816-C12
BXD32F62778-C12
BXD32M218786-C12
BXD33F184793-C12
BXD33M124715-C11
BXD34F56725-C11
BXD34M91789-C12
BXD38F55781-C12
BXD38M65761-C12
BXD39M165723-C11
BXD40F56718-C11
BXD40F56718-C12
BXD40M73812-C12
BXD42F100799-C12
BXD42M97709-C11
+
+
diff --git a/general/datasets/Cb_m_0104_p/acknowledgment.rtf b/general/datasets/Cb_m_0104_p/acknowledgment.rtf new file mode 100644 index 0000000..b048bb0 --- /dev/null +++ b/general/datasets/Cb_m_0104_p/acknowledgment.rtf @@ -0,0 +1,15 @@ +
Data were generated with funds contributed equally by The UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include: + +
diff --git a/general/datasets/Cb_m_0104_p/cases.rtf b/general/datasets/Cb_m_0104_p/cases.rtf new file mode 100644 index 0000000..f5e6bdf --- /dev/null +++ b/general/datasets/Cb_m_0104_p/cases.rtf @@ -0,0 +1,7 @@ +
We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera Discovery Systems). Chromosomes of the two parental strains have been recombined and fixed randomly in the many different BXD strains. BXD2 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were also produced by Taylor, but they were generated in the 1990s. These strains are all available from The Jackson Laboratory, Bar Harbor, Maine. +

 

+ +

In this mRNA expression data set we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+
+ +
The set of mouse strains used for mapping (a mapping panel) consists of groups of genetically unique BXD recombinant inbred strains. The ancestral strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6, and 1.5x coverage for D by Celera Genomics). Chromosomes of the two parental strains are recombined randomly in the many different BXD strains. BXD lines 2 through 32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through 42 were also produced by Dr. Taylor, but they were generated in the 1990s. All of these strains are available from The Jackson Laboratory. Lines such as BXD67, BXD68, etc. are BXD Advanced recombinant inbred strains that are part of a large set now being produced by Drs. Lu Lu, Guomin Zhou, Lee Silver, Jeremy Peirce, and Robert Williams. There will eventually be 45 of these BXD strains. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html.
diff --git a/general/datasets/Cb_m_0104_p/notes.rtf b/general/datasets/Cb_m_0104_p/notes.rtf new file mode 100644 index 0000000..5d4ac24 --- /dev/null +++ b/general/datasets/Cb_m_0104_p/notes.rtf @@ -0,0 +1,3 @@ +
+

This text file originally generated by RWW and YHQ, September 2003. Updated by RWW, October 30, 2004.

+
diff --git a/general/datasets/Cb_m_0104_p/platform.rtf b/general/datasets/Cb_m_0104_p/platform.rtf new file mode 100644 index 0000000..188038b --- /dev/null +++ b/general/datasets/Cb_m_0104_p/platform.rtf @@ -0,0 +1,3 @@ +
Affymetrix Mouse Expression 430 GeneChip set: The expression data were generated using 430A and 430B arrays. Chromosomal positions of probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

 

+
diff --git a/general/datasets/Cb_m_0104_p/processing.rtf b/general/datasets/Cb_m_0104_p/processing.rtf new file mode 100644 index 0000000..cdfa27a --- /dev/null +++ b/general/datasets/Cb_m_0104_p/processing.rtf @@ -0,0 +1,17 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +Probe set data from the CHP file: These CHP files were generated using MAS 5. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the noise level.
+ +

About the chromosome and megabase position values:

+ +
The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
diff --git a/general/datasets/Cb_m_0104_p/summary.rtf b/general/datasets/Cb_m_0104_p/summary.rtf new file mode 100644 index 0000000..8a59cc3 --- /dev/null +++ b/general/datasets/Cb_m_0104_p/summary.rtf @@ -0,0 +1,3 @@ +
+

This October 2003 freeze provides estimates of mRNA expression in cerebellum of 26 adult BXD recombinant inbred strains, as well as C57BL/6J, DBA/2J, and their F1 hybrid, measured using the Affymetrix M430A and B microarrays. Data were generated by a small consortium of investigators at St. Jude Children's Research Hospital (SJ) and the University of Tennessee Health Science Center (UT). Data were processed using the Microarray Suite 5 (<a data-cke-saved-href="http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf" href="http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf" _blank"="" class="fs14">MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. This data set was run in two large batches with careful consideration to balancing samples by sex and age. Eighteen strains have been profiled using two or three independent samples. All other strains were sampled once.

+
diff --git a/general/datasets/Cb_m_0104_p/tissue.rtf b/general/datasets/Cb_m_0104_p/tissue.rtf new file mode 100644 index 0000000..4f8e5ed --- /dev/null +++ b/general/datasets/Cb_m_0104_p/tissue.rtf @@ -0,0 +1,376 @@ +
+

The October 2003 data set was processed in two large batches. The first batch (the May 2003 data set) consists of 20 pooled samples from 20 strains run on pairs of Affymetrix 430A and 430B arrays (40 arrays total). The second batch consists of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of whole cerebellum taken from three adult animals of the same age and sex. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years.

+ +

RNA was extracted at UTHSC by Zhiping Jia and Hongtao Zhai.

+ +

All samples were subsequently processed at the Hartwell Center Affymetrix laboratory at SJCRH by Jay Morris.

+
+ +
The January04 data were processed in two large batches. The first batch (the May03 data set) consisted of samples from 20 samples and 20 strains run on Affymetrix MOE 430A and MOE430B GeneChip pairs (40 arrays total). The second batch of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of brain tissue (intact whole cerebellum) taken from three adult animals usually of the same age. RNA was extracted at UTHSC and all samples were processed at the Hartwell Center (SJCRH, Memphis). We will eventually achieve a sample with good, but not perfect, balance of samples by sex and age. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years.
+ +
The table below summarizes informaton on strain, sex, age, sample name, and batch number.
+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
StrainSexAgeSampleIDBatch
B6D2F1M127766-C12
B6D2F1M94S347-1C11
C57BL/6JF116773-C12
C57BL/6JM109S054-1C21
DBA/2JF71S175-1C11
DBA/2JF91782-C12
BXD1F57813-C12
BXD2F142751-C11
BXD2F78774-C12
BXD5F56802-C12
BXD5M71752-C11
BXD6F92719-C11
BXD8F72S173-1C11
BXD9M86737-C11
BXD11F441S200-1C11
BXD11M92790-C12
BXD12F130776-C12
BXD12M64756-C12
BXD14F190794-C12
BXD14M91758-C12
BXD16F163750-C11
BXD19F61772-C12
BXD21F116711-C11
BXD21M64803-C12
BXD22F65S174-1C11
BXD23F88814-C12
BXD24F71805-C12
BXD24M71759-C12
BXD25M90S429-1C11
BXD28F113785-C12
BXD28F427S203-1C11
BXD29F82777-C12
BXD29M76714-C12
BXD29M76714-C11
BXD31F142816-C12
BXD32F62778-C12
BXD32M218786-C12
BXD33F184793-C12
BXD33M124715-C11
BXD34F56725-C11
BXD34M91789-C12
BXD38F55781-C12
BXD38M65761-C12
BXD39M165723-C11
BXD40F56718-C11
BXD40F56718-C12
BXD40M73812-C12
BXD42F100799-C12
BXD42M97709-C11
+
+
diff --git a/general/datasets/Cb_m_0104_r/acknowledgment.rtf b/general/datasets/Cb_m_0104_r/acknowledgment.rtf new file mode 100644 index 0000000..b048bb0 --- /dev/null +++ b/general/datasets/Cb_m_0104_r/acknowledgment.rtf @@ -0,0 +1,15 @@ +
Data were generated with funds contributed equally by The UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include: + +
diff --git a/general/datasets/Cb_m_0104_r/cases.rtf b/general/datasets/Cb_m_0104_r/cases.rtf new file mode 100644 index 0000000..f5e6bdf --- /dev/null +++ b/general/datasets/Cb_m_0104_r/cases.rtf @@ -0,0 +1,7 @@ +
We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera Discovery Systems). Chromosomes of the two parental strains have been recombined and fixed randomly in the many different BXD strains. BXD2 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were also produced by Taylor, but they were generated in the 1990s. These strains are all available from The Jackson Laboratory, Bar Harbor, Maine. +

 

+ +

In this mRNA expression data set we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+
+ +
The set of mouse strains used for mapping (a mapping panel) consists of groups of genetically unique BXD recombinant inbred strains. The ancestral strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6, and 1.5x coverage for D by Celera Genomics). Chromosomes of the two parental strains are recombined randomly in the many different BXD strains. BXD lines 2 through 32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through 42 were also produced by Dr. Taylor, but they were generated in the 1990s. All of these strains are available from The Jackson Laboratory. Lines such as BXD67, BXD68, etc. are BXD Advanced recombinant inbred strains that are part of a large set now being produced by Drs. Lu Lu, Guomin Zhou, Lee Silver, Jeremy Peirce, and Robert Williams. There will eventually be 45 of these BXD strains. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html.
diff --git a/general/datasets/Cb_m_0104_r/notes.rtf b/general/datasets/Cb_m_0104_r/notes.rtf new file mode 100644 index 0000000..5d4ac24 --- /dev/null +++ b/general/datasets/Cb_m_0104_r/notes.rtf @@ -0,0 +1,3 @@ +
+

This text file originally generated by RWW and YHQ, September 2003. Updated by RWW, October 30, 2004.

+
diff --git a/general/datasets/Cb_m_0104_r/platform.rtf b/general/datasets/Cb_m_0104_r/platform.rtf new file mode 100644 index 0000000..188038b --- /dev/null +++ b/general/datasets/Cb_m_0104_r/platform.rtf @@ -0,0 +1,3 @@ +
Affymetrix Mouse Expression 430 GeneChip set: The expression data were generated using 430A and 430B arrays. Chromosomal positions of probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

 

+
diff --git a/general/datasets/Cb_m_0104_r/processing.rtf b/general/datasets/Cb_m_0104_r/processing.rtf new file mode 100644 index 0000000..cdfa27a --- /dev/null +++ b/general/datasets/Cb_m_0104_r/processing.rtf @@ -0,0 +1,17 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +Probe set data from the CHP file: These CHP files were generated using MAS 5. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the noise level.
+ +

About the chromosome and megabase position values:

+ +
The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
diff --git a/general/datasets/Cb_m_0104_r/summary.rtf b/general/datasets/Cb_m_0104_r/summary.rtf new file mode 100644 index 0000000..8a59cc3 --- /dev/null +++ b/general/datasets/Cb_m_0104_r/summary.rtf @@ -0,0 +1,3 @@ +
+

This October 2003 freeze provides estimates of mRNA expression in cerebellum of 26 adult BXD recombinant inbred strains, as well as C57BL/6J, DBA/2J, and their F1 hybrid, measured using the Affymetrix M430A and B microarrays. Data were generated by a small consortium of investigators at St. Jude Children's Research Hospital (SJ) and the University of Tennessee Health Science Center (UT). Data were processed using the Microarray Suite 5 (<a data-cke-saved-href="http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf" href="http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf" _blank"="" class="fs14">MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. This data set was run in two large batches with careful consideration to balancing samples by sex and age. Eighteen strains have been profiled using two or three independent samples. All other strains were sampled once.

+
diff --git a/general/datasets/Cb_m_0104_r/tissue.rtf b/general/datasets/Cb_m_0104_r/tissue.rtf new file mode 100644 index 0000000..4f8e5ed --- /dev/null +++ b/general/datasets/Cb_m_0104_r/tissue.rtf @@ -0,0 +1,376 @@ +
+

The October 2003 data set was processed in two large batches. The first batch (the May 2003 data set) consists of 20 pooled samples from 20 strains run on pairs of Affymetrix 430A and 430B arrays (40 arrays total). The second batch consists of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of whole cerebellum taken from three adult animals of the same age and sex. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years.

+ +

RNA was extracted at UTHSC by Zhiping Jia and Hongtao Zhai.

+ +

All samples were subsequently processed at the Hartwell Center Affymetrix laboratory at SJCRH by Jay Morris.

+
+ +
The January04 data were processed in two large batches. The first batch (the May03 data set) consisted of samples from 20 samples and 20 strains run on Affymetrix MOE 430A and MOE430B GeneChip pairs (40 arrays total). The second batch of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of brain tissue (intact whole cerebellum) taken from three adult animals usually of the same age. RNA was extracted at UTHSC and all samples were processed at the Hartwell Center (SJCRH, Memphis). We will eventually achieve a sample with good, but not perfect, balance of samples by sex and age. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years.
+ +
The table below summarizes informaton on strain, sex, age, sample name, and batch number.
+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
StrainSexAgeSampleIDBatch
B6D2F1M127766-C12
B6D2F1M94S347-1C11
C57BL/6JF116773-C12
C57BL/6JM109S054-1C21
DBA/2JF71S175-1C11
DBA/2JF91782-C12
BXD1F57813-C12
BXD2F142751-C11
BXD2F78774-C12
BXD5F56802-C12
BXD5M71752-C11
BXD6F92719-C11
BXD8F72S173-1C11
BXD9M86737-C11
BXD11F441S200-1C11
BXD11M92790-C12
BXD12F130776-C12
BXD12M64756-C12
BXD14F190794-C12
BXD14M91758-C12
BXD16F163750-C11
BXD19F61772-C12
BXD21F116711-C11
BXD21M64803-C12
BXD22F65S174-1C11
BXD23F88814-C12
BXD24F71805-C12
BXD24M71759-C12
BXD25M90S429-1C11
BXD28F113785-C12
BXD28F427S203-1C11
BXD29F82777-C12
BXD29M76714-C12
BXD29M76714-C11
BXD31F142816-C12
BXD32F62778-C12
BXD32M218786-C12
BXD33F184793-C12
BXD33M124715-C11
BXD34F56725-C11
BXD34M91789-C12
BXD38F55781-C12
BXD38M65761-C12
BXD39M165723-C11
BXD40F56718-C11
BXD40F56718-C12
BXD40M73812-C12
BXD42F100799-C12
BXD42M97709-C11
+
+
diff --git a/general/datasets/Cb_m_0204_p/acknowledgment.rtf b/general/datasets/Cb_m_0204_p/acknowledgment.rtf new file mode 100644 index 0000000..7b62a11 --- /dev/null +++ b/general/datasets/Cb_m_0204_p/acknowledgment.rtf @@ -0,0 +1 @@ +
Data for the microarrays were generously provided by support from NIAAA INIA grants to RWW and Thomas Sutter. Support for sample acquistion and WebQTL have been provided by NIMH Human Brain Project, and the Dunavant Chair of Excellence, University of Tennessee Health Science Center. All arrays were processed at the University of Memphis by Dr. Thomas Sutter and colleagues with support of the INIA Bioanalytical Core.
diff --git a/general/datasets/Cb_m_0204_p/cases.rtf b/general/datasets/Cb_m_0204_p/cases.rtf new file mode 100644 index 0000000..9dc5cbe --- /dev/null +++ b/general/datasets/Cb_m_0204_p/cases.rtf @@ -0,0 +1,3 @@ +

We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B) and DBA/2J (D). Both B and D strains have been almost fully sequence (8x coverage for B by a public consortium and approximately 1.5x coverage for D by Celera).

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine.

diff --git a/general/datasets/Cb_m_0204_p/notes.rtf b/general/datasets/Cb_m_0204_p/notes.rtf new file mode 100644 index 0000000..f3ea488 --- /dev/null +++ b/general/datasets/Cb_m_0204_p/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, Oct 2004. Updated by RWW, Nov 5, 2004.

diff --git a/general/datasets/Cb_m_0204_p/platform.rtf b/general/datasets/Cb_m_0204_p/platform.rtf new file mode 100644 index 0000000..51cbff2 --- /dev/null +++ b/general/datasets/Cb_m_0204_p/platform.rtf @@ -0,0 +1 @@ +

Affymetrix 430A and 430B GeneChip Set: Expression data were generated using 430AB array pairs. The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on either the Verify UCSC and Verify Ensembl links in the Trait Data and Editing Form (right side of the Location line).

diff --git a/general/datasets/Cb_m_0204_p/processing.rtf b/general/datasets/Cb_m_0204_p/processing.rtf new file mode 100644 index 0000000..4663b88 --- /dev/null +++ b/general/datasets/Cb_m_0204_p/processing.rtf @@ -0,0 +1,29 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.
+ +
+ +
+ +
+

Probe set data: The original expression values in the Affymetrix CEL files were read into PerfectMatch to generate the normalized PDNN data set.

+ +

PDNN values of each array were subsequently normalized to a achieve a mean value of 8 units and a variance of 2 units.

+ +

When necessary, we computed the arithmetic mean for technical replicates and treated these as single samples. We then computed the arithmetic mean for the set of 2 to 5 biological replicates for each strain.

+
+ +

About the array probe sets names:

+ +
+

Most probe sets on the mouse 430A and 430B arrays consist of a total of 22 probes, divided into 11 perfect match(PM) probes and 11 mismatch (MM) controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, several suffix characters that highlight design features, a a final A or B character to specify the array pair member. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene.

+
diff --git a/general/datasets/Cb_m_0204_p/summary.rtf b/general/datasets/Cb_m_0204_p/summary.rtf new file mode 100644 index 0000000..c32676a --- /dev/null +++ b/general/datasets/Cb_m_0204_p/summary.rtf @@ -0,0 +1 @@ +

This October 2004 data freeze provides initial estimates of mRNA expression in brains of adult BXD recombinant inbred mice measured using Affymetrix M430AB microarrays. In contast to the U74Av2 array, this new data set provides broader coverage (~45,000 transcripts) but does not include replicates or as many strains (25 vs 35). Data were generated at UTHSC and the University of Memphis with support from grants from the NIAAA Integrative Neuroscience Initiative on Alcoholism (INIA). Data were processed using the PDNN method of Zhang. To simplify comparison among transforms, PDNN values of each array were adjusted to an average of 8 units and a variance of 2 units.

diff --git a/general/datasets/Cb_m_0204_p/tissue.rtf b/general/datasets/Cb_m_0204_p/tissue.rtf new file mode 100644 index 0000000..cac878a --- /dev/null +++ b/general/datasets/Cb_m_0204_p/tissue.rtf @@ -0,0 +1,261 @@ +

The data set consists of a single batch of Affymetrix mouse expression 430A and 430B GeneChip array pairs. Each AB pair was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai. All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter and colleagues at the University of Memphis. Before running the main batch of 30 pairs of array, we ran four "test" samples (one male and one female pool from each of the two parental strains, C57BL/6J and DBA/2J). The main set of 30 array pairs includes the same four samples (in other words we have four technical replicates), two F1 hybrid sample (each run two times for a within-batch technical replication), and 22 BXD strains. The data set therefore consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. We should note that the four technical replicates between batches were eventually combined with a correction for a highly significant batch effect. This was done at both the probe and probe set levels to "align" the test batch values with the two main batches. (The ratio of the probe average in the four test arrays to the average of the same probe in the four corresponding main batch arrays was used as a correction factor.) The F1 within-batch technical replicates were simply averaged. In the next batch we will reverse the sex of the BXD samples to achieve a balance with at least 22 BXD strains with one male and one female sample each.

+ +

The table below lists the arrays by strain, sex, age, sample identifier, and data results were obtained from the Bioanalytical Core at the University of Memphis. Each array was hybridized to a pool of mRNA from three mice.

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
StrainSexAgeSampleIDDate
B6D2F1F127919-F1Jan04
B6D2F1F127919-F2Jan04
B6D2F1M127920-F1Jan04
B6D2F1M127920-F2Jan04
C57BL/6JF65903-F1Nov03
C57BL/6JF65903-F2Jan03
C57BL/6JM66906-F1Nov03
C57BL/6JM66906-F2Jan04
DBA/2JF60917-F1Nov03
DBA/2JF60917-F2Jan04
DBA/2JM60918-F1Nov03
DBA/2JM60918-F2Jan04
BXD1F95895-F1Jan04
BXD5M71728-F1Jan04
BXD6M92902-F1Jan04
BXD8F72S167-F1Jan04
BXD9M86909-F1Jan04
BXD12M64897-F1Jan04
BXD13F86748-F1Jan04
BXD14M91912-F1Jan04
BXD18F108771-F1Jan04
BXD19F56S236-F1Jan04
BXD21F67740-F1Jan04
BXD23F88815-F1Jan04
BXD24M71913-F1Jan04
BXD25F74S373-F1Jan04
BXD28F79910-F1Jan04
BXD29F76693-F1Jan04
BXD32F93898-F1Jan04
BXD33M77915-F1Jan04
BXD34M72916-F1Jan04
BXD36M77926-F1Jan04
BXD38M69731-F1Jan04
BXD42M97936-F1Jan04
+
diff --git a/general/datasets/Cb_m_0204_r/acknowledgment.rtf b/general/datasets/Cb_m_0204_r/acknowledgment.rtf new file mode 100644 index 0000000..7b62a11 --- /dev/null +++ b/general/datasets/Cb_m_0204_r/acknowledgment.rtf @@ -0,0 +1 @@ +
Data for the microarrays were generously provided by support from NIAAA INIA grants to RWW and Thomas Sutter. Support for sample acquistion and WebQTL have been provided by NIMH Human Brain Project, and the Dunavant Chair of Excellence, University of Tennessee Health Science Center. All arrays were processed at the University of Memphis by Dr. Thomas Sutter and colleagues with support of the INIA Bioanalytical Core.
diff --git a/general/datasets/Cb_m_0204_r/cases.rtf b/general/datasets/Cb_m_0204_r/cases.rtf new file mode 100644 index 0000000..9dc5cbe --- /dev/null +++ b/general/datasets/Cb_m_0204_r/cases.rtf @@ -0,0 +1,3 @@ +

We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B) and DBA/2J (D). Both B and D strains have been almost fully sequence (8x coverage for B by a public consortium and approximately 1.5x coverage for D by Celera).

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine.

diff --git a/general/datasets/Cb_m_0204_r/notes.rtf b/general/datasets/Cb_m_0204_r/notes.rtf new file mode 100644 index 0000000..f3ea488 --- /dev/null +++ b/general/datasets/Cb_m_0204_r/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW, YHQ, and EJC, Oct 2004. Updated by RWW, Nov 5, 2004.

diff --git a/general/datasets/Cb_m_0204_r/platform.rtf b/general/datasets/Cb_m_0204_r/platform.rtf new file mode 100644 index 0000000..51cbff2 --- /dev/null +++ b/general/datasets/Cb_m_0204_r/platform.rtf @@ -0,0 +1 @@ +

Affymetrix 430A and 430B GeneChip Set: Expression data were generated using 430AB array pairs. The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on either the Verify UCSC and Verify Ensembl links in the Trait Data and Editing Form (right side of the Location line).

diff --git a/general/datasets/Cb_m_0204_r/processing.rtf b/general/datasets/Cb_m_0204_r/processing.rtf new file mode 100644 index 0000000..4663b88 --- /dev/null +++ b/general/datasets/Cb_m_0204_r/processing.rtf @@ -0,0 +1,29 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.
+ +
+ +
+ +
+

Probe set data: The original expression values in the Affymetrix CEL files were read into PerfectMatch to generate the normalized PDNN data set.

+ +

PDNN values of each array were subsequently normalized to a achieve a mean value of 8 units and a variance of 2 units.

+ +

When necessary, we computed the arithmetic mean for technical replicates and treated these as single samples. We then computed the arithmetic mean for the set of 2 to 5 biological replicates for each strain.

+
+ +

About the array probe sets names:

+ +
+

Most probe sets on the mouse 430A and 430B arrays consist of a total of 22 probes, divided into 11 perfect match(PM) probes and 11 mismatch (MM) controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, several suffix characters that highlight design features, a a final A or B character to specify the array pair member. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene.

+
diff --git a/general/datasets/Cb_m_0204_r/summary.rtf b/general/datasets/Cb_m_0204_r/summary.rtf new file mode 100644 index 0000000..c32676a --- /dev/null +++ b/general/datasets/Cb_m_0204_r/summary.rtf @@ -0,0 +1 @@ +

This October 2004 data freeze provides initial estimates of mRNA expression in brains of adult BXD recombinant inbred mice measured using Affymetrix M430AB microarrays. In contast to the U74Av2 array, this new data set provides broader coverage (~45,000 transcripts) but does not include replicates or as many strains (25 vs 35). Data were generated at UTHSC and the University of Memphis with support from grants from the NIAAA Integrative Neuroscience Initiative on Alcoholism (INIA). Data were processed using the PDNN method of Zhang. To simplify comparison among transforms, PDNN values of each array were adjusted to an average of 8 units and a variance of 2 units.

diff --git a/general/datasets/Cb_m_0204_r/tissue.rtf b/general/datasets/Cb_m_0204_r/tissue.rtf new file mode 100644 index 0000000..cac878a --- /dev/null +++ b/general/datasets/Cb_m_0204_r/tissue.rtf @@ -0,0 +1,261 @@ +

The data set consists of a single batch of Affymetrix mouse expression 430A and 430B GeneChip array pairs. Each AB pair was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai. All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter and colleagues at the University of Memphis. Before running the main batch of 30 pairs of array, we ran four "test" samples (one male and one female pool from each of the two parental strains, C57BL/6J and DBA/2J). The main set of 30 array pairs includes the same four samples (in other words we have four technical replicates), two F1 hybrid sample (each run two times for a within-batch technical replication), and 22 BXD strains. The data set therefore consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. We should note that the four technical replicates between batches were eventually combined with a correction for a highly significant batch effect. This was done at both the probe and probe set levels to "align" the test batch values with the two main batches. (The ratio of the probe average in the four test arrays to the average of the same probe in the four corresponding main batch arrays was used as a correction factor.) The F1 within-batch technical replicates were simply averaged. In the next batch we will reverse the sex of the BXD samples to achieve a balance with at least 22 BXD strains with one male and one female sample each.

+ +

The table below lists the arrays by strain, sex, age, sample identifier, and data results were obtained from the Bioanalytical Core at the University of Memphis. Each array was hybridized to a pool of mRNA from three mice.

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
StrainSexAgeSampleIDDate
B6D2F1F127919-F1Jan04
B6D2F1F127919-F2Jan04
B6D2F1M127920-F1Jan04
B6D2F1M127920-F2Jan04
C57BL/6JF65903-F1Nov03
C57BL/6JF65903-F2Jan03
C57BL/6JM66906-F1Nov03
C57BL/6JM66906-F2Jan04
DBA/2JF60917-F1Nov03
DBA/2JF60917-F2Jan04
DBA/2JM60918-F1Nov03
DBA/2JM60918-F2Jan04
BXD1F95895-F1Jan04
BXD5M71728-F1Jan04
BXD6M92902-F1Jan04
BXD8F72S167-F1Jan04
BXD9M86909-F1Jan04
BXD12M64897-F1Jan04
BXD13F86748-F1Jan04
BXD14M91912-F1Jan04
BXD18F108771-F1Jan04
BXD19F56S236-F1Jan04
BXD21F67740-F1Jan04
BXD23F88815-F1Jan04
BXD24M71913-F1Jan04
BXD25F74S373-F1Jan04
BXD28F79910-F1Jan04
BXD29F76693-F1Jan04
BXD32F93898-F1Jan04
BXD33M77915-F1Jan04
BXD34M72916-F1Jan04
BXD36M77926-F1Jan04
BXD38M69731-F1Jan04
BXD42M97936-F1Jan04
+
diff --git a/general/datasets/Cb_m_0305_m/acknowledgment.rtf b/general/datasets/Cb_m_0305_m/acknowledgment.rtf new file mode 100644 index 0000000..4fa1990 --- /dev/null +++ b/general/datasets/Cb_m_0305_m/acknowledgment.rtf @@ -0,0 +1,15 @@ +
Data were generated with funds contributed by members of the UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include: + +
diff --git a/general/datasets/Cb_m_0305_m/cases.rtf b/general/datasets/Cb_m_0305_m/cases.rtf new file mode 100644 index 0000000..7c1e52c --- /dev/null +++ b/general/datasets/Cb_m_0305_m/cases.rtf @@ -0,0 +1,5 @@ +
We have exploited a set of BXD recombinant inbred strains. All BXD lines are derived crossed between C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D parental strains have been almost fully sequenced (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera Discovery Systems) and data for 1.75 millioin B vs D SNPs are incorporated into WebQTLs genetic maps for the BXDs. BXD2 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were also produced by Taylor, but they were generated in the 1990s. These strains are all available from The Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). +

 

+ +

Most BXD animals were generated in-house at the University of Tennessee Health Science Center by Lu Lu and Robert Williams using stock obtained from The Jackson Laboratory between 1999 and 2004. All BXD strains with numbers above 42 are new advanced intecross type BXDs (Peirce et al. 2004) that are current available from UTHSC. Additional cases were provided by Glenn Rosen, John Mountz, and Hui-Chen Hsu. These cases were bred either at The Jackson Laboratory (GR) or at the University of Alabama (JM and HCH).

+
diff --git a/general/datasets/Cb_m_0305_m/notes.rtf b/general/datasets/Cb_m_0305_m/notes.rtf new file mode 100644 index 0000000..73487ea --- /dev/null +++ b/general/datasets/Cb_m_0305_m/notes.rtf @@ -0,0 +1,5 @@ +

About the chromosome and megabase position values:

+ +
The chromosomal locations of probe sets included on the microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium March 2005 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
+ +

This text file originally generated by RWW and YHQ, March 21, 2005. Updated by RWW, March 23, 2005; RWW April 8.

diff --git a/general/datasets/Cb_m_0305_m/platform.rtf b/general/datasets/Cb_m_0305_m/platform.rtf new file mode 100644 index 0000000..39256be --- /dev/null +++ b/general/datasets/Cb_m_0305_m/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Genome 430A and B array pairs: The 430A and B array pairs consist of 992936 25-nucleotide probes that collectively estimate the expression of approximately 39,000 transcripts. The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequences as the 430 2.0 series. However, we have found that roughy 75000 probes differ from those on A and B arrays and those on the 430 2.0

diff --git a/general/datasets/Cb_m_0305_m/processing.rtf b/general/datasets/Cb_m_0305_m/processing.rtf new file mode 100644 index 0000000..f7b4668 --- /dev/null +++ b/general/datasets/Cb_m_0305_m/processing.rtf @@ -0,0 +1,13 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). Probe set data were generated from the fully normalized CEL files (quantile and batch corrected) using the standard MAS 5 Tukey biweight procedure. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
diff --git a/general/datasets/Cb_m_0305_m/summary.rtf b/general/datasets/Cb_m_0305_m/summary.rtf new file mode 100644 index 0000000..34c7e0d --- /dev/null +++ b/general/datasets/Cb_m_0305_m/summary.rtf @@ -0,0 +1 @@ +

This March 2005 data freeze provides estimates of mRNA expression in adult cerebellum of 48 lines of mice including 45 BXD recombinant inbred strains, C57BL/6J, DBA/2J, and F1 hybrids. Data were generated by a consortium of investigators at St. Jude Children's Research Hospital (SJ) and the University of Tennessee Health Science Center (UT). Cerebellar samples were hybridized in small pools (n = 3) to Affymetrix M430A and B arrays. This particular data set was processed using the Microarray Suite 5 (<a data-cke-saved-href="http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf" href="http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf" _blank"="" class="fs14">MAS 5) protocol. To simplify comparisons among transforms, MAS5 values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.

diff --git a/general/datasets/Cb_m_0305_m/tissue.rtf b/general/datasets/Cb_m_0305_m/tissue.rtf new file mode 100644 index 0000000..e803a45 --- /dev/null +++ b/general/datasets/Cb_m_0305_m/tissue.rtf @@ -0,0 +1,1370 @@ +
+

The March 2005 data set consists of a total of 102 array pairs (Affymetrix 430A and 430B) from 49 different genotypes. Each sample consists of whole cerebellum taken from three adult animals of the same age and sex. Two sets of technical replicates (BXD14 n = 2; BXD29 n = 3) were combined before generating group means; giving a total of 101 biologically independent data sets. The two reciprocal F1s (D2B6F1 and B6D2F1) were combined to give a single F1 mean estimate of gene expression. 430A and 430B arrays were processed in three large batches. The first batch (May03 data) consists of 17 samples from 17 strains balanced by sex (8M and 9F). The second batch consists of 29 samples, and includes biological replicates, 2 technical replicates, and data for 9 new strains. The third batch consists of 56 samples, and also includes biological replicates, 2 technical replicates, and data for 15 additional strains.

+ +

Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from both sexes for each strain. Six of 48 genotypes are still represented by single samples: BXD5, BXD13, BXD20, BXD23, BXD27 are female-only strains, whereas BXD25, BXD77, BXD90 are male-only. Ten strains are represented by three independent samples with the following breakdown by sex: C57BL/6J (1F 2M), DBA/2J (2F 1M), B6D2F1 (1F 2M), BXD2 (2F 1M), BXD11 (2F 1M), BXD28 (2F 1M), BXD40 (2F 1M), BXD51 (1F 2M), BXD60 (1F 2M), BXD92 (2F 1M).

+ +

The age range of samples is relatively narrow. Only 18 samples were taken from animals older than 99 days and only two samples are older than 7 months of age. BXD11 includes an extra (third) 441-day-old female sample and the BXD28 includes an extra 427-day-old sample.

+ +

RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai.

+ +

All samples were subsequently processed at the Hartwell Center Affymetrix laboratory at SJCRH by Jay Morris.

+
+ +
The table below summarizes information on strain, sex, age, sample name, and batch number.
+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IdStrainSexAge +

SampleName

+
+

BatchID

+
Source
1C57BL/6JF116 +

R0773C

+
+

2

+
UAB
2C57BL/6JM109 +

R0054C

+
+

1

+
JAX
3C57BL/6JM71 +

R1450C

+
+

3

+
UTM DG
4DBA/2JF71 +

R0175C

+
+

1

+
UAB
5DBA/2JF91 +

R0782C

+
+

2

+
UAB
6DBA/2JM62 +

R1121C

+
+

3

+
UTM RW
7B6D2F1F60 +

R1115C

+
+

3

+
UTM RW
8B6D2F1M94 +

R0347C

+
+

1

+
JAX
9B6D2F1M127 +

R0766C

+
+

2

+
UTM JB
10D2B6F1F57 +

R1067C

+
+

3

+
UTM RW
11D2B6F1M60 +

R1387C

+
+

3

+
UTM RW
12BXD1F57 +

R0813C

+
+

2

+
UAB
13BXD1M181 +

R1151C

+
+

3

+
UTM JB
14BXD2F142 +

R0751C

+
+

1

+
UAB
15BXD2F78 +

R0774C

+
+

2

+
UAB
16BXD2M61 +

R1503C

+
+

3

+
HarvardU GR
17BXD5F56 +

R0802C

+
+

2

+
UMemphis
18BXD6F92 +

R0719C

+
+

1

+
UMemphis
19BXD6M92 +

R0720C

+
+

3

+
UMemphis
20BXD8F72 +

R0173C

+
+

1

+
UAB
21BXD8M59 +

R1484C

+
+

3

+
HarvardU GR
22BXD9F86 +

R0736C

+
+

3

+
UMemphis
23BXD9M86 +

R0737C

+
+

1

+
UMemphis
24BXD11F441 +

R0200C

+
+

1

+
UAB
25BXD11F97 +

R0791C

+
+

3

+
UAB
26BXD11M92 +

R0790C

+
+

2

+
UMemphis
27BXD12F130 +

R0776C

+
+

2

+
UAB
28BXD12M64 +

R0756C

+
+

2

+
UMemphis
29BXD13F86 +

R1144C

+
+

3

+
UMemphis
30BXD14F190 +

R0794C

+
+

2

+
UAB
31BXD14F190 +

R0794C

+
+

3

+
UAB
32BXD14M91 +

R0758C

+
+

2

+
UMemphis
33BXD14M65 +

R1130C

+
+

3

+
UTM RW
34BXD15F60 +

R1491C

+
+

3

+
HarvardU GR
35BXD15M61 +

R1499C

+
+

3

+
HarvardU GR
36BXD16F163 +

R0750C

+
+

1

+
UAB
37BXD16M61 +

R1572C

+
+

3

+
HarvardU GR
38BXD19F61 +

R0772C

+
+

2

+
UAB
39BXD19M157 +

R1230C

+
+

3

+
UTM JB
40BXD20F59 +

R1488C

+
+

3

+
HarvardU GR
41BXD21F116 +

R0711C

+
+

1

+
UAB
42BXD21M64 +

R0803C

+
+

2

+
UMemphis
43BXD22F65 +

R0174C

+
+

1

+
UAB
44BXD22M59 +

R1489C

+
+

3

+
HarvardU GR
45BXD23F88 +

R0814C

+
+

2

+
UAB
46BXD24F71 +

R0805C

+
+

2

+
UMemphis
47BXD24M71 +

R0759C

+
+

2

+
UMemphis
48BXD25M90 +

R0429C

+
+

1

+
UTM RW
49BXD27F60 +

R1496C

+
+

3

+
HarvardU GR
50BXD28F113 +

R0785C

+
+

2

+
UTM RW
51BXD28M79 +

R0739C

+
+

3

+
UMemphis
52BXD29F82 +

R0777C

+
+

2

+
UAB
53BXD29M76 +

R0714C

+
+

1

+
UMemphis
54BXD29M76 +

R0714C

+
+

2

+
UMemphis
55BXD29M76 +

R0714C

+
+

3

+
UMemphis
56BXD31F142 +

R0816C

+
+

2

+
UAB
57BXD31M61 +

R1142C

+
+

3

+
UTM RW
58BXD32F62 +

R0778C

+
+

2

+
UAB
59BXD32M218 +

R0786C

+
+

2

+
UAB
60BXD33F184 +

R0793C

+
+

2

+
UAB
61BXD33M124 +

R0715C

+
+

1

+
UAB
62BXD34F56 +

R0725C

+
+

1

+
UMemphis
63BXD34M91 +

R0789C

+
+

2

+
UMemphis
64BXD36F64 +

R1667C

+
+

3

+
UTM RW
65BXD36M61 +

R1212C

+
+

3

+
UMemphis
66BXD38F55 +

R0781C

+
+

2

+
UAB
67BXD38M65 +

R0761C

+
+

2

+
UMemphis
68BXD39F59 +

R1490C

+
+

3

+
HarvardU GR
69BXD39M165 +

R0723C

+
+

1

+
UAB
70BXD40F56 +

R0718C

+
+

2

+
UMemphis
71BXD40M73 +

R0812C

+
+

2

+
UMemphis
72BXD42F100 +

R0799C

+
+

2

+
UAB
73BXD42M97 +

R0709C

+
+

1

+
UMemphis
74BXD43F61 +

R1200C

+
+

3

+
UTM RW
75BXD43M63 +

R1182C

+
+

3

+
UTM RW
76BXD44F61 +

R1188C

+
+

3

+
UTM RW
77BXD44M58 +

R1073C

+
+

3

+
UTM RW
78BXD45F63 +

R1404C

+
+

3

+
UTM RW
79BXD45M93 +

R1506C

+
+

3

+
UTM RW
80BXD48F64 +

R1158C

+
+

3

+
UTM RW
81BXD48M65 +

R1165C

+
+

3

+
UTM RW
82BXD51F66 +

R1666C

+
+

3

+
UTM RW
83BXD51M62 +

R1180C

+
+

3

+
UTM RW
84BXD51M79 +

R1671C

+
+

3

+
UTM RW
85BXD60F64 +

R1160C

+
+

3

+
UTM RW
86BXD60M61 +

R1103C

+
+

3

+
UTM RW
87BXD60M99 +

R1669C

+
+

3

+
UTM RW
88BXD62M61 +

R1149C

+
+

3

+
UTM RW
89BXD62M60 +

R1668C

+
+

3

+
UTM RW
90BXD69F60 +

R1440C

+
+

3

+
UTM RW
91BXD69M64 +

R1197C

+
+

3

+
UTM RW
92BXD73F60 +

R1276C

+
+

3

+
UTM RW
93BXD73M77 +

R1665C

+
+

3

+
UTM RW
94BXD77M62 +

R1424C

+
+

3

+
UTM RW
95BXD85F79 +

R1486C

+
+

3

+
UTM RW
96BXD85M79 +

R1487C

+
+

3

+
UTM RW
97BXD86F58 +

R1408C

+
+

3

+
UTM RW
98BXD86M58 +

R1412C

+
+

3

+
UTM RW
99BXD90M74 +

R1664C

+
+

3

+
UTM RW
100BXD92F62 +

R1391C

+
+

3

+
UTM RW
101BXD92F63 +

R1670C

+
+

3

+
UTM RW
102BXD92M59 +

R1308C

+
+

3

+
UTM RW
+
+
diff --git a/general/datasets/Cb_m_0305_p/acknowledgment.rtf b/general/datasets/Cb_m_0305_p/acknowledgment.rtf new file mode 100644 index 0000000..4fa1990 --- /dev/null +++ b/general/datasets/Cb_m_0305_p/acknowledgment.rtf @@ -0,0 +1,15 @@ +
Data were generated with funds contributed by members of the UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include: + +
diff --git a/general/datasets/Cb_m_0305_p/cases.rtf b/general/datasets/Cb_m_0305_p/cases.rtf new file mode 100644 index 0000000..7c1e52c --- /dev/null +++ b/general/datasets/Cb_m_0305_p/cases.rtf @@ -0,0 +1,5 @@ +
We have exploited a set of BXD recombinant inbred strains. All BXD lines are derived crossed between C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D parental strains have been almost fully sequenced (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera Discovery Systems) and data for 1.75 millioin B vs D SNPs are incorporated into WebQTLs genetic maps for the BXDs. BXD2 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were also produced by Taylor, but they were generated in the 1990s. These strains are all available from The Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). +

 

+ +

Most BXD animals were generated in-house at the University of Tennessee Health Science Center by Lu Lu and Robert Williams using stock obtained from The Jackson Laboratory between 1999 and 2004. All BXD strains with numbers above 42 are new advanced intecross type BXDs (Peirce et al. 2004) that are current available from UTHSC. Additional cases were provided by Glenn Rosen, John Mountz, and Hui-Chen Hsu. These cases were bred either at The Jackson Laboratory (GR) or at the University of Alabama (JM and HCH).

+
diff --git a/general/datasets/Cb_m_0305_p/notes.rtf b/general/datasets/Cb_m_0305_p/notes.rtf new file mode 100644 index 0000000..73487ea --- /dev/null +++ b/general/datasets/Cb_m_0305_p/notes.rtf @@ -0,0 +1,5 @@ +

About the chromosome and megabase position values:

+ +
The chromosomal locations of probe sets included on the microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium March 2005 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
+ +

This text file originally generated by RWW and YHQ, March 21, 2005. Updated by RWW, March 23, 2005; RWW April 8.

diff --git a/general/datasets/Cb_m_0305_p/platform.rtf b/general/datasets/Cb_m_0305_p/platform.rtf new file mode 100644 index 0000000..39256be --- /dev/null +++ b/general/datasets/Cb_m_0305_p/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Genome 430A and B array pairs: The 430A and B array pairs consist of 992936 25-nucleotide probes that collectively estimate the expression of approximately 39,000 transcripts. The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequences as the 430 2.0 series. However, we have found that roughy 75000 probes differ from those on A and B arrays and those on the 430 2.0

diff --git a/general/datasets/Cb_m_0305_p/processing.rtf b/general/datasets/Cb_m_0305_p/processing.rtf new file mode 100644 index 0000000..f7b4668 --- /dev/null +++ b/general/datasets/Cb_m_0305_p/processing.rtf @@ -0,0 +1,13 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). Probe set data were generated from the fully normalized CEL files (quantile and batch corrected) using the standard MAS 5 Tukey biweight procedure. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
diff --git a/general/datasets/Cb_m_0305_p/summary.rtf b/general/datasets/Cb_m_0305_p/summary.rtf new file mode 100644 index 0000000..34c7e0d --- /dev/null +++ b/general/datasets/Cb_m_0305_p/summary.rtf @@ -0,0 +1 @@ +

This March 2005 data freeze provides estimates of mRNA expression in adult cerebellum of 48 lines of mice including 45 BXD recombinant inbred strains, C57BL/6J, DBA/2J, and F1 hybrids. Data were generated by a consortium of investigators at St. Jude Children's Research Hospital (SJ) and the University of Tennessee Health Science Center (UT). Cerebellar samples were hybridized in small pools (n = 3) to Affymetrix M430A and B arrays. This particular data set was processed using the Microarray Suite 5 (<a data-cke-saved-href="http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf" href="http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf" _blank"="" class="fs14">MAS 5) protocol. To simplify comparisons among transforms, MAS5 values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.

diff --git a/general/datasets/Cb_m_0305_p/tissue.rtf b/general/datasets/Cb_m_0305_p/tissue.rtf new file mode 100644 index 0000000..e803a45 --- /dev/null +++ b/general/datasets/Cb_m_0305_p/tissue.rtf @@ -0,0 +1,1370 @@ +
+

The March 2005 data set consists of a total of 102 array pairs (Affymetrix 430A and 430B) from 49 different genotypes. Each sample consists of whole cerebellum taken from three adult animals of the same age and sex. Two sets of technical replicates (BXD14 n = 2; BXD29 n = 3) were combined before generating group means; giving a total of 101 biologically independent data sets. The two reciprocal F1s (D2B6F1 and B6D2F1) were combined to give a single F1 mean estimate of gene expression. 430A and 430B arrays were processed in three large batches. The first batch (May03 data) consists of 17 samples from 17 strains balanced by sex (8M and 9F). The second batch consists of 29 samples, and includes biological replicates, 2 technical replicates, and data for 9 new strains. The third batch consists of 56 samples, and also includes biological replicates, 2 technical replicates, and data for 15 additional strains.

+ +

Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from both sexes for each strain. Six of 48 genotypes are still represented by single samples: BXD5, BXD13, BXD20, BXD23, BXD27 are female-only strains, whereas BXD25, BXD77, BXD90 are male-only. Ten strains are represented by three independent samples with the following breakdown by sex: C57BL/6J (1F 2M), DBA/2J (2F 1M), B6D2F1 (1F 2M), BXD2 (2F 1M), BXD11 (2F 1M), BXD28 (2F 1M), BXD40 (2F 1M), BXD51 (1F 2M), BXD60 (1F 2M), BXD92 (2F 1M).

+ +

The age range of samples is relatively narrow. Only 18 samples were taken from animals older than 99 days and only two samples are older than 7 months of age. BXD11 includes an extra (third) 441-day-old female sample and the BXD28 includes an extra 427-day-old sample.

+ +

RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai.

+ +

All samples were subsequently processed at the Hartwell Center Affymetrix laboratory at SJCRH by Jay Morris.

+
+ +
The table below summarizes information on strain, sex, age, sample name, and batch number.
+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IdStrainSexAge +

SampleName

+
+

BatchID

+
Source
1C57BL/6JF116 +

R0773C

+
+

2

+
UAB
2C57BL/6JM109 +

R0054C

+
+

1

+
JAX
3C57BL/6JM71 +

R1450C

+
+

3

+
UTM DG
4DBA/2JF71 +

R0175C

+
+

1

+
UAB
5DBA/2JF91 +

R0782C

+
+

2

+
UAB
6DBA/2JM62 +

R1121C

+
+

3

+
UTM RW
7B6D2F1F60 +

R1115C

+
+

3

+
UTM RW
8B6D2F1M94 +

R0347C

+
+

1

+
JAX
9B6D2F1M127 +

R0766C

+
+

2

+
UTM JB
10D2B6F1F57 +

R1067C

+
+

3

+
UTM RW
11D2B6F1M60 +

R1387C

+
+

3

+
UTM RW
12BXD1F57 +

R0813C

+
+

2

+
UAB
13BXD1M181 +

R1151C

+
+

3

+
UTM JB
14BXD2F142 +

R0751C

+
+

1

+
UAB
15BXD2F78 +

R0774C

+
+

2

+
UAB
16BXD2M61 +

R1503C

+
+

3

+
HarvardU GR
17BXD5F56 +

R0802C

+
+

2

+
UMemphis
18BXD6F92 +

R0719C

+
+

1

+
UMemphis
19BXD6M92 +

R0720C

+
+

3

+
UMemphis
20BXD8F72 +

R0173C

+
+

1

+
UAB
21BXD8M59 +

R1484C

+
+

3

+
HarvardU GR
22BXD9F86 +

R0736C

+
+

3

+
UMemphis
23BXD9M86 +

R0737C

+
+

1

+
UMemphis
24BXD11F441 +

R0200C

+
+

1

+
UAB
25BXD11F97 +

R0791C

+
+

3

+
UAB
26BXD11M92 +

R0790C

+
+

2

+
UMemphis
27BXD12F130 +

R0776C

+
+

2

+
UAB
28BXD12M64 +

R0756C

+
+

2

+
UMemphis
29BXD13F86 +

R1144C

+
+

3

+
UMemphis
30BXD14F190 +

R0794C

+
+

2

+
UAB
31BXD14F190 +

R0794C

+
+

3

+
UAB
32BXD14M91 +

R0758C

+
+

2

+
UMemphis
33BXD14M65 +

R1130C

+
+

3

+
UTM RW
34BXD15F60 +

R1491C

+
+

3

+
HarvardU GR
35BXD15M61 +

R1499C

+
+

3

+
HarvardU GR
36BXD16F163 +

R0750C

+
+

1

+
UAB
37BXD16M61 +

R1572C

+
+

3

+
HarvardU GR
38BXD19F61 +

R0772C

+
+

2

+
UAB
39BXD19M157 +

R1230C

+
+

3

+
UTM JB
40BXD20F59 +

R1488C

+
+

3

+
HarvardU GR
41BXD21F116 +

R0711C

+
+

1

+
UAB
42BXD21M64 +

R0803C

+
+

2

+
UMemphis
43BXD22F65 +

R0174C

+
+

1

+
UAB
44BXD22M59 +

R1489C

+
+

3

+
HarvardU GR
45BXD23F88 +

R0814C

+
+

2

+
UAB
46BXD24F71 +

R0805C

+
+

2

+
UMemphis
47BXD24M71 +

R0759C

+
+

2

+
UMemphis
48BXD25M90 +

R0429C

+
+

1

+
UTM RW
49BXD27F60 +

R1496C

+
+

3

+
HarvardU GR
50BXD28F113 +

R0785C

+
+

2

+
UTM RW
51BXD28M79 +

R0739C

+
+

3

+
UMemphis
52BXD29F82 +

R0777C

+
+

2

+
UAB
53BXD29M76 +

R0714C

+
+

1

+
UMemphis
54BXD29M76 +

R0714C

+
+

2

+
UMemphis
55BXD29M76 +

R0714C

+
+

3

+
UMemphis
56BXD31F142 +

R0816C

+
+

2

+
UAB
57BXD31M61 +

R1142C

+
+

3

+
UTM RW
58BXD32F62 +

R0778C

+
+

2

+
UAB
59BXD32M218 +

R0786C

+
+

2

+
UAB
60BXD33F184 +

R0793C

+
+

2

+
UAB
61BXD33M124 +

R0715C

+
+

1

+
UAB
62BXD34F56 +

R0725C

+
+

1

+
UMemphis
63BXD34M91 +

R0789C

+
+

2

+
UMemphis
64BXD36F64 +

R1667C

+
+

3

+
UTM RW
65BXD36M61 +

R1212C

+
+

3

+
UMemphis
66BXD38F55 +

R0781C

+
+

2

+
UAB
67BXD38M65 +

R0761C

+
+

2

+
UMemphis
68BXD39F59 +

R1490C

+
+

3

+
HarvardU GR
69BXD39M165 +

R0723C

+
+

1

+
UAB
70BXD40F56 +

R0718C

+
+

2

+
UMemphis
71BXD40M73 +

R0812C

+
+

2

+
UMemphis
72BXD42F100 +

R0799C

+
+

2

+
UAB
73BXD42M97 +

R0709C

+
+

1

+
UMemphis
74BXD43F61 +

R1200C

+
+

3

+
UTM RW
75BXD43M63 +

R1182C

+
+

3

+
UTM RW
76BXD44F61 +

R1188C

+
+

3

+
UTM RW
77BXD44M58 +

R1073C

+
+

3

+
UTM RW
78BXD45F63 +

R1404C

+
+

3

+
UTM RW
79BXD45M93 +

R1506C

+
+

3

+
UTM RW
80BXD48F64 +

R1158C

+
+

3

+
UTM RW
81BXD48M65 +

R1165C

+
+

3

+
UTM RW
82BXD51F66 +

R1666C

+
+

3

+
UTM RW
83BXD51M62 +

R1180C

+
+

3

+
UTM RW
84BXD51M79 +

R1671C

+
+

3

+
UTM RW
85BXD60F64 +

R1160C

+
+

3

+
UTM RW
86BXD60M61 +

R1103C

+
+

3

+
UTM RW
87BXD60M99 +

R1669C

+
+

3

+
UTM RW
88BXD62M61 +

R1149C

+
+

3

+
UTM RW
89BXD62M60 +

R1668C

+
+

3

+
UTM RW
90BXD69F60 +

R1440C

+
+

3

+
UTM RW
91BXD69M64 +

R1197C

+
+

3

+
UTM RW
92BXD73F60 +

R1276C

+
+

3

+
UTM RW
93BXD73M77 +

R1665C

+
+

3

+
UTM RW
94BXD77M62 +

R1424C

+
+

3

+
UTM RW
95BXD85F79 +

R1486C

+
+

3

+
UTM RW
96BXD85M79 +

R1487C

+
+

3

+
UTM RW
97BXD86F58 +

R1408C

+
+

3

+
UTM RW
98BXD86M58 +

R1412C

+
+

3

+
UTM RW
99BXD90M74 +

R1664C

+
+

3

+
UTM RW
100BXD92F62 +

R1391C

+
+

3

+
UTM RW
101BXD92F63 +

R1670C

+
+

3

+
UTM RW
102BXD92M59 +

R1308C

+
+

3

+
UTM RW
+
+
diff --git a/general/datasets/Cb_m_0305_r/acknowledgment.rtf b/general/datasets/Cb_m_0305_r/acknowledgment.rtf new file mode 100644 index 0000000..4fa1990 --- /dev/null +++ b/general/datasets/Cb_m_0305_r/acknowledgment.rtf @@ -0,0 +1,15 @@ +
Data were generated with funds contributed by members of the UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include: + +
diff --git a/general/datasets/Cb_m_0305_r/cases.rtf b/general/datasets/Cb_m_0305_r/cases.rtf new file mode 100644 index 0000000..7c1e52c --- /dev/null +++ b/general/datasets/Cb_m_0305_r/cases.rtf @@ -0,0 +1,5 @@ +
We have exploited a set of BXD recombinant inbred strains. All BXD lines are derived crossed between C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D parental strains have been almost fully sequenced (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera Discovery Systems) and data for 1.75 millioin B vs D SNPs are incorporated into WebQTLs genetic maps for the BXDs. BXD2 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were also produced by Taylor, but they were generated in the 1990s. These strains are all available from The Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). +

 

+ +

Most BXD animals were generated in-house at the University of Tennessee Health Science Center by Lu Lu and Robert Williams using stock obtained from The Jackson Laboratory between 1999 and 2004. All BXD strains with numbers above 42 are new advanced intecross type BXDs (Peirce et al. 2004) that are current available from UTHSC. Additional cases were provided by Glenn Rosen, John Mountz, and Hui-Chen Hsu. These cases were bred either at The Jackson Laboratory (GR) or at the University of Alabama (JM and HCH).

+
diff --git a/general/datasets/Cb_m_0305_r/notes.rtf b/general/datasets/Cb_m_0305_r/notes.rtf new file mode 100644 index 0000000..73487ea --- /dev/null +++ b/general/datasets/Cb_m_0305_r/notes.rtf @@ -0,0 +1,5 @@ +

About the chromosome and megabase position values:

+ +
The chromosomal locations of probe sets included on the microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium March 2005 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
+ +

This text file originally generated by RWW and YHQ, March 21, 2005. Updated by RWW, March 23, 2005; RWW April 8.

diff --git a/general/datasets/Cb_m_0305_r/platform.rtf b/general/datasets/Cb_m_0305_r/platform.rtf new file mode 100644 index 0000000..39256be --- /dev/null +++ b/general/datasets/Cb_m_0305_r/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Genome 430A and B array pairs: The 430A and B array pairs consist of 992936 25-nucleotide probes that collectively estimate the expression of approximately 39,000 transcripts. The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequences as the 430 2.0 series. However, we have found that roughy 75000 probes differ from those on A and B arrays and those on the 430 2.0

diff --git a/general/datasets/Cb_m_0305_r/processing.rtf b/general/datasets/Cb_m_0305_r/processing.rtf new file mode 100644 index 0000000..f7b4668 --- /dev/null +++ b/general/datasets/Cb_m_0305_r/processing.rtf @@ -0,0 +1,13 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). Probe set data were generated from the fully normalized CEL files (quantile and batch corrected) using the standard MAS 5 Tukey biweight procedure. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
diff --git a/general/datasets/Cb_m_0305_r/summary.rtf b/general/datasets/Cb_m_0305_r/summary.rtf new file mode 100644 index 0000000..34c7e0d --- /dev/null +++ b/general/datasets/Cb_m_0305_r/summary.rtf @@ -0,0 +1 @@ +

This March 2005 data freeze provides estimates of mRNA expression in adult cerebellum of 48 lines of mice including 45 BXD recombinant inbred strains, C57BL/6J, DBA/2J, and F1 hybrids. Data were generated by a consortium of investigators at St. Jude Children's Research Hospital (SJ) and the University of Tennessee Health Science Center (UT). Cerebellar samples were hybridized in small pools (n = 3) to Affymetrix M430A and B arrays. This particular data set was processed using the Microarray Suite 5 (<a data-cke-saved-href="http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf" href="http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf" _blank"="" class="fs14">MAS 5) protocol. To simplify comparisons among transforms, MAS5 values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.

diff --git a/general/datasets/Cb_m_0305_r/tissue.rtf b/general/datasets/Cb_m_0305_r/tissue.rtf new file mode 100644 index 0000000..e803a45 --- /dev/null +++ b/general/datasets/Cb_m_0305_r/tissue.rtf @@ -0,0 +1,1370 @@ +
+

The March 2005 data set consists of a total of 102 array pairs (Affymetrix 430A and 430B) from 49 different genotypes. Each sample consists of whole cerebellum taken from three adult animals of the same age and sex. Two sets of technical replicates (BXD14 n = 2; BXD29 n = 3) were combined before generating group means; giving a total of 101 biologically independent data sets. The two reciprocal F1s (D2B6F1 and B6D2F1) were combined to give a single F1 mean estimate of gene expression. 430A and 430B arrays were processed in three large batches. The first batch (May03 data) consists of 17 samples from 17 strains balanced by sex (8M and 9F). The second batch consists of 29 samples, and includes biological replicates, 2 technical replicates, and data for 9 new strains. The third batch consists of 56 samples, and also includes biological replicates, 2 technical replicates, and data for 15 additional strains.

+ +

Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from both sexes for each strain. Six of 48 genotypes are still represented by single samples: BXD5, BXD13, BXD20, BXD23, BXD27 are female-only strains, whereas BXD25, BXD77, BXD90 are male-only. Ten strains are represented by three independent samples with the following breakdown by sex: C57BL/6J (1F 2M), DBA/2J (2F 1M), B6D2F1 (1F 2M), BXD2 (2F 1M), BXD11 (2F 1M), BXD28 (2F 1M), BXD40 (2F 1M), BXD51 (1F 2M), BXD60 (1F 2M), BXD92 (2F 1M).

+ +

The age range of samples is relatively narrow. Only 18 samples were taken from animals older than 99 days and only two samples are older than 7 months of age. BXD11 includes an extra (third) 441-day-old female sample and the BXD28 includes an extra 427-day-old sample.

+ +

RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai.

+ +

All samples were subsequently processed at the Hartwell Center Affymetrix laboratory at SJCRH by Jay Morris.

+
+ +
The table below summarizes information on strain, sex, age, sample name, and batch number.
+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IdStrainSexAge +

SampleName

+
+

BatchID

+
Source
1C57BL/6JF116 +

R0773C

+
+

2

+
UAB
2C57BL/6JM109 +

R0054C

+
+

1

+
JAX
3C57BL/6JM71 +

R1450C

+
+

3

+
UTM DG
4DBA/2JF71 +

R0175C

+
+

1

+
UAB
5DBA/2JF91 +

R0782C

+
+

2

+
UAB
6DBA/2JM62 +

R1121C

+
+

3

+
UTM RW
7B6D2F1F60 +

R1115C

+
+

3

+
UTM RW
8B6D2F1M94 +

R0347C

+
+

1

+
JAX
9B6D2F1M127 +

R0766C

+
+

2

+
UTM JB
10D2B6F1F57 +

R1067C

+
+

3

+
UTM RW
11D2B6F1M60 +

R1387C

+
+

3

+
UTM RW
12BXD1F57 +

R0813C

+
+

2

+
UAB
13BXD1M181 +

R1151C

+
+

3

+
UTM JB
14BXD2F142 +

R0751C

+
+

1

+
UAB
15BXD2F78 +

R0774C

+
+

2

+
UAB
16BXD2M61 +

R1503C

+
+

3

+
HarvardU GR
17BXD5F56 +

R0802C

+
+

2

+
UMemphis
18BXD6F92 +

R0719C

+
+

1

+
UMemphis
19BXD6M92 +

R0720C

+
+

3

+
UMemphis
20BXD8F72 +

R0173C

+
+

1

+
UAB
21BXD8M59 +

R1484C

+
+

3

+
HarvardU GR
22BXD9F86 +

R0736C

+
+

3

+
UMemphis
23BXD9M86 +

R0737C

+
+

1

+
UMemphis
24BXD11F441 +

R0200C

+
+

1

+
UAB
25BXD11F97 +

R0791C

+
+

3

+
UAB
26BXD11M92 +

R0790C

+
+

2

+
UMemphis
27BXD12F130 +

R0776C

+
+

2

+
UAB
28BXD12M64 +

R0756C

+
+

2

+
UMemphis
29BXD13F86 +

R1144C

+
+

3

+
UMemphis
30BXD14F190 +

R0794C

+
+

2

+
UAB
31BXD14F190 +

R0794C

+
+

3

+
UAB
32BXD14M91 +

R0758C

+
+

2

+
UMemphis
33BXD14M65 +

R1130C

+
+

3

+
UTM RW
34BXD15F60 +

R1491C

+
+

3

+
HarvardU GR
35BXD15M61 +

R1499C

+
+

3

+
HarvardU GR
36BXD16F163 +

R0750C

+
+

1

+
UAB
37BXD16M61 +

R1572C

+
+

3

+
HarvardU GR
38BXD19F61 +

R0772C

+
+

2

+
UAB
39BXD19M157 +

R1230C

+
+

3

+
UTM JB
40BXD20F59 +

R1488C

+
+

3

+
HarvardU GR
41BXD21F116 +

R0711C

+
+

1

+
UAB
42BXD21M64 +

R0803C

+
+

2

+
UMemphis
43BXD22F65 +

R0174C

+
+

1

+
UAB
44BXD22M59 +

R1489C

+
+

3

+
HarvardU GR
45BXD23F88 +

R0814C

+
+

2

+
UAB
46BXD24F71 +

R0805C

+
+

2

+
UMemphis
47BXD24M71 +

R0759C

+
+

2

+
UMemphis
48BXD25M90 +

R0429C

+
+

1

+
UTM RW
49BXD27F60 +

R1496C

+
+

3

+
HarvardU GR
50BXD28F113 +

R0785C

+
+

2

+
UTM RW
51BXD28M79 +

R0739C

+
+

3

+
UMemphis
52BXD29F82 +

R0777C

+
+

2

+
UAB
53BXD29M76 +

R0714C

+
+

1

+
UMemphis
54BXD29M76 +

R0714C

+
+

2

+
UMemphis
55BXD29M76 +

R0714C

+
+

3

+
UMemphis
56BXD31F142 +

R0816C

+
+

2

+
UAB
57BXD31M61 +

R1142C

+
+

3

+
UTM RW
58BXD32F62 +

R0778C

+
+

2

+
UAB
59BXD32M218 +

R0786C

+
+

2

+
UAB
60BXD33F184 +

R0793C

+
+

2

+
UAB
61BXD33M124 +

R0715C

+
+

1

+
UAB
62BXD34F56 +

R0725C

+
+

1

+
UMemphis
63BXD34M91 +

R0789C

+
+

2

+
UMemphis
64BXD36F64 +

R1667C

+
+

3

+
UTM RW
65BXD36M61 +

R1212C

+
+

3

+
UMemphis
66BXD38F55 +

R0781C

+
+

2

+
UAB
67BXD38M65 +

R0761C

+
+

2

+
UMemphis
68BXD39F59 +

R1490C

+
+

3

+
HarvardU GR
69BXD39M165 +

R0723C

+
+

1

+
UAB
70BXD40F56 +

R0718C

+
+

2

+
UMemphis
71BXD40M73 +

R0812C

+
+

2

+
UMemphis
72BXD42F100 +

R0799C

+
+

2

+
UAB
73BXD42M97 +

R0709C

+
+

1

+
UMemphis
74BXD43F61 +

R1200C

+
+

3

+
UTM RW
75BXD43M63 +

R1182C

+
+

3

+
UTM RW
76BXD44F61 +

R1188C

+
+

3

+
UTM RW
77BXD44M58 +

R1073C

+
+

3

+
UTM RW
78BXD45F63 +

R1404C

+
+

3

+
UTM RW
79BXD45M93 +

R1506C

+
+

3

+
UTM RW
80BXD48F64 +

R1158C

+
+

3

+
UTM RW
81BXD48M65 +

R1165C

+
+

3

+
UTM RW
82BXD51F66 +

R1666C

+
+

3

+
UTM RW
83BXD51M62 +

R1180C

+
+

3

+
UTM RW
84BXD51M79 +

R1671C

+
+

3

+
UTM RW
85BXD60F64 +

R1160C

+
+

3

+
UTM RW
86BXD60M61 +

R1103C

+
+

3

+
UTM RW
87BXD60M99 +

R1669C

+
+

3

+
UTM RW
88BXD62M61 +

R1149C

+
+

3

+
UTM RW
89BXD62M60 +

R1668C

+
+

3

+
UTM RW
90BXD69F60 +

R1440C

+
+

3

+
UTM RW
91BXD69M64 +

R1197C

+
+

3

+
UTM RW
92BXD73F60 +

R1276C

+
+

3

+
UTM RW
93BXD73M77 +

R1665C

+
+

3

+
UTM RW
94BXD77M62 +

R1424C

+
+

3

+
UTM RW
95BXD85F79 +

R1486C

+
+

3

+
UTM RW
96BXD85M79 +

R1487C

+
+

3

+
UTM RW
97BXD86F58 +

R1408C

+
+

3

+
UTM RW
98BXD86M58 +

R1412C

+
+

3

+
UTM RW
99BXD90M74 +

R1664C

+
+

3

+
UTM RW
100BXD92F62 +

R1391C

+
+

3

+
UTM RW
101BXD92F63 +

R1670C

+
+

3

+
UTM RW
102BXD92M59 +

R1308C

+
+

3

+
UTM RW
+
+
diff --git a/general/datasets/Cb_m_1003_m/acknowledgment.rtf b/general/datasets/Cb_m_1003_m/acknowledgment.rtf new file mode 100644 index 0000000..b048bb0 --- /dev/null +++ b/general/datasets/Cb_m_1003_m/acknowledgment.rtf @@ -0,0 +1,15 @@ +
Data were generated with funds contributed equally by The UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include: + +
diff --git a/general/datasets/Cb_m_1003_m/cases.rtf b/general/datasets/Cb_m_1003_m/cases.rtf new file mode 100644 index 0000000..f5e6bdf --- /dev/null +++ b/general/datasets/Cb_m_1003_m/cases.rtf @@ -0,0 +1,7 @@ +
We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera Discovery Systems). Chromosomes of the two parental strains have been recombined and fixed randomly in the many different BXD strains. BXD2 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were also produced by Taylor, but they were generated in the 1990s. These strains are all available from The Jackson Laboratory, Bar Harbor, Maine. +

 

+ +

In this mRNA expression data set we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+
+ +
The set of mouse strains used for mapping (a mapping panel) consists of groups of genetically unique BXD recombinant inbred strains. The ancestral strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6, and 1.5x coverage for D by Celera Genomics). Chromosomes of the two parental strains are recombined randomly in the many different BXD strains. BXD lines 2 through 32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through 42 were also produced by Dr. Taylor, but they were generated in the 1990s. All of these strains are available from The Jackson Laboratory. Lines such as BXD67, BXD68, etc. are BXD Advanced recombinant inbred strains that are part of a large set now being produced by Drs. Lu Lu, Guomin Zhou, Lee Silver, Jeremy Peirce, and Robert Williams. There will eventually be 45 of these BXD strains. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html.
diff --git a/general/datasets/Cb_m_1003_m/notes.rtf b/general/datasets/Cb_m_1003_m/notes.rtf new file mode 100644 index 0000000..5d4ac24 --- /dev/null +++ b/general/datasets/Cb_m_1003_m/notes.rtf @@ -0,0 +1,3 @@ +
+

This text file originally generated by RWW and YHQ, September 2003. Updated by RWW, October 30, 2004.

+
diff --git a/general/datasets/Cb_m_1003_m/platform.rtf b/general/datasets/Cb_m_1003_m/platform.rtf new file mode 100644 index 0000000..188038b --- /dev/null +++ b/general/datasets/Cb_m_1003_m/platform.rtf @@ -0,0 +1,3 @@ +
Affymetrix Mouse Expression 430 GeneChip set: The expression data were generated using 430A and 430B arrays. Chromosomal positions of probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

 

+
diff --git a/general/datasets/Cb_m_1003_m/processing.rtf b/general/datasets/Cb_m_1003_m/processing.rtf new file mode 100644 index 0000000..cdfa27a --- /dev/null +++ b/general/datasets/Cb_m_1003_m/processing.rtf @@ -0,0 +1,17 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +Probe set data from the CHP file: These CHP files were generated using MAS 5. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the noise level.
+ +

About the chromosome and megabase position values:

+ +
The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
diff --git a/general/datasets/Cb_m_1003_m/summary.rtf b/general/datasets/Cb_m_1003_m/summary.rtf new file mode 100644 index 0000000..8a59cc3 --- /dev/null +++ b/general/datasets/Cb_m_1003_m/summary.rtf @@ -0,0 +1,3 @@ +
+

This October 2003 freeze provides estimates of mRNA expression in cerebellum of 26 adult BXD recombinant inbred strains, as well as C57BL/6J, DBA/2J, and their F1 hybrid, measured using the Affymetrix M430A and B microarrays. Data were generated by a small consortium of investigators at St. Jude Children's Research Hospital (SJ) and the University of Tennessee Health Science Center (UT). Data were processed using the Microarray Suite 5 (<a data-cke-saved-href="http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf" href="http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf" _blank"="" class="fs14">MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. This data set was run in two large batches with careful consideration to balancing samples by sex and age. Eighteen strains have been profiled using two or three independent samples. All other strains were sampled once.

+
diff --git a/general/datasets/Cb_m_1003_m/tissue.rtf b/general/datasets/Cb_m_1003_m/tissue.rtf new file mode 100644 index 0000000..4f8e5ed --- /dev/null +++ b/general/datasets/Cb_m_1003_m/tissue.rtf @@ -0,0 +1,376 @@ +
+

The October 2003 data set was processed in two large batches. The first batch (the May 2003 data set) consists of 20 pooled samples from 20 strains run on pairs of Affymetrix 430A and 430B arrays (40 arrays total). The second batch consists of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of whole cerebellum taken from three adult animals of the same age and sex. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years.

+ +

RNA was extracted at UTHSC by Zhiping Jia and Hongtao Zhai.

+ +

All samples were subsequently processed at the Hartwell Center Affymetrix laboratory at SJCRH by Jay Morris.

+
+ +
The January04 data were processed in two large batches. The first batch (the May03 data set) consisted of samples from 20 samples and 20 strains run on Affymetrix MOE 430A and MOE430B GeneChip pairs (40 arrays total). The second batch of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of brain tissue (intact whole cerebellum) taken from three adult animals usually of the same age. RNA was extracted at UTHSC and all samples were processed at the Hartwell Center (SJCRH, Memphis). We will eventually achieve a sample with good, but not perfect, balance of samples by sex and age. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years.
+ +
The table below summarizes informaton on strain, sex, age, sample name, and batch number.
+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
StrainSexAgeSampleIDBatch
B6D2F1M127766-C12
B6D2F1M94S347-1C11
C57BL/6JF116773-C12
C57BL/6JM109S054-1C21
DBA/2JF71S175-1C11
DBA/2JF91782-C12
BXD1F57813-C12
BXD2F142751-C11
BXD2F78774-C12
BXD5F56802-C12
BXD5M71752-C11
BXD6F92719-C11
BXD8F72S173-1C11
BXD9M86737-C11
BXD11F441S200-1C11
BXD11M92790-C12
BXD12F130776-C12
BXD12M64756-C12
BXD14F190794-C12
BXD14M91758-C12
BXD16F163750-C11
BXD19F61772-C12
BXD21F116711-C11
BXD21M64803-C12
BXD22F65S174-1C11
BXD23F88814-C12
BXD24F71805-C12
BXD24M71759-C12
BXD25M90S429-1C11
BXD28F113785-C12
BXD28F427S203-1C11
BXD29F82777-C12
BXD29M76714-C12
BXD29M76714-C11
BXD31F142816-C12
BXD32F62778-C12
BXD32M218786-C12
BXD33F184793-C12
BXD33M124715-C11
BXD34F56725-C11
BXD34M91789-C12
BXD38F55781-C12
BXD38M65761-C12
BXD39M165723-C11
BXD40F56718-C11
BXD40F56718-C12
BXD40M73812-C12
BXD42F100799-C12
BXD42M97709-C11
+
+
diff --git a/general/datasets/Cb_m_1004_m/acknowledgment.rtf b/general/datasets/Cb_m_1004_m/acknowledgment.rtf new file mode 100644 index 0000000..b048bb0 --- /dev/null +++ b/general/datasets/Cb_m_1004_m/acknowledgment.rtf @@ -0,0 +1,15 @@ +
Data were generated with funds contributed equally by The UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include: + +
diff --git a/general/datasets/Cb_m_1004_m/cases.rtf b/general/datasets/Cb_m_1004_m/cases.rtf new file mode 100644 index 0000000..f5e6bdf --- /dev/null +++ b/general/datasets/Cb_m_1004_m/cases.rtf @@ -0,0 +1,7 @@ +
We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera Discovery Systems). Chromosomes of the two parental strains have been recombined and fixed randomly in the many different BXD strains. BXD2 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were also produced by Taylor, but they were generated in the 1990s. These strains are all available from The Jackson Laboratory, Bar Harbor, Maine. +

 

+ +

In this mRNA expression data set we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+
+ +
The set of mouse strains used for mapping (a mapping panel) consists of groups of genetically unique BXD recombinant inbred strains. The ancestral strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6, and 1.5x coverage for D by Celera Genomics). Chromosomes of the two parental strains are recombined randomly in the many different BXD strains. BXD lines 2 through 32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through 42 were also produced by Dr. Taylor, but they were generated in the 1990s. All of these strains are available from The Jackson Laboratory. Lines such as BXD67, BXD68, etc. are BXD Advanced recombinant inbred strains that are part of a large set now being produced by Drs. Lu Lu, Guomin Zhou, Lee Silver, Jeremy Peirce, and Robert Williams. There will eventually be 45 of these BXD strains. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html.
diff --git a/general/datasets/Cb_m_1004_m/notes.rtf b/general/datasets/Cb_m_1004_m/notes.rtf new file mode 100644 index 0000000..5d4ac24 --- /dev/null +++ b/general/datasets/Cb_m_1004_m/notes.rtf @@ -0,0 +1,3 @@ +
+

This text file originally generated by RWW and YHQ, September 2003. Updated by RWW, October 30, 2004.

+
diff --git a/general/datasets/Cb_m_1004_m/platform.rtf b/general/datasets/Cb_m_1004_m/platform.rtf new file mode 100644 index 0000000..188038b --- /dev/null +++ b/general/datasets/Cb_m_1004_m/platform.rtf @@ -0,0 +1,3 @@ +
Affymetrix Mouse Expression 430 GeneChip set: The expression data were generated using 430A and 430B arrays. Chromosomal positions of probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

 

+
diff --git a/general/datasets/Cb_m_1004_m/processing.rtf b/general/datasets/Cb_m_1004_m/processing.rtf new file mode 100644 index 0000000..cdfa27a --- /dev/null +++ b/general/datasets/Cb_m_1004_m/processing.rtf @@ -0,0 +1,17 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +Probe set data from the CHP file: These CHP files were generated using MAS 5. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the noise level.
+ +

About the chromosome and megabase position values:

+ +
The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
diff --git a/general/datasets/Cb_m_1004_m/summary.rtf b/general/datasets/Cb_m_1004_m/summary.rtf new file mode 100644 index 0000000..8a59cc3 --- /dev/null +++ b/general/datasets/Cb_m_1004_m/summary.rtf @@ -0,0 +1,3 @@ +
+

This October 2003 freeze provides estimates of mRNA expression in cerebellum of 26 adult BXD recombinant inbred strains, as well as C57BL/6J, DBA/2J, and their F1 hybrid, measured using the Affymetrix M430A and B microarrays. Data were generated by a small consortium of investigators at St. Jude Children's Research Hospital (SJ) and the University of Tennessee Health Science Center (UT). Data were processed using the Microarray Suite 5 (<a data-cke-saved-href="http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf" href="http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf" _blank"="" class="fs14">MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. This data set was run in two large batches with careful consideration to balancing samples by sex and age. Eighteen strains have been profiled using two or three independent samples. All other strains were sampled once.

+
diff --git a/general/datasets/Cb_m_1004_m/tissue.rtf b/general/datasets/Cb_m_1004_m/tissue.rtf new file mode 100644 index 0000000..4f8e5ed --- /dev/null +++ b/general/datasets/Cb_m_1004_m/tissue.rtf @@ -0,0 +1,376 @@ +
+

The October 2003 data set was processed in two large batches. The first batch (the May 2003 data set) consists of 20 pooled samples from 20 strains run on pairs of Affymetrix 430A and 430B arrays (40 arrays total). The second batch consists of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of whole cerebellum taken from three adult animals of the same age and sex. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years.

+ +

RNA was extracted at UTHSC by Zhiping Jia and Hongtao Zhai.

+ +

All samples were subsequently processed at the Hartwell Center Affymetrix laboratory at SJCRH by Jay Morris.

+
+ +
The January04 data were processed in two large batches. The first batch (the May03 data set) consisted of samples from 20 samples and 20 strains run on Affymetrix MOE 430A and MOE430B GeneChip pairs (40 arrays total). The second batch of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of brain tissue (intact whole cerebellum) taken from three adult animals usually of the same age. RNA was extracted at UTHSC and all samples were processed at the Hartwell Center (SJCRH, Memphis). We will eventually achieve a sample with good, but not perfect, balance of samples by sex and age. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years.
+ +
The table below summarizes informaton on strain, sex, age, sample name, and batch number.
+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
StrainSexAgeSampleIDBatch
B6D2F1M127766-C12
B6D2F1M94S347-1C11
C57BL/6JF116773-C12
C57BL/6JM109S054-1C21
DBA/2JF71S175-1C11
DBA/2JF91782-C12
BXD1F57813-C12
BXD2F142751-C11
BXD2F78774-C12
BXD5F56802-C12
BXD5M71752-C11
BXD6F92719-C11
BXD8F72S173-1C11
BXD9M86737-C11
BXD11F441S200-1C11
BXD11M92790-C12
BXD12F130776-C12
BXD12M64756-C12
BXD14F190794-C12
BXD14M91758-C12
BXD16F163750-C11
BXD19F61772-C12
BXD21F116711-C11
BXD21M64803-C12
BXD22F65S174-1C11
BXD23F88814-C12
BXD24F71805-C12
BXD24M71759-C12
BXD25M90S429-1C11
BXD28F113785-C12
BXD28F427S203-1C11
BXD29F82777-C12
BXD29M76714-C12
BXD29M76714-C11
BXD31F142816-C12
BXD32F62778-C12
BXD32M218786-C12
BXD33F184793-C12
BXD33M124715-C11
BXD34F56725-C11
BXD34M91789-C12
BXD38F55781-C12
BXD38M65761-C12
BXD39M165723-C11
BXD40F56718-C11
BXD40F56718-C12
BXD40M73812-C12
BXD42F100799-C12
BXD42M97709-C11
+
+
diff --git a/general/datasets/Cb_m_1004_p/acknowledgment.rtf b/general/datasets/Cb_m_1004_p/acknowledgment.rtf new file mode 100644 index 0000000..b048bb0 --- /dev/null +++ b/general/datasets/Cb_m_1004_p/acknowledgment.rtf @@ -0,0 +1,15 @@ +
Data were generated with funds contributed equally by The UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include: + +
diff --git a/general/datasets/Cb_m_1004_p/cases.rtf b/general/datasets/Cb_m_1004_p/cases.rtf new file mode 100644 index 0000000..f5e6bdf --- /dev/null +++ b/general/datasets/Cb_m_1004_p/cases.rtf @@ -0,0 +1,7 @@ +
We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera Discovery Systems). Chromosomes of the two parental strains have been recombined and fixed randomly in the many different BXD strains. BXD2 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were also produced by Taylor, but they were generated in the 1990s. These strains are all available from The Jackson Laboratory, Bar Harbor, Maine. +

 

+ +

In this mRNA expression data set we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+
+ +
The set of mouse strains used for mapping (a mapping panel) consists of groups of genetically unique BXD recombinant inbred strains. The ancestral strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6, and 1.5x coverage for D by Celera Genomics). Chromosomes of the two parental strains are recombined randomly in the many different BXD strains. BXD lines 2 through 32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through 42 were also produced by Dr. Taylor, but they were generated in the 1990s. All of these strains are available from The Jackson Laboratory. Lines such as BXD67, BXD68, etc. are BXD Advanced recombinant inbred strains that are part of a large set now being produced by Drs. Lu Lu, Guomin Zhou, Lee Silver, Jeremy Peirce, and Robert Williams. There will eventually be 45 of these BXD strains. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html.
diff --git a/general/datasets/Cb_m_1004_p/notes.rtf b/general/datasets/Cb_m_1004_p/notes.rtf new file mode 100644 index 0000000..5d4ac24 --- /dev/null +++ b/general/datasets/Cb_m_1004_p/notes.rtf @@ -0,0 +1,3 @@ +
+

This text file originally generated by RWW and YHQ, September 2003. Updated by RWW, October 30, 2004.

+
diff --git a/general/datasets/Cb_m_1004_p/platform.rtf b/general/datasets/Cb_m_1004_p/platform.rtf new file mode 100644 index 0000000..188038b --- /dev/null +++ b/general/datasets/Cb_m_1004_p/platform.rtf @@ -0,0 +1,3 @@ +
Affymetrix Mouse Expression 430 GeneChip set: The expression data were generated using 430A and 430B arrays. Chromosomal positions of probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

 

+
diff --git a/general/datasets/Cb_m_1004_p/processing.rtf b/general/datasets/Cb_m_1004_p/processing.rtf new file mode 100644 index 0000000..cdfa27a --- /dev/null +++ b/general/datasets/Cb_m_1004_p/processing.rtf @@ -0,0 +1,17 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +Probe set data from the CHP file: These CHP files were generated using MAS 5. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the noise level.
+ +

About the chromosome and megabase position values:

+ +
The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
diff --git a/general/datasets/Cb_m_1004_p/summary.rtf b/general/datasets/Cb_m_1004_p/summary.rtf new file mode 100644 index 0000000..8a59cc3 --- /dev/null +++ b/general/datasets/Cb_m_1004_p/summary.rtf @@ -0,0 +1,3 @@ +
+

This October 2003 freeze provides estimates of mRNA expression in cerebellum of 26 adult BXD recombinant inbred strains, as well as C57BL/6J, DBA/2J, and their F1 hybrid, measured using the Affymetrix M430A and B microarrays. Data were generated by a small consortium of investigators at St. Jude Children's Research Hospital (SJ) and the University of Tennessee Health Science Center (UT). Data were processed using the Microarray Suite 5 (<a data-cke-saved-href="http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf" href="http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf" _blank"="" class="fs14">MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. This data set was run in two large batches with careful consideration to balancing samples by sex and age. Eighteen strains have been profiled using two or three independent samples. All other strains were sampled once.

+
diff --git a/general/datasets/Cb_m_1004_p/tissue.rtf b/general/datasets/Cb_m_1004_p/tissue.rtf new file mode 100644 index 0000000..4f8e5ed --- /dev/null +++ b/general/datasets/Cb_m_1004_p/tissue.rtf @@ -0,0 +1,376 @@ +
+

The October 2003 data set was processed in two large batches. The first batch (the May 2003 data set) consists of 20 pooled samples from 20 strains run on pairs of Affymetrix 430A and 430B arrays (40 arrays total). The second batch consists of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of whole cerebellum taken from three adult animals of the same age and sex. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years.

+ +

RNA was extracted at UTHSC by Zhiping Jia and Hongtao Zhai.

+ +

All samples were subsequently processed at the Hartwell Center Affymetrix laboratory at SJCRH by Jay Morris.

+
+ +
The January04 data were processed in two large batches. The first batch (the May03 data set) consisted of samples from 20 samples and 20 strains run on Affymetrix MOE 430A and MOE430B GeneChip pairs (40 arrays total). The second batch of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of brain tissue (intact whole cerebellum) taken from three adult animals usually of the same age. RNA was extracted at UTHSC and all samples were processed at the Hartwell Center (SJCRH, Memphis). We will eventually achieve a sample with good, but not perfect, balance of samples by sex and age. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years.
+ +
The table below summarizes informaton on strain, sex, age, sample name, and batch number.
+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
StrainSexAgeSampleIDBatch
B6D2F1M127766-C12
B6D2F1M94S347-1C11
C57BL/6JF116773-C12
C57BL/6JM109S054-1C21
DBA/2JF71S175-1C11
DBA/2JF91782-C12
BXD1F57813-C12
BXD2F142751-C11
BXD2F78774-C12
BXD5F56802-C12
BXD5M71752-C11
BXD6F92719-C11
BXD8F72S173-1C11
BXD9M86737-C11
BXD11F441S200-1C11
BXD11M92790-C12
BXD12F130776-C12
BXD12M64756-C12
BXD14F190794-C12
BXD14M91758-C12
BXD16F163750-C11
BXD19F61772-C12
BXD21F116711-C11
BXD21M64803-C12
BXD22F65S174-1C11
BXD23F88814-C12
BXD24F71805-C12
BXD24M71759-C12
BXD25M90S429-1C11
BXD28F113785-C12
BXD28F427S203-1C11
BXD29F82777-C12
BXD29M76714-C12
BXD29M76714-C11
BXD31F142816-C12
BXD32F62778-C12
BXD32M218786-C12
BXD33F184793-C12
BXD33M124715-C11
BXD34F56725-C11
BXD34M91789-C12
BXD38F55781-C12
BXD38M65761-C12
BXD39M165723-C11
BXD40F56718-C11
BXD40F56718-C12
BXD40M73812-C12
BXD42F100799-C12
BXD42M97709-C11
+
+
diff --git a/general/datasets/Cb_m_1004_r/acknowledgment.rtf b/general/datasets/Cb_m_1004_r/acknowledgment.rtf new file mode 100644 index 0000000..b048bb0 --- /dev/null +++ b/general/datasets/Cb_m_1004_r/acknowledgment.rtf @@ -0,0 +1,15 @@ +
Data were generated with funds contributed equally by The UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include: + +
diff --git a/general/datasets/Cb_m_1004_r/cases.rtf b/general/datasets/Cb_m_1004_r/cases.rtf new file mode 100644 index 0000000..f5e6bdf --- /dev/null +++ b/general/datasets/Cb_m_1004_r/cases.rtf @@ -0,0 +1,7 @@ +
We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera Discovery Systems). Chromosomes of the two parental strains have been recombined and fixed randomly in the many different BXD strains. BXD2 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were also produced by Taylor, but they were generated in the 1990s. These strains are all available from The Jackson Laboratory, Bar Harbor, Maine. +

 

+ +

In this mRNA expression data set we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams.

+
+ +
The set of mouse strains used for mapping (a mapping panel) consists of groups of genetically unique BXD recombinant inbred strains. The ancestral strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6, and 1.5x coverage for D by Celera Genomics). Chromosomes of the two parental strains are recombined randomly in the many different BXD strains. BXD lines 2 through 32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through 42 were also produced by Dr. Taylor, but they were generated in the 1990s. All of these strains are available from The Jackson Laboratory. Lines such as BXD67, BXD68, etc. are BXD Advanced recombinant inbred strains that are part of a large set now being produced by Drs. Lu Lu, Guomin Zhou, Lee Silver, Jeremy Peirce, and Robert Williams. There will eventually be 45 of these BXD strains. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html.
diff --git a/general/datasets/Cb_m_1004_r/notes.rtf b/general/datasets/Cb_m_1004_r/notes.rtf new file mode 100644 index 0000000..5d4ac24 --- /dev/null +++ b/general/datasets/Cb_m_1004_r/notes.rtf @@ -0,0 +1,3 @@ +
+

This text file originally generated by RWW and YHQ, September 2003. Updated by RWW, October 30, 2004.

+
diff --git a/general/datasets/Cb_m_1004_r/platform.rtf b/general/datasets/Cb_m_1004_r/platform.rtf new file mode 100644 index 0000000..188038b --- /dev/null +++ b/general/datasets/Cb_m_1004_r/platform.rtf @@ -0,0 +1,3 @@ +
Affymetrix Mouse Expression 430 GeneChip set: The expression data were generated using 430A and 430B arrays. Chromosomal positions of probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

 

+
diff --git a/general/datasets/Cb_m_1004_r/processing.rtf b/general/datasets/Cb_m_1004_r/processing.rtf new file mode 100644 index 0000000..cdfa27a --- /dev/null +++ b/general/datasets/Cb_m_1004_r/processing.rtf @@ -0,0 +1,17 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +Probe set data from the CHP file: These CHP files were generated using MAS 5. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the noise level.
+ +

About the chromosome and megabase position values:

+ +
The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
diff --git a/general/datasets/Cb_m_1004_r/summary.rtf b/general/datasets/Cb_m_1004_r/summary.rtf new file mode 100644 index 0000000..8a59cc3 --- /dev/null +++ b/general/datasets/Cb_m_1004_r/summary.rtf @@ -0,0 +1,3 @@ +
+

This October 2003 freeze provides estimates of mRNA expression in cerebellum of 26 adult BXD recombinant inbred strains, as well as C57BL/6J, DBA/2J, and their F1 hybrid, measured using the Affymetrix M430A and B microarrays. Data were generated by a small consortium of investigators at St. Jude Children's Research Hospital (SJ) and the University of Tennessee Health Science Center (UT). Data were processed using the Microarray Suite 5 (<a data-cke-saved-href="http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf" href="http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf" _blank"="" class="fs14">MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. This data set was run in two large batches with careful consideration to balancing samples by sex and age. Eighteen strains have been profiled using two or three independent samples. All other strains were sampled once.

+
diff --git a/general/datasets/Cb_m_1004_r/tissue.rtf b/general/datasets/Cb_m_1004_r/tissue.rtf new file mode 100644 index 0000000..4f8e5ed --- /dev/null +++ b/general/datasets/Cb_m_1004_r/tissue.rtf @@ -0,0 +1,376 @@ +
+

The October 2003 data set was processed in two large batches. The first batch (the May 2003 data set) consists of 20 pooled samples from 20 strains run on pairs of Affymetrix 430A and 430B arrays (40 arrays total). The second batch consists of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of whole cerebellum taken from three adult animals of the same age and sex. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years.

+ +

RNA was extracted at UTHSC by Zhiping Jia and Hongtao Zhai.

+ +

All samples were subsequently processed at the Hartwell Center Affymetrix laboratory at SJCRH by Jay Morris.

+
+ +
The January04 data were processed in two large batches. The first batch (the May03 data set) consisted of samples from 20 samples and 20 strains run on Affymetrix MOE 430A and MOE430B GeneChip pairs (40 arrays total). The second batch of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of brain tissue (intact whole cerebellum) taken from three adult animals usually of the same age. RNA was extracted at UTHSC and all samples were processed at the Hartwell Center (SJCRH, Memphis). We will eventually achieve a sample with good, but not perfect, balance of samples by sex and age. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years.
+ +
The table below summarizes informaton on strain, sex, age, sample name, and batch number.
+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
StrainSexAgeSampleIDBatch
B6D2F1M127766-C12
B6D2F1M94S347-1C11
C57BL/6JF116773-C12
C57BL/6JM109S054-1C21
DBA/2JF71S175-1C11
DBA/2JF91782-C12
BXD1F57813-C12
BXD2F142751-C11
BXD2F78774-C12
BXD5F56802-C12
BXD5M71752-C11
BXD6F92719-C11
BXD8F72S173-1C11
BXD9M86737-C11
BXD11F441S200-1C11
BXD11M92790-C12
BXD12F130776-C12
BXD12M64756-C12
BXD14F190794-C12
BXD14M91758-C12
BXD16F163750-C11
BXD19F61772-C12
BXD21F116711-C11
BXD21M64803-C12
BXD22F65S174-1C11
BXD23F88814-C12
BXD24F71805-C12
BXD24M71759-C12
BXD25M90S429-1C11
BXD28F113785-C12
BXD28F427S203-1C11
BXD29F82777-C12
BXD29M76714-C12
BXD29M76714-C11
BXD31F142816-C12
BXD32F62778-C12
BXD32M218786-C12
BXD33F184793-C12
BXD33M124715-C11
BXD34F56725-C11
BXD34M91789-C12
BXD38F55781-C12
BXD38M65761-C12
BXD39M165723-C11
BXD40F56718-C11
BXD40F56718-C12
BXD40M73812-C12
BXD42F100799-C12
BXD42M97709-C11
+
+
diff --git a/general/datasets/Ccgeno/cases.rtf b/general/datasets/Ccgeno/cases.rtf new file mode 100644 index 0000000..6159322 --- /dev/null +++ b/general/datasets/Ccgeno/cases.rtf @@ -0,0 +1 @@ +

Mice were bred by Dr. Klaus Schughart at the HZI, Braunschweig, Germany.

diff --git a/general/datasets/Ccgeno/contributors.rtf b/general/datasets/Ccgeno/contributors.rtf new file mode 100644 index 0000000..7f7f3fd --- /dev/null +++ b/general/datasets/Ccgeno/contributors.rtf @@ -0,0 +1 @@ +

http://csbio.unc.edu/CCstatus/CCGenomes/

diff --git a/general/datasets/Ccgeno/platform.rtf b/general/datasets/Ccgeno/platform.rtf new file mode 100644 index 0000000..0fa1383 --- /dev/null +++ b/general/datasets/Ccgeno/platform.rtf @@ -0,0 +1 @@ +

MegaMUGA

diff --git a/general/datasets/Ccgeno/specifics.rtf b/general/datasets/Ccgeno/specifics.rtf new file mode 100644 index 0000000..30efa6a --- /dev/null +++ b/general/datasets/Ccgeno/specifics.rtf @@ -0,0 +1 @@ +Genotypes \ No newline at end of file diff --git a/general/datasets/Ccgeno/summary.rtf b/general/datasets/Ccgeno/summary.rtf new file mode 100644 index 0000000..2533382 --- /dev/null +++ b/general/datasets/Ccgeno/summary.rtf @@ -0,0 +1,9 @@ +

Genotypes of 32 cc strains.

+ +

Downloaded from http://csbio.unc.edu/CCstatus/CCGenomes/ and processed by Arthur Centeno and Zachary Sloan at the University of Tennessee.

+ +

Team of Investigators:

+ +

Lasse Sinkkkonen, Manuel Buttini, Yujuan Gui, and Melanie Thomas at the University of Luxembourg

+ +

Data entered into GeneNetwork December 2019 by Arthur Centeno, Robert W. Williams, Yujuan Gui

diff --git a/general/datasets/Ccgeno/tissue.rtf b/general/datasets/Ccgeno/tissue.rtf new file mode 100644 index 0000000..b4ef238 --- /dev/null +++ b/general/datasets/Ccgeno/tissue.rtf @@ -0,0 +1 @@ +

Ventral midbrain

diff --git a/general/datasets/Ccpublish/acknowledgment.rtf b/general/datasets/Ccpublish/acknowledgment.rtf new file mode 100644 index 0000000..c6129ca --- /dev/null +++ b/general/datasets/Ccpublish/acknowledgment.rtf @@ -0,0 +1 @@ +

LS and MB would like to thank the Luxembourg National Research Fund (FNR) for the support 663 (FNR CORE C15/BM/10406131 grant).

diff --git a/general/datasets/Ccpublish/cases.rtf b/general/datasets/Ccpublish/cases.rtf new file mode 100644 index 0000000..4a36b15 --- /dev/null +++ b/general/datasets/Ccpublish/cases.rtf @@ -0,0 +1,3 @@ +

CC mice were bred by Dr. Klaus Schughart at the HZI, Braunschweig, Germany.

+ +

C57BL/6J, A/J, and DBA/2J were bred by University of Luxembourg

diff --git a/general/datasets/Ccpublish/contributors.rtf b/general/datasets/Ccpublish/contributors.rtf new file mode 100644 index 0000000..c0e81ee --- /dev/null +++ b/general/datasets/Ccpublish/contributors.rtf @@ -0,0 +1,5 @@ +

manuel.buttini@uni.lu

+ +

lasse.sinkkonen@uni.lu

+ +

yujuan.gui@uni.lu

diff --git a/general/datasets/Ccpublish/experiment-design.rtf b/general/datasets/Ccpublish/experiment-design.rtf new file mode 100644 index 0000000..e0fbda8 --- /dev/null +++ b/general/datasets/Ccpublish/experiment-design.rtf @@ -0,0 +1 @@ +

Gas chromatography-mass spectrometry (GC-MS), immunofluorescent staining, RT-PCR

diff --git a/general/datasets/Ccpublish/specifics.rtf b/general/datasets/Ccpublish/specifics.rtf new file mode 100644 index 0000000..fc3ed76 --- /dev/null +++ b/general/datasets/Ccpublish/specifics.rtf @@ -0,0 +1 @@ +CC Phenotypes \ No newline at end of file diff --git a/general/datasets/Ccpublish/summary.rtf b/general/datasets/Ccpublish/summary.rtf new file mode 100644 index 0000000..d4904aa --- /dev/null +++ b/general/datasets/Ccpublish/summary.rtf @@ -0,0 +1,11 @@ +

Dopamine concentration measurements [pmol/mg]: Dorsal striatums of 32 CC strains. Each strain has around 5 male and 5 female animals, 3-month old; Dorsal striatums

+ +

Neuropathology: The dorsal striatum was sectioned and stained with TH or DAT. Two metrics were measured: mean grey value [mean grey value/image] and % area occupied [% area occupied/image]. Measurements were done on dorsal striatums of C57BL/6J, A/J and DBA/2J 3, 9, 15-month-old animals.

+ +

RT-PCR: The total RNA was extracted from ventral midbrains and quantified by RT-PCR with markers Th, Dat, Vmat, Nr4a2, Sox6 and Otx2 [-delta Ct]. Measurements were done on dorsal striatums of C57BL/6J, A/J and DBA/2J 3, 9, 15-month-old animals.

+ +

Team of Investigators:

+ +

Lasse Sinkkkonen, Manuel Buttini, Yujuan Gui, and Melanie Thomas at the University of Luxembourg

+ +

Data entered into GeneNetwork December 2019 by Arthur Centeno, Robert W. Williams, Yujuan Gui.

diff --git a/general/datasets/Ccpublish/tissue.rtf b/general/datasets/Ccpublish/tissue.rtf new file mode 100644 index 0000000..9869ae6 --- /dev/null +++ b/general/datasets/Ccpublish/tissue.rtf @@ -0,0 +1 @@ +

Dorsal Striatum, ventral midbrain

diff --git a/general/datasets/Cmmtubcbxdcerilm0513/summary.rtf b/general/datasets/Cmmtubcbxdcerilm0513/summary.rtf new file mode 100644 index 0000000..751de1d --- /dev/null +++ b/general/datasets/Cmmtubcbxdcerilm0513/summary.rtf @@ -0,0 +1 @@ +

This dataset is private. Contact information above is available if you have questions regarding the status of data

diff --git a/general/datasets/Cmmtubcbxdg12cerilm0513/summary.rtf b/general/datasets/Cmmtubcbxdg12cerilm0513/summary.rtf new file mode 100644 index 0000000..751de1d --- /dev/null +++ b/general/datasets/Cmmtubcbxdg12cerilm0513/summary.rtf @@ -0,0 +1 @@ +

This dataset is private. Contact information above is available if you have questions regarding the status of data

diff --git a/general/datasets/Cmmtubcbxdg15cerilm0513/summary.rtf b/general/datasets/Cmmtubcbxdg15cerilm0513/summary.rtf new file mode 100644 index 0000000..751de1d --- /dev/null +++ b/general/datasets/Cmmtubcbxdg15cerilm0513/summary.rtf @@ -0,0 +1 @@ +

This dataset is private. Contact information above is available if you have questions regarding the status of data

diff --git a/general/datasets/Cmmtubcbxdg18cerilm0513/summary.rtf b/general/datasets/Cmmtubcbxdg18cerilm0513/summary.rtf new file mode 100644 index 0000000..751de1d --- /dev/null +++ b/general/datasets/Cmmtubcbxdg18cerilm0513/summary.rtf @@ -0,0 +1 @@ +

This dataset is private. Contact information above is available if you have questions regarding the status of data

diff --git a/general/datasets/Cmmtubcbxdp03cerilm0513/summary.rtf b/general/datasets/Cmmtubcbxdp03cerilm0513/summary.rtf new file mode 100644 index 0000000..751de1d --- /dev/null +++ b/general/datasets/Cmmtubcbxdp03cerilm0513/summary.rtf @@ -0,0 +1 @@ +

This dataset is private. Contact information above is available if you have questions regarding the status of data

diff --git a/general/datasets/Cmmtubcbxdp06cerilm0513/summary.rtf b/general/datasets/Cmmtubcbxdp06cerilm0513/summary.rtf new file mode 100644 index 0000000..751de1d --- /dev/null +++ b/general/datasets/Cmmtubcbxdp06cerilm0513/summary.rtf @@ -0,0 +1 @@ +

This dataset is private. Contact information above is available if you have questions regarding the status of data

diff --git a/general/datasets/Cmmtubcbxdp09cerilm0513/summary.rtf b/general/datasets/Cmmtubcbxdp09cerilm0513/summary.rtf new file mode 100644 index 0000000..751de1d --- /dev/null +++ b/general/datasets/Cmmtubcbxdp09cerilm0513/summary.rtf @@ -0,0 +1 @@ +

This dataset is private. Contact information above is available if you have questions regarding the status of data

diff --git a/general/datasets/Cms_hipp1115/cases.rtf b/general/datasets/Cms_hipp1115/cases.rtf new file mode 100644 index 0000000..c201f08 --- /dev/null +++ b/general/datasets/Cms_hipp1115/cases.rtf @@ -0,0 +1,992 @@ +

The original data set included four individuals of each strain under baseline (B) conditions and eight individuals from each strain for each of the treatment groups, chronic mild stress (C), acute restraint (R), and chronic mild stress followed by acute retraint (CR). However, some samples have been removed due to technical problems with tissue collection or microarray performance.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
MTA_IDMTA prefixGN_IDFM_IDMouse_IDCaseIdStrainStrain_CodeTreatment codeNanoDrop, ng/ulNanoDrop, 260/280NanoDrop, 260/230Agilent, ng/µlRINNotes
1BCJ 1.CMS_D-B-215-1CMS_000215215020615.01DBA/2JDB163.611.92.311308.6 
2BCJ 2.CMS_D-C-86-1CMS_00008686012115.23DBA/2JDC98.511.792.43298.8 
3BCJ 3.CMS_D-CR-94-1CMS_00009494012115.16DBA/2JDCR162.781.872.381669.2 
4BCJ 4.CMS_D-R-133-1CMS_000133133012115.14DBA/2JDR88.951.822.45908.2 
5BCJ 5.CMS_B-B-208-1CMS_000208208012215.04C57BL/6JBB129.241.862.412238.1 
6BCJ 6.CMS_B-C-101-1CMS_000101101012115.25C57BL/6JBC72.291.862.261359.2 
7BCJ 7.CMS_B-CR-109-1CMS_000109109012115.21C57BL/6JBCR158.561.72.463058.8Microarray outlier; sample removed.
8BCJ 8.CMS_B-R-143-1CMS_000143143012215.08C57BL/6JBR161.571.862.382179.3 
9BCJ 9.CMS_N-B-210-1CMS_000210210012115.04C57BL/6NJNB132.391.892.31928.5 
10BCJ 10.CMS_N-C-117-1CMS_000117117012115.30C57BL/6NJNC151.431.912.381878.8 
11BCJ 11.CMS_N-CR-126-1CMS_000126126012115.33C57BL/6NJNCR137.871.882.29769 
12BCJ 12.CMS_N-R-152-1CMS_000152152012215.29C57BL/6NJNR197.951.882.351509.1 
13BCJ 13.CMS_D-B-216-1CMS_000216216020615.02DBA/2JDB98.641.912.03608.6 
15BCJ 15.CMS_D-CR-93-1CMS_00009393012115.11DBA/2JDCR71.361.832.251098.5 
16BCJ 16.CMS_D-R-134-1CMS_000134134012115.17DBA/2JDR73.491.852.431498.2 
17BCJ 17.CMS_B-B-205-1CMS_000205205012015.02C57BL/6JBB174.782.022.212668.9 
18BCJ 18.CMS_B-C-104-1CMS_000104104012215.30C57BL/6JBC84.72.642.011689.2 
19BCJ 19.CMS_B-CR-110-1CMS_000110110012115.26C57BL/6JBCR136.71.962.161789.5 
20BCJ 20.CMS_B-R-141-1CMS_000141141012115.22C57BL/6JBR86.0420.22.532088.9 
21BCJ 21.CMS_N-B-209-1CMS_000209209012015.04C57BL/6NJNB98.31.992.351698.8 
22BCJ 22.CMS_N-C-119-1CMS_000119119012215.18C57BL/6NJNC94.631.962.361798.5 
24BCJ 24.CMS_N-R-150-1CMS_000150150012115.29C57BL/6NJNR407.341.982.244257.5Microarray outlier; sample removed.
25BCJ 25.CMS_D-B-217-1CMS_000217217020615.03DBA/2JDB84.611.822.181777.9 
26BCJ 26.CMS_D-C-85-1CMS_00008585012115.20DBA/2JDC172.861.982.272888.9 
27BCJ 27.CMS_D-CR-95-1CMS_00009595012215.16DBA/2JDCR109.81.982.471578.9 
28BCJ 28.CMS_D-R-132-1CMS_000132132012015.29DBA/2JDR140.821.912.473189 
29BCJ 29.CMS_B-B-207-1CMS_000207207012215.02C57BL/6JBB96.251.892.671768.5 
30BCJ 30.CMS_B-C-102-1CMS_000102102012115.28C57BL/6JBC129.691.892.321058.7 
31BCJ 31.CMS_B-CR-111-1CMS_000111111012215.26C57BL/6JBCR165.671.842.311769.5 
32BCJ 32.CMS_B-R-142-1CMS_000142142012115.24C57BL/6JBR116.931.842.22969.4 
33BCJ 33.CMS_N-B-211-1CMS_000211211012315.02C57BL/6NJNB1062.092.291567.4 
34BCJ 34.CMS_N-C-118-1CMS_000118118012115.32C57BL/6NJNC219.21.912.341979.2 
35BCJ 35.CMS_N-CR-127-1CMS_000127127012215.33C57BL/6NJNCR8922.561579.4 
36BCJ 36.CMS_N-R-149-1CMS_000149149012115.27C57BL/6NJNR72.911.842.141078.6 
37BCJ 37.CMS_D-B-218-1CMS_000218218020615.04DBA/2JDB154.341.991.991199.3 
38BCJ 38.CMS_D-C-87-1CMS_00008787012215.13DBA/2JDC105.31.982.211097.4 
39BCJ 39.CMS_D-CR-97-1CMS_00009797012315.05DBA/2JDCR55.851.892.41858.3 
40BCJ 40.CMS_D-R-137-1CMS_000137137012315.06DBA/2JDR128.972.012.241598.1Microarray outlier; sample removed.
41BCJ 41.CMS_B-B-206-1CMS_000206206012115.02C57BL/6JBB159.892.032.12737.8 
42BCJ 42.CMS_B-C-103-1CMS_000103103012215.15C57BL/6JBC111.791.872.451608.9 
43BCJ 43.CMS_B-CR-112-1CMS_000112112012215.31C57BL/6JBCR172.141.862.221809.4 
44BCJ 44.CMS_B-R-145-1CMS_000145145012315.12C57BL/6JBR103.742.062.17998.9 
45BCJ 45.CMS_N-B-212-1CMS_000212212012315.04C57BL/6NJNB189.51.92.42488.5 
47BCJ 47.CMS_N-CR-128-1CMS_000128128012215.34C57BL/6NJNCR90.652.072.251899.3 
48BCJ 48.CMS_N-R-154-1CMS_000154154012315.29C57BL/6NJNR114.731.942.341678.8 
49BCJ 49.CMS_D-C-88-1CMS_00008888012215.28DBA/2JDC961.762.551588.5 
50BCJ 50.CMS_D-CR-96-1CMS_00009696012215.21DBA/2JDCR133.661.782.362038.3 
51BCJ 51.CMS_D-R-138-1CMS_000138138012315.22DBA/2JDR127.131.762.24819.3 
52BCJ 52.CMS_B-C-105-1CMS_000105105012315.13C57BL/6JBC203.241.922.353107 
53BCJ 53.CMS_B-CR-113-1CMS_000113113012315.09C57BL/6JBCR168.671.822.412409.1 
55BCJ 55.CMS_N-C-120-1CMS_000120120012215.32C57BL/6NJNC73.671.932.313718.4 
56BCJ 56.CMS_N-CR-125-1CMS_000125125012115.31C57BL/6NJNCR121.931.922.26738.3 
59BCJ 59.CMS_N-C-122-1CMS_000122122012315.30C57BL/6NJNC131.741.852.421869.4 
60BCJ 60.CMS_D-C-89-1CMS_00008989012315.10DBA/2JDC781.772.32748.9 
62BCJ 62.CMS_N-CR-130-1CMS_000130130012315.34C57BL/6NJNCR100.741.712.361138.8 
65BCJ 65.CMS_B-R-144-1CMS_000144144012215.27C57BL/6JBR80.11.812.3958.9 
66BCJ 66.CMS_N-R-151-1CMS_000151151012215.12C57BL/6NJNR80.221.772.21168.6 
diff --git a/general/datasets/Cms_hipp1115/contributors.rtf b/general/datasets/Cms_hipp1115/contributors.rtf new file mode 100644 index 0000000..3ac780e --- /dev/null +++ b/general/datasets/Cms_hipp1115/contributors.rtf @@ -0,0 +1 @@ +

This data set is part of a collaborative effort between UTHSC investigators Byron Jones, Rob Williams, Megan Mulligan, and Lu Lu and collaborators at I.N.R.A Centre de recherche de Toulouse Terenina, Pierre Mormede and Elena Terenina.

diff --git a/general/datasets/Cms_hipp1115/experiment-design.rtf b/general/datasets/Cms_hipp1115/experiment-design.rtf new file mode 100644 index 0000000..f2d6c93 --- /dev/null +++ b/general/datasets/Cms_hipp1115/experiment-design.rtf @@ -0,0 +1,9 @@ +

This data set includes four experimental conditions, B (baseline, untreated), C (chronic mild stress), CR (chronic mild stress followed by acute restraint), and R (acute restraint only). 

+ +

B = untreated

+ +

C = 7 weeks of chronic unpredictable stress

+ +

R = 30 minutes of restraint

+ +

CR = 7 weeks of chronic unpredictable stress followed by 30 minutes of restraint

diff --git a/general/datasets/Cms_hipp1115/processing.rtf b/general/datasets/Cms_hipp1115/processing.rtf new file mode 100644 index 0000000..1b6ca30 --- /dev/null +++ b/general/datasets/Cms_hipp1115/processing.rtf @@ -0,0 +1,3 @@ +

Outlier Detection. Samples 7 (J-CR-21), 24 (N-R-29), and 40 (D-R-6) were detected as outliers and have abnormal expression profiles (i.e. they do not cluster with other samples and have abnormal median and quartile ranges after normalization. These samples have been removed from the analysis.

+ +

RMA Algorithm. The Robust Multichip Analysis (RMA) algorithm fits a robust linear model at the probe level to minimize the effect of probe-specific affinity differences. This approach: n Increases sensitivity to small changes between experiment and control samples. n Minimizes variance across the dynamic range, but does compress calculated fold change values. RMA consists of three steps: 1. Background adjustment 2. Quantile normalization 3. Summarization This is a multi-chip analysis approach. Therefore, all arrays intended for comparison should be included together in the summarization step. For a more detailed description of the RMA algorithm, see the publication, Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data, Biostatistics, April 2003; Vol. 4; Number 2: 249–264.

diff --git a/general/datasets/Cms_hipp1115/summary.rtf b/general/datasets/Cms_hipp1115/summary.rtf new file mode 100644 index 0000000..1fededf --- /dev/null +++ b/general/datasets/Cms_hipp1115/summary.rtf @@ -0,0 +1 @@ +

This data set was generated to study the effects of strain and stress on hippocampal gene expression in female mice. The data set includes three inbred strains of mice and four treatment groups.

diff --git a/general/datasets/Cms_hipp1115/tissue.rtf b/general/datasets/Cms_hipp1115/tissue.rtf new file mode 100644 index 0000000..25b50be --- /dev/null +++ b/general/datasets/Cms_hipp1115/tissue.rtf @@ -0,0 +1 @@ +

This data set includes expression data from mouse hippocampus.

diff --git a/general/datasets/Cms_hipp_zscr_1115/cases.rtf b/general/datasets/Cms_hipp_zscr_1115/cases.rtf new file mode 100644 index 0000000..c201f08 --- /dev/null +++ b/general/datasets/Cms_hipp_zscr_1115/cases.rtf @@ -0,0 +1,992 @@ +

The original data set included four individuals of each strain under baseline (B) conditions and eight individuals from each strain for each of the treatment groups, chronic mild stress (C), acute restraint (R), and chronic mild stress followed by acute retraint (CR). However, some samples have been removed due to technical problems with tissue collection or microarray performance.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
MTA_IDMTA prefixGN_IDFM_IDMouse_IDCaseIdStrainStrain_CodeTreatment codeNanoDrop, ng/ulNanoDrop, 260/280NanoDrop, 260/230Agilent, ng/µlRINNotes
1BCJ 1.CMS_D-B-215-1CMS_000215215020615.01DBA/2JDB163.611.92.311308.6 
2BCJ 2.CMS_D-C-86-1CMS_00008686012115.23DBA/2JDC98.511.792.43298.8 
3BCJ 3.CMS_D-CR-94-1CMS_00009494012115.16DBA/2JDCR162.781.872.381669.2 
4BCJ 4.CMS_D-R-133-1CMS_000133133012115.14DBA/2JDR88.951.822.45908.2 
5BCJ 5.CMS_B-B-208-1CMS_000208208012215.04C57BL/6JBB129.241.862.412238.1 
6BCJ 6.CMS_B-C-101-1CMS_000101101012115.25C57BL/6JBC72.291.862.261359.2 
7BCJ 7.CMS_B-CR-109-1CMS_000109109012115.21C57BL/6JBCR158.561.72.463058.8Microarray outlier; sample removed.
8BCJ 8.CMS_B-R-143-1CMS_000143143012215.08C57BL/6JBR161.571.862.382179.3 
9BCJ 9.CMS_N-B-210-1CMS_000210210012115.04C57BL/6NJNB132.391.892.31928.5 
10BCJ 10.CMS_N-C-117-1CMS_000117117012115.30C57BL/6NJNC151.431.912.381878.8 
11BCJ 11.CMS_N-CR-126-1CMS_000126126012115.33C57BL/6NJNCR137.871.882.29769 
12BCJ 12.CMS_N-R-152-1CMS_000152152012215.29C57BL/6NJNR197.951.882.351509.1 
13BCJ 13.CMS_D-B-216-1CMS_000216216020615.02DBA/2JDB98.641.912.03608.6 
15BCJ 15.CMS_D-CR-93-1CMS_00009393012115.11DBA/2JDCR71.361.832.251098.5 
16BCJ 16.CMS_D-R-134-1CMS_000134134012115.17DBA/2JDR73.491.852.431498.2 
17BCJ 17.CMS_B-B-205-1CMS_000205205012015.02C57BL/6JBB174.782.022.212668.9 
18BCJ 18.CMS_B-C-104-1CMS_000104104012215.30C57BL/6JBC84.72.642.011689.2 
19BCJ 19.CMS_B-CR-110-1CMS_000110110012115.26C57BL/6JBCR136.71.962.161789.5 
20BCJ 20.CMS_B-R-141-1CMS_000141141012115.22C57BL/6JBR86.0420.22.532088.9 
21BCJ 21.CMS_N-B-209-1CMS_000209209012015.04C57BL/6NJNB98.31.992.351698.8 
22BCJ 22.CMS_N-C-119-1CMS_000119119012215.18C57BL/6NJNC94.631.962.361798.5 
24BCJ 24.CMS_N-R-150-1CMS_000150150012115.29C57BL/6NJNR407.341.982.244257.5Microarray outlier; sample removed.
25BCJ 25.CMS_D-B-217-1CMS_000217217020615.03DBA/2JDB84.611.822.181777.9 
26BCJ 26.CMS_D-C-85-1CMS_00008585012115.20DBA/2JDC172.861.982.272888.9 
27BCJ 27.CMS_D-CR-95-1CMS_00009595012215.16DBA/2JDCR109.81.982.471578.9 
28BCJ 28.CMS_D-R-132-1CMS_000132132012015.29DBA/2JDR140.821.912.473189 
29BCJ 29.CMS_B-B-207-1CMS_000207207012215.02C57BL/6JBB96.251.892.671768.5 
30BCJ 30.CMS_B-C-102-1CMS_000102102012115.28C57BL/6JBC129.691.892.321058.7 
31BCJ 31.CMS_B-CR-111-1CMS_000111111012215.26C57BL/6JBCR165.671.842.311769.5 
32BCJ 32.CMS_B-R-142-1CMS_000142142012115.24C57BL/6JBR116.931.842.22969.4 
33BCJ 33.CMS_N-B-211-1CMS_000211211012315.02C57BL/6NJNB1062.092.291567.4 
34BCJ 34.CMS_N-C-118-1CMS_000118118012115.32C57BL/6NJNC219.21.912.341979.2 
35BCJ 35.CMS_N-CR-127-1CMS_000127127012215.33C57BL/6NJNCR8922.561579.4 
36BCJ 36.CMS_N-R-149-1CMS_000149149012115.27C57BL/6NJNR72.911.842.141078.6 
37BCJ 37.CMS_D-B-218-1CMS_000218218020615.04DBA/2JDB154.341.991.991199.3 
38BCJ 38.CMS_D-C-87-1CMS_00008787012215.13DBA/2JDC105.31.982.211097.4 
39BCJ 39.CMS_D-CR-97-1CMS_00009797012315.05DBA/2JDCR55.851.892.41858.3 
40BCJ 40.CMS_D-R-137-1CMS_000137137012315.06DBA/2JDR128.972.012.241598.1Microarray outlier; sample removed.
41BCJ 41.CMS_B-B-206-1CMS_000206206012115.02C57BL/6JBB159.892.032.12737.8 
42BCJ 42.CMS_B-C-103-1CMS_000103103012215.15C57BL/6JBC111.791.872.451608.9 
43BCJ 43.CMS_B-CR-112-1CMS_000112112012215.31C57BL/6JBCR172.141.862.221809.4 
44BCJ 44.CMS_B-R-145-1CMS_000145145012315.12C57BL/6JBR103.742.062.17998.9 
45BCJ 45.CMS_N-B-212-1CMS_000212212012315.04C57BL/6NJNB189.51.92.42488.5 
47BCJ 47.CMS_N-CR-128-1CMS_000128128012215.34C57BL/6NJNCR90.652.072.251899.3 
48BCJ 48.CMS_N-R-154-1CMS_000154154012315.29C57BL/6NJNR114.731.942.341678.8 
49BCJ 49.CMS_D-C-88-1CMS_00008888012215.28DBA/2JDC961.762.551588.5 
50BCJ 50.CMS_D-CR-96-1CMS_00009696012215.21DBA/2JDCR133.661.782.362038.3 
51BCJ 51.CMS_D-R-138-1CMS_000138138012315.22DBA/2JDR127.131.762.24819.3 
52BCJ 52.CMS_B-C-105-1CMS_000105105012315.13C57BL/6JBC203.241.922.353107 
53BCJ 53.CMS_B-CR-113-1CMS_000113113012315.09C57BL/6JBCR168.671.822.412409.1 
55BCJ 55.CMS_N-C-120-1CMS_000120120012215.32C57BL/6NJNC73.671.932.313718.4 
56BCJ 56.CMS_N-CR-125-1CMS_000125125012115.31C57BL/6NJNCR121.931.922.26738.3 
59BCJ 59.CMS_N-C-122-1CMS_000122122012315.30C57BL/6NJNC131.741.852.421869.4 
60BCJ 60.CMS_D-C-89-1CMS_00008989012315.10DBA/2JDC781.772.32748.9 
62BCJ 62.CMS_N-CR-130-1CMS_000130130012315.34C57BL/6NJNCR100.741.712.361138.8 
65BCJ 65.CMS_B-R-144-1CMS_000144144012215.27C57BL/6JBR80.11.812.3958.9 
66BCJ 66.CMS_N-R-151-1CMS_000151151012215.12C57BL/6NJNR80.221.772.21168.6 
diff --git a/general/datasets/Cms_hipp_zscr_1115/contributors.rtf b/general/datasets/Cms_hipp_zscr_1115/contributors.rtf new file mode 100644 index 0000000..3ac780e --- /dev/null +++ b/general/datasets/Cms_hipp_zscr_1115/contributors.rtf @@ -0,0 +1 @@ +

This data set is part of a collaborative effort between UTHSC investigators Byron Jones, Rob Williams, Megan Mulligan, and Lu Lu and collaborators at I.N.R.A Centre de recherche de Toulouse Terenina, Pierre Mormede and Elena Terenina.

diff --git a/general/datasets/Cms_hipp_zscr_1115/experiment-design.rtf b/general/datasets/Cms_hipp_zscr_1115/experiment-design.rtf new file mode 100644 index 0000000..f2d6c93 --- /dev/null +++ b/general/datasets/Cms_hipp_zscr_1115/experiment-design.rtf @@ -0,0 +1,9 @@ +

This data set includes four experimental conditions, B (baseline, untreated), C (chronic mild stress), CR (chronic mild stress followed by acute restraint), and R (acute restraint only). 

+ +

B = untreated

+ +

C = 7 weeks of chronic unpredictable stress

+ +

R = 30 minutes of restraint

+ +

CR = 7 weeks of chronic unpredictable stress followed by 30 minutes of restraint

diff --git a/general/datasets/Cms_hipp_zscr_1115/processing.rtf b/general/datasets/Cms_hipp_zscr_1115/processing.rtf new file mode 100644 index 0000000..1b6ca30 --- /dev/null +++ b/general/datasets/Cms_hipp_zscr_1115/processing.rtf @@ -0,0 +1,3 @@ +

Outlier Detection. Samples 7 (J-CR-21), 24 (N-R-29), and 40 (D-R-6) were detected as outliers and have abnormal expression profiles (i.e. they do not cluster with other samples and have abnormal median and quartile ranges after normalization. These samples have been removed from the analysis.

+ +

RMA Algorithm. The Robust Multichip Analysis (RMA) algorithm fits a robust linear model at the probe level to minimize the effect of probe-specific affinity differences. This approach: n Increases sensitivity to small changes between experiment and control samples. n Minimizes variance across the dynamic range, but does compress calculated fold change values. RMA consists of three steps: 1. Background adjustment 2. Quantile normalization 3. Summarization This is a multi-chip analysis approach. Therefore, all arrays intended for comparison should be included together in the summarization step. For a more detailed description of the RMA algorithm, see the publication, Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data, Biostatistics, April 2003; Vol. 4; Number 2: 249–264.

diff --git a/general/datasets/Cms_hipp_zscr_1115/specifics.rtf b/general/datasets/Cms_hipp_zscr_1115/specifics.rtf new file mode 100644 index 0000000..5d45792 --- /dev/null +++ b/general/datasets/Cms_hipp_zscr_1115/specifics.rtf @@ -0,0 +1 @@ +

Z-Score. In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data).  This removes negative values from the tables.

diff --git a/general/datasets/Cms_hipp_zscr_1115/summary.rtf b/general/datasets/Cms_hipp_zscr_1115/summary.rtf new file mode 100644 index 0000000..1fededf --- /dev/null +++ b/general/datasets/Cms_hipp_zscr_1115/summary.rtf @@ -0,0 +1 @@ +

This data set was generated to study the effects of strain and stress on hippocampal gene expression in female mice. The data set includes three inbred strains of mice and four treatment groups.

diff --git a/general/datasets/Cms_hipp_zscr_1115/tissue.rtf b/general/datasets/Cms_hipp_zscr_1115/tissue.rtf new file mode 100644 index 0000000..25b50be --- /dev/null +++ b/general/datasets/Cms_hipp_zscr_1115/tissue.rtf @@ -0,0 +1 @@ +

This data set includes expression data from mouse hippocampus.

diff --git a/general/datasets/Crtd_hipprecell1214/acknowledgment.rtf b/general/datasets/Crtd_hipprecell1214/acknowledgment.rtf new file mode 100644 index 0000000..71728a6 --- /dev/null +++ b/general/datasets/Crtd_hipprecell1214/acknowledgment.rtf @@ -0,0 +1 @@ +

Financial support covering the breeding and supply of BXD mice was provided by the Helmholtz Virtual Institute GENESYS (German Network of Systems Genetics, VH-VI-242)

diff --git a/general/datasets/Crtd_hipprecell1214/cases.rtf b/general/datasets/Crtd_hipprecell1214/cases.rtf new file mode 100644 index 0000000..8116156 --- /dev/null +++ b/general/datasets/Crtd_hipprecell1214/cases.rtf @@ -0,0 +1 @@ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 8 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 10 inbred (F20+) BXD lines generated by Lu and Peirce. In addition, the parental strains C57BL/6J and DBA/2J were used to yield a total of 20 genetically unique cell lines. All of these strains have been genotyped at 13,377 SNPs.

diff --git a/general/datasets/Crtd_hipprecell1214/citation.rtf b/general/datasets/Crtd_hipprecell1214/citation.rtf new file mode 100644 index 0000000..32c44ca --- /dev/null +++ b/general/datasets/Crtd_hipprecell1214/citation.rtf @@ -0,0 +1 @@ +

Please cite: Kannan S, Nicola Z, Overall RW, Ichwan M, Ramírez-Rodríguez G, Grzyb A, Patone G, Saar K, Hübner N, Kempermann G (2016). Systems Genetics Analysis of a Recombinant Inbred Mouse Cell Culture Panel Reveals Wnt Pathway Member Lrp6 as a Regulator of Adult Hippocampal Precursor Cell Proliferation. Stem Cells 34(3):674–84. PMID: 26840599.

diff --git a/general/datasets/Crtd_hipprecell1214/contributors.rtf b/general/datasets/Crtd_hipprecell1214/contributors.rtf new file mode 100644 index 0000000..2f3a8bd --- /dev/null +++ b/general/datasets/Crtd_hipprecell1214/contributors.rtf @@ -0,0 +1 @@ +

Gerd Kempermann CRTD – Center for Regenerative Therapies Dresden Technische Universität Dresden 01307 Dresden Germany

diff --git a/general/datasets/Crtd_hipprecell1214/experiment-design.rtf b/general/datasets/Crtd_hipprecell1214/experiment-design.rtf new file mode 100644 index 0000000..c266448 --- /dev/null +++ b/general/datasets/Crtd_hipprecell1214/experiment-design.rtf @@ -0,0 +1 @@ +

Each culture was derived from between 6 and 12 mice of c. 6 weeks old and of mixed sexes. Sex ratios in each batch varied. Triplicate cultures, from the same line but of different passage numbers, were used for RNA collection. Quantile normalisation of probe-level values was performed, and data for all probes mapping to the same Entrez GeneID were merged as means. No further adjustment of the data was done.

diff --git a/general/datasets/Crtd_hipprecell1214/notes.rtf b/general/datasets/Crtd_hipprecell1214/notes.rtf new file mode 100644 index 0000000..f2b1272 --- /dev/null +++ b/general/datasets/Crtd_hipprecell1214/notes.rtf @@ -0,0 +1,3 @@ +

This study is associated with the following records from the BXD Phenotype Database:

+ +

17347, 17348, 17349

diff --git a/general/datasets/Crtd_hipprecell1214/platform.rtf b/general/datasets/Crtd_hipprecell1214/platform.rtf new file mode 100644 index 0000000..bbe0b51 --- /dev/null +++ b/general/datasets/Crtd_hipprecell1214/platform.rtf @@ -0,0 +1 @@ +

Illumina MouseWG-6 array with custom probe mapping: This data set uses a custom mapping of probes to Entrez GeneIDs. Each probe sequence on the MouseWG-6 v. 2.0 array was queried against the mm9 mouse genome using Jim Kent's BLAT program. The genomic position of probes returning a single hit was then used to assign the probe to an NCBI Entrez GeneID. Probes targeting the same GeneID were collapsed as means to yield data for 21155 unique genes.

diff --git a/general/datasets/Crtd_hipprecell1214/processing.rtf b/general/datasets/Crtd_hipprecell1214/processing.rtf new file mode 100644 index 0000000..51df24a --- /dev/null +++ b/general/datasets/Crtd_hipprecell1214/processing.rtf @@ -0,0 +1 @@ +

Raw data were preprocessed with quantile normalisation in R/Bioconductor using the package beadarray. After probe reannotation, data from probes targeting the same GeneID were collapsed as means. This results in a single unique probe set associated with each of the Entrez GeneIDs covered.

diff --git a/general/datasets/Crtd_hipprecell1214/summary.rtf b/general/datasets/Crtd_hipprecell1214/summary.rtf new file mode 100644 index 0000000..be648f2 --- /dev/null +++ b/general/datasets/Crtd_hipprecell1214/summary.rtf @@ -0,0 +1 @@ +

This data set was generated from proliferating adherent cultures of adult hippocampus-derived precursor cells from 20 BXD strains. The dentate gyrus of the mouse hippocampus is the site of continued neural precursor proliferation and generation of new neurons in adulthood as a distinct process from the widespread embryonic and juvenile neurogenesis during development. Adult-derived precursors can be isolated and maintained in adherent culture (Babu et al., 2007, 2011) and can be differentiated into neurons, astrocytes and oligodendrocytes. In this study, cultures were established from 20 BXD strains obtained through the authors’ involvement in the GeNeSys Consortium. This data set was obtained from cultures actively proliferating in the presence of growth factors.

diff --git a/general/datasets/Crtd_hipprecell1214/tissue.rtf b/general/datasets/Crtd_hipprecell1214/tissue.rtf new file mode 100644 index 0000000..f45211e --- /dev/null +++ b/general/datasets/Crtd_hipprecell1214/tissue.rtf @@ -0,0 +1 @@ +

The mice used in this study were bred at Harlan () for the GeNeSys Consortium and were delivered to the study site in Dresden at c. 6 weeks of age. Some animals were the 1st generation offspring of the Harlan stock which were bred and raised locally at the CRTD (housed at the Medizinisch-Theoretisches Zentrum of the Technische Universität Dresden). Animals were killed the day after delivery (or at 6 weeks of age if locally bred) and the hippocampi dissected and processed for precursor cell culture (Babu et al., 2011). Proliferating cultures were maintained in the presence of EGF and FGF-2 and passaged every 3-4 days. For microarray analysis, c. 1 million cells were harvested by on-plate lysis and total RNA prepared using the RNEasy mini kit (Qiagen) following the manufacturer’s protocol (including optional on-column DNase treatment). Each strain was assayed in triplicate (from 3 different passages).

diff --git a/general/datasets/Cubr_rna_0219/citation.rtf b/general/datasets/Cubr_rna_0219/citation.rtf new file mode 100644 index 0000000..9406271 --- /dev/null +++ b/general/datasets/Cubr_rna_0219/citation.rtf @@ -0,0 +1,5 @@ + diff --git a/general/datasets/Cubr_rna_0219/contributors.rtf b/general/datasets/Cubr_rna_0219/contributors.rtf new file mode 100644 index 0000000..a5ce46b --- /dev/null +++ b/general/datasets/Cubr_rna_0219/contributors.rtf @@ -0,0 +1 @@ +

Kechris KTabakoff B

diff --git a/general/datasets/Cubr_rna_0219/experiment-design.rtf b/general/datasets/Cubr_rna_0219/experiment-design.rtf new file mode 100644 index 0000000..8ba40f7 --- /dev/null +++ b/general/datasets/Cubr_rna_0219/experiment-design.rtf @@ -0,0 +1 @@ +

This dataset includes small RNA NGS sequencing data from 59 strains from the Inbred Long Sleep (ILS) and Inbred Short Sleep (ISS) Recombinant inbred mouse whole brain RNA samples. 175 mice (2-3 from each strain) were untreated (naive). The naive samples were provided by Boris Tabakoff, University of Colorado Anschutz Medical Campus. All expression data generation and analysis were conducted by the Kechris Group, University of Colorado Anschutz Medical Campus.

diff --git a/general/datasets/Cubr_rna_0219/notes.rtf b/general/datasets/Cubr_rna_0219/notes.rtf new file mode 100644 index 0000000..84096b8 --- /dev/null +++ b/general/datasets/Cubr_rna_0219/notes.rtf @@ -0,0 +1 @@ +

miRNA expression variance stabilized

diff --git a/general/datasets/Cubr_rna_0219/specifics.rtf b/general/datasets/Cubr_rna_0219/specifics.rtf new file mode 100644 index 0000000..d301f7e --- /dev/null +++ b/general/datasets/Cubr_rna_0219/specifics.rtf @@ -0,0 +1 @@ +based on ens_mirna_expression_variance_stabilized \ No newline at end of file diff --git a/general/datasets/Cubr_rna_0219/summary.rtf b/general/datasets/Cubr_rna_0219/summary.rtf new file mode 100644 index 0000000..57e5529 --- /dev/null +++ b/general/datasets/Cubr_rna_0219/summary.rtf @@ -0,0 +1 @@ +

We conducted a high-throughput sequencing study to measure whole brain miRNA expression levels in alcohol naïve animals in the LXS panel of recombinant inbred (RI) mouse strains. We then combined the sequencing data with genotype data, microarray gene expression data, and data on alcohol-related behavioral phenotypes such as 'Drinking in the dark', 'Sleep time', and 'Low dose activation' from the same RI panel.

diff --git a/general/datasets/DBA2J-ONH-1212/experiment-design.rtf b/general/datasets/DBA2J-ONH-1212/experiment-design.rtf new file mode 100644 index 0000000..f01b888 --- /dev/null +++ b/general/datasets/DBA2J-ONH-1212/experiment-design.rtf @@ -0,0 +1,9 @@ +

TEXT FROM GEO 

+ +

Genome-wide assessment of gene expression changes was performed in DBA/2J mice. The optic nerve head and retina from 40 DBA/2J eyes at 10.5 months of age were separately profiled. These eyes were selected as they encompassed a range of glaucoma severity. Two control groups were also included; 10 eyes from 10.5 months old D2-Gpnmb+ mice (age and strain matched, no glaucoma control) and 10 eyes from 4.5 months old DBA/2J mice (young, pre-glaucoma).

+ +

In this study that was specifically designed to identify early stages of glaucoma in DBA/2J mice, we used genome-wide expression profiling and a series of computational methods. Our methods successfully subdivided eyes with no detectable glaucoma by conventional assays into molecularly defined stages of disease. These stages represent a temporally ordered sequence of glaucoma states. Using an array of tools, we then determined networks and biological processes that are altered at these early stages. Our strategy proved very sensitive, suggesting that similar approaches will be valuable for uncovering early processes in other complex, later-onset diseases. Early changes included upregulation of both the complement cascade and endothelin system, and so we tested the therapeutic value of separately inhibiting them. Mice with a mutation in the complement component 1a gene (C1qa) were robustly protected from glaucoma with the protection being among the greatest reported. Similarly, inhibition of the endothelin system was strongly protective. Since EDN2 is potently vasoconstrictive and was produced by microglial/macrophages, our data provide a novel link between these cell types and vascular dysfunction in glaucoma. Targeting early events such as the upregulation of the complement and endothelin pathways may provide effective new treatments for human glaucoma. (text above from GEO http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26299)

+ +

 

+ +

 

diff --git a/general/datasets/DBA2J-ONH-1212/summary.rtf b/general/datasets/DBA2J-ONH-1212/summary.rtf new file mode 100644 index 0000000..09c8a43 --- /dev/null +++ b/general/datasets/DBA2J-ONH-1212/summary.rtf @@ -0,0 +1,58 @@ +

This is an experimental glaucoma gene expression data set of retinal tissue entered into GeneNetwork by Dr. Eldon Geisert and Robert Williams in which BXD strains have been "highjacked" with experimental and control gene expression data generated by Drs Gareth Howell, Simon John, and colleagues at the Jackson Laboratory. These data were originally entered into GeneNetwork Sept 20, 2011.

+ +

Please see the original paper by Howell et al (2011): http://www.jci.org/articles/view/44646 and GEO data at NCBI.

+ +

Gareth R. Howell, Danilo G. Macalinao, Gregory L. Sousa, Michael Walden, Ileana Soto, Stephen C. Kneeland, Jessica M. Barbay, Benjamin L. King, Jeffrey K. Marchant, Matthew Hibbs, Beth Stevens, Ben A. Barres, Abbot F. Clark, Richard T. Libby, Simon S (2011) Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest. 121:1429–1444

+ +

Each strain corresponds to a particular retinal sample as shown below (note that we have not included ten "preglaucoma control" samples, see http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26299

+ +
    +
  1. BXD1 D2-Gpnmb+ control rep1 (retina)
  2. +
  3. BXD2 D2-Gpnmb+ control rep2 (retina)
  4. +
  5. BXD5 D2-Gpnmb+ control rep3 (retina)
  6. +
  7. BXD6 D2-Gpnmb+ control rep4 (retina)
  8. +
  9. BXD8 D2-Gpnmb+ control rep5 (retina)
  10. +
  11. BXD9 D2-Gpnmb+ control rep6 (retina)
  12. +
  13. BXD11 D2-Gpnmb+ control rep7 (retina)
  14. +
  15. BXD12 D2-Gpnmb+ control rep8 (retina)
  16. +
  17. BXD13 D2-Gpnmb+ control rep9 (retina)
  18. +
  19. BXD14 D2-Gpnmb+ control rep10 (retina)
  20. +
  21. BXD15 No or early 1 rep1 (retina)
  22. +
  23. BXD16 No or early 1 rep2 (retina)
  24. +
  25. BXD18 No or early 1 rep3 (retina)
  26. +
  27. BXD19 No or early 1 rep4 (retina)
  28. +
  29. BXD20 No or early 1 rep5 (retina)
  30. +
  31. BXD22 No or early 1 rep6 (retina)
  32. +
  33. BXD23 No or early 1 rep7 (retina)
  34. +
  35. BXD25 No or early 1 rep8 (retina)
  36. +
  37. BXD27 No or early 1 rep9 (retina)
  38. +
  39. BXD28 No or early 1 rep10 (retina)
  40. +
  41. BXD29 No or early 2 rep1 (retina)
  42. +
  43. BXD30 No or early 2 rep2 (retina)
  44. +
  45. BXD31 No or early 2 rep3 (retina)
  46. +
  47. BXD32 No or early 2 rep4 (retina)
  48. +
  49. BXD33 No or early 2 rep5 (retina)
  50. +
  51. BXD34 No or early 2 rep6 (retina)
  52. +
  53. BXD35 No or early 2 rep7 (retina)
  54. +
  55. BXD36 No or early 2 rep8 (retina)
  56. +
  57. BXD37 No or early 2 rep9 (retina)
  58. +
  59. BXD38 No or early 2 rep10 (retina)
  60. +
  61. BXD39 Moderate rep1 (retina)
  62. +
  63. BXD40 Moderate rep2 (retina)
  64. +
  65. BXD41 Moderate rep3 (retina)
  66. +
  67. BXD42 Moderate rep4 (retina)
  68. +
  69. BXD43 Moderate rep7 (retina)
  70. +
  71. BXD44 Moderate rep8 (retina)
  72. +
  73. BXD45 Moderate rep9 (retina)
  74. +
  75. BXD48 Moderate rep10 (retina)
  76. +
  77. BXD49 Severe rep1 (retina)
  78. +
  79. BXD50 Severe rep2 (retina)
  80. +
  81. BXD51 Severe rep3 (retina)
  82. +
  83. BXD52 Severe rep4 (retina)
  84. +
  85. BXD53 Severe rep5 (retina)
  86. +
  87. BXD54 Severe rep6 (retina)
  88. +
  89. BXD55 Severe rep7 (retina)
  90. +
  91. BXD56 Severe rep8 (retina)
  92. +
  93. BXD59 Severe rep9 (retina)
  94. +
  95. BXD60 Severe rep10 (retina)
  96. +
diff --git a/general/datasets/DBA2J_ONH_1212/experiment-design.rtf b/general/datasets/DBA2J_ONH_1212/experiment-design.rtf deleted file mode 100644 index f01b888..0000000 --- a/general/datasets/DBA2J_ONH_1212/experiment-design.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

TEXT FROM GEO 

- -

Genome-wide assessment of gene expression changes was performed in DBA/2J mice. The optic nerve head and retina from 40 DBA/2J eyes at 10.5 months of age were separately profiled. These eyes were selected as they encompassed a range of glaucoma severity. Two control groups were also included; 10 eyes from 10.5 months old D2-Gpnmb+ mice (age and strain matched, no glaucoma control) and 10 eyes from 4.5 months old DBA/2J mice (young, pre-glaucoma).

- -

In this study that was specifically designed to identify early stages of glaucoma in DBA/2J mice, we used genome-wide expression profiling and a series of computational methods. Our methods successfully subdivided eyes with no detectable glaucoma by conventional assays into molecularly defined stages of disease. These stages represent a temporally ordered sequence of glaucoma states. Using an array of tools, we then determined networks and biological processes that are altered at these early stages. Our strategy proved very sensitive, suggesting that similar approaches will be valuable for uncovering early processes in other complex, later-onset diseases. Early changes included upregulation of both the complement cascade and endothelin system, and so we tested the therapeutic value of separately inhibiting them. Mice with a mutation in the complement component 1a gene (C1qa) were robustly protected from glaucoma with the protection being among the greatest reported. Similarly, inhibition of the endothelin system was strongly protective. Since EDN2 is potently vasoconstrictive and was produced by microglial/macrophages, our data provide a novel link between these cell types and vascular dysfunction in glaucoma. Targeting early events such as the upregulation of the complement and endothelin pathways may provide effective new treatments for human glaucoma. (text above from GEO http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26299)

- -

 

- -

 

diff --git a/general/datasets/DBA2J_ONH_1212/summary.rtf b/general/datasets/DBA2J_ONH_1212/summary.rtf deleted file mode 100644 index 09c8a43..0000000 --- a/general/datasets/DBA2J_ONH_1212/summary.rtf +++ /dev/null @@ -1,58 +0,0 @@ -

This is an experimental glaucoma gene expression data set of retinal tissue entered into GeneNetwork by Dr. Eldon Geisert and Robert Williams in which BXD strains have been "highjacked" with experimental and control gene expression data generated by Drs Gareth Howell, Simon John, and colleagues at the Jackson Laboratory. These data were originally entered into GeneNetwork Sept 20, 2011.

- -

Please see the original paper by Howell et al (2011): http://www.jci.org/articles/view/44646 and GEO data at NCBI.

- -

Gareth R. Howell, Danilo G. Macalinao, Gregory L. Sousa, Michael Walden, Ileana Soto, Stephen C. Kneeland, Jessica M. Barbay, Benjamin L. King, Jeffrey K. Marchant, Matthew Hibbs, Beth Stevens, Ben A. Barres, Abbot F. Clark, Richard T. Libby, Simon S (2011) Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest. 121:1429–1444

- -

Each strain corresponds to a particular retinal sample as shown below (note that we have not included ten "preglaucoma control" samples, see http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26299

- -
    -
  1. BXD1 D2-Gpnmb+ control rep1 (retina)
  2. -
  3. BXD2 D2-Gpnmb+ control rep2 (retina)
  4. -
  5. BXD5 D2-Gpnmb+ control rep3 (retina)
  6. -
  7. BXD6 D2-Gpnmb+ control rep4 (retina)
  8. -
  9. BXD8 D2-Gpnmb+ control rep5 (retina)
  10. -
  11. BXD9 D2-Gpnmb+ control rep6 (retina)
  12. -
  13. BXD11 D2-Gpnmb+ control rep7 (retina)
  14. -
  15. BXD12 D2-Gpnmb+ control rep8 (retina)
  16. -
  17. BXD13 D2-Gpnmb+ control rep9 (retina)
  18. -
  19. BXD14 D2-Gpnmb+ control rep10 (retina)
  20. -
  21. BXD15 No or early 1 rep1 (retina)
  22. -
  23. BXD16 No or early 1 rep2 (retina)
  24. -
  25. BXD18 No or early 1 rep3 (retina)
  26. -
  27. BXD19 No or early 1 rep4 (retina)
  28. -
  29. BXD20 No or early 1 rep5 (retina)
  30. -
  31. BXD22 No or early 1 rep6 (retina)
  32. -
  33. BXD23 No or early 1 rep7 (retina)
  34. -
  35. BXD25 No or early 1 rep8 (retina)
  36. -
  37. BXD27 No or early 1 rep9 (retina)
  38. -
  39. BXD28 No or early 1 rep10 (retina)
  40. -
  41. BXD29 No or early 2 rep1 (retina)
  42. -
  43. BXD30 No or early 2 rep2 (retina)
  44. -
  45. BXD31 No or early 2 rep3 (retina)
  46. -
  47. BXD32 No or early 2 rep4 (retina)
  48. -
  49. BXD33 No or early 2 rep5 (retina)
  50. -
  51. BXD34 No or early 2 rep6 (retina)
  52. -
  53. BXD35 No or early 2 rep7 (retina)
  54. -
  55. BXD36 No or early 2 rep8 (retina)
  56. -
  57. BXD37 No or early 2 rep9 (retina)
  58. -
  59. BXD38 No or early 2 rep10 (retina)
  60. -
  61. BXD39 Moderate rep1 (retina)
  62. -
  63. BXD40 Moderate rep2 (retina)
  64. -
  65. BXD41 Moderate rep3 (retina)
  66. -
  67. BXD42 Moderate rep4 (retina)
  68. -
  69. BXD43 Moderate rep7 (retina)
  70. -
  71. BXD44 Moderate rep8 (retina)
  72. -
  73. BXD45 Moderate rep9 (retina)
  74. -
  75. BXD48 Moderate rep10 (retina)
  76. -
  77. BXD49 Severe rep1 (retina)
  78. -
  79. BXD50 Severe rep2 (retina)
  80. -
  81. BXD51 Severe rep3 (retina)
  82. -
  83. BXD52 Severe rep4 (retina)
  84. -
  85. BXD53 Severe rep5 (retina)
  86. -
  87. BXD54 Severe rep6 (retina)
  88. -
  89. BXD55 Severe rep7 (retina)
  90. -
  91. BXD56 Severe rep8 (retina)
  92. -
  93. BXD59 Severe rep9 (retina)
  94. -
  95. BXD60 Severe rep10 (retina)
  96. -
diff --git a/general/datasets/DOD_BXD_Ind_PFC_CD_RNA_Seq_1019/specifics.rtf b/general/datasets/DOD_BXD_Ind_PFC_CD_RNA_Seq_1019/specifics.rtf deleted file mode 100644 index e64a89f..0000000 --- a/general/datasets/DOD_BXD_Ind_PFC_CD_RNA_Seq_1019/specifics.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

DOD BXD Individual PFC GWI CD RNA-Seq (Oct19) TPM Log2

- -

Download data here: http://ipfs.genenetwork.org/ipfs/QmUxTJ6qW3eHQeVoyc4tYgooxYiYN6G6eekV1iLMh8EF5k/GN880

diff --git a/general/datasets/DOD_BXD_Ind_PFC_CD_RNA_Seq_1019/summary.rtf b/general/datasets/DOD_BXD_Ind_PFC_CD_RNA_Seq_1019/summary.rtf deleted file mode 100644 index 7378ad9..0000000 --- a/general/datasets/DOD_BXD_Ind_PFC_CD_RNA_Seq_1019/summary.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

- -

D=diisopropylflurophosphate treatment

- -

CD= corticosterone + diisopropylflurophosphate treatment.

- -

Data are log2 gene expression for D or CD vs saline control

- -

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/DOD_BXD_Ind_PFC_CD_RNA_Seq_ComB_1019/specifics.rtf b/general/datasets/DOD_BXD_Ind_PFC_CD_RNA_Seq_ComB_1019/specifics.rtf deleted file mode 100644 index 45296b8..0000000 --- a/general/datasets/DOD_BXD_Ind_PFC_CD_RNA_Seq_ComB_1019/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -DOD BXD INDV PFC GWI CD RNA-Seq ComB (Dec19) TPM Log2 \ No newline at end of file diff --git a/general/datasets/DOD_BXD_Ind_PFC_CD_RNA_Seq_ComB_1019/summary.rtf b/general/datasets/DOD_BXD_Ind_PFC_CD_RNA_Seq_ComB_1019/summary.rtf deleted file mode 100644 index 7378ad9..0000000 --- a/general/datasets/DOD_BXD_Ind_PFC_CD_RNA_Seq_ComB_1019/summary.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

- -

D=diisopropylflurophosphate treatment

- -

CD= corticosterone + diisopropylflurophosphate treatment.

- -

Data are log2 gene expression for D or CD vs saline control

- -

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/DOD_BXD_Ind_PFC_CTL_RNA_Seq_1019/specifics.rtf b/general/datasets/DOD_BXD_Ind_PFC_CTL_RNA_Seq_1019/specifics.rtf deleted file mode 100644 index 79182c3..0000000 --- a/general/datasets/DOD_BXD_Ind_PFC_CTL_RNA_Seq_1019/specifics.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

DOD BXD Individual PFC GWI CTL RNA-Seq (Oct19) TPM Log2

- -

Download data here: http://ipfs.genenetwork.org/ipfs/QmUxTJ6qW3eHQeVoyc4tYgooxYiYN6G6eekV1iLMh8EF5k/GN881

diff --git a/general/datasets/DOD_BXD_Ind_PFC_CTL_RNA_Seq_1019/summary.rtf b/general/datasets/DOD_BXD_Ind_PFC_CTL_RNA_Seq_1019/summary.rtf deleted file mode 100644 index 7378ad9..0000000 --- a/general/datasets/DOD_BXD_Ind_PFC_CTL_RNA_Seq_1019/summary.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

- -

D=diisopropylflurophosphate treatment

- -

CD= corticosterone + diisopropylflurophosphate treatment.

- -

Data are log2 gene expression for D or CD vs saline control

- -

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/DOD_BXD_Ind_PFC_CTL_RNA_Seq_ComB_1019/specifics.rtf b/general/datasets/DOD_BXD_Ind_PFC_CTL_RNA_Seq_ComB_1019/specifics.rtf deleted file mode 100644 index 5c05883..0000000 --- a/general/datasets/DOD_BXD_Ind_PFC_CTL_RNA_Seq_ComB_1019/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -DOD BXD INDV PFC GWI CTL RNA-Seq ComB (Dec19) TPM Log2 \ No newline at end of file diff --git a/general/datasets/DOD_BXD_Ind_PFC_CTL_RNA_Seq_ComB_1019/summary.rtf b/general/datasets/DOD_BXD_Ind_PFC_CTL_RNA_Seq_ComB_1019/summary.rtf deleted file mode 100644 index 7378ad9..0000000 --- a/general/datasets/DOD_BXD_Ind_PFC_CTL_RNA_Seq_ComB_1019/summary.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

- -

D=diisopropylflurophosphate treatment

- -

CD= corticosterone + diisopropylflurophosphate treatment.

- -

Data are log2 gene expression for D or CD vs saline control

- -

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/DOD_BXD_Ind_PFC_DFP_RNA_Seq_1019/specifics.rtf b/general/datasets/DOD_BXD_Ind_PFC_DFP_RNA_Seq_1019/specifics.rtf deleted file mode 100644 index d77d879..0000000 --- a/general/datasets/DOD_BXD_Ind_PFC_DFP_RNA_Seq_1019/specifics.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

DOD BXD Individual PFC GWI DFP RNA-Seq (Oct19) TPM Log2

- -

Download data here: http://ipfs.genenetwork.org/ipfs/QmUxTJ6qW3eHQeVoyc4tYgooxYiYN6G6eekV1iLMh8EF5k/GN882

diff --git a/general/datasets/DOD_BXD_Ind_PFC_DFP_RNA_Seq_1019/summary.rtf b/general/datasets/DOD_BXD_Ind_PFC_DFP_RNA_Seq_1019/summary.rtf deleted file mode 100644 index 7378ad9..0000000 --- a/general/datasets/DOD_BXD_Ind_PFC_DFP_RNA_Seq_1019/summary.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

- -

D=diisopropylflurophosphate treatment

- -

CD= corticosterone + diisopropylflurophosphate treatment.

- -

Data are log2 gene expression for D or CD vs saline control

- -

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/DOD_BXD_Ind_PFC_DFP_RNA_Seq_ComB_1019/specifics.rtf b/general/datasets/DOD_BXD_Ind_PFC_DFP_RNA_Seq_ComB_1019/specifics.rtf deleted file mode 100644 index 577b618..0000000 --- a/general/datasets/DOD_BXD_Ind_PFC_DFP_RNA_Seq_ComB_1019/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -DOD BXD INDV PFC GWI DFP RNA-Seq ComB (Dec19) TPM Log2 \ No newline at end of file diff --git a/general/datasets/DOD_BXD_Ind_PFC_DFP_RNA_Seq_ComB_1019/summary.rtf b/general/datasets/DOD_BXD_Ind_PFC_DFP_RNA_Seq_ComB_1019/summary.rtf deleted file mode 100644 index 7378ad9..0000000 --- a/general/datasets/DOD_BXD_Ind_PFC_DFP_RNA_Seq_ComB_1019/summary.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

- -

D=diisopropylflurophosphate treatment

- -

CD= corticosterone + diisopropylflurophosphate treatment.

- -

Data are log2 gene expression for D or CD vs saline control

- -

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/DOD_BXD_PFC_CD_RNA_Seq_1019/specifics.rtf b/general/datasets/DOD_BXD_PFC_CD_RNA_Seq_1019/specifics.rtf deleted file mode 100644 index e8f6c71..0000000 --- a/general/datasets/DOD_BXD_PFC_CD_RNA_Seq_1019/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -DOD BXD PFC GWI CD RNA-Seq (Oct19) TPM Log2 \ No newline at end of file diff --git a/general/datasets/DOD_BXD_PFC_CD_RNA_Seq_1019/summary.rtf b/general/datasets/DOD_BXD_PFC_CD_RNA_Seq_1019/summary.rtf deleted file mode 100644 index 7378ad9..0000000 --- a/general/datasets/DOD_BXD_PFC_CD_RNA_Seq_1019/summary.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

- -

D=diisopropylflurophosphate treatment

- -

CD= corticosterone + diisopropylflurophosphate treatment.

- -

Data are log2 gene expression for D or CD vs saline control

- -

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/DOD_BXD_PFC_CD_RNA_Seq_ComB_1019/specifics.rtf b/general/datasets/DOD_BXD_PFC_CD_RNA_Seq_ComB_1019/specifics.rtf deleted file mode 100644 index 082f0ef..0000000 --- a/general/datasets/DOD_BXD_PFC_CD_RNA_Seq_ComB_1019/specifics.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

DOD BXD PFC GWI CD RNA-Seq ComB (Dec19) TPM Log2

- -

DOWNLOAD DATA HERE: http://ipfs.genenetwork.org/ipfs/QmUxTJ6qW3eHQeVoyc4tYgooxYiYN6G6eekV1iLMh8EF5k/GN898

diff --git a/general/datasets/DOD_BXD_PFC_CD_RNA_Seq_ComB_1019/summary.rtf b/general/datasets/DOD_BXD_PFC_CD_RNA_Seq_ComB_1019/summary.rtf deleted file mode 100644 index 7378ad9..0000000 --- a/general/datasets/DOD_BXD_PFC_CD_RNA_Seq_ComB_1019/summary.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

- -

D=diisopropylflurophosphate treatment

- -

CD= corticosterone + diisopropylflurophosphate treatment.

- -

Data are log2 gene expression for D or CD vs saline control

- -

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/DOD_BXD_PFC_CTL_RNA_Seq_1019/specifics.rtf b/general/datasets/DOD_BXD_PFC_CTL_RNA_Seq_1019/specifics.rtf deleted file mode 100644 index 052b038..0000000 --- a/general/datasets/DOD_BXD_PFC_CTL_RNA_Seq_1019/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -DOD BXD PFC GWI CTL RNA-Seq (Oct19) \ No newline at end of file diff --git a/general/datasets/DOD_BXD_PFC_CTL_RNA_Seq_1019/summary.rtf b/general/datasets/DOD_BXD_PFC_CTL_RNA_Seq_1019/summary.rtf deleted file mode 100644 index 7378ad9..0000000 --- a/general/datasets/DOD_BXD_PFC_CTL_RNA_Seq_1019/summary.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

- -

D=diisopropylflurophosphate treatment

- -

CD= corticosterone + diisopropylflurophosphate treatment.

- -

Data are log2 gene expression for D or CD vs saline control

- -

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/DOD_BXD_PFC_CTL_RNA_Seq_ComB_1019/specifics.rtf b/general/datasets/DOD_BXD_PFC_CTL_RNA_Seq_ComB_1019/specifics.rtf deleted file mode 100644 index 57e85c6..0000000 --- a/general/datasets/DOD_BXD_PFC_CTL_RNA_Seq_ComB_1019/specifics.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

DOD BXD PFC GWI CTL RNA-Seq ComB (Dec19) TPM Log2

- -

DOWNLOAD DATA HERE: http://ipfs.genenetwork.org/ipfs/QmUxTJ6qW3eHQeVoyc4tYgooxYiYN6G6eekV1iLMh8EF5k/GN899

diff --git a/general/datasets/DOD_BXD_PFC_CTL_RNA_Seq_ComB_1019/summary.rtf b/general/datasets/DOD_BXD_PFC_CTL_RNA_Seq_ComB_1019/summary.rtf deleted file mode 100644 index 7378ad9..0000000 --- a/general/datasets/DOD_BXD_PFC_CTL_RNA_Seq_ComB_1019/summary.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

- -

D=diisopropylflurophosphate treatment

- -

CD= corticosterone + diisopropylflurophosphate treatment.

- -

Data are log2 gene expression for D or CD vs saline control

- -

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/DOD_BXD_PFC_DFP_RNA_Seq_1019/specifics.rtf b/general/datasets/DOD_BXD_PFC_DFP_RNA_Seq_1019/specifics.rtf deleted file mode 100644 index d6ad7e8..0000000 --- a/general/datasets/DOD_BXD_PFC_DFP_RNA_Seq_1019/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -DOD BXD PFC GWI DFP RNA-Seq (Oct19) TPM Log2 \ No newline at end of file diff --git a/general/datasets/DOD_BXD_PFC_DFP_RNA_Seq_1019/summary.rtf b/general/datasets/DOD_BXD_PFC_DFP_RNA_Seq_1019/summary.rtf deleted file mode 100644 index 7378ad9..0000000 --- a/general/datasets/DOD_BXD_PFC_DFP_RNA_Seq_1019/summary.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

- -

D=diisopropylflurophosphate treatment

- -

CD= corticosterone + diisopropylflurophosphate treatment.

- -

Data are log2 gene expression for D or CD vs saline control

- -

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/DOD_BXD_PFC_DFP_RNA_Seq_ComB_1019/specifics.rtf b/general/datasets/DOD_BXD_PFC_DFP_RNA_Seq_ComB_1019/specifics.rtf deleted file mode 100644 index 476fd21..0000000 --- a/general/datasets/DOD_BXD_PFC_DFP_RNA_Seq_ComB_1019/specifics.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

DOD BXD PFC GWI DFP RNA-Seq ComB (Dec19) TPM Log2

- -

DOWNLOAD DATA HERE: http://ipfs.genenetwork.org/ipfs/QmUxTJ6qW3eHQeVoyc4tYgooxYiYN6G6eekV1iLMh8EF5k/GN900

diff --git a/general/datasets/DOD_BXD_PFC_DFP_RNA_Seq_ComB_1019/summary.rtf b/general/datasets/DOD_BXD_PFC_DFP_RNA_Seq_ComB_1019/summary.rtf deleted file mode 100644 index 7378ad9..0000000 --- a/general/datasets/DOD_BXD_PFC_DFP_RNA_Seq_ComB_1019/summary.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

- -

D=diisopropylflurophosphate treatment

- -

CD= corticosterone + diisopropylflurophosphate treatment.

- -

Data are log2 gene expression for D or CD vs saline control

- -

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/Dba2j_onh_1212/experiment-design.rtf b/general/datasets/Dba2j_onh_1212/experiment-design.rtf new file mode 100644 index 0000000..f01b888 --- /dev/null +++ b/general/datasets/Dba2j_onh_1212/experiment-design.rtf @@ -0,0 +1,9 @@ +

TEXT FROM GEO 

+ +

Genome-wide assessment of gene expression changes was performed in DBA/2J mice. The optic nerve head and retina from 40 DBA/2J eyes at 10.5 months of age were separately profiled. These eyes were selected as they encompassed a range of glaucoma severity. Two control groups were also included; 10 eyes from 10.5 months old D2-Gpnmb+ mice (age and strain matched, no glaucoma control) and 10 eyes from 4.5 months old DBA/2J mice (young, pre-glaucoma).

+ +

In this study that was specifically designed to identify early stages of glaucoma in DBA/2J mice, we used genome-wide expression profiling and a series of computational methods. Our methods successfully subdivided eyes with no detectable glaucoma by conventional assays into molecularly defined stages of disease. These stages represent a temporally ordered sequence of glaucoma states. Using an array of tools, we then determined networks and biological processes that are altered at these early stages. Our strategy proved very sensitive, suggesting that similar approaches will be valuable for uncovering early processes in other complex, later-onset diseases. Early changes included upregulation of both the complement cascade and endothelin system, and so we tested the therapeutic value of separately inhibiting them. Mice with a mutation in the complement component 1a gene (C1qa) were robustly protected from glaucoma with the protection being among the greatest reported. Similarly, inhibition of the endothelin system was strongly protective. Since EDN2 is potently vasoconstrictive and was produced by microglial/macrophages, our data provide a novel link between these cell types and vascular dysfunction in glaucoma. Targeting early events such as the upregulation of the complement and endothelin pathways may provide effective new treatments for human glaucoma. (text above from GEO http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26299)

+ +

 

+ +

 

diff --git a/general/datasets/Dba2j_onh_1212/summary.rtf b/general/datasets/Dba2j_onh_1212/summary.rtf new file mode 100644 index 0000000..09c8a43 --- /dev/null +++ b/general/datasets/Dba2j_onh_1212/summary.rtf @@ -0,0 +1,58 @@ +

This is an experimental glaucoma gene expression data set of retinal tissue entered into GeneNetwork by Dr. Eldon Geisert and Robert Williams in which BXD strains have been "highjacked" with experimental and control gene expression data generated by Drs Gareth Howell, Simon John, and colleagues at the Jackson Laboratory. These data were originally entered into GeneNetwork Sept 20, 2011.

+ +

Please see the original paper by Howell et al (2011): http://www.jci.org/articles/view/44646 and GEO data at NCBI.

+ +

Gareth R. Howell, Danilo G. Macalinao, Gregory L. Sousa, Michael Walden, Ileana Soto, Stephen C. Kneeland, Jessica M. Barbay, Benjamin L. King, Jeffrey K. Marchant, Matthew Hibbs, Beth Stevens, Ben A. Barres, Abbot F. Clark, Richard T. Libby, Simon S (2011) Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest. 121:1429–1444

+ +

Each strain corresponds to a particular retinal sample as shown below (note that we have not included ten "preglaucoma control" samples, see http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26299

+ +
    +
  1. BXD1 D2-Gpnmb+ control rep1 (retina)
  2. +
  3. BXD2 D2-Gpnmb+ control rep2 (retina)
  4. +
  5. BXD5 D2-Gpnmb+ control rep3 (retina)
  6. +
  7. BXD6 D2-Gpnmb+ control rep4 (retina)
  8. +
  9. BXD8 D2-Gpnmb+ control rep5 (retina)
  10. +
  11. BXD9 D2-Gpnmb+ control rep6 (retina)
  12. +
  13. BXD11 D2-Gpnmb+ control rep7 (retina)
  14. +
  15. BXD12 D2-Gpnmb+ control rep8 (retina)
  16. +
  17. BXD13 D2-Gpnmb+ control rep9 (retina)
  18. +
  19. BXD14 D2-Gpnmb+ control rep10 (retina)
  20. +
  21. BXD15 No or early 1 rep1 (retina)
  22. +
  23. BXD16 No or early 1 rep2 (retina)
  24. +
  25. BXD18 No or early 1 rep3 (retina)
  26. +
  27. BXD19 No or early 1 rep4 (retina)
  28. +
  29. BXD20 No or early 1 rep5 (retina)
  30. +
  31. BXD22 No or early 1 rep6 (retina)
  32. +
  33. BXD23 No or early 1 rep7 (retina)
  34. +
  35. BXD25 No or early 1 rep8 (retina)
  36. +
  37. BXD27 No or early 1 rep9 (retina)
  38. +
  39. BXD28 No or early 1 rep10 (retina)
  40. +
  41. BXD29 No or early 2 rep1 (retina)
  42. +
  43. BXD30 No or early 2 rep2 (retina)
  44. +
  45. BXD31 No or early 2 rep3 (retina)
  46. +
  47. BXD32 No or early 2 rep4 (retina)
  48. +
  49. BXD33 No or early 2 rep5 (retina)
  50. +
  51. BXD34 No or early 2 rep6 (retina)
  52. +
  53. BXD35 No or early 2 rep7 (retina)
  54. +
  55. BXD36 No or early 2 rep8 (retina)
  56. +
  57. BXD37 No or early 2 rep9 (retina)
  58. +
  59. BXD38 No or early 2 rep10 (retina)
  60. +
  61. BXD39 Moderate rep1 (retina)
  62. +
  63. BXD40 Moderate rep2 (retina)
  64. +
  65. BXD41 Moderate rep3 (retina)
  66. +
  67. BXD42 Moderate rep4 (retina)
  68. +
  69. BXD43 Moderate rep7 (retina)
  70. +
  71. BXD44 Moderate rep8 (retina)
  72. +
  73. BXD45 Moderate rep9 (retina)
  74. +
  75. BXD48 Moderate rep10 (retina)
  76. +
  77. BXD49 Severe rep1 (retina)
  78. +
  79. BXD50 Severe rep2 (retina)
  80. +
  81. BXD51 Severe rep3 (retina)
  82. +
  83. BXD52 Severe rep4 (retina)
  84. +
  85. BXD53 Severe rep5 (retina)
  86. +
  87. BXD54 Severe rep6 (retina)
  88. +
  89. BXD55 Severe rep7 (retina)
  90. +
  91. BXD56 Severe rep8 (retina)
  92. +
  93. BXD59 Severe rep9 (retina)
  94. +
  95. BXD60 Severe rep10 (retina)
  96. +
diff --git a/general/datasets/DevNeocortex_ILM6.2P14RInv_1110/cases.rtf b/general/datasets/DevNeocortex_ILM6.2P14RInv_1110/cases.rtf new file mode 100644 index 0000000..70216c8 --- /dev/null +++ b/general/datasets/DevNeocortex_ILM6.2P14RInv_1110/cases.rtf @@ -0,0 +1,3 @@ +

About the strains used to generate this set of data

+ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/DevNeocortex_ILM6.2P14RInv_1110/experiment-design.rtf b/general/datasets/DevNeocortex_ILM6.2P14RInv_1110/experiment-design.rtf new file mode 100644 index 0000000..616db01 --- /dev/null +++ b/general/datasets/DevNeocortex_ILM6.2P14RInv_1110/experiment-design.rtf @@ -0,0 +1,3 @@ +

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

+ +

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/DevNeocortex_ILM6.2P14RInv_1110/summary.rtf b/general/datasets/DevNeocortex_ILM6.2P14RInv_1110/summary.rtf new file mode 100644 index 0000000..70d7451 --- /dev/null +++ b/general/datasets/DevNeocortex_ILM6.2P14RInv_1110/summary.rtf @@ -0,0 +1,16 @@ +

Data generated by Dr. Glenn D. Rosen and colleagues

+ +

The Neocortex Developmental data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

+ +

Some of these data were used in
+Gaglani SM, Lu L, Williams RW, Rosen GD (2009) The genetic control of neocortex volume and covariation with patterns of gene expression in mice. BMC Neuroscience 10:44 Full Text HTML Version, Full Text PDF Version

+ +

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the Striatal Developmental Transcriptome data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

+ +

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Developmental data set, xxxx probes have LRS values >46 (LOD >10).

+ +

Users of these mouse neocortex data may also find the following complementary resources and papers useful:

+ +

Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex.

+ +

A movie of the dissection of the brain by Dr. Glenn Rosen. ABOUT THE NEOCORTEX

diff --git a/general/datasets/DevNeocortex_ILM6.2P14RInv_1110/tissue.rtf b/general/datasets/DevNeocortex_ILM6.2P14RInv_1110/tissue.rtf new file mode 100644 index 0000000..51f6e74 --- /dev/null +++ b/general/datasets/DevNeocortex_ILM6.2P14RInv_1110/tissue.rtf @@ -0,0 +1,536 @@ +

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum.

+ +

All animals used in this study were either 3 or 14 days of age. A pool of dissected neocortical tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn D. Rosen and colleagues.

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P325384138018_F236
2BXD1P335384138058_A239
3BXD2P325384138018_C168
4BXD2P315448576044_F167
5BXD5P375384138020_A273
6BXD5P345452241022_C267
7BXD6P335384138048_A107
8BXD6P345452241007_A108
9BXD8P365384138009_A113
10BXD8P375384138021_C115
11BXD9P355452241004_F289
12BXD9P345452241022_D288
13BXD11P385237939010_A117
14BXD11P315448576044_D120
15BXD12P365384138009_B130
16BXD12P375384138021_B132
17BXD13P375384138020_F161
18BXD13P355452241004_C164
19BXD14P355452241004_B158
20BXD14P365452241033_D424
21BXD15P335452241008_C437
22BXD15P345452241023_D438
23BXD16P335384138048_D170
24BXD16P345452241007_D172
25BXD18P385448576010_A390
26BXD18P315448576045_E392
27BXD19P385237939010_E210
28BXD19P315448576045_A211
29BXD20P355452241017_B439
30BXD20P365452241033_E441
31BXD21P375384138021_F341
32BXD21P365384138053_F315
33BXD24aP385237939012_B251
34BXD24aP375384138020_B250
35BXD27P385237939012_D298
36BXD27P315448576045_C300
37BXD28P325384138049_B550
38BXD28P315448576029_F548
39BXD29P325384138047_F502
40BXD29P315448576029_D501
41BXD31P355452241024_D579
42BXD31P365452241035_D582
43BXD32P355452241006_F407
44BXD32P365452241033_C408
45BXD34P385237939012_F345
46BXD34P345452241022_F355
47BXD36P375384138016_A429
48BXD36P385448576010_D430
49BXD38P325384138041_F327
50BXD38P335384138058_E328
51BXD39P375384138016_E515
52BXD39P355452241024_A518
53BXD40P325384138041_C373
54BXD40P335452241008_A375
55BXD42P335452241008_E485
56BXD42P345452241023_F486
57BXD51P355452241024_F621
58BXD51P365452241035_F622
59BXD61P345452241031_C554
60BXD61P335452241034_A552
61BXD70P325384138049_D590
62BXD70P315448576044_B589
63BXD73P325384138049_E603
64BXD73P385448576011_E605
+
diff --git a/general/datasets/DevNeocortex_ILM6.2P14RInv_1111/cases.rtf b/general/datasets/DevNeocortex_ILM6.2P14RInv_1111/cases.rtf new file mode 100644 index 0000000..70216c8 --- /dev/null +++ b/general/datasets/DevNeocortex_ILM6.2P14RInv_1111/cases.rtf @@ -0,0 +1,3 @@ +

About the strains used to generate this set of data

+ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/DevNeocortex_ILM6.2P14RInv_1111/experiment-design.rtf b/general/datasets/DevNeocortex_ILM6.2P14RInv_1111/experiment-design.rtf new file mode 100644 index 0000000..616db01 --- /dev/null +++ b/general/datasets/DevNeocortex_ILM6.2P14RInv_1111/experiment-design.rtf @@ -0,0 +1,3 @@ +

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

+ +

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/DevNeocortex_ILM6.2P14RInv_1111/summary.rtf b/general/datasets/DevNeocortex_ILM6.2P14RInv_1111/summary.rtf new file mode 100644 index 0000000..70d7451 --- /dev/null +++ b/general/datasets/DevNeocortex_ILM6.2P14RInv_1111/summary.rtf @@ -0,0 +1,16 @@ +

Data generated by Dr. Glenn D. Rosen and colleagues

+ +

The Neocortex Developmental data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

+ +

Some of these data were used in
+Gaglani SM, Lu L, Williams RW, Rosen GD (2009) The genetic control of neocortex volume and covariation with patterns of gene expression in mice. BMC Neuroscience 10:44 Full Text HTML Version, Full Text PDF Version

+ +

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the Striatal Developmental Transcriptome data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

+ +

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Developmental data set, xxxx probes have LRS values >46 (LOD >10).

+ +

Users of these mouse neocortex data may also find the following complementary resources and papers useful:

+ +

Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex.

+ +

A movie of the dissection of the brain by Dr. Glenn Rosen. ABOUT THE NEOCORTEX

diff --git a/general/datasets/DevNeocortex_ILM6.2P14RInv_1111/tissue.rtf b/general/datasets/DevNeocortex_ILM6.2P14RInv_1111/tissue.rtf new file mode 100644 index 0000000..51f6e74 --- /dev/null +++ b/general/datasets/DevNeocortex_ILM6.2P14RInv_1111/tissue.rtf @@ -0,0 +1,536 @@ +

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum.

+ +

All animals used in this study were either 3 or 14 days of age. A pool of dissected neocortical tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn D. Rosen and colleagues.

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P325384138018_F236
2BXD1P335384138058_A239
3BXD2P325384138018_C168
4BXD2P315448576044_F167
5BXD5P375384138020_A273
6BXD5P345452241022_C267
7BXD6P335384138048_A107
8BXD6P345452241007_A108
9BXD8P365384138009_A113
10BXD8P375384138021_C115
11BXD9P355452241004_F289
12BXD9P345452241022_D288
13BXD11P385237939010_A117
14BXD11P315448576044_D120
15BXD12P365384138009_B130
16BXD12P375384138021_B132
17BXD13P375384138020_F161
18BXD13P355452241004_C164
19BXD14P355452241004_B158
20BXD14P365452241033_D424
21BXD15P335452241008_C437
22BXD15P345452241023_D438
23BXD16P335384138048_D170
24BXD16P345452241007_D172
25BXD18P385448576010_A390
26BXD18P315448576045_E392
27BXD19P385237939010_E210
28BXD19P315448576045_A211
29BXD20P355452241017_B439
30BXD20P365452241033_E441
31BXD21P375384138021_F341
32BXD21P365384138053_F315
33BXD24aP385237939012_B251
34BXD24aP375384138020_B250
35BXD27P385237939012_D298
36BXD27P315448576045_C300
37BXD28P325384138049_B550
38BXD28P315448576029_F548
39BXD29P325384138047_F502
40BXD29P315448576029_D501
41BXD31P355452241024_D579
42BXD31P365452241035_D582
43BXD32P355452241006_F407
44BXD32P365452241033_C408
45BXD34P385237939012_F345
46BXD34P345452241022_F355
47BXD36P375384138016_A429
48BXD36P385448576010_D430
49BXD38P325384138041_F327
50BXD38P335384138058_E328
51BXD39P375384138016_E515
52BXD39P355452241024_A518
53BXD40P325384138041_C373
54BXD40P335452241008_A375
55BXD42P335452241008_E485
56BXD42P345452241023_F486
57BXD51P355452241024_F621
58BXD51P365452241035_F622
59BXD61P345452241031_C554
60BXD61P335452241034_A552
61BXD70P325384138049_D590
62BXD70P315448576044_B589
63BXD73P325384138049_E603
64BXD73P385448576011_E605
+
diff --git a/general/datasets/DevNeocortex_ILM6.2P3RInv_1110/cases.rtf b/general/datasets/DevNeocortex_ILM6.2P3RInv_1110/cases.rtf new file mode 100644 index 0000000..70216c8 --- /dev/null +++ b/general/datasets/DevNeocortex_ILM6.2P3RInv_1110/cases.rtf @@ -0,0 +1,3 @@ +

About the strains used to generate this set of data

+ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/DevNeocortex_ILM6.2P3RInv_1110/experiment-design.rtf b/general/datasets/DevNeocortex_ILM6.2P3RInv_1110/experiment-design.rtf new file mode 100644 index 0000000..616db01 --- /dev/null +++ b/general/datasets/DevNeocortex_ILM6.2P3RInv_1110/experiment-design.rtf @@ -0,0 +1,3 @@ +

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

+ +

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/DevNeocortex_ILM6.2P3RInv_1110/summary.rtf b/general/datasets/DevNeocortex_ILM6.2P3RInv_1110/summary.rtf new file mode 100644 index 0000000..70d7451 --- /dev/null +++ b/general/datasets/DevNeocortex_ILM6.2P3RInv_1110/summary.rtf @@ -0,0 +1,16 @@ +

Data generated by Dr. Glenn D. Rosen and colleagues

+ +

The Neocortex Developmental data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

+ +

Some of these data were used in
+Gaglani SM, Lu L, Williams RW, Rosen GD (2009) The genetic control of neocortex volume and covariation with patterns of gene expression in mice. BMC Neuroscience 10:44 Full Text HTML Version, Full Text PDF Version

+ +

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the Striatal Developmental Transcriptome data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

+ +

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Developmental data set, xxxx probes have LRS values >46 (LOD >10).

+ +

Users of these mouse neocortex data may also find the following complementary resources and papers useful:

+ +

Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex.

+ +

A movie of the dissection of the brain by Dr. Glenn Rosen. ABOUT THE NEOCORTEX

diff --git a/general/datasets/DevNeocortex_ILM6.2P3RInv_1110/tissue.rtf b/general/datasets/DevNeocortex_ILM6.2P3RInv_1110/tissue.rtf new file mode 100644 index 0000000..51f6e74 --- /dev/null +++ b/general/datasets/DevNeocortex_ILM6.2P3RInv_1110/tissue.rtf @@ -0,0 +1,536 @@ +

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum.

+ +

All animals used in this study were either 3 or 14 days of age. A pool of dissected neocortical tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn D. Rosen and colleagues.

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P325384138018_F236
2BXD1P335384138058_A239
3BXD2P325384138018_C168
4BXD2P315448576044_F167
5BXD5P375384138020_A273
6BXD5P345452241022_C267
7BXD6P335384138048_A107
8BXD6P345452241007_A108
9BXD8P365384138009_A113
10BXD8P375384138021_C115
11BXD9P355452241004_F289
12BXD9P345452241022_D288
13BXD11P385237939010_A117
14BXD11P315448576044_D120
15BXD12P365384138009_B130
16BXD12P375384138021_B132
17BXD13P375384138020_F161
18BXD13P355452241004_C164
19BXD14P355452241004_B158
20BXD14P365452241033_D424
21BXD15P335452241008_C437
22BXD15P345452241023_D438
23BXD16P335384138048_D170
24BXD16P345452241007_D172
25BXD18P385448576010_A390
26BXD18P315448576045_E392
27BXD19P385237939010_E210
28BXD19P315448576045_A211
29BXD20P355452241017_B439
30BXD20P365452241033_E441
31BXD21P375384138021_F341
32BXD21P365384138053_F315
33BXD24aP385237939012_B251
34BXD24aP375384138020_B250
35BXD27P385237939012_D298
36BXD27P315448576045_C300
37BXD28P325384138049_B550
38BXD28P315448576029_F548
39BXD29P325384138047_F502
40BXD29P315448576029_D501
41BXD31P355452241024_D579
42BXD31P365452241035_D582
43BXD32P355452241006_F407
44BXD32P365452241033_C408
45BXD34P385237939012_F345
46BXD34P345452241022_F355
47BXD36P375384138016_A429
48BXD36P385448576010_D430
49BXD38P325384138041_F327
50BXD38P335384138058_E328
51BXD39P375384138016_E515
52BXD39P355452241024_A518
53BXD40P325384138041_C373
54BXD40P335452241008_A375
55BXD42P335452241008_E485
56BXD42P345452241023_F486
57BXD51P355452241024_F621
58BXD51P365452241035_F622
59BXD61P345452241031_C554
60BXD61P335452241034_A552
61BXD70P325384138049_D590
62BXD70P315448576044_B589
63BXD73P325384138049_E603
64BXD73P385448576011_E605
+
diff --git a/general/datasets/DevNeocortex_ILM6.2P3RInv_1111/cases.rtf b/general/datasets/DevNeocortex_ILM6.2P3RInv_1111/cases.rtf new file mode 100644 index 0000000..70216c8 --- /dev/null +++ b/general/datasets/DevNeocortex_ILM6.2P3RInv_1111/cases.rtf @@ -0,0 +1,3 @@ +

About the strains used to generate this set of data

+ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/DevNeocortex_ILM6.2P3RInv_1111/experiment-design.rtf b/general/datasets/DevNeocortex_ILM6.2P3RInv_1111/experiment-design.rtf new file mode 100644 index 0000000..616db01 --- /dev/null +++ b/general/datasets/DevNeocortex_ILM6.2P3RInv_1111/experiment-design.rtf @@ -0,0 +1,3 @@ +

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

+ +

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/DevNeocortex_ILM6.2P3RInv_1111/summary.rtf b/general/datasets/DevNeocortex_ILM6.2P3RInv_1111/summary.rtf new file mode 100644 index 0000000..70d7451 --- /dev/null +++ b/general/datasets/DevNeocortex_ILM6.2P3RInv_1111/summary.rtf @@ -0,0 +1,16 @@ +

Data generated by Dr. Glenn D. Rosen and colleagues

+ +

The Neocortex Developmental data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

+ +

Some of these data were used in
+Gaglani SM, Lu L, Williams RW, Rosen GD (2009) The genetic control of neocortex volume and covariation with patterns of gene expression in mice. BMC Neuroscience 10:44 Full Text HTML Version, Full Text PDF Version

+ +

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the Striatal Developmental Transcriptome data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

+ +

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Developmental data set, xxxx probes have LRS values >46 (LOD >10).

+ +

Users of these mouse neocortex data may also find the following complementary resources and papers useful:

+ +

Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex.

+ +

A movie of the dissection of the brain by Dr. Glenn Rosen. ABOUT THE NEOCORTEX

diff --git a/general/datasets/DevNeocortex_ILM6.2P3RInv_1111/tissue.rtf b/general/datasets/DevNeocortex_ILM6.2P3RInv_1111/tissue.rtf new file mode 100644 index 0000000..51f6e74 --- /dev/null +++ b/general/datasets/DevNeocortex_ILM6.2P3RInv_1111/tissue.rtf @@ -0,0 +1,536 @@ +

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum.

+ +

All animals used in this study were either 3 or 14 days of age. A pool of dissected neocortical tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn D. Rosen and colleagues.

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P325384138018_F236
2BXD1P335384138058_A239
3BXD2P325384138018_C168
4BXD2P315448576044_F167
5BXD5P375384138020_A273
6BXD5P345452241022_C267
7BXD6P335384138048_A107
8BXD6P345452241007_A108
9BXD8P365384138009_A113
10BXD8P375384138021_C115
11BXD9P355452241004_F289
12BXD9P345452241022_D288
13BXD11P385237939010_A117
14BXD11P315448576044_D120
15BXD12P365384138009_B130
16BXD12P375384138021_B132
17BXD13P375384138020_F161
18BXD13P355452241004_C164
19BXD14P355452241004_B158
20BXD14P365452241033_D424
21BXD15P335452241008_C437
22BXD15P345452241023_D438
23BXD16P335384138048_D170
24BXD16P345452241007_D172
25BXD18P385448576010_A390
26BXD18P315448576045_E392
27BXD19P385237939010_E210
28BXD19P315448576045_A211
29BXD20P355452241017_B439
30BXD20P365452241033_E441
31BXD21P375384138021_F341
32BXD21P365384138053_F315
33BXD24aP385237939012_B251
34BXD24aP375384138020_B250
35BXD27P385237939012_D298
36BXD27P315448576045_C300
37BXD28P325384138049_B550
38BXD28P315448576029_F548
39BXD29P325384138047_F502
40BXD29P315448576029_D501
41BXD31P355452241024_D579
42BXD31P365452241035_D582
43BXD32P355452241006_F407
44BXD32P365452241033_C408
45BXD34P385237939012_F345
46BXD34P345452241022_F355
47BXD36P375384138016_A429
48BXD36P385448576010_D430
49BXD38P325384138041_F327
50BXD38P335384138058_E328
51BXD39P375384138016_E515
52BXD39P355452241024_A518
53BXD40P325384138041_C373
54BXD40P335452241008_A375
55BXD42P335452241008_E485
56BXD42P345452241023_F486
57BXD51P355452241024_F621
58BXD51P365452241035_F622
59BXD61P345452241031_C554
60BXD61P335452241034_A552
61BXD70P325384138049_D590
62BXD70P315448576044_B589
63BXD73P325384138049_E603
64BXD73P385448576011_E605
+
diff --git a/general/datasets/DevNeocortex_ILM6_2P14RInv_1110/cases.rtf b/general/datasets/DevNeocortex_ILM6_2P14RInv_1110/cases.rtf deleted file mode 100644 index 70216c8..0000000 --- a/general/datasets/DevNeocortex_ILM6_2P14RInv_1110/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

About the strains used to generate this set of data

- -

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/DevNeocortex_ILM6_2P14RInv_1110/experiment-design.rtf b/general/datasets/DevNeocortex_ILM6_2P14RInv_1110/experiment-design.rtf deleted file mode 100644 index 616db01..0000000 --- a/general/datasets/DevNeocortex_ILM6_2P14RInv_1110/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

- -

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/DevNeocortex_ILM6_2P14RInv_1110/summary.rtf b/general/datasets/DevNeocortex_ILM6_2P14RInv_1110/summary.rtf deleted file mode 100644 index 70d7451..0000000 --- a/general/datasets/DevNeocortex_ILM6_2P14RInv_1110/summary.rtf +++ /dev/null @@ -1,16 +0,0 @@ -

Data generated by Dr. Glenn D. Rosen and colleagues

- -

The Neocortex Developmental data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

- -

Some of these data were used in
-Gaglani SM, Lu L, Williams RW, Rosen GD (2009) The genetic control of neocortex volume and covariation with patterns of gene expression in mice. BMC Neuroscience 10:44 Full Text HTML Version, Full Text PDF Version

- -

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the Striatal Developmental Transcriptome data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

- -

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Developmental data set, xxxx probes have LRS values >46 (LOD >10).

- -

Users of these mouse neocortex data may also find the following complementary resources and papers useful:

- -

Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex.

- -

A movie of the dissection of the brain by Dr. Glenn Rosen. ABOUT THE NEOCORTEX

diff --git a/general/datasets/DevNeocortex_ILM6_2P14RInv_1110/tissue.rtf b/general/datasets/DevNeocortex_ILM6_2P14RInv_1110/tissue.rtf deleted file mode 100644 index 51f6e74..0000000 --- a/general/datasets/DevNeocortex_ILM6_2P14RInv_1110/tissue.rtf +++ /dev/null @@ -1,536 +0,0 @@ -

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum.

- -

All animals used in this study were either 3 or 14 days of age. A pool of dissected neocortical tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn D. Rosen and colleagues.

- - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P325384138018_F236
2BXD1P335384138058_A239
3BXD2P325384138018_C168
4BXD2P315448576044_F167
5BXD5P375384138020_A273
6BXD5P345452241022_C267
7BXD6P335384138048_A107
8BXD6P345452241007_A108
9BXD8P365384138009_A113
10BXD8P375384138021_C115
11BXD9P355452241004_F289
12BXD9P345452241022_D288
13BXD11P385237939010_A117
14BXD11P315448576044_D120
15BXD12P365384138009_B130
16BXD12P375384138021_B132
17BXD13P375384138020_F161
18BXD13P355452241004_C164
19BXD14P355452241004_B158
20BXD14P365452241033_D424
21BXD15P335452241008_C437
22BXD15P345452241023_D438
23BXD16P335384138048_D170
24BXD16P345452241007_D172
25BXD18P385448576010_A390
26BXD18P315448576045_E392
27BXD19P385237939010_E210
28BXD19P315448576045_A211
29BXD20P355452241017_B439
30BXD20P365452241033_E441
31BXD21P375384138021_F341
32BXD21P365384138053_F315
33BXD24aP385237939012_B251
34BXD24aP375384138020_B250
35BXD27P385237939012_D298
36BXD27P315448576045_C300
37BXD28P325384138049_B550
38BXD28P315448576029_F548
39BXD29P325384138047_F502
40BXD29P315448576029_D501
41BXD31P355452241024_D579
42BXD31P365452241035_D582
43BXD32P355452241006_F407
44BXD32P365452241033_C408
45BXD34P385237939012_F345
46BXD34P345452241022_F355
47BXD36P375384138016_A429
48BXD36P385448576010_D430
49BXD38P325384138041_F327
50BXD38P335384138058_E328
51BXD39P375384138016_E515
52BXD39P355452241024_A518
53BXD40P325384138041_C373
54BXD40P335452241008_A375
55BXD42P335452241008_E485
56BXD42P345452241023_F486
57BXD51P355452241024_F621
58BXD51P365452241035_F622
59BXD61P345452241031_C554
60BXD61P335452241034_A552
61BXD70P325384138049_D590
62BXD70P315448576044_B589
63BXD73P325384138049_E603
64BXD73P385448576011_E605
-
diff --git a/general/datasets/DevNeocortex_ILM6_2P14RInv_1111/cases.rtf b/general/datasets/DevNeocortex_ILM6_2P14RInv_1111/cases.rtf deleted file mode 100644 index 70216c8..0000000 --- a/general/datasets/DevNeocortex_ILM6_2P14RInv_1111/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

About the strains used to generate this set of data

- -

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/DevNeocortex_ILM6_2P14RInv_1111/experiment-design.rtf b/general/datasets/DevNeocortex_ILM6_2P14RInv_1111/experiment-design.rtf deleted file mode 100644 index 616db01..0000000 --- a/general/datasets/DevNeocortex_ILM6_2P14RInv_1111/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

- -

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/DevNeocortex_ILM6_2P14RInv_1111/summary.rtf b/general/datasets/DevNeocortex_ILM6_2P14RInv_1111/summary.rtf deleted file mode 100644 index 70d7451..0000000 --- a/general/datasets/DevNeocortex_ILM6_2P14RInv_1111/summary.rtf +++ /dev/null @@ -1,16 +0,0 @@ -

Data generated by Dr. Glenn D. Rosen and colleagues

- -

The Neocortex Developmental data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

- -

Some of these data were used in
-Gaglani SM, Lu L, Williams RW, Rosen GD (2009) The genetic control of neocortex volume and covariation with patterns of gene expression in mice. BMC Neuroscience 10:44 Full Text HTML Version, Full Text PDF Version

- -

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the Striatal Developmental Transcriptome data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

- -

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Developmental data set, xxxx probes have LRS values >46 (LOD >10).

- -

Users of these mouse neocortex data may also find the following complementary resources and papers useful:

- -

Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex.

- -

A movie of the dissection of the brain by Dr. Glenn Rosen. ABOUT THE NEOCORTEX

diff --git a/general/datasets/DevNeocortex_ILM6_2P14RInv_1111/tissue.rtf b/general/datasets/DevNeocortex_ILM6_2P14RInv_1111/tissue.rtf deleted file mode 100644 index 51f6e74..0000000 --- a/general/datasets/DevNeocortex_ILM6_2P14RInv_1111/tissue.rtf +++ /dev/null @@ -1,536 +0,0 @@ -

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum.

- -

All animals used in this study were either 3 or 14 days of age. A pool of dissected neocortical tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn D. Rosen and colleagues.

- - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P325384138018_F236
2BXD1P335384138058_A239
3BXD2P325384138018_C168
4BXD2P315448576044_F167
5BXD5P375384138020_A273
6BXD5P345452241022_C267
7BXD6P335384138048_A107
8BXD6P345452241007_A108
9BXD8P365384138009_A113
10BXD8P375384138021_C115
11BXD9P355452241004_F289
12BXD9P345452241022_D288
13BXD11P385237939010_A117
14BXD11P315448576044_D120
15BXD12P365384138009_B130
16BXD12P375384138021_B132
17BXD13P375384138020_F161
18BXD13P355452241004_C164
19BXD14P355452241004_B158
20BXD14P365452241033_D424
21BXD15P335452241008_C437
22BXD15P345452241023_D438
23BXD16P335384138048_D170
24BXD16P345452241007_D172
25BXD18P385448576010_A390
26BXD18P315448576045_E392
27BXD19P385237939010_E210
28BXD19P315448576045_A211
29BXD20P355452241017_B439
30BXD20P365452241033_E441
31BXD21P375384138021_F341
32BXD21P365384138053_F315
33BXD24aP385237939012_B251
34BXD24aP375384138020_B250
35BXD27P385237939012_D298
36BXD27P315448576045_C300
37BXD28P325384138049_B550
38BXD28P315448576029_F548
39BXD29P325384138047_F502
40BXD29P315448576029_D501
41BXD31P355452241024_D579
42BXD31P365452241035_D582
43BXD32P355452241006_F407
44BXD32P365452241033_C408
45BXD34P385237939012_F345
46BXD34P345452241022_F355
47BXD36P375384138016_A429
48BXD36P385448576010_D430
49BXD38P325384138041_F327
50BXD38P335384138058_E328
51BXD39P375384138016_E515
52BXD39P355452241024_A518
53BXD40P325384138041_C373
54BXD40P335452241008_A375
55BXD42P335452241008_E485
56BXD42P345452241023_F486
57BXD51P355452241024_F621
58BXD51P365452241035_F622
59BXD61P345452241031_C554
60BXD61P335452241034_A552
61BXD70P325384138049_D590
62BXD70P315448576044_B589
63BXD73P325384138049_E603
64BXD73P385448576011_E605
-
diff --git a/general/datasets/DevNeocortex_ILM6_2P3RInv_1110/cases.rtf b/general/datasets/DevNeocortex_ILM6_2P3RInv_1110/cases.rtf deleted file mode 100644 index 70216c8..0000000 --- a/general/datasets/DevNeocortex_ILM6_2P3RInv_1110/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

About the strains used to generate this set of data

- -

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/DevNeocortex_ILM6_2P3RInv_1110/experiment-design.rtf b/general/datasets/DevNeocortex_ILM6_2P3RInv_1110/experiment-design.rtf deleted file mode 100644 index 616db01..0000000 --- a/general/datasets/DevNeocortex_ILM6_2P3RInv_1110/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

- -

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/DevNeocortex_ILM6_2P3RInv_1110/summary.rtf b/general/datasets/DevNeocortex_ILM6_2P3RInv_1110/summary.rtf deleted file mode 100644 index 70d7451..0000000 --- a/general/datasets/DevNeocortex_ILM6_2P3RInv_1110/summary.rtf +++ /dev/null @@ -1,16 +0,0 @@ -

Data generated by Dr. Glenn D. Rosen and colleagues

- -

The Neocortex Developmental data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

- -

Some of these data were used in
-Gaglani SM, Lu L, Williams RW, Rosen GD (2009) The genetic control of neocortex volume and covariation with patterns of gene expression in mice. BMC Neuroscience 10:44 Full Text HTML Version, Full Text PDF Version

- -

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the Striatal Developmental Transcriptome data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

- -

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Developmental data set, xxxx probes have LRS values >46 (LOD >10).

- -

Users of these mouse neocortex data may also find the following complementary resources and papers useful:

- -

Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex.

- -

A movie of the dissection of the brain by Dr. Glenn Rosen. ABOUT THE NEOCORTEX

diff --git a/general/datasets/DevNeocortex_ILM6_2P3RInv_1110/tissue.rtf b/general/datasets/DevNeocortex_ILM6_2P3RInv_1110/tissue.rtf deleted file mode 100644 index 51f6e74..0000000 --- a/general/datasets/DevNeocortex_ILM6_2P3RInv_1110/tissue.rtf +++ /dev/null @@ -1,536 +0,0 @@ -

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum.

- -

All animals used in this study were either 3 or 14 days of age. A pool of dissected neocortical tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn D. Rosen and colleagues.

- - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P325384138018_F236
2BXD1P335384138058_A239
3BXD2P325384138018_C168
4BXD2P315448576044_F167
5BXD5P375384138020_A273
6BXD5P345452241022_C267
7BXD6P335384138048_A107
8BXD6P345452241007_A108
9BXD8P365384138009_A113
10BXD8P375384138021_C115
11BXD9P355452241004_F289
12BXD9P345452241022_D288
13BXD11P385237939010_A117
14BXD11P315448576044_D120
15BXD12P365384138009_B130
16BXD12P375384138021_B132
17BXD13P375384138020_F161
18BXD13P355452241004_C164
19BXD14P355452241004_B158
20BXD14P365452241033_D424
21BXD15P335452241008_C437
22BXD15P345452241023_D438
23BXD16P335384138048_D170
24BXD16P345452241007_D172
25BXD18P385448576010_A390
26BXD18P315448576045_E392
27BXD19P385237939010_E210
28BXD19P315448576045_A211
29BXD20P355452241017_B439
30BXD20P365452241033_E441
31BXD21P375384138021_F341
32BXD21P365384138053_F315
33BXD24aP385237939012_B251
34BXD24aP375384138020_B250
35BXD27P385237939012_D298
36BXD27P315448576045_C300
37BXD28P325384138049_B550
38BXD28P315448576029_F548
39BXD29P325384138047_F502
40BXD29P315448576029_D501
41BXD31P355452241024_D579
42BXD31P365452241035_D582
43BXD32P355452241006_F407
44BXD32P365452241033_C408
45BXD34P385237939012_F345
46BXD34P345452241022_F355
47BXD36P375384138016_A429
48BXD36P385448576010_D430
49BXD38P325384138041_F327
50BXD38P335384138058_E328
51BXD39P375384138016_E515
52BXD39P355452241024_A518
53BXD40P325384138041_C373
54BXD40P335452241008_A375
55BXD42P335452241008_E485
56BXD42P345452241023_F486
57BXD51P355452241024_F621
58BXD51P365452241035_F622
59BXD61P345452241031_C554
60BXD61P335452241034_A552
61BXD70P325384138049_D590
62BXD70P315448576044_B589
63BXD73P325384138049_E603
64BXD73P385448576011_E605
-
diff --git a/general/datasets/DevNeocortex_ILM6_2P3RInv_1111/cases.rtf b/general/datasets/DevNeocortex_ILM6_2P3RInv_1111/cases.rtf deleted file mode 100644 index 70216c8..0000000 --- a/general/datasets/DevNeocortex_ILM6_2P3RInv_1111/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

About the strains used to generate this set of data

- -

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/DevNeocortex_ILM6_2P3RInv_1111/experiment-design.rtf b/general/datasets/DevNeocortex_ILM6_2P3RInv_1111/experiment-design.rtf deleted file mode 100644 index 616db01..0000000 --- a/general/datasets/DevNeocortex_ILM6_2P3RInv_1111/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

- -

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/DevNeocortex_ILM6_2P3RInv_1111/summary.rtf b/general/datasets/DevNeocortex_ILM6_2P3RInv_1111/summary.rtf deleted file mode 100644 index 70d7451..0000000 --- a/general/datasets/DevNeocortex_ILM6_2P3RInv_1111/summary.rtf +++ /dev/null @@ -1,16 +0,0 @@ -

Data generated by Dr. Glenn D. Rosen and colleagues

- -

The Neocortex Developmental data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

- -

Some of these data were used in
-Gaglani SM, Lu L, Williams RW, Rosen GD (2009) The genetic control of neocortex volume and covariation with patterns of gene expression in mice. BMC Neuroscience 10:44 Full Text HTML Version, Full Text PDF Version

- -

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the Striatal Developmental Transcriptome data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

- -

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Developmental data set, xxxx probes have LRS values >46 (LOD >10).

- -

Users of these mouse neocortex data may also find the following complementary resources and papers useful:

- -

Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex.

- -

A movie of the dissection of the brain by Dr. Glenn Rosen. ABOUT THE NEOCORTEX

diff --git a/general/datasets/DevNeocortex_ILM6_2P3RInv_1111/tissue.rtf b/general/datasets/DevNeocortex_ILM6_2P3RInv_1111/tissue.rtf deleted file mode 100644 index 51f6e74..0000000 --- a/general/datasets/DevNeocortex_ILM6_2P3RInv_1111/tissue.rtf +++ /dev/null @@ -1,536 +0,0 @@ -

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum.

- -

All animals used in this study were either 3 or 14 days of age. A pool of dissected neocortical tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn D. Rosen and colleagues.

- - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P325384138018_F236
2BXD1P335384138058_A239
3BXD2P325384138018_C168
4BXD2P315448576044_F167
5BXD5P375384138020_A273
6BXD5P345452241022_C267
7BXD6P335384138048_A107
8BXD6P345452241007_A108
9BXD8P365384138009_A113
10BXD8P375384138021_C115
11BXD9P355452241004_F289
12BXD9P345452241022_D288
13BXD11P385237939010_A117
14BXD11P315448576044_D120
15BXD12P365384138009_B130
16BXD12P375384138021_B132
17BXD13P375384138020_F161
18BXD13P355452241004_C164
19BXD14P355452241004_B158
20BXD14P365452241033_D424
21BXD15P335452241008_C437
22BXD15P345452241023_D438
23BXD16P335384138048_D170
24BXD16P345452241007_D172
25BXD18P385448576010_A390
26BXD18P315448576045_E392
27BXD19P385237939010_E210
28BXD19P315448576045_A211
29BXD20P355452241017_B439
30BXD20P365452241033_E441
31BXD21P375384138021_F341
32BXD21P365384138053_F315
33BXD24aP385237939012_B251
34BXD24aP375384138020_B250
35BXD27P385237939012_D298
36BXD27P315448576045_C300
37BXD28P325384138049_B550
38BXD28P315448576029_F548
39BXD29P325384138047_F502
40BXD29P315448576029_D501
41BXD31P355452241024_D579
42BXD31P365452241035_D582
43BXD32P355452241006_F407
44BXD32P365452241033_C408
45BXD34P385237939012_F345
46BXD34P345452241022_F355
47BXD36P375384138016_A429
48BXD36P385448576010_D430
49BXD38P325384138041_F327
50BXD38P335384138058_E328
51BXD39P375384138016_E515
52BXD39P355452241024_A518
53BXD40P325384138041_C373
54BXD40P335452241008_A375
55BXD42P335452241008_E485
56BXD42P345452241023_F486
57BXD51P355452241024_F621
58BXD51P365452241035_F622
59BXD61P345452241031_C554
60BXD61P335452241034_A552
61BXD70P325384138049_D590
62BXD70P315448576044_B589
63BXD73P325384138049_E603
64BXD73P385448576011_E605
-
diff --git a/general/datasets/DevStriatum_ILM6.2P14RInv_1110/cases.rtf b/general/datasets/DevStriatum_ILM6.2P14RInv_1110/cases.rtf new file mode 100644 index 0000000..74c0f5e --- /dev/null +++ b/general/datasets/DevStriatum_ILM6.2P14RInv_1110/cases.rtf @@ -0,0 +1 @@ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/DevStriatum_ILM6.2P14RInv_1110/experiment-design.rtf b/general/datasets/DevStriatum_ILM6.2P14RInv_1110/experiment-design.rtf new file mode 100644 index 0000000..cfea6b0 --- /dev/null +++ b/general/datasets/DevStriatum_ILM6.2P14RInv_1110/experiment-design.rtf @@ -0,0 +1 @@ +

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/DevStriatum_ILM6.2P14RInv_1110/processing.rtf b/general/datasets/DevStriatum_ILM6.2P14RInv_1110/processing.rtf new file mode 100644 index 0000000..aee498f --- /dev/null +++ b/general/datasets/DevStriatum_ILM6.2P14RInv_1110/processing.rtf @@ -0,0 +1 @@ +

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

diff --git a/general/datasets/DevStriatum_ILM6.2P14RInv_1110/summary.rtf b/general/datasets/DevStriatum_ILM6.2P14RInv_1110/summary.rtf new file mode 100644 index 0000000..3515533 --- /dev/null +++ b/general/datasets/DevStriatum_ILM6.2P14RInv_1110/summary.rtf @@ -0,0 +1,10 @@ +

The BIDMC/UTHSC Dev Striatum P3 ILMv6.2 (Nov10) RankInv ** data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

+ +

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov10) RankInv ** data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

+ +

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this data set, xxxx probes have LRS values >46 (LOD >10).

+ +

Users of these mouse striatum data set may also find the following complementary resources and papers useful:

+ +

A movie of the dissection of the brain by Dr. Glenn Rosen. www.rosenlab.net/Movie/P3.mov
+www.rosenlab.net/Movie/P14.mov

diff --git a/general/datasets/DevStriatum_ILM6.2P14RInv_1110/tissue.rtf b/general/datasets/DevStriatum_ILM6.2P14RInv_1110/tissue.rtf new file mode 100644 index 0000000..e9e6151 --- /dev/null +++ b/general/datasets/DevStriatum_ILM6.2P14RInv_1110/tissue.rtf @@ -0,0 +1,534 @@ +

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Care was taken to assure that samples were comprised of the dorsal striatum, although it is possible that ventral striatum (accumbens) was occasionally included.

+ +

All animals used in this study were either 3 or 14 days of age. A pool of dissected striatal tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues.

+ +

 

+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P385237939012_A232
2BXD1P315448576016_C234
3BXD2P375384138020_C230
4BXD2P365384138053_A228
5BXD5P365384138053_D270
6BXD5P355452241004_E268
7BXD6P325384138018_A102
8BXD6P315448576016_A101
9BXD8P335384138048_B110
10BXD9P325384138041_A280
11BXD9P335384138058_C278
12BXD11P325384138018_B121
13BXD11P335384138048_C123
14BXD12P355452241004_A127
15BXD12P345452241007_B125
16BXD13P385237939010_D181
17BXD13P315448576016_B183
18BXD14P355452241017_A420
19BXD14P345452241023_C419
20BXD15P375384138016_C475
21BXD15P385448576010_F476
22BXD16P365384138009_F204
23BXD16P375384138020_D205
24BXD18P375384138017_B388
25BXD18P335452241008_B385
26BXD19P325384138018_E212
27BXD19P335384138048_F213
28BXD20P325384138047_C431
29BXD20P315448576029_A431
30BXD21P355452241006_A311
31BXD21P345452241022_E309
32BXD24aP365384138053_B247
33BXD24aP345452241022_B244
34BXD27P375384138021_D294
35BXD27P365384138053_E293
36BXD28P375384138016_F543
37BXD28P385448576011_B545
38BXD29P375384138016_D495
39BXD29P385448576011_A498
40BXD31P345452241031_D577
41BXD31P335452241034_D575
42BXD32P355452241006_E402
43BXD32P345452241023_B401
44BXD34P325384138041_D348
45BXD34P315448576016_E347
46BXD36P325384138047_B417
47BXD36P335452241008_D418
48BXD38P385237939012_E321
49BXD38P315448576016_D322
50BXD39P355452241017_F511
51BXD39P345452241031_A512
52BXD40P385448576010_B368
53BXD40P315448576016_F371
54BXD42P325384138047_E481
55BXD42P315448576029_C479
56BXD51P345452241031_F616
57BXD51P335452241034_F615
58BXD61P355452241024_C555
59BXD61P365452241035_B557
60BXD70P375384138017_E584
61BXD70P385448576011_D585
62BXD73P355452241024_E600
63BXD73P365452241035_E601
+
+ +

 

+
diff --git a/general/datasets/DevStriatum_ILM6.2P14RInv_1111/cases.rtf b/general/datasets/DevStriatum_ILM6.2P14RInv_1111/cases.rtf new file mode 100644 index 0000000..74c0f5e --- /dev/null +++ b/general/datasets/DevStriatum_ILM6.2P14RInv_1111/cases.rtf @@ -0,0 +1 @@ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/DevStriatum_ILM6.2P14RInv_1111/experiment-design.rtf b/general/datasets/DevStriatum_ILM6.2P14RInv_1111/experiment-design.rtf new file mode 100644 index 0000000..cfea6b0 --- /dev/null +++ b/general/datasets/DevStriatum_ILM6.2P14RInv_1111/experiment-design.rtf @@ -0,0 +1 @@ +

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/DevStriatum_ILM6.2P14RInv_1111/processing.rtf b/general/datasets/DevStriatum_ILM6.2P14RInv_1111/processing.rtf new file mode 100644 index 0000000..aee498f --- /dev/null +++ b/general/datasets/DevStriatum_ILM6.2P14RInv_1111/processing.rtf @@ -0,0 +1 @@ +

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

diff --git a/general/datasets/DevStriatum_ILM6.2P14RInv_1111/summary.rtf b/general/datasets/DevStriatum_ILM6.2P14RInv_1111/summary.rtf new file mode 100644 index 0000000..3515533 --- /dev/null +++ b/general/datasets/DevStriatum_ILM6.2P14RInv_1111/summary.rtf @@ -0,0 +1,10 @@ +

The BIDMC/UTHSC Dev Striatum P3 ILMv6.2 (Nov10) RankInv ** data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

+ +

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov10) RankInv ** data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

+ +

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this data set, xxxx probes have LRS values >46 (LOD >10).

+ +

Users of these mouse striatum data set may also find the following complementary resources and papers useful:

+ +

A movie of the dissection of the brain by Dr. Glenn Rosen. www.rosenlab.net/Movie/P3.mov
+www.rosenlab.net/Movie/P14.mov

diff --git a/general/datasets/DevStriatum_ILM6.2P14RInv_1111/tissue.rtf b/general/datasets/DevStriatum_ILM6.2P14RInv_1111/tissue.rtf new file mode 100644 index 0000000..e9e6151 --- /dev/null +++ b/general/datasets/DevStriatum_ILM6.2P14RInv_1111/tissue.rtf @@ -0,0 +1,534 @@ +

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Care was taken to assure that samples were comprised of the dorsal striatum, although it is possible that ventral striatum (accumbens) was occasionally included.

+ +

All animals used in this study were either 3 or 14 days of age. A pool of dissected striatal tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues.

+ +

 

+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P385237939012_A232
2BXD1P315448576016_C234
3BXD2P375384138020_C230
4BXD2P365384138053_A228
5BXD5P365384138053_D270
6BXD5P355452241004_E268
7BXD6P325384138018_A102
8BXD6P315448576016_A101
9BXD8P335384138048_B110
10BXD9P325384138041_A280
11BXD9P335384138058_C278
12BXD11P325384138018_B121
13BXD11P335384138048_C123
14BXD12P355452241004_A127
15BXD12P345452241007_B125
16BXD13P385237939010_D181
17BXD13P315448576016_B183
18BXD14P355452241017_A420
19BXD14P345452241023_C419
20BXD15P375384138016_C475
21BXD15P385448576010_F476
22BXD16P365384138009_F204
23BXD16P375384138020_D205
24BXD18P375384138017_B388
25BXD18P335452241008_B385
26BXD19P325384138018_E212
27BXD19P335384138048_F213
28BXD20P325384138047_C431
29BXD20P315448576029_A431
30BXD21P355452241006_A311
31BXD21P345452241022_E309
32BXD24aP365384138053_B247
33BXD24aP345452241022_B244
34BXD27P375384138021_D294
35BXD27P365384138053_E293
36BXD28P375384138016_F543
37BXD28P385448576011_B545
38BXD29P375384138016_D495
39BXD29P385448576011_A498
40BXD31P345452241031_D577
41BXD31P335452241034_D575
42BXD32P355452241006_E402
43BXD32P345452241023_B401
44BXD34P325384138041_D348
45BXD34P315448576016_E347
46BXD36P325384138047_B417
47BXD36P335452241008_D418
48BXD38P385237939012_E321
49BXD38P315448576016_D322
50BXD39P355452241017_F511
51BXD39P345452241031_A512
52BXD40P385448576010_B368
53BXD40P315448576016_F371
54BXD42P325384138047_E481
55BXD42P315448576029_C479
56BXD51P345452241031_F616
57BXD51P335452241034_F615
58BXD61P355452241024_C555
59BXD61P365452241035_B557
60BXD70P375384138017_E584
61BXD70P385448576011_D585
62BXD73P355452241024_E600
63BXD73P365452241035_E601
+
+ +

 

+
diff --git a/general/datasets/DevStriatum_ILM6.2P3RInv_1110/cases.rtf b/general/datasets/DevStriatum_ILM6.2P3RInv_1110/cases.rtf new file mode 100644 index 0000000..74c0f5e --- /dev/null +++ b/general/datasets/DevStriatum_ILM6.2P3RInv_1110/cases.rtf @@ -0,0 +1 @@ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/DevStriatum_ILM6.2P3RInv_1110/experiment-design.rtf b/general/datasets/DevStriatum_ILM6.2P3RInv_1110/experiment-design.rtf new file mode 100644 index 0000000..cfea6b0 --- /dev/null +++ b/general/datasets/DevStriatum_ILM6.2P3RInv_1110/experiment-design.rtf @@ -0,0 +1 @@ +

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/DevStriatum_ILM6.2P3RInv_1110/processing.rtf b/general/datasets/DevStriatum_ILM6.2P3RInv_1110/processing.rtf new file mode 100644 index 0000000..aee498f --- /dev/null +++ b/general/datasets/DevStriatum_ILM6.2P3RInv_1110/processing.rtf @@ -0,0 +1 @@ +

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

diff --git a/general/datasets/DevStriatum_ILM6.2P3RInv_1110/summary.rtf b/general/datasets/DevStriatum_ILM6.2P3RInv_1110/summary.rtf new file mode 100644 index 0000000..3515533 --- /dev/null +++ b/general/datasets/DevStriatum_ILM6.2P3RInv_1110/summary.rtf @@ -0,0 +1,10 @@ +

The BIDMC/UTHSC Dev Striatum P3 ILMv6.2 (Nov10) RankInv ** data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

+ +

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov10) RankInv ** data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

+ +

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this data set, xxxx probes have LRS values >46 (LOD >10).

+ +

Users of these mouse striatum data set may also find the following complementary resources and papers useful:

+ +

A movie of the dissection of the brain by Dr. Glenn Rosen. www.rosenlab.net/Movie/P3.mov
+www.rosenlab.net/Movie/P14.mov

diff --git a/general/datasets/DevStriatum_ILM6.2P3RInv_1110/tissue.rtf b/general/datasets/DevStriatum_ILM6.2P3RInv_1110/tissue.rtf new file mode 100644 index 0000000..e9e6151 --- /dev/null +++ b/general/datasets/DevStriatum_ILM6.2P3RInv_1110/tissue.rtf @@ -0,0 +1,534 @@ +

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Care was taken to assure that samples were comprised of the dorsal striatum, although it is possible that ventral striatum (accumbens) was occasionally included.

+ +

All animals used in this study were either 3 or 14 days of age. A pool of dissected striatal tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues.

+ +

 

+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P385237939012_A232
2BXD1P315448576016_C234
3BXD2P375384138020_C230
4BXD2P365384138053_A228
5BXD5P365384138053_D270
6BXD5P355452241004_E268
7BXD6P325384138018_A102
8BXD6P315448576016_A101
9BXD8P335384138048_B110
10BXD9P325384138041_A280
11BXD9P335384138058_C278
12BXD11P325384138018_B121
13BXD11P335384138048_C123
14BXD12P355452241004_A127
15BXD12P345452241007_B125
16BXD13P385237939010_D181
17BXD13P315448576016_B183
18BXD14P355452241017_A420
19BXD14P345452241023_C419
20BXD15P375384138016_C475
21BXD15P385448576010_F476
22BXD16P365384138009_F204
23BXD16P375384138020_D205
24BXD18P375384138017_B388
25BXD18P335452241008_B385
26BXD19P325384138018_E212
27BXD19P335384138048_F213
28BXD20P325384138047_C431
29BXD20P315448576029_A431
30BXD21P355452241006_A311
31BXD21P345452241022_E309
32BXD24aP365384138053_B247
33BXD24aP345452241022_B244
34BXD27P375384138021_D294
35BXD27P365384138053_E293
36BXD28P375384138016_F543
37BXD28P385448576011_B545
38BXD29P375384138016_D495
39BXD29P385448576011_A498
40BXD31P345452241031_D577
41BXD31P335452241034_D575
42BXD32P355452241006_E402
43BXD32P345452241023_B401
44BXD34P325384138041_D348
45BXD34P315448576016_E347
46BXD36P325384138047_B417
47BXD36P335452241008_D418
48BXD38P385237939012_E321
49BXD38P315448576016_D322
50BXD39P355452241017_F511
51BXD39P345452241031_A512
52BXD40P385448576010_B368
53BXD40P315448576016_F371
54BXD42P325384138047_E481
55BXD42P315448576029_C479
56BXD51P345452241031_F616
57BXD51P335452241034_F615
58BXD61P355452241024_C555
59BXD61P365452241035_B557
60BXD70P375384138017_E584
61BXD70P385448576011_D585
62BXD73P355452241024_E600
63BXD73P365452241035_E601
+
+ +

 

+
diff --git a/general/datasets/DevStriatum_ILM6.2P3RInv_1111/cases.rtf b/general/datasets/DevStriatum_ILM6.2P3RInv_1111/cases.rtf new file mode 100644 index 0000000..74c0f5e --- /dev/null +++ b/general/datasets/DevStriatum_ILM6.2P3RInv_1111/cases.rtf @@ -0,0 +1 @@ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/DevStriatum_ILM6.2P3RInv_1111/experiment-design.rtf b/general/datasets/DevStriatum_ILM6.2P3RInv_1111/experiment-design.rtf new file mode 100644 index 0000000..cfea6b0 --- /dev/null +++ b/general/datasets/DevStriatum_ILM6.2P3RInv_1111/experiment-design.rtf @@ -0,0 +1 @@ +

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/DevStriatum_ILM6.2P3RInv_1111/processing.rtf b/general/datasets/DevStriatum_ILM6.2P3RInv_1111/processing.rtf new file mode 100644 index 0000000..aee498f --- /dev/null +++ b/general/datasets/DevStriatum_ILM6.2P3RInv_1111/processing.rtf @@ -0,0 +1 @@ +

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

diff --git a/general/datasets/DevStriatum_ILM6.2P3RInv_1111/summary.rtf b/general/datasets/DevStriatum_ILM6.2P3RInv_1111/summary.rtf new file mode 100644 index 0000000..3515533 --- /dev/null +++ b/general/datasets/DevStriatum_ILM6.2P3RInv_1111/summary.rtf @@ -0,0 +1,10 @@ +

The BIDMC/UTHSC Dev Striatum P3 ILMv6.2 (Nov10) RankInv ** data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

+ +

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov10) RankInv ** data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

+ +

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this data set, xxxx probes have LRS values >46 (LOD >10).

+ +

Users of these mouse striatum data set may also find the following complementary resources and papers useful:

+ +

A movie of the dissection of the brain by Dr. Glenn Rosen. www.rosenlab.net/Movie/P3.mov
+www.rosenlab.net/Movie/P14.mov

diff --git a/general/datasets/DevStriatum_ILM6.2P3RInv_1111/tissue.rtf b/general/datasets/DevStriatum_ILM6.2P3RInv_1111/tissue.rtf new file mode 100644 index 0000000..e9e6151 --- /dev/null +++ b/general/datasets/DevStriatum_ILM6.2P3RInv_1111/tissue.rtf @@ -0,0 +1,534 @@ +

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Care was taken to assure that samples were comprised of the dorsal striatum, although it is possible that ventral striatum (accumbens) was occasionally included.

+ +

All animals used in this study were either 3 or 14 days of age. A pool of dissected striatal tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues.

+ +

 

+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P385237939012_A232
2BXD1P315448576016_C234
3BXD2P375384138020_C230
4BXD2P365384138053_A228
5BXD5P365384138053_D270
6BXD5P355452241004_E268
7BXD6P325384138018_A102
8BXD6P315448576016_A101
9BXD8P335384138048_B110
10BXD9P325384138041_A280
11BXD9P335384138058_C278
12BXD11P325384138018_B121
13BXD11P335384138048_C123
14BXD12P355452241004_A127
15BXD12P345452241007_B125
16BXD13P385237939010_D181
17BXD13P315448576016_B183
18BXD14P355452241017_A420
19BXD14P345452241023_C419
20BXD15P375384138016_C475
21BXD15P385448576010_F476
22BXD16P365384138009_F204
23BXD16P375384138020_D205
24BXD18P375384138017_B388
25BXD18P335452241008_B385
26BXD19P325384138018_E212
27BXD19P335384138048_F213
28BXD20P325384138047_C431
29BXD20P315448576029_A431
30BXD21P355452241006_A311
31BXD21P345452241022_E309
32BXD24aP365384138053_B247
33BXD24aP345452241022_B244
34BXD27P375384138021_D294
35BXD27P365384138053_E293
36BXD28P375384138016_F543
37BXD28P385448576011_B545
38BXD29P375384138016_D495
39BXD29P385448576011_A498
40BXD31P345452241031_D577
41BXD31P335452241034_D575
42BXD32P355452241006_E402
43BXD32P345452241023_B401
44BXD34P325384138041_D348
45BXD34P315448576016_E347
46BXD36P325384138047_B417
47BXD36P335452241008_D418
48BXD38P385237939012_E321
49BXD38P315448576016_D322
50BXD39P355452241017_F511
51BXD39P345452241031_A512
52BXD40P385448576010_B368
53BXD40P315448576016_F371
54BXD42P325384138047_E481
55BXD42P315448576029_C479
56BXD51P345452241031_F616
57BXD51P335452241034_F615
58BXD61P355452241024_C555
59BXD61P365452241035_B557
60BXD70P375384138017_E584
61BXD70P385448576011_D585
62BXD73P355452241024_E600
63BXD73P365452241035_E601
+
+ +

 

+
diff --git a/general/datasets/DevStriatum_ILM6_2P14RInv_1110/cases.rtf b/general/datasets/DevStriatum_ILM6_2P14RInv_1110/cases.rtf deleted file mode 100644 index 74c0f5e..0000000 --- a/general/datasets/DevStriatum_ILM6_2P14RInv_1110/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/DevStriatum_ILM6_2P14RInv_1110/experiment-design.rtf b/general/datasets/DevStriatum_ILM6_2P14RInv_1110/experiment-design.rtf deleted file mode 100644 index cfea6b0..0000000 --- a/general/datasets/DevStriatum_ILM6_2P14RInv_1110/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/DevStriatum_ILM6_2P14RInv_1110/processing.rtf b/general/datasets/DevStriatum_ILM6_2P14RInv_1110/processing.rtf deleted file mode 100644 index aee498f..0000000 --- a/general/datasets/DevStriatum_ILM6_2P14RInv_1110/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

diff --git a/general/datasets/DevStriatum_ILM6_2P14RInv_1110/summary.rtf b/general/datasets/DevStriatum_ILM6_2P14RInv_1110/summary.rtf deleted file mode 100644 index 3515533..0000000 --- a/general/datasets/DevStriatum_ILM6_2P14RInv_1110/summary.rtf +++ /dev/null @@ -1,10 +0,0 @@ -

The BIDMC/UTHSC Dev Striatum P3 ILMv6.2 (Nov10) RankInv ** data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

- -

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov10) RankInv ** data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

- -

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this data set, xxxx probes have LRS values >46 (LOD >10).

- -

Users of these mouse striatum data set may also find the following complementary resources and papers useful:

- -

A movie of the dissection of the brain by Dr. Glenn Rosen. www.rosenlab.net/Movie/P3.mov
-www.rosenlab.net/Movie/P14.mov

diff --git a/general/datasets/DevStriatum_ILM6_2P14RInv_1110/tissue.rtf b/general/datasets/DevStriatum_ILM6_2P14RInv_1110/tissue.rtf deleted file mode 100644 index e9e6151..0000000 --- a/general/datasets/DevStriatum_ILM6_2P14RInv_1110/tissue.rtf +++ /dev/null @@ -1,534 +0,0 @@ -

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Care was taken to assure that samples were comprised of the dorsal striatum, although it is possible that ventral striatum (accumbens) was occasionally included.

- -

All animals used in this study were either 3 or 14 days of age. A pool of dissected striatal tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues.

- -

 

- -
- - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P385237939012_A232
2BXD1P315448576016_C234
3BXD2P375384138020_C230
4BXD2P365384138053_A228
5BXD5P365384138053_D270
6BXD5P355452241004_E268
7BXD6P325384138018_A102
8BXD6P315448576016_A101
9BXD8P335384138048_B110
10BXD9P325384138041_A280
11BXD9P335384138058_C278
12BXD11P325384138018_B121
13BXD11P335384138048_C123
14BXD12P355452241004_A127
15BXD12P345452241007_B125
16BXD13P385237939010_D181
17BXD13P315448576016_B183
18BXD14P355452241017_A420
19BXD14P345452241023_C419
20BXD15P375384138016_C475
21BXD15P385448576010_F476
22BXD16P365384138009_F204
23BXD16P375384138020_D205
24BXD18P375384138017_B388
25BXD18P335452241008_B385
26BXD19P325384138018_E212
27BXD19P335384138048_F213
28BXD20P325384138047_C431
29BXD20P315448576029_A431
30BXD21P355452241006_A311
31BXD21P345452241022_E309
32BXD24aP365384138053_B247
33BXD24aP345452241022_B244
34BXD27P375384138021_D294
35BXD27P365384138053_E293
36BXD28P375384138016_F543
37BXD28P385448576011_B545
38BXD29P375384138016_D495
39BXD29P385448576011_A498
40BXD31P345452241031_D577
41BXD31P335452241034_D575
42BXD32P355452241006_E402
43BXD32P345452241023_B401
44BXD34P325384138041_D348
45BXD34P315448576016_E347
46BXD36P325384138047_B417
47BXD36P335452241008_D418
48BXD38P385237939012_E321
49BXD38P315448576016_D322
50BXD39P355452241017_F511
51BXD39P345452241031_A512
52BXD40P385448576010_B368
53BXD40P315448576016_F371
54BXD42P325384138047_E481
55BXD42P315448576029_C479
56BXD51P345452241031_F616
57BXD51P335452241034_F615
58BXD61P355452241024_C555
59BXD61P365452241035_B557
60BXD70P375384138017_E584
61BXD70P385448576011_D585
62BXD73P355452241024_E600
63BXD73P365452241035_E601
-
- -

 

-
diff --git a/general/datasets/DevStriatum_ILM6_2P14RInv_1111/cases.rtf b/general/datasets/DevStriatum_ILM6_2P14RInv_1111/cases.rtf deleted file mode 100644 index 74c0f5e..0000000 --- a/general/datasets/DevStriatum_ILM6_2P14RInv_1111/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/DevStriatum_ILM6_2P14RInv_1111/experiment-design.rtf b/general/datasets/DevStriatum_ILM6_2P14RInv_1111/experiment-design.rtf deleted file mode 100644 index cfea6b0..0000000 --- a/general/datasets/DevStriatum_ILM6_2P14RInv_1111/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/DevStriatum_ILM6_2P14RInv_1111/processing.rtf b/general/datasets/DevStriatum_ILM6_2P14RInv_1111/processing.rtf deleted file mode 100644 index aee498f..0000000 --- a/general/datasets/DevStriatum_ILM6_2P14RInv_1111/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

diff --git a/general/datasets/DevStriatum_ILM6_2P14RInv_1111/summary.rtf b/general/datasets/DevStriatum_ILM6_2P14RInv_1111/summary.rtf deleted file mode 100644 index 3515533..0000000 --- a/general/datasets/DevStriatum_ILM6_2P14RInv_1111/summary.rtf +++ /dev/null @@ -1,10 +0,0 @@ -

The BIDMC/UTHSC Dev Striatum P3 ILMv6.2 (Nov10) RankInv ** data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

- -

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov10) RankInv ** data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

- -

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this data set, xxxx probes have LRS values >46 (LOD >10).

- -

Users of these mouse striatum data set may also find the following complementary resources and papers useful:

- -

A movie of the dissection of the brain by Dr. Glenn Rosen. www.rosenlab.net/Movie/P3.mov
-www.rosenlab.net/Movie/P14.mov

diff --git a/general/datasets/DevStriatum_ILM6_2P14RInv_1111/tissue.rtf b/general/datasets/DevStriatum_ILM6_2P14RInv_1111/tissue.rtf deleted file mode 100644 index e9e6151..0000000 --- a/general/datasets/DevStriatum_ILM6_2P14RInv_1111/tissue.rtf +++ /dev/null @@ -1,534 +0,0 @@ -

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Care was taken to assure that samples were comprised of the dorsal striatum, although it is possible that ventral striatum (accumbens) was occasionally included.

- -

All animals used in this study were either 3 or 14 days of age. A pool of dissected striatal tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues.

- -

 

- -
- - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P385237939012_A232
2BXD1P315448576016_C234
3BXD2P375384138020_C230
4BXD2P365384138053_A228
5BXD5P365384138053_D270
6BXD5P355452241004_E268
7BXD6P325384138018_A102
8BXD6P315448576016_A101
9BXD8P335384138048_B110
10BXD9P325384138041_A280
11BXD9P335384138058_C278
12BXD11P325384138018_B121
13BXD11P335384138048_C123
14BXD12P355452241004_A127
15BXD12P345452241007_B125
16BXD13P385237939010_D181
17BXD13P315448576016_B183
18BXD14P355452241017_A420
19BXD14P345452241023_C419
20BXD15P375384138016_C475
21BXD15P385448576010_F476
22BXD16P365384138009_F204
23BXD16P375384138020_D205
24BXD18P375384138017_B388
25BXD18P335452241008_B385
26BXD19P325384138018_E212
27BXD19P335384138048_F213
28BXD20P325384138047_C431
29BXD20P315448576029_A431
30BXD21P355452241006_A311
31BXD21P345452241022_E309
32BXD24aP365384138053_B247
33BXD24aP345452241022_B244
34BXD27P375384138021_D294
35BXD27P365384138053_E293
36BXD28P375384138016_F543
37BXD28P385448576011_B545
38BXD29P375384138016_D495
39BXD29P385448576011_A498
40BXD31P345452241031_D577
41BXD31P335452241034_D575
42BXD32P355452241006_E402
43BXD32P345452241023_B401
44BXD34P325384138041_D348
45BXD34P315448576016_E347
46BXD36P325384138047_B417
47BXD36P335452241008_D418
48BXD38P385237939012_E321
49BXD38P315448576016_D322
50BXD39P355452241017_F511
51BXD39P345452241031_A512
52BXD40P385448576010_B368
53BXD40P315448576016_F371
54BXD42P325384138047_E481
55BXD42P315448576029_C479
56BXD51P345452241031_F616
57BXD51P335452241034_F615
58BXD61P355452241024_C555
59BXD61P365452241035_B557
60BXD70P375384138017_E584
61BXD70P385448576011_D585
62BXD73P355452241024_E600
63BXD73P365452241035_E601
-
- -

 

-
diff --git a/general/datasets/DevStriatum_ILM6_2P3RInv_1110/cases.rtf b/general/datasets/DevStriatum_ILM6_2P3RInv_1110/cases.rtf deleted file mode 100644 index 74c0f5e..0000000 --- a/general/datasets/DevStriatum_ILM6_2P3RInv_1110/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/DevStriatum_ILM6_2P3RInv_1110/experiment-design.rtf b/general/datasets/DevStriatum_ILM6_2P3RInv_1110/experiment-design.rtf deleted file mode 100644 index cfea6b0..0000000 --- a/general/datasets/DevStriatum_ILM6_2P3RInv_1110/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/DevStriatum_ILM6_2P3RInv_1110/processing.rtf b/general/datasets/DevStriatum_ILM6_2P3RInv_1110/processing.rtf deleted file mode 100644 index aee498f..0000000 --- a/general/datasets/DevStriatum_ILM6_2P3RInv_1110/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

diff --git a/general/datasets/DevStriatum_ILM6_2P3RInv_1110/summary.rtf b/general/datasets/DevStriatum_ILM6_2P3RInv_1110/summary.rtf deleted file mode 100644 index 3515533..0000000 --- a/general/datasets/DevStriatum_ILM6_2P3RInv_1110/summary.rtf +++ /dev/null @@ -1,10 +0,0 @@ -

The BIDMC/UTHSC Dev Striatum P3 ILMv6.2 (Nov10) RankInv ** data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

- -

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov10) RankInv ** data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

- -

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this data set, xxxx probes have LRS values >46 (LOD >10).

- -

Users of these mouse striatum data set may also find the following complementary resources and papers useful:

- -

A movie of the dissection of the brain by Dr. Glenn Rosen. www.rosenlab.net/Movie/P3.mov
-www.rosenlab.net/Movie/P14.mov

diff --git a/general/datasets/DevStriatum_ILM6_2P3RInv_1110/tissue.rtf b/general/datasets/DevStriatum_ILM6_2P3RInv_1110/tissue.rtf deleted file mode 100644 index e9e6151..0000000 --- a/general/datasets/DevStriatum_ILM6_2P3RInv_1110/tissue.rtf +++ /dev/null @@ -1,534 +0,0 @@ -

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Care was taken to assure that samples were comprised of the dorsal striatum, although it is possible that ventral striatum (accumbens) was occasionally included.

- -

All animals used in this study were either 3 or 14 days of age. A pool of dissected striatal tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues.

- -

 

- -
- - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P385237939012_A232
2BXD1P315448576016_C234
3BXD2P375384138020_C230
4BXD2P365384138053_A228
5BXD5P365384138053_D270
6BXD5P355452241004_E268
7BXD6P325384138018_A102
8BXD6P315448576016_A101
9BXD8P335384138048_B110
10BXD9P325384138041_A280
11BXD9P335384138058_C278
12BXD11P325384138018_B121
13BXD11P335384138048_C123
14BXD12P355452241004_A127
15BXD12P345452241007_B125
16BXD13P385237939010_D181
17BXD13P315448576016_B183
18BXD14P355452241017_A420
19BXD14P345452241023_C419
20BXD15P375384138016_C475
21BXD15P385448576010_F476
22BXD16P365384138009_F204
23BXD16P375384138020_D205
24BXD18P375384138017_B388
25BXD18P335452241008_B385
26BXD19P325384138018_E212
27BXD19P335384138048_F213
28BXD20P325384138047_C431
29BXD20P315448576029_A431
30BXD21P355452241006_A311
31BXD21P345452241022_E309
32BXD24aP365384138053_B247
33BXD24aP345452241022_B244
34BXD27P375384138021_D294
35BXD27P365384138053_E293
36BXD28P375384138016_F543
37BXD28P385448576011_B545
38BXD29P375384138016_D495
39BXD29P385448576011_A498
40BXD31P345452241031_D577
41BXD31P335452241034_D575
42BXD32P355452241006_E402
43BXD32P345452241023_B401
44BXD34P325384138041_D348
45BXD34P315448576016_E347
46BXD36P325384138047_B417
47BXD36P335452241008_D418
48BXD38P385237939012_E321
49BXD38P315448576016_D322
50BXD39P355452241017_F511
51BXD39P345452241031_A512
52BXD40P385448576010_B368
53BXD40P315448576016_F371
54BXD42P325384138047_E481
55BXD42P315448576029_C479
56BXD51P345452241031_F616
57BXD51P335452241034_F615
58BXD61P355452241024_C555
59BXD61P365452241035_B557
60BXD70P375384138017_E584
61BXD70P385448576011_D585
62BXD73P355452241024_E600
63BXD73P365452241035_E601
-
- -

 

-
diff --git a/general/datasets/DevStriatum_ILM6_2P3RInv_1111/cases.rtf b/general/datasets/DevStriatum_ILM6_2P3RInv_1111/cases.rtf deleted file mode 100644 index 74c0f5e..0000000 --- a/general/datasets/DevStriatum_ILM6_2P3RInv_1111/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/DevStriatum_ILM6_2P3RInv_1111/experiment-design.rtf b/general/datasets/DevStriatum_ILM6_2P3RInv_1111/experiment-design.rtf deleted file mode 100644 index cfea6b0..0000000 --- a/general/datasets/DevStriatum_ILM6_2P3RInv_1111/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/DevStriatum_ILM6_2P3RInv_1111/processing.rtf b/general/datasets/DevStriatum_ILM6_2P3RInv_1111/processing.rtf deleted file mode 100644 index aee498f..0000000 --- a/general/datasets/DevStriatum_ILM6_2P3RInv_1111/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

diff --git a/general/datasets/DevStriatum_ILM6_2P3RInv_1111/summary.rtf b/general/datasets/DevStriatum_ILM6_2P3RInv_1111/summary.rtf deleted file mode 100644 index 3515533..0000000 --- a/general/datasets/DevStriatum_ILM6_2P3RInv_1111/summary.rtf +++ /dev/null @@ -1,10 +0,0 @@ -

The BIDMC/UTHSC Dev Striatum P3 ILMv6.2 (Nov10) RankInv ** data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

- -

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov10) RankInv ** data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

- -

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this data set, xxxx probes have LRS values >46 (LOD >10).

- -

Users of these mouse striatum data set may also find the following complementary resources and papers useful:

- -

A movie of the dissection of the brain by Dr. Glenn Rosen. www.rosenlab.net/Movie/P3.mov
-www.rosenlab.net/Movie/P14.mov

diff --git a/general/datasets/DevStriatum_ILM6_2P3RInv_1111/tissue.rtf b/general/datasets/DevStriatum_ILM6_2P3RInv_1111/tissue.rtf deleted file mode 100644 index e9e6151..0000000 --- a/general/datasets/DevStriatum_ILM6_2P3RInv_1111/tissue.rtf +++ /dev/null @@ -1,534 +0,0 @@ -

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Care was taken to assure that samples were comprised of the dorsal striatum, although it is possible that ventral striatum (accumbens) was occasionally included.

- -

All animals used in this study were either 3 or 14 days of age. A pool of dissected striatal tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues.

- -

 

- -
- - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P385237939012_A232
2BXD1P315448576016_C234
3BXD2P375384138020_C230
4BXD2P365384138053_A228
5BXD5P365384138053_D270
6BXD5P355452241004_E268
7BXD6P325384138018_A102
8BXD6P315448576016_A101
9BXD8P335384138048_B110
10BXD9P325384138041_A280
11BXD9P335384138058_C278
12BXD11P325384138018_B121
13BXD11P335384138048_C123
14BXD12P355452241004_A127
15BXD12P345452241007_B125
16BXD13P385237939010_D181
17BXD13P315448576016_B183
18BXD14P355452241017_A420
19BXD14P345452241023_C419
20BXD15P375384138016_C475
21BXD15P385448576010_F476
22BXD16P365384138009_F204
23BXD16P375384138020_D205
24BXD18P375384138017_B388
25BXD18P335452241008_B385
26BXD19P325384138018_E212
27BXD19P335384138048_F213
28BXD20P325384138047_C431
29BXD20P315448576029_A431
30BXD21P355452241006_A311
31BXD21P345452241022_E309
32BXD24aP365384138053_B247
33BXD24aP345452241022_B244
34BXD27P375384138021_D294
35BXD27P365384138053_E293
36BXD28P375384138016_F543
37BXD28P385448576011_B545
38BXD29P375384138016_D495
39BXD29P385448576011_A498
40BXD31P345452241031_D577
41BXD31P335452241034_D575
42BXD32P355452241006_E402
43BXD32P345452241023_B401
44BXD34P325384138041_D348
45BXD34P315448576016_E347
46BXD36P325384138047_B417
47BXD36P335452241008_D418
48BXD38P385237939012_E321
49BXD38P315448576016_D322
50BXD39P355452241017_F511
51BXD39P345452241031_A512
52BXD40P385448576010_B368
53BXD40P315448576016_F371
54BXD42P325384138047_E481
55BXD42P315448576029_C479
56BXD51P345452241031_F616
57BXD51P335452241034_F615
58BXD61P355452241024_C555
59BXD61P365452241035_B557
60BXD70P375384138017_E584
61BXD70P385448576011_D585
62BXD73P355452241024_E600
63BXD73P365452241035_E601
-
- -

 

-
diff --git a/general/datasets/Devneocortex_ilm6_2p14rinv_1110/cases.rtf b/general/datasets/Devneocortex_ilm6_2p14rinv_1110/cases.rtf new file mode 100644 index 0000000..70216c8 --- /dev/null +++ b/general/datasets/Devneocortex_ilm6_2p14rinv_1110/cases.rtf @@ -0,0 +1,3 @@ +

About the strains used to generate this set of data

+ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/Devneocortex_ilm6_2p14rinv_1110/experiment-design.rtf b/general/datasets/Devneocortex_ilm6_2p14rinv_1110/experiment-design.rtf new file mode 100644 index 0000000..616db01 --- /dev/null +++ b/general/datasets/Devneocortex_ilm6_2p14rinv_1110/experiment-design.rtf @@ -0,0 +1,3 @@ +

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

+ +

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/Devneocortex_ilm6_2p14rinv_1110/summary.rtf b/general/datasets/Devneocortex_ilm6_2p14rinv_1110/summary.rtf new file mode 100644 index 0000000..70d7451 --- /dev/null +++ b/general/datasets/Devneocortex_ilm6_2p14rinv_1110/summary.rtf @@ -0,0 +1,16 @@ +

Data generated by Dr. Glenn D. Rosen and colleagues

+ +

The Neocortex Developmental data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

+ +

Some of these data were used in
+Gaglani SM, Lu L, Williams RW, Rosen GD (2009) The genetic control of neocortex volume and covariation with patterns of gene expression in mice. BMC Neuroscience 10:44 Full Text HTML Version, Full Text PDF Version

+ +

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the Striatal Developmental Transcriptome data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

+ +

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Developmental data set, xxxx probes have LRS values >46 (LOD >10).

+ +

Users of these mouse neocortex data may also find the following complementary resources and papers useful:

+ +

Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex.

+ +

A movie of the dissection of the brain by Dr. Glenn Rosen. ABOUT THE NEOCORTEX

diff --git a/general/datasets/Devneocortex_ilm6_2p14rinv_1110/tissue.rtf b/general/datasets/Devneocortex_ilm6_2p14rinv_1110/tissue.rtf new file mode 100644 index 0000000..51f6e74 --- /dev/null +++ b/general/datasets/Devneocortex_ilm6_2p14rinv_1110/tissue.rtf @@ -0,0 +1,536 @@ +

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum.

+ +

All animals used in this study were either 3 or 14 days of age. A pool of dissected neocortical tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn D. Rosen and colleagues.

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P325384138018_F236
2BXD1P335384138058_A239
3BXD2P325384138018_C168
4BXD2P315448576044_F167
5BXD5P375384138020_A273
6BXD5P345452241022_C267
7BXD6P335384138048_A107
8BXD6P345452241007_A108
9BXD8P365384138009_A113
10BXD8P375384138021_C115
11BXD9P355452241004_F289
12BXD9P345452241022_D288
13BXD11P385237939010_A117
14BXD11P315448576044_D120
15BXD12P365384138009_B130
16BXD12P375384138021_B132
17BXD13P375384138020_F161
18BXD13P355452241004_C164
19BXD14P355452241004_B158
20BXD14P365452241033_D424
21BXD15P335452241008_C437
22BXD15P345452241023_D438
23BXD16P335384138048_D170
24BXD16P345452241007_D172
25BXD18P385448576010_A390
26BXD18P315448576045_E392
27BXD19P385237939010_E210
28BXD19P315448576045_A211
29BXD20P355452241017_B439
30BXD20P365452241033_E441
31BXD21P375384138021_F341
32BXD21P365384138053_F315
33BXD24aP385237939012_B251
34BXD24aP375384138020_B250
35BXD27P385237939012_D298
36BXD27P315448576045_C300
37BXD28P325384138049_B550
38BXD28P315448576029_F548
39BXD29P325384138047_F502
40BXD29P315448576029_D501
41BXD31P355452241024_D579
42BXD31P365452241035_D582
43BXD32P355452241006_F407
44BXD32P365452241033_C408
45BXD34P385237939012_F345
46BXD34P345452241022_F355
47BXD36P375384138016_A429
48BXD36P385448576010_D430
49BXD38P325384138041_F327
50BXD38P335384138058_E328
51BXD39P375384138016_E515
52BXD39P355452241024_A518
53BXD40P325384138041_C373
54BXD40P335452241008_A375
55BXD42P335452241008_E485
56BXD42P345452241023_F486
57BXD51P355452241024_F621
58BXD51P365452241035_F622
59BXD61P345452241031_C554
60BXD61P335452241034_A552
61BXD70P325384138049_D590
62BXD70P315448576044_B589
63BXD73P325384138049_E603
64BXD73P385448576011_E605
+
diff --git a/general/datasets/Devneocortex_ilm6_2p14rinv_1111/cases.rtf b/general/datasets/Devneocortex_ilm6_2p14rinv_1111/cases.rtf new file mode 100644 index 0000000..70216c8 --- /dev/null +++ b/general/datasets/Devneocortex_ilm6_2p14rinv_1111/cases.rtf @@ -0,0 +1,3 @@ +

About the strains used to generate this set of data

+ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/Devneocortex_ilm6_2p14rinv_1111/experiment-design.rtf b/general/datasets/Devneocortex_ilm6_2p14rinv_1111/experiment-design.rtf new file mode 100644 index 0000000..616db01 --- /dev/null +++ b/general/datasets/Devneocortex_ilm6_2p14rinv_1111/experiment-design.rtf @@ -0,0 +1,3 @@ +

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

+ +

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/Devneocortex_ilm6_2p14rinv_1111/summary.rtf b/general/datasets/Devneocortex_ilm6_2p14rinv_1111/summary.rtf new file mode 100644 index 0000000..70d7451 --- /dev/null +++ b/general/datasets/Devneocortex_ilm6_2p14rinv_1111/summary.rtf @@ -0,0 +1,16 @@ +

Data generated by Dr. Glenn D. Rosen and colleagues

+ +

The Neocortex Developmental data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

+ +

Some of these data were used in
+Gaglani SM, Lu L, Williams RW, Rosen GD (2009) The genetic control of neocortex volume and covariation with patterns of gene expression in mice. BMC Neuroscience 10:44 Full Text HTML Version, Full Text PDF Version

+ +

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the Striatal Developmental Transcriptome data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

+ +

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Developmental data set, xxxx probes have LRS values >46 (LOD >10).

+ +

Users of these mouse neocortex data may also find the following complementary resources and papers useful:

+ +

Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex.

+ +

A movie of the dissection of the brain by Dr. Glenn Rosen. ABOUT THE NEOCORTEX

diff --git a/general/datasets/Devneocortex_ilm6_2p14rinv_1111/tissue.rtf b/general/datasets/Devneocortex_ilm6_2p14rinv_1111/tissue.rtf new file mode 100644 index 0000000..51f6e74 --- /dev/null +++ b/general/datasets/Devneocortex_ilm6_2p14rinv_1111/tissue.rtf @@ -0,0 +1,536 @@ +

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum.

+ +

All animals used in this study were either 3 or 14 days of age. A pool of dissected neocortical tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn D. Rosen and colleagues.

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P325384138018_F236
2BXD1P335384138058_A239
3BXD2P325384138018_C168
4BXD2P315448576044_F167
5BXD5P375384138020_A273
6BXD5P345452241022_C267
7BXD6P335384138048_A107
8BXD6P345452241007_A108
9BXD8P365384138009_A113
10BXD8P375384138021_C115
11BXD9P355452241004_F289
12BXD9P345452241022_D288
13BXD11P385237939010_A117
14BXD11P315448576044_D120
15BXD12P365384138009_B130
16BXD12P375384138021_B132
17BXD13P375384138020_F161
18BXD13P355452241004_C164
19BXD14P355452241004_B158
20BXD14P365452241033_D424
21BXD15P335452241008_C437
22BXD15P345452241023_D438
23BXD16P335384138048_D170
24BXD16P345452241007_D172
25BXD18P385448576010_A390
26BXD18P315448576045_E392
27BXD19P385237939010_E210
28BXD19P315448576045_A211
29BXD20P355452241017_B439
30BXD20P365452241033_E441
31BXD21P375384138021_F341
32BXD21P365384138053_F315
33BXD24aP385237939012_B251
34BXD24aP375384138020_B250
35BXD27P385237939012_D298
36BXD27P315448576045_C300
37BXD28P325384138049_B550
38BXD28P315448576029_F548
39BXD29P325384138047_F502
40BXD29P315448576029_D501
41BXD31P355452241024_D579
42BXD31P365452241035_D582
43BXD32P355452241006_F407
44BXD32P365452241033_C408
45BXD34P385237939012_F345
46BXD34P345452241022_F355
47BXD36P375384138016_A429
48BXD36P385448576010_D430
49BXD38P325384138041_F327
50BXD38P335384138058_E328
51BXD39P375384138016_E515
52BXD39P355452241024_A518
53BXD40P325384138041_C373
54BXD40P335452241008_A375
55BXD42P335452241008_E485
56BXD42P345452241023_F486
57BXD51P355452241024_F621
58BXD51P365452241035_F622
59BXD61P345452241031_C554
60BXD61P335452241034_A552
61BXD70P325384138049_D590
62BXD70P315448576044_B589
63BXD73P325384138049_E603
64BXD73P385448576011_E605
+
diff --git a/general/datasets/Devneocortex_ilm6_2p3rinv_1110/cases.rtf b/general/datasets/Devneocortex_ilm6_2p3rinv_1110/cases.rtf new file mode 100644 index 0000000..70216c8 --- /dev/null +++ b/general/datasets/Devneocortex_ilm6_2p3rinv_1110/cases.rtf @@ -0,0 +1,3 @@ +

About the strains used to generate this set of data

+ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/Devneocortex_ilm6_2p3rinv_1110/experiment-design.rtf b/general/datasets/Devneocortex_ilm6_2p3rinv_1110/experiment-design.rtf new file mode 100644 index 0000000..616db01 --- /dev/null +++ b/general/datasets/Devneocortex_ilm6_2p3rinv_1110/experiment-design.rtf @@ -0,0 +1,3 @@ +

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

+ +

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/Devneocortex_ilm6_2p3rinv_1110/summary.rtf b/general/datasets/Devneocortex_ilm6_2p3rinv_1110/summary.rtf new file mode 100644 index 0000000..70d7451 --- /dev/null +++ b/general/datasets/Devneocortex_ilm6_2p3rinv_1110/summary.rtf @@ -0,0 +1,16 @@ +

Data generated by Dr. Glenn D. Rosen and colleagues

+ +

The Neocortex Developmental data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

+ +

Some of these data were used in
+Gaglani SM, Lu L, Williams RW, Rosen GD (2009) The genetic control of neocortex volume and covariation with patterns of gene expression in mice. BMC Neuroscience 10:44 Full Text HTML Version, Full Text PDF Version

+ +

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the Striatal Developmental Transcriptome data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

+ +

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Developmental data set, xxxx probes have LRS values >46 (LOD >10).

+ +

Users of these mouse neocortex data may also find the following complementary resources and papers useful:

+ +

Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex.

+ +

A movie of the dissection of the brain by Dr. Glenn Rosen. ABOUT THE NEOCORTEX

diff --git a/general/datasets/Devneocortex_ilm6_2p3rinv_1110/tissue.rtf b/general/datasets/Devneocortex_ilm6_2p3rinv_1110/tissue.rtf new file mode 100644 index 0000000..51f6e74 --- /dev/null +++ b/general/datasets/Devneocortex_ilm6_2p3rinv_1110/tissue.rtf @@ -0,0 +1,536 @@ +

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum.

+ +

All animals used in this study were either 3 or 14 days of age. A pool of dissected neocortical tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn D. Rosen and colleagues.

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P325384138018_F236
2BXD1P335384138058_A239
3BXD2P325384138018_C168
4BXD2P315448576044_F167
5BXD5P375384138020_A273
6BXD5P345452241022_C267
7BXD6P335384138048_A107
8BXD6P345452241007_A108
9BXD8P365384138009_A113
10BXD8P375384138021_C115
11BXD9P355452241004_F289
12BXD9P345452241022_D288
13BXD11P385237939010_A117
14BXD11P315448576044_D120
15BXD12P365384138009_B130
16BXD12P375384138021_B132
17BXD13P375384138020_F161
18BXD13P355452241004_C164
19BXD14P355452241004_B158
20BXD14P365452241033_D424
21BXD15P335452241008_C437
22BXD15P345452241023_D438
23BXD16P335384138048_D170
24BXD16P345452241007_D172
25BXD18P385448576010_A390
26BXD18P315448576045_E392
27BXD19P385237939010_E210
28BXD19P315448576045_A211
29BXD20P355452241017_B439
30BXD20P365452241033_E441
31BXD21P375384138021_F341
32BXD21P365384138053_F315
33BXD24aP385237939012_B251
34BXD24aP375384138020_B250
35BXD27P385237939012_D298
36BXD27P315448576045_C300
37BXD28P325384138049_B550
38BXD28P315448576029_F548
39BXD29P325384138047_F502
40BXD29P315448576029_D501
41BXD31P355452241024_D579
42BXD31P365452241035_D582
43BXD32P355452241006_F407
44BXD32P365452241033_C408
45BXD34P385237939012_F345
46BXD34P345452241022_F355
47BXD36P375384138016_A429
48BXD36P385448576010_D430
49BXD38P325384138041_F327
50BXD38P335384138058_E328
51BXD39P375384138016_E515
52BXD39P355452241024_A518
53BXD40P325384138041_C373
54BXD40P335452241008_A375
55BXD42P335452241008_E485
56BXD42P345452241023_F486
57BXD51P355452241024_F621
58BXD51P365452241035_F622
59BXD61P345452241031_C554
60BXD61P335452241034_A552
61BXD70P325384138049_D590
62BXD70P315448576044_B589
63BXD73P325384138049_E603
64BXD73P385448576011_E605
+
diff --git a/general/datasets/Devneocortex_ilm6_2p3rinv_1111/cases.rtf b/general/datasets/Devneocortex_ilm6_2p3rinv_1111/cases.rtf new file mode 100644 index 0000000..70216c8 --- /dev/null +++ b/general/datasets/Devneocortex_ilm6_2p3rinv_1111/cases.rtf @@ -0,0 +1,3 @@ +

About the strains used to generate this set of data

+ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/Devneocortex_ilm6_2p3rinv_1111/experiment-design.rtf b/general/datasets/Devneocortex_ilm6_2p3rinv_1111/experiment-design.rtf new file mode 100644 index 0000000..616db01 --- /dev/null +++ b/general/datasets/Devneocortex_ilm6_2p3rinv_1111/experiment-design.rtf @@ -0,0 +1,3 @@ +

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

+ +

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/Devneocortex_ilm6_2p3rinv_1111/summary.rtf b/general/datasets/Devneocortex_ilm6_2p3rinv_1111/summary.rtf new file mode 100644 index 0000000..70d7451 --- /dev/null +++ b/general/datasets/Devneocortex_ilm6_2p3rinv_1111/summary.rtf @@ -0,0 +1,16 @@ +

Data generated by Dr. Glenn D. Rosen and colleagues

+ +

The Neocortex Developmental data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

+ +

Some of these data were used in
+Gaglani SM, Lu L, Williams RW, Rosen GD (2009) The genetic control of neocortex volume and covariation with patterns of gene expression in mice. BMC Neuroscience 10:44 Full Text HTML Version, Full Text PDF Version

+ +

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the Striatal Developmental Transcriptome data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

+ +

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Developmental data set, xxxx probes have LRS values >46 (LOD >10).

+ +

Users of these mouse neocortex data may also find the following complementary resources and papers useful:

+ +

Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex.

+ +

A movie of the dissection of the brain by Dr. Glenn Rosen. ABOUT THE NEOCORTEX

diff --git a/general/datasets/Devneocortex_ilm6_2p3rinv_1111/tissue.rtf b/general/datasets/Devneocortex_ilm6_2p3rinv_1111/tissue.rtf new file mode 100644 index 0000000..51f6e74 --- /dev/null +++ b/general/datasets/Devneocortex_ilm6_2p3rinv_1111/tissue.rtf @@ -0,0 +1,536 @@ +

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum.

+ +

All animals used in this study were either 3 or 14 days of age. A pool of dissected neocortical tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn D. Rosen and colleagues.

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P325384138018_F236
2BXD1P335384138058_A239
3BXD2P325384138018_C168
4BXD2P315448576044_F167
5BXD5P375384138020_A273
6BXD5P345452241022_C267
7BXD6P335384138048_A107
8BXD6P345452241007_A108
9BXD8P365384138009_A113
10BXD8P375384138021_C115
11BXD9P355452241004_F289
12BXD9P345452241022_D288
13BXD11P385237939010_A117
14BXD11P315448576044_D120
15BXD12P365384138009_B130
16BXD12P375384138021_B132
17BXD13P375384138020_F161
18BXD13P355452241004_C164
19BXD14P355452241004_B158
20BXD14P365452241033_D424
21BXD15P335452241008_C437
22BXD15P345452241023_D438
23BXD16P335384138048_D170
24BXD16P345452241007_D172
25BXD18P385448576010_A390
26BXD18P315448576045_E392
27BXD19P385237939010_E210
28BXD19P315448576045_A211
29BXD20P355452241017_B439
30BXD20P365452241033_E441
31BXD21P375384138021_F341
32BXD21P365384138053_F315
33BXD24aP385237939012_B251
34BXD24aP375384138020_B250
35BXD27P385237939012_D298
36BXD27P315448576045_C300
37BXD28P325384138049_B550
38BXD28P315448576029_F548
39BXD29P325384138047_F502
40BXD29P315448576029_D501
41BXD31P355452241024_D579
42BXD31P365452241035_D582
43BXD32P355452241006_F407
44BXD32P365452241033_C408
45BXD34P385237939012_F345
46BXD34P345452241022_F355
47BXD36P375384138016_A429
48BXD36P385448576010_D430
49BXD38P325384138041_F327
50BXD38P335384138058_E328
51BXD39P375384138016_E515
52BXD39P355452241024_A518
53BXD40P325384138041_C373
54BXD40P335452241008_A375
55BXD42P335452241008_E485
56BXD42P345452241023_F486
57BXD51P355452241024_F621
58BXD51P365452241035_F622
59BXD61P345452241031_C554
60BXD61P335452241034_A552
61BXD70P325384138049_D590
62BXD70P315448576044_B589
63BXD73P325384138049_E603
64BXD73P385448576011_E605
+
diff --git a/general/datasets/Devstriatum_ilm6_2p14rinv_1110/cases.rtf b/general/datasets/Devstriatum_ilm6_2p14rinv_1110/cases.rtf new file mode 100644 index 0000000..74c0f5e --- /dev/null +++ b/general/datasets/Devstriatum_ilm6_2p14rinv_1110/cases.rtf @@ -0,0 +1 @@ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/Devstriatum_ilm6_2p14rinv_1110/experiment-design.rtf b/general/datasets/Devstriatum_ilm6_2p14rinv_1110/experiment-design.rtf new file mode 100644 index 0000000..cfea6b0 --- /dev/null +++ b/general/datasets/Devstriatum_ilm6_2p14rinv_1110/experiment-design.rtf @@ -0,0 +1 @@ +

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/Devstriatum_ilm6_2p14rinv_1110/processing.rtf b/general/datasets/Devstriatum_ilm6_2p14rinv_1110/processing.rtf new file mode 100644 index 0000000..aee498f --- /dev/null +++ b/general/datasets/Devstriatum_ilm6_2p14rinv_1110/processing.rtf @@ -0,0 +1 @@ +

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

diff --git a/general/datasets/Devstriatum_ilm6_2p14rinv_1110/summary.rtf b/general/datasets/Devstriatum_ilm6_2p14rinv_1110/summary.rtf new file mode 100644 index 0000000..3515533 --- /dev/null +++ b/general/datasets/Devstriatum_ilm6_2p14rinv_1110/summary.rtf @@ -0,0 +1,10 @@ +

The BIDMC/UTHSC Dev Striatum P3 ILMv6.2 (Nov10) RankInv ** data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

+ +

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov10) RankInv ** data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

+ +

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this data set, xxxx probes have LRS values >46 (LOD >10).

+ +

Users of these mouse striatum data set may also find the following complementary resources and papers useful:

+ +

A movie of the dissection of the brain by Dr. Glenn Rosen. www.rosenlab.net/Movie/P3.mov
+www.rosenlab.net/Movie/P14.mov

diff --git a/general/datasets/Devstriatum_ilm6_2p14rinv_1110/tissue.rtf b/general/datasets/Devstriatum_ilm6_2p14rinv_1110/tissue.rtf new file mode 100644 index 0000000..e9e6151 --- /dev/null +++ b/general/datasets/Devstriatum_ilm6_2p14rinv_1110/tissue.rtf @@ -0,0 +1,534 @@ +

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Care was taken to assure that samples were comprised of the dorsal striatum, although it is possible that ventral striatum (accumbens) was occasionally included.

+ +

All animals used in this study were either 3 or 14 days of age. A pool of dissected striatal tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues.

+ +

 

+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P385237939012_A232
2BXD1P315448576016_C234
3BXD2P375384138020_C230
4BXD2P365384138053_A228
5BXD5P365384138053_D270
6BXD5P355452241004_E268
7BXD6P325384138018_A102
8BXD6P315448576016_A101
9BXD8P335384138048_B110
10BXD9P325384138041_A280
11BXD9P335384138058_C278
12BXD11P325384138018_B121
13BXD11P335384138048_C123
14BXD12P355452241004_A127
15BXD12P345452241007_B125
16BXD13P385237939010_D181
17BXD13P315448576016_B183
18BXD14P355452241017_A420
19BXD14P345452241023_C419
20BXD15P375384138016_C475
21BXD15P385448576010_F476
22BXD16P365384138009_F204
23BXD16P375384138020_D205
24BXD18P375384138017_B388
25BXD18P335452241008_B385
26BXD19P325384138018_E212
27BXD19P335384138048_F213
28BXD20P325384138047_C431
29BXD20P315448576029_A431
30BXD21P355452241006_A311
31BXD21P345452241022_E309
32BXD24aP365384138053_B247
33BXD24aP345452241022_B244
34BXD27P375384138021_D294
35BXD27P365384138053_E293
36BXD28P375384138016_F543
37BXD28P385448576011_B545
38BXD29P375384138016_D495
39BXD29P385448576011_A498
40BXD31P345452241031_D577
41BXD31P335452241034_D575
42BXD32P355452241006_E402
43BXD32P345452241023_B401
44BXD34P325384138041_D348
45BXD34P315448576016_E347
46BXD36P325384138047_B417
47BXD36P335452241008_D418
48BXD38P385237939012_E321
49BXD38P315448576016_D322
50BXD39P355452241017_F511
51BXD39P345452241031_A512
52BXD40P385448576010_B368
53BXD40P315448576016_F371
54BXD42P325384138047_E481
55BXD42P315448576029_C479
56BXD51P345452241031_F616
57BXD51P335452241034_F615
58BXD61P355452241024_C555
59BXD61P365452241035_B557
60BXD70P375384138017_E584
61BXD70P385448576011_D585
62BXD73P355452241024_E600
63BXD73P365452241035_E601
+
+ +

 

+
diff --git a/general/datasets/Devstriatum_ilm6_2p14rinv_1111/cases.rtf b/general/datasets/Devstriatum_ilm6_2p14rinv_1111/cases.rtf new file mode 100644 index 0000000..74c0f5e --- /dev/null +++ b/general/datasets/Devstriatum_ilm6_2p14rinv_1111/cases.rtf @@ -0,0 +1 @@ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/Devstriatum_ilm6_2p14rinv_1111/experiment-design.rtf b/general/datasets/Devstriatum_ilm6_2p14rinv_1111/experiment-design.rtf new file mode 100644 index 0000000..cfea6b0 --- /dev/null +++ b/general/datasets/Devstriatum_ilm6_2p14rinv_1111/experiment-design.rtf @@ -0,0 +1 @@ +

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/Devstriatum_ilm6_2p14rinv_1111/processing.rtf b/general/datasets/Devstriatum_ilm6_2p14rinv_1111/processing.rtf new file mode 100644 index 0000000..aee498f --- /dev/null +++ b/general/datasets/Devstriatum_ilm6_2p14rinv_1111/processing.rtf @@ -0,0 +1 @@ +

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

diff --git a/general/datasets/Devstriatum_ilm6_2p14rinv_1111/summary.rtf b/general/datasets/Devstriatum_ilm6_2p14rinv_1111/summary.rtf new file mode 100644 index 0000000..3515533 --- /dev/null +++ b/general/datasets/Devstriatum_ilm6_2p14rinv_1111/summary.rtf @@ -0,0 +1,10 @@ +

The BIDMC/UTHSC Dev Striatum P3 ILMv6.2 (Nov10) RankInv ** data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

+ +

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov10) RankInv ** data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

+ +

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this data set, xxxx probes have LRS values >46 (LOD >10).

+ +

Users of these mouse striatum data set may also find the following complementary resources and papers useful:

+ +

A movie of the dissection of the brain by Dr. Glenn Rosen. www.rosenlab.net/Movie/P3.mov
+www.rosenlab.net/Movie/P14.mov

diff --git a/general/datasets/Devstriatum_ilm6_2p14rinv_1111/tissue.rtf b/general/datasets/Devstriatum_ilm6_2p14rinv_1111/tissue.rtf new file mode 100644 index 0000000..e9e6151 --- /dev/null +++ b/general/datasets/Devstriatum_ilm6_2p14rinv_1111/tissue.rtf @@ -0,0 +1,534 @@ +

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Care was taken to assure that samples were comprised of the dorsal striatum, although it is possible that ventral striatum (accumbens) was occasionally included.

+ +

All animals used in this study were either 3 or 14 days of age. A pool of dissected striatal tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues.

+ +

 

+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P385237939012_A232
2BXD1P315448576016_C234
3BXD2P375384138020_C230
4BXD2P365384138053_A228
5BXD5P365384138053_D270
6BXD5P355452241004_E268
7BXD6P325384138018_A102
8BXD6P315448576016_A101
9BXD8P335384138048_B110
10BXD9P325384138041_A280
11BXD9P335384138058_C278
12BXD11P325384138018_B121
13BXD11P335384138048_C123
14BXD12P355452241004_A127
15BXD12P345452241007_B125
16BXD13P385237939010_D181
17BXD13P315448576016_B183
18BXD14P355452241017_A420
19BXD14P345452241023_C419
20BXD15P375384138016_C475
21BXD15P385448576010_F476
22BXD16P365384138009_F204
23BXD16P375384138020_D205
24BXD18P375384138017_B388
25BXD18P335452241008_B385
26BXD19P325384138018_E212
27BXD19P335384138048_F213
28BXD20P325384138047_C431
29BXD20P315448576029_A431
30BXD21P355452241006_A311
31BXD21P345452241022_E309
32BXD24aP365384138053_B247
33BXD24aP345452241022_B244
34BXD27P375384138021_D294
35BXD27P365384138053_E293
36BXD28P375384138016_F543
37BXD28P385448576011_B545
38BXD29P375384138016_D495
39BXD29P385448576011_A498
40BXD31P345452241031_D577
41BXD31P335452241034_D575
42BXD32P355452241006_E402
43BXD32P345452241023_B401
44BXD34P325384138041_D348
45BXD34P315448576016_E347
46BXD36P325384138047_B417
47BXD36P335452241008_D418
48BXD38P385237939012_E321
49BXD38P315448576016_D322
50BXD39P355452241017_F511
51BXD39P345452241031_A512
52BXD40P385448576010_B368
53BXD40P315448576016_F371
54BXD42P325384138047_E481
55BXD42P315448576029_C479
56BXD51P345452241031_F616
57BXD51P335452241034_F615
58BXD61P355452241024_C555
59BXD61P365452241035_B557
60BXD70P375384138017_E584
61BXD70P385448576011_D585
62BXD73P355452241024_E600
63BXD73P365452241035_E601
+
+ +

 

+
diff --git a/general/datasets/Devstriatum_ilm6_2p3rinv_1110/cases.rtf b/general/datasets/Devstriatum_ilm6_2p3rinv_1110/cases.rtf new file mode 100644 index 0000000..74c0f5e --- /dev/null +++ b/general/datasets/Devstriatum_ilm6_2p3rinv_1110/cases.rtf @@ -0,0 +1 @@ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/Devstriatum_ilm6_2p3rinv_1110/experiment-design.rtf b/general/datasets/Devstriatum_ilm6_2p3rinv_1110/experiment-design.rtf new file mode 100644 index 0000000..cfea6b0 --- /dev/null +++ b/general/datasets/Devstriatum_ilm6_2p3rinv_1110/experiment-design.rtf @@ -0,0 +1 @@ +

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/Devstriatum_ilm6_2p3rinv_1110/processing.rtf b/general/datasets/Devstriatum_ilm6_2p3rinv_1110/processing.rtf new file mode 100644 index 0000000..aee498f --- /dev/null +++ b/general/datasets/Devstriatum_ilm6_2p3rinv_1110/processing.rtf @@ -0,0 +1 @@ +

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

diff --git a/general/datasets/Devstriatum_ilm6_2p3rinv_1110/summary.rtf b/general/datasets/Devstriatum_ilm6_2p3rinv_1110/summary.rtf new file mode 100644 index 0000000..3515533 --- /dev/null +++ b/general/datasets/Devstriatum_ilm6_2p3rinv_1110/summary.rtf @@ -0,0 +1,10 @@ +

The BIDMC/UTHSC Dev Striatum P3 ILMv6.2 (Nov10) RankInv ** data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

+ +

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov10) RankInv ** data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

+ +

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this data set, xxxx probes have LRS values >46 (LOD >10).

+ +

Users of these mouse striatum data set may also find the following complementary resources and papers useful:

+ +

A movie of the dissection of the brain by Dr. Glenn Rosen. www.rosenlab.net/Movie/P3.mov
+www.rosenlab.net/Movie/P14.mov

diff --git a/general/datasets/Devstriatum_ilm6_2p3rinv_1110/tissue.rtf b/general/datasets/Devstriatum_ilm6_2p3rinv_1110/tissue.rtf new file mode 100644 index 0000000..e9e6151 --- /dev/null +++ b/general/datasets/Devstriatum_ilm6_2p3rinv_1110/tissue.rtf @@ -0,0 +1,534 @@ +

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Care was taken to assure that samples were comprised of the dorsal striatum, although it is possible that ventral striatum (accumbens) was occasionally included.

+ +

All animals used in this study were either 3 or 14 days of age. A pool of dissected striatal tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues.

+ +

 

+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P385237939012_A232
2BXD1P315448576016_C234
3BXD2P375384138020_C230
4BXD2P365384138053_A228
5BXD5P365384138053_D270
6BXD5P355452241004_E268
7BXD6P325384138018_A102
8BXD6P315448576016_A101
9BXD8P335384138048_B110
10BXD9P325384138041_A280
11BXD9P335384138058_C278
12BXD11P325384138018_B121
13BXD11P335384138048_C123
14BXD12P355452241004_A127
15BXD12P345452241007_B125
16BXD13P385237939010_D181
17BXD13P315448576016_B183
18BXD14P355452241017_A420
19BXD14P345452241023_C419
20BXD15P375384138016_C475
21BXD15P385448576010_F476
22BXD16P365384138009_F204
23BXD16P375384138020_D205
24BXD18P375384138017_B388
25BXD18P335452241008_B385
26BXD19P325384138018_E212
27BXD19P335384138048_F213
28BXD20P325384138047_C431
29BXD20P315448576029_A431
30BXD21P355452241006_A311
31BXD21P345452241022_E309
32BXD24aP365384138053_B247
33BXD24aP345452241022_B244
34BXD27P375384138021_D294
35BXD27P365384138053_E293
36BXD28P375384138016_F543
37BXD28P385448576011_B545
38BXD29P375384138016_D495
39BXD29P385448576011_A498
40BXD31P345452241031_D577
41BXD31P335452241034_D575
42BXD32P355452241006_E402
43BXD32P345452241023_B401
44BXD34P325384138041_D348
45BXD34P315448576016_E347
46BXD36P325384138047_B417
47BXD36P335452241008_D418
48BXD38P385237939012_E321
49BXD38P315448576016_D322
50BXD39P355452241017_F511
51BXD39P345452241031_A512
52BXD40P385448576010_B368
53BXD40P315448576016_F371
54BXD42P325384138047_E481
55BXD42P315448576029_C479
56BXD51P345452241031_F616
57BXD51P335452241034_F615
58BXD61P355452241024_C555
59BXD61P365452241035_B557
60BXD70P375384138017_E584
61BXD70P385448576011_D585
62BXD73P355452241024_E600
63BXD73P365452241035_E601
+
+ +

 

+
diff --git a/general/datasets/Devstriatum_ilm6_2p3rinv_1111/cases.rtf b/general/datasets/Devstriatum_ilm6_2p3rinv_1111/cases.rtf new file mode 100644 index 0000000..74c0f5e --- /dev/null +++ b/general/datasets/Devstriatum_ilm6_2p3rinv_1111/cases.rtf @@ -0,0 +1 @@ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/Devstriatum_ilm6_2p3rinv_1111/experiment-design.rtf b/general/datasets/Devstriatum_ilm6_2p3rinv_1111/experiment-design.rtf new file mode 100644 index 0000000..cfea6b0 --- /dev/null +++ b/general/datasets/Devstriatum_ilm6_2p3rinv_1111/experiment-design.rtf @@ -0,0 +1 @@ +

This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

diff --git a/general/datasets/Devstriatum_ilm6_2p3rinv_1111/processing.rtf b/general/datasets/Devstriatum_ilm6_2p3rinv_1111/processing.rtf new file mode 100644 index 0000000..aee498f --- /dev/null +++ b/general/datasets/Devstriatum_ilm6_2p3rinv_1111/processing.rtf @@ -0,0 +1 @@ +

Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

diff --git a/general/datasets/Devstriatum_ilm6_2p3rinv_1111/summary.rtf b/general/datasets/Devstriatum_ilm6_2p3rinv_1111/summary.rtf new file mode 100644 index 0000000..3515533 --- /dev/null +++ b/general/datasets/Devstriatum_ilm6_2p3rinv_1111/summary.rtf @@ -0,0 +1,10 @@ +

The BIDMC/UTHSC Dev Striatum P3 ILMv6.2 (Nov10) RankInv ** data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment.

+ +

All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov10) RankInv ** data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

+ +

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this data set, xxxx probes have LRS values >46 (LOD >10).

+ +

Users of these mouse striatum data set may also find the following complementary resources and papers useful:

+ +

A movie of the dissection of the brain by Dr. Glenn Rosen. www.rosenlab.net/Movie/P3.mov
+www.rosenlab.net/Movie/P14.mov

diff --git a/general/datasets/Devstriatum_ilm6_2p3rinv_1111/tissue.rtf b/general/datasets/Devstriatum_ilm6_2p3rinv_1111/tissue.rtf new file mode 100644 index 0000000..e9e6151 --- /dev/null +++ b/general/datasets/Devstriatum_ilm6_2p3rinv_1111/tissue.rtf @@ -0,0 +1,534 @@ +

All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Care was taken to assure that samples were comprised of the dorsal striatum, although it is possible that ventral striatum (accumbens) was occasionally included.

+ +

All animals used in this study were either 3 or 14 days of age. A pool of dissected striatal tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues.

+ +

 

+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexStrainAgeBatch IDSample IDTube ID
1BXD1P385237939012_A232
2BXD1P315448576016_C234
3BXD2P375384138020_C230
4BXD2P365384138053_A228
5BXD5P365384138053_D270
6BXD5P355452241004_E268
7BXD6P325384138018_A102
8BXD6P315448576016_A101
9BXD8P335384138048_B110
10BXD9P325384138041_A280
11BXD9P335384138058_C278
12BXD11P325384138018_B121
13BXD11P335384138048_C123
14BXD12P355452241004_A127
15BXD12P345452241007_B125
16BXD13P385237939010_D181
17BXD13P315448576016_B183
18BXD14P355452241017_A420
19BXD14P345452241023_C419
20BXD15P375384138016_C475
21BXD15P385448576010_F476
22BXD16P365384138009_F204
23BXD16P375384138020_D205
24BXD18P375384138017_B388
25BXD18P335452241008_B385
26BXD19P325384138018_E212
27BXD19P335384138048_F213
28BXD20P325384138047_C431
29BXD20P315448576029_A431
30BXD21P355452241006_A311
31BXD21P345452241022_E309
32BXD24aP365384138053_B247
33BXD24aP345452241022_B244
34BXD27P375384138021_D294
35BXD27P365384138053_E293
36BXD28P375384138016_F543
37BXD28P385448576011_B545
38BXD29P375384138016_D495
39BXD29P385448576011_A498
40BXD31P345452241031_D577
41BXD31P335452241034_D575
42BXD32P355452241006_E402
43BXD32P345452241023_B401
44BXD34P325384138041_D348
45BXD34P315448576016_E347
46BXD36P325384138047_B417
47BXD36P335452241008_D418
48BXD38P385237939012_E321
49BXD38P315448576016_D322
50BXD39P355452241017_F511
51BXD39P345452241031_A512
52BXD40P385448576010_B368
53BXD40P315448576016_F371
54BXD42P325384138047_E481
55BXD42P315448576029_C479
56BXD51P345452241031_F616
57BXD51P335452241034_F615
58BXD61P355452241024_C555
59BXD61P365452241035_B557
60BXD70P375384138017_E584
61BXD70P385448576011_D585
62BXD73P355452241024_E600
63BXD73P365452241035_E601
+
+ +

 

+
diff --git a/general/datasets/DoDCMMRPRetMoGene2Ex_0515/acknowledgment.rtf b/general/datasets/DoDCMMRPRetMoGene2Ex_0515/acknowledgment.rtf deleted file mode 100644 index 760f47e..0000000 --- a/general/datasets/DoDCMMRPRetMoGene2Ex_0515/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

This work was supported by DoD CDMRP Grant W81XWH1210255 from the USA Army Medical Research & Materiel Command and the Telemedicine and Advanced Technology (EEG), NIH Grant R01EY017841 (EEG), Vision Core Grant P30EY006360 (P. Michael Iuvone), and Unrestricted Funds from Research to Prevent Blindness (Emory University). We thank XiangDi Wang and Arthur Centeno for their technical assistance in this project. This study was supported in part by the Emory Integrated Genomics Core (EIGC), which is subsidized by the Emory University School of Medicine and is one of the Emory Integrated Core Facilities.

diff --git a/general/datasets/DoDCMMRPRetMoGene2Ex_0515/cases.rtf b/general/datasets/DoDCMMRPRetMoGene2Ex_0515/cases.rtf deleted file mode 100644 index 443b427..0000000 --- a/general/datasets/DoDCMMRPRetMoGene2Ex_0515/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

Almost all animals are young adults between 60 and 100 days of age (Table 1, minimum age is 60 and maximum age is 118 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J.

- -

 

- -

BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. BXD43 and higher were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. Several strains were specifically excluded from the dataset. For the BXD43 and higher, the DBA/2J parent carried both the Tyrp-1 mutation and the Gpnmb mutation and these two mutations produce pigment dispersion glaucoma. All of the mice carrying these two mutations were not included in the dataset: BXD53, BXD55, BXD62, BXD66, BXD68, BXD74, BXD77, BXD81, BXD88, BXD89, BXD95 and BXD98. In addition BXD 24 was omitted, since it developed a spontaneous mutation, rd16 (Cep290) which resulted in retinal degeneration and was renamed BXD24b/TyJ (ref). Several additional strains were excluded due to abnormally high Gfap levels observed in our Full HEI Retina (April 2010) dataset, these include: BXD32, BXD49, BXD70, BXD83 and BXD89.

diff --git a/general/datasets/DoDCMMRPRetMoGene2Ex_0515/experiment-design.rtf b/general/datasets/DoDCMMRPRetMoGene2Ex_0515/experiment-design.rtf deleted file mode 100644 index 6256015..0000000 --- a/general/datasets/DoDCMMRPRetMoGene2Ex_0515/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

ll of the procedures used involving mice were approved by IACUC at the Emory University and adhered to the ARVO Statement for the Use of Animals in Research. The Department of Defense (DoD) Congressionally Directed Medical Research Programs (CDMRP) Normal Retina Database uses the Affymetrix MouseGene 2.0 ST Array (May 15, 2015). Robust multiarray average (RMA) analysis and scaling were conducted by Arthur Centeno. This data set consists of 52 BXD strains, C57BL/6J, DBA/2J, and an F1 cross between C57BL/6J and DBA/2J. A total of 55 strains were quantified. There is a total of 222 microarrays. All data from each microarray used in this data set is publicly available on GeneNetwork.

- -

These are RMA expression data that have been normalized using what we call a 2z+8 scale, but without corrections for batch effects. The data for each strain were computed as the mean of four samples per strain. The expression values on the log2 scale ranged from 3.81 to 14.25 (10.26 units), a nominal range of approximately 1,000-fold. After taking the log2 of the original non-logged expression estimates, we converted the data within an array to a z-score. We then multiplied the z-score by 2. Finally, we added 8 units to ensure that no values were negative. The result was a scale with the mean expression of the probes on the array of 8 units and a standard deviation of 2 units. A twofold difference in expression is equivalent to roughly 1 unit on this scale. The lowest level of expression was 3.81 (Olfr1186) from the DoD CDMRP (the Normal Retina Database uses the Affymetrix MouseGene 2.0 ST Array, May 15, 2015). The highest level of expression was rhodopsin for 17462036 (Rho). The highest single value was 14.25.

diff --git a/general/datasets/DoDCMMRPRetMoGene2Ex_0515/notes.rtf b/general/datasets/DoDCMMRPRetMoGene2Ex_0515/notes.rtf deleted file mode 100644 index 7f9ba5d..0000000 --- a/general/datasets/DoDCMMRPRetMoGene2Ex_0515/notes.rtf +++ /dev/null @@ -1 +0,0 @@ -

This study includes Gene level and Exon level analysis.

diff --git a/general/datasets/DoDCMMRPRetMoGene2Ex_0515/platform.rtf b/general/datasets/DoDCMMRPRetMoGene2Ex_0515/platform.rtf deleted file mode 100644 index 26dde86..0000000 --- a/general/datasets/DoDCMMRPRetMoGene2Ex_0515/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

Affymetrix Mouse Gene 2.0 ST Array: These expression arrays have been designed with a median of 22 unique probes per transcript. Each unique probe is 25 bases in length, which means that the array measures a median of 550 bases per transcript. The arrays provide comprehensive transcriptome coverage with over 30,000 coding and non-coding transcripts. In addition there is coverage for over 600 microRNAs. For some arrays the RNA was pooled from two retinas and for other arrays were run on a single retina. Dr. XiangDi Wang (UTHSC) and Becky King (Emory) were involved in the retinal extractions and isolation of RNA. The Affymetrix arrays were run by two different research cores: the Molecular Resource Center at UTHSC (Dr. William Taylor Director) and the Integrated Genomics Core at Emory University by Robert B Isett (Dr. Michael E. Zwick, Director). In a separate set of experiments we tested a set of arrays from C57BL/6J retinas run at each facility to determine if there were batch effects or other confounding differences in the results. We could not detect any significant difference in the arrays run at UTHSC or at Emory University. Thus, we have included both sets of data into the analysis.

diff --git a/general/datasets/DoDCMMRPRetMoGene2Ex_0515/specifics.rtf b/general/datasets/DoDCMMRPRetMoGene2Ex_0515/specifics.rtf deleted file mode 100644 index ce43067..0000000 --- a/general/datasets/DoDCMMRPRetMoGene2Ex_0515/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -

This is the normal exon level dataset

diff --git a/general/datasets/DoDCMMRPRetMoGene2Ex_0515/summary.rtf b/general/datasets/DoDCMMRPRetMoGene2Ex_0515/summary.rtf deleted file mode 100644 index c79428d..0000000 --- a/general/datasets/DoDCMMRPRetMoGene2Ex_0515/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The DoD (Department of Defense) CDMRP (Congressionally Directed Medical Research Programs) Normal Retina Database uses the Affymetrix MouseGene 2.0 ST Array (May 15 2015) The RMA analysis and scaling was conducted by Arthur Centeno. This data set consists of 55 BXD strains, C57BL/6J, DBA/2J, a F1 cross between C57BL/6J and DBA/2J. A total of 58 strains were quantified. There is a total of 222 microarrays.

- -

This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strain was computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.81 to 14.25 (10.26 units), a nominal range of approximately 1,000-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean expression of the probes on the array of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale. The lowest level of expression is 3.81 (Olfr1186) from DoD CDMRP (Normal Retina Database uses the Affymetrix MouseGene 2.0 ST Array (May 15 2015) The highest level of expression is Rhodopsin for 17462036 (Rho). Highest single value is about 14.25.

diff --git a/general/datasets/DoDCMMRPRetMoGene2Ex_0515/tissue.rtf b/general/datasets/DoDCMMRPRetMoGene2Ex_0515/tissue.rtf deleted file mode 100644 index 4f3c475..0000000 --- a/general/datasets/DoDCMMRPRetMoGene2Ex_0515/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Tissue preparation protocol. Mice were killed by rapid cervical dislocation. Retinas were removed immediately and placed in 1 ml of 160 U/ml Ribolock for 1 min at room temperature. The retinas were removed from the eye and placed in Hank’s Balanced Salt solution with RiboLock in 50µl Ribolock (Thermo Scientific RiboLock RNase #EO0381 40U/µl 2500U) and stored in -80°C. The RNA was isolated using a QiaCube and the in column DNAse procedure. All RNA samples were checked for quality before running microarrays. The samples were analyzed using the Agilent 2100 Bioanalyzer. The RNA integrity values for ranged from 7.0 to 10. Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/DoDCMMRPRetMoGene2_0515/acknowledgment.rtf b/general/datasets/DoDCMMRPRetMoGene2_0515/acknowledgment.rtf deleted file mode 100644 index 760f47e..0000000 --- a/general/datasets/DoDCMMRPRetMoGene2_0515/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

This work was supported by DoD CDMRP Grant W81XWH1210255 from the USA Army Medical Research & Materiel Command and the Telemedicine and Advanced Technology (EEG), NIH Grant R01EY017841 (EEG), Vision Core Grant P30EY006360 (P. Michael Iuvone), and Unrestricted Funds from Research to Prevent Blindness (Emory University). We thank XiangDi Wang and Arthur Centeno for their technical assistance in this project. This study was supported in part by the Emory Integrated Genomics Core (EIGC), which is subsidized by the Emory University School of Medicine and is one of the Emory Integrated Core Facilities.

diff --git a/general/datasets/DoDCMMRPRetMoGene2_0515/cases.rtf b/general/datasets/DoDCMMRPRetMoGene2_0515/cases.rtf deleted file mode 100644 index 443b427..0000000 --- a/general/datasets/DoDCMMRPRetMoGene2_0515/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

Almost all animals are young adults between 60 and 100 days of age (Table 1, minimum age is 60 and maximum age is 118 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J.

- -

 

- -

BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. BXD43 and higher were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. Several strains were specifically excluded from the dataset. For the BXD43 and higher, the DBA/2J parent carried both the Tyrp-1 mutation and the Gpnmb mutation and these two mutations produce pigment dispersion glaucoma. All of the mice carrying these two mutations were not included in the dataset: BXD53, BXD55, BXD62, BXD66, BXD68, BXD74, BXD77, BXD81, BXD88, BXD89, BXD95 and BXD98. In addition BXD 24 was omitted, since it developed a spontaneous mutation, rd16 (Cep290) which resulted in retinal degeneration and was renamed BXD24b/TyJ (ref). Several additional strains were excluded due to abnormally high Gfap levels observed in our Full HEI Retina (April 2010) dataset, these include: BXD32, BXD49, BXD70, BXD83 and BXD89.

diff --git a/general/datasets/DoDCMMRPRetMoGene2_0515/experiment-design.rtf b/general/datasets/DoDCMMRPRetMoGene2_0515/experiment-design.rtf deleted file mode 100644 index 6256015..0000000 --- a/general/datasets/DoDCMMRPRetMoGene2_0515/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

ll of the procedures used involving mice were approved by IACUC at the Emory University and adhered to the ARVO Statement for the Use of Animals in Research. The Department of Defense (DoD) Congressionally Directed Medical Research Programs (CDMRP) Normal Retina Database uses the Affymetrix MouseGene 2.0 ST Array (May 15, 2015). Robust multiarray average (RMA) analysis and scaling were conducted by Arthur Centeno. This data set consists of 52 BXD strains, C57BL/6J, DBA/2J, and an F1 cross between C57BL/6J and DBA/2J. A total of 55 strains were quantified. There is a total of 222 microarrays. All data from each microarray used in this data set is publicly available on GeneNetwork.

- -

These are RMA expression data that have been normalized using what we call a 2z+8 scale, but without corrections for batch effects. The data for each strain were computed as the mean of four samples per strain. The expression values on the log2 scale ranged from 3.81 to 14.25 (10.26 units), a nominal range of approximately 1,000-fold. After taking the log2 of the original non-logged expression estimates, we converted the data within an array to a z-score. We then multiplied the z-score by 2. Finally, we added 8 units to ensure that no values were negative. The result was a scale with the mean expression of the probes on the array of 8 units and a standard deviation of 2 units. A twofold difference in expression is equivalent to roughly 1 unit on this scale. The lowest level of expression was 3.81 (Olfr1186) from the DoD CDMRP (the Normal Retina Database uses the Affymetrix MouseGene 2.0 ST Array, May 15, 2015). The highest level of expression was rhodopsin for 17462036 (Rho). The highest single value was 14.25.

diff --git a/general/datasets/DoDCMMRPRetMoGene2_0515/notes.rtf b/general/datasets/DoDCMMRPRetMoGene2_0515/notes.rtf deleted file mode 100644 index 7f9ba5d..0000000 --- a/general/datasets/DoDCMMRPRetMoGene2_0515/notes.rtf +++ /dev/null @@ -1 +0,0 @@ -

This study includes Gene level and Exon level analysis.

diff --git a/general/datasets/DoDCMMRPRetMoGene2_0515/platform.rtf b/general/datasets/DoDCMMRPRetMoGene2_0515/platform.rtf deleted file mode 100644 index 26dde86..0000000 --- a/general/datasets/DoDCMMRPRetMoGene2_0515/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

Affymetrix Mouse Gene 2.0 ST Array: These expression arrays have been designed with a median of 22 unique probes per transcript. Each unique probe is 25 bases in length, which means that the array measures a median of 550 bases per transcript. The arrays provide comprehensive transcriptome coverage with over 30,000 coding and non-coding transcripts. In addition there is coverage for over 600 microRNAs. For some arrays the RNA was pooled from two retinas and for other arrays were run on a single retina. Dr. XiangDi Wang (UTHSC) and Becky King (Emory) were involved in the retinal extractions and isolation of RNA. The Affymetrix arrays were run by two different research cores: the Molecular Resource Center at UTHSC (Dr. William Taylor Director) and the Integrated Genomics Core at Emory University by Robert B Isett (Dr. Michael E. Zwick, Director). In a separate set of experiments we tested a set of arrays from C57BL/6J retinas run at each facility to determine if there were batch effects or other confounding differences in the results. We could not detect any significant difference in the arrays run at UTHSC or at Emory University. Thus, we have included both sets of data into the analysis.

diff --git a/general/datasets/DoDCMMRPRetMoGene2_0515/summary.rtf b/general/datasets/DoDCMMRPRetMoGene2_0515/summary.rtf deleted file mode 100644 index c79428d..0000000 --- a/general/datasets/DoDCMMRPRetMoGene2_0515/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The DoD (Department of Defense) CDMRP (Congressionally Directed Medical Research Programs) Normal Retina Database uses the Affymetrix MouseGene 2.0 ST Array (May 15 2015) The RMA analysis and scaling was conducted by Arthur Centeno. This data set consists of 55 BXD strains, C57BL/6J, DBA/2J, a F1 cross between C57BL/6J and DBA/2J. A total of 58 strains were quantified. There is a total of 222 microarrays.

- -

This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strain was computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.81 to 14.25 (10.26 units), a nominal range of approximately 1,000-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean expression of the probes on the array of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale. The lowest level of expression is 3.81 (Olfr1186) from DoD CDMRP (Normal Retina Database uses the Affymetrix MouseGene 2.0 ST Array (May 15 2015) The highest level of expression is Rhodopsin for 17462036 (Rho). Highest single value is about 14.25.

diff --git a/general/datasets/DoDCMMRPRetMoGene2_0515/tissue.rtf b/general/datasets/DoDCMMRPRetMoGene2_0515/tissue.rtf deleted file mode 100644 index 4f3c475..0000000 --- a/general/datasets/DoDCMMRPRetMoGene2_0515/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Tissue preparation protocol. Mice were killed by rapid cervical dislocation. Retinas were removed immediately and placed in 1 ml of 160 U/ml Ribolock for 1 min at room temperature. The retinas were removed from the eye and placed in Hank’s Balanced Salt solution with RiboLock in 50µl Ribolock (Thermo Scientific RiboLock RNase #EO0381 40U/µl 2500U) and stored in -80°C. The RNA was isolated using a QiaCube and the in column DNAse procedure. All RNA samples were checked for quality before running microarrays. The samples were analyzed using the Agilent 2100 Bioanalyzer. The RNA integrity values for ranged from 7.0 to 10. Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/DoDRetBlastvsNormalEx_0416/cases.rtf b/general/datasets/DoDRetBlastvsNormalEx_0416/cases.rtf deleted file mode 100644 index 34f9530..0000000 --- a/general/datasets/DoDRetBlastvsNormalEx_0416/cases.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

Almost all animals are young adults between 60 and 100 days of age (Table 1, minimum age is 60 and maximum age is 118 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J.

- -

BXD strains:

- - diff --git a/general/datasets/DoDRetBlastvsNormalEx_0416/experiment-design.rtf b/general/datasets/DoDRetBlastvsNormalEx_0416/experiment-design.rtf deleted file mode 100644 index b43e509..0000000 --- a/general/datasets/DoDRetBlastvsNormalEx_0416/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Sample Processing: Dr. XiangDi Wang (UTHSC) and Becky King (Emory) were involved in the retinal extractions and isolation of RNA. The Affymetrix arrays were run by two different research cores: the Molecular Resource Center at UTHSC (Dr. William Taylor Director) and the Integrated Genomics Core at Emory University by Robert B Isett (Dr. Michael E. Zwick, Director). In a separate set of experiments we could not detect any significant difference in the arrays run at UTHSC or at Emory University.

- -

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/DoDRetBlastvsNormalEx_0416/notes.rtf b/general/datasets/DoDRetBlastvsNormalEx_0416/notes.rtf deleted file mode 100644 index cb14c74..0000000 --- a/general/datasets/DoDRetBlastvsNormalEx_0416/notes.rtf +++ /dev/null @@ -1,10 +0,0 @@ -

Other Data Sets Users of these mouse retina data may also find the following complementary resources useful:

- -
    -
  1. NEIBank collection of ESTs and SAGE data.
  2. -
  3. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases
  4. -
  5. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.
  6. -
  7. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus.
  8. -
  9. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430).
  10. -
  11. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.
  12. -
diff --git a/general/datasets/DoDRetBlastvsNormalEx_0416/platform.rtf b/general/datasets/DoDRetBlastvsNormalEx_0416/platform.rtf deleted file mode 100644 index cb5e1b8..0000000 --- a/general/datasets/DoDRetBlastvsNormalEx_0416/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

Affymetrix Mouse Gene 2.0 ST Array: These expression arrays have been designed with a median of 22 unique probes per transcript. Each unique probe is 25 bases in length, which means that the array measures a median of 550 bases per transcript. The arrays provide comprehensive transcriptome coverage with over 30,000 coding and non-coding transcripts. In addition there is coverage for 592 microRNAs. For some arrays the RNA was pooled from two retinas and for other arrays were run on a single retina.

diff --git a/general/datasets/DoDRetBlastvsNormalEx_0416/specifics.rtf b/general/datasets/DoDRetBlastvsNormalEx_0416/specifics.rtf deleted file mode 100644 index 7c1a914..0000000 --- a/general/datasets/DoDRetBlastvsNormalEx_0416/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Exon Level \ No newline at end of file diff --git a/general/datasets/DoDRetBlastvsNormalEx_0416/summary.rtf b/general/datasets/DoDRetBlastvsNormalEx_0416/summary.rtf deleted file mode 100644 index b6cf222..0000000 --- a/general/datasets/DoDRetBlastvsNormalEx_0416/summary.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

DoD TATRC Retina Dataset Affymetrix MouseGene 2.0 ST Array (____ 2015) RMA analysis and scaling by Arthur Centeno. This data set consists of 75 BXD strains, C57BL/6J, DBA/2J, both reciprocal F1s, and BALB/cByJ. A total of 80 strains were quantified. The data are now open and available for analysis.

- -

This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strain was computed as the mean of four samples per strain. Expression values on a log2 scale range from 6.25 to 18.08 (11.83 units), a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean expression of the probes on the array of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

- -

The lowest level of expression is 6.254 for ILMN_2747167 (Arhgap11a) from HEI Retina Illumina V6.2 (April 2010) RankInv **. Lowest single data about 5.842. The highest level of expression is 18.077 for ILMN_2516699 (Ubb). Highest single value is about 18.934.

diff --git a/general/datasets/DoDRetBlastvsNormalEx_0416/tissue.rtf b/general/datasets/DoDRetBlastvsNormalEx_0416/tissue.rtf deleted file mode 100644 index 87eb144..0000000 --- a/general/datasets/DoDRetBlastvsNormalEx_0416/tissue.rtf +++ /dev/null @@ -1,13 +0,0 @@ -

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in 1 ml of 160 U/ml Ribolock for 1 min at room temperature. Dissecting and preparing eyes for RNA extraction Retinas for RNA removed from the eye and placed in Hank’s Balanced Salt solution with RiboLock (Thermo Scientific RiboLock RNase #EO0381 40U/µl 2500U) and processed per manufacturer’s instructions (in brief form below).

- -

1) Sample collection for RNA isolation.

- -

2) Quickly remove the retinas with clean curved forceps after cervical dislocation of the mouse.

- -

3) Put each retina in 1 ml of 160 U/ml Ribolock for 1 min in RT.

- -

4) Move the retina to another tube with 50µl Ribolock, store in -80°C.

- -

5) The RNA was isolated using a QiaCube and the in column DNAse procedure.

- -

Quality Control: All RNA samples were checked for quality before running microarrays. The samples were analyzed using the Agilent 2100 Bioanalyzer. The RNA integrity values for each sample are presented in Table 1 below.

diff --git a/general/datasets/DoDRetBlastvsNormal_0416/acknowledgment.rtf b/general/datasets/DoDRetBlastvsNormal_0416/acknowledgment.rtf deleted file mode 100644 index 13c6b1e..0000000 --- a/general/datasets/DoDRetBlastvsNormal_0416/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

DoD funding (W81XWH-12-0255) Genetic Networks Activated by Blast Injury to the Eye (Eldon E. Geisert).

diff --git a/general/datasets/DoDRetBlastvsNormal_0416/cases.rtf b/general/datasets/DoDRetBlastvsNormal_0416/cases.rtf deleted file mode 100644 index 6b36c70..0000000 --- a/general/datasets/DoDRetBlastvsNormal_0416/cases.rtf +++ /dev/null @@ -1,1728 +0,0 @@ -

Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 50 and maximum age is 134 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set.

- -
- - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
IndexEIGC ID (LIMS ID)StrainSexAge at harvestRIN Score
1602BXD9F1339.1
2603BXD9M1009.5
3604BXD40F1009.4
4605BXD40M1009.1
5606BXD48F759.1
6607BXD48M758.6
7608BXD63F759.2
8609BXD63M619.4
9612BXD73M10810
10614BXD87M859.2
11615BXD87F859.9
12616BXD69F769.3
13617BXD69M10010
14618BXD51M828.9
15619BXD92 (BXD65b)M828.8
16620BXD92 (BXD65b)F828.8
17635BXD100M709
18636BXD100M708.8
19652BXD92 (BXD65b)F649
20653BXD87F679.7
21654BXD87M678.9
22655BXD63M719
23660BXD69M9710
24687BXD6M857.7
25688BXD6M859.4
26690BXD12F8310
27691BXD12F8310
28692BXD12M8310
29695BXD5F7710
30696BXD5M7710
31698BXD5F779.9
32699BXD5F7710
33701BXD8M7910
34702BXD8M7910
35705BXD8F779.2
36707BXD15F779.4
37708BXD15F779.1
38710BXD15M779.1
39713BXD22F719.5
40714BXD22F719.7
41716BXD22M719.1
42717BXD22M719.1
43719BXD14F709.2
44722BXD14M708.9
45723BXD14M709.2
46725BXD18F709
47726BXD18F709.1
48728BXD18M709.1
49729BXD18M709.2
50731BXD19F669.3
51732BXD19F669.4
52734BXD19M669.8
53735BXD19M669.4
54737BXD21F719.7
55738BXD21F719.6
56740BXD21M719.1
57741BXD21M719.7
58743BXD2F708.3
59744BXD2F708.6
60746BXD2M707.5
61747BXD2M778.6
62768BXD48M1219.4
63770BXD92 (BXD65b)M6510
64771BXD101F858.3
65772BXD101F859.3
66773BXD101M869.5
67774BXD101M869.8
68775BXD102F669.5
69776BXD102F6610
70777BXD102M849.6
71787BXD60M869.9
72788BXD60M869.9
73789BXD63F1159.7
74790BXD100F729.8
75791BXD100F7210
76818BXD51F779.7
77819BXD51F779.6
78820BXD51M729.7
79821BXD65M729.6
80822BXD65M659.5
81825BXD65F729.5
82827BXD86M699.1
83828BXD86M699.4
84829BXD90F699.6
85831BXD9M1279.7
86832BXD39F999.4
87833BXD39F1079.3
88834BXD60F1079.5
89836BXD84M1039.7
90846BXD39M639.7
91847BXD39M639.8
92849BXD20F7010
93850BXD20M7010
94851BXD20*709.5
95855DBA/2JF789.7
96856DBA/2JF7810
97857DBA/2JM7810
98858DBA/2JM789.9
99859C57BL/6JF7810
100860C57BL/6JF7810
101861C57BL/6JM7810
102862C57BL/6JM789.6
103EGE10907-0172_890_20844BXD28M7510
104EGE10907-0173_891_20845BXD28M759.7
105EGE10907-0174_892_20846BXD28F759.7
106EGE10907-0176_895_20848BXD33M759.88
107EGE10907-0177_896_20849BXD33F7510
108EGE10907-0178_897_20850BXD33F759.4
109EGE10907-0179_898_20851BXD36M759.4
110EGE10907-0180_899_20852BXD36F759.5
111EGE10907-0181_900_20853BXD36F759.1
112EGE10907-0182_910_20854BXD27M709.7
113EGE10907-0183_990_20855BXD9F989.4
114EGE10907-0184_991_20856BXD16F11310
115EGE10907-0185_992_20857BXD16M1139
116EGE10907-0186_993_20858BXD27F969.4
117EGE10907-0187_994_20859BXD27F969.4
118EGE10907-0188_996_20860BXD48F989.4
119EGE10907-0189_997_20861BXD73M10610
120EGE10907-0190_999_20862BXD11F1219.6
121EGE10907-0191_100_20863BXD11F1219.9
122EGE10907-0192_1010_21276BXD13M699.8
123EGE10907-0193_1011_21277BXD13M699.8
124EGE10907-0194_1012_21278BXD16F6510
125EGE10907-0195_1015_21279BXD16M6510
126EGE10907-0196_1019_21280BXD33M7510
127EGE10907-0197_1020_21281BXD36M7810
128EGE10907-0198_1021_21282BXD38F709.8
129EGE10907-0199_1022_21283BXD38F7010
130EGE10907-0200_1023_21284BXD38M709.7
131EGE10907-0201_1047_21285BXD11M6510
132EGE10907-0202_1048_21286BXD11M6510
133EGE10907-0203_1049_21287BXD38M7710
134EGE10907-0204_1050_21288BXD73F7010
135EGE10907-0205_1051_21289BXD73F7010
136EGE10907-0206_1052_21290BXD86F6910
137EGE10907-0207_1053_21291BXD86F6910
138EGE10907-0208_1054_21292BXD90F7110
139EGE10907-0209_1055_21293BXD90M7110
140EGE10907-0210_1056_21294BXD90M7110
141EGE10907-0211_1148_21295BXD31F9010
142EGE10907-0212_1149_21296BXD31F9010
143EGE10907-0213_1150_21297BXD31M9010
144EGE10907-0214_1151_21298BXD31M909.9
145EGE10907-0215_1152_21299BXD42F8310
146EGE10907-0216_21429BXD42F8310
147EGE10907-0217_21430BXD42M8310
148EGE10907-0218_21431BXD42M839.3
149EGE10907-0219_21432BXD50F929.6
150EGE10907-0220_21433BXD50F929.6
151EGE10907-0221_21434BXD50F9210
152EGE10907-0222_21435BXD1M739.6
153EGE10907-0223_21436BXD13F719.7
154EGE10907-0224_21437BXD1M719.5
155EGE10907-0225_21438BXD13F719.6
156EGE10907-0226_21439BXD43F8510
157EGE10907-0227_21452BXD43F859.6
158EGE10907-0229_21442BXD43M858.2
159EGE10907-0230_21443BXD50M699.4
160EGE10907-0231_21444BXD1F689.4
161EGE10907-0232_21445BXD1F689.6
162EGE10907-0233_21446BXD29M659.5
163EGE10907-0234_21447BXD29M6510
164EGE10907-0235_21448BXD75F6810
165EGE10907-0236_21449BXD75M6810
166EGE10907-0237_21450BXD96F679.9
167EGE10907-0238_21931BXD99M717.9
168EGE10907-0239_21932BXD99M719.7
169EGE10907-0240_21933BXD67F688.8
170EGE10907-0241_21934BXD67F688.5
171EGE10907-0242_21935BXD67M689.5
172EGE10907-0243_21936BXD67M689.6
173EGE10907-0244_21937BXD6F689.6
174EGE10907-0245_21938BXD12M829.5
175EGE10907-0246_21939BXD60F729.6
176EGE10907-0247_21940BXD65F759.1
177EGE10907-0248_21941BXD75F698.8
178EGE10907-0249_21942_(MoGene-2_0-st)BXD75M699.2
179EGE10907-0250_21943BXD8F979.1
180EGE10907-0251_21944BXD85F798.6
181EGE10907-0252_21945BXD85M799.1
182EGE10907-0253_21946BXD85M799.4
183EGE10907-0254_21947BXD102M948.6
184EGE10907-0255_21948BXD99F839
185EGE10907-0256_21949BXD69F689
186EGE10907-0257_21950BXD84F749.5
187EGE10907-0258_21951BXD84F749.4
188EGE10907-0259_21952BXD84M748.6
189EGE10907-0260_21451BXD96M679.2
190EGE10907-0261_21452BXD99F718.9
191EGE10907-0262_21931BXD6F669.4
192EGE10907-0263_21932BXD14F698.5
193EGE10907-0264_21933BXD34M799.1
194EGE10907-0265_21934BXD34M799.9
195EGE10907-0266_21935BXD40F759.6
196EGE10907-0267_21936BXD40M789.7
197EGE10907-0268_21937BXD56F729.7
198EGE10907-0269_21938BXD56F729.7
199EGE10907-0270_21939BXD56M729.6
200EGE10907-0271_21940BXD56M729.4
201EGE10907-0272_21941BXD71F729.9
202EGE10907-0273_21942BXD71F759.4
203EGE10907-0274_21943BXD71M7510
204EGE10907-0275_21944BXD71M7510
205EGE10907-0276_21945BXD27M6510
206EGE10907-0277_21946BXD15M6510
207EGE10907-0278_21947BXD20F12510
208EGE10907-0279_21948BXD29F7710
209EGE10907-0280_21949BXD29F7710
210EGE10907-0281_21950BXD34F7410
211EGE10907-0282_21951BXD34F7410
212EGE10907-0283_21952BXD85F8710
213EGE10907-0284_21451BXD43M759.8
-
-
diff --git a/general/datasets/DoDRetBlastvsNormal_0416/platform.rtf b/general/datasets/DoDRetBlastvsNormal_0416/platform.rtf deleted file mode 100644 index 19fc38c..0000000 --- a/general/datasets/DoDRetBlastvsNormal_0416/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Affymetrics GeneChip&reg; Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. Nonetheless, there is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs.

diff --git a/general/datasets/DoDRetBlastvsNormal_0416/processing.rtf b/general/datasets/DoDRetBlastvsNormal_0416/processing.rtf deleted file mode 100644 index a7b767e..0000000 --- a/general/datasets/DoDRetBlastvsNormal_0416/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/DoDRetBlastvsNormal_0416/specifics.rtf b/general/datasets/DoDRetBlastvsNormal_0416/specifics.rtf deleted file mode 100644 index 0d1a5a5..0000000 --- a/general/datasets/DoDRetBlastvsNormal_0416/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -This is a subtractive dataset. The Normal retina dataset was subtracted from the blast data set probe by probe to create a data set of the changes occurring following a blast injury to the eye. This data set can be used to define gene changes following blast. It is not compatible with most of the bioinformatic tools available on GeneNetwork. \ No newline at end of file diff --git a/general/datasets/DoDRetBlastvsNormal_0416/summary.rtf b/general/datasets/DoDRetBlastvsNormal_0416/summary.rtf deleted file mode 100644 index 96a87e5..0000000 --- a/general/datasets/DoDRetBlastvsNormal_0416/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The DoD dataset was constructed using the Affymetrics GeneChip® Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. There is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs. This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.77 to 14.62, a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

diff --git a/general/datasets/DoDRetBlastvsNormal_0416/tissue.rtf b/general/datasets/DoDRetBlastvsNormal_0416/tissue.rtf deleted file mode 100644 index 056d7eb..0000000 --- a/general/datasets/DoDRetBlastvsNormal_0416/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RiboLock (RiboLock: Thermo Scientific RiboLock RNase #EO0381 40U/&micro;l 2500U) at room temperature. Individual retinas from the mouse were stored in each tube. RNA was isolated using a Qiacube with the resultant RIN scores ranging from 8.5 to 10.0.

diff --git a/general/datasets/DoDTATRCRetBLExMoGene2_1213/acknowledgment.rtf b/general/datasets/DoDTATRCRetBLExMoGene2_1213/acknowledgment.rtf deleted file mode 100644 index 13c6b1e..0000000 --- a/general/datasets/DoDTATRCRetBLExMoGene2_1213/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

DoD funding (W81XWH-12-0255) Genetic Networks Activated by Blast Injury to the Eye (Eldon E. Geisert).

diff --git a/general/datasets/DoDTATRCRetBLExMoGene2_1213/cases.rtf b/general/datasets/DoDTATRCRetBLExMoGene2_1213/cases.rtf deleted file mode 100644 index 6b36c70..0000000 --- a/general/datasets/DoDTATRCRetBLExMoGene2_1213/cases.rtf +++ /dev/null @@ -1,1728 +0,0 @@ -

Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 50 and maximum age is 134 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set.

- -
- - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
IndexEIGC ID (LIMS ID)StrainSexAge at harvestRIN Score
1602BXD9F1339.1
2603BXD9M1009.5
3604BXD40F1009.4
4605BXD40M1009.1
5606BXD48F759.1
6607BXD48M758.6
7608BXD63F759.2
8609BXD63M619.4
9612BXD73M10810
10614BXD87M859.2
11615BXD87F859.9
12616BXD69F769.3
13617BXD69M10010
14618BXD51M828.9
15619BXD92 (BXD65b)M828.8
16620BXD92 (BXD65b)F828.8
17635BXD100M709
18636BXD100M708.8
19652BXD92 (BXD65b)F649
20653BXD87F679.7
21654BXD87M678.9
22655BXD63M719
23660BXD69M9710
24687BXD6M857.7
25688BXD6M859.4
26690BXD12F8310
27691BXD12F8310
28692BXD12M8310
29695BXD5F7710
30696BXD5M7710
31698BXD5F779.9
32699BXD5F7710
33701BXD8M7910
34702BXD8M7910
35705BXD8F779.2
36707BXD15F779.4
37708BXD15F779.1
38710BXD15M779.1
39713BXD22F719.5
40714BXD22F719.7
41716BXD22M719.1
42717BXD22M719.1
43719BXD14F709.2
44722BXD14M708.9
45723BXD14M709.2
46725BXD18F709
47726BXD18F709.1
48728BXD18M709.1
49729BXD18M709.2
50731BXD19F669.3
51732BXD19F669.4
52734BXD19M669.8
53735BXD19M669.4
54737BXD21F719.7
55738BXD21F719.6
56740BXD21M719.1
57741BXD21M719.7
58743BXD2F708.3
59744BXD2F708.6
60746BXD2M707.5
61747BXD2M778.6
62768BXD48M1219.4
63770BXD92 (BXD65b)M6510
64771BXD101F858.3
65772BXD101F859.3
66773BXD101M869.5
67774BXD101M869.8
68775BXD102F669.5
69776BXD102F6610
70777BXD102M849.6
71787BXD60M869.9
72788BXD60M869.9
73789BXD63F1159.7
74790BXD100F729.8
75791BXD100F7210
76818BXD51F779.7
77819BXD51F779.6
78820BXD51M729.7
79821BXD65M729.6
80822BXD65M659.5
81825BXD65F729.5
82827BXD86M699.1
83828BXD86M699.4
84829BXD90F699.6
85831BXD9M1279.7
86832BXD39F999.4
87833BXD39F1079.3
88834BXD60F1079.5
89836BXD84M1039.7
90846BXD39M639.7
91847BXD39M639.8
92849BXD20F7010
93850BXD20M7010
94851BXD20*709.5
95855DBA/2JF789.7
96856DBA/2JF7810
97857DBA/2JM7810
98858DBA/2JM789.9
99859C57BL/6JF7810
100860C57BL/6JF7810
101861C57BL/6JM7810
102862C57BL/6JM789.6
103EGE10907-0172_890_20844BXD28M7510
104EGE10907-0173_891_20845BXD28M759.7
105EGE10907-0174_892_20846BXD28F759.7
106EGE10907-0176_895_20848BXD33M759.88
107EGE10907-0177_896_20849BXD33F7510
108EGE10907-0178_897_20850BXD33F759.4
109EGE10907-0179_898_20851BXD36M759.4
110EGE10907-0180_899_20852BXD36F759.5
111EGE10907-0181_900_20853BXD36F759.1
112EGE10907-0182_910_20854BXD27M709.7
113EGE10907-0183_990_20855BXD9F989.4
114EGE10907-0184_991_20856BXD16F11310
115EGE10907-0185_992_20857BXD16M1139
116EGE10907-0186_993_20858BXD27F969.4
117EGE10907-0187_994_20859BXD27F969.4
118EGE10907-0188_996_20860BXD48F989.4
119EGE10907-0189_997_20861BXD73M10610
120EGE10907-0190_999_20862BXD11F1219.6
121EGE10907-0191_100_20863BXD11F1219.9
122EGE10907-0192_1010_21276BXD13M699.8
123EGE10907-0193_1011_21277BXD13M699.8
124EGE10907-0194_1012_21278BXD16F6510
125EGE10907-0195_1015_21279BXD16M6510
126EGE10907-0196_1019_21280BXD33M7510
127EGE10907-0197_1020_21281BXD36M7810
128EGE10907-0198_1021_21282BXD38F709.8
129EGE10907-0199_1022_21283BXD38F7010
130EGE10907-0200_1023_21284BXD38M709.7
131EGE10907-0201_1047_21285BXD11M6510
132EGE10907-0202_1048_21286BXD11M6510
133EGE10907-0203_1049_21287BXD38M7710
134EGE10907-0204_1050_21288BXD73F7010
135EGE10907-0205_1051_21289BXD73F7010
136EGE10907-0206_1052_21290BXD86F6910
137EGE10907-0207_1053_21291BXD86F6910
138EGE10907-0208_1054_21292BXD90F7110
139EGE10907-0209_1055_21293BXD90M7110
140EGE10907-0210_1056_21294BXD90M7110
141EGE10907-0211_1148_21295BXD31F9010
142EGE10907-0212_1149_21296BXD31F9010
143EGE10907-0213_1150_21297BXD31M9010
144EGE10907-0214_1151_21298BXD31M909.9
145EGE10907-0215_1152_21299BXD42F8310
146EGE10907-0216_21429BXD42F8310
147EGE10907-0217_21430BXD42M8310
148EGE10907-0218_21431BXD42M839.3
149EGE10907-0219_21432BXD50F929.6
150EGE10907-0220_21433BXD50F929.6
151EGE10907-0221_21434BXD50F9210
152EGE10907-0222_21435BXD1M739.6
153EGE10907-0223_21436BXD13F719.7
154EGE10907-0224_21437BXD1M719.5
155EGE10907-0225_21438BXD13F719.6
156EGE10907-0226_21439BXD43F8510
157EGE10907-0227_21452BXD43F859.6
158EGE10907-0229_21442BXD43M858.2
159EGE10907-0230_21443BXD50M699.4
160EGE10907-0231_21444BXD1F689.4
161EGE10907-0232_21445BXD1F689.6
162EGE10907-0233_21446BXD29M659.5
163EGE10907-0234_21447BXD29M6510
164EGE10907-0235_21448BXD75F6810
165EGE10907-0236_21449BXD75M6810
166EGE10907-0237_21450BXD96F679.9
167EGE10907-0238_21931BXD99M717.9
168EGE10907-0239_21932BXD99M719.7
169EGE10907-0240_21933BXD67F688.8
170EGE10907-0241_21934BXD67F688.5
171EGE10907-0242_21935BXD67M689.5
172EGE10907-0243_21936BXD67M689.6
173EGE10907-0244_21937BXD6F689.6
174EGE10907-0245_21938BXD12M829.5
175EGE10907-0246_21939BXD60F729.6
176EGE10907-0247_21940BXD65F759.1
177EGE10907-0248_21941BXD75F698.8
178EGE10907-0249_21942_(MoGene-2_0-st)BXD75M699.2
179EGE10907-0250_21943BXD8F979.1
180EGE10907-0251_21944BXD85F798.6
181EGE10907-0252_21945BXD85M799.1
182EGE10907-0253_21946BXD85M799.4
183EGE10907-0254_21947BXD102M948.6
184EGE10907-0255_21948BXD99F839
185EGE10907-0256_21949BXD69F689
186EGE10907-0257_21950BXD84F749.5
187EGE10907-0258_21951BXD84F749.4
188EGE10907-0259_21952BXD84M748.6
189EGE10907-0260_21451BXD96M679.2
190EGE10907-0261_21452BXD99F718.9
191EGE10907-0262_21931BXD6F669.4
192EGE10907-0263_21932BXD14F698.5
193EGE10907-0264_21933BXD34M799.1
194EGE10907-0265_21934BXD34M799.9
195EGE10907-0266_21935BXD40F759.6
196EGE10907-0267_21936BXD40M789.7
197EGE10907-0268_21937BXD56F729.7
198EGE10907-0269_21938BXD56F729.7
199EGE10907-0270_21939BXD56M729.6
200EGE10907-0271_21940BXD56M729.4
201EGE10907-0272_21941BXD71F729.9
202EGE10907-0273_21942BXD71F759.4
203EGE10907-0274_21943BXD71M7510
204EGE10907-0275_21944BXD71M7510
205EGE10907-0276_21945BXD27M6510
206EGE10907-0277_21946BXD15M6510
207EGE10907-0278_21947BXD20F12510
208EGE10907-0279_21948BXD29F7710
209EGE10907-0280_21949BXD29F7710
210EGE10907-0281_21950BXD34F7410
211EGE10907-0282_21951BXD34F7410
212EGE10907-0283_21952BXD85F8710
213EGE10907-0284_21451BXD43M759.8
-
-
diff --git a/general/datasets/DoDTATRCRetBLExMoGene2_1213/platform.rtf b/general/datasets/DoDTATRCRetBLExMoGene2_1213/platform.rtf deleted file mode 100644 index 19fc38c..0000000 --- a/general/datasets/DoDTATRCRetBLExMoGene2_1213/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Affymetrics GeneChip&reg; Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. Nonetheless, there is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs.

diff --git a/general/datasets/DoDTATRCRetBLExMoGene2_1213/processing.rtf b/general/datasets/DoDTATRCRetBLExMoGene2_1213/processing.rtf deleted file mode 100644 index a7b767e..0000000 --- a/general/datasets/DoDTATRCRetBLExMoGene2_1213/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/DoDTATRCRetBLExMoGene2_1213/summary.rtf b/general/datasets/DoDTATRCRetBLExMoGene2_1213/summary.rtf deleted file mode 100644 index 96a87e5..0000000 --- a/general/datasets/DoDTATRCRetBLExMoGene2_1213/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The DoD dataset was constructed using the Affymetrics GeneChip® Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. There is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs. This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.77 to 14.62, a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

diff --git a/general/datasets/DoDTATRCRetBLExMoGene2_1213/tissue.rtf b/general/datasets/DoDTATRCRetBLExMoGene2_1213/tissue.rtf deleted file mode 100644 index 056d7eb..0000000 --- a/general/datasets/DoDTATRCRetBLExMoGene2_1213/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RiboLock (RiboLock: Thermo Scientific RiboLock RNase #EO0381 40U/&micro;l 2500U) at room temperature. Individual retinas from the mouse were stored in each tube. RNA was isolated using a Qiacube with the resultant RIN scores ranging from 8.5 to 10.0.

diff --git a/general/datasets/DoDTATRCRetBLMoGene2E_0316/acknowledgment.rtf b/general/datasets/DoDTATRCRetBLMoGene2E_0316/acknowledgment.rtf deleted file mode 100644 index 13c6b1e..0000000 --- a/general/datasets/DoDTATRCRetBLMoGene2E_0316/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

DoD funding (W81XWH-12-0255) Genetic Networks Activated by Blast Injury to the Eye (Eldon E. Geisert).

diff --git a/general/datasets/DoDTATRCRetBLMoGene2E_0316/cases.rtf b/general/datasets/DoDTATRCRetBLMoGene2E_0316/cases.rtf deleted file mode 100644 index 6b36c70..0000000 --- a/general/datasets/DoDTATRCRetBLMoGene2E_0316/cases.rtf +++ /dev/null @@ -1,1728 +0,0 @@ -

Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 50 and maximum age is 134 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set.

- -
- - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
IndexEIGC ID (LIMS ID)StrainSexAge at harvestRIN Score
1602BXD9F1339.1
2603BXD9M1009.5
3604BXD40F1009.4
4605BXD40M1009.1
5606BXD48F759.1
6607BXD48M758.6
7608BXD63F759.2
8609BXD63M619.4
9612BXD73M10810
10614BXD87M859.2
11615BXD87F859.9
12616BXD69F769.3
13617BXD69M10010
14618BXD51M828.9
15619BXD92 (BXD65b)M828.8
16620BXD92 (BXD65b)F828.8
17635BXD100M709
18636BXD100M708.8
19652BXD92 (BXD65b)F649
20653BXD87F679.7
21654BXD87M678.9
22655BXD63M719
23660BXD69M9710
24687BXD6M857.7
25688BXD6M859.4
26690BXD12F8310
27691BXD12F8310
28692BXD12M8310
29695BXD5F7710
30696BXD5M7710
31698BXD5F779.9
32699BXD5F7710
33701BXD8M7910
34702BXD8M7910
35705BXD8F779.2
36707BXD15F779.4
37708BXD15F779.1
38710BXD15M779.1
39713BXD22F719.5
40714BXD22F719.7
41716BXD22M719.1
42717BXD22M719.1
43719BXD14F709.2
44722BXD14M708.9
45723BXD14M709.2
46725BXD18F709
47726BXD18F709.1
48728BXD18M709.1
49729BXD18M709.2
50731BXD19F669.3
51732BXD19F669.4
52734BXD19M669.8
53735BXD19M669.4
54737BXD21F719.7
55738BXD21F719.6
56740BXD21M719.1
57741BXD21M719.7
58743BXD2F708.3
59744BXD2F708.6
60746BXD2M707.5
61747BXD2M778.6
62768BXD48M1219.4
63770BXD92 (BXD65b)M6510
64771BXD101F858.3
65772BXD101F859.3
66773BXD101M869.5
67774BXD101M869.8
68775BXD102F669.5
69776BXD102F6610
70777BXD102M849.6
71787BXD60M869.9
72788BXD60M869.9
73789BXD63F1159.7
74790BXD100F729.8
75791BXD100F7210
76818BXD51F779.7
77819BXD51F779.6
78820BXD51M729.7
79821BXD65M729.6
80822BXD65M659.5
81825BXD65F729.5
82827BXD86M699.1
83828BXD86M699.4
84829BXD90F699.6
85831BXD9M1279.7
86832BXD39F999.4
87833BXD39F1079.3
88834BXD60F1079.5
89836BXD84M1039.7
90846BXD39M639.7
91847BXD39M639.8
92849BXD20F7010
93850BXD20M7010
94851BXD20*709.5
95855DBA/2JF789.7
96856DBA/2JF7810
97857DBA/2JM7810
98858DBA/2JM789.9
99859C57BL/6JF7810
100860C57BL/6JF7810
101861C57BL/6JM7810
102862C57BL/6JM789.6
103EGE10907-0172_890_20844BXD28M7510
104EGE10907-0173_891_20845BXD28M759.7
105EGE10907-0174_892_20846BXD28F759.7
106EGE10907-0176_895_20848BXD33M759.88
107EGE10907-0177_896_20849BXD33F7510
108EGE10907-0178_897_20850BXD33F759.4
109EGE10907-0179_898_20851BXD36M759.4
110EGE10907-0180_899_20852BXD36F759.5
111EGE10907-0181_900_20853BXD36F759.1
112EGE10907-0182_910_20854BXD27M709.7
113EGE10907-0183_990_20855BXD9F989.4
114EGE10907-0184_991_20856BXD16F11310
115EGE10907-0185_992_20857BXD16M1139
116EGE10907-0186_993_20858BXD27F969.4
117EGE10907-0187_994_20859BXD27F969.4
118EGE10907-0188_996_20860BXD48F989.4
119EGE10907-0189_997_20861BXD73M10610
120EGE10907-0190_999_20862BXD11F1219.6
121EGE10907-0191_100_20863BXD11F1219.9
122EGE10907-0192_1010_21276BXD13M699.8
123EGE10907-0193_1011_21277BXD13M699.8
124EGE10907-0194_1012_21278BXD16F6510
125EGE10907-0195_1015_21279BXD16M6510
126EGE10907-0196_1019_21280BXD33M7510
127EGE10907-0197_1020_21281BXD36M7810
128EGE10907-0198_1021_21282BXD38F709.8
129EGE10907-0199_1022_21283BXD38F7010
130EGE10907-0200_1023_21284BXD38M709.7
131EGE10907-0201_1047_21285BXD11M6510
132EGE10907-0202_1048_21286BXD11M6510
133EGE10907-0203_1049_21287BXD38M7710
134EGE10907-0204_1050_21288BXD73F7010
135EGE10907-0205_1051_21289BXD73F7010
136EGE10907-0206_1052_21290BXD86F6910
137EGE10907-0207_1053_21291BXD86F6910
138EGE10907-0208_1054_21292BXD90F7110
139EGE10907-0209_1055_21293BXD90M7110
140EGE10907-0210_1056_21294BXD90M7110
141EGE10907-0211_1148_21295BXD31F9010
142EGE10907-0212_1149_21296BXD31F9010
143EGE10907-0213_1150_21297BXD31M9010
144EGE10907-0214_1151_21298BXD31M909.9
145EGE10907-0215_1152_21299BXD42F8310
146EGE10907-0216_21429BXD42F8310
147EGE10907-0217_21430BXD42M8310
148EGE10907-0218_21431BXD42M839.3
149EGE10907-0219_21432BXD50F929.6
150EGE10907-0220_21433BXD50F929.6
151EGE10907-0221_21434BXD50F9210
152EGE10907-0222_21435BXD1M739.6
153EGE10907-0223_21436BXD13F719.7
154EGE10907-0224_21437BXD1M719.5
155EGE10907-0225_21438BXD13F719.6
156EGE10907-0226_21439BXD43F8510
157EGE10907-0227_21452BXD43F859.6
158EGE10907-0229_21442BXD43M858.2
159EGE10907-0230_21443BXD50M699.4
160EGE10907-0231_21444BXD1F689.4
161EGE10907-0232_21445BXD1F689.6
162EGE10907-0233_21446BXD29M659.5
163EGE10907-0234_21447BXD29M6510
164EGE10907-0235_21448BXD75F6810
165EGE10907-0236_21449BXD75M6810
166EGE10907-0237_21450BXD96F679.9
167EGE10907-0238_21931BXD99M717.9
168EGE10907-0239_21932BXD99M719.7
169EGE10907-0240_21933BXD67F688.8
170EGE10907-0241_21934BXD67F688.5
171EGE10907-0242_21935BXD67M689.5
172EGE10907-0243_21936BXD67M689.6
173EGE10907-0244_21937BXD6F689.6
174EGE10907-0245_21938BXD12M829.5
175EGE10907-0246_21939BXD60F729.6
176EGE10907-0247_21940BXD65F759.1
177EGE10907-0248_21941BXD75F698.8
178EGE10907-0249_21942_(MoGene-2_0-st)BXD75M699.2
179EGE10907-0250_21943BXD8F979.1
180EGE10907-0251_21944BXD85F798.6
181EGE10907-0252_21945BXD85M799.1
182EGE10907-0253_21946BXD85M799.4
183EGE10907-0254_21947BXD102M948.6
184EGE10907-0255_21948BXD99F839
185EGE10907-0256_21949BXD69F689
186EGE10907-0257_21950BXD84F749.5
187EGE10907-0258_21951BXD84F749.4
188EGE10907-0259_21952BXD84M748.6
189EGE10907-0260_21451BXD96M679.2
190EGE10907-0261_21452BXD99F718.9
191EGE10907-0262_21931BXD6F669.4
192EGE10907-0263_21932BXD14F698.5
193EGE10907-0264_21933BXD34M799.1
194EGE10907-0265_21934BXD34M799.9
195EGE10907-0266_21935BXD40F759.6
196EGE10907-0267_21936BXD40M789.7
197EGE10907-0268_21937BXD56F729.7
198EGE10907-0269_21938BXD56F729.7
199EGE10907-0270_21939BXD56M729.6
200EGE10907-0271_21940BXD56M729.4
201EGE10907-0272_21941BXD71F729.9
202EGE10907-0273_21942BXD71F759.4
203EGE10907-0274_21943BXD71M7510
204EGE10907-0275_21944BXD71M7510
205EGE10907-0276_21945BXD27M6510
206EGE10907-0277_21946BXD15M6510
207EGE10907-0278_21947BXD20F12510
208EGE10907-0279_21948BXD29F7710
209EGE10907-0280_21949BXD29F7710
210EGE10907-0281_21950BXD34F7410
211EGE10907-0282_21951BXD34F7410
212EGE10907-0283_21952BXD85F8710
213EGE10907-0284_21451BXD43M759.8
-
-
diff --git a/general/datasets/DoDTATRCRetBLMoGene2E_0316/platform.rtf b/general/datasets/DoDTATRCRetBLMoGene2E_0316/platform.rtf deleted file mode 100644 index 19fc38c..0000000 --- a/general/datasets/DoDTATRCRetBLMoGene2E_0316/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Affymetrics GeneChip&reg; Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. Nonetheless, there is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs.

diff --git a/general/datasets/DoDTATRCRetBLMoGene2E_0316/processing.rtf b/general/datasets/DoDTATRCRetBLMoGene2E_0316/processing.rtf deleted file mode 100644 index a7b767e..0000000 --- a/general/datasets/DoDTATRCRetBLMoGene2E_0316/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/DoDTATRCRetBLMoGene2E_0316/summary.rtf b/general/datasets/DoDTATRCRetBLMoGene2E_0316/summary.rtf deleted file mode 100644 index 96a87e5..0000000 --- a/general/datasets/DoDTATRCRetBLMoGene2E_0316/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The DoD dataset was constructed using the Affymetrics GeneChip® Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. There is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs. This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.77 to 14.62, a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

diff --git a/general/datasets/DoDTATRCRetBLMoGene2E_0316/tissue.rtf b/general/datasets/DoDTATRCRetBLMoGene2E_0316/tissue.rtf deleted file mode 100644 index 056d7eb..0000000 --- a/general/datasets/DoDTATRCRetBLMoGene2E_0316/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RiboLock (RiboLock: Thermo Scientific RiboLock RNase #EO0381 40U/&micro;l 2500U) at room temperature. Individual retinas from the mouse were stored in each tube. RNA was isolated using a Qiacube with the resultant RIN scores ranging from 8.5 to 10.0.

diff --git a/general/datasets/DoDTATRCRetBLMoGene2_0316/acknowledgment.rtf b/general/datasets/DoDTATRCRetBLMoGene2_0316/acknowledgment.rtf deleted file mode 100644 index 13c6b1e..0000000 --- a/general/datasets/DoDTATRCRetBLMoGene2_0316/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

DoD funding (W81XWH-12-0255) Genetic Networks Activated by Blast Injury to the Eye (Eldon E. Geisert).

diff --git a/general/datasets/DoDTATRCRetBLMoGene2_0316/cases.rtf b/general/datasets/DoDTATRCRetBLMoGene2_0316/cases.rtf deleted file mode 100644 index 6b36c70..0000000 --- a/general/datasets/DoDTATRCRetBLMoGene2_0316/cases.rtf +++ /dev/null @@ -1,1728 +0,0 @@ -

Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 50 and maximum age is 134 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set.

- -
- - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
IndexEIGC ID (LIMS ID)StrainSexAge at harvestRIN Score
1602BXD9F1339.1
2603BXD9M1009.5
3604BXD40F1009.4
4605BXD40M1009.1
5606BXD48F759.1
6607BXD48M758.6
7608BXD63F759.2
8609BXD63M619.4
9612BXD73M10810
10614BXD87M859.2
11615BXD87F859.9
12616BXD69F769.3
13617BXD69M10010
14618BXD51M828.9
15619BXD92 (BXD65b)M828.8
16620BXD92 (BXD65b)F828.8
17635BXD100M709
18636BXD100M708.8
19652BXD92 (BXD65b)F649
20653BXD87F679.7
21654BXD87M678.9
22655BXD63M719
23660BXD69M9710
24687BXD6M857.7
25688BXD6M859.4
26690BXD12F8310
27691BXD12F8310
28692BXD12M8310
29695BXD5F7710
30696BXD5M7710
31698BXD5F779.9
32699BXD5F7710
33701BXD8M7910
34702BXD8M7910
35705BXD8F779.2
36707BXD15F779.4
37708BXD15F779.1
38710BXD15M779.1
39713BXD22F719.5
40714BXD22F719.7
41716BXD22M719.1
42717BXD22M719.1
43719BXD14F709.2
44722BXD14M708.9
45723BXD14M709.2
46725BXD18F709
47726BXD18F709.1
48728BXD18M709.1
49729BXD18M709.2
50731BXD19F669.3
51732BXD19F669.4
52734BXD19M669.8
53735BXD19M669.4
54737BXD21F719.7
55738BXD21F719.6
56740BXD21M719.1
57741BXD21M719.7
58743BXD2F708.3
59744BXD2F708.6
60746BXD2M707.5
61747BXD2M778.6
62768BXD48M1219.4
63770BXD92 (BXD65b)M6510
64771BXD101F858.3
65772BXD101F859.3
66773BXD101M869.5
67774BXD101M869.8
68775BXD102F669.5
69776BXD102F6610
70777BXD102M849.6
71787BXD60M869.9
72788BXD60M869.9
73789BXD63F1159.7
74790BXD100F729.8
75791BXD100F7210
76818BXD51F779.7
77819BXD51F779.6
78820BXD51M729.7
79821BXD65M729.6
80822BXD65M659.5
81825BXD65F729.5
82827BXD86M699.1
83828BXD86M699.4
84829BXD90F699.6
85831BXD9M1279.7
86832BXD39F999.4
87833BXD39F1079.3
88834BXD60F1079.5
89836BXD84M1039.7
90846BXD39M639.7
91847BXD39M639.8
92849BXD20F7010
93850BXD20M7010
94851BXD20*709.5
95855DBA/2JF789.7
96856DBA/2JF7810
97857DBA/2JM7810
98858DBA/2JM789.9
99859C57BL/6JF7810
100860C57BL/6JF7810
101861C57BL/6JM7810
102862C57BL/6JM789.6
103EGE10907-0172_890_20844BXD28M7510
104EGE10907-0173_891_20845BXD28M759.7
105EGE10907-0174_892_20846BXD28F759.7
106EGE10907-0176_895_20848BXD33M759.88
107EGE10907-0177_896_20849BXD33F7510
108EGE10907-0178_897_20850BXD33F759.4
109EGE10907-0179_898_20851BXD36M759.4
110EGE10907-0180_899_20852BXD36F759.5
111EGE10907-0181_900_20853BXD36F759.1
112EGE10907-0182_910_20854BXD27M709.7
113EGE10907-0183_990_20855BXD9F989.4
114EGE10907-0184_991_20856BXD16F11310
115EGE10907-0185_992_20857BXD16M1139
116EGE10907-0186_993_20858BXD27F969.4
117EGE10907-0187_994_20859BXD27F969.4
118EGE10907-0188_996_20860BXD48F989.4
119EGE10907-0189_997_20861BXD73M10610
120EGE10907-0190_999_20862BXD11F1219.6
121EGE10907-0191_100_20863BXD11F1219.9
122EGE10907-0192_1010_21276BXD13M699.8
123EGE10907-0193_1011_21277BXD13M699.8
124EGE10907-0194_1012_21278BXD16F6510
125EGE10907-0195_1015_21279BXD16M6510
126EGE10907-0196_1019_21280BXD33M7510
127EGE10907-0197_1020_21281BXD36M7810
128EGE10907-0198_1021_21282BXD38F709.8
129EGE10907-0199_1022_21283BXD38F7010
130EGE10907-0200_1023_21284BXD38M709.7
131EGE10907-0201_1047_21285BXD11M6510
132EGE10907-0202_1048_21286BXD11M6510
133EGE10907-0203_1049_21287BXD38M7710
134EGE10907-0204_1050_21288BXD73F7010
135EGE10907-0205_1051_21289BXD73F7010
136EGE10907-0206_1052_21290BXD86F6910
137EGE10907-0207_1053_21291BXD86F6910
138EGE10907-0208_1054_21292BXD90F7110
139EGE10907-0209_1055_21293BXD90M7110
140EGE10907-0210_1056_21294BXD90M7110
141EGE10907-0211_1148_21295BXD31F9010
142EGE10907-0212_1149_21296BXD31F9010
143EGE10907-0213_1150_21297BXD31M9010
144EGE10907-0214_1151_21298BXD31M909.9
145EGE10907-0215_1152_21299BXD42F8310
146EGE10907-0216_21429BXD42F8310
147EGE10907-0217_21430BXD42M8310
148EGE10907-0218_21431BXD42M839.3
149EGE10907-0219_21432BXD50F929.6
150EGE10907-0220_21433BXD50F929.6
151EGE10907-0221_21434BXD50F9210
152EGE10907-0222_21435BXD1M739.6
153EGE10907-0223_21436BXD13F719.7
154EGE10907-0224_21437BXD1M719.5
155EGE10907-0225_21438BXD13F719.6
156EGE10907-0226_21439BXD43F8510
157EGE10907-0227_21452BXD43F859.6
158EGE10907-0229_21442BXD43M858.2
159EGE10907-0230_21443BXD50M699.4
160EGE10907-0231_21444BXD1F689.4
161EGE10907-0232_21445BXD1F689.6
162EGE10907-0233_21446BXD29M659.5
163EGE10907-0234_21447BXD29M6510
164EGE10907-0235_21448BXD75F6810
165EGE10907-0236_21449BXD75M6810
166EGE10907-0237_21450BXD96F679.9
167EGE10907-0238_21931BXD99M717.9
168EGE10907-0239_21932BXD99M719.7
169EGE10907-0240_21933BXD67F688.8
170EGE10907-0241_21934BXD67F688.5
171EGE10907-0242_21935BXD67M689.5
172EGE10907-0243_21936BXD67M689.6
173EGE10907-0244_21937BXD6F689.6
174EGE10907-0245_21938BXD12M829.5
175EGE10907-0246_21939BXD60F729.6
176EGE10907-0247_21940BXD65F759.1
177EGE10907-0248_21941BXD75F698.8
178EGE10907-0249_21942_(MoGene-2_0-st)BXD75M699.2
179EGE10907-0250_21943BXD8F979.1
180EGE10907-0251_21944BXD85F798.6
181EGE10907-0252_21945BXD85M799.1
182EGE10907-0253_21946BXD85M799.4
183EGE10907-0254_21947BXD102M948.6
184EGE10907-0255_21948BXD99F839
185EGE10907-0256_21949BXD69F689
186EGE10907-0257_21950BXD84F749.5
187EGE10907-0258_21951BXD84F749.4
188EGE10907-0259_21952BXD84M748.6
189EGE10907-0260_21451BXD96M679.2
190EGE10907-0261_21452BXD99F718.9
191EGE10907-0262_21931BXD6F669.4
192EGE10907-0263_21932BXD14F698.5
193EGE10907-0264_21933BXD34M799.1
194EGE10907-0265_21934BXD34M799.9
195EGE10907-0266_21935BXD40F759.6
196EGE10907-0267_21936BXD40M789.7
197EGE10907-0268_21937BXD56F729.7
198EGE10907-0269_21938BXD56F729.7
199EGE10907-0270_21939BXD56M729.6
200EGE10907-0271_21940BXD56M729.4
201EGE10907-0272_21941BXD71F729.9
202EGE10907-0273_21942BXD71F759.4
203EGE10907-0274_21943BXD71M7510
204EGE10907-0275_21944BXD71M7510
205EGE10907-0276_21945BXD27M6510
206EGE10907-0277_21946BXD15M6510
207EGE10907-0278_21947BXD20F12510
208EGE10907-0279_21948BXD29F7710
209EGE10907-0280_21949BXD29F7710
210EGE10907-0281_21950BXD34F7410
211EGE10907-0282_21951BXD34F7410
212EGE10907-0283_21952BXD85F8710
213EGE10907-0284_21451BXD43M759.8
-
-
diff --git a/general/datasets/DoDTATRCRetBLMoGene2_0316/platform.rtf b/general/datasets/DoDTATRCRetBLMoGene2_0316/platform.rtf deleted file mode 100644 index 19fc38c..0000000 --- a/general/datasets/DoDTATRCRetBLMoGene2_0316/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Affymetrics GeneChip&reg; Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. Nonetheless, there is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs.

diff --git a/general/datasets/DoDTATRCRetBLMoGene2_0316/processing.rtf b/general/datasets/DoDTATRCRetBLMoGene2_0316/processing.rtf deleted file mode 100644 index a7b767e..0000000 --- a/general/datasets/DoDTATRCRetBLMoGene2_0316/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/DoDTATRCRetBLMoGene2_0316/summary.rtf b/general/datasets/DoDTATRCRetBLMoGene2_0316/summary.rtf deleted file mode 100644 index 96a87e5..0000000 --- a/general/datasets/DoDTATRCRetBLMoGene2_0316/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The DoD dataset was constructed using the Affymetrics GeneChip® Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. There is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs. This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.77 to 14.62, a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

diff --git a/general/datasets/DoDTATRCRetBLMoGene2_0316/tissue.rtf b/general/datasets/DoDTATRCRetBLMoGene2_0316/tissue.rtf deleted file mode 100644 index 056d7eb..0000000 --- a/general/datasets/DoDTATRCRetBLMoGene2_0316/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RiboLock (RiboLock: Thermo Scientific RiboLock RNase #EO0381 40U/&micro;l 2500U) at room temperature. Individual retinas from the mouse were stored in each tube. RNA was isolated using a Qiacube with the resultant RIN scores ranging from 8.5 to 10.0.

diff --git a/general/datasets/DoDTATRCRetBLMoGene2_1213/acknowledgment.rtf b/general/datasets/DoDTATRCRetBLMoGene2_1213/acknowledgment.rtf deleted file mode 100644 index 13c6b1e..0000000 --- a/general/datasets/DoDTATRCRetBLMoGene2_1213/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

DoD funding (W81XWH-12-0255) Genetic Networks Activated by Blast Injury to the Eye (Eldon E. Geisert).

diff --git a/general/datasets/DoDTATRCRetBLMoGene2_1213/cases.rtf b/general/datasets/DoDTATRCRetBLMoGene2_1213/cases.rtf deleted file mode 100644 index 6b36c70..0000000 --- a/general/datasets/DoDTATRCRetBLMoGene2_1213/cases.rtf +++ /dev/null @@ -1,1728 +0,0 @@ -

Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 50 and maximum age is 134 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set.

- -
- - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
IndexEIGC ID (LIMS ID)StrainSexAge at harvestRIN Score
1602BXD9F1339.1
2603BXD9M1009.5
3604BXD40F1009.4
4605BXD40M1009.1
5606BXD48F759.1
6607BXD48M758.6
7608BXD63F759.2
8609BXD63M619.4
9612BXD73M10810
10614BXD87M859.2
11615BXD87F859.9
12616BXD69F769.3
13617BXD69M10010
14618BXD51M828.9
15619BXD92 (BXD65b)M828.8
16620BXD92 (BXD65b)F828.8
17635BXD100M709
18636BXD100M708.8
19652BXD92 (BXD65b)F649
20653BXD87F679.7
21654BXD87M678.9
22655BXD63M719
23660BXD69M9710
24687BXD6M857.7
25688BXD6M859.4
26690BXD12F8310
27691BXD12F8310
28692BXD12M8310
29695BXD5F7710
30696BXD5M7710
31698BXD5F779.9
32699BXD5F7710
33701BXD8M7910
34702BXD8M7910
35705BXD8F779.2
36707BXD15F779.4
37708BXD15F779.1
38710BXD15M779.1
39713BXD22F719.5
40714BXD22F719.7
41716BXD22M719.1
42717BXD22M719.1
43719BXD14F709.2
44722BXD14M708.9
45723BXD14M709.2
46725BXD18F709
47726BXD18F709.1
48728BXD18M709.1
49729BXD18M709.2
50731BXD19F669.3
51732BXD19F669.4
52734BXD19M669.8
53735BXD19M669.4
54737BXD21F719.7
55738BXD21F719.6
56740BXD21M719.1
57741BXD21M719.7
58743BXD2F708.3
59744BXD2F708.6
60746BXD2M707.5
61747BXD2M778.6
62768BXD48M1219.4
63770BXD92 (BXD65b)M6510
64771BXD101F858.3
65772BXD101F859.3
66773BXD101M869.5
67774BXD101M869.8
68775BXD102F669.5
69776BXD102F6610
70777BXD102M849.6
71787BXD60M869.9
72788BXD60M869.9
73789BXD63F1159.7
74790BXD100F729.8
75791BXD100F7210
76818BXD51F779.7
77819BXD51F779.6
78820BXD51M729.7
79821BXD65M729.6
80822BXD65M659.5
81825BXD65F729.5
82827BXD86M699.1
83828BXD86M699.4
84829BXD90F699.6
85831BXD9M1279.7
86832BXD39F999.4
87833BXD39F1079.3
88834BXD60F1079.5
89836BXD84M1039.7
90846BXD39M639.7
91847BXD39M639.8
92849BXD20F7010
93850BXD20M7010
94851BXD20*709.5
95855DBA/2JF789.7
96856DBA/2JF7810
97857DBA/2JM7810
98858DBA/2JM789.9
99859C57BL/6JF7810
100860C57BL/6JF7810
101861C57BL/6JM7810
102862C57BL/6JM789.6
103EGE10907-0172_890_20844BXD28M7510
104EGE10907-0173_891_20845BXD28M759.7
105EGE10907-0174_892_20846BXD28F759.7
106EGE10907-0176_895_20848BXD33M759.88
107EGE10907-0177_896_20849BXD33F7510
108EGE10907-0178_897_20850BXD33F759.4
109EGE10907-0179_898_20851BXD36M759.4
110EGE10907-0180_899_20852BXD36F759.5
111EGE10907-0181_900_20853BXD36F759.1
112EGE10907-0182_910_20854BXD27M709.7
113EGE10907-0183_990_20855BXD9F989.4
114EGE10907-0184_991_20856BXD16F11310
115EGE10907-0185_992_20857BXD16M1139
116EGE10907-0186_993_20858BXD27F969.4
117EGE10907-0187_994_20859BXD27F969.4
118EGE10907-0188_996_20860BXD48F989.4
119EGE10907-0189_997_20861BXD73M10610
120EGE10907-0190_999_20862BXD11F1219.6
121EGE10907-0191_100_20863BXD11F1219.9
122EGE10907-0192_1010_21276BXD13M699.8
123EGE10907-0193_1011_21277BXD13M699.8
124EGE10907-0194_1012_21278BXD16F6510
125EGE10907-0195_1015_21279BXD16M6510
126EGE10907-0196_1019_21280BXD33M7510
127EGE10907-0197_1020_21281BXD36M7810
128EGE10907-0198_1021_21282BXD38F709.8
129EGE10907-0199_1022_21283BXD38F7010
130EGE10907-0200_1023_21284BXD38M709.7
131EGE10907-0201_1047_21285BXD11M6510
132EGE10907-0202_1048_21286BXD11M6510
133EGE10907-0203_1049_21287BXD38M7710
134EGE10907-0204_1050_21288BXD73F7010
135EGE10907-0205_1051_21289BXD73F7010
136EGE10907-0206_1052_21290BXD86F6910
137EGE10907-0207_1053_21291BXD86F6910
138EGE10907-0208_1054_21292BXD90F7110
139EGE10907-0209_1055_21293BXD90M7110
140EGE10907-0210_1056_21294BXD90M7110
141EGE10907-0211_1148_21295BXD31F9010
142EGE10907-0212_1149_21296BXD31F9010
143EGE10907-0213_1150_21297BXD31M9010
144EGE10907-0214_1151_21298BXD31M909.9
145EGE10907-0215_1152_21299BXD42F8310
146EGE10907-0216_21429BXD42F8310
147EGE10907-0217_21430BXD42M8310
148EGE10907-0218_21431BXD42M839.3
149EGE10907-0219_21432BXD50F929.6
150EGE10907-0220_21433BXD50F929.6
151EGE10907-0221_21434BXD50F9210
152EGE10907-0222_21435BXD1M739.6
153EGE10907-0223_21436BXD13F719.7
154EGE10907-0224_21437BXD1M719.5
155EGE10907-0225_21438BXD13F719.6
156EGE10907-0226_21439BXD43F8510
157EGE10907-0227_21452BXD43F859.6
158EGE10907-0229_21442BXD43M858.2
159EGE10907-0230_21443BXD50M699.4
160EGE10907-0231_21444BXD1F689.4
161EGE10907-0232_21445BXD1F689.6
162EGE10907-0233_21446BXD29M659.5
163EGE10907-0234_21447BXD29M6510
164EGE10907-0235_21448BXD75F6810
165EGE10907-0236_21449BXD75M6810
166EGE10907-0237_21450BXD96F679.9
167EGE10907-0238_21931BXD99M717.9
168EGE10907-0239_21932BXD99M719.7
169EGE10907-0240_21933BXD67F688.8
170EGE10907-0241_21934BXD67F688.5
171EGE10907-0242_21935BXD67M689.5
172EGE10907-0243_21936BXD67M689.6
173EGE10907-0244_21937BXD6F689.6
174EGE10907-0245_21938BXD12M829.5
175EGE10907-0246_21939BXD60F729.6
176EGE10907-0247_21940BXD65F759.1
177EGE10907-0248_21941BXD75F698.8
178EGE10907-0249_21942_(MoGene-2_0-st)BXD75M699.2
179EGE10907-0250_21943BXD8F979.1
180EGE10907-0251_21944BXD85F798.6
181EGE10907-0252_21945BXD85M799.1
182EGE10907-0253_21946BXD85M799.4
183EGE10907-0254_21947BXD102M948.6
184EGE10907-0255_21948BXD99F839
185EGE10907-0256_21949BXD69F689
186EGE10907-0257_21950BXD84F749.5
187EGE10907-0258_21951BXD84F749.4
188EGE10907-0259_21952BXD84M748.6
189EGE10907-0260_21451BXD96M679.2
190EGE10907-0261_21452BXD99F718.9
191EGE10907-0262_21931BXD6F669.4
192EGE10907-0263_21932BXD14F698.5
193EGE10907-0264_21933BXD34M799.1
194EGE10907-0265_21934BXD34M799.9
195EGE10907-0266_21935BXD40F759.6
196EGE10907-0267_21936BXD40M789.7
197EGE10907-0268_21937BXD56F729.7
198EGE10907-0269_21938BXD56F729.7
199EGE10907-0270_21939BXD56M729.6
200EGE10907-0271_21940BXD56M729.4
201EGE10907-0272_21941BXD71F729.9
202EGE10907-0273_21942BXD71F759.4
203EGE10907-0274_21943BXD71M7510
204EGE10907-0275_21944BXD71M7510
205EGE10907-0276_21945BXD27M6510
206EGE10907-0277_21946BXD15M6510
207EGE10907-0278_21947BXD20F12510
208EGE10907-0279_21948BXD29F7710
209EGE10907-0280_21949BXD29F7710
210EGE10907-0281_21950BXD34F7410
211EGE10907-0282_21951BXD34F7410
212EGE10907-0283_21952BXD85F8710
213EGE10907-0284_21451BXD43M759.8
-
-
diff --git a/general/datasets/DoDTATRCRetBLMoGene2_1213/platform.rtf b/general/datasets/DoDTATRCRetBLMoGene2_1213/platform.rtf deleted file mode 100644 index 19fc38c..0000000 --- a/general/datasets/DoDTATRCRetBLMoGene2_1213/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Affymetrics GeneChip&reg; Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. Nonetheless, there is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs.

diff --git a/general/datasets/DoDTATRCRetBLMoGene2_1213/processing.rtf b/general/datasets/DoDTATRCRetBLMoGene2_1213/processing.rtf deleted file mode 100644 index a7b767e..0000000 --- a/general/datasets/DoDTATRCRetBLMoGene2_1213/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/DoDTATRCRetBLMoGene2_1213/summary.rtf b/general/datasets/DoDTATRCRetBLMoGene2_1213/summary.rtf deleted file mode 100644 index 96a87e5..0000000 --- a/general/datasets/DoDTATRCRetBLMoGene2_1213/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The DoD dataset was constructed using the Affymetrics GeneChip® Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. There is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs. This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.77 to 14.62, a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

diff --git a/general/datasets/DoDTATRCRetBLMoGene2_1213/tissue.rtf b/general/datasets/DoDTATRCRetBLMoGene2_1213/tissue.rtf deleted file mode 100644 index 056d7eb..0000000 --- a/general/datasets/DoDTATRCRetBLMoGene2_1213/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RiboLock (RiboLock: Thermo Scientific RiboLock RNase #EO0381 40U/&micro;l 2500U) at room temperature. Individual retinas from the mouse were stored in each tube. RNA was isolated using a Qiacube with the resultant RIN scores ranging from 8.5 to 10.0.

diff --git a/general/datasets/DoDTATRCRetExMoGene2_0315/cases.rtf b/general/datasets/DoDTATRCRetExMoGene2_0315/cases.rtf deleted file mode 100644 index 34f9530..0000000 --- a/general/datasets/DoDTATRCRetExMoGene2_0315/cases.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

Almost all animals are young adults between 60 and 100 days of age (Table 1, minimum age is 60 and maximum age is 118 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J.

- -

BXD strains:

- - diff --git a/general/datasets/DoDTATRCRetExMoGene2_0315/experiment-design.rtf b/general/datasets/DoDTATRCRetExMoGene2_0315/experiment-design.rtf deleted file mode 100644 index b43e509..0000000 --- a/general/datasets/DoDTATRCRetExMoGene2_0315/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Sample Processing: Dr. XiangDi Wang (UTHSC) and Becky King (Emory) were involved in the retinal extractions and isolation of RNA. The Affymetrix arrays were run by two different research cores: the Molecular Resource Center at UTHSC (Dr. William Taylor Director) and the Integrated Genomics Core at Emory University by Robert B Isett (Dr. Michael E. Zwick, Director). In a separate set of experiments we could not detect any significant difference in the arrays run at UTHSC or at Emory University.

- -

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/DoDTATRCRetExMoGene2_0315/notes.rtf b/general/datasets/DoDTATRCRetExMoGene2_0315/notes.rtf deleted file mode 100644 index cb14c74..0000000 --- a/general/datasets/DoDTATRCRetExMoGene2_0315/notes.rtf +++ /dev/null @@ -1,10 +0,0 @@ -

Other Data Sets Users of these mouse retina data may also find the following complementary resources useful:

- -
    -
  1. NEIBank collection of ESTs and SAGE data.
  2. -
  3. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases
  4. -
  5. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.
  6. -
  7. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus.
  8. -
  9. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430).
  10. -
  11. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.
  12. -
diff --git a/general/datasets/DoDTATRCRetExMoGene2_0315/platform.rtf b/general/datasets/DoDTATRCRetExMoGene2_0315/platform.rtf deleted file mode 100644 index cb5e1b8..0000000 --- a/general/datasets/DoDTATRCRetExMoGene2_0315/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

Affymetrix Mouse Gene 2.0 ST Array: These expression arrays have been designed with a median of 22 unique probes per transcript. Each unique probe is 25 bases in length, which means that the array measures a median of 550 bases per transcript. The arrays provide comprehensive transcriptome coverage with over 30,000 coding and non-coding transcripts. In addition there is coverage for 592 microRNAs. For some arrays the RNA was pooled from two retinas and for other arrays were run on a single retina.

diff --git a/general/datasets/DoDTATRCRetExMoGene2_0315/summary.rtf b/general/datasets/DoDTATRCRetExMoGene2_0315/summary.rtf deleted file mode 100644 index b6cf222..0000000 --- a/general/datasets/DoDTATRCRetExMoGene2_0315/summary.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

DoD TATRC Retina Dataset Affymetrix MouseGene 2.0 ST Array (____ 2015) RMA analysis and scaling by Arthur Centeno. This data set consists of 75 BXD strains, C57BL/6J, DBA/2J, both reciprocal F1s, and BALB/cByJ. A total of 80 strains were quantified. The data are now open and available for analysis.

- -

This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strain was computed as the mean of four samples per strain. Expression values on a log2 scale range from 6.25 to 18.08 (11.83 units), a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean expression of the probes on the array of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

- -

The lowest level of expression is 6.254 for ILMN_2747167 (Arhgap11a) from HEI Retina Illumina V6.2 (April 2010) RankInv **. Lowest single data about 5.842. The highest level of expression is 18.077 for ILMN_2516699 (Ubb). Highest single value is about 18.934.

diff --git a/general/datasets/DoDTATRCRetExMoGene2_0315/tissue.rtf b/general/datasets/DoDTATRCRetExMoGene2_0315/tissue.rtf deleted file mode 100644 index 87eb144..0000000 --- a/general/datasets/DoDTATRCRetExMoGene2_0315/tissue.rtf +++ /dev/null @@ -1,13 +0,0 @@ -

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in 1 ml of 160 U/ml Ribolock for 1 min at room temperature. Dissecting and preparing eyes for RNA extraction Retinas for RNA removed from the eye and placed in Hank’s Balanced Salt solution with RiboLock (Thermo Scientific RiboLock RNase #EO0381 40U/µl 2500U) and processed per manufacturer’s instructions (in brief form below).

- -

1) Sample collection for RNA isolation.

- -

2) Quickly remove the retinas with clean curved forceps after cervical dislocation of the mouse.

- -

3) Put each retina in 1 ml of 160 U/ml Ribolock for 1 min in RT.

- -

4) Move the retina to another tube with 50µl Ribolock, store in -80°C.

- -

5) The RNA was isolated using a QiaCube and the in column DNAse procedure.

- -

Quality Control: All RNA samples were checked for quality before running microarrays. The samples were analyzed using the Agilent 2100 Bioanalyzer. The RNA integrity values for each sample are presented in Table 1 below.

diff --git a/general/datasets/DoDTATRCRetExMoGene2_1313/acknowledgment.rtf b/general/datasets/DoDTATRCRetExMoGene2_1313/acknowledgment.rtf deleted file mode 100644 index 13c6b1e..0000000 --- a/general/datasets/DoDTATRCRetExMoGene2_1313/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

DoD funding (W81XWH-12-0255) Genetic Networks Activated by Blast Injury to the Eye (Eldon E. Geisert).

diff --git a/general/datasets/DoDTATRCRetExMoGene2_1313/cases.rtf b/general/datasets/DoDTATRCRetExMoGene2_1313/cases.rtf deleted file mode 100644 index 6b36c70..0000000 --- a/general/datasets/DoDTATRCRetExMoGene2_1313/cases.rtf +++ /dev/null @@ -1,1728 +0,0 @@ -

Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 50 and maximum age is 134 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set.

- -
- - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
IndexEIGC ID (LIMS ID)StrainSexAge at harvestRIN Score
1602BXD9F1339.1
2603BXD9M1009.5
3604BXD40F1009.4
4605BXD40M1009.1
5606BXD48F759.1
6607BXD48M758.6
7608BXD63F759.2
8609BXD63M619.4
9612BXD73M10810
10614BXD87M859.2
11615BXD87F859.9
12616BXD69F769.3
13617BXD69M10010
14618BXD51M828.9
15619BXD92 (BXD65b)M828.8
16620BXD92 (BXD65b)F828.8
17635BXD100M709
18636BXD100M708.8
19652BXD92 (BXD65b)F649
20653BXD87F679.7
21654BXD87M678.9
22655BXD63M719
23660BXD69M9710
24687BXD6M857.7
25688BXD6M859.4
26690BXD12F8310
27691BXD12F8310
28692BXD12M8310
29695BXD5F7710
30696BXD5M7710
31698BXD5F779.9
32699BXD5F7710
33701BXD8M7910
34702BXD8M7910
35705BXD8F779.2
36707BXD15F779.4
37708BXD15F779.1
38710BXD15M779.1
39713BXD22F719.5
40714BXD22F719.7
41716BXD22M719.1
42717BXD22M719.1
43719BXD14F709.2
44722BXD14M708.9
45723BXD14M709.2
46725BXD18F709
47726BXD18F709.1
48728BXD18M709.1
49729BXD18M709.2
50731BXD19F669.3
51732BXD19F669.4
52734BXD19M669.8
53735BXD19M669.4
54737BXD21F719.7
55738BXD21F719.6
56740BXD21M719.1
57741BXD21M719.7
58743BXD2F708.3
59744BXD2F708.6
60746BXD2M707.5
61747BXD2M778.6
62768BXD48M1219.4
63770BXD92 (BXD65b)M6510
64771BXD101F858.3
65772BXD101F859.3
66773BXD101M869.5
67774BXD101M869.8
68775BXD102F669.5
69776BXD102F6610
70777BXD102M849.6
71787BXD60M869.9
72788BXD60M869.9
73789BXD63F1159.7
74790BXD100F729.8
75791BXD100F7210
76818BXD51F779.7
77819BXD51F779.6
78820BXD51M729.7
79821BXD65M729.6
80822BXD65M659.5
81825BXD65F729.5
82827BXD86M699.1
83828BXD86M699.4
84829BXD90F699.6
85831BXD9M1279.7
86832BXD39F999.4
87833BXD39F1079.3
88834BXD60F1079.5
89836BXD84M1039.7
90846BXD39M639.7
91847BXD39M639.8
92849BXD20F7010
93850BXD20M7010
94851BXD20*709.5
95855DBA/2JF789.7
96856DBA/2JF7810
97857DBA/2JM7810
98858DBA/2JM789.9
99859C57BL/6JF7810
100860C57BL/6JF7810
101861C57BL/6JM7810
102862C57BL/6JM789.6
103EGE10907-0172_890_20844BXD28M7510
104EGE10907-0173_891_20845BXD28M759.7
105EGE10907-0174_892_20846BXD28F759.7
106EGE10907-0176_895_20848BXD33M759.88
107EGE10907-0177_896_20849BXD33F7510
108EGE10907-0178_897_20850BXD33F759.4
109EGE10907-0179_898_20851BXD36M759.4
110EGE10907-0180_899_20852BXD36F759.5
111EGE10907-0181_900_20853BXD36F759.1
112EGE10907-0182_910_20854BXD27M709.7
113EGE10907-0183_990_20855BXD9F989.4
114EGE10907-0184_991_20856BXD16F11310
115EGE10907-0185_992_20857BXD16M1139
116EGE10907-0186_993_20858BXD27F969.4
117EGE10907-0187_994_20859BXD27F969.4
118EGE10907-0188_996_20860BXD48F989.4
119EGE10907-0189_997_20861BXD73M10610
120EGE10907-0190_999_20862BXD11F1219.6
121EGE10907-0191_100_20863BXD11F1219.9
122EGE10907-0192_1010_21276BXD13M699.8
123EGE10907-0193_1011_21277BXD13M699.8
124EGE10907-0194_1012_21278BXD16F6510
125EGE10907-0195_1015_21279BXD16M6510
126EGE10907-0196_1019_21280BXD33M7510
127EGE10907-0197_1020_21281BXD36M7810
128EGE10907-0198_1021_21282BXD38F709.8
129EGE10907-0199_1022_21283BXD38F7010
130EGE10907-0200_1023_21284BXD38M709.7
131EGE10907-0201_1047_21285BXD11M6510
132EGE10907-0202_1048_21286BXD11M6510
133EGE10907-0203_1049_21287BXD38M7710
134EGE10907-0204_1050_21288BXD73F7010
135EGE10907-0205_1051_21289BXD73F7010
136EGE10907-0206_1052_21290BXD86F6910
137EGE10907-0207_1053_21291BXD86F6910
138EGE10907-0208_1054_21292BXD90F7110
139EGE10907-0209_1055_21293BXD90M7110
140EGE10907-0210_1056_21294BXD90M7110
141EGE10907-0211_1148_21295BXD31F9010
142EGE10907-0212_1149_21296BXD31F9010
143EGE10907-0213_1150_21297BXD31M9010
144EGE10907-0214_1151_21298BXD31M909.9
145EGE10907-0215_1152_21299BXD42F8310
146EGE10907-0216_21429BXD42F8310
147EGE10907-0217_21430BXD42M8310
148EGE10907-0218_21431BXD42M839.3
149EGE10907-0219_21432BXD50F929.6
150EGE10907-0220_21433BXD50F929.6
151EGE10907-0221_21434BXD50F9210
152EGE10907-0222_21435BXD1M739.6
153EGE10907-0223_21436BXD13F719.7
154EGE10907-0224_21437BXD1M719.5
155EGE10907-0225_21438BXD13F719.6
156EGE10907-0226_21439BXD43F8510
157EGE10907-0227_21452BXD43F859.6
158EGE10907-0229_21442BXD43M858.2
159EGE10907-0230_21443BXD50M699.4
160EGE10907-0231_21444BXD1F689.4
161EGE10907-0232_21445BXD1F689.6
162EGE10907-0233_21446BXD29M659.5
163EGE10907-0234_21447BXD29M6510
164EGE10907-0235_21448BXD75F6810
165EGE10907-0236_21449BXD75M6810
166EGE10907-0237_21450BXD96F679.9
167EGE10907-0238_21931BXD99M717.9
168EGE10907-0239_21932BXD99M719.7
169EGE10907-0240_21933BXD67F688.8
170EGE10907-0241_21934BXD67F688.5
171EGE10907-0242_21935BXD67M689.5
172EGE10907-0243_21936BXD67M689.6
173EGE10907-0244_21937BXD6F689.6
174EGE10907-0245_21938BXD12M829.5
175EGE10907-0246_21939BXD60F729.6
176EGE10907-0247_21940BXD65F759.1
177EGE10907-0248_21941BXD75F698.8
178EGE10907-0249_21942_(MoGene-2_0-st)BXD75M699.2
179EGE10907-0250_21943BXD8F979.1
180EGE10907-0251_21944BXD85F798.6
181EGE10907-0252_21945BXD85M799.1
182EGE10907-0253_21946BXD85M799.4
183EGE10907-0254_21947BXD102M948.6
184EGE10907-0255_21948BXD99F839
185EGE10907-0256_21949BXD69F689
186EGE10907-0257_21950BXD84F749.5
187EGE10907-0258_21951BXD84F749.4
188EGE10907-0259_21952BXD84M748.6
189EGE10907-0260_21451BXD96M679.2
190EGE10907-0261_21452BXD99F718.9
191EGE10907-0262_21931BXD6F669.4
192EGE10907-0263_21932BXD14F698.5
193EGE10907-0264_21933BXD34M799.1
194EGE10907-0265_21934BXD34M799.9
195EGE10907-0266_21935BXD40F759.6
196EGE10907-0267_21936BXD40M789.7
197EGE10907-0268_21937BXD56F729.7
198EGE10907-0269_21938BXD56F729.7
199EGE10907-0270_21939BXD56M729.6
200EGE10907-0271_21940BXD56M729.4
201EGE10907-0272_21941BXD71F729.9
202EGE10907-0273_21942BXD71F759.4
203EGE10907-0274_21943BXD71M7510
204EGE10907-0275_21944BXD71M7510
205EGE10907-0276_21945BXD27M6510
206EGE10907-0277_21946BXD15M6510
207EGE10907-0278_21947BXD20F12510
208EGE10907-0279_21948BXD29F7710
209EGE10907-0280_21949BXD29F7710
210EGE10907-0281_21950BXD34F7410
211EGE10907-0282_21951BXD34F7410
212EGE10907-0283_21952BXD85F8710
213EGE10907-0284_21451BXD43M759.8
-
-
diff --git a/general/datasets/DoDTATRCRetExMoGene2_1313/platform.rtf b/general/datasets/DoDTATRCRetExMoGene2_1313/platform.rtf deleted file mode 100644 index 19fc38c..0000000 --- a/general/datasets/DoDTATRCRetExMoGene2_1313/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Affymetrics GeneChip&reg; Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. Nonetheless, there is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs.

diff --git a/general/datasets/DoDTATRCRetExMoGene2_1313/processing.rtf b/general/datasets/DoDTATRCRetExMoGene2_1313/processing.rtf deleted file mode 100644 index a7b767e..0000000 --- a/general/datasets/DoDTATRCRetExMoGene2_1313/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/DoDTATRCRetExMoGene2_1313/summary.rtf b/general/datasets/DoDTATRCRetExMoGene2_1313/summary.rtf deleted file mode 100644 index 96a87e5..0000000 --- a/general/datasets/DoDTATRCRetExMoGene2_1313/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The DoD dataset was constructed using the Affymetrics GeneChip® Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. There is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs. This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.77 to 14.62, a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

diff --git a/general/datasets/DoDTATRCRetExMoGene2_1313/tissue.rtf b/general/datasets/DoDTATRCRetExMoGene2_1313/tissue.rtf deleted file mode 100644 index 056d7eb..0000000 --- a/general/datasets/DoDTATRCRetExMoGene2_1313/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RiboLock (RiboLock: Thermo Scientific RiboLock RNase #EO0381 40U/&micro;l 2500U) at room temperature. Individual retinas from the mouse were stored in each tube. RNA was isolated using a Qiacube with the resultant RIN scores ranging from 8.5 to 10.0.

diff --git a/general/datasets/DoDTATRCRetMoGene2_0315/cases.rtf b/general/datasets/DoDTATRCRetMoGene2_0315/cases.rtf deleted file mode 100644 index 34f9530..0000000 --- a/general/datasets/DoDTATRCRetMoGene2_0315/cases.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

Almost all animals are young adults between 60 and 100 days of age (Table 1, minimum age is 60 and maximum age is 118 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J.

- -

BXD strains:

- - diff --git a/general/datasets/DoDTATRCRetMoGene2_0315/experiment-design.rtf b/general/datasets/DoDTATRCRetMoGene2_0315/experiment-design.rtf deleted file mode 100644 index b43e509..0000000 --- a/general/datasets/DoDTATRCRetMoGene2_0315/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Sample Processing: Dr. XiangDi Wang (UTHSC) and Becky King (Emory) were involved in the retinal extractions and isolation of RNA. The Affymetrix arrays were run by two different research cores: the Molecular Resource Center at UTHSC (Dr. William Taylor Director) and the Integrated Genomics Core at Emory University by Robert B Isett (Dr. Michael E. Zwick, Director). In a separate set of experiments we could not detect any significant difference in the arrays run at UTHSC or at Emory University.

- -

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/DoDTATRCRetMoGene2_0315/notes.rtf b/general/datasets/DoDTATRCRetMoGene2_0315/notes.rtf deleted file mode 100644 index cb14c74..0000000 --- a/general/datasets/DoDTATRCRetMoGene2_0315/notes.rtf +++ /dev/null @@ -1,10 +0,0 @@ -

Other Data Sets Users of these mouse retina data may also find the following complementary resources useful:

- -
    -
  1. NEIBank collection of ESTs and SAGE data.
  2. -
  3. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases
  4. -
  5. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.
  6. -
  7. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus.
  8. -
  9. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430).
  10. -
  11. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.
  12. -
diff --git a/general/datasets/DoDTATRCRetMoGene2_0315/platform.rtf b/general/datasets/DoDTATRCRetMoGene2_0315/platform.rtf deleted file mode 100644 index cb5e1b8..0000000 --- a/general/datasets/DoDTATRCRetMoGene2_0315/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

Affymetrix Mouse Gene 2.0 ST Array: These expression arrays have been designed with a median of 22 unique probes per transcript. Each unique probe is 25 bases in length, which means that the array measures a median of 550 bases per transcript. The arrays provide comprehensive transcriptome coverage with over 30,000 coding and non-coding transcripts. In addition there is coverage for 592 microRNAs. For some arrays the RNA was pooled from two retinas and for other arrays were run on a single retina.

diff --git a/general/datasets/DoDTATRCRetMoGene2_0315/summary.rtf b/general/datasets/DoDTATRCRetMoGene2_0315/summary.rtf deleted file mode 100644 index b6cf222..0000000 --- a/general/datasets/DoDTATRCRetMoGene2_0315/summary.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

DoD TATRC Retina Dataset Affymetrix MouseGene 2.0 ST Array (____ 2015) RMA analysis and scaling by Arthur Centeno. This data set consists of 75 BXD strains, C57BL/6J, DBA/2J, both reciprocal F1s, and BALB/cByJ. A total of 80 strains were quantified. The data are now open and available for analysis.

- -

This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strain was computed as the mean of four samples per strain. Expression values on a log2 scale range from 6.25 to 18.08 (11.83 units), a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean expression of the probes on the array of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

- -

The lowest level of expression is 6.254 for ILMN_2747167 (Arhgap11a) from HEI Retina Illumina V6.2 (April 2010) RankInv **. Lowest single data about 5.842. The highest level of expression is 18.077 for ILMN_2516699 (Ubb). Highest single value is about 18.934.

diff --git a/general/datasets/DoDTATRCRetMoGene2_0315/tissue.rtf b/general/datasets/DoDTATRCRetMoGene2_0315/tissue.rtf deleted file mode 100644 index 87eb144..0000000 --- a/general/datasets/DoDTATRCRetMoGene2_0315/tissue.rtf +++ /dev/null @@ -1,13 +0,0 @@ -

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in 1 ml of 160 U/ml Ribolock for 1 min at room temperature. Dissecting and preparing eyes for RNA extraction Retinas for RNA removed from the eye and placed in Hank’s Balanced Salt solution with RiboLock (Thermo Scientific RiboLock RNase #EO0381 40U/µl 2500U) and processed per manufacturer’s instructions (in brief form below).

- -

1) Sample collection for RNA isolation.

- -

2) Quickly remove the retinas with clean curved forceps after cervical dislocation of the mouse.

- -

3) Put each retina in 1 ml of 160 U/ml Ribolock for 1 min in RT.

- -

4) Move the retina to another tube with 50µl Ribolock, store in -80°C.

- -

5) The RNA was isolated using a QiaCube and the in column DNAse procedure.

- -

Quality Control: All RNA samples were checked for quality before running microarrays. The samples were analyzed using the Agilent 2100 Bioanalyzer. The RNA integrity values for each sample are presented in Table 1 below.

diff --git a/general/datasets/DoDTATRCRetMoGene2_1313/acknowledgment.rtf b/general/datasets/DoDTATRCRetMoGene2_1313/acknowledgment.rtf deleted file mode 100644 index 13c6b1e..0000000 --- a/general/datasets/DoDTATRCRetMoGene2_1313/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

DoD funding (W81XWH-12-0255) Genetic Networks Activated by Blast Injury to the Eye (Eldon E. Geisert).

diff --git a/general/datasets/DoDTATRCRetMoGene2_1313/cases.rtf b/general/datasets/DoDTATRCRetMoGene2_1313/cases.rtf deleted file mode 100644 index 6b36c70..0000000 --- a/general/datasets/DoDTATRCRetMoGene2_1313/cases.rtf +++ /dev/null @@ -1,1728 +0,0 @@ -

Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 50 and maximum age is 134 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set.

- -
- - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
IndexEIGC ID (LIMS ID)StrainSexAge at harvestRIN Score
1602BXD9F1339.1
2603BXD9M1009.5
3604BXD40F1009.4
4605BXD40M1009.1
5606BXD48F759.1
6607BXD48M758.6
7608BXD63F759.2
8609BXD63M619.4
9612BXD73M10810
10614BXD87M859.2
11615BXD87F859.9
12616BXD69F769.3
13617BXD69M10010
14618BXD51M828.9
15619BXD92 (BXD65b)M828.8
16620BXD92 (BXD65b)F828.8
17635BXD100M709
18636BXD100M708.8
19652BXD92 (BXD65b)F649
20653BXD87F679.7
21654BXD87M678.9
22655BXD63M719
23660BXD69M9710
24687BXD6M857.7
25688BXD6M859.4
26690BXD12F8310
27691BXD12F8310
28692BXD12M8310
29695BXD5F7710
30696BXD5M7710
31698BXD5F779.9
32699BXD5F7710
33701BXD8M7910
34702BXD8M7910
35705BXD8F779.2
36707BXD15F779.4
37708BXD15F779.1
38710BXD15M779.1
39713BXD22F719.5
40714BXD22F719.7
41716BXD22M719.1
42717BXD22M719.1
43719BXD14F709.2
44722BXD14M708.9
45723BXD14M709.2
46725BXD18F709
47726BXD18F709.1
48728BXD18M709.1
49729BXD18M709.2
50731BXD19F669.3
51732BXD19F669.4
52734BXD19M669.8
53735BXD19M669.4
54737BXD21F719.7
55738BXD21F719.6
56740BXD21M719.1
57741BXD21M719.7
58743BXD2F708.3
59744BXD2F708.6
60746BXD2M707.5
61747BXD2M778.6
62768BXD48M1219.4
63770BXD92 (BXD65b)M6510
64771BXD101F858.3
65772BXD101F859.3
66773BXD101M869.5
67774BXD101M869.8
68775BXD102F669.5
69776BXD102F6610
70777BXD102M849.6
71787BXD60M869.9
72788BXD60M869.9
73789BXD63F1159.7
74790BXD100F729.8
75791BXD100F7210
76818BXD51F779.7
77819BXD51F779.6
78820BXD51M729.7
79821BXD65M729.6
80822BXD65M659.5
81825BXD65F729.5
82827BXD86M699.1
83828BXD86M699.4
84829BXD90F699.6
85831BXD9M1279.7
86832BXD39F999.4
87833BXD39F1079.3
88834BXD60F1079.5
89836BXD84M1039.7
90846BXD39M639.7
91847BXD39M639.8
92849BXD20F7010
93850BXD20M7010
94851BXD20*709.5
95855DBA/2JF789.7
96856DBA/2JF7810
97857DBA/2JM7810
98858DBA/2JM789.9
99859C57BL/6JF7810
100860C57BL/6JF7810
101861C57BL/6JM7810
102862C57BL/6JM789.6
103EGE10907-0172_890_20844BXD28M7510
104EGE10907-0173_891_20845BXD28M759.7
105EGE10907-0174_892_20846BXD28F759.7
106EGE10907-0176_895_20848BXD33M759.88
107EGE10907-0177_896_20849BXD33F7510
108EGE10907-0178_897_20850BXD33F759.4
109EGE10907-0179_898_20851BXD36M759.4
110EGE10907-0180_899_20852BXD36F759.5
111EGE10907-0181_900_20853BXD36F759.1
112EGE10907-0182_910_20854BXD27M709.7
113EGE10907-0183_990_20855BXD9F989.4
114EGE10907-0184_991_20856BXD16F11310
115EGE10907-0185_992_20857BXD16M1139
116EGE10907-0186_993_20858BXD27F969.4
117EGE10907-0187_994_20859BXD27F969.4
118EGE10907-0188_996_20860BXD48F989.4
119EGE10907-0189_997_20861BXD73M10610
120EGE10907-0190_999_20862BXD11F1219.6
121EGE10907-0191_100_20863BXD11F1219.9
122EGE10907-0192_1010_21276BXD13M699.8
123EGE10907-0193_1011_21277BXD13M699.8
124EGE10907-0194_1012_21278BXD16F6510
125EGE10907-0195_1015_21279BXD16M6510
126EGE10907-0196_1019_21280BXD33M7510
127EGE10907-0197_1020_21281BXD36M7810
128EGE10907-0198_1021_21282BXD38F709.8
129EGE10907-0199_1022_21283BXD38F7010
130EGE10907-0200_1023_21284BXD38M709.7
131EGE10907-0201_1047_21285BXD11M6510
132EGE10907-0202_1048_21286BXD11M6510
133EGE10907-0203_1049_21287BXD38M7710
134EGE10907-0204_1050_21288BXD73F7010
135EGE10907-0205_1051_21289BXD73F7010
136EGE10907-0206_1052_21290BXD86F6910
137EGE10907-0207_1053_21291BXD86F6910
138EGE10907-0208_1054_21292BXD90F7110
139EGE10907-0209_1055_21293BXD90M7110
140EGE10907-0210_1056_21294BXD90M7110
141EGE10907-0211_1148_21295BXD31F9010
142EGE10907-0212_1149_21296BXD31F9010
143EGE10907-0213_1150_21297BXD31M9010
144EGE10907-0214_1151_21298BXD31M909.9
145EGE10907-0215_1152_21299BXD42F8310
146EGE10907-0216_21429BXD42F8310
147EGE10907-0217_21430BXD42M8310
148EGE10907-0218_21431BXD42M839.3
149EGE10907-0219_21432BXD50F929.6
150EGE10907-0220_21433BXD50F929.6
151EGE10907-0221_21434BXD50F9210
152EGE10907-0222_21435BXD1M739.6
153EGE10907-0223_21436BXD13F719.7
154EGE10907-0224_21437BXD1M719.5
155EGE10907-0225_21438BXD13F719.6
156EGE10907-0226_21439BXD43F8510
157EGE10907-0227_21452BXD43F859.6
158EGE10907-0229_21442BXD43M858.2
159EGE10907-0230_21443BXD50M699.4
160EGE10907-0231_21444BXD1F689.4
161EGE10907-0232_21445BXD1F689.6
162EGE10907-0233_21446BXD29M659.5
163EGE10907-0234_21447BXD29M6510
164EGE10907-0235_21448BXD75F6810
165EGE10907-0236_21449BXD75M6810
166EGE10907-0237_21450BXD96F679.9
167EGE10907-0238_21931BXD99M717.9
168EGE10907-0239_21932BXD99M719.7
169EGE10907-0240_21933BXD67F688.8
170EGE10907-0241_21934BXD67F688.5
171EGE10907-0242_21935BXD67M689.5
172EGE10907-0243_21936BXD67M689.6
173EGE10907-0244_21937BXD6F689.6
174EGE10907-0245_21938BXD12M829.5
175EGE10907-0246_21939BXD60F729.6
176EGE10907-0247_21940BXD65F759.1
177EGE10907-0248_21941BXD75F698.8
178EGE10907-0249_21942_(MoGene-2_0-st)BXD75M699.2
179EGE10907-0250_21943BXD8F979.1
180EGE10907-0251_21944BXD85F798.6
181EGE10907-0252_21945BXD85M799.1
182EGE10907-0253_21946BXD85M799.4
183EGE10907-0254_21947BXD102M948.6
184EGE10907-0255_21948BXD99F839
185EGE10907-0256_21949BXD69F689
186EGE10907-0257_21950BXD84F749.5
187EGE10907-0258_21951BXD84F749.4
188EGE10907-0259_21952BXD84M748.6
189EGE10907-0260_21451BXD96M679.2
190EGE10907-0261_21452BXD99F718.9
191EGE10907-0262_21931BXD6F669.4
192EGE10907-0263_21932BXD14F698.5
193EGE10907-0264_21933BXD34M799.1
194EGE10907-0265_21934BXD34M799.9
195EGE10907-0266_21935BXD40F759.6
196EGE10907-0267_21936BXD40M789.7
197EGE10907-0268_21937BXD56F729.7
198EGE10907-0269_21938BXD56F729.7
199EGE10907-0270_21939BXD56M729.6
200EGE10907-0271_21940BXD56M729.4
201EGE10907-0272_21941BXD71F729.9
202EGE10907-0273_21942BXD71F759.4
203EGE10907-0274_21943BXD71M7510
204EGE10907-0275_21944BXD71M7510
205EGE10907-0276_21945BXD27M6510
206EGE10907-0277_21946BXD15M6510
207EGE10907-0278_21947BXD20F12510
208EGE10907-0279_21948BXD29F7710
209EGE10907-0280_21949BXD29F7710
210EGE10907-0281_21950BXD34F7410
211EGE10907-0282_21951BXD34F7410
212EGE10907-0283_21952BXD85F8710
213EGE10907-0284_21451BXD43M759.8
-
-
diff --git a/general/datasets/DoDTATRCRetMoGene2_1313/platform.rtf b/general/datasets/DoDTATRCRetMoGene2_1313/platform.rtf deleted file mode 100644 index 19fc38c..0000000 --- a/general/datasets/DoDTATRCRetMoGene2_1313/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Affymetrics GeneChip&reg; Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. Nonetheless, there is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs.

diff --git a/general/datasets/DoDTATRCRetMoGene2_1313/processing.rtf b/general/datasets/DoDTATRCRetMoGene2_1313/processing.rtf deleted file mode 100644 index a7b767e..0000000 --- a/general/datasets/DoDTATRCRetMoGene2_1313/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/DoDTATRCRetMoGene2_1313/summary.rtf b/general/datasets/DoDTATRCRetMoGene2_1313/summary.rtf deleted file mode 100644 index 96a87e5..0000000 --- a/general/datasets/DoDTATRCRetMoGene2_1313/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The DoD dataset was constructed using the Affymetrics GeneChip® Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. There is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs. This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.77 to 14.62, a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

diff --git a/general/datasets/DoDTATRCRetMoGene2_1313/tissue.rtf b/general/datasets/DoDTATRCRetMoGene2_1313/tissue.rtf deleted file mode 100644 index 056d7eb..0000000 --- a/general/datasets/DoDTATRCRetMoGene2_1313/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RiboLock (RiboLock: Thermo Scientific RiboLock RNase #EO0381 40U/&micro;l 2500U) at room temperature. Individual retinas from the mouse were stored in each tube. RNA was isolated using a Qiacube with the resultant RIN scores ranging from 8.5 to 10.0.

diff --git a/general/datasets/Dod_bxd_ind_pfc_cd_rna_seq_1019/specifics.rtf b/general/datasets/Dod_bxd_ind_pfc_cd_rna_seq_1019/specifics.rtf new file mode 100644 index 0000000..e64a89f --- /dev/null +++ b/general/datasets/Dod_bxd_ind_pfc_cd_rna_seq_1019/specifics.rtf @@ -0,0 +1,3 @@ +

DOD BXD Individual PFC GWI CD RNA-Seq (Oct19) TPM Log2

+ +

Download data here: http://ipfs.genenetwork.org/ipfs/QmUxTJ6qW3eHQeVoyc4tYgooxYiYN6G6eekV1iLMh8EF5k/GN880

diff --git a/general/datasets/Dod_bxd_ind_pfc_cd_rna_seq_1019/summary.rtf b/general/datasets/Dod_bxd_ind_pfc_cd_rna_seq_1019/summary.rtf new file mode 100644 index 0000000..7378ad9 --- /dev/null +++ b/general/datasets/Dod_bxd_ind_pfc_cd_rna_seq_1019/summary.rtf @@ -0,0 +1,9 @@ +

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

+ +

D=diisopropylflurophosphate treatment

+ +

CD= corticosterone + diisopropylflurophosphate treatment.

+ +

Data are log2 gene expression for D or CD vs saline control

+ +

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/Dod_bxd_ind_pfc_cd_rna_seq_comb_1019/specifics.rtf b/general/datasets/Dod_bxd_ind_pfc_cd_rna_seq_comb_1019/specifics.rtf new file mode 100644 index 0000000..45296b8 --- /dev/null +++ b/general/datasets/Dod_bxd_ind_pfc_cd_rna_seq_comb_1019/specifics.rtf @@ -0,0 +1 @@ +DOD BXD INDV PFC GWI CD RNA-Seq ComB (Dec19) TPM Log2 \ No newline at end of file diff --git a/general/datasets/Dod_bxd_ind_pfc_cd_rna_seq_comb_1019/summary.rtf b/general/datasets/Dod_bxd_ind_pfc_cd_rna_seq_comb_1019/summary.rtf new file mode 100644 index 0000000..7378ad9 --- /dev/null +++ b/general/datasets/Dod_bxd_ind_pfc_cd_rna_seq_comb_1019/summary.rtf @@ -0,0 +1,9 @@ +

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

+ +

D=diisopropylflurophosphate treatment

+ +

CD= corticosterone + diisopropylflurophosphate treatment.

+ +

Data are log2 gene expression for D or CD vs saline control

+ +

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/Dod_bxd_ind_pfc_ctl_rna_seq_1019/specifics.rtf b/general/datasets/Dod_bxd_ind_pfc_ctl_rna_seq_1019/specifics.rtf new file mode 100644 index 0000000..79182c3 --- /dev/null +++ b/general/datasets/Dod_bxd_ind_pfc_ctl_rna_seq_1019/specifics.rtf @@ -0,0 +1,3 @@ +

DOD BXD Individual PFC GWI CTL RNA-Seq (Oct19) TPM Log2

+ +

Download data here: http://ipfs.genenetwork.org/ipfs/QmUxTJ6qW3eHQeVoyc4tYgooxYiYN6G6eekV1iLMh8EF5k/GN881

diff --git a/general/datasets/Dod_bxd_ind_pfc_ctl_rna_seq_1019/summary.rtf b/general/datasets/Dod_bxd_ind_pfc_ctl_rna_seq_1019/summary.rtf new file mode 100644 index 0000000..7378ad9 --- /dev/null +++ b/general/datasets/Dod_bxd_ind_pfc_ctl_rna_seq_1019/summary.rtf @@ -0,0 +1,9 @@ +

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

+ +

D=diisopropylflurophosphate treatment

+ +

CD= corticosterone + diisopropylflurophosphate treatment.

+ +

Data are log2 gene expression for D or CD vs saline control

+ +

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/Dod_bxd_ind_pfc_ctl_rna_seq_comb_1019/specifics.rtf b/general/datasets/Dod_bxd_ind_pfc_ctl_rna_seq_comb_1019/specifics.rtf new file mode 100644 index 0000000..5c05883 --- /dev/null +++ b/general/datasets/Dod_bxd_ind_pfc_ctl_rna_seq_comb_1019/specifics.rtf @@ -0,0 +1 @@ +DOD BXD INDV PFC GWI CTL RNA-Seq ComB (Dec19) TPM Log2 \ No newline at end of file diff --git a/general/datasets/Dod_bxd_ind_pfc_ctl_rna_seq_comb_1019/summary.rtf b/general/datasets/Dod_bxd_ind_pfc_ctl_rna_seq_comb_1019/summary.rtf new file mode 100644 index 0000000..7378ad9 --- /dev/null +++ b/general/datasets/Dod_bxd_ind_pfc_ctl_rna_seq_comb_1019/summary.rtf @@ -0,0 +1,9 @@ +

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

+ +

D=diisopropylflurophosphate treatment

+ +

CD= corticosterone + diisopropylflurophosphate treatment.

+ +

Data are log2 gene expression for D or CD vs saline control

+ +

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/Dod_bxd_ind_pfc_dfp_rna_seq_1019/specifics.rtf b/general/datasets/Dod_bxd_ind_pfc_dfp_rna_seq_1019/specifics.rtf new file mode 100644 index 0000000..d77d879 --- /dev/null +++ b/general/datasets/Dod_bxd_ind_pfc_dfp_rna_seq_1019/specifics.rtf @@ -0,0 +1,3 @@ +

DOD BXD Individual PFC GWI DFP RNA-Seq (Oct19) TPM Log2

+ +

Download data here: http://ipfs.genenetwork.org/ipfs/QmUxTJ6qW3eHQeVoyc4tYgooxYiYN6G6eekV1iLMh8EF5k/GN882

diff --git a/general/datasets/Dod_bxd_ind_pfc_dfp_rna_seq_1019/summary.rtf b/general/datasets/Dod_bxd_ind_pfc_dfp_rna_seq_1019/summary.rtf new file mode 100644 index 0000000..7378ad9 --- /dev/null +++ b/general/datasets/Dod_bxd_ind_pfc_dfp_rna_seq_1019/summary.rtf @@ -0,0 +1,9 @@ +

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

+ +

D=diisopropylflurophosphate treatment

+ +

CD= corticosterone + diisopropylflurophosphate treatment.

+ +

Data are log2 gene expression for D or CD vs saline control

+ +

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/Dod_bxd_ind_pfc_dfp_rna_seq_comb_1019/specifics.rtf b/general/datasets/Dod_bxd_ind_pfc_dfp_rna_seq_comb_1019/specifics.rtf new file mode 100644 index 0000000..577b618 --- /dev/null +++ b/general/datasets/Dod_bxd_ind_pfc_dfp_rna_seq_comb_1019/specifics.rtf @@ -0,0 +1 @@ +DOD BXD INDV PFC GWI DFP RNA-Seq ComB (Dec19) TPM Log2 \ No newline at end of file diff --git a/general/datasets/Dod_bxd_ind_pfc_dfp_rna_seq_comb_1019/summary.rtf b/general/datasets/Dod_bxd_ind_pfc_dfp_rna_seq_comb_1019/summary.rtf new file mode 100644 index 0000000..7378ad9 --- /dev/null +++ b/general/datasets/Dod_bxd_ind_pfc_dfp_rna_seq_comb_1019/summary.rtf @@ -0,0 +1,9 @@ +

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

+ +

D=diisopropylflurophosphate treatment

+ +

CD= corticosterone + diisopropylflurophosphate treatment.

+ +

Data are log2 gene expression for D or CD vs saline control

+ +

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/Dod_bxd_pfc_cd_rna_seq_1019/specifics.rtf b/general/datasets/Dod_bxd_pfc_cd_rna_seq_1019/specifics.rtf new file mode 100644 index 0000000..e8f6c71 --- /dev/null +++ b/general/datasets/Dod_bxd_pfc_cd_rna_seq_1019/specifics.rtf @@ -0,0 +1 @@ +DOD BXD PFC GWI CD RNA-Seq (Oct19) TPM Log2 \ No newline at end of file diff --git a/general/datasets/Dod_bxd_pfc_cd_rna_seq_1019/summary.rtf b/general/datasets/Dod_bxd_pfc_cd_rna_seq_1019/summary.rtf new file mode 100644 index 0000000..7378ad9 --- /dev/null +++ b/general/datasets/Dod_bxd_pfc_cd_rna_seq_1019/summary.rtf @@ -0,0 +1,9 @@ +

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

+ +

D=diisopropylflurophosphate treatment

+ +

CD= corticosterone + diisopropylflurophosphate treatment.

+ +

Data are log2 gene expression for D or CD vs saline control

+ +

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/Dod_bxd_pfc_cd_rna_seq_comb_1019/specifics.rtf b/general/datasets/Dod_bxd_pfc_cd_rna_seq_comb_1019/specifics.rtf new file mode 100644 index 0000000..082f0ef --- /dev/null +++ b/general/datasets/Dod_bxd_pfc_cd_rna_seq_comb_1019/specifics.rtf @@ -0,0 +1,3 @@ +

DOD BXD PFC GWI CD RNA-Seq ComB (Dec19) TPM Log2

+ +

DOWNLOAD DATA HERE: http://ipfs.genenetwork.org/ipfs/QmUxTJ6qW3eHQeVoyc4tYgooxYiYN6G6eekV1iLMh8EF5k/GN898

diff --git a/general/datasets/Dod_bxd_pfc_cd_rna_seq_comb_1019/summary.rtf b/general/datasets/Dod_bxd_pfc_cd_rna_seq_comb_1019/summary.rtf new file mode 100644 index 0000000..7378ad9 --- /dev/null +++ b/general/datasets/Dod_bxd_pfc_cd_rna_seq_comb_1019/summary.rtf @@ -0,0 +1,9 @@ +

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

+ +

D=diisopropylflurophosphate treatment

+ +

CD= corticosterone + diisopropylflurophosphate treatment.

+ +

Data are log2 gene expression for D or CD vs saline control

+ +

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/Dod_bxd_pfc_ctl_rna_seq_1019/specifics.rtf b/general/datasets/Dod_bxd_pfc_ctl_rna_seq_1019/specifics.rtf new file mode 100644 index 0000000..052b038 --- /dev/null +++ b/general/datasets/Dod_bxd_pfc_ctl_rna_seq_1019/specifics.rtf @@ -0,0 +1 @@ +DOD BXD PFC GWI CTL RNA-Seq (Oct19) \ No newline at end of file diff --git a/general/datasets/Dod_bxd_pfc_ctl_rna_seq_1019/summary.rtf b/general/datasets/Dod_bxd_pfc_ctl_rna_seq_1019/summary.rtf new file mode 100644 index 0000000..7378ad9 --- /dev/null +++ b/general/datasets/Dod_bxd_pfc_ctl_rna_seq_1019/summary.rtf @@ -0,0 +1,9 @@ +

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

+ +

D=diisopropylflurophosphate treatment

+ +

CD= corticosterone + diisopropylflurophosphate treatment.

+ +

Data are log2 gene expression for D or CD vs saline control

+ +

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/Dod_bxd_pfc_ctl_rna_seq_comb_1019/specifics.rtf b/general/datasets/Dod_bxd_pfc_ctl_rna_seq_comb_1019/specifics.rtf new file mode 100644 index 0000000..57e85c6 --- /dev/null +++ b/general/datasets/Dod_bxd_pfc_ctl_rna_seq_comb_1019/specifics.rtf @@ -0,0 +1,3 @@ +

DOD BXD PFC GWI CTL RNA-Seq ComB (Dec19) TPM Log2

+ +

DOWNLOAD DATA HERE: http://ipfs.genenetwork.org/ipfs/QmUxTJ6qW3eHQeVoyc4tYgooxYiYN6G6eekV1iLMh8EF5k/GN899

diff --git a/general/datasets/Dod_bxd_pfc_ctl_rna_seq_comb_1019/summary.rtf b/general/datasets/Dod_bxd_pfc_ctl_rna_seq_comb_1019/summary.rtf new file mode 100644 index 0000000..7378ad9 --- /dev/null +++ b/general/datasets/Dod_bxd_pfc_ctl_rna_seq_comb_1019/summary.rtf @@ -0,0 +1,9 @@ +

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

+ +

D=diisopropylflurophosphate treatment

+ +

CD= corticosterone + diisopropylflurophosphate treatment.

+ +

Data are log2 gene expression for D or CD vs saline control

+ +

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/Dod_bxd_pfc_dfp_rna_seq_1019/specifics.rtf b/general/datasets/Dod_bxd_pfc_dfp_rna_seq_1019/specifics.rtf new file mode 100644 index 0000000..d6ad7e8 --- /dev/null +++ b/general/datasets/Dod_bxd_pfc_dfp_rna_seq_1019/specifics.rtf @@ -0,0 +1 @@ +DOD BXD PFC GWI DFP RNA-Seq (Oct19) TPM Log2 \ No newline at end of file diff --git a/general/datasets/Dod_bxd_pfc_dfp_rna_seq_1019/summary.rtf b/general/datasets/Dod_bxd_pfc_dfp_rna_seq_1019/summary.rtf new file mode 100644 index 0000000..7378ad9 --- /dev/null +++ b/general/datasets/Dod_bxd_pfc_dfp_rna_seq_1019/summary.rtf @@ -0,0 +1,9 @@ +

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

+ +

D=diisopropylflurophosphate treatment

+ +

CD= corticosterone + diisopropylflurophosphate treatment.

+ +

Data are log2 gene expression for D or CD vs saline control

+ +

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/Dod_bxd_pfc_dfp_rna_seq_comb_1019/specifics.rtf b/general/datasets/Dod_bxd_pfc_dfp_rna_seq_comb_1019/specifics.rtf new file mode 100644 index 0000000..476fd21 --- /dev/null +++ b/general/datasets/Dod_bxd_pfc_dfp_rna_seq_comb_1019/specifics.rtf @@ -0,0 +1,3 @@ +

DOD BXD PFC GWI DFP RNA-Seq ComB (Dec19) TPM Log2

+ +

DOWNLOAD DATA HERE: http://ipfs.genenetwork.org/ipfs/QmUxTJ6qW3eHQeVoyc4tYgooxYiYN6G6eekV1iLMh8EF5k/GN900

diff --git a/general/datasets/Dod_bxd_pfc_dfp_rna_seq_comb_1019/summary.rtf b/general/datasets/Dod_bxd_pfc_dfp_rna_seq_comb_1019/summary.rtf new file mode 100644 index 0000000..7378ad9 --- /dev/null +++ b/general/datasets/Dod_bxd_pfc_dfp_rna_seq_comb_1019/summary.rtf @@ -0,0 +1,9 @@ +

The study consisted of treating BXD male and female mice to 20mg% corticosterone in the drinking water for 7 days. On the 8th day they were injected i.p. with 4mg/kg diisopropylflurophosphate, an irreversible cholinesterase inhibitor. Six hours after injection the prefrontal cortex was harvested to analyze gene expression for Il1b, Tnfa, Il6 by rtPCR.

+ +

D=diisopropylflurophosphate treatment

+ +

CD= corticosterone + diisopropylflurophosphate treatment.

+ +

Data are log2 gene expression for D or CD vs saline control

+ +

This dataset is confidential. Please refer to the contact information above to use the data.

diff --git a/general/datasets/Dodcmmrpretmogene2_0515/acknowledgment.rtf b/general/datasets/Dodcmmrpretmogene2_0515/acknowledgment.rtf new file mode 100644 index 0000000..760f47e --- /dev/null +++ b/general/datasets/Dodcmmrpretmogene2_0515/acknowledgment.rtf @@ -0,0 +1 @@ +

This work was supported by DoD CDMRP Grant W81XWH1210255 from the USA Army Medical Research & Materiel Command and the Telemedicine and Advanced Technology (EEG), NIH Grant R01EY017841 (EEG), Vision Core Grant P30EY006360 (P. Michael Iuvone), and Unrestricted Funds from Research to Prevent Blindness (Emory University). We thank XiangDi Wang and Arthur Centeno for their technical assistance in this project. This study was supported in part by the Emory Integrated Genomics Core (EIGC), which is subsidized by the Emory University School of Medicine and is one of the Emory Integrated Core Facilities.

diff --git a/general/datasets/Dodcmmrpretmogene2_0515/cases.rtf b/general/datasets/Dodcmmrpretmogene2_0515/cases.rtf new file mode 100644 index 0000000..443b427 --- /dev/null +++ b/general/datasets/Dodcmmrpretmogene2_0515/cases.rtf @@ -0,0 +1,5 @@ +

Almost all animals are young adults between 60 and 100 days of age (Table 1, minimum age is 60 and maximum age is 118 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J.

+ +

 

+ +

BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. BXD43 and higher were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. Several strains were specifically excluded from the dataset. For the BXD43 and higher, the DBA/2J parent carried both the Tyrp-1 mutation and the Gpnmb mutation and these two mutations produce pigment dispersion glaucoma. All of the mice carrying these two mutations were not included in the dataset: BXD53, BXD55, BXD62, BXD66, BXD68, BXD74, BXD77, BXD81, BXD88, BXD89, BXD95 and BXD98. In addition BXD 24 was omitted, since it developed a spontaneous mutation, rd16 (Cep290) which resulted in retinal degeneration and was renamed BXD24b/TyJ (ref). Several additional strains were excluded due to abnormally high Gfap levels observed in our Full HEI Retina (April 2010) dataset, these include: BXD32, BXD49, BXD70, BXD83 and BXD89.

diff --git a/general/datasets/Dodcmmrpretmogene2_0515/citation.rtf b/general/datasets/Dodcmmrpretmogene2_0515/citation.rtf new file mode 100644 index 0000000..f803cee --- /dev/null +++ b/general/datasets/Dodcmmrpretmogene2_0515/citation.rtf @@ -0,0 +1,36 @@ +

Transcriptome networks in the mouse retina: An exon level BXD RI database

+ +

Rebecca King,1 Lu Lu,2 Robert W. Williams,2 Eldon E. Geisert1

+ +

1Department of Ophthalmology and Emory Eye Center, Emory University, Atlanta, GA; 2Department of Anatomy and Neurobiology and Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, TN

+ +

Molecular Vision 2015; 21:1235-1251 http://www.molvis.org/molvis/v21/1235
+Received 07 July 2015 | Accepted 22 October 2015 | Published 26 October 2015

+ +

Other Related Publications

+ +

1 Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link)

+ +

2. Freeman NE, Templeton JP, Orr WE, Lu L, Williams RW, Geisert EE (2011) Genetic networks in the mouse retina: Growth Associated Protein 43 and Phosphate Tensin Homology network. Molecular Vision 17:1355-1372.

+ +

3 Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674

+ +

4 Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link)

+ +

5 Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.(Link)  

+ +

 

+ +

Other Data Sets Users of these mouse retina data may also find the following complementary resources useful:

+ +

1 NEIBank collection of ESTs and SAGE data.

+ +

2 RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases

+ +

3 Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.

+ +

4 Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus.

+ +

5 Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430).

+ +

6 Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.

diff --git a/general/datasets/Dodcmmrpretmogene2_0515/contributors.rtf b/general/datasets/Dodcmmrpretmogene2_0515/contributors.rtf new file mode 100644 index 0000000..ab95248 --- /dev/null +++ b/general/datasets/Dodcmmrpretmogene2_0515/contributors.rtf @@ -0,0 +1 @@ +

Rebecca King, Lu Lu, Robert W. Williams, Eldon E. Geisert

diff --git a/general/datasets/Dodcmmrpretmogene2_0515/experiment-design.rtf b/general/datasets/Dodcmmrpretmogene2_0515/experiment-design.rtf new file mode 100644 index 0000000..6256015 --- /dev/null +++ b/general/datasets/Dodcmmrpretmogene2_0515/experiment-design.rtf @@ -0,0 +1,3 @@ +

ll of the procedures used involving mice were approved by IACUC at the Emory University and adhered to the ARVO Statement for the Use of Animals in Research. The Department of Defense (DoD) Congressionally Directed Medical Research Programs (CDMRP) Normal Retina Database uses the Affymetrix MouseGene 2.0 ST Array (May 15, 2015). Robust multiarray average (RMA) analysis and scaling were conducted by Arthur Centeno. This data set consists of 52 BXD strains, C57BL/6J, DBA/2J, and an F1 cross between C57BL/6J and DBA/2J. A total of 55 strains were quantified. There is a total of 222 microarrays. All data from each microarray used in this data set is publicly available on GeneNetwork.

+ +

These are RMA expression data that have been normalized using what we call a 2z+8 scale, but without corrections for batch effects. The data for each strain were computed as the mean of four samples per strain. The expression values on the log2 scale ranged from 3.81 to 14.25 (10.26 units), a nominal range of approximately 1,000-fold. After taking the log2 of the original non-logged expression estimates, we converted the data within an array to a z-score. We then multiplied the z-score by 2. Finally, we added 8 units to ensure that no values were negative. The result was a scale with the mean expression of the probes on the array of 8 units and a standard deviation of 2 units. A twofold difference in expression is equivalent to roughly 1 unit on this scale. The lowest level of expression was 3.81 (Olfr1186) from the DoD CDMRP (the Normal Retina Database uses the Affymetrix MouseGene 2.0 ST Array, May 15, 2015). The highest level of expression was rhodopsin for 17462036 (Rho). The highest single value was 14.25.

diff --git a/general/datasets/Dodcmmrpretmogene2_0515/notes.rtf b/general/datasets/Dodcmmrpretmogene2_0515/notes.rtf new file mode 100644 index 0000000..7f9ba5d --- /dev/null +++ b/general/datasets/Dodcmmrpretmogene2_0515/notes.rtf @@ -0,0 +1 @@ +

This study includes Gene level and Exon level analysis.

diff --git a/general/datasets/Dodcmmrpretmogene2_0515/platform.rtf b/general/datasets/Dodcmmrpretmogene2_0515/platform.rtf new file mode 100644 index 0000000..26dde86 --- /dev/null +++ b/general/datasets/Dodcmmrpretmogene2_0515/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Gene 2.0 ST Array: These expression arrays have been designed with a median of 22 unique probes per transcript. Each unique probe is 25 bases in length, which means that the array measures a median of 550 bases per transcript. The arrays provide comprehensive transcriptome coverage with over 30,000 coding and non-coding transcripts. In addition there is coverage for over 600 microRNAs. For some arrays the RNA was pooled from two retinas and for other arrays were run on a single retina. Dr. XiangDi Wang (UTHSC) and Becky King (Emory) were involved in the retinal extractions and isolation of RNA. The Affymetrix arrays were run by two different research cores: the Molecular Resource Center at UTHSC (Dr. William Taylor Director) and the Integrated Genomics Core at Emory University by Robert B Isett (Dr. Michael E. Zwick, Director). In a separate set of experiments we tested a set of arrays from C57BL/6J retinas run at each facility to determine if there were batch effects or other confounding differences in the results. We could not detect any significant difference in the arrays run at UTHSC or at Emory University. Thus, we have included both sets of data into the analysis.

diff --git a/general/datasets/Dodcmmrpretmogene2_0515/summary.rtf b/general/datasets/Dodcmmrpretmogene2_0515/summary.rtf new file mode 100644 index 0000000..c79428d --- /dev/null +++ b/general/datasets/Dodcmmrpretmogene2_0515/summary.rtf @@ -0,0 +1,3 @@ +

The DoD (Department of Defense) CDMRP (Congressionally Directed Medical Research Programs) Normal Retina Database uses the Affymetrix MouseGene 2.0 ST Array (May 15 2015) The RMA analysis and scaling was conducted by Arthur Centeno. This data set consists of 55 BXD strains, C57BL/6J, DBA/2J, a F1 cross between C57BL/6J and DBA/2J. A total of 58 strains were quantified. There is a total of 222 microarrays.

+ +

This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strain was computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.81 to 14.25 (10.26 units), a nominal range of approximately 1,000-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean expression of the probes on the array of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale. The lowest level of expression is 3.81 (Olfr1186) from DoD CDMRP (Normal Retina Database uses the Affymetrix MouseGene 2.0 ST Array (May 15 2015) The highest level of expression is Rhodopsin for 17462036 (Rho). Highest single value is about 14.25.

diff --git a/general/datasets/Dodcmmrpretmogene2_0515/tissue.rtf b/general/datasets/Dodcmmrpretmogene2_0515/tissue.rtf new file mode 100644 index 0000000..4f3c475 --- /dev/null +++ b/general/datasets/Dodcmmrpretmogene2_0515/tissue.rtf @@ -0,0 +1 @@ +

Tissue preparation protocol. Mice were killed by rapid cervical dislocation. Retinas were removed immediately and placed in 1 ml of 160 U/ml Ribolock for 1 min at room temperature. The retinas were removed from the eye and placed in Hank’s Balanced Salt solution with RiboLock in 50µl Ribolock (Thermo Scientific RiboLock RNase #EO0381 40U/µl 2500U) and stored in -80°C. The RNA was isolated using a QiaCube and the in column DNAse procedure. All RNA samples were checked for quality before running microarrays. The samples were analyzed using the Agilent 2100 Bioanalyzer. The RNA integrity values for ranged from 7.0 to 10. Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/Dodcmmrpretmogene2ex_0515/acknowledgment.rtf b/general/datasets/Dodcmmrpretmogene2ex_0515/acknowledgment.rtf new file mode 100644 index 0000000..760f47e --- /dev/null +++ b/general/datasets/Dodcmmrpretmogene2ex_0515/acknowledgment.rtf @@ -0,0 +1 @@ +

This work was supported by DoD CDMRP Grant W81XWH1210255 from the USA Army Medical Research & Materiel Command and the Telemedicine and Advanced Technology (EEG), NIH Grant R01EY017841 (EEG), Vision Core Grant P30EY006360 (P. Michael Iuvone), and Unrestricted Funds from Research to Prevent Blindness (Emory University). We thank XiangDi Wang and Arthur Centeno for their technical assistance in this project. This study was supported in part by the Emory Integrated Genomics Core (EIGC), which is subsidized by the Emory University School of Medicine and is one of the Emory Integrated Core Facilities.

diff --git a/general/datasets/Dodcmmrpretmogene2ex_0515/cases.rtf b/general/datasets/Dodcmmrpretmogene2ex_0515/cases.rtf new file mode 100644 index 0000000..443b427 --- /dev/null +++ b/general/datasets/Dodcmmrpretmogene2ex_0515/cases.rtf @@ -0,0 +1,5 @@ +

Almost all animals are young adults between 60 and 100 days of age (Table 1, minimum age is 60 and maximum age is 118 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J.

+ +

 

+ +

BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. BXD43 and higher were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. Several strains were specifically excluded from the dataset. For the BXD43 and higher, the DBA/2J parent carried both the Tyrp-1 mutation and the Gpnmb mutation and these two mutations produce pigment dispersion glaucoma. All of the mice carrying these two mutations were not included in the dataset: BXD53, BXD55, BXD62, BXD66, BXD68, BXD74, BXD77, BXD81, BXD88, BXD89, BXD95 and BXD98. In addition BXD 24 was omitted, since it developed a spontaneous mutation, rd16 (Cep290) which resulted in retinal degeneration and was renamed BXD24b/TyJ (ref). Several additional strains were excluded due to abnormally high Gfap levels observed in our Full HEI Retina (April 2010) dataset, these include: BXD32, BXD49, BXD70, BXD83 and BXD89.

diff --git a/general/datasets/Dodcmmrpretmogene2ex_0515/citation.rtf b/general/datasets/Dodcmmrpretmogene2ex_0515/citation.rtf new file mode 100644 index 0000000..f803cee --- /dev/null +++ b/general/datasets/Dodcmmrpretmogene2ex_0515/citation.rtf @@ -0,0 +1,36 @@ +

Transcriptome networks in the mouse retina: An exon level BXD RI database

+ +

Rebecca King,1 Lu Lu,2 Robert W. Williams,2 Eldon E. Geisert1

+ +

1Department of Ophthalmology and Emory Eye Center, Emory University, Atlanta, GA; 2Department of Anatomy and Neurobiology and Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, TN

+ +

Molecular Vision 2015; 21:1235-1251 http://www.molvis.org/molvis/v21/1235
+Received 07 July 2015 | Accepted 22 October 2015 | Published 26 October 2015

+ +

Other Related Publications

+ +

1 Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link)

+ +

2. Freeman NE, Templeton JP, Orr WE, Lu L, Williams RW, Geisert EE (2011) Genetic networks in the mouse retina: Growth Associated Protein 43 and Phosphate Tensin Homology network. Molecular Vision 17:1355-1372.

+ +

3 Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674

+ +

4 Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link)

+ +

5 Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.(Link)  

+ +

 

+ +

Other Data Sets Users of these mouse retina data may also find the following complementary resources useful:

+ +

1 NEIBank collection of ESTs and SAGE data.

+ +

2 RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases

+ +

3 Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.

+ +

4 Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus.

+ +

5 Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430).

+ +

6 Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.

diff --git a/general/datasets/Dodcmmrpretmogene2ex_0515/contributors.rtf b/general/datasets/Dodcmmrpretmogene2ex_0515/contributors.rtf new file mode 100644 index 0000000..ab95248 --- /dev/null +++ b/general/datasets/Dodcmmrpretmogene2ex_0515/contributors.rtf @@ -0,0 +1 @@ +

Rebecca King, Lu Lu, Robert W. Williams, Eldon E. Geisert

diff --git a/general/datasets/Dodcmmrpretmogene2ex_0515/experiment-design.rtf b/general/datasets/Dodcmmrpretmogene2ex_0515/experiment-design.rtf new file mode 100644 index 0000000..6256015 --- /dev/null +++ b/general/datasets/Dodcmmrpretmogene2ex_0515/experiment-design.rtf @@ -0,0 +1,3 @@ +

ll of the procedures used involving mice were approved by IACUC at the Emory University and adhered to the ARVO Statement for the Use of Animals in Research. The Department of Defense (DoD) Congressionally Directed Medical Research Programs (CDMRP) Normal Retina Database uses the Affymetrix MouseGene 2.0 ST Array (May 15, 2015). Robust multiarray average (RMA) analysis and scaling were conducted by Arthur Centeno. This data set consists of 52 BXD strains, C57BL/6J, DBA/2J, and an F1 cross between C57BL/6J and DBA/2J. A total of 55 strains were quantified. There is a total of 222 microarrays. All data from each microarray used in this data set is publicly available on GeneNetwork.

+ +

These are RMA expression data that have been normalized using what we call a 2z+8 scale, but without corrections for batch effects. The data for each strain were computed as the mean of four samples per strain. The expression values on the log2 scale ranged from 3.81 to 14.25 (10.26 units), a nominal range of approximately 1,000-fold. After taking the log2 of the original non-logged expression estimates, we converted the data within an array to a z-score. We then multiplied the z-score by 2. Finally, we added 8 units to ensure that no values were negative. The result was a scale with the mean expression of the probes on the array of 8 units and a standard deviation of 2 units. A twofold difference in expression is equivalent to roughly 1 unit on this scale. The lowest level of expression was 3.81 (Olfr1186) from the DoD CDMRP (the Normal Retina Database uses the Affymetrix MouseGene 2.0 ST Array, May 15, 2015). The highest level of expression was rhodopsin for 17462036 (Rho). The highest single value was 14.25.

diff --git a/general/datasets/Dodcmmrpretmogene2ex_0515/notes.rtf b/general/datasets/Dodcmmrpretmogene2ex_0515/notes.rtf new file mode 100644 index 0000000..7f9ba5d --- /dev/null +++ b/general/datasets/Dodcmmrpretmogene2ex_0515/notes.rtf @@ -0,0 +1 @@ +

This study includes Gene level and Exon level analysis.

diff --git a/general/datasets/Dodcmmrpretmogene2ex_0515/platform.rtf b/general/datasets/Dodcmmrpretmogene2ex_0515/platform.rtf new file mode 100644 index 0000000..26dde86 --- /dev/null +++ b/general/datasets/Dodcmmrpretmogene2ex_0515/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Gene 2.0 ST Array: These expression arrays have been designed with a median of 22 unique probes per transcript. Each unique probe is 25 bases in length, which means that the array measures a median of 550 bases per transcript. The arrays provide comprehensive transcriptome coverage with over 30,000 coding and non-coding transcripts. In addition there is coverage for over 600 microRNAs. For some arrays the RNA was pooled from two retinas and for other arrays were run on a single retina. Dr. XiangDi Wang (UTHSC) and Becky King (Emory) were involved in the retinal extractions and isolation of RNA. The Affymetrix arrays were run by two different research cores: the Molecular Resource Center at UTHSC (Dr. William Taylor Director) and the Integrated Genomics Core at Emory University by Robert B Isett (Dr. Michael E. Zwick, Director). In a separate set of experiments we tested a set of arrays from C57BL/6J retinas run at each facility to determine if there were batch effects or other confounding differences in the results. We could not detect any significant difference in the arrays run at UTHSC or at Emory University. Thus, we have included both sets of data into the analysis.

diff --git a/general/datasets/Dodcmmrpretmogene2ex_0515/specifics.rtf b/general/datasets/Dodcmmrpretmogene2ex_0515/specifics.rtf new file mode 100644 index 0000000..ce43067 --- /dev/null +++ b/general/datasets/Dodcmmrpretmogene2ex_0515/specifics.rtf @@ -0,0 +1 @@ +

This is the normal exon level dataset

diff --git a/general/datasets/Dodcmmrpretmogene2ex_0515/summary.rtf b/general/datasets/Dodcmmrpretmogene2ex_0515/summary.rtf new file mode 100644 index 0000000..c79428d --- /dev/null +++ b/general/datasets/Dodcmmrpretmogene2ex_0515/summary.rtf @@ -0,0 +1,3 @@ +

The DoD (Department of Defense) CDMRP (Congressionally Directed Medical Research Programs) Normal Retina Database uses the Affymetrix MouseGene 2.0 ST Array (May 15 2015) The RMA analysis and scaling was conducted by Arthur Centeno. This data set consists of 55 BXD strains, C57BL/6J, DBA/2J, a F1 cross between C57BL/6J and DBA/2J. A total of 58 strains were quantified. There is a total of 222 microarrays.

+ +

This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strain was computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.81 to 14.25 (10.26 units), a nominal range of approximately 1,000-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean expression of the probes on the array of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale. The lowest level of expression is 3.81 (Olfr1186) from DoD CDMRP (Normal Retina Database uses the Affymetrix MouseGene 2.0 ST Array (May 15 2015) The highest level of expression is Rhodopsin for 17462036 (Rho). Highest single value is about 14.25.

diff --git a/general/datasets/Dodcmmrpretmogene2ex_0515/tissue.rtf b/general/datasets/Dodcmmrpretmogene2ex_0515/tissue.rtf new file mode 100644 index 0000000..4f3c475 --- /dev/null +++ b/general/datasets/Dodcmmrpretmogene2ex_0515/tissue.rtf @@ -0,0 +1 @@ +

Tissue preparation protocol. Mice were killed by rapid cervical dislocation. Retinas were removed immediately and placed in 1 ml of 160 U/ml Ribolock for 1 min at room temperature. The retinas were removed from the eye and placed in Hank’s Balanced Salt solution with RiboLock in 50µl Ribolock (Thermo Scientific RiboLock RNase #EO0381 40U/µl 2500U) and stored in -80°C. The RNA was isolated using a QiaCube and the in column DNAse procedure. All RNA samples were checked for quality before running microarrays. The samples were analyzed using the Agilent 2100 Bioanalyzer. The RNA integrity values for ranged from 7.0 to 10. Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/Dodretblastvsnormal_0416/acknowledgment.rtf b/general/datasets/Dodretblastvsnormal_0416/acknowledgment.rtf new file mode 100644 index 0000000..13c6b1e --- /dev/null +++ b/general/datasets/Dodretblastvsnormal_0416/acknowledgment.rtf @@ -0,0 +1 @@ +

DoD funding (W81XWH-12-0255) Genetic Networks Activated by Blast Injury to the Eye (Eldon E. Geisert).

diff --git a/general/datasets/Dodretblastvsnormal_0416/cases.rtf b/general/datasets/Dodretblastvsnormal_0416/cases.rtf new file mode 100644 index 0000000..6b36c70 --- /dev/null +++ b/general/datasets/Dodretblastvsnormal_0416/cases.rtf @@ -0,0 +1,1728 @@ +

Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 50 and maximum age is 134 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set.

+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexEIGC ID (LIMS ID)StrainSexAge at harvestRIN Score
1602BXD9F1339.1
2603BXD9M1009.5
3604BXD40F1009.4
4605BXD40M1009.1
5606BXD48F759.1
6607BXD48M758.6
7608BXD63F759.2
8609BXD63M619.4
9612BXD73M10810
10614BXD87M859.2
11615BXD87F859.9
12616BXD69F769.3
13617BXD69M10010
14618BXD51M828.9
15619BXD92 (BXD65b)M828.8
16620BXD92 (BXD65b)F828.8
17635BXD100M709
18636BXD100M708.8
19652BXD92 (BXD65b)F649
20653BXD87F679.7
21654BXD87M678.9
22655BXD63M719
23660BXD69M9710
24687BXD6M857.7
25688BXD6M859.4
26690BXD12F8310
27691BXD12F8310
28692BXD12M8310
29695BXD5F7710
30696BXD5M7710
31698BXD5F779.9
32699BXD5F7710
33701BXD8M7910
34702BXD8M7910
35705BXD8F779.2
36707BXD15F779.4
37708BXD15F779.1
38710BXD15M779.1
39713BXD22F719.5
40714BXD22F719.7
41716BXD22M719.1
42717BXD22M719.1
43719BXD14F709.2
44722BXD14M708.9
45723BXD14M709.2
46725BXD18F709
47726BXD18F709.1
48728BXD18M709.1
49729BXD18M709.2
50731BXD19F669.3
51732BXD19F669.4
52734BXD19M669.8
53735BXD19M669.4
54737BXD21F719.7
55738BXD21F719.6
56740BXD21M719.1
57741BXD21M719.7
58743BXD2F708.3
59744BXD2F708.6
60746BXD2M707.5
61747BXD2M778.6
62768BXD48M1219.4
63770BXD92 (BXD65b)M6510
64771BXD101F858.3
65772BXD101F859.3
66773BXD101M869.5
67774BXD101M869.8
68775BXD102F669.5
69776BXD102F6610
70777BXD102M849.6
71787BXD60M869.9
72788BXD60M869.9
73789BXD63F1159.7
74790BXD100F729.8
75791BXD100F7210
76818BXD51F779.7
77819BXD51F779.6
78820BXD51M729.7
79821BXD65M729.6
80822BXD65M659.5
81825BXD65F729.5
82827BXD86M699.1
83828BXD86M699.4
84829BXD90F699.6
85831BXD9M1279.7
86832BXD39F999.4
87833BXD39F1079.3
88834BXD60F1079.5
89836BXD84M1039.7
90846BXD39M639.7
91847BXD39M639.8
92849BXD20F7010
93850BXD20M7010
94851BXD20*709.5
95855DBA/2JF789.7
96856DBA/2JF7810
97857DBA/2JM7810
98858DBA/2JM789.9
99859C57BL/6JF7810
100860C57BL/6JF7810
101861C57BL/6JM7810
102862C57BL/6JM789.6
103EGE10907-0172_890_20844BXD28M7510
104EGE10907-0173_891_20845BXD28M759.7
105EGE10907-0174_892_20846BXD28F759.7
106EGE10907-0176_895_20848BXD33M759.88
107EGE10907-0177_896_20849BXD33F7510
108EGE10907-0178_897_20850BXD33F759.4
109EGE10907-0179_898_20851BXD36M759.4
110EGE10907-0180_899_20852BXD36F759.5
111EGE10907-0181_900_20853BXD36F759.1
112EGE10907-0182_910_20854BXD27M709.7
113EGE10907-0183_990_20855BXD9F989.4
114EGE10907-0184_991_20856BXD16F11310
115EGE10907-0185_992_20857BXD16M1139
116EGE10907-0186_993_20858BXD27F969.4
117EGE10907-0187_994_20859BXD27F969.4
118EGE10907-0188_996_20860BXD48F989.4
119EGE10907-0189_997_20861BXD73M10610
120EGE10907-0190_999_20862BXD11F1219.6
121EGE10907-0191_100_20863BXD11F1219.9
122EGE10907-0192_1010_21276BXD13M699.8
123EGE10907-0193_1011_21277BXD13M699.8
124EGE10907-0194_1012_21278BXD16F6510
125EGE10907-0195_1015_21279BXD16M6510
126EGE10907-0196_1019_21280BXD33M7510
127EGE10907-0197_1020_21281BXD36M7810
128EGE10907-0198_1021_21282BXD38F709.8
129EGE10907-0199_1022_21283BXD38F7010
130EGE10907-0200_1023_21284BXD38M709.7
131EGE10907-0201_1047_21285BXD11M6510
132EGE10907-0202_1048_21286BXD11M6510
133EGE10907-0203_1049_21287BXD38M7710
134EGE10907-0204_1050_21288BXD73F7010
135EGE10907-0205_1051_21289BXD73F7010
136EGE10907-0206_1052_21290BXD86F6910
137EGE10907-0207_1053_21291BXD86F6910
138EGE10907-0208_1054_21292BXD90F7110
139EGE10907-0209_1055_21293BXD90M7110
140EGE10907-0210_1056_21294BXD90M7110
141EGE10907-0211_1148_21295BXD31F9010
142EGE10907-0212_1149_21296BXD31F9010
143EGE10907-0213_1150_21297BXD31M9010
144EGE10907-0214_1151_21298BXD31M909.9
145EGE10907-0215_1152_21299BXD42F8310
146EGE10907-0216_21429BXD42F8310
147EGE10907-0217_21430BXD42M8310
148EGE10907-0218_21431BXD42M839.3
149EGE10907-0219_21432BXD50F929.6
150EGE10907-0220_21433BXD50F929.6
151EGE10907-0221_21434BXD50F9210
152EGE10907-0222_21435BXD1M739.6
153EGE10907-0223_21436BXD13F719.7
154EGE10907-0224_21437BXD1M719.5
155EGE10907-0225_21438BXD13F719.6
156EGE10907-0226_21439BXD43F8510
157EGE10907-0227_21452BXD43F859.6
158EGE10907-0229_21442BXD43M858.2
159EGE10907-0230_21443BXD50M699.4
160EGE10907-0231_21444BXD1F689.4
161EGE10907-0232_21445BXD1F689.6
162EGE10907-0233_21446BXD29M659.5
163EGE10907-0234_21447BXD29M6510
164EGE10907-0235_21448BXD75F6810
165EGE10907-0236_21449BXD75M6810
166EGE10907-0237_21450BXD96F679.9
167EGE10907-0238_21931BXD99M717.9
168EGE10907-0239_21932BXD99M719.7
169EGE10907-0240_21933BXD67F688.8
170EGE10907-0241_21934BXD67F688.5
171EGE10907-0242_21935BXD67M689.5
172EGE10907-0243_21936BXD67M689.6
173EGE10907-0244_21937BXD6F689.6
174EGE10907-0245_21938BXD12M829.5
175EGE10907-0246_21939BXD60F729.6
176EGE10907-0247_21940BXD65F759.1
177EGE10907-0248_21941BXD75F698.8
178EGE10907-0249_21942_(MoGene-2_0-st)BXD75M699.2
179EGE10907-0250_21943BXD8F979.1
180EGE10907-0251_21944BXD85F798.6
181EGE10907-0252_21945BXD85M799.1
182EGE10907-0253_21946BXD85M799.4
183EGE10907-0254_21947BXD102M948.6
184EGE10907-0255_21948BXD99F839
185EGE10907-0256_21949BXD69F689
186EGE10907-0257_21950BXD84F749.5
187EGE10907-0258_21951BXD84F749.4
188EGE10907-0259_21952BXD84M748.6
189EGE10907-0260_21451BXD96M679.2
190EGE10907-0261_21452BXD99F718.9
191EGE10907-0262_21931BXD6F669.4
192EGE10907-0263_21932BXD14F698.5
193EGE10907-0264_21933BXD34M799.1
194EGE10907-0265_21934BXD34M799.9
195EGE10907-0266_21935BXD40F759.6
196EGE10907-0267_21936BXD40M789.7
197EGE10907-0268_21937BXD56F729.7
198EGE10907-0269_21938BXD56F729.7
199EGE10907-0270_21939BXD56M729.6
200EGE10907-0271_21940BXD56M729.4
201EGE10907-0272_21941BXD71F729.9
202EGE10907-0273_21942BXD71F759.4
203EGE10907-0274_21943BXD71M7510
204EGE10907-0275_21944BXD71M7510
205EGE10907-0276_21945BXD27M6510
206EGE10907-0277_21946BXD15M6510
207EGE10907-0278_21947BXD20F12510
208EGE10907-0279_21948BXD29F7710
209EGE10907-0280_21949BXD29F7710
210EGE10907-0281_21950BXD34F7410
211EGE10907-0282_21951BXD34F7410
212EGE10907-0283_21952BXD85F8710
213EGE10907-0284_21451BXD43M759.8
+
+
diff --git a/general/datasets/Dodretblastvsnormal_0416/citation.rtf b/general/datasets/Dodretblastvsnormal_0416/citation.rtf new file mode 100644 index 0000000..d84717d --- /dev/null +++ b/general/datasets/Dodretblastvsnormal_0416/citation.rtf @@ -0,0 +1,3 @@ +

Related Publications: Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link) Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674 Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link) Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.

+ +

Other Data Sets Users of these mouse retina data may also find the following complementary resources useful: NEIBank collection of ESTs and SAGE data. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases.

diff --git a/general/datasets/Dodretblastvsnormal_0416/contributors.rtf b/general/datasets/Dodretblastvsnormal_0416/contributors.rtf new file mode 100644 index 0000000..11fece2 --- /dev/null +++ b/general/datasets/Dodretblastvsnormal_0416/contributors.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, XiangDi Wang, Justin P. Templeton and Robert W. Williams.

diff --git a/general/datasets/Dodretblastvsnormal_0416/platform.rtf b/general/datasets/Dodretblastvsnormal_0416/platform.rtf new file mode 100644 index 0000000..19fc38c --- /dev/null +++ b/general/datasets/Dodretblastvsnormal_0416/platform.rtf @@ -0,0 +1 @@ +

The Affymetrics GeneChip&reg; Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. Nonetheless, there is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs.

diff --git a/general/datasets/Dodretblastvsnormal_0416/processing.rtf b/general/datasets/Dodretblastvsnormal_0416/processing.rtf new file mode 100644 index 0000000..a7b767e --- /dev/null +++ b/general/datasets/Dodretblastvsnormal_0416/processing.rtf @@ -0,0 +1 @@ +

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/Dodretblastvsnormal_0416/specifics.rtf b/general/datasets/Dodretblastvsnormal_0416/specifics.rtf new file mode 100644 index 0000000..0d1a5a5 --- /dev/null +++ b/general/datasets/Dodretblastvsnormal_0416/specifics.rtf @@ -0,0 +1 @@ +This is a subtractive dataset. The Normal retina dataset was subtracted from the blast data set probe by probe to create a data set of the changes occurring following a blast injury to the eye. This data set can be used to define gene changes following blast. It is not compatible with most of the bioinformatic tools available on GeneNetwork. \ No newline at end of file diff --git a/general/datasets/Dodretblastvsnormal_0416/summary.rtf b/general/datasets/Dodretblastvsnormal_0416/summary.rtf new file mode 100644 index 0000000..96a87e5 --- /dev/null +++ b/general/datasets/Dodretblastvsnormal_0416/summary.rtf @@ -0,0 +1 @@ +

The DoD dataset was constructed using the Affymetrics GeneChip® Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. There is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs. This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.77 to 14.62, a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

diff --git a/general/datasets/Dodretblastvsnormal_0416/tissue.rtf b/general/datasets/Dodretblastvsnormal_0416/tissue.rtf new file mode 100644 index 0000000..056d7eb --- /dev/null +++ b/general/datasets/Dodretblastvsnormal_0416/tissue.rtf @@ -0,0 +1 @@ +

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RiboLock (RiboLock: Thermo Scientific RiboLock RNase #EO0381 40U/&micro;l 2500U) at room temperature. Individual retinas from the mouse were stored in each tube. RNA was isolated using a Qiacube with the resultant RIN scores ranging from 8.5 to 10.0.

diff --git a/general/datasets/Dodretblastvsnormalex_0416/cases.rtf b/general/datasets/Dodretblastvsnormalex_0416/cases.rtf new file mode 100644 index 0000000..34f9530 --- /dev/null +++ b/general/datasets/Dodretblastvsnormalex_0416/cases.rtf @@ -0,0 +1,9 @@ +

Almost all animals are young adults between 60 and 100 days of age (Table 1, minimum age is 60 and maximum age is 118 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J.

+ +

BXD strains:

+ + diff --git a/general/datasets/Dodretblastvsnormalex_0416/contributors.rtf b/general/datasets/Dodretblastvsnormalex_0416/contributors.rtf new file mode 100644 index 0000000..814bf91 --- /dev/null +++ b/general/datasets/Dodretblastvsnormalex_0416/contributors.rtf @@ -0,0 +1,9 @@ +

Other Related Publications

+ +
    +
  1. Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link)
  2. +
  3. Freeman NE, Templeton JP, Orr WE, Lu L, Williams RW, Geisert EE (2011) Genetic networks in the mouse retina: Growth Associated Protein 43 and Phosphate Tensin Homology network. Molecular Vision 17:1355-1372.
  4. +
  5. Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674
  6. +
  7. Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link)
  8. +
  9. Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.(Link)
  10. +
diff --git a/general/datasets/Dodretblastvsnormalex_0416/experiment-design.rtf b/general/datasets/Dodretblastvsnormalex_0416/experiment-design.rtf new file mode 100644 index 0000000..b43e509 --- /dev/null +++ b/general/datasets/Dodretblastvsnormalex_0416/experiment-design.rtf @@ -0,0 +1,3 @@ +

Sample Processing: Dr. XiangDi Wang (UTHSC) and Becky King (Emory) were involved in the retinal extractions and isolation of RNA. The Affymetrix arrays were run by two different research cores: the Molecular Resource Center at UTHSC (Dr. William Taylor Director) and the Integrated Genomics Core at Emory University by Robert B Isett (Dr. Michael E. Zwick, Director). In a separate set of experiments we could not detect any significant difference in the arrays run at UTHSC or at Emory University.

+ +

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/Dodretblastvsnormalex_0416/notes.rtf b/general/datasets/Dodretblastvsnormalex_0416/notes.rtf new file mode 100644 index 0000000..cb14c74 --- /dev/null +++ b/general/datasets/Dodretblastvsnormalex_0416/notes.rtf @@ -0,0 +1,10 @@ +

Other Data Sets Users of these mouse retina data may also find the following complementary resources useful:

+ +
    +
  1. NEIBank collection of ESTs and SAGE data.
  2. +
  3. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases
  4. +
  5. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.
  6. +
  7. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus.
  8. +
  9. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430).
  10. +
  11. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.
  12. +
diff --git a/general/datasets/Dodretblastvsnormalex_0416/platform.rtf b/general/datasets/Dodretblastvsnormalex_0416/platform.rtf new file mode 100644 index 0000000..cb5e1b8 --- /dev/null +++ b/general/datasets/Dodretblastvsnormalex_0416/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Gene 2.0 ST Array: These expression arrays have been designed with a median of 22 unique probes per transcript. Each unique probe is 25 bases in length, which means that the array measures a median of 550 bases per transcript. The arrays provide comprehensive transcriptome coverage with over 30,000 coding and non-coding transcripts. In addition there is coverage for 592 microRNAs. For some arrays the RNA was pooled from two retinas and for other arrays were run on a single retina.

diff --git a/general/datasets/Dodretblastvsnormalex_0416/specifics.rtf b/general/datasets/Dodretblastvsnormalex_0416/specifics.rtf new file mode 100644 index 0000000..7c1a914 --- /dev/null +++ b/general/datasets/Dodretblastvsnormalex_0416/specifics.rtf @@ -0,0 +1 @@ +Exon Level \ No newline at end of file diff --git a/general/datasets/Dodretblastvsnormalex_0416/summary.rtf b/general/datasets/Dodretblastvsnormalex_0416/summary.rtf new file mode 100644 index 0000000..b6cf222 --- /dev/null +++ b/general/datasets/Dodretblastvsnormalex_0416/summary.rtf @@ -0,0 +1,5 @@ +

DoD TATRC Retina Dataset Affymetrix MouseGene 2.0 ST Array (____ 2015) RMA analysis and scaling by Arthur Centeno. This data set consists of 75 BXD strains, C57BL/6J, DBA/2J, both reciprocal F1s, and BALB/cByJ. A total of 80 strains were quantified. The data are now open and available for analysis.

+ +

This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strain was computed as the mean of four samples per strain. Expression values on a log2 scale range from 6.25 to 18.08 (11.83 units), a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean expression of the probes on the array of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

+ +

The lowest level of expression is 6.254 for ILMN_2747167 (Arhgap11a) from HEI Retina Illumina V6.2 (April 2010) RankInv **. Lowest single data about 5.842. The highest level of expression is 18.077 for ILMN_2516699 (Ubb). Highest single value is about 18.934.

diff --git a/general/datasets/Dodretblastvsnormalex_0416/tissue.rtf b/general/datasets/Dodretblastvsnormalex_0416/tissue.rtf new file mode 100644 index 0000000..87eb144 --- /dev/null +++ b/general/datasets/Dodretblastvsnormalex_0416/tissue.rtf @@ -0,0 +1,13 @@ +

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in 1 ml of 160 U/ml Ribolock for 1 min at room temperature. Dissecting and preparing eyes for RNA extraction Retinas for RNA removed from the eye and placed in Hank’s Balanced Salt solution with RiboLock (Thermo Scientific RiboLock RNase #EO0381 40U/µl 2500U) and processed per manufacturer’s instructions (in brief form below).

+ +

1) Sample collection for RNA isolation.

+ +

2) Quickly remove the retinas with clean curved forceps after cervical dislocation of the mouse.

+ +

3) Put each retina in 1 ml of 160 U/ml Ribolock for 1 min in RT.

+ +

4) Move the retina to another tube with 50µl Ribolock, store in -80°C.

+ +

5) The RNA was isolated using a QiaCube and the in column DNAse procedure.

+ +

Quality Control: All RNA samples were checked for quality before running microarrays. The samples were analyzed using the Agilent 2100 Bioanalyzer. The RNA integrity values for each sample are presented in Table 1 below.

diff --git a/general/datasets/Dodtatrcretblexmogene2_1213/acknowledgment.rtf b/general/datasets/Dodtatrcretblexmogene2_1213/acknowledgment.rtf new file mode 100644 index 0000000..13c6b1e --- /dev/null +++ b/general/datasets/Dodtatrcretblexmogene2_1213/acknowledgment.rtf @@ -0,0 +1 @@ +

DoD funding (W81XWH-12-0255) Genetic Networks Activated by Blast Injury to the Eye (Eldon E. Geisert).

diff --git a/general/datasets/Dodtatrcretblexmogene2_1213/cases.rtf b/general/datasets/Dodtatrcretblexmogene2_1213/cases.rtf new file mode 100644 index 0000000..6b36c70 --- /dev/null +++ b/general/datasets/Dodtatrcretblexmogene2_1213/cases.rtf @@ -0,0 +1,1728 @@ +

Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 50 and maximum age is 134 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set.

+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexEIGC ID (LIMS ID)StrainSexAge at harvestRIN Score
1602BXD9F1339.1
2603BXD9M1009.5
3604BXD40F1009.4
4605BXD40M1009.1
5606BXD48F759.1
6607BXD48M758.6
7608BXD63F759.2
8609BXD63M619.4
9612BXD73M10810
10614BXD87M859.2
11615BXD87F859.9
12616BXD69F769.3
13617BXD69M10010
14618BXD51M828.9
15619BXD92 (BXD65b)M828.8
16620BXD92 (BXD65b)F828.8
17635BXD100M709
18636BXD100M708.8
19652BXD92 (BXD65b)F649
20653BXD87F679.7
21654BXD87M678.9
22655BXD63M719
23660BXD69M9710
24687BXD6M857.7
25688BXD6M859.4
26690BXD12F8310
27691BXD12F8310
28692BXD12M8310
29695BXD5F7710
30696BXD5M7710
31698BXD5F779.9
32699BXD5F7710
33701BXD8M7910
34702BXD8M7910
35705BXD8F779.2
36707BXD15F779.4
37708BXD15F779.1
38710BXD15M779.1
39713BXD22F719.5
40714BXD22F719.7
41716BXD22M719.1
42717BXD22M719.1
43719BXD14F709.2
44722BXD14M708.9
45723BXD14M709.2
46725BXD18F709
47726BXD18F709.1
48728BXD18M709.1
49729BXD18M709.2
50731BXD19F669.3
51732BXD19F669.4
52734BXD19M669.8
53735BXD19M669.4
54737BXD21F719.7
55738BXD21F719.6
56740BXD21M719.1
57741BXD21M719.7
58743BXD2F708.3
59744BXD2F708.6
60746BXD2M707.5
61747BXD2M778.6
62768BXD48M1219.4
63770BXD92 (BXD65b)M6510
64771BXD101F858.3
65772BXD101F859.3
66773BXD101M869.5
67774BXD101M869.8
68775BXD102F669.5
69776BXD102F6610
70777BXD102M849.6
71787BXD60M869.9
72788BXD60M869.9
73789BXD63F1159.7
74790BXD100F729.8
75791BXD100F7210
76818BXD51F779.7
77819BXD51F779.6
78820BXD51M729.7
79821BXD65M729.6
80822BXD65M659.5
81825BXD65F729.5
82827BXD86M699.1
83828BXD86M699.4
84829BXD90F699.6
85831BXD9M1279.7
86832BXD39F999.4
87833BXD39F1079.3
88834BXD60F1079.5
89836BXD84M1039.7
90846BXD39M639.7
91847BXD39M639.8
92849BXD20F7010
93850BXD20M7010
94851BXD20*709.5
95855DBA/2JF789.7
96856DBA/2JF7810
97857DBA/2JM7810
98858DBA/2JM789.9
99859C57BL/6JF7810
100860C57BL/6JF7810
101861C57BL/6JM7810
102862C57BL/6JM789.6
103EGE10907-0172_890_20844BXD28M7510
104EGE10907-0173_891_20845BXD28M759.7
105EGE10907-0174_892_20846BXD28F759.7
106EGE10907-0176_895_20848BXD33M759.88
107EGE10907-0177_896_20849BXD33F7510
108EGE10907-0178_897_20850BXD33F759.4
109EGE10907-0179_898_20851BXD36M759.4
110EGE10907-0180_899_20852BXD36F759.5
111EGE10907-0181_900_20853BXD36F759.1
112EGE10907-0182_910_20854BXD27M709.7
113EGE10907-0183_990_20855BXD9F989.4
114EGE10907-0184_991_20856BXD16F11310
115EGE10907-0185_992_20857BXD16M1139
116EGE10907-0186_993_20858BXD27F969.4
117EGE10907-0187_994_20859BXD27F969.4
118EGE10907-0188_996_20860BXD48F989.4
119EGE10907-0189_997_20861BXD73M10610
120EGE10907-0190_999_20862BXD11F1219.6
121EGE10907-0191_100_20863BXD11F1219.9
122EGE10907-0192_1010_21276BXD13M699.8
123EGE10907-0193_1011_21277BXD13M699.8
124EGE10907-0194_1012_21278BXD16F6510
125EGE10907-0195_1015_21279BXD16M6510
126EGE10907-0196_1019_21280BXD33M7510
127EGE10907-0197_1020_21281BXD36M7810
128EGE10907-0198_1021_21282BXD38F709.8
129EGE10907-0199_1022_21283BXD38F7010
130EGE10907-0200_1023_21284BXD38M709.7
131EGE10907-0201_1047_21285BXD11M6510
132EGE10907-0202_1048_21286BXD11M6510
133EGE10907-0203_1049_21287BXD38M7710
134EGE10907-0204_1050_21288BXD73F7010
135EGE10907-0205_1051_21289BXD73F7010
136EGE10907-0206_1052_21290BXD86F6910
137EGE10907-0207_1053_21291BXD86F6910
138EGE10907-0208_1054_21292BXD90F7110
139EGE10907-0209_1055_21293BXD90M7110
140EGE10907-0210_1056_21294BXD90M7110
141EGE10907-0211_1148_21295BXD31F9010
142EGE10907-0212_1149_21296BXD31F9010
143EGE10907-0213_1150_21297BXD31M9010
144EGE10907-0214_1151_21298BXD31M909.9
145EGE10907-0215_1152_21299BXD42F8310
146EGE10907-0216_21429BXD42F8310
147EGE10907-0217_21430BXD42M8310
148EGE10907-0218_21431BXD42M839.3
149EGE10907-0219_21432BXD50F929.6
150EGE10907-0220_21433BXD50F929.6
151EGE10907-0221_21434BXD50F9210
152EGE10907-0222_21435BXD1M739.6
153EGE10907-0223_21436BXD13F719.7
154EGE10907-0224_21437BXD1M719.5
155EGE10907-0225_21438BXD13F719.6
156EGE10907-0226_21439BXD43F8510
157EGE10907-0227_21452BXD43F859.6
158EGE10907-0229_21442BXD43M858.2
159EGE10907-0230_21443BXD50M699.4
160EGE10907-0231_21444BXD1F689.4
161EGE10907-0232_21445BXD1F689.6
162EGE10907-0233_21446BXD29M659.5
163EGE10907-0234_21447BXD29M6510
164EGE10907-0235_21448BXD75F6810
165EGE10907-0236_21449BXD75M6810
166EGE10907-0237_21450BXD96F679.9
167EGE10907-0238_21931BXD99M717.9
168EGE10907-0239_21932BXD99M719.7
169EGE10907-0240_21933BXD67F688.8
170EGE10907-0241_21934BXD67F688.5
171EGE10907-0242_21935BXD67M689.5
172EGE10907-0243_21936BXD67M689.6
173EGE10907-0244_21937BXD6F689.6
174EGE10907-0245_21938BXD12M829.5
175EGE10907-0246_21939BXD60F729.6
176EGE10907-0247_21940BXD65F759.1
177EGE10907-0248_21941BXD75F698.8
178EGE10907-0249_21942_(MoGene-2_0-st)BXD75M699.2
179EGE10907-0250_21943BXD8F979.1
180EGE10907-0251_21944BXD85F798.6
181EGE10907-0252_21945BXD85M799.1
182EGE10907-0253_21946BXD85M799.4
183EGE10907-0254_21947BXD102M948.6
184EGE10907-0255_21948BXD99F839
185EGE10907-0256_21949BXD69F689
186EGE10907-0257_21950BXD84F749.5
187EGE10907-0258_21951BXD84F749.4
188EGE10907-0259_21952BXD84M748.6
189EGE10907-0260_21451BXD96M679.2
190EGE10907-0261_21452BXD99F718.9
191EGE10907-0262_21931BXD6F669.4
192EGE10907-0263_21932BXD14F698.5
193EGE10907-0264_21933BXD34M799.1
194EGE10907-0265_21934BXD34M799.9
195EGE10907-0266_21935BXD40F759.6
196EGE10907-0267_21936BXD40M789.7
197EGE10907-0268_21937BXD56F729.7
198EGE10907-0269_21938BXD56F729.7
199EGE10907-0270_21939BXD56M729.6
200EGE10907-0271_21940BXD56M729.4
201EGE10907-0272_21941BXD71F729.9
202EGE10907-0273_21942BXD71F759.4
203EGE10907-0274_21943BXD71M7510
204EGE10907-0275_21944BXD71M7510
205EGE10907-0276_21945BXD27M6510
206EGE10907-0277_21946BXD15M6510
207EGE10907-0278_21947BXD20F12510
208EGE10907-0279_21948BXD29F7710
209EGE10907-0280_21949BXD29F7710
210EGE10907-0281_21950BXD34F7410
211EGE10907-0282_21951BXD34F7410
212EGE10907-0283_21952BXD85F8710
213EGE10907-0284_21451BXD43M759.8
+
+
diff --git a/general/datasets/Dodtatrcretblexmogene2_1213/citation.rtf b/general/datasets/Dodtatrcretblexmogene2_1213/citation.rtf new file mode 100644 index 0000000..d84717d --- /dev/null +++ b/general/datasets/Dodtatrcretblexmogene2_1213/citation.rtf @@ -0,0 +1,3 @@ +

Related Publications: Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link) Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674 Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link) Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.

+ +

Other Data Sets Users of these mouse retina data may also find the following complementary resources useful: NEIBank collection of ESTs and SAGE data. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases.

diff --git a/general/datasets/Dodtatrcretblexmogene2_1213/contributors.rtf b/general/datasets/Dodtatrcretblexmogene2_1213/contributors.rtf new file mode 100644 index 0000000..11fece2 --- /dev/null +++ b/general/datasets/Dodtatrcretblexmogene2_1213/contributors.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, XiangDi Wang, Justin P. Templeton and Robert W. Williams.

diff --git a/general/datasets/Dodtatrcretblexmogene2_1213/platform.rtf b/general/datasets/Dodtatrcretblexmogene2_1213/platform.rtf new file mode 100644 index 0000000..19fc38c --- /dev/null +++ b/general/datasets/Dodtatrcretblexmogene2_1213/platform.rtf @@ -0,0 +1 @@ +

The Affymetrics GeneChip&reg; Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. Nonetheless, there is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs.

diff --git a/general/datasets/Dodtatrcretblexmogene2_1213/processing.rtf b/general/datasets/Dodtatrcretblexmogene2_1213/processing.rtf new file mode 100644 index 0000000..a7b767e --- /dev/null +++ b/general/datasets/Dodtatrcretblexmogene2_1213/processing.rtf @@ -0,0 +1 @@ +

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/Dodtatrcretblexmogene2_1213/summary.rtf b/general/datasets/Dodtatrcretblexmogene2_1213/summary.rtf new file mode 100644 index 0000000..96a87e5 --- /dev/null +++ b/general/datasets/Dodtatrcretblexmogene2_1213/summary.rtf @@ -0,0 +1 @@ +

The DoD dataset was constructed using the Affymetrics GeneChip® Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. There is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs. This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.77 to 14.62, a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

diff --git a/general/datasets/Dodtatrcretblexmogene2_1213/tissue.rtf b/general/datasets/Dodtatrcretblexmogene2_1213/tissue.rtf new file mode 100644 index 0000000..056d7eb --- /dev/null +++ b/general/datasets/Dodtatrcretblexmogene2_1213/tissue.rtf @@ -0,0 +1 @@ +

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RiboLock (RiboLock: Thermo Scientific RiboLock RNase #EO0381 40U/&micro;l 2500U) at room temperature. Individual retinas from the mouse were stored in each tube. RNA was isolated using a Qiacube with the resultant RIN scores ranging from 8.5 to 10.0.

diff --git a/general/datasets/Dodtatrcretblmogene2_0316/acknowledgment.rtf b/general/datasets/Dodtatrcretblmogene2_0316/acknowledgment.rtf new file mode 100644 index 0000000..13c6b1e --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2_0316/acknowledgment.rtf @@ -0,0 +1 @@ +

DoD funding (W81XWH-12-0255) Genetic Networks Activated by Blast Injury to the Eye (Eldon E. Geisert).

diff --git a/general/datasets/Dodtatrcretblmogene2_0316/cases.rtf b/general/datasets/Dodtatrcretblmogene2_0316/cases.rtf new file mode 100644 index 0000000..6b36c70 --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2_0316/cases.rtf @@ -0,0 +1,1728 @@ +

Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 50 and maximum age is 134 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set.

+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexEIGC ID (LIMS ID)StrainSexAge at harvestRIN Score
1602BXD9F1339.1
2603BXD9M1009.5
3604BXD40F1009.4
4605BXD40M1009.1
5606BXD48F759.1
6607BXD48M758.6
7608BXD63F759.2
8609BXD63M619.4
9612BXD73M10810
10614BXD87M859.2
11615BXD87F859.9
12616BXD69F769.3
13617BXD69M10010
14618BXD51M828.9
15619BXD92 (BXD65b)M828.8
16620BXD92 (BXD65b)F828.8
17635BXD100M709
18636BXD100M708.8
19652BXD92 (BXD65b)F649
20653BXD87F679.7
21654BXD87M678.9
22655BXD63M719
23660BXD69M9710
24687BXD6M857.7
25688BXD6M859.4
26690BXD12F8310
27691BXD12F8310
28692BXD12M8310
29695BXD5F7710
30696BXD5M7710
31698BXD5F779.9
32699BXD5F7710
33701BXD8M7910
34702BXD8M7910
35705BXD8F779.2
36707BXD15F779.4
37708BXD15F779.1
38710BXD15M779.1
39713BXD22F719.5
40714BXD22F719.7
41716BXD22M719.1
42717BXD22M719.1
43719BXD14F709.2
44722BXD14M708.9
45723BXD14M709.2
46725BXD18F709
47726BXD18F709.1
48728BXD18M709.1
49729BXD18M709.2
50731BXD19F669.3
51732BXD19F669.4
52734BXD19M669.8
53735BXD19M669.4
54737BXD21F719.7
55738BXD21F719.6
56740BXD21M719.1
57741BXD21M719.7
58743BXD2F708.3
59744BXD2F708.6
60746BXD2M707.5
61747BXD2M778.6
62768BXD48M1219.4
63770BXD92 (BXD65b)M6510
64771BXD101F858.3
65772BXD101F859.3
66773BXD101M869.5
67774BXD101M869.8
68775BXD102F669.5
69776BXD102F6610
70777BXD102M849.6
71787BXD60M869.9
72788BXD60M869.9
73789BXD63F1159.7
74790BXD100F729.8
75791BXD100F7210
76818BXD51F779.7
77819BXD51F779.6
78820BXD51M729.7
79821BXD65M729.6
80822BXD65M659.5
81825BXD65F729.5
82827BXD86M699.1
83828BXD86M699.4
84829BXD90F699.6
85831BXD9M1279.7
86832BXD39F999.4
87833BXD39F1079.3
88834BXD60F1079.5
89836BXD84M1039.7
90846BXD39M639.7
91847BXD39M639.8
92849BXD20F7010
93850BXD20M7010
94851BXD20*709.5
95855DBA/2JF789.7
96856DBA/2JF7810
97857DBA/2JM7810
98858DBA/2JM789.9
99859C57BL/6JF7810
100860C57BL/6JF7810
101861C57BL/6JM7810
102862C57BL/6JM789.6
103EGE10907-0172_890_20844BXD28M7510
104EGE10907-0173_891_20845BXD28M759.7
105EGE10907-0174_892_20846BXD28F759.7
106EGE10907-0176_895_20848BXD33M759.88
107EGE10907-0177_896_20849BXD33F7510
108EGE10907-0178_897_20850BXD33F759.4
109EGE10907-0179_898_20851BXD36M759.4
110EGE10907-0180_899_20852BXD36F759.5
111EGE10907-0181_900_20853BXD36F759.1
112EGE10907-0182_910_20854BXD27M709.7
113EGE10907-0183_990_20855BXD9F989.4
114EGE10907-0184_991_20856BXD16F11310
115EGE10907-0185_992_20857BXD16M1139
116EGE10907-0186_993_20858BXD27F969.4
117EGE10907-0187_994_20859BXD27F969.4
118EGE10907-0188_996_20860BXD48F989.4
119EGE10907-0189_997_20861BXD73M10610
120EGE10907-0190_999_20862BXD11F1219.6
121EGE10907-0191_100_20863BXD11F1219.9
122EGE10907-0192_1010_21276BXD13M699.8
123EGE10907-0193_1011_21277BXD13M699.8
124EGE10907-0194_1012_21278BXD16F6510
125EGE10907-0195_1015_21279BXD16M6510
126EGE10907-0196_1019_21280BXD33M7510
127EGE10907-0197_1020_21281BXD36M7810
128EGE10907-0198_1021_21282BXD38F709.8
129EGE10907-0199_1022_21283BXD38F7010
130EGE10907-0200_1023_21284BXD38M709.7
131EGE10907-0201_1047_21285BXD11M6510
132EGE10907-0202_1048_21286BXD11M6510
133EGE10907-0203_1049_21287BXD38M7710
134EGE10907-0204_1050_21288BXD73F7010
135EGE10907-0205_1051_21289BXD73F7010
136EGE10907-0206_1052_21290BXD86F6910
137EGE10907-0207_1053_21291BXD86F6910
138EGE10907-0208_1054_21292BXD90F7110
139EGE10907-0209_1055_21293BXD90M7110
140EGE10907-0210_1056_21294BXD90M7110
141EGE10907-0211_1148_21295BXD31F9010
142EGE10907-0212_1149_21296BXD31F9010
143EGE10907-0213_1150_21297BXD31M9010
144EGE10907-0214_1151_21298BXD31M909.9
145EGE10907-0215_1152_21299BXD42F8310
146EGE10907-0216_21429BXD42F8310
147EGE10907-0217_21430BXD42M8310
148EGE10907-0218_21431BXD42M839.3
149EGE10907-0219_21432BXD50F929.6
150EGE10907-0220_21433BXD50F929.6
151EGE10907-0221_21434BXD50F9210
152EGE10907-0222_21435BXD1M739.6
153EGE10907-0223_21436BXD13F719.7
154EGE10907-0224_21437BXD1M719.5
155EGE10907-0225_21438BXD13F719.6
156EGE10907-0226_21439BXD43F8510
157EGE10907-0227_21452BXD43F859.6
158EGE10907-0229_21442BXD43M858.2
159EGE10907-0230_21443BXD50M699.4
160EGE10907-0231_21444BXD1F689.4
161EGE10907-0232_21445BXD1F689.6
162EGE10907-0233_21446BXD29M659.5
163EGE10907-0234_21447BXD29M6510
164EGE10907-0235_21448BXD75F6810
165EGE10907-0236_21449BXD75M6810
166EGE10907-0237_21450BXD96F679.9
167EGE10907-0238_21931BXD99M717.9
168EGE10907-0239_21932BXD99M719.7
169EGE10907-0240_21933BXD67F688.8
170EGE10907-0241_21934BXD67F688.5
171EGE10907-0242_21935BXD67M689.5
172EGE10907-0243_21936BXD67M689.6
173EGE10907-0244_21937BXD6F689.6
174EGE10907-0245_21938BXD12M829.5
175EGE10907-0246_21939BXD60F729.6
176EGE10907-0247_21940BXD65F759.1
177EGE10907-0248_21941BXD75F698.8
178EGE10907-0249_21942_(MoGene-2_0-st)BXD75M699.2
179EGE10907-0250_21943BXD8F979.1
180EGE10907-0251_21944BXD85F798.6
181EGE10907-0252_21945BXD85M799.1
182EGE10907-0253_21946BXD85M799.4
183EGE10907-0254_21947BXD102M948.6
184EGE10907-0255_21948BXD99F839
185EGE10907-0256_21949BXD69F689
186EGE10907-0257_21950BXD84F749.5
187EGE10907-0258_21951BXD84F749.4
188EGE10907-0259_21952BXD84M748.6
189EGE10907-0260_21451BXD96M679.2
190EGE10907-0261_21452BXD99F718.9
191EGE10907-0262_21931BXD6F669.4
192EGE10907-0263_21932BXD14F698.5
193EGE10907-0264_21933BXD34M799.1
194EGE10907-0265_21934BXD34M799.9
195EGE10907-0266_21935BXD40F759.6
196EGE10907-0267_21936BXD40M789.7
197EGE10907-0268_21937BXD56F729.7
198EGE10907-0269_21938BXD56F729.7
199EGE10907-0270_21939BXD56M729.6
200EGE10907-0271_21940BXD56M729.4
201EGE10907-0272_21941BXD71F729.9
202EGE10907-0273_21942BXD71F759.4
203EGE10907-0274_21943BXD71M7510
204EGE10907-0275_21944BXD71M7510
205EGE10907-0276_21945BXD27M6510
206EGE10907-0277_21946BXD15M6510
207EGE10907-0278_21947BXD20F12510
208EGE10907-0279_21948BXD29F7710
209EGE10907-0280_21949BXD29F7710
210EGE10907-0281_21950BXD34F7410
211EGE10907-0282_21951BXD34F7410
212EGE10907-0283_21952BXD85F8710
213EGE10907-0284_21451BXD43M759.8
+
+
diff --git a/general/datasets/Dodtatrcretblmogene2_0316/citation.rtf b/general/datasets/Dodtatrcretblmogene2_0316/citation.rtf new file mode 100644 index 0000000..d84717d --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2_0316/citation.rtf @@ -0,0 +1,3 @@ +

Related Publications: Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link) Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674 Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link) Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.

+ +

Other Data Sets Users of these mouse retina data may also find the following complementary resources useful: NEIBank collection of ESTs and SAGE data. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases.

diff --git a/general/datasets/Dodtatrcretblmogene2_0316/contributors.rtf b/general/datasets/Dodtatrcretblmogene2_0316/contributors.rtf new file mode 100644 index 0000000..11fece2 --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2_0316/contributors.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, XiangDi Wang, Justin P. Templeton and Robert W. Williams.

diff --git a/general/datasets/Dodtatrcretblmogene2_0316/platform.rtf b/general/datasets/Dodtatrcretblmogene2_0316/platform.rtf new file mode 100644 index 0000000..19fc38c --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2_0316/platform.rtf @@ -0,0 +1 @@ +

The Affymetrics GeneChip&reg; Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. Nonetheless, there is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs.

diff --git a/general/datasets/Dodtatrcretblmogene2_0316/processing.rtf b/general/datasets/Dodtatrcretblmogene2_0316/processing.rtf new file mode 100644 index 0000000..a7b767e --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2_0316/processing.rtf @@ -0,0 +1 @@ +

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/Dodtatrcretblmogene2_0316/summary.rtf b/general/datasets/Dodtatrcretblmogene2_0316/summary.rtf new file mode 100644 index 0000000..96a87e5 --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2_0316/summary.rtf @@ -0,0 +1 @@ +

The DoD dataset was constructed using the Affymetrics GeneChip® Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. There is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs. This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.77 to 14.62, a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

diff --git a/general/datasets/Dodtatrcretblmogene2_0316/tissue.rtf b/general/datasets/Dodtatrcretblmogene2_0316/tissue.rtf new file mode 100644 index 0000000..056d7eb --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2_0316/tissue.rtf @@ -0,0 +1 @@ +

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RiboLock (RiboLock: Thermo Scientific RiboLock RNase #EO0381 40U/&micro;l 2500U) at room temperature. Individual retinas from the mouse were stored in each tube. RNA was isolated using a Qiacube with the resultant RIN scores ranging from 8.5 to 10.0.

diff --git a/general/datasets/Dodtatrcretblmogene2_1213/acknowledgment.rtf b/general/datasets/Dodtatrcretblmogene2_1213/acknowledgment.rtf new file mode 100644 index 0000000..13c6b1e --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2_1213/acknowledgment.rtf @@ -0,0 +1 @@ +

DoD funding (W81XWH-12-0255) Genetic Networks Activated by Blast Injury to the Eye (Eldon E. Geisert).

diff --git a/general/datasets/Dodtatrcretblmogene2_1213/cases.rtf b/general/datasets/Dodtatrcretblmogene2_1213/cases.rtf new file mode 100644 index 0000000..6b36c70 --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2_1213/cases.rtf @@ -0,0 +1,1728 @@ +

Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 50 and maximum age is 134 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set.

+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexEIGC ID (LIMS ID)StrainSexAge at harvestRIN Score
1602BXD9F1339.1
2603BXD9M1009.5
3604BXD40F1009.4
4605BXD40M1009.1
5606BXD48F759.1
6607BXD48M758.6
7608BXD63F759.2
8609BXD63M619.4
9612BXD73M10810
10614BXD87M859.2
11615BXD87F859.9
12616BXD69F769.3
13617BXD69M10010
14618BXD51M828.9
15619BXD92 (BXD65b)M828.8
16620BXD92 (BXD65b)F828.8
17635BXD100M709
18636BXD100M708.8
19652BXD92 (BXD65b)F649
20653BXD87F679.7
21654BXD87M678.9
22655BXD63M719
23660BXD69M9710
24687BXD6M857.7
25688BXD6M859.4
26690BXD12F8310
27691BXD12F8310
28692BXD12M8310
29695BXD5F7710
30696BXD5M7710
31698BXD5F779.9
32699BXD5F7710
33701BXD8M7910
34702BXD8M7910
35705BXD8F779.2
36707BXD15F779.4
37708BXD15F779.1
38710BXD15M779.1
39713BXD22F719.5
40714BXD22F719.7
41716BXD22M719.1
42717BXD22M719.1
43719BXD14F709.2
44722BXD14M708.9
45723BXD14M709.2
46725BXD18F709
47726BXD18F709.1
48728BXD18M709.1
49729BXD18M709.2
50731BXD19F669.3
51732BXD19F669.4
52734BXD19M669.8
53735BXD19M669.4
54737BXD21F719.7
55738BXD21F719.6
56740BXD21M719.1
57741BXD21M719.7
58743BXD2F708.3
59744BXD2F708.6
60746BXD2M707.5
61747BXD2M778.6
62768BXD48M1219.4
63770BXD92 (BXD65b)M6510
64771BXD101F858.3
65772BXD101F859.3
66773BXD101M869.5
67774BXD101M869.8
68775BXD102F669.5
69776BXD102F6610
70777BXD102M849.6
71787BXD60M869.9
72788BXD60M869.9
73789BXD63F1159.7
74790BXD100F729.8
75791BXD100F7210
76818BXD51F779.7
77819BXD51F779.6
78820BXD51M729.7
79821BXD65M729.6
80822BXD65M659.5
81825BXD65F729.5
82827BXD86M699.1
83828BXD86M699.4
84829BXD90F699.6
85831BXD9M1279.7
86832BXD39F999.4
87833BXD39F1079.3
88834BXD60F1079.5
89836BXD84M1039.7
90846BXD39M639.7
91847BXD39M639.8
92849BXD20F7010
93850BXD20M7010
94851BXD20*709.5
95855DBA/2JF789.7
96856DBA/2JF7810
97857DBA/2JM7810
98858DBA/2JM789.9
99859C57BL/6JF7810
100860C57BL/6JF7810
101861C57BL/6JM7810
102862C57BL/6JM789.6
103EGE10907-0172_890_20844BXD28M7510
104EGE10907-0173_891_20845BXD28M759.7
105EGE10907-0174_892_20846BXD28F759.7
106EGE10907-0176_895_20848BXD33M759.88
107EGE10907-0177_896_20849BXD33F7510
108EGE10907-0178_897_20850BXD33F759.4
109EGE10907-0179_898_20851BXD36M759.4
110EGE10907-0180_899_20852BXD36F759.5
111EGE10907-0181_900_20853BXD36F759.1
112EGE10907-0182_910_20854BXD27M709.7
113EGE10907-0183_990_20855BXD9F989.4
114EGE10907-0184_991_20856BXD16F11310
115EGE10907-0185_992_20857BXD16M1139
116EGE10907-0186_993_20858BXD27F969.4
117EGE10907-0187_994_20859BXD27F969.4
118EGE10907-0188_996_20860BXD48F989.4
119EGE10907-0189_997_20861BXD73M10610
120EGE10907-0190_999_20862BXD11F1219.6
121EGE10907-0191_100_20863BXD11F1219.9
122EGE10907-0192_1010_21276BXD13M699.8
123EGE10907-0193_1011_21277BXD13M699.8
124EGE10907-0194_1012_21278BXD16F6510
125EGE10907-0195_1015_21279BXD16M6510
126EGE10907-0196_1019_21280BXD33M7510
127EGE10907-0197_1020_21281BXD36M7810
128EGE10907-0198_1021_21282BXD38F709.8
129EGE10907-0199_1022_21283BXD38F7010
130EGE10907-0200_1023_21284BXD38M709.7
131EGE10907-0201_1047_21285BXD11M6510
132EGE10907-0202_1048_21286BXD11M6510
133EGE10907-0203_1049_21287BXD38M7710
134EGE10907-0204_1050_21288BXD73F7010
135EGE10907-0205_1051_21289BXD73F7010
136EGE10907-0206_1052_21290BXD86F6910
137EGE10907-0207_1053_21291BXD86F6910
138EGE10907-0208_1054_21292BXD90F7110
139EGE10907-0209_1055_21293BXD90M7110
140EGE10907-0210_1056_21294BXD90M7110
141EGE10907-0211_1148_21295BXD31F9010
142EGE10907-0212_1149_21296BXD31F9010
143EGE10907-0213_1150_21297BXD31M9010
144EGE10907-0214_1151_21298BXD31M909.9
145EGE10907-0215_1152_21299BXD42F8310
146EGE10907-0216_21429BXD42F8310
147EGE10907-0217_21430BXD42M8310
148EGE10907-0218_21431BXD42M839.3
149EGE10907-0219_21432BXD50F929.6
150EGE10907-0220_21433BXD50F929.6
151EGE10907-0221_21434BXD50F9210
152EGE10907-0222_21435BXD1M739.6
153EGE10907-0223_21436BXD13F719.7
154EGE10907-0224_21437BXD1M719.5
155EGE10907-0225_21438BXD13F719.6
156EGE10907-0226_21439BXD43F8510
157EGE10907-0227_21452BXD43F859.6
158EGE10907-0229_21442BXD43M858.2
159EGE10907-0230_21443BXD50M699.4
160EGE10907-0231_21444BXD1F689.4
161EGE10907-0232_21445BXD1F689.6
162EGE10907-0233_21446BXD29M659.5
163EGE10907-0234_21447BXD29M6510
164EGE10907-0235_21448BXD75F6810
165EGE10907-0236_21449BXD75M6810
166EGE10907-0237_21450BXD96F679.9
167EGE10907-0238_21931BXD99M717.9
168EGE10907-0239_21932BXD99M719.7
169EGE10907-0240_21933BXD67F688.8
170EGE10907-0241_21934BXD67F688.5
171EGE10907-0242_21935BXD67M689.5
172EGE10907-0243_21936BXD67M689.6
173EGE10907-0244_21937BXD6F689.6
174EGE10907-0245_21938BXD12M829.5
175EGE10907-0246_21939BXD60F729.6
176EGE10907-0247_21940BXD65F759.1
177EGE10907-0248_21941BXD75F698.8
178EGE10907-0249_21942_(MoGene-2_0-st)BXD75M699.2
179EGE10907-0250_21943BXD8F979.1
180EGE10907-0251_21944BXD85F798.6
181EGE10907-0252_21945BXD85M799.1
182EGE10907-0253_21946BXD85M799.4
183EGE10907-0254_21947BXD102M948.6
184EGE10907-0255_21948BXD99F839
185EGE10907-0256_21949BXD69F689
186EGE10907-0257_21950BXD84F749.5
187EGE10907-0258_21951BXD84F749.4
188EGE10907-0259_21952BXD84M748.6
189EGE10907-0260_21451BXD96M679.2
190EGE10907-0261_21452BXD99F718.9
191EGE10907-0262_21931BXD6F669.4
192EGE10907-0263_21932BXD14F698.5
193EGE10907-0264_21933BXD34M799.1
194EGE10907-0265_21934BXD34M799.9
195EGE10907-0266_21935BXD40F759.6
196EGE10907-0267_21936BXD40M789.7
197EGE10907-0268_21937BXD56F729.7
198EGE10907-0269_21938BXD56F729.7
199EGE10907-0270_21939BXD56M729.6
200EGE10907-0271_21940BXD56M729.4
201EGE10907-0272_21941BXD71F729.9
202EGE10907-0273_21942BXD71F759.4
203EGE10907-0274_21943BXD71M7510
204EGE10907-0275_21944BXD71M7510
205EGE10907-0276_21945BXD27M6510
206EGE10907-0277_21946BXD15M6510
207EGE10907-0278_21947BXD20F12510
208EGE10907-0279_21948BXD29F7710
209EGE10907-0280_21949BXD29F7710
210EGE10907-0281_21950BXD34F7410
211EGE10907-0282_21951BXD34F7410
212EGE10907-0283_21952BXD85F8710
213EGE10907-0284_21451BXD43M759.8
+
+
diff --git a/general/datasets/Dodtatrcretblmogene2_1213/citation.rtf b/general/datasets/Dodtatrcretblmogene2_1213/citation.rtf new file mode 100644 index 0000000..d84717d --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2_1213/citation.rtf @@ -0,0 +1,3 @@ +

Related Publications: Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link) Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674 Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link) Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.

+ +

Other Data Sets Users of these mouse retina data may also find the following complementary resources useful: NEIBank collection of ESTs and SAGE data. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases.

diff --git a/general/datasets/Dodtatrcretblmogene2_1213/contributors.rtf b/general/datasets/Dodtatrcretblmogene2_1213/contributors.rtf new file mode 100644 index 0000000..11fece2 --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2_1213/contributors.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, XiangDi Wang, Justin P. Templeton and Robert W. Williams.

diff --git a/general/datasets/Dodtatrcretblmogene2_1213/platform.rtf b/general/datasets/Dodtatrcretblmogene2_1213/platform.rtf new file mode 100644 index 0000000..19fc38c --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2_1213/platform.rtf @@ -0,0 +1 @@ +

The Affymetrics GeneChip&reg; Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. Nonetheless, there is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs.

diff --git a/general/datasets/Dodtatrcretblmogene2_1213/processing.rtf b/general/datasets/Dodtatrcretblmogene2_1213/processing.rtf new file mode 100644 index 0000000..a7b767e --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2_1213/processing.rtf @@ -0,0 +1 @@ +

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/Dodtatrcretblmogene2_1213/summary.rtf b/general/datasets/Dodtatrcretblmogene2_1213/summary.rtf new file mode 100644 index 0000000..96a87e5 --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2_1213/summary.rtf @@ -0,0 +1 @@ +

The DoD dataset was constructed using the Affymetrics GeneChip® Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. There is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs. This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.77 to 14.62, a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

diff --git a/general/datasets/Dodtatrcretblmogene2_1213/tissue.rtf b/general/datasets/Dodtatrcretblmogene2_1213/tissue.rtf new file mode 100644 index 0000000..056d7eb --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2_1213/tissue.rtf @@ -0,0 +1 @@ +

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RiboLock (RiboLock: Thermo Scientific RiboLock RNase #EO0381 40U/&micro;l 2500U) at room temperature. Individual retinas from the mouse were stored in each tube. RNA was isolated using a Qiacube with the resultant RIN scores ranging from 8.5 to 10.0.

diff --git a/general/datasets/Dodtatrcretblmogene2e_0316/acknowledgment.rtf b/general/datasets/Dodtatrcretblmogene2e_0316/acknowledgment.rtf new file mode 100644 index 0000000..13c6b1e --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2e_0316/acknowledgment.rtf @@ -0,0 +1 @@ +

DoD funding (W81XWH-12-0255) Genetic Networks Activated by Blast Injury to the Eye (Eldon E. Geisert).

diff --git a/general/datasets/Dodtatrcretblmogene2e_0316/cases.rtf b/general/datasets/Dodtatrcretblmogene2e_0316/cases.rtf new file mode 100644 index 0000000..6b36c70 --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2e_0316/cases.rtf @@ -0,0 +1,1728 @@ +

Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 50 and maximum age is 134 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set.

+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexEIGC ID (LIMS ID)StrainSexAge at harvestRIN Score
1602BXD9F1339.1
2603BXD9M1009.5
3604BXD40F1009.4
4605BXD40M1009.1
5606BXD48F759.1
6607BXD48M758.6
7608BXD63F759.2
8609BXD63M619.4
9612BXD73M10810
10614BXD87M859.2
11615BXD87F859.9
12616BXD69F769.3
13617BXD69M10010
14618BXD51M828.9
15619BXD92 (BXD65b)M828.8
16620BXD92 (BXD65b)F828.8
17635BXD100M709
18636BXD100M708.8
19652BXD92 (BXD65b)F649
20653BXD87F679.7
21654BXD87M678.9
22655BXD63M719
23660BXD69M9710
24687BXD6M857.7
25688BXD6M859.4
26690BXD12F8310
27691BXD12F8310
28692BXD12M8310
29695BXD5F7710
30696BXD5M7710
31698BXD5F779.9
32699BXD5F7710
33701BXD8M7910
34702BXD8M7910
35705BXD8F779.2
36707BXD15F779.4
37708BXD15F779.1
38710BXD15M779.1
39713BXD22F719.5
40714BXD22F719.7
41716BXD22M719.1
42717BXD22M719.1
43719BXD14F709.2
44722BXD14M708.9
45723BXD14M709.2
46725BXD18F709
47726BXD18F709.1
48728BXD18M709.1
49729BXD18M709.2
50731BXD19F669.3
51732BXD19F669.4
52734BXD19M669.8
53735BXD19M669.4
54737BXD21F719.7
55738BXD21F719.6
56740BXD21M719.1
57741BXD21M719.7
58743BXD2F708.3
59744BXD2F708.6
60746BXD2M707.5
61747BXD2M778.6
62768BXD48M1219.4
63770BXD92 (BXD65b)M6510
64771BXD101F858.3
65772BXD101F859.3
66773BXD101M869.5
67774BXD101M869.8
68775BXD102F669.5
69776BXD102F6610
70777BXD102M849.6
71787BXD60M869.9
72788BXD60M869.9
73789BXD63F1159.7
74790BXD100F729.8
75791BXD100F7210
76818BXD51F779.7
77819BXD51F779.6
78820BXD51M729.7
79821BXD65M729.6
80822BXD65M659.5
81825BXD65F729.5
82827BXD86M699.1
83828BXD86M699.4
84829BXD90F699.6
85831BXD9M1279.7
86832BXD39F999.4
87833BXD39F1079.3
88834BXD60F1079.5
89836BXD84M1039.7
90846BXD39M639.7
91847BXD39M639.8
92849BXD20F7010
93850BXD20M7010
94851BXD20*709.5
95855DBA/2JF789.7
96856DBA/2JF7810
97857DBA/2JM7810
98858DBA/2JM789.9
99859C57BL/6JF7810
100860C57BL/6JF7810
101861C57BL/6JM7810
102862C57BL/6JM789.6
103EGE10907-0172_890_20844BXD28M7510
104EGE10907-0173_891_20845BXD28M759.7
105EGE10907-0174_892_20846BXD28F759.7
106EGE10907-0176_895_20848BXD33M759.88
107EGE10907-0177_896_20849BXD33F7510
108EGE10907-0178_897_20850BXD33F759.4
109EGE10907-0179_898_20851BXD36M759.4
110EGE10907-0180_899_20852BXD36F759.5
111EGE10907-0181_900_20853BXD36F759.1
112EGE10907-0182_910_20854BXD27M709.7
113EGE10907-0183_990_20855BXD9F989.4
114EGE10907-0184_991_20856BXD16F11310
115EGE10907-0185_992_20857BXD16M1139
116EGE10907-0186_993_20858BXD27F969.4
117EGE10907-0187_994_20859BXD27F969.4
118EGE10907-0188_996_20860BXD48F989.4
119EGE10907-0189_997_20861BXD73M10610
120EGE10907-0190_999_20862BXD11F1219.6
121EGE10907-0191_100_20863BXD11F1219.9
122EGE10907-0192_1010_21276BXD13M699.8
123EGE10907-0193_1011_21277BXD13M699.8
124EGE10907-0194_1012_21278BXD16F6510
125EGE10907-0195_1015_21279BXD16M6510
126EGE10907-0196_1019_21280BXD33M7510
127EGE10907-0197_1020_21281BXD36M7810
128EGE10907-0198_1021_21282BXD38F709.8
129EGE10907-0199_1022_21283BXD38F7010
130EGE10907-0200_1023_21284BXD38M709.7
131EGE10907-0201_1047_21285BXD11M6510
132EGE10907-0202_1048_21286BXD11M6510
133EGE10907-0203_1049_21287BXD38M7710
134EGE10907-0204_1050_21288BXD73F7010
135EGE10907-0205_1051_21289BXD73F7010
136EGE10907-0206_1052_21290BXD86F6910
137EGE10907-0207_1053_21291BXD86F6910
138EGE10907-0208_1054_21292BXD90F7110
139EGE10907-0209_1055_21293BXD90M7110
140EGE10907-0210_1056_21294BXD90M7110
141EGE10907-0211_1148_21295BXD31F9010
142EGE10907-0212_1149_21296BXD31F9010
143EGE10907-0213_1150_21297BXD31M9010
144EGE10907-0214_1151_21298BXD31M909.9
145EGE10907-0215_1152_21299BXD42F8310
146EGE10907-0216_21429BXD42F8310
147EGE10907-0217_21430BXD42M8310
148EGE10907-0218_21431BXD42M839.3
149EGE10907-0219_21432BXD50F929.6
150EGE10907-0220_21433BXD50F929.6
151EGE10907-0221_21434BXD50F9210
152EGE10907-0222_21435BXD1M739.6
153EGE10907-0223_21436BXD13F719.7
154EGE10907-0224_21437BXD1M719.5
155EGE10907-0225_21438BXD13F719.6
156EGE10907-0226_21439BXD43F8510
157EGE10907-0227_21452BXD43F859.6
158EGE10907-0229_21442BXD43M858.2
159EGE10907-0230_21443BXD50M699.4
160EGE10907-0231_21444BXD1F689.4
161EGE10907-0232_21445BXD1F689.6
162EGE10907-0233_21446BXD29M659.5
163EGE10907-0234_21447BXD29M6510
164EGE10907-0235_21448BXD75F6810
165EGE10907-0236_21449BXD75M6810
166EGE10907-0237_21450BXD96F679.9
167EGE10907-0238_21931BXD99M717.9
168EGE10907-0239_21932BXD99M719.7
169EGE10907-0240_21933BXD67F688.8
170EGE10907-0241_21934BXD67F688.5
171EGE10907-0242_21935BXD67M689.5
172EGE10907-0243_21936BXD67M689.6
173EGE10907-0244_21937BXD6F689.6
174EGE10907-0245_21938BXD12M829.5
175EGE10907-0246_21939BXD60F729.6
176EGE10907-0247_21940BXD65F759.1
177EGE10907-0248_21941BXD75F698.8
178EGE10907-0249_21942_(MoGene-2_0-st)BXD75M699.2
179EGE10907-0250_21943BXD8F979.1
180EGE10907-0251_21944BXD85F798.6
181EGE10907-0252_21945BXD85M799.1
182EGE10907-0253_21946BXD85M799.4
183EGE10907-0254_21947BXD102M948.6
184EGE10907-0255_21948BXD99F839
185EGE10907-0256_21949BXD69F689
186EGE10907-0257_21950BXD84F749.5
187EGE10907-0258_21951BXD84F749.4
188EGE10907-0259_21952BXD84M748.6
189EGE10907-0260_21451BXD96M679.2
190EGE10907-0261_21452BXD99F718.9
191EGE10907-0262_21931BXD6F669.4
192EGE10907-0263_21932BXD14F698.5
193EGE10907-0264_21933BXD34M799.1
194EGE10907-0265_21934BXD34M799.9
195EGE10907-0266_21935BXD40F759.6
196EGE10907-0267_21936BXD40M789.7
197EGE10907-0268_21937BXD56F729.7
198EGE10907-0269_21938BXD56F729.7
199EGE10907-0270_21939BXD56M729.6
200EGE10907-0271_21940BXD56M729.4
201EGE10907-0272_21941BXD71F729.9
202EGE10907-0273_21942BXD71F759.4
203EGE10907-0274_21943BXD71M7510
204EGE10907-0275_21944BXD71M7510
205EGE10907-0276_21945BXD27M6510
206EGE10907-0277_21946BXD15M6510
207EGE10907-0278_21947BXD20F12510
208EGE10907-0279_21948BXD29F7710
209EGE10907-0280_21949BXD29F7710
210EGE10907-0281_21950BXD34F7410
211EGE10907-0282_21951BXD34F7410
212EGE10907-0283_21952BXD85F8710
213EGE10907-0284_21451BXD43M759.8
+
+
diff --git a/general/datasets/Dodtatrcretblmogene2e_0316/citation.rtf b/general/datasets/Dodtatrcretblmogene2e_0316/citation.rtf new file mode 100644 index 0000000..d84717d --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2e_0316/citation.rtf @@ -0,0 +1,3 @@ +

Related Publications: Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link) Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674 Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link) Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.

+ +

Other Data Sets Users of these mouse retina data may also find the following complementary resources useful: NEIBank collection of ESTs and SAGE data. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases.

diff --git a/general/datasets/Dodtatrcretblmogene2e_0316/contributors.rtf b/general/datasets/Dodtatrcretblmogene2e_0316/contributors.rtf new file mode 100644 index 0000000..11fece2 --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2e_0316/contributors.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, XiangDi Wang, Justin P. Templeton and Robert W. Williams.

diff --git a/general/datasets/Dodtatrcretblmogene2e_0316/platform.rtf b/general/datasets/Dodtatrcretblmogene2e_0316/platform.rtf new file mode 100644 index 0000000..19fc38c --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2e_0316/platform.rtf @@ -0,0 +1 @@ +

The Affymetrics GeneChip&reg; Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. Nonetheless, there is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs.

diff --git a/general/datasets/Dodtatrcretblmogene2e_0316/processing.rtf b/general/datasets/Dodtatrcretblmogene2e_0316/processing.rtf new file mode 100644 index 0000000..a7b767e --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2e_0316/processing.rtf @@ -0,0 +1 @@ +

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/Dodtatrcretblmogene2e_0316/summary.rtf b/general/datasets/Dodtatrcretblmogene2e_0316/summary.rtf new file mode 100644 index 0000000..96a87e5 --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2e_0316/summary.rtf @@ -0,0 +1 @@ +

The DoD dataset was constructed using the Affymetrics GeneChip® Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. There is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs. This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.77 to 14.62, a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

diff --git a/general/datasets/Dodtatrcretblmogene2e_0316/tissue.rtf b/general/datasets/Dodtatrcretblmogene2e_0316/tissue.rtf new file mode 100644 index 0000000..056d7eb --- /dev/null +++ b/general/datasets/Dodtatrcretblmogene2e_0316/tissue.rtf @@ -0,0 +1 @@ +

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RiboLock (RiboLock: Thermo Scientific RiboLock RNase #EO0381 40U/&micro;l 2500U) at room temperature. Individual retinas from the mouse were stored in each tube. RNA was isolated using a Qiacube with the resultant RIN scores ranging from 8.5 to 10.0.

diff --git a/general/datasets/Dodtatrcretexmogene2_0315/cases.rtf b/general/datasets/Dodtatrcretexmogene2_0315/cases.rtf new file mode 100644 index 0000000..34f9530 --- /dev/null +++ b/general/datasets/Dodtatrcretexmogene2_0315/cases.rtf @@ -0,0 +1,9 @@ +

Almost all animals are young adults between 60 and 100 days of age (Table 1, minimum age is 60 and maximum age is 118 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J.

+ +

BXD strains:

+ + diff --git a/general/datasets/Dodtatrcretexmogene2_0315/contributors.rtf b/general/datasets/Dodtatrcretexmogene2_0315/contributors.rtf new file mode 100644 index 0000000..814bf91 --- /dev/null +++ b/general/datasets/Dodtatrcretexmogene2_0315/contributors.rtf @@ -0,0 +1,9 @@ +

Other Related Publications

+ +
    +
  1. Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link)
  2. +
  3. Freeman NE, Templeton JP, Orr WE, Lu L, Williams RW, Geisert EE (2011) Genetic networks in the mouse retina: Growth Associated Protein 43 and Phosphate Tensin Homology network. Molecular Vision 17:1355-1372.
  4. +
  5. Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674
  6. +
  7. Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link)
  8. +
  9. Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.(Link)
  10. +
diff --git a/general/datasets/Dodtatrcretexmogene2_0315/experiment-design.rtf b/general/datasets/Dodtatrcretexmogene2_0315/experiment-design.rtf new file mode 100644 index 0000000..b43e509 --- /dev/null +++ b/general/datasets/Dodtatrcretexmogene2_0315/experiment-design.rtf @@ -0,0 +1,3 @@ +

Sample Processing: Dr. XiangDi Wang (UTHSC) and Becky King (Emory) were involved in the retinal extractions and isolation of RNA. The Affymetrix arrays were run by two different research cores: the Molecular Resource Center at UTHSC (Dr. William Taylor Director) and the Integrated Genomics Core at Emory University by Robert B Isett (Dr. Michael E. Zwick, Director). In a separate set of experiments we could not detect any significant difference in the arrays run at UTHSC or at Emory University.

+ +

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/Dodtatrcretexmogene2_0315/notes.rtf b/general/datasets/Dodtatrcretexmogene2_0315/notes.rtf new file mode 100644 index 0000000..cb14c74 --- /dev/null +++ b/general/datasets/Dodtatrcretexmogene2_0315/notes.rtf @@ -0,0 +1,10 @@ +

Other Data Sets Users of these mouse retina data may also find the following complementary resources useful:

+ +
    +
  1. NEIBank collection of ESTs and SAGE data.
  2. +
  3. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases
  4. +
  5. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.
  6. +
  7. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus.
  8. +
  9. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430).
  10. +
  11. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.
  12. +
diff --git a/general/datasets/Dodtatrcretexmogene2_0315/platform.rtf b/general/datasets/Dodtatrcretexmogene2_0315/platform.rtf new file mode 100644 index 0000000..cb5e1b8 --- /dev/null +++ b/general/datasets/Dodtatrcretexmogene2_0315/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Gene 2.0 ST Array: These expression arrays have been designed with a median of 22 unique probes per transcript. Each unique probe is 25 bases in length, which means that the array measures a median of 550 bases per transcript. The arrays provide comprehensive transcriptome coverage with over 30,000 coding and non-coding transcripts. In addition there is coverage for 592 microRNAs. For some arrays the RNA was pooled from two retinas and for other arrays were run on a single retina.

diff --git a/general/datasets/Dodtatrcretexmogene2_0315/summary.rtf b/general/datasets/Dodtatrcretexmogene2_0315/summary.rtf new file mode 100644 index 0000000..b6cf222 --- /dev/null +++ b/general/datasets/Dodtatrcretexmogene2_0315/summary.rtf @@ -0,0 +1,5 @@ +

DoD TATRC Retina Dataset Affymetrix MouseGene 2.0 ST Array (____ 2015) RMA analysis and scaling by Arthur Centeno. This data set consists of 75 BXD strains, C57BL/6J, DBA/2J, both reciprocal F1s, and BALB/cByJ. A total of 80 strains were quantified. The data are now open and available for analysis.

+ +

This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strain was computed as the mean of four samples per strain. Expression values on a log2 scale range from 6.25 to 18.08 (11.83 units), a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean expression of the probes on the array of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

+ +

The lowest level of expression is 6.254 for ILMN_2747167 (Arhgap11a) from HEI Retina Illumina V6.2 (April 2010) RankInv **. Lowest single data about 5.842. The highest level of expression is 18.077 for ILMN_2516699 (Ubb). Highest single value is about 18.934.

diff --git a/general/datasets/Dodtatrcretexmogene2_0315/tissue.rtf b/general/datasets/Dodtatrcretexmogene2_0315/tissue.rtf new file mode 100644 index 0000000..87eb144 --- /dev/null +++ b/general/datasets/Dodtatrcretexmogene2_0315/tissue.rtf @@ -0,0 +1,13 @@ +

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in 1 ml of 160 U/ml Ribolock for 1 min at room temperature. Dissecting and preparing eyes for RNA extraction Retinas for RNA removed from the eye and placed in Hank’s Balanced Salt solution with RiboLock (Thermo Scientific RiboLock RNase #EO0381 40U/µl 2500U) and processed per manufacturer’s instructions (in brief form below).

+ +

1) Sample collection for RNA isolation.

+ +

2) Quickly remove the retinas with clean curved forceps after cervical dislocation of the mouse.

+ +

3) Put each retina in 1 ml of 160 U/ml Ribolock for 1 min in RT.

+ +

4) Move the retina to another tube with 50µl Ribolock, store in -80°C.

+ +

5) The RNA was isolated using a QiaCube and the in column DNAse procedure.

+ +

Quality Control: All RNA samples were checked for quality before running microarrays. The samples were analyzed using the Agilent 2100 Bioanalyzer. The RNA integrity values for each sample are presented in Table 1 below.

diff --git a/general/datasets/Dodtatrcretexmogene2_1313/acknowledgment.rtf b/general/datasets/Dodtatrcretexmogene2_1313/acknowledgment.rtf new file mode 100644 index 0000000..13c6b1e --- /dev/null +++ b/general/datasets/Dodtatrcretexmogene2_1313/acknowledgment.rtf @@ -0,0 +1 @@ +

DoD funding (W81XWH-12-0255) Genetic Networks Activated by Blast Injury to the Eye (Eldon E. Geisert).

diff --git a/general/datasets/Dodtatrcretexmogene2_1313/cases.rtf b/general/datasets/Dodtatrcretexmogene2_1313/cases.rtf new file mode 100644 index 0000000..6b36c70 --- /dev/null +++ b/general/datasets/Dodtatrcretexmogene2_1313/cases.rtf @@ -0,0 +1,1728 @@ +

Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 50 and maximum age is 134 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set.

+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexEIGC ID (LIMS ID)StrainSexAge at harvestRIN Score
1602BXD9F1339.1
2603BXD9M1009.5
3604BXD40F1009.4
4605BXD40M1009.1
5606BXD48F759.1
6607BXD48M758.6
7608BXD63F759.2
8609BXD63M619.4
9612BXD73M10810
10614BXD87M859.2
11615BXD87F859.9
12616BXD69F769.3
13617BXD69M10010
14618BXD51M828.9
15619BXD92 (BXD65b)M828.8
16620BXD92 (BXD65b)F828.8
17635BXD100M709
18636BXD100M708.8
19652BXD92 (BXD65b)F649
20653BXD87F679.7
21654BXD87M678.9
22655BXD63M719
23660BXD69M9710
24687BXD6M857.7
25688BXD6M859.4
26690BXD12F8310
27691BXD12F8310
28692BXD12M8310
29695BXD5F7710
30696BXD5M7710
31698BXD5F779.9
32699BXD5F7710
33701BXD8M7910
34702BXD8M7910
35705BXD8F779.2
36707BXD15F779.4
37708BXD15F779.1
38710BXD15M779.1
39713BXD22F719.5
40714BXD22F719.7
41716BXD22M719.1
42717BXD22M719.1
43719BXD14F709.2
44722BXD14M708.9
45723BXD14M709.2
46725BXD18F709
47726BXD18F709.1
48728BXD18M709.1
49729BXD18M709.2
50731BXD19F669.3
51732BXD19F669.4
52734BXD19M669.8
53735BXD19M669.4
54737BXD21F719.7
55738BXD21F719.6
56740BXD21M719.1
57741BXD21M719.7
58743BXD2F708.3
59744BXD2F708.6
60746BXD2M707.5
61747BXD2M778.6
62768BXD48M1219.4
63770BXD92 (BXD65b)M6510
64771BXD101F858.3
65772BXD101F859.3
66773BXD101M869.5
67774BXD101M869.8
68775BXD102F669.5
69776BXD102F6610
70777BXD102M849.6
71787BXD60M869.9
72788BXD60M869.9
73789BXD63F1159.7
74790BXD100F729.8
75791BXD100F7210
76818BXD51F779.7
77819BXD51F779.6
78820BXD51M729.7
79821BXD65M729.6
80822BXD65M659.5
81825BXD65F729.5
82827BXD86M699.1
83828BXD86M699.4
84829BXD90F699.6
85831BXD9M1279.7
86832BXD39F999.4
87833BXD39F1079.3
88834BXD60F1079.5
89836BXD84M1039.7
90846BXD39M639.7
91847BXD39M639.8
92849BXD20F7010
93850BXD20M7010
94851BXD20*709.5
95855DBA/2JF789.7
96856DBA/2JF7810
97857DBA/2JM7810
98858DBA/2JM789.9
99859C57BL/6JF7810
100860C57BL/6JF7810
101861C57BL/6JM7810
102862C57BL/6JM789.6
103EGE10907-0172_890_20844BXD28M7510
104EGE10907-0173_891_20845BXD28M759.7
105EGE10907-0174_892_20846BXD28F759.7
106EGE10907-0176_895_20848BXD33M759.88
107EGE10907-0177_896_20849BXD33F7510
108EGE10907-0178_897_20850BXD33F759.4
109EGE10907-0179_898_20851BXD36M759.4
110EGE10907-0180_899_20852BXD36F759.5
111EGE10907-0181_900_20853BXD36F759.1
112EGE10907-0182_910_20854BXD27M709.7
113EGE10907-0183_990_20855BXD9F989.4
114EGE10907-0184_991_20856BXD16F11310
115EGE10907-0185_992_20857BXD16M1139
116EGE10907-0186_993_20858BXD27F969.4
117EGE10907-0187_994_20859BXD27F969.4
118EGE10907-0188_996_20860BXD48F989.4
119EGE10907-0189_997_20861BXD73M10610
120EGE10907-0190_999_20862BXD11F1219.6
121EGE10907-0191_100_20863BXD11F1219.9
122EGE10907-0192_1010_21276BXD13M699.8
123EGE10907-0193_1011_21277BXD13M699.8
124EGE10907-0194_1012_21278BXD16F6510
125EGE10907-0195_1015_21279BXD16M6510
126EGE10907-0196_1019_21280BXD33M7510
127EGE10907-0197_1020_21281BXD36M7810
128EGE10907-0198_1021_21282BXD38F709.8
129EGE10907-0199_1022_21283BXD38F7010
130EGE10907-0200_1023_21284BXD38M709.7
131EGE10907-0201_1047_21285BXD11M6510
132EGE10907-0202_1048_21286BXD11M6510
133EGE10907-0203_1049_21287BXD38M7710
134EGE10907-0204_1050_21288BXD73F7010
135EGE10907-0205_1051_21289BXD73F7010
136EGE10907-0206_1052_21290BXD86F6910
137EGE10907-0207_1053_21291BXD86F6910
138EGE10907-0208_1054_21292BXD90F7110
139EGE10907-0209_1055_21293BXD90M7110
140EGE10907-0210_1056_21294BXD90M7110
141EGE10907-0211_1148_21295BXD31F9010
142EGE10907-0212_1149_21296BXD31F9010
143EGE10907-0213_1150_21297BXD31M9010
144EGE10907-0214_1151_21298BXD31M909.9
145EGE10907-0215_1152_21299BXD42F8310
146EGE10907-0216_21429BXD42F8310
147EGE10907-0217_21430BXD42M8310
148EGE10907-0218_21431BXD42M839.3
149EGE10907-0219_21432BXD50F929.6
150EGE10907-0220_21433BXD50F929.6
151EGE10907-0221_21434BXD50F9210
152EGE10907-0222_21435BXD1M739.6
153EGE10907-0223_21436BXD13F719.7
154EGE10907-0224_21437BXD1M719.5
155EGE10907-0225_21438BXD13F719.6
156EGE10907-0226_21439BXD43F8510
157EGE10907-0227_21452BXD43F859.6
158EGE10907-0229_21442BXD43M858.2
159EGE10907-0230_21443BXD50M699.4
160EGE10907-0231_21444BXD1F689.4
161EGE10907-0232_21445BXD1F689.6
162EGE10907-0233_21446BXD29M659.5
163EGE10907-0234_21447BXD29M6510
164EGE10907-0235_21448BXD75F6810
165EGE10907-0236_21449BXD75M6810
166EGE10907-0237_21450BXD96F679.9
167EGE10907-0238_21931BXD99M717.9
168EGE10907-0239_21932BXD99M719.7
169EGE10907-0240_21933BXD67F688.8
170EGE10907-0241_21934BXD67F688.5
171EGE10907-0242_21935BXD67M689.5
172EGE10907-0243_21936BXD67M689.6
173EGE10907-0244_21937BXD6F689.6
174EGE10907-0245_21938BXD12M829.5
175EGE10907-0246_21939BXD60F729.6
176EGE10907-0247_21940BXD65F759.1
177EGE10907-0248_21941BXD75F698.8
178EGE10907-0249_21942_(MoGene-2_0-st)BXD75M699.2
179EGE10907-0250_21943BXD8F979.1
180EGE10907-0251_21944BXD85F798.6
181EGE10907-0252_21945BXD85M799.1
182EGE10907-0253_21946BXD85M799.4
183EGE10907-0254_21947BXD102M948.6
184EGE10907-0255_21948BXD99F839
185EGE10907-0256_21949BXD69F689
186EGE10907-0257_21950BXD84F749.5
187EGE10907-0258_21951BXD84F749.4
188EGE10907-0259_21952BXD84M748.6
189EGE10907-0260_21451BXD96M679.2
190EGE10907-0261_21452BXD99F718.9
191EGE10907-0262_21931BXD6F669.4
192EGE10907-0263_21932BXD14F698.5
193EGE10907-0264_21933BXD34M799.1
194EGE10907-0265_21934BXD34M799.9
195EGE10907-0266_21935BXD40F759.6
196EGE10907-0267_21936BXD40M789.7
197EGE10907-0268_21937BXD56F729.7
198EGE10907-0269_21938BXD56F729.7
199EGE10907-0270_21939BXD56M729.6
200EGE10907-0271_21940BXD56M729.4
201EGE10907-0272_21941BXD71F729.9
202EGE10907-0273_21942BXD71F759.4
203EGE10907-0274_21943BXD71M7510
204EGE10907-0275_21944BXD71M7510
205EGE10907-0276_21945BXD27M6510
206EGE10907-0277_21946BXD15M6510
207EGE10907-0278_21947BXD20F12510
208EGE10907-0279_21948BXD29F7710
209EGE10907-0280_21949BXD29F7710
210EGE10907-0281_21950BXD34F7410
211EGE10907-0282_21951BXD34F7410
212EGE10907-0283_21952BXD85F8710
213EGE10907-0284_21451BXD43M759.8
+
+
diff --git a/general/datasets/Dodtatrcretexmogene2_1313/citation.rtf b/general/datasets/Dodtatrcretexmogene2_1313/citation.rtf new file mode 100644 index 0000000..d84717d --- /dev/null +++ b/general/datasets/Dodtatrcretexmogene2_1313/citation.rtf @@ -0,0 +1,3 @@ +

Related Publications: Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link) Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674 Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link) Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.

+ +

Other Data Sets Users of these mouse retina data may also find the following complementary resources useful: NEIBank collection of ESTs and SAGE data. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases.

diff --git a/general/datasets/Dodtatrcretexmogene2_1313/contributors.rtf b/general/datasets/Dodtatrcretexmogene2_1313/contributors.rtf new file mode 100644 index 0000000..11fece2 --- /dev/null +++ b/general/datasets/Dodtatrcretexmogene2_1313/contributors.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, XiangDi Wang, Justin P. Templeton and Robert W. Williams.

diff --git a/general/datasets/Dodtatrcretexmogene2_1313/platform.rtf b/general/datasets/Dodtatrcretexmogene2_1313/platform.rtf new file mode 100644 index 0000000..19fc38c --- /dev/null +++ b/general/datasets/Dodtatrcretexmogene2_1313/platform.rtf @@ -0,0 +1 @@ +

The Affymetrics GeneChip&reg; Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. Nonetheless, there is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs.

diff --git a/general/datasets/Dodtatrcretexmogene2_1313/processing.rtf b/general/datasets/Dodtatrcretexmogene2_1313/processing.rtf new file mode 100644 index 0000000..a7b767e --- /dev/null +++ b/general/datasets/Dodtatrcretexmogene2_1313/processing.rtf @@ -0,0 +1 @@ +

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/Dodtatrcretexmogene2_1313/summary.rtf b/general/datasets/Dodtatrcretexmogene2_1313/summary.rtf new file mode 100644 index 0000000..96a87e5 --- /dev/null +++ b/general/datasets/Dodtatrcretexmogene2_1313/summary.rtf @@ -0,0 +1 @@ +

The DoD dataset was constructed using the Affymetrics GeneChip® Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. There is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs. This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.77 to 14.62, a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

diff --git a/general/datasets/Dodtatrcretexmogene2_1313/tissue.rtf b/general/datasets/Dodtatrcretexmogene2_1313/tissue.rtf new file mode 100644 index 0000000..056d7eb --- /dev/null +++ b/general/datasets/Dodtatrcretexmogene2_1313/tissue.rtf @@ -0,0 +1 @@ +

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RiboLock (RiboLock: Thermo Scientific RiboLock RNase #EO0381 40U/&micro;l 2500U) at room temperature. Individual retinas from the mouse were stored in each tube. RNA was isolated using a Qiacube with the resultant RIN scores ranging from 8.5 to 10.0.

diff --git a/general/datasets/Dodtatrcretmogene2_0315/cases.rtf b/general/datasets/Dodtatrcretmogene2_0315/cases.rtf new file mode 100644 index 0000000..34f9530 --- /dev/null +++ b/general/datasets/Dodtatrcretmogene2_0315/cases.rtf @@ -0,0 +1,9 @@ +

Almost all animals are young adults between 60 and 100 days of age (Table 1, minimum age is 60 and maximum age is 118 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J.

+ +

BXD strains:

+ + diff --git a/general/datasets/Dodtatrcretmogene2_0315/contributors.rtf b/general/datasets/Dodtatrcretmogene2_0315/contributors.rtf new file mode 100644 index 0000000..814bf91 --- /dev/null +++ b/general/datasets/Dodtatrcretmogene2_0315/contributors.rtf @@ -0,0 +1,9 @@ +

Other Related Publications

+ +
    +
  1. Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link)
  2. +
  3. Freeman NE, Templeton JP, Orr WE, Lu L, Williams RW, Geisert EE (2011) Genetic networks in the mouse retina: Growth Associated Protein 43 and Phosphate Tensin Homology network. Molecular Vision 17:1355-1372.
  4. +
  5. Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674
  6. +
  7. Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link)
  8. +
  9. Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.(Link)
  10. +
diff --git a/general/datasets/Dodtatrcretmogene2_0315/experiment-design.rtf b/general/datasets/Dodtatrcretmogene2_0315/experiment-design.rtf new file mode 100644 index 0000000..b43e509 --- /dev/null +++ b/general/datasets/Dodtatrcretmogene2_0315/experiment-design.rtf @@ -0,0 +1,3 @@ +

Sample Processing: Dr. XiangDi Wang (UTHSC) and Becky King (Emory) were involved in the retinal extractions and isolation of RNA. The Affymetrix arrays were run by two different research cores: the Molecular Resource Center at UTHSC (Dr. William Taylor Director) and the Integrated Genomics Core at Emory University by Robert B Isett (Dr. Michael E. Zwick, Director). In a separate set of experiments we could not detect any significant difference in the arrays run at UTHSC or at Emory University.

+ +

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/Dodtatrcretmogene2_0315/notes.rtf b/general/datasets/Dodtatrcretmogene2_0315/notes.rtf new file mode 100644 index 0000000..cb14c74 --- /dev/null +++ b/general/datasets/Dodtatrcretmogene2_0315/notes.rtf @@ -0,0 +1,10 @@ +

Other Data Sets Users of these mouse retina data may also find the following complementary resources useful:

+ +
    +
  1. NEIBank collection of ESTs and SAGE data.
  2. +
  3. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases
  4. +
  5. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.
  6. +
  7. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus.
  8. +
  9. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430).
  10. +
  11. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.
  12. +
diff --git a/general/datasets/Dodtatrcretmogene2_0315/platform.rtf b/general/datasets/Dodtatrcretmogene2_0315/platform.rtf new file mode 100644 index 0000000..cb5e1b8 --- /dev/null +++ b/general/datasets/Dodtatrcretmogene2_0315/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Gene 2.0 ST Array: These expression arrays have been designed with a median of 22 unique probes per transcript. Each unique probe is 25 bases in length, which means that the array measures a median of 550 bases per transcript. The arrays provide comprehensive transcriptome coverage with over 30,000 coding and non-coding transcripts. In addition there is coverage for 592 microRNAs. For some arrays the RNA was pooled from two retinas and for other arrays were run on a single retina.

diff --git a/general/datasets/Dodtatrcretmogene2_0315/summary.rtf b/general/datasets/Dodtatrcretmogene2_0315/summary.rtf new file mode 100644 index 0000000..b6cf222 --- /dev/null +++ b/general/datasets/Dodtatrcretmogene2_0315/summary.rtf @@ -0,0 +1,5 @@ +

DoD TATRC Retina Dataset Affymetrix MouseGene 2.0 ST Array (____ 2015) RMA analysis and scaling by Arthur Centeno. This data set consists of 75 BXD strains, C57BL/6J, DBA/2J, both reciprocal F1s, and BALB/cByJ. A total of 80 strains were quantified. The data are now open and available for analysis.

+ +

This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strain was computed as the mean of four samples per strain. Expression values on a log2 scale range from 6.25 to 18.08 (11.83 units), a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean expression of the probes on the array of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

+ +

The lowest level of expression is 6.254 for ILMN_2747167 (Arhgap11a) from HEI Retina Illumina V6.2 (April 2010) RankInv **. Lowest single data about 5.842. The highest level of expression is 18.077 for ILMN_2516699 (Ubb). Highest single value is about 18.934.

diff --git a/general/datasets/Dodtatrcretmogene2_0315/tissue.rtf b/general/datasets/Dodtatrcretmogene2_0315/tissue.rtf new file mode 100644 index 0000000..87eb144 --- /dev/null +++ b/general/datasets/Dodtatrcretmogene2_0315/tissue.rtf @@ -0,0 +1,13 @@ +

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in 1 ml of 160 U/ml Ribolock for 1 min at room temperature. Dissecting and preparing eyes for RNA extraction Retinas for RNA removed from the eye and placed in Hank’s Balanced Salt solution with RiboLock (Thermo Scientific RiboLock RNase #EO0381 40U/µl 2500U) and processed per manufacturer’s instructions (in brief form below).

+ +

1) Sample collection for RNA isolation.

+ +

2) Quickly remove the retinas with clean curved forceps after cervical dislocation of the mouse.

+ +

3) Put each retina in 1 ml of 160 U/ml Ribolock for 1 min in RT.

+ +

4) Move the retina to another tube with 50µl Ribolock, store in -80°C.

+ +

5) The RNA was isolated using a QiaCube and the in column DNAse procedure.

+ +

Quality Control: All RNA samples were checked for quality before running microarrays. The samples were analyzed using the Agilent 2100 Bioanalyzer. The RNA integrity values for each sample are presented in Table 1 below.

diff --git a/general/datasets/Dodtatrcretmogene2_1313/acknowledgment.rtf b/general/datasets/Dodtatrcretmogene2_1313/acknowledgment.rtf new file mode 100644 index 0000000..13c6b1e --- /dev/null +++ b/general/datasets/Dodtatrcretmogene2_1313/acknowledgment.rtf @@ -0,0 +1 @@ +

DoD funding (W81XWH-12-0255) Genetic Networks Activated by Blast Injury to the Eye (Eldon E. Geisert).

diff --git a/general/datasets/Dodtatrcretmogene2_1313/cases.rtf b/general/datasets/Dodtatrcretmogene2_1313/cases.rtf new file mode 100644 index 0000000..6b36c70 --- /dev/null +++ b/general/datasets/Dodtatrcretmogene2_1313/cases.rtf @@ -0,0 +1,1728 @@ +

Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 50 and maximum age is 134 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set.

+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexEIGC ID (LIMS ID)StrainSexAge at harvestRIN Score
1602BXD9F1339.1
2603BXD9M1009.5
3604BXD40F1009.4
4605BXD40M1009.1
5606BXD48F759.1
6607BXD48M758.6
7608BXD63F759.2
8609BXD63M619.4
9612BXD73M10810
10614BXD87M859.2
11615BXD87F859.9
12616BXD69F769.3
13617BXD69M10010
14618BXD51M828.9
15619BXD92 (BXD65b)M828.8
16620BXD92 (BXD65b)F828.8
17635BXD100M709
18636BXD100M708.8
19652BXD92 (BXD65b)F649
20653BXD87F679.7
21654BXD87M678.9
22655BXD63M719
23660BXD69M9710
24687BXD6M857.7
25688BXD6M859.4
26690BXD12F8310
27691BXD12F8310
28692BXD12M8310
29695BXD5F7710
30696BXD5M7710
31698BXD5F779.9
32699BXD5F7710
33701BXD8M7910
34702BXD8M7910
35705BXD8F779.2
36707BXD15F779.4
37708BXD15F779.1
38710BXD15M779.1
39713BXD22F719.5
40714BXD22F719.7
41716BXD22M719.1
42717BXD22M719.1
43719BXD14F709.2
44722BXD14M708.9
45723BXD14M709.2
46725BXD18F709
47726BXD18F709.1
48728BXD18M709.1
49729BXD18M709.2
50731BXD19F669.3
51732BXD19F669.4
52734BXD19M669.8
53735BXD19M669.4
54737BXD21F719.7
55738BXD21F719.6
56740BXD21M719.1
57741BXD21M719.7
58743BXD2F708.3
59744BXD2F708.6
60746BXD2M707.5
61747BXD2M778.6
62768BXD48M1219.4
63770BXD92 (BXD65b)M6510
64771BXD101F858.3
65772BXD101F859.3
66773BXD101M869.5
67774BXD101M869.8
68775BXD102F669.5
69776BXD102F6610
70777BXD102M849.6
71787BXD60M869.9
72788BXD60M869.9
73789BXD63F1159.7
74790BXD100F729.8
75791BXD100F7210
76818BXD51F779.7
77819BXD51F779.6
78820BXD51M729.7
79821BXD65M729.6
80822BXD65M659.5
81825BXD65F729.5
82827BXD86M699.1
83828BXD86M699.4
84829BXD90F699.6
85831BXD9M1279.7
86832BXD39F999.4
87833BXD39F1079.3
88834BXD60F1079.5
89836BXD84M1039.7
90846BXD39M639.7
91847BXD39M639.8
92849BXD20F7010
93850BXD20M7010
94851BXD20*709.5
95855DBA/2JF789.7
96856DBA/2JF7810
97857DBA/2JM7810
98858DBA/2JM789.9
99859C57BL/6JF7810
100860C57BL/6JF7810
101861C57BL/6JM7810
102862C57BL/6JM789.6
103EGE10907-0172_890_20844BXD28M7510
104EGE10907-0173_891_20845BXD28M759.7
105EGE10907-0174_892_20846BXD28F759.7
106EGE10907-0176_895_20848BXD33M759.88
107EGE10907-0177_896_20849BXD33F7510
108EGE10907-0178_897_20850BXD33F759.4
109EGE10907-0179_898_20851BXD36M759.4
110EGE10907-0180_899_20852BXD36F759.5
111EGE10907-0181_900_20853BXD36F759.1
112EGE10907-0182_910_20854BXD27M709.7
113EGE10907-0183_990_20855BXD9F989.4
114EGE10907-0184_991_20856BXD16F11310
115EGE10907-0185_992_20857BXD16M1139
116EGE10907-0186_993_20858BXD27F969.4
117EGE10907-0187_994_20859BXD27F969.4
118EGE10907-0188_996_20860BXD48F989.4
119EGE10907-0189_997_20861BXD73M10610
120EGE10907-0190_999_20862BXD11F1219.6
121EGE10907-0191_100_20863BXD11F1219.9
122EGE10907-0192_1010_21276BXD13M699.8
123EGE10907-0193_1011_21277BXD13M699.8
124EGE10907-0194_1012_21278BXD16F6510
125EGE10907-0195_1015_21279BXD16M6510
126EGE10907-0196_1019_21280BXD33M7510
127EGE10907-0197_1020_21281BXD36M7810
128EGE10907-0198_1021_21282BXD38F709.8
129EGE10907-0199_1022_21283BXD38F7010
130EGE10907-0200_1023_21284BXD38M709.7
131EGE10907-0201_1047_21285BXD11M6510
132EGE10907-0202_1048_21286BXD11M6510
133EGE10907-0203_1049_21287BXD38M7710
134EGE10907-0204_1050_21288BXD73F7010
135EGE10907-0205_1051_21289BXD73F7010
136EGE10907-0206_1052_21290BXD86F6910
137EGE10907-0207_1053_21291BXD86F6910
138EGE10907-0208_1054_21292BXD90F7110
139EGE10907-0209_1055_21293BXD90M7110
140EGE10907-0210_1056_21294BXD90M7110
141EGE10907-0211_1148_21295BXD31F9010
142EGE10907-0212_1149_21296BXD31F9010
143EGE10907-0213_1150_21297BXD31M9010
144EGE10907-0214_1151_21298BXD31M909.9
145EGE10907-0215_1152_21299BXD42F8310
146EGE10907-0216_21429BXD42F8310
147EGE10907-0217_21430BXD42M8310
148EGE10907-0218_21431BXD42M839.3
149EGE10907-0219_21432BXD50F929.6
150EGE10907-0220_21433BXD50F929.6
151EGE10907-0221_21434BXD50F9210
152EGE10907-0222_21435BXD1M739.6
153EGE10907-0223_21436BXD13F719.7
154EGE10907-0224_21437BXD1M719.5
155EGE10907-0225_21438BXD13F719.6
156EGE10907-0226_21439BXD43F8510
157EGE10907-0227_21452BXD43F859.6
158EGE10907-0229_21442BXD43M858.2
159EGE10907-0230_21443BXD50M699.4
160EGE10907-0231_21444BXD1F689.4
161EGE10907-0232_21445BXD1F689.6
162EGE10907-0233_21446BXD29M659.5
163EGE10907-0234_21447BXD29M6510
164EGE10907-0235_21448BXD75F6810
165EGE10907-0236_21449BXD75M6810
166EGE10907-0237_21450BXD96F679.9
167EGE10907-0238_21931BXD99M717.9
168EGE10907-0239_21932BXD99M719.7
169EGE10907-0240_21933BXD67F688.8
170EGE10907-0241_21934BXD67F688.5
171EGE10907-0242_21935BXD67M689.5
172EGE10907-0243_21936BXD67M689.6
173EGE10907-0244_21937BXD6F689.6
174EGE10907-0245_21938BXD12M829.5
175EGE10907-0246_21939BXD60F729.6
176EGE10907-0247_21940BXD65F759.1
177EGE10907-0248_21941BXD75F698.8
178EGE10907-0249_21942_(MoGene-2_0-st)BXD75M699.2
179EGE10907-0250_21943BXD8F979.1
180EGE10907-0251_21944BXD85F798.6
181EGE10907-0252_21945BXD85M799.1
182EGE10907-0253_21946BXD85M799.4
183EGE10907-0254_21947BXD102M948.6
184EGE10907-0255_21948BXD99F839
185EGE10907-0256_21949BXD69F689
186EGE10907-0257_21950BXD84F749.5
187EGE10907-0258_21951BXD84F749.4
188EGE10907-0259_21952BXD84M748.6
189EGE10907-0260_21451BXD96M679.2
190EGE10907-0261_21452BXD99F718.9
191EGE10907-0262_21931BXD6F669.4
192EGE10907-0263_21932BXD14F698.5
193EGE10907-0264_21933BXD34M799.1
194EGE10907-0265_21934BXD34M799.9
195EGE10907-0266_21935BXD40F759.6
196EGE10907-0267_21936BXD40M789.7
197EGE10907-0268_21937BXD56F729.7
198EGE10907-0269_21938BXD56F729.7
199EGE10907-0270_21939BXD56M729.6
200EGE10907-0271_21940BXD56M729.4
201EGE10907-0272_21941BXD71F729.9
202EGE10907-0273_21942BXD71F759.4
203EGE10907-0274_21943BXD71M7510
204EGE10907-0275_21944BXD71M7510
205EGE10907-0276_21945BXD27M6510
206EGE10907-0277_21946BXD15M6510
207EGE10907-0278_21947BXD20F12510
208EGE10907-0279_21948BXD29F7710
209EGE10907-0280_21949BXD29F7710
210EGE10907-0281_21950BXD34F7410
211EGE10907-0282_21951BXD34F7410
212EGE10907-0283_21952BXD85F8710
213EGE10907-0284_21451BXD43M759.8
+
+
diff --git a/general/datasets/Dodtatrcretmogene2_1313/citation.rtf b/general/datasets/Dodtatrcretmogene2_1313/citation.rtf new file mode 100644 index 0000000..d84717d --- /dev/null +++ b/general/datasets/Dodtatrcretmogene2_1313/citation.rtf @@ -0,0 +1,3 @@ +

Related Publications: Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link) Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674 Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link) Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.

+ +

Other Data Sets Users of these mouse retina data may also find the following complementary resources useful: NEIBank collection of ESTs and SAGE data. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases.

diff --git a/general/datasets/Dodtatrcretmogene2_1313/contributors.rtf b/general/datasets/Dodtatrcretmogene2_1313/contributors.rtf new file mode 100644 index 0000000..11fece2 --- /dev/null +++ b/general/datasets/Dodtatrcretmogene2_1313/contributors.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, XiangDi Wang, Justin P. Templeton and Robert W. Williams.

diff --git a/general/datasets/Dodtatrcretmogene2_1313/platform.rtf b/general/datasets/Dodtatrcretmogene2_1313/platform.rtf new file mode 100644 index 0000000..19fc38c --- /dev/null +++ b/general/datasets/Dodtatrcretmogene2_1313/platform.rtf @@ -0,0 +1 @@ +

The Affymetrics GeneChip&reg; Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. Nonetheless, there is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs.

diff --git a/general/datasets/Dodtatrcretmogene2_1313/processing.rtf b/general/datasets/Dodtatrcretmogene2_1313/processing.rtf new file mode 100644 index 0000000..a7b767e --- /dev/null +++ b/general/datasets/Dodtatrcretmogene2_1313/processing.rtf @@ -0,0 +1 @@ +

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

diff --git a/general/datasets/Dodtatrcretmogene2_1313/summary.rtf b/general/datasets/Dodtatrcretmogene2_1313/summary.rtf new file mode 100644 index 0000000..96a87e5 --- /dev/null +++ b/general/datasets/Dodtatrcretmogene2_1313/summary.rtf @@ -0,0 +1 @@ +

The DoD dataset was constructed using the Affymetrics GeneChip® Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. There is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs. This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.77 to 14.62, a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

diff --git a/general/datasets/Dodtatrcretmogene2_1313/tissue.rtf b/general/datasets/Dodtatrcretmogene2_1313/tissue.rtf new file mode 100644 index 0000000..056d7eb --- /dev/null +++ b/general/datasets/Dodtatrcretmogene2_1313/tissue.rtf @@ -0,0 +1 @@ +

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RiboLock (RiboLock: Thermo Scientific RiboLock RNase #EO0381 40U/&micro;l 2500U) at room temperature. Individual retinas from the mouse were stored in each tube. RNA was isolated using a Qiacube with the resultant RIN scores ranging from 8.5 to 10.0.

diff --git a/general/datasets/EBI_MKK_Liv_TPM_Log2_0621/acknowledgment.rtf b/general/datasets/EBI_MKK_Liv_TPM_Log2_0621/acknowledgment.rtf deleted file mode 100644 index 44b9d93..0000000 --- a/general/datasets/EBI_MKK_Liv_TPM_Log2_0621/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The authors acknowledge Thomas Seitz, and Irina Oks and Marzena Majewski for supporting the fish husbandry, and Alicia Günthel, Rachel Müller and Beate Wittbrodt for laboratory assistance. F.L. dedicates this paper to Sabine and Rolf Loosli-Walther. The work was funded by the Helmholtz funding programme BIFTM to F. Loosli, N. Wolf, N. Kusminski, C. Herder and N. Aadepu. E. Birney, T. Fitzgerald, A. Leger, C. Barton, J. Monahan and I. Brettell were funded by the EMBL European Bioinformatics Institute (EMBL-EBI). This work was supported by Heidelberg University Core Funding to T. Tavhelidse, T. Thumberger and J. Wittbrodt. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810172), from the NIH UH-3338-03 (JW), the German Ministry for Research (BMBF: HIGH-life 05K19VH1, Code-Vita 05K16VH1, JW) and the German Center for Heart Diseases DZHK (JW, JG).

diff --git a/general/datasets/EBI_MKK_Liv_TPM_Log2_0621/specifics.rtf b/general/datasets/EBI_MKK_Liv_TPM_Log2_0621/specifics.rtf deleted file mode 100644 index 16aad9e..0000000 --- a/general/datasets/EBI_MKK_Liv_TPM_Log2_0621/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -EBI MIKK Liver Male RNA-Seq (May 21) Log2 TPM \ No newline at end of file diff --git a/general/datasets/EBI_MKK_Liv_TPM_Log2_0621/summary.rtf b/general/datasets/EBI_MKK_Liv_TPM_Log2_0621/summary.rtf deleted file mode 100644 index d931cbf..0000000 --- a/general/datasets/EBI_MKK_Liv_TPM_Log2_0621/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Full paper available at https://www.biorxiv.org/content/10.1101/2021.05.17.444412v2.full

- -

Unraveling the relationship between genetic variation and phenotypic traits remains a fundamental challenge in biology. Mapping variants underlying complex traits while controlling for confounding environmental factors is often problematic. To address this, we have established a vertebrate genetic resource specifically to allow for robust genotype-to-phenotype investigations. The teleost medaka (Oryzias latipes) is an established genetic model system with a long history of genetic research and a high tolerance to inbreeding from the wild. Here we present the Medaka Inbred Kiyosu-Karlsruhe (MIKK) panel: the first near-isogenic panel of 80 inbred lines in a vertebrate model derived from a wild founder population. Inbred lines provide fixed genomes that are a prerequisite for the replication of studies, studies which vary both the genetics and environment in a controlled manner and functional testing. The MIKK panel will therefore enable phenotype-to-genotype association studies of complex genetic traits while allowing for careful control of interacting factors, with numerous applications in genetic research, human health, and drug development and fundamental biology. Here we present a detailed characterisation of the genetic variation across the MIKK panel, which provides a rich and unique genetic resource to the community by enabling large-scale experiments for mapping complex traits.

diff --git a/general/datasets/EBI_MKK_Liv_TPM_Log2_0621/tissue.rtf b/general/datasets/EBI_MKK_Liv_TPM_Log2_0621/tissue.rtf deleted file mode 100644 index 4e277e5..0000000 --- a/general/datasets/EBI_MKK_Liv_TPM_Log2_0621/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

For whole genome sequencing, medaka organs were dissected from 6-month-old male adults. Fish were sacrificed by hypothermic shock. The brain was dissected and shock frozen in liquid nitrogen. For RNAseq analysis 12 month old adults that were kept at either 14 light:10 dark (summer condition) or 10 light:14 dark (winter condition) light cycles respectively were sacrificed by hypothermic shock and the organs after dissection were shock frozen in liquid nitrogen.

diff --git a/general/datasets/EL_BXDCDHFDScWAT_0216/acknowledgment.rtf b/general/datasets/EL_BXDCDHFDScWAT_0216/acknowledgment.rtf deleted file mode 100644 index 3fc4fc5..0000000 --- a/general/datasets/EL_BXDCDHFDScWAT_0216/acknowledgment.rtf +++ /dev/null @@ -1,11 +0,0 @@ -
- - - - - - -
-

The authors thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays.

-
-
diff --git a/general/datasets/EL_BXDCDHFDScWAT_0216/cases.rtf b/general/datasets/EL_BXDCDHFDScWAT_0216/cases.rtf deleted file mode 100644 index f54f4f2..0000000 --- a/general/datasets/EL_BXDCDHFDScWAT_0216/cases.rtf +++ /dev/null @@ -1,11 +0,0 @@ -
- - - - - - -
-

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, allowing the animals to rest and reduce the direct expression effects of the phenotyping tests. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. Subcuteaneous white adipose tissue was collected near the end of the sacrifice pipeline, occurring an estimated 10±2 minutes after sacrifice. The tissue was weighed and then placed in a storage tube in liquid nitrogen.

-
-
diff --git a/general/datasets/EL_BXDCDHFDScWAT_0216/experiment-design.rtf b/general/datasets/EL_BXDCDHFDScWAT_0216/experiment-design.rtf deleted file mode 100644 index b417b79..0000000 --- a/general/datasets/EL_BXDCDHFDScWAT_0216/experiment-design.rtf +++ /dev/null @@ -1,11 +0,0 @@ -
- - - - - - -
-

All animals were communally housed by strain until phenotyping and fed a chow diet (CD; (Harlan 2018; 6% kCal/fat, 20% kCal/protein, 74% kCal/carbohydrate) throughout life after weaning until sacrifice at around 29 weeks of age, or a high fat diet (HFD; Harlan TD.06414 60% kcal/fat, 20% protein, 20% carbohydrate) after 8 weeks of age until sacrifice around 29 weeks of age. All BXD strains (BXD43–103) were originally sourced from the vivarium at the University of Tennessee Health Science Center (Memphis, TN, USA) then bred for two or more generations until progeny entered the phenotyping colony. C57BL/6J and DBA/2J were sourced from Janvier, which re-sources its “J” lines every 10 generations from The Jackson Laboratory. For tissue collection on CD and HFD BXD cohorts, animals were sacrificed under isoflurane anesthesia and cardiac perfusion after an overnight fast. High fat diet treatment and two day isolation for the recording experiment were considered as having low impact on the animals’ welfare, while all other measurements and conditions were considered as having no negative impact. All research was approved by the Swiss cantonal veterinary authorities of Vaud under licenses 2257.0 and 2257.1. 

-
-
diff --git a/general/datasets/EL_BXDCDHFDScWAT_0216/platform.rtf b/general/datasets/EL_BXDCDHFDScWAT_0216/platform.rtf deleted file mode 100644 index 066be8d..0000000 --- a/general/datasets/EL_BXDCDHFDScWAT_0216/platform.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

GeneChip Mouse Transcriptome Assay 1.0

- -

All arrays were Affymetrix Mouse Transcriptome Assay 1.0, prepared and run simultaneously in a single batch in January 2016 by Lorne Rose at the University of Tennessee Health Science Center.

- -

Data error checked by RW Williams and David Ashbrook (March 2019). Numerous strain assignment corrections to HFD limb of study. Finally eQTL analysis validates both CD and HFD components. 

diff --git a/general/datasets/EL_BXDCDHFDScWAT_0216/processing.rtf b/general/datasets/EL_BXDCDHFDScWAT_0216/processing.rtf deleted file mode 100644 index 5dbb444..0000000 --- a/general/datasets/EL_BXDCDHFDScWAT_0216/processing.rtf +++ /dev/null @@ -1,11 +0,0 @@ -
- - - - - - -
-

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

-
-
diff --git a/general/datasets/EL_BXDCDHFDScWAT_0216/specifics.rtf b/general/datasets/EL_BXDCDHFDScWAT_0216/specifics.rtf deleted file mode 100644 index e6f6b94..0000000 --- a/general/datasets/EL_BXDCDHFDScWAT_0216/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -

Note: As of March 2019, this data set also affected by strain assignment errors in HFD limb. Needs to be fixed by Evan Williams, Arthur Centeno, and Rob Williams 

diff --git a/general/datasets/EL_BXDCDHFDScWAT_0216/summary.rtf b/general/datasets/EL_BXDCDHFDScWAT_0216/summary.rtf deleted file mode 100644 index 6c2d77a..0000000 --- a/general/datasets/EL_BXDCDHFDScWAT_0216/summary.rtf +++ /dev/null @@ -1,11 +0,0 @@ -
- - - - - - -
-

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. In this study, we examined both genetic variants across 40 strains of BXD and the two founder lines, in addition to a major environmental influence—long term feeding with chow diet (CD) or high fat diet (HFD)—to see how metabolic gene expression varies by genotype and environment, and gene-by-environment interactions. The basic heart phenotypes quantified in these cohorts were not affected by HFD feeding (e.g. blood pressure and heart rate). 

- Microarray data for four other tissues in the exact same cohorts was processed and is in GeneNetwork: Heart, Liver, Muscle [Quadriceps], and Adipose [Brown]. Proteomic data for one other tissue in the exact same cohorts was processed and is in GeneNetwork: Liver. Metabolomic data for two tissues in the same cohorts was processed and is in GeneNetwork: Liver and Muscle [Quadriceps]. Brown Adipose was only run in CD cohorts, while all other datasets were run on both diets. All phenotype data associated with these animals can be found by searching Phenotypes for the code “LISP3”. Note that some traits are still private, while others have been published.
-
diff --git a/general/datasets/EL_BXDCDHFDScWAT_0216/tissue.rtf b/general/datasets/EL_BXDCDHFDScWAT_0216/tissue.rtf deleted file mode 100644 index e595c55..0000000 --- a/general/datasets/EL_BXDCDHFDScWAT_0216/tissue.rtf +++ /dev/null @@ -1,11 +0,0 @@ -
- - - - - - -
-

Subcuteaneous WAT was later shattered in liquid nitrogen, and around 100 mg was taken for preparation. All ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. The pooled RNA samples were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. RNA was prepared in the summer of 2013, while the RNEasy cleanup occurred in the winter of 2015; unlike the other tissues run as a part of this study, these RNA samples spent a significant time in the -80° freezers. However, the samples only underwent one freeze—thaw cycle.

-
-
diff --git a/general/datasets/EL_BXDCDScWAT_0216/acknowledgment.rtf b/general/datasets/EL_BXDCDScWAT_0216/acknowledgment.rtf deleted file mode 100644 index 3fc4fc5..0000000 --- a/general/datasets/EL_BXDCDScWAT_0216/acknowledgment.rtf +++ /dev/null @@ -1,11 +0,0 @@ -
- - - - - - -
-

The authors thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays.

-
-
diff --git a/general/datasets/EL_BXDCDScWAT_0216/cases.rtf b/general/datasets/EL_BXDCDScWAT_0216/cases.rtf deleted file mode 100644 index f54f4f2..0000000 --- a/general/datasets/EL_BXDCDScWAT_0216/cases.rtf +++ /dev/null @@ -1,11 +0,0 @@ -
- - - - - - -
-

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, allowing the animals to rest and reduce the direct expression effects of the phenotyping tests. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. Subcuteaneous white adipose tissue was collected near the end of the sacrifice pipeline, occurring an estimated 10±2 minutes after sacrifice. The tissue was weighed and then placed in a storage tube in liquid nitrogen.

-
-
diff --git a/general/datasets/EL_BXDCDScWAT_0216/experiment-design.rtf b/general/datasets/EL_BXDCDScWAT_0216/experiment-design.rtf deleted file mode 100644 index b417b79..0000000 --- a/general/datasets/EL_BXDCDScWAT_0216/experiment-design.rtf +++ /dev/null @@ -1,11 +0,0 @@ -
- - - - - - -
-

All animals were communally housed by strain until phenotyping and fed a chow diet (CD; (Harlan 2018; 6% kCal/fat, 20% kCal/protein, 74% kCal/carbohydrate) throughout life after weaning until sacrifice at around 29 weeks of age, or a high fat diet (HFD; Harlan TD.06414 60% kcal/fat, 20% protein, 20% carbohydrate) after 8 weeks of age until sacrifice around 29 weeks of age. All BXD strains (BXD43–103) were originally sourced from the vivarium at the University of Tennessee Health Science Center (Memphis, TN, USA) then bred for two or more generations until progeny entered the phenotyping colony. C57BL/6J and DBA/2J were sourced from Janvier, which re-sources its “J” lines every 10 generations from The Jackson Laboratory. For tissue collection on CD and HFD BXD cohorts, animals were sacrificed under isoflurane anesthesia and cardiac perfusion after an overnight fast. High fat diet treatment and two day isolation for the recording experiment were considered as having low impact on the animals’ welfare, while all other measurements and conditions were considered as having no negative impact. All research was approved by the Swiss cantonal veterinary authorities of Vaud under licenses 2257.0 and 2257.1. 

-
-
diff --git a/general/datasets/EL_BXDCDScWAT_0216/platform.rtf b/general/datasets/EL_BXDCDScWAT_0216/platform.rtf deleted file mode 100644 index 066be8d..0000000 --- a/general/datasets/EL_BXDCDScWAT_0216/platform.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

GeneChip Mouse Transcriptome Assay 1.0

- -

All arrays were Affymetrix Mouse Transcriptome Assay 1.0, prepared and run simultaneously in a single batch in January 2016 by Lorne Rose at the University of Tennessee Health Science Center.

- -

Data error checked by RW Williams and David Ashbrook (March 2019). Numerous strain assignment corrections to HFD limb of study. Finally eQTL analysis validates both CD and HFD components. 

diff --git a/general/datasets/EL_BXDCDScWAT_0216/processing.rtf b/general/datasets/EL_BXDCDScWAT_0216/processing.rtf deleted file mode 100644 index 5dbb444..0000000 --- a/general/datasets/EL_BXDCDScWAT_0216/processing.rtf +++ /dev/null @@ -1,11 +0,0 @@ -
- - - - - - -
-

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

-
-
diff --git a/general/datasets/EL_BXDCDScWAT_0216/summary.rtf b/general/datasets/EL_BXDCDScWAT_0216/summary.rtf deleted file mode 100644 index 6c2d77a..0000000 --- a/general/datasets/EL_BXDCDScWAT_0216/summary.rtf +++ /dev/null @@ -1,11 +0,0 @@ -
- - - - - - -
-

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. In this study, we examined both genetic variants across 40 strains of BXD and the two founder lines, in addition to a major environmental influence—long term feeding with chow diet (CD) or high fat diet (HFD)—to see how metabolic gene expression varies by genotype and environment, and gene-by-environment interactions. The basic heart phenotypes quantified in these cohorts were not affected by HFD feeding (e.g. blood pressure and heart rate). 

- Microarray data for four other tissues in the exact same cohorts was processed and is in GeneNetwork: Heart, Liver, Muscle [Quadriceps], and Adipose [Brown]. Proteomic data for one other tissue in the exact same cohorts was processed and is in GeneNetwork: Liver. Metabolomic data for two tissues in the same cohorts was processed and is in GeneNetwork: Liver and Muscle [Quadriceps]. Brown Adipose was only run in CD cohorts, while all other datasets were run on both diets. All phenotype data associated with these animals can be found by searching Phenotypes for the code “LISP3”. Note that some traits are still private, while others have been published.
-
diff --git a/general/datasets/EL_BXDCDScWAT_0216/tissue.rtf b/general/datasets/EL_BXDCDScWAT_0216/tissue.rtf deleted file mode 100644 index e595c55..0000000 --- a/general/datasets/EL_BXDCDScWAT_0216/tissue.rtf +++ /dev/null @@ -1,11 +0,0 @@ -
- - - - - - -
-

Subcuteaneous WAT was later shattered in liquid nitrogen, and around 100 mg was taken for preparation. All ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. The pooled RNA samples were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. RNA was prepared in the summer of 2013, while the RNEasy cleanup occurred in the winter of 2015; unlike the other tissues run as a part of this study, these RNA samples spent a significant time in the -80° freezers. However, the samples only underwent one freeze—thaw cycle.

-
-
diff --git a/general/datasets/EL_BXDHFDScWAT_0216/acknowledgment.rtf b/general/datasets/EL_BXDHFDScWAT_0216/acknowledgment.rtf deleted file mode 100644 index 3fc4fc5..0000000 --- a/general/datasets/EL_BXDHFDScWAT_0216/acknowledgment.rtf +++ /dev/null @@ -1,11 +0,0 @@ -
- - - - - - -
-

The authors thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays.

-
-
diff --git a/general/datasets/EL_BXDHFDScWAT_0216/cases.rtf b/general/datasets/EL_BXDHFDScWAT_0216/cases.rtf deleted file mode 100644 index f54f4f2..0000000 --- a/general/datasets/EL_BXDHFDScWAT_0216/cases.rtf +++ /dev/null @@ -1,11 +0,0 @@ -
- - - - - - -
-

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, allowing the animals to rest and reduce the direct expression effects of the phenotyping tests. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. Subcuteaneous white adipose tissue was collected near the end of the sacrifice pipeline, occurring an estimated 10±2 minutes after sacrifice. The tissue was weighed and then placed in a storage tube in liquid nitrogen.

-
-
diff --git a/general/datasets/EL_BXDHFDScWAT_0216/experiment-design.rtf b/general/datasets/EL_BXDHFDScWAT_0216/experiment-design.rtf deleted file mode 100644 index b417b79..0000000 --- a/general/datasets/EL_BXDHFDScWAT_0216/experiment-design.rtf +++ /dev/null @@ -1,11 +0,0 @@ -
- - - - - - -
-

All animals were communally housed by strain until phenotyping and fed a chow diet (CD; (Harlan 2018; 6% kCal/fat, 20% kCal/protein, 74% kCal/carbohydrate) throughout life after weaning until sacrifice at around 29 weeks of age, or a high fat diet (HFD; Harlan TD.06414 60% kcal/fat, 20% protein, 20% carbohydrate) after 8 weeks of age until sacrifice around 29 weeks of age. All BXD strains (BXD43–103) were originally sourced from the vivarium at the University of Tennessee Health Science Center (Memphis, TN, USA) then bred for two or more generations until progeny entered the phenotyping colony. C57BL/6J and DBA/2J were sourced from Janvier, which re-sources its “J” lines every 10 generations from The Jackson Laboratory. For tissue collection on CD and HFD BXD cohorts, animals were sacrificed under isoflurane anesthesia and cardiac perfusion after an overnight fast. High fat diet treatment and two day isolation for the recording experiment were considered as having low impact on the animals’ welfare, while all other measurements and conditions were considered as having no negative impact. All research was approved by the Swiss cantonal veterinary authorities of Vaud under licenses 2257.0 and 2257.1. 

-
-
diff --git a/general/datasets/EL_BXDHFDScWAT_0216/platform.rtf b/general/datasets/EL_BXDHFDScWAT_0216/platform.rtf deleted file mode 100644 index 066be8d..0000000 --- a/general/datasets/EL_BXDHFDScWAT_0216/platform.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

GeneChip Mouse Transcriptome Assay 1.0

- -

All arrays were Affymetrix Mouse Transcriptome Assay 1.0, prepared and run simultaneously in a single batch in January 2016 by Lorne Rose at the University of Tennessee Health Science Center.

- -

Data error checked by RW Williams and David Ashbrook (March 2019). Numerous strain assignment corrections to HFD limb of study. Finally eQTL analysis validates both CD and HFD components. 

diff --git a/general/datasets/EL_BXDHFDScWAT_0216/processing.rtf b/general/datasets/EL_BXDHFDScWAT_0216/processing.rtf deleted file mode 100644 index 5dbb444..0000000 --- a/general/datasets/EL_BXDHFDScWAT_0216/processing.rtf +++ /dev/null @@ -1,11 +0,0 @@ -
- - - - - - -
-

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

-
-
diff --git a/general/datasets/EL_BXDHFDScWAT_0216/specifics.rtf b/general/datasets/EL_BXDHFDScWAT_0216/specifics.rtf deleted file mode 100644 index 276d19a..0000000 --- a/general/datasets/EL_BXDHFDScWAT_0216/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -

Note: Prior to March 2019, the HFD component of this data set had strain assignment error. Now fully corrected.

diff --git a/general/datasets/EL_BXDHFDScWAT_0216/summary.rtf b/general/datasets/EL_BXDHFDScWAT_0216/summary.rtf deleted file mode 100644 index 6c2d77a..0000000 --- a/general/datasets/EL_BXDHFDScWAT_0216/summary.rtf +++ /dev/null @@ -1,11 +0,0 @@ -
- - - - - - -
-

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. In this study, we examined both genetic variants across 40 strains of BXD and the two founder lines, in addition to a major environmental influence—long term feeding with chow diet (CD) or high fat diet (HFD)—to see how metabolic gene expression varies by genotype and environment, and gene-by-environment interactions. The basic heart phenotypes quantified in these cohorts were not affected by HFD feeding (e.g. blood pressure and heart rate). 

- Microarray data for four other tissues in the exact same cohorts was processed and is in GeneNetwork: Heart, Liver, Muscle [Quadriceps], and Adipose [Brown]. Proteomic data for one other tissue in the exact same cohorts was processed and is in GeneNetwork: Liver. Metabolomic data for two tissues in the same cohorts was processed and is in GeneNetwork: Liver and Muscle [Quadriceps]. Brown Adipose was only run in CD cohorts, while all other datasets were run on both diets. All phenotype data associated with these animals can be found by searching Phenotypes for the code “LISP3”. Note that some traits are still private, while others have been published.
-
diff --git a/general/datasets/EL_BXDHFDScWAT_0216/tissue.rtf b/general/datasets/EL_BXDHFDScWAT_0216/tissue.rtf deleted file mode 100644 index e595c55..0000000 --- a/general/datasets/EL_BXDHFDScWAT_0216/tissue.rtf +++ /dev/null @@ -1,11 +0,0 @@ -
- - - - - - -
-

Subcuteaneous WAT was later shattered in liquid nitrogen, and around 100 mg was taken for preparation. All ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. The pooled RNA samples were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. RNA was prepared in the summer of 2013, while the RNEasy cleanup occurred in the winter of 2015; unlike the other tissues run as a part of this study, these RNA samples spent a significant time in the -80° freezers. However, the samples only underwent one freeze—thaw cycle.

-
-
diff --git a/general/datasets/EPFLADEL1013/acknowledgment.rtf b/general/datasets/EPFLADEL1013/acknowledgment.rtf deleted file mode 100644 index 291baee..0000000 --- a/general/datasets/EPFLADEL1013/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The authors thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice, Jesse Ingels who genotyped the congenic AHR line. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays. Thanks to Ian Duncan for supplying the mutant ss D. melanogaster lines. Discussions with Prof. Stephan Morgenthaler (EPFL) are also acknowledged. 

diff --git a/general/datasets/EPFLADEL1013/cases.rtf b/general/datasets/EPFLADEL1013/cases.rtf deleted file mode 100644 index 0e2dfc2..0000000 --- a/general/datasets/EPFLADEL1013/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

42 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The quadriceps were the last tissue frozen in liquid nitrogen during the sacrifice, about 15 minutes after perfusion. Quadriceps were taken by cutting laterally at the knee.

diff --git a/general/datasets/EPFLADEL1013/experiment-design.rtf b/general/datasets/EPFLADEL1013/experiment-design.rtf deleted file mode 100644 index 6329851..0000000 --- a/general/datasets/EPFLADEL1013/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

All animals were communally housed by strain until phenotyping and fed a chow diet (CD; (Harlan 2018; 6% kCal/fat, 20% kCal/protein, 74% kCal/carbohydrate) throughout life after weaning. All BXD strains (BXD43–103) were originally sourced from the vivarium at the University of Tennessee Health Science Center (Memphis, TN, USA) then bred for two or more generations until progeny entered the phenotyping colony. For tissue collection on CD and HFD BXD cohorts, animals were sacrificed under isoflurane anesthesia and cardiac perfusion after an overnight fast. High fat diet treatment and two day isolation for the recording experiment were considered as having low impact on the animals’ welfare, while all other measurements and conditions were considered as having no negative impact. All research was approved by the Swiss cantonal veterinary authorities of Vaud under licenses 2257.0 and 2257.1. 

diff --git a/general/datasets/EPFLADEL1013/platform.rtf b/general/datasets/EPFLADEL1013/platform.rtf deleted file mode 100644 index a8a63c9..0000000 --- a/general/datasets/EPFLADEL1013/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All arrays were Affymetrix Mouse Gene 2.0 ST, prepared and run simultaneously in a single batch in October 2013 by Lorne Rose at the University of Tennessee Health Science Center.

diff --git a/general/datasets/EPFLADEL1013/processing.rtf b/general/datasets/EPFLADEL1013/processing.rtf deleted file mode 100644 index 8cc5d58..0000000 --- a/general/datasets/EPFLADEL1013/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/EPFLADEL1013/summary.rtf b/general/datasets/EPFLADEL1013/summary.rtf deleted file mode 100644 index 07c710f..0000000 --- a/general/datasets/EPFLADEL1013/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. We here phenotype 43 BXD strains and observe they have large variation (~5-fold) in their spontaneous activity during waking hours. QTL analyses indicate that ~40% of this variance is attributable to a narrow locus containing the aryl hydrocarbon receptor (Ahr), a basic helix-loop-helix transcription factor with well-established roles in development and xenobiotic metabolism. Strains with the D2 allele of Ahr have reduced gene expression compared to those with the B6 allele, and have significantly higher spontaneous activity. This effect was also observed in B6 mice with a congenic D2 Ahr interval, and in B6 mice with a humanized AHR allele which, like the D2 allele, is expressed much less and has less enzymatic activity than the B6 allele. Ahr is highly conserved in invertebrates, and strikingly inhibition of its orthologs in D. melanogaster and C. elegans (spineless and ahr-1) leads to marked increases in basal activity. In mammals, Ahr has numerous ligands, but most are either non-selective (e.g. resveratrol) or highly toxic (e.g. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)). Thus, we chose to examine a major environmental influence—long term feeding with high fat diet (HFD)—to see if the effects of Ahr are dependent on major metabolic differences. Interestingly, while HFD robustly halved movement across all strains, the QTL position and effects of Ahr remained unchanged, indicating that the effects are independent. The highly consistent effects of Ahr on movement indicate that changes in its constitutive activity have a role on spontaneous movement and may influence human behavior. 

diff --git a/general/datasets/EPFLADEL1013/tissue.rtf b/general/datasets/EPFLADEL1013/tissue.rtf deleted file mode 100644 index f2bfb07..0000000 --- a/general/datasets/EPFLADEL1013/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Brown adipose was later shattered in liquid nitrogen and about half was taken for each sample, although the size of the BAT varied dramatically. All ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0.

diff --git a/general/datasets/EPFLADGL1013/acknowledgment.rtf b/general/datasets/EPFLADGL1013/acknowledgment.rtf deleted file mode 100644 index 291baee..0000000 --- a/general/datasets/EPFLADGL1013/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The authors thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice, Jesse Ingels who genotyped the congenic AHR line. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays. Thanks to Ian Duncan for supplying the mutant ss D. melanogaster lines. Discussions with Prof. Stephan Morgenthaler (EPFL) are also acknowledged. 

diff --git a/general/datasets/EPFLADGL1013/cases.rtf b/general/datasets/EPFLADGL1013/cases.rtf deleted file mode 100644 index 0e2dfc2..0000000 --- a/general/datasets/EPFLADGL1013/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

42 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The quadriceps were the last tissue frozen in liquid nitrogen during the sacrifice, about 15 minutes after perfusion. Quadriceps were taken by cutting laterally at the knee.

diff --git a/general/datasets/EPFLADGL1013/experiment-design.rtf b/general/datasets/EPFLADGL1013/experiment-design.rtf deleted file mode 100644 index 6329851..0000000 --- a/general/datasets/EPFLADGL1013/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

All animals were communally housed by strain until phenotyping and fed a chow diet (CD; (Harlan 2018; 6% kCal/fat, 20% kCal/protein, 74% kCal/carbohydrate) throughout life after weaning. All BXD strains (BXD43–103) were originally sourced from the vivarium at the University of Tennessee Health Science Center (Memphis, TN, USA) then bred for two or more generations until progeny entered the phenotyping colony. For tissue collection on CD and HFD BXD cohorts, animals were sacrificed under isoflurane anesthesia and cardiac perfusion after an overnight fast. High fat diet treatment and two day isolation for the recording experiment were considered as having low impact on the animals’ welfare, while all other measurements and conditions were considered as having no negative impact. All research was approved by the Swiss cantonal veterinary authorities of Vaud under licenses 2257.0 and 2257.1. 

diff --git a/general/datasets/EPFLADGL1013/platform.rtf b/general/datasets/EPFLADGL1013/platform.rtf deleted file mode 100644 index a8a63c9..0000000 --- a/general/datasets/EPFLADGL1013/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All arrays were Affymetrix Mouse Gene 2.0 ST, prepared and run simultaneously in a single batch in October 2013 by Lorne Rose at the University of Tennessee Health Science Center.

diff --git a/general/datasets/EPFLADGL1013/processing.rtf b/general/datasets/EPFLADGL1013/processing.rtf deleted file mode 100644 index 8cc5d58..0000000 --- a/general/datasets/EPFLADGL1013/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/EPFLADGL1013/summary.rtf b/general/datasets/EPFLADGL1013/summary.rtf deleted file mode 100644 index 07c710f..0000000 --- a/general/datasets/EPFLADGL1013/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. We here phenotype 43 BXD strains and observe they have large variation (~5-fold) in their spontaneous activity during waking hours. QTL analyses indicate that ~40% of this variance is attributable to a narrow locus containing the aryl hydrocarbon receptor (Ahr), a basic helix-loop-helix transcription factor with well-established roles in development and xenobiotic metabolism. Strains with the D2 allele of Ahr have reduced gene expression compared to those with the B6 allele, and have significantly higher spontaneous activity. This effect was also observed in B6 mice with a congenic D2 Ahr interval, and in B6 mice with a humanized AHR allele which, like the D2 allele, is expressed much less and has less enzymatic activity than the B6 allele. Ahr is highly conserved in invertebrates, and strikingly inhibition of its orthologs in D. melanogaster and C. elegans (spineless and ahr-1) leads to marked increases in basal activity. In mammals, Ahr has numerous ligands, but most are either non-selective (e.g. resveratrol) or highly toxic (e.g. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)). Thus, we chose to examine a major environmental influence—long term feeding with high fat diet (HFD)—to see if the effects of Ahr are dependent on major metabolic differences. Interestingly, while HFD robustly halved movement across all strains, the QTL position and effects of Ahr remained unchanged, indicating that the effects are independent. The highly consistent effects of Ahr on movement indicate that changes in its constitutive activity have a role on spontaneous movement and may influence human behavior. 

diff --git a/general/datasets/EPFLADGL1013/tissue.rtf b/general/datasets/EPFLADGL1013/tissue.rtf deleted file mode 100644 index f2bfb07..0000000 --- a/general/datasets/EPFLADGL1013/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Brown adipose was later shattered in liquid nitrogen and about half was taken for each sample, although the size of the BAT varied dramatically. All ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0.

diff --git a/general/datasets/EPFLBXDprotCDRPN0214/cases.rtf b/general/datasets/EPFLBXDprotCDRPN0214/cases.rtf deleted file mode 100644 index ed4ced8..0000000 --- a/general/datasets/EPFLBXDprotCDRPN0214/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/EPFLBXDprotCDRPN0214/notes.rtf b/general/datasets/EPFLBXDprotCDRPN0214/notes.rtf deleted file mode 100644 index ecdae60..0000000 --- a/general/datasets/EPFLBXDprotCDRPN0214/notes.rtf +++ /dev/null @@ -1,16 +0,0 @@ -

SWATH

- -

SWATH MS is a novel technique that is based on data-independent acquisition (DIA) which aims to complement traditional mass spectrometry-based proteomics techniques such as shotgun and SRM methods. In principal, it allows a complete and permanent recording of all fragment ions of all peptide precursors in a biological sample and can thus potentially combine the advantages of shotgun (high throughput) with those of SRM (high reproducibility and sensitivity).

- -

The method uniquely combines a DIA methods with a innovative data analysis approach based on targeted data extraction developed in the Aebersold lab. Like in other DIA methods, the mass spectrometer cycles through precursor acquisition windows designed to cover the whole range of 400-1200 m/z - in which most of the proteotypic peptide precursors of an organism fall - within 2-4 seconds. During each cycle, the mass spectrometer will fragment all precursors from a given precursors window (e.g. 475 - 500 m/z for 25 Da windows) and record a complete, high accuracy fragment ion spectrum. The same range will be fragmented again in the next cycle, thus providing a time-resolved recording of fragment ions that elute on the chromatography. Thus the SWATH method provides highly multiplexed fragment ion spectra that are deterministically recorded over the complete chromatographic time.

- -

In the Malmstroem group, we are interested in the data-analysis challenge that is posed by DIA / SWATH data. Traditionally, DIA methods have been analyzed by trying to reconstruct the lineage of precursor and fragment ions based on their chromatographic elution profile, and then analysing the data in a workflow similar to those used in shotgun proteomics. However, these approaches suffered from low sensitivity and propagation of errors due to mis-assignment of fragment ions to precursor ions. We are thus working on automating targeted methods that are conceptually similar to SRM and allow querying the data multiple times with specific hypothesis, thus giving the researcher more control and specificity in the bioinformatic data analysis step. With these novel algorithms, it is potentially possible to explore a much larger part of the data that is present and obtain a nearly complete picture of a proteome.

- -

References

- - diff --git a/general/datasets/EPFLBXDprotCDRPN0214/platform.rtf b/general/datasets/EPFLBXDprotCDRPN0214/platform.rtf deleted file mode 100644 index 4a33b7c..0000000 --- a/general/datasets/EPFLBXDprotCDRPN0214/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/EPFLBXDprotCDRPN0214/summary.rtf b/general/datasets/EPFLBXDprotCDRPN0214/summary.rtf deleted file mode 100644 index 8797309..0000000 --- a/general/datasets/EPFLBXDprotCDRPN0214/summary.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

Quantitative changes in transcriptome and proteome patterns relate genomic variation to specific phenotypes. Here we applied selected reaction monitoring (SRM), a targeted mass spectrometry method that supports the reliable and reproducible quantification of predetermined sets of proteins across a broad abundance range in complex samples to quantify 157 metabolic proteins in liver extracts from 40 genetically-diverse strains of the BXD mouse genetic reference population, after chow or high fat diet. We observed significant biological variation in protein levels, which were linked to transcript variation in ~30% of the cases. 14 genes mapped to quantitative trait loci (QTLs) at both the transcript and protein level, while a further 18 mapped only as transcripts (eQTLs), and 24 only as proteins (pQTLs). 79% of eQTLs were regulated by cis-mechanisms, as opposed to only 31% of pQTLs, indicating a more direct genetic connection between genes and their transcripts than between genes and their protein products. In some cases, QTLs could be linked to phenotypic changes across the BXDs. One such case indicates a novel animal model for an inborn error of metabolism that has been observed in humans; BXD mice with deficient DHTKD1 protein also exhibit 2-aminoadipic and 2-oxoadipic aciduria like seen in affected patients. Together, these findings show that quantitative, multi-layered genomic, transcriptomic, and proteomic analyses provide more power for connecting genetic variance to phenotypes in complex systems than each layer alone, and provide complementary information to identify novel regulatory networks of metabolic diseases.

- -

Note: please see associated dataset “Liver Proteome” EPFL/LISP BXD Liver, Hepatocytes, Soluable Proteins CD+HFD (Jul13) RPN” for protein data in the same animals. [NB: Data in review, but still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

- -

Note: please see associated dataset “LISP2” in BXD phenotypes for phenotype data on the same animals. [NB: Still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

diff --git a/general/datasets/EPFLBXDprotCDRPN0214/tissue.rtf b/general/datasets/EPFLBXDprotCDRPN0214/tissue.rtf deleted file mode 100644 index f95e2c4..0000000 --- a/general/datasets/EPFLBXDprotCDRPN0214/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/EPFLBXDprotCD_CDHFDRPN0214/cases.rtf b/general/datasets/EPFLBXDprotCD_CDHFDRPN0214/cases.rtf deleted file mode 100644 index ed4ced8..0000000 --- a/general/datasets/EPFLBXDprotCD_CDHFDRPN0214/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/EPFLBXDprotCD_CDHFDRPN0214/notes.rtf b/general/datasets/EPFLBXDprotCD_CDHFDRPN0214/notes.rtf deleted file mode 100644 index ecdae60..0000000 --- a/general/datasets/EPFLBXDprotCD_CDHFDRPN0214/notes.rtf +++ /dev/null @@ -1,16 +0,0 @@ -

SWATH

- -

SWATH MS is a novel technique that is based on data-independent acquisition (DIA) which aims to complement traditional mass spectrometry-based proteomics techniques such as shotgun and SRM methods. In principal, it allows a complete and permanent recording of all fragment ions of all peptide precursors in a biological sample and can thus potentially combine the advantages of shotgun (high throughput) with those of SRM (high reproducibility and sensitivity).

- -

The method uniquely combines a DIA methods with a innovative data analysis approach based on targeted data extraction developed in the Aebersold lab. Like in other DIA methods, the mass spectrometer cycles through precursor acquisition windows designed to cover the whole range of 400-1200 m/z - in which most of the proteotypic peptide precursors of an organism fall - within 2-4 seconds. During each cycle, the mass spectrometer will fragment all precursors from a given precursors window (e.g. 475 - 500 m/z for 25 Da windows) and record a complete, high accuracy fragment ion spectrum. The same range will be fragmented again in the next cycle, thus providing a time-resolved recording of fragment ions that elute on the chromatography. Thus the SWATH method provides highly multiplexed fragment ion spectra that are deterministically recorded over the complete chromatographic time.

- -

In the Malmstroem group, we are interested in the data-analysis challenge that is posed by DIA / SWATH data. Traditionally, DIA methods have been analyzed by trying to reconstruct the lineage of precursor and fragment ions based on their chromatographic elution profile, and then analysing the data in a workflow similar to those used in shotgun proteomics. However, these approaches suffered from low sensitivity and propagation of errors due to mis-assignment of fragment ions to precursor ions. We are thus working on automating targeted methods that are conceptually similar to SRM and allow querying the data multiple times with specific hypothesis, thus giving the researcher more control and specificity in the bioinformatic data analysis step. With these novel algorithms, it is potentially possible to explore a much larger part of the data that is present and obtain a nearly complete picture of a proteome.

- -

References

- - diff --git a/general/datasets/EPFLBXDprotCD_CDHFDRPN0214/platform.rtf b/general/datasets/EPFLBXDprotCD_CDHFDRPN0214/platform.rtf deleted file mode 100644 index 4a33b7c..0000000 --- a/general/datasets/EPFLBXDprotCD_CDHFDRPN0214/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/EPFLBXDprotCD_CDHFDRPN0214/summary.rtf b/general/datasets/EPFLBXDprotCD_CDHFDRPN0214/summary.rtf deleted file mode 100644 index 8797309..0000000 --- a/general/datasets/EPFLBXDprotCD_CDHFDRPN0214/summary.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

Quantitative changes in transcriptome and proteome patterns relate genomic variation to specific phenotypes. Here we applied selected reaction monitoring (SRM), a targeted mass spectrometry method that supports the reliable and reproducible quantification of predetermined sets of proteins across a broad abundance range in complex samples to quantify 157 metabolic proteins in liver extracts from 40 genetically-diverse strains of the BXD mouse genetic reference population, after chow or high fat diet. We observed significant biological variation in protein levels, which were linked to transcript variation in ~30% of the cases. 14 genes mapped to quantitative trait loci (QTLs) at both the transcript and protein level, while a further 18 mapped only as transcripts (eQTLs), and 24 only as proteins (pQTLs). 79% of eQTLs were regulated by cis-mechanisms, as opposed to only 31% of pQTLs, indicating a more direct genetic connection between genes and their transcripts than between genes and their protein products. In some cases, QTLs could be linked to phenotypic changes across the BXDs. One such case indicates a novel animal model for an inborn error of metabolism that has been observed in humans; BXD mice with deficient DHTKD1 protein also exhibit 2-aminoadipic and 2-oxoadipic aciduria like seen in affected patients. Together, these findings show that quantitative, multi-layered genomic, transcriptomic, and proteomic analyses provide more power for connecting genetic variance to phenotypes in complex systems than each layer alone, and provide complementary information to identify novel regulatory networks of metabolic diseases.

- -

Note: please see associated dataset “Liver Proteome” EPFL/LISP BXD Liver, Hepatocytes, Soluable Proteins CD+HFD (Jul13) RPN” for protein data in the same animals. [NB: Data in review, but still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

- -

Note: please see associated dataset “LISP2” in BXD phenotypes for phenotype data on the same animals. [NB: Still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

diff --git a/general/datasets/EPFLBXDprotCD_CDHFDRPN0214/tissue.rtf b/general/datasets/EPFLBXDprotCD_CDHFDRPN0214/tissue.rtf deleted file mode 100644 index f95e2c4..0000000 --- a/general/datasets/EPFLBXDprotCD_CDHFDRPN0214/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/EPFLBXDprotHFDRPN0214/cases.rtf b/general/datasets/EPFLBXDprotHFDRPN0214/cases.rtf deleted file mode 100644 index ed4ced8..0000000 --- a/general/datasets/EPFLBXDprotHFDRPN0214/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/EPFLBXDprotHFDRPN0214/notes.rtf b/general/datasets/EPFLBXDprotHFDRPN0214/notes.rtf deleted file mode 100644 index ecdae60..0000000 --- a/general/datasets/EPFLBXDprotHFDRPN0214/notes.rtf +++ /dev/null @@ -1,16 +0,0 @@ -

SWATH

- -

SWATH MS is a novel technique that is based on data-independent acquisition (DIA) which aims to complement traditional mass spectrometry-based proteomics techniques such as shotgun and SRM methods. In principal, it allows a complete and permanent recording of all fragment ions of all peptide precursors in a biological sample and can thus potentially combine the advantages of shotgun (high throughput) with those of SRM (high reproducibility and sensitivity).

- -

The method uniquely combines a DIA methods with a innovative data analysis approach based on targeted data extraction developed in the Aebersold lab. Like in other DIA methods, the mass spectrometer cycles through precursor acquisition windows designed to cover the whole range of 400-1200 m/z - in which most of the proteotypic peptide precursors of an organism fall - within 2-4 seconds. During each cycle, the mass spectrometer will fragment all precursors from a given precursors window (e.g. 475 - 500 m/z for 25 Da windows) and record a complete, high accuracy fragment ion spectrum. The same range will be fragmented again in the next cycle, thus providing a time-resolved recording of fragment ions that elute on the chromatography. Thus the SWATH method provides highly multiplexed fragment ion spectra that are deterministically recorded over the complete chromatographic time.

- -

In the Malmstroem group, we are interested in the data-analysis challenge that is posed by DIA / SWATH data. Traditionally, DIA methods have been analyzed by trying to reconstruct the lineage of precursor and fragment ions based on their chromatographic elution profile, and then analysing the data in a workflow similar to those used in shotgun proteomics. However, these approaches suffered from low sensitivity and propagation of errors due to mis-assignment of fragment ions to precursor ions. We are thus working on automating targeted methods that are conceptually similar to SRM and allow querying the data multiple times with specific hypothesis, thus giving the researcher more control and specificity in the bioinformatic data analysis step. With these novel algorithms, it is potentially possible to explore a much larger part of the data that is present and obtain a nearly complete picture of a proteome.

- -

References

- - diff --git a/general/datasets/EPFLBXDprotHFDRPN0214/platform.rtf b/general/datasets/EPFLBXDprotHFDRPN0214/platform.rtf deleted file mode 100644 index 4a33b7c..0000000 --- a/general/datasets/EPFLBXDprotHFDRPN0214/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/EPFLBXDprotHFDRPN0214/summary.rtf b/general/datasets/EPFLBXDprotHFDRPN0214/summary.rtf deleted file mode 100644 index 8797309..0000000 --- a/general/datasets/EPFLBXDprotHFDRPN0214/summary.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

Quantitative changes in transcriptome and proteome patterns relate genomic variation to specific phenotypes. Here we applied selected reaction monitoring (SRM), a targeted mass spectrometry method that supports the reliable and reproducible quantification of predetermined sets of proteins across a broad abundance range in complex samples to quantify 157 metabolic proteins in liver extracts from 40 genetically-diverse strains of the BXD mouse genetic reference population, after chow or high fat diet. We observed significant biological variation in protein levels, which were linked to transcript variation in ~30% of the cases. 14 genes mapped to quantitative trait loci (QTLs) at both the transcript and protein level, while a further 18 mapped only as transcripts (eQTLs), and 24 only as proteins (pQTLs). 79% of eQTLs were regulated by cis-mechanisms, as opposed to only 31% of pQTLs, indicating a more direct genetic connection between genes and their transcripts than between genes and their protein products. In some cases, QTLs could be linked to phenotypic changes across the BXDs. One such case indicates a novel animal model for an inborn error of metabolism that has been observed in humans; BXD mice with deficient DHTKD1 protein also exhibit 2-aminoadipic and 2-oxoadipic aciduria like seen in affected patients. Together, these findings show that quantitative, multi-layered genomic, transcriptomic, and proteomic analyses provide more power for connecting genetic variance to phenotypes in complex systems than each layer alone, and provide complementary information to identify novel regulatory networks of metabolic diseases.

- -

Note: please see associated dataset “Liver Proteome” EPFL/LISP BXD Liver, Hepatocytes, Soluable Proteins CD+HFD (Jul13) RPN” for protein data in the same animals. [NB: Data in review, but still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

- -

Note: please see associated dataset “LISP2” in BXD phenotypes for phenotype data on the same animals. [NB: Still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

diff --git a/general/datasets/EPFLBXDprotHFDRPN0214/tissue.rtf b/general/datasets/EPFLBXDprotHFDRPN0214/tissue.rtf deleted file mode 100644 index f95e2c4..0000000 --- a/general/datasets/EPFLBXDprotHFDRPN0214/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/EPFLBXDprotRPN0513/cases.rtf b/general/datasets/EPFLBXDprotRPN0513/cases.rtf deleted file mode 100644 index ed4ced8..0000000 --- a/general/datasets/EPFLBXDprotRPN0513/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/EPFLBXDprotRPN0513/notes.rtf b/general/datasets/EPFLBXDprotRPN0513/notes.rtf deleted file mode 100644 index ecdae60..0000000 --- a/general/datasets/EPFLBXDprotRPN0513/notes.rtf +++ /dev/null @@ -1,16 +0,0 @@ -

SWATH

- -

SWATH MS is a novel technique that is based on data-independent acquisition (DIA) which aims to complement traditional mass spectrometry-based proteomics techniques such as shotgun and SRM methods. In principal, it allows a complete and permanent recording of all fragment ions of all peptide precursors in a biological sample and can thus potentially combine the advantages of shotgun (high throughput) with those of SRM (high reproducibility and sensitivity).

- -

The method uniquely combines a DIA methods with a innovative data analysis approach based on targeted data extraction developed in the Aebersold lab. Like in other DIA methods, the mass spectrometer cycles through precursor acquisition windows designed to cover the whole range of 400-1200 m/z - in which most of the proteotypic peptide precursors of an organism fall - within 2-4 seconds. During each cycle, the mass spectrometer will fragment all precursors from a given precursors window (e.g. 475 - 500 m/z for 25 Da windows) and record a complete, high accuracy fragment ion spectrum. The same range will be fragmented again in the next cycle, thus providing a time-resolved recording of fragment ions that elute on the chromatography. Thus the SWATH method provides highly multiplexed fragment ion spectra that are deterministically recorded over the complete chromatographic time.

- -

In the Malmstroem group, we are interested in the data-analysis challenge that is posed by DIA / SWATH data. Traditionally, DIA methods have been analyzed by trying to reconstruct the lineage of precursor and fragment ions based on their chromatographic elution profile, and then analysing the data in a workflow similar to those used in shotgun proteomics. However, these approaches suffered from low sensitivity and propagation of errors due to mis-assignment of fragment ions to precursor ions. We are thus working on automating targeted methods that are conceptually similar to SRM and allow querying the data multiple times with specific hypothesis, thus giving the researcher more control and specificity in the bioinformatic data analysis step. With these novel algorithms, it is potentially possible to explore a much larger part of the data that is present and obtain a nearly complete picture of a proteome.

- -

References

- - diff --git a/general/datasets/EPFLBXDprotRPN0513/platform.rtf b/general/datasets/EPFLBXDprotRPN0513/platform.rtf deleted file mode 100644 index 4a33b7c..0000000 --- a/general/datasets/EPFLBXDprotRPN0513/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/EPFLBXDprotRPN0513/summary.rtf b/general/datasets/EPFLBXDprotRPN0513/summary.rtf deleted file mode 100644 index 8797309..0000000 --- a/general/datasets/EPFLBXDprotRPN0513/summary.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

Quantitative changes in transcriptome and proteome patterns relate genomic variation to specific phenotypes. Here we applied selected reaction monitoring (SRM), a targeted mass spectrometry method that supports the reliable and reproducible quantification of predetermined sets of proteins across a broad abundance range in complex samples to quantify 157 metabolic proteins in liver extracts from 40 genetically-diverse strains of the BXD mouse genetic reference population, after chow or high fat diet. We observed significant biological variation in protein levels, which were linked to transcript variation in ~30% of the cases. 14 genes mapped to quantitative trait loci (QTLs) at both the transcript and protein level, while a further 18 mapped only as transcripts (eQTLs), and 24 only as proteins (pQTLs). 79% of eQTLs were regulated by cis-mechanisms, as opposed to only 31% of pQTLs, indicating a more direct genetic connection between genes and their transcripts than between genes and their protein products. In some cases, QTLs could be linked to phenotypic changes across the BXDs. One such case indicates a novel animal model for an inborn error of metabolism that has been observed in humans; BXD mice with deficient DHTKD1 protein also exhibit 2-aminoadipic and 2-oxoadipic aciduria like seen in affected patients. Together, these findings show that quantitative, multi-layered genomic, transcriptomic, and proteomic analyses provide more power for connecting genetic variance to phenotypes in complex systems than each layer alone, and provide complementary information to identify novel regulatory networks of metabolic diseases.

- -

Note: please see associated dataset “Liver Proteome” EPFL/LISP BXD Liver, Hepatocytes, Soluable Proteins CD+HFD (Jul13) RPN” for protein data in the same animals. [NB: Data in review, but still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

- -

Note: please see associated dataset “LISP2” in BXD phenotypes for phenotype data on the same animals. [NB: Still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

diff --git a/general/datasets/EPFLBXDprotRPN0513/tissue.rtf b/general/datasets/EPFLBXDprotRPN0513/tissue.rtf deleted file mode 100644 index f95e2c4..0000000 --- a/general/datasets/EPFLBXDprotRPN0513/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/EPFLETHZBXDprotCD0514/notes.rtf b/general/datasets/EPFLETHZBXDprotCD0514/notes.rtf deleted file mode 100644 index ecdae60..0000000 --- a/general/datasets/EPFLETHZBXDprotCD0514/notes.rtf +++ /dev/null @@ -1,16 +0,0 @@ -

SWATH

- -

SWATH MS is a novel technique that is based on data-independent acquisition (DIA) which aims to complement traditional mass spectrometry-based proteomics techniques such as shotgun and SRM methods. In principal, it allows a complete and permanent recording of all fragment ions of all peptide precursors in a biological sample and can thus potentially combine the advantages of shotgun (high throughput) with those of SRM (high reproducibility and sensitivity).

- -

The method uniquely combines a DIA methods with a innovative data analysis approach based on targeted data extraction developed in the Aebersold lab. Like in other DIA methods, the mass spectrometer cycles through precursor acquisition windows designed to cover the whole range of 400-1200 m/z - in which most of the proteotypic peptide precursors of an organism fall - within 2-4 seconds. During each cycle, the mass spectrometer will fragment all precursors from a given precursors window (e.g. 475 - 500 m/z for 25 Da windows) and record a complete, high accuracy fragment ion spectrum. The same range will be fragmented again in the next cycle, thus providing a time-resolved recording of fragment ions that elute on the chromatography. Thus the SWATH method provides highly multiplexed fragment ion spectra that are deterministically recorded over the complete chromatographic time.

- -

In the Malmstroem group, we are interested in the data-analysis challenge that is posed by DIA / SWATH data. Traditionally, DIA methods have been analyzed by trying to reconstruct the lineage of precursor and fragment ions based on their chromatographic elution profile, and then analysing the data in a workflow similar to those used in shotgun proteomics. However, these approaches suffered from low sensitivity and propagation of errors due to mis-assignment of fragment ions to precursor ions. We are thus working on automating targeted methods that are conceptually similar to SRM and allow querying the data multiple times with specific hypothesis, thus giving the researcher more control and specificity in the bioinformatic data analysis step. With these novel algorithms, it is potentially possible to explore a much larger part of the data that is present and obtain a nearly complete picture of a proteome.

- -

References

- - diff --git a/general/datasets/EPFLETHZBXDprotCD_LS1114/notes.rtf b/general/datasets/EPFLETHZBXDprotCD_LS1114/notes.rtf deleted file mode 100644 index ecdae60..0000000 --- a/general/datasets/EPFLETHZBXDprotCD_LS1114/notes.rtf +++ /dev/null @@ -1,16 +0,0 @@ -

SWATH

- -

SWATH MS is a novel technique that is based on data-independent acquisition (DIA) which aims to complement traditional mass spectrometry-based proteomics techniques such as shotgun and SRM methods. In principal, it allows a complete and permanent recording of all fragment ions of all peptide precursors in a biological sample and can thus potentially combine the advantages of shotgun (high throughput) with those of SRM (high reproducibility and sensitivity).

- -

The method uniquely combines a DIA methods with a innovative data analysis approach based on targeted data extraction developed in the Aebersold lab. Like in other DIA methods, the mass spectrometer cycles through precursor acquisition windows designed to cover the whole range of 400-1200 m/z - in which most of the proteotypic peptide precursors of an organism fall - within 2-4 seconds. During each cycle, the mass spectrometer will fragment all precursors from a given precursors window (e.g. 475 - 500 m/z for 25 Da windows) and record a complete, high accuracy fragment ion spectrum. The same range will be fragmented again in the next cycle, thus providing a time-resolved recording of fragment ions that elute on the chromatography. Thus the SWATH method provides highly multiplexed fragment ion spectra that are deterministically recorded over the complete chromatographic time.

- -

In the Malmstroem group, we are interested in the data-analysis challenge that is posed by DIA / SWATH data. Traditionally, DIA methods have been analyzed by trying to reconstruct the lineage of precursor and fragment ions based on their chromatographic elution profile, and then analysing the data in a workflow similar to those used in shotgun proteomics. However, these approaches suffered from low sensitivity and propagation of errors due to mis-assignment of fragment ions to precursor ions. We are thus working on automating targeted methods that are conceptually similar to SRM and allow querying the data multiple times with specific hypothesis, thus giving the researcher more control and specificity in the bioinformatic data analysis step. With these novel algorithms, it is potentially possible to explore a much larger part of the data that is present and obtain a nearly complete picture of a proteome.

- -

References

- - diff --git a/general/datasets/EPFLETHZBXDprotHFD0514/notes.rtf b/general/datasets/EPFLETHZBXDprotHFD0514/notes.rtf deleted file mode 100644 index ecdae60..0000000 --- a/general/datasets/EPFLETHZBXDprotHFD0514/notes.rtf +++ /dev/null @@ -1,16 +0,0 @@ -

SWATH

- -

SWATH MS is a novel technique that is based on data-independent acquisition (DIA) which aims to complement traditional mass spectrometry-based proteomics techniques such as shotgun and SRM methods. In principal, it allows a complete and permanent recording of all fragment ions of all peptide precursors in a biological sample and can thus potentially combine the advantages of shotgun (high throughput) with those of SRM (high reproducibility and sensitivity).

- -

The method uniquely combines a DIA methods with a innovative data analysis approach based on targeted data extraction developed in the Aebersold lab. Like in other DIA methods, the mass spectrometer cycles through precursor acquisition windows designed to cover the whole range of 400-1200 m/z - in which most of the proteotypic peptide precursors of an organism fall - within 2-4 seconds. During each cycle, the mass spectrometer will fragment all precursors from a given precursors window (e.g. 475 - 500 m/z for 25 Da windows) and record a complete, high accuracy fragment ion spectrum. The same range will be fragmented again in the next cycle, thus providing a time-resolved recording of fragment ions that elute on the chromatography. Thus the SWATH method provides highly multiplexed fragment ion spectra that are deterministically recorded over the complete chromatographic time.

- -

In the Malmstroem group, we are interested in the data-analysis challenge that is posed by DIA / SWATH data. Traditionally, DIA methods have been analyzed by trying to reconstruct the lineage of precursor and fragment ions based on their chromatographic elution profile, and then analysing the data in a workflow similar to those used in shotgun proteomics. However, these approaches suffered from low sensitivity and propagation of errors due to mis-assignment of fragment ions to precursor ions. We are thus working on automating targeted methods that are conceptually similar to SRM and allow querying the data multiple times with specific hypothesis, thus giving the researcher more control and specificity in the bioinformatic data analysis step. With these novel algorithms, it is potentially possible to explore a much larger part of the data that is present and obtain a nearly complete picture of a proteome.

- -

References

- - diff --git a/general/datasets/EPFLETHZBXDprotHF_LS1114/notes.rtf b/general/datasets/EPFLETHZBXDprotHF_LS1114/notes.rtf deleted file mode 100644 index ecdae60..0000000 --- a/general/datasets/EPFLETHZBXDprotHF_LS1114/notes.rtf +++ /dev/null @@ -1,16 +0,0 @@ -

SWATH

- -

SWATH MS is a novel technique that is based on data-independent acquisition (DIA) which aims to complement traditional mass spectrometry-based proteomics techniques such as shotgun and SRM methods. In principal, it allows a complete and permanent recording of all fragment ions of all peptide precursors in a biological sample and can thus potentially combine the advantages of shotgun (high throughput) with those of SRM (high reproducibility and sensitivity).

- -

The method uniquely combines a DIA methods with a innovative data analysis approach based on targeted data extraction developed in the Aebersold lab. Like in other DIA methods, the mass spectrometer cycles through precursor acquisition windows designed to cover the whole range of 400-1200 m/z - in which most of the proteotypic peptide precursors of an organism fall - within 2-4 seconds. During each cycle, the mass spectrometer will fragment all precursors from a given precursors window (e.g. 475 - 500 m/z for 25 Da windows) and record a complete, high accuracy fragment ion spectrum. The same range will be fragmented again in the next cycle, thus providing a time-resolved recording of fragment ions that elute on the chromatography. Thus the SWATH method provides highly multiplexed fragment ion spectra that are deterministically recorded over the complete chromatographic time.

- -

In the Malmstroem group, we are interested in the data-analysis challenge that is posed by DIA / SWATH data. Traditionally, DIA methods have been analyzed by trying to reconstruct the lineage of precursor and fragment ions based on their chromatographic elution profile, and then analysing the data in a workflow similar to those used in shotgun proteomics. However, these approaches suffered from low sensitivity and propagation of errors due to mis-assignment of fragment ions to precursor ions. We are thus working on automating targeted methods that are conceptually similar to SRM and allow querying the data multiple times with specific hypothesis, thus giving the researcher more control and specificity in the bioinformatic data analysis step. With these novel algorithms, it is potentially possible to explore a much larger part of the data that is present and obtain a nearly complete picture of a proteome.

- -

References

- - diff --git a/general/datasets/EPFLMouseLiverBothExRMA0413/acknowledgment.rtf b/general/datasets/EPFLMouseLiverBothExRMA0413/acknowledgment.rtf deleted file mode 100644 index 3a26b41..0000000 --- a/general/datasets/EPFLMouseLiverBothExRMA0413/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The authors thank A. van Cruchten and W. Smit for the serum analysis of 2-AA. The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (SNSF; 33CSCO-122661). The authors thank P. Vollenweider, G. Waeber, V. Mooser and D. Waterworth, Co-PIs of the CoLaus study. Special thanks to M. Bochud, Y. Barreau, M. Firmann, V. Mayor, A. Bastian, B. Ramic, M. Moranville, M. Baumer, M. Sagette, J. Ecoffey and S. Mermoud for data collection. YW was supported by the ERC (Proteomics v3.0; AdG-233226 to RA), and the LiverX program and EGW by a fellowship from the Fondation Romande pour la Recherche sur le Diabète. JA is the Nestlé Chair in Energy Metabolism. Research was supported by the EPFL, ETHZ, ERC (Sirtuins; AdG-231138 and Proteomics v3.0; AdG-233226), Velux Stiftung, LiverX and AgingX programs of the Swiss Initiative for Systems Biology (51RTP0-151019 and 2013/153), SNSF (31003A-140780, 31003A-143914, and CSRII3-136201), and the NIH (R01AG043930).

diff --git a/general/datasets/EPFLMouseLiverBothExRMA0413/cases.rtf b/general/datasets/EPFLMouseLiverBothExRMA0413/cases.rtf deleted file mode 100644 index ed4ced8..0000000 --- a/general/datasets/EPFLMouseLiverBothExRMA0413/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/EPFLMouseLiverBothExRMA0413/platform.rtf b/general/datasets/EPFLMouseLiverBothExRMA0413/platform.rtf deleted file mode 100644 index 4a33b7c..0000000 --- a/general/datasets/EPFLMouseLiverBothExRMA0413/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/EPFLMouseLiverBothExRMA0413/processing.rtf b/general/datasets/EPFLMouseLiverBothExRMA0413/processing.rtf deleted file mode 100644 index 8cc5d58..0000000 --- a/general/datasets/EPFLMouseLiverBothExRMA0413/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/EPFLMouseLiverBothExRMA0413/summary.rtf b/general/datasets/EPFLMouseLiverBothExRMA0413/summary.rtf deleted file mode 100644 index 77c5606..0000000 --- a/general/datasets/EPFLMouseLiverBothExRMA0413/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study we quantified the transcriptome, a subset of the metabolome, and using targeted proteomics, a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. We further used the integrated molecular profiles to characterize complex pathways, as illustrated with the mitochondrial unfolded protein response (UPRmt). UPRmt shows strikingly variant responses at the transcript and protein level that are remarkably conserved between C.elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.

diff --git a/general/datasets/EPFLMouseLiverBothExRMA0413/tissue.rtf b/general/datasets/EPFLMouseLiverBothExRMA0413/tissue.rtf deleted file mode 100644 index f95e2c4..0000000 --- a/general/datasets/EPFLMouseLiverBothExRMA0413/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/EPFLMouseLiverCDEx0413/acknowledgment.rtf b/general/datasets/EPFLMouseLiverCDEx0413/acknowledgment.rtf deleted file mode 100644 index 3a26b41..0000000 --- a/general/datasets/EPFLMouseLiverCDEx0413/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The authors thank A. van Cruchten and W. Smit for the serum analysis of 2-AA. The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (SNSF; 33CSCO-122661). The authors thank P. Vollenweider, G. Waeber, V. Mooser and D. Waterworth, Co-PIs of the CoLaus study. Special thanks to M. Bochud, Y. Barreau, M. Firmann, V. Mayor, A. Bastian, B. Ramic, M. Moranville, M. Baumer, M. Sagette, J. Ecoffey and S. Mermoud for data collection. YW was supported by the ERC (Proteomics v3.0; AdG-233226 to RA), and the LiverX program and EGW by a fellowship from the Fondation Romande pour la Recherche sur le Diabète. JA is the Nestlé Chair in Energy Metabolism. Research was supported by the EPFL, ETHZ, ERC (Sirtuins; AdG-231138 and Proteomics v3.0; AdG-233226), Velux Stiftung, LiverX and AgingX programs of the Swiss Initiative for Systems Biology (51RTP0-151019 and 2013/153), SNSF (31003A-140780, 31003A-143914, and CSRII3-136201), and the NIH (R01AG043930).

diff --git a/general/datasets/EPFLMouseLiverCDEx0413/cases.rtf b/general/datasets/EPFLMouseLiverCDEx0413/cases.rtf deleted file mode 100644 index ed4ced8..0000000 --- a/general/datasets/EPFLMouseLiverCDEx0413/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/EPFLMouseLiverCDEx0413/platform.rtf b/general/datasets/EPFLMouseLiverCDEx0413/platform.rtf deleted file mode 100644 index 4a33b7c..0000000 --- a/general/datasets/EPFLMouseLiverCDEx0413/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/EPFLMouseLiverCDEx0413/processing.rtf b/general/datasets/EPFLMouseLiverCDEx0413/processing.rtf deleted file mode 100644 index 8cc5d58..0000000 --- a/general/datasets/EPFLMouseLiverCDEx0413/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/EPFLMouseLiverCDEx0413/specifics.rtf b/general/datasets/EPFLMouseLiverCDEx0413/specifics.rtf deleted file mode 100644 index 7c1a914..0000000 --- a/general/datasets/EPFLMouseLiverCDEx0413/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Exon Level \ No newline at end of file diff --git a/general/datasets/EPFLMouseLiverCDEx0413/summary.rtf b/general/datasets/EPFLMouseLiverCDEx0413/summary.rtf deleted file mode 100644 index 77c5606..0000000 --- a/general/datasets/EPFLMouseLiverCDEx0413/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study we quantified the transcriptome, a subset of the metabolome, and using targeted proteomics, a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. We further used the integrated molecular profiles to characterize complex pathways, as illustrated with the mitochondrial unfolded protein response (UPRmt). UPRmt shows strikingly variant responses at the transcript and protein level that are remarkably conserved between C.elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.

diff --git a/general/datasets/EPFLMouseLiverCDEx0413/tissue.rtf b/general/datasets/EPFLMouseLiverCDEx0413/tissue.rtf deleted file mode 100644 index f95e2c4..0000000 --- a/general/datasets/EPFLMouseLiverCDEx0413/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/EPFLMouseLiverCDHFDRMA0818/acknowledgment.rtf b/general/datasets/EPFLMouseLiverCDHFDRMA0818/acknowledgment.rtf deleted file mode 100644 index 3a26b41..0000000 --- a/general/datasets/EPFLMouseLiverCDHFDRMA0818/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The authors thank A. van Cruchten and W. Smit for the serum analysis of 2-AA. The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (SNSF; 33CSCO-122661). The authors thank P. Vollenweider, G. Waeber, V. Mooser and D. Waterworth, Co-PIs of the CoLaus study. Special thanks to M. Bochud, Y. Barreau, M. Firmann, V. Mayor, A. Bastian, B. Ramic, M. Moranville, M. Baumer, M. Sagette, J. Ecoffey and S. Mermoud for data collection. YW was supported by the ERC (Proteomics v3.0; AdG-233226 to RA), and the LiverX program and EGW by a fellowship from the Fondation Romande pour la Recherche sur le Diabète. JA is the Nestlé Chair in Energy Metabolism. Research was supported by the EPFL, ETHZ, ERC (Sirtuins; AdG-231138 and Proteomics v3.0; AdG-233226), Velux Stiftung, LiverX and AgingX programs of the Swiss Initiative for Systems Biology (51RTP0-151019 and 2013/153), SNSF (31003A-140780, 31003A-143914, and CSRII3-136201), and the NIH (R01AG043930).

diff --git a/general/datasets/EPFLMouseLiverCDHFDRMA0818/cases.rtf b/general/datasets/EPFLMouseLiverCDHFDRMA0818/cases.rtf deleted file mode 100644 index ed4ced8..0000000 --- a/general/datasets/EPFLMouseLiverCDHFDRMA0818/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/EPFLMouseLiverCDHFDRMA0818/platform.rtf b/general/datasets/EPFLMouseLiverCDHFDRMA0818/platform.rtf deleted file mode 100644 index 4a33b7c..0000000 --- a/general/datasets/EPFLMouseLiverCDHFDRMA0818/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/EPFLMouseLiverCDHFDRMA0818/processing.rtf b/general/datasets/EPFLMouseLiverCDHFDRMA0818/processing.rtf deleted file mode 100644 index 8cc5d58..0000000 --- a/general/datasets/EPFLMouseLiverCDHFDRMA0818/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/EPFLMouseLiverCDHFDRMA0818/specifics.rtf b/general/datasets/EPFLMouseLiverCDHFDRMA0818/specifics.rtf deleted file mode 100644 index 7bcb4de..0000000 --- a/general/datasets/EPFLMouseLiverCDHFDRMA0818/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -RMA Normalization CD + HFD combined \ No newline at end of file diff --git a/general/datasets/EPFLMouseLiverCDHFDRMA0818/summary.rtf b/general/datasets/EPFLMouseLiverCDHFDRMA0818/summary.rtf deleted file mode 100644 index 77c5606..0000000 --- a/general/datasets/EPFLMouseLiverCDHFDRMA0818/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study we quantified the transcriptome, a subset of the metabolome, and using targeted proteomics, a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. We further used the integrated molecular profiles to characterize complex pathways, as illustrated with the mitochondrial unfolded protein response (UPRmt). UPRmt shows strikingly variant responses at the transcript and protein level that are remarkably conserved between C.elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.

diff --git a/general/datasets/EPFLMouseLiverCDHFDRMA0818/tissue.rtf b/general/datasets/EPFLMouseLiverCDHFDRMA0818/tissue.rtf deleted file mode 100644 index f95e2c4..0000000 --- a/general/datasets/EPFLMouseLiverCDHFDRMA0818/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/EPFLMouseLiverCDRMA0413/acknowledgment.rtf b/general/datasets/EPFLMouseLiverCDRMA0413/acknowledgment.rtf deleted file mode 100644 index 3a26b41..0000000 --- a/general/datasets/EPFLMouseLiverCDRMA0413/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The authors thank A. van Cruchten and W. Smit for the serum analysis of 2-AA. The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (SNSF; 33CSCO-122661). The authors thank P. Vollenweider, G. Waeber, V. Mooser and D. Waterworth, Co-PIs of the CoLaus study. Special thanks to M. Bochud, Y. Barreau, M. Firmann, V. Mayor, A. Bastian, B. Ramic, M. Moranville, M. Baumer, M. Sagette, J. Ecoffey and S. Mermoud for data collection. YW was supported by the ERC (Proteomics v3.0; AdG-233226 to RA), and the LiverX program and EGW by a fellowship from the Fondation Romande pour la Recherche sur le Diabète. JA is the Nestlé Chair in Energy Metabolism. Research was supported by the EPFL, ETHZ, ERC (Sirtuins; AdG-231138 and Proteomics v3.0; AdG-233226), Velux Stiftung, LiverX and AgingX programs of the Swiss Initiative for Systems Biology (51RTP0-151019 and 2013/153), SNSF (31003A-140780, 31003A-143914, and CSRII3-136201), and the NIH (R01AG043930).

diff --git a/general/datasets/EPFLMouseLiverCDRMA0413/cases.rtf b/general/datasets/EPFLMouseLiverCDRMA0413/cases.rtf deleted file mode 100644 index ed4ced8..0000000 --- a/general/datasets/EPFLMouseLiverCDRMA0413/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/EPFLMouseLiverCDRMA0413/platform.rtf b/general/datasets/EPFLMouseLiverCDRMA0413/platform.rtf deleted file mode 100644 index 4a33b7c..0000000 --- a/general/datasets/EPFLMouseLiverCDRMA0413/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/EPFLMouseLiverCDRMA0413/processing.rtf b/general/datasets/EPFLMouseLiverCDRMA0413/processing.rtf deleted file mode 100644 index 8cc5d58..0000000 --- a/general/datasets/EPFLMouseLiverCDRMA0413/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/EPFLMouseLiverCDRMA0413/summary.rtf b/general/datasets/EPFLMouseLiverCDRMA0413/summary.rtf deleted file mode 100644 index 77c5606..0000000 --- a/general/datasets/EPFLMouseLiverCDRMA0413/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study we quantified the transcriptome, a subset of the metabolome, and using targeted proteomics, a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. We further used the integrated molecular profiles to characterize complex pathways, as illustrated with the mitochondrial unfolded protein response (UPRmt). UPRmt shows strikingly variant responses at the transcript and protein level that are remarkably conserved between C.elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.

diff --git a/general/datasets/EPFLMouseLiverCDRMA0413/tissue.rtf b/general/datasets/EPFLMouseLiverCDRMA0413/tissue.rtf deleted file mode 100644 index f95e2c4..0000000 --- a/general/datasets/EPFLMouseLiverCDRMA0413/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/EPFLMouseLiverCDRMA0818/acknowledgment.rtf b/general/datasets/EPFLMouseLiverCDRMA0818/acknowledgment.rtf deleted file mode 100644 index 3a26b41..0000000 --- a/general/datasets/EPFLMouseLiverCDRMA0818/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The authors thank A. van Cruchten and W. Smit for the serum analysis of 2-AA. The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (SNSF; 33CSCO-122661). The authors thank P. Vollenweider, G. Waeber, V. Mooser and D. Waterworth, Co-PIs of the CoLaus study. Special thanks to M. Bochud, Y. Barreau, M. Firmann, V. Mayor, A. Bastian, B. Ramic, M. Moranville, M. Baumer, M. Sagette, J. Ecoffey and S. Mermoud for data collection. YW was supported by the ERC (Proteomics v3.0; AdG-233226 to RA), and the LiverX program and EGW by a fellowship from the Fondation Romande pour la Recherche sur le Diabète. JA is the Nestlé Chair in Energy Metabolism. Research was supported by the EPFL, ETHZ, ERC (Sirtuins; AdG-231138 and Proteomics v3.0; AdG-233226), Velux Stiftung, LiverX and AgingX programs of the Swiss Initiative for Systems Biology (51RTP0-151019 and 2013/153), SNSF (31003A-140780, 31003A-143914, and CSRII3-136201), and the NIH (R01AG043930).

diff --git a/general/datasets/EPFLMouseLiverCDRMA0818/cases.rtf b/general/datasets/EPFLMouseLiverCDRMA0818/cases.rtf deleted file mode 100644 index ed4ced8..0000000 --- a/general/datasets/EPFLMouseLiverCDRMA0818/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/EPFLMouseLiverCDRMA0818/platform.rtf b/general/datasets/EPFLMouseLiverCDRMA0818/platform.rtf deleted file mode 100644 index 4a33b7c..0000000 --- a/general/datasets/EPFLMouseLiverCDRMA0818/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/EPFLMouseLiverCDRMA0818/processing.rtf b/general/datasets/EPFLMouseLiverCDRMA0818/processing.rtf deleted file mode 100644 index 8cc5d58..0000000 --- a/general/datasets/EPFLMouseLiverCDRMA0818/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/EPFLMouseLiverCDRMA0818/specifics.rtf b/general/datasets/EPFLMouseLiverCDRMA0818/specifics.rtf deleted file mode 100644 index 8e24baa..0000000 --- a/general/datasets/EPFLMouseLiverCDRMA0818/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -

original rma normalization CD + HFD combined

diff --git a/general/datasets/EPFLMouseLiverCDRMA0818/summary.rtf b/general/datasets/EPFLMouseLiverCDRMA0818/summary.rtf deleted file mode 100644 index 77c5606..0000000 --- a/general/datasets/EPFLMouseLiverCDRMA0818/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study we quantified the transcriptome, a subset of the metabolome, and using targeted proteomics, a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. We further used the integrated molecular profiles to characterize complex pathways, as illustrated with the mitochondrial unfolded protein response (UPRmt). UPRmt shows strikingly variant responses at the transcript and protein level that are remarkably conserved between C.elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.

diff --git a/general/datasets/EPFLMouseLiverCDRMA0818/tissue.rtf b/general/datasets/EPFLMouseLiverCDRMA0818/tissue.rtf deleted file mode 100644 index f95e2c4..0000000 --- a/general/datasets/EPFLMouseLiverCDRMA0818/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/EPFLMouseLiverHFCEx0413/acknowledgment.rtf b/general/datasets/EPFLMouseLiverHFCEx0413/acknowledgment.rtf deleted file mode 100644 index 3a26b41..0000000 --- a/general/datasets/EPFLMouseLiverHFCEx0413/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The authors thank A. van Cruchten and W. Smit for the serum analysis of 2-AA. The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (SNSF; 33CSCO-122661). The authors thank P. Vollenweider, G. Waeber, V. Mooser and D. Waterworth, Co-PIs of the CoLaus study. Special thanks to M. Bochud, Y. Barreau, M. Firmann, V. Mayor, A. Bastian, B. Ramic, M. Moranville, M. Baumer, M. Sagette, J. Ecoffey and S. Mermoud for data collection. YW was supported by the ERC (Proteomics v3.0; AdG-233226 to RA), and the LiverX program and EGW by a fellowship from the Fondation Romande pour la Recherche sur le Diabète. JA is the Nestlé Chair in Energy Metabolism. Research was supported by the EPFL, ETHZ, ERC (Sirtuins; AdG-231138 and Proteomics v3.0; AdG-233226), Velux Stiftung, LiverX and AgingX programs of the Swiss Initiative for Systems Biology (51RTP0-151019 and 2013/153), SNSF (31003A-140780, 31003A-143914, and CSRII3-136201), and the NIH (R01AG043930).

diff --git a/general/datasets/EPFLMouseLiverHFCEx0413/cases.rtf b/general/datasets/EPFLMouseLiverHFCEx0413/cases.rtf deleted file mode 100644 index ed4ced8..0000000 --- a/general/datasets/EPFLMouseLiverHFCEx0413/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/EPFLMouseLiverHFCEx0413/platform.rtf b/general/datasets/EPFLMouseLiverHFCEx0413/platform.rtf deleted file mode 100644 index 4a33b7c..0000000 --- a/general/datasets/EPFLMouseLiverHFCEx0413/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/EPFLMouseLiverHFCEx0413/processing.rtf b/general/datasets/EPFLMouseLiverHFCEx0413/processing.rtf deleted file mode 100644 index 8cc5d58..0000000 --- a/general/datasets/EPFLMouseLiverHFCEx0413/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/EPFLMouseLiverHFCEx0413/specifics.rtf b/general/datasets/EPFLMouseLiverHFCEx0413/specifics.rtf deleted file mode 100644 index 7c1a914..0000000 --- a/general/datasets/EPFLMouseLiverHFCEx0413/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Exon Level \ No newline at end of file diff --git a/general/datasets/EPFLMouseLiverHFCEx0413/summary.rtf b/general/datasets/EPFLMouseLiverHFCEx0413/summary.rtf deleted file mode 100644 index 77c5606..0000000 --- a/general/datasets/EPFLMouseLiverHFCEx0413/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study we quantified the transcriptome, a subset of the metabolome, and using targeted proteomics, a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. We further used the integrated molecular profiles to characterize complex pathways, as illustrated with the mitochondrial unfolded protein response (UPRmt). UPRmt shows strikingly variant responses at the transcript and protein level that are remarkably conserved between C.elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.

diff --git a/general/datasets/EPFLMouseLiverHFCEx0413/tissue.rtf b/general/datasets/EPFLMouseLiverHFCEx0413/tissue.rtf deleted file mode 100644 index f95e2c4..0000000 --- a/general/datasets/EPFLMouseLiverHFCEx0413/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/EPFLMouseLiverHFDRMA0413/acknowledgment.rtf b/general/datasets/EPFLMouseLiverHFDRMA0413/acknowledgment.rtf deleted file mode 100644 index 3a26b41..0000000 --- a/general/datasets/EPFLMouseLiverHFDRMA0413/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The authors thank A. van Cruchten and W. Smit for the serum analysis of 2-AA. The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (SNSF; 33CSCO-122661). The authors thank P. Vollenweider, G. Waeber, V. Mooser and D. Waterworth, Co-PIs of the CoLaus study. Special thanks to M. Bochud, Y. Barreau, M. Firmann, V. Mayor, A. Bastian, B. Ramic, M. Moranville, M. Baumer, M. Sagette, J. Ecoffey and S. Mermoud for data collection. YW was supported by the ERC (Proteomics v3.0; AdG-233226 to RA), and the LiverX program and EGW by a fellowship from the Fondation Romande pour la Recherche sur le Diabète. JA is the Nestlé Chair in Energy Metabolism. Research was supported by the EPFL, ETHZ, ERC (Sirtuins; AdG-231138 and Proteomics v3.0; AdG-233226), Velux Stiftung, LiverX and AgingX programs of the Swiss Initiative for Systems Biology (51RTP0-151019 and 2013/153), SNSF (31003A-140780, 31003A-143914, and CSRII3-136201), and the NIH (R01AG043930).

diff --git a/general/datasets/EPFLMouseLiverHFDRMA0413/cases.rtf b/general/datasets/EPFLMouseLiverHFDRMA0413/cases.rtf deleted file mode 100644 index ed4ced8..0000000 --- a/general/datasets/EPFLMouseLiverHFDRMA0413/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/EPFLMouseLiverHFDRMA0413/platform.rtf b/general/datasets/EPFLMouseLiverHFDRMA0413/platform.rtf deleted file mode 100644 index 4a33b7c..0000000 --- a/general/datasets/EPFLMouseLiverHFDRMA0413/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/EPFLMouseLiverHFDRMA0413/processing.rtf b/general/datasets/EPFLMouseLiverHFDRMA0413/processing.rtf deleted file mode 100644 index 8cc5d58..0000000 --- a/general/datasets/EPFLMouseLiverHFDRMA0413/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/EPFLMouseLiverHFDRMA0413/specifics.rtf b/general/datasets/EPFLMouseLiverHFDRMA0413/specifics.rtf deleted file mode 100644 index 9f581ab..0000000 --- a/general/datasets/EPFLMouseLiverHFDRMA0413/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -

High Fat Diet Only

diff --git a/general/datasets/EPFLMouseLiverHFDRMA0413/summary.rtf b/general/datasets/EPFLMouseLiverHFDRMA0413/summary.rtf deleted file mode 100644 index 77c5606..0000000 --- a/general/datasets/EPFLMouseLiverHFDRMA0413/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study we quantified the transcriptome, a subset of the metabolome, and using targeted proteomics, a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. We further used the integrated molecular profiles to characterize complex pathways, as illustrated with the mitochondrial unfolded protein response (UPRmt). UPRmt shows strikingly variant responses at the transcript and protein level that are remarkably conserved between C.elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.

diff --git a/general/datasets/EPFLMouseLiverHFDRMA0413/tissue.rtf b/general/datasets/EPFLMouseLiverHFDRMA0413/tissue.rtf deleted file mode 100644 index f95e2c4..0000000 --- a/general/datasets/EPFLMouseLiverHFDRMA0413/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/EPFLMouseLiverHFDRMA0818/acknowledgment.rtf b/general/datasets/EPFLMouseLiverHFDRMA0818/acknowledgment.rtf deleted file mode 100644 index 3a26b41..0000000 --- a/general/datasets/EPFLMouseLiverHFDRMA0818/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The authors thank A. van Cruchten and W. Smit for the serum analysis of 2-AA. The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (SNSF; 33CSCO-122661). The authors thank P. Vollenweider, G. Waeber, V. Mooser and D. Waterworth, Co-PIs of the CoLaus study. Special thanks to M. Bochud, Y. Barreau, M. Firmann, V. Mayor, A. Bastian, B. Ramic, M. Moranville, M. Baumer, M. Sagette, J. Ecoffey and S. Mermoud for data collection. YW was supported by the ERC (Proteomics v3.0; AdG-233226 to RA), and the LiverX program and EGW by a fellowship from the Fondation Romande pour la Recherche sur le Diabète. JA is the Nestlé Chair in Energy Metabolism. Research was supported by the EPFL, ETHZ, ERC (Sirtuins; AdG-231138 and Proteomics v3.0; AdG-233226), Velux Stiftung, LiverX and AgingX programs of the Swiss Initiative for Systems Biology (51RTP0-151019 and 2013/153), SNSF (31003A-140780, 31003A-143914, and CSRII3-136201), and the NIH (R01AG043930).

diff --git a/general/datasets/EPFLMouseLiverHFDRMA0818/cases.rtf b/general/datasets/EPFLMouseLiverHFDRMA0818/cases.rtf deleted file mode 100644 index ed4ced8..0000000 --- a/general/datasets/EPFLMouseLiverHFDRMA0818/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/EPFLMouseLiverHFDRMA0818/platform.rtf b/general/datasets/EPFLMouseLiverHFDRMA0818/platform.rtf deleted file mode 100644 index 4a33b7c..0000000 --- a/general/datasets/EPFLMouseLiverHFDRMA0818/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/EPFLMouseLiverHFDRMA0818/processing.rtf b/general/datasets/EPFLMouseLiverHFDRMA0818/processing.rtf deleted file mode 100644 index 8cc5d58..0000000 --- a/general/datasets/EPFLMouseLiverHFDRMA0818/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/EPFLMouseLiverHFDRMA0818/specifics.rtf b/general/datasets/EPFLMouseLiverHFDRMA0818/specifics.rtf deleted file mode 100644 index 521f92a..0000000 --- a/general/datasets/EPFLMouseLiverHFDRMA0818/specifics.rtf +++ /dev/null @@ -1,65 +0,0 @@ -

HFD strain assignment errors to be fixed March 2019

- -

original rma normalization CD + HFD combined

- -

David Ashbrook analyzed strain assignment errors in March 2019. "I've more than doubled the number of markers up to 33, and can be pretty confident that a number of strains are labelled incorrectly, and what strains they should be. I've included a '?' if I'm not confident, or if I couldn't find a good match."

- -

BXD100?

- -

BXD51 > BXD55

- -

BXD55 > BXD51

- -

BXD63 > BXD43

- -

BXD73 > BXD79?

- -

BXD73a > BXD83

- -

BXD75 > BXD73a

- -

BXD79 > BXD81

- -

BXD81 > BXD84

- -

BXD83 > BXD85

- -

BXD84 > BXD87

- -

BXD85? > BXD89

- -

BXD87 > BXD90?

- -

BXD89 > BXD95

- -

BXD90 > BXD73

- -

BXD95 > BXD75

- -

 

- -

 

- -

I will try and add a few more markers to try and clear up the last few, but this hopefully gives you an idea of the extent of the problem. It also agrees with the strains that Rob highlighted as potential outliers in his e-mail. 

- -

 

- -

Best,

- -

David

- -

 

- -

 

- -

David Ashbrook, PhD
-Postdoctoral Fellow

- -

Department of Genetics, Genomics and Informatics
-Translational Science Research Building, Room 415
-University of Tennessee Health Science Center
-71 S Manassas St
-Memphis, TN, 38103

- -

https://davidashbrook.wordpress.com/
-dashbrook@uthsc.edu

diff --git a/general/datasets/EPFLMouseLiverHFDRMA0818/summary.rtf b/general/datasets/EPFLMouseLiverHFDRMA0818/summary.rtf deleted file mode 100644 index 77c5606..0000000 --- a/general/datasets/EPFLMouseLiverHFDRMA0818/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study we quantified the transcriptome, a subset of the metabolome, and using targeted proteomics, a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. We further used the integrated molecular profiles to characterize complex pathways, as illustrated with the mitochondrial unfolded protein response (UPRmt). UPRmt shows strikingly variant responses at the transcript and protein level that are remarkably conserved between C.elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.

diff --git a/general/datasets/EPFLMouseLiverHFDRMA0818/tissue.rtf b/general/datasets/EPFLMouseLiverHFDRMA0818/tissue.rtf deleted file mode 100644 index f95e2c4..0000000 --- a/general/datasets/EPFLMouseLiverHFDRMA0818/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/EPFLMouseLiverRMA0413/acknowledgment.rtf b/general/datasets/EPFLMouseLiverRMA0413/acknowledgment.rtf deleted file mode 100644 index 3a26b41..0000000 --- a/general/datasets/EPFLMouseLiverRMA0413/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The authors thank A. van Cruchten and W. Smit for the serum analysis of 2-AA. The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (SNSF; 33CSCO-122661). The authors thank P. Vollenweider, G. Waeber, V. Mooser and D. Waterworth, Co-PIs of the CoLaus study. Special thanks to M. Bochud, Y. Barreau, M. Firmann, V. Mayor, A. Bastian, B. Ramic, M. Moranville, M. Baumer, M. Sagette, J. Ecoffey and S. Mermoud for data collection. YW was supported by the ERC (Proteomics v3.0; AdG-233226 to RA), and the LiverX program and EGW by a fellowship from the Fondation Romande pour la Recherche sur le Diabète. JA is the Nestlé Chair in Energy Metabolism. Research was supported by the EPFL, ETHZ, ERC (Sirtuins; AdG-231138 and Proteomics v3.0; AdG-233226), Velux Stiftung, LiverX and AgingX programs of the Swiss Initiative for Systems Biology (51RTP0-151019 and 2013/153), SNSF (31003A-140780, 31003A-143914, and CSRII3-136201), and the NIH (R01AG043930).

diff --git a/general/datasets/EPFLMouseLiverRMA0413/cases.rtf b/general/datasets/EPFLMouseLiverRMA0413/cases.rtf deleted file mode 100644 index ed4ced8..0000000 --- a/general/datasets/EPFLMouseLiverRMA0413/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/EPFLMouseLiverRMA0413/platform.rtf b/general/datasets/EPFLMouseLiverRMA0413/platform.rtf deleted file mode 100644 index 4a33b7c..0000000 --- a/general/datasets/EPFLMouseLiverRMA0413/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/EPFLMouseLiverRMA0413/processing.rtf b/general/datasets/EPFLMouseLiverRMA0413/processing.rtf deleted file mode 100644 index 8cc5d58..0000000 --- a/general/datasets/EPFLMouseLiverRMA0413/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/EPFLMouseLiverRMA0413/summary.rtf b/general/datasets/EPFLMouseLiverRMA0413/summary.rtf deleted file mode 100644 index 77c5606..0000000 --- a/general/datasets/EPFLMouseLiverRMA0413/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study we quantified the transcriptome, a subset of the metabolome, and using targeted proteomics, a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. We further used the integrated molecular profiles to characterize complex pathways, as illustrated with the mitochondrial unfolded protein response (UPRmt). UPRmt shows strikingly variant responses at the transcript and protein level that are remarkably conserved between C.elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.

diff --git a/general/datasets/EPFLMouseLiverRMA0413/tissue.rtf b/general/datasets/EPFLMouseLiverRMA0413/tissue.rtf deleted file mode 100644 index f95e2c4..0000000 --- a/general/datasets/EPFLMouseLiverRMA0413/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/EPFLMouseMuscleCDRMAEx1112/summary.rtf b/general/datasets/EPFLMouseMuscleCDRMAEx1112/summary.rtf deleted file mode 100644 index e63dd95..0000000 --- a/general/datasets/EPFLMouseMuscleCDRMAEx1112/summary.rtf +++ /dev/null @@ -1,10 +0,0 @@ -

Highlights

- - - -

We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show tight negative correlation between Parp-1 expression and energy expenditure in heterogeneous mouse populations, indicating that variations in PARP-1 activity have an impact on metabolic homeostasis. Notably, these genetic correlations can be translated into pharmacological applications. Long-term treatment with PARP inhibitors enhances fitness in mice by increasing the abundance of mitochondrial respiratory complexes and boosting mitochondrial respiratory capacity. Furthermore, PARP inhibitors reverse mitochondrial defects in primary myotubes of obese humans and attenuate genetic defects of mitochondrial metabolism in human fibroblasts and C. elegans. Overall, our work validates in worm, mouse, and human models that PARP inhibition may be used to treat both genetic and acquired muscle dysfunction linked to defective mitochondrial function.

diff --git a/general/datasets/EPFLMouseMuscleCDRMAEx1112/tissue.rtf b/general/datasets/EPFLMouseMuscleCDRMAEx1112/tissue.rtf deleted file mode 100644 index c40574c..0000000 --- a/general/datasets/EPFLMouseMuscleCDRMAEx1112/tissue.rtf +++ /dev/null @@ -1,25 +0,0 @@ - - - - - - -
-
The muscle datasets are all generated from quadriceps muscles. These animals were born, raised, phenotyped, and sacrificed at the EPFL in the group of Johan Auwerx. Animals were all approximately 29 weeks of age and were all male. Chow diet cohorts ("CD") were fed Harlan 2018 (6% kcal/fat, 20% protein, 74% carbohydrate). High fat diet ("HFD") cohorts were fed Harlan 06414 (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. After an overnight fasting and isoflurane anesthesia, animals were sacrificed following a blood draw and perfusion. Quadriceps were cut horizontally from the femur bone and then frozen in liquid nitrogen for an extended period. Cohorts were sacrificed in a staggered fashion, with approximately 1 cohort per week over a period of 2-3 years. mRNA was prepared for the quadriceps in two distinct batches approximately one year apart (Batch 1: late spring 2011; Batch 2: late spring 2012). Microarrays were run on the samples in two distinct batches shortly after being prepared and received.
- -

 

- -
Batch 1 is the following cohorts: C57HFD 100HFD 62HFD 83CD C57CD 70CD 75CD 96CD 44HFD 45CD 61HFD 73CD DBACD 45HFD 63CD 87CD 89CD 90HFD 62CD 75HFD DBAHFD 44CD 66CD 87HFD 66HFD 55HFD 55CD 70HFD 51CD 83HFD 80CD 51HFD 73HFD 96HFD 61CD 90CD 80HFD 63HFD
- -

 

- -
Batch 2 is the following cohorts: 49HFD 43CD 50CD 89HFD 84CD 100CD 81HFD 98HFD 103CD 68CD 79CD 99CD 71CD 48HFD 64HFD 84HFD 101CD 103HFD 60CD 79HFD 68HFD 48CD 71HFD 65CD 85HFD 99HFD 81CD 49CD 56HFD 97CD 97HFD 92CD 69CD 64CD 69HFD 56CD 65HFD 43HFD 85CD 95CD 98CD
- -

 

- -
For all cohorts in these datasets, roughly 2-5 animals (typically around 4) had mRNA extracted separately, and then mRNA were pooled equally for each individual in a cohort. After the mRNA were pooled for the individuals within a cohort—a cohort meaning the same diet, sex, strain, and littermate—the samples were purified using RNEasy. 
- -

 

- -
Once both cohorts were completed, the two batches were re-normalized together using RMAExpress and the two batches were logged and z-normalized. The mean was set to 8 units and standard deviation was set to 2 units for all samples. This removes negative values from the samples, and reduces the batch effect between the two groups. 
-
diff --git a/general/datasets/EPFLMouseMuscleHFDRMAEx1112/summary.rtf b/general/datasets/EPFLMouseMuscleHFDRMAEx1112/summary.rtf deleted file mode 100644 index e63dd95..0000000 --- a/general/datasets/EPFLMouseMuscleHFDRMAEx1112/summary.rtf +++ /dev/null @@ -1,10 +0,0 @@ -

Highlights

- - - -

We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show tight negative correlation between Parp-1 expression and energy expenditure in heterogeneous mouse populations, indicating that variations in PARP-1 activity have an impact on metabolic homeostasis. Notably, these genetic correlations can be translated into pharmacological applications. Long-term treatment with PARP inhibitors enhances fitness in mice by increasing the abundance of mitochondrial respiratory complexes and boosting mitochondrial respiratory capacity. Furthermore, PARP inhibitors reverse mitochondrial defects in primary myotubes of obese humans and attenuate genetic defects of mitochondrial metabolism in human fibroblasts and C. elegans. Overall, our work validates in worm, mouse, and human models that PARP inhibition may be used to treat both genetic and acquired muscle dysfunction linked to defective mitochondrial function.

diff --git a/general/datasets/EPFLMouseMuscleHFDRMAEx1112/tissue.rtf b/general/datasets/EPFLMouseMuscleHFDRMAEx1112/tissue.rtf deleted file mode 100644 index c40574c..0000000 --- a/general/datasets/EPFLMouseMuscleHFDRMAEx1112/tissue.rtf +++ /dev/null @@ -1,25 +0,0 @@ - - - - - - -
-
The muscle datasets are all generated from quadriceps muscles. These animals were born, raised, phenotyped, and sacrificed at the EPFL in the group of Johan Auwerx. Animals were all approximately 29 weeks of age and were all male. Chow diet cohorts ("CD") were fed Harlan 2018 (6% kcal/fat, 20% protein, 74% carbohydrate). High fat diet ("HFD") cohorts were fed Harlan 06414 (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. After an overnight fasting and isoflurane anesthesia, animals were sacrificed following a blood draw and perfusion. Quadriceps were cut horizontally from the femur bone and then frozen in liquid nitrogen for an extended period. Cohorts were sacrificed in a staggered fashion, with approximately 1 cohort per week over a period of 2-3 years. mRNA was prepared for the quadriceps in two distinct batches approximately one year apart (Batch 1: late spring 2011; Batch 2: late spring 2012). Microarrays were run on the samples in two distinct batches shortly after being prepared and received.
- -

 

- -
Batch 1 is the following cohorts: C57HFD 100HFD 62HFD 83CD C57CD 70CD 75CD 96CD 44HFD 45CD 61HFD 73CD DBACD 45HFD 63CD 87CD 89CD 90HFD 62CD 75HFD DBAHFD 44CD 66CD 87HFD 66HFD 55HFD 55CD 70HFD 51CD 83HFD 80CD 51HFD 73HFD 96HFD 61CD 90CD 80HFD 63HFD
- -

 

- -
Batch 2 is the following cohorts: 49HFD 43CD 50CD 89HFD 84CD 100CD 81HFD 98HFD 103CD 68CD 79CD 99CD 71CD 48HFD 64HFD 84HFD 101CD 103HFD 60CD 79HFD 68HFD 48CD 71HFD 65CD 85HFD 99HFD 81CD 49CD 56HFD 97CD 97HFD 92CD 69CD 64CD 69HFD 56CD 65HFD 43HFD 85CD 95CD 98CD
- -

 

- -
For all cohorts in these datasets, roughly 2-5 animals (typically around 4) had mRNA extracted separately, and then mRNA were pooled equally for each individual in a cohort. After the mRNA were pooled for the individuals within a cohort—a cohort meaning the same diet, sex, strain, and littermate—the samples were purified using RNEasy. 
- -

 

- -
Once both cohorts were completed, the two batches were re-normalized together using RMAExpress and the two batches were logged and z-normalized. The mean was set to 8 units and standard deviation was set to 2 units for all samples. This removes negative values from the samples, and reduces the batch effect between the two groups. 
-
diff --git a/general/datasets/EPFL_AdiMitPro0416/summary.rtf b/general/datasets/EPFL_AdiMitPro0416/summary.rtf deleted file mode 100644 index 18527b0..0000000 --- a/general/datasets/EPFL_AdiMitPro0416/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

Currently these datasets are private, please refer to the contact information if you want to use this data set. 

diff --git a/general/datasets/EPFL_AdiPro0416/summary.rtf b/general/datasets/EPFL_AdiPro0416/summary.rtf deleted file mode 100644 index 18527b0..0000000 --- a/general/datasets/EPFL_AdiPro0416/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

Currently these datasets are private, please refer to the contact information if you want to use this data set. 

diff --git a/general/datasets/EPFL_ETHZ_BXD_LivProtAvg_CD_1119/specifics.rtf b/general/datasets/EPFL_ETHZ_BXD_LivProtAvg_CD_1119/specifics.rtf deleted file mode 100644 index c1ddd29..0000000 --- a/general/datasets/EPFL_ETHZ_BXD_LivProtAvg_CD_1119/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -CD \ No newline at end of file diff --git a/general/datasets/EPFL_ETHZ_BXD_LivProtAvg_CD_1119/summary.rtf b/general/datasets/EPFL_ETHZ_BXD_LivProtAvg_CD_1119/summary.rtf deleted file mode 100644 index c443a46..0000000 --- a/general/datasets/EPFL_ETHZ_BXD_LivProtAvg_CD_1119/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

EPFL/ETHZ BXD Liver Proteome CD-HFD (Nov19)

diff --git a/general/datasets/EPFL_ETHZ_BXD_LivProtAvg_CD_HF_1119/specifics.rtf b/general/datasets/EPFL_ETHZ_BXD_LivProtAvg_CD_HF_1119/specifics.rtf deleted file mode 100644 index 107347f..0000000 --- a/general/datasets/EPFL_ETHZ_BXD_LivProtAvg_CD_HF_1119/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -CD + HFD \ No newline at end of file diff --git a/general/datasets/EPFL_ETHZ_BXD_LivProtAvg_CD_HF_1119/summary.rtf b/general/datasets/EPFL_ETHZ_BXD_LivProtAvg_CD_HF_1119/summary.rtf deleted file mode 100644 index c443a46..0000000 --- a/general/datasets/EPFL_ETHZ_BXD_LivProtAvg_CD_HF_1119/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

EPFL/ETHZ BXD Liver Proteome CD-HFD (Nov19)

diff --git a/general/datasets/EPFL_ETHZ_BXD_LivProtAvg_HFD_1119/specifics.rtf b/general/datasets/EPFL_ETHZ_BXD_LivProtAvg_HFD_1119/specifics.rtf deleted file mode 100644 index 0ba1ca4..0000000 --- a/general/datasets/EPFL_ETHZ_BXD_LivProtAvg_HFD_1119/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -HFD \ No newline at end of file diff --git a/general/datasets/EPFL_ETHZ_BXD_LivProtAvg_HFD_1119/summary.rtf b/general/datasets/EPFL_ETHZ_BXD_LivProtAvg_HFD_1119/summary.rtf deleted file mode 100644 index c443a46..0000000 --- a/general/datasets/EPFL_ETHZ_BXD_LivProtAvg_HFD_1119/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

EPFL/ETHZ BXD Liver Proteome CD-HFD (Nov19)

diff --git a/general/datasets/EPFL_ETHZ_BXD_LivProtCD_HF_1119/specifics.rtf b/general/datasets/EPFL_ETHZ_BXD_LivProtCD_HF_1119/specifics.rtf deleted file mode 100644 index 409654b..0000000 --- a/general/datasets/EPFL_ETHZ_BXD_LivProtCD_HF_1119/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Individual samples \ No newline at end of file diff --git a/general/datasets/EPFL_ETHZ_BXD_LivProtCD_HF_1119/summary.rtf b/general/datasets/EPFL_ETHZ_BXD_LivProtCD_HF_1119/summary.rtf deleted file mode 100644 index c443a46..0000000 --- a/general/datasets/EPFL_ETHZ_BXD_LivProtCD_HF_1119/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

EPFL/ETHZ BXD Liver Proteome CD-HFD (Nov19)

diff --git a/general/datasets/EPFL_LISPBXDHeCD0114/acknowledgment.rtf b/general/datasets/EPFL_LISPBXDHeCD0114/acknowledgment.rtf deleted file mode 100644 index 91d3c6b..0000000 --- a/general/datasets/EPFL_LISPBXDHeCD0114/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The authors thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays.

diff --git a/general/datasets/EPFL_LISPBXDHeCD0114/cases.rtf b/general/datasets/EPFL_LISPBXDHeCD0114/cases.rtf deleted file mode 100644 index d43280d..0000000 --- a/general/datasets/EPFL_LISPBXDHeCD0114/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, allowing the animals to rest and reduce the direct expression effects of the phenotyping tests. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. Hearts were taken immediately after perfusion of the animal, weighed, and then frozen in liquid nitrogen no more than a minute after sacrifice.

diff --git a/general/datasets/EPFL_LISPBXDHeCD0114/experiment-design.rtf b/general/datasets/EPFL_LISPBXDHeCD0114/experiment-design.rtf deleted file mode 100644 index 7516c73..0000000 --- a/general/datasets/EPFL_LISPBXDHeCD0114/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

All animals were communally housed by strain until phenotyping and fed a chow diet (CD; (Harlan 2018; 6% kCal/fat, 20% kCal/protein, 74% kCal/carbohydrate) throughout life after weaning until sacrifice at around 29 weeks of age, or a high fat diet (HFD; Harlan TD.06414 60% kcal/fat, 20% protein, 20% carbohydrate) after 8 weeks of age until sacrifice around 29 weeks of age. All BXD strains (BXD43–103) were originally sourced from the vivarium at the University of Tennessee Health Science Center (Memphis, TN, USA) then bred for two or more generations until progeny entered the phenotyping colony. C57BL/6J and DBA/2J were sourced from Janvier, which re-sources its “J” lines every 10 generations from The Jackson Laboratory. For tissue collection on CD and HFD BXD cohorts, animals were sacrificed under isoflurane anesthesia and cardiac perfusion after an overnight fast. High fat diet treatment and two day isolation for the recording experiment were considered as having low impact on the animals’ welfare, while all other measurements and conditions were considered as having no negative impact. All research was approved by the Swiss cantonal veterinary authorities of Vaud under licenses 2257.0 and 2257.1. 

diff --git a/general/datasets/EPFL_LISPBXDHeCD0114/platform.rtf b/general/datasets/EPFL_LISPBXDHeCD0114/platform.rtf deleted file mode 100644 index ee667b4..0000000 --- a/general/datasets/EPFL_LISPBXDHeCD0114/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All arrays were Affymetrix Mouse Gene 2.0 ST, prepared and run simultaneously in a single batch in January 2014 by Lorne Rose at the University of Tennessee Health Science Center.

diff --git a/general/datasets/EPFL_LISPBXDHeCD0114/processing.rtf b/general/datasets/EPFL_LISPBXDHeCD0114/processing.rtf deleted file mode 100644 index 8cc5d58..0000000 --- a/general/datasets/EPFL_LISPBXDHeCD0114/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/EPFL_LISPBXDHeCD0114/summary.rtf b/general/datasets/EPFL_LISPBXDHeCD0114/summary.rtf deleted file mode 100644 index 7fcc1a9..0000000 --- a/general/datasets/EPFL_LISPBXDHeCD0114/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. In this study, we examined both genetic variants across 40 strains of BXD and the two founder lines, in addition to a major environmental influence—long term feeding with chow diet (CD) or high fat diet (HFD)—to see how metabolic gene expression varies by genotype and environment, and gene-by-environment interactions. The basic heart phenotypes quantified in these cohorts were not affected by HFD feeding (e.g. blood pressure and heart rate). 

diff --git a/general/datasets/EPFL_LISPBXDHeCD0114/tissue.rtf b/general/datasets/EPFL_LISPBXDHeCD0114/tissue.rtf deleted file mode 100644 index eebcb20..0000000 --- a/general/datasets/EPFL_LISPBXDHeCD0114/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Hearts were later shattered in liquid nitrogen, usually broken into 2-4 pieces, and around half of the sample (at random) was taken for preparation. All ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort, thus differences due to different segments of the heart being taken should be mitigated, although not eliminated, and researchers examining extremely specific transcriptional regulation in the heart should keep this in mind. The pooled RNA samples were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0.

diff --git a/general/datasets/EPFL_LISPBXDHeCDEx0114/acknowledgment.rtf b/general/datasets/EPFL_LISPBXDHeCDEx0114/acknowledgment.rtf deleted file mode 100644 index 91d3c6b..0000000 --- a/general/datasets/EPFL_LISPBXDHeCDEx0114/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The authors thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays.

diff --git a/general/datasets/EPFL_LISPBXDHeCDEx0114/cases.rtf b/general/datasets/EPFL_LISPBXDHeCDEx0114/cases.rtf deleted file mode 100644 index d43280d..0000000 --- a/general/datasets/EPFL_LISPBXDHeCDEx0114/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, allowing the animals to rest and reduce the direct expression effects of the phenotyping tests. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. Hearts were taken immediately after perfusion of the animal, weighed, and then frozen in liquid nitrogen no more than a minute after sacrifice.

diff --git a/general/datasets/EPFL_LISPBXDHeCDEx0114/experiment-design.rtf b/general/datasets/EPFL_LISPBXDHeCDEx0114/experiment-design.rtf deleted file mode 100644 index 7516c73..0000000 --- a/general/datasets/EPFL_LISPBXDHeCDEx0114/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

All animals were communally housed by strain until phenotyping and fed a chow diet (CD; (Harlan 2018; 6% kCal/fat, 20% kCal/protein, 74% kCal/carbohydrate) throughout life after weaning until sacrifice at around 29 weeks of age, or a high fat diet (HFD; Harlan TD.06414 60% kcal/fat, 20% protein, 20% carbohydrate) after 8 weeks of age until sacrifice around 29 weeks of age. All BXD strains (BXD43–103) were originally sourced from the vivarium at the University of Tennessee Health Science Center (Memphis, TN, USA) then bred for two or more generations until progeny entered the phenotyping colony. C57BL/6J and DBA/2J were sourced from Janvier, which re-sources its “J” lines every 10 generations from The Jackson Laboratory. For tissue collection on CD and HFD BXD cohorts, animals were sacrificed under isoflurane anesthesia and cardiac perfusion after an overnight fast. High fat diet treatment and two day isolation for the recording experiment were considered as having low impact on the animals’ welfare, while all other measurements and conditions were considered as having no negative impact. All research was approved by the Swiss cantonal veterinary authorities of Vaud under licenses 2257.0 and 2257.1. 

diff --git a/general/datasets/EPFL_LISPBXDHeCDEx0114/platform.rtf b/general/datasets/EPFL_LISPBXDHeCDEx0114/platform.rtf deleted file mode 100644 index ee667b4..0000000 --- a/general/datasets/EPFL_LISPBXDHeCDEx0114/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All arrays were Affymetrix Mouse Gene 2.0 ST, prepared and run simultaneously in a single batch in January 2014 by Lorne Rose at the University of Tennessee Health Science Center.

diff --git a/general/datasets/EPFL_LISPBXDHeCDEx0114/processing.rtf b/general/datasets/EPFL_LISPBXDHeCDEx0114/processing.rtf deleted file mode 100644 index 8cc5d58..0000000 --- a/general/datasets/EPFL_LISPBXDHeCDEx0114/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/EPFL_LISPBXDHeCDEx0114/summary.rtf b/general/datasets/EPFL_LISPBXDHeCDEx0114/summary.rtf deleted file mode 100644 index 7fcc1a9..0000000 --- a/general/datasets/EPFL_LISPBXDHeCDEx0114/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. In this study, we examined both genetic variants across 40 strains of BXD and the two founder lines, in addition to a major environmental influence—long term feeding with chow diet (CD) or high fat diet (HFD)—to see how metabolic gene expression varies by genotype and environment, and gene-by-environment interactions. The basic heart phenotypes quantified in these cohorts were not affected by HFD feeding (e.g. blood pressure and heart rate). 

diff --git a/general/datasets/EPFL_LISPBXDHeCDEx0114/tissue.rtf b/general/datasets/EPFL_LISPBXDHeCDEx0114/tissue.rtf deleted file mode 100644 index eebcb20..0000000 --- a/general/datasets/EPFL_LISPBXDHeCDEx0114/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Hearts were later shattered in liquid nitrogen, usually broken into 2-4 pieces, and around half of the sample (at random) was taken for preparation. All ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort, thus differences due to different segments of the heart being taken should be mitigated, although not eliminated, and researchers examining extremely specific transcriptional regulation in the heart should keep this in mind. The pooled RNA samples were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0.

diff --git a/general/datasets/EPFL_LISPBXDHeHFD0114/acknowledgment.rtf b/general/datasets/EPFL_LISPBXDHeHFD0114/acknowledgment.rtf deleted file mode 100644 index 91d3c6b..0000000 --- a/general/datasets/EPFL_LISPBXDHeHFD0114/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The authors thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays.

diff --git a/general/datasets/EPFL_LISPBXDHeHFD0114/cases.rtf b/general/datasets/EPFL_LISPBXDHeHFD0114/cases.rtf deleted file mode 100644 index d43280d..0000000 --- a/general/datasets/EPFL_LISPBXDHeHFD0114/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, allowing the animals to rest and reduce the direct expression effects of the phenotyping tests. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. Hearts were taken immediately after perfusion of the animal, weighed, and then frozen in liquid nitrogen no more than a minute after sacrifice.

diff --git a/general/datasets/EPFL_LISPBXDHeHFD0114/experiment-design.rtf b/general/datasets/EPFL_LISPBXDHeHFD0114/experiment-design.rtf deleted file mode 100644 index 7516c73..0000000 --- a/general/datasets/EPFL_LISPBXDHeHFD0114/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

All animals were communally housed by strain until phenotyping and fed a chow diet (CD; (Harlan 2018; 6% kCal/fat, 20% kCal/protein, 74% kCal/carbohydrate) throughout life after weaning until sacrifice at around 29 weeks of age, or a high fat diet (HFD; Harlan TD.06414 60% kcal/fat, 20% protein, 20% carbohydrate) after 8 weeks of age until sacrifice around 29 weeks of age. All BXD strains (BXD43–103) were originally sourced from the vivarium at the University of Tennessee Health Science Center (Memphis, TN, USA) then bred for two or more generations until progeny entered the phenotyping colony. C57BL/6J and DBA/2J were sourced from Janvier, which re-sources its “J” lines every 10 generations from The Jackson Laboratory. For tissue collection on CD and HFD BXD cohorts, animals were sacrificed under isoflurane anesthesia and cardiac perfusion after an overnight fast. High fat diet treatment and two day isolation for the recording experiment were considered as having low impact on the animals’ welfare, while all other measurements and conditions were considered as having no negative impact. All research was approved by the Swiss cantonal veterinary authorities of Vaud under licenses 2257.0 and 2257.1. 

diff --git a/general/datasets/EPFL_LISPBXDHeHFD0114/platform.rtf b/general/datasets/EPFL_LISPBXDHeHFD0114/platform.rtf deleted file mode 100644 index ee667b4..0000000 --- a/general/datasets/EPFL_LISPBXDHeHFD0114/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All arrays were Affymetrix Mouse Gene 2.0 ST, prepared and run simultaneously in a single batch in January 2014 by Lorne Rose at the University of Tennessee Health Science Center.

diff --git a/general/datasets/EPFL_LISPBXDHeHFD0114/processing.rtf b/general/datasets/EPFL_LISPBXDHeHFD0114/processing.rtf deleted file mode 100644 index 8cc5d58..0000000 --- a/general/datasets/EPFL_LISPBXDHeHFD0114/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/EPFL_LISPBXDHeHFD0114/summary.rtf b/general/datasets/EPFL_LISPBXDHeHFD0114/summary.rtf deleted file mode 100644 index 7fcc1a9..0000000 --- a/general/datasets/EPFL_LISPBXDHeHFD0114/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. In this study, we examined both genetic variants across 40 strains of BXD and the two founder lines, in addition to a major environmental influence—long term feeding with chow diet (CD) or high fat diet (HFD)—to see how metabolic gene expression varies by genotype and environment, and gene-by-environment interactions. The basic heart phenotypes quantified in these cohorts were not affected by HFD feeding (e.g. blood pressure and heart rate). 

diff --git a/general/datasets/EPFL_LISPBXDHeHFD0114/tissue.rtf b/general/datasets/EPFL_LISPBXDHeHFD0114/tissue.rtf deleted file mode 100644 index eebcb20..0000000 --- a/general/datasets/EPFL_LISPBXDHeHFD0114/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Hearts were later shattered in liquid nitrogen, usually broken into 2-4 pieces, and around half of the sample (at random) was taken for preparation. All ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort, thus differences due to different segments of the heart being taken should be mitigated, although not eliminated, and researchers examining extremely specific transcriptional regulation in the heart should keep this in mind. The pooled RNA samples were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0.

diff --git a/general/datasets/EPFL_LISPBXDHeHFDEx0114/acknowledgment.rtf b/general/datasets/EPFL_LISPBXDHeHFDEx0114/acknowledgment.rtf deleted file mode 100644 index 91d3c6b..0000000 --- a/general/datasets/EPFL_LISPBXDHeHFDEx0114/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The authors thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays.

diff --git a/general/datasets/EPFL_LISPBXDHeHFDEx0114/cases.rtf b/general/datasets/EPFL_LISPBXDHeHFDEx0114/cases.rtf deleted file mode 100644 index d43280d..0000000 --- a/general/datasets/EPFL_LISPBXDHeHFDEx0114/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, allowing the animals to rest and reduce the direct expression effects of the phenotyping tests. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. Hearts were taken immediately after perfusion of the animal, weighed, and then frozen in liquid nitrogen no more than a minute after sacrifice.

diff --git a/general/datasets/EPFL_LISPBXDHeHFDEx0114/experiment-design.rtf b/general/datasets/EPFL_LISPBXDHeHFDEx0114/experiment-design.rtf deleted file mode 100644 index 7516c73..0000000 --- a/general/datasets/EPFL_LISPBXDHeHFDEx0114/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

All animals were communally housed by strain until phenotyping and fed a chow diet (CD; (Harlan 2018; 6% kCal/fat, 20% kCal/protein, 74% kCal/carbohydrate) throughout life after weaning until sacrifice at around 29 weeks of age, or a high fat diet (HFD; Harlan TD.06414 60% kcal/fat, 20% protein, 20% carbohydrate) after 8 weeks of age until sacrifice around 29 weeks of age. All BXD strains (BXD43–103) were originally sourced from the vivarium at the University of Tennessee Health Science Center (Memphis, TN, USA) then bred for two or more generations until progeny entered the phenotyping colony. C57BL/6J and DBA/2J were sourced from Janvier, which re-sources its “J” lines every 10 generations from The Jackson Laboratory. For tissue collection on CD and HFD BXD cohorts, animals were sacrificed under isoflurane anesthesia and cardiac perfusion after an overnight fast. High fat diet treatment and two day isolation for the recording experiment were considered as having low impact on the animals’ welfare, while all other measurements and conditions were considered as having no negative impact. All research was approved by the Swiss cantonal veterinary authorities of Vaud under licenses 2257.0 and 2257.1. 

diff --git a/general/datasets/EPFL_LISPBXDHeHFDEx0114/platform.rtf b/general/datasets/EPFL_LISPBXDHeHFDEx0114/platform.rtf deleted file mode 100644 index ee667b4..0000000 --- a/general/datasets/EPFL_LISPBXDHeHFDEx0114/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All arrays were Affymetrix Mouse Gene 2.0 ST, prepared and run simultaneously in a single batch in January 2014 by Lorne Rose at the University of Tennessee Health Science Center.

diff --git a/general/datasets/EPFL_LISPBXDHeHFDEx0114/processing.rtf b/general/datasets/EPFL_LISPBXDHeHFDEx0114/processing.rtf deleted file mode 100644 index 8cc5d58..0000000 --- a/general/datasets/EPFL_LISPBXDHeHFDEx0114/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/EPFL_LISPBXDHeHFDEx0114/summary.rtf b/general/datasets/EPFL_LISPBXDHeHFDEx0114/summary.rtf deleted file mode 100644 index 7fcc1a9..0000000 --- a/general/datasets/EPFL_LISPBXDHeHFDEx0114/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. In this study, we examined both genetic variants across 40 strains of BXD and the two founder lines, in addition to a major environmental influence—long term feeding with chow diet (CD) or high fat diet (HFD)—to see how metabolic gene expression varies by genotype and environment, and gene-by-environment interactions. The basic heart phenotypes quantified in these cohorts were not affected by HFD feeding (e.g. blood pressure and heart rate). 

diff --git a/general/datasets/EPFL_LISPBXDHeHFDEx0114/tissue.rtf b/general/datasets/EPFL_LISPBXDHeHFDEx0114/tissue.rtf deleted file mode 100644 index eebcb20..0000000 --- a/general/datasets/EPFL_LISPBXDHeHFDEx0114/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

Hearts were later shattered in liquid nitrogen, usually broken into 2-4 pieces, and around half of the sample (at random) was taken for preparation. All ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort, thus differences due to different segments of the heart being taken should be mitigated, although not eliminated, and researchers examining extremely specific transcriptional regulation in the heart should keep this in mind. The pooled RNA samples were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0.

diff --git a/general/datasets/EPFL_LISP_BXD_Col_CD0917/specifics.rtf b/general/datasets/EPFL_LISP_BXD_Col_CD0917/specifics.rtf deleted file mode 100644 index c1ddd29..0000000 --- a/general/datasets/EPFL_LISP_BXD_Col_CD0917/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -CD \ No newline at end of file diff --git a/general/datasets/EPFL_LISP_BXD_Col_CD0917/summary.rtf b/general/datasets/EPFL_LISP_BXD_Col_CD0917/summary.rtf deleted file mode 100644 index 3ec986b..0000000 --- a/general/datasets/EPFL_LISP_BXD_Col_CD0917/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

Unpublished dataset

diff --git a/general/datasets/EPFL_LISP_BXD_Col_CD_HFD0917/specifics.rtf b/general/datasets/EPFL_LISP_BXD_Col_CD_HFD0917/specifics.rtf deleted file mode 100644 index 107347f..0000000 --- a/general/datasets/EPFL_LISP_BXD_Col_CD_HFD0917/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -CD + HFD \ No newline at end of file diff --git a/general/datasets/EPFL_LISP_BXD_Col_CD_HFD0917/summary.rtf b/general/datasets/EPFL_LISP_BXD_Col_CD_HFD0917/summary.rtf deleted file mode 100644 index 3ec986b..0000000 --- a/general/datasets/EPFL_LISP_BXD_Col_CD_HFD0917/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

Unpublished dataset

diff --git a/general/datasets/EPFL_LISP_BXD_Col_HFD0917/specifics.rtf b/general/datasets/EPFL_LISP_BXD_Col_HFD0917/specifics.rtf deleted file mode 100644 index 0ba1ca4..0000000 --- a/general/datasets/EPFL_LISP_BXD_Col_HFD0917/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -HFD \ No newline at end of file diff --git a/general/datasets/EPFL_LISP_BXD_Col_HFD0917/summary.rtf b/general/datasets/EPFL_LISP_BXD_Col_HFD0917/summary.rtf deleted file mode 100644 index 3ec986b..0000000 --- a/general/datasets/EPFL_LISP_BXD_Col_HFD0917/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

Unpublished dataset

diff --git a/general/datasets/EPFL_LISP_LivPMetCD1213/cases.rtf b/general/datasets/EPFL_LISP_LivPMetCD1213/cases.rtf deleted file mode 100644 index 7d496bc..0000000 --- a/general/datasets/EPFL_LISP_LivPMetCD1213/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

For liver metabolites, livers were perfused, frozen in liquid nitrogen, and then shattered in liquid nitrogen with a mortar and pestle at a later date. Several pieces of shattered liver totalling ~100 milligrams were collected then homogenized in 1mL 70% Ethanol at -20°C. Metabolites were extracted by adding 7mL 70% Ethanol at 75°C for 2 min. Extracts were centrifuged for 10 minutes at 4,000 rpm at 4°C. Clean metabolites extracts were dried in a vacuum centrifuge and re-suspended in double-distilled H2O with volume according to the weight of the extracted liver piece. Quantification of metabolites was performed on an Agilent 6550 QTOF instrument by flow injection analysis time-of-flight mass spectrometry (see: PMID 21830798). All samples were injected in duplicates. Ions were annotated based on their accurate mass and the Human Metabolome Database reference list (see: PMID 23161693) allowing a tolerance of 0.001 Da. Unknown ions and those annotated as adducts were discarded. Theoretical m/z ratios—beyond the significant digits from the measurement sensitivity—are used as the unique index in the online data on GeneNetwork. For example, deprotonated fumarate corresponds to 115.0036897_MZ, malate to 133.0142794_MZ, α-ketoglutarate to 145.0141831_MZ, and D2HG to 147.0298102_MZ.

diff --git a/general/datasets/EPFL_LISP_LivPMetCD1213/processing.rtf b/general/datasets/EPFL_LISP_LivPMetCD1213/processing.rtf deleted file mode 100644 index 671c357..0000000 --- a/general/datasets/EPFL_LISP_LivPMetCD1213/processing.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GeneNetwork displays only the strain averages ± SEM for each metabolite. To obtain the individual data for each animal, please use the link above under (Download datasets and supplementary data files). Note that this contains two entries for each animal: these are technical replicates. 

- -

The very raw spectral data from the mass spectrometer can be downloaded on MassIVE ( http://massive.ucsd.edu/ProteoSAFe/static/massive.jsp?redirect=auth ) under the identifier MSV000079411. This spectral data is for all 290 individual animals, and it includes two technical replicates for each individual, for a total of 580 runs. The file size is 102 GB and we do not recommend downloading this unless you are specifically interested in re-analyzing the spectra from scratch and looking into the granular details of mass spectrometry metabolomics.

diff --git a/general/datasets/EPFL_LISP_LivPMetCD1213/summary.rtf b/general/datasets/EPFL_LISP_LivPMetCD1213/summary.rtf deleted file mode 100644 index 5f92c0e..0000000 --- a/general/datasets/EPFL_LISP_LivPMetCD1213/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

We identified 979 unique metabolite features based on mass-charge ratios (m/z) using flow-injection ToF-MS, respectively. Of these features, 699 could be attributed to a single metabolite, including in cases where of the two “possible” enantiomers, one is clearly far more predominant than the other (e.g. L versus D amino acids). The remaining 280 metabolites were “clusters” with no clear predominant feature—for example, the “glucose” metabolite measurements could not be separated from fructose, galactose, or mannose measurements, as all share the same m/z. The “main” metabolite, as well as all possible alternatives are listed with the data on GeneNetwork.org for the raw file download (press the “INFO” button next to the dataset on the main search page and download the dataset and supplemental data files).

diff --git a/general/datasets/EPFL_LISP_LivPMetCDHFD1213/cases.rtf b/general/datasets/EPFL_LISP_LivPMetCDHFD1213/cases.rtf deleted file mode 100644 index 7d496bc..0000000 --- a/general/datasets/EPFL_LISP_LivPMetCDHFD1213/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

For liver metabolites, livers were perfused, frozen in liquid nitrogen, and then shattered in liquid nitrogen with a mortar and pestle at a later date. Several pieces of shattered liver totalling ~100 milligrams were collected then homogenized in 1mL 70% Ethanol at -20°C. Metabolites were extracted by adding 7mL 70% Ethanol at 75°C for 2 min. Extracts were centrifuged for 10 minutes at 4,000 rpm at 4°C. Clean metabolites extracts were dried in a vacuum centrifuge and re-suspended in double-distilled H2O with volume according to the weight of the extracted liver piece. Quantification of metabolites was performed on an Agilent 6550 QTOF instrument by flow injection analysis time-of-flight mass spectrometry (see: PMID 21830798). All samples were injected in duplicates. Ions were annotated based on their accurate mass and the Human Metabolome Database reference list (see: PMID 23161693) allowing a tolerance of 0.001 Da. Unknown ions and those annotated as adducts were discarded. Theoretical m/z ratios—beyond the significant digits from the measurement sensitivity—are used as the unique index in the online data on GeneNetwork. For example, deprotonated fumarate corresponds to 115.0036897_MZ, malate to 133.0142794_MZ, α-ketoglutarate to 145.0141831_MZ, and D2HG to 147.0298102_MZ.

diff --git a/general/datasets/EPFL_LISP_LivPMetCDHFD1213/processing.rtf b/general/datasets/EPFL_LISP_LivPMetCDHFD1213/processing.rtf deleted file mode 100644 index 671c357..0000000 --- a/general/datasets/EPFL_LISP_LivPMetCDHFD1213/processing.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GeneNetwork displays only the strain averages ± SEM for each metabolite. To obtain the individual data for each animal, please use the link above under (Download datasets and supplementary data files). Note that this contains two entries for each animal: these are technical replicates. 

- -

The very raw spectral data from the mass spectrometer can be downloaded on MassIVE ( http://massive.ucsd.edu/ProteoSAFe/static/massive.jsp?redirect=auth ) under the identifier MSV000079411. This spectral data is for all 290 individual animals, and it includes two technical replicates for each individual, for a total of 580 runs. The file size is 102 GB and we do not recommend downloading this unless you are specifically interested in re-analyzing the spectra from scratch and looking into the granular details of mass spectrometry metabolomics.

diff --git a/general/datasets/EPFL_LISP_LivPMetCDHFD1213/summary.rtf b/general/datasets/EPFL_LISP_LivPMetCDHFD1213/summary.rtf deleted file mode 100644 index 5f92c0e..0000000 --- a/general/datasets/EPFL_LISP_LivPMetCDHFD1213/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

We identified 979 unique metabolite features based on mass-charge ratios (m/z) using flow-injection ToF-MS, respectively. Of these features, 699 could be attributed to a single metabolite, including in cases where of the two “possible” enantiomers, one is clearly far more predominant than the other (e.g. L versus D amino acids). The remaining 280 metabolites were “clusters” with no clear predominant feature—for example, the “glucose” metabolite measurements could not be separated from fructose, galactose, or mannose measurements, as all share the same m/z. The “main” metabolite, as well as all possible alternatives are listed with the data on GeneNetwork.org for the raw file download (press the “INFO” button next to the dataset on the main search page and download the dataset and supplemental data files).

diff --git a/general/datasets/EPFL_LISP_LivPMetHFD1213/cases.rtf b/general/datasets/EPFL_LISP_LivPMetHFD1213/cases.rtf deleted file mode 100644 index 7d496bc..0000000 --- a/general/datasets/EPFL_LISP_LivPMetHFD1213/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

For liver metabolites, livers were perfused, frozen in liquid nitrogen, and then shattered in liquid nitrogen with a mortar and pestle at a later date. Several pieces of shattered liver totalling ~100 milligrams were collected then homogenized in 1mL 70% Ethanol at -20°C. Metabolites were extracted by adding 7mL 70% Ethanol at 75°C for 2 min. Extracts were centrifuged for 10 minutes at 4,000 rpm at 4°C. Clean metabolites extracts were dried in a vacuum centrifuge and re-suspended in double-distilled H2O with volume according to the weight of the extracted liver piece. Quantification of metabolites was performed on an Agilent 6550 QTOF instrument by flow injection analysis time-of-flight mass spectrometry (see: PMID 21830798). All samples were injected in duplicates. Ions were annotated based on their accurate mass and the Human Metabolome Database reference list (see: PMID 23161693) allowing a tolerance of 0.001 Da. Unknown ions and those annotated as adducts were discarded. Theoretical m/z ratios—beyond the significant digits from the measurement sensitivity—are used as the unique index in the online data on GeneNetwork. For example, deprotonated fumarate corresponds to 115.0036897_MZ, malate to 133.0142794_MZ, α-ketoglutarate to 145.0141831_MZ, and D2HG to 147.0298102_MZ.

diff --git a/general/datasets/EPFL_LISP_LivPMetHFD1213/processing.rtf b/general/datasets/EPFL_LISP_LivPMetHFD1213/processing.rtf deleted file mode 100644 index 671c357..0000000 --- a/general/datasets/EPFL_LISP_LivPMetHFD1213/processing.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GeneNetwork displays only the strain averages ± SEM for each metabolite. To obtain the individual data for each animal, please use the link above under (Download datasets and supplementary data files). Note that this contains two entries for each animal: these are technical replicates. 

- -

The very raw spectral data from the mass spectrometer can be downloaded on MassIVE ( http://massive.ucsd.edu/ProteoSAFe/static/massive.jsp?redirect=auth ) under the identifier MSV000079411. This spectral data is for all 290 individual animals, and it includes two technical replicates for each individual, for a total of 580 runs. The file size is 102 GB and we do not recommend downloading this unless you are specifically interested in re-analyzing the spectra from scratch and looking into the granular details of mass spectrometry metabolomics.

diff --git a/general/datasets/EPFL_LISP_LivPMetHFD1213/summary.rtf b/general/datasets/EPFL_LISP_LivPMetHFD1213/summary.rtf deleted file mode 100644 index 5f92c0e..0000000 --- a/general/datasets/EPFL_LISP_LivPMetHFD1213/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

We identified 979 unique metabolite features based on mass-charge ratios (m/z) using flow-injection ToF-MS, respectively. Of these features, 699 could be attributed to a single metabolite, including in cases where of the two “possible” enantiomers, one is clearly far more predominant than the other (e.g. L versus D amino acids). The remaining 280 metabolites were “clusters” with no clear predominant feature—for example, the “glucose” metabolite measurements could not be separated from fructose, galactose, or mannose measurements, as all share the same m/z. The “main” metabolite, as well as all possible alternatives are listed with the data on GeneNetwork.org for the raw file download (press the “INFO” button next to the dataset on the main search page and download the dataset and supplemental data files).

diff --git a/general/datasets/EPFL_LISP_LivPMetlog2CD1213/cases.rtf b/general/datasets/EPFL_LISP_LivPMetlog2CD1213/cases.rtf deleted file mode 100644 index 7d496bc..0000000 --- a/general/datasets/EPFL_LISP_LivPMetlog2CD1213/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

For liver metabolites, livers were perfused, frozen in liquid nitrogen, and then shattered in liquid nitrogen with a mortar and pestle at a later date. Several pieces of shattered liver totalling ~100 milligrams were collected then homogenized in 1mL 70% Ethanol at -20°C. Metabolites were extracted by adding 7mL 70% Ethanol at 75°C for 2 min. Extracts were centrifuged for 10 minutes at 4,000 rpm at 4°C. Clean metabolites extracts were dried in a vacuum centrifuge and re-suspended in double-distilled H2O with volume according to the weight of the extracted liver piece. Quantification of metabolites was performed on an Agilent 6550 QTOF instrument by flow injection analysis time-of-flight mass spectrometry (see: PMID 21830798). All samples were injected in duplicates. Ions were annotated based on their accurate mass and the Human Metabolome Database reference list (see: PMID 23161693) allowing a tolerance of 0.001 Da. Unknown ions and those annotated as adducts were discarded. Theoretical m/z ratios—beyond the significant digits from the measurement sensitivity—are used as the unique index in the online data on GeneNetwork. For example, deprotonated fumarate corresponds to 115.0036897_MZ, malate to 133.0142794_MZ, α-ketoglutarate to 145.0141831_MZ, and D2HG to 147.0298102_MZ.

diff --git a/general/datasets/EPFL_LISP_LivPMetlog2CD1213/processing.rtf b/general/datasets/EPFL_LISP_LivPMetlog2CD1213/processing.rtf deleted file mode 100644 index 671c357..0000000 --- a/general/datasets/EPFL_LISP_LivPMetlog2CD1213/processing.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GeneNetwork displays only the strain averages ± SEM for each metabolite. To obtain the individual data for each animal, please use the link above under (Download datasets and supplementary data files). Note that this contains two entries for each animal: these are technical replicates. 

- -

The very raw spectral data from the mass spectrometer can be downloaded on MassIVE ( http://massive.ucsd.edu/ProteoSAFe/static/massive.jsp?redirect=auth ) under the identifier MSV000079411. This spectral data is for all 290 individual animals, and it includes two technical replicates for each individual, for a total of 580 runs. The file size is 102 GB and we do not recommend downloading this unless you are specifically interested in re-analyzing the spectra from scratch and looking into the granular details of mass spectrometry metabolomics.

diff --git a/general/datasets/EPFL_LISP_LivPMetlog2CD1213/summary.rtf b/general/datasets/EPFL_LISP_LivPMetlog2CD1213/summary.rtf deleted file mode 100644 index 5f92c0e..0000000 --- a/general/datasets/EPFL_LISP_LivPMetlog2CD1213/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

We identified 979 unique metabolite features based on mass-charge ratios (m/z) using flow-injection ToF-MS, respectively. Of these features, 699 could be attributed to a single metabolite, including in cases where of the two “possible” enantiomers, one is clearly far more predominant than the other (e.g. L versus D amino acids). The remaining 280 metabolites were “clusters” with no clear predominant feature—for example, the “glucose” metabolite measurements could not be separated from fructose, galactose, or mannose measurements, as all share the same m/z. The “main” metabolite, as well as all possible alternatives are listed with the data on GeneNetwork.org for the raw file download (press the “INFO” button next to the dataset on the main search page and download the dataset and supplemental data files).

diff --git a/general/datasets/EPFL_LISP_LivPMetlog2HFD1213/cases.rtf b/general/datasets/EPFL_LISP_LivPMetlog2HFD1213/cases.rtf deleted file mode 100644 index 7d496bc..0000000 --- a/general/datasets/EPFL_LISP_LivPMetlog2HFD1213/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

For liver metabolites, livers were perfused, frozen in liquid nitrogen, and then shattered in liquid nitrogen with a mortar and pestle at a later date. Several pieces of shattered liver totalling ~100 milligrams were collected then homogenized in 1mL 70% Ethanol at -20°C. Metabolites were extracted by adding 7mL 70% Ethanol at 75°C for 2 min. Extracts were centrifuged for 10 minutes at 4,000 rpm at 4°C. Clean metabolites extracts were dried in a vacuum centrifuge and re-suspended in double-distilled H2O with volume according to the weight of the extracted liver piece. Quantification of metabolites was performed on an Agilent 6550 QTOF instrument by flow injection analysis time-of-flight mass spectrometry (see: PMID 21830798). All samples were injected in duplicates. Ions were annotated based on their accurate mass and the Human Metabolome Database reference list (see: PMID 23161693) allowing a tolerance of 0.001 Da. Unknown ions and those annotated as adducts were discarded. Theoretical m/z ratios—beyond the significant digits from the measurement sensitivity—are used as the unique index in the online data on GeneNetwork. For example, deprotonated fumarate corresponds to 115.0036897_MZ, malate to 133.0142794_MZ, α-ketoglutarate to 145.0141831_MZ, and D2HG to 147.0298102_MZ.

diff --git a/general/datasets/EPFL_LISP_LivPMetlog2HFD1213/processing.rtf b/general/datasets/EPFL_LISP_LivPMetlog2HFD1213/processing.rtf deleted file mode 100644 index 671c357..0000000 --- a/general/datasets/EPFL_LISP_LivPMetlog2HFD1213/processing.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GeneNetwork displays only the strain averages ± SEM for each metabolite. To obtain the individual data for each animal, please use the link above under (Download datasets and supplementary data files). Note that this contains two entries for each animal: these are technical replicates. 

- -

The very raw spectral data from the mass spectrometer can be downloaded on MassIVE ( http://massive.ucsd.edu/ProteoSAFe/static/massive.jsp?redirect=auth ) under the identifier MSV000079411. This spectral data is for all 290 individual animals, and it includes two technical replicates for each individual, for a total of 580 runs. The file size is 102 GB and we do not recommend downloading this unless you are specifically interested in re-analyzing the spectra from scratch and looking into the granular details of mass spectrometry metabolomics.

diff --git a/general/datasets/EPFL_LISP_LivPMetlog2HFD1213/summary.rtf b/general/datasets/EPFL_LISP_LivPMetlog2HFD1213/summary.rtf deleted file mode 100644 index 5f92c0e..0000000 --- a/general/datasets/EPFL_LISP_LivPMetlog2HFD1213/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

We identified 979 unique metabolite features based on mass-charge ratios (m/z) using flow-injection ToF-MS, respectively. Of these features, 699 could be attributed to a single metabolite, including in cases where of the two “possible” enantiomers, one is clearly far more predominant than the other (e.g. L versus D amino acids). The remaining 280 metabolites were “clusters” with no clear predominant feature—for example, the “glucose” metabolite measurements could not be separated from fructose, galactose, or mannose measurements, as all share the same m/z. The “main” metabolite, as well as all possible alternatives are listed with the data on GeneNetwork.org for the raw file download (press the “INFO” button next to the dataset on the main search page and download the dataset and supplemental data files).

diff --git a/general/datasets/EPFL_LISP_MusPMetCD1213/acknowledgment.rtf b/general/datasets/EPFL_LISP_MusPMetCD1213/acknowledgment.rtf deleted file mode 100644 index cdb89a8..0000000 --- a/general/datasets/EPFL_LISP_MusPMetCD1213/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

We would like to thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays. The work in the Auwerx lab was supported by the Ecole Polytechnique Federale de Lausanne, the EU Ideas program (AdG-23138 and AdG-322424), the NIH (R01HL106511-01A and R01AG043930), and the Swiss National Science Foundation (31003A- 124713 and 31003A-125487 and CSRII3-1362).

diff --git a/general/datasets/EPFL_LISP_MusPMetCD1213/cases.rtf b/general/datasets/EPFL_LISP_MusPMetCD1213/cases.rtf deleted file mode 100644 index ced8242..0000000 --- a/general/datasets/EPFL_LISP_MusPMetCD1213/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, roughly 10 male animals were born and weaned at 3 weeks of age. These cohorts were then separated evenly into two cohorts at 8 weeks of age: up to 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and up to 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). A total of 195 CD animals and 189 HFD animals comprised these original 82 cohorts (42 on CD, 40 on HFD, all 40 overlap except for 2 strains, BXD60 and BXD92a (aka BXD65b), which are unique to CD). For the next 8 weeks, animals adjusted to the diet and housing situation. From 16 to 24 weeks of age, animals were phenotyped for respiration, oral glucose response, cold tolerance, basal activity, VO2max exercise, and voluntary exercise. Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest, undisturbed except for a weekly cage change and weighing. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion.

diff --git a/general/datasets/EPFL_LISP_MusPMetCD1213/platform.rtf b/general/datasets/EPFL_LISP_MusPMetCD1213/platform.rtf deleted file mode 100644 index e123fe2..0000000 --- a/general/datasets/EPFL_LISP_MusPMetCD1213/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All arrays were Affymetrix Mouse Gene 1.0 ST, run in either October 2011 or August 2012 at the University of Tennessee Health Science Center. All .CEL files were normalized together after the second batch of data was collected.

diff --git a/general/datasets/EPFL_LISP_MusPMetCD1213/processing.rtf b/general/datasets/EPFL_LISP_MusPMetCD1213/processing.rtf deleted file mode 100644 index 8cc5d58..0000000 --- a/general/datasets/EPFL_LISP_MusPMetCD1213/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/EPFL_LISP_MusPMetCD1213/summary.rtf b/general/datasets/EPFL_LISP_MusPMetCD1213/summary.rtf deleted file mode 100644 index a785372..0000000 --- a/general/datasets/EPFL_LISP_MusPMetCD1213/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. In this study, we examined genetic variants across 40 strains of BXD and the two founder lines, in addition to a major environmental influence—long term feeding with chow diet (CD) or high fat diet (HFD)—to see how metabolic gene expression varies by genotype and environment, and gene-by-environment interactions. It is difficult to say whether the major muscle phenotypes were broadly affected by HFD directly, or whether the phenotypic variance was as a consequence of the induced weight gain and other deleterious effects of the HFD (e.g. see phenotype traits ID 17717 and 17718 for nighttime activity in CD and HFD cohorts, respectively).

diff --git a/general/datasets/EPFL_LISP_MusPMetCD1213/tissue.rtf b/general/datasets/EPFL_LISP_MusPMetCD1213/tissue.rtf deleted file mode 100644 index c4913a4..0000000 --- a/general/datasets/EPFL_LISP_MusPMetCD1213/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The quadriceps were taken near the end of the pipeline, roughly 6–10 minutes after completion of perfusion. Quadriceps were collected by cutting evenly across the upper axis of the femoral bone. Quadriceps muscle lying below or beside this femoral axis was not taken. The quadriceps was then placed in liquid nitrogen. At a later date, quadriceps were retrieved from -80 storage and shattered in liquid nitrogen. Roughly ~100 mg fragments were taken at random for mRNA preparation for every individual. To account potential differences in the tissue taken (as the tissue was not pulverized into powder), all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

- -

Tissue preparation was done in two different steps: the first half of the cohorts were run in October 2011, while the second half was run in August 2012. This tissue was the first microarray run at this platform, and thus the quadriceps served as a pilot to ensure that data quality would be good. The first half of the cohorts are: CD: C57, DBA, 44, 45, 51, 55, 61, 62, 63, 66, 70, 73, 75, 80, 83, 87, 89, 90, 96. HFD: C57, DBA, 44, 45, 51, 55, 61, 62, 63, 66, 70, 73, 75, 80, 83, 87, 90, 96, 100. The second half of the cohorts were the remainder. The preparation of all samples was done by the same technician with the same technique, other than the year time differential

diff --git a/general/datasets/EPFL_LISP_MusPMetCDHFD1213/acknowledgment.rtf b/general/datasets/EPFL_LISP_MusPMetCDHFD1213/acknowledgment.rtf deleted file mode 100644 index cdb89a8..0000000 --- a/general/datasets/EPFL_LISP_MusPMetCDHFD1213/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

We would like to thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays. The work in the Auwerx lab was supported by the Ecole Polytechnique Federale de Lausanne, the EU Ideas program (AdG-23138 and AdG-322424), the NIH (R01HL106511-01A and R01AG043930), and the Swiss National Science Foundation (31003A- 124713 and 31003A-125487 and CSRII3-1362).

diff --git a/general/datasets/EPFL_LISP_MusPMetCDHFD1213/cases.rtf b/general/datasets/EPFL_LISP_MusPMetCDHFD1213/cases.rtf deleted file mode 100644 index ced8242..0000000 --- a/general/datasets/EPFL_LISP_MusPMetCDHFD1213/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, roughly 10 male animals were born and weaned at 3 weeks of age. These cohorts were then separated evenly into two cohorts at 8 weeks of age: up to 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and up to 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). A total of 195 CD animals and 189 HFD animals comprised these original 82 cohorts (42 on CD, 40 on HFD, all 40 overlap except for 2 strains, BXD60 and BXD92a (aka BXD65b), which are unique to CD). For the next 8 weeks, animals adjusted to the diet and housing situation. From 16 to 24 weeks of age, animals were phenotyped for respiration, oral glucose response, cold tolerance, basal activity, VO2max exercise, and voluntary exercise. Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest, undisturbed except for a weekly cage change and weighing. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion.

diff --git a/general/datasets/EPFL_LISP_MusPMetCDHFD1213/platform.rtf b/general/datasets/EPFL_LISP_MusPMetCDHFD1213/platform.rtf deleted file mode 100644 index e123fe2..0000000 --- a/general/datasets/EPFL_LISP_MusPMetCDHFD1213/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All arrays were Affymetrix Mouse Gene 1.0 ST, run in either October 2011 or August 2012 at the University of Tennessee Health Science Center. All .CEL files were normalized together after the second batch of data was collected.

diff --git a/general/datasets/EPFL_LISP_MusPMetCDHFD1213/processing.rtf b/general/datasets/EPFL_LISP_MusPMetCDHFD1213/processing.rtf deleted file mode 100644 index 8cc5d58..0000000 --- a/general/datasets/EPFL_LISP_MusPMetCDHFD1213/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/EPFL_LISP_MusPMetCDHFD1213/summary.rtf b/general/datasets/EPFL_LISP_MusPMetCDHFD1213/summary.rtf deleted file mode 100644 index a785372..0000000 --- a/general/datasets/EPFL_LISP_MusPMetCDHFD1213/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. In this study, we examined genetic variants across 40 strains of BXD and the two founder lines, in addition to a major environmental influence—long term feeding with chow diet (CD) or high fat diet (HFD)—to see how metabolic gene expression varies by genotype and environment, and gene-by-environment interactions. It is difficult to say whether the major muscle phenotypes were broadly affected by HFD directly, or whether the phenotypic variance was as a consequence of the induced weight gain and other deleterious effects of the HFD (e.g. see phenotype traits ID 17717 and 17718 for nighttime activity in CD and HFD cohorts, respectively).

diff --git a/general/datasets/EPFL_LISP_MusPMetCDHFD1213/tissue.rtf b/general/datasets/EPFL_LISP_MusPMetCDHFD1213/tissue.rtf deleted file mode 100644 index c4913a4..0000000 --- a/general/datasets/EPFL_LISP_MusPMetCDHFD1213/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The quadriceps were taken near the end of the pipeline, roughly 6–10 minutes after completion of perfusion. Quadriceps were collected by cutting evenly across the upper axis of the femoral bone. Quadriceps muscle lying below or beside this femoral axis was not taken. The quadriceps was then placed in liquid nitrogen. At a later date, quadriceps were retrieved from -80 storage and shattered in liquid nitrogen. Roughly ~100 mg fragments were taken at random for mRNA preparation for every individual. To account potential differences in the tissue taken (as the tissue was not pulverized into powder), all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

- -

Tissue preparation was done in two different steps: the first half of the cohorts were run in October 2011, while the second half was run in August 2012. This tissue was the first microarray run at this platform, and thus the quadriceps served as a pilot to ensure that data quality would be good. The first half of the cohorts are: CD: C57, DBA, 44, 45, 51, 55, 61, 62, 63, 66, 70, 73, 75, 80, 83, 87, 89, 90, 96. HFD: C57, DBA, 44, 45, 51, 55, 61, 62, 63, 66, 70, 73, 75, 80, 83, 87, 90, 96, 100. The second half of the cohorts were the remainder. The preparation of all samples was done by the same technician with the same technique, other than the year time differential

diff --git a/general/datasets/EPFL_LISP_MusPMetHFD1213/acknowledgment.rtf b/general/datasets/EPFL_LISP_MusPMetHFD1213/acknowledgment.rtf deleted file mode 100644 index cdb89a8..0000000 --- a/general/datasets/EPFL_LISP_MusPMetHFD1213/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

We would like to thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays. The work in the Auwerx lab was supported by the Ecole Polytechnique Federale de Lausanne, the EU Ideas program (AdG-23138 and AdG-322424), the NIH (R01HL106511-01A and R01AG043930), and the Swiss National Science Foundation (31003A- 124713 and 31003A-125487 and CSRII3-1362).

diff --git a/general/datasets/EPFL_LISP_MusPMetHFD1213/cases.rtf b/general/datasets/EPFL_LISP_MusPMetHFD1213/cases.rtf deleted file mode 100644 index ced8242..0000000 --- a/general/datasets/EPFL_LISP_MusPMetHFD1213/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, roughly 10 male animals were born and weaned at 3 weeks of age. These cohorts were then separated evenly into two cohorts at 8 weeks of age: up to 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and up to 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). A total of 195 CD animals and 189 HFD animals comprised these original 82 cohorts (42 on CD, 40 on HFD, all 40 overlap except for 2 strains, BXD60 and BXD92a (aka BXD65b), which are unique to CD). For the next 8 weeks, animals adjusted to the diet and housing situation. From 16 to 24 weeks of age, animals were phenotyped for respiration, oral glucose response, cold tolerance, basal activity, VO2max exercise, and voluntary exercise. Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest, undisturbed except for a weekly cage change and weighing. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion.

diff --git a/general/datasets/EPFL_LISP_MusPMetHFD1213/platform.rtf b/general/datasets/EPFL_LISP_MusPMetHFD1213/platform.rtf deleted file mode 100644 index e123fe2..0000000 --- a/general/datasets/EPFL_LISP_MusPMetHFD1213/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

All arrays were Affymetrix Mouse Gene 1.0 ST, run in either October 2011 or August 2012 at the University of Tennessee Health Science Center. All .CEL files were normalized together after the second batch of data was collected.

diff --git a/general/datasets/EPFL_LISP_MusPMetHFD1213/processing.rtf b/general/datasets/EPFL_LISP_MusPMetHFD1213/processing.rtf deleted file mode 100644 index 8cc5d58..0000000 --- a/general/datasets/EPFL_LISP_MusPMetHFD1213/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/EPFL_LISP_MusPMetHFD1213/summary.rtf b/general/datasets/EPFL_LISP_MusPMetHFD1213/summary.rtf deleted file mode 100644 index a785372..0000000 --- a/general/datasets/EPFL_LISP_MusPMetHFD1213/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. In this study, we examined genetic variants across 40 strains of BXD and the two founder lines, in addition to a major environmental influence—long term feeding with chow diet (CD) or high fat diet (HFD)—to see how metabolic gene expression varies by genotype and environment, and gene-by-environment interactions. It is difficult to say whether the major muscle phenotypes were broadly affected by HFD directly, or whether the phenotypic variance was as a consequence of the induced weight gain and other deleterious effects of the HFD (e.g. see phenotype traits ID 17717 and 17718 for nighttime activity in CD and HFD cohorts, respectively).

diff --git a/general/datasets/EPFL_LISP_MusPMetHFD1213/tissue.rtf b/general/datasets/EPFL_LISP_MusPMetHFD1213/tissue.rtf deleted file mode 100644 index c4913a4..0000000 --- a/general/datasets/EPFL_LISP_MusPMetHFD1213/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The quadriceps were taken near the end of the pipeline, roughly 6–10 minutes after completion of perfusion. Quadriceps were collected by cutting evenly across the upper axis of the femoral bone. Quadriceps muscle lying below or beside this femoral axis was not taken. The quadriceps was then placed in liquid nitrogen. At a later date, quadriceps were retrieved from -80 storage and shattered in liquid nitrogen. Roughly ~100 mg fragments were taken at random for mRNA preparation for every individual. To account potential differences in the tissue taken (as the tissue was not pulverized into powder), all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

- -

Tissue preparation was done in two different steps: the first half of the cohorts were run in October 2011, while the second half was run in August 2012. This tissue was the first microarray run at this platform, and thus the quadriceps served as a pilot to ensure that data quality would be good. The first half of the cohorts are: CD: C57, DBA, 44, 45, 51, 55, 61, 62, 63, 66, 70, 73, 75, 80, 83, 87, 89, 90, 96. HFD: C57, DBA, 44, 45, 51, 55, 61, 62, 63, 66, 70, 73, 75, 80, 83, 87, 90, 96, 100. The second half of the cohorts were the remainder. The preparation of all samples was done by the same technician with the same technique, other than the year time differential

diff --git a/general/datasets/Ebi_mkk_liv_tpm_log2_0621/acknowledgment.rtf b/general/datasets/Ebi_mkk_liv_tpm_log2_0621/acknowledgment.rtf new file mode 100644 index 0000000..44b9d93 --- /dev/null +++ b/general/datasets/Ebi_mkk_liv_tpm_log2_0621/acknowledgment.rtf @@ -0,0 +1 @@ +

The authors acknowledge Thomas Seitz, and Irina Oks and Marzena Majewski for supporting the fish husbandry, and Alicia Günthel, Rachel Müller and Beate Wittbrodt for laboratory assistance. F.L. dedicates this paper to Sabine and Rolf Loosli-Walther. The work was funded by the Helmholtz funding programme BIFTM to F. Loosli, N. Wolf, N. Kusminski, C. Herder and N. Aadepu. E. Birney, T. Fitzgerald, A. Leger, C. Barton, J. Monahan and I. Brettell were funded by the EMBL European Bioinformatics Institute (EMBL-EBI). This work was supported by Heidelberg University Core Funding to T. Tavhelidse, T. Thumberger and J. Wittbrodt. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810172), from the NIH UH-3338-03 (JW), the German Ministry for Research (BMBF: HIGH-life 05K19VH1, Code-Vita 05K16VH1, JW) and the German Center for Heart Diseases DZHK (JW, JG).

diff --git a/general/datasets/Ebi_mkk_liv_tpm_log2_0621/specifics.rtf b/general/datasets/Ebi_mkk_liv_tpm_log2_0621/specifics.rtf new file mode 100644 index 0000000..16aad9e --- /dev/null +++ b/general/datasets/Ebi_mkk_liv_tpm_log2_0621/specifics.rtf @@ -0,0 +1 @@ +EBI MIKK Liver Male RNA-Seq (May 21) Log2 TPM \ No newline at end of file diff --git a/general/datasets/Ebi_mkk_liv_tpm_log2_0621/summary.rtf b/general/datasets/Ebi_mkk_liv_tpm_log2_0621/summary.rtf new file mode 100644 index 0000000..d931cbf --- /dev/null +++ b/general/datasets/Ebi_mkk_liv_tpm_log2_0621/summary.rtf @@ -0,0 +1,3 @@ +

Full paper available at https://www.biorxiv.org/content/10.1101/2021.05.17.444412v2.full

+ +

Unraveling the relationship between genetic variation and phenotypic traits remains a fundamental challenge in biology. Mapping variants underlying complex traits while controlling for confounding environmental factors is often problematic. To address this, we have established a vertebrate genetic resource specifically to allow for robust genotype-to-phenotype investigations. The teleost medaka (Oryzias latipes) is an established genetic model system with a long history of genetic research and a high tolerance to inbreeding from the wild. Here we present the Medaka Inbred Kiyosu-Karlsruhe (MIKK) panel: the first near-isogenic panel of 80 inbred lines in a vertebrate model derived from a wild founder population. Inbred lines provide fixed genomes that are a prerequisite for the replication of studies, studies which vary both the genetics and environment in a controlled manner and functional testing. The MIKK panel will therefore enable phenotype-to-genotype association studies of complex genetic traits while allowing for careful control of interacting factors, with numerous applications in genetic research, human health, and drug development and fundamental biology. Here we present a detailed characterisation of the genetic variation across the MIKK panel, which provides a rich and unique genetic resource to the community by enabling large-scale experiments for mapping complex traits.

diff --git a/general/datasets/Ebi_mkk_liv_tpm_log2_0621/tissue.rtf b/general/datasets/Ebi_mkk_liv_tpm_log2_0621/tissue.rtf new file mode 100644 index 0000000..4e277e5 --- /dev/null +++ b/general/datasets/Ebi_mkk_liv_tpm_log2_0621/tissue.rtf @@ -0,0 +1 @@ +

For whole genome sequencing, medaka organs were dissected from 6-month-old male adults. Fish were sacrificed by hypothermic shock. The brain was dissected and shock frozen in liquid nitrogen. For RNAseq analysis 12 month old adults that were kept at either 14 light:10 dark (summer condition) or 10 light:14 dark (winter condition) light cycles respectively were sacrificed by hypothermic shock and the organs after dissection were shock frozen in liquid nitrogen.

diff --git a/general/datasets/El_bxdcdhfdscwat_0216/acknowledgment.rtf b/general/datasets/El_bxdcdhfdscwat_0216/acknowledgment.rtf new file mode 100644 index 0000000..3fc4fc5 --- /dev/null +++ b/general/datasets/El_bxdcdhfdscwat_0216/acknowledgment.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

The authors thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays.

+
+
diff --git a/general/datasets/El_bxdcdhfdscwat_0216/cases.rtf b/general/datasets/El_bxdcdhfdscwat_0216/cases.rtf new file mode 100644 index 0000000..f54f4f2 --- /dev/null +++ b/general/datasets/El_bxdcdhfdscwat_0216/cases.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, allowing the animals to rest and reduce the direct expression effects of the phenotyping tests. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. Subcuteaneous white adipose tissue was collected near the end of the sacrifice pipeline, occurring an estimated 10±2 minutes after sacrifice. The tissue was weighed and then placed in a storage tube in liquid nitrogen.

+
+
diff --git a/general/datasets/El_bxdcdhfdscwat_0216/citation.rtf b/general/datasets/El_bxdcdhfdscwat_0216/citation.rtf new file mode 100644 index 0000000..249a454 --- /dev/null +++ b/general/datasets/El_bxdcdhfdscwat_0216/citation.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

Unpublished data. Please contact the laboratory of Johan Auwerx at the EPFL (http://auwerx-lab.epfl.ch/) for early access. 

+
+
diff --git a/general/datasets/El_bxdcdhfdscwat_0216/contributors.rtf b/general/datasets/El_bxdcdhfdscwat_0216/contributors.rtf new file mode 100644 index 0000000..ae951c8 --- /dev/null +++ b/general/datasets/El_bxdcdhfdscwat_0216/contributors.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

Williams EG, Jha P, Hao L, Andreux PA, Auwerx J

+
+
diff --git a/general/datasets/El_bxdcdhfdscwat_0216/experiment-design.rtf b/general/datasets/El_bxdcdhfdscwat_0216/experiment-design.rtf new file mode 100644 index 0000000..b417b79 --- /dev/null +++ b/general/datasets/El_bxdcdhfdscwat_0216/experiment-design.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

All animals were communally housed by strain until phenotyping and fed a chow diet (CD; (Harlan 2018; 6% kCal/fat, 20% kCal/protein, 74% kCal/carbohydrate) throughout life after weaning until sacrifice at around 29 weeks of age, or a high fat diet (HFD; Harlan TD.06414 60% kcal/fat, 20% protein, 20% carbohydrate) after 8 weeks of age until sacrifice around 29 weeks of age. All BXD strains (BXD43–103) were originally sourced from the vivarium at the University of Tennessee Health Science Center (Memphis, TN, USA) then bred for two or more generations until progeny entered the phenotyping colony. C57BL/6J and DBA/2J were sourced from Janvier, which re-sources its “J” lines every 10 generations from The Jackson Laboratory. For tissue collection on CD and HFD BXD cohorts, animals were sacrificed under isoflurane anesthesia and cardiac perfusion after an overnight fast. High fat diet treatment and two day isolation for the recording experiment were considered as having low impact on the animals’ welfare, while all other measurements and conditions were considered as having no negative impact. All research was approved by the Swiss cantonal veterinary authorities of Vaud under licenses 2257.0 and 2257.1. 

+
+
diff --git a/general/datasets/El_bxdcdhfdscwat_0216/platform.rtf b/general/datasets/El_bxdcdhfdscwat_0216/platform.rtf new file mode 100644 index 0000000..066be8d --- /dev/null +++ b/general/datasets/El_bxdcdhfdscwat_0216/platform.rtf @@ -0,0 +1,5 @@ +

GeneChip Mouse Transcriptome Assay 1.0

+ +

All arrays were Affymetrix Mouse Transcriptome Assay 1.0, prepared and run simultaneously in a single batch in January 2016 by Lorne Rose at the University of Tennessee Health Science Center.

+ +

Data error checked by RW Williams and David Ashbrook (March 2019). Numerous strain assignment corrections to HFD limb of study. Finally eQTL analysis validates both CD and HFD components. 

diff --git a/general/datasets/El_bxdcdhfdscwat_0216/processing.rtf b/general/datasets/El_bxdcdhfdscwat_0216/processing.rtf new file mode 100644 index 0000000..5dbb444 --- /dev/null +++ b/general/datasets/El_bxdcdhfdscwat_0216/processing.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

+
+
diff --git a/general/datasets/El_bxdcdhfdscwat_0216/specifics.rtf b/general/datasets/El_bxdcdhfdscwat_0216/specifics.rtf new file mode 100644 index 0000000..e6f6b94 --- /dev/null +++ b/general/datasets/El_bxdcdhfdscwat_0216/specifics.rtf @@ -0,0 +1 @@ +

Note: As of March 2019, this data set also affected by strain assignment errors in HFD limb. Needs to be fixed by Evan Williams, Arthur Centeno, and Rob Williams 

diff --git a/general/datasets/El_bxdcdhfdscwat_0216/summary.rtf b/general/datasets/El_bxdcdhfdscwat_0216/summary.rtf new file mode 100644 index 0000000..6c2d77a --- /dev/null +++ b/general/datasets/El_bxdcdhfdscwat_0216/summary.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. In this study, we examined both genetic variants across 40 strains of BXD and the two founder lines, in addition to a major environmental influence—long term feeding with chow diet (CD) or high fat diet (HFD)—to see how metabolic gene expression varies by genotype and environment, and gene-by-environment interactions. The basic heart phenotypes quantified in these cohorts were not affected by HFD feeding (e.g. blood pressure and heart rate). 

+ Microarray data for four other tissues in the exact same cohorts was processed and is in GeneNetwork: Heart, Liver, Muscle [Quadriceps], and Adipose [Brown]. Proteomic data for one other tissue in the exact same cohorts was processed and is in GeneNetwork: Liver. Metabolomic data for two tissues in the same cohorts was processed and is in GeneNetwork: Liver and Muscle [Quadriceps]. Brown Adipose was only run in CD cohorts, while all other datasets were run on both diets. All phenotype data associated with these animals can be found by searching Phenotypes for the code “LISP3”. Note that some traits are still private, while others have been published.
+
diff --git a/general/datasets/El_bxdcdhfdscwat_0216/tissue.rtf b/general/datasets/El_bxdcdhfdscwat_0216/tissue.rtf new file mode 100644 index 0000000..e595c55 --- /dev/null +++ b/general/datasets/El_bxdcdhfdscwat_0216/tissue.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

Subcuteaneous WAT was later shattered in liquid nitrogen, and around 100 mg was taken for preparation. All ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. The pooled RNA samples were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. RNA was prepared in the summer of 2013, while the RNEasy cleanup occurred in the winter of 2015; unlike the other tissues run as a part of this study, these RNA samples spent a significant time in the -80° freezers. However, the samples only underwent one freeze—thaw cycle.

+
+
diff --git a/general/datasets/El_bxdcdscwat_0216/acknowledgment.rtf b/general/datasets/El_bxdcdscwat_0216/acknowledgment.rtf new file mode 100644 index 0000000..3fc4fc5 --- /dev/null +++ b/general/datasets/El_bxdcdscwat_0216/acknowledgment.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

The authors thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays.

+
+
diff --git a/general/datasets/El_bxdcdscwat_0216/cases.rtf b/general/datasets/El_bxdcdscwat_0216/cases.rtf new file mode 100644 index 0000000..f54f4f2 --- /dev/null +++ b/general/datasets/El_bxdcdscwat_0216/cases.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, allowing the animals to rest and reduce the direct expression effects of the phenotyping tests. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. Subcuteaneous white adipose tissue was collected near the end of the sacrifice pipeline, occurring an estimated 10±2 minutes after sacrifice. The tissue was weighed and then placed in a storage tube in liquid nitrogen.

+
+
diff --git a/general/datasets/El_bxdcdscwat_0216/citation.rtf b/general/datasets/El_bxdcdscwat_0216/citation.rtf new file mode 100644 index 0000000..249a454 --- /dev/null +++ b/general/datasets/El_bxdcdscwat_0216/citation.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

Unpublished data. Please contact the laboratory of Johan Auwerx at the EPFL (http://auwerx-lab.epfl.ch/) for early access. 

+
+
diff --git a/general/datasets/El_bxdcdscwat_0216/contributors.rtf b/general/datasets/El_bxdcdscwat_0216/contributors.rtf new file mode 100644 index 0000000..ae951c8 --- /dev/null +++ b/general/datasets/El_bxdcdscwat_0216/contributors.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

Williams EG, Jha P, Hao L, Andreux PA, Auwerx J

+
+
diff --git a/general/datasets/El_bxdcdscwat_0216/experiment-design.rtf b/general/datasets/El_bxdcdscwat_0216/experiment-design.rtf new file mode 100644 index 0000000..b417b79 --- /dev/null +++ b/general/datasets/El_bxdcdscwat_0216/experiment-design.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

All animals were communally housed by strain until phenotyping and fed a chow diet (CD; (Harlan 2018; 6% kCal/fat, 20% kCal/protein, 74% kCal/carbohydrate) throughout life after weaning until sacrifice at around 29 weeks of age, or a high fat diet (HFD; Harlan TD.06414 60% kcal/fat, 20% protein, 20% carbohydrate) after 8 weeks of age until sacrifice around 29 weeks of age. All BXD strains (BXD43–103) were originally sourced from the vivarium at the University of Tennessee Health Science Center (Memphis, TN, USA) then bred for two or more generations until progeny entered the phenotyping colony. C57BL/6J and DBA/2J were sourced from Janvier, which re-sources its “J” lines every 10 generations from The Jackson Laboratory. For tissue collection on CD and HFD BXD cohorts, animals were sacrificed under isoflurane anesthesia and cardiac perfusion after an overnight fast. High fat diet treatment and two day isolation for the recording experiment were considered as having low impact on the animals’ welfare, while all other measurements and conditions were considered as having no negative impact. All research was approved by the Swiss cantonal veterinary authorities of Vaud under licenses 2257.0 and 2257.1. 

+
+
diff --git a/general/datasets/El_bxdcdscwat_0216/platform.rtf b/general/datasets/El_bxdcdscwat_0216/platform.rtf new file mode 100644 index 0000000..066be8d --- /dev/null +++ b/general/datasets/El_bxdcdscwat_0216/platform.rtf @@ -0,0 +1,5 @@ +

GeneChip Mouse Transcriptome Assay 1.0

+ +

All arrays were Affymetrix Mouse Transcriptome Assay 1.0, prepared and run simultaneously in a single batch in January 2016 by Lorne Rose at the University of Tennessee Health Science Center.

+ +

Data error checked by RW Williams and David Ashbrook (March 2019). Numerous strain assignment corrections to HFD limb of study. Finally eQTL analysis validates both CD and HFD components. 

diff --git a/general/datasets/El_bxdcdscwat_0216/processing.rtf b/general/datasets/El_bxdcdscwat_0216/processing.rtf new file mode 100644 index 0000000..5dbb444 --- /dev/null +++ b/general/datasets/El_bxdcdscwat_0216/processing.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

+
+
diff --git a/general/datasets/El_bxdcdscwat_0216/summary.rtf b/general/datasets/El_bxdcdscwat_0216/summary.rtf new file mode 100644 index 0000000..6c2d77a --- /dev/null +++ b/general/datasets/El_bxdcdscwat_0216/summary.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. In this study, we examined both genetic variants across 40 strains of BXD and the two founder lines, in addition to a major environmental influence—long term feeding with chow diet (CD) or high fat diet (HFD)—to see how metabolic gene expression varies by genotype and environment, and gene-by-environment interactions. The basic heart phenotypes quantified in these cohorts were not affected by HFD feeding (e.g. blood pressure and heart rate). 

+ Microarray data for four other tissues in the exact same cohorts was processed and is in GeneNetwork: Heart, Liver, Muscle [Quadriceps], and Adipose [Brown]. Proteomic data for one other tissue in the exact same cohorts was processed and is in GeneNetwork: Liver. Metabolomic data for two tissues in the same cohorts was processed and is in GeneNetwork: Liver and Muscle [Quadriceps]. Brown Adipose was only run in CD cohorts, while all other datasets were run on both diets. All phenotype data associated with these animals can be found by searching Phenotypes for the code “LISP3”. Note that some traits are still private, while others have been published.
+
diff --git a/general/datasets/El_bxdcdscwat_0216/tissue.rtf b/general/datasets/El_bxdcdscwat_0216/tissue.rtf new file mode 100644 index 0000000..e595c55 --- /dev/null +++ b/general/datasets/El_bxdcdscwat_0216/tissue.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

Subcuteaneous WAT was later shattered in liquid nitrogen, and around 100 mg was taken for preparation. All ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. The pooled RNA samples were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. RNA was prepared in the summer of 2013, while the RNEasy cleanup occurred in the winter of 2015; unlike the other tissues run as a part of this study, these RNA samples spent a significant time in the -80° freezers. However, the samples only underwent one freeze—thaw cycle.

+
+
diff --git a/general/datasets/El_bxdhfdscwat_0216/acknowledgment.rtf b/general/datasets/El_bxdhfdscwat_0216/acknowledgment.rtf new file mode 100644 index 0000000..3fc4fc5 --- /dev/null +++ b/general/datasets/El_bxdhfdscwat_0216/acknowledgment.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

The authors thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays.

+
+
diff --git a/general/datasets/El_bxdhfdscwat_0216/cases.rtf b/general/datasets/El_bxdhfdscwat_0216/cases.rtf new file mode 100644 index 0000000..f54f4f2 --- /dev/null +++ b/general/datasets/El_bxdhfdscwat_0216/cases.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, allowing the animals to rest and reduce the direct expression effects of the phenotyping tests. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. Subcuteaneous white adipose tissue was collected near the end of the sacrifice pipeline, occurring an estimated 10±2 minutes after sacrifice. The tissue was weighed and then placed in a storage tube in liquid nitrogen.

+
+
diff --git a/general/datasets/El_bxdhfdscwat_0216/citation.rtf b/general/datasets/El_bxdhfdscwat_0216/citation.rtf new file mode 100644 index 0000000..249a454 --- /dev/null +++ b/general/datasets/El_bxdhfdscwat_0216/citation.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

Unpublished data. Please contact the laboratory of Johan Auwerx at the EPFL (http://auwerx-lab.epfl.ch/) for early access. 

+
+
diff --git a/general/datasets/El_bxdhfdscwat_0216/contributors.rtf b/general/datasets/El_bxdhfdscwat_0216/contributors.rtf new file mode 100644 index 0000000..ae951c8 --- /dev/null +++ b/general/datasets/El_bxdhfdscwat_0216/contributors.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

Williams EG, Jha P, Hao L, Andreux PA, Auwerx J

+
+
diff --git a/general/datasets/El_bxdhfdscwat_0216/experiment-design.rtf b/general/datasets/El_bxdhfdscwat_0216/experiment-design.rtf new file mode 100644 index 0000000..b417b79 --- /dev/null +++ b/general/datasets/El_bxdhfdscwat_0216/experiment-design.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

All animals were communally housed by strain until phenotyping and fed a chow diet (CD; (Harlan 2018; 6% kCal/fat, 20% kCal/protein, 74% kCal/carbohydrate) throughout life after weaning until sacrifice at around 29 weeks of age, or a high fat diet (HFD; Harlan TD.06414 60% kcal/fat, 20% protein, 20% carbohydrate) after 8 weeks of age until sacrifice around 29 weeks of age. All BXD strains (BXD43–103) were originally sourced from the vivarium at the University of Tennessee Health Science Center (Memphis, TN, USA) then bred for two or more generations until progeny entered the phenotyping colony. C57BL/6J and DBA/2J were sourced from Janvier, which re-sources its “J” lines every 10 generations from The Jackson Laboratory. For tissue collection on CD and HFD BXD cohorts, animals were sacrificed under isoflurane anesthesia and cardiac perfusion after an overnight fast. High fat diet treatment and two day isolation for the recording experiment were considered as having low impact on the animals’ welfare, while all other measurements and conditions were considered as having no negative impact. All research was approved by the Swiss cantonal veterinary authorities of Vaud under licenses 2257.0 and 2257.1. 

+
+
diff --git a/general/datasets/El_bxdhfdscwat_0216/platform.rtf b/general/datasets/El_bxdhfdscwat_0216/platform.rtf new file mode 100644 index 0000000..066be8d --- /dev/null +++ b/general/datasets/El_bxdhfdscwat_0216/platform.rtf @@ -0,0 +1,5 @@ +

GeneChip Mouse Transcriptome Assay 1.0

+ +

All arrays were Affymetrix Mouse Transcriptome Assay 1.0, prepared and run simultaneously in a single batch in January 2016 by Lorne Rose at the University of Tennessee Health Science Center.

+ +

Data error checked by RW Williams and David Ashbrook (March 2019). Numerous strain assignment corrections to HFD limb of study. Finally eQTL analysis validates both CD and HFD components. 

diff --git a/general/datasets/El_bxdhfdscwat_0216/processing.rtf b/general/datasets/El_bxdhfdscwat_0216/processing.rtf new file mode 100644 index 0000000..5dbb444 --- /dev/null +++ b/general/datasets/El_bxdhfdscwat_0216/processing.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

+
+
diff --git a/general/datasets/El_bxdhfdscwat_0216/specifics.rtf b/general/datasets/El_bxdhfdscwat_0216/specifics.rtf new file mode 100644 index 0000000..276d19a --- /dev/null +++ b/general/datasets/El_bxdhfdscwat_0216/specifics.rtf @@ -0,0 +1 @@ +

Note: Prior to March 2019, the HFD component of this data set had strain assignment error. Now fully corrected.

diff --git a/general/datasets/El_bxdhfdscwat_0216/summary.rtf b/general/datasets/El_bxdhfdscwat_0216/summary.rtf new file mode 100644 index 0000000..6c2d77a --- /dev/null +++ b/general/datasets/El_bxdhfdscwat_0216/summary.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. In this study, we examined both genetic variants across 40 strains of BXD and the two founder lines, in addition to a major environmental influence—long term feeding with chow diet (CD) or high fat diet (HFD)—to see how metabolic gene expression varies by genotype and environment, and gene-by-environment interactions. The basic heart phenotypes quantified in these cohorts were not affected by HFD feeding (e.g. blood pressure and heart rate). 

+ Microarray data for four other tissues in the exact same cohorts was processed and is in GeneNetwork: Heart, Liver, Muscle [Quadriceps], and Adipose [Brown]. Proteomic data for one other tissue in the exact same cohorts was processed and is in GeneNetwork: Liver. Metabolomic data for two tissues in the same cohorts was processed and is in GeneNetwork: Liver and Muscle [Quadriceps]. Brown Adipose was only run in CD cohorts, while all other datasets were run on both diets. All phenotype data associated with these animals can be found by searching Phenotypes for the code “LISP3”. Note that some traits are still private, while others have been published.
+
diff --git a/general/datasets/El_bxdhfdscwat_0216/tissue.rtf b/general/datasets/El_bxdhfdscwat_0216/tissue.rtf new file mode 100644 index 0000000..e595c55 --- /dev/null +++ b/general/datasets/El_bxdhfdscwat_0216/tissue.rtf @@ -0,0 +1,11 @@ +
+ + + + + + +
+

Subcuteaneous WAT was later shattered in liquid nitrogen, and around 100 mg was taken for preparation. All ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. The pooled RNA samples were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. RNA was prepared in the summer of 2013, while the RNEasy cleanup occurred in the winter of 2015; unlike the other tissues run as a part of this study, these RNA samples spent a significant time in the -80° freezers. However, the samples only underwent one freeze—thaw cycle.

+
+
diff --git a/general/datasets/Epfl_adimitpro0416/summary.rtf b/general/datasets/Epfl_adimitpro0416/summary.rtf new file mode 100644 index 0000000..18527b0 --- /dev/null +++ b/general/datasets/Epfl_adimitpro0416/summary.rtf @@ -0,0 +1 @@ +

Currently these datasets are private, please refer to the contact information if you want to use this data set. 

diff --git a/general/datasets/Epfl_adipro0416/summary.rtf b/general/datasets/Epfl_adipro0416/summary.rtf new file mode 100644 index 0000000..18527b0 --- /dev/null +++ b/general/datasets/Epfl_adipro0416/summary.rtf @@ -0,0 +1 @@ +

Currently these datasets are private, please refer to the contact information if you want to use this data set. 

diff --git a/general/datasets/Epfl_ethz_bxd_livprotavg_cd_1119/specifics.rtf b/general/datasets/Epfl_ethz_bxd_livprotavg_cd_1119/specifics.rtf new file mode 100644 index 0000000..c1ddd29 --- /dev/null +++ b/general/datasets/Epfl_ethz_bxd_livprotavg_cd_1119/specifics.rtf @@ -0,0 +1 @@ +CD \ No newline at end of file diff --git a/general/datasets/Epfl_ethz_bxd_livprotavg_cd_1119/summary.rtf b/general/datasets/Epfl_ethz_bxd_livprotavg_cd_1119/summary.rtf new file mode 100644 index 0000000..c443a46 --- /dev/null +++ b/general/datasets/Epfl_ethz_bxd_livprotavg_cd_1119/summary.rtf @@ -0,0 +1 @@ +

EPFL/ETHZ BXD Liver Proteome CD-HFD (Nov19)

diff --git a/general/datasets/Epfl_ethz_bxd_livprotavg_cd_hf_1119/specifics.rtf b/general/datasets/Epfl_ethz_bxd_livprotavg_cd_hf_1119/specifics.rtf new file mode 100644 index 0000000..107347f --- /dev/null +++ b/general/datasets/Epfl_ethz_bxd_livprotavg_cd_hf_1119/specifics.rtf @@ -0,0 +1 @@ +CD + HFD \ No newline at end of file diff --git a/general/datasets/Epfl_ethz_bxd_livprotavg_cd_hf_1119/summary.rtf b/general/datasets/Epfl_ethz_bxd_livprotavg_cd_hf_1119/summary.rtf new file mode 100644 index 0000000..c443a46 --- /dev/null +++ b/general/datasets/Epfl_ethz_bxd_livprotavg_cd_hf_1119/summary.rtf @@ -0,0 +1 @@ +

EPFL/ETHZ BXD Liver Proteome CD-HFD (Nov19)

diff --git a/general/datasets/Epfl_ethz_bxd_livprotavg_hfd_1119/specifics.rtf b/general/datasets/Epfl_ethz_bxd_livprotavg_hfd_1119/specifics.rtf new file mode 100644 index 0000000..0ba1ca4 --- /dev/null +++ b/general/datasets/Epfl_ethz_bxd_livprotavg_hfd_1119/specifics.rtf @@ -0,0 +1 @@ +HFD \ No newline at end of file diff --git a/general/datasets/Epfl_ethz_bxd_livprotavg_hfd_1119/summary.rtf b/general/datasets/Epfl_ethz_bxd_livprotavg_hfd_1119/summary.rtf new file mode 100644 index 0000000..c443a46 --- /dev/null +++ b/general/datasets/Epfl_ethz_bxd_livprotavg_hfd_1119/summary.rtf @@ -0,0 +1 @@ +

EPFL/ETHZ BXD Liver Proteome CD-HFD (Nov19)

diff --git a/general/datasets/Epfl_ethz_bxd_livprotcd_hf_1119/specifics.rtf b/general/datasets/Epfl_ethz_bxd_livprotcd_hf_1119/specifics.rtf new file mode 100644 index 0000000..409654b --- /dev/null +++ b/general/datasets/Epfl_ethz_bxd_livprotcd_hf_1119/specifics.rtf @@ -0,0 +1 @@ +Individual samples \ No newline at end of file diff --git a/general/datasets/Epfl_ethz_bxd_livprotcd_hf_1119/summary.rtf b/general/datasets/Epfl_ethz_bxd_livprotcd_hf_1119/summary.rtf new file mode 100644 index 0000000..c443a46 --- /dev/null +++ b/general/datasets/Epfl_ethz_bxd_livprotcd_hf_1119/summary.rtf @@ -0,0 +1 @@ +

EPFL/ETHZ BXD Liver Proteome CD-HFD (Nov19)

diff --git a/general/datasets/Epfl_lisp_bxd_col_cd0917/specifics.rtf b/general/datasets/Epfl_lisp_bxd_col_cd0917/specifics.rtf new file mode 100644 index 0000000..c1ddd29 --- /dev/null +++ b/general/datasets/Epfl_lisp_bxd_col_cd0917/specifics.rtf @@ -0,0 +1 @@ +CD \ No newline at end of file diff --git a/general/datasets/Epfl_lisp_bxd_col_cd0917/summary.rtf b/general/datasets/Epfl_lisp_bxd_col_cd0917/summary.rtf new file mode 100644 index 0000000..3ec986b --- /dev/null +++ b/general/datasets/Epfl_lisp_bxd_col_cd0917/summary.rtf @@ -0,0 +1 @@ +

Unpublished dataset

diff --git a/general/datasets/Epfl_lisp_bxd_col_cd_hfd0917/specifics.rtf b/general/datasets/Epfl_lisp_bxd_col_cd_hfd0917/specifics.rtf new file mode 100644 index 0000000..107347f --- /dev/null +++ b/general/datasets/Epfl_lisp_bxd_col_cd_hfd0917/specifics.rtf @@ -0,0 +1 @@ +CD + HFD \ No newline at end of file diff --git a/general/datasets/Epfl_lisp_bxd_col_cd_hfd0917/summary.rtf b/general/datasets/Epfl_lisp_bxd_col_cd_hfd0917/summary.rtf new file mode 100644 index 0000000..3ec986b --- /dev/null +++ b/general/datasets/Epfl_lisp_bxd_col_cd_hfd0917/summary.rtf @@ -0,0 +1 @@ +

Unpublished dataset

diff --git a/general/datasets/Epfl_lisp_bxd_col_hfd0917/specifics.rtf b/general/datasets/Epfl_lisp_bxd_col_hfd0917/specifics.rtf new file mode 100644 index 0000000..0ba1ca4 --- /dev/null +++ b/general/datasets/Epfl_lisp_bxd_col_hfd0917/specifics.rtf @@ -0,0 +1 @@ +HFD \ No newline at end of file diff --git a/general/datasets/Epfl_lisp_bxd_col_hfd0917/summary.rtf b/general/datasets/Epfl_lisp_bxd_col_hfd0917/summary.rtf new file mode 100644 index 0000000..3ec986b --- /dev/null +++ b/general/datasets/Epfl_lisp_bxd_col_hfd0917/summary.rtf @@ -0,0 +1 @@ +

Unpublished dataset

diff --git a/general/datasets/Epfl_lisp_livpmetcd1213/cases.rtf b/general/datasets/Epfl_lisp_livpmetcd1213/cases.rtf new file mode 100644 index 0000000..7d496bc --- /dev/null +++ b/general/datasets/Epfl_lisp_livpmetcd1213/cases.rtf @@ -0,0 +1 @@ +

For liver metabolites, livers were perfused, frozen in liquid nitrogen, and then shattered in liquid nitrogen with a mortar and pestle at a later date. Several pieces of shattered liver totalling ~100 milligrams were collected then homogenized in 1mL 70% Ethanol at -20°C. Metabolites were extracted by adding 7mL 70% Ethanol at 75°C for 2 min. Extracts were centrifuged for 10 minutes at 4,000 rpm at 4°C. Clean metabolites extracts were dried in a vacuum centrifuge and re-suspended in double-distilled H2O with volume according to the weight of the extracted liver piece. Quantification of metabolites was performed on an Agilent 6550 QTOF instrument by flow injection analysis time-of-flight mass spectrometry (see: PMID 21830798). All samples were injected in duplicates. Ions were annotated based on their accurate mass and the Human Metabolome Database reference list (see: PMID 23161693) allowing a tolerance of 0.001 Da. Unknown ions and those annotated as adducts were discarded. Theoretical m/z ratios—beyond the significant digits from the measurement sensitivity—are used as the unique index in the online data on GeneNetwork. For example, deprotonated fumarate corresponds to 115.0036897_MZ, malate to 133.0142794_MZ, α-ketoglutarate to 145.0141831_MZ, and D2HG to 147.0298102_MZ.

diff --git a/general/datasets/Epfl_lisp_livpmetcd1213/processing.rtf b/general/datasets/Epfl_lisp_livpmetcd1213/processing.rtf new file mode 100644 index 0000000..671c357 --- /dev/null +++ b/general/datasets/Epfl_lisp_livpmetcd1213/processing.rtf @@ -0,0 +1,3 @@ +

GeneNetwork displays only the strain averages ± SEM for each metabolite. To obtain the individual data for each animal, please use the link above under (Download datasets and supplementary data files). Note that this contains two entries for each animal: these are technical replicates. 

+ +

The very raw spectral data from the mass spectrometer can be downloaded on MassIVE ( http://massive.ucsd.edu/ProteoSAFe/static/massive.jsp?redirect=auth ) under the identifier MSV000079411. This spectral data is for all 290 individual animals, and it includes two technical replicates for each individual, for a total of 580 runs. The file size is 102 GB and we do not recommend downloading this unless you are specifically interested in re-analyzing the spectra from scratch and looking into the granular details of mass spectrometry metabolomics.

diff --git a/general/datasets/Epfl_lisp_livpmetcd1213/summary.rtf b/general/datasets/Epfl_lisp_livpmetcd1213/summary.rtf new file mode 100644 index 0000000..5f92c0e --- /dev/null +++ b/general/datasets/Epfl_lisp_livpmetcd1213/summary.rtf @@ -0,0 +1 @@ +

We identified 979 unique metabolite features based on mass-charge ratios (m/z) using flow-injection ToF-MS, respectively. Of these features, 699 could be attributed to a single metabolite, including in cases where of the two “possible” enantiomers, one is clearly far more predominant than the other (e.g. L versus D amino acids). The remaining 280 metabolites were “clusters” with no clear predominant feature—for example, the “glucose” metabolite measurements could not be separated from fructose, galactose, or mannose measurements, as all share the same m/z. The “main” metabolite, as well as all possible alternatives are listed with the data on GeneNetwork.org for the raw file download (press the “INFO” button next to the dataset on the main search page and download the dataset and supplemental data files).

diff --git a/general/datasets/Epfl_lisp_livpmetcdhfd1213/cases.rtf b/general/datasets/Epfl_lisp_livpmetcdhfd1213/cases.rtf new file mode 100644 index 0000000..7d496bc --- /dev/null +++ b/general/datasets/Epfl_lisp_livpmetcdhfd1213/cases.rtf @@ -0,0 +1 @@ +

For liver metabolites, livers were perfused, frozen in liquid nitrogen, and then shattered in liquid nitrogen with a mortar and pestle at a later date. Several pieces of shattered liver totalling ~100 milligrams were collected then homogenized in 1mL 70% Ethanol at -20°C. Metabolites were extracted by adding 7mL 70% Ethanol at 75°C for 2 min. Extracts were centrifuged for 10 minutes at 4,000 rpm at 4°C. Clean metabolites extracts were dried in a vacuum centrifuge and re-suspended in double-distilled H2O with volume according to the weight of the extracted liver piece. Quantification of metabolites was performed on an Agilent 6550 QTOF instrument by flow injection analysis time-of-flight mass spectrometry (see: PMID 21830798). All samples were injected in duplicates. Ions were annotated based on their accurate mass and the Human Metabolome Database reference list (see: PMID 23161693) allowing a tolerance of 0.001 Da. Unknown ions and those annotated as adducts were discarded. Theoretical m/z ratios—beyond the significant digits from the measurement sensitivity—are used as the unique index in the online data on GeneNetwork. For example, deprotonated fumarate corresponds to 115.0036897_MZ, malate to 133.0142794_MZ, α-ketoglutarate to 145.0141831_MZ, and D2HG to 147.0298102_MZ.

diff --git a/general/datasets/Epfl_lisp_livpmetcdhfd1213/processing.rtf b/general/datasets/Epfl_lisp_livpmetcdhfd1213/processing.rtf new file mode 100644 index 0000000..671c357 --- /dev/null +++ b/general/datasets/Epfl_lisp_livpmetcdhfd1213/processing.rtf @@ -0,0 +1,3 @@ +

GeneNetwork displays only the strain averages ± SEM for each metabolite. To obtain the individual data for each animal, please use the link above under (Download datasets and supplementary data files). Note that this contains two entries for each animal: these are technical replicates. 

+ +

The very raw spectral data from the mass spectrometer can be downloaded on MassIVE ( http://massive.ucsd.edu/ProteoSAFe/static/massive.jsp?redirect=auth ) under the identifier MSV000079411. This spectral data is for all 290 individual animals, and it includes two technical replicates for each individual, for a total of 580 runs. The file size is 102 GB and we do not recommend downloading this unless you are specifically interested in re-analyzing the spectra from scratch and looking into the granular details of mass spectrometry metabolomics.

diff --git a/general/datasets/Epfl_lisp_livpmetcdhfd1213/summary.rtf b/general/datasets/Epfl_lisp_livpmetcdhfd1213/summary.rtf new file mode 100644 index 0000000..5f92c0e --- /dev/null +++ b/general/datasets/Epfl_lisp_livpmetcdhfd1213/summary.rtf @@ -0,0 +1 @@ +

We identified 979 unique metabolite features based on mass-charge ratios (m/z) using flow-injection ToF-MS, respectively. Of these features, 699 could be attributed to a single metabolite, including in cases where of the two “possible” enantiomers, one is clearly far more predominant than the other (e.g. L versus D amino acids). The remaining 280 metabolites were “clusters” with no clear predominant feature—for example, the “glucose” metabolite measurements could not be separated from fructose, galactose, or mannose measurements, as all share the same m/z. The “main” metabolite, as well as all possible alternatives are listed with the data on GeneNetwork.org for the raw file download (press the “INFO” button next to the dataset on the main search page and download the dataset and supplemental data files).

diff --git a/general/datasets/Epfl_lisp_livpmethfd1213/cases.rtf b/general/datasets/Epfl_lisp_livpmethfd1213/cases.rtf new file mode 100644 index 0000000..7d496bc --- /dev/null +++ b/general/datasets/Epfl_lisp_livpmethfd1213/cases.rtf @@ -0,0 +1 @@ +

For liver metabolites, livers were perfused, frozen in liquid nitrogen, and then shattered in liquid nitrogen with a mortar and pestle at a later date. Several pieces of shattered liver totalling ~100 milligrams were collected then homogenized in 1mL 70% Ethanol at -20°C. Metabolites were extracted by adding 7mL 70% Ethanol at 75°C for 2 min. Extracts were centrifuged for 10 minutes at 4,000 rpm at 4°C. Clean metabolites extracts were dried in a vacuum centrifuge and re-suspended in double-distilled H2O with volume according to the weight of the extracted liver piece. Quantification of metabolites was performed on an Agilent 6550 QTOF instrument by flow injection analysis time-of-flight mass spectrometry (see: PMID 21830798). All samples were injected in duplicates. Ions were annotated based on their accurate mass and the Human Metabolome Database reference list (see: PMID 23161693) allowing a tolerance of 0.001 Da. Unknown ions and those annotated as adducts were discarded. Theoretical m/z ratios—beyond the significant digits from the measurement sensitivity—are used as the unique index in the online data on GeneNetwork. For example, deprotonated fumarate corresponds to 115.0036897_MZ, malate to 133.0142794_MZ, α-ketoglutarate to 145.0141831_MZ, and D2HG to 147.0298102_MZ.

diff --git a/general/datasets/Epfl_lisp_livpmethfd1213/processing.rtf b/general/datasets/Epfl_lisp_livpmethfd1213/processing.rtf new file mode 100644 index 0000000..671c357 --- /dev/null +++ b/general/datasets/Epfl_lisp_livpmethfd1213/processing.rtf @@ -0,0 +1,3 @@ +

GeneNetwork displays only the strain averages ± SEM for each metabolite. To obtain the individual data for each animal, please use the link above under (Download datasets and supplementary data files). Note that this contains two entries for each animal: these are technical replicates. 

+ +

The very raw spectral data from the mass spectrometer can be downloaded on MassIVE ( http://massive.ucsd.edu/ProteoSAFe/static/massive.jsp?redirect=auth ) under the identifier MSV000079411. This spectral data is for all 290 individual animals, and it includes two technical replicates for each individual, for a total of 580 runs. The file size is 102 GB and we do not recommend downloading this unless you are specifically interested in re-analyzing the spectra from scratch and looking into the granular details of mass spectrometry metabolomics.

diff --git a/general/datasets/Epfl_lisp_livpmethfd1213/summary.rtf b/general/datasets/Epfl_lisp_livpmethfd1213/summary.rtf new file mode 100644 index 0000000..5f92c0e --- /dev/null +++ b/general/datasets/Epfl_lisp_livpmethfd1213/summary.rtf @@ -0,0 +1 @@ +

We identified 979 unique metabolite features based on mass-charge ratios (m/z) using flow-injection ToF-MS, respectively. Of these features, 699 could be attributed to a single metabolite, including in cases where of the two “possible” enantiomers, one is clearly far more predominant than the other (e.g. L versus D amino acids). The remaining 280 metabolites were “clusters” with no clear predominant feature—for example, the “glucose” metabolite measurements could not be separated from fructose, galactose, or mannose measurements, as all share the same m/z. The “main” metabolite, as well as all possible alternatives are listed with the data on GeneNetwork.org for the raw file download (press the “INFO” button next to the dataset on the main search page and download the dataset and supplemental data files).

diff --git a/general/datasets/Epfl_lisp_livpmetlog2cd1213/cases.rtf b/general/datasets/Epfl_lisp_livpmetlog2cd1213/cases.rtf new file mode 100644 index 0000000..7d496bc --- /dev/null +++ b/general/datasets/Epfl_lisp_livpmetlog2cd1213/cases.rtf @@ -0,0 +1 @@ +

For liver metabolites, livers were perfused, frozen in liquid nitrogen, and then shattered in liquid nitrogen with a mortar and pestle at a later date. Several pieces of shattered liver totalling ~100 milligrams were collected then homogenized in 1mL 70% Ethanol at -20°C. Metabolites were extracted by adding 7mL 70% Ethanol at 75°C for 2 min. Extracts were centrifuged for 10 minutes at 4,000 rpm at 4°C. Clean metabolites extracts were dried in a vacuum centrifuge and re-suspended in double-distilled H2O with volume according to the weight of the extracted liver piece. Quantification of metabolites was performed on an Agilent 6550 QTOF instrument by flow injection analysis time-of-flight mass spectrometry (see: PMID 21830798). All samples were injected in duplicates. Ions were annotated based on their accurate mass and the Human Metabolome Database reference list (see: PMID 23161693) allowing a tolerance of 0.001 Da. Unknown ions and those annotated as adducts were discarded. Theoretical m/z ratios—beyond the significant digits from the measurement sensitivity—are used as the unique index in the online data on GeneNetwork. For example, deprotonated fumarate corresponds to 115.0036897_MZ, malate to 133.0142794_MZ, α-ketoglutarate to 145.0141831_MZ, and D2HG to 147.0298102_MZ.

diff --git a/general/datasets/Epfl_lisp_livpmetlog2cd1213/processing.rtf b/general/datasets/Epfl_lisp_livpmetlog2cd1213/processing.rtf new file mode 100644 index 0000000..671c357 --- /dev/null +++ b/general/datasets/Epfl_lisp_livpmetlog2cd1213/processing.rtf @@ -0,0 +1,3 @@ +

GeneNetwork displays only the strain averages ± SEM for each metabolite. To obtain the individual data for each animal, please use the link above under (Download datasets and supplementary data files). Note that this contains two entries for each animal: these are technical replicates. 

+ +

The very raw spectral data from the mass spectrometer can be downloaded on MassIVE ( http://massive.ucsd.edu/ProteoSAFe/static/massive.jsp?redirect=auth ) under the identifier MSV000079411. This spectral data is for all 290 individual animals, and it includes two technical replicates for each individual, for a total of 580 runs. The file size is 102 GB and we do not recommend downloading this unless you are specifically interested in re-analyzing the spectra from scratch and looking into the granular details of mass spectrometry metabolomics.

diff --git a/general/datasets/Epfl_lisp_livpmetlog2cd1213/summary.rtf b/general/datasets/Epfl_lisp_livpmetlog2cd1213/summary.rtf new file mode 100644 index 0000000..5f92c0e --- /dev/null +++ b/general/datasets/Epfl_lisp_livpmetlog2cd1213/summary.rtf @@ -0,0 +1 @@ +

We identified 979 unique metabolite features based on mass-charge ratios (m/z) using flow-injection ToF-MS, respectively. Of these features, 699 could be attributed to a single metabolite, including in cases where of the two “possible” enantiomers, one is clearly far more predominant than the other (e.g. L versus D amino acids). The remaining 280 metabolites were “clusters” with no clear predominant feature—for example, the “glucose” metabolite measurements could not be separated from fructose, galactose, or mannose measurements, as all share the same m/z. The “main” metabolite, as well as all possible alternatives are listed with the data on GeneNetwork.org for the raw file download (press the “INFO” button next to the dataset on the main search page and download the dataset and supplemental data files).

diff --git a/general/datasets/Epfl_lisp_livpmetlog2hfd1213/cases.rtf b/general/datasets/Epfl_lisp_livpmetlog2hfd1213/cases.rtf new file mode 100644 index 0000000..7d496bc --- /dev/null +++ b/general/datasets/Epfl_lisp_livpmetlog2hfd1213/cases.rtf @@ -0,0 +1 @@ +

For liver metabolites, livers were perfused, frozen in liquid nitrogen, and then shattered in liquid nitrogen with a mortar and pestle at a later date. Several pieces of shattered liver totalling ~100 milligrams were collected then homogenized in 1mL 70% Ethanol at -20°C. Metabolites were extracted by adding 7mL 70% Ethanol at 75°C for 2 min. Extracts were centrifuged for 10 minutes at 4,000 rpm at 4°C. Clean metabolites extracts were dried in a vacuum centrifuge and re-suspended in double-distilled H2O with volume according to the weight of the extracted liver piece. Quantification of metabolites was performed on an Agilent 6550 QTOF instrument by flow injection analysis time-of-flight mass spectrometry (see: PMID 21830798). All samples were injected in duplicates. Ions were annotated based on their accurate mass and the Human Metabolome Database reference list (see: PMID 23161693) allowing a tolerance of 0.001 Da. Unknown ions and those annotated as adducts were discarded. Theoretical m/z ratios—beyond the significant digits from the measurement sensitivity—are used as the unique index in the online data on GeneNetwork. For example, deprotonated fumarate corresponds to 115.0036897_MZ, malate to 133.0142794_MZ, α-ketoglutarate to 145.0141831_MZ, and D2HG to 147.0298102_MZ.

diff --git a/general/datasets/Epfl_lisp_livpmetlog2hfd1213/processing.rtf b/general/datasets/Epfl_lisp_livpmetlog2hfd1213/processing.rtf new file mode 100644 index 0000000..671c357 --- /dev/null +++ b/general/datasets/Epfl_lisp_livpmetlog2hfd1213/processing.rtf @@ -0,0 +1,3 @@ +

GeneNetwork displays only the strain averages ± SEM for each metabolite. To obtain the individual data for each animal, please use the link above under (Download datasets and supplementary data files). Note that this contains two entries for each animal: these are technical replicates. 

+ +

The very raw spectral data from the mass spectrometer can be downloaded on MassIVE ( http://massive.ucsd.edu/ProteoSAFe/static/massive.jsp?redirect=auth ) under the identifier MSV000079411. This spectral data is for all 290 individual animals, and it includes two technical replicates for each individual, for a total of 580 runs. The file size is 102 GB and we do not recommend downloading this unless you are specifically interested in re-analyzing the spectra from scratch and looking into the granular details of mass spectrometry metabolomics.

diff --git a/general/datasets/Epfl_lisp_livpmetlog2hfd1213/summary.rtf b/general/datasets/Epfl_lisp_livpmetlog2hfd1213/summary.rtf new file mode 100644 index 0000000..5f92c0e --- /dev/null +++ b/general/datasets/Epfl_lisp_livpmetlog2hfd1213/summary.rtf @@ -0,0 +1 @@ +

We identified 979 unique metabolite features based on mass-charge ratios (m/z) using flow-injection ToF-MS, respectively. Of these features, 699 could be attributed to a single metabolite, including in cases where of the two “possible” enantiomers, one is clearly far more predominant than the other (e.g. L versus D amino acids). The remaining 280 metabolites were “clusters” with no clear predominant feature—for example, the “glucose” metabolite measurements could not be separated from fructose, galactose, or mannose measurements, as all share the same m/z. The “main” metabolite, as well as all possible alternatives are listed with the data on GeneNetwork.org for the raw file download (press the “INFO” button next to the dataset on the main search page and download the dataset and supplemental data files).

diff --git a/general/datasets/Epfl_lisp_muspmetcd1213/acknowledgment.rtf b/general/datasets/Epfl_lisp_muspmetcd1213/acknowledgment.rtf new file mode 100644 index 0000000..cdb89a8 --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmetcd1213/acknowledgment.rtf @@ -0,0 +1 @@ +

We would like to thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays. The work in the Auwerx lab was supported by the Ecole Polytechnique Federale de Lausanne, the EU Ideas program (AdG-23138 and AdG-322424), the NIH (R01HL106511-01A and R01AG043930), and the Swiss National Science Foundation (31003A- 124713 and 31003A-125487 and CSRII3-1362).

diff --git a/general/datasets/Epfl_lisp_muspmetcd1213/cases.rtf b/general/datasets/Epfl_lisp_muspmetcd1213/cases.rtf new file mode 100644 index 0000000..ced8242 --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmetcd1213/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, roughly 10 male animals were born and weaned at 3 weeks of age. These cohorts were then separated evenly into two cohorts at 8 weeks of age: up to 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and up to 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). A total of 195 CD animals and 189 HFD animals comprised these original 82 cohorts (42 on CD, 40 on HFD, all 40 overlap except for 2 strains, BXD60 and BXD92a (aka BXD65b), which are unique to CD). For the next 8 weeks, animals adjusted to the diet and housing situation. From 16 to 24 weeks of age, animals were phenotyped for respiration, oral glucose response, cold tolerance, basal activity, VO2max exercise, and voluntary exercise. Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest, undisturbed except for a weekly cage change and weighing. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion.

diff --git a/general/datasets/Epfl_lisp_muspmetcd1213/citation.rtf b/general/datasets/Epfl_lisp_muspmetcd1213/citation.rtf new file mode 100644 index 0000000..f946bb0 --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmetcd1213/citation.rtf @@ -0,0 +1,3 @@ +

Pirinen et al., Cell Metabolism 2014. Pharmacological inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. PMID 24814482.

+ +

Williams et al., PLoS Genetics 2014. An evolutionarily conserved role for the aryl hydrocarbon receptor in the regulation of movement. PMID 25255223.

diff --git a/general/datasets/Epfl_lisp_muspmetcd1213/contributors.rtf b/general/datasets/Epfl_lisp_muspmetcd1213/contributors.rtf new file mode 100644 index 0000000..fd98a7c --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmetcd1213/contributors.rtf @@ -0,0 +1 @@ +

Williams EG, Andreux P, Auwerx J

diff --git a/general/datasets/Epfl_lisp_muspmetcd1213/platform.rtf b/general/datasets/Epfl_lisp_muspmetcd1213/platform.rtf new file mode 100644 index 0000000..e123fe2 --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmetcd1213/platform.rtf @@ -0,0 +1 @@ +

All arrays were Affymetrix Mouse Gene 1.0 ST, run in either October 2011 or August 2012 at the University of Tennessee Health Science Center. All .CEL files were normalized together after the second batch of data was collected.

diff --git a/general/datasets/Epfl_lisp_muspmetcd1213/processing.rtf b/general/datasets/Epfl_lisp_muspmetcd1213/processing.rtf new file mode 100644 index 0000000..8cc5d58 --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmetcd1213/processing.rtf @@ -0,0 +1 @@ +

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/Epfl_lisp_muspmetcd1213/summary.rtf b/general/datasets/Epfl_lisp_muspmetcd1213/summary.rtf new file mode 100644 index 0000000..a785372 --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmetcd1213/summary.rtf @@ -0,0 +1 @@ +

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. In this study, we examined genetic variants across 40 strains of BXD and the two founder lines, in addition to a major environmental influence—long term feeding with chow diet (CD) or high fat diet (HFD)—to see how metabolic gene expression varies by genotype and environment, and gene-by-environment interactions. It is difficult to say whether the major muscle phenotypes were broadly affected by HFD directly, or whether the phenotypic variance was as a consequence of the induced weight gain and other deleterious effects of the HFD (e.g. see phenotype traits ID 17717 and 17718 for nighttime activity in CD and HFD cohorts, respectively).

diff --git a/general/datasets/Epfl_lisp_muspmetcd1213/tissue.rtf b/general/datasets/Epfl_lisp_muspmetcd1213/tissue.rtf new file mode 100644 index 0000000..c4913a4 --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmetcd1213/tissue.rtf @@ -0,0 +1,3 @@ +

The quadriceps were taken near the end of the pipeline, roughly 6–10 minutes after completion of perfusion. Quadriceps were collected by cutting evenly across the upper axis of the femoral bone. Quadriceps muscle lying below or beside this femoral axis was not taken. The quadriceps was then placed in liquid nitrogen. At a later date, quadriceps were retrieved from -80 storage and shattered in liquid nitrogen. Roughly ~100 mg fragments were taken at random for mRNA preparation for every individual. To account potential differences in the tissue taken (as the tissue was not pulverized into powder), all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

+ +

Tissue preparation was done in two different steps: the first half of the cohorts were run in October 2011, while the second half was run in August 2012. This tissue was the first microarray run at this platform, and thus the quadriceps served as a pilot to ensure that data quality would be good. The first half of the cohorts are: CD: C57, DBA, 44, 45, 51, 55, 61, 62, 63, 66, 70, 73, 75, 80, 83, 87, 89, 90, 96. HFD: C57, DBA, 44, 45, 51, 55, 61, 62, 63, 66, 70, 73, 75, 80, 83, 87, 90, 96, 100. The second half of the cohorts were the remainder. The preparation of all samples was done by the same technician with the same technique, other than the year time differential

diff --git a/general/datasets/Epfl_lisp_muspmetcdhfd1213/acknowledgment.rtf b/general/datasets/Epfl_lisp_muspmetcdhfd1213/acknowledgment.rtf new file mode 100644 index 0000000..cdb89a8 --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmetcdhfd1213/acknowledgment.rtf @@ -0,0 +1 @@ +

We would like to thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays. The work in the Auwerx lab was supported by the Ecole Polytechnique Federale de Lausanne, the EU Ideas program (AdG-23138 and AdG-322424), the NIH (R01HL106511-01A and R01AG043930), and the Swiss National Science Foundation (31003A- 124713 and 31003A-125487 and CSRII3-1362).

diff --git a/general/datasets/Epfl_lisp_muspmetcdhfd1213/cases.rtf b/general/datasets/Epfl_lisp_muspmetcdhfd1213/cases.rtf new file mode 100644 index 0000000..ced8242 --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmetcdhfd1213/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, roughly 10 male animals were born and weaned at 3 weeks of age. These cohorts were then separated evenly into two cohorts at 8 weeks of age: up to 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and up to 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). A total of 195 CD animals and 189 HFD animals comprised these original 82 cohorts (42 on CD, 40 on HFD, all 40 overlap except for 2 strains, BXD60 and BXD92a (aka BXD65b), which are unique to CD). For the next 8 weeks, animals adjusted to the diet and housing situation. From 16 to 24 weeks of age, animals were phenotyped for respiration, oral glucose response, cold tolerance, basal activity, VO2max exercise, and voluntary exercise. Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest, undisturbed except for a weekly cage change and weighing. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion.

diff --git a/general/datasets/Epfl_lisp_muspmetcdhfd1213/citation.rtf b/general/datasets/Epfl_lisp_muspmetcdhfd1213/citation.rtf new file mode 100644 index 0000000..f946bb0 --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmetcdhfd1213/citation.rtf @@ -0,0 +1,3 @@ +

Pirinen et al., Cell Metabolism 2014. Pharmacological inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. PMID 24814482.

+ +

Williams et al., PLoS Genetics 2014. An evolutionarily conserved role for the aryl hydrocarbon receptor in the regulation of movement. PMID 25255223.

diff --git a/general/datasets/Epfl_lisp_muspmetcdhfd1213/contributors.rtf b/general/datasets/Epfl_lisp_muspmetcdhfd1213/contributors.rtf new file mode 100644 index 0000000..fd98a7c --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmetcdhfd1213/contributors.rtf @@ -0,0 +1 @@ +

Williams EG, Andreux P, Auwerx J

diff --git a/general/datasets/Epfl_lisp_muspmetcdhfd1213/platform.rtf b/general/datasets/Epfl_lisp_muspmetcdhfd1213/platform.rtf new file mode 100644 index 0000000..e123fe2 --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmetcdhfd1213/platform.rtf @@ -0,0 +1 @@ +

All arrays were Affymetrix Mouse Gene 1.0 ST, run in either October 2011 or August 2012 at the University of Tennessee Health Science Center. All .CEL files were normalized together after the second batch of data was collected.

diff --git a/general/datasets/Epfl_lisp_muspmetcdhfd1213/processing.rtf b/general/datasets/Epfl_lisp_muspmetcdhfd1213/processing.rtf new file mode 100644 index 0000000..8cc5d58 --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmetcdhfd1213/processing.rtf @@ -0,0 +1 @@ +

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/Epfl_lisp_muspmetcdhfd1213/summary.rtf b/general/datasets/Epfl_lisp_muspmetcdhfd1213/summary.rtf new file mode 100644 index 0000000..a785372 --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmetcdhfd1213/summary.rtf @@ -0,0 +1 @@ +

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. In this study, we examined genetic variants across 40 strains of BXD and the two founder lines, in addition to a major environmental influence—long term feeding with chow diet (CD) or high fat diet (HFD)—to see how metabolic gene expression varies by genotype and environment, and gene-by-environment interactions. It is difficult to say whether the major muscle phenotypes were broadly affected by HFD directly, or whether the phenotypic variance was as a consequence of the induced weight gain and other deleterious effects of the HFD (e.g. see phenotype traits ID 17717 and 17718 for nighttime activity in CD and HFD cohorts, respectively).

diff --git a/general/datasets/Epfl_lisp_muspmetcdhfd1213/tissue.rtf b/general/datasets/Epfl_lisp_muspmetcdhfd1213/tissue.rtf new file mode 100644 index 0000000..c4913a4 --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmetcdhfd1213/tissue.rtf @@ -0,0 +1,3 @@ +

The quadriceps were taken near the end of the pipeline, roughly 6–10 minutes after completion of perfusion. Quadriceps were collected by cutting evenly across the upper axis of the femoral bone. Quadriceps muscle lying below or beside this femoral axis was not taken. The quadriceps was then placed in liquid nitrogen. At a later date, quadriceps were retrieved from -80 storage and shattered in liquid nitrogen. Roughly ~100 mg fragments were taken at random for mRNA preparation for every individual. To account potential differences in the tissue taken (as the tissue was not pulverized into powder), all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

+ +

Tissue preparation was done in two different steps: the first half of the cohorts were run in October 2011, while the second half was run in August 2012. This tissue was the first microarray run at this platform, and thus the quadriceps served as a pilot to ensure that data quality would be good. The first half of the cohorts are: CD: C57, DBA, 44, 45, 51, 55, 61, 62, 63, 66, 70, 73, 75, 80, 83, 87, 89, 90, 96. HFD: C57, DBA, 44, 45, 51, 55, 61, 62, 63, 66, 70, 73, 75, 80, 83, 87, 90, 96, 100. The second half of the cohorts were the remainder. The preparation of all samples was done by the same technician with the same technique, other than the year time differential

diff --git a/general/datasets/Epfl_lisp_muspmethfd1213/acknowledgment.rtf b/general/datasets/Epfl_lisp_muspmethfd1213/acknowledgment.rtf new file mode 100644 index 0000000..cdb89a8 --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmethfd1213/acknowledgment.rtf @@ -0,0 +1 @@ +

We would like to thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays. The work in the Auwerx lab was supported by the Ecole Polytechnique Federale de Lausanne, the EU Ideas program (AdG-23138 and AdG-322424), the NIH (R01HL106511-01A and R01AG043930), and the Swiss National Science Foundation (31003A- 124713 and 31003A-125487 and CSRII3-1362).

diff --git a/general/datasets/Epfl_lisp_muspmethfd1213/cases.rtf b/general/datasets/Epfl_lisp_muspmethfd1213/cases.rtf new file mode 100644 index 0000000..ced8242 --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmethfd1213/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, roughly 10 male animals were born and weaned at 3 weeks of age. These cohorts were then separated evenly into two cohorts at 8 weeks of age: up to 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and up to 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). A total of 195 CD animals and 189 HFD animals comprised these original 82 cohorts (42 on CD, 40 on HFD, all 40 overlap except for 2 strains, BXD60 and BXD92a (aka BXD65b), which are unique to CD). For the next 8 weeks, animals adjusted to the diet and housing situation. From 16 to 24 weeks of age, animals were phenotyped for respiration, oral glucose response, cold tolerance, basal activity, VO2max exercise, and voluntary exercise. Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest, undisturbed except for a weekly cage change and weighing. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion.

diff --git a/general/datasets/Epfl_lisp_muspmethfd1213/citation.rtf b/general/datasets/Epfl_lisp_muspmethfd1213/citation.rtf new file mode 100644 index 0000000..f946bb0 --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmethfd1213/citation.rtf @@ -0,0 +1,3 @@ +

Pirinen et al., Cell Metabolism 2014. Pharmacological inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. PMID 24814482.

+ +

Williams et al., PLoS Genetics 2014. An evolutionarily conserved role for the aryl hydrocarbon receptor in the regulation of movement. PMID 25255223.

diff --git a/general/datasets/Epfl_lisp_muspmethfd1213/contributors.rtf b/general/datasets/Epfl_lisp_muspmethfd1213/contributors.rtf new file mode 100644 index 0000000..fd98a7c --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmethfd1213/contributors.rtf @@ -0,0 +1 @@ +

Williams EG, Andreux P, Auwerx J

diff --git a/general/datasets/Epfl_lisp_muspmethfd1213/platform.rtf b/general/datasets/Epfl_lisp_muspmethfd1213/platform.rtf new file mode 100644 index 0000000..e123fe2 --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmethfd1213/platform.rtf @@ -0,0 +1 @@ +

All arrays were Affymetrix Mouse Gene 1.0 ST, run in either October 2011 or August 2012 at the University of Tennessee Health Science Center. All .CEL files were normalized together after the second batch of data was collected.

diff --git a/general/datasets/Epfl_lisp_muspmethfd1213/processing.rtf b/general/datasets/Epfl_lisp_muspmethfd1213/processing.rtf new file mode 100644 index 0000000..8cc5d58 --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmethfd1213/processing.rtf @@ -0,0 +1 @@ +

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/Epfl_lisp_muspmethfd1213/summary.rtf b/general/datasets/Epfl_lisp_muspmethfd1213/summary.rtf new file mode 100644 index 0000000..a785372 --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmethfd1213/summary.rtf @@ -0,0 +1 @@ +

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. In this study, we examined genetic variants across 40 strains of BXD and the two founder lines, in addition to a major environmental influence—long term feeding with chow diet (CD) or high fat diet (HFD)—to see how metabolic gene expression varies by genotype and environment, and gene-by-environment interactions. It is difficult to say whether the major muscle phenotypes were broadly affected by HFD directly, or whether the phenotypic variance was as a consequence of the induced weight gain and other deleterious effects of the HFD (e.g. see phenotype traits ID 17717 and 17718 for nighttime activity in CD and HFD cohorts, respectively).

diff --git a/general/datasets/Epfl_lisp_muspmethfd1213/tissue.rtf b/general/datasets/Epfl_lisp_muspmethfd1213/tissue.rtf new file mode 100644 index 0000000..c4913a4 --- /dev/null +++ b/general/datasets/Epfl_lisp_muspmethfd1213/tissue.rtf @@ -0,0 +1,3 @@ +

The quadriceps were taken near the end of the pipeline, roughly 6–10 minutes after completion of perfusion. Quadriceps were collected by cutting evenly across the upper axis of the femoral bone. Quadriceps muscle lying below or beside this femoral axis was not taken. The quadriceps was then placed in liquid nitrogen. At a later date, quadriceps were retrieved from -80 storage and shattered in liquid nitrogen. Roughly ~100 mg fragments were taken at random for mRNA preparation for every individual. To account potential differences in the tissue taken (as the tissue was not pulverized into powder), all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

+ +

Tissue preparation was done in two different steps: the first half of the cohorts were run in October 2011, while the second half was run in August 2012. This tissue was the first microarray run at this platform, and thus the quadriceps served as a pilot to ensure that data quality would be good. The first half of the cohorts are: CD: C57, DBA, 44, 45, 51, 55, 61, 62, 63, 66, 70, 73, 75, 80, 83, 87, 89, 90, 96. HFD: C57, DBA, 44, 45, 51, 55, 61, 62, 63, 66, 70, 73, 75, 80, 83, 87, 90, 96, 100. The second half of the cohorts were the remainder. The preparation of all samples was done by the same technician with the same technique, other than the year time differential

diff --git a/general/datasets/Epfl_lispbxdhecd0114/acknowledgment.rtf b/general/datasets/Epfl_lispbxdhecd0114/acknowledgment.rtf new file mode 100644 index 0000000..91d3c6b --- /dev/null +++ b/general/datasets/Epfl_lispbxdhecd0114/acknowledgment.rtf @@ -0,0 +1 @@ +

The authors thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays.

diff --git a/general/datasets/Epfl_lispbxdhecd0114/cases.rtf b/general/datasets/Epfl_lispbxdhecd0114/cases.rtf new file mode 100644 index 0000000..d43280d --- /dev/null +++ b/general/datasets/Epfl_lispbxdhecd0114/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, allowing the animals to rest and reduce the direct expression effects of the phenotyping tests. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. Hearts were taken immediately after perfusion of the animal, weighed, and then frozen in liquid nitrogen no more than a minute after sacrifice.

diff --git a/general/datasets/Epfl_lispbxdhecd0114/citation.rtf b/general/datasets/Epfl_lispbxdhecd0114/citation.rtf new file mode 100644 index 0000000..7073738 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhecd0114/citation.rtf @@ -0,0 +1 @@ +

Please contact the laboratory of Rob Williams at the UTHSC 

diff --git a/general/datasets/Epfl_lispbxdhecd0114/contributors.rtf b/general/datasets/Epfl_lispbxdhecd0114/contributors.rtf new file mode 100644 index 0000000..2d4632a --- /dev/null +++ b/general/datasets/Epfl_lispbxdhecd0114/contributors.rtf @@ -0,0 +1 @@ +

Williams EG, Andreux PA, Auwerx J, Lu L, Williams RW

diff --git a/general/datasets/Epfl_lispbxdhecd0114/experiment-design.rtf b/general/datasets/Epfl_lispbxdhecd0114/experiment-design.rtf new file mode 100644 index 0000000..7516c73 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhecd0114/experiment-design.rtf @@ -0,0 +1 @@ +

All animals were communally housed by strain until phenotyping and fed a chow diet (CD; (Harlan 2018; 6% kCal/fat, 20% kCal/protein, 74% kCal/carbohydrate) throughout life after weaning until sacrifice at around 29 weeks of age, or a high fat diet (HFD; Harlan TD.06414 60% kcal/fat, 20% protein, 20% carbohydrate) after 8 weeks of age until sacrifice around 29 weeks of age. All BXD strains (BXD43–103) were originally sourced from the vivarium at the University of Tennessee Health Science Center (Memphis, TN, USA) then bred for two or more generations until progeny entered the phenotyping colony. C57BL/6J and DBA/2J were sourced from Janvier, which re-sources its “J” lines every 10 generations from The Jackson Laboratory. For tissue collection on CD and HFD BXD cohorts, animals were sacrificed under isoflurane anesthesia and cardiac perfusion after an overnight fast. High fat diet treatment and two day isolation for the recording experiment were considered as having low impact on the animals’ welfare, while all other measurements and conditions were considered as having no negative impact. All research was approved by the Swiss cantonal veterinary authorities of Vaud under licenses 2257.0 and 2257.1. 

diff --git a/general/datasets/Epfl_lispbxdhecd0114/platform.rtf b/general/datasets/Epfl_lispbxdhecd0114/platform.rtf new file mode 100644 index 0000000..ee667b4 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhecd0114/platform.rtf @@ -0,0 +1 @@ +

All arrays were Affymetrix Mouse Gene 2.0 ST, prepared and run simultaneously in a single batch in January 2014 by Lorne Rose at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epfl_lispbxdhecd0114/processing.rtf b/general/datasets/Epfl_lispbxdhecd0114/processing.rtf new file mode 100644 index 0000000..8cc5d58 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhecd0114/processing.rtf @@ -0,0 +1 @@ +

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/Epfl_lispbxdhecd0114/summary.rtf b/general/datasets/Epfl_lispbxdhecd0114/summary.rtf new file mode 100644 index 0000000..7fcc1a9 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhecd0114/summary.rtf @@ -0,0 +1 @@ +

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. In this study, we examined both genetic variants across 40 strains of BXD and the two founder lines, in addition to a major environmental influence—long term feeding with chow diet (CD) or high fat diet (HFD)—to see how metabolic gene expression varies by genotype and environment, and gene-by-environment interactions. The basic heart phenotypes quantified in these cohorts were not affected by HFD feeding (e.g. blood pressure and heart rate). 

diff --git a/general/datasets/Epfl_lispbxdhecd0114/tissue.rtf b/general/datasets/Epfl_lispbxdhecd0114/tissue.rtf new file mode 100644 index 0000000..eebcb20 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhecd0114/tissue.rtf @@ -0,0 +1 @@ +

Hearts were later shattered in liquid nitrogen, usually broken into 2-4 pieces, and around half of the sample (at random) was taken for preparation. All ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort, thus differences due to different segments of the heart being taken should be mitigated, although not eliminated, and researchers examining extremely specific transcriptional regulation in the heart should keep this in mind. The pooled RNA samples were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0.

diff --git a/general/datasets/Epfl_lispbxdhecdex0114/acknowledgment.rtf b/general/datasets/Epfl_lispbxdhecdex0114/acknowledgment.rtf new file mode 100644 index 0000000..91d3c6b --- /dev/null +++ b/general/datasets/Epfl_lispbxdhecdex0114/acknowledgment.rtf @@ -0,0 +1 @@ +

The authors thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays.

diff --git a/general/datasets/Epfl_lispbxdhecdex0114/cases.rtf b/general/datasets/Epfl_lispbxdhecdex0114/cases.rtf new file mode 100644 index 0000000..d43280d --- /dev/null +++ b/general/datasets/Epfl_lispbxdhecdex0114/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, allowing the animals to rest and reduce the direct expression effects of the phenotyping tests. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. Hearts were taken immediately after perfusion of the animal, weighed, and then frozen in liquid nitrogen no more than a minute after sacrifice.

diff --git a/general/datasets/Epfl_lispbxdhecdex0114/citation.rtf b/general/datasets/Epfl_lispbxdhecdex0114/citation.rtf new file mode 100644 index 0000000..7073738 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhecdex0114/citation.rtf @@ -0,0 +1 @@ +

Please contact the laboratory of Rob Williams at the UTHSC 

diff --git a/general/datasets/Epfl_lispbxdhecdex0114/contributors.rtf b/general/datasets/Epfl_lispbxdhecdex0114/contributors.rtf new file mode 100644 index 0000000..2d4632a --- /dev/null +++ b/general/datasets/Epfl_lispbxdhecdex0114/contributors.rtf @@ -0,0 +1 @@ +

Williams EG, Andreux PA, Auwerx J, Lu L, Williams RW

diff --git a/general/datasets/Epfl_lispbxdhecdex0114/experiment-design.rtf b/general/datasets/Epfl_lispbxdhecdex0114/experiment-design.rtf new file mode 100644 index 0000000..7516c73 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhecdex0114/experiment-design.rtf @@ -0,0 +1 @@ +

All animals were communally housed by strain until phenotyping and fed a chow diet (CD; (Harlan 2018; 6% kCal/fat, 20% kCal/protein, 74% kCal/carbohydrate) throughout life after weaning until sacrifice at around 29 weeks of age, or a high fat diet (HFD; Harlan TD.06414 60% kcal/fat, 20% protein, 20% carbohydrate) after 8 weeks of age until sacrifice around 29 weeks of age. All BXD strains (BXD43–103) were originally sourced from the vivarium at the University of Tennessee Health Science Center (Memphis, TN, USA) then bred for two or more generations until progeny entered the phenotyping colony. C57BL/6J and DBA/2J were sourced from Janvier, which re-sources its “J” lines every 10 generations from The Jackson Laboratory. For tissue collection on CD and HFD BXD cohorts, animals were sacrificed under isoflurane anesthesia and cardiac perfusion after an overnight fast. High fat diet treatment and two day isolation for the recording experiment were considered as having low impact on the animals’ welfare, while all other measurements and conditions were considered as having no negative impact. All research was approved by the Swiss cantonal veterinary authorities of Vaud under licenses 2257.0 and 2257.1. 

diff --git a/general/datasets/Epfl_lispbxdhecdex0114/platform.rtf b/general/datasets/Epfl_lispbxdhecdex0114/platform.rtf new file mode 100644 index 0000000..ee667b4 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhecdex0114/platform.rtf @@ -0,0 +1 @@ +

All arrays were Affymetrix Mouse Gene 2.0 ST, prepared and run simultaneously in a single batch in January 2014 by Lorne Rose at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epfl_lispbxdhecdex0114/processing.rtf b/general/datasets/Epfl_lispbxdhecdex0114/processing.rtf new file mode 100644 index 0000000..8cc5d58 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhecdex0114/processing.rtf @@ -0,0 +1 @@ +

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/Epfl_lispbxdhecdex0114/summary.rtf b/general/datasets/Epfl_lispbxdhecdex0114/summary.rtf new file mode 100644 index 0000000..7fcc1a9 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhecdex0114/summary.rtf @@ -0,0 +1 @@ +

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. In this study, we examined both genetic variants across 40 strains of BXD and the two founder lines, in addition to a major environmental influence—long term feeding with chow diet (CD) or high fat diet (HFD)—to see how metabolic gene expression varies by genotype and environment, and gene-by-environment interactions. The basic heart phenotypes quantified in these cohorts were not affected by HFD feeding (e.g. blood pressure and heart rate). 

diff --git a/general/datasets/Epfl_lispbxdhecdex0114/tissue.rtf b/general/datasets/Epfl_lispbxdhecdex0114/tissue.rtf new file mode 100644 index 0000000..eebcb20 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhecdex0114/tissue.rtf @@ -0,0 +1 @@ +

Hearts were later shattered in liquid nitrogen, usually broken into 2-4 pieces, and around half of the sample (at random) was taken for preparation. All ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort, thus differences due to different segments of the heart being taken should be mitigated, although not eliminated, and researchers examining extremely specific transcriptional regulation in the heart should keep this in mind. The pooled RNA samples were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0.

diff --git a/general/datasets/Epfl_lispbxdhehfd0114/acknowledgment.rtf b/general/datasets/Epfl_lispbxdhehfd0114/acknowledgment.rtf new file mode 100644 index 0000000..91d3c6b --- /dev/null +++ b/general/datasets/Epfl_lispbxdhehfd0114/acknowledgment.rtf @@ -0,0 +1 @@ +

The authors thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays.

diff --git a/general/datasets/Epfl_lispbxdhehfd0114/cases.rtf b/general/datasets/Epfl_lispbxdhehfd0114/cases.rtf new file mode 100644 index 0000000..d43280d --- /dev/null +++ b/general/datasets/Epfl_lispbxdhehfd0114/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, allowing the animals to rest and reduce the direct expression effects of the phenotyping tests. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. Hearts were taken immediately after perfusion of the animal, weighed, and then frozen in liquid nitrogen no more than a minute after sacrifice.

diff --git a/general/datasets/Epfl_lispbxdhehfd0114/citation.rtf b/general/datasets/Epfl_lispbxdhehfd0114/citation.rtf new file mode 100644 index 0000000..7073738 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhehfd0114/citation.rtf @@ -0,0 +1 @@ +

Please contact the laboratory of Rob Williams at the UTHSC 

diff --git a/general/datasets/Epfl_lispbxdhehfd0114/contributors.rtf b/general/datasets/Epfl_lispbxdhehfd0114/contributors.rtf new file mode 100644 index 0000000..2d4632a --- /dev/null +++ b/general/datasets/Epfl_lispbxdhehfd0114/contributors.rtf @@ -0,0 +1 @@ +

Williams EG, Andreux PA, Auwerx J, Lu L, Williams RW

diff --git a/general/datasets/Epfl_lispbxdhehfd0114/experiment-design.rtf b/general/datasets/Epfl_lispbxdhehfd0114/experiment-design.rtf new file mode 100644 index 0000000..7516c73 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhehfd0114/experiment-design.rtf @@ -0,0 +1 @@ +

All animals were communally housed by strain until phenotyping and fed a chow diet (CD; (Harlan 2018; 6% kCal/fat, 20% kCal/protein, 74% kCal/carbohydrate) throughout life after weaning until sacrifice at around 29 weeks of age, or a high fat diet (HFD; Harlan TD.06414 60% kcal/fat, 20% protein, 20% carbohydrate) after 8 weeks of age until sacrifice around 29 weeks of age. All BXD strains (BXD43–103) were originally sourced from the vivarium at the University of Tennessee Health Science Center (Memphis, TN, USA) then bred for two or more generations until progeny entered the phenotyping colony. C57BL/6J and DBA/2J were sourced from Janvier, which re-sources its “J” lines every 10 generations from The Jackson Laboratory. For tissue collection on CD and HFD BXD cohorts, animals were sacrificed under isoflurane anesthesia and cardiac perfusion after an overnight fast. High fat diet treatment and two day isolation for the recording experiment were considered as having low impact on the animals’ welfare, while all other measurements and conditions were considered as having no negative impact. All research was approved by the Swiss cantonal veterinary authorities of Vaud under licenses 2257.0 and 2257.1. 

diff --git a/general/datasets/Epfl_lispbxdhehfd0114/platform.rtf b/general/datasets/Epfl_lispbxdhehfd0114/platform.rtf new file mode 100644 index 0000000..ee667b4 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhehfd0114/platform.rtf @@ -0,0 +1 @@ +

All arrays were Affymetrix Mouse Gene 2.0 ST, prepared and run simultaneously in a single batch in January 2014 by Lorne Rose at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epfl_lispbxdhehfd0114/processing.rtf b/general/datasets/Epfl_lispbxdhehfd0114/processing.rtf new file mode 100644 index 0000000..8cc5d58 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhehfd0114/processing.rtf @@ -0,0 +1 @@ +

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/Epfl_lispbxdhehfd0114/summary.rtf b/general/datasets/Epfl_lispbxdhehfd0114/summary.rtf new file mode 100644 index 0000000..7fcc1a9 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhehfd0114/summary.rtf @@ -0,0 +1 @@ +

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. In this study, we examined both genetic variants across 40 strains of BXD and the two founder lines, in addition to a major environmental influence—long term feeding with chow diet (CD) or high fat diet (HFD)—to see how metabolic gene expression varies by genotype and environment, and gene-by-environment interactions. The basic heart phenotypes quantified in these cohorts were not affected by HFD feeding (e.g. blood pressure and heart rate). 

diff --git a/general/datasets/Epfl_lispbxdhehfd0114/tissue.rtf b/general/datasets/Epfl_lispbxdhehfd0114/tissue.rtf new file mode 100644 index 0000000..eebcb20 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhehfd0114/tissue.rtf @@ -0,0 +1 @@ +

Hearts were later shattered in liquid nitrogen, usually broken into 2-4 pieces, and around half of the sample (at random) was taken for preparation. All ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort, thus differences due to different segments of the heart being taken should be mitigated, although not eliminated, and researchers examining extremely specific transcriptional regulation in the heart should keep this in mind. The pooled RNA samples were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0.

diff --git a/general/datasets/Epfl_lispbxdhehfdex0114/acknowledgment.rtf b/general/datasets/Epfl_lispbxdhehfdex0114/acknowledgment.rtf new file mode 100644 index 0000000..91d3c6b --- /dev/null +++ b/general/datasets/Epfl_lispbxdhehfdex0114/acknowledgment.rtf @@ -0,0 +1 @@ +

The authors thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays.

diff --git a/general/datasets/Epfl_lispbxdhehfdex0114/cases.rtf b/general/datasets/Epfl_lispbxdhehfdex0114/cases.rtf new file mode 100644 index 0000000..d43280d --- /dev/null +++ b/general/datasets/Epfl_lispbxdhehfdex0114/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, allowing the animals to rest and reduce the direct expression effects of the phenotyping tests. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. Hearts were taken immediately after perfusion of the animal, weighed, and then frozen in liquid nitrogen no more than a minute after sacrifice.

diff --git a/general/datasets/Epfl_lispbxdhehfdex0114/citation.rtf b/general/datasets/Epfl_lispbxdhehfdex0114/citation.rtf new file mode 100644 index 0000000..7073738 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhehfdex0114/citation.rtf @@ -0,0 +1 @@ +

Please contact the laboratory of Rob Williams at the UTHSC 

diff --git a/general/datasets/Epfl_lispbxdhehfdex0114/contributors.rtf b/general/datasets/Epfl_lispbxdhehfdex0114/contributors.rtf new file mode 100644 index 0000000..2d4632a --- /dev/null +++ b/general/datasets/Epfl_lispbxdhehfdex0114/contributors.rtf @@ -0,0 +1 @@ +

Williams EG, Andreux PA, Auwerx J, Lu L, Williams RW

diff --git a/general/datasets/Epfl_lispbxdhehfdex0114/experiment-design.rtf b/general/datasets/Epfl_lispbxdhehfdex0114/experiment-design.rtf new file mode 100644 index 0000000..7516c73 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhehfdex0114/experiment-design.rtf @@ -0,0 +1 @@ +

All animals were communally housed by strain until phenotyping and fed a chow diet (CD; (Harlan 2018; 6% kCal/fat, 20% kCal/protein, 74% kCal/carbohydrate) throughout life after weaning until sacrifice at around 29 weeks of age, or a high fat diet (HFD; Harlan TD.06414 60% kcal/fat, 20% protein, 20% carbohydrate) after 8 weeks of age until sacrifice around 29 weeks of age. All BXD strains (BXD43–103) were originally sourced from the vivarium at the University of Tennessee Health Science Center (Memphis, TN, USA) then bred for two or more generations until progeny entered the phenotyping colony. C57BL/6J and DBA/2J were sourced from Janvier, which re-sources its “J” lines every 10 generations from The Jackson Laboratory. For tissue collection on CD and HFD BXD cohorts, animals were sacrificed under isoflurane anesthesia and cardiac perfusion after an overnight fast. High fat diet treatment and two day isolation for the recording experiment were considered as having low impact on the animals’ welfare, while all other measurements and conditions were considered as having no negative impact. All research was approved by the Swiss cantonal veterinary authorities of Vaud under licenses 2257.0 and 2257.1. 

diff --git a/general/datasets/Epfl_lispbxdhehfdex0114/platform.rtf b/general/datasets/Epfl_lispbxdhehfdex0114/platform.rtf new file mode 100644 index 0000000..ee667b4 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhehfdex0114/platform.rtf @@ -0,0 +1 @@ +

All arrays were Affymetrix Mouse Gene 2.0 ST, prepared and run simultaneously in a single batch in January 2014 by Lorne Rose at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epfl_lispbxdhehfdex0114/processing.rtf b/general/datasets/Epfl_lispbxdhehfdex0114/processing.rtf new file mode 100644 index 0000000..8cc5d58 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhehfdex0114/processing.rtf @@ -0,0 +1 @@ +

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/Epfl_lispbxdhehfdex0114/summary.rtf b/general/datasets/Epfl_lispbxdhehfdex0114/summary.rtf new file mode 100644 index 0000000..7fcc1a9 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhehfdex0114/summary.rtf @@ -0,0 +1 @@ +

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. In this study, we examined both genetic variants across 40 strains of BXD and the two founder lines, in addition to a major environmental influence—long term feeding with chow diet (CD) or high fat diet (HFD)—to see how metabolic gene expression varies by genotype and environment, and gene-by-environment interactions. The basic heart phenotypes quantified in these cohorts were not affected by HFD feeding (e.g. blood pressure and heart rate). 

diff --git a/general/datasets/Epfl_lispbxdhehfdex0114/tissue.rtf b/general/datasets/Epfl_lispbxdhehfdex0114/tissue.rtf new file mode 100644 index 0000000..eebcb20 --- /dev/null +++ b/general/datasets/Epfl_lispbxdhehfdex0114/tissue.rtf @@ -0,0 +1 @@ +

Hearts were later shattered in liquid nitrogen, usually broken into 2-4 pieces, and around half of the sample (at random) was taken for preparation. All ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort, thus differences due to different segments of the heart being taken should be mitigated, although not eliminated, and researchers examining extremely specific transcriptional regulation in the heart should keep this in mind. The pooled RNA samples were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0.

diff --git a/general/datasets/Epfladel1013/acknowledgment.rtf b/general/datasets/Epfladel1013/acknowledgment.rtf new file mode 100644 index 0000000..291baee --- /dev/null +++ b/general/datasets/Epfladel1013/acknowledgment.rtf @@ -0,0 +1 @@ +

The authors thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice, Jesse Ingels who genotyped the congenic AHR line. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays. Thanks to Ian Duncan for supplying the mutant ss D. melanogaster lines. Discussions with Prof. Stephan Morgenthaler (EPFL) are also acknowledged. 

diff --git a/general/datasets/Epfladel1013/cases.rtf b/general/datasets/Epfladel1013/cases.rtf new file mode 100644 index 0000000..0e2dfc2 --- /dev/null +++ b/general/datasets/Epfladel1013/cases.rtf @@ -0,0 +1 @@ +

42 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The quadriceps were the last tissue frozen in liquid nitrogen during the sacrifice, about 15 minutes after perfusion. Quadriceps were taken by cutting laterally at the knee.

diff --git a/general/datasets/Epfladel1013/citation.rtf b/general/datasets/Epfladel1013/citation.rtf new file mode 100644 index 0000000..060cb36 --- /dev/null +++ b/general/datasets/Epfladel1013/citation.rtf @@ -0,0 +1 @@ +

Williams EG, Mouchiroud L, Frochaux M, Pandey A, Andreux PA, Deplancke B, Auwerx J, An evolutionarily conserved role for the aryl hydrocarbon receptor in the regulation of movement. PLoS Genetics, 2014.

diff --git a/general/datasets/Epfladel1013/contributors.rtf b/general/datasets/Epfladel1013/contributors.rtf new file mode 100644 index 0000000..182ad24 --- /dev/null +++ b/general/datasets/Epfladel1013/contributors.rtf @@ -0,0 +1 @@ +

Williams EG, Mouchiroud L, Frochaux M, Pandey A, Andreux PA, Deplancke B, Auwerx J

diff --git a/general/datasets/Epfladel1013/experiment-design.rtf b/general/datasets/Epfladel1013/experiment-design.rtf new file mode 100644 index 0000000..6329851 --- /dev/null +++ b/general/datasets/Epfladel1013/experiment-design.rtf @@ -0,0 +1 @@ +

All animals were communally housed by strain until phenotyping and fed a chow diet (CD; (Harlan 2018; 6% kCal/fat, 20% kCal/protein, 74% kCal/carbohydrate) throughout life after weaning. All BXD strains (BXD43–103) were originally sourced from the vivarium at the University of Tennessee Health Science Center (Memphis, TN, USA) then bred for two or more generations until progeny entered the phenotyping colony. For tissue collection on CD and HFD BXD cohorts, animals were sacrificed under isoflurane anesthesia and cardiac perfusion after an overnight fast. High fat diet treatment and two day isolation for the recording experiment were considered as having low impact on the animals’ welfare, while all other measurements and conditions were considered as having no negative impact. All research was approved by the Swiss cantonal veterinary authorities of Vaud under licenses 2257.0 and 2257.1. 

diff --git a/general/datasets/Epfladel1013/platform.rtf b/general/datasets/Epfladel1013/platform.rtf new file mode 100644 index 0000000..a8a63c9 --- /dev/null +++ b/general/datasets/Epfladel1013/platform.rtf @@ -0,0 +1 @@ +

All arrays were Affymetrix Mouse Gene 2.0 ST, prepared and run simultaneously in a single batch in October 2013 by Lorne Rose at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epfladel1013/processing.rtf b/general/datasets/Epfladel1013/processing.rtf new file mode 100644 index 0000000..8cc5d58 --- /dev/null +++ b/general/datasets/Epfladel1013/processing.rtf @@ -0,0 +1 @@ +

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/Epfladel1013/summary.rtf b/general/datasets/Epfladel1013/summary.rtf new file mode 100644 index 0000000..07c710f --- /dev/null +++ b/general/datasets/Epfladel1013/summary.rtf @@ -0,0 +1 @@ +

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. We here phenotype 43 BXD strains and observe they have large variation (~5-fold) in their spontaneous activity during waking hours. QTL analyses indicate that ~40% of this variance is attributable to a narrow locus containing the aryl hydrocarbon receptor (Ahr), a basic helix-loop-helix transcription factor with well-established roles in development and xenobiotic metabolism. Strains with the D2 allele of Ahr have reduced gene expression compared to those with the B6 allele, and have significantly higher spontaneous activity. This effect was also observed in B6 mice with a congenic D2 Ahr interval, and in B6 mice with a humanized AHR allele which, like the D2 allele, is expressed much less and has less enzymatic activity than the B6 allele. Ahr is highly conserved in invertebrates, and strikingly inhibition of its orthologs in D. melanogaster and C. elegans (spineless and ahr-1) leads to marked increases in basal activity. In mammals, Ahr has numerous ligands, but most are either non-selective (e.g. resveratrol) or highly toxic (e.g. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)). Thus, we chose to examine a major environmental influence—long term feeding with high fat diet (HFD)—to see if the effects of Ahr are dependent on major metabolic differences. Interestingly, while HFD robustly halved movement across all strains, the QTL position and effects of Ahr remained unchanged, indicating that the effects are independent. The highly consistent effects of Ahr on movement indicate that changes in its constitutive activity have a role on spontaneous movement and may influence human behavior. 

diff --git a/general/datasets/Epfladel1013/tissue.rtf b/general/datasets/Epfladel1013/tissue.rtf new file mode 100644 index 0000000..f2bfb07 --- /dev/null +++ b/general/datasets/Epfladel1013/tissue.rtf @@ -0,0 +1 @@ +

Brown adipose was later shattered in liquid nitrogen and about half was taken for each sample, although the size of the BAT varied dramatically. All ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0.

diff --git a/general/datasets/Epfladgl1013/acknowledgment.rtf b/general/datasets/Epfladgl1013/acknowledgment.rtf new file mode 100644 index 0000000..291baee --- /dev/null +++ b/general/datasets/Epfladgl1013/acknowledgment.rtf @@ -0,0 +1 @@ +

The authors thank Cristina Cartoni, Sébastien Lamy, and Charles Thomas at the Center of Phenogenomics (CPG, EPFL) for help in establishing and phenotyping the BXD mice, Jesse Ingels who genotyped the congenic AHR line. We thank the Molecular Resource Center of Excellence at The University of Tennessee Health Science Center processing all microarrays. Thanks to Ian Duncan for supplying the mutant ss D. melanogaster lines. Discussions with Prof. Stephan Morgenthaler (EPFL) are also acknowledged. 

diff --git a/general/datasets/Epfladgl1013/cases.rtf b/general/datasets/Epfladgl1013/cases.rtf new file mode 100644 index 0000000..0e2dfc2 --- /dev/null +++ b/general/datasets/Epfladgl1013/cases.rtf @@ -0,0 +1 @@ +

42 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The quadriceps were the last tissue frozen in liquid nitrogen during the sacrifice, about 15 minutes after perfusion. Quadriceps were taken by cutting laterally at the knee.

diff --git a/general/datasets/Epfladgl1013/citation.rtf b/general/datasets/Epfladgl1013/citation.rtf new file mode 100644 index 0000000..060cb36 --- /dev/null +++ b/general/datasets/Epfladgl1013/citation.rtf @@ -0,0 +1 @@ +

Williams EG, Mouchiroud L, Frochaux M, Pandey A, Andreux PA, Deplancke B, Auwerx J, An evolutionarily conserved role for the aryl hydrocarbon receptor in the regulation of movement. PLoS Genetics, 2014.

diff --git a/general/datasets/Epfladgl1013/contributors.rtf b/general/datasets/Epfladgl1013/contributors.rtf new file mode 100644 index 0000000..182ad24 --- /dev/null +++ b/general/datasets/Epfladgl1013/contributors.rtf @@ -0,0 +1 @@ +

Williams EG, Mouchiroud L, Frochaux M, Pandey A, Andreux PA, Deplancke B, Auwerx J

diff --git a/general/datasets/Epfladgl1013/experiment-design.rtf b/general/datasets/Epfladgl1013/experiment-design.rtf new file mode 100644 index 0000000..6329851 --- /dev/null +++ b/general/datasets/Epfladgl1013/experiment-design.rtf @@ -0,0 +1 @@ +

All animals were communally housed by strain until phenotyping and fed a chow diet (CD; (Harlan 2018; 6% kCal/fat, 20% kCal/protein, 74% kCal/carbohydrate) throughout life after weaning. All BXD strains (BXD43–103) were originally sourced from the vivarium at the University of Tennessee Health Science Center (Memphis, TN, USA) then bred for two or more generations until progeny entered the phenotyping colony. For tissue collection on CD and HFD BXD cohorts, animals were sacrificed under isoflurane anesthesia and cardiac perfusion after an overnight fast. High fat diet treatment and two day isolation for the recording experiment were considered as having low impact on the animals’ welfare, while all other measurements and conditions were considered as having no negative impact. All research was approved by the Swiss cantonal veterinary authorities of Vaud under licenses 2257.0 and 2257.1. 

diff --git a/general/datasets/Epfladgl1013/platform.rtf b/general/datasets/Epfladgl1013/platform.rtf new file mode 100644 index 0000000..a8a63c9 --- /dev/null +++ b/general/datasets/Epfladgl1013/platform.rtf @@ -0,0 +1 @@ +

All arrays were Affymetrix Mouse Gene 2.0 ST, prepared and run simultaneously in a single batch in October 2013 by Lorne Rose at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epfladgl1013/processing.rtf b/general/datasets/Epfladgl1013/processing.rtf new file mode 100644 index 0000000..8cc5d58 --- /dev/null +++ b/general/datasets/Epfladgl1013/processing.rtf @@ -0,0 +1 @@ +

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/Epfladgl1013/summary.rtf b/general/datasets/Epfladgl1013/summary.rtf new file mode 100644 index 0000000..07c710f --- /dev/null +++ b/general/datasets/Epfladgl1013/summary.rtf @@ -0,0 +1 @@ +

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. We here phenotype 43 BXD strains and observe they have large variation (~5-fold) in their spontaneous activity during waking hours. QTL analyses indicate that ~40% of this variance is attributable to a narrow locus containing the aryl hydrocarbon receptor (Ahr), a basic helix-loop-helix transcription factor with well-established roles in development and xenobiotic metabolism. Strains with the D2 allele of Ahr have reduced gene expression compared to those with the B6 allele, and have significantly higher spontaneous activity. This effect was also observed in B6 mice with a congenic D2 Ahr interval, and in B6 mice with a humanized AHR allele which, like the D2 allele, is expressed much less and has less enzymatic activity than the B6 allele. Ahr is highly conserved in invertebrates, and strikingly inhibition of its orthologs in D. melanogaster and C. elegans (spineless and ahr-1) leads to marked increases in basal activity. In mammals, Ahr has numerous ligands, but most are either non-selective (e.g. resveratrol) or highly toxic (e.g. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)). Thus, we chose to examine a major environmental influence—long term feeding with high fat diet (HFD)—to see if the effects of Ahr are dependent on major metabolic differences. Interestingly, while HFD robustly halved movement across all strains, the QTL position and effects of Ahr remained unchanged, indicating that the effects are independent. The highly consistent effects of Ahr on movement indicate that changes in its constitutive activity have a role on spontaneous movement and may influence human behavior. 

diff --git a/general/datasets/Epfladgl1013/tissue.rtf b/general/datasets/Epfladgl1013/tissue.rtf new file mode 100644 index 0000000..f2bfb07 --- /dev/null +++ b/general/datasets/Epfladgl1013/tissue.rtf @@ -0,0 +1 @@ +

Brown adipose was later shattered in liquid nitrogen and about half was taken for each sample, although the size of the BAT varied dramatically. All ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0.

diff --git a/general/datasets/Epflbxdprot0513/cases.rtf b/general/datasets/Epflbxdprot0513/cases.rtf new file mode 100644 index 0000000..ed4ced8 --- /dev/null +++ b/general/datasets/Epflbxdprot0513/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/Epflbxdprot0513/contributors.rtf b/general/datasets/Epflbxdprot0513/contributors.rtf new file mode 100644 index 0000000..e0d9702 --- /dev/null +++ b/general/datasets/Epflbxdprot0513/contributors.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Houten SM, Argmann CA, Wolski W, Auwerx J, Aebersold R.

diff --git a/general/datasets/Epflbxdprot0513/notes.rtf b/general/datasets/Epflbxdprot0513/notes.rtf new file mode 100644 index 0000000..ecdae60 --- /dev/null +++ b/general/datasets/Epflbxdprot0513/notes.rtf @@ -0,0 +1,16 @@ +

SWATH

+ +

SWATH MS is a novel technique that is based on data-independent acquisition (DIA) which aims to complement traditional mass spectrometry-based proteomics techniques such as shotgun and SRM methods. In principal, it allows a complete and permanent recording of all fragment ions of all peptide precursors in a biological sample and can thus potentially combine the advantages of shotgun (high throughput) with those of SRM (high reproducibility and sensitivity).

+ +

The method uniquely combines a DIA methods with a innovative data analysis approach based on targeted data extraction developed in the Aebersold lab. Like in other DIA methods, the mass spectrometer cycles through precursor acquisition windows designed to cover the whole range of 400-1200 m/z - in which most of the proteotypic peptide precursors of an organism fall - within 2-4 seconds. During each cycle, the mass spectrometer will fragment all precursors from a given precursors window (e.g. 475 - 500 m/z for 25 Da windows) and record a complete, high accuracy fragment ion spectrum. The same range will be fragmented again in the next cycle, thus providing a time-resolved recording of fragment ions that elute on the chromatography. Thus the SWATH method provides highly multiplexed fragment ion spectra that are deterministically recorded over the complete chromatographic time.

+ +

In the Malmstroem group, we are interested in the data-analysis challenge that is posed by DIA / SWATH data. Traditionally, DIA methods have been analyzed by trying to reconstruct the lineage of precursor and fragment ions based on their chromatographic elution profile, and then analysing the data in a workflow similar to those used in shotgun proteomics. However, these approaches suffered from low sensitivity and propagation of errors due to mis-assignment of fragment ions to precursor ions. We are thus working on automating targeted methods that are conceptually similar to SRM and allow querying the data multiple times with specific hypothesis, thus giving the researcher more control and specificity in the bioinformatic data analysis step. With these novel algorithms, it is potentially possible to explore a much larger part of the data that is present and obtain a nearly complete picture of a proteome.

+ +

References

+ + diff --git a/general/datasets/Epflbxdprot0513/platform.rtf b/general/datasets/Epflbxdprot0513/platform.rtf new file mode 100644 index 0000000..4a33b7c --- /dev/null +++ b/general/datasets/Epflbxdprot0513/platform.rtf @@ -0,0 +1 @@ +

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epflbxdprot0513/summary.rtf b/general/datasets/Epflbxdprot0513/summary.rtf new file mode 100644 index 0000000..8797309 --- /dev/null +++ b/general/datasets/Epflbxdprot0513/summary.rtf @@ -0,0 +1,5 @@ +

Quantitative changes in transcriptome and proteome patterns relate genomic variation to specific phenotypes. Here we applied selected reaction monitoring (SRM), a targeted mass spectrometry method that supports the reliable and reproducible quantification of predetermined sets of proteins across a broad abundance range in complex samples to quantify 157 metabolic proteins in liver extracts from 40 genetically-diverse strains of the BXD mouse genetic reference population, after chow or high fat diet. We observed significant biological variation in protein levels, which were linked to transcript variation in ~30% of the cases. 14 genes mapped to quantitative trait loci (QTLs) at both the transcript and protein level, while a further 18 mapped only as transcripts (eQTLs), and 24 only as proteins (pQTLs). 79% of eQTLs were regulated by cis-mechanisms, as opposed to only 31% of pQTLs, indicating a more direct genetic connection between genes and their transcripts than between genes and their protein products. In some cases, QTLs could be linked to phenotypic changes across the BXDs. One such case indicates a novel animal model for an inborn error of metabolism that has been observed in humans; BXD mice with deficient DHTKD1 protein also exhibit 2-aminoadipic and 2-oxoadipic aciduria like seen in affected patients. Together, these findings show that quantitative, multi-layered genomic, transcriptomic, and proteomic analyses provide more power for connecting genetic variance to phenotypes in complex systems than each layer alone, and provide complementary information to identify novel regulatory networks of metabolic diseases.

+ +

Note: please see associated dataset “Liver Proteome” EPFL/LISP BXD Liver, Hepatocytes, Soluable Proteins CD+HFD (Jul13) RPN” for protein data in the same animals. [NB: Data in review, but still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

+ +

Note: please see associated dataset “LISP2” in BXD phenotypes for phenotype data on the same animals. [NB: Still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

diff --git a/general/datasets/Epflbxdprot0513/tissue.rtf b/general/datasets/Epflbxdprot0513/tissue.rtf new file mode 100644 index 0000000..f95e2c4 --- /dev/null +++ b/general/datasets/Epflbxdprot0513/tissue.rtf @@ -0,0 +1 @@ +

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/Epflbxdprotcd0513/cases.rtf b/general/datasets/Epflbxdprotcd0513/cases.rtf new file mode 100644 index 0000000..ed4ced8 --- /dev/null +++ b/general/datasets/Epflbxdprotcd0513/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/Epflbxdprotcd0513/contributors.rtf b/general/datasets/Epflbxdprotcd0513/contributors.rtf new file mode 100644 index 0000000..e0d9702 --- /dev/null +++ b/general/datasets/Epflbxdprotcd0513/contributors.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Houten SM, Argmann CA, Wolski W, Auwerx J, Aebersold R.

diff --git a/general/datasets/Epflbxdprotcd0513/notes.rtf b/general/datasets/Epflbxdprotcd0513/notes.rtf new file mode 100644 index 0000000..ecdae60 --- /dev/null +++ b/general/datasets/Epflbxdprotcd0513/notes.rtf @@ -0,0 +1,16 @@ +

SWATH

+ +

SWATH MS is a novel technique that is based on data-independent acquisition (DIA) which aims to complement traditional mass spectrometry-based proteomics techniques such as shotgun and SRM methods. In principal, it allows a complete and permanent recording of all fragment ions of all peptide precursors in a biological sample and can thus potentially combine the advantages of shotgun (high throughput) with those of SRM (high reproducibility and sensitivity).

+ +

The method uniquely combines a DIA methods with a innovative data analysis approach based on targeted data extraction developed in the Aebersold lab. Like in other DIA methods, the mass spectrometer cycles through precursor acquisition windows designed to cover the whole range of 400-1200 m/z - in which most of the proteotypic peptide precursors of an organism fall - within 2-4 seconds. During each cycle, the mass spectrometer will fragment all precursors from a given precursors window (e.g. 475 - 500 m/z for 25 Da windows) and record a complete, high accuracy fragment ion spectrum. The same range will be fragmented again in the next cycle, thus providing a time-resolved recording of fragment ions that elute on the chromatography. Thus the SWATH method provides highly multiplexed fragment ion spectra that are deterministically recorded over the complete chromatographic time.

+ +

In the Malmstroem group, we are interested in the data-analysis challenge that is posed by DIA / SWATH data. Traditionally, DIA methods have been analyzed by trying to reconstruct the lineage of precursor and fragment ions based on their chromatographic elution profile, and then analysing the data in a workflow similar to those used in shotgun proteomics. However, these approaches suffered from low sensitivity and propagation of errors due to mis-assignment of fragment ions to precursor ions. We are thus working on automating targeted methods that are conceptually similar to SRM and allow querying the data multiple times with specific hypothesis, thus giving the researcher more control and specificity in the bioinformatic data analysis step. With these novel algorithms, it is potentially possible to explore a much larger part of the data that is present and obtain a nearly complete picture of a proteome.

+ +

References

+ + diff --git a/general/datasets/Epflbxdprotcd0513/platform.rtf b/general/datasets/Epflbxdprotcd0513/platform.rtf new file mode 100644 index 0000000..4a33b7c --- /dev/null +++ b/general/datasets/Epflbxdprotcd0513/platform.rtf @@ -0,0 +1 @@ +

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epflbxdprotcd0513/summary.rtf b/general/datasets/Epflbxdprotcd0513/summary.rtf new file mode 100644 index 0000000..8797309 --- /dev/null +++ b/general/datasets/Epflbxdprotcd0513/summary.rtf @@ -0,0 +1,5 @@ +

Quantitative changes in transcriptome and proteome patterns relate genomic variation to specific phenotypes. Here we applied selected reaction monitoring (SRM), a targeted mass spectrometry method that supports the reliable and reproducible quantification of predetermined sets of proteins across a broad abundance range in complex samples to quantify 157 metabolic proteins in liver extracts from 40 genetically-diverse strains of the BXD mouse genetic reference population, after chow or high fat diet. We observed significant biological variation in protein levels, which were linked to transcript variation in ~30% of the cases. 14 genes mapped to quantitative trait loci (QTLs) at both the transcript and protein level, while a further 18 mapped only as transcripts (eQTLs), and 24 only as proteins (pQTLs). 79% of eQTLs were regulated by cis-mechanisms, as opposed to only 31% of pQTLs, indicating a more direct genetic connection between genes and their transcripts than between genes and their protein products. In some cases, QTLs could be linked to phenotypic changes across the BXDs. One such case indicates a novel animal model for an inborn error of metabolism that has been observed in humans; BXD mice with deficient DHTKD1 protein also exhibit 2-aminoadipic and 2-oxoadipic aciduria like seen in affected patients. Together, these findings show that quantitative, multi-layered genomic, transcriptomic, and proteomic analyses provide more power for connecting genetic variance to phenotypes in complex systems than each layer alone, and provide complementary information to identify novel regulatory networks of metabolic diseases.

+ +

Note: please see associated dataset “Liver Proteome” EPFL/LISP BXD Liver, Hepatocytes, Soluable Proteins CD+HFD (Jul13) RPN” for protein data in the same animals. [NB: Data in review, but still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

+ +

Note: please see associated dataset “LISP2” in BXD phenotypes for phenotype data on the same animals. [NB: Still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

diff --git a/general/datasets/Epflbxdprotcd0513/tissue.rtf b/general/datasets/Epflbxdprotcd0513/tissue.rtf new file mode 100644 index 0000000..f95e2c4 --- /dev/null +++ b/general/datasets/Epflbxdprotcd0513/tissue.rtf @@ -0,0 +1 @@ +

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/Epflbxdprotcd_cdhfdrpn0214/cases.rtf b/general/datasets/Epflbxdprotcd_cdhfdrpn0214/cases.rtf new file mode 100644 index 0000000..ed4ced8 --- /dev/null +++ b/general/datasets/Epflbxdprotcd_cdhfdrpn0214/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/Epflbxdprotcd_cdhfdrpn0214/contributors.rtf b/general/datasets/Epflbxdprotcd_cdhfdrpn0214/contributors.rtf new file mode 100644 index 0000000..e0d9702 --- /dev/null +++ b/general/datasets/Epflbxdprotcd_cdhfdrpn0214/contributors.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Houten SM, Argmann CA, Wolski W, Auwerx J, Aebersold R.

diff --git a/general/datasets/Epflbxdprotcd_cdhfdrpn0214/notes.rtf b/general/datasets/Epflbxdprotcd_cdhfdrpn0214/notes.rtf new file mode 100644 index 0000000..ecdae60 --- /dev/null +++ b/general/datasets/Epflbxdprotcd_cdhfdrpn0214/notes.rtf @@ -0,0 +1,16 @@ +

SWATH

+ +

SWATH MS is a novel technique that is based on data-independent acquisition (DIA) which aims to complement traditional mass spectrometry-based proteomics techniques such as shotgun and SRM methods. In principal, it allows a complete and permanent recording of all fragment ions of all peptide precursors in a biological sample and can thus potentially combine the advantages of shotgun (high throughput) with those of SRM (high reproducibility and sensitivity).

+ +

The method uniquely combines a DIA methods with a innovative data analysis approach based on targeted data extraction developed in the Aebersold lab. Like in other DIA methods, the mass spectrometer cycles through precursor acquisition windows designed to cover the whole range of 400-1200 m/z - in which most of the proteotypic peptide precursors of an organism fall - within 2-4 seconds. During each cycle, the mass spectrometer will fragment all precursors from a given precursors window (e.g. 475 - 500 m/z for 25 Da windows) and record a complete, high accuracy fragment ion spectrum. The same range will be fragmented again in the next cycle, thus providing a time-resolved recording of fragment ions that elute on the chromatography. Thus the SWATH method provides highly multiplexed fragment ion spectra that are deterministically recorded over the complete chromatographic time.

+ +

In the Malmstroem group, we are interested in the data-analysis challenge that is posed by DIA / SWATH data. Traditionally, DIA methods have been analyzed by trying to reconstruct the lineage of precursor and fragment ions based on their chromatographic elution profile, and then analysing the data in a workflow similar to those used in shotgun proteomics. However, these approaches suffered from low sensitivity and propagation of errors due to mis-assignment of fragment ions to precursor ions. We are thus working on automating targeted methods that are conceptually similar to SRM and allow querying the data multiple times with specific hypothesis, thus giving the researcher more control and specificity in the bioinformatic data analysis step. With these novel algorithms, it is potentially possible to explore a much larger part of the data that is present and obtain a nearly complete picture of a proteome.

+ +

References

+ + diff --git a/general/datasets/Epflbxdprotcd_cdhfdrpn0214/platform.rtf b/general/datasets/Epflbxdprotcd_cdhfdrpn0214/platform.rtf new file mode 100644 index 0000000..4a33b7c --- /dev/null +++ b/general/datasets/Epflbxdprotcd_cdhfdrpn0214/platform.rtf @@ -0,0 +1 @@ +

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epflbxdprotcd_cdhfdrpn0214/summary.rtf b/general/datasets/Epflbxdprotcd_cdhfdrpn0214/summary.rtf new file mode 100644 index 0000000..8797309 --- /dev/null +++ b/general/datasets/Epflbxdprotcd_cdhfdrpn0214/summary.rtf @@ -0,0 +1,5 @@ +

Quantitative changes in transcriptome and proteome patterns relate genomic variation to specific phenotypes. Here we applied selected reaction monitoring (SRM), a targeted mass spectrometry method that supports the reliable and reproducible quantification of predetermined sets of proteins across a broad abundance range in complex samples to quantify 157 metabolic proteins in liver extracts from 40 genetically-diverse strains of the BXD mouse genetic reference population, after chow or high fat diet. We observed significant biological variation in protein levels, which were linked to transcript variation in ~30% of the cases. 14 genes mapped to quantitative trait loci (QTLs) at both the transcript and protein level, while a further 18 mapped only as transcripts (eQTLs), and 24 only as proteins (pQTLs). 79% of eQTLs were regulated by cis-mechanisms, as opposed to only 31% of pQTLs, indicating a more direct genetic connection between genes and their transcripts than between genes and their protein products. In some cases, QTLs could be linked to phenotypic changes across the BXDs. One such case indicates a novel animal model for an inborn error of metabolism that has been observed in humans; BXD mice with deficient DHTKD1 protein also exhibit 2-aminoadipic and 2-oxoadipic aciduria like seen in affected patients. Together, these findings show that quantitative, multi-layered genomic, transcriptomic, and proteomic analyses provide more power for connecting genetic variance to phenotypes in complex systems than each layer alone, and provide complementary information to identify novel regulatory networks of metabolic diseases.

+ +

Note: please see associated dataset “Liver Proteome” EPFL/LISP BXD Liver, Hepatocytes, Soluable Proteins CD+HFD (Jul13) RPN” for protein data in the same animals. [NB: Data in review, but still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

+ +

Note: please see associated dataset “LISP2” in BXD phenotypes for phenotype data on the same animals. [NB: Still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

diff --git a/general/datasets/Epflbxdprotcd_cdhfdrpn0214/tissue.rtf b/general/datasets/Epflbxdprotcd_cdhfdrpn0214/tissue.rtf new file mode 100644 index 0000000..f95e2c4 --- /dev/null +++ b/general/datasets/Epflbxdprotcd_cdhfdrpn0214/tissue.rtf @@ -0,0 +1 @@ +

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/Epflbxdprotcdrpn0214/cases.rtf b/general/datasets/Epflbxdprotcdrpn0214/cases.rtf new file mode 100644 index 0000000..ed4ced8 --- /dev/null +++ b/general/datasets/Epflbxdprotcdrpn0214/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/Epflbxdprotcdrpn0214/contributors.rtf b/general/datasets/Epflbxdprotcdrpn0214/contributors.rtf new file mode 100644 index 0000000..e0d9702 --- /dev/null +++ b/general/datasets/Epflbxdprotcdrpn0214/contributors.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Houten SM, Argmann CA, Wolski W, Auwerx J, Aebersold R.

diff --git a/general/datasets/Epflbxdprotcdrpn0214/notes.rtf b/general/datasets/Epflbxdprotcdrpn0214/notes.rtf new file mode 100644 index 0000000..ecdae60 --- /dev/null +++ b/general/datasets/Epflbxdprotcdrpn0214/notes.rtf @@ -0,0 +1,16 @@ +

SWATH

+ +

SWATH MS is a novel technique that is based on data-independent acquisition (DIA) which aims to complement traditional mass spectrometry-based proteomics techniques such as shotgun and SRM methods. In principal, it allows a complete and permanent recording of all fragment ions of all peptide precursors in a biological sample and can thus potentially combine the advantages of shotgun (high throughput) with those of SRM (high reproducibility and sensitivity).

+ +

The method uniquely combines a DIA methods with a innovative data analysis approach based on targeted data extraction developed in the Aebersold lab. Like in other DIA methods, the mass spectrometer cycles through precursor acquisition windows designed to cover the whole range of 400-1200 m/z - in which most of the proteotypic peptide precursors of an organism fall - within 2-4 seconds. During each cycle, the mass spectrometer will fragment all precursors from a given precursors window (e.g. 475 - 500 m/z for 25 Da windows) and record a complete, high accuracy fragment ion spectrum. The same range will be fragmented again in the next cycle, thus providing a time-resolved recording of fragment ions that elute on the chromatography. Thus the SWATH method provides highly multiplexed fragment ion spectra that are deterministically recorded over the complete chromatographic time.

+ +

In the Malmstroem group, we are interested in the data-analysis challenge that is posed by DIA / SWATH data. Traditionally, DIA methods have been analyzed by trying to reconstruct the lineage of precursor and fragment ions based on their chromatographic elution profile, and then analysing the data in a workflow similar to those used in shotgun proteomics. However, these approaches suffered from low sensitivity and propagation of errors due to mis-assignment of fragment ions to precursor ions. We are thus working on automating targeted methods that are conceptually similar to SRM and allow querying the data multiple times with specific hypothesis, thus giving the researcher more control and specificity in the bioinformatic data analysis step. With these novel algorithms, it is potentially possible to explore a much larger part of the data that is present and obtain a nearly complete picture of a proteome.

+ +

References

+ + diff --git a/general/datasets/Epflbxdprotcdrpn0214/platform.rtf b/general/datasets/Epflbxdprotcdrpn0214/platform.rtf new file mode 100644 index 0000000..4a33b7c --- /dev/null +++ b/general/datasets/Epflbxdprotcdrpn0214/platform.rtf @@ -0,0 +1 @@ +

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epflbxdprotcdrpn0214/summary.rtf b/general/datasets/Epflbxdprotcdrpn0214/summary.rtf new file mode 100644 index 0000000..8797309 --- /dev/null +++ b/general/datasets/Epflbxdprotcdrpn0214/summary.rtf @@ -0,0 +1,5 @@ +

Quantitative changes in transcriptome and proteome patterns relate genomic variation to specific phenotypes. Here we applied selected reaction monitoring (SRM), a targeted mass spectrometry method that supports the reliable and reproducible quantification of predetermined sets of proteins across a broad abundance range in complex samples to quantify 157 metabolic proteins in liver extracts from 40 genetically-diverse strains of the BXD mouse genetic reference population, after chow or high fat diet. We observed significant biological variation in protein levels, which were linked to transcript variation in ~30% of the cases. 14 genes mapped to quantitative trait loci (QTLs) at both the transcript and protein level, while a further 18 mapped only as transcripts (eQTLs), and 24 only as proteins (pQTLs). 79% of eQTLs were regulated by cis-mechanisms, as opposed to only 31% of pQTLs, indicating a more direct genetic connection between genes and their transcripts than between genes and their protein products. In some cases, QTLs could be linked to phenotypic changes across the BXDs. One such case indicates a novel animal model for an inborn error of metabolism that has been observed in humans; BXD mice with deficient DHTKD1 protein also exhibit 2-aminoadipic and 2-oxoadipic aciduria like seen in affected patients. Together, these findings show that quantitative, multi-layered genomic, transcriptomic, and proteomic analyses provide more power for connecting genetic variance to phenotypes in complex systems than each layer alone, and provide complementary information to identify novel regulatory networks of metabolic diseases.

+ +

Note: please see associated dataset “Liver Proteome” EPFL/LISP BXD Liver, Hepatocytes, Soluable Proteins CD+HFD (Jul13) RPN” for protein data in the same animals. [NB: Data in review, but still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

+ +

Note: please see associated dataset “LISP2” in BXD phenotypes for phenotype data on the same animals. [NB: Still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

diff --git a/general/datasets/Epflbxdprotcdrpn0214/tissue.rtf b/general/datasets/Epflbxdprotcdrpn0214/tissue.rtf new file mode 100644 index 0000000..f95e2c4 --- /dev/null +++ b/general/datasets/Epflbxdprotcdrpn0214/tissue.rtf @@ -0,0 +1 @@ +

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/Epflbxdprotcdrpn0513/cases.rtf b/general/datasets/Epflbxdprotcdrpn0513/cases.rtf new file mode 100644 index 0000000..ed4ced8 --- /dev/null +++ b/general/datasets/Epflbxdprotcdrpn0513/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/Epflbxdprotcdrpn0513/contributors.rtf b/general/datasets/Epflbxdprotcdrpn0513/contributors.rtf new file mode 100644 index 0000000..e0d9702 --- /dev/null +++ b/general/datasets/Epflbxdprotcdrpn0513/contributors.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Houten SM, Argmann CA, Wolski W, Auwerx J, Aebersold R.

diff --git a/general/datasets/Epflbxdprotcdrpn0513/notes.rtf b/general/datasets/Epflbxdprotcdrpn0513/notes.rtf new file mode 100644 index 0000000..ecdae60 --- /dev/null +++ b/general/datasets/Epflbxdprotcdrpn0513/notes.rtf @@ -0,0 +1,16 @@ +

SWATH

+ +

SWATH MS is a novel technique that is based on data-independent acquisition (DIA) which aims to complement traditional mass spectrometry-based proteomics techniques such as shotgun and SRM methods. In principal, it allows a complete and permanent recording of all fragment ions of all peptide precursors in a biological sample and can thus potentially combine the advantages of shotgun (high throughput) with those of SRM (high reproducibility and sensitivity).

+ +

The method uniquely combines a DIA methods with a innovative data analysis approach based on targeted data extraction developed in the Aebersold lab. Like in other DIA methods, the mass spectrometer cycles through precursor acquisition windows designed to cover the whole range of 400-1200 m/z - in which most of the proteotypic peptide precursors of an organism fall - within 2-4 seconds. During each cycle, the mass spectrometer will fragment all precursors from a given precursors window (e.g. 475 - 500 m/z for 25 Da windows) and record a complete, high accuracy fragment ion spectrum. The same range will be fragmented again in the next cycle, thus providing a time-resolved recording of fragment ions that elute on the chromatography. Thus the SWATH method provides highly multiplexed fragment ion spectra that are deterministically recorded over the complete chromatographic time.

+ +

In the Malmstroem group, we are interested in the data-analysis challenge that is posed by DIA / SWATH data. Traditionally, DIA methods have been analyzed by trying to reconstruct the lineage of precursor and fragment ions based on their chromatographic elution profile, and then analysing the data in a workflow similar to those used in shotgun proteomics. However, these approaches suffered from low sensitivity and propagation of errors due to mis-assignment of fragment ions to precursor ions. We are thus working on automating targeted methods that are conceptually similar to SRM and allow querying the data multiple times with specific hypothesis, thus giving the researcher more control and specificity in the bioinformatic data analysis step. With these novel algorithms, it is potentially possible to explore a much larger part of the data that is present and obtain a nearly complete picture of a proteome.

+ +

References

+ + diff --git a/general/datasets/Epflbxdprotcdrpn0513/platform.rtf b/general/datasets/Epflbxdprotcdrpn0513/platform.rtf new file mode 100644 index 0000000..4a33b7c --- /dev/null +++ b/general/datasets/Epflbxdprotcdrpn0513/platform.rtf @@ -0,0 +1 @@ +

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epflbxdprotcdrpn0513/summary.rtf b/general/datasets/Epflbxdprotcdrpn0513/summary.rtf new file mode 100644 index 0000000..8797309 --- /dev/null +++ b/general/datasets/Epflbxdprotcdrpn0513/summary.rtf @@ -0,0 +1,5 @@ +

Quantitative changes in transcriptome and proteome patterns relate genomic variation to specific phenotypes. Here we applied selected reaction monitoring (SRM), a targeted mass spectrometry method that supports the reliable and reproducible quantification of predetermined sets of proteins across a broad abundance range in complex samples to quantify 157 metabolic proteins in liver extracts from 40 genetically-diverse strains of the BXD mouse genetic reference population, after chow or high fat diet. We observed significant biological variation in protein levels, which were linked to transcript variation in ~30% of the cases. 14 genes mapped to quantitative trait loci (QTLs) at both the transcript and protein level, while a further 18 mapped only as transcripts (eQTLs), and 24 only as proteins (pQTLs). 79% of eQTLs were regulated by cis-mechanisms, as opposed to only 31% of pQTLs, indicating a more direct genetic connection between genes and their transcripts than between genes and their protein products. In some cases, QTLs could be linked to phenotypic changes across the BXDs. One such case indicates a novel animal model for an inborn error of metabolism that has been observed in humans; BXD mice with deficient DHTKD1 protein also exhibit 2-aminoadipic and 2-oxoadipic aciduria like seen in affected patients. Together, these findings show that quantitative, multi-layered genomic, transcriptomic, and proteomic analyses provide more power for connecting genetic variance to phenotypes in complex systems than each layer alone, and provide complementary information to identify novel regulatory networks of metabolic diseases.

+ +

Note: please see associated dataset “Liver Proteome” EPFL/LISP BXD Liver, Hepatocytes, Soluable Proteins CD+HFD (Jul13) RPN” for protein data in the same animals. [NB: Data in review, but still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

+ +

Note: please see associated dataset “LISP2” in BXD phenotypes for phenotype data on the same animals. [NB: Still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

diff --git a/general/datasets/Epflbxdprotcdrpn0513/tissue.rtf b/general/datasets/Epflbxdprotcdrpn0513/tissue.rtf new file mode 100644 index 0000000..f95e2c4 --- /dev/null +++ b/general/datasets/Epflbxdprotcdrpn0513/tissue.rtf @@ -0,0 +1 @@ +

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/Epflbxdprothfd0513/cases.rtf b/general/datasets/Epflbxdprothfd0513/cases.rtf new file mode 100644 index 0000000..ed4ced8 --- /dev/null +++ b/general/datasets/Epflbxdprothfd0513/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/Epflbxdprothfd0513/contributors.rtf b/general/datasets/Epflbxdprothfd0513/contributors.rtf new file mode 100644 index 0000000..e0d9702 --- /dev/null +++ b/general/datasets/Epflbxdprothfd0513/contributors.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Houten SM, Argmann CA, Wolski W, Auwerx J, Aebersold R.

diff --git a/general/datasets/Epflbxdprothfd0513/notes.rtf b/general/datasets/Epflbxdprothfd0513/notes.rtf new file mode 100644 index 0000000..ecdae60 --- /dev/null +++ b/general/datasets/Epflbxdprothfd0513/notes.rtf @@ -0,0 +1,16 @@ +

SWATH

+ +

SWATH MS is a novel technique that is based on data-independent acquisition (DIA) which aims to complement traditional mass spectrometry-based proteomics techniques such as shotgun and SRM methods. In principal, it allows a complete and permanent recording of all fragment ions of all peptide precursors in a biological sample and can thus potentially combine the advantages of shotgun (high throughput) with those of SRM (high reproducibility and sensitivity).

+ +

The method uniquely combines a DIA methods with a innovative data analysis approach based on targeted data extraction developed in the Aebersold lab. Like in other DIA methods, the mass spectrometer cycles through precursor acquisition windows designed to cover the whole range of 400-1200 m/z - in which most of the proteotypic peptide precursors of an organism fall - within 2-4 seconds. During each cycle, the mass spectrometer will fragment all precursors from a given precursors window (e.g. 475 - 500 m/z for 25 Da windows) and record a complete, high accuracy fragment ion spectrum. The same range will be fragmented again in the next cycle, thus providing a time-resolved recording of fragment ions that elute on the chromatography. Thus the SWATH method provides highly multiplexed fragment ion spectra that are deterministically recorded over the complete chromatographic time.

+ +

In the Malmstroem group, we are interested in the data-analysis challenge that is posed by DIA / SWATH data. Traditionally, DIA methods have been analyzed by trying to reconstruct the lineage of precursor and fragment ions based on their chromatographic elution profile, and then analysing the data in a workflow similar to those used in shotgun proteomics. However, these approaches suffered from low sensitivity and propagation of errors due to mis-assignment of fragment ions to precursor ions. We are thus working on automating targeted methods that are conceptually similar to SRM and allow querying the data multiple times with specific hypothesis, thus giving the researcher more control and specificity in the bioinformatic data analysis step. With these novel algorithms, it is potentially possible to explore a much larger part of the data that is present and obtain a nearly complete picture of a proteome.

+ +

References

+ + diff --git a/general/datasets/Epflbxdprothfd0513/platform.rtf b/general/datasets/Epflbxdprothfd0513/platform.rtf new file mode 100644 index 0000000..4a33b7c --- /dev/null +++ b/general/datasets/Epflbxdprothfd0513/platform.rtf @@ -0,0 +1 @@ +

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epflbxdprothfd0513/summary.rtf b/general/datasets/Epflbxdprothfd0513/summary.rtf new file mode 100644 index 0000000..8797309 --- /dev/null +++ b/general/datasets/Epflbxdprothfd0513/summary.rtf @@ -0,0 +1,5 @@ +

Quantitative changes in transcriptome and proteome patterns relate genomic variation to specific phenotypes. Here we applied selected reaction monitoring (SRM), a targeted mass spectrometry method that supports the reliable and reproducible quantification of predetermined sets of proteins across a broad abundance range in complex samples to quantify 157 metabolic proteins in liver extracts from 40 genetically-diverse strains of the BXD mouse genetic reference population, after chow or high fat diet. We observed significant biological variation in protein levels, which were linked to transcript variation in ~30% of the cases. 14 genes mapped to quantitative trait loci (QTLs) at both the transcript and protein level, while a further 18 mapped only as transcripts (eQTLs), and 24 only as proteins (pQTLs). 79% of eQTLs were regulated by cis-mechanisms, as opposed to only 31% of pQTLs, indicating a more direct genetic connection between genes and their transcripts than between genes and their protein products. In some cases, QTLs could be linked to phenotypic changes across the BXDs. One such case indicates a novel animal model for an inborn error of metabolism that has been observed in humans; BXD mice with deficient DHTKD1 protein also exhibit 2-aminoadipic and 2-oxoadipic aciduria like seen in affected patients. Together, these findings show that quantitative, multi-layered genomic, transcriptomic, and proteomic analyses provide more power for connecting genetic variance to phenotypes in complex systems than each layer alone, and provide complementary information to identify novel regulatory networks of metabolic diseases.

+ +

Note: please see associated dataset “Liver Proteome” EPFL/LISP BXD Liver, Hepatocytes, Soluable Proteins CD+HFD (Jul13) RPN” for protein data in the same animals. [NB: Data in review, but still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

+ +

Note: please see associated dataset “LISP2” in BXD phenotypes for phenotype data on the same animals. [NB: Still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

diff --git a/general/datasets/Epflbxdprothfd0513/tissue.rtf b/general/datasets/Epflbxdprothfd0513/tissue.rtf new file mode 100644 index 0000000..f95e2c4 --- /dev/null +++ b/general/datasets/Epflbxdprothfd0513/tissue.rtf @@ -0,0 +1 @@ +

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/Epflbxdprothfdrpn0214/cases.rtf b/general/datasets/Epflbxdprothfdrpn0214/cases.rtf new file mode 100644 index 0000000..ed4ced8 --- /dev/null +++ b/general/datasets/Epflbxdprothfdrpn0214/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/Epflbxdprothfdrpn0214/contributors.rtf b/general/datasets/Epflbxdprothfdrpn0214/contributors.rtf new file mode 100644 index 0000000..e0d9702 --- /dev/null +++ b/general/datasets/Epflbxdprothfdrpn0214/contributors.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Houten SM, Argmann CA, Wolski W, Auwerx J, Aebersold R.

diff --git a/general/datasets/Epflbxdprothfdrpn0214/notes.rtf b/general/datasets/Epflbxdprothfdrpn0214/notes.rtf new file mode 100644 index 0000000..ecdae60 --- /dev/null +++ b/general/datasets/Epflbxdprothfdrpn0214/notes.rtf @@ -0,0 +1,16 @@ +

SWATH

+ +

SWATH MS is a novel technique that is based on data-independent acquisition (DIA) which aims to complement traditional mass spectrometry-based proteomics techniques such as shotgun and SRM methods. In principal, it allows a complete and permanent recording of all fragment ions of all peptide precursors in a biological sample and can thus potentially combine the advantages of shotgun (high throughput) with those of SRM (high reproducibility and sensitivity).

+ +

The method uniquely combines a DIA methods with a innovative data analysis approach based on targeted data extraction developed in the Aebersold lab. Like in other DIA methods, the mass spectrometer cycles through precursor acquisition windows designed to cover the whole range of 400-1200 m/z - in which most of the proteotypic peptide precursors of an organism fall - within 2-4 seconds. During each cycle, the mass spectrometer will fragment all precursors from a given precursors window (e.g. 475 - 500 m/z for 25 Da windows) and record a complete, high accuracy fragment ion spectrum. The same range will be fragmented again in the next cycle, thus providing a time-resolved recording of fragment ions that elute on the chromatography. Thus the SWATH method provides highly multiplexed fragment ion spectra that are deterministically recorded over the complete chromatographic time.

+ +

In the Malmstroem group, we are interested in the data-analysis challenge that is posed by DIA / SWATH data. Traditionally, DIA methods have been analyzed by trying to reconstruct the lineage of precursor and fragment ions based on their chromatographic elution profile, and then analysing the data in a workflow similar to those used in shotgun proteomics. However, these approaches suffered from low sensitivity and propagation of errors due to mis-assignment of fragment ions to precursor ions. We are thus working on automating targeted methods that are conceptually similar to SRM and allow querying the data multiple times with specific hypothesis, thus giving the researcher more control and specificity in the bioinformatic data analysis step. With these novel algorithms, it is potentially possible to explore a much larger part of the data that is present and obtain a nearly complete picture of a proteome.

+ +

References

+ + diff --git a/general/datasets/Epflbxdprothfdrpn0214/platform.rtf b/general/datasets/Epflbxdprothfdrpn0214/platform.rtf new file mode 100644 index 0000000..4a33b7c --- /dev/null +++ b/general/datasets/Epflbxdprothfdrpn0214/platform.rtf @@ -0,0 +1 @@ +

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epflbxdprothfdrpn0214/summary.rtf b/general/datasets/Epflbxdprothfdrpn0214/summary.rtf new file mode 100644 index 0000000..8797309 --- /dev/null +++ b/general/datasets/Epflbxdprothfdrpn0214/summary.rtf @@ -0,0 +1,5 @@ +

Quantitative changes in transcriptome and proteome patterns relate genomic variation to specific phenotypes. Here we applied selected reaction monitoring (SRM), a targeted mass spectrometry method that supports the reliable and reproducible quantification of predetermined sets of proteins across a broad abundance range in complex samples to quantify 157 metabolic proteins in liver extracts from 40 genetically-diverse strains of the BXD mouse genetic reference population, after chow or high fat diet. We observed significant biological variation in protein levels, which were linked to transcript variation in ~30% of the cases. 14 genes mapped to quantitative trait loci (QTLs) at both the transcript and protein level, while a further 18 mapped only as transcripts (eQTLs), and 24 only as proteins (pQTLs). 79% of eQTLs were regulated by cis-mechanisms, as opposed to only 31% of pQTLs, indicating a more direct genetic connection between genes and their transcripts than between genes and their protein products. In some cases, QTLs could be linked to phenotypic changes across the BXDs. One such case indicates a novel animal model for an inborn error of metabolism that has been observed in humans; BXD mice with deficient DHTKD1 protein also exhibit 2-aminoadipic and 2-oxoadipic aciduria like seen in affected patients. Together, these findings show that quantitative, multi-layered genomic, transcriptomic, and proteomic analyses provide more power for connecting genetic variance to phenotypes in complex systems than each layer alone, and provide complementary information to identify novel regulatory networks of metabolic diseases.

+ +

Note: please see associated dataset “Liver Proteome” EPFL/LISP BXD Liver, Hepatocytes, Soluable Proteins CD+HFD (Jul13) RPN” for protein data in the same animals. [NB: Data in review, but still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

+ +

Note: please see associated dataset “LISP2” in BXD phenotypes for phenotype data on the same animals. [NB: Still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

diff --git a/general/datasets/Epflbxdprothfdrpn0214/tissue.rtf b/general/datasets/Epflbxdprothfdrpn0214/tissue.rtf new file mode 100644 index 0000000..f95e2c4 --- /dev/null +++ b/general/datasets/Epflbxdprothfdrpn0214/tissue.rtf @@ -0,0 +1 @@ +

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/Epflbxdprothfdrpn0513/cases.rtf b/general/datasets/Epflbxdprothfdrpn0513/cases.rtf new file mode 100644 index 0000000..ed4ced8 --- /dev/null +++ b/general/datasets/Epflbxdprothfdrpn0513/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/Epflbxdprothfdrpn0513/contributors.rtf b/general/datasets/Epflbxdprothfdrpn0513/contributors.rtf new file mode 100644 index 0000000..e0d9702 --- /dev/null +++ b/general/datasets/Epflbxdprothfdrpn0513/contributors.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Houten SM, Argmann CA, Wolski W, Auwerx J, Aebersold R.

diff --git a/general/datasets/Epflbxdprothfdrpn0513/notes.rtf b/general/datasets/Epflbxdprothfdrpn0513/notes.rtf new file mode 100644 index 0000000..ecdae60 --- /dev/null +++ b/general/datasets/Epflbxdprothfdrpn0513/notes.rtf @@ -0,0 +1,16 @@ +

SWATH

+ +

SWATH MS is a novel technique that is based on data-independent acquisition (DIA) which aims to complement traditional mass spectrometry-based proteomics techniques such as shotgun and SRM methods. In principal, it allows a complete and permanent recording of all fragment ions of all peptide precursors in a biological sample and can thus potentially combine the advantages of shotgun (high throughput) with those of SRM (high reproducibility and sensitivity).

+ +

The method uniquely combines a DIA methods with a innovative data analysis approach based on targeted data extraction developed in the Aebersold lab. Like in other DIA methods, the mass spectrometer cycles through precursor acquisition windows designed to cover the whole range of 400-1200 m/z - in which most of the proteotypic peptide precursors of an organism fall - within 2-4 seconds. During each cycle, the mass spectrometer will fragment all precursors from a given precursors window (e.g. 475 - 500 m/z for 25 Da windows) and record a complete, high accuracy fragment ion spectrum. The same range will be fragmented again in the next cycle, thus providing a time-resolved recording of fragment ions that elute on the chromatography. Thus the SWATH method provides highly multiplexed fragment ion spectra that are deterministically recorded over the complete chromatographic time.

+ +

In the Malmstroem group, we are interested in the data-analysis challenge that is posed by DIA / SWATH data. Traditionally, DIA methods have been analyzed by trying to reconstruct the lineage of precursor and fragment ions based on their chromatographic elution profile, and then analysing the data in a workflow similar to those used in shotgun proteomics. However, these approaches suffered from low sensitivity and propagation of errors due to mis-assignment of fragment ions to precursor ions. We are thus working on automating targeted methods that are conceptually similar to SRM and allow querying the data multiple times with specific hypothesis, thus giving the researcher more control and specificity in the bioinformatic data analysis step. With these novel algorithms, it is potentially possible to explore a much larger part of the data that is present and obtain a nearly complete picture of a proteome.

+ +

References

+ + diff --git a/general/datasets/Epflbxdprothfdrpn0513/platform.rtf b/general/datasets/Epflbxdprothfdrpn0513/platform.rtf new file mode 100644 index 0000000..4a33b7c --- /dev/null +++ b/general/datasets/Epflbxdprothfdrpn0513/platform.rtf @@ -0,0 +1 @@ +

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epflbxdprothfdrpn0513/summary.rtf b/general/datasets/Epflbxdprothfdrpn0513/summary.rtf new file mode 100644 index 0000000..8797309 --- /dev/null +++ b/general/datasets/Epflbxdprothfdrpn0513/summary.rtf @@ -0,0 +1,5 @@ +

Quantitative changes in transcriptome and proteome patterns relate genomic variation to specific phenotypes. Here we applied selected reaction monitoring (SRM), a targeted mass spectrometry method that supports the reliable and reproducible quantification of predetermined sets of proteins across a broad abundance range in complex samples to quantify 157 metabolic proteins in liver extracts from 40 genetically-diverse strains of the BXD mouse genetic reference population, after chow or high fat diet. We observed significant biological variation in protein levels, which were linked to transcript variation in ~30% of the cases. 14 genes mapped to quantitative trait loci (QTLs) at both the transcript and protein level, while a further 18 mapped only as transcripts (eQTLs), and 24 only as proteins (pQTLs). 79% of eQTLs were regulated by cis-mechanisms, as opposed to only 31% of pQTLs, indicating a more direct genetic connection between genes and their transcripts than between genes and their protein products. In some cases, QTLs could be linked to phenotypic changes across the BXDs. One such case indicates a novel animal model for an inborn error of metabolism that has been observed in humans; BXD mice with deficient DHTKD1 protein also exhibit 2-aminoadipic and 2-oxoadipic aciduria like seen in affected patients. Together, these findings show that quantitative, multi-layered genomic, transcriptomic, and proteomic analyses provide more power for connecting genetic variance to phenotypes in complex systems than each layer alone, and provide complementary information to identify novel regulatory networks of metabolic diseases.

+ +

Note: please see associated dataset “Liver Proteome” EPFL/LISP BXD Liver, Hepatocytes, Soluable Proteins CD+HFD (Jul13) RPN” for protein data in the same animals. [NB: Data in review, but still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

+ +

Note: please see associated dataset “LISP2” in BXD phenotypes for phenotype data on the same animals. [NB: Still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

diff --git a/general/datasets/Epflbxdprothfdrpn0513/tissue.rtf b/general/datasets/Epflbxdprothfdrpn0513/tissue.rtf new file mode 100644 index 0000000..f95e2c4 --- /dev/null +++ b/general/datasets/Epflbxdprothfdrpn0513/tissue.rtf @@ -0,0 +1 @@ +

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/Epflbxdprotrpn0513/cases.rtf b/general/datasets/Epflbxdprotrpn0513/cases.rtf new file mode 100644 index 0000000..ed4ced8 --- /dev/null +++ b/general/datasets/Epflbxdprotrpn0513/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/Epflbxdprotrpn0513/contributors.rtf b/general/datasets/Epflbxdprotrpn0513/contributors.rtf new file mode 100644 index 0000000..e0d9702 --- /dev/null +++ b/general/datasets/Epflbxdprotrpn0513/contributors.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Houten SM, Argmann CA, Wolski W, Auwerx J, Aebersold R.

diff --git a/general/datasets/Epflbxdprotrpn0513/notes.rtf b/general/datasets/Epflbxdprotrpn0513/notes.rtf new file mode 100644 index 0000000..ecdae60 --- /dev/null +++ b/general/datasets/Epflbxdprotrpn0513/notes.rtf @@ -0,0 +1,16 @@ +

SWATH

+ +

SWATH MS is a novel technique that is based on data-independent acquisition (DIA) which aims to complement traditional mass spectrometry-based proteomics techniques such as shotgun and SRM methods. In principal, it allows a complete and permanent recording of all fragment ions of all peptide precursors in a biological sample and can thus potentially combine the advantages of shotgun (high throughput) with those of SRM (high reproducibility and sensitivity).

+ +

The method uniquely combines a DIA methods with a innovative data analysis approach based on targeted data extraction developed in the Aebersold lab. Like in other DIA methods, the mass spectrometer cycles through precursor acquisition windows designed to cover the whole range of 400-1200 m/z - in which most of the proteotypic peptide precursors of an organism fall - within 2-4 seconds. During each cycle, the mass spectrometer will fragment all precursors from a given precursors window (e.g. 475 - 500 m/z for 25 Da windows) and record a complete, high accuracy fragment ion spectrum. The same range will be fragmented again in the next cycle, thus providing a time-resolved recording of fragment ions that elute on the chromatography. Thus the SWATH method provides highly multiplexed fragment ion spectra that are deterministically recorded over the complete chromatographic time.

+ +

In the Malmstroem group, we are interested in the data-analysis challenge that is posed by DIA / SWATH data. Traditionally, DIA methods have been analyzed by trying to reconstruct the lineage of precursor and fragment ions based on their chromatographic elution profile, and then analysing the data in a workflow similar to those used in shotgun proteomics. However, these approaches suffered from low sensitivity and propagation of errors due to mis-assignment of fragment ions to precursor ions. We are thus working on automating targeted methods that are conceptually similar to SRM and allow querying the data multiple times with specific hypothesis, thus giving the researcher more control and specificity in the bioinformatic data analysis step. With these novel algorithms, it is potentially possible to explore a much larger part of the data that is present and obtain a nearly complete picture of a proteome.

+ +

References

+ + diff --git a/general/datasets/Epflbxdprotrpn0513/platform.rtf b/general/datasets/Epflbxdprotrpn0513/platform.rtf new file mode 100644 index 0000000..4a33b7c --- /dev/null +++ b/general/datasets/Epflbxdprotrpn0513/platform.rtf @@ -0,0 +1 @@ +

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epflbxdprotrpn0513/summary.rtf b/general/datasets/Epflbxdprotrpn0513/summary.rtf new file mode 100644 index 0000000..8797309 --- /dev/null +++ b/general/datasets/Epflbxdprotrpn0513/summary.rtf @@ -0,0 +1,5 @@ +

Quantitative changes in transcriptome and proteome patterns relate genomic variation to specific phenotypes. Here we applied selected reaction monitoring (SRM), a targeted mass spectrometry method that supports the reliable and reproducible quantification of predetermined sets of proteins across a broad abundance range in complex samples to quantify 157 metabolic proteins in liver extracts from 40 genetically-diverse strains of the BXD mouse genetic reference population, after chow or high fat diet. We observed significant biological variation in protein levels, which were linked to transcript variation in ~30% of the cases. 14 genes mapped to quantitative trait loci (QTLs) at both the transcript and protein level, while a further 18 mapped only as transcripts (eQTLs), and 24 only as proteins (pQTLs). 79% of eQTLs were regulated by cis-mechanisms, as opposed to only 31% of pQTLs, indicating a more direct genetic connection between genes and their transcripts than between genes and their protein products. In some cases, QTLs could be linked to phenotypic changes across the BXDs. One such case indicates a novel animal model for an inborn error of metabolism that has been observed in humans; BXD mice with deficient DHTKD1 protein also exhibit 2-aminoadipic and 2-oxoadipic aciduria like seen in affected patients. Together, these findings show that quantitative, multi-layered genomic, transcriptomic, and proteomic analyses provide more power for connecting genetic variance to phenotypes in complex systems than each layer alone, and provide complementary information to identify novel regulatory networks of metabolic diseases.

+ +

Note: please see associated dataset “Liver Proteome” EPFL/LISP BXD Liver, Hepatocytes, Soluable Proteins CD+HFD (Jul13) RPN” for protein data in the same animals. [NB: Data in review, but still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

+ +

Note: please see associated dataset “LISP2” in BXD phenotypes for phenotype data on the same animals. [NB: Still unpublished as of Nov 2013, please contact admin.auwerx@epfl.ch for access]

diff --git a/general/datasets/Epflbxdprotrpn0513/tissue.rtf b/general/datasets/Epflbxdprotrpn0513/tissue.rtf new file mode 100644 index 0000000..f95e2c4 --- /dev/null +++ b/general/datasets/Epflbxdprotrpn0513/tissue.rtf @@ -0,0 +1 @@ +

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/Epflethzbxdprotcd0514/notes.rtf b/general/datasets/Epflethzbxdprotcd0514/notes.rtf new file mode 100644 index 0000000..ecdae60 --- /dev/null +++ b/general/datasets/Epflethzbxdprotcd0514/notes.rtf @@ -0,0 +1,16 @@ +

SWATH

+ +

SWATH MS is a novel technique that is based on data-independent acquisition (DIA) which aims to complement traditional mass spectrometry-based proteomics techniques such as shotgun and SRM methods. In principal, it allows a complete and permanent recording of all fragment ions of all peptide precursors in a biological sample and can thus potentially combine the advantages of shotgun (high throughput) with those of SRM (high reproducibility and sensitivity).

+ +

The method uniquely combines a DIA methods with a innovative data analysis approach based on targeted data extraction developed in the Aebersold lab. Like in other DIA methods, the mass spectrometer cycles through precursor acquisition windows designed to cover the whole range of 400-1200 m/z - in which most of the proteotypic peptide precursors of an organism fall - within 2-4 seconds. During each cycle, the mass spectrometer will fragment all precursors from a given precursors window (e.g. 475 - 500 m/z for 25 Da windows) and record a complete, high accuracy fragment ion spectrum. The same range will be fragmented again in the next cycle, thus providing a time-resolved recording of fragment ions that elute on the chromatography. Thus the SWATH method provides highly multiplexed fragment ion spectra that are deterministically recorded over the complete chromatographic time.

+ +

In the Malmstroem group, we are interested in the data-analysis challenge that is posed by DIA / SWATH data. Traditionally, DIA methods have been analyzed by trying to reconstruct the lineage of precursor and fragment ions based on their chromatographic elution profile, and then analysing the data in a workflow similar to those used in shotgun proteomics. However, these approaches suffered from low sensitivity and propagation of errors due to mis-assignment of fragment ions to precursor ions. We are thus working on automating targeted methods that are conceptually similar to SRM and allow querying the data multiple times with specific hypothesis, thus giving the researcher more control and specificity in the bioinformatic data analysis step. With these novel algorithms, it is potentially possible to explore a much larger part of the data that is present and obtain a nearly complete picture of a proteome.

+ +

References

+ + diff --git a/general/datasets/Epflethzbxdprotcd_ls1114/notes.rtf b/general/datasets/Epflethzbxdprotcd_ls1114/notes.rtf new file mode 100644 index 0000000..ecdae60 --- /dev/null +++ b/general/datasets/Epflethzbxdprotcd_ls1114/notes.rtf @@ -0,0 +1,16 @@ +

SWATH

+ +

SWATH MS is a novel technique that is based on data-independent acquisition (DIA) which aims to complement traditional mass spectrometry-based proteomics techniques such as shotgun and SRM methods. In principal, it allows a complete and permanent recording of all fragment ions of all peptide precursors in a biological sample and can thus potentially combine the advantages of shotgun (high throughput) with those of SRM (high reproducibility and sensitivity).

+ +

The method uniquely combines a DIA methods with a innovative data analysis approach based on targeted data extraction developed in the Aebersold lab. Like in other DIA methods, the mass spectrometer cycles through precursor acquisition windows designed to cover the whole range of 400-1200 m/z - in which most of the proteotypic peptide precursors of an organism fall - within 2-4 seconds. During each cycle, the mass spectrometer will fragment all precursors from a given precursors window (e.g. 475 - 500 m/z for 25 Da windows) and record a complete, high accuracy fragment ion spectrum. The same range will be fragmented again in the next cycle, thus providing a time-resolved recording of fragment ions that elute on the chromatography. Thus the SWATH method provides highly multiplexed fragment ion spectra that are deterministically recorded over the complete chromatographic time.

+ +

In the Malmstroem group, we are interested in the data-analysis challenge that is posed by DIA / SWATH data. Traditionally, DIA methods have been analyzed by trying to reconstruct the lineage of precursor and fragment ions based on their chromatographic elution profile, and then analysing the data in a workflow similar to those used in shotgun proteomics. However, these approaches suffered from low sensitivity and propagation of errors due to mis-assignment of fragment ions to precursor ions. We are thus working on automating targeted methods that are conceptually similar to SRM and allow querying the data multiple times with specific hypothesis, thus giving the researcher more control and specificity in the bioinformatic data analysis step. With these novel algorithms, it is potentially possible to explore a much larger part of the data that is present and obtain a nearly complete picture of a proteome.

+ +

References

+ + diff --git a/general/datasets/Epflethzbxdprothf_ls1114/notes.rtf b/general/datasets/Epflethzbxdprothf_ls1114/notes.rtf new file mode 100644 index 0000000..ecdae60 --- /dev/null +++ b/general/datasets/Epflethzbxdprothf_ls1114/notes.rtf @@ -0,0 +1,16 @@ +

SWATH

+ +

SWATH MS is a novel technique that is based on data-independent acquisition (DIA) which aims to complement traditional mass spectrometry-based proteomics techniques such as shotgun and SRM methods. In principal, it allows a complete and permanent recording of all fragment ions of all peptide precursors in a biological sample and can thus potentially combine the advantages of shotgun (high throughput) with those of SRM (high reproducibility and sensitivity).

+ +

The method uniquely combines a DIA methods with a innovative data analysis approach based on targeted data extraction developed in the Aebersold lab. Like in other DIA methods, the mass spectrometer cycles through precursor acquisition windows designed to cover the whole range of 400-1200 m/z - in which most of the proteotypic peptide precursors of an organism fall - within 2-4 seconds. During each cycle, the mass spectrometer will fragment all precursors from a given precursors window (e.g. 475 - 500 m/z for 25 Da windows) and record a complete, high accuracy fragment ion spectrum. The same range will be fragmented again in the next cycle, thus providing a time-resolved recording of fragment ions that elute on the chromatography. Thus the SWATH method provides highly multiplexed fragment ion spectra that are deterministically recorded over the complete chromatographic time.

+ +

In the Malmstroem group, we are interested in the data-analysis challenge that is posed by DIA / SWATH data. Traditionally, DIA methods have been analyzed by trying to reconstruct the lineage of precursor and fragment ions based on their chromatographic elution profile, and then analysing the data in a workflow similar to those used in shotgun proteomics. However, these approaches suffered from low sensitivity and propagation of errors due to mis-assignment of fragment ions to precursor ions. We are thus working on automating targeted methods that are conceptually similar to SRM and allow querying the data multiple times with specific hypothesis, thus giving the researcher more control and specificity in the bioinformatic data analysis step. With these novel algorithms, it is potentially possible to explore a much larger part of the data that is present and obtain a nearly complete picture of a proteome.

+ +

References

+ + diff --git a/general/datasets/Epflethzbxdprothfd0514/notes.rtf b/general/datasets/Epflethzbxdprothfd0514/notes.rtf new file mode 100644 index 0000000..ecdae60 --- /dev/null +++ b/general/datasets/Epflethzbxdprothfd0514/notes.rtf @@ -0,0 +1,16 @@ +

SWATH

+ +

SWATH MS is a novel technique that is based on data-independent acquisition (DIA) which aims to complement traditional mass spectrometry-based proteomics techniques such as shotgun and SRM methods. In principal, it allows a complete and permanent recording of all fragment ions of all peptide precursors in a biological sample and can thus potentially combine the advantages of shotgun (high throughput) with those of SRM (high reproducibility and sensitivity).

+ +

The method uniquely combines a DIA methods with a innovative data analysis approach based on targeted data extraction developed in the Aebersold lab. Like in other DIA methods, the mass spectrometer cycles through precursor acquisition windows designed to cover the whole range of 400-1200 m/z - in which most of the proteotypic peptide precursors of an organism fall - within 2-4 seconds. During each cycle, the mass spectrometer will fragment all precursors from a given precursors window (e.g. 475 - 500 m/z for 25 Da windows) and record a complete, high accuracy fragment ion spectrum. The same range will be fragmented again in the next cycle, thus providing a time-resolved recording of fragment ions that elute on the chromatography. Thus the SWATH method provides highly multiplexed fragment ion spectra that are deterministically recorded over the complete chromatographic time.

+ +

In the Malmstroem group, we are interested in the data-analysis challenge that is posed by DIA / SWATH data. Traditionally, DIA methods have been analyzed by trying to reconstruct the lineage of precursor and fragment ions based on their chromatographic elution profile, and then analysing the data in a workflow similar to those used in shotgun proteomics. However, these approaches suffered from low sensitivity and propagation of errors due to mis-assignment of fragment ions to precursor ions. We are thus working on automating targeted methods that are conceptually similar to SRM and allow querying the data multiple times with specific hypothesis, thus giving the researcher more control and specificity in the bioinformatic data analysis step. With these novel algorithms, it is potentially possible to explore a much larger part of the data that is present and obtain a nearly complete picture of a proteome.

+ +

References

+ + diff --git a/general/datasets/Epflmouseliverbothexrma0413/acknowledgment.rtf b/general/datasets/Epflmouseliverbothexrma0413/acknowledgment.rtf new file mode 100644 index 0000000..3a26b41 --- /dev/null +++ b/general/datasets/Epflmouseliverbothexrma0413/acknowledgment.rtf @@ -0,0 +1 @@ +

The authors thank A. van Cruchten and W. Smit for the serum analysis of 2-AA. The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (SNSF; 33CSCO-122661). The authors thank P. Vollenweider, G. Waeber, V. Mooser and D. Waterworth, Co-PIs of the CoLaus study. Special thanks to M. Bochud, Y. Barreau, M. Firmann, V. Mayor, A. Bastian, B. Ramic, M. Moranville, M. Baumer, M. Sagette, J. Ecoffey and S. Mermoud for data collection. YW was supported by the ERC (Proteomics v3.0; AdG-233226 to RA), and the LiverX program and EGW by a fellowship from the Fondation Romande pour la Recherche sur le Diabète. JA is the Nestlé Chair in Energy Metabolism. Research was supported by the EPFL, ETHZ, ERC (Sirtuins; AdG-231138 and Proteomics v3.0; AdG-233226), Velux Stiftung, LiverX and AgingX programs of the Swiss Initiative for Systems Biology (51RTP0-151019 and 2013/153), SNSF (31003A-140780, 31003A-143914, and CSRII3-136201), and the NIH (R01AG043930).

diff --git a/general/datasets/Epflmouseliverbothexrma0413/cases.rtf b/general/datasets/Epflmouseliverbothexrma0413/cases.rtf new file mode 100644 index 0000000..ed4ced8 --- /dev/null +++ b/general/datasets/Epflmouseliverbothexrma0413/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/Epflmouseliverbothexrma0413/citation.rtf b/general/datasets/Epflmouseliverbothexrma0413/citation.rtf new file mode 100644 index 0000000..46be451 --- /dev/null +++ b/general/datasets/Epflmouseliverbothexrma0413/citation.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, and Aebersold R, Multilayered genetics and omics dissection of mitochondrial activity in a mouse reference population. Cell, 158(6), 2014.

diff --git a/general/datasets/Epflmouseliverbothexrma0413/contributors.rtf b/general/datasets/Epflmouseliverbothexrma0413/contributors.rtf new file mode 100644 index 0000000..d3b16c7 --- /dev/null +++ b/general/datasets/Epflmouseliverbothexrma0413/contributors.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, Aebersold R

diff --git a/general/datasets/Epflmouseliverbothexrma0413/platform.rtf b/general/datasets/Epflmouseliverbothexrma0413/platform.rtf new file mode 100644 index 0000000..4a33b7c --- /dev/null +++ b/general/datasets/Epflmouseliverbothexrma0413/platform.rtf @@ -0,0 +1 @@ +

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epflmouseliverbothexrma0413/processing.rtf b/general/datasets/Epflmouseliverbothexrma0413/processing.rtf new file mode 100644 index 0000000..8cc5d58 --- /dev/null +++ b/general/datasets/Epflmouseliverbothexrma0413/processing.rtf @@ -0,0 +1 @@ +

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/Epflmouseliverbothexrma0413/summary.rtf b/general/datasets/Epflmouseliverbothexrma0413/summary.rtf new file mode 100644 index 0000000..77c5606 --- /dev/null +++ b/general/datasets/Epflmouseliverbothexrma0413/summary.rtf @@ -0,0 +1 @@ +

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study we quantified the transcriptome, a subset of the metabolome, and using targeted proteomics, a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. We further used the integrated molecular profiles to characterize complex pathways, as illustrated with the mitochondrial unfolded protein response (UPRmt). UPRmt shows strikingly variant responses at the transcript and protein level that are remarkably conserved between C.elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.

diff --git a/general/datasets/Epflmouseliverbothexrma0413/tissue.rtf b/general/datasets/Epflmouseliverbothexrma0413/tissue.rtf new file mode 100644 index 0000000..f95e2c4 --- /dev/null +++ b/general/datasets/Epflmouseliverbothexrma0413/tissue.rtf @@ -0,0 +1 @@ +

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/Epflmouselivercdex0413/acknowledgment.rtf b/general/datasets/Epflmouselivercdex0413/acknowledgment.rtf new file mode 100644 index 0000000..3a26b41 --- /dev/null +++ b/general/datasets/Epflmouselivercdex0413/acknowledgment.rtf @@ -0,0 +1 @@ +

The authors thank A. van Cruchten and W. Smit for the serum analysis of 2-AA. The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (SNSF; 33CSCO-122661). The authors thank P. Vollenweider, G. Waeber, V. Mooser and D. Waterworth, Co-PIs of the CoLaus study. Special thanks to M. Bochud, Y. Barreau, M. Firmann, V. Mayor, A. Bastian, B. Ramic, M. Moranville, M. Baumer, M. Sagette, J. Ecoffey and S. Mermoud for data collection. YW was supported by the ERC (Proteomics v3.0; AdG-233226 to RA), and the LiverX program and EGW by a fellowship from the Fondation Romande pour la Recherche sur le Diabète. JA is the Nestlé Chair in Energy Metabolism. Research was supported by the EPFL, ETHZ, ERC (Sirtuins; AdG-231138 and Proteomics v3.0; AdG-233226), Velux Stiftung, LiverX and AgingX programs of the Swiss Initiative for Systems Biology (51RTP0-151019 and 2013/153), SNSF (31003A-140780, 31003A-143914, and CSRII3-136201), and the NIH (R01AG043930).

diff --git a/general/datasets/Epflmouselivercdex0413/cases.rtf b/general/datasets/Epflmouselivercdex0413/cases.rtf new file mode 100644 index 0000000..ed4ced8 --- /dev/null +++ b/general/datasets/Epflmouselivercdex0413/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/Epflmouselivercdex0413/citation.rtf b/general/datasets/Epflmouselivercdex0413/citation.rtf new file mode 100644 index 0000000..46be451 --- /dev/null +++ b/general/datasets/Epflmouselivercdex0413/citation.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, and Aebersold R, Multilayered genetics and omics dissection of mitochondrial activity in a mouse reference population. Cell, 158(6), 2014.

diff --git a/general/datasets/Epflmouselivercdex0413/contributors.rtf b/general/datasets/Epflmouselivercdex0413/contributors.rtf new file mode 100644 index 0000000..d3b16c7 --- /dev/null +++ b/general/datasets/Epflmouselivercdex0413/contributors.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, Aebersold R

diff --git a/general/datasets/Epflmouselivercdex0413/platform.rtf b/general/datasets/Epflmouselivercdex0413/platform.rtf new file mode 100644 index 0000000..4a33b7c --- /dev/null +++ b/general/datasets/Epflmouselivercdex0413/platform.rtf @@ -0,0 +1 @@ +

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epflmouselivercdex0413/processing.rtf b/general/datasets/Epflmouselivercdex0413/processing.rtf new file mode 100644 index 0000000..8cc5d58 --- /dev/null +++ b/general/datasets/Epflmouselivercdex0413/processing.rtf @@ -0,0 +1 @@ +

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/Epflmouselivercdex0413/specifics.rtf b/general/datasets/Epflmouselivercdex0413/specifics.rtf new file mode 100644 index 0000000..7c1a914 --- /dev/null +++ b/general/datasets/Epflmouselivercdex0413/specifics.rtf @@ -0,0 +1 @@ +Exon Level \ No newline at end of file diff --git a/general/datasets/Epflmouselivercdex0413/summary.rtf b/general/datasets/Epflmouselivercdex0413/summary.rtf new file mode 100644 index 0000000..77c5606 --- /dev/null +++ b/general/datasets/Epflmouselivercdex0413/summary.rtf @@ -0,0 +1 @@ +

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study we quantified the transcriptome, a subset of the metabolome, and using targeted proteomics, a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. We further used the integrated molecular profiles to characterize complex pathways, as illustrated with the mitochondrial unfolded protein response (UPRmt). UPRmt shows strikingly variant responses at the transcript and protein level that are remarkably conserved between C.elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.

diff --git a/general/datasets/Epflmouselivercdex0413/tissue.rtf b/general/datasets/Epflmouselivercdex0413/tissue.rtf new file mode 100644 index 0000000..f95e2c4 --- /dev/null +++ b/general/datasets/Epflmouselivercdex0413/tissue.rtf @@ -0,0 +1 @@ +

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/Epflmouselivercdhfdrma0818/acknowledgment.rtf b/general/datasets/Epflmouselivercdhfdrma0818/acknowledgment.rtf new file mode 100644 index 0000000..3a26b41 --- /dev/null +++ b/general/datasets/Epflmouselivercdhfdrma0818/acknowledgment.rtf @@ -0,0 +1 @@ +

The authors thank A. van Cruchten and W. Smit for the serum analysis of 2-AA. The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (SNSF; 33CSCO-122661). The authors thank P. Vollenweider, G. Waeber, V. Mooser and D. Waterworth, Co-PIs of the CoLaus study. Special thanks to M. Bochud, Y. Barreau, M. Firmann, V. Mayor, A. Bastian, B. Ramic, M. Moranville, M. Baumer, M. Sagette, J. Ecoffey and S. Mermoud for data collection. YW was supported by the ERC (Proteomics v3.0; AdG-233226 to RA), and the LiverX program and EGW by a fellowship from the Fondation Romande pour la Recherche sur le Diabète. JA is the Nestlé Chair in Energy Metabolism. Research was supported by the EPFL, ETHZ, ERC (Sirtuins; AdG-231138 and Proteomics v3.0; AdG-233226), Velux Stiftung, LiverX and AgingX programs of the Swiss Initiative for Systems Biology (51RTP0-151019 and 2013/153), SNSF (31003A-140780, 31003A-143914, and CSRII3-136201), and the NIH (R01AG043930).

diff --git a/general/datasets/Epflmouselivercdhfdrma0818/cases.rtf b/general/datasets/Epflmouselivercdhfdrma0818/cases.rtf new file mode 100644 index 0000000..ed4ced8 --- /dev/null +++ b/general/datasets/Epflmouselivercdhfdrma0818/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/Epflmouselivercdhfdrma0818/citation.rtf b/general/datasets/Epflmouselivercdhfdrma0818/citation.rtf new file mode 100644 index 0000000..46be451 --- /dev/null +++ b/general/datasets/Epflmouselivercdhfdrma0818/citation.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, and Aebersold R, Multilayered genetics and omics dissection of mitochondrial activity in a mouse reference population. Cell, 158(6), 2014.

diff --git a/general/datasets/Epflmouselivercdhfdrma0818/contributors.rtf b/general/datasets/Epflmouselivercdhfdrma0818/contributors.rtf new file mode 100644 index 0000000..d3b16c7 --- /dev/null +++ b/general/datasets/Epflmouselivercdhfdrma0818/contributors.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, Aebersold R

diff --git a/general/datasets/Epflmouselivercdhfdrma0818/platform.rtf b/general/datasets/Epflmouselivercdhfdrma0818/platform.rtf new file mode 100644 index 0000000..4a33b7c --- /dev/null +++ b/general/datasets/Epflmouselivercdhfdrma0818/platform.rtf @@ -0,0 +1 @@ +

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epflmouselivercdhfdrma0818/processing.rtf b/general/datasets/Epflmouselivercdhfdrma0818/processing.rtf new file mode 100644 index 0000000..8cc5d58 --- /dev/null +++ b/general/datasets/Epflmouselivercdhfdrma0818/processing.rtf @@ -0,0 +1 @@ +

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/Epflmouselivercdhfdrma0818/specifics.rtf b/general/datasets/Epflmouselivercdhfdrma0818/specifics.rtf new file mode 100644 index 0000000..7bcb4de --- /dev/null +++ b/general/datasets/Epflmouselivercdhfdrma0818/specifics.rtf @@ -0,0 +1 @@ +RMA Normalization CD + HFD combined \ No newline at end of file diff --git a/general/datasets/Epflmouselivercdhfdrma0818/summary.rtf b/general/datasets/Epflmouselivercdhfdrma0818/summary.rtf new file mode 100644 index 0000000..77c5606 --- /dev/null +++ b/general/datasets/Epflmouselivercdhfdrma0818/summary.rtf @@ -0,0 +1 @@ +

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study we quantified the transcriptome, a subset of the metabolome, and using targeted proteomics, a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. We further used the integrated molecular profiles to characterize complex pathways, as illustrated with the mitochondrial unfolded protein response (UPRmt). UPRmt shows strikingly variant responses at the transcript and protein level that are remarkably conserved between C.elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.

diff --git a/general/datasets/Epflmouselivercdhfdrma0818/tissue.rtf b/general/datasets/Epflmouselivercdhfdrma0818/tissue.rtf new file mode 100644 index 0000000..f95e2c4 --- /dev/null +++ b/general/datasets/Epflmouselivercdhfdrma0818/tissue.rtf @@ -0,0 +1 @@ +

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/Epflmouselivercdrma0413/acknowledgment.rtf b/general/datasets/Epflmouselivercdrma0413/acknowledgment.rtf new file mode 100644 index 0000000..3a26b41 --- /dev/null +++ b/general/datasets/Epflmouselivercdrma0413/acknowledgment.rtf @@ -0,0 +1 @@ +

The authors thank A. van Cruchten and W. Smit for the serum analysis of 2-AA. The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (SNSF; 33CSCO-122661). The authors thank P. Vollenweider, G. Waeber, V. Mooser and D. Waterworth, Co-PIs of the CoLaus study. Special thanks to M. Bochud, Y. Barreau, M. Firmann, V. Mayor, A. Bastian, B. Ramic, M. Moranville, M. Baumer, M. Sagette, J. Ecoffey and S. Mermoud for data collection. YW was supported by the ERC (Proteomics v3.0; AdG-233226 to RA), and the LiverX program and EGW by a fellowship from the Fondation Romande pour la Recherche sur le Diabète. JA is the Nestlé Chair in Energy Metabolism. Research was supported by the EPFL, ETHZ, ERC (Sirtuins; AdG-231138 and Proteomics v3.0; AdG-233226), Velux Stiftung, LiverX and AgingX programs of the Swiss Initiative for Systems Biology (51RTP0-151019 and 2013/153), SNSF (31003A-140780, 31003A-143914, and CSRII3-136201), and the NIH (R01AG043930).

diff --git a/general/datasets/Epflmouselivercdrma0413/cases.rtf b/general/datasets/Epflmouselivercdrma0413/cases.rtf new file mode 100644 index 0000000..ed4ced8 --- /dev/null +++ b/general/datasets/Epflmouselivercdrma0413/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/Epflmouselivercdrma0413/citation.rtf b/general/datasets/Epflmouselivercdrma0413/citation.rtf new file mode 100644 index 0000000..46be451 --- /dev/null +++ b/general/datasets/Epflmouselivercdrma0413/citation.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, and Aebersold R, Multilayered genetics and omics dissection of mitochondrial activity in a mouse reference population. Cell, 158(6), 2014.

diff --git a/general/datasets/Epflmouselivercdrma0413/contributors.rtf b/general/datasets/Epflmouselivercdrma0413/contributors.rtf new file mode 100644 index 0000000..d3b16c7 --- /dev/null +++ b/general/datasets/Epflmouselivercdrma0413/contributors.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, Aebersold R

diff --git a/general/datasets/Epflmouselivercdrma0413/platform.rtf b/general/datasets/Epflmouselivercdrma0413/platform.rtf new file mode 100644 index 0000000..4a33b7c --- /dev/null +++ b/general/datasets/Epflmouselivercdrma0413/platform.rtf @@ -0,0 +1 @@ +

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epflmouselivercdrma0413/processing.rtf b/general/datasets/Epflmouselivercdrma0413/processing.rtf new file mode 100644 index 0000000..8cc5d58 --- /dev/null +++ b/general/datasets/Epflmouselivercdrma0413/processing.rtf @@ -0,0 +1 @@ +

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/Epflmouselivercdrma0413/summary.rtf b/general/datasets/Epflmouselivercdrma0413/summary.rtf new file mode 100644 index 0000000..77c5606 --- /dev/null +++ b/general/datasets/Epflmouselivercdrma0413/summary.rtf @@ -0,0 +1 @@ +

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study we quantified the transcriptome, a subset of the metabolome, and using targeted proteomics, a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. We further used the integrated molecular profiles to characterize complex pathways, as illustrated with the mitochondrial unfolded protein response (UPRmt). UPRmt shows strikingly variant responses at the transcript and protein level that are remarkably conserved between C.elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.

diff --git a/general/datasets/Epflmouselivercdrma0413/tissue.rtf b/general/datasets/Epflmouselivercdrma0413/tissue.rtf new file mode 100644 index 0000000..f95e2c4 --- /dev/null +++ b/general/datasets/Epflmouselivercdrma0413/tissue.rtf @@ -0,0 +1 @@ +

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/Epflmouselivercdrma0818/acknowledgment.rtf b/general/datasets/Epflmouselivercdrma0818/acknowledgment.rtf new file mode 100644 index 0000000..3a26b41 --- /dev/null +++ b/general/datasets/Epflmouselivercdrma0818/acknowledgment.rtf @@ -0,0 +1 @@ +

The authors thank A. van Cruchten and W. Smit for the serum analysis of 2-AA. The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (SNSF; 33CSCO-122661). The authors thank P. Vollenweider, G. Waeber, V. Mooser and D. Waterworth, Co-PIs of the CoLaus study. Special thanks to M. Bochud, Y. Barreau, M. Firmann, V. Mayor, A. Bastian, B. Ramic, M. Moranville, M. Baumer, M. Sagette, J. Ecoffey and S. Mermoud for data collection. YW was supported by the ERC (Proteomics v3.0; AdG-233226 to RA), and the LiverX program and EGW by a fellowship from the Fondation Romande pour la Recherche sur le Diabète. JA is the Nestlé Chair in Energy Metabolism. Research was supported by the EPFL, ETHZ, ERC (Sirtuins; AdG-231138 and Proteomics v3.0; AdG-233226), Velux Stiftung, LiverX and AgingX programs of the Swiss Initiative for Systems Biology (51RTP0-151019 and 2013/153), SNSF (31003A-140780, 31003A-143914, and CSRII3-136201), and the NIH (R01AG043930).

diff --git a/general/datasets/Epflmouselivercdrma0818/cases.rtf b/general/datasets/Epflmouselivercdrma0818/cases.rtf new file mode 100644 index 0000000..ed4ced8 --- /dev/null +++ b/general/datasets/Epflmouselivercdrma0818/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/Epflmouselivercdrma0818/citation.rtf b/general/datasets/Epflmouselivercdrma0818/citation.rtf new file mode 100644 index 0000000..46be451 --- /dev/null +++ b/general/datasets/Epflmouselivercdrma0818/citation.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, and Aebersold R, Multilayered genetics and omics dissection of mitochondrial activity in a mouse reference population. Cell, 158(6), 2014.

diff --git a/general/datasets/Epflmouselivercdrma0818/contributors.rtf b/general/datasets/Epflmouselivercdrma0818/contributors.rtf new file mode 100644 index 0000000..d3b16c7 --- /dev/null +++ b/general/datasets/Epflmouselivercdrma0818/contributors.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, Aebersold R

diff --git a/general/datasets/Epflmouselivercdrma0818/platform.rtf b/general/datasets/Epflmouselivercdrma0818/platform.rtf new file mode 100644 index 0000000..4a33b7c --- /dev/null +++ b/general/datasets/Epflmouselivercdrma0818/platform.rtf @@ -0,0 +1 @@ +

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epflmouselivercdrma0818/processing.rtf b/general/datasets/Epflmouselivercdrma0818/processing.rtf new file mode 100644 index 0000000..8cc5d58 --- /dev/null +++ b/general/datasets/Epflmouselivercdrma0818/processing.rtf @@ -0,0 +1 @@ +

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/Epflmouselivercdrma0818/specifics.rtf b/general/datasets/Epflmouselivercdrma0818/specifics.rtf new file mode 100644 index 0000000..8e24baa --- /dev/null +++ b/general/datasets/Epflmouselivercdrma0818/specifics.rtf @@ -0,0 +1 @@ +

original rma normalization CD + HFD combined

diff --git a/general/datasets/Epflmouselivercdrma0818/summary.rtf b/general/datasets/Epflmouselivercdrma0818/summary.rtf new file mode 100644 index 0000000..77c5606 --- /dev/null +++ b/general/datasets/Epflmouselivercdrma0818/summary.rtf @@ -0,0 +1 @@ +

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study we quantified the transcriptome, a subset of the metabolome, and using targeted proteomics, a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. We further used the integrated molecular profiles to characterize complex pathways, as illustrated with the mitochondrial unfolded protein response (UPRmt). UPRmt shows strikingly variant responses at the transcript and protein level that are remarkably conserved between C.elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.

diff --git a/general/datasets/Epflmouselivercdrma0818/tissue.rtf b/general/datasets/Epflmouselivercdrma0818/tissue.rtf new file mode 100644 index 0000000..f95e2c4 --- /dev/null +++ b/general/datasets/Epflmouselivercdrma0818/tissue.rtf @@ -0,0 +1 @@ +

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/Epflmouseliverhfcex0413/acknowledgment.rtf b/general/datasets/Epflmouseliverhfcex0413/acknowledgment.rtf new file mode 100644 index 0000000..3a26b41 --- /dev/null +++ b/general/datasets/Epflmouseliverhfcex0413/acknowledgment.rtf @@ -0,0 +1 @@ +

The authors thank A. van Cruchten and W. Smit for the serum analysis of 2-AA. The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (SNSF; 33CSCO-122661). The authors thank P. Vollenweider, G. Waeber, V. Mooser and D. Waterworth, Co-PIs of the CoLaus study. Special thanks to M. Bochud, Y. Barreau, M. Firmann, V. Mayor, A. Bastian, B. Ramic, M. Moranville, M. Baumer, M. Sagette, J. Ecoffey and S. Mermoud for data collection. YW was supported by the ERC (Proteomics v3.0; AdG-233226 to RA), and the LiverX program and EGW by a fellowship from the Fondation Romande pour la Recherche sur le Diabète. JA is the Nestlé Chair in Energy Metabolism. Research was supported by the EPFL, ETHZ, ERC (Sirtuins; AdG-231138 and Proteomics v3.0; AdG-233226), Velux Stiftung, LiverX and AgingX programs of the Swiss Initiative for Systems Biology (51RTP0-151019 and 2013/153), SNSF (31003A-140780, 31003A-143914, and CSRII3-136201), and the NIH (R01AG043930).

diff --git a/general/datasets/Epflmouseliverhfcex0413/cases.rtf b/general/datasets/Epflmouseliverhfcex0413/cases.rtf new file mode 100644 index 0000000..ed4ced8 --- /dev/null +++ b/general/datasets/Epflmouseliverhfcex0413/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/Epflmouseliverhfcex0413/citation.rtf b/general/datasets/Epflmouseliverhfcex0413/citation.rtf new file mode 100644 index 0000000..46be451 --- /dev/null +++ b/general/datasets/Epflmouseliverhfcex0413/citation.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, and Aebersold R, Multilayered genetics and omics dissection of mitochondrial activity in a mouse reference population. Cell, 158(6), 2014.

diff --git a/general/datasets/Epflmouseliverhfcex0413/contributors.rtf b/general/datasets/Epflmouseliverhfcex0413/contributors.rtf new file mode 100644 index 0000000..d3b16c7 --- /dev/null +++ b/general/datasets/Epflmouseliverhfcex0413/contributors.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, Aebersold R

diff --git a/general/datasets/Epflmouseliverhfcex0413/platform.rtf b/general/datasets/Epflmouseliverhfcex0413/platform.rtf new file mode 100644 index 0000000..4a33b7c --- /dev/null +++ b/general/datasets/Epflmouseliverhfcex0413/platform.rtf @@ -0,0 +1 @@ +

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epflmouseliverhfcex0413/processing.rtf b/general/datasets/Epflmouseliverhfcex0413/processing.rtf new file mode 100644 index 0000000..8cc5d58 --- /dev/null +++ b/general/datasets/Epflmouseliverhfcex0413/processing.rtf @@ -0,0 +1 @@ +

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/Epflmouseliverhfcex0413/specifics.rtf b/general/datasets/Epflmouseliverhfcex0413/specifics.rtf new file mode 100644 index 0000000..7c1a914 --- /dev/null +++ b/general/datasets/Epflmouseliverhfcex0413/specifics.rtf @@ -0,0 +1 @@ +Exon Level \ No newline at end of file diff --git a/general/datasets/Epflmouseliverhfcex0413/summary.rtf b/general/datasets/Epflmouseliverhfcex0413/summary.rtf new file mode 100644 index 0000000..77c5606 --- /dev/null +++ b/general/datasets/Epflmouseliverhfcex0413/summary.rtf @@ -0,0 +1 @@ +

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study we quantified the transcriptome, a subset of the metabolome, and using targeted proteomics, a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. We further used the integrated molecular profiles to characterize complex pathways, as illustrated with the mitochondrial unfolded protein response (UPRmt). UPRmt shows strikingly variant responses at the transcript and protein level that are remarkably conserved between C.elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.

diff --git a/general/datasets/Epflmouseliverhfcex0413/tissue.rtf b/general/datasets/Epflmouseliverhfcex0413/tissue.rtf new file mode 100644 index 0000000..f95e2c4 --- /dev/null +++ b/general/datasets/Epflmouseliverhfcex0413/tissue.rtf @@ -0,0 +1 @@ +

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/Epflmouseliverhfdrma0413/acknowledgment.rtf b/general/datasets/Epflmouseliverhfdrma0413/acknowledgment.rtf new file mode 100644 index 0000000..3a26b41 --- /dev/null +++ b/general/datasets/Epflmouseliverhfdrma0413/acknowledgment.rtf @@ -0,0 +1 @@ +

The authors thank A. van Cruchten and W. Smit for the serum analysis of 2-AA. The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (SNSF; 33CSCO-122661). The authors thank P. Vollenweider, G. Waeber, V. Mooser and D. Waterworth, Co-PIs of the CoLaus study. Special thanks to M. Bochud, Y. Barreau, M. Firmann, V. Mayor, A. Bastian, B. Ramic, M. Moranville, M. Baumer, M. Sagette, J. Ecoffey and S. Mermoud for data collection. YW was supported by the ERC (Proteomics v3.0; AdG-233226 to RA), and the LiverX program and EGW by a fellowship from the Fondation Romande pour la Recherche sur le Diabète. JA is the Nestlé Chair in Energy Metabolism. Research was supported by the EPFL, ETHZ, ERC (Sirtuins; AdG-231138 and Proteomics v3.0; AdG-233226), Velux Stiftung, LiverX and AgingX programs of the Swiss Initiative for Systems Biology (51RTP0-151019 and 2013/153), SNSF (31003A-140780, 31003A-143914, and CSRII3-136201), and the NIH (R01AG043930).

diff --git a/general/datasets/Epflmouseliverhfdrma0413/cases.rtf b/general/datasets/Epflmouseliverhfdrma0413/cases.rtf new file mode 100644 index 0000000..ed4ced8 --- /dev/null +++ b/general/datasets/Epflmouseliverhfdrma0413/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/Epflmouseliverhfdrma0413/citation.rtf b/general/datasets/Epflmouseliverhfdrma0413/citation.rtf new file mode 100644 index 0000000..46be451 --- /dev/null +++ b/general/datasets/Epflmouseliverhfdrma0413/citation.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, and Aebersold R, Multilayered genetics and omics dissection of mitochondrial activity in a mouse reference population. Cell, 158(6), 2014.

diff --git a/general/datasets/Epflmouseliverhfdrma0413/contributors.rtf b/general/datasets/Epflmouseliverhfdrma0413/contributors.rtf new file mode 100644 index 0000000..d3b16c7 --- /dev/null +++ b/general/datasets/Epflmouseliverhfdrma0413/contributors.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, Aebersold R

diff --git a/general/datasets/Epflmouseliverhfdrma0413/platform.rtf b/general/datasets/Epflmouseliverhfdrma0413/platform.rtf new file mode 100644 index 0000000..4a33b7c --- /dev/null +++ b/general/datasets/Epflmouseliverhfdrma0413/platform.rtf @@ -0,0 +1 @@ +

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epflmouseliverhfdrma0413/processing.rtf b/general/datasets/Epflmouseliverhfdrma0413/processing.rtf new file mode 100644 index 0000000..8cc5d58 --- /dev/null +++ b/general/datasets/Epflmouseliverhfdrma0413/processing.rtf @@ -0,0 +1 @@ +

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/Epflmouseliverhfdrma0413/specifics.rtf b/general/datasets/Epflmouseliverhfdrma0413/specifics.rtf new file mode 100644 index 0000000..9f581ab --- /dev/null +++ b/general/datasets/Epflmouseliverhfdrma0413/specifics.rtf @@ -0,0 +1 @@ +

High Fat Diet Only

diff --git a/general/datasets/Epflmouseliverhfdrma0413/summary.rtf b/general/datasets/Epflmouseliverhfdrma0413/summary.rtf new file mode 100644 index 0000000..77c5606 --- /dev/null +++ b/general/datasets/Epflmouseliverhfdrma0413/summary.rtf @@ -0,0 +1 @@ +

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study we quantified the transcriptome, a subset of the metabolome, and using targeted proteomics, a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. We further used the integrated molecular profiles to characterize complex pathways, as illustrated with the mitochondrial unfolded protein response (UPRmt). UPRmt shows strikingly variant responses at the transcript and protein level that are remarkably conserved between C.elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.

diff --git a/general/datasets/Epflmouseliverhfdrma0413/tissue.rtf b/general/datasets/Epflmouseliverhfdrma0413/tissue.rtf new file mode 100644 index 0000000..f95e2c4 --- /dev/null +++ b/general/datasets/Epflmouseliverhfdrma0413/tissue.rtf @@ -0,0 +1 @@ +

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/Epflmouseliverhfdrma0818/acknowledgment.rtf b/general/datasets/Epflmouseliverhfdrma0818/acknowledgment.rtf new file mode 100644 index 0000000..3a26b41 --- /dev/null +++ b/general/datasets/Epflmouseliverhfdrma0818/acknowledgment.rtf @@ -0,0 +1 @@ +

The authors thank A. van Cruchten and W. Smit for the serum analysis of 2-AA. The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (SNSF; 33CSCO-122661). The authors thank P. Vollenweider, G. Waeber, V. Mooser and D. Waterworth, Co-PIs of the CoLaus study. Special thanks to M. Bochud, Y. Barreau, M. Firmann, V. Mayor, A. Bastian, B. Ramic, M. Moranville, M. Baumer, M. Sagette, J. Ecoffey and S. Mermoud for data collection. YW was supported by the ERC (Proteomics v3.0; AdG-233226 to RA), and the LiverX program and EGW by a fellowship from the Fondation Romande pour la Recherche sur le Diabète. JA is the Nestlé Chair in Energy Metabolism. Research was supported by the EPFL, ETHZ, ERC (Sirtuins; AdG-231138 and Proteomics v3.0; AdG-233226), Velux Stiftung, LiverX and AgingX programs of the Swiss Initiative for Systems Biology (51RTP0-151019 and 2013/153), SNSF (31003A-140780, 31003A-143914, and CSRII3-136201), and the NIH (R01AG043930).

diff --git a/general/datasets/Epflmouseliverhfdrma0818/cases.rtf b/general/datasets/Epflmouseliverhfdrma0818/cases.rtf new file mode 100644 index 0000000..ed4ced8 --- /dev/null +++ b/general/datasets/Epflmouseliverhfdrma0818/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/Epflmouseliverhfdrma0818/citation.rtf b/general/datasets/Epflmouseliverhfdrma0818/citation.rtf new file mode 100644 index 0000000..46be451 --- /dev/null +++ b/general/datasets/Epflmouseliverhfdrma0818/citation.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, and Aebersold R, Multilayered genetics and omics dissection of mitochondrial activity in a mouse reference population. Cell, 158(6), 2014.

diff --git a/general/datasets/Epflmouseliverhfdrma0818/contributors.rtf b/general/datasets/Epflmouseliverhfdrma0818/contributors.rtf new file mode 100644 index 0000000..d3b16c7 --- /dev/null +++ b/general/datasets/Epflmouseliverhfdrma0818/contributors.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, Aebersold R

diff --git a/general/datasets/Epflmouseliverhfdrma0818/platform.rtf b/general/datasets/Epflmouseliverhfdrma0818/platform.rtf new file mode 100644 index 0000000..4a33b7c --- /dev/null +++ b/general/datasets/Epflmouseliverhfdrma0818/platform.rtf @@ -0,0 +1 @@ +

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epflmouseliverhfdrma0818/processing.rtf b/general/datasets/Epflmouseliverhfdrma0818/processing.rtf new file mode 100644 index 0000000..8cc5d58 --- /dev/null +++ b/general/datasets/Epflmouseliverhfdrma0818/processing.rtf @@ -0,0 +1 @@ +

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/Epflmouseliverhfdrma0818/specifics.rtf b/general/datasets/Epflmouseliverhfdrma0818/specifics.rtf new file mode 100644 index 0000000..521f92a --- /dev/null +++ b/general/datasets/Epflmouseliverhfdrma0818/specifics.rtf @@ -0,0 +1,65 @@ +

HFD strain assignment errors to be fixed March 2019

+ +

original rma normalization CD + HFD combined

+ +

David Ashbrook analyzed strain assignment errors in March 2019. "I've more than doubled the number of markers up to 33, and can be pretty confident that a number of strains are labelled incorrectly, and what strains they should be. I've included a '?' if I'm not confident, or if I couldn't find a good match."

+ +

BXD100?

+ +

BXD51 > BXD55

+ +

BXD55 > BXD51

+ +

BXD63 > BXD43

+ +

BXD73 > BXD79?

+ +

BXD73a > BXD83

+ +

BXD75 > BXD73a

+ +

BXD79 > BXD81

+ +

BXD81 > BXD84

+ +

BXD83 > BXD85

+ +

BXD84 > BXD87

+ +

BXD85? > BXD89

+ +

BXD87 > BXD90?

+ +

BXD89 > BXD95

+ +

BXD90 > BXD73

+ +

BXD95 > BXD75

+ +

 

+ +

 

+ +

I will try and add a few more markers to try and clear up the last few, but this hopefully gives you an idea of the extent of the problem. It also agrees with the strains that Rob highlighted as potential outliers in his e-mail. 

+ +

 

+ +

Best,

+ +

David

+ +

 

+ +

 

+ +

David Ashbrook, PhD
+Postdoctoral Fellow

+ +

Department of Genetics, Genomics and Informatics
+Translational Science Research Building, Room 415
+University of Tennessee Health Science Center
+71 S Manassas St
+Memphis, TN, 38103

+ +

https://davidashbrook.wordpress.com/
+dashbrook@uthsc.edu

diff --git a/general/datasets/Epflmouseliverhfdrma0818/summary.rtf b/general/datasets/Epflmouseliverhfdrma0818/summary.rtf new file mode 100644 index 0000000..77c5606 --- /dev/null +++ b/general/datasets/Epflmouseliverhfdrma0818/summary.rtf @@ -0,0 +1 @@ +

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study we quantified the transcriptome, a subset of the metabolome, and using targeted proteomics, a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. We further used the integrated molecular profiles to characterize complex pathways, as illustrated with the mitochondrial unfolded protein response (UPRmt). UPRmt shows strikingly variant responses at the transcript and protein level that are remarkably conserved between C.elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.

diff --git a/general/datasets/Epflmouseliverhfdrma0818/tissue.rtf b/general/datasets/Epflmouseliverhfdrma0818/tissue.rtf new file mode 100644 index 0000000..f95e2c4 --- /dev/null +++ b/general/datasets/Epflmouseliverhfdrma0818/tissue.rtf @@ -0,0 +1 @@ +

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/Epflmouseliverrma0413/acknowledgment.rtf b/general/datasets/Epflmouseliverrma0413/acknowledgment.rtf new file mode 100644 index 0000000..3a26b41 --- /dev/null +++ b/general/datasets/Epflmouseliverrma0413/acknowledgment.rtf @@ -0,0 +1 @@ +

The authors thank A. van Cruchten and W. Smit for the serum analysis of 2-AA. The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (SNSF; 33CSCO-122661). The authors thank P. Vollenweider, G. Waeber, V. Mooser and D. Waterworth, Co-PIs of the CoLaus study. Special thanks to M. Bochud, Y. Barreau, M. Firmann, V. Mayor, A. Bastian, B. Ramic, M. Moranville, M. Baumer, M. Sagette, J. Ecoffey and S. Mermoud for data collection. YW was supported by the ERC (Proteomics v3.0; AdG-233226 to RA), and the LiverX program and EGW by a fellowship from the Fondation Romande pour la Recherche sur le Diabète. JA is the Nestlé Chair in Energy Metabolism. Research was supported by the EPFL, ETHZ, ERC (Sirtuins; AdG-231138 and Proteomics v3.0; AdG-233226), Velux Stiftung, LiverX and AgingX programs of the Swiss Initiative for Systems Biology (51RTP0-151019 and 2013/153), SNSF (31003A-140780, 31003A-143914, and CSRII3-136201), and the NIH (R01AG043930).

diff --git a/general/datasets/Epflmouseliverrma0413/cases.rtf b/general/datasets/Epflmouseliverrma0413/cases.rtf new file mode 100644 index 0000000..ed4ced8 --- /dev/null +++ b/general/datasets/Epflmouseliverrma0413/cases.rtf @@ -0,0 +1 @@ +

40 strains of the BXD family (BXD43 – BXD103) and both parental strains (C57BL/6 and DBA/2) were born and raised at the EPFL in Switzerland prior to inclusion in this study. For each strain, 10 male animals were born and then separated evenly into two cohorts at 8 weeks of age: 5 animals per strain on a chow diet (6% kcal/fat, 20% protein, 74% carbohydrate) and 5 animals per strain on high fat diet (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. Animals were fasted overnight prior to sacrifice, which occurred between 9am and 11am after isoflurane anesthesia and perfusion. The gall bladder was removed, and then the livers were immediately frozen in liquid nitrogen.

diff --git a/general/datasets/Epflmouseliverrma0413/citation.rtf b/general/datasets/Epflmouseliverrma0413/citation.rtf new file mode 100644 index 0000000..46be451 --- /dev/null +++ b/general/datasets/Epflmouseliverrma0413/citation.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, and Aebersold R, Multilayered genetics and omics dissection of mitochondrial activity in a mouse reference population. Cell, 158(6), 2014.

diff --git a/general/datasets/Epflmouseliverrma0413/contributors.rtf b/general/datasets/Epflmouseliverrma0413/contributors.rtf new file mode 100644 index 0000000..d3b16c7 --- /dev/null +++ b/general/datasets/Epflmouseliverrma0413/contributors.rtf @@ -0,0 +1 @@ +

Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, Aebersold R

diff --git a/general/datasets/Epflmouseliverrma0413/platform.rtf b/general/datasets/Epflmouseliverrma0413/platform.rtf new file mode 100644 index 0000000..4a33b7c --- /dev/null +++ b/general/datasets/Epflmouseliverrma0413/platform.rtf @@ -0,0 +1 @@ +

All 81 arrays were Affymetrix Mouse Gene 1.0 ST, run together in a single batch in March/April 2013 at the University of Tennessee Health Science Center.

diff --git a/general/datasets/Epflmouseliverrma0413/processing.rtf b/general/datasets/Epflmouseliverrma0413/processing.rtf new file mode 100644 index 0000000..8cc5d58 --- /dev/null +++ b/general/datasets/Epflmouseliverrma0413/processing.rtf @@ -0,0 +1 @@ +

In general, the array data that we put in GeneNetwork has be logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data). This removes negative values from the tables.

diff --git a/general/datasets/Epflmouseliverrma0413/summary.rtf b/general/datasets/Epflmouseliverrma0413/summary.rtf new file mode 100644 index 0000000..77c5606 --- /dev/null +++ b/general/datasets/Epflmouseliverrma0413/summary.rtf @@ -0,0 +1 @@ +

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study we quantified the transcriptome, a subset of the metabolome, and using targeted proteomics, a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. We further used the integrated molecular profiles to characterize complex pathways, as illustrated with the mitochondrial unfolded protein response (UPRmt). UPRmt shows strikingly variant responses at the transcript and protein level that are remarkably conserved between C.elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.

diff --git a/general/datasets/Epflmouseliverrma0413/tissue.rtf b/general/datasets/Epflmouseliverrma0413/tissue.rtf new file mode 100644 index 0000000..f95e2c4 --- /dev/null +++ b/general/datasets/Epflmouseliverrma0413/tissue.rtf @@ -0,0 +1 @@ +

Livers were later shattered in liquid nitrogen and ~100 mg fragments were taken at random from the left, right, or caudate lobes. To account for this discrepancy, all ~5 animals per cohort had their RNA prepared, and then were pooled evenly (by µg of RNA) into a single RNA sample for each cohort. These pooled RNA samples of approximately 30 µg RNA were then purified using RNEasy, then sent out for array analysis. All RIN values were > 8.0. 

diff --git a/general/datasets/Epflmousemusclecdrma1211/citation.rtf b/general/datasets/Epflmousemusclecdrma1211/citation.rtf new file mode 100644 index 0000000..19ca502 --- /dev/null +++ b/general/datasets/Epflmousemusclecdrma1211/citation.rtf @@ -0,0 +1,3 @@ +

Pirinen et al., Cell Metabolism 2014, Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle.

+ +
Citation: The chow diet data were first published in the paper "Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle" in June 2014. The complete dataset was published in the paper "An evolutionarily conserved role for the aryl hydrocarbon receptor in the regulation of movement" in September 2014. If you are using exclusively the chow diet data, please cite the former paper, but if you are using both diets, or if you are only using high fat data, please cite just the latter paper. The complete phenotyping data for these individuals was published in 2016 in the paper "Systems proteomics of liver mitochondria function". Note that the animals used in that 2016 paper are exactly the same ones as the September 2014 paper. Note that in addition to quadriceps transcriptome data on these individuals, liver mRNA, liver SRM proteomics (200 proteins), liver SWATH proteomics (2600 proteins), liver metabolomics, plasma metabolomics (under "Phenotypes" in GeneNetwork), brown adipose mRNA (CD only), and heart mRNA are all published and openly available here in GeneNetwork. Liver and plasma lipidomics, gastrointestinal mRNA and white adipose tissue mRNA have also been completed and are expected to be published in the future but remain under active work (January 2018 note).
diff --git a/general/datasets/Epflmousemusclecdrma1211/summary.rtf b/general/datasets/Epflmousemusclecdrma1211/summary.rtf new file mode 100644 index 0000000..e63dd95 --- /dev/null +++ b/general/datasets/Epflmousemusclecdrma1211/summary.rtf @@ -0,0 +1,10 @@ +

Highlights

+ + + +

We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show tight negative correlation between Parp-1 expression and energy expenditure in heterogeneous mouse populations, indicating that variations in PARP-1 activity have an impact on metabolic homeostasis. Notably, these genetic correlations can be translated into pharmacological applications. Long-term treatment with PARP inhibitors enhances fitness in mice by increasing the abundance of mitochondrial respiratory complexes and boosting mitochondrial respiratory capacity. Furthermore, PARP inhibitors reverse mitochondrial defects in primary myotubes of obese humans and attenuate genetic defects of mitochondrial metabolism in human fibroblasts and C. elegans. Overall, our work validates in worm, mouse, and human models that PARP inhibition may be used to treat both genetic and acquired muscle dysfunction linked to defective mitochondrial function.

diff --git a/general/datasets/Epflmousemusclecdrma1211/tissue.rtf b/general/datasets/Epflmousemusclecdrma1211/tissue.rtf new file mode 100644 index 0000000..c40574c --- /dev/null +++ b/general/datasets/Epflmousemusclecdrma1211/tissue.rtf @@ -0,0 +1,25 @@ + + + + + + +
+
The muscle datasets are all generated from quadriceps muscles. These animals were born, raised, phenotyped, and sacrificed at the EPFL in the group of Johan Auwerx. Animals were all approximately 29 weeks of age and were all male. Chow diet cohorts ("CD") were fed Harlan 2018 (6% kcal/fat, 20% protein, 74% carbohydrate). High fat diet ("HFD") cohorts were fed Harlan 06414 (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. After an overnight fasting and isoflurane anesthesia, animals were sacrificed following a blood draw and perfusion. Quadriceps were cut horizontally from the femur bone and then frozen in liquid nitrogen for an extended period. Cohorts were sacrificed in a staggered fashion, with approximately 1 cohort per week over a period of 2-3 years. mRNA was prepared for the quadriceps in two distinct batches approximately one year apart (Batch 1: late spring 2011; Batch 2: late spring 2012). Microarrays were run on the samples in two distinct batches shortly after being prepared and received.
+ +

 

+ +
Batch 1 is the following cohorts: C57HFD 100HFD 62HFD 83CD C57CD 70CD 75CD 96CD 44HFD 45CD 61HFD 73CD DBACD 45HFD 63CD 87CD 89CD 90HFD 62CD 75HFD DBAHFD 44CD 66CD 87HFD 66HFD 55HFD 55CD 70HFD 51CD 83HFD 80CD 51HFD 73HFD 96HFD 61CD 90CD 80HFD 63HFD
+ +

 

+ +
Batch 2 is the following cohorts: 49HFD 43CD 50CD 89HFD 84CD 100CD 81HFD 98HFD 103CD 68CD 79CD 99CD 71CD 48HFD 64HFD 84HFD 101CD 103HFD 60CD 79HFD 68HFD 48CD 71HFD 65CD 85HFD 99HFD 81CD 49CD 56HFD 97CD 97HFD 92CD 69CD 64CD 69HFD 56CD 65HFD 43HFD 85CD 95CD 98CD
+ +

 

+ +
For all cohorts in these datasets, roughly 2-5 animals (typically around 4) had mRNA extracted separately, and then mRNA were pooled equally for each individual in a cohort. After the mRNA were pooled for the individuals within a cohort—a cohort meaning the same diet, sex, strain, and littermate—the samples were purified using RNEasy. 
+ +

 

+ +
Once both cohorts were completed, the two batches were re-normalized together using RMAExpress and the two batches were logged and z-normalized. The mean was set to 8 units and standard deviation was set to 2 units for all samples. This removes negative values from the samples, and reduces the batch effect between the two groups. 
+
diff --git a/general/datasets/Epflmousemusclecdrmaex1112/citation.rtf b/general/datasets/Epflmousemusclecdrmaex1112/citation.rtf new file mode 100644 index 0000000..19ca502 --- /dev/null +++ b/general/datasets/Epflmousemusclecdrmaex1112/citation.rtf @@ -0,0 +1,3 @@ +

Pirinen et al., Cell Metabolism 2014, Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle.

+ +
Citation: The chow diet data were first published in the paper "Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle" in June 2014. The complete dataset was published in the paper "An evolutionarily conserved role for the aryl hydrocarbon receptor in the regulation of movement" in September 2014. If you are using exclusively the chow diet data, please cite the former paper, but if you are using both diets, or if you are only using high fat data, please cite just the latter paper. The complete phenotyping data for these individuals was published in 2016 in the paper "Systems proteomics of liver mitochondria function". Note that the animals used in that 2016 paper are exactly the same ones as the September 2014 paper. Note that in addition to quadriceps transcriptome data on these individuals, liver mRNA, liver SRM proteomics (200 proteins), liver SWATH proteomics (2600 proteins), liver metabolomics, plasma metabolomics (under "Phenotypes" in GeneNetwork), brown adipose mRNA (CD only), and heart mRNA are all published and openly available here in GeneNetwork. Liver and plasma lipidomics, gastrointestinal mRNA and white adipose tissue mRNA have also been completed and are expected to be published in the future but remain under active work (January 2018 note).
diff --git a/general/datasets/Epflmousemusclecdrmaex1112/summary.rtf b/general/datasets/Epflmousemusclecdrmaex1112/summary.rtf new file mode 100644 index 0000000..e63dd95 --- /dev/null +++ b/general/datasets/Epflmousemusclecdrmaex1112/summary.rtf @@ -0,0 +1,10 @@ +

Highlights

+ + + +

We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show tight negative correlation between Parp-1 expression and energy expenditure in heterogeneous mouse populations, indicating that variations in PARP-1 activity have an impact on metabolic homeostasis. Notably, these genetic correlations can be translated into pharmacological applications. Long-term treatment with PARP inhibitors enhances fitness in mice by increasing the abundance of mitochondrial respiratory complexes and boosting mitochondrial respiratory capacity. Furthermore, PARP inhibitors reverse mitochondrial defects in primary myotubes of obese humans and attenuate genetic defects of mitochondrial metabolism in human fibroblasts and C. elegans. Overall, our work validates in worm, mouse, and human models that PARP inhibition may be used to treat both genetic and acquired muscle dysfunction linked to defective mitochondrial function.

diff --git a/general/datasets/Epflmousemusclecdrmaex1112/tissue.rtf b/general/datasets/Epflmousemusclecdrmaex1112/tissue.rtf new file mode 100644 index 0000000..c40574c --- /dev/null +++ b/general/datasets/Epflmousemusclecdrmaex1112/tissue.rtf @@ -0,0 +1,25 @@ + + + + + + +
+
The muscle datasets are all generated from quadriceps muscles. These animals were born, raised, phenotyped, and sacrificed at the EPFL in the group of Johan Auwerx. Animals were all approximately 29 weeks of age and were all male. Chow diet cohorts ("CD") were fed Harlan 2018 (6% kcal/fat, 20% protein, 74% carbohydrate). High fat diet ("HFD") cohorts were fed Harlan 06414 (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. After an overnight fasting and isoflurane anesthesia, animals were sacrificed following a blood draw and perfusion. Quadriceps were cut horizontally from the femur bone and then frozen in liquid nitrogen for an extended period. Cohorts were sacrificed in a staggered fashion, with approximately 1 cohort per week over a period of 2-3 years. mRNA was prepared for the quadriceps in two distinct batches approximately one year apart (Batch 1: late spring 2011; Batch 2: late spring 2012). Microarrays were run on the samples in two distinct batches shortly after being prepared and received.
+ +

 

+ +
Batch 1 is the following cohorts: C57HFD 100HFD 62HFD 83CD C57CD 70CD 75CD 96CD 44HFD 45CD 61HFD 73CD DBACD 45HFD 63CD 87CD 89CD 90HFD 62CD 75HFD DBAHFD 44CD 66CD 87HFD 66HFD 55HFD 55CD 70HFD 51CD 83HFD 80CD 51HFD 73HFD 96HFD 61CD 90CD 80HFD 63HFD
+ +

 

+ +
Batch 2 is the following cohorts: 49HFD 43CD 50CD 89HFD 84CD 100CD 81HFD 98HFD 103CD 68CD 79CD 99CD 71CD 48HFD 64HFD 84HFD 101CD 103HFD 60CD 79HFD 68HFD 48CD 71HFD 65CD 85HFD 99HFD 81CD 49CD 56HFD 97CD 97HFD 92CD 69CD 64CD 69HFD 56CD 65HFD 43HFD 85CD 95CD 98CD
+ +

 

+ +
For all cohorts in these datasets, roughly 2-5 animals (typically around 4) had mRNA extracted separately, and then mRNA were pooled equally for each individual in a cohort. After the mRNA were pooled for the individuals within a cohort—a cohort meaning the same diet, sex, strain, and littermate—the samples were purified using RNEasy. 
+ +

 

+ +
Once both cohorts were completed, the two batches were re-normalized together using RMAExpress and the two batches were logged and z-normalized. The mean was set to 8 units and standard deviation was set to 2 units for all samples. This removes negative values from the samples, and reduces the batch effect between the two groups. 
+
diff --git a/general/datasets/Epflmousemusclehfdrma1211/citation.rtf b/general/datasets/Epflmousemusclehfdrma1211/citation.rtf new file mode 100644 index 0000000..19ca502 --- /dev/null +++ b/general/datasets/Epflmousemusclehfdrma1211/citation.rtf @@ -0,0 +1,3 @@ +

Pirinen et al., Cell Metabolism 2014, Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle.

+ +
Citation: The chow diet data were first published in the paper "Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle" in June 2014. The complete dataset was published in the paper "An evolutionarily conserved role for the aryl hydrocarbon receptor in the regulation of movement" in September 2014. If you are using exclusively the chow diet data, please cite the former paper, but if you are using both diets, or if you are only using high fat data, please cite just the latter paper. The complete phenotyping data for these individuals was published in 2016 in the paper "Systems proteomics of liver mitochondria function". Note that the animals used in that 2016 paper are exactly the same ones as the September 2014 paper. Note that in addition to quadriceps transcriptome data on these individuals, liver mRNA, liver SRM proteomics (200 proteins), liver SWATH proteomics (2600 proteins), liver metabolomics, plasma metabolomics (under "Phenotypes" in GeneNetwork), brown adipose mRNA (CD only), and heart mRNA are all published and openly available here in GeneNetwork. Liver and plasma lipidomics, gastrointestinal mRNA and white adipose tissue mRNA have also been completed and are expected to be published in the future but remain under active work (January 2018 note).
diff --git a/general/datasets/Epflmousemusclehfdrma1211/summary.rtf b/general/datasets/Epflmousemusclehfdrma1211/summary.rtf new file mode 100644 index 0000000..e63dd95 --- /dev/null +++ b/general/datasets/Epflmousemusclehfdrma1211/summary.rtf @@ -0,0 +1,10 @@ +

Highlights

+ + + +

We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show tight negative correlation between Parp-1 expression and energy expenditure in heterogeneous mouse populations, indicating that variations in PARP-1 activity have an impact on metabolic homeostasis. Notably, these genetic correlations can be translated into pharmacological applications. Long-term treatment with PARP inhibitors enhances fitness in mice by increasing the abundance of mitochondrial respiratory complexes and boosting mitochondrial respiratory capacity. Furthermore, PARP inhibitors reverse mitochondrial defects in primary myotubes of obese humans and attenuate genetic defects of mitochondrial metabolism in human fibroblasts and C. elegans. Overall, our work validates in worm, mouse, and human models that PARP inhibition may be used to treat both genetic and acquired muscle dysfunction linked to defective mitochondrial function.

diff --git a/general/datasets/Epflmousemusclehfdrma1211/tissue.rtf b/general/datasets/Epflmousemusclehfdrma1211/tissue.rtf new file mode 100644 index 0000000..c40574c --- /dev/null +++ b/general/datasets/Epflmousemusclehfdrma1211/tissue.rtf @@ -0,0 +1,25 @@ + + + + + + +
+
The muscle datasets are all generated from quadriceps muscles. These animals were born, raised, phenotyped, and sacrificed at the EPFL in the group of Johan Auwerx. Animals were all approximately 29 weeks of age and were all male. Chow diet cohorts ("CD") were fed Harlan 2018 (6% kcal/fat, 20% protein, 74% carbohydrate). High fat diet ("HFD") cohorts were fed Harlan 06414 (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. After an overnight fasting and isoflurane anesthesia, animals were sacrificed following a blood draw and perfusion. Quadriceps were cut horizontally from the femur bone and then frozen in liquid nitrogen for an extended period. Cohorts were sacrificed in a staggered fashion, with approximately 1 cohort per week over a period of 2-3 years. mRNA was prepared for the quadriceps in two distinct batches approximately one year apart (Batch 1: late spring 2011; Batch 2: late spring 2012). Microarrays were run on the samples in two distinct batches shortly after being prepared and received.
+ +

 

+ +
Batch 1 is the following cohorts: C57HFD 100HFD 62HFD 83CD C57CD 70CD 75CD 96CD 44HFD 45CD 61HFD 73CD DBACD 45HFD 63CD 87CD 89CD 90HFD 62CD 75HFD DBAHFD 44CD 66CD 87HFD 66HFD 55HFD 55CD 70HFD 51CD 83HFD 80CD 51HFD 73HFD 96HFD 61CD 90CD 80HFD 63HFD
+ +

 

+ +
Batch 2 is the following cohorts: 49HFD 43CD 50CD 89HFD 84CD 100CD 81HFD 98HFD 103CD 68CD 79CD 99CD 71CD 48HFD 64HFD 84HFD 101CD 103HFD 60CD 79HFD 68HFD 48CD 71HFD 65CD 85HFD 99HFD 81CD 49CD 56HFD 97CD 97HFD 92CD 69CD 64CD 69HFD 56CD 65HFD 43HFD 85CD 95CD 98CD
+ +

 

+ +
For all cohorts in these datasets, roughly 2-5 animals (typically around 4) had mRNA extracted separately, and then mRNA were pooled equally for each individual in a cohort. After the mRNA were pooled for the individuals within a cohort—a cohort meaning the same diet, sex, strain, and littermate—the samples were purified using RNEasy. 
+ +

 

+ +
Once both cohorts were completed, the two batches were re-normalized together using RMAExpress and the two batches were logged and z-normalized. The mean was set to 8 units and standard deviation was set to 2 units for all samples. This removes negative values from the samples, and reduces the batch effect between the two groups. 
+
diff --git a/general/datasets/Epflmousemusclehfdrmaex1112/citation.rtf b/general/datasets/Epflmousemusclehfdrmaex1112/citation.rtf new file mode 100644 index 0000000..19ca502 --- /dev/null +++ b/general/datasets/Epflmousemusclehfdrmaex1112/citation.rtf @@ -0,0 +1,3 @@ +

Pirinen et al., Cell Metabolism 2014, Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle.

+ +
Citation: The chow diet data were first published in the paper "Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle" in June 2014. The complete dataset was published in the paper "An evolutionarily conserved role for the aryl hydrocarbon receptor in the regulation of movement" in September 2014. If you are using exclusively the chow diet data, please cite the former paper, but if you are using both diets, or if you are only using high fat data, please cite just the latter paper. The complete phenotyping data for these individuals was published in 2016 in the paper "Systems proteomics of liver mitochondria function". Note that the animals used in that 2016 paper are exactly the same ones as the September 2014 paper. Note that in addition to quadriceps transcriptome data on these individuals, liver mRNA, liver SRM proteomics (200 proteins), liver SWATH proteomics (2600 proteins), liver metabolomics, plasma metabolomics (under "Phenotypes" in GeneNetwork), brown adipose mRNA (CD only), and heart mRNA are all published and openly available here in GeneNetwork. Liver and plasma lipidomics, gastrointestinal mRNA and white adipose tissue mRNA have also been completed and are expected to be published in the future but remain under active work (January 2018 note).
diff --git a/general/datasets/Epflmousemusclehfdrmaex1112/summary.rtf b/general/datasets/Epflmousemusclehfdrmaex1112/summary.rtf new file mode 100644 index 0000000..e63dd95 --- /dev/null +++ b/general/datasets/Epflmousemusclehfdrmaex1112/summary.rtf @@ -0,0 +1,10 @@ +

Highlights

+ + + +

We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show tight negative correlation between Parp-1 expression and energy expenditure in heterogeneous mouse populations, indicating that variations in PARP-1 activity have an impact on metabolic homeostasis. Notably, these genetic correlations can be translated into pharmacological applications. Long-term treatment with PARP inhibitors enhances fitness in mice by increasing the abundance of mitochondrial respiratory complexes and boosting mitochondrial respiratory capacity. Furthermore, PARP inhibitors reverse mitochondrial defects in primary myotubes of obese humans and attenuate genetic defects of mitochondrial metabolism in human fibroblasts and C. elegans. Overall, our work validates in worm, mouse, and human models that PARP inhibition may be used to treat both genetic and acquired muscle dysfunction linked to defective mitochondrial function.

diff --git a/general/datasets/Epflmousemusclehfdrmaex1112/tissue.rtf b/general/datasets/Epflmousemusclehfdrmaex1112/tissue.rtf new file mode 100644 index 0000000..c40574c --- /dev/null +++ b/general/datasets/Epflmousemusclehfdrmaex1112/tissue.rtf @@ -0,0 +1,25 @@ + + + + + + +
+
The muscle datasets are all generated from quadriceps muscles. These animals were born, raised, phenotyped, and sacrificed at the EPFL in the group of Johan Auwerx. Animals were all approximately 29 weeks of age and were all male. Chow diet cohorts ("CD") were fed Harlan 2018 (6% kcal/fat, 20% protein, 74% carbohydrate). High fat diet ("HFD") cohorts were fed Harlan 06414 (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. After an overnight fasting and isoflurane anesthesia, animals were sacrificed following a blood draw and perfusion. Quadriceps were cut horizontally from the femur bone and then frozen in liquid nitrogen for an extended period. Cohorts were sacrificed in a staggered fashion, with approximately 1 cohort per week over a period of 2-3 years. mRNA was prepared for the quadriceps in two distinct batches approximately one year apart (Batch 1: late spring 2011; Batch 2: late spring 2012). Microarrays were run on the samples in two distinct batches shortly after being prepared and received.
+ +

 

+ +
Batch 1 is the following cohorts: C57HFD 100HFD 62HFD 83CD C57CD 70CD 75CD 96CD 44HFD 45CD 61HFD 73CD DBACD 45HFD 63CD 87CD 89CD 90HFD 62CD 75HFD DBAHFD 44CD 66CD 87HFD 66HFD 55HFD 55CD 70HFD 51CD 83HFD 80CD 51HFD 73HFD 96HFD 61CD 90CD 80HFD 63HFD
+ +

 

+ +
Batch 2 is the following cohorts: 49HFD 43CD 50CD 89HFD 84CD 100CD 81HFD 98HFD 103CD 68CD 79CD 99CD 71CD 48HFD 64HFD 84HFD 101CD 103HFD 60CD 79HFD 68HFD 48CD 71HFD 65CD 85HFD 99HFD 81CD 49CD 56HFD 97CD 97HFD 92CD 69CD 64CD 69HFD 56CD 65HFD 43HFD 85CD 95CD 98CD
+ +

 

+ +
For all cohorts in these datasets, roughly 2-5 animals (typically around 4) had mRNA extracted separately, and then mRNA were pooled equally for each individual in a cohort. After the mRNA were pooled for the individuals within a cohort—a cohort meaning the same diet, sex, strain, and littermate—the samples were purified using RNEasy. 
+ +

 

+ +
Once both cohorts were completed, the two batches were re-normalized together using RMAExpress and the two batches were logged and z-normalized. The mean was set to 8 units and standard deviation was set to 2 units for all samples. This removes negative values from the samples, and reduces the batch effect between the two groups. 
+
diff --git a/general/datasets/Epflmousemusclerma1211/citation.rtf b/general/datasets/Epflmousemusclerma1211/citation.rtf new file mode 100644 index 0000000..19ca502 --- /dev/null +++ b/general/datasets/Epflmousemusclerma1211/citation.rtf @@ -0,0 +1,3 @@ +

Pirinen et al., Cell Metabolism 2014, Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle.

+ +
Citation: The chow diet data were first published in the paper "Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle" in June 2014. The complete dataset was published in the paper "An evolutionarily conserved role for the aryl hydrocarbon receptor in the regulation of movement" in September 2014. If you are using exclusively the chow diet data, please cite the former paper, but if you are using both diets, or if you are only using high fat data, please cite just the latter paper. The complete phenotyping data for these individuals was published in 2016 in the paper "Systems proteomics of liver mitochondria function". Note that the animals used in that 2016 paper are exactly the same ones as the September 2014 paper. Note that in addition to quadriceps transcriptome data on these individuals, liver mRNA, liver SRM proteomics (200 proteins), liver SWATH proteomics (2600 proteins), liver metabolomics, plasma metabolomics (under "Phenotypes" in GeneNetwork), brown adipose mRNA (CD only), and heart mRNA are all published and openly available here in GeneNetwork. Liver and plasma lipidomics, gastrointestinal mRNA and white adipose tissue mRNA have also been completed and are expected to be published in the future but remain under active work (January 2018 note).
diff --git a/general/datasets/Epflmousemusclerma1211/summary.rtf b/general/datasets/Epflmousemusclerma1211/summary.rtf new file mode 100644 index 0000000..e63dd95 --- /dev/null +++ b/general/datasets/Epflmousemusclerma1211/summary.rtf @@ -0,0 +1,10 @@ +

Highlights

+ + + +

We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show tight negative correlation between Parp-1 expression and energy expenditure in heterogeneous mouse populations, indicating that variations in PARP-1 activity have an impact on metabolic homeostasis. Notably, these genetic correlations can be translated into pharmacological applications. Long-term treatment with PARP inhibitors enhances fitness in mice by increasing the abundance of mitochondrial respiratory complexes and boosting mitochondrial respiratory capacity. Furthermore, PARP inhibitors reverse mitochondrial defects in primary myotubes of obese humans and attenuate genetic defects of mitochondrial metabolism in human fibroblasts and C. elegans. Overall, our work validates in worm, mouse, and human models that PARP inhibition may be used to treat both genetic and acquired muscle dysfunction linked to defective mitochondrial function.

diff --git a/general/datasets/Epflmousemusclerma1211/tissue.rtf b/general/datasets/Epflmousemusclerma1211/tissue.rtf new file mode 100644 index 0000000..c40574c --- /dev/null +++ b/general/datasets/Epflmousemusclerma1211/tissue.rtf @@ -0,0 +1,25 @@ + + + + + + +
+
The muscle datasets are all generated from quadriceps muscles. These animals were born, raised, phenotyped, and sacrificed at the EPFL in the group of Johan Auwerx. Animals were all approximately 29 weeks of age and were all male. Chow diet cohorts ("CD") were fed Harlan 2018 (6% kcal/fat, 20% protein, 74% carbohydrate). High fat diet ("HFD") cohorts were fed Harlan 06414 (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. After an overnight fasting and isoflurane anesthesia, animals were sacrificed following a blood draw and perfusion. Quadriceps were cut horizontally from the femur bone and then frozen in liquid nitrogen for an extended period. Cohorts were sacrificed in a staggered fashion, with approximately 1 cohort per week over a period of 2-3 years. mRNA was prepared for the quadriceps in two distinct batches approximately one year apart (Batch 1: late spring 2011; Batch 2: late spring 2012). Microarrays were run on the samples in two distinct batches shortly after being prepared and received.
+ +

 

+ +
Batch 1 is the following cohorts: C57HFD 100HFD 62HFD 83CD C57CD 70CD 75CD 96CD 44HFD 45CD 61HFD 73CD DBACD 45HFD 63CD 87CD 89CD 90HFD 62CD 75HFD DBAHFD 44CD 66CD 87HFD 66HFD 55HFD 55CD 70HFD 51CD 83HFD 80CD 51HFD 73HFD 96HFD 61CD 90CD 80HFD 63HFD
+ +

 

+ +
Batch 2 is the following cohorts: 49HFD 43CD 50CD 89HFD 84CD 100CD 81HFD 98HFD 103CD 68CD 79CD 99CD 71CD 48HFD 64HFD 84HFD 101CD 103HFD 60CD 79HFD 68HFD 48CD 71HFD 65CD 85HFD 99HFD 81CD 49CD 56HFD 97CD 97HFD 92CD 69CD 64CD 69HFD 56CD 65HFD 43HFD 85CD 95CD 98CD
+ +

 

+ +
For all cohorts in these datasets, roughly 2-5 animals (typically around 4) had mRNA extracted separately, and then mRNA were pooled equally for each individual in a cohort. After the mRNA were pooled for the individuals within a cohort—a cohort meaning the same diet, sex, strain, and littermate—the samples were purified using RNEasy. 
+ +

 

+ +
Once both cohorts were completed, the two batches were re-normalized together using RMAExpress and the two batches were logged and z-normalized. The mean was set to 8 units and standard deviation was set to 2 units for all samples. This removes negative values from the samples, and reduces the batch effect between the two groups. 
+
diff --git a/general/datasets/Epflmousemusclerma_ex1112/citation.rtf b/general/datasets/Epflmousemusclerma_ex1112/citation.rtf new file mode 100644 index 0000000..19ca502 --- /dev/null +++ b/general/datasets/Epflmousemusclerma_ex1112/citation.rtf @@ -0,0 +1,3 @@ +

Pirinen et al., Cell Metabolism 2014, Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle.

+ +
Citation: The chow diet data were first published in the paper "Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle" in June 2014. The complete dataset was published in the paper "An evolutionarily conserved role for the aryl hydrocarbon receptor in the regulation of movement" in September 2014. If you are using exclusively the chow diet data, please cite the former paper, but if you are using both diets, or if you are only using high fat data, please cite just the latter paper. The complete phenotyping data for these individuals was published in 2016 in the paper "Systems proteomics of liver mitochondria function". Note that the animals used in that 2016 paper are exactly the same ones as the September 2014 paper. Note that in addition to quadriceps transcriptome data on these individuals, liver mRNA, liver SRM proteomics (200 proteins), liver SWATH proteomics (2600 proteins), liver metabolomics, plasma metabolomics (under "Phenotypes" in GeneNetwork), brown adipose mRNA (CD only), and heart mRNA are all published and openly available here in GeneNetwork. Liver and plasma lipidomics, gastrointestinal mRNA and white adipose tissue mRNA have also been completed and are expected to be published in the future but remain under active work (January 2018 note).
diff --git a/general/datasets/Epflmousemusclerma_ex1112/summary.rtf b/general/datasets/Epflmousemusclerma_ex1112/summary.rtf new file mode 100644 index 0000000..e63dd95 --- /dev/null +++ b/general/datasets/Epflmousemusclerma_ex1112/summary.rtf @@ -0,0 +1,10 @@ +

Highlights

+ + + +

We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show tight negative correlation between Parp-1 expression and energy expenditure in heterogeneous mouse populations, indicating that variations in PARP-1 activity have an impact on metabolic homeostasis. Notably, these genetic correlations can be translated into pharmacological applications. Long-term treatment with PARP inhibitors enhances fitness in mice by increasing the abundance of mitochondrial respiratory complexes and boosting mitochondrial respiratory capacity. Furthermore, PARP inhibitors reverse mitochondrial defects in primary myotubes of obese humans and attenuate genetic defects of mitochondrial metabolism in human fibroblasts and C. elegans. Overall, our work validates in worm, mouse, and human models that PARP inhibition may be used to treat both genetic and acquired muscle dysfunction linked to defective mitochondrial function.

diff --git a/general/datasets/Epflmousemusclerma_ex1112/tissue.rtf b/general/datasets/Epflmousemusclerma_ex1112/tissue.rtf new file mode 100644 index 0000000..c40574c --- /dev/null +++ b/general/datasets/Epflmousemusclerma_ex1112/tissue.rtf @@ -0,0 +1,25 @@ + + + + + + +
+
The muscle datasets are all generated from quadriceps muscles. These animals were born, raised, phenotyped, and sacrificed at the EPFL in the group of Johan Auwerx. Animals were all approximately 29 weeks of age and were all male. Chow diet cohorts ("CD") were fed Harlan 2018 (6% kcal/fat, 20% protein, 74% carbohydrate). High fat diet ("HFD") cohorts were fed Harlan 06414 (60% kcal/fat, 20% protein, 20% carbohydrate). Animals adjusted to the diet for 8 weeks, and then an intensive phenotyping metabolic phenotyping protocol was followed from 16 to 24 weeks of age (respiration, cold tolerance, oral glucose response, VO2max exercise, voluntary exercise, basal activity). Animals were communally housed until the last 5 weeks of the experiment, when the animals could rest. After an overnight fasting and isoflurane anesthesia, animals were sacrificed following a blood draw and perfusion. Quadriceps were cut horizontally from the femur bone and then frozen in liquid nitrogen for an extended period. Cohorts were sacrificed in a staggered fashion, with approximately 1 cohort per week over a period of 2-3 years. mRNA was prepared for the quadriceps in two distinct batches approximately one year apart (Batch 1: late spring 2011; Batch 2: late spring 2012). Microarrays were run on the samples in two distinct batches shortly after being prepared and received.
+ +

 

+ +
Batch 1 is the following cohorts: C57HFD 100HFD 62HFD 83CD C57CD 70CD 75CD 96CD 44HFD 45CD 61HFD 73CD DBACD 45HFD 63CD 87CD 89CD 90HFD 62CD 75HFD DBAHFD 44CD 66CD 87HFD 66HFD 55HFD 55CD 70HFD 51CD 83HFD 80CD 51HFD 73HFD 96HFD 61CD 90CD 80HFD 63HFD
+ +

 

+ +
Batch 2 is the following cohorts: 49HFD 43CD 50CD 89HFD 84CD 100CD 81HFD 98HFD 103CD 68CD 79CD 99CD 71CD 48HFD 64HFD 84HFD 101CD 103HFD 60CD 79HFD 68HFD 48CD 71HFD 65CD 85HFD 99HFD 81CD 49CD 56HFD 97CD 97HFD 92CD 69CD 64CD 69HFD 56CD 65HFD 43HFD 85CD 95CD 98CD
+ +

 

+ +
For all cohorts in these datasets, roughly 2-5 animals (typically around 4) had mRNA extracted separately, and then mRNA were pooled equally for each individual in a cohort. After the mRNA were pooled for the individuals within a cohort—a cohort meaning the same diet, sex, strain, and littermate—the samples were purified using RNEasy. 
+ +

 

+ +
Once both cohorts were completed, the two batches were re-normalized together using RMAExpress and the two batches were logged and z-normalized. The mean was set to 8 units and standard deviation was set to 2 units for all samples. This removes negative values from the samples, and reduces the batch effect between the two groups. 
+
diff --git a/general/datasets/Eye_axbxa_1008_rankinv/acknowledgment.rtf b/general/datasets/Eye_axbxa_1008_rankinv/acknowledgment.rtf new file mode 100644 index 0000000..5cbb536 --- /dev/null +++ b/general/datasets/Eye_axbxa_1008_rankinv/acknowledgment.rtf @@ -0,0 +1,11 @@ +
+

All array data were generated with funds from Dr. Benjamin Reese to RW Williams and Lu Lu as part of NIH NEI grant EY011087 (Dispersion Patterns for Retinal Neuroblasts). Arrays were scanned in the UTHSC NEI Vision Core with support from P30 EY013080. Some informatics support, including annotation of the array, was provided by NIDA and NIAAA grants to RWW and LL (NIH U01AA13499, U24AA13513 Lu Lu, PI).

+
+ +

    About this text file:

+ +
+

Data uploaded by Arthur Centeno, Oct 1, 2008. This text file originally generated by RWW on Oct 10, 2008. Updated by RWW, May 11, 2009, May 26, 2009.

+ +

 

+
diff --git a/general/datasets/Eye_axbxa_1008_rankinv/cases.rtf b/general/datasets/Eye_axbxa_1008_rankinv/cases.rtf new file mode 100644 index 0000000..864f3b6 --- /dev/null +++ b/general/datasets/Eye_axbxa_1008_rankinv/cases.rtf @@ -0,0 +1 @@ +

The AXB/BXA genetic reference panel of recombinant inbred strains consists of just about 26 fully independent strains. All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

diff --git a/general/datasets/Eye_axbxa_1008_rankinv/citation.rtf b/general/datasets/Eye_axbxa_1008_rankinv/citation.rtf new file mode 100644 index 0000000..3977075 --- /dev/null +++ b/general/datasets/Eye_axbxa_1008_rankinv/citation.rtf @@ -0,0 +1,9 @@ +

A QTL on chromosome 10 modulates cone photoreceptor number in the mouse retina.

+ +

Whitney IE, Raven MA, Lu L, Williams RW, Reese BE.
+Invest Ophthalmol Vis Sci. 2011 May 16;52(6):3228-36. 

+ +

Pituitary tumor-transforming gene 1 regulates the patterning of retinal mosaics.

+ +

Keeley PW, Zhou C, Lu L, Williams RW, Melmed S, Reese BE.
+Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9295-300.

diff --git a/general/datasets/Eye_axbxa_1008_rankinv/platform.rtf b/general/datasets/Eye_axbxa_1008_rankinv/platform.rtf new file mode 100644 index 0000000..23268bc --- /dev/null +++ b/general/datasets/Eye_axbxa_1008_rankinv/platform.rtf @@ -0,0 +1,7 @@ +
+

Illumina Sentrix MouseWG-6 v2 BeadChip: This array consists of 45,281 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology.

+ +

ANNOTATION: In the summer of 2008, Xusheng Wang and Robert W. Williams reannotated all three Illumina Mouse 6 BeadChips, including the array used to process the AXB/BXA eye samples. This new annotation is now incorporated into GeneNetwork. The annotation file can be accessed at http://www.genenetwork.org/share/annotations/, by selecting "Illumina Mouse WG-6 v2.0 (GPL6887)".

+ +

Position data for the 50-mer Illumina probe sequences were aligned to the mm8 mouse genome build by Xusheng Wang as part of his master annotation of all Illumina mouse arrays. Manual annotation of this array was usually done by RW Williams.

+
diff --git a/general/datasets/Eye_axbxa_1008_rankinv/processing.rtf b/general/datasets/Eye_axbxa_1008_rankinv/processing.rtf new file mode 100644 index 0000000..7d79970 --- /dev/null +++ b/general/datasets/Eye_axbxa_1008_rankinv/processing.rtf @@ -0,0 +1,5 @@ +
+

Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between August 2008 and September 2008. All processing steps were performed by Dr. David Li. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (approximately 10% failed and new RNA samples had to be acquired and processed) were immediately used on BeadChips. The slides were hybridized and washed following standard Illumina protocols.

+ +

Replication and Sample Balance: We obtained a male sample pool and female sample pool from 25 of the 28 strains. Three strains are represented by samples from a single sex.

+
diff --git a/general/datasets/Eye_axbxa_1008_rankinv/specifics.rtf b/general/datasets/Eye_axbxa_1008_rankinv/specifics.rtf new file mode 100644 index 0000000..0cf2818 --- /dev/null +++ b/general/datasets/Eye_axbxa_1008_rankinv/specifics.rtf @@ -0,0 +1 @@ +AXB/BXA \ No newline at end of file diff --git a/general/datasets/Eye_axbxa_1008_rankinv/summary.rtf b/general/datasets/Eye_axbxa_1008_rankinv/summary.rtf new file mode 100644 index 0000000..0bf1369 --- /dev/null +++ b/general/datasets/Eye_axbxa_1008_rankinv/summary.rtf @@ -0,0 +1,769 @@ +
+

FINAL RECOMMENDED AXB/BXA EYE DATA SET. The Eye AXBXA Illumina Illumina V6.2 (Oct08) data set provides estimates of mRNA expression for whole eyes of 28 strains of mice, including 26 AXB/BXA recombinant inbred strains, and two parental strains, A/J and C57BL/6J. All eye samples were obtained from normal adult control animals raised in a standard laboratory environment at the Jackson Laboratory. We used the Illumina Sentrix MouseWG-6 v2 BeadChip (despite the nomenclature, this is actually the third version of the Illumina Mouse-6 platform).

+ +

Users of these mouse eye data may also find the following complementary resources extremely useful:

+ +
    +
  1. NEIBank collection of ESTs and SAGE data
  2. +
  3. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases
  4. +
  5. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.
  6. +
  7. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.
  8. +
+
+ +

    About the cases used to generate this set of data:

+ +
+

 

+ +

A total of 54 pooled whole eye samples were processed using approximately 10 Illumina Sentrix Mouse WG-6 v2 oligomer BeadChip slides. All 10 slides and a total of 54 samples passed stringent quality control and error checking. This particular data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed. Variance of each array was stabilized to 4 units (SD of 2 units) and recentered to a mean of 8. values range from a low of 6.3 (e.g., ILMN_1225143, no expression) to a high of about 19.7 for ILMN_2772482 (Crygd, extremely highly expressed). Data were entered by Arthur Centeno, Hongqiang Li, Robert W. Williams, and Lu Lu, October 1, 2008.

+ +

As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10. In this data set, 255 probes have LRS values >46 (LOD >10). The maximum LOD score achieved in this data set is 27.7 for Zfp330 (LRS of 127.9 using ILMN_2825109).

+ +

The probe ILMN_2475156 can be used to check sex assignment. With three exceptions, all 28 strains are represented by one male sample and one female sample. The three exceptions are are follows: both AXB13/14 cases are males, BXA25 is represented by a single male sample or a mixed sex sample, and BXA11 is represented by a single female sample.

+ +

+ +

Legend: Bar chart of the expression of Xist probe ILMN_2475156 in the AXB/BXA eye data set. This probe is used to check sex. Strains represented by equal numbers of male and female arrays (usually one of each) should have intermediate values and a high error term. Strains represented only by males will have very low values (for example, AXB13/14 is represented by only one male) and strains represented by only females will have very high expression (for example, BXA11 is represented by only one female).

+ +

    About the animals and tissue used to generate this set of data:

+ +
+

AXB/BXA animals were obtained directly from The Jackson Laboratory. Animals were housed at UTHSC before sacrifice. Mice were killed by cervical dislocation and eyes and brains were removed and placed in RNAlater.

+ +

Animals used in this study were between 51 and 90 days of age (see Table 1 below). All animals were sacrifice between 9 AM and 5 PM during the light phase.

+
+ +

Experimental Design and Batch Structure: This data set consists arrays processed September 2008 and all arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute in September 2008. Details on sample assignment to slides and batches is provide in the table below.

+
+ +

    Data Table 1:

+ +
+
+

This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, number of animals in each sample pool (pool size), slide ID, slide position (A through F), batch by slide number (1 or 2), and Source of animals.

+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexTube IDStrainAgeSexPool sizeSlide IdSlide PositionBatch IdSource
1R4893E1A/J59F04252491010A1JAX
2R4982E1A/J79M24252491006A1JAX
3R4894E1A/J59M04252491011A1JAX
4R3655E1A/J86M04252491031A2JAX
5R4897E1AXB190F04252491005C1JAX
6R5005E1AXB156M04252491008A1JAX
7R5001E1AXB1063F24252491008B1JAX
8R5002E1AXB1063M24252491021B1JAX
9R4891E1AXB1263F04252491009A1JAX
10R4999E1AXB1257M24252491005D1JAX
11R5000E1AXB1357M24252491008C1JAX
12R5003E1AXB1563F24252491005E1JAX
13R4963E1AXB1563M24252491031B1JAX
14R3661E1AXB1989F04252491008D1JAX
15R4962E1AXB1962M04252491005F1JAX
16R4975E1AXB279F24252491006C1JAX
17R4976E1AXB279M24252491021C1JAX
18R4973E1AXB2366F24252491009E1JAX
19R4972E1AXB2366M24252491006D1JAX
20R4959E1AXB24100F24252491006E1JAX
21R4960E1AXB24100M24252491019A1JAX
22R4994E1AXB454F24252491031C1JAX
23R5007E1AXB454M24252491006F1JAX
24R4995E1AXB561F24252491021F1JAX
25R4996E1AXB561M24252491009F1JAX
26R4997E1AXB660F24252491010C1JAX
27R4998E1AXB660M24252491021D1JAX
28R4958E1AXB852F24252491019D1JAX
29R4957E1AXB852M24252491010D1JAX
30R4991E1BXA154F24252491010E1JAX
31R4990E1BXA154M24252491009B1JAX
32R4980E1BXA1152F04252491020A1JAX
33R5006E1BXA1248F24252491011C2JAX
34R4993E1BXA1248M24252491031D1JAX
35R4968E1BXA1361F24252491011D1JAX
36R4969E1BXA1361M24252491008E1JAX
37R4966E1BXA1456F24252491031E1JAX
38R4967E1BXA1456M24252491011E1JAX
39R4970E1BXA1651F24252491011F1JAX
40R5004E1BXA1651M24252491031F1JAX
41R4981E1BXA250F24252491008F1JAX
42R4965E1BXA254M04252491020B1JAX
43R4984E1BXA2454F24252491021E1JAX
44R4974E1BXA2454M24252491019C1JAX
45R4988E1BXA2570M04252491020F1JAX
46R4964E1BXA2654F04252491019B1JAX
47R3636E1BXA2687M04252491009D1JAX
48R4977E1BXA465F04252491020C1JAX
49R3638E1BXA487M04252491019E1JAX
50R4978E1BXA765F24252491019F1JAX
51R4979E1BXA765M24252491021A1JAX
52R5008E1BXA852F24252491020E1JAX
53R4983E1BXA852M24252491020D1JAX
54R5012E1C57BL/6J87F24252491006B1UTHSC RW
55R5010E1C57BL/6J87F24252491011B1UTHSC RW
56R5011E1C57BL/6J79M24252491005B1UTHSC RW
57R5009E1C57BL/6J79M24252491010B1UTHSC RW
+ +

    Downloading all data:

+ +
+

All data links (right-most column above) will be made active as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact RW Williams if you have any questions on the use of these open data.

+
+ +

    About data processing:

+ +
+

This data set uses the standard Rank Invariant method developed by Illumina and described in their BeadStation Studio documentation.

+
+
+
+
+
diff --git a/general/datasets/Eye_m2_0406_m/acknowledgment.rtf b/general/datasets/Eye_m2_0406_m/acknowledgment.rtf new file mode 100644 index 0000000..3f040d2 --- /dev/null +++ b/general/datasets/Eye_m2_0406_m/acknowledgment.rtf @@ -0,0 +1 @@ +
Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant. All arrays were processed at the VA Medical Center, Memphis by Weikuan Gu.
diff --git a/general/datasets/Eye_m2_0406_m/cases.rtf b/general/datasets/Eye_m2_0406_m/cases.rtf new file mode 100644 index 0000000..5cb5539 --- /dev/null +++ b/general/datasets/Eye_m2_0406_m/cases.rtf @@ -0,0 +1,50 @@ +

We used a set of 55 BXD recombinant inbred strains, 14 conventional inbred strains including C57BL/6J (B6) and DBA/2J (D2), and their reciprocal F1s. BXD strains were generated by crossing C57BL/6J with DBA/2J. The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D2). Physical maps in WebQTL incorporate approximately 2 million B6 vs D2 SNPs from Celera Genomics and from the Perlegen-NIEHS sequencing effort. BXD1 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

+ +

Please note that BXD24/TyJ (JAX stock number 000031) used in this study is also known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 stock that has now been rederived, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control.

+ +

BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues.

+ +

Mouse Diversity Panel (MDP). In addition to the BXD strains, we have profiled a MDP consisting 14 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons:

+ + + +

All eight parents of the Collaborative Cross (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/LtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ) have been included in the MDP. Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS.

+ +
    +
  1. 129S1/SvImJ
    +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) also carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene.
  2. +
  3. A/J
    +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase-negative albino (c) mutant
  4. +
  5. BALB/cByJ
    +      Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list. A tyrosinase-negative albino (c) mutant
  6. +
  7. C3H/HeJ
    +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list. Important to note for this Eye dataset, C3H/HeJ is a Pdeb6 mutant with near total photoreceptor loss at maturity.
  8. +
  9. C57BL/6J
    +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
  10. +
  11. CAST/Ei
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
  12. +
  13. DBA/2J
    +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
  14. +
  15. KK/HlJ
    +     Sequenced by Perlegen/NIEHS
  16. +
  17. LG/J
    +     Paternal parent of the LGXSM panel
  18. +
  19. NOD/LtJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
  20. +
  21. NZO/HlLtJ
    +     Collaborative Cross strain
  22. +
  23. PWD/PhJ
    +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
  24. +
  25. PWK/PhJ
    +     Collaborative Cross strain; Phenome Project D list
  26. +
  27. WSB/EiJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
  28. +
  29. B6D2F1 and D2B6F1, aka F1 in some graphs and tables
    + F1 hybrids generated by crossing C57BL/6J with DBA/2J. These reciprocal F1 can be used to detect some imprinted genes.
  30. +
diff --git a/general/datasets/Eye_m2_0406_m/notes.rtf b/general/datasets/Eye_m2_0406_m/notes.rtf new file mode 100644 index 0000000..39475ab --- /dev/null +++ b/general/datasets/Eye_m2_0406_m/notes.rtf @@ -0,0 +1,18 @@ +

This study includes the following datasets:

+ + + +

This text file originally generated by RWW, May 26, 2006. Updated by RWW, May 27, 2006.

diff --git a/general/datasets/Eye_m2_0406_m/platform.rtf b/general/datasets/Eye_m2_0406_m/platform.rtf new file mode 100644 index 0000000..ac743ee --- /dev/null +++ b/general/datasets/Eye_m2_0406_m/platform.rtf @@ -0,0 +1,3 @@ +
+

Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequences as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

+
diff --git a/general/datasets/Eye_m2_0406_m/processing.rtf b/general/datasets/Eye_m2_0406_m/processing.rtf new file mode 100644 index 0000000..d23bc47 --- /dev/null +++ b/general/datasets/Eye_m2_0406_m/processing.rtf @@ -0,0 +1,20 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. The CEL files were processed using the RMA protocol. We processed the two batches together in RMA. + + +

After RMA processing all arrays were rank-order normalized. This second round of quantile normalization removes much residual non-linearity across arrays and forces every array to have the same distribution of values as the mean of all arrays. Comparative array data quality was then evaluated in DataDesk. Outlier arrays were flagged by visual inspection in DataDesk, usually by means of an analysis of scatter plots and more quantitatively by generating a correlation matrix of all arrays. Those arrays with mean correlation <0.96 versus all other arrays indicates trouble or a biological outlier). In some cases, outliers were expected, such as samples from strains with retinal degeneration (C3H/HeJ and BXD24) and samples from wild subspecies such as CAST/Ei, PWD/Ph, and PWK/Ph. However, when arrays were anomolous both within strain and across strains, they were often simply discarded. We tended to keep arrays that "conformed" to the expectation. The assumption in these cases is that anomolous data are much more likely due to experimental problem and errors than to informative biological variation. Approximately 8 arrays total were discarded in batches 1 and 2 combined.

+ +

After this process, the acceptable set of arrays was renormalized using all step as above, starting with the original RMA procedure, etc.

+ +

We then categorized arrays into XXX major "technical groups" depending on expression patterns as noted in scatterplots. This process of defining technical groups was done in DataDesk by manually "typing" arrays. These technical groups are apparently due to subtle within-batch effect that we do not yet understand and that cannot be corrected by quantile normalization. These XXX major technical groups are not obviously related to strain, sex, age, or any other known biological effect or variable. They are also not obviously related to any of the Affymetrix QC data types (3'/5' ratios, gain, etc.). Once the technical groups were defined, we forced the means of each probe set in the XX technical groups to the same value. This simple process partially removes a technical error of unknown origin in large expression array data sets.

+ +

We reviewed the final data set using a new method developed by RW Williams, Jeremy Peirce, and Hongqiang Li. For the full set of 140 arrays that passed standard QC protocols described above, we computed the strain means for the BXD strains, B6, D2, and F1s. Using this set of strain means we then computed LRS scores for all 45101 probe sets and counted the number of transcripts that generated QTLs with LRS values greater than 50. This value (e.g. 1000) represented the QTL harvest for the full data set. We then dropped a single array from the data set (n = 139 arrays), recomputed strain means, and recomputed the number of transcripts with LRS scores great than 50. This value is expected to typically reduce the number of QTLs that reach the criterion level (e.g., 950 QTLs > 50). This process was repeated for every array to obtain an array-specific difference value--the effect of removing that array on the total QTL count. For example, the loss of a single array might cause a decrease in 50 QTLs (1000-950). Values ranged from -90 (good0 to +38 (bad). This procedure is similar in some ways to a jackknife protocol, although we are not using this procedure to esimate an error term, but rather as a final method to polish a data set. By applying this procedure we discovered that a set of XX (7?) arrays could be excluded while simultaneously improving the total number of QTLs with values above 50.

+ +

During this final process we discovered that nearly XX arrays in the second batch had been mislabeled at some point in processing. We computed the correct strain membership of each array using a large number of Mendelian probe sets (more than 50) and comparing their match to standard SNP and microsatellite markers and the original array data set of November 2005. This allowed us to rescue a large number of arrays that were of very high quality.

+
diff --git a/general/datasets/Eye_m2_0406_m/summary.rtf b/general/datasets/Eye_m2_0406_m/summary.rtf new file mode 100644 index 0000000..68a4484 --- /dev/null +++ b/general/datasets/Eye_m2_0406_m/summary.rtf @@ -0,0 +1,3 @@ +
+

SUPERCEDED EYE DATA SET. The HEIMED April 2006 data set provides estimates of mRNA expression in whole eyes of 71 lines of young adult mice generated using 132 Affymetrix M430 2.0 arrays. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). We used pooled RNA samples, usually two independent pools; one male, one female, for each straion. This data set was processed using the RMA protocol. To simplify comparison among different transforms, RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units.

+
diff --git a/general/datasets/Eye_m2_0406_m/tissue.rtf b/general/datasets/Eye_m2_0406_m/tissue.rtf new file mode 100644 index 0000000..d8d345f --- /dev/null +++ b/general/datasets/Eye_m2_0406_m/tissue.rtf @@ -0,0 +1,7112 @@ +
+

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube.

+ +

Each array was hybridized with a pool of RNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

+ +

Dissecting and preparing eyes for RNA extraction

+ +
    +
  1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below).
  2. +
  3. Store RNA in 75% ethanol at –80 deg. C until use.
  4. +
+ +

Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we:

+ +
    +
  1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue)
  2. +
  3. allowed the homogenate to stand for 5 min at room temperature
  4. +
  5. added 0.2 ml of chloroform per 1 ml RNA STAT-60
  6. +
  7. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min
  8. +
  9. centrifuged at 12,000 G for 15 min
  10. +
  11. transfered the aqueous phase to a fresh tube
  12. +
  13. added 0.5 ml of isopropanol per 1 ml RNA STAT-60
  14. +
  15. vortexed and allowed sample to stand at room temperature for 5-10 min
  16. +
  17. centrifuged at 12,000 G for 10-15 min
  18. +
  19. removed the supernatant and washed the RNA pellet with 75% ethanol
  20. +
  21. stored the pellet in 75% ethanol at -80 deg C until use
  22. +
+ +

Sample Processing. Samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center lead by Drs. John Stuart and Weikuan Gu. All processing steps were performed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. centrigrade until use (one third roughly) or were immediately used for hybridization.

+ +

Dealing with Ocular Pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations taken from brown and beige colored mice tend to have faint residual pigmentation that affects hybridization signal. The key determinant of this interesting effect is the Tyrp1 (brown) locus on Chr 4 at about 80 Mb. Loci on Chr 4 that map at this location should be considered with skepticism and reviewed carefully. To address this problem Yan Jiao purified total RNA a second time using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204). This was done for 8 colored samples (R2534E2, R2578E2, R1441E2, R2537E2, R2536E2, R2589E2, R2539E2) in the first batch of arrays (the November 05 data set) of which 5 were finally included in this data set (cases in which the strain ID is labeled with asterisks in the table). This same protocol was used for all samples in the second batch added in April 2006.

+ +

Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. The first and second batches of array data, collectively represents a reasonably well balanced sample of males and females belonging to 62 strains, but without within-strain-by-sex replication. Six strains are represented only by male sample pools (BXD15, 28, 29, 55, 98, and DBA/2J. Four strains are represented only by a female pool sample (BXD1, 27, 73 and 86). Please use the probe sets 1427262_at (Xist, high in females) and probe set 1426438_at (Ddx3y, high in males) as quantitative surrogates for the sex balance in this data set.

+ +

Batch Structure: This data set consists of a two batches: the original batch that makes up the November 2005 data set and a new batch of 63 arrays (R0857E through R2649E, and R2682E through R2742E, non-consecutive identifiers) run in January 2006 by Dr. Yan Jiao. The arrays in the two batches are from two different lots. All arrays in the second batch were from Lot 4016879 (expiration date 12.28.06). We started working with a total of 140 arrays that passed initial crude quality control based on RNA quality and initial Affymetrix report file information such as 3'/5' ratio, scale factor, and percent present calls. A total of 130 arrays were finally approved for inclusion in this April 2006 data set. The complex normalization procedure is described below.

+ +

The table below summarizes information on strain, age, sex, original CEL filename, Affymetrix quality control values, and source of mice. Columns labeled "PDNN 2Z outlier" and "RMA 2Z outlier" list the fraction of probe sets with values that deviated more than 2 z units from the mean. Scale factor, background average, present, absent, marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files.

+ +

IN PROGRESS: PLEASE NOTE THAT THIS TABLE IS NOW BEING UPDATED TO INCLUDE BATCH 2 OF EARLY 2006.

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
ID +

tube ID

+
+

group_type

+
+

 Strain

+
+

age

+
+

 Sex

+
+

original

+ +

CEL

+ +

filename

+
+

PDNN

+ +

2Z

+ +

outlier

+
+

RMA

+ +

2Z

+ +

outlier

+
+

scale

+ +

factor

+
+

background

+ +

average

+
+

present

+
+

absent

+
+

marginal

+
+

AFFX-b-

+ +

ActinMur(3'/5')

+
+

AFFX-

+ +

GapdhMur(3'/5')

+
+

Source

+
+

1

+
+

R2533E1

+
+

GDP

+
+

129S1/SvImJ

+
+

60

+
+

M

+
+

R2533E.CEL

+
+

0.025

+
+

0.028

+
+

2.11

+
+

94

+
+

57.90%

+
+

40.50%

+
+

1.60%

+
+

1.37

+
+

0.78

+
+

UTM RW

+
+

2

+
+

R2595E1

+
+

GDP

+
+

129S1/SvImJ

+
+

59

+
+

F

+
+

R2595E.CEL

+
+

0.033

+
+

0.036

+
+

1.79

+
+

115

+
+

61.00%

+
+

37.50%

+
+

1.50%

+
+

1.46

+
+

0.77

+
+

UTM RW

+
+

3

+
+

R0754E2

+
+

GDP

+
+

A/J

+
+

60

+
+

M

+
+

R0754E.CEL

+
+

0.027

+
+

0.03

+
+

2.72

+
+

86

+
+

59.80%

+
+

38.70%

+
+

1.50%

+
+

1.36

+
+

0.76

+
+

JAX

+
+

4

+
+

R2546E1

+
+

GDP

+
+

A/J

+
+

66

+
+

F

+
+

R2545E.CEL

+
+

0.024

+
+

0.029

+
+

1.99

+
+

96

+
+

58.60%

+
+

39.70%

+
+

1.70%

+
+

1.47

+
+

0.78

+
+

UTM RW

+
+

5

+
+

R2601E1

+
+

GDP BXD

+
+

B6D2F1

+
+

73

+
+

F

+
+

R2601E.CEL

+
+

0.007

+
+

0.008

+
+

2.55

+
+

92

+
+

58.90%

+
+

39.60%

+
+

1.50%

+
+

1.44

+
+

0.78

+
+

UTM RW

+
+

6

+
+

R2602E1

+
+

GDP BXD

+
+

B6D2F1

+
+

73

+
+

M

+
+

R2602E.CEL

+
+

0.003

+
+

0.008

+
+

2.60

+
+

84

+
+

59.70%

+
+

38.80%

+
+

1.50%

+
+

1.37

+
+

0.78

+
+

UTM RW

+
+

7

+
+

R1672E1

+
+

GDP

+
+

BALB/cByJ

+
+

83

+
+

M

+
+

R1672E.CEL

+
+

0.043

+
+

0.039

+
+

2.22

+
+

111

+
+

59.90%

+
+

38.60%

+
+

1.50%

+
+

1.26

+
+

0.80

+
+

JAX

+
+

8

+
+

R1676E1

+
+

GDP

+
+

BALB/cByJ

+
+

83

+
+

F

+
+

R1676E.CEL

+
+

0.083

+
+

0.085

+
+

2.69

+
+

98

+
+

58.90%

+
+

39.60%

+
+

1.50%

+
+

1.46

+
+

0.74

+
+

JAX

+
+

9

+
+

R2581E1

+
+

BXD

+
+

BXD11

+
+

65

+
+

F

+
+

R2581E.CEL

+
+

0.009

+
+

0.021

+
+

1.94

+
+

89

+
+

62.10%

+
+

36.40%

+
+

1.60%

+
+

1.55

+
+

0.81

+
+

UTM RW

+
+

10

+
+

R2543E1

+
+

BXD

+
+

BXD12

+
+

63

+
+

M

+
+

R2543E.CEL

+
+

0.018

+
+

0.017

+
+

1.61

+
+

118

+
+

58.60%

+
+

39.90%

+
+

1.60%

+
+

1.43

+
+

0.77

+
+

UTM RW

+
+

11

+
+

R2586E1

+
+

BXD

+
+

BXD13

+
+

60

+
+

F

+
+

R2586E.CEL

+
+

0.259

+
+

0.258

+
+

2.01

+
+

74

+
+

56.40%

+
+

42.00%

+
+

1.60%

+
+

2.85

+
+

3.81

+
+

Glenn

+
+

12

+
+

R2557E1

+
+

BXD

+
+

BXD14

+
+

60

+
+

F

+
+

R2557E.CEL

+
+

0.012

+
+

0.027

+
+

1.83

+
+

99

+
+

62.50%

+
+

36.10%

+
+

1.40%

+
+

1.31

+
+

0.78

+
+

Glenn

+
+

13

+
+

R2567E1

+
+

BXD

+
+

BXD16

+
+

60

+
+

M

+
+

R2567E.CEL

+
+

0.048

+
+

0.058

+
+

2.24

+
+

82

+
+

56.70%

+
+

41.60%

+
+

1.70%

+
+

1.37

+
+

0.75

+
+

Glenn

+
+

14

+
+

R2559E1

+
+

BXD

+
+

BXD18

+
+

59

+
+

M

+
+

R2559E.CEL

+
+

0.01

+
+

0.012

+
+

1.65

+
+

104

+
+

60.80%

+
+

37.70%

+
+

1.50%

+
+

1.27

+
+

0.78

+
+

Glenn

+
+

15

+
+

R2560E1

+
+

BXD

+
+

BXD19

+
+

60

+
+

F

+
+

R2560E.CEL

+
+

0.009

+
+

0.012

+
+

1.79

+
+

98

+
+

60.90%

+
+

37.50%

+
+

1.60%

+
+

1.35

+
+

0.80

+
+

Glenn

+
+

16

+
+

R2597E1

+
+

BXD

+
+

BXD2

+
+

61

+
+

M

+
+

R2597E.CEL

+
+

0.005

+
+

0.012

+
+

2.37

+
+

94

+
+

60.30%

+
+

38.30%

+
+

1.50%

+
+

1.34

+
+

0.77

+
+

Glenn

+
+

17

+
+

R2584E1

+
+

BXD

+
+

BXD20

+
+

59

+
+

F

+
+

R2584E.CEL

+
+

0.011

+
+

0.017

+
+

2.07

+
+

84

+
+

59.30%

+
+

39.10%

+
+

1.60%

+
+

1.40

+
+

0.76

+
+

Glenn

+
+

18

+
+

R2541E2

+
+

BXD

+
+

BXD21

+
+

61

+
+

M

+
+

R2541E2.CEL

+
+

0.049

+
+

0.084

+
+

2.63

+
+

125

+
+

56.00%

+
+

42.40%

+
+

1.50%

+
+

1.29

+
+

0.78

+
+

UTM RW

+
+

19

+
+

R2553E1

+
+

BXD

+
+

BXD22

+
+

58

+
+

F

+
+

R2553E.CEL

+
+

0.004

+
+

0.01

+
+

1.95

+
+

111

+
+

59.90%

+
+

38.50%

+
+

1.50%

+
+

1.28

+
+

0.76

+
+

Glenn

+
+

20

+
+

R2558E1

+
+

BXD

+
+

BXD23

+
+

60

+
+

F

+
+

R2558E-2.CEL

+
+

0.018

+
+

0.027

+
+

1.91

+
+

115

+
+

59.90%

+
+

38.80%

+
+

1.40%

+
+

1.20

+
+

0.82

+
+

Glenn

+
+

21

+
+

R2589E2

+
+

BXD

+
+

BXD24

+
+

59

+
+

M

+
+

R2589E2.CEL

+
+

0.132

+
+

0.176

+
+

2.61

+
+

112

+
+

57.50%

+
+

40.90%

+
+

1.60%

+
+

1.24

+
+

0.80

+
+

Glenn

+
+

22

+
+

R2573E1

+
+

BXD

+
+

BXD25

+
+

67

+
+

F

+
+

R2573E-2.CEL

+
+

0.055

+
+

0.063

+
+

3.15

+
+

72

+
+

57.90%

+
+

40.70%

+
+

1.40%

+
+

1.77

+
+

0.97

+
+

UAB

+
+

23

+
+

R2562E1

+
+

BXD

+
+

BXD29

+
+

60

+
+

M

+
+

R2562E.CEL

+
+

0.007

+
+

0.01

+
+

1.65

+
+

116

+
+

59.90%

+
+

38.40%

+
+

1.70%

+
+

1.37

+
+

0.79

+
+

Glenn

+
+

24

+
+

R2598E1

+
+

BXD

+
+

BXD31

+
+

61

+
+

M

+
+

R2598E.CEL

+
+

0.006

+
+

0.013

+
+

1.99

+
+

106

+
+

60.90%

+
+

37.60%

+
+

1.50%

+
+

1.27

+
+

0.78

+
+

UTM RW

+
+

25

+
+

R2563E1

+
+

BXD

+
+

BXD32

+
+

63

+
+

F

+
+

R2563E.CEL

+
+

0.023

+
+

0.025

+
+

1.55

+
+

102

+
+

61.90%

+
+

36.70%

+
+

1.40%

+
+

1.50

+
+

0.80

+
+

UTM RW

+
+

26

+
+

R2542E1

+
+

BXD

+
+

BXD33

+
+

67

+
+

F

+
+

R2542E.CEL

+
+

0.058

+
+

0.062

+
+

2.13

+
+

97

+
+

56.50%

+
+

41.80%

+
+

1.60%

+
+

1.91

+
+

0.93

+
+

UTM RW

+
+

27

+
+

R2585E1

+
+

BXD

+
+

BXD34

+
+

60

+
+

M

+
+

R2585E.CEL

+
+

0.024

+
+

0.032

+
+

2.64

+
+

75

+
+

58.30%

+
+

40.00%

+
+

1.70%

+
+

1.25

+
+

0.77

+
+

Glenn

+
+

28

+
+

R2532E1

+
+

BXD

+
+

BXD38

+
+

62

+
+

M

+
+

R2532E.CEL

+
+

0.002

+
+

0.006

+
+

2.04

+
+

94

+
+

59.80%

+
+

38.70%

+
+

1.50%

+
+

1.37

+
+

0.80

+
+

UTM RW

+
+

29

+
+

R2574E1

+
+

BXD

+
+

BXD39

+
+

70

+
+

F

+
+

R2574E.CEL

+
+

0.003

+
+

0.008

+
+

1.98

+
+

91

+
+

61.20%

+
+

37.30%

+
+

1.50%

+
+

1.39

+
+

0.78

+
+

UTM RW

+
+

30

+
+

R2590E1

+
+

BXD

+
+

BXD40

+
+

60

+
+

M

+
+

R2590E.CEL

+
+

0.007

+
+

0.012

+
+

2.71

+
+

77

+
+

59.10%

+
+

39.30%

+
+

1.50%

+
+

1.40

+
+

0.77

+
+

Glenn

+
+

31

+
+

R2596E1

+
+

BXD

+
+

BXD42

+
+

59

+
+

M

+
+

R2596E.CEL

+
+

0.016

+
+

0.03

+
+

2.63

+
+

108

+
+

59.00%

+
+

39.60%

+
+

1.50%

+
+

1.24

+
+

0.80

+
+

Glenn

+
+

32

+
+

R2605E1

+
+

BXD

+
+

BXD43

+
+

79

+
+

M

+
+

R2607E.CEL

+
+

0.006

+
+

0.01

+
+

1.82

+
+

131

+
+

60.50%

+
+

38.20%

+
+

1.30%

+
+

1.32

+
+

0.80

+
+

UTM RW

+
+

33

+
+

R2594E1

+
+

BXD

+
+

BXD44

+
+

63

+
+

F

+
+

R2594E.CEL

+
+

0.014

+
+

0.024

+
+

1.77

+
+

117

+
+

59.80%

+
+

38.80%

+
+

1.40%

+
+

1.35

+
+

0.85

+
+

UTM RW

+
+

34

+
+

R2592E1

+
+

BXD

+
+

BXD45

+
+

62

+
+

M

+
+

R2592E.CEL

+
+

0.005

+
+

0.011

+
+

1.85

+
+

106

+
+

60.10%

+
+

38.60%

+
+

1.30%

+
+

1.43

+
+

0.85

+
+

UTM RW

+
+

35

+
+

R2606E1

+
+

BXD

+
+

BXD48

+
+

78

+
+

M

+
+

R2606E.CEL

+
+

0.007

+
+

0.015

+
+

2.56

+
+

106

+
+

58.90%

+
+

39.70%

+
+

1.40%

+
+

1.35

+
+

0.83

+
+

UTM RW

+
+

36

+
+

R2591E1

+
+

BXD

+
+

BXD5

+
+

60

+
+

F

+
+

R2591E.CEL

+
+

0.052

+
+

0.014

+
+

1.70

+
+

136

+
+

58.50%

+
+

40.00%

+
+

1.50%

+
+

1.33

+
+

0.78

+
+

Glenn

+
+

37

+
+

R2603E1

+
+

BXD

+
+

BXD51

+
+

66

+
+

F

+
+

R2603E.CEL

+
+

0.007

+
+

0.02

+
+

2.49

+
+

115

+
+

57.70%

+
+

40.80%

+
+

1.50%

+
+

1.24

+
+

0.79

+
+

UTM RW

+
+

38

+
+

R2570E1

+
+

BXD

+
+

BXD6

+
+

65

+
+

F

+
+

R2570E.CEL

+
+

0.013

+
+

0.017

+
+

1.99

+
+

87

+
+

58.50%

+
+

40.00%

+
+

1.50%

+
+

1.46

+
+

0.76

+
+

UTM RW

+
+

39

+
+

R2534E2

+
+

BXD

+
+

BXD61

+
+

70

+
+

F

+
+

R2534E2.CEL

+
+

0.03

+
+

0.058

+
+

2.47

+
+

118

+
+

57.90%

+
+

40.60%

+
+

1.50%

+
+

1.42

+
+

0.79

+
+

UTM RW

+
+

40

+
+

R2611E1

+
+

BXD

+
+

BXD64

+
+

68

+
+

M

+
+

R2611E.CEL

+
+

0.067

+
+

0.068

+
+

2.29

+
+

92

+
+

58.00%

+
+

40.50%

+
+

1.50%

+
+

1.57

+
+

1.06

+
+

UTM RW

+
+

41

+
+

R2583E1

+
+

BXD

+
+

BXD65

+
+

60

+
+

M

+
+

R2583E.CEL

+
+

0.027

+
+

0.03

+
+

2.49

+
+

70

+
+

56.90%

+
+

41.50%

+
+

1.60%

+
+

1.67

+
+

1.01

+
+

UTM RW

+
+

42

+
+

R2536E2

+
+

BXD

+
+

BXD66

+
+

64

+
+

F

+
+

R2536E2.CEL

+
+

0.067

+
+

0.139

+
+

2.74

+
+

109

+
+

56.10%

+
+

42.30%

+
+

1.70%

+
+

1.28

+
+

0.79

+
+

UTM RW

+
+

43

+
+

R2551E1

+
+

BXD

+
+

BXD68

+
+

67

+
+

F

+
+

R2551E.CEL

+
+

0.294

+
+

0.291

+
+

2.49

+
+

92

+
+

54.30%

+
+

44.10%

+
+

1.60%

+
+

2.91

+
+

1.55

+
+

UTM RW

+
+

44

+
+

R2593E1

+
+

BXD

+
+

BXD69

+
+

59

+
+

F

+
+

R2593E.CEL

+
+

0.027

+
+

0.038

+
+

1.67

+
+

128

+
+

59.20%

+
+

39.50%

+
+

1.30%

+
+

1.47

+
+

0.92

+
+

UTM RW

+
+

45

+
+

R2537E2

+
+

BXD

+
+

BXD70

+
+

59

+
+

M

+
+

R2537E2.CEL

+
+

0.049

+
+

0.092

+
+

2.93

+
+

99

+
+

58.00%

+
+

40.50%

+
+

1.60%

+
+

1.29

+
+

0.75

+
+

UTM RW

+
+

46

+
+

R2565E1

+
+

BXD

+
+

BXD75

+
+

61

+
+

F

+
+

R2565E.CEL

+
+

0.118

+
+

0.124

+
+

1.79

+
+

102

+
+

58.00%

+
+

40.50%

+
+

1.50%

+
+

2.31

+
+

3.47

+
+

UTM RW

+
+

47

+
+

R2538E1

+
+

BXD

+
+

BXD8

+
+

77

+
+

F

+
+

R2538E.CEL

+
+

0.033

+
+

0.056

+
+

1.91

+
+

102

+
+

61.20%

+
+

37.30%

+
+

1.50%

+
+

1.52

+
+

0.79

+
+

UTM RW

+
+

48

+
+

R2579E1

+
+

BXD

+
+

BXD80

+
+

65

+
+

F

+
+

R2579E.CEL

+
+

0.013

+
+

0.026

+
+

2.42

+
+

72

+
+

59.20%

+
+

39.40%

+
+

1.50%

+
+

1.73

+
+

0.82

+
+

UTM RW

+
+

49

+
+

R2540E1

+
+

BXD

+
+

BXD87

+
+

63

+
+

M

+
+

R2540E.CEL

+
+

0.014

+
+

0.034

+
+

2.33

+
+

93

+
+

61.10%

+
+

37.40%

+
+

1.40%

+
+

1.22

+
+

0.81

+
+

UTM RW

+
+

50

+
+

R2545E1

+
+

BXD

+
+

BXD89

+
+

67

+
+

M

+
+

R2546E.CEL

+
+

0.266

+
+

0.257

+
+

1.67

+
+

105

+
+

56.20%

+
+

42.30%

+
+

1.50%

+
+

3.60

+
+

9.84

+
+

UTM RW

+
+

51

+
+

R2569E1

+
+

BXD

+
+

BXD9

+
+

67

+
+

M

+
+

R2569E.CEL

+
+

0.256

+
+

0.239

+
+

1.75

+
+

87

+
+

55.10%

+
+

43.40%

+
+

1.50%

+
+

2.82

+
+

3.14

+
+

UTM RW

+
+

52

+
+

R2578E2

+
+

BXD

+
+

BXD90

+
+

61

+
+

F

+
+

R2578E2.CEL

+
+

0.041

+
+

0.062

+
+

2.79

+
+

92

+
+

58.60%

+
+

39.80%

+
+

1.60%

+
+

1.52

+
+

0.77

+
+

UTM RW

+
+

53

+
+

R2554E1

+
+

BXD

+
+

BXD96

+
+

67

+
+

M

+
+

R2554E.CEL

+
+

0.005

+
+

0.008

+
+

2.18

+
+

93

+
+

60.20%

+
+

38.30%

+
+

1.50%

+
+

1.46

+
+

0.77

+
+

UTM RW

+
+

54

+
+

R2577E1

+
+

BXD

+
+

BXD97

+
+

55

+
+

M

+
+

R2577E.CEL

+
+

0.065

+
+

0.069

+
+

2.07

+
+

77

+
+

59.50%

+
+

39.10%

+
+

1.40%

+
+

1.87

+
+

1.29

+
+

UTM RW

+
+

55

+
+

R1700E1

+
+

GDP

+
+

C3H/HeJ

+
+

83

+
+

F

+
+

R1700E.CEL

+
+

0.152

+
+

0.168

+
+

2.98

+
+

69

+
+

60.80%

+
+

37.90%

+
+

1.40%

+
+

1.48

+
+

0.78

+
+

UTM RW

+
+

56

+
+

R1704E1

+
+

GDP

+
+

C3H/HeJ

+
+

83

+
+

M

+
+

R1704E.CEL

+
+

0.154

+
+

0.165

+
+

2.58

+
+

88

+
+

60.10%

+
+

38.60%

+
+

1.30%

+
+

1.38

+
+

0.84

+
+

UTM RW

+
+

57

+
+

R0872E2

+
+

GDP BXD

+
+

C57BL/6J

+
+

66

+
+

M

+
+

R0872E.CEL

+
+

0.014

+
+

0.023

+
+

3.13

+
+

89

+
+

58.90%

+
+

39.60%

+
+

1.50%

+
+

1.30

+
+

0.79

+
+

UTM RW

+
+

58

+
+

R2607E1

+
+

GDP BXD

+
+

C57BL/6J

+
+

67

+
+

F

+
+

R2605E.CEL

+
+

0.008

+
+

0.018

+
+

2.43

+
+

115

+
+

58.60%

+
+

40.00%

+
+

1.40%

+
+

1.31

+
+

0.76

+
+

UTM RW

+
+

59

+
+

R2564E1

+
+

GDP

+
+

CAST/Ei

+
+

64

+
+

F

+
+

R2564E.CEL

+
+

0.124

+
+

0.105

+
+

1.94

+
+

89

+
+

58.50%

+
+

39.90%

+
+

1.60%

+
+

1.60

+
+

0.77

+
+

JAX

+
+

60

+
+

R2580E1

+
+

GDP

+
+

CAST/Ei

+
+

64

+
+

M

+
+

R2580E.CEL

+
+

0.123

+
+

0.109

+
+

2.09

+
+

95

+
+

58.20%

+
+

40.10%

+
+

1.70%

+
+

1.40

+
+

0.76

+
+

JAX

+
+

61

+
+

R2600E1

+
+

GDP BXD

+
+

D2B6F1

+
+

72

+
+

F

+
+

R2600E.CEL

+
+

0.008

+
+

0.02

+
+

2.47

+
+

95

+
+

58.10%

+
+

40.20%

+
+

1.70%

+
+

1.41

+
+

0.78

+
+

UTM RW

+
+

62

+
+

R2604E1

+
+

GDP BXD

+
+

D2B6F1

+
+

69

+
+

M

+
+

R2604E.CEL

+
+

0.005

+
+

0.014

+
+

2.66

+
+

90

+
+

59.40%

+
+

39.20%

+
+

1.50%

+
+

1.28

+
+

0.79

+
+

UTM RW

+
+

63

+
+

R2572E1

+
+

GDP BXD

+
+

DBA/2J

+
+

65

+
+

M

+
+

R2572E.CEL

+
+

0.091

+
+

0.106

+
+

2.41

+
+

79

+
+

55.50%

+
+

42.90%

+
+

1.60%

+
+

1.37

+
+

0.79

+
+

UTM RW

+
+

64

+
+

R2636E1

+
+

GDP

+
+

KK/HIJ

+
+

64

+
+

F

+
+

R2636E.CEL

+
+

0.044

+
+

0.043

+
+

2.61

+
+

93

+
+

58.90%

+
+

39.50%

+
+

1.50%

+
+

1.39

+
+

0.76

+
+

UTM RW

+
+

65

+
+

R2637E1

+
+

GDP

+
+

KK/HIJ

+
+

64

+
+

M

+
+

R2637E.CEL

+
+

0.056

+
+

0.036

+
+

2.19

+
+

103

+
+

59.40%

+
+

39.00%

+
+

1.50%

+
+

1.30

+
+

0.79

+
+

UTM RW

+
+

66

+
+

R0999E1

+
+

GDP

+
+

LG/J

+
+

57

+
+

F

+
+

R0999E.CEL

+
+

0.021

+
+

0.023

+
+

2.45

+
+

82

+
+

59.40%

+
+

39.10%

+
+

1.50%

+
+

1.38

+
+

0.79

+
+

UTM RW

+
+

67

+
+

R1004E1

+
+

GDP

+
+

LG/J

+
+

65

+
+

M

+
+

R1004E.CEL

+
+

0.025

+
+

0.028

+
+

2.44

+
+

92

+
+

58.70%

+
+

39.80%

+
+

1.50%

+
+

1.38

+
+

0.79

+
+

UTM RW

+
+

68

+
+

R1688E1

+
+

GDP

+
+

NOD/LtJ

+
+

66

+
+

F

+
+

R1688E.CEL

+
+

0.028

+
+

0.033

+
+

2.66

+
+

98

+
+

58.60%

+
+

39.90%

+
+

1.50%

+
+

1.26

+
+

0.80

+
+

JAX

+
+

69

+
+

R2566E1

+
+

GDP

+
+

NOD/LtJ

+
+

76

+
+

M

+
+

R2566E-2.CEL

+
+

0.036

+
+

0.04

+
+

3.03

+
+

69

+
+

59.80%

+
+

38.80%

+
+

1.50%

+
+

1.38

+
+

0.75

+
+

UTM RW

+
+

70

+
+

R2535E1

+
+

GDP

+
+

NZO/H1LtJ

+
+

62

+
+

F

+
+

R2535E.CEL

+
+

0.037

+
+

0.062

+
+

1.89

+
+

86

+
+

60.40%

+
+

38.20%

+
+

1.40%

+
+

1.41

+
+

0.85

+
+

JAX

+
+

71

+
+

R2550E1

+
+

GDP

+
+

NZO/HILtJ

+
+

96

+
+

M

+
+

R2550E.CEL

+
+

0.025

+
+

0.029

+
+

1.79

+
+

87

+
+

60.70%

+
+

37.80%

+
+

1.50%

+
+

1.52

+
+

0.82

+
+

JAX

+
+

72

+
+

R2634E1

+
+

GDP

+
+

PWD/PhJ

+
+

62

+
+

F

+
+

R2635E.CEL

+
+

0.126

+
+

0.114

+
+

3.29

+
+

90

+
+

55.90%

+
+

42.50%

+
+

1.60%

+
+

1.57

+
+

0.81

+
+

JAX

+
+

73

+
+

R2635E1

+
+

GDP

+
+

PWD/PhJ

+
+

62

+
+

M

+
+

R2634E.CEL

+
+

0.15

+
+

0.137

+
+

3.72

+
+

80

+
+

54.20%

+
+

44.10%

+
+

1.70%

+
+

1.53

+
+

0.85

+
+

JAX

+
+

74

+
+

R2544E1

+
+

GDP

+
+

PWK/PhJ

+
+

63

+
+

F

+
+

R2544E.CEL

+
+

0.174

+
+

0.175

+
+

2.20

+
+

108

+
+

54.90%

+
+

43.50%

+
+

1.70%

+
+

1.36

+
+

0.82

+
+

JAX

+
+

75

+
+

R2549E1

+
+

GDP

+
+

PWK/PhJ

+
+

83

+
+

M

+
+

R2549E.CEL

+
+

0.103

+
+

0.087

+
+

2.28

+
+

84

+
+

57.30%

+
+

41.20%

+
+

1.50%

+
+

1.57

+
+

0.83

+
+

JAX

+
+

76

+
+

R2368E1

+
+

GDP

+
+

WSB/EI

+
+

67

+
+

F

+
+

R2368E.CEL

+
+

0.041

+
+

0.047

+
+

2.57

+
+

86

+
+

59.50%

+
+

39.10%

+
+

1.40%

+
+

1.29

+
+

0.74

+
+

UTM RW

+
+

77

+
+

R2704E

+
+

BXD

+
+

BXD1

+
+

59

+
+

F

+
+

R2704E.CEL

+
+

0.029

+
+

0.03

+
+

2.066

+
+

139.61

+
+

56.60%

+
+

41.90%

+
+

1.50%

+
+

1.31

+
+

0.81

+
+

GU

+
+

78

+
+

R2612E

+
+

BXD

+
+

BXD11

+
+

70

+
+

M

+
+

R2612E.CEL

+
+

0.101

+
+

0.112

+
+

1.83

+
+

142.03

+
+

58.20%

+
+

40.50%

+
+

1.40%

+
+

1.78

+
+

0.81

+
+

GU

+
+

79

+
+

R2742E

+
+

BXD

+
+

BXD12

+
+

71

+
+

F

+
+

R2742E.CEL

+
+

0.073

+
+

0.077

+
+

2.127

+
+

134.14

+
+

57.00%

+
+

41.60%

+
+

1.40%

+
+

1.64

+
+

0.78

+
+

GU

+
+

80

+
+

R1086E

+
+

BXD

+
+

BXD23

+
+

55

+
+

M

+
+

R1086E.CEL

+
+

0.043

+
+

0.034

+
+

2.233

+
+

125.05

+
+

58.60%

+
+

39.90%

+
+

1.50%

+
+

1.43

+
+

0.77

+
+

GU

+
+

81

+
+

R2716E

+
+

BXD

+
+

BXD15

+
+

60

+
+

M

+
+

R2716E.CEL

+
+

0.035

+
+

0.037

+
+

2.015

+
+

150.83

+
+

56.40%

+
+

42.10%

+
+

1.60%

+
+

1.42

+
+

0.81

+
+

GU

+
+

82

+
+

R2711E

+
+

BXD

+
+

BXD16

+
+

61

+
+

F

+
+

R2711E.CEL

+
+

0.032

+
+

0.021

+
+

1.953

+
+

118.53

+
+

59.00%

+
+

39.60%

+
+

1.50%

+
+

1.45

+
+

0.8

+
+

GU

+
+

83

+
+

R2720E

+
+

BXD

+
+

BXD18

+
+

59

+
+

F

+
+

R2720E.CEL

+
+

0.014

+
+

0.019

+
+

2.32

+
+

99.93

+
+

59.50%

+
+

39.00%

+
+

1.50%

+
+

1.33

+
+

0.77

+
+

GU

+
+

84

+
+

R2713E

+
+

BXD

+
+

BXD19

+
+

60

+
+

M

+
+

R2713E.CEL

+
+

0.055

+
+

0.021

+
+

1.67

+
+

120.82

+
+

60.20%

+
+

38.30%

+
+

1.50%

+
+

1.45

+
+

0.8

+
+

GU

+
+

85

+
+

R1231E

+
+

BXD

+
+

BXD2

+
+

64

+
+

F

+
+

R1231E.CEL

+
+

0.044

+
+

0.037

+
+

2.197

+
+

138.73

+
+

57.30%

+
+

41.30%

+
+

1.40%

+
+

1.41

+
+

0.77

+
+

GU

+
+

86

+
+

R2731E

+
+

BXD

+
+

BXD20

+
+

60

+
+

M

+
+

R2731E.CEL

+
+

0.017

+
+

0.019

+
+

1.825

+
+

147

+
+

59.00%

+
+

39.50%

+
+

1.50%

+
+

1.4

+
+

0.8

+
+

GU

+
+

87

+
+

R2702E

+
+

BXD

+
+

BXD21

+
+

59

+
+

F

+
+

R2702E.CEL

+
+

0.009

+
+

0.008

+
+

1.811

+
+

128.65

+
+

59.40%

+
+

39.10%

+
+

1.40%

+
+

1.26

+
+

0.8

+
+

GU

+
+

88

+
+

R2700E

+
+

BXD

+
+

BXD22

+
+

59

+
+

M

+
+

R2700E.CEL

+
+

0.01

+
+

0.015

+
+

1.858

+
+

102.96

+
+

61.50%

+
+

37.10%

+
+

1.30%

+
+

1.48

+
+

0.79

+
+

GU

+
+

89

+
+

R1128E

+
+

BXD

+
+

BXD14

+
+

65

+
+

M

+
+

R1128E.CEL

+
+

0.037

+
+

0.038

+
+

2.366

+
+

118.39

+
+

57.30%

+
+

41.30%

+
+

1.40%

+
+

1.45

+
+

0.81

+
+

GU

+
+

90

+
+

R2719E

+
+

BXD

+
+

BXD24

+
+

123

+
+

F

+
+

R2719E.CEL

+
+

0.112

+
+

0.111

+
+

1.47

+
+

140.38

+
+

61.50%

+
+

37.20%

+
+

1.30%

+
+

1.38

+
+

0.79

+
+

GU

+
+

91

+
+

R2683E

+
+

BXD

+
+

BXD25

+
+

58

+
+

M

+
+

R2683E.CEL

+
+

0.068

+
+

0.068

+
+

1.777

+
+

115.64

+
+

58.30%

+
+

40.30%

+
+

1.40%

+
+

2.01

+
+

0.79

+
+

GU

+
+

92

+
+

R2703E

+
+

BXD

+
+

BXD27

+
+

60

+
+

F

+
+

R2703E.CEL

+
+

0.008

+
+

0.012

+
+

1.263

+
+

134.78

+
+

62.60%

+
+

36.10%

+
+

1.40%

+
+

1.44

+
+

0.78

+
+

GU

+
+

93

+
+

R2721E

+
+

BXD

+
+

BXD28

+
+

60

+
+

M

+
+

R2721E.CEL

+
+

0.04

+
+

0.048

+
+

2.065

+
+

157.39

+
+

56.10%

+
+

42.40%

+
+

1.50%

+
+

1.31

+
+

0.81

+
+

GU

+
+

94

+
+

R1258E

+
+

BXD

+
+

BXD31

+
+

57

+
+

F

+
+

R1258E.CEL

+
+

0.037

+
+

0.036

+
+

2.063

+
+

117.09

+
+

59.00%

+
+

39.50%

+
+

1.50%

+
+

1.54

+
+

0.78

+
+

GU

+
+

95

+
+

R1216E

+
+

BXD

+
+

BXD32

+
+

76

+
+

M

+
+

R1216E.CEL

+
+

0.05

+
+

0.049

+
+

2.23

+
+

111.99

+
+

58.80%

+
+

39.80%

+
+

1.40%

+
+

1.35

+
+

0.79

+
+

GU

+
+

96

+
+

R857E

+
+

BXD

+
+

BXD33

+
+

77

+
+

M

+
+

R857E.CEL

+
+

0.078

+
+

0.108

+
+

1.737

+
+

113.98

+
+

61.90%

+
+

36.70%

+
+

1.30%

+
+

1.6

+
+

0.77

+
+

GU

+
+

97

+
+

R859E

+
+

BXD

+
+

BXD90

+
+

72

+
+

M

+
+

R859E.CEL

+
+

0.028

+
+

0.02

+
+

1.847

+
+

152.22

+
+

57.90%

+
+

40.70%

+
+

1.40%

+
+

1.36

+
+

0.77

+
+

GU

+
+

98

+
+

R1207E

+
+

BXD

+
+

BXD66

+
+

83

+
+

M

+
+

R1207E.CEL

+
+

0.017

+
+

0.012

+
+

1.681

+
+

136.86

+
+

60.40%

+
+

38.10%

+
+

1.50%

+
+

1.45

+
+

0.77

+
+

GU

+
+

99

+
+

R2710E

+
+

BXD

+
+

BXD38

+
+

55

+
+

F

+
+

R2710E.CEL

+
+

0.033

+
+

0.031

+
+

2.112

+
+

122.1

+
+

58.80%

+
+

39.80%

+
+

1.40%

+
+

1.37

+
+

0.78

+
+

GU

+
+

100

+
+

R2695E

+
+

BXD

+
+

BXD39

+
+

59

+
+

M

+
+

R2695E.CEL

+
+

0.018

+
+

0.016

+
+

1.638

+
+

122.7

+
+

60.80%

+
+

37.80%

+
+

1.50%

+
+

1.42

+
+

0.8

+
+

GU

+
+

101

+
+

R2699E

+
+

BXD

+
+

BXD40

+
+

59

+
+

F

+
+

R2699E.CEL

+
+

0.014

+
+

0.015

+
+

1.827

+
+

105.23

+
+

61.70%

+
+

36.90%

+
+

1.40%

+
+

1.42

+
+

0.81

+
+

GU

+
+

102

+
+

R2696E

+
+

BXD

+
+

BXD42

+
+

58

+
+

F

+
+

R2696E.CEL

+
+

0.01

+
+

0.017

+
+

1.622

+
+

118.95

+
+

62.00%

+
+

36.60%

+
+

1.50%

+
+

1.53

+
+

0.79

+
+

GU

+
+

103

+
+

R943E-2

+
+

BXD

+
+

BXD64

+
+

56

+
+

F

+
+

R943E-2.CEL

+
+

0.024

+
+

0.021

+
+

1.591

+
+

141.34

+
+

60.10%

+
+

38.40%

+
+

1.50%

+
+

1.32

+
+

0.76

+
+

GU

+
+

104

+
+

R967E

+
+

BXD

+
+

BXD48

+
+

64

+
+

F

+
+

R967E.CEL

+
+

0.101

+
+

0.052

+
+

1.948

+
+

130.95

+
+

57.30%

+
+

41.20%

+
+

1.50%

+
+

1.63

+
+

0.81

+
+

GU

+
+

105

+
+

R2714E

+
+

BXD

+
+

BXD5

+
+

58

+
+

M

+
+

R2714E.CEL

+
+

0.047

+
+

0.014

+
+

1.404

+
+

144.35

+
+

60.60%

+
+

37.90%

+
+

1.50%

+
+

1.43

+
+

0.79

+
+

GU

+
+

106

+
+

R1042E

+
+

BXD

+
+

BXD51

+
+

62

+
+

M

+
+

R1042E.CEL

+
+

0.028

+
+

0.027

+
+

2.352

+
+

104.12

+
+

58.70%

+
+

39.90%

+
+

1.40%

+
+

1.53

+
+

0.82

+
+

GU

+
+

107

+
+

R2690E

+
+

BXD

+
+

BXD55

+
+

65

+
+

M

+
+

R2690E.CEL

+
+

0.081

+
+

0.067

+
+

1.887

+
+

164.01

+
+

56.10%

+
+

42.30%

+
+

1.60%

+
+

1.43

+
+

0.8

+
+

GU

+
+

108

+
+

R2694E

+
+

BXD

+
+

BXD6

+
+

58

+
+

M

+
+

R2694E.CEL

+
+

0.012

+
+

0.018

+
+

1.983

+
+

97.23

+
+

61.60%

+
+

37.10%

+
+

1.30%

+
+

1.39

+
+

0.82

+
+

GU

+
+

109

+
+

R975E

+
+

BXD

+
+

BXD70

+
+

64

+
+

F

+
+

R975E.CEL

+
+

0.028

+
+

0.024

+
+

1.841

+
+

137.97

+
+

58.00%

+
+

40.50%

+
+

1.40%

+
+

1.36

+
+

0.79

+
+

GU

+
+

110

+
+

R2684E

+
+

BXD

+
+

BXD61

+
+

62

+
+

M

+
+

R2684E.CEL

+
+

0.031

+
+

0.032

+
+

2.01

+
+

131.03

+
+

57.00%

+
+

41.50%

+
+

1.50%

+
+

1.34

+
+

0.78

+
+

GU

+
+

111

+
+

R994E

+
+

BXD

+
+

BXD43

+
+

60

+
+

F

+
+

R994E.CEL

+
+

0.013

+
+

0.014

+
+

1.966

+
+

113.12

+
+

60.80%

+
+

37.80%

+
+

1.40%

+
+

1.66

+
+

0.8

+
+

GU

+
+

112

+
+

R2610E

+
+

BXD

+
+

BXD44

+
+

68

+
+

M

+
+

R2610E.CEL

+
+

0.013

+
+

0.009

+
+

1.814

+
+

142.91

+
+

59.00%

+
+

39.50%

+
+

1.50%

+
+

1.35

+
+

0.8

+
+

GU

+
+

113

+
+

R2689E

+
+

BXD

+
+

BXD65

+
+

63

+
+

F

+
+

R2689E.CEL

+
+

0.008

+
+

0.008

+
+

1.721

+
+

142.44

+
+

59.90%

+
+

38.60%

+
+

1.50%

+
+

1.38

+
+

0.76

+
+

GU

+
+

114

+
+

R2727E

+
+

BXD

+
+

BXD69

+
+

65

+
+

M

+
+

R2727E.CEL

+
+

0.01

+
+

0.008

+
+

1.578

+
+

143.86

+
+

60.30%

+
+

38.30%

+
+

1.40%

+
+

1.34

+
+

0.77

+
+

GU

+
+

115

+
+

R2726E

+
+

BXD

+
+

BXD68

+
+

64

+
+

M

+
+

R2726E.CEL

+
+

0.125

+
+

0.025

+
+

1.811

+
+

153.09

+
+

58.70%

+
+

39.80%

+
+

1.50%

+
+

1.39

+
+

0.78

+
+

GU

+
+

116

+
+

R2732E

+
+

BXD

+
+

BXD45

+
+

63

+
+

F

+
+

R2732E.CEL

+
+

0.039

+
+

0.036

+
+

2.154

+
+

122.45

+
+

56.50%

+
+

42.10%

+
+

1.40%

+
+

1.8

+
+

0.83

+
+

GU

+
+

117

+
+

R2709E

+
+

BXD

+
+

BXD8

+
+

61

+
+

M

+
+

R2709E.CEL

+
+

0.012

+
+

0.011

+
+

1.99

+
+

99.79

+
+

60.90%

+
+

37.60%

+
+

1.50%

+
+

1.42

+
+

0.76

+
+

GU

+
+

118

+
+

R2686E

+
+

BXD

+
+

BXD80

+
+

61

+
+

M

+
+

R2686E.CEL

+
+

0.046

+
+

0.05

+
+

2.342

+
+

119.63

+
+

56.00%

+
+

42.60%

+
+

1.50%

+
+

1.38

+
+

0.79

+
+

GU

+
+

119

+
+

R2692E

+
+

BXD

+
+

BXD85

+
+

63

+
+

F

+
+

R2692E.CEL

+
+

0.006

+
+

0.007

+
+

1.423

+
+

160.87

+
+

60.20%

+
+

38.30%

+
+

1.40%

+
+

1.46

+
+

0.79

+
+

GU

+
+

120

+
+

R2715E

+
+

BXD

+
+

BXD85

+
+

91

+
+

M

+
+

R2715E.CEL

+
+

0.007

+
+

0.008

+
+

1.488

+
+

142.6

+
+

61.20%

+
+

37.30%

+
+

1.40%

+
+

1.5

+
+

0.78

+
+

GU

+
+

121

+
+

R1405E

+
+

BXD

+
+

BXD86

+
+

58

+
+

F

+
+

R1405E.CEL

+
+

0.053

+
+

0.052

+
+

2.351

+
+

119.34

+
+

56.40%

+
+

42.20%

+
+

1.40%

+
+

1.64

+
+

0.81

+
+

GU

+
+

122

+
+

R2724E

+
+

BXD

+
+

BXD87

+
+

63

+
+

F

+
+

R2724E.CEL

+
+

0.013

+
+

0.019

+
+

1.906

+
+

113.71

+
+

60.70%

+
+

37.90%

+
+

1.40%

+
+

1.45

+
+

0.79

+
+

GU

+
+

123

+
+

R1451E

+
+

BXD

+
+

BXD34

+
+

61

+
+

F

+
+

R1451E.CEL

+
+

0.01

+
+

0.009

+
+

1.843

+
+

140.05

+
+

59.00%

+
+

39.50%

+
+

1.50%

+
+

1.42

+
+

0.81

+
+

GU

+
+

124

+
+

R1433E

+
+

BXD

+
+

BXD89

+
+

63

+
+

F

+
+

R1433E.CEL

+
+

0.029

+
+

0.026

+
+

2.241

+
+

115.86

+
+

57.70%

+
+

40.80%

+
+

1.50%

+
+

1.41

+
+

0.78

+
+

GU

+
+

125

+
+

R2733E

+
+

BXD

+
+

BXD96

+
+

67

+
+

F

+
+

R2733E.CEL

+
+

0.024

+
+

0.054

+
+

1.7

+
+

113.99

+
+

62.10%

+
+

36.60%

+
+

1.30%

+
+

1.4

+
+

0.78

+
+

GU

+
+

126

+
+

R2649E

+
+

BXD

+
+

BXD97

+
+

74

+
+

F

+
+

R2649E.CEL

+
+

0.029

+
+

0.032

+
+

2.343

+
+

119.04

+
+

57.50%

+
+

41.20%

+
+

1.40%

+
+

1.53

+
+

0.8

+
+

GU

+
+

127

+
+

R2688E

+
+

BXD

+
+

BXD98

+
+

67

+
+

M

+
+

R2688E.CEL

+
+

0.032

+
+

0.03

+
+

1.772

+
+

145.24

+
+

58.50%

+
+

40.00%

+
+

1.50%

+
+

1.48

+
+

0.81

+
+

GU

+
+

128

+
+

R877E

+
+

BXD

+
+

BXD13

+
+

76

+
+

M

+
+

R877E.CEL

+
+

0.026

+
+

0.067

+
+

1.558

+
+

125.63

+
+

61.20%

+
+

37.50%

+
+

1.20%

+
+

1.42

+
+

0.81

+
+

GU

+
+

129

+
+

R1397E-re

+
+

BXD

+
+

BXD75

+
+

58

+
+

M

+
+

R1397E-re.CEL

+
+

0.032

+
+

0.01

+
+

1.449

+
+

189.71

+
+

59.60%

+
+

39.00%

+
+

1.40%

+
+

1.39

+
+

0.82

+
+

GU

+
+

130

+
+

R2779E

+
+

BXD

+
+

BXD73

+
+

64

+
+

F

+
+

R2779E.CEL

+
+

0.012

+
+

0.038

+
+

1.746

+
+

121.11

+
+

59.60%

+
+

39.00%

+
+

1.40%

+
+

1.5

+
+

0.8

+
+

GU

+
+

131

+
+

R2708E

+
+

BXD

+
+

BXD9

+
+

60

+
+

F

+
+

R2708E.CEL

+
+

0.024

+
+

0.045

+
+

1.966

+
+

126.46

+
+

57.70%

+
+

40.70%

+
+

1.50%

+
+

1.4

+
+

0.84

+
+

GU

+
+

132

+
+

R2547E1

+
+

GDP

+
+

WSB/Ei

+
+

67

+
+

M

+
+

R2547E.CEL

+
+

0.041

+
+

0.039

+
+

2.14

+
+

90

+
+

58.20%

+
+

40.10%

+
+

1.60%

+
+

1.32

+
+

0.77

+
+

UTM RW

+
diff --git a/general/datasets/Eye_m2_0406_p/acknowledgment.rtf b/general/datasets/Eye_m2_0406_p/acknowledgment.rtf new file mode 100644 index 0000000..3f040d2 --- /dev/null +++ b/general/datasets/Eye_m2_0406_p/acknowledgment.rtf @@ -0,0 +1 @@ +
Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant. All arrays were processed at the VA Medical Center, Memphis by Weikuan Gu.
diff --git a/general/datasets/Eye_m2_0406_p/cases.rtf b/general/datasets/Eye_m2_0406_p/cases.rtf new file mode 100644 index 0000000..5cb5539 --- /dev/null +++ b/general/datasets/Eye_m2_0406_p/cases.rtf @@ -0,0 +1,50 @@ +

We used a set of 55 BXD recombinant inbred strains, 14 conventional inbred strains including C57BL/6J (B6) and DBA/2J (D2), and their reciprocal F1s. BXD strains were generated by crossing C57BL/6J with DBA/2J. The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D2). Physical maps in WebQTL incorporate approximately 2 million B6 vs D2 SNPs from Celera Genomics and from the Perlegen-NIEHS sequencing effort. BXD1 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

+ +

Please note that BXD24/TyJ (JAX stock number 000031) used in this study is also known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 stock that has now been rederived, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control.

+ +

BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues.

+ +

Mouse Diversity Panel (MDP). In addition to the BXD strains, we have profiled a MDP consisting 14 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons:

+ + + +

All eight parents of the Collaborative Cross (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/LtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ) have been included in the MDP. Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS.

+ +
    +
  1. 129S1/SvImJ
    +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) also carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene.
  2. +
  3. A/J
    +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase-negative albino (c) mutant
  4. +
  5. BALB/cByJ
    +      Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list. A tyrosinase-negative albino (c) mutant
  6. +
  7. C3H/HeJ
    +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list. Important to note for this Eye dataset, C3H/HeJ is a Pdeb6 mutant with near total photoreceptor loss at maturity.
  8. +
  9. C57BL/6J
    +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
  10. +
  11. CAST/Ei
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
  12. +
  13. DBA/2J
    +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
  14. +
  15. KK/HlJ
    +     Sequenced by Perlegen/NIEHS
  16. +
  17. LG/J
    +     Paternal parent of the LGXSM panel
  18. +
  19. NOD/LtJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
  20. +
  21. NZO/HlLtJ
    +     Collaborative Cross strain
  22. +
  23. PWD/PhJ
    +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
  24. +
  25. PWK/PhJ
    +     Collaborative Cross strain; Phenome Project D list
  26. +
  27. WSB/EiJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
  28. +
  29. B6D2F1 and D2B6F1, aka F1 in some graphs and tables
    + F1 hybrids generated by crossing C57BL/6J with DBA/2J. These reciprocal F1 can be used to detect some imprinted genes.
  30. +
diff --git a/general/datasets/Eye_m2_0406_p/notes.rtf b/general/datasets/Eye_m2_0406_p/notes.rtf new file mode 100644 index 0000000..39475ab --- /dev/null +++ b/general/datasets/Eye_m2_0406_p/notes.rtf @@ -0,0 +1,18 @@ +

This study includes the following datasets:

+ + + +

This text file originally generated by RWW, May 26, 2006. Updated by RWW, May 27, 2006.

diff --git a/general/datasets/Eye_m2_0406_p/platform.rtf b/general/datasets/Eye_m2_0406_p/platform.rtf new file mode 100644 index 0000000..ac743ee --- /dev/null +++ b/general/datasets/Eye_m2_0406_p/platform.rtf @@ -0,0 +1,3 @@ +
+

Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequences as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

+
diff --git a/general/datasets/Eye_m2_0406_p/processing.rtf b/general/datasets/Eye_m2_0406_p/processing.rtf new file mode 100644 index 0000000..d23bc47 --- /dev/null +++ b/general/datasets/Eye_m2_0406_p/processing.rtf @@ -0,0 +1,20 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. The CEL files were processed using the RMA protocol. We processed the two batches together in RMA. + + +

After RMA processing all arrays were rank-order normalized. This second round of quantile normalization removes much residual non-linearity across arrays and forces every array to have the same distribution of values as the mean of all arrays. Comparative array data quality was then evaluated in DataDesk. Outlier arrays were flagged by visual inspection in DataDesk, usually by means of an analysis of scatter plots and more quantitatively by generating a correlation matrix of all arrays. Those arrays with mean correlation <0.96 versus all other arrays indicates trouble or a biological outlier). In some cases, outliers were expected, such as samples from strains with retinal degeneration (C3H/HeJ and BXD24) and samples from wild subspecies such as CAST/Ei, PWD/Ph, and PWK/Ph. However, when arrays were anomolous both within strain and across strains, they were often simply discarded. We tended to keep arrays that "conformed" to the expectation. The assumption in these cases is that anomolous data are much more likely due to experimental problem and errors than to informative biological variation. Approximately 8 arrays total were discarded in batches 1 and 2 combined.

+ +

After this process, the acceptable set of arrays was renormalized using all step as above, starting with the original RMA procedure, etc.

+ +

We then categorized arrays into XXX major "technical groups" depending on expression patterns as noted in scatterplots. This process of defining technical groups was done in DataDesk by manually "typing" arrays. These technical groups are apparently due to subtle within-batch effect that we do not yet understand and that cannot be corrected by quantile normalization. These XXX major technical groups are not obviously related to strain, sex, age, or any other known biological effect or variable. They are also not obviously related to any of the Affymetrix QC data types (3'/5' ratios, gain, etc.). Once the technical groups were defined, we forced the means of each probe set in the XX technical groups to the same value. This simple process partially removes a technical error of unknown origin in large expression array data sets.

+ +

We reviewed the final data set using a new method developed by RW Williams, Jeremy Peirce, and Hongqiang Li. For the full set of 140 arrays that passed standard QC protocols described above, we computed the strain means for the BXD strains, B6, D2, and F1s. Using this set of strain means we then computed LRS scores for all 45101 probe sets and counted the number of transcripts that generated QTLs with LRS values greater than 50. This value (e.g. 1000) represented the QTL harvest for the full data set. We then dropped a single array from the data set (n = 139 arrays), recomputed strain means, and recomputed the number of transcripts with LRS scores great than 50. This value is expected to typically reduce the number of QTLs that reach the criterion level (e.g., 950 QTLs > 50). This process was repeated for every array to obtain an array-specific difference value--the effect of removing that array on the total QTL count. For example, the loss of a single array might cause a decrease in 50 QTLs (1000-950). Values ranged from -90 (good0 to +38 (bad). This procedure is similar in some ways to a jackknife protocol, although we are not using this procedure to esimate an error term, but rather as a final method to polish a data set. By applying this procedure we discovered that a set of XX (7?) arrays could be excluded while simultaneously improving the total number of QTLs with values above 50.

+ +

During this final process we discovered that nearly XX arrays in the second batch had been mislabeled at some point in processing. We computed the correct strain membership of each array using a large number of Mendelian probe sets (more than 50) and comparing their match to standard SNP and microsatellite markers and the original array data set of November 2005. This allowed us to rescue a large number of arrays that were of very high quality.

+
diff --git a/general/datasets/Eye_m2_0406_p/summary.rtf b/general/datasets/Eye_m2_0406_p/summary.rtf new file mode 100644 index 0000000..68a4484 --- /dev/null +++ b/general/datasets/Eye_m2_0406_p/summary.rtf @@ -0,0 +1,3 @@ +
+

SUPERCEDED EYE DATA SET. The HEIMED April 2006 data set provides estimates of mRNA expression in whole eyes of 71 lines of young adult mice generated using 132 Affymetrix M430 2.0 arrays. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). We used pooled RNA samples, usually two independent pools; one male, one female, for each straion. This data set was processed using the RMA protocol. To simplify comparison among different transforms, RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units.

+
diff --git a/general/datasets/Eye_m2_0406_p/tissue.rtf b/general/datasets/Eye_m2_0406_p/tissue.rtf new file mode 100644 index 0000000..d8d345f --- /dev/null +++ b/general/datasets/Eye_m2_0406_p/tissue.rtf @@ -0,0 +1,7112 @@ +
+

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube.

+ +

Each array was hybridized with a pool of RNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

+ +

Dissecting and preparing eyes for RNA extraction

+ +
    +
  1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below).
  2. +
  3. Store RNA in 75% ethanol at –80 deg. C until use.
  4. +
+ +

Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we:

+ +
    +
  1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue)
  2. +
  3. allowed the homogenate to stand for 5 min at room temperature
  4. +
  5. added 0.2 ml of chloroform per 1 ml RNA STAT-60
  6. +
  7. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min
  8. +
  9. centrifuged at 12,000 G for 15 min
  10. +
  11. transfered the aqueous phase to a fresh tube
  12. +
  13. added 0.5 ml of isopropanol per 1 ml RNA STAT-60
  14. +
  15. vortexed and allowed sample to stand at room temperature for 5-10 min
  16. +
  17. centrifuged at 12,000 G for 10-15 min
  18. +
  19. removed the supernatant and washed the RNA pellet with 75% ethanol
  20. +
  21. stored the pellet in 75% ethanol at -80 deg C until use
  22. +
+ +

Sample Processing. Samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center lead by Drs. John Stuart and Weikuan Gu. All processing steps were performed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. centrigrade until use (one third roughly) or were immediately used for hybridization.

+ +

Dealing with Ocular Pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations taken from brown and beige colored mice tend to have faint residual pigmentation that affects hybridization signal. The key determinant of this interesting effect is the Tyrp1 (brown) locus on Chr 4 at about 80 Mb. Loci on Chr 4 that map at this location should be considered with skepticism and reviewed carefully. To address this problem Yan Jiao purified total RNA a second time using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204). This was done for 8 colored samples (R2534E2, R2578E2, R1441E2, R2537E2, R2536E2, R2589E2, R2539E2) in the first batch of arrays (the November 05 data set) of which 5 were finally included in this data set (cases in which the strain ID is labeled with asterisks in the table). This same protocol was used for all samples in the second batch added in April 2006.

+ +

Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. The first and second batches of array data, collectively represents a reasonably well balanced sample of males and females belonging to 62 strains, but without within-strain-by-sex replication. Six strains are represented only by male sample pools (BXD15, 28, 29, 55, 98, and DBA/2J. Four strains are represented only by a female pool sample (BXD1, 27, 73 and 86). Please use the probe sets 1427262_at (Xist, high in females) and probe set 1426438_at (Ddx3y, high in males) as quantitative surrogates for the sex balance in this data set.

+ +

Batch Structure: This data set consists of a two batches: the original batch that makes up the November 2005 data set and a new batch of 63 arrays (R0857E through R2649E, and R2682E through R2742E, non-consecutive identifiers) run in January 2006 by Dr. Yan Jiao. The arrays in the two batches are from two different lots. All arrays in the second batch were from Lot 4016879 (expiration date 12.28.06). We started working with a total of 140 arrays that passed initial crude quality control based on RNA quality and initial Affymetrix report file information such as 3'/5' ratio, scale factor, and percent present calls. A total of 130 arrays were finally approved for inclusion in this April 2006 data set. The complex normalization procedure is described below.

+ +

The table below summarizes information on strain, age, sex, original CEL filename, Affymetrix quality control values, and source of mice. Columns labeled "PDNN 2Z outlier" and "RMA 2Z outlier" list the fraction of probe sets with values that deviated more than 2 z units from the mean. Scale factor, background average, present, absent, marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files.

+ +

IN PROGRESS: PLEASE NOTE THAT THIS TABLE IS NOW BEING UPDATED TO INCLUDE BATCH 2 OF EARLY 2006.

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
ID +

tube ID

+
+

group_type

+
+

 Strain

+
+

age

+
+

 Sex

+
+

original

+ +

CEL

+ +

filename

+
+

PDNN

+ +

2Z

+ +

outlier

+
+

RMA

+ +

2Z

+ +

outlier

+
+

scale

+ +

factor

+
+

background

+ +

average

+
+

present

+
+

absent

+
+

marginal

+
+

AFFX-b-

+ +

ActinMur(3'/5')

+
+

AFFX-

+ +

GapdhMur(3'/5')

+
+

Source

+
+

1

+
+

R2533E1

+
+

GDP

+
+

129S1/SvImJ

+
+

60

+
+

M

+
+

R2533E.CEL

+
+

0.025

+
+

0.028

+
+

2.11

+
+

94

+
+

57.90%

+
+

40.50%

+
+

1.60%

+
+

1.37

+
+

0.78

+
+

UTM RW

+
+

2

+
+

R2595E1

+
+

GDP

+
+

129S1/SvImJ

+
+

59

+
+

F

+
+

R2595E.CEL

+
+

0.033

+
+

0.036

+
+

1.79

+
+

115

+
+

61.00%

+
+

37.50%

+
+

1.50%

+
+

1.46

+
+

0.77

+
+

UTM RW

+
+

3

+
+

R0754E2

+
+

GDP

+
+

A/J

+
+

60

+
+

M

+
+

R0754E.CEL

+
+

0.027

+
+

0.03

+
+

2.72

+
+

86

+
+

59.80%

+
+

38.70%

+
+

1.50%

+
+

1.36

+
+

0.76

+
+

JAX

+
+

4

+
+

R2546E1

+
+

GDP

+
+

A/J

+
+

66

+
+

F

+
+

R2545E.CEL

+
+

0.024

+
+

0.029

+
+

1.99

+
+

96

+
+

58.60%

+
+

39.70%

+
+

1.70%

+
+

1.47

+
+

0.78

+
+

UTM RW

+
+

5

+
+

R2601E1

+
+

GDP BXD

+
+

B6D2F1

+
+

73

+
+

F

+
+

R2601E.CEL

+
+

0.007

+
+

0.008

+
+

2.55

+
+

92

+
+

58.90%

+
+

39.60%

+
+

1.50%

+
+

1.44

+
+

0.78

+
+

UTM RW

+
+

6

+
+

R2602E1

+
+

GDP BXD

+
+

B6D2F1

+
+

73

+
+

M

+
+

R2602E.CEL

+
+

0.003

+
+

0.008

+
+

2.60

+
+

84

+
+

59.70%

+
+

38.80%

+
+

1.50%

+
+

1.37

+
+

0.78

+
+

UTM RW

+
+

7

+
+

R1672E1

+
+

GDP

+
+

BALB/cByJ

+
+

83

+
+

M

+
+

R1672E.CEL

+
+

0.043

+
+

0.039

+
+

2.22

+
+

111

+
+

59.90%

+
+

38.60%

+
+

1.50%

+
+

1.26

+
+

0.80

+
+

JAX

+
+

8

+
+

R1676E1

+
+

GDP

+
+

BALB/cByJ

+
+

83

+
+

F

+
+

R1676E.CEL

+
+

0.083

+
+

0.085

+
+

2.69

+
+

98

+
+

58.90%

+
+

39.60%

+
+

1.50%

+
+

1.46

+
+

0.74

+
+

JAX

+
+

9

+
+

R2581E1

+
+

BXD

+
+

BXD11

+
+

65

+
+

F

+
+

R2581E.CEL

+
+

0.009

+
+

0.021

+
+

1.94

+
+

89

+
+

62.10%

+
+

36.40%

+
+

1.60%

+
+

1.55

+
+

0.81

+
+

UTM RW

+
+

10

+
+

R2543E1

+
+

BXD

+
+

BXD12

+
+

63

+
+

M

+
+

R2543E.CEL

+
+

0.018

+
+

0.017

+
+

1.61

+
+

118

+
+

58.60%

+
+

39.90%

+
+

1.60%

+
+

1.43

+
+

0.77

+
+

UTM RW

+
+

11

+
+

R2586E1

+
+

BXD

+
+

BXD13

+
+

60

+
+

F

+
+

R2586E.CEL

+
+

0.259

+
+

0.258

+
+

2.01

+
+

74

+
+

56.40%

+
+

42.00%

+
+

1.60%

+
+

2.85

+
+

3.81

+
+

Glenn

+
+

12

+
+

R2557E1

+
+

BXD

+
+

BXD14

+
+

60

+
+

F

+
+

R2557E.CEL

+
+

0.012

+
+

0.027

+
+

1.83

+
+

99

+
+

62.50%

+
+

36.10%

+
+

1.40%

+
+

1.31

+
+

0.78

+
+

Glenn

+
+

13

+
+

R2567E1

+
+

BXD

+
+

BXD16

+
+

60

+
+

M

+
+

R2567E.CEL

+
+

0.048

+
+

0.058

+
+

2.24

+
+

82

+
+

56.70%

+
+

41.60%

+
+

1.70%

+
+

1.37

+
+

0.75

+
+

Glenn

+
+

14

+
+

R2559E1

+
+

BXD

+
+

BXD18

+
+

59

+
+

M

+
+

R2559E.CEL

+
+

0.01

+
+

0.012

+
+

1.65

+
+

104

+
+

60.80%

+
+

37.70%

+
+

1.50%

+
+

1.27

+
+

0.78

+
+

Glenn

+
+

15

+
+

R2560E1

+
+

BXD

+
+

BXD19

+
+

60

+
+

F

+
+

R2560E.CEL

+
+

0.009

+
+

0.012

+
+

1.79

+
+

98

+
+

60.90%

+
+

37.50%

+
+

1.60%

+
+

1.35

+
+

0.80

+
+

Glenn

+
+

16

+
+

R2597E1

+
+

BXD

+
+

BXD2

+
+

61

+
+

M

+
+

R2597E.CEL

+
+

0.005

+
+

0.012

+
+

2.37

+
+

94

+
+

60.30%

+
+

38.30%

+
+

1.50%

+
+

1.34

+
+

0.77

+
+

Glenn

+
+

17

+
+

R2584E1

+
+

BXD

+
+

BXD20

+
+

59

+
+

F

+
+

R2584E.CEL

+
+

0.011

+
+

0.017

+
+

2.07

+
+

84

+
+

59.30%

+
+

39.10%

+
+

1.60%

+
+

1.40

+
+

0.76

+
+

Glenn

+
+

18

+
+

R2541E2

+
+

BXD

+
+

BXD21

+
+

61

+
+

M

+
+

R2541E2.CEL

+
+

0.049

+
+

0.084

+
+

2.63

+
+

125

+
+

56.00%

+
+

42.40%

+
+

1.50%

+
+

1.29

+
+

0.78

+
+

UTM RW

+
+

19

+
+

R2553E1

+
+

BXD

+
+

BXD22

+
+

58

+
+

F

+
+

R2553E.CEL

+
+

0.004

+
+

0.01

+
+

1.95

+
+

111

+
+

59.90%

+
+

38.50%

+
+

1.50%

+
+

1.28

+
+

0.76

+
+

Glenn

+
+

20

+
+

R2558E1

+
+

BXD

+
+

BXD23

+
+

60

+
+

F

+
+

R2558E-2.CEL

+
+

0.018

+
+

0.027

+
+

1.91

+
+

115

+
+

59.90%

+
+

38.80%

+
+

1.40%

+
+

1.20

+
+

0.82

+
+

Glenn

+
+

21

+
+

R2589E2

+
+

BXD

+
+

BXD24

+
+

59

+
+

M

+
+

R2589E2.CEL

+
+

0.132

+
+

0.176

+
+

2.61

+
+

112

+
+

57.50%

+
+

40.90%

+
+

1.60%

+
+

1.24

+
+

0.80

+
+

Glenn

+
+

22

+
+

R2573E1

+
+

BXD

+
+

BXD25

+
+

67

+
+

F

+
+

R2573E-2.CEL

+
+

0.055

+
+

0.063

+
+

3.15

+
+

72

+
+

57.90%

+
+

40.70%

+
+

1.40%

+
+

1.77

+
+

0.97

+
+

UAB

+
+

23

+
+

R2562E1

+
+

BXD

+
+

BXD29

+
+

60

+
+

M

+
+

R2562E.CEL

+
+

0.007

+
+

0.01

+
+

1.65

+
+

116

+
+

59.90%

+
+

38.40%

+
+

1.70%

+
+

1.37

+
+

0.79

+
+

Glenn

+
+

24

+
+

R2598E1

+
+

BXD

+
+

BXD31

+
+

61

+
+

M

+
+

R2598E.CEL

+
+

0.006

+
+

0.013

+
+

1.99

+
+

106

+
+

60.90%

+
+

37.60%

+
+

1.50%

+
+

1.27

+
+

0.78

+
+

UTM RW

+
+

25

+
+

R2563E1

+
+

BXD

+
+

BXD32

+
+

63

+
+

F

+
+

R2563E.CEL

+
+

0.023

+
+

0.025

+
+

1.55

+
+

102

+
+

61.90%

+
+

36.70%

+
+

1.40%

+
+

1.50

+
+

0.80

+
+

UTM RW

+
+

26

+
+

R2542E1

+
+

BXD

+
+

BXD33

+
+

67

+
+

F

+
+

R2542E.CEL

+
+

0.058

+
+

0.062

+
+

2.13

+
+

97

+
+

56.50%

+
+

41.80%

+
+

1.60%

+
+

1.91

+
+

0.93

+
+

UTM RW

+
+

27

+
+

R2585E1

+
+

BXD

+
+

BXD34

+
+

60

+
+

M

+
+

R2585E.CEL

+
+

0.024

+
+

0.032

+
+

2.64

+
+

75

+
+

58.30%

+
+

40.00%

+
+

1.70%

+
+

1.25

+
+

0.77

+
+

Glenn

+
+

28

+
+

R2532E1

+
+

BXD

+
+

BXD38

+
+

62

+
+

M

+
+

R2532E.CEL

+
+

0.002

+
+

0.006

+
+

2.04

+
+

94

+
+

59.80%

+
+

38.70%

+
+

1.50%

+
+

1.37

+
+

0.80

+
+

UTM RW

+
+

29

+
+

R2574E1

+
+

BXD

+
+

BXD39

+
+

70

+
+

F

+
+

R2574E.CEL

+
+

0.003

+
+

0.008

+
+

1.98

+
+

91

+
+

61.20%

+
+

37.30%

+
+

1.50%

+
+

1.39

+
+

0.78

+
+

UTM RW

+
+

30

+
+

R2590E1

+
+

BXD

+
+

BXD40

+
+

60

+
+

M

+
+

R2590E.CEL

+
+

0.007

+
+

0.012

+
+

2.71

+
+

77

+
+

59.10%

+
+

39.30%

+
+

1.50%

+
+

1.40

+
+

0.77

+
+

Glenn

+
+

31

+
+

R2596E1

+
+

BXD

+
+

BXD42

+
+

59

+
+

M

+
+

R2596E.CEL

+
+

0.016

+
+

0.03

+
+

2.63

+
+

108

+
+

59.00%

+
+

39.60%

+
+

1.50%

+
+

1.24

+
+

0.80

+
+

Glenn

+
+

32

+
+

R2605E1

+
+

BXD

+
+

BXD43

+
+

79

+
+

M

+
+

R2607E.CEL

+
+

0.006

+
+

0.01

+
+

1.82

+
+

131

+
+

60.50%

+
+

38.20%

+
+

1.30%

+
+

1.32

+
+

0.80

+
+

UTM RW

+
+

33

+
+

R2594E1

+
+

BXD

+
+

BXD44

+
+

63

+
+

F

+
+

R2594E.CEL

+
+

0.014

+
+

0.024

+
+

1.77

+
+

117

+
+

59.80%

+
+

38.80%

+
+

1.40%

+
+

1.35

+
+

0.85

+
+

UTM RW

+
+

34

+
+

R2592E1

+
+

BXD

+
+

BXD45

+
+

62

+
+

M

+
+

R2592E.CEL

+
+

0.005

+
+

0.011

+
+

1.85

+
+

106

+
+

60.10%

+
+

38.60%

+
+

1.30%

+
+

1.43

+
+

0.85

+
+

UTM RW

+
+

35

+
+

R2606E1

+
+

BXD

+
+

BXD48

+
+

78

+
+

M

+
+

R2606E.CEL

+
+

0.007

+
+

0.015

+
+

2.56

+
+

106

+
+

58.90%

+
+

39.70%

+
+

1.40%

+
+

1.35

+
+

0.83

+
+

UTM RW

+
+

36

+
+

R2591E1

+
+

BXD

+
+

BXD5

+
+

60

+
+

F

+
+

R2591E.CEL

+
+

0.052

+
+

0.014

+
+

1.70

+
+

136

+
+

58.50%

+
+

40.00%

+
+

1.50%

+
+

1.33

+
+

0.78

+
+

Glenn

+
+

37

+
+

R2603E1

+
+

BXD

+
+

BXD51

+
+

66

+
+

F

+
+

R2603E.CEL

+
+

0.007

+
+

0.02

+
+

2.49

+
+

115

+
+

57.70%

+
+

40.80%

+
+

1.50%

+
+

1.24

+
+

0.79

+
+

UTM RW

+
+

38

+
+

R2570E1

+
+

BXD

+
+

BXD6

+
+

65

+
+

F

+
+

R2570E.CEL

+
+

0.013

+
+

0.017

+
+

1.99

+
+

87

+
+

58.50%

+
+

40.00%

+
+

1.50%

+
+

1.46

+
+

0.76

+
+

UTM RW

+
+

39

+
+

R2534E2

+
+

BXD

+
+

BXD61

+
+

70

+
+

F

+
+

R2534E2.CEL

+
+

0.03

+
+

0.058

+
+

2.47

+
+

118

+
+

57.90%

+
+

40.60%

+
+

1.50%

+
+

1.42

+
+

0.79

+
+

UTM RW

+
+

40

+
+

R2611E1

+
+

BXD

+
+

BXD64

+
+

68

+
+

M

+
+

R2611E.CEL

+
+

0.067

+
+

0.068

+
+

2.29

+
+

92

+
+

58.00%

+
+

40.50%

+
+

1.50%

+
+

1.57

+
+

1.06

+
+

UTM RW

+
+

41

+
+

R2583E1

+
+

BXD

+
+

BXD65

+
+

60

+
+

M

+
+

R2583E.CEL

+
+

0.027

+
+

0.03

+
+

2.49

+
+

70

+
+

56.90%

+
+

41.50%

+
+

1.60%

+
+

1.67

+
+

1.01

+
+

UTM RW

+
+

42

+
+

R2536E2

+
+

BXD

+
+

BXD66

+
+

64

+
+

F

+
+

R2536E2.CEL

+
+

0.067

+
+

0.139

+
+

2.74

+
+

109

+
+

56.10%

+
+

42.30%

+
+

1.70%

+
+

1.28

+
+

0.79

+
+

UTM RW

+
+

43

+
+

R2551E1

+
+

BXD

+
+

BXD68

+
+

67

+
+

F

+
+

R2551E.CEL

+
+

0.294

+
+

0.291

+
+

2.49

+
+

92

+
+

54.30%

+
+

44.10%

+
+

1.60%

+
+

2.91

+
+

1.55

+
+

UTM RW

+
+

44

+
+

R2593E1

+
+

BXD

+
+

BXD69

+
+

59

+
+

F

+
+

R2593E.CEL

+
+

0.027

+
+

0.038

+
+

1.67

+
+

128

+
+

59.20%

+
+

39.50%

+
+

1.30%

+
+

1.47

+
+

0.92

+
+

UTM RW

+
+

45

+
+

R2537E2

+
+

BXD

+
+

BXD70

+
+

59

+
+

M

+
+

R2537E2.CEL

+
+

0.049

+
+

0.092

+
+

2.93

+
+

99

+
+

58.00%

+
+

40.50%

+
+

1.60%

+
+

1.29

+
+

0.75

+
+

UTM RW

+
+

46

+
+

R2565E1

+
+

BXD

+
+

BXD75

+
+

61

+
+

F

+
+

R2565E.CEL

+
+

0.118

+
+

0.124

+
+

1.79

+
+

102

+
+

58.00%

+
+

40.50%

+
+

1.50%

+
+

2.31

+
+

3.47

+
+

UTM RW

+
+

47

+
+

R2538E1

+
+

BXD

+
+

BXD8

+
+

77

+
+

F

+
+

R2538E.CEL

+
+

0.033

+
+

0.056

+
+

1.91

+
+

102

+
+

61.20%

+
+

37.30%

+
+

1.50%

+
+

1.52

+
+

0.79

+
+

UTM RW

+
+

48

+
+

R2579E1

+
+

BXD

+
+

BXD80

+
+

65

+
+

F

+
+

R2579E.CEL

+
+

0.013

+
+

0.026

+
+

2.42

+
+

72

+
+

59.20%

+
+

39.40%

+
+

1.50%

+
+

1.73

+
+

0.82

+
+

UTM RW

+
+

49

+
+

R2540E1

+
+

BXD

+
+

BXD87

+
+

63

+
+

M

+
+

R2540E.CEL

+
+

0.014

+
+

0.034

+
+

2.33

+
+

93

+
+

61.10%

+
+

37.40%

+
+

1.40%

+
+

1.22

+
+

0.81

+
+

UTM RW

+
+

50

+
+

R2545E1

+
+

BXD

+
+

BXD89

+
+

67

+
+

M

+
+

R2546E.CEL

+
+

0.266

+
+

0.257

+
+

1.67

+
+

105

+
+

56.20%

+
+

42.30%

+
+

1.50%

+
+

3.60

+
+

9.84

+
+

UTM RW

+
+

51

+
+

R2569E1

+
+

BXD

+
+

BXD9

+
+

67

+
+

M

+
+

R2569E.CEL

+
+

0.256

+
+

0.239

+
+

1.75

+
+

87

+
+

55.10%

+
+

43.40%

+
+

1.50%

+
+

2.82

+
+

3.14

+
+

UTM RW

+
+

52

+
+

R2578E2

+
+

BXD

+
+

BXD90

+
+

61

+
+

F

+
+

R2578E2.CEL

+
+

0.041

+
+

0.062

+
+

2.79

+
+

92

+
+

58.60%

+
+

39.80%

+
+

1.60%

+
+

1.52

+
+

0.77

+
+

UTM RW

+
+

53

+
+

R2554E1

+
+

BXD

+
+

BXD96

+
+

67

+
+

M

+
+

R2554E.CEL

+
+

0.005

+
+

0.008

+
+

2.18

+
+

93

+
+

60.20%

+
+

38.30%

+
+

1.50%

+
+

1.46

+
+

0.77

+
+

UTM RW

+
+

54

+
+

R2577E1

+
+

BXD

+
+

BXD97

+
+

55

+
+

M

+
+

R2577E.CEL

+
+

0.065

+
+

0.069

+
+

2.07

+
+

77

+
+

59.50%

+
+

39.10%

+
+

1.40%

+
+

1.87

+
+

1.29

+
+

UTM RW

+
+

55

+
+

R1700E1

+
+

GDP

+
+

C3H/HeJ

+
+

83

+
+

F

+
+

R1700E.CEL

+
+

0.152

+
+

0.168

+
+

2.98

+
+

69

+
+

60.80%

+
+

37.90%

+
+

1.40%

+
+

1.48

+
+

0.78

+
+

UTM RW

+
+

56

+
+

R1704E1

+
+

GDP

+
+

C3H/HeJ

+
+

83

+
+

M

+
+

R1704E.CEL

+
+

0.154

+
+

0.165

+
+

2.58

+
+

88

+
+

60.10%

+
+

38.60%

+
+

1.30%

+
+

1.38

+
+

0.84

+
+

UTM RW

+
+

57

+
+

R0872E2

+
+

GDP BXD

+
+

C57BL/6J

+
+

66

+
+

M

+
+

R0872E.CEL

+
+

0.014

+
+

0.023

+
+

3.13

+
+

89

+
+

58.90%

+
+

39.60%

+
+

1.50%

+
+

1.30

+
+

0.79

+
+

UTM RW

+
+

58

+
+

R2607E1

+
+

GDP BXD

+
+

C57BL/6J

+
+

67

+
+

F

+
+

R2605E.CEL

+
+

0.008

+
+

0.018

+
+

2.43

+
+

115

+
+

58.60%

+
+

40.00%

+
+

1.40%

+
+

1.31

+
+

0.76

+
+

UTM RW

+
+

59

+
+

R2564E1

+
+

GDP

+
+

CAST/Ei

+
+

64

+
+

F

+
+

R2564E.CEL

+
+

0.124

+
+

0.105

+
+

1.94

+
+

89

+
+

58.50%

+
+

39.90%

+
+

1.60%

+
+

1.60

+
+

0.77

+
+

JAX

+
+

60

+
+

R2580E1

+
+

GDP

+
+

CAST/Ei

+
+

64

+
+

M

+
+

R2580E.CEL

+
+

0.123

+
+

0.109

+
+

2.09

+
+

95

+
+

58.20%

+
+

40.10%

+
+

1.70%

+
+

1.40

+
+

0.76

+
+

JAX

+
+

61

+
+

R2600E1

+
+

GDP BXD

+
+

D2B6F1

+
+

72

+
+

F

+
+

R2600E.CEL

+
+

0.008

+
+

0.02

+
+

2.47

+
+

95

+
+

58.10%

+
+

40.20%

+
+

1.70%

+
+

1.41

+
+

0.78

+
+

UTM RW

+
+

62

+
+

R2604E1

+
+

GDP BXD

+
+

D2B6F1

+
+

69

+
+

M

+
+

R2604E.CEL

+
+

0.005

+
+

0.014

+
+

2.66

+
+

90

+
+

59.40%

+
+

39.20%

+
+

1.50%

+
+

1.28

+
+

0.79

+
+

UTM RW

+
+

63

+
+

R2572E1

+
+

GDP BXD

+
+

DBA/2J

+
+

65

+
+

M

+
+

R2572E.CEL

+
+

0.091

+
+

0.106

+
+

2.41

+
+

79

+
+

55.50%

+
+

42.90%

+
+

1.60%

+
+

1.37

+
+

0.79

+
+

UTM RW

+
+

64

+
+

R2636E1

+
+

GDP

+
+

KK/HIJ

+
+

64

+
+

F

+
+

R2636E.CEL

+
+

0.044

+
+

0.043

+
+

2.61

+
+

93

+
+

58.90%

+
+

39.50%

+
+

1.50%

+
+

1.39

+
+

0.76

+
+

UTM RW

+
+

65

+
+

R2637E1

+
+

GDP

+
+

KK/HIJ

+
+

64

+
+

M

+
+

R2637E.CEL

+
+

0.056

+
+

0.036

+
+

2.19

+
+

103

+
+

59.40%

+
+

39.00%

+
+

1.50%

+
+

1.30

+
+

0.79

+
+

UTM RW

+
+

66

+
+

R0999E1

+
+

GDP

+
+

LG/J

+
+

57

+
+

F

+
+

R0999E.CEL

+
+

0.021

+
+

0.023

+
+

2.45

+
+

82

+
+

59.40%

+
+

39.10%

+
+

1.50%

+
+

1.38

+
+

0.79

+
+

UTM RW

+
+

67

+
+

R1004E1

+
+

GDP

+
+

LG/J

+
+

65

+
+

M

+
+

R1004E.CEL

+
+

0.025

+
+

0.028

+
+

2.44

+
+

92

+
+

58.70%

+
+

39.80%

+
+

1.50%

+
+

1.38

+
+

0.79

+
+

UTM RW

+
+

68

+
+

R1688E1

+
+

GDP

+
+

NOD/LtJ

+
+

66

+
+

F

+
+

R1688E.CEL

+
+

0.028

+
+

0.033

+
+

2.66

+
+

98

+
+

58.60%

+
+

39.90%

+
+

1.50%

+
+

1.26

+
+

0.80

+
+

JAX

+
+

69

+
+

R2566E1

+
+

GDP

+
+

NOD/LtJ

+
+

76

+
+

M

+
+

R2566E-2.CEL

+
+

0.036

+
+

0.04

+
+

3.03

+
+

69

+
+

59.80%

+
+

38.80%

+
+

1.50%

+
+

1.38

+
+

0.75

+
+

UTM RW

+
+

70

+
+

R2535E1

+
+

GDP

+
+

NZO/H1LtJ

+
+

62

+
+

F

+
+

R2535E.CEL

+
+

0.037

+
+

0.062

+
+

1.89

+
+

86

+
+

60.40%

+
+

38.20%

+
+

1.40%

+
+

1.41

+
+

0.85

+
+

JAX

+
+

71

+
+

R2550E1

+
+

GDP

+
+

NZO/HILtJ

+
+

96

+
+

M

+
+

R2550E.CEL

+
+

0.025

+
+

0.029

+
+

1.79

+
+

87

+
+

60.70%

+
+

37.80%

+
+

1.50%

+
+

1.52

+
+

0.82

+
+

JAX

+
+

72

+
+

R2634E1

+
+

GDP

+
+

PWD/PhJ

+
+

62

+
+

F

+
+

R2635E.CEL

+
+

0.126

+
+

0.114

+
+

3.29

+
+

90

+
+

55.90%

+
+

42.50%

+
+

1.60%

+
+

1.57

+
+

0.81

+
+

JAX

+
+

73

+
+

R2635E1

+
+

GDP

+
+

PWD/PhJ

+
+

62

+
+

M

+
+

R2634E.CEL

+
+

0.15

+
+

0.137

+
+

3.72

+
+

80

+
+

54.20%

+
+

44.10%

+
+

1.70%

+
+

1.53

+
+

0.85

+
+

JAX

+
+

74

+
+

R2544E1

+
+

GDP

+
+

PWK/PhJ

+
+

63

+
+

F

+
+

R2544E.CEL

+
+

0.174

+
+

0.175

+
+

2.20

+
+

108

+
+

54.90%

+
+

43.50%

+
+

1.70%

+
+

1.36

+
+

0.82

+
+

JAX

+
+

75

+
+

R2549E1

+
+

GDP

+
+

PWK/PhJ

+
+

83

+
+

M

+
+

R2549E.CEL

+
+

0.103

+
+

0.087

+
+

2.28

+
+

84

+
+

57.30%

+
+

41.20%

+
+

1.50%

+
+

1.57

+
+

0.83

+
+

JAX

+
+

76

+
+

R2368E1

+
+

GDP

+
+

WSB/EI

+
+

67

+
+

F

+
+

R2368E.CEL

+
+

0.041

+
+

0.047

+
+

2.57

+
+

86

+
+

59.50%

+
+

39.10%

+
+

1.40%

+
+

1.29

+
+

0.74

+
+

UTM RW

+
+

77

+
+

R2704E

+
+

BXD

+
+

BXD1

+
+

59

+
+

F

+
+

R2704E.CEL

+
+

0.029

+
+

0.03

+
+

2.066

+
+

139.61

+
+

56.60%

+
+

41.90%

+
+

1.50%

+
+

1.31

+
+

0.81

+
+

GU

+
+

78

+
+

R2612E

+
+

BXD

+
+

BXD11

+
+

70

+
+

M

+
+

R2612E.CEL

+
+

0.101

+
+

0.112

+
+

1.83

+
+

142.03

+
+

58.20%

+
+

40.50%

+
+

1.40%

+
+

1.78

+
+

0.81

+
+

GU

+
+

79

+
+

R2742E

+
+

BXD

+
+

BXD12

+
+

71

+
+

F

+
+

R2742E.CEL

+
+

0.073

+
+

0.077

+
+

2.127

+
+

134.14

+
+

57.00%

+
+

41.60%

+
+

1.40%

+
+

1.64

+
+

0.78

+
+

GU

+
+

80

+
+

R1086E

+
+

BXD

+
+

BXD23

+
+

55

+
+

M

+
+

R1086E.CEL

+
+

0.043

+
+

0.034

+
+

2.233

+
+

125.05

+
+

58.60%

+
+

39.90%

+
+

1.50%

+
+

1.43

+
+

0.77

+
+

GU

+
+

81

+
+

R2716E

+
+

BXD

+
+

BXD15

+
+

60

+
+

M

+
+

R2716E.CEL

+
+

0.035

+
+

0.037

+
+

2.015

+
+

150.83

+
+

56.40%

+
+

42.10%

+
+

1.60%

+
+

1.42

+
+

0.81

+
+

GU

+
+

82

+
+

R2711E

+
+

BXD

+
+

BXD16

+
+

61

+
+

F

+
+

R2711E.CEL

+
+

0.032

+
+

0.021

+
+

1.953

+
+

118.53

+
+

59.00%

+
+

39.60%

+
+

1.50%

+
+

1.45

+
+

0.8

+
+

GU

+
+

83

+
+

R2720E

+
+

BXD

+
+

BXD18

+
+

59

+
+

F

+
+

R2720E.CEL

+
+

0.014

+
+

0.019

+
+

2.32

+
+

99.93

+
+

59.50%

+
+

39.00%

+
+

1.50%

+
+

1.33

+
+

0.77

+
+

GU

+
+

84

+
+

R2713E

+
+

BXD

+
+

BXD19

+
+

60

+
+

M

+
+

R2713E.CEL

+
+

0.055

+
+

0.021

+
+

1.67

+
+

120.82

+
+

60.20%

+
+

38.30%

+
+

1.50%

+
+

1.45

+
+

0.8

+
+

GU

+
+

85

+
+

R1231E

+
+

BXD

+
+

BXD2

+
+

64

+
+

F

+
+

R1231E.CEL

+
+

0.044

+
+

0.037

+
+

2.197

+
+

138.73

+
+

57.30%

+
+

41.30%

+
+

1.40%

+
+

1.41

+
+

0.77

+
+

GU

+
+

86

+
+

R2731E

+
+

BXD

+
+

BXD20

+
+

60

+
+

M

+
+

R2731E.CEL

+
+

0.017

+
+

0.019

+
+

1.825

+
+

147

+
+

59.00%

+
+

39.50%

+
+

1.50%

+
+

1.4

+
+

0.8

+
+

GU

+
+

87

+
+

R2702E

+
+

BXD

+
+

BXD21

+
+

59

+
+

F

+
+

R2702E.CEL

+
+

0.009

+
+

0.008

+
+

1.811

+
+

128.65

+
+

59.40%

+
+

39.10%

+
+

1.40%

+
+

1.26

+
+

0.8

+
+

GU

+
+

88

+
+

R2700E

+
+

BXD

+
+

BXD22

+
+

59

+
+

M

+
+

R2700E.CEL

+
+

0.01

+
+

0.015

+
+

1.858

+
+

102.96

+
+

61.50%

+
+

37.10%

+
+

1.30%

+
+

1.48

+
+

0.79

+
+

GU

+
+

89

+
+

R1128E

+
+

BXD

+
+

BXD14

+
+

65

+
+

M

+
+

R1128E.CEL

+
+

0.037

+
+

0.038

+
+

2.366

+
+

118.39

+
+

57.30%

+
+

41.30%

+
+

1.40%

+
+

1.45

+
+

0.81

+
+

GU

+
+

90

+
+

R2719E

+
+

BXD

+
+

BXD24

+
+

123

+
+

F

+
+

R2719E.CEL

+
+

0.112

+
+

0.111

+
+

1.47

+
+

140.38

+
+

61.50%

+
+

37.20%

+
+

1.30%

+
+

1.38

+
+

0.79

+
+

GU

+
+

91

+
+

R2683E

+
+

BXD

+
+

BXD25

+
+

58

+
+

M

+
+

R2683E.CEL

+
+

0.068

+
+

0.068

+
+

1.777

+
+

115.64

+
+

58.30%

+
+

40.30%

+
+

1.40%

+
+

2.01

+
+

0.79

+
+

GU

+
+

92

+
+

R2703E

+
+

BXD

+
+

BXD27

+
+

60

+
+

F

+
+

R2703E.CEL

+
+

0.008

+
+

0.012

+
+

1.263

+
+

134.78

+
+

62.60%

+
+

36.10%

+
+

1.40%

+
+

1.44

+
+

0.78

+
+

GU

+
+

93

+
+

R2721E

+
+

BXD

+
+

BXD28

+
+

60

+
+

M

+
+

R2721E.CEL

+
+

0.04

+
+

0.048

+
+

2.065

+
+

157.39

+
+

56.10%

+
+

42.40%

+
+

1.50%

+
+

1.31

+
+

0.81

+
+

GU

+
+

94

+
+

R1258E

+
+

BXD

+
+

BXD31

+
+

57

+
+

F

+
+

R1258E.CEL

+
+

0.037

+
+

0.036

+
+

2.063

+
+

117.09

+
+

59.00%

+
+

39.50%

+
+

1.50%

+
+

1.54

+
+

0.78

+
+

GU

+
+

95

+
+

R1216E

+
+

BXD

+
+

BXD32

+
+

76

+
+

M

+
+

R1216E.CEL

+
+

0.05

+
+

0.049

+
+

2.23

+
+

111.99

+
+

58.80%

+
+

39.80%

+
+

1.40%

+
+

1.35

+
+

0.79

+
+

GU

+
+

96

+
+

R857E

+
+

BXD

+
+

BXD33

+
+

77

+
+

M

+
+

R857E.CEL

+
+

0.078

+
+

0.108

+
+

1.737

+
+

113.98

+
+

61.90%

+
+

36.70%

+
+

1.30%

+
+

1.6

+
+

0.77

+
+

GU

+
+

97

+
+

R859E

+
+

BXD

+
+

BXD90

+
+

72

+
+

M

+
+

R859E.CEL

+
+

0.028

+
+

0.02

+
+

1.847

+
+

152.22

+
+

57.90%

+
+

40.70%

+
+

1.40%

+
+

1.36

+
+

0.77

+
+

GU

+
+

98

+
+

R1207E

+
+

BXD

+
+

BXD66

+
+

83

+
+

M

+
+

R1207E.CEL

+
+

0.017

+
+

0.012

+
+

1.681

+
+

136.86

+
+

60.40%

+
+

38.10%

+
+

1.50%

+
+

1.45

+
+

0.77

+
+

GU

+
+

99

+
+

R2710E

+
+

BXD

+
+

BXD38

+
+

55

+
+

F

+
+

R2710E.CEL

+
+

0.033

+
+

0.031

+
+

2.112

+
+

122.1

+
+

58.80%

+
+

39.80%

+
+

1.40%

+
+

1.37

+
+

0.78

+
+

GU

+
+

100

+
+

R2695E

+
+

BXD

+
+

BXD39

+
+

59

+
+

M

+
+

R2695E.CEL

+
+

0.018

+
+

0.016

+
+

1.638

+
+

122.7

+
+

60.80%

+
+

37.80%

+
+

1.50%

+
+

1.42

+
+

0.8

+
+

GU

+
+

101

+
+

R2699E

+
+

BXD

+
+

BXD40

+
+

59

+
+

F

+
+

R2699E.CEL

+
+

0.014

+
+

0.015

+
+

1.827

+
+

105.23

+
+

61.70%

+
+

36.90%

+
+

1.40%

+
+

1.42

+
+

0.81

+
+

GU

+
+

102

+
+

R2696E

+
+

BXD

+
+

BXD42

+
+

58

+
+

F

+
+

R2696E.CEL

+
+

0.01

+
+

0.017

+
+

1.622

+
+

118.95

+
+

62.00%

+
+

36.60%

+
+

1.50%

+
+

1.53

+
+

0.79

+
+

GU

+
+

103

+
+

R943E-2

+
+

BXD

+
+

BXD64

+
+

56

+
+

F

+
+

R943E-2.CEL

+
+

0.024

+
+

0.021

+
+

1.591

+
+

141.34

+
+

60.10%

+
+

38.40%

+
+

1.50%

+
+

1.32

+
+

0.76

+
+

GU

+
+

104

+
+

R967E

+
+

BXD

+
+

BXD48

+
+

64

+
+

F

+
+

R967E.CEL

+
+

0.101

+
+

0.052

+
+

1.948

+
+

130.95

+
+

57.30%

+
+

41.20%

+
+

1.50%

+
+

1.63

+
+

0.81

+
+

GU

+
+

105

+
+

R2714E

+
+

BXD

+
+

BXD5

+
+

58

+
+

M

+
+

R2714E.CEL

+
+

0.047

+
+

0.014

+
+

1.404

+
+

144.35

+
+

60.60%

+
+

37.90%

+
+

1.50%

+
+

1.43

+
+

0.79

+
+

GU

+
+

106

+
+

R1042E

+
+

BXD

+
+

BXD51

+
+

62

+
+

M

+
+

R1042E.CEL

+
+

0.028

+
+

0.027

+
+

2.352

+
+

104.12

+
+

58.70%

+
+

39.90%

+
+

1.40%

+
+

1.53

+
+

0.82

+
+

GU

+
+

107

+
+

R2690E

+
+

BXD

+
+

BXD55

+
+

65

+
+

M

+
+

R2690E.CEL

+
+

0.081

+
+

0.067

+
+

1.887

+
+

164.01

+
+

56.10%

+
+

42.30%

+
+

1.60%

+
+

1.43

+
+

0.8

+
+

GU

+
+

108

+
+

R2694E

+
+

BXD

+
+

BXD6

+
+

58

+
+

M

+
+

R2694E.CEL

+
+

0.012

+
+

0.018

+
+

1.983

+
+

97.23

+
+

61.60%

+
+

37.10%

+
+

1.30%

+
+

1.39

+
+

0.82

+
+

GU

+
+

109

+
+

R975E

+
+

BXD

+
+

BXD70

+
+

64

+
+

F

+
+

R975E.CEL

+
+

0.028

+
+

0.024

+
+

1.841

+
+

137.97

+
+

58.00%

+
+

40.50%

+
+

1.40%

+
+

1.36

+
+

0.79

+
+

GU

+
+

110

+
+

R2684E

+
+

BXD

+
+

BXD61

+
+

62

+
+

M

+
+

R2684E.CEL

+
+

0.031

+
+

0.032

+
+

2.01

+
+

131.03

+
+

57.00%

+
+

41.50%

+
+

1.50%

+
+

1.34

+
+

0.78

+
+

GU

+
+

111

+
+

R994E

+
+

BXD

+
+

BXD43

+
+

60

+
+

F

+
+

R994E.CEL

+
+

0.013

+
+

0.014

+
+

1.966

+
+

113.12

+
+

60.80%

+
+

37.80%

+
+

1.40%

+
+

1.66

+
+

0.8

+
+

GU

+
+

112

+
+

R2610E

+
+

BXD

+
+

BXD44

+
+

68

+
+

M

+
+

R2610E.CEL

+
+

0.013

+
+

0.009

+
+

1.814

+
+

142.91

+
+

59.00%

+
+

39.50%

+
+

1.50%

+
+

1.35

+
+

0.8

+
+

GU

+
+

113

+
+

R2689E

+
+

BXD

+
+

BXD65

+
+

63

+
+

F

+
+

R2689E.CEL

+
+

0.008

+
+

0.008

+
+

1.721

+
+

142.44

+
+

59.90%

+
+

38.60%

+
+

1.50%

+
+

1.38

+
+

0.76

+
+

GU

+
+

114

+
+

R2727E

+
+

BXD

+
+

BXD69

+
+

65

+
+

M

+
+

R2727E.CEL

+
+

0.01

+
+

0.008

+
+

1.578

+
+

143.86

+
+

60.30%

+
+

38.30%

+
+

1.40%

+
+

1.34

+
+

0.77

+
+

GU

+
+

115

+
+

R2726E

+
+

BXD

+
+

BXD68

+
+

64

+
+

M

+
+

R2726E.CEL

+
+

0.125

+
+

0.025

+
+

1.811

+
+

153.09

+
+

58.70%

+
+

39.80%

+
+

1.50%

+
+

1.39

+
+

0.78

+
+

GU

+
+

116

+
+

R2732E

+
+

BXD

+
+

BXD45

+
+

63

+
+

F

+
+

R2732E.CEL

+
+

0.039

+
+

0.036

+
+

2.154

+
+

122.45

+
+

56.50%

+
+

42.10%

+
+

1.40%

+
+

1.8

+
+

0.83

+
+

GU

+
+

117

+
+

R2709E

+
+

BXD

+
+

BXD8

+
+

61

+
+

M

+
+

R2709E.CEL

+
+

0.012

+
+

0.011

+
+

1.99

+
+

99.79

+
+

60.90%

+
+

37.60%

+
+

1.50%

+
+

1.42

+
+

0.76

+
+

GU

+
+

118

+
+

R2686E

+
+

BXD

+
+

BXD80

+
+

61

+
+

M

+
+

R2686E.CEL

+
+

0.046

+
+

0.05

+
+

2.342

+
+

119.63

+
+

56.00%

+
+

42.60%

+
+

1.50%

+
+

1.38

+
+

0.79

+
+

GU

+
+

119

+
+

R2692E

+
+

BXD

+
+

BXD85

+
+

63

+
+

F

+
+

R2692E.CEL

+
+

0.006

+
+

0.007

+
+

1.423

+
+

160.87

+
+

60.20%

+
+

38.30%

+
+

1.40%

+
+

1.46

+
+

0.79

+
+

GU

+
+

120

+
+

R2715E

+
+

BXD

+
+

BXD85

+
+

91

+
+

M

+
+

R2715E.CEL

+
+

0.007

+
+

0.008

+
+

1.488

+
+

142.6

+
+

61.20%

+
+

37.30%

+
+

1.40%

+
+

1.5

+
+

0.78

+
+

GU

+
+

121

+
+

R1405E

+
+

BXD

+
+

BXD86

+
+

58

+
+

F

+
+

R1405E.CEL

+
+

0.053

+
+

0.052

+
+

2.351

+
+

119.34

+
+

56.40%

+
+

42.20%

+
+

1.40%

+
+

1.64

+
+

0.81

+
+

GU

+
+

122

+
+

R2724E

+
+

BXD

+
+

BXD87

+
+

63

+
+

F

+
+

R2724E.CEL

+
+

0.013

+
+

0.019

+
+

1.906

+
+

113.71

+
+

60.70%

+
+

37.90%

+
+

1.40%

+
+

1.45

+
+

0.79

+
+

GU

+
+

123

+
+

R1451E

+
+

BXD

+
+

BXD34

+
+

61

+
+

F

+
+

R1451E.CEL

+
+

0.01

+
+

0.009

+
+

1.843

+
+

140.05

+
+

59.00%

+
+

39.50%

+
+

1.50%

+
+

1.42

+
+

0.81

+
+

GU

+
+

124

+
+

R1433E

+
+

BXD

+
+

BXD89

+
+

63

+
+

F

+
+

R1433E.CEL

+
+

0.029

+
+

0.026

+
+

2.241

+
+

115.86

+
+

57.70%

+
+

40.80%

+
+

1.50%

+
+

1.41

+
+

0.78

+
+

GU

+
+

125

+
+

R2733E

+
+

BXD

+
+

BXD96

+
+

67

+
+

F

+
+

R2733E.CEL

+
+

0.024

+
+

0.054

+
+

1.7

+
+

113.99

+
+

62.10%

+
+

36.60%

+
+

1.30%

+
+

1.4

+
+

0.78

+
+

GU

+
+

126

+
+

R2649E

+
+

BXD

+
+

BXD97

+
+

74

+
+

F

+
+

R2649E.CEL

+
+

0.029

+
+

0.032

+
+

2.343

+
+

119.04

+
+

57.50%

+
+

41.20%

+
+

1.40%

+
+

1.53

+
+

0.8

+
+

GU

+
+

127

+
+

R2688E

+
+

BXD

+
+

BXD98

+
+

67

+
+

M

+
+

R2688E.CEL

+
+

0.032

+
+

0.03

+
+

1.772

+
+

145.24

+
+

58.50%

+
+

40.00%

+
+

1.50%

+
+

1.48

+
+

0.81

+
+

GU

+
+

128

+
+

R877E

+
+

BXD

+
+

BXD13

+
+

76

+
+

M

+
+

R877E.CEL

+
+

0.026

+
+

0.067

+
+

1.558

+
+

125.63

+
+

61.20%

+
+

37.50%

+
+

1.20%

+
+

1.42

+
+

0.81

+
+

GU

+
+

129

+
+

R1397E-re

+
+

BXD

+
+

BXD75

+
+

58

+
+

M

+
+

R1397E-re.CEL

+
+

0.032

+
+

0.01

+
+

1.449

+
+

189.71

+
+

59.60%

+
+

39.00%

+
+

1.40%

+
+

1.39

+
+

0.82

+
+

GU

+
+

130

+
+

R2779E

+
+

BXD

+
+

BXD73

+
+

64

+
+

F

+
+

R2779E.CEL

+
+

0.012

+
+

0.038

+
+

1.746

+
+

121.11

+
+

59.60%

+
+

39.00%

+
+

1.40%

+
+

1.5

+
+

0.8

+
+

GU

+
+

131

+
+

R2708E

+
+

BXD

+
+

BXD9

+
+

60

+
+

F

+
+

R2708E.CEL

+
+

0.024

+
+

0.045

+
+

1.966

+
+

126.46

+
+

57.70%

+
+

40.70%

+
+

1.50%

+
+

1.4

+
+

0.84

+
+

GU

+
+

132

+
+

R2547E1

+
+

GDP

+
+

WSB/Ei

+
+

67

+
+

M

+
+

R2547E.CEL

+
+

0.041

+
+

0.039

+
+

2.14

+
+

90

+
+

58.20%

+
+

40.10%

+
+

1.60%

+
+

1.32

+
+

0.77

+
+

UTM RW

+
diff --git a/general/datasets/Eye_m2_0406_r/acknowledgment.rtf b/general/datasets/Eye_m2_0406_r/acknowledgment.rtf new file mode 100644 index 0000000..3f040d2 --- /dev/null +++ b/general/datasets/Eye_m2_0406_r/acknowledgment.rtf @@ -0,0 +1 @@ +
Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant. All arrays were processed at the VA Medical Center, Memphis by Weikuan Gu.
diff --git a/general/datasets/Eye_m2_0406_r/cases.rtf b/general/datasets/Eye_m2_0406_r/cases.rtf new file mode 100644 index 0000000..5cb5539 --- /dev/null +++ b/general/datasets/Eye_m2_0406_r/cases.rtf @@ -0,0 +1,50 @@ +

We used a set of 55 BXD recombinant inbred strains, 14 conventional inbred strains including C57BL/6J (B6) and DBA/2J (D2), and their reciprocal F1s. BXD strains were generated by crossing C57BL/6J with DBA/2J. The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D2). Physical maps in WebQTL incorporate approximately 2 million B6 vs D2 SNPs from Celera Genomics and from the Perlegen-NIEHS sequencing effort. BXD1 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

+ +

Please note that BXD24/TyJ (JAX stock number 000031) used in this study is also known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 stock that has now been rederived, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control.

+ +

BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues.

+ +

Mouse Diversity Panel (MDP). In addition to the BXD strains, we have profiled a MDP consisting 14 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons:

+ + + +

All eight parents of the Collaborative Cross (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/LtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ) have been included in the MDP. Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS.

+ +
    +
  1. 129S1/SvImJ
    +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) also carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene.
  2. +
  3. A/J
    +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase-negative albino (c) mutant
  4. +
  5. BALB/cByJ
    +      Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list. A tyrosinase-negative albino (c) mutant
  6. +
  7. C3H/HeJ
    +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list. Important to note for this Eye dataset, C3H/HeJ is a Pdeb6 mutant with near total photoreceptor loss at maturity.
  8. +
  9. C57BL/6J
    +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
  10. +
  11. CAST/Ei
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
  12. +
  13. DBA/2J
    +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
  14. +
  15. KK/HlJ
    +     Sequenced by Perlegen/NIEHS
  16. +
  17. LG/J
    +     Paternal parent of the LGXSM panel
  18. +
  19. NOD/LtJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
  20. +
  21. NZO/HlLtJ
    +     Collaborative Cross strain
  22. +
  23. PWD/PhJ
    +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
  24. +
  25. PWK/PhJ
    +     Collaborative Cross strain; Phenome Project D list
  26. +
  27. WSB/EiJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
  28. +
  29. B6D2F1 and D2B6F1, aka F1 in some graphs and tables
    + F1 hybrids generated by crossing C57BL/6J with DBA/2J. These reciprocal F1 can be used to detect some imprinted genes.
  30. +
diff --git a/general/datasets/Eye_m2_0406_r/notes.rtf b/general/datasets/Eye_m2_0406_r/notes.rtf new file mode 100644 index 0000000..39475ab --- /dev/null +++ b/general/datasets/Eye_m2_0406_r/notes.rtf @@ -0,0 +1,18 @@ +

This study includes the following datasets:

+ + + +

This text file originally generated by RWW, May 26, 2006. Updated by RWW, May 27, 2006.

diff --git a/general/datasets/Eye_m2_0406_r/platform.rtf b/general/datasets/Eye_m2_0406_r/platform.rtf new file mode 100644 index 0000000..ac743ee --- /dev/null +++ b/general/datasets/Eye_m2_0406_r/platform.rtf @@ -0,0 +1,3 @@ +
+

Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequences as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

+
diff --git a/general/datasets/Eye_m2_0406_r/processing.rtf b/general/datasets/Eye_m2_0406_r/processing.rtf new file mode 100644 index 0000000..d23bc47 --- /dev/null +++ b/general/datasets/Eye_m2_0406_r/processing.rtf @@ -0,0 +1,20 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. The CEL files were processed using the RMA protocol. We processed the two batches together in RMA. + + +

After RMA processing all arrays were rank-order normalized. This second round of quantile normalization removes much residual non-linearity across arrays and forces every array to have the same distribution of values as the mean of all arrays. Comparative array data quality was then evaluated in DataDesk. Outlier arrays were flagged by visual inspection in DataDesk, usually by means of an analysis of scatter plots and more quantitatively by generating a correlation matrix of all arrays. Those arrays with mean correlation <0.96 versus all other arrays indicates trouble or a biological outlier). In some cases, outliers were expected, such as samples from strains with retinal degeneration (C3H/HeJ and BXD24) and samples from wild subspecies such as CAST/Ei, PWD/Ph, and PWK/Ph. However, when arrays were anomolous both within strain and across strains, they were often simply discarded. We tended to keep arrays that "conformed" to the expectation. The assumption in these cases is that anomolous data are much more likely due to experimental problem and errors than to informative biological variation. Approximately 8 arrays total were discarded in batches 1 and 2 combined.

+ +

After this process, the acceptable set of arrays was renormalized using all step as above, starting with the original RMA procedure, etc.

+ +

We then categorized arrays into XXX major "technical groups" depending on expression patterns as noted in scatterplots. This process of defining technical groups was done in DataDesk by manually "typing" arrays. These technical groups are apparently due to subtle within-batch effect that we do not yet understand and that cannot be corrected by quantile normalization. These XXX major technical groups are not obviously related to strain, sex, age, or any other known biological effect or variable. They are also not obviously related to any of the Affymetrix QC data types (3'/5' ratios, gain, etc.). Once the technical groups were defined, we forced the means of each probe set in the XX technical groups to the same value. This simple process partially removes a technical error of unknown origin in large expression array data sets.

+ +

We reviewed the final data set using a new method developed by RW Williams, Jeremy Peirce, and Hongqiang Li. For the full set of 140 arrays that passed standard QC protocols described above, we computed the strain means for the BXD strains, B6, D2, and F1s. Using this set of strain means we then computed LRS scores for all 45101 probe sets and counted the number of transcripts that generated QTLs with LRS values greater than 50. This value (e.g. 1000) represented the QTL harvest for the full data set. We then dropped a single array from the data set (n = 139 arrays), recomputed strain means, and recomputed the number of transcripts with LRS scores great than 50. This value is expected to typically reduce the number of QTLs that reach the criterion level (e.g., 950 QTLs > 50). This process was repeated for every array to obtain an array-specific difference value--the effect of removing that array on the total QTL count. For example, the loss of a single array might cause a decrease in 50 QTLs (1000-950). Values ranged from -90 (good0 to +38 (bad). This procedure is similar in some ways to a jackknife protocol, although we are not using this procedure to esimate an error term, but rather as a final method to polish a data set. By applying this procedure we discovered that a set of XX (7?) arrays could be excluded while simultaneously improving the total number of QTLs with values above 50.

+ +

During this final process we discovered that nearly XX arrays in the second batch had been mislabeled at some point in processing. We computed the correct strain membership of each array using a large number of Mendelian probe sets (more than 50) and comparing their match to standard SNP and microsatellite markers and the original array data set of November 2005. This allowed us to rescue a large number of arrays that were of very high quality.

+
diff --git a/general/datasets/Eye_m2_0406_r/summary.rtf b/general/datasets/Eye_m2_0406_r/summary.rtf new file mode 100644 index 0000000..68a4484 --- /dev/null +++ b/general/datasets/Eye_m2_0406_r/summary.rtf @@ -0,0 +1,3 @@ +
+

SUPERCEDED EYE DATA SET. The HEIMED April 2006 data set provides estimates of mRNA expression in whole eyes of 71 lines of young adult mice generated using 132 Affymetrix M430 2.0 arrays. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). We used pooled RNA samples, usually two independent pools; one male, one female, for each straion. This data set was processed using the RMA protocol. To simplify comparison among different transforms, RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units.

+
diff --git a/general/datasets/Eye_m2_0406_r/tissue.rtf b/general/datasets/Eye_m2_0406_r/tissue.rtf new file mode 100644 index 0000000..d8d345f --- /dev/null +++ b/general/datasets/Eye_m2_0406_r/tissue.rtf @@ -0,0 +1,7112 @@ +
+

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube.

+ +

Each array was hybridized with a pool of RNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

+ +

Dissecting and preparing eyes for RNA extraction

+ +
    +
  1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below).
  2. +
  3. Store RNA in 75% ethanol at –80 deg. C until use.
  4. +
+ +

Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we:

+ +
    +
  1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue)
  2. +
  3. allowed the homogenate to stand for 5 min at room temperature
  4. +
  5. added 0.2 ml of chloroform per 1 ml RNA STAT-60
  6. +
  7. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min
  8. +
  9. centrifuged at 12,000 G for 15 min
  10. +
  11. transfered the aqueous phase to a fresh tube
  12. +
  13. added 0.5 ml of isopropanol per 1 ml RNA STAT-60
  14. +
  15. vortexed and allowed sample to stand at room temperature for 5-10 min
  16. +
  17. centrifuged at 12,000 G for 10-15 min
  18. +
  19. removed the supernatant and washed the RNA pellet with 75% ethanol
  20. +
  21. stored the pellet in 75% ethanol at -80 deg C until use
  22. +
+ +

Sample Processing. Samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center lead by Drs. John Stuart and Weikuan Gu. All processing steps were performed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. centrigrade until use (one third roughly) or were immediately used for hybridization.

+ +

Dealing with Ocular Pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations taken from brown and beige colored mice tend to have faint residual pigmentation that affects hybridization signal. The key determinant of this interesting effect is the Tyrp1 (brown) locus on Chr 4 at about 80 Mb. Loci on Chr 4 that map at this location should be considered with skepticism and reviewed carefully. To address this problem Yan Jiao purified total RNA a second time using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204). This was done for 8 colored samples (R2534E2, R2578E2, R1441E2, R2537E2, R2536E2, R2589E2, R2539E2) in the first batch of arrays (the November 05 data set) of which 5 were finally included in this data set (cases in which the strain ID is labeled with asterisks in the table). This same protocol was used for all samples in the second batch added in April 2006.

+ +

Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. The first and second batches of array data, collectively represents a reasonably well balanced sample of males and females belonging to 62 strains, but without within-strain-by-sex replication. Six strains are represented only by male sample pools (BXD15, 28, 29, 55, 98, and DBA/2J. Four strains are represented only by a female pool sample (BXD1, 27, 73 and 86). Please use the probe sets 1427262_at (Xist, high in females) and probe set 1426438_at (Ddx3y, high in males) as quantitative surrogates for the sex balance in this data set.

+ +

Batch Structure: This data set consists of a two batches: the original batch that makes up the November 2005 data set and a new batch of 63 arrays (R0857E through R2649E, and R2682E through R2742E, non-consecutive identifiers) run in January 2006 by Dr. Yan Jiao. The arrays in the two batches are from two different lots. All arrays in the second batch were from Lot 4016879 (expiration date 12.28.06). We started working with a total of 140 arrays that passed initial crude quality control based on RNA quality and initial Affymetrix report file information such as 3'/5' ratio, scale factor, and percent present calls. A total of 130 arrays were finally approved for inclusion in this April 2006 data set. The complex normalization procedure is described below.

+ +

The table below summarizes information on strain, age, sex, original CEL filename, Affymetrix quality control values, and source of mice. Columns labeled "PDNN 2Z outlier" and "RMA 2Z outlier" list the fraction of probe sets with values that deviated more than 2 z units from the mean. Scale factor, background average, present, absent, marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files.

+ +

IN PROGRESS: PLEASE NOTE THAT THIS TABLE IS NOW BEING UPDATED TO INCLUDE BATCH 2 OF EARLY 2006.

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
ID +

tube ID

+
+

group_type

+
+

 Strain

+
+

age

+
+

 Sex

+
+

original

+ +

CEL

+ +

filename

+
+

PDNN

+ +

2Z

+ +

outlier

+
+

RMA

+ +

2Z

+ +

outlier

+
+

scale

+ +

factor

+
+

background

+ +

average

+
+

present

+
+

absent

+
+

marginal

+
+

AFFX-b-

+ +

ActinMur(3'/5')

+
+

AFFX-

+ +

GapdhMur(3'/5')

+
+

Source

+
+

1

+
+

R2533E1

+
+

GDP

+
+

129S1/SvImJ

+
+

60

+
+

M

+
+

R2533E.CEL

+
+

0.025

+
+

0.028

+
+

2.11

+
+

94

+
+

57.90%

+
+

40.50%

+
+

1.60%

+
+

1.37

+
+

0.78

+
+

UTM RW

+
+

2

+
+

R2595E1

+
+

GDP

+
+

129S1/SvImJ

+
+

59

+
+

F

+
+

R2595E.CEL

+
+

0.033

+
+

0.036

+
+

1.79

+
+

115

+
+

61.00%

+
+

37.50%

+
+

1.50%

+
+

1.46

+
+

0.77

+
+

UTM RW

+
+

3

+
+

R0754E2

+
+

GDP

+
+

A/J

+
+

60

+
+

M

+
+

R0754E.CEL

+
+

0.027

+
+

0.03

+
+

2.72

+
+

86

+
+

59.80%

+
+

38.70%

+
+

1.50%

+
+

1.36

+
+

0.76

+
+

JAX

+
+

4

+
+

R2546E1

+
+

GDP

+
+

A/J

+
+

66

+
+

F

+
+

R2545E.CEL

+
+

0.024

+
+

0.029

+
+

1.99

+
+

96

+
+

58.60%

+
+

39.70%

+
+

1.70%

+
+

1.47

+
+

0.78

+
+

UTM RW

+
+

5

+
+

R2601E1

+
+

GDP BXD

+
+

B6D2F1

+
+

73

+
+

F

+
+

R2601E.CEL

+
+

0.007

+
+

0.008

+
+

2.55

+
+

92

+
+

58.90%

+
+

39.60%

+
+

1.50%

+
+

1.44

+
+

0.78

+
+

UTM RW

+
+

6

+
+

R2602E1

+
+

GDP BXD

+
+

B6D2F1

+
+

73

+
+

M

+
+

R2602E.CEL

+
+

0.003

+
+

0.008

+
+

2.60

+
+

84

+
+

59.70%

+
+

38.80%

+
+

1.50%

+
+

1.37

+
+

0.78

+
+

UTM RW

+
+

7

+
+

R1672E1

+
+

GDP

+
+

BALB/cByJ

+
+

83

+
+

M

+
+

R1672E.CEL

+
+

0.043

+
+

0.039

+
+

2.22

+
+

111

+
+

59.90%

+
+

38.60%

+
+

1.50%

+
+

1.26

+
+

0.80

+
+

JAX

+
+

8

+
+

R1676E1

+
+

GDP

+
+

BALB/cByJ

+
+

83

+
+

F

+
+

R1676E.CEL

+
+

0.083

+
+

0.085

+
+

2.69

+
+

98

+
+

58.90%

+
+

39.60%

+
+

1.50%

+
+

1.46

+
+

0.74

+
+

JAX

+
+

9

+
+

R2581E1

+
+

BXD

+
+

BXD11

+
+

65

+
+

F

+
+

R2581E.CEL

+
+

0.009

+
+

0.021

+
+

1.94

+
+

89

+
+

62.10%

+
+

36.40%

+
+

1.60%

+
+

1.55

+
+

0.81

+
+

UTM RW

+
+

10

+
+

R2543E1

+
+

BXD

+
+

BXD12

+
+

63

+
+

M

+
+

R2543E.CEL

+
+

0.018

+
+

0.017

+
+

1.61

+
+

118

+
+

58.60%

+
+

39.90%

+
+

1.60%

+
+

1.43

+
+

0.77

+
+

UTM RW

+
+

11

+
+

R2586E1

+
+

BXD

+
+

BXD13

+
+

60

+
+

F

+
+

R2586E.CEL

+
+

0.259

+
+

0.258

+
+

2.01

+
+

74

+
+

56.40%

+
+

42.00%

+
+

1.60%

+
+

2.85

+
+

3.81

+
+

Glenn

+
+

12

+
+

R2557E1

+
+

BXD

+
+

BXD14

+
+

60

+
+

F

+
+

R2557E.CEL

+
+

0.012

+
+

0.027

+
+

1.83

+
+

99

+
+

62.50%

+
+

36.10%

+
+

1.40%

+
+

1.31

+
+

0.78

+
+

Glenn

+
+

13

+
+

R2567E1

+
+

BXD

+
+

BXD16

+
+

60

+
+

M

+
+

R2567E.CEL

+
+

0.048

+
+

0.058

+
+

2.24

+
+

82

+
+

56.70%

+
+

41.60%

+
+

1.70%

+
+

1.37

+
+

0.75

+
+

Glenn

+
+

14

+
+

R2559E1

+
+

BXD

+
+

BXD18

+
+

59

+
+

M

+
+

R2559E.CEL

+
+

0.01

+
+

0.012

+
+

1.65

+
+

104

+
+

60.80%

+
+

37.70%

+
+

1.50%

+
+

1.27

+
+

0.78

+
+

Glenn

+
+

15

+
+

R2560E1

+
+

BXD

+
+

BXD19

+
+

60

+
+

F

+
+

R2560E.CEL

+
+

0.009

+
+

0.012

+
+

1.79

+
+

98

+
+

60.90%

+
+

37.50%

+
+

1.60%

+
+

1.35

+
+

0.80

+
+

Glenn

+
+

16

+
+

R2597E1

+
+

BXD

+
+

BXD2

+
+

61

+
+

M

+
+

R2597E.CEL

+
+

0.005

+
+

0.012

+
+

2.37

+
+

94

+
+

60.30%

+
+

38.30%

+
+

1.50%

+
+

1.34

+
+

0.77

+
+

Glenn

+
+

17

+
+

R2584E1

+
+

BXD

+
+

BXD20

+
+

59

+
+

F

+
+

R2584E.CEL

+
+

0.011

+
+

0.017

+
+

2.07

+
+

84

+
+

59.30%

+
+

39.10%

+
+

1.60%

+
+

1.40

+
+

0.76

+
+

Glenn

+
+

18

+
+

R2541E2

+
+

BXD

+
+

BXD21

+
+

61

+
+

M

+
+

R2541E2.CEL

+
+

0.049

+
+

0.084

+
+

2.63

+
+

125

+
+

56.00%

+
+

42.40%

+
+

1.50%

+
+

1.29

+
+

0.78

+
+

UTM RW

+
+

19

+
+

R2553E1

+
+

BXD

+
+

BXD22

+
+

58

+
+

F

+
+

R2553E.CEL

+
+

0.004

+
+

0.01

+
+

1.95

+
+

111

+
+

59.90%

+
+

38.50%

+
+

1.50%

+
+

1.28

+
+

0.76

+
+

Glenn

+
+

20

+
+

R2558E1

+
+

BXD

+
+

BXD23

+
+

60

+
+

F

+
+

R2558E-2.CEL

+
+

0.018

+
+

0.027

+
+

1.91

+
+

115

+
+

59.90%

+
+

38.80%

+
+

1.40%

+
+

1.20

+
+

0.82

+
+

Glenn

+
+

21

+
+

R2589E2

+
+

BXD

+
+

BXD24

+
+

59

+
+

M

+
+

R2589E2.CEL

+
+

0.132

+
+

0.176

+
+

2.61

+
+

112

+
+

57.50%

+
+

40.90%

+
+

1.60%

+
+

1.24

+
+

0.80

+
+

Glenn

+
+

22

+
+

R2573E1

+
+

BXD

+
+

BXD25

+
+

67

+
+

F

+
+

R2573E-2.CEL

+
+

0.055

+
+

0.063

+
+

3.15

+
+

72

+
+

57.90%

+
+

40.70%

+
+

1.40%

+
+

1.77

+
+

0.97

+
+

UAB

+
+

23

+
+

R2562E1

+
+

BXD

+
+

BXD29

+
+

60

+
+

M

+
+

R2562E.CEL

+
+

0.007

+
+

0.01

+
+

1.65

+
+

116

+
+

59.90%

+
+

38.40%

+
+

1.70%

+
+

1.37

+
+

0.79

+
+

Glenn

+
+

24

+
+

R2598E1

+
+

BXD

+
+

BXD31

+
+

61

+
+

M

+
+

R2598E.CEL

+
+

0.006

+
+

0.013

+
+

1.99

+
+

106

+
+

60.90%

+
+

37.60%

+
+

1.50%

+
+

1.27

+
+

0.78

+
+

UTM RW

+
+

25

+
+

R2563E1

+
+

BXD

+
+

BXD32

+
+

63

+
+

F

+
+

R2563E.CEL

+
+

0.023

+
+

0.025

+
+

1.55

+
+

102

+
+

61.90%

+
+

36.70%

+
+

1.40%

+
+

1.50

+
+

0.80

+
+

UTM RW

+
+

26

+
+

R2542E1

+
+

BXD

+
+

BXD33

+
+

67

+
+

F

+
+

R2542E.CEL

+
+

0.058

+
+

0.062

+
+

2.13

+
+

97

+
+

56.50%

+
+

41.80%

+
+

1.60%

+
+

1.91

+
+

0.93

+
+

UTM RW

+
+

27

+
+

R2585E1

+
+

BXD

+
+

BXD34

+
+

60

+
+

M

+
+

R2585E.CEL

+
+

0.024

+
+

0.032

+
+

2.64

+
+

75

+
+

58.30%

+
+

40.00%

+
+

1.70%

+
+

1.25

+
+

0.77

+
+

Glenn

+
+

28

+
+

R2532E1

+
+

BXD

+
+

BXD38

+
+

62

+
+

M

+
+

R2532E.CEL

+
+

0.002

+
+

0.006

+
+

2.04

+
+

94

+
+

59.80%

+
+

38.70%

+
+

1.50%

+
+

1.37

+
+

0.80

+
+

UTM RW

+
+

29

+
+

R2574E1

+
+

BXD

+
+

BXD39

+
+

70

+
+

F

+
+

R2574E.CEL

+
+

0.003

+
+

0.008

+
+

1.98

+
+

91

+
+

61.20%

+
+

37.30%

+
+

1.50%

+
+

1.39

+
+

0.78

+
+

UTM RW

+
+

30

+
+

R2590E1

+
+

BXD

+
+

BXD40

+
+

60

+
+

M

+
+

R2590E.CEL

+
+

0.007

+
+

0.012

+
+

2.71

+
+

77

+
+

59.10%

+
+

39.30%

+
+

1.50%

+
+

1.40

+
+

0.77

+
+

Glenn

+
+

31

+
+

R2596E1

+
+

BXD

+
+

BXD42

+
+

59

+
+

M

+
+

R2596E.CEL

+
+

0.016

+
+

0.03

+
+

2.63

+
+

108

+
+

59.00%

+
+

39.60%

+
+

1.50%

+
+

1.24

+
+

0.80

+
+

Glenn

+
+

32

+
+

R2605E1

+
+

BXD

+
+

BXD43

+
+

79

+
+

M

+
+

R2607E.CEL

+
+

0.006

+
+

0.01

+
+

1.82

+
+

131

+
+

60.50%

+
+

38.20%

+
+

1.30%

+
+

1.32

+
+

0.80

+
+

UTM RW

+
+

33

+
+

R2594E1

+
+

BXD

+
+

BXD44

+
+

63

+
+

F

+
+

R2594E.CEL

+
+

0.014

+
+

0.024

+
+

1.77

+
+

117

+
+

59.80%

+
+

38.80%

+
+

1.40%

+
+

1.35

+
+

0.85

+
+

UTM RW

+
+

34

+
+

R2592E1

+
+

BXD

+
+

BXD45

+
+

62

+
+

M

+
+

R2592E.CEL

+
+

0.005

+
+

0.011

+
+

1.85

+
+

106

+
+

60.10%

+
+

38.60%

+
+

1.30%

+
+

1.43

+
+

0.85

+
+

UTM RW

+
+

35

+
+

R2606E1

+
+

BXD

+
+

BXD48

+
+

78

+
+

M

+
+

R2606E.CEL

+
+

0.007

+
+

0.015

+
+

2.56

+
+

106

+
+

58.90%

+
+

39.70%

+
+

1.40%

+
+

1.35

+
+

0.83

+
+

UTM RW

+
+

36

+
+

R2591E1

+
+

BXD

+
+

BXD5

+
+

60

+
+

F

+
+

R2591E.CEL

+
+

0.052

+
+

0.014

+
+

1.70

+
+

136

+
+

58.50%

+
+

40.00%

+
+

1.50%

+
+

1.33

+
+

0.78

+
+

Glenn

+
+

37

+
+

R2603E1

+
+

BXD

+
+

BXD51

+
+

66

+
+

F

+
+

R2603E.CEL

+
+

0.007

+
+

0.02

+
+

2.49

+
+

115

+
+

57.70%

+
+

40.80%

+
+

1.50%

+
+

1.24

+
+

0.79

+
+

UTM RW

+
+

38

+
+

R2570E1

+
+

BXD

+
+

BXD6

+
+

65

+
+

F

+
+

R2570E.CEL

+
+

0.013

+
+

0.017

+
+

1.99

+
+

87

+
+

58.50%

+
+

40.00%

+
+

1.50%

+
+

1.46

+
+

0.76

+
+

UTM RW

+
+

39

+
+

R2534E2

+
+

BXD

+
+

BXD61

+
+

70

+
+

F

+
+

R2534E2.CEL

+
+

0.03

+
+

0.058

+
+

2.47

+
+

118

+
+

57.90%

+
+

40.60%

+
+

1.50%

+
+

1.42

+
+

0.79

+
+

UTM RW

+
+

40

+
+

R2611E1

+
+

BXD

+
+

BXD64

+
+

68

+
+

M

+
+

R2611E.CEL

+
+

0.067

+
+

0.068

+
+

2.29

+
+

92

+
+

58.00%

+
+

40.50%

+
+

1.50%

+
+

1.57

+
+

1.06

+
+

UTM RW

+
+

41

+
+

R2583E1

+
+

BXD

+
+

BXD65

+
+

60

+
+

M

+
+

R2583E.CEL

+
+

0.027

+
+

0.03

+
+

2.49

+
+

70

+
+

56.90%

+
+

41.50%

+
+

1.60%

+
+

1.67

+
+

1.01

+
+

UTM RW

+
+

42

+
+

R2536E2

+
+

BXD

+
+

BXD66

+
+

64

+
+

F

+
+

R2536E2.CEL

+
+

0.067

+
+

0.139

+
+

2.74

+
+

109

+
+

56.10%

+
+

42.30%

+
+

1.70%

+
+

1.28

+
+

0.79

+
+

UTM RW

+
+

43

+
+

R2551E1

+
+

BXD

+
+

BXD68

+
+

67

+
+

F

+
+

R2551E.CEL

+
+

0.294

+
+

0.291

+
+

2.49

+
+

92

+
+

54.30%

+
+

44.10%

+
+

1.60%

+
+

2.91

+
+

1.55

+
+

UTM RW

+
+

44

+
+

R2593E1

+
+

BXD

+
+

BXD69

+
+

59

+
+

F

+
+

R2593E.CEL

+
+

0.027

+
+

0.038

+
+

1.67

+
+

128

+
+

59.20%

+
+

39.50%

+
+

1.30%

+
+

1.47

+
+

0.92

+
+

UTM RW

+
+

45

+
+

R2537E2

+
+

BXD

+
+

BXD70

+
+

59

+
+

M

+
+

R2537E2.CEL

+
+

0.049

+
+

0.092

+
+

2.93

+
+

99

+
+

58.00%

+
+

40.50%

+
+

1.60%

+
+

1.29

+
+

0.75

+
+

UTM RW

+
+

46

+
+

R2565E1

+
+

BXD

+
+

BXD75

+
+

61

+
+

F

+
+

R2565E.CEL

+
+

0.118

+
+

0.124

+
+

1.79

+
+

102

+
+

58.00%

+
+

40.50%

+
+

1.50%

+
+

2.31

+
+

3.47

+
+

UTM RW

+
+

47

+
+

R2538E1

+
+

BXD

+
+

BXD8

+
+

77

+
+

F

+
+

R2538E.CEL

+
+

0.033

+
+

0.056

+
+

1.91

+
+

102

+
+

61.20%

+
+

37.30%

+
+

1.50%

+
+

1.52

+
+

0.79

+
+

UTM RW

+
+

48

+
+

R2579E1

+
+

BXD

+
+

BXD80

+
+

65

+
+

F

+
+

R2579E.CEL

+
+

0.013

+
+

0.026

+
+

2.42

+
+

72

+
+

59.20%

+
+

39.40%

+
+

1.50%

+
+

1.73

+
+

0.82

+
+

UTM RW

+
+

49

+
+

R2540E1

+
+

BXD

+
+

BXD87

+
+

63

+
+

M

+
+

R2540E.CEL

+
+

0.014

+
+

0.034

+
+

2.33

+
+

93

+
+

61.10%

+
+

37.40%

+
+

1.40%

+
+

1.22

+
+

0.81

+
+

UTM RW

+
+

50

+
+

R2545E1

+
+

BXD

+
+

BXD89

+
+

67

+
+

M

+
+

R2546E.CEL

+
+

0.266

+
+

0.257

+
+

1.67

+
+

105

+
+

56.20%

+
+

42.30%

+
+

1.50%

+
+

3.60

+
+

9.84

+
+

UTM RW

+
+

51

+
+

R2569E1

+
+

BXD

+
+

BXD9

+
+

67

+
+

M

+
+

R2569E.CEL

+
+

0.256

+
+

0.239

+
+

1.75

+
+

87

+
+

55.10%

+
+

43.40%

+
+

1.50%

+
+

2.82

+
+

3.14

+
+

UTM RW

+
+

52

+
+

R2578E2

+
+

BXD

+
+

BXD90

+
+

61

+
+

F

+
+

R2578E2.CEL

+
+

0.041

+
+

0.062

+
+

2.79

+
+

92

+
+

58.60%

+
+

39.80%

+
+

1.60%

+
+

1.52

+
+

0.77

+
+

UTM RW

+
+

53

+
+

R2554E1

+
+

BXD

+
+

BXD96

+
+

67

+
+

M

+
+

R2554E.CEL

+
+

0.005

+
+

0.008

+
+

2.18

+
+

93

+
+

60.20%

+
+

38.30%

+
+

1.50%

+
+

1.46

+
+

0.77

+
+

UTM RW

+
+

54

+
+

R2577E1

+
+

BXD

+
+

BXD97

+
+

55

+
+

M

+
+

R2577E.CEL

+
+

0.065

+
+

0.069

+
+

2.07

+
+

77

+
+

59.50%

+
+

39.10%

+
+

1.40%

+
+

1.87

+
+

1.29

+
+

UTM RW

+
+

55

+
+

R1700E1

+
+

GDP

+
+

C3H/HeJ

+
+

83

+
+

F

+
+

R1700E.CEL

+
+

0.152

+
+

0.168

+
+

2.98

+
+

69

+
+

60.80%

+
+

37.90%

+
+

1.40%

+
+

1.48

+
+

0.78

+
+

UTM RW

+
+

56

+
+

R1704E1

+
+

GDP

+
+

C3H/HeJ

+
+

83

+
+

M

+
+

R1704E.CEL

+
+

0.154

+
+

0.165

+
+

2.58

+
+

88

+
+

60.10%

+
+

38.60%

+
+

1.30%

+
+

1.38

+
+

0.84

+
+

UTM RW

+
+

57

+
+

R0872E2

+
+

GDP BXD

+
+

C57BL/6J

+
+

66

+
+

M

+
+

R0872E.CEL

+
+

0.014

+
+

0.023

+
+

3.13

+
+

89

+
+

58.90%

+
+

39.60%

+
+

1.50%

+
+

1.30

+
+

0.79

+
+

UTM RW

+
+

58

+
+

R2607E1

+
+

GDP BXD

+
+

C57BL/6J

+
+

67

+
+

F

+
+

R2605E.CEL

+
+

0.008

+
+

0.018

+
+

2.43

+
+

115

+
+

58.60%

+
+

40.00%

+
+

1.40%

+
+

1.31

+
+

0.76

+
+

UTM RW

+
+

59

+
+

R2564E1

+
+

GDP

+
+

CAST/Ei

+
+

64

+
+

F

+
+

R2564E.CEL

+
+

0.124

+
+

0.105

+
+

1.94

+
+

89

+
+

58.50%

+
+

39.90%

+
+

1.60%

+
+

1.60

+
+

0.77

+
+

JAX

+
+

60

+
+

R2580E1

+
+

GDP

+
+

CAST/Ei

+
+

64

+
+

M

+
+

R2580E.CEL

+
+

0.123

+
+

0.109

+
+

2.09

+
+

95

+
+

58.20%

+
+

40.10%

+
+

1.70%

+
+

1.40

+
+

0.76

+
+

JAX

+
+

61

+
+

R2600E1

+
+

GDP BXD

+
+

D2B6F1

+
+

72

+
+

F

+
+

R2600E.CEL

+
+

0.008

+
+

0.02

+
+

2.47

+
+

95

+
+

58.10%

+
+

40.20%

+
+

1.70%

+
+

1.41

+
+

0.78

+
+

UTM RW

+
+

62

+
+

R2604E1

+
+

GDP BXD

+
+

D2B6F1

+
+

69

+
+

M

+
+

R2604E.CEL

+
+

0.005

+
+

0.014

+
+

2.66

+
+

90

+
+

59.40%

+
+

39.20%

+
+

1.50%

+
+

1.28

+
+

0.79

+
+

UTM RW

+
+

63

+
+

R2572E1

+
+

GDP BXD

+
+

DBA/2J

+
+

65

+
+

M

+
+

R2572E.CEL

+
+

0.091

+
+

0.106

+
+

2.41

+
+

79

+
+

55.50%

+
+

42.90%

+
+

1.60%

+
+

1.37

+
+

0.79

+
+

UTM RW

+
+

64

+
+

R2636E1

+
+

GDP

+
+

KK/HIJ

+
+

64

+
+

F

+
+

R2636E.CEL

+
+

0.044

+
+

0.043

+
+

2.61

+
+

93

+
+

58.90%

+
+

39.50%

+
+

1.50%

+
+

1.39

+
+

0.76

+
+

UTM RW

+
+

65

+
+

R2637E1

+
+

GDP

+
+

KK/HIJ

+
+

64

+
+

M

+
+

R2637E.CEL

+
+

0.056

+
+

0.036

+
+

2.19

+
+

103

+
+

59.40%

+
+

39.00%

+
+

1.50%

+
+

1.30

+
+

0.79

+
+

UTM RW

+
+

66

+
+

R0999E1

+
+

GDP

+
+

LG/J

+
+

57

+
+

F

+
+

R0999E.CEL

+
+

0.021

+
+

0.023

+
+

2.45

+
+

82

+
+

59.40%

+
+

39.10%

+
+

1.50%

+
+

1.38

+
+

0.79

+
+

UTM RW

+
+

67

+
+

R1004E1

+
+

GDP

+
+

LG/J

+
+

65

+
+

M

+
+

R1004E.CEL

+
+

0.025

+
+

0.028

+
+

2.44

+
+

92

+
+

58.70%

+
+

39.80%

+
+

1.50%

+
+

1.38

+
+

0.79

+
+

UTM RW

+
+

68

+
+

R1688E1

+
+

GDP

+
+

NOD/LtJ

+
+

66

+
+

F

+
+

R1688E.CEL

+
+

0.028

+
+

0.033

+
+

2.66

+
+

98

+
+

58.60%

+
+

39.90%

+
+

1.50%

+
+

1.26

+
+

0.80

+
+

JAX

+
+

69

+
+

R2566E1

+
+

GDP

+
+

NOD/LtJ

+
+

76

+
+

M

+
+

R2566E-2.CEL

+
+

0.036

+
+

0.04

+
+

3.03

+
+

69

+
+

59.80%

+
+

38.80%

+
+

1.50%

+
+

1.38

+
+

0.75

+
+

UTM RW

+
+

70

+
+

R2535E1

+
+

GDP

+
+

NZO/H1LtJ

+
+

62

+
+

F

+
+

R2535E.CEL

+
+

0.037

+
+

0.062

+
+

1.89

+
+

86

+
+

60.40%

+
+

38.20%

+
+

1.40%

+
+

1.41

+
+

0.85

+
+

JAX

+
+

71

+
+

R2550E1

+
+

GDP

+
+

NZO/HILtJ

+
+

96

+
+

M

+
+

R2550E.CEL

+
+

0.025

+
+

0.029

+
+

1.79

+
+

87

+
+

60.70%

+
+

37.80%

+
+

1.50%

+
+

1.52

+
+

0.82

+
+

JAX

+
+

72

+
+

R2634E1

+
+

GDP

+
+

PWD/PhJ

+
+

62

+
+

F

+
+

R2635E.CEL

+
+

0.126

+
+

0.114

+
+

3.29

+
+

90

+
+

55.90%

+
+

42.50%

+
+

1.60%

+
+

1.57

+
+

0.81

+
+

JAX

+
+

73

+
+

R2635E1

+
+

GDP

+
+

PWD/PhJ

+
+

62

+
+

M

+
+

R2634E.CEL

+
+

0.15

+
+

0.137

+
+

3.72

+
+

80

+
+

54.20%

+
+

44.10%

+
+

1.70%

+
+

1.53

+
+

0.85

+
+

JAX

+
+

74

+
+

R2544E1

+
+

GDP

+
+

PWK/PhJ

+
+

63

+
+

F

+
+

R2544E.CEL

+
+

0.174

+
+

0.175

+
+

2.20

+
+

108

+
+

54.90%

+
+

43.50%

+
+

1.70%

+
+

1.36

+
+

0.82

+
+

JAX

+
+

75

+
+

R2549E1

+
+

GDP

+
+

PWK/PhJ

+
+

83

+
+

M

+
+

R2549E.CEL

+
+

0.103

+
+

0.087

+
+

2.28

+
+

84

+
+

57.30%

+
+

41.20%

+
+

1.50%

+
+

1.57

+
+

0.83

+
+

JAX

+
+

76

+
+

R2368E1

+
+

GDP

+
+

WSB/EI

+
+

67

+
+

F

+
+

R2368E.CEL

+
+

0.041

+
+

0.047

+
+

2.57

+
+

86

+
+

59.50%

+
+

39.10%

+
+

1.40%

+
+

1.29

+
+

0.74

+
+

UTM RW

+
+

77

+
+

R2704E

+
+

BXD

+
+

BXD1

+
+

59

+
+

F

+
+

R2704E.CEL

+
+

0.029

+
+

0.03

+
+

2.066

+
+

139.61

+
+

56.60%

+
+

41.90%

+
+

1.50%

+
+

1.31

+
+

0.81

+
+

GU

+
+

78

+
+

R2612E

+
+

BXD

+
+

BXD11

+
+

70

+
+

M

+
+

R2612E.CEL

+
+

0.101

+
+

0.112

+
+

1.83

+
+

142.03

+
+

58.20%

+
+

40.50%

+
+

1.40%

+
+

1.78

+
+

0.81

+
+

GU

+
+

79

+
+

R2742E

+
+

BXD

+
+

BXD12

+
+

71

+
+

F

+
+

R2742E.CEL

+
+

0.073

+
+

0.077

+
+

2.127

+
+

134.14

+
+

57.00%

+
+

41.60%

+
+

1.40%

+
+

1.64

+
+

0.78

+
+

GU

+
+

80

+
+

R1086E

+
+

BXD

+
+

BXD23

+
+

55

+
+

M

+
+

R1086E.CEL

+
+

0.043

+
+

0.034

+
+

2.233

+
+

125.05

+
+

58.60%

+
+

39.90%

+
+

1.50%

+
+

1.43

+
+

0.77

+
+

GU

+
+

81

+
+

R2716E

+
+

BXD

+
+

BXD15

+
+

60

+
+

M

+
+

R2716E.CEL

+
+

0.035

+
+

0.037

+
+

2.015

+
+

150.83

+
+

56.40%

+
+

42.10%

+
+

1.60%

+
+

1.42

+
+

0.81

+
+

GU

+
+

82

+
+

R2711E

+
+

BXD

+
+

BXD16

+
+

61

+
+

F

+
+

R2711E.CEL

+
+

0.032

+
+

0.021

+
+

1.953

+
+

118.53

+
+

59.00%

+
+

39.60%

+
+

1.50%

+
+

1.45

+
+

0.8

+
+

GU

+
+

83

+
+

R2720E

+
+

BXD

+
+

BXD18

+
+

59

+
+

F

+
+

R2720E.CEL

+
+

0.014

+
+

0.019

+
+

2.32

+
+

99.93

+
+

59.50%

+
+

39.00%

+
+

1.50%

+
+

1.33

+
+

0.77

+
+

GU

+
+

84

+
+

R2713E

+
+

BXD

+
+

BXD19

+
+

60

+
+

M

+
+

R2713E.CEL

+
+

0.055

+
+

0.021

+
+

1.67

+
+

120.82

+
+

60.20%

+
+

38.30%

+
+

1.50%

+
+

1.45

+
+

0.8

+
+

GU

+
+

85

+
+

R1231E

+
+

BXD

+
+

BXD2

+
+

64

+
+

F

+
+

R1231E.CEL

+
+

0.044

+
+

0.037

+
+

2.197

+
+

138.73

+
+

57.30%

+
+

41.30%

+
+

1.40%

+
+

1.41

+
+

0.77

+
+

GU

+
+

86

+
+

R2731E

+
+

BXD

+
+

BXD20

+
+

60

+
+

M

+
+

R2731E.CEL

+
+

0.017

+
+

0.019

+
+

1.825

+
+

147

+
+

59.00%

+
+

39.50%

+
+

1.50%

+
+

1.4

+
+

0.8

+
+

GU

+
+

87

+
+

R2702E

+
+

BXD

+
+

BXD21

+
+

59

+
+

F

+
+

R2702E.CEL

+
+

0.009

+
+

0.008

+
+

1.811

+
+

128.65

+
+

59.40%

+
+

39.10%

+
+

1.40%

+
+

1.26

+
+

0.8

+
+

GU

+
+

88

+
+

R2700E

+
+

BXD

+
+

BXD22

+
+

59

+
+

M

+
+

R2700E.CEL

+
+

0.01

+
+

0.015

+
+

1.858

+
+

102.96

+
+

61.50%

+
+

37.10%

+
+

1.30%

+
+

1.48

+
+

0.79

+
+

GU

+
+

89

+
+

R1128E

+
+

BXD

+
+

BXD14

+
+

65

+
+

M

+
+

R1128E.CEL

+
+

0.037

+
+

0.038

+
+

2.366

+
+

118.39

+
+

57.30%

+
+

41.30%

+
+

1.40%

+
+

1.45

+
+

0.81

+
+

GU

+
+

90

+
+

R2719E

+
+

BXD

+
+

BXD24

+
+

123

+
+

F

+
+

R2719E.CEL

+
+

0.112

+
+

0.111

+
+

1.47

+
+

140.38

+
+

61.50%

+
+

37.20%

+
+

1.30%

+
+

1.38

+
+

0.79

+
+

GU

+
+

91

+
+

R2683E

+
+

BXD

+
+

BXD25

+
+

58

+
+

M

+
+

R2683E.CEL

+
+

0.068

+
+

0.068

+
+

1.777

+
+

115.64

+
+

58.30%

+
+

40.30%

+
+

1.40%

+
+

2.01

+
+

0.79

+
+

GU

+
+

92

+
+

R2703E

+
+

BXD

+
+

BXD27

+
+

60

+
+

F

+
+

R2703E.CEL

+
+

0.008

+
+

0.012

+
+

1.263

+
+

134.78

+
+

62.60%

+
+

36.10%

+
+

1.40%

+
+

1.44

+
+

0.78

+
+

GU

+
+

93

+
+

R2721E

+
+

BXD

+
+

BXD28

+
+

60

+
+

M

+
+

R2721E.CEL

+
+

0.04

+
+

0.048

+
+

2.065

+
+

157.39

+
+

56.10%

+
+

42.40%

+
+

1.50%

+
+

1.31

+
+

0.81

+
+

GU

+
+

94

+
+

R1258E

+
+

BXD

+
+

BXD31

+
+

57

+
+

F

+
+

R1258E.CEL

+
+

0.037

+
+

0.036

+
+

2.063

+
+

117.09

+
+

59.00%

+
+

39.50%

+
+

1.50%

+
+

1.54

+
+

0.78

+
+

GU

+
+

95

+
+

R1216E

+
+

BXD

+
+

BXD32

+
+

76

+
+

M

+
+

R1216E.CEL

+
+

0.05

+
+

0.049

+
+

2.23

+
+

111.99

+
+

58.80%

+
+

39.80%

+
+

1.40%

+
+

1.35

+
+

0.79

+
+

GU

+
+

96

+
+

R857E

+
+

BXD

+
+

BXD33

+
+

77

+
+

M

+
+

R857E.CEL

+
+

0.078

+
+

0.108

+
+

1.737

+
+

113.98

+
+

61.90%

+
+

36.70%

+
+

1.30%

+
+

1.6

+
+

0.77

+
+

GU

+
+

97

+
+

R859E

+
+

BXD

+
+

BXD90

+
+

72

+
+

M

+
+

R859E.CEL

+
+

0.028

+
+

0.02

+
+

1.847

+
+

152.22

+
+

57.90%

+
+

40.70%

+
+

1.40%

+
+

1.36

+
+

0.77

+
+

GU

+
+

98

+
+

R1207E

+
+

BXD

+
+

BXD66

+
+

83

+
+

M

+
+

R1207E.CEL

+
+

0.017

+
+

0.012

+
+

1.681

+
+

136.86

+
+

60.40%

+
+

38.10%

+
+

1.50%

+
+

1.45

+
+

0.77

+
+

GU

+
+

99

+
+

R2710E

+
+

BXD

+
+

BXD38

+
+

55

+
+

F

+
+

R2710E.CEL

+
+

0.033

+
+

0.031

+
+

2.112

+
+

122.1

+
+

58.80%

+
+

39.80%

+
+

1.40%

+
+

1.37

+
+

0.78

+
+

GU

+
+

100

+
+

R2695E

+
+

BXD

+
+

BXD39

+
+

59

+
+

M

+
+

R2695E.CEL

+
+

0.018

+
+

0.016

+
+

1.638

+
+

122.7

+
+

60.80%

+
+

37.80%

+
+

1.50%

+
+

1.42

+
+

0.8

+
+

GU

+
+

101

+
+

R2699E

+
+

BXD

+
+

BXD40

+
+

59

+
+

F

+
+

R2699E.CEL

+
+

0.014

+
+

0.015

+
+

1.827

+
+

105.23

+
+

61.70%

+
+

36.90%

+
+

1.40%

+
+

1.42

+
+

0.81

+
+

GU

+
+

102

+
+

R2696E

+
+

BXD

+
+

BXD42

+
+

58

+
+

F

+
+

R2696E.CEL

+
+

0.01

+
+

0.017

+
+

1.622

+
+

118.95

+
+

62.00%

+
+

36.60%

+
+

1.50%

+
+

1.53

+
+

0.79

+
+

GU

+
+

103

+
+

R943E-2

+
+

BXD

+
+

BXD64

+
+

56

+
+

F

+
+

R943E-2.CEL

+
+

0.024

+
+

0.021

+
+

1.591

+
+

141.34

+
+

60.10%

+
+

38.40%

+
+

1.50%

+
+

1.32

+
+

0.76

+
+

GU

+
+

104

+
+

R967E

+
+

BXD

+
+

BXD48

+
+

64

+
+

F

+
+

R967E.CEL

+
+

0.101

+
+

0.052

+
+

1.948

+
+

130.95

+
+

57.30%

+
+

41.20%

+
+

1.50%

+
+

1.63

+
+

0.81

+
+

GU

+
+

105

+
+

R2714E

+
+

BXD

+
+

BXD5

+
+

58

+
+

M

+
+

R2714E.CEL

+
+

0.047

+
+

0.014

+
+

1.404

+
+

144.35

+
+

60.60%

+
+

37.90%

+
+

1.50%

+
+

1.43

+
+

0.79

+
+

GU

+
+

106

+
+

R1042E

+
+

BXD

+
+

BXD51

+
+

62

+
+

M

+
+

R1042E.CEL

+
+

0.028

+
+

0.027

+
+

2.352

+
+

104.12

+
+

58.70%

+
+

39.90%

+
+

1.40%

+
+

1.53

+
+

0.82

+
+

GU

+
+

107

+
+

R2690E

+
+

BXD

+
+

BXD55

+
+

65

+
+

M

+
+

R2690E.CEL

+
+

0.081

+
+

0.067

+
+

1.887

+
+

164.01

+
+

56.10%

+
+

42.30%

+
+

1.60%

+
+

1.43

+
+

0.8

+
+

GU

+
+

108

+
+

R2694E

+
+

BXD

+
+

BXD6

+
+

58

+
+

M

+
+

R2694E.CEL

+
+

0.012

+
+

0.018

+
+

1.983

+
+

97.23

+
+

61.60%

+
+

37.10%

+
+

1.30%

+
+

1.39

+
+

0.82

+
+

GU

+
+

109

+
+

R975E

+
+

BXD

+
+

BXD70

+
+

64

+
+

F

+
+

R975E.CEL

+
+

0.028

+
+

0.024

+
+

1.841

+
+

137.97

+
+

58.00%

+
+

40.50%

+
+

1.40%

+
+

1.36

+
+

0.79

+
+

GU

+
+

110

+
+

R2684E

+
+

BXD

+
+

BXD61

+
+

62

+
+

M

+
+

R2684E.CEL

+
+

0.031

+
+

0.032

+
+

2.01

+
+

131.03

+
+

57.00%

+
+

41.50%

+
+

1.50%

+
+

1.34

+
+

0.78

+
+

GU

+
+

111

+
+

R994E

+
+

BXD

+
+

BXD43

+
+

60

+
+

F

+
+

R994E.CEL

+
+

0.013

+
+

0.014

+
+

1.966

+
+

113.12

+
+

60.80%

+
+

37.80%

+
+

1.40%

+
+

1.66

+
+

0.8

+
+

GU

+
+

112

+
+

R2610E

+
+

BXD

+
+

BXD44

+
+

68

+
+

M

+
+

R2610E.CEL

+
+

0.013

+
+

0.009

+
+

1.814

+
+

142.91

+
+

59.00%

+
+

39.50%

+
+

1.50%

+
+

1.35

+
+

0.8

+
+

GU

+
+

113

+
+

R2689E

+
+

BXD

+
+

BXD65

+
+

63

+
+

F

+
+

R2689E.CEL

+
+

0.008

+
+

0.008

+
+

1.721

+
+

142.44

+
+

59.90%

+
+

38.60%

+
+

1.50%

+
+

1.38

+
+

0.76

+
+

GU

+
+

114

+
+

R2727E

+
+

BXD

+
+

BXD69

+
+

65

+
+

M

+
+

R2727E.CEL

+
+

0.01

+
+

0.008

+
+

1.578

+
+

143.86

+
+

60.30%

+
+

38.30%

+
+

1.40%

+
+

1.34

+
+

0.77

+
+

GU

+
+

115

+
+

R2726E

+
+

BXD

+
+

BXD68

+
+

64

+
+

M

+
+

R2726E.CEL

+
+

0.125

+
+

0.025

+
+

1.811

+
+

153.09

+
+

58.70%

+
+

39.80%

+
+

1.50%

+
+

1.39

+
+

0.78

+
+

GU

+
+

116

+
+

R2732E

+
+

BXD

+
+

BXD45

+
+

63

+
+

F

+
+

R2732E.CEL

+
+

0.039

+
+

0.036

+
+

2.154

+
+

122.45

+
+

56.50%

+
+

42.10%

+
+

1.40%

+
+

1.8

+
+

0.83

+
+

GU

+
+

117

+
+

R2709E

+
+

BXD

+
+

BXD8

+
+

61

+
+

M

+
+

R2709E.CEL

+
+

0.012

+
+

0.011

+
+

1.99

+
+

99.79

+
+

60.90%

+
+

37.60%

+
+

1.50%

+
+

1.42

+
+

0.76

+
+

GU

+
+

118

+
+

R2686E

+
+

BXD

+
+

BXD80

+
+

61

+
+

M

+
+

R2686E.CEL

+
+

0.046

+
+

0.05

+
+

2.342

+
+

119.63

+
+

56.00%

+
+

42.60%

+
+

1.50%

+
+

1.38

+
+

0.79

+
+

GU

+
+

119

+
+

R2692E

+
+

BXD

+
+

BXD85

+
+

63

+
+

F

+
+

R2692E.CEL

+
+

0.006

+
+

0.007

+
+

1.423

+
+

160.87

+
+

60.20%

+
+

38.30%

+
+

1.40%

+
+

1.46

+
+

0.79

+
+

GU

+
+

120

+
+

R2715E

+
+

BXD

+
+

BXD85

+
+

91

+
+

M

+
+

R2715E.CEL

+
+

0.007

+
+

0.008

+
+

1.488

+
+

142.6

+
+

61.20%

+
+

37.30%

+
+

1.40%

+
+

1.5

+
+

0.78

+
+

GU

+
+

121

+
+

R1405E

+
+

BXD

+
+

BXD86

+
+

58

+
+

F

+
+

R1405E.CEL

+
+

0.053

+
+

0.052

+
+

2.351

+
+

119.34

+
+

56.40%

+
+

42.20%

+
+

1.40%

+
+

1.64

+
+

0.81

+
+

GU

+
+

122

+
+

R2724E

+
+

BXD

+
+

BXD87

+
+

63

+
+

F

+
+

R2724E.CEL

+
+

0.013

+
+

0.019

+
+

1.906

+
+

113.71

+
+

60.70%

+
+

37.90%

+
+

1.40%

+
+

1.45

+
+

0.79

+
+

GU

+
+

123

+
+

R1451E

+
+

BXD

+
+

BXD34

+
+

61

+
+

F

+
+

R1451E.CEL

+
+

0.01

+
+

0.009

+
+

1.843

+
+

140.05

+
+

59.00%

+
+

39.50%

+
+

1.50%

+
+

1.42

+
+

0.81

+
+

GU

+
+

124

+
+

R1433E

+
+

BXD

+
+

BXD89

+
+

63

+
+

F

+
+

R1433E.CEL

+
+

0.029

+
+

0.026

+
+

2.241

+
+

115.86

+
+

57.70%

+
+

40.80%

+
+

1.50%

+
+

1.41

+
+

0.78

+
+

GU

+
+

125

+
+

R2733E

+
+

BXD

+
+

BXD96

+
+

67

+
+

F

+
+

R2733E.CEL

+
+

0.024

+
+

0.054

+
+

1.7

+
+

113.99

+
+

62.10%

+
+

36.60%

+
+

1.30%

+
+

1.4

+
+

0.78

+
+

GU

+
+

126

+
+

R2649E

+
+

BXD

+
+

BXD97

+
+

74

+
+

F

+
+

R2649E.CEL

+
+

0.029

+
+

0.032

+
+

2.343

+
+

119.04

+
+

57.50%

+
+

41.20%

+
+

1.40%

+
+

1.53

+
+

0.8

+
+

GU

+
+

127

+
+

R2688E

+
+

BXD

+
+

BXD98

+
+

67

+
+

M

+
+

R2688E.CEL

+
+

0.032

+
+

0.03

+
+

1.772

+
+

145.24

+
+

58.50%

+
+

40.00%

+
+

1.50%

+
+

1.48

+
+

0.81

+
+

GU

+
+

128

+
+

R877E

+
+

BXD

+
+

BXD13

+
+

76

+
+

M

+
+

R877E.CEL

+
+

0.026

+
+

0.067

+
+

1.558

+
+

125.63

+
+

61.20%

+
+

37.50%

+
+

1.20%

+
+

1.42

+
+

0.81

+
+

GU

+
+

129

+
+

R1397E-re

+
+

BXD

+
+

BXD75

+
+

58

+
+

M

+
+

R1397E-re.CEL

+
+

0.032

+
+

0.01

+
+

1.449

+
+

189.71

+
+

59.60%

+
+

39.00%

+
+

1.40%

+
+

1.39

+
+

0.82

+
+

GU

+
+

130

+
+

R2779E

+
+

BXD

+
+

BXD73

+
+

64

+
+

F

+
+

R2779E.CEL

+
+

0.012

+
+

0.038

+
+

1.746

+
+

121.11

+
+

59.60%

+
+

39.00%

+
+

1.40%

+
+

1.5

+
+

0.8

+
+

GU

+
+

131

+
+

R2708E

+
+

BXD

+
+

BXD9

+
+

60

+
+

F

+
+

R2708E.CEL

+
+

0.024

+
+

0.045

+
+

1.966

+
+

126.46

+
+

57.70%

+
+

40.70%

+
+

1.50%

+
+

1.4

+
+

0.84

+
+

GU

+
+

132

+
+

R2547E1

+
+

GDP

+
+

WSB/Ei

+
+

67

+
+

M

+
+

R2547E.CEL

+
+

0.041

+
+

0.039

+
+

2.14

+
+

90

+
+

58.20%

+
+

40.10%

+
+

1.60%

+
+

1.32

+
+

0.77

+
+

UTM RW

+
diff --git a/general/datasets/Eye_m2_0608_r/summary.rtf b/general/datasets/Eye_m2_0608_r/summary.rtf new file mode 100644 index 0000000..58d1226 --- /dev/null +++ b/general/datasets/Eye_m2_0608_r/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 61, Name: Eye M430v2 (Sep08) RMA \ No newline at end of file diff --git a/general/datasets/Eye_m2_0906_r/acknowledgment.rtf b/general/datasets/Eye_m2_0906_r/acknowledgment.rtf new file mode 100644 index 0000000..3f040d2 --- /dev/null +++ b/general/datasets/Eye_m2_0906_r/acknowledgment.rtf @@ -0,0 +1 @@ +
Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant. All arrays were processed at the VA Medical Center, Memphis by Weikuan Gu.
diff --git a/general/datasets/Eye_m2_0906_r/cases.rtf b/general/datasets/Eye_m2_0906_r/cases.rtf new file mode 100644 index 0000000..5cb5539 --- /dev/null +++ b/general/datasets/Eye_m2_0906_r/cases.rtf @@ -0,0 +1,50 @@ +

We used a set of 55 BXD recombinant inbred strains, 14 conventional inbred strains including C57BL/6J (B6) and DBA/2J (D2), and their reciprocal F1s. BXD strains were generated by crossing C57BL/6J with DBA/2J. The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D2). Physical maps in WebQTL incorporate approximately 2 million B6 vs D2 SNPs from Celera Genomics and from the Perlegen-NIEHS sequencing effort. BXD1 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

+ +

Please note that BXD24/TyJ (JAX stock number 000031) used in this study is also known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 stock that has now been rederived, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control.

+ +

BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues.

+ +

Mouse Diversity Panel (MDP). In addition to the BXD strains, we have profiled a MDP consisting 14 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons:

+ + + +

All eight parents of the Collaborative Cross (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/LtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ) have been included in the MDP. Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS.

+ +
    +
  1. 129S1/SvImJ
    +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) also carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene.
  2. +
  3. A/J
    +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase-negative albino (c) mutant
  4. +
  5. BALB/cByJ
    +      Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list. A tyrosinase-negative albino (c) mutant
  6. +
  7. C3H/HeJ
    +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list. Important to note for this Eye dataset, C3H/HeJ is a Pdeb6 mutant with near total photoreceptor loss at maturity.
  8. +
  9. C57BL/6J
    +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
  10. +
  11. CAST/Ei
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
  12. +
  13. DBA/2J
    +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
  14. +
  15. KK/HlJ
    +     Sequenced by Perlegen/NIEHS
  16. +
  17. LG/J
    +     Paternal parent of the LGXSM panel
  18. +
  19. NOD/LtJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
  20. +
  21. NZO/HlLtJ
    +     Collaborative Cross strain
  22. +
  23. PWD/PhJ
    +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
  24. +
  25. PWK/PhJ
    +     Collaborative Cross strain; Phenome Project D list
  26. +
  27. WSB/EiJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
  28. +
  29. B6D2F1 and D2B6F1, aka F1 in some graphs and tables
    + F1 hybrids generated by crossing C57BL/6J with DBA/2J. These reciprocal F1 can be used to detect some imprinted genes.
  30. +
diff --git a/general/datasets/Eye_m2_0906_r/notes.rtf b/general/datasets/Eye_m2_0906_r/notes.rtf new file mode 100644 index 0000000..39475ab --- /dev/null +++ b/general/datasets/Eye_m2_0906_r/notes.rtf @@ -0,0 +1,18 @@ +

This study includes the following datasets:

+ + + +

This text file originally generated by RWW, May 26, 2006. Updated by RWW, May 27, 2006.

diff --git a/general/datasets/Eye_m2_0906_r/platform.rtf b/general/datasets/Eye_m2_0906_r/platform.rtf new file mode 100644 index 0000000..ac743ee --- /dev/null +++ b/general/datasets/Eye_m2_0906_r/platform.rtf @@ -0,0 +1,3 @@ +
+

Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequences as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

+
diff --git a/general/datasets/Eye_m2_0906_r/processing.rtf b/general/datasets/Eye_m2_0906_r/processing.rtf new file mode 100644 index 0000000..d23bc47 --- /dev/null +++ b/general/datasets/Eye_m2_0906_r/processing.rtf @@ -0,0 +1,20 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. The CEL files were processed using the RMA protocol. We processed the two batches together in RMA. + + +

After RMA processing all arrays were rank-order normalized. This second round of quantile normalization removes much residual non-linearity across arrays and forces every array to have the same distribution of values as the mean of all arrays. Comparative array data quality was then evaluated in DataDesk. Outlier arrays were flagged by visual inspection in DataDesk, usually by means of an analysis of scatter plots and more quantitatively by generating a correlation matrix of all arrays. Those arrays with mean correlation <0.96 versus all other arrays indicates trouble or a biological outlier). In some cases, outliers were expected, such as samples from strains with retinal degeneration (C3H/HeJ and BXD24) and samples from wild subspecies such as CAST/Ei, PWD/Ph, and PWK/Ph. However, when arrays were anomolous both within strain and across strains, they were often simply discarded. We tended to keep arrays that "conformed" to the expectation. The assumption in these cases is that anomolous data are much more likely due to experimental problem and errors than to informative biological variation. Approximately 8 arrays total were discarded in batches 1 and 2 combined.

+ +

After this process, the acceptable set of arrays was renormalized using all step as above, starting with the original RMA procedure, etc.

+ +

We then categorized arrays into XXX major "technical groups" depending on expression patterns as noted in scatterplots. This process of defining technical groups was done in DataDesk by manually "typing" arrays. These technical groups are apparently due to subtle within-batch effect that we do not yet understand and that cannot be corrected by quantile normalization. These XXX major technical groups are not obviously related to strain, sex, age, or any other known biological effect or variable. They are also not obviously related to any of the Affymetrix QC data types (3'/5' ratios, gain, etc.). Once the technical groups were defined, we forced the means of each probe set in the XX technical groups to the same value. This simple process partially removes a technical error of unknown origin in large expression array data sets.

+ +

We reviewed the final data set using a new method developed by RW Williams, Jeremy Peirce, and Hongqiang Li. For the full set of 140 arrays that passed standard QC protocols described above, we computed the strain means for the BXD strains, B6, D2, and F1s. Using this set of strain means we then computed LRS scores for all 45101 probe sets and counted the number of transcripts that generated QTLs with LRS values greater than 50. This value (e.g. 1000) represented the QTL harvest for the full data set. We then dropped a single array from the data set (n = 139 arrays), recomputed strain means, and recomputed the number of transcripts with LRS scores great than 50. This value is expected to typically reduce the number of QTLs that reach the criterion level (e.g., 950 QTLs > 50). This process was repeated for every array to obtain an array-specific difference value--the effect of removing that array on the total QTL count. For example, the loss of a single array might cause a decrease in 50 QTLs (1000-950). Values ranged from -90 (good0 to +38 (bad). This procedure is similar in some ways to a jackknife protocol, although we are not using this procedure to esimate an error term, but rather as a final method to polish a data set. By applying this procedure we discovered that a set of XX (7?) arrays could be excluded while simultaneously improving the total number of QTLs with values above 50.

+ +

During this final process we discovered that nearly XX arrays in the second batch had been mislabeled at some point in processing. We computed the correct strain membership of each array using a large number of Mendelian probe sets (more than 50) and comparing their match to standard SNP and microsatellite markers and the original array data set of November 2005. This allowed us to rescue a large number of arrays that were of very high quality.

+
diff --git a/general/datasets/Eye_m2_0906_r/summary.rtf b/general/datasets/Eye_m2_0906_r/summary.rtf new file mode 100644 index 0000000..68a4484 --- /dev/null +++ b/general/datasets/Eye_m2_0906_r/summary.rtf @@ -0,0 +1,3 @@ +
+

SUPERCEDED EYE DATA SET. The HEIMED April 2006 data set provides estimates of mRNA expression in whole eyes of 71 lines of young adult mice generated using 132 Affymetrix M430 2.0 arrays. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). We used pooled RNA samples, usually two independent pools; one male, one female, for each straion. This data set was processed using the RMA protocol. To simplify comparison among different transforms, RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units.

+
diff --git a/general/datasets/Eye_m2_0906_r/tissue.rtf b/general/datasets/Eye_m2_0906_r/tissue.rtf new file mode 100644 index 0000000..d8d345f --- /dev/null +++ b/general/datasets/Eye_m2_0906_r/tissue.rtf @@ -0,0 +1,7112 @@ +
+

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube.

+ +

Each array was hybridized with a pool of RNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

+ +

Dissecting and preparing eyes for RNA extraction

+ +
    +
  1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below).
  2. +
  3. Store RNA in 75% ethanol at –80 deg. C until use.
  4. +
+ +

Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we:

+ +
    +
  1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue)
  2. +
  3. allowed the homogenate to stand for 5 min at room temperature
  4. +
  5. added 0.2 ml of chloroform per 1 ml RNA STAT-60
  6. +
  7. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min
  8. +
  9. centrifuged at 12,000 G for 15 min
  10. +
  11. transfered the aqueous phase to a fresh tube
  12. +
  13. added 0.5 ml of isopropanol per 1 ml RNA STAT-60
  14. +
  15. vortexed and allowed sample to stand at room temperature for 5-10 min
  16. +
  17. centrifuged at 12,000 G for 10-15 min
  18. +
  19. removed the supernatant and washed the RNA pellet with 75% ethanol
  20. +
  21. stored the pellet in 75% ethanol at -80 deg C until use
  22. +
+ +

Sample Processing. Samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center lead by Drs. John Stuart and Weikuan Gu. All processing steps were performed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. centrigrade until use (one third roughly) or were immediately used for hybridization.

+ +

Dealing with Ocular Pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations taken from brown and beige colored mice tend to have faint residual pigmentation that affects hybridization signal. The key determinant of this interesting effect is the Tyrp1 (brown) locus on Chr 4 at about 80 Mb. Loci on Chr 4 that map at this location should be considered with skepticism and reviewed carefully. To address this problem Yan Jiao purified total RNA a second time using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204). This was done for 8 colored samples (R2534E2, R2578E2, R1441E2, R2537E2, R2536E2, R2589E2, R2539E2) in the first batch of arrays (the November 05 data set) of which 5 were finally included in this data set (cases in which the strain ID is labeled with asterisks in the table). This same protocol was used for all samples in the second batch added in April 2006.

+ +

Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. The first and second batches of array data, collectively represents a reasonably well balanced sample of males and females belonging to 62 strains, but without within-strain-by-sex replication. Six strains are represented only by male sample pools (BXD15, 28, 29, 55, 98, and DBA/2J. Four strains are represented only by a female pool sample (BXD1, 27, 73 and 86). Please use the probe sets 1427262_at (Xist, high in females) and probe set 1426438_at (Ddx3y, high in males) as quantitative surrogates for the sex balance in this data set.

+ +

Batch Structure: This data set consists of a two batches: the original batch that makes up the November 2005 data set and a new batch of 63 arrays (R0857E through R2649E, and R2682E through R2742E, non-consecutive identifiers) run in January 2006 by Dr. Yan Jiao. The arrays in the two batches are from two different lots. All arrays in the second batch were from Lot 4016879 (expiration date 12.28.06). We started working with a total of 140 arrays that passed initial crude quality control based on RNA quality and initial Affymetrix report file information such as 3'/5' ratio, scale factor, and percent present calls. A total of 130 arrays were finally approved for inclusion in this April 2006 data set. The complex normalization procedure is described below.

+ +

The table below summarizes information on strain, age, sex, original CEL filename, Affymetrix quality control values, and source of mice. Columns labeled "PDNN 2Z outlier" and "RMA 2Z outlier" list the fraction of probe sets with values that deviated more than 2 z units from the mean. Scale factor, background average, present, absent, marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files.

+ +

IN PROGRESS: PLEASE NOTE THAT THIS TABLE IS NOW BEING UPDATED TO INCLUDE BATCH 2 OF EARLY 2006.

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
ID +

tube ID

+
+

group_type

+
+

 Strain

+
+

age

+
+

 Sex

+
+

original

+ +

CEL

+ +

filename

+
+

PDNN

+ +

2Z

+ +

outlier

+
+

RMA

+ +

2Z

+ +

outlier

+
+

scale

+ +

factor

+
+

background

+ +

average

+
+

present

+
+

absent

+
+

marginal

+
+

AFFX-b-

+ +

ActinMur(3'/5')

+
+

AFFX-

+ +

GapdhMur(3'/5')

+
+

Source

+
+

1

+
+

R2533E1

+
+

GDP

+
+

129S1/SvImJ

+
+

60

+
+

M

+
+

R2533E.CEL

+
+

0.025

+
+

0.028

+
+

2.11

+
+

94

+
+

57.90%

+
+

40.50%

+
+

1.60%

+
+

1.37

+
+

0.78

+
+

UTM RW

+
+

2

+
+

R2595E1

+
+

GDP

+
+

129S1/SvImJ

+
+

59

+
+

F

+
+

R2595E.CEL

+
+

0.033

+
+

0.036

+
+

1.79

+
+

115

+
+

61.00%

+
+

37.50%

+
+

1.50%

+
+

1.46

+
+

0.77

+
+

UTM RW

+
+

3

+
+

R0754E2

+
+

GDP

+
+

A/J

+
+

60

+
+

M

+
+

R0754E.CEL

+
+

0.027

+
+

0.03

+
+

2.72

+
+

86

+
+

59.80%

+
+

38.70%

+
+

1.50%

+
+

1.36

+
+

0.76

+
+

JAX

+
+

4

+
+

R2546E1

+
+

GDP

+
+

A/J

+
+

66

+
+

F

+
+

R2545E.CEL

+
+

0.024

+
+

0.029

+
+

1.99

+
+

96

+
+

58.60%

+
+

39.70%

+
+

1.70%

+
+

1.47

+
+

0.78

+
+

UTM RW

+
+

5

+
+

R2601E1

+
+

GDP BXD

+
+

B6D2F1

+
+

73

+
+

F

+
+

R2601E.CEL

+
+

0.007

+
+

0.008

+
+

2.55

+
+

92

+
+

58.90%

+
+

39.60%

+
+

1.50%

+
+

1.44

+
+

0.78

+
+

UTM RW

+
+

6

+
+

R2602E1

+
+

GDP BXD

+
+

B6D2F1

+
+

73

+
+

M

+
+

R2602E.CEL

+
+

0.003

+
+

0.008

+
+

2.60

+
+

84

+
+

59.70%

+
+

38.80%

+
+

1.50%

+
+

1.37

+
+

0.78

+
+

UTM RW

+
+

7

+
+

R1672E1

+
+

GDP

+
+

BALB/cByJ

+
+

83

+
+

M

+
+

R1672E.CEL

+
+

0.043

+
+

0.039

+
+

2.22

+
+

111

+
+

59.90%

+
+

38.60%

+
+

1.50%

+
+

1.26

+
+

0.80

+
+

JAX

+
+

8

+
+

R1676E1

+
+

GDP

+
+

BALB/cByJ

+
+

83

+
+

F

+
+

R1676E.CEL

+
+

0.083

+
+

0.085

+
+

2.69

+
+

98

+
+

58.90%

+
+

39.60%

+
+

1.50%

+
+

1.46

+
+

0.74

+
+

JAX

+
+

9

+
+

R2581E1

+
+

BXD

+
+

BXD11

+
+

65

+
+

F

+
+

R2581E.CEL

+
+

0.009

+
+

0.021

+
+

1.94

+
+

89

+
+

62.10%

+
+

36.40%

+
+

1.60%

+
+

1.55

+
+

0.81

+
+

UTM RW

+
+

10

+
+

R2543E1

+
+

BXD

+
+

BXD12

+
+

63

+
+

M

+
+

R2543E.CEL

+
+

0.018

+
+

0.017

+
+

1.61

+
+

118

+
+

58.60%

+
+

39.90%

+
+

1.60%

+
+

1.43

+
+

0.77

+
+

UTM RW

+
+

11

+
+

R2586E1

+
+

BXD

+
+

BXD13

+
+

60

+
+

F

+
+

R2586E.CEL

+
+

0.259

+
+

0.258

+
+

2.01

+
+

74

+
+

56.40%

+
+

42.00%

+
+

1.60%

+
+

2.85

+
+

3.81

+
+

Glenn

+
+

12

+
+

R2557E1

+
+

BXD

+
+

BXD14

+
+

60

+
+

F

+
+

R2557E.CEL

+
+

0.012

+
+

0.027

+
+

1.83

+
+

99

+
+

62.50%

+
+

36.10%

+
+

1.40%

+
+

1.31

+
+

0.78

+
+

Glenn

+
+

13

+
+

R2567E1

+
+

BXD

+
+

BXD16

+
+

60

+
+

M

+
+

R2567E.CEL

+
+

0.048

+
+

0.058

+
+

2.24

+
+

82

+
+

56.70%

+
+

41.60%

+
+

1.70%

+
+

1.37

+
+

0.75

+
+

Glenn

+
+

14

+
+

R2559E1

+
+

BXD

+
+

BXD18

+
+

59

+
+

M

+
+

R2559E.CEL

+
+

0.01

+
+

0.012

+
+

1.65

+
+

104

+
+

60.80%

+
+

37.70%

+
+

1.50%

+
+

1.27

+
+

0.78

+
+

Glenn

+
+

15

+
+

R2560E1

+
+

BXD

+
+

BXD19

+
+

60

+
+

F

+
+

R2560E.CEL

+
+

0.009

+
+

0.012

+
+

1.79

+
+

98

+
+

60.90%

+
+

37.50%

+
+

1.60%

+
+

1.35

+
+

0.80

+
+

Glenn

+
+

16

+
+

R2597E1

+
+

BXD

+
+

BXD2

+
+

61

+
+

M

+
+

R2597E.CEL

+
+

0.005

+
+

0.012

+
+

2.37

+
+

94

+
+

60.30%

+
+

38.30%

+
+

1.50%

+
+

1.34

+
+

0.77

+
+

Glenn

+
+

17

+
+

R2584E1

+
+

BXD

+
+

BXD20

+
+

59

+
+

F

+
+

R2584E.CEL

+
+

0.011

+
+

0.017

+
+

2.07

+
+

84

+
+

59.30%

+
+

39.10%

+
+

1.60%

+
+

1.40

+
+

0.76

+
+

Glenn

+
+

18

+
+

R2541E2

+
+

BXD

+
+

BXD21

+
+

61

+
+

M

+
+

R2541E2.CEL

+
+

0.049

+
+

0.084

+
+

2.63

+
+

125

+
+

56.00%

+
+

42.40%

+
+

1.50%

+
+

1.29

+
+

0.78

+
+

UTM RW

+
+

19

+
+

R2553E1

+
+

BXD

+
+

BXD22

+
+

58

+
+

F

+
+

R2553E.CEL

+
+

0.004

+
+

0.01

+
+

1.95

+
+

111

+
+

59.90%

+
+

38.50%

+
+

1.50%

+
+

1.28

+
+

0.76

+
+

Glenn

+
+

20

+
+

R2558E1

+
+

BXD

+
+

BXD23

+
+

60

+
+

F

+
+

R2558E-2.CEL

+
+

0.018

+
+

0.027

+
+

1.91

+
+

115

+
+

59.90%

+
+

38.80%

+
+

1.40%

+
+

1.20

+
+

0.82

+
+

Glenn

+
+

21

+
+

R2589E2

+
+

BXD

+
+

BXD24

+
+

59

+
+

M

+
+

R2589E2.CEL

+
+

0.132

+
+

0.176

+
+

2.61

+
+

112

+
+

57.50%

+
+

40.90%

+
+

1.60%

+
+

1.24

+
+

0.80

+
+

Glenn

+
+

22

+
+

R2573E1

+
+

BXD

+
+

BXD25

+
+

67

+
+

F

+
+

R2573E-2.CEL

+
+

0.055

+
+

0.063

+
+

3.15

+
+

72

+
+

57.90%

+
+

40.70%

+
+

1.40%

+
+

1.77

+
+

0.97

+
+

UAB

+
+

23

+
+

R2562E1

+
+

BXD

+
+

BXD29

+
+

60

+
+

M

+
+

R2562E.CEL

+
+

0.007

+
+

0.01

+
+

1.65

+
+

116

+
+

59.90%

+
+

38.40%

+
+

1.70%

+
+

1.37

+
+

0.79

+
+

Glenn

+
+

24

+
+

R2598E1

+
+

BXD

+
+

BXD31

+
+

61

+
+

M

+
+

R2598E.CEL

+
+

0.006

+
+

0.013

+
+

1.99

+
+

106

+
+

60.90%

+
+

37.60%

+
+

1.50%

+
+

1.27

+
+

0.78

+
+

UTM RW

+
+

25

+
+

R2563E1

+
+

BXD

+
+

BXD32

+
+

63

+
+

F

+
+

R2563E.CEL

+
+

0.023

+
+

0.025

+
+

1.55

+
+

102

+
+

61.90%

+
+

36.70%

+
+

1.40%

+
+

1.50

+
+

0.80

+
+

UTM RW

+
+

26

+
+

R2542E1

+
+

BXD

+
+

BXD33

+
+

67

+
+

F

+
+

R2542E.CEL

+
+

0.058

+
+

0.062

+
+

2.13

+
+

97

+
+

56.50%

+
+

41.80%

+
+

1.60%

+
+

1.91

+
+

0.93

+
+

UTM RW

+
+

27

+
+

R2585E1

+
+

BXD

+
+

BXD34

+
+

60

+
+

M

+
+

R2585E.CEL

+
+

0.024

+
+

0.032

+
+

2.64

+
+

75

+
+

58.30%

+
+

40.00%

+
+

1.70%

+
+

1.25

+
+

0.77

+
+

Glenn

+
+

28

+
+

R2532E1

+
+

BXD

+
+

BXD38

+
+

62

+
+

M

+
+

R2532E.CEL

+
+

0.002

+
+

0.006

+
+

2.04

+
+

94

+
+

59.80%

+
+

38.70%

+
+

1.50%

+
+

1.37

+
+

0.80

+
+

UTM RW

+
+

29

+
+

R2574E1

+
+

BXD

+
+

BXD39

+
+

70

+
+

F

+
+

R2574E.CEL

+
+

0.003

+
+

0.008

+
+

1.98

+
+

91

+
+

61.20%

+
+

37.30%

+
+

1.50%

+
+

1.39

+
+

0.78

+
+

UTM RW

+
+

30

+
+

R2590E1

+
+

BXD

+
+

BXD40

+
+

60

+
+

M

+
+

R2590E.CEL

+
+

0.007

+
+

0.012

+
+

2.71

+
+

77

+
+

59.10%

+
+

39.30%

+
+

1.50%

+
+

1.40

+
+

0.77

+
+

Glenn

+
+

31

+
+

R2596E1

+
+

BXD

+
+

BXD42

+
+

59

+
+

M

+
+

R2596E.CEL

+
+

0.016

+
+

0.03

+
+

2.63

+
+

108

+
+

59.00%

+
+

39.60%

+
+

1.50%

+
+

1.24

+
+

0.80

+
+

Glenn

+
+

32

+
+

R2605E1

+
+

BXD

+
+

BXD43

+
+

79

+
+

M

+
+

R2607E.CEL

+
+

0.006

+
+

0.01

+
+

1.82

+
+

131

+
+

60.50%

+
+

38.20%

+
+

1.30%

+
+

1.32

+
+

0.80

+
+

UTM RW

+
+

33

+
+

R2594E1

+
+

BXD

+
+

BXD44

+
+

63

+
+

F

+
+

R2594E.CEL

+
+

0.014

+
+

0.024

+
+

1.77

+
+

117

+
+

59.80%

+
+

38.80%

+
+

1.40%

+
+

1.35

+
+

0.85

+
+

UTM RW

+
+

34

+
+

R2592E1

+
+

BXD

+
+

BXD45

+
+

62

+
+

M

+
+

R2592E.CEL

+
+

0.005

+
+

0.011

+
+

1.85

+
+

106

+
+

60.10%

+
+

38.60%

+
+

1.30%

+
+

1.43

+
+

0.85

+
+

UTM RW

+
+

35

+
+

R2606E1

+
+

BXD

+
+

BXD48

+
+

78

+
+

M

+
+

R2606E.CEL

+
+

0.007

+
+

0.015

+
+

2.56

+
+

106

+
+

58.90%

+
+

39.70%

+
+

1.40%

+
+

1.35

+
+

0.83

+
+

UTM RW

+
+

36

+
+

R2591E1

+
+

BXD

+
+

BXD5

+
+

60

+
+

F

+
+

R2591E.CEL

+
+

0.052

+
+

0.014

+
+

1.70

+
+

136

+
+

58.50%

+
+

40.00%

+
+

1.50%

+
+

1.33

+
+

0.78

+
+

Glenn

+
+

37

+
+

R2603E1

+
+

BXD

+
+

BXD51

+
+

66

+
+

F

+
+

R2603E.CEL

+
+

0.007

+
+

0.02

+
+

2.49

+
+

115

+
+

57.70%

+
+

40.80%

+
+

1.50%

+
+

1.24

+
+

0.79

+
+

UTM RW

+
+

38

+
+

R2570E1

+
+

BXD

+
+

BXD6

+
+

65

+
+

F

+
+

R2570E.CEL

+
+

0.013

+
+

0.017

+
+

1.99

+
+

87

+
+

58.50%

+
+

40.00%

+
+

1.50%

+
+

1.46

+
+

0.76

+
+

UTM RW

+
+

39

+
+

R2534E2

+
+

BXD

+
+

BXD61

+
+

70

+
+

F

+
+

R2534E2.CEL

+
+

0.03

+
+

0.058

+
+

2.47

+
+

118

+
+

57.90%

+
+

40.60%

+
+

1.50%

+
+

1.42

+
+

0.79

+
+

UTM RW

+
+

40

+
+

R2611E1

+
+

BXD

+
+

BXD64

+
+

68

+
+

M

+
+

R2611E.CEL

+
+

0.067

+
+

0.068

+
+

2.29

+
+

92

+
+

58.00%

+
+

40.50%

+
+

1.50%

+
+

1.57

+
+

1.06

+
+

UTM RW

+
+

41

+
+

R2583E1

+
+

BXD

+
+

BXD65

+
+

60

+
+

M

+
+

R2583E.CEL

+
+

0.027

+
+

0.03

+
+

2.49

+
+

70

+
+

56.90%

+
+

41.50%

+
+

1.60%

+
+

1.67

+
+

1.01

+
+

UTM RW

+
+

42

+
+

R2536E2

+
+

BXD

+
+

BXD66

+
+

64

+
+

F

+
+

R2536E2.CEL

+
+

0.067

+
+

0.139

+
+

2.74

+
+

109

+
+

56.10%

+
+

42.30%

+
+

1.70%

+
+

1.28

+
+

0.79

+
+

UTM RW

+
+

43

+
+

R2551E1

+
+

BXD

+
+

BXD68

+
+

67

+
+

F

+
+

R2551E.CEL

+
+

0.294

+
+

0.291

+
+

2.49

+
+

92

+
+

54.30%

+
+

44.10%

+
+

1.60%

+
+

2.91

+
+

1.55

+
+

UTM RW

+
+

44

+
+

R2593E1

+
+

BXD

+
+

BXD69

+
+

59

+
+

F

+
+

R2593E.CEL

+
+

0.027

+
+

0.038

+
+

1.67

+
+

128

+
+

59.20%

+
+

39.50%

+
+

1.30%

+
+

1.47

+
+

0.92

+
+

UTM RW

+
+

45

+
+

R2537E2

+
+

BXD

+
+

BXD70

+
+

59

+
+

M

+
+

R2537E2.CEL

+
+

0.049

+
+

0.092

+
+

2.93

+
+

99

+
+

58.00%

+
+

40.50%

+
+

1.60%

+
+

1.29

+
+

0.75

+
+

UTM RW

+
+

46

+
+

R2565E1

+
+

BXD

+
+

BXD75

+
+

61

+
+

F

+
+

R2565E.CEL

+
+

0.118

+
+

0.124

+
+

1.79

+
+

102

+
+

58.00%

+
+

40.50%

+
+

1.50%

+
+

2.31

+
+

3.47

+
+

UTM RW

+
+

47

+
+

R2538E1

+
+

BXD

+
+

BXD8

+
+

77

+
+

F

+
+

R2538E.CEL

+
+

0.033

+
+

0.056

+
+

1.91

+
+

102

+
+

61.20%

+
+

37.30%

+
+

1.50%

+
+

1.52

+
+

0.79

+
+

UTM RW

+
+

48

+
+

R2579E1

+
+

BXD

+
+

BXD80

+
+

65

+
+

F

+
+

R2579E.CEL

+
+

0.013

+
+

0.026

+
+

2.42

+
+

72

+
+

59.20%

+
+

39.40%

+
+

1.50%

+
+

1.73

+
+

0.82

+
+

UTM RW

+
+

49

+
+

R2540E1

+
+

BXD

+
+

BXD87

+
+

63

+
+

M

+
+

R2540E.CEL

+
+

0.014

+
+

0.034

+
+

2.33

+
+

93

+
+

61.10%

+
+

37.40%

+
+

1.40%

+
+

1.22

+
+

0.81

+
+

UTM RW

+
+

50

+
+

R2545E1

+
+

BXD

+
+

BXD89

+
+

67

+
+

M

+
+

R2546E.CEL

+
+

0.266

+
+

0.257

+
+

1.67

+
+

105

+
+

56.20%

+
+

42.30%

+
+

1.50%

+
+

3.60

+
+

9.84

+
+

UTM RW

+
+

51

+
+

R2569E1

+
+

BXD

+
+

BXD9

+
+

67

+
+

M

+
+

R2569E.CEL

+
+

0.256

+
+

0.239

+
+

1.75

+
+

87

+
+

55.10%

+
+

43.40%

+
+

1.50%

+
+

2.82

+
+

3.14

+
+

UTM RW

+
+

52

+
+

R2578E2

+
+

BXD

+
+

BXD90

+
+

61

+
+

F

+
+

R2578E2.CEL

+
+

0.041

+
+

0.062

+
+

2.79

+
+

92

+
+

58.60%

+
+

39.80%

+
+

1.60%

+
+

1.52

+
+

0.77

+
+

UTM RW

+
+

53

+
+

R2554E1

+
+

BXD

+
+

BXD96

+
+

67

+
+

M

+
+

R2554E.CEL

+
+

0.005

+
+

0.008

+
+

2.18

+
+

93

+
+

60.20%

+
+

38.30%

+
+

1.50%

+
+

1.46

+
+

0.77

+
+

UTM RW

+
+

54

+
+

R2577E1

+
+

BXD

+
+

BXD97

+
+

55

+
+

M

+
+

R2577E.CEL

+
+

0.065

+
+

0.069

+
+

2.07

+
+

77

+
+

59.50%

+
+

39.10%

+
+

1.40%

+
+

1.87

+
+

1.29

+
+

UTM RW

+
+

55

+
+

R1700E1

+
+

GDP

+
+

C3H/HeJ

+
+

83

+
+

F

+
+

R1700E.CEL

+
+

0.152

+
+

0.168

+
+

2.98

+
+

69

+
+

60.80%

+
+

37.90%

+
+

1.40%

+
+

1.48

+
+

0.78

+
+

UTM RW

+
+

56

+
+

R1704E1

+
+

GDP

+
+

C3H/HeJ

+
+

83

+
+

M

+
+

R1704E.CEL

+
+

0.154

+
+

0.165

+
+

2.58

+
+

88

+
+

60.10%

+
+

38.60%

+
+

1.30%

+
+

1.38

+
+

0.84

+
+

UTM RW

+
+

57

+
+

R0872E2

+
+

GDP BXD

+
+

C57BL/6J

+
+

66

+
+

M

+
+

R0872E.CEL

+
+

0.014

+
+

0.023

+
+

3.13

+
+

89

+
+

58.90%

+
+

39.60%

+
+

1.50%

+
+

1.30

+
+

0.79

+
+

UTM RW

+
+

58

+
+

R2607E1

+
+

GDP BXD

+
+

C57BL/6J

+
+

67

+
+

F

+
+

R2605E.CEL

+
+

0.008

+
+

0.018

+
+

2.43

+
+

115

+
+

58.60%

+
+

40.00%

+
+

1.40%

+
+

1.31

+
+

0.76

+
+

UTM RW

+
+

59

+
+

R2564E1

+
+

GDP

+
+

CAST/Ei

+
+

64

+
+

F

+
+

R2564E.CEL

+
+

0.124

+
+

0.105

+
+

1.94

+
+

89

+
+

58.50%

+
+

39.90%

+
+

1.60%

+
+

1.60

+
+

0.77

+
+

JAX

+
+

60

+
+

R2580E1

+
+

GDP

+
+

CAST/Ei

+
+

64

+
+

M

+
+

R2580E.CEL

+
+

0.123

+
+

0.109

+
+

2.09

+
+

95

+
+

58.20%

+
+

40.10%

+
+

1.70%

+
+

1.40

+
+

0.76

+
+

JAX

+
+

61

+
+

R2600E1

+
+

GDP BXD

+
+

D2B6F1

+
+

72

+
+

F

+
+

R2600E.CEL

+
+

0.008

+
+

0.02

+
+

2.47

+
+

95

+
+

58.10%

+
+

40.20%

+
+

1.70%

+
+

1.41

+
+

0.78

+
+

UTM RW

+
+

62

+
+

R2604E1

+
+

GDP BXD

+
+

D2B6F1

+
+

69

+
+

M

+
+

R2604E.CEL

+
+

0.005

+
+

0.014

+
+

2.66

+
+

90

+
+

59.40%

+
+

39.20%

+
+

1.50%

+
+

1.28

+
+

0.79

+
+

UTM RW

+
+

63

+
+

R2572E1

+
+

GDP BXD

+
+

DBA/2J

+
+

65

+
+

M

+
+

R2572E.CEL

+
+

0.091

+
+

0.106

+
+

2.41

+
+

79

+
+

55.50%

+
+

42.90%

+
+

1.60%

+
+

1.37

+
+

0.79

+
+

UTM RW

+
+

64

+
+

R2636E1

+
+

GDP

+
+

KK/HIJ

+
+

64

+
+

F

+
+

R2636E.CEL

+
+

0.044

+
+

0.043

+
+

2.61

+
+

93

+
+

58.90%

+
+

39.50%

+
+

1.50%

+
+

1.39

+
+

0.76

+
+

UTM RW

+
+

65

+
+

R2637E1

+
+

GDP

+
+

KK/HIJ

+
+

64

+
+

M

+
+

R2637E.CEL

+
+

0.056

+
+

0.036

+
+

2.19

+
+

103

+
+

59.40%

+
+

39.00%

+
+

1.50%

+
+

1.30

+
+

0.79

+
+

UTM RW

+
+

66

+
+

R0999E1

+
+

GDP

+
+

LG/J

+
+

57

+
+

F

+
+

R0999E.CEL

+
+

0.021

+
+

0.023

+
+

2.45

+
+

82

+
+

59.40%

+
+

39.10%

+
+

1.50%

+
+

1.38

+
+

0.79

+
+

UTM RW

+
+

67

+
+

R1004E1

+
+

GDP

+
+

LG/J

+
+

65

+
+

M

+
+

R1004E.CEL

+
+

0.025

+
+

0.028

+
+

2.44

+
+

92

+
+

58.70%

+
+

39.80%

+
+

1.50%

+
+

1.38

+
+

0.79

+
+

UTM RW

+
+

68

+
+

R1688E1

+
+

GDP

+
+

NOD/LtJ

+
+

66

+
+

F

+
+

R1688E.CEL

+
+

0.028

+
+

0.033

+
+

2.66

+
+

98

+
+

58.60%

+
+

39.90%

+
+

1.50%

+
+

1.26

+
+

0.80

+
+

JAX

+
+

69

+
+

R2566E1

+
+

GDP

+
+

NOD/LtJ

+
+

76

+
+

M

+
+

R2566E-2.CEL

+
+

0.036

+
+

0.04

+
+

3.03

+
+

69

+
+

59.80%

+
+

38.80%

+
+

1.50%

+
+

1.38

+
+

0.75

+
+

UTM RW

+
+

70

+
+

R2535E1

+
+

GDP

+
+

NZO/H1LtJ

+
+

62

+
+

F

+
+

R2535E.CEL

+
+

0.037

+
+

0.062

+
+

1.89

+
+

86

+
+

60.40%

+
+

38.20%

+
+

1.40%

+
+

1.41

+
+

0.85

+
+

JAX

+
+

71

+
+

R2550E1

+
+

GDP

+
+

NZO/HILtJ

+
+

96

+
+

M

+
+

R2550E.CEL

+
+

0.025

+
+

0.029

+
+

1.79

+
+

87

+
+

60.70%

+
+

37.80%

+
+

1.50%

+
+

1.52

+
+

0.82

+
+

JAX

+
+

72

+
+

R2634E1

+
+

GDP

+
+

PWD/PhJ

+
+

62

+
+

F

+
+

R2635E.CEL

+
+

0.126

+
+

0.114

+
+

3.29

+
+

90

+
+

55.90%

+
+

42.50%

+
+

1.60%

+
+

1.57

+
+

0.81

+
+

JAX

+
+

73

+
+

R2635E1

+
+

GDP

+
+

PWD/PhJ

+
+

62

+
+

M

+
+

R2634E.CEL

+
+

0.15

+
+

0.137

+
+

3.72

+
+

80

+
+

54.20%

+
+

44.10%

+
+

1.70%

+
+

1.53

+
+

0.85

+
+

JAX

+
+

74

+
+

R2544E1

+
+

GDP

+
+

PWK/PhJ

+
+

63

+
+

F

+
+

R2544E.CEL

+
+

0.174

+
+

0.175

+
+

2.20

+
+

108

+
+

54.90%

+
+

43.50%

+
+

1.70%

+
+

1.36

+
+

0.82

+
+

JAX

+
+

75

+
+

R2549E1

+
+

GDP

+
+

PWK/PhJ

+
+

83

+
+

M

+
+

R2549E.CEL

+
+

0.103

+
+

0.087

+
+

2.28

+
+

84

+
+

57.30%

+
+

41.20%

+
+

1.50%

+
+

1.57

+
+

0.83

+
+

JAX

+
+

76

+
+

R2368E1

+
+

GDP

+
+

WSB/EI

+
+

67

+
+

F

+
+

R2368E.CEL

+
+

0.041

+
+

0.047

+
+

2.57

+
+

86

+
+

59.50%

+
+

39.10%

+
+

1.40%

+
+

1.29

+
+

0.74

+
+

UTM RW

+
+

77

+
+

R2704E

+
+

BXD

+
+

BXD1

+
+

59

+
+

F

+
+

R2704E.CEL

+
+

0.029

+
+

0.03

+
+

2.066

+
+

139.61

+
+

56.60%

+
+

41.90%

+
+

1.50%

+
+

1.31

+
+

0.81

+
+

GU

+
+

78

+
+

R2612E

+
+

BXD

+
+

BXD11

+
+

70

+
+

M

+
+

R2612E.CEL

+
+

0.101

+
+

0.112

+
+

1.83

+
+

142.03

+
+

58.20%

+
+

40.50%

+
+

1.40%

+
+

1.78

+
+

0.81

+
+

GU

+
+

79

+
+

R2742E

+
+

BXD

+
+

BXD12

+
+

71

+
+

F

+
+

R2742E.CEL

+
+

0.073

+
+

0.077

+
+

2.127

+
+

134.14

+
+

57.00%

+
+

41.60%

+
+

1.40%

+
+

1.64

+
+

0.78

+
+

GU

+
+

80

+
+

R1086E

+
+

BXD

+
+

BXD23

+
+

55

+
+

M

+
+

R1086E.CEL

+
+

0.043

+
+

0.034

+
+

2.233

+
+

125.05

+
+

58.60%

+
+

39.90%

+
+

1.50%

+
+

1.43

+
+

0.77

+
+

GU

+
+

81

+
+

R2716E

+
+

BXD

+
+

BXD15

+
+

60

+
+

M

+
+

R2716E.CEL

+
+

0.035

+
+

0.037

+
+

2.015

+
+

150.83

+
+

56.40%

+
+

42.10%

+
+

1.60%

+
+

1.42

+
+

0.81

+
+

GU

+
+

82

+
+

R2711E

+
+

BXD

+
+

BXD16

+
+

61

+
+

F

+
+

R2711E.CEL

+
+

0.032

+
+

0.021

+
+

1.953

+
+

118.53

+
+

59.00%

+
+

39.60%

+
+

1.50%

+
+

1.45

+
+

0.8

+
+

GU

+
+

83

+
+

R2720E

+
+

BXD

+
+

BXD18

+
+

59

+
+

F

+
+

R2720E.CEL

+
+

0.014

+
+

0.019

+
+

2.32

+
+

99.93

+
+

59.50%

+
+

39.00%

+
+

1.50%

+
+

1.33

+
+

0.77

+
+

GU

+
+

84

+
+

R2713E

+
+

BXD

+
+

BXD19

+
+

60

+
+

M

+
+

R2713E.CEL

+
+

0.055

+
+

0.021

+
+

1.67

+
+

120.82

+
+

60.20%

+
+

38.30%

+
+

1.50%

+
+

1.45

+
+

0.8

+
+

GU

+
+

85

+
+

R1231E

+
+

BXD

+
+

BXD2

+
+

64

+
+

F

+
+

R1231E.CEL

+
+

0.044

+
+

0.037

+
+

2.197

+
+

138.73

+
+

57.30%

+
+

41.30%

+
+

1.40%

+
+

1.41

+
+

0.77

+
+

GU

+
+

86

+
+

R2731E

+
+

BXD

+
+

BXD20

+
+

60

+
+

M

+
+

R2731E.CEL

+
+

0.017

+
+

0.019

+
+

1.825

+
+

147

+
+

59.00%

+
+

39.50%

+
+

1.50%

+
+

1.4

+
+

0.8

+
+

GU

+
+

87

+
+

R2702E

+
+

BXD

+
+

BXD21

+
+

59

+
+

F

+
+

R2702E.CEL

+
+

0.009

+
+

0.008

+
+

1.811

+
+

128.65

+
+

59.40%

+
+

39.10%

+
+

1.40%

+
+

1.26

+
+

0.8

+
+

GU

+
+

88

+
+

R2700E

+
+

BXD

+
+

BXD22

+
+

59

+
+

M

+
+

R2700E.CEL

+
+

0.01

+
+

0.015

+
+

1.858

+
+

102.96

+
+

61.50%

+
+

37.10%

+
+

1.30%

+
+

1.48

+
+

0.79

+
+

GU

+
+

89

+
+

R1128E

+
+

BXD

+
+

BXD14

+
+

65

+
+

M

+
+

R1128E.CEL

+
+

0.037

+
+

0.038

+
+

2.366

+
+

118.39

+
+

57.30%

+
+

41.30%

+
+

1.40%

+
+

1.45

+
+

0.81

+
+

GU

+
+

90

+
+

R2719E

+
+

BXD

+
+

BXD24

+
+

123

+
+

F

+
+

R2719E.CEL

+
+

0.112

+
+

0.111

+
+

1.47

+
+

140.38

+
+

61.50%

+
+

37.20%

+
+

1.30%

+
+

1.38

+
+

0.79

+
+

GU

+
+

91

+
+

R2683E

+
+

BXD

+
+

BXD25

+
+

58

+
+

M

+
+

R2683E.CEL

+
+

0.068

+
+

0.068

+
+

1.777

+
+

115.64

+
+

58.30%

+
+

40.30%

+
+

1.40%

+
+

2.01

+
+

0.79

+
+

GU

+
+

92

+
+

R2703E

+
+

BXD

+
+

BXD27

+
+

60

+
+

F

+
+

R2703E.CEL

+
+

0.008

+
+

0.012

+
+

1.263

+
+

134.78

+
+

62.60%

+
+

36.10%

+
+

1.40%

+
+

1.44

+
+

0.78

+
+

GU

+
+

93

+
+

R2721E

+
+

BXD

+
+

BXD28

+
+

60

+
+

M

+
+

R2721E.CEL

+
+

0.04

+
+

0.048

+
+

2.065

+
+

157.39

+
+

56.10%

+
+

42.40%

+
+

1.50%

+
+

1.31

+
+

0.81

+
+

GU

+
+

94

+
+

R1258E

+
+

BXD

+
+

BXD31

+
+

57

+
+

F

+
+

R1258E.CEL

+
+

0.037

+
+

0.036

+
+

2.063

+
+

117.09

+
+

59.00%

+
+

39.50%

+
+

1.50%

+
+

1.54

+
+

0.78

+
+

GU

+
+

95

+
+

R1216E

+
+

BXD

+
+

BXD32

+
+

76

+
+

M

+
+

R1216E.CEL

+
+

0.05

+
+

0.049

+
+

2.23

+
+

111.99

+
+

58.80%

+
+

39.80%

+
+

1.40%

+
+

1.35

+
+

0.79

+
+

GU

+
+

96

+
+

R857E

+
+

BXD

+
+

BXD33

+
+

77

+
+

M

+
+

R857E.CEL

+
+

0.078

+
+

0.108

+
+

1.737

+
+

113.98

+
+

61.90%

+
+

36.70%

+
+

1.30%

+
+

1.6

+
+

0.77

+
+

GU

+
+

97

+
+

R859E

+
+

BXD

+
+

BXD90

+
+

72

+
+

M

+
+

R859E.CEL

+
+

0.028

+
+

0.02

+
+

1.847

+
+

152.22

+
+

57.90%

+
+

40.70%

+
+

1.40%

+
+

1.36

+
+

0.77

+
+

GU

+
+

98

+
+

R1207E

+
+

BXD

+
+

BXD66

+
+

83

+
+

M

+
+

R1207E.CEL

+
+

0.017

+
+

0.012

+
+

1.681

+
+

136.86

+
+

60.40%

+
+

38.10%

+
+

1.50%

+
+

1.45

+
+

0.77

+
+

GU

+
+

99

+
+

R2710E

+
+

BXD

+
+

BXD38

+
+

55

+
+

F

+
+

R2710E.CEL

+
+

0.033

+
+

0.031

+
+

2.112

+
+

122.1

+
+

58.80%

+
+

39.80%

+
+

1.40%

+
+

1.37

+
+

0.78

+
+

GU

+
+

100

+
+

R2695E

+
+

BXD

+
+

BXD39

+
+

59

+
+

M

+
+

R2695E.CEL

+
+

0.018

+
+

0.016

+
+

1.638

+
+

122.7

+
+

60.80%

+
+

37.80%

+
+

1.50%

+
+

1.42

+
+

0.8

+
+

GU

+
+

101

+
+

R2699E

+
+

BXD

+
+

BXD40

+
+

59

+
+

F

+
+

R2699E.CEL

+
+

0.014

+
+

0.015

+
+

1.827

+
+

105.23

+
+

61.70%

+
+

36.90%

+
+

1.40%

+
+

1.42

+
+

0.81

+
+

GU

+
+

102

+
+

R2696E

+
+

BXD

+
+

BXD42

+
+

58

+
+

F

+
+

R2696E.CEL

+
+

0.01

+
+

0.017

+
+

1.622

+
+

118.95

+
+

62.00%

+
+

36.60%

+
+

1.50%

+
+

1.53

+
+

0.79

+
+

GU

+
+

103

+
+

R943E-2

+
+

BXD

+
+

BXD64

+
+

56

+
+

F

+
+

R943E-2.CEL

+
+

0.024

+
+

0.021

+
+

1.591

+
+

141.34

+
+

60.10%

+
+

38.40%

+
+

1.50%

+
+

1.32

+
+

0.76

+
+

GU

+
+

104

+
+

R967E

+
+

BXD

+
+

BXD48

+
+

64

+
+

F

+
+

R967E.CEL

+
+

0.101

+
+

0.052

+
+

1.948

+
+

130.95

+
+

57.30%

+
+

41.20%

+
+

1.50%

+
+

1.63

+
+

0.81

+
+

GU

+
+

105

+
+

R2714E

+
+

BXD

+
+

BXD5

+
+

58

+
+

M

+
+

R2714E.CEL

+
+

0.047

+
+

0.014

+
+

1.404

+
+

144.35

+
+

60.60%

+
+

37.90%

+
+

1.50%

+
+

1.43

+
+

0.79

+
+

GU

+
+

106

+
+

R1042E

+
+

BXD

+
+

BXD51

+
+

62

+
+

M

+
+

R1042E.CEL

+
+

0.028

+
+

0.027

+
+

2.352

+
+

104.12

+
+

58.70%

+
+

39.90%

+
+

1.40%

+
+

1.53

+
+

0.82

+
+

GU

+
+

107

+
+

R2690E

+
+

BXD

+
+

BXD55

+
+

65

+
+

M

+
+

R2690E.CEL

+
+

0.081

+
+

0.067

+
+

1.887

+
+

164.01

+
+

56.10%

+
+

42.30%

+
+

1.60%

+
+

1.43

+
+

0.8

+
+

GU

+
+

108

+
+

R2694E

+
+

BXD

+
+

BXD6

+
+

58

+
+

M

+
+

R2694E.CEL

+
+

0.012

+
+

0.018

+
+

1.983

+
+

97.23

+
+

61.60%

+
+

37.10%

+
+

1.30%

+
+

1.39

+
+

0.82

+
+

GU

+
+

109

+
+

R975E

+
+

BXD

+
+

BXD70

+
+

64

+
+

F

+
+

R975E.CEL

+
+

0.028

+
+

0.024

+
+

1.841

+
+

137.97

+
+

58.00%

+
+

40.50%

+
+

1.40%

+
+

1.36

+
+

0.79

+
+

GU

+
+

110

+
+

R2684E

+
+

BXD

+
+

BXD61

+
+

62

+
+

M

+
+

R2684E.CEL

+
+

0.031

+
+

0.032

+
+

2.01

+
+

131.03

+
+

57.00%

+
+

41.50%

+
+

1.50%

+
+

1.34

+
+

0.78

+
+

GU

+
+

111

+
+

R994E

+
+

BXD

+
+

BXD43

+
+

60

+
+

F

+
+

R994E.CEL

+
+

0.013

+
+

0.014

+
+

1.966

+
+

113.12

+
+

60.80%

+
+

37.80%

+
+

1.40%

+
+

1.66

+
+

0.8

+
+

GU

+
+

112

+
+

R2610E

+
+

BXD

+
+

BXD44

+
+

68

+
+

M

+
+

R2610E.CEL

+
+

0.013

+
+

0.009

+
+

1.814

+
+

142.91

+
+

59.00%

+
+

39.50%

+
+

1.50%

+
+

1.35

+
+

0.8

+
+

GU

+
+

113

+
+

R2689E

+
+

BXD

+
+

BXD65

+
+

63

+
+

F

+
+

R2689E.CEL

+
+

0.008

+
+

0.008

+
+

1.721

+
+

142.44

+
+

59.90%

+
+

38.60%

+
+

1.50%

+
+

1.38

+
+

0.76

+
+

GU

+
+

114

+
+

R2727E

+
+

BXD

+
+

BXD69

+
+

65

+
+

M

+
+

R2727E.CEL

+
+

0.01

+
+

0.008

+
+

1.578

+
+

143.86

+
+

60.30%

+
+

38.30%

+
+

1.40%

+
+

1.34

+
+

0.77

+
+

GU

+
+

115

+
+

R2726E

+
+

BXD

+
+

BXD68

+
+

64

+
+

M

+
+

R2726E.CEL

+
+

0.125

+
+

0.025

+
+

1.811

+
+

153.09

+
+

58.70%

+
+

39.80%

+
+

1.50%

+
+

1.39

+
+

0.78

+
+

GU

+
+

116

+
+

R2732E

+
+

BXD

+
+

BXD45

+
+

63

+
+

F

+
+

R2732E.CEL

+
+

0.039

+
+

0.036

+
+

2.154

+
+

122.45

+
+

56.50%

+
+

42.10%

+
+

1.40%

+
+

1.8

+
+

0.83

+
+

GU

+
+

117

+
+

R2709E

+
+

BXD

+
+

BXD8

+
+

61

+
+

M

+
+

R2709E.CEL

+
+

0.012

+
+

0.011

+
+

1.99

+
+

99.79

+
+

60.90%

+
+

37.60%

+
+

1.50%

+
+

1.42

+
+

0.76

+
+

GU

+
+

118

+
+

R2686E

+
+

BXD

+
+

BXD80

+
+

61

+
+

M

+
+

R2686E.CEL

+
+

0.046

+
+

0.05

+
+

2.342

+
+

119.63

+
+

56.00%

+
+

42.60%

+
+

1.50%

+
+

1.38

+
+

0.79

+
+

GU

+
+

119

+
+

R2692E

+
+

BXD

+
+

BXD85

+
+

63

+
+

F

+
+

R2692E.CEL

+
+

0.006

+
+

0.007

+
+

1.423

+
+

160.87

+
+

60.20%

+
+

38.30%

+
+

1.40%

+
+

1.46

+
+

0.79

+
+

GU

+
+

120

+
+

R2715E

+
+

BXD

+
+

BXD85

+
+

91

+
+

M

+
+

R2715E.CEL

+
+

0.007

+
+

0.008

+
+

1.488

+
+

142.6

+
+

61.20%

+
+

37.30%

+
+

1.40%

+
+

1.5

+
+

0.78

+
+

GU

+
+

121

+
+

R1405E

+
+

BXD

+
+

BXD86

+
+

58

+
+

F

+
+

R1405E.CEL

+
+

0.053

+
+

0.052

+
+

2.351

+
+

119.34

+
+

56.40%

+
+

42.20%

+
+

1.40%

+
+

1.64

+
+

0.81

+
+

GU

+
+

122

+
+

R2724E

+
+

BXD

+
+

BXD87

+
+

63

+
+

F

+
+

R2724E.CEL

+
+

0.013

+
+

0.019

+
+

1.906

+
+

113.71

+
+

60.70%

+
+

37.90%

+
+

1.40%

+
+

1.45

+
+

0.79

+
+

GU

+
+

123

+
+

R1451E

+
+

BXD

+
+

BXD34

+
+

61

+
+

F

+
+

R1451E.CEL

+
+

0.01

+
+

0.009

+
+

1.843

+
+

140.05

+
+

59.00%

+
+

39.50%

+
+

1.50%

+
+

1.42

+
+

0.81

+
+

GU

+
+

124

+
+

R1433E

+
+

BXD

+
+

BXD89

+
+

63

+
+

F

+
+

R1433E.CEL

+
+

0.029

+
+

0.026

+
+

2.241

+
+

115.86

+
+

57.70%

+
+

40.80%

+
+

1.50%

+
+

1.41

+
+

0.78

+
+

GU

+
+

125

+
+

R2733E

+
+

BXD

+
+

BXD96

+
+

67

+
+

F

+
+

R2733E.CEL

+
+

0.024

+
+

0.054

+
+

1.7

+
+

113.99

+
+

62.10%

+
+

36.60%

+
+

1.30%

+
+

1.4

+
+

0.78

+
+

GU

+
+

126

+
+

R2649E

+
+

BXD

+
+

BXD97

+
+

74

+
+

F

+
+

R2649E.CEL

+
+

0.029

+
+

0.032

+
+

2.343

+
+

119.04

+
+

57.50%

+
+

41.20%

+
+

1.40%

+
+

1.53

+
+

0.8

+
+

GU

+
+

127

+
+

R2688E

+
+

BXD

+
+

BXD98

+
+

67

+
+

M

+
+

R2688E.CEL

+
+

0.032

+
+

0.03

+
+

1.772

+
+

145.24

+
+

58.50%

+
+

40.00%

+
+

1.50%

+
+

1.48

+
+

0.81

+
+

GU

+
+

128

+
+

R877E

+
+

BXD

+
+

BXD13

+
+

76

+
+

M

+
+

R877E.CEL

+
+

0.026

+
+

0.067

+
+

1.558

+
+

125.63

+
+

61.20%

+
+

37.50%

+
+

1.20%

+
+

1.42

+
+

0.81

+
+

GU

+
+

129

+
+

R1397E-re

+
+

BXD

+
+

BXD75

+
+

58

+
+

M

+
+

R1397E-re.CEL

+
+

0.032

+
+

0.01

+
+

1.449

+
+

189.71

+
+

59.60%

+
+

39.00%

+
+

1.40%

+
+

1.39

+
+

0.82

+
+

GU

+
+

130

+
+

R2779E

+
+

BXD

+
+

BXD73

+
+

64

+
+

F

+
+

R2779E.CEL

+
+

0.012

+
+

0.038

+
+

1.746

+
+

121.11

+
+

59.60%

+
+

39.00%

+
+

1.40%

+
+

1.5

+
+

0.8

+
+

GU

+
+

131

+
+

R2708E

+
+

BXD

+
+

BXD9

+
+

60

+
+

F

+
+

R2708E.CEL

+
+

0.024

+
+

0.045

+
+

1.966

+
+

126.46

+
+

57.70%

+
+

40.70%

+
+

1.50%

+
+

1.4

+
+

0.84

+
+

GU

+
+

132

+
+

R2547E1

+
+

GDP

+
+

WSB/Ei

+
+

67

+
+

M

+
+

R2547E.CEL

+
+

0.041

+
+

0.039

+
+

2.14

+
+

90

+
+

58.20%

+
+

40.10%

+
+

1.60%

+
+

1.32

+
+

0.77

+
+

UTM RW

+
diff --git a/general/datasets/Eye_m2_0908_r/acknowledgment.rtf b/general/datasets/Eye_m2_0908_r/acknowledgment.rtf new file mode 100644 index 0000000..5098d32 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r/acknowledgment.rtf @@ -0,0 +1,3 @@ +

Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant and from funds from NEI grant to Dr. Eldon Geisert (R01EY017841), an NEI Vision Core grant (EY14080) and an Unrestricted Grant from Research To Prevent Blindness.

+ +

We thank Dr. Ted Choi, Chief Scientific Director of Predictive Biology, Inc. (past director of molecular genetics at Deltagen Inc.) for providing us with eye samples from several interesting DeltaGen knockouts.

diff --git a/general/datasets/Eye_m2_0908_r/cases.rtf b/general/datasets/Eye_m2_0908_r/cases.rtf new file mode 100644 index 0000000..552d4a5 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r/cases.rtf @@ -0,0 +1,57 @@ +

This is the complete and final HEIMED data set. HEIMED consists of expression data for 103 genetically defined lines of mice with standard errors of the mean. Almost all animals are young adults between 50 and 80 days of age (Table 1, maximum age is 123 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, reciprocal F1s between C57BL/6J and DBA/2J, and several mutant and knockout lines. We have combined all common strains, F1 hybrids, and mutants into a group called the Mouse Diversity Panel (MDP). Four lines, namely, C57BL/6J (B6), DBA/2J (D2), and the pair of B6D2F1 and D2B6F1 hybrids are common to both the MDP and the BXD set. This is a breakdown of cases that are part of HEIMED:

+ +
    +
  1. 68 BXD strains. The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. Only one of these strains, BXD24 (know also known as BXD24b), has retinal degeneration (a spontaneous mutation). The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA.
  2. +
  3. 35 MDP lines, including 26 inbred strains representing closely related substrains (e.g, BALB/cJ and BALB/cByJ), many of the most widely used common Mus musculus domesticus inbred strains (e.g., C57BL/6J and 129S1/SvImJ), inbred but wild-derived representatives of common subspecies (Mus musculus domesticus, e.g, WSB/EiJ; M. musculus musculus, e.g., CZECHII/EiJ; M. musculus molossinus, e.g., MOLF/EiJ; M. musculus castaneus, e.g., CAST/EiJ); and even one different species of mouse (Mus spicilegus, PANCEVO/EiJ). The MDP also includes the reciprocal F1 hybrids (B6D2F1 and D2B6F1) and the following 6 KO lines and the Nyx-nob mutant:
  4. +
  5. 6 knockouts (KO), including a KO of Rpe65, and 5 DeltaGen Inc. knockout lines provided by Dr. Ted Choi. These KO lines have had a bacterial lacZ construct inserted into the gene. The endogenous promoter drives expression of beta-galactosidase. RT-PCR analysis detects a gene transcript in most tissues. The following KOs from DeltaGen were studied: Gabra1, Gabbr1, Gnb1, Gpr19, and Clcn3. We also included one spontaneous mutant of the nyctalopin (Nyx no b wave "nob") gene (Pardue et al., 1998) that is on a BALB/cByJ background.
  6. +
+ +

Rod photoreceptor degeneration in inbred mice: Six strains of mice included in HEIMED suffer from severe loss of photoreceptors (mainly rods) and have the equivalent of night blindness in human patients. The death of photoreceptors in these strains occurs by one to two months of age and is often caused by the retinal degeneration 1 (rd1) mutant allele in the rod cyclic-GMP phosphodiesterase 6 beta subunit gene (Pde6b). The following strains are known to have photoreceptor degeneration: C3H/HeJ, FVB/NJ, MOLF/EiJ, SJL/J and BXD24/TyJ. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEIMED data set.

+ +

As expected (Dickerson LW et al., 2002) and as judged from the absence of rhodopsin expression, one of the DeltaGen KO lines (chloride ion channel 3, Clcn3) also has retinal degeneration: B6129P2F2N1-Clcn3. Degeneration in this strain is likely to include all rods and all cones. The cone defect is obvious from the decrease in expression of Gnat2, a gene associated with cones and achromatopsia in mice and humans.

+ +

Lines of mice were selected using the following criteria:

+ + + +

We have included all eight parents of the Collaborative Cross (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/LtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ) in the MDP. Fourteen MDP strains have been partially sequenced by Perlegen for the NIEHS, including including 129S1/SvImJ, A/J, AKR/J, BALB/cByJ, C3H/HeJ, CAST/EiJ, DBA/2J, FVB/NJ, KK/HlJ, MOLF/EiJ, NOD/LtJ, NZW/LacJ, PWD/PhJ, and WSB/EiJ (see the GeneNetwork SNP Browser for data, details, and see Perlegen's excellent data resources and browser).

+ +
    +
  1. 129S1/SvImJ : Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene. It is also a cone photoreceptor function loss 3 mutant (Cpfl3 allele) of the Gnat2 gene that is a model for achromatopsia (JAX Stock Number: 002448)
  2. +
  3. A/J: Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase (Tyr c allele) albino mutant. This strain is particularly sensitive to light-induced photoreceptor loss (Danciger et al., 2007). (JAX Stock Number: 000646)
  4. +
  5. BALB/cByJ: Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project old group A list. A tyrosinase (Tyr c allele) albino mutant and also a tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. Small brain, not aggressive (JAX Stock Number: 001026)
  6. +
  7. BALB/cJ: Phenome Project A list. A tyrosinase (Tyr c allele) albino mutant and also a tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. Large brain and aggressive (JAX Stock Number: 000651)
  8. +
  9. BXSB/MpJ: A white-bellied agouti strains with interesting autoimmune disease restricted to males that is associated with a mutation in the Yaa gene that causes glomerulonephritis, a dramatic increase in number of peripheral monocytes, and pre-B-cell deficiency (JAX Stock Number: 000740)
  10. +
  11. C3H/HeJ: The Heston (He) substrain with a wildtype agouti (A allele) coat color. Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project old group A list. Important to note for this eye expression dataset, C3H/HeJ is a Pdeb6 rd1 mutant with near total photoreceptor loss at as early as postnatal day 30. Also a Tlr4 mutant that is endotoxin resistant. (JAX Stock Number: 000659)
  12. +
  13. C57BL/6J: Sequenced by NIH/NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list. Single most widely used inbred strain of mouse. (JAX Stock Number: 000664)
  14. +
  15. C57BLKS/J: Black Kaliss strain (non-agouti a allele) derived from C57BL/6J, but genetically contaminated at some point mainly with DBA/2J and then reinbred. Now at the Jackson Laboratory. (JAX Stock Number: 000662)
  16. +
  17. CAST/EiJ: A wild-derived inbred Mus musculus castaneus strain. Samples of this subspecies were captured in Southeast Asia. One of three wild-derived strains in the Collaborative Cross sequenced by NIEHS; Phenome Project A list. CAST/Ei and CAST/EiJ are the same strain. The addition of the "J" is trivial and was added when stock were transferred from Dr. Eicher's lab to the Jackson Laboratory production facility in about 2004. (JAX Stock Number: 000928)
  18. +
  19. CBA/CaJ: Agouti strain from the Jackson Laboratory. Wildtype pigment genes. (JAX Stock Number: 000654)
  20. +
  21. CZECHII/EiJ: Czech 2 is a wild-derived inbred strain M. musculus musculus strain. Samples of this subspecies were caught in the Czech Republic and inbred at the Jackson Laboratory by Eva Eicher. White-bellied agouti. (JAX Stock Number: 001144).
  22. +
  23. DBA/2J: The dilute, brown, agouti (dba) strain is the oldest inbred strain of mouse. Inbreeding was started in 1909 by Little. A tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. A myosin 5a (Myo5a d) dilute allele mutant. Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project old A group list. (JAX Stock Number: 000671)
  24. +
  25. FVB/NJ: Friend's leukemia virus B (FVB) strain. Sequenced by Perlegen/NIEHS and Celera. Tyr c locus albino and a Pdeb6 rd1 mutant derived from Swiss mice at NIH. This has been the most common strain used to make transgenic mice due to large and easily injected oocytes; Phenome Project A list (JAX Stock Number: 001800).
  26. +
  27. KK/HlJ: K Kondo's (KK) Kasukabe strain is a homozygous age-related hearing loss (ahl) allele mutant of the Cdh23 gene. A Tyr c locus albino strain. Males have a form of type 2 diabetes. Sequenced by Perlegen/NIEHS. (JAX Stock Number: 002106)
  28. +
  29. LG/J: Large (LG) strain. Paternal parent of the Large-by-Small set of RI strains made by James Cheverud and colleagues (the LGXSM panel, not to be confused with the LongXShort or LXS panel). A Tyr c locus albino strain. (JAX Stock Number: 000675)
  30. +
  31. LP/J: White-bellied agouit strain with a piebald mutation in the endothelin receptor type B Ednrb gene from at the Jackson Laboratory. Some reduction in melanocytes in choroid of eye due to neural creast migration abnormalities. (JAX Stock Number: 000676)
  32. +
  33. MOLF/EiJ: A wild-derived inbred strain derived from M. musculus molossinus samples camputered in Fukuoka, Japan. This strain has the retinal degeneration rd1 allele in Pde6b. There appears to have been some genetic contamination of this strain with conventional inbred strains in the past several decades (F. Pardo, personal communication to RWW, August 2006). However, the strain is currently fully inbred. (JAX Stock Number: 000550)
  34. +
  35. NOD/LtJ: Non-obese diabetic strain, originally from M. Hattori in Kyoto, Japan. This is the Edward Leiter (Lt) substrain from the Jackson Laboratory. Collaborative Cross strain sequenced by NIEHS; Phenome Project B list. Homozygous age-related hearing loss (ahl) allele mutant of the Cdh23 gene. A Tyr c locus albino strain. (JAX Stock Number: 001976)
  36. +
  37. NZO/HlLtJ: New Zealand Obese strain. This is a severely obese and hypertensive strain. Males often develop a type 2 diabetes. Collaborative Cross strain. Agouti coat color. (JAX Stock Number: 002105)
  38. +
  39. NZB/BlNJ: New Zealand Black inbred strain from Bielschowsky (BL, substrain is "B lowercase L N", not "BiN") now maintained at the Jackson Laboratory. (JAX Stock Number: 000648)
  40. +
  41. NZW/LacJ: New Zealand White strain from the Laboratory Animal Center (Carshalton, UK), now maintained at the Jackson Laboratory. Carries the Tyr c locus albino mutation, the pink-eye dilution mutation in the Oca2 or p locus, and the brown allele at Tyrp1. (JAX Stock Number: 001058)
  42. +
  43. PANCEVO/EiJ: PANCEVO/EiJ is a wild-derived inbred strain from the Mus spicilegus samples caught in the Pancevo, Serbia. This species of mouse is also known as the Steppe mouse (taxon identifier 10103). M. spicilegus is a colonial mound-building species. No known ocular or retina mutations, but the expression level of Gnat2 is low in this strain, either due to a 3' UTR length variant or possible achromatosia (cone degeneration) (JAX Stock Number: 001384)
  44. +
  45. PWD/PhJ: A wild-derived Mus musculus musculus agouti strain inbred from samples caught near Prague, Czech Republic. Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues. (JAX Stock Number: 004660)
  46. +
  47. PWK/PhJ: A wild-derived Mus musculus musculus inbred strain from samples caught near Lhotka, Czech Republic. Collaborative Cross strain; Phenome Project D list. (JAX Stock Number: 003715)
  48. +
  49. SJL/J: Swiss Webster inbred strain from Jim Lambert's lab at the Jackson Laboratory. This strain has the retinal degeneration rd1 allele in Pde6b. It also carries both the Tyr c albino mutation and the pink-eye dilution mutation in the Oca2 or p locus. Highly aggressive males. (JAX Stock Number: 000686)
  50. +
  51. WSB/EiJ: Watkin Star line B (or "wild son-of-a-bitch") is a wild-derived Mus musculus domesticus inbred strain from samples caught in Maryland, USA. A Collaborative Cross strain sequenced by NIEHS; Phenome Project C list (JAX Stock Number: 001145)
  52. +
  53. B6D2F1 and D2B6F1 (also listed as BDF1 and DBF1 in some graphs and tables): F1 hybrids generated by crossing C57BL/6J with DBA/2J. These black reciprocal F1 can be used to detect dominance effects. Comparison of the two reciprocal F1s can be used to detect parental origin (imprinting) effects. The D2B6F1 animals are currently available from the Jackson Laboratory as a special order.) (JAX Stock Number for B6D2F1 hybrids obtained from the Jackson Laboratory, aka B6D2F1/J 100006)
  54. +
+ +

Most of the common inbred strains harbor mutations in genes the control pigmentation (Silvers, 2008 and material above in this INFO file). These gene include the albino and chinchilla alleles of the tyrosinase gene (Tyr, or human OCA1), the brown allele of the tyrosinase related protein 1 (Tyrp1), the pink-eye dilution allele of Oca2 (probe set 1418211), the non-agouti (black) and white-bellied alleles of the agouti signaling protein Asip, the steel allele of Kitlg, the dilute allele of Myo5a (probe set 1419754), and the piebald allele of Ednrb. In some of these cases, effects of the mutation are easily detected at the transcript level (Tyrp1, Oca2, and Myo5a), but in the other cases (Tyr, Asip, Ednrb, and Kitlg), mutations do not leave a strong imprint on expression.

diff --git a/general/datasets/Eye_m2_0908_r/citation.rtf b/general/datasets/Eye_m2_0908_r/citation.rtf new file mode 100644 index 0000000..ddd98e4 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r/citation.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Xusheng Wang, Weikuan Gu, Yan Jiao, Robert W. Williams. Gene expression landscape of the mammalian eye: A global survey and database of mRNAs of 103 varieties of mice. Molecular Vision 2009; in press.

diff --git a/general/datasets/Eye_m2_0908_r/contributors.rtf b/general/datasets/Eye_m2_0908_r/contributors.rtf new file mode 100644 index 0000000..d155833 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r/contributors.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Xusheng Wang, Weikuan Gu, Yan Jiao, Robert W. Williams

diff --git a/general/datasets/Eye_m2_0908_r/experiment-design.rtf b/general/datasets/Eye_m2_0908_r/experiment-design.rtf new file mode 100644 index 0000000..1ebe0ad --- /dev/null +++ b/general/datasets/Eye_m2_0908_r/experiment-design.rtf @@ -0,0 +1 @@ +

Expression profiling by array

diff --git a/general/datasets/Eye_m2_0908_r/experiment-type.rtf b/general/datasets/Eye_m2_0908_r/experiment-type.rtf new file mode 100644 index 0000000..0546e04 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r/experiment-type.rtf @@ -0,0 +1 @@ +Expression profiling by array \ No newline at end of file diff --git a/general/datasets/Eye_m2_0908_r/notes.rtf b/general/datasets/Eye_m2_0908_r/notes.rtf new file mode 100644 index 0000000..7a26eb5 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r/notes.rtf @@ -0,0 +1 @@ +

This data set is available as a bulk download in several formats. The data are available as either strain means or the individual arrays. Due to the involved normalization procedures required to correct for batch effects we strongly recommend not using the raw CEL files without special statistical procedures.

diff --git a/general/datasets/Eye_m2_0908_r/platform.rtf b/general/datasets/Eye_m2_0908_r/platform.rtf new file mode 100644 index 0000000..9024a99 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r/platform.rtf @@ -0,0 +1,11 @@ +

Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many probes overlap and target the same transcript). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequences as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

+ +

As part of the development of HEIMED, we have manually annotated individual probe sets by sequence alignment to the mouse genome and transcriptome. Approximately 13,000 probe sets that have comparatively high expression in eye and CNS were curated by one of the authors (RWW) and now have specific information on the part of the transcript targeted by each probe set. The other 33,000 transcripts have corresponding data that was generated by Xusheng Wang using computational methods (BLAT analysis combined with annotated genome sequence).

+ +

One example may help explain how to exploit this annotation. The four probe sets for rhodopsin include information on the target location. Only the first probe set targets the last two coding exons. The other three probe sets target different parts of the 3’ UTR (mid, distal, and far distal regions). The probe sets can be reordered by from high to low expression using the Sort By function in Search Results pages. In the case of rhodopsin, the probe set that targets that last two coding exons and proximal parts of the 3’ UTR also has the highest expression . Finally, the HEIMED gene descriptions have been customized to help vision researchers. In the case of rhodopsin, the description appended after the gene name reads “rod photoreceptor pigment, retinitis pigmentosa-associated”. For less well known genes this kind of annotation can be extremely useful. For example, the more verbose annotation for Cerkl reads “neuronal survival and apoptosis-related, retinal ganglion cell expressed, retinitis pigmentosa 26); alternative 3' UTR of short form message, intron 2”.

+ +

 

+ +

+ +

Legend: Distribution of expression values for all probe sets in HEIMED.

diff --git a/general/datasets/Eye_m2_0908_r/processing.rtf b/general/datasets/Eye_m2_0908_r/processing.rtf new file mode 100644 index 0000000..4349e60 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r/processing.rtf @@ -0,0 +1,3381 @@ +

Range of Gene Expression in the Eye. Expression of transcripts in the HEIMED and most other GN data sets is measured on a log2 scale. Each unit corresponding approximately to a 2-fold difference in hybridization signal intensity. To simplify comparisons among different data sets and cases, log2 RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units (variance stabilized). Values of all 45,101 probe sets in this data set range from a low of 4.8 (Tcf15, probe set 1420281_at) to a high of 15.5 (crystallin gamma C, Crygc, probe set 1422674_s_at). This corresponds to 10.7 units or a 1 to 1700 dynamic range of expression (2^10.73).

+ +

We used pooled RNA samples of whole eyes, usually two independent pools--one male, one female pool--for most lines of mice. This data set was processed using the RMA protocol. A total of 2223 probes sets are associated with LRS values greater than 46 (LOD >10).

+ +

We calibrated this log intensity scale using Affymetrix spike-in control probe sets. These 18 control probe sets target exogenous bacterial mRNAs that are added to each sample (a graded dose spike cocktail) during preparation at concentrations of 1.5, 5, 25, and 100 pM. (To find these probe sets, search GN’s ALL search field using the string “AFFX pM”.) A value of 6 or less is equivalent to an mRNA concentration of under 0.4 pM, a value of 8 is equivalent to ~1.5 pM, 9.5 is equivalent to ~5 pM, 11.5 is equivalent to ~25 pM, 13.5 is equivalent to ~100 pM, and a value of 15.5 is equivalent to an mRNA concentration of 400 pM or greater.

+ +

This range can be converted to the mRNA molecules per cell in the eye assuming that a value of 8 is equivalent to about 1 mRNA copy per cell (Kanno et al. 2006, see http://www.biomedcentral.com/1471-2164/7/64). Since the expression of rhodopsin mRNA is normally 15 units, we predict that there are 27 or ~128 Rho mRNAs per cell in the whole eye and ~256 in rods themselves (assuming that rods make up about half of all cells in the eye). For this purpose it may be useful to know that a normal mouse eye contains between 6 and 8 million rod photoreceptors (Guo, Lu, and Williams; GN BXD Phenotype ID 11024).

+ +

Note that some probe sets with very low expression still provide reliable data. For example, probe set 1440397_at (Cacna2d1) has expression of only 5.5 units (a value that would be declared as "absent" using conventional Affymetrix procedures), but the values for this calcium channel transcript are associated with a very strong cis QTL with an LRS of 79 (LOD = 17). This strong linkage is definitely not due to chance since the probability of the expression data mapping precisely to the location of the parent gene itself is about 10e-16. This indicates a high signal to noise ratio and the detection of significant strain variation of the correct transcript.

+ +

The standard error of the mean for the HEIMED data set is computed for 2 to 6 biological replicates. The standard error of such small samples tends to systematically underestimate the population standard error. With n = 2 the underestimate is about 25%, whereas for n = 6 the underestimate is 5%. Gurland and Tripathi (1971) provide a correction and equation for this effect (see Sokal and Rohlf, Biometry, 2nd ed., 1981, p 53 for an equation of the correction factor for small samples of n < 20.) Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. The CEL files were processed using the RMA protocol. We processed the first three batches together. The last batch was processed separately and merged as described below.

+ + + +

After RMA processing using Biobase affy10 build running under R version 2.7.1, all array data sets were rank-order normalized. This second round of quantile normalization removes much residual non-linearity across arrays and forces every array to have the same distribution of values as the mean of all arrays. Comparative array data quality was then evaluated in DataDesk. Outlier arrays were flagged by visual inspection in DataDesk, usually by means of an analysis of scatter plots and more quantitatively by generating a correlation matrix of all arrays. Those arrays with mean correlation <0.96 versus all other arrays indicates trouble or a biological outlier). In some cases, outliers were expected, such as samples from strains with retinal degeneration (FVB/NJ, NOD/LtJ, MOLF/EiJ, C3H/HeJ and BXD24), samples from wild subspecies such as WSB/EiJ, CAST/EiJ, PWD/PhJ, and PWK/PhJ, and knockouts. However, when arrays were anomolous both within strain and across strains, they were often simply discarded. The assumption is that anomolous data are much more likely due to experimental and technical errors than to informative biological variation. Approximately 10% of arrays were discarded.

+ +

After this process, the acceptable set of arrays was renormalized using all step as above, starting with the original RMA procedure, etc.

+ +

We reviewed the data set using a new method developed by RW Williams, Jeremy Peirce, and Hongqiang Li. For the full set of arrays that passed standard QC protocols described above, we computed the strain means for the BXD strains, B6, D2, and F1s. Using this set of strain means we then computed LRS scores for all 45101 probe sets and counted the number of transcripts that generated QTLs with LRS values greater than 50. This value (e.g., 1800) represented the QTL harvest for the full data set. We then dropped a single array from the data set, recomputed strain means, and recomputed the number of transcripts with LRS scores great than 50. This value is expected to typically reduce the number of QTLs that reach the criterion level (e.g., 1750 QTLs > 50). This process was repeated for every array to obtain an array-specific difference value--the effect of removing that array on the total QTL count. For example, the loss of a single array might cause a decrease in 50 QTLs. Values ranged from approximately -90 (good arrays) to +40 (bad arrays). This procedure is similar in some ways to a jackknife protocol, although we are not using this procedure to esimate an error term, but rather as a method to polish a data set.

+ +

During this process we discovered that nearly 20 arrays in the batch 2 had been mislabeled at some point in processing. We computed the correct strain membership of each array using a large number of Mendelian probe sets (more than 50) and comparing their match to standard SNP and microsatellite markers and the original array data set of November 2005. This allowed us to rescue a large number of arrays that were of high quality.

+ +

A third batch of approximately 40 arrays were processed by Yan Jiao and Weikuan Gu in August 2006. These complete data set assembled by Hongqiang Li. This process again included a correction for a batch effect.

+ +

For the June 2006 data set Hongqiang Li used a new batch correction method that stabilizes the range of expression in each batch. For each of the three large batches, we extracted the minumum and maximum raw probe expression (CEL file level) value. We then adjusted raw probe values in each batch to have the same range as the first and largest batch (batch 1) using a simple linear interpolation. These procedures generated new correct CEL files which were then used with RMA to generate final probe set estimates.

+ +

For the final fourth batch of arrays (Sept 2008) Arthur Centeno and Rob Williams corrected for a systematic difference in probe set expression values between original arrays run in 2005 and 2006 and the new arrays added in 2008 (n = 45 acceptable arrays). This difference is due to unknown technical batch effects that are probably associated with labeling, hybridization, and scanning. We performed a simple correction to normalize values of the new set of arrays to those of the old set (batches 1 through 3). No changes were made to any values of the previous three batches. We corrected only the probe set level (RMA) values and not the CEL files. For this final batch, we corrected for the difference (offset) in probe set expression between the first three batches arrays run in 2005 and 2006 (a total of 174 acceptable arrays) and the new batch (n = 47 acceptable arrays). This difference is due to unknown technical effects that are probably related to various steps in labeling, hybridization, and scanning. The correction was applied as follows: (1) RWW selected 51 high quality arrays with similar expression characteristics (r = 0.97 or better between pairs of arrays) in the old data set (from batches 1, 2, and 3) and 34 high quality arrays in the final batch. RWW used scatterplots of full RMA transcriptome data sets to review many pairs of arrays within these new and old array batches. Strains with retinal degeneration or unusual eye gene expression characteristics were excluded from these selected subsets. The average expression values for each probe set were then computed for both the old and new array subsets. The offset value (old minus new) was added to each probe set across all 47 new arrays. This processes forces the average probe set in the new arrays to be very close to that of the previous arrays.

+ +

Table 2: Sample tube ID, strain, original CEL filename, and Affymetrix quality control values. Columns labeled Scale factor, Background Average, Present, Absent, Marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files.

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
2R2533E.1129S1/SvImJR2533E.1.CEL2.119457.90%40.50%1.60%1.370.781Y
3R0754E.1A/JR0754E.1.CEL2.728659.80%38.70%1.50%1.360.761Y
4R4521EB6129P2F2N1-Clcn3R4521E.CEL4.8338.763.30%35.30%1.40%1.250.774 
5R4522EB6129P2F2N1-Clcn3R4522E.CEL5.7637.3662.90%35.70%1.40%1.370.834 
6R4523EB6129P2F2N1-Clcn3R4523E.CEL4.8840.4263.90%34.70%1.40%1.270.774 
7R4526EB6129P2F2N1-Gabbr1R4526E.CEL3.8444.1865.00%33.70%1.30%1.340.784Y
8R4509EB6129P2F2N1-Gabbr1R4509E.CEL7.4534.7658.90%39.70%1.40%1.450.834 
9R4510EB6129P2F2N1-Gabbr1R4510E.CEL8.4437.4457.40%41.10%1.50%1.350.834 
10R4511EB6129P2F2N1-Gabbr1R4511E.CEL5.9142.0261.40%37.20%1.40%1.410.834 
11R4524EB6129P2F2N1-Gabbr1R4524E.CEL5.4942.3462.40%36.20%1.40%1.290.784Y
12R4525EB6129P2F2N1-Gabbr1R4525E.CEL4.6941.363.10%35.50%1.40%1.270.84Y
13R4515EB6129P2F2N1-Gabra1R4515E.CEL5.7541.7662.80%35.80%1.40%1.410.814Y
14R4516EB6129P2F2N1-Gabra1R4516E.CEL7.0740.7360.20%38.40%1.40%1.320.874Y
15R4517EB6129P2F2N1-Gabra1R4517E.CEL5.4538.0962.70%35.80%1.40%1.340.824Y
16R4512EB6129P2F2N1-Gnb5R4512E.CEL6.5638.0259.90%38.70%1.50%1.330.834 
17R4513EB6129P2F2N1-Gnb5R4513E.CEL4.1541.663.40%35.10%1.50%1.340.824 
18R4514EB6129P2F2N1-Gnb5R4514E.CEL5.8639.261.20%37.30%1.50%1.340.814 
19R4518EB6129P2F2N1-Gpr19R4518E.CEL5.5838.962.60%36.00%1.30%1.390.794Y
20R4519EB6129P2F2N1-Gpr19R4519E.CEL5.9541.9161.30%37.30%1.40%1.350.844Y
21R2601E.1B6D2F1R2601E.1.CEL2.559258.90%39.60%1.50%1.440.781Y
22R2602E.1B6D2F1R2602E.1.CEL2.68459.70%38.80%1.50%1.370.781Y
23R1676E.1BALB/cByJR1676E.1.CEL2.699858.90%39.60%1.50%1.460.741 
24R1672E.1BALB/cByJR1672E.1.CEL2.2211159.90%38.60%1.50%1.260.81Y
25R4530EBALB/cJR4530E.CEL6.3737.5360.80%37.80%1.40%1.30.844Y
26R4529EBALB/cJR4529E.CEL5.7141.3360.50%38.00%1.50%1.480.84Y
27R2704E.2BXD1R2704E.2.CEL2.066139.6156.60%41.90%1.50%1.310.812 
28R2707E.3BXD1R2707E.3.CEL18056.40%42.10%1.50%1.430.793 
29R1231E.2BXD2R1231E.2.CEL2.197138.7357.30%41.30%1.40%1.410.772 
30R2598E.1BXD2R2598E.1.CEL1.9910660.90%37.60%1.50%1.270.781Y
31R2591E.1BXD5R2591E.1.CEL1.713658.50%40.00%1.50%1.330.781Y
32R2714E.2BXD5R2714E.2.CEL1.404144.3560.60%37.90%1.50%1.430.792 
33R2570E.1BXD6R2570E.1.CEL1.998758.50%40.00%1.50%1.460.761Y
34R2694E.2BXD6R2694E.2.CEL1.98397.2361.60%37.10%1.30%1.390.822 
35R2538E.1BXD8R2538E.1.CEL1.9110261.20%37.30%1.50%1.520.791Y
36R2709E.2BXD8R2709E.2.CEL1.9999.7960.90%37.60%1.50%1.420.762 
37R2708E.2BXD9R2708E.2.CEL1.966126.4657.70%40.70%1.50%1.40.842 
38R2569E.1BXD9R2569E.1.CEL1.758755.10%43.40%1.50%2.823.141 
39R2581E.1BXD11R2581E.1.CEL1.948962.10%36.40%1.60%1.550.811Y
40R2612E.2BXD11R2612E.2.CEL1.83142.0358.20%40.50%1.40%1.780.812 
41R2742E.2BXD12R2742E.2.CEL2.127134.1457.00%41.60%1.40%1.640.782 
42R2543E.1BXD12R2543E.1.CEL1.6111858.60%39.90%1.60%1.430.771Y
43R2586E.1BXD13R2586E.1.CEL2.017456.40%42.00%1.60%2.853.811 
44R877E.2BXD13R877E.2.CEL1.558125.6361.20%37.50%1.20%1.420.812 
45R2557E.1BXD14R2557E.1.CEL1.839962.50%36.10%1.40%1.310.781Y
46R1128E.2BXD14R1128E.2.CEL1.9111559.90%38.80%1.40%1.20.821Y
47R2701E.3BXD15R2701E.3.CEL18860.60%37.90%1.40%1.50.773 
48R2716E.2BXD15R2716E.2.CEL2.015150.8356.40%42.10%1.60%1.420.812 
49R2711E.2BXD16R2711E.2.CEL1.953118.5359.00%39.60%1.50%1.450.82 
50R2567E.1BXD16R2567E.1.CEL2.248256.70%41.60%1.70%1.370.751 
51R2720E.2BXD18R2720E.2.CEL2.3299.9359.50%39.00%1.50%1.330.772 
52R2559E.1BXD18R2559E.1.CEL1.6510460.80%37.70%1.50%1.270.781Y
53R2560E.1BXD19R2560E.1.CEL1.799860.90%37.50%1.60%1.350.81Y
54R2713E.2BXD19R2713E.2.CEL1.67120.8260.20%38.30%1.50%1.450.82 
55R2584E.1BXD20R2584E.1.CEL2.078459.30%39.10%1.60%1.40.761Y
56R2731E.2BXD20R2731E.2.CEL1.82514759.00%39.50%1.50%1.40.82 
57R2702E.2BXD21R2702E.2.CEL1.811128.6559.40%39.10%1.40%1.260.82 
58R2541E2.1BXD21R2541E2.1.CEL2.6312556.00%42.40%1.50%1.290.781 
59R2553E.1BXD22R2553E.1.CEL1.9511159.90%38.50%1.50%1.280.761Y
60R2700E.2BXD22R2700E.2.CEL1.858102.9661.50%37.10%1.30%1.480.792 
61R2558E-2.1BXD23R2558E-2.1.CEL2.233125.0558.60%39.90%1.50%1.430.772 
62R1086E.2BXD23R1086E.2.CEL2.233125.0558.60%39.90%1.50%1.430.772 
63R2719E.2BXD24R2719E.2.CEL1.47140.3861.50%37.20%1.30%1.380.792 
64R2589E2.1BXD24R2589E2.1.CEL2.6111257.50%40.90%1.60%1.240.81 
65R2573E-2.1BXD25R2573E-2.1.CEL3.157257.90%40.70%1.40%1.770.971 
66R2683E.2BXD25R2683E.2.CEL1.777115.6458.30%40.30%1.40%2.010.792 
67R2703E.2BXD27R2703E.2.CEL1.263134.7862.60%36.10%1.40%1.440.782 
68R2729E.3BXD27R2729E.3.CEL18757.90%40.60%1.50%1.560.843Y
69R2562E.3BXD28R2562E.3.CEL1.6511659.90%38.40%1.70%1.370.793Y
70R2721E.2BXD28R2721E.2.CEL2.065157.3956.10%42.40%1.50%1.310.812 
71R2561E.3BXD29R2561E.3.CEL17753.30%45.40%1.40%3.3619.663 
72R1258E.2BXD31R1258E.2.CEL2.063117.0959.00%39.50%1.50%1.540.782 
73R2597E.1BXD31R2597E.1.CEL2.379460.30%38.30%1.50%1.340.771Y
74R2563E.1BXD32R2563E.1.CEL1.5510261.90%36.70%1.40%1.50.81 
75R1216E.2BXD32R1216E.2.CEL2.23111.9958.80%39.80%1.40%1.350.792 
76R2542E.1BXD33R2542E.1.CEL2.139756.50%41.80%1.60%1.910.931 
77R857E.2BXD33R857E.2.CEL1.737113.9861.90%36.70%1.30%1.60.772 
78R1451E.2BXD34R1451E.2.CEL1.843140.0559.00%39.50%1.50%1.420.812Y
79R2585E.1BXD34R2585E.1.CEL2.647558.30%40.00%1.70%1.250.771 
80R2698E.3BXD36R2698E.3.CEL18659.70%39.00%1.30%1.460.783 
81R2705E.3BXD36R2705E.3.CEL18660.20%38.40%1.40%1.460.773 
82R2710E.2BXD38R2710E.2.CEL2.112122.158.80%39.80%1.40%1.370.782 
83R2532E.1BXD38R2532E.1.CEL2.049459.80%38.70%1.50%1.370.81Y
84R2574E.1BXD39R2574E.1.CEL1.989161.20%37.30%1.50%1.390.781 
85R2695E.2BXD39R2695E.2.CEL1.638122.760.80%37.80%1.50%1.420.82 
86R2699E.2BXD40R2699E.2.CEL1.827105.2361.70%36.90%1.40%1.420.812 
87R2590E.1BXD40R2590E.1.CEL2.717759.10%39.30%1.50%1.40.771Y
88R2696E.2BXD42R2696E.2.CEL1.622118.9562.00%36.60%1.50%1.530.792 
89R2596E.1BXD42R2596E.1.CEL2.6310859.00%39.60%1.50%1.240.81 
90R994E.2BXD43R994E.2.CEL1.966113.1260.80%37.80%1.40%1.660.82 
91R2607E.1BXD43R2607E.1.CEL2.4311558.60%40.00%1.40%1.310.761Y
92R2594E.1BXD44R2594E.1.CEL1.7711759.80%38.80%1.40%1.350.851 
93R2610E.2BXD44R2610E.2.CEL1.814142.9159.00%39.50%1.50%1.350.82 
94R2732E.2BXD45R2732E.2.CEL2.154122.4556.50%42.10%1.40%1.80.832 
95R2592E.1BXD45R2592E.1.CEL1.8510660.10%38.60%1.30%1.430.851Y
96R967E.2BXD48R967E.2.CEL1.948130.9557.30%41.20%1.50%1.630.812 
97R2606E.1BXD48R2606E.1.CEL2.5610658.90%39.70%1.40%1.350.831Y
98R2933E.3BXD50R2933E.3.CEL17252.90%45.60%1.50%2.450.983 
99R2937E.3BXD50R2937E.3.CEL18956.90%41.60%1.40%1.810.823 
100R2603E.1BXD51R2603E.1.CEL2.4911557.70%40.80%1.50%1.240.791 
101R1042E.2BXD51R1042E.2.CEL2.352104.1258.70%39.90%1.40%1.530.822 
102R2980E.3BXD55R2980E.3.CEL18256.90%41.70%1.50%1.770.843 
103R2690E.2BXD55R2690E.2.CEL1.887164.0156.10%42.30%1.60%1.430.82 
104R4176EBXD56R4176E.CEL4.7543.0863.00%35.60%1.30%1.390.814Y
105R4175EBXD56R4175E.CEL638.4961.30%37.30%1.40%1.470.814Y
106R1006E.3BXD60R1006E.3.CEL19854.90%43.70%1.50%2.70.863 
107R2725E.2BXD60R2725E.2.CEL1.551148.0159.80%38.80%1.40%1.430.792 
108R1074E.3BXD60R1074E.3.CEL111855.50%43.10%1.40%1.960.813 
109R2534E2.1BXD61R2534E2.1.CEL2.4711857.90%40.60%1.50%1.420.791 
110R2684E.2BXD61R2684E.2.CEL2.01131.0357.00%41.50%1.50%1.340.782 
111R1107E.3BXD62R1107E.3.CEL18355.20%43.40%1.40%2.430.933 
112R2681E.2BXD62R2681E.2.CEL2.086148.2457.20%41.30%1.50%1.290.812 
113R965E.3BXD62R965E.3.CEL193.5553.30%45.20%1.50%3.110.943 
114R1425E.2BXD63R1425E.2.CEL1.713659.30%39.30%1.40%1.430.822 
115R2576E.3BXD63R2576E.3.CEL18461.30%37.40%1.40%1.480.763 
116R943E-2.2BXD64R943E-2.2.CEL1.591141.3460.10%38.40%1.50%1.320.762 
117R2611E.1BXD64R2611E.1.CEL2.299258.00%40.50%1.50%1.571.061 
118R2689E.2BXD65R2689E.2.CEL1.721142.4459.90%38.60%1.50%1.380.762 
119R2583E.1BXD65R2583E.1.CEL2.497056.90%41.50%1.60%1.671.011 
120R2728E.2BXD66R2728E.2.CEL1.714137.4559.40%39.00%1.60%1.380.792 
121R2536E2.1BXD66R2536E2.1.CEL2.7410956.10%42.30%1.70%1.280.791 
122R1207E.2BXD66R1207E.2.CEL1.681136.8660.40%38.10%1.50%1.450.772 
123R1192E.2BXD67R1192E.2.CEL2.126123.3757.90%40.60%1.50%1.50.82 
124R2727E.3BXD67R2727E.3.CEL182.5556.10%42.40%1.50%1.970.872 
125R2691E.3BXD67R2691E.3.CEL19054.80%43.80%1.50%2.610.813 
126R2551E.1BXD68R2551E.1.CEL2.499254.30%44.10%1.60%2.911.551 
127R2726E.2BXD68R2726E.2.CEL1.811153.0958.70%39.80%1.50%1.390.782 
128R2593E.1BXD69R2593E.1.CEL1.6712859.20%39.50%1.30%1.470.921Y
129R975E.2BXD70R975E.2.CEL1.841137.9758.00%40.50%1.40%1.360.792 
130R2537E2.1BXD70R2537E2.1.CEL2.939958.00%40.50%1.60%1.290.751 
131R4531EBXD71R4531E.CEL4.7743.4862.40%36.30%1.40%1.230.774Y
132R4532EBXD71R4532E.CEL5.8940.6860.90%37.60%1.50%1.240.794Y
133R2779E.2BXD73R2779E.2.CEL1.746121.1159.60%39.00%1.40%1.50.82 
134R3024E.3BXD73R3024E.3.CEL178.0551.70%46.60%1.70%2.30.943 
135R2565E.1BXD75R2565E.1.CEL1.7910258.00%40.50%1.50%2.313.471 
136R1397E-re.2BXD75R1397E-re.2.CEL1.449189.7159.60%39.00%1.40%1.390.822 
137R2687E.3BXD77R2687E.3.CEL18058.00%40.60%1.40%1.570.83Y
138R2717E.2BXD77R2717E.2.CEL1.79784.4361.60%36.90%1.40%1.490.762 
139R1421E.3BXD77R1421E.3.CEL19452.40%46.20%1.40%2.290.823 
140R2579E.1BXD80R2579E.1.CEL2.427259.20%39.40%1.50%1.730.821 
141R2686E.2BXD80R2686E.2.CEL2.342119.6356.00%42.60%1.50%1.380.792 
142R2956E.3BXD83R2956E.3.CEL18455.40%43.20%1.40%1.390.843 
143R2960E.3BXD83R2960E.3.CEL18056.60%41.90%1.50%1.50.823Y
144R2922E.3BXD84R2922E.3.CEL19157.80%40.80%1.50%1.470.833Y
145R2895E.3BXD84R2895E.3.CEL17558.30%40.20%1.50%1.560.773Y
146R2692E.2BXD85R2692E.2.CEL1.423160.8760.20%38.30%1.40%1.460.792 
147R2715E.2BXD85R2715E.2.CEL1.488142.661.20%37.30%1.40%1.50.782 
148R1405E.2BXD86R1405E.2.CEL2.351119.3456.40%42.20%1.40%1.640.812 
149R1225E.3BXD86R1225E.3.CEL17153.90%44.60%1.40%3.21.613 
150R2724E.2BXD87R2724E.2.CEL1.906113.7160.70%37.90%1.40%1.450.792 
151R2540E.1BXD87R2540E.1.CEL2.339361.10%37.40%1.40%1.220.811Y
152R1433E.2BXD89R1433E.2.CEL12.24157.70%40.80%1.50%1.410.782 
153R2546E.1BXD89R2546E.1.CEL1.999658.60%39.70%1.70%1.470.781 
154R2578E2.1BXD90R2578E2.1.CEL2.799258.60%39.80%1.60%1.520.771Y
155R859E.2BXD90R859E.2.CEL1.847152.2257.90%40.70%1.40%1.360.772 
156R2682E.2BXD92R2682E.2.CEL1.547156.3160.40%38.20%1.40%1.370.772 
157R1388E.3BXD92R1388E.3.CEL16360.00%38.60%1.40%1.851.033 
158R1322E.3BXD92R1322E.3.CEL18055.90%42.60%1.50%1.750.743 
159R2733E.2BXD96R2733E.2.CEL1.7113.9962.10%36.60%1.30%1.40.782 
160R2554E.1BXD96R2554E.1.CEL2.189360.20%38.30%1.50%1.460.771Y
161R2649E.2BXD97R2649E.2.CEL2.343119.0457.50%41.20%1.40%1.530.82 
162R2577E.1BXD97R2577E.1.CEL2.077759.50%39.10%1.40%1.871.291 
163R2645E.3BXD98R2645E.3.CEL18859.40%39.20%1.50%1.590.813Y
164R2688E.2BXD98R2688E.2.CEL1.772145.2458.50%40.00%1.50%1.480.812 
165R4533EBXD99R4533E.CEL137.6960.30%38.20%1.40%1.330.894Y
166R4534EBXD99R4534E.CEL5.6936.6262.90%35.70%1.40%1.160.84Y
167R2885E.3BXSB/MpJR2885E.3.CEL17658.10%40.60%1.30%1.881.063 
168R2883E.3BXSB/MpJR2883E.3.CEL17156.40%42.00%1.50%1.590.843Y
169R1700E.1C3H/HeJR1700E.1.CEL2.986960.80%37.90%1.40%1.480.781 
170R1704E.1C3H/HeJR1704E.1.CEL2.588860.10%38.60%1.30%1.380.841 
171R2605E.1C57BL/6JR2605E.1.CEL1.8213160.50%38.20%1.30%1.320.81Y
172R0871EC57BL/6JR0871E.CEL6.2437.3861.90%36.70%1.40%1.410.84Y
173R0872E.1C57BL/6JR0872E.1.CEL3.138958.90%39.60%1.50%1.30.791Y
174R0872EC57BL/6JR0872E.CEL3.12888.5858.90%39.60%1.50%1.30.791 
175R4507EC57BL/6J-NyxR4507E.CEL8.1337.559.30%39.30%1.40%1.320.84Y
176R4508EC57BL/6J-NyxR4508E.CEL6.3337.2660.90%37.80%1.30%1.240.824Y
177R4505EC57BL/6J-Rpe65R4505E.CEL5.9837.4861.80%36.80%1.40%1.450.854Y
178R4506EC57BL/6J-Rpe65R4506E.CEL6.9437.961.10%37.50%1.30%1.50.834Y
179R4535EC57BLKS/JR4535E.CEL6.5937.2861.20%37.30%1.40%1.260.834Y
180R4536EC57BLKS/JR4536E.CEL140.7160.30%38.20%1.50%1.250.774Y
181R2564E.1CAST/EiJR2564E.1.CEL1.948958.50%39.90%1.60%1.60.771 
182R2580E.1CAST/EiJR2580E.1.CEL2.099558.20%40.10%1.70%1.40.761 
183R4537ECBA/CaJR4537E.CEL138.4560.60%37.90%1.50%1.630.824Y
184R4538ECBA/CaJR4538E.CEL5.8939.1861.70%36.90%1.40%1.450.84Y
185R4539ECZECHII/EiJR4539E.CEL7.7337.158.30%40.10%1.50%1.70.954Y
186R4540ECZECHII/EiJR4540E.CEL11.0436.6953.00%45.30%1.70%1.831.324 
187R2600E.1D2B6F1R2600E.1.CEL2.479558.10%40.20%1.70%1.410.781Y
188R2604E.1D2B6F1R2604E.1.CEL2.669059.40%39.20%1.50%1.280.791Y
189R1002E.3DBA/2JR1002E.3.CEL110254.80%43.70%1.50%2.840.833 
190R4541EDBA/2JR4541E.CEL143.461.40%37.00%1.50%1.370.734Y
191R959E.3DBA/2JR959E.3.CEL189.9753.20%45.30%1.50%3.661.094 
192R2572E.1DBA/2JR2572E.1.CEL2.417955.50%42.90%1.60%1.370.791 
193R4542EDBA/2JR4542E.CEL5.739.9561.00%37.40%1.50%1.230.814Y
194R2771E.3FVB/NJR2771E.3.CEL17055.30%43.20%1.50%1.690.833 
195R2772E.3FVB/NJR2772E.3.CEL17655.20%43.40%1.40%2.131.023 
196R2636E.1KK/HlJR2636E.1.CEL2.619358.90%39.50%1.50%1.390.761Y
197R2637E.1KK/HlJR2637E.1.CEL2.1910359.40%39.00%1.50%1.30.791Y
198R0999E.1LG/JR0999E.1.CEL2.458259.40%39.10%1.50%1.380.791Y
199R1004E.1LG/JR1004E.1.CEL2.449258.70%39.80%1.50%1.380.791Y
200R4543ELP/JR4543E.CEL6.5741.9960.30%38.20%1.50%1.280.754Y
201R4544ELP/JR4544E.CEL4.5639.962.40%36.10%1.50%1.230.774Y
202R2858E.3MOLF/EiJR2858E.3.CEL16453.80%44.70%1.50%1.590.953 
203R2919.3MOLF/EiJR2919.3.CEL16452.40%46.00%1.60%2.151.073 
204R1688E.1NOD/LtJR1688E.1.CEL2.669858.60%39.90%1.50%1.260.81Y
205R2566E-2.1NOD/LtJR2566E-2.1.CEL3.036959.80%38.80%1.50%1.380.751Y
206R4545ENZB/BlNJR4545E.CEL4.2343.4862.10%36.40%1.50%1.330.764Y
207R4546ENZB/BlNJR4546E.CEL6.2744.2259.40%39.10%1.50%1.170.824Y
208R2535E.1NZO/HlLtJR2535E.1.CEL1.898660.40%38.20%1.40%1.410.851 
209R2550E.1NZO/HlLtJR2550E.1.CEL1.798760.70%37.80%1.50%1.520.821 
210R2817E.3NZW/LacJR2817E.3.CEL15950.90%47.60%1.50%3.591.483 
211R2810ENZW/LacJR2810E.CEL       3 
212R2810E.3NZW/LacJR2810E.3.CEL17457.00%41.70%1.40%2.151.034Y
213R4547EPANCEVO/EiJR4547E.CEL5.2751.3457.20%41.10%1.70%1.70.834 
214R4548EPANCEVO/EiJR4548E.CEL10.5437.3950.30%48.00%1.70%1.681.094 
215R2635E.1PWD/PhJR2635E.1.CEL3.728054.20%44.10%1.70%1.530.851 
216R2634E.1PWD/PhJR2634E.1.CEL3.299055.90%42.50%1.60%1.570.811 
217R2544E.1PWK/PhJR2544E.1.CEL2.210854.90%43.50%1.70%1.360.821 
218R2549E.1PWK/PhJR2549E.1.CEL2.288457.30%41.20%1.50%1.570.831 
219R4550ESJL/JR4550E.CEL5.3540.4462.30%36.20%1.40%1.240.794 
220R2368E.1WSB/EiJR2368E.1.CEL2.578659.50%39.10%1.40%1.290.741Y
221R2547E.1WSB/EiJR2547E.1.CEL2.149058.20%40.10%1.60%1.320.771Y
+
diff --git a/general/datasets/Eye_m2_0908_r/summary.rtf b/general/datasets/Eye_m2_0908_r/summary.rtf new file mode 100644 index 0000000..44b7e23 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r/summary.rtf @@ -0,0 +1,12 @@ +

FINAL RECOMMENDED EYE DATA SET. The HEIMED September 2008 RMA data release provides estimates of gene expression in whole eyes of 103 lines of young adult mice generated using 221 Affymetrix M430 2.0 arrays. This data set is intended for exploration of the genetics and genomics of the mouse eye, retina, lens, retinal pigment epithelium, cornea, iris and choroid. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). We used pooled RNA samples, usually two independent pools--one male, one female pool--for most lines of mice. This data set was processed using the RMA protocol. A total of 2223 probes sets are associated with LRS values greater than 46 (LOD >10).

+ +

Users of these mouse eye data may also find the following complementary resources extremely useful:

+ +
    +
  1. NEIBank collection of ESTs and SAGE data.
  2. +
  3. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases
  4. +
  5. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.
  6. +
  7. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus.
  8. +
  9. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430).
  10. +
  11. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.
  12. +
diff --git a/general/datasets/Eye_m2_0908_r/tissue.rtf b/general/datasets/Eye_m2_0908_r/tissue.rtf new file mode 100644 index 0000000..9b6ee0f --- /dev/null +++ b/general/datasets/Eye_m2_0908_r/tissue.rtf @@ -0,0 +1,2058 @@ +

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube.

+ +

Each array was hybridized with a pool of cRNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

+ +

Dissecting and preparing eyes for RNA extraction

+ +
    +
  1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below).
  2. +
  3. Store RNA in 75% ethanol at –80 deg. C until use.
  4. +
+ +

Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we:

+ +
    +
  1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue)
  2. +
  3. allowed the homogenate to stand for 5 min at room temperature
  4. +
  5. added 0.2 ml of chloroform per 1 ml RNA STAT-60
  6. +
  7. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min
  8. +
  9. centrifuged at 12,000 G for 15 min
  10. +
  11. transfered the aqueous phase to a fresh tube
  12. +
  13. added 0.5 ml of isopropanol per 1 ml RNA STAT-60
  14. +
  15. vortexed and allowed sample to stand at room temperature for 5-10 min
  16. +
  17. centrifuged at 12,000 G for 10-15 min
  18. +
  19. removed the supernatant and washed the RNA pellet with 75% ethanol
  20. +
  21. stored the pellet in 75% ethanol at -80 deg C until use
  22. +
+ +

Sample Processing. All samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center led by Dr. Weikuan Gu. All arrays were processed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. C until use (roughly one third) or were used immediately for hybridization.

+ +

Dealing with ocular pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations taken from brown and beige colored mice tend to have faint residual pigmentation that affects hybridization signal. To address this problem, Dr. Yan Jiao purified total RNA using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204) all four batches.

+ +

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well balanced sample of males and females, in general without within-strain-by-sex replication. Two strains are represented by a single male sample pool (BXD29 and A/J). Four lines are represented by two or three male sample pools (all of the five DeltaGen KO line). The SJL/J may be a single mixed sex sample. Users can study possible sex effects by comparing any results of expression data to that of a surrogate measurement that summarizes the overall sex balance of HEIMED. To do this just compare your data to those of probe sets 1427262_at (Xist, high in females) and probe set 1426438_at (Ddx3y, high in males). These two sex-specific probes are quantitative surrogates for the sex balance in this data set.

+ +

Technical duplicates: One sample, highlighted in the tables below, is a technical duplicate. The pair of technical duplicates were both of high quality. For statistical analysis, they should be combined and treated as single biological sample.

+ +

Batch structure: This data set consists of four batches (Table 2, far right column). The final September 2008 data set consists of a total of 221 arrays and 220 independent samples.

+ +
    +
  1. Batch 1: November 2005, n = 78 arrays original arrays of which 76 were accepted into this final data set.
  2. +
  3. Batch 2: January 2006, n = 62 arrays of which 62 were accepted.
  4. +
  5. Batch 3: August 2006, n = 39 arrays of which 36 were accepted. (These three batches, including some arrays that were eventually dropped from the final 2008 data set, were combined to form the September 2006 data set.)
  6. +
  7. Batch 4: Summer 2008, n = 53 arrays of which 47 were accepted.
  8. +
+ +

Table 1: HEIMED case IDs, including sample tube ID, strain, age, sex, and source of mice (see Table 2 for information on array quality control)

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexTubeIDGroupStrainAgeSexSource
1R2595E.1GDP129S1/SvImJ59FUTHSC RW
2R2533E.1GDP129S1/SvImJ60MUTHSC RW
3R0754E.1GDPA/J60MJAX
4R4521EKOB6129P2F2N1-Clcn369MTChoi_Deltagen
5R4522EKOB6129P2F2N1-Clcn369MTChoi_Deltagen
6R4523EKOB6129P2F2N1-Clcn367MTChoi_Deltagen
7R4526EKOB6129P2F2N1-Gabbr116FTChoi_Deltagen
8R4509EKOB6129P2F2N1-Gabbr116MTChoi_Deltagen
9R4510EKOB6129P2F2N1-Gabbr119MTChoi_Deltagen
10R4511EKOB6129P2F2N1-Gabbr120MTChoi_Deltagen
11R4524EKOB6129P2F2N1-Gabbr119MTChoi_Deltagen
12R4525EKOB6129P2F2N1-Gabbr122MTChoi_Deltagen
13R4515EKOB6129P2F2N1-Gabra167MTChoi_Deltagen
14R4516EKOB6129P2F2N1-Gabra169MTChoi_Deltagen
15R4517EKOB6129P2F2N1-Gabra167MTChoi_Deltagen
16R4512EKOB6129P2F2N1-Gnb522FTChoi_Deltagen
17R4513EKOB6129P2F2N1-Gnb525MTChoi_Deltagen
18R4514EKOB6129P2F2N1-Gnb522MTChoi_Deltagen
19R4518EKOB6129P2F2N1-Gpr1970MTChoi_Deltagen
20R4519EKOB6129P2F2N1-Gpr1968MTChoi_Deltagen
21R2601E.1GDP BXDB6D2F173FUTHSC RW
22R2602E.1GDP BXDB6D2F173MUTHSC RW
23R1676E.1GDPBALB/cByJ83FJAX
24R1672E.1GDPBALB/cByJ83MJAX
25R4530EGDPBALB/cJ66FJAX
26R4529EGDPBALB/cJ66MJAX
27R2704E.2BXDBXD159FUTHSC RW
28R2707E.3BXDBXD159MBIDMC GR
29R1231E.2BXDBXD264FUTHSC RW
30R2598E.1BXDBXD261MUTHSC RW
31R2591E.1BXDBXD560FBIDMC GR
32R2714E.2BXDBXD558MUTHSC RW
33R2570E.1BXDBXD665FUTHSC RW
34R2694E.2BXDBXD658MUTHSC RW
35R2538E.1BXDBXD877FUTHSC RW
36R2709E.2BXDBXD861MUTHSC RW
37R2708E.2BXDBXD960FUTHSC RW
38R2569E.1BXDBXD967MUTHSC RW
39R2581E.1BXDBXD1165FUTHSC RW
40R2612E.2BXDBXD1170MUTHSC RW
41R2742E.2BXDBXD1271FUTHSC RW
42R2543E.1BXDBXD1263MUTHSC RW
43R2586E.1BXDBXD1360FBIDMC GR
44R877E.2BXDBXD1376MUTHSC RW
45R2557E.1BXDBXD1460FBIDMC GR
46R1128E.2BXDBXD1465MUTHSC RW
47R2701E.3BXDBXD1560FBIDMC GR
48R2716E.2BXDBXD1560MUTHSC RW
49R2711E.2BXDBXD1661FUTHSC RW
50R2567E.1BXDBXD1660MBIDMC GR
51R2720E.2BXDBXD1859FUTHSC RW
52R2559E.1BXDBXD1859MBIDMC GR
53R2560E.1BXDBXD1960FBIDMC GR
54R2713E.2BXDBXD1960MUTHSC RW
55R2584E.1BXDBXD2059FBIDMC GR
56R2731E.2BXDBXD2060MUTHSC RW
57R2702E.2BXDBXD2159FUTHSC RW
58R2541E2.1BXDBXD2161MUTHSC RW
59R2553E.1BXDBXD2258FBIDMC GR
60R2700E.2BXDBXD2259MUTHSC RW
61R2558E-2.1BXDBXD2360FBIDMC GR
62R1086E.2BXDBXD2355MUTHSC RW
63R2719E.2BXDBXD24123FUTHSC RW
64R2589E2.1BXDBXD2459MBIDMC GR
65R2573E-2.1BXDBXD2567FUAB
66R2683E.2BXDBXD2558MUTHSC RW
67R2703E.2BXDBXD2760FUTHSC RW
68R2729E.3BXDBXD2768MUTHSC RW
69R2562E.3BXDBXD2860FBIDMC GR
70R2721E.2BXDBXD2860MUTHSC RW
71R2561E.3BXDBXD2960MBIDMC GR
72R1258E.2BXDBXD3157FUTHSC RW
73R2597E.1BXDBXD3161MBIDMC GR
74R2563E.1BXDBXD3263FUTHSC RW
75R1216E.2BXDBXD3276MUTHSC RW
76R2542E.1BXDBXD3367FUTHSC RW
77R857E.2BXDBXD3377MUTHSC RW
78R1451E.2BXDBXD3461FUTHSC RW
79R2585E.1BXDBXD3460MBIDMC GR
80R2698E.3BXDBXD3658FBIDMC GR
81R2705E.3BXDBXD3657MBIDMC GR
82R2710E.2BXDBXD3855FUTHSC RW
83R2532E.1BXDBXD3862MUTHSC RW
84R2574E.1BXDBXD3970FUTHSC RW
85R2695E.2BXDBXD3959MUTHSC RW
86R2699E.2BXDBXD4059FUTHSC RW
87R2590E.1BXDBXD4060MBIDMC GR
88R2696E.2BXDBXD4258FUTHSC RW
89R2596E.1BXDBXD4259MBIDMC GR
90R994E.2BXDBXD4360FUTHSC RW
91R2607E.1BXDBXD4367MUTHSC RW
92R2594E.1BXDBXD4463FUTHSC RW
93R2610E.2BXDBXD4468MUTHSC RW
94R2732E.2BXDBXD4563FUTHSC RW
95R2592E.1BXDBXD4562MUTHSC RW
96R967E.2BXDBXD4864FUTHSC RW
97R2606E.1BXDBXD4878MUTHSC RW
98R2933E.3BXDBXD5061FUTHSC RW
99R2937E.3BXDBXD5061MUTHSC RW
100R2603E.1BXDBXD5166FUTHSC RW
101R1042E.2BXDBXD5162MUTHSC RW
102R2980E.3BXDBXD5576FUTHSC RW
103R2690E.2BXDBXD5565MUTHSC RW
104R4176EBXDBXD5667FUTHSC RW
105R4175EBXDBXD5653MUTHSC RW
106R1006E.3BXDBXD6060FUTHSC RW
107R2725E.2BXDBXD6061FUTHSC RW
108R1074E.3BXDBXD6059MUTHSC RW
109R2534E2.1BXDBXD6170FUTHSC RW
110R2684E.2BXDBXD6162MUTHSC RW
111R1107E.3BXDBXD6254FUTHSC RW
112R2681E.2BXDBXD6262MUTHSC RW
113R965E.3BXDBXD6254MUTHSC RW
114R1425E.2BXDBXD6361FUTHSC RW
115R2576E.3BXDBXD6370MUTHSC RW
116R943E-2.2BXDBXD6456FUTHSC RW
117R2611E.1BXDBXD6468MUTHSC RW
118R2689E.2BXDBXD6563FUTHSC RW
119R2583E.1BXDBXD6560MUTHSC RW
120R2728E.2BXDBXD6667FUTHSC RW
121R2536E2.1BXDBXD6664FUTHSC RW
122R1207E.2BXDBXD6683MUTHSC RW
123R1192E.2BXDBXD6764FUTHSC RW
124R2727E.3BXDBXD6765FUTHSC RW
125R2691E.3BXDBXD6765MUTHSC RW
126R2551E.1BXDBXD6867FUTHSC RW
127R2726E.2BXDBXD6864MUTHSC RW
128R2593E.1BXDBXD6959FUTHSC RW
129R975E.2BXDBXD7064FUTHSC RW
130R2537E2.1BXDBXD7059MUTHSC RW
131R4531EBXDBXD7187FUTHSC RW
132R4532EBXDBXD7186MUTHSC RW
133R2779E.2BXDBXD7364FUTHSC RW
134R3024E.3BXDBXD7354MUTHSC RW
135R2565E.1BXDBXD7561FUTHSC RW
136R1397E-re.2BXDBXD7558MUTHSC RW
137R2687E.3BXDBXD7760FUTHSC RW
138R2717E.2BXDBXD77107MUTHSC RW
139R1421E.3BXDBXD7762MUTHSC RW
140R2579E.1BXDBXD8065FUTHSC RW
141R2686E.2BXDBXD8061MUTHSC RW
142R2956E.3BXDBXD8358FUTHSC RW
143R2960E.3BXDBXD8358MUTHSC RW
144R2922E.3BXDBXD8461FUTHSC RW
145R2895E.3BXDBXD8467MUTHSC RW
146R2692E.2BXDBXD8563FUTHSC RW
147R2715E.2BXDBXD8591MUTHSC RW
148R1405E.2BXDBXD8658FUTHSC RW
149R1225E.3BXDBXD8658MUTHSC RW
150R2724E.2BXDBXD8763FUTHSC RW
151R2540E.1BXDBXD8763MUTHSC RW
152R1433E.2BXDBXD8963FUTHSC RW
153R2546E.1BXDBXD8966MUTHSC RW
154R2578E2.1BXDBXD9061FUTHSC RW
155R859E.2BXDBXD9072MUTHSC RW
156R2682E.2BXDBXD9266FUTHSC RW
157R1388E.3BXDBXD9262FUTHSC RW
158R1322E.3BXDBXD9255MUTHSC RW
159R2733E.2BXDBXD9667FUTHSC RW
160R2554E.1BXDBXD9667MUTHSC RW
161R2649E.2BXDBXD9774FUTHSC RW
162R2577E.1BXDBXD9755MUTHSC RW
163R2645E.3BXDBXD9866FUTHSC RW
164R2688E.2BXDBXD9867MUTHSC RW
165R4533EBXDBXD9980FUTHSC RW
166R4534EBXDBXD9991MUTHSC RW
167R2885E.3GDPBXSB/MpJ61FBIDMC GR
168R2883E.3GDPBXSB/MpJ61MBIDMC GR
169R1700E.1GDPC3H/HeJ83FUTHSC RW
170R1704E.1GDPC3H/HeJ83MUTHSC RW
171R2605E.1GDP BXDC57BL/6J79FUTHSC RW
172R0871EGDP BXDC57BL/6J65FUTHSC RW
173R0872E.1GDP BXDC57BL/6J66MUTHSC RW
174R0872EGDP BXDC57BL/6J66MUTHSC RW
175R4507EKOC57BL/6J-Nyx57MGeisert
176R4508EKOC57BL/6J-Nyx57MGeisert
177R4505EKOC57BL/6J-Rpe6557FGeisert
178R4506EKOC57BL/6J-Rpe6557FGeisert
179R4535EGDPC57BLKS/J66FJAX
180R4536EGDPC57BLKS/J66MJAX
181R2564E.1GDPCAST/EiJ64FJAX
182R2580E.1GDPCAST/EiJ64MJAX
183R4537EGDPCBA/CaJ66FJAX
184R4538EGDPCBA/CaJ66MJAX
185R4539EGDPCZECHII/EiJ66FJAX
186R4540EGDPCZECHII/EiJ66MJAX
187R2600E.1GDP BXDD2B6F172FUTHSC RW
188R2604E.1GDP BXDD2B6F169MUTHSC RW
189R1002E.3GDP BXDDBA/2J72FUTHSC RW
190R4541EGDP BXDDBA/2J65FJAX
191R959E.3GDP BXDDBA/2J60MUTHSC RW
192R2572E.1GDP BXDDBA/2J65MUTHSC RW
193R4542EGDP BXDDBA/2J59MJAX
194R2771E.3GDPFVB/NJ60FBIDMC GR
195R2772E.3GDPFVB/NJ60MBIDMC GR
196R2636E.1GDPKK/HlJ64FUTHSC RW
197R2637E.1GDPKK/HlJ64MUTHSC RW
198R0999E.1GDPLG/J57FUTHSC RW
199R1004E.1GDPLG/J65MUTHSC RW
200R4543EGDPLP/J65FJAX
201R4544EGDPLP/J65MJAX
202R2858E.3GDPMOLF/EiJ60FBIDMC GR
203R2919.3GDPMOLF/EiJ60MBIDMC GR
204R1688E.1GDPNOD/LtJ66FJAX
205R2566E-2.1GDPNOD/LtJ76MUTHSC RW
206R4545EGDPNZB/BlNJ61FBIDMC GR
207R4546EGDPNZB/BlNJ58MBIDMC GR
208R2535E.1GDPNZO/HlLtJ62FJAX
209R2550E.1GDPNZO/HlLtJ96MJAX
210R2817E.3GDPNZW/LacJ65FBIDMC GR
211R2810EGDPNZW/LacJ60MBIDMC GR
212R2810E.3GDPNZW/LacJ60MBIDMC GR
213R4547EGDPPANCEVO/EiJ68FJAX
214R4548EGDPPANCEVO/EiJ68MJAX
215R2635E.1GDPPWD/PhJ62FJAX
216R2634E.1GDPPWD/PhJ62MJAX
217R2544E.1GDPPWK/PhJ63FJAX
218R2549E.1GDPPWK/PhJ83MJAX
219R4550EGDPSJL/J65M+FJAX
220R2368E.1GDPWSB/EiJ67FUTHSC RW
221R2547E.1GDPWSB/EiJ67MUTHSC RW
+
diff --git a/general/datasets/Eye_m2_0908_r_mt/acknowledgment.rtf b/general/datasets/Eye_m2_0908_r_mt/acknowledgment.rtf new file mode 100644 index 0000000..5098d32 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_mt/acknowledgment.rtf @@ -0,0 +1,3 @@ +

Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant and from funds from NEI grant to Dr. Eldon Geisert (R01EY017841), an NEI Vision Core grant (EY14080) and an Unrestricted Grant from Research To Prevent Blindness.

+ +

We thank Dr. Ted Choi, Chief Scientific Director of Predictive Biology, Inc. (past director of molecular genetics at Deltagen Inc.) for providing us with eye samples from several interesting DeltaGen knockouts.

diff --git a/general/datasets/Eye_m2_0908_r_mt/cases.rtf b/general/datasets/Eye_m2_0908_r_mt/cases.rtf new file mode 100644 index 0000000..552d4a5 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_mt/cases.rtf @@ -0,0 +1,57 @@ +

This is the complete and final HEIMED data set. HEIMED consists of expression data for 103 genetically defined lines of mice with standard errors of the mean. Almost all animals are young adults between 50 and 80 days of age (Table 1, maximum age is 123 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, reciprocal F1s between C57BL/6J and DBA/2J, and several mutant and knockout lines. We have combined all common strains, F1 hybrids, and mutants into a group called the Mouse Diversity Panel (MDP). Four lines, namely, C57BL/6J (B6), DBA/2J (D2), and the pair of B6D2F1 and D2B6F1 hybrids are common to both the MDP and the BXD set. This is a breakdown of cases that are part of HEIMED:

+ +
    +
  1. 68 BXD strains. The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. Only one of these strains, BXD24 (know also known as BXD24b), has retinal degeneration (a spontaneous mutation). The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA.
  2. +
  3. 35 MDP lines, including 26 inbred strains representing closely related substrains (e.g, BALB/cJ and BALB/cByJ), many of the most widely used common Mus musculus domesticus inbred strains (e.g., C57BL/6J and 129S1/SvImJ), inbred but wild-derived representatives of common subspecies (Mus musculus domesticus, e.g, WSB/EiJ; M. musculus musculus, e.g., CZECHII/EiJ; M. musculus molossinus, e.g., MOLF/EiJ; M. musculus castaneus, e.g., CAST/EiJ); and even one different species of mouse (Mus spicilegus, PANCEVO/EiJ). The MDP also includes the reciprocal F1 hybrids (B6D2F1 and D2B6F1) and the following 6 KO lines and the Nyx-nob mutant:
  4. +
  5. 6 knockouts (KO), including a KO of Rpe65, and 5 DeltaGen Inc. knockout lines provided by Dr. Ted Choi. These KO lines have had a bacterial lacZ construct inserted into the gene. The endogenous promoter drives expression of beta-galactosidase. RT-PCR analysis detects a gene transcript in most tissues. The following KOs from DeltaGen were studied: Gabra1, Gabbr1, Gnb1, Gpr19, and Clcn3. We also included one spontaneous mutant of the nyctalopin (Nyx no b wave "nob") gene (Pardue et al., 1998) that is on a BALB/cByJ background.
  6. +
+ +

Rod photoreceptor degeneration in inbred mice: Six strains of mice included in HEIMED suffer from severe loss of photoreceptors (mainly rods) and have the equivalent of night blindness in human patients. The death of photoreceptors in these strains occurs by one to two months of age and is often caused by the retinal degeneration 1 (rd1) mutant allele in the rod cyclic-GMP phosphodiesterase 6 beta subunit gene (Pde6b). The following strains are known to have photoreceptor degeneration: C3H/HeJ, FVB/NJ, MOLF/EiJ, SJL/J and BXD24/TyJ. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEIMED data set.

+ +

As expected (Dickerson LW et al., 2002) and as judged from the absence of rhodopsin expression, one of the DeltaGen KO lines (chloride ion channel 3, Clcn3) also has retinal degeneration: B6129P2F2N1-Clcn3. Degeneration in this strain is likely to include all rods and all cones. The cone defect is obvious from the decrease in expression of Gnat2, a gene associated with cones and achromatopsia in mice and humans.

+ +

Lines of mice were selected using the following criteria:

+ + + +

We have included all eight parents of the Collaborative Cross (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/LtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ) in the MDP. Fourteen MDP strains have been partially sequenced by Perlegen for the NIEHS, including including 129S1/SvImJ, A/J, AKR/J, BALB/cByJ, C3H/HeJ, CAST/EiJ, DBA/2J, FVB/NJ, KK/HlJ, MOLF/EiJ, NOD/LtJ, NZW/LacJ, PWD/PhJ, and WSB/EiJ (see the GeneNetwork SNP Browser for data, details, and see Perlegen's excellent data resources and browser).

+ +
    +
  1. 129S1/SvImJ : Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene. It is also a cone photoreceptor function loss 3 mutant (Cpfl3 allele) of the Gnat2 gene that is a model for achromatopsia (JAX Stock Number: 002448)
  2. +
  3. A/J: Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase (Tyr c allele) albino mutant. This strain is particularly sensitive to light-induced photoreceptor loss (Danciger et al., 2007). (JAX Stock Number: 000646)
  4. +
  5. BALB/cByJ: Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project old group A list. A tyrosinase (Tyr c allele) albino mutant and also a tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. Small brain, not aggressive (JAX Stock Number: 001026)
  6. +
  7. BALB/cJ: Phenome Project A list. A tyrosinase (Tyr c allele) albino mutant and also a tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. Large brain and aggressive (JAX Stock Number: 000651)
  8. +
  9. BXSB/MpJ: A white-bellied agouti strains with interesting autoimmune disease restricted to males that is associated with a mutation in the Yaa gene that causes glomerulonephritis, a dramatic increase in number of peripheral monocytes, and pre-B-cell deficiency (JAX Stock Number: 000740)
  10. +
  11. C3H/HeJ: The Heston (He) substrain with a wildtype agouti (A allele) coat color. Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project old group A list. Important to note for this eye expression dataset, C3H/HeJ is a Pdeb6 rd1 mutant with near total photoreceptor loss at as early as postnatal day 30. Also a Tlr4 mutant that is endotoxin resistant. (JAX Stock Number: 000659)
  12. +
  13. C57BL/6J: Sequenced by NIH/NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list. Single most widely used inbred strain of mouse. (JAX Stock Number: 000664)
  14. +
  15. C57BLKS/J: Black Kaliss strain (non-agouti a allele) derived from C57BL/6J, but genetically contaminated at some point mainly with DBA/2J and then reinbred. Now at the Jackson Laboratory. (JAX Stock Number: 000662)
  16. +
  17. CAST/EiJ: A wild-derived inbred Mus musculus castaneus strain. Samples of this subspecies were captured in Southeast Asia. One of three wild-derived strains in the Collaborative Cross sequenced by NIEHS; Phenome Project A list. CAST/Ei and CAST/EiJ are the same strain. The addition of the "J" is trivial and was added when stock were transferred from Dr. Eicher's lab to the Jackson Laboratory production facility in about 2004. (JAX Stock Number: 000928)
  18. +
  19. CBA/CaJ: Agouti strain from the Jackson Laboratory. Wildtype pigment genes. (JAX Stock Number: 000654)
  20. +
  21. CZECHII/EiJ: Czech 2 is a wild-derived inbred strain M. musculus musculus strain. Samples of this subspecies were caught in the Czech Republic and inbred at the Jackson Laboratory by Eva Eicher. White-bellied agouti. (JAX Stock Number: 001144).
  22. +
  23. DBA/2J: The dilute, brown, agouti (dba) strain is the oldest inbred strain of mouse. Inbreeding was started in 1909 by Little. A tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. A myosin 5a (Myo5a d) dilute allele mutant. Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project old A group list. (JAX Stock Number: 000671)
  24. +
  25. FVB/NJ: Friend's leukemia virus B (FVB) strain. Sequenced by Perlegen/NIEHS and Celera. Tyr c locus albino and a Pdeb6 rd1 mutant derived from Swiss mice at NIH. This has been the most common strain used to make transgenic mice due to large and easily injected oocytes; Phenome Project A list (JAX Stock Number: 001800).
  26. +
  27. KK/HlJ: K Kondo's (KK) Kasukabe strain is a homozygous age-related hearing loss (ahl) allele mutant of the Cdh23 gene. A Tyr c locus albino strain. Males have a form of type 2 diabetes. Sequenced by Perlegen/NIEHS. (JAX Stock Number: 002106)
  28. +
  29. LG/J: Large (LG) strain. Paternal parent of the Large-by-Small set of RI strains made by James Cheverud and colleagues (the LGXSM panel, not to be confused with the LongXShort or LXS panel). A Tyr c locus albino strain. (JAX Stock Number: 000675)
  30. +
  31. LP/J: White-bellied agouit strain with a piebald mutation in the endothelin receptor type B Ednrb gene from at the Jackson Laboratory. Some reduction in melanocytes in choroid of eye due to neural creast migration abnormalities. (JAX Stock Number: 000676)
  32. +
  33. MOLF/EiJ: A wild-derived inbred strain derived from M. musculus molossinus samples camputered in Fukuoka, Japan. This strain has the retinal degeneration rd1 allele in Pde6b. There appears to have been some genetic contamination of this strain with conventional inbred strains in the past several decades (F. Pardo, personal communication to RWW, August 2006). However, the strain is currently fully inbred. (JAX Stock Number: 000550)
  34. +
  35. NOD/LtJ: Non-obese diabetic strain, originally from M. Hattori in Kyoto, Japan. This is the Edward Leiter (Lt) substrain from the Jackson Laboratory. Collaborative Cross strain sequenced by NIEHS; Phenome Project B list. Homozygous age-related hearing loss (ahl) allele mutant of the Cdh23 gene. A Tyr c locus albino strain. (JAX Stock Number: 001976)
  36. +
  37. NZO/HlLtJ: New Zealand Obese strain. This is a severely obese and hypertensive strain. Males often develop a type 2 diabetes. Collaborative Cross strain. Agouti coat color. (JAX Stock Number: 002105)
  38. +
  39. NZB/BlNJ: New Zealand Black inbred strain from Bielschowsky (BL, substrain is "B lowercase L N", not "BiN") now maintained at the Jackson Laboratory. (JAX Stock Number: 000648)
  40. +
  41. NZW/LacJ: New Zealand White strain from the Laboratory Animal Center (Carshalton, UK), now maintained at the Jackson Laboratory. Carries the Tyr c locus albino mutation, the pink-eye dilution mutation in the Oca2 or p locus, and the brown allele at Tyrp1. (JAX Stock Number: 001058)
  42. +
  43. PANCEVO/EiJ: PANCEVO/EiJ is a wild-derived inbred strain from the Mus spicilegus samples caught in the Pancevo, Serbia. This species of mouse is also known as the Steppe mouse (taxon identifier 10103). M. spicilegus is a colonial mound-building species. No known ocular or retina mutations, but the expression level of Gnat2 is low in this strain, either due to a 3' UTR length variant or possible achromatosia (cone degeneration) (JAX Stock Number: 001384)
  44. +
  45. PWD/PhJ: A wild-derived Mus musculus musculus agouti strain inbred from samples caught near Prague, Czech Republic. Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues. (JAX Stock Number: 004660)
  46. +
  47. PWK/PhJ: A wild-derived Mus musculus musculus inbred strain from samples caught near Lhotka, Czech Republic. Collaborative Cross strain; Phenome Project D list. (JAX Stock Number: 003715)
  48. +
  49. SJL/J: Swiss Webster inbred strain from Jim Lambert's lab at the Jackson Laboratory. This strain has the retinal degeneration rd1 allele in Pde6b. It also carries both the Tyr c albino mutation and the pink-eye dilution mutation in the Oca2 or p locus. Highly aggressive males. (JAX Stock Number: 000686)
  50. +
  51. WSB/EiJ: Watkin Star line B (or "wild son-of-a-bitch") is a wild-derived Mus musculus domesticus inbred strain from samples caught in Maryland, USA. A Collaborative Cross strain sequenced by NIEHS; Phenome Project C list (JAX Stock Number: 001145)
  52. +
  53. B6D2F1 and D2B6F1 (also listed as BDF1 and DBF1 in some graphs and tables): F1 hybrids generated by crossing C57BL/6J with DBA/2J. These black reciprocal F1 can be used to detect dominance effects. Comparison of the two reciprocal F1s can be used to detect parental origin (imprinting) effects. The D2B6F1 animals are currently available from the Jackson Laboratory as a special order.) (JAX Stock Number for B6D2F1 hybrids obtained from the Jackson Laboratory, aka B6D2F1/J 100006)
  54. +
+ +

Most of the common inbred strains harbor mutations in genes the control pigmentation (Silvers, 2008 and material above in this INFO file). These gene include the albino and chinchilla alleles of the tyrosinase gene (Tyr, or human OCA1), the brown allele of the tyrosinase related protein 1 (Tyrp1), the pink-eye dilution allele of Oca2 (probe set 1418211), the non-agouti (black) and white-bellied alleles of the agouti signaling protein Asip, the steel allele of Kitlg, the dilute allele of Myo5a (probe set 1419754), and the piebald allele of Ednrb. In some of these cases, effects of the mutation are easily detected at the transcript level (Tyrp1, Oca2, and Myo5a), but in the other cases (Tyr, Asip, Ednrb, and Kitlg), mutations do not leave a strong imprint on expression.

diff --git a/general/datasets/Eye_m2_0908_r_mt/citation.rtf b/general/datasets/Eye_m2_0908_r_mt/citation.rtf new file mode 100644 index 0000000..ddd98e4 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_mt/citation.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Xusheng Wang, Weikuan Gu, Yan Jiao, Robert W. Williams. Gene expression landscape of the mammalian eye: A global survey and database of mRNAs of 103 varieties of mice. Molecular Vision 2009; in press.

diff --git a/general/datasets/Eye_m2_0908_r_mt/contributors.rtf b/general/datasets/Eye_m2_0908_r_mt/contributors.rtf new file mode 100644 index 0000000..d155833 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_mt/contributors.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Xusheng Wang, Weikuan Gu, Yan Jiao, Robert W. Williams

diff --git a/general/datasets/Eye_m2_0908_r_mt/experiment-design.rtf b/general/datasets/Eye_m2_0908_r_mt/experiment-design.rtf new file mode 100644 index 0000000..1ebe0ad --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_mt/experiment-design.rtf @@ -0,0 +1 @@ +

Expression profiling by array

diff --git a/general/datasets/Eye_m2_0908_r_mt/notes.rtf b/general/datasets/Eye_m2_0908_r_mt/notes.rtf new file mode 100644 index 0000000..7a26eb5 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_mt/notes.rtf @@ -0,0 +1 @@ +

This data set is available as a bulk download in several formats. The data are available as either strain means or the individual arrays. Due to the involved normalization procedures required to correct for batch effects we strongly recommend not using the raw CEL files without special statistical procedures.

diff --git a/general/datasets/Eye_m2_0908_r_mt/platform.rtf b/general/datasets/Eye_m2_0908_r_mt/platform.rtf new file mode 100644 index 0000000..9024a99 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_mt/platform.rtf @@ -0,0 +1,11 @@ +

Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many probes overlap and target the same transcript). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequences as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

+ +

As part of the development of HEIMED, we have manually annotated individual probe sets by sequence alignment to the mouse genome and transcriptome. Approximately 13,000 probe sets that have comparatively high expression in eye and CNS were curated by one of the authors (RWW) and now have specific information on the part of the transcript targeted by each probe set. The other 33,000 transcripts have corresponding data that was generated by Xusheng Wang using computational methods (BLAT analysis combined with annotated genome sequence).

+ +

One example may help explain how to exploit this annotation. The four probe sets for rhodopsin include information on the target location. Only the first probe set targets the last two coding exons. The other three probe sets target different parts of the 3’ UTR (mid, distal, and far distal regions). The probe sets can be reordered by from high to low expression using the Sort By function in Search Results pages. In the case of rhodopsin, the probe set that targets that last two coding exons and proximal parts of the 3’ UTR also has the highest expression . Finally, the HEIMED gene descriptions have been customized to help vision researchers. In the case of rhodopsin, the description appended after the gene name reads “rod photoreceptor pigment, retinitis pigmentosa-associated”. For less well known genes this kind of annotation can be extremely useful. For example, the more verbose annotation for Cerkl reads “neuronal survival and apoptosis-related, retinal ganglion cell expressed, retinitis pigmentosa 26); alternative 3' UTR of short form message, intron 2”.

+ +

 

+ +

+ +

Legend: Distribution of expression values for all probe sets in HEIMED.

diff --git a/general/datasets/Eye_m2_0908_r_mt/processing.rtf b/general/datasets/Eye_m2_0908_r_mt/processing.rtf new file mode 100644 index 0000000..4349e60 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_mt/processing.rtf @@ -0,0 +1,3381 @@ +

Range of Gene Expression in the Eye. Expression of transcripts in the HEIMED and most other GN data sets is measured on a log2 scale. Each unit corresponding approximately to a 2-fold difference in hybridization signal intensity. To simplify comparisons among different data sets and cases, log2 RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units (variance stabilized). Values of all 45,101 probe sets in this data set range from a low of 4.8 (Tcf15, probe set 1420281_at) to a high of 15.5 (crystallin gamma C, Crygc, probe set 1422674_s_at). This corresponds to 10.7 units or a 1 to 1700 dynamic range of expression (2^10.73).

+ +

We used pooled RNA samples of whole eyes, usually two independent pools--one male, one female pool--for most lines of mice. This data set was processed using the RMA protocol. A total of 2223 probes sets are associated with LRS values greater than 46 (LOD >10).

+ +

We calibrated this log intensity scale using Affymetrix spike-in control probe sets. These 18 control probe sets target exogenous bacterial mRNAs that are added to each sample (a graded dose spike cocktail) during preparation at concentrations of 1.5, 5, 25, and 100 pM. (To find these probe sets, search GN’s ALL search field using the string “AFFX pM”.) A value of 6 or less is equivalent to an mRNA concentration of under 0.4 pM, a value of 8 is equivalent to ~1.5 pM, 9.5 is equivalent to ~5 pM, 11.5 is equivalent to ~25 pM, 13.5 is equivalent to ~100 pM, and a value of 15.5 is equivalent to an mRNA concentration of 400 pM or greater.

+ +

This range can be converted to the mRNA molecules per cell in the eye assuming that a value of 8 is equivalent to about 1 mRNA copy per cell (Kanno et al. 2006, see http://www.biomedcentral.com/1471-2164/7/64). Since the expression of rhodopsin mRNA is normally 15 units, we predict that there are 27 or ~128 Rho mRNAs per cell in the whole eye and ~256 in rods themselves (assuming that rods make up about half of all cells in the eye). For this purpose it may be useful to know that a normal mouse eye contains between 6 and 8 million rod photoreceptors (Guo, Lu, and Williams; GN BXD Phenotype ID 11024).

+ +

Note that some probe sets with very low expression still provide reliable data. For example, probe set 1440397_at (Cacna2d1) has expression of only 5.5 units (a value that would be declared as "absent" using conventional Affymetrix procedures), but the values for this calcium channel transcript are associated with a very strong cis QTL with an LRS of 79 (LOD = 17). This strong linkage is definitely not due to chance since the probability of the expression data mapping precisely to the location of the parent gene itself is about 10e-16. This indicates a high signal to noise ratio and the detection of significant strain variation of the correct transcript.

+ +

The standard error of the mean for the HEIMED data set is computed for 2 to 6 biological replicates. The standard error of such small samples tends to systematically underestimate the population standard error. With n = 2 the underestimate is about 25%, whereas for n = 6 the underestimate is 5%. Gurland and Tripathi (1971) provide a correction and equation for this effect (see Sokal and Rohlf, Biometry, 2nd ed., 1981, p 53 for an equation of the correction factor for small samples of n < 20.) Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. The CEL files were processed using the RMA protocol. We processed the first three batches together. The last batch was processed separately and merged as described below.

+ + + +

After RMA processing using Biobase affy10 build running under R version 2.7.1, all array data sets were rank-order normalized. This second round of quantile normalization removes much residual non-linearity across arrays and forces every array to have the same distribution of values as the mean of all arrays. Comparative array data quality was then evaluated in DataDesk. Outlier arrays were flagged by visual inspection in DataDesk, usually by means of an analysis of scatter plots and more quantitatively by generating a correlation matrix of all arrays. Those arrays with mean correlation <0.96 versus all other arrays indicates trouble or a biological outlier). In some cases, outliers were expected, such as samples from strains with retinal degeneration (FVB/NJ, NOD/LtJ, MOLF/EiJ, C3H/HeJ and BXD24), samples from wild subspecies such as WSB/EiJ, CAST/EiJ, PWD/PhJ, and PWK/PhJ, and knockouts. However, when arrays were anomolous both within strain and across strains, they were often simply discarded. The assumption is that anomolous data are much more likely due to experimental and technical errors than to informative biological variation. Approximately 10% of arrays were discarded.

+ +

After this process, the acceptable set of arrays was renormalized using all step as above, starting with the original RMA procedure, etc.

+ +

We reviewed the data set using a new method developed by RW Williams, Jeremy Peirce, and Hongqiang Li. For the full set of arrays that passed standard QC protocols described above, we computed the strain means for the BXD strains, B6, D2, and F1s. Using this set of strain means we then computed LRS scores for all 45101 probe sets and counted the number of transcripts that generated QTLs with LRS values greater than 50. This value (e.g., 1800) represented the QTL harvest for the full data set. We then dropped a single array from the data set, recomputed strain means, and recomputed the number of transcripts with LRS scores great than 50. This value is expected to typically reduce the number of QTLs that reach the criterion level (e.g., 1750 QTLs > 50). This process was repeated for every array to obtain an array-specific difference value--the effect of removing that array on the total QTL count. For example, the loss of a single array might cause a decrease in 50 QTLs. Values ranged from approximately -90 (good arrays) to +40 (bad arrays). This procedure is similar in some ways to a jackknife protocol, although we are not using this procedure to esimate an error term, but rather as a method to polish a data set.

+ +

During this process we discovered that nearly 20 arrays in the batch 2 had been mislabeled at some point in processing. We computed the correct strain membership of each array using a large number of Mendelian probe sets (more than 50) and comparing their match to standard SNP and microsatellite markers and the original array data set of November 2005. This allowed us to rescue a large number of arrays that were of high quality.

+ +

A third batch of approximately 40 arrays were processed by Yan Jiao and Weikuan Gu in August 2006. These complete data set assembled by Hongqiang Li. This process again included a correction for a batch effect.

+ +

For the June 2006 data set Hongqiang Li used a new batch correction method that stabilizes the range of expression in each batch. For each of the three large batches, we extracted the minumum and maximum raw probe expression (CEL file level) value. We then adjusted raw probe values in each batch to have the same range as the first and largest batch (batch 1) using a simple linear interpolation. These procedures generated new correct CEL files which were then used with RMA to generate final probe set estimates.

+ +

For the final fourth batch of arrays (Sept 2008) Arthur Centeno and Rob Williams corrected for a systematic difference in probe set expression values between original arrays run in 2005 and 2006 and the new arrays added in 2008 (n = 45 acceptable arrays). This difference is due to unknown technical batch effects that are probably associated with labeling, hybridization, and scanning. We performed a simple correction to normalize values of the new set of arrays to those of the old set (batches 1 through 3). No changes were made to any values of the previous three batches. We corrected only the probe set level (RMA) values and not the CEL files. For this final batch, we corrected for the difference (offset) in probe set expression between the first three batches arrays run in 2005 and 2006 (a total of 174 acceptable arrays) and the new batch (n = 47 acceptable arrays). This difference is due to unknown technical effects that are probably related to various steps in labeling, hybridization, and scanning. The correction was applied as follows: (1) RWW selected 51 high quality arrays with similar expression characteristics (r = 0.97 or better between pairs of arrays) in the old data set (from batches 1, 2, and 3) and 34 high quality arrays in the final batch. RWW used scatterplots of full RMA transcriptome data sets to review many pairs of arrays within these new and old array batches. Strains with retinal degeneration or unusual eye gene expression characteristics were excluded from these selected subsets. The average expression values for each probe set were then computed for both the old and new array subsets. The offset value (old minus new) was added to each probe set across all 47 new arrays. This processes forces the average probe set in the new arrays to be very close to that of the previous arrays.

+ +

Table 2: Sample tube ID, strain, original CEL filename, and Affymetrix quality control values. Columns labeled Scale factor, Background Average, Present, Absent, Marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files.

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
2R2533E.1129S1/SvImJR2533E.1.CEL2.119457.90%40.50%1.60%1.370.781Y
3R0754E.1A/JR0754E.1.CEL2.728659.80%38.70%1.50%1.360.761Y
4R4521EB6129P2F2N1-Clcn3R4521E.CEL4.8338.763.30%35.30%1.40%1.250.774 
5R4522EB6129P2F2N1-Clcn3R4522E.CEL5.7637.3662.90%35.70%1.40%1.370.834 
6R4523EB6129P2F2N1-Clcn3R4523E.CEL4.8840.4263.90%34.70%1.40%1.270.774 
7R4526EB6129P2F2N1-Gabbr1R4526E.CEL3.8444.1865.00%33.70%1.30%1.340.784Y
8R4509EB6129P2F2N1-Gabbr1R4509E.CEL7.4534.7658.90%39.70%1.40%1.450.834 
9R4510EB6129P2F2N1-Gabbr1R4510E.CEL8.4437.4457.40%41.10%1.50%1.350.834 
10R4511EB6129P2F2N1-Gabbr1R4511E.CEL5.9142.0261.40%37.20%1.40%1.410.834 
11R4524EB6129P2F2N1-Gabbr1R4524E.CEL5.4942.3462.40%36.20%1.40%1.290.784Y
12R4525EB6129P2F2N1-Gabbr1R4525E.CEL4.6941.363.10%35.50%1.40%1.270.84Y
13R4515EB6129P2F2N1-Gabra1R4515E.CEL5.7541.7662.80%35.80%1.40%1.410.814Y
14R4516EB6129P2F2N1-Gabra1R4516E.CEL7.0740.7360.20%38.40%1.40%1.320.874Y
15R4517EB6129P2F2N1-Gabra1R4517E.CEL5.4538.0962.70%35.80%1.40%1.340.824Y
16R4512EB6129P2F2N1-Gnb5R4512E.CEL6.5638.0259.90%38.70%1.50%1.330.834 
17R4513EB6129P2F2N1-Gnb5R4513E.CEL4.1541.663.40%35.10%1.50%1.340.824 
18R4514EB6129P2F2N1-Gnb5R4514E.CEL5.8639.261.20%37.30%1.50%1.340.814 
19R4518EB6129P2F2N1-Gpr19R4518E.CEL5.5838.962.60%36.00%1.30%1.390.794Y
20R4519EB6129P2F2N1-Gpr19R4519E.CEL5.9541.9161.30%37.30%1.40%1.350.844Y
21R2601E.1B6D2F1R2601E.1.CEL2.559258.90%39.60%1.50%1.440.781Y
22R2602E.1B6D2F1R2602E.1.CEL2.68459.70%38.80%1.50%1.370.781Y
23R1676E.1BALB/cByJR1676E.1.CEL2.699858.90%39.60%1.50%1.460.741 
24R1672E.1BALB/cByJR1672E.1.CEL2.2211159.90%38.60%1.50%1.260.81Y
25R4530EBALB/cJR4530E.CEL6.3737.5360.80%37.80%1.40%1.30.844Y
26R4529EBALB/cJR4529E.CEL5.7141.3360.50%38.00%1.50%1.480.84Y
27R2704E.2BXD1R2704E.2.CEL2.066139.6156.60%41.90%1.50%1.310.812 
28R2707E.3BXD1R2707E.3.CEL18056.40%42.10%1.50%1.430.793 
29R1231E.2BXD2R1231E.2.CEL2.197138.7357.30%41.30%1.40%1.410.772 
30R2598E.1BXD2R2598E.1.CEL1.9910660.90%37.60%1.50%1.270.781Y
31R2591E.1BXD5R2591E.1.CEL1.713658.50%40.00%1.50%1.330.781Y
32R2714E.2BXD5R2714E.2.CEL1.404144.3560.60%37.90%1.50%1.430.792 
33R2570E.1BXD6R2570E.1.CEL1.998758.50%40.00%1.50%1.460.761Y
34R2694E.2BXD6R2694E.2.CEL1.98397.2361.60%37.10%1.30%1.390.822 
35R2538E.1BXD8R2538E.1.CEL1.9110261.20%37.30%1.50%1.520.791Y
36R2709E.2BXD8R2709E.2.CEL1.9999.7960.90%37.60%1.50%1.420.762 
37R2708E.2BXD9R2708E.2.CEL1.966126.4657.70%40.70%1.50%1.40.842 
38R2569E.1BXD9R2569E.1.CEL1.758755.10%43.40%1.50%2.823.141 
39R2581E.1BXD11R2581E.1.CEL1.948962.10%36.40%1.60%1.550.811Y
40R2612E.2BXD11R2612E.2.CEL1.83142.0358.20%40.50%1.40%1.780.812 
41R2742E.2BXD12R2742E.2.CEL2.127134.1457.00%41.60%1.40%1.640.782 
42R2543E.1BXD12R2543E.1.CEL1.6111858.60%39.90%1.60%1.430.771Y
43R2586E.1BXD13R2586E.1.CEL2.017456.40%42.00%1.60%2.853.811 
44R877E.2BXD13R877E.2.CEL1.558125.6361.20%37.50%1.20%1.420.812 
45R2557E.1BXD14R2557E.1.CEL1.839962.50%36.10%1.40%1.310.781Y
46R1128E.2BXD14R1128E.2.CEL1.9111559.90%38.80%1.40%1.20.821Y
47R2701E.3BXD15R2701E.3.CEL18860.60%37.90%1.40%1.50.773 
48R2716E.2BXD15R2716E.2.CEL2.015150.8356.40%42.10%1.60%1.420.812 
49R2711E.2BXD16R2711E.2.CEL1.953118.5359.00%39.60%1.50%1.450.82 
50R2567E.1BXD16R2567E.1.CEL2.248256.70%41.60%1.70%1.370.751 
51R2720E.2BXD18R2720E.2.CEL2.3299.9359.50%39.00%1.50%1.330.772 
52R2559E.1BXD18R2559E.1.CEL1.6510460.80%37.70%1.50%1.270.781Y
53R2560E.1BXD19R2560E.1.CEL1.799860.90%37.50%1.60%1.350.81Y
54R2713E.2BXD19R2713E.2.CEL1.67120.8260.20%38.30%1.50%1.450.82 
55R2584E.1BXD20R2584E.1.CEL2.078459.30%39.10%1.60%1.40.761Y
56R2731E.2BXD20R2731E.2.CEL1.82514759.00%39.50%1.50%1.40.82 
57R2702E.2BXD21R2702E.2.CEL1.811128.6559.40%39.10%1.40%1.260.82 
58R2541E2.1BXD21R2541E2.1.CEL2.6312556.00%42.40%1.50%1.290.781 
59R2553E.1BXD22R2553E.1.CEL1.9511159.90%38.50%1.50%1.280.761Y
60R2700E.2BXD22R2700E.2.CEL1.858102.9661.50%37.10%1.30%1.480.792 
61R2558E-2.1BXD23R2558E-2.1.CEL2.233125.0558.60%39.90%1.50%1.430.772 
62R1086E.2BXD23R1086E.2.CEL2.233125.0558.60%39.90%1.50%1.430.772 
63R2719E.2BXD24R2719E.2.CEL1.47140.3861.50%37.20%1.30%1.380.792 
64R2589E2.1BXD24R2589E2.1.CEL2.6111257.50%40.90%1.60%1.240.81 
65R2573E-2.1BXD25R2573E-2.1.CEL3.157257.90%40.70%1.40%1.770.971 
66R2683E.2BXD25R2683E.2.CEL1.777115.6458.30%40.30%1.40%2.010.792 
67R2703E.2BXD27R2703E.2.CEL1.263134.7862.60%36.10%1.40%1.440.782 
68R2729E.3BXD27R2729E.3.CEL18757.90%40.60%1.50%1.560.843Y
69R2562E.3BXD28R2562E.3.CEL1.6511659.90%38.40%1.70%1.370.793Y
70R2721E.2BXD28R2721E.2.CEL2.065157.3956.10%42.40%1.50%1.310.812 
71R2561E.3BXD29R2561E.3.CEL17753.30%45.40%1.40%3.3619.663 
72R1258E.2BXD31R1258E.2.CEL2.063117.0959.00%39.50%1.50%1.540.782 
73R2597E.1BXD31R2597E.1.CEL2.379460.30%38.30%1.50%1.340.771Y
74R2563E.1BXD32R2563E.1.CEL1.5510261.90%36.70%1.40%1.50.81 
75R1216E.2BXD32R1216E.2.CEL2.23111.9958.80%39.80%1.40%1.350.792 
76R2542E.1BXD33R2542E.1.CEL2.139756.50%41.80%1.60%1.910.931 
77R857E.2BXD33R857E.2.CEL1.737113.9861.90%36.70%1.30%1.60.772 
78R1451E.2BXD34R1451E.2.CEL1.843140.0559.00%39.50%1.50%1.420.812Y
79R2585E.1BXD34R2585E.1.CEL2.647558.30%40.00%1.70%1.250.771 
80R2698E.3BXD36R2698E.3.CEL18659.70%39.00%1.30%1.460.783 
81R2705E.3BXD36R2705E.3.CEL18660.20%38.40%1.40%1.460.773 
82R2710E.2BXD38R2710E.2.CEL2.112122.158.80%39.80%1.40%1.370.782 
83R2532E.1BXD38R2532E.1.CEL2.049459.80%38.70%1.50%1.370.81Y
84R2574E.1BXD39R2574E.1.CEL1.989161.20%37.30%1.50%1.390.781 
85R2695E.2BXD39R2695E.2.CEL1.638122.760.80%37.80%1.50%1.420.82 
86R2699E.2BXD40R2699E.2.CEL1.827105.2361.70%36.90%1.40%1.420.812 
87R2590E.1BXD40R2590E.1.CEL2.717759.10%39.30%1.50%1.40.771Y
88R2696E.2BXD42R2696E.2.CEL1.622118.9562.00%36.60%1.50%1.530.792 
89R2596E.1BXD42R2596E.1.CEL2.6310859.00%39.60%1.50%1.240.81 
90R994E.2BXD43R994E.2.CEL1.966113.1260.80%37.80%1.40%1.660.82 
91R2607E.1BXD43R2607E.1.CEL2.4311558.60%40.00%1.40%1.310.761Y
92R2594E.1BXD44R2594E.1.CEL1.7711759.80%38.80%1.40%1.350.851 
93R2610E.2BXD44R2610E.2.CEL1.814142.9159.00%39.50%1.50%1.350.82 
94R2732E.2BXD45R2732E.2.CEL2.154122.4556.50%42.10%1.40%1.80.832 
95R2592E.1BXD45R2592E.1.CEL1.8510660.10%38.60%1.30%1.430.851Y
96R967E.2BXD48R967E.2.CEL1.948130.9557.30%41.20%1.50%1.630.812 
97R2606E.1BXD48R2606E.1.CEL2.5610658.90%39.70%1.40%1.350.831Y
98R2933E.3BXD50R2933E.3.CEL17252.90%45.60%1.50%2.450.983 
99R2937E.3BXD50R2937E.3.CEL18956.90%41.60%1.40%1.810.823 
100R2603E.1BXD51R2603E.1.CEL2.4911557.70%40.80%1.50%1.240.791 
101R1042E.2BXD51R1042E.2.CEL2.352104.1258.70%39.90%1.40%1.530.822 
102R2980E.3BXD55R2980E.3.CEL18256.90%41.70%1.50%1.770.843 
103R2690E.2BXD55R2690E.2.CEL1.887164.0156.10%42.30%1.60%1.430.82 
104R4176EBXD56R4176E.CEL4.7543.0863.00%35.60%1.30%1.390.814Y
105R4175EBXD56R4175E.CEL638.4961.30%37.30%1.40%1.470.814Y
106R1006E.3BXD60R1006E.3.CEL19854.90%43.70%1.50%2.70.863 
107R2725E.2BXD60R2725E.2.CEL1.551148.0159.80%38.80%1.40%1.430.792 
108R1074E.3BXD60R1074E.3.CEL111855.50%43.10%1.40%1.960.813 
109R2534E2.1BXD61R2534E2.1.CEL2.4711857.90%40.60%1.50%1.420.791 
110R2684E.2BXD61R2684E.2.CEL2.01131.0357.00%41.50%1.50%1.340.782 
111R1107E.3BXD62R1107E.3.CEL18355.20%43.40%1.40%2.430.933 
112R2681E.2BXD62R2681E.2.CEL2.086148.2457.20%41.30%1.50%1.290.812 
113R965E.3BXD62R965E.3.CEL193.5553.30%45.20%1.50%3.110.943 
114R1425E.2BXD63R1425E.2.CEL1.713659.30%39.30%1.40%1.430.822 
115R2576E.3BXD63R2576E.3.CEL18461.30%37.40%1.40%1.480.763 
116R943E-2.2BXD64R943E-2.2.CEL1.591141.3460.10%38.40%1.50%1.320.762 
117R2611E.1BXD64R2611E.1.CEL2.299258.00%40.50%1.50%1.571.061 
118R2689E.2BXD65R2689E.2.CEL1.721142.4459.90%38.60%1.50%1.380.762 
119R2583E.1BXD65R2583E.1.CEL2.497056.90%41.50%1.60%1.671.011 
120R2728E.2BXD66R2728E.2.CEL1.714137.4559.40%39.00%1.60%1.380.792 
121R2536E2.1BXD66R2536E2.1.CEL2.7410956.10%42.30%1.70%1.280.791 
122R1207E.2BXD66R1207E.2.CEL1.681136.8660.40%38.10%1.50%1.450.772 
123R1192E.2BXD67R1192E.2.CEL2.126123.3757.90%40.60%1.50%1.50.82 
124R2727E.3BXD67R2727E.3.CEL182.5556.10%42.40%1.50%1.970.872 
125R2691E.3BXD67R2691E.3.CEL19054.80%43.80%1.50%2.610.813 
126R2551E.1BXD68R2551E.1.CEL2.499254.30%44.10%1.60%2.911.551 
127R2726E.2BXD68R2726E.2.CEL1.811153.0958.70%39.80%1.50%1.390.782 
128R2593E.1BXD69R2593E.1.CEL1.6712859.20%39.50%1.30%1.470.921Y
129R975E.2BXD70R975E.2.CEL1.841137.9758.00%40.50%1.40%1.360.792 
130R2537E2.1BXD70R2537E2.1.CEL2.939958.00%40.50%1.60%1.290.751 
131R4531EBXD71R4531E.CEL4.7743.4862.40%36.30%1.40%1.230.774Y
132R4532EBXD71R4532E.CEL5.8940.6860.90%37.60%1.50%1.240.794Y
133R2779E.2BXD73R2779E.2.CEL1.746121.1159.60%39.00%1.40%1.50.82 
134R3024E.3BXD73R3024E.3.CEL178.0551.70%46.60%1.70%2.30.943 
135R2565E.1BXD75R2565E.1.CEL1.7910258.00%40.50%1.50%2.313.471 
136R1397E-re.2BXD75R1397E-re.2.CEL1.449189.7159.60%39.00%1.40%1.390.822 
137R2687E.3BXD77R2687E.3.CEL18058.00%40.60%1.40%1.570.83Y
138R2717E.2BXD77R2717E.2.CEL1.79784.4361.60%36.90%1.40%1.490.762 
139R1421E.3BXD77R1421E.3.CEL19452.40%46.20%1.40%2.290.823 
140R2579E.1BXD80R2579E.1.CEL2.427259.20%39.40%1.50%1.730.821 
141R2686E.2BXD80R2686E.2.CEL2.342119.6356.00%42.60%1.50%1.380.792 
142R2956E.3BXD83R2956E.3.CEL18455.40%43.20%1.40%1.390.843 
143R2960E.3BXD83R2960E.3.CEL18056.60%41.90%1.50%1.50.823Y
144R2922E.3BXD84R2922E.3.CEL19157.80%40.80%1.50%1.470.833Y
145R2895E.3BXD84R2895E.3.CEL17558.30%40.20%1.50%1.560.773Y
146R2692E.2BXD85R2692E.2.CEL1.423160.8760.20%38.30%1.40%1.460.792 
147R2715E.2BXD85R2715E.2.CEL1.488142.661.20%37.30%1.40%1.50.782 
148R1405E.2BXD86R1405E.2.CEL2.351119.3456.40%42.20%1.40%1.640.812 
149R1225E.3BXD86R1225E.3.CEL17153.90%44.60%1.40%3.21.613 
150R2724E.2BXD87R2724E.2.CEL1.906113.7160.70%37.90%1.40%1.450.792 
151R2540E.1BXD87R2540E.1.CEL2.339361.10%37.40%1.40%1.220.811Y
152R1433E.2BXD89R1433E.2.CEL12.24157.70%40.80%1.50%1.410.782 
153R2546E.1BXD89R2546E.1.CEL1.999658.60%39.70%1.70%1.470.781 
154R2578E2.1BXD90R2578E2.1.CEL2.799258.60%39.80%1.60%1.520.771Y
155R859E.2BXD90R859E.2.CEL1.847152.2257.90%40.70%1.40%1.360.772 
156R2682E.2BXD92R2682E.2.CEL1.547156.3160.40%38.20%1.40%1.370.772 
157R1388E.3BXD92R1388E.3.CEL16360.00%38.60%1.40%1.851.033 
158R1322E.3BXD92R1322E.3.CEL18055.90%42.60%1.50%1.750.743 
159R2733E.2BXD96R2733E.2.CEL1.7113.9962.10%36.60%1.30%1.40.782 
160R2554E.1BXD96R2554E.1.CEL2.189360.20%38.30%1.50%1.460.771Y
161R2649E.2BXD97R2649E.2.CEL2.343119.0457.50%41.20%1.40%1.530.82 
162R2577E.1BXD97R2577E.1.CEL2.077759.50%39.10%1.40%1.871.291 
163R2645E.3BXD98R2645E.3.CEL18859.40%39.20%1.50%1.590.813Y
164R2688E.2BXD98R2688E.2.CEL1.772145.2458.50%40.00%1.50%1.480.812 
165R4533EBXD99R4533E.CEL137.6960.30%38.20%1.40%1.330.894Y
166R4534EBXD99R4534E.CEL5.6936.6262.90%35.70%1.40%1.160.84Y
167R2885E.3BXSB/MpJR2885E.3.CEL17658.10%40.60%1.30%1.881.063 
168R2883E.3BXSB/MpJR2883E.3.CEL17156.40%42.00%1.50%1.590.843Y
169R1700E.1C3H/HeJR1700E.1.CEL2.986960.80%37.90%1.40%1.480.781 
170R1704E.1C3H/HeJR1704E.1.CEL2.588860.10%38.60%1.30%1.380.841 
171R2605E.1C57BL/6JR2605E.1.CEL1.8213160.50%38.20%1.30%1.320.81Y
172R0871EC57BL/6JR0871E.CEL6.2437.3861.90%36.70%1.40%1.410.84Y
173R0872E.1C57BL/6JR0872E.1.CEL3.138958.90%39.60%1.50%1.30.791Y
174R0872EC57BL/6JR0872E.CEL3.12888.5858.90%39.60%1.50%1.30.791 
175R4507EC57BL/6J-NyxR4507E.CEL8.1337.559.30%39.30%1.40%1.320.84Y
176R4508EC57BL/6J-NyxR4508E.CEL6.3337.2660.90%37.80%1.30%1.240.824Y
177R4505EC57BL/6J-Rpe65R4505E.CEL5.9837.4861.80%36.80%1.40%1.450.854Y
178R4506EC57BL/6J-Rpe65R4506E.CEL6.9437.961.10%37.50%1.30%1.50.834Y
179R4535EC57BLKS/JR4535E.CEL6.5937.2861.20%37.30%1.40%1.260.834Y
180R4536EC57BLKS/JR4536E.CEL140.7160.30%38.20%1.50%1.250.774Y
181R2564E.1CAST/EiJR2564E.1.CEL1.948958.50%39.90%1.60%1.60.771 
182R2580E.1CAST/EiJR2580E.1.CEL2.099558.20%40.10%1.70%1.40.761 
183R4537ECBA/CaJR4537E.CEL138.4560.60%37.90%1.50%1.630.824Y
184R4538ECBA/CaJR4538E.CEL5.8939.1861.70%36.90%1.40%1.450.84Y
185R4539ECZECHII/EiJR4539E.CEL7.7337.158.30%40.10%1.50%1.70.954Y
186R4540ECZECHII/EiJR4540E.CEL11.0436.6953.00%45.30%1.70%1.831.324 
187R2600E.1D2B6F1R2600E.1.CEL2.479558.10%40.20%1.70%1.410.781Y
188R2604E.1D2B6F1R2604E.1.CEL2.669059.40%39.20%1.50%1.280.791Y
189R1002E.3DBA/2JR1002E.3.CEL110254.80%43.70%1.50%2.840.833 
190R4541EDBA/2JR4541E.CEL143.461.40%37.00%1.50%1.370.734Y
191R959E.3DBA/2JR959E.3.CEL189.9753.20%45.30%1.50%3.661.094 
192R2572E.1DBA/2JR2572E.1.CEL2.417955.50%42.90%1.60%1.370.791 
193R4542EDBA/2JR4542E.CEL5.739.9561.00%37.40%1.50%1.230.814Y
194R2771E.3FVB/NJR2771E.3.CEL17055.30%43.20%1.50%1.690.833 
195R2772E.3FVB/NJR2772E.3.CEL17655.20%43.40%1.40%2.131.023 
196R2636E.1KK/HlJR2636E.1.CEL2.619358.90%39.50%1.50%1.390.761Y
197R2637E.1KK/HlJR2637E.1.CEL2.1910359.40%39.00%1.50%1.30.791Y
198R0999E.1LG/JR0999E.1.CEL2.458259.40%39.10%1.50%1.380.791Y
199R1004E.1LG/JR1004E.1.CEL2.449258.70%39.80%1.50%1.380.791Y
200R4543ELP/JR4543E.CEL6.5741.9960.30%38.20%1.50%1.280.754Y
201R4544ELP/JR4544E.CEL4.5639.962.40%36.10%1.50%1.230.774Y
202R2858E.3MOLF/EiJR2858E.3.CEL16453.80%44.70%1.50%1.590.953 
203R2919.3MOLF/EiJR2919.3.CEL16452.40%46.00%1.60%2.151.073 
204R1688E.1NOD/LtJR1688E.1.CEL2.669858.60%39.90%1.50%1.260.81Y
205R2566E-2.1NOD/LtJR2566E-2.1.CEL3.036959.80%38.80%1.50%1.380.751Y
206R4545ENZB/BlNJR4545E.CEL4.2343.4862.10%36.40%1.50%1.330.764Y
207R4546ENZB/BlNJR4546E.CEL6.2744.2259.40%39.10%1.50%1.170.824Y
208R2535E.1NZO/HlLtJR2535E.1.CEL1.898660.40%38.20%1.40%1.410.851 
209R2550E.1NZO/HlLtJR2550E.1.CEL1.798760.70%37.80%1.50%1.520.821 
210R2817E.3NZW/LacJR2817E.3.CEL15950.90%47.60%1.50%3.591.483 
211R2810ENZW/LacJR2810E.CEL       3 
212R2810E.3NZW/LacJR2810E.3.CEL17457.00%41.70%1.40%2.151.034Y
213R4547EPANCEVO/EiJR4547E.CEL5.2751.3457.20%41.10%1.70%1.70.834 
214R4548EPANCEVO/EiJR4548E.CEL10.5437.3950.30%48.00%1.70%1.681.094 
215R2635E.1PWD/PhJR2635E.1.CEL3.728054.20%44.10%1.70%1.530.851 
216R2634E.1PWD/PhJR2634E.1.CEL3.299055.90%42.50%1.60%1.570.811 
217R2544E.1PWK/PhJR2544E.1.CEL2.210854.90%43.50%1.70%1.360.821 
218R2549E.1PWK/PhJR2549E.1.CEL2.288457.30%41.20%1.50%1.570.831 
219R4550ESJL/JR4550E.CEL5.3540.4462.30%36.20%1.40%1.240.794 
220R2368E.1WSB/EiJR2368E.1.CEL2.578659.50%39.10%1.40%1.290.741Y
221R2547E.1WSB/EiJR2547E.1.CEL2.149058.20%40.10%1.60%1.320.771Y
+
diff --git a/general/datasets/Eye_m2_0908_r_mt/summary.rtf b/general/datasets/Eye_m2_0908_r_mt/summary.rtf new file mode 100644 index 0000000..44b7e23 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_mt/summary.rtf @@ -0,0 +1,12 @@ +

FINAL RECOMMENDED EYE DATA SET. The HEIMED September 2008 RMA data release provides estimates of gene expression in whole eyes of 103 lines of young adult mice generated using 221 Affymetrix M430 2.0 arrays. This data set is intended for exploration of the genetics and genomics of the mouse eye, retina, lens, retinal pigment epithelium, cornea, iris and choroid. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). We used pooled RNA samples, usually two independent pools--one male, one female pool--for most lines of mice. This data set was processed using the RMA protocol. A total of 2223 probes sets are associated with LRS values greater than 46 (LOD >10).

+ +

Users of these mouse eye data may also find the following complementary resources extremely useful:

+ +
    +
  1. NEIBank collection of ESTs and SAGE data.
  2. +
  3. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases
  4. +
  5. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.
  6. +
  7. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus.
  8. +
  9. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430).
  10. +
  11. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.
  12. +
diff --git a/general/datasets/Eye_m2_0908_r_mt/tissue.rtf b/general/datasets/Eye_m2_0908_r_mt/tissue.rtf new file mode 100644 index 0000000..9b6ee0f --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_mt/tissue.rtf @@ -0,0 +1,2058 @@ +

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube.

+ +

Each array was hybridized with a pool of cRNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

+ +

Dissecting and preparing eyes for RNA extraction

+ +
    +
  1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below).
  2. +
  3. Store RNA in 75% ethanol at –80 deg. C until use.
  4. +
+ +

Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we:

+ +
    +
  1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue)
  2. +
  3. allowed the homogenate to stand for 5 min at room temperature
  4. +
  5. added 0.2 ml of chloroform per 1 ml RNA STAT-60
  6. +
  7. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min
  8. +
  9. centrifuged at 12,000 G for 15 min
  10. +
  11. transfered the aqueous phase to a fresh tube
  12. +
  13. added 0.5 ml of isopropanol per 1 ml RNA STAT-60
  14. +
  15. vortexed and allowed sample to stand at room temperature for 5-10 min
  16. +
  17. centrifuged at 12,000 G for 10-15 min
  18. +
  19. removed the supernatant and washed the RNA pellet with 75% ethanol
  20. +
  21. stored the pellet in 75% ethanol at -80 deg C until use
  22. +
+ +

Sample Processing. All samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center led by Dr. Weikuan Gu. All arrays were processed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. C until use (roughly one third) or were used immediately for hybridization.

+ +

Dealing with ocular pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations taken from brown and beige colored mice tend to have faint residual pigmentation that affects hybridization signal. To address this problem, Dr. Yan Jiao purified total RNA using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204) all four batches.

+ +

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well balanced sample of males and females, in general without within-strain-by-sex replication. Two strains are represented by a single male sample pool (BXD29 and A/J). Four lines are represented by two or three male sample pools (all of the five DeltaGen KO line). The SJL/J may be a single mixed sex sample. Users can study possible sex effects by comparing any results of expression data to that of a surrogate measurement that summarizes the overall sex balance of HEIMED. To do this just compare your data to those of probe sets 1427262_at (Xist, high in females) and probe set 1426438_at (Ddx3y, high in males). These two sex-specific probes are quantitative surrogates for the sex balance in this data set.

+ +

Technical duplicates: One sample, highlighted in the tables below, is a technical duplicate. The pair of technical duplicates were both of high quality. For statistical analysis, they should be combined and treated as single biological sample.

+ +

Batch structure: This data set consists of four batches (Table 2, far right column). The final September 2008 data set consists of a total of 221 arrays and 220 independent samples.

+ +
    +
  1. Batch 1: November 2005, n = 78 arrays original arrays of which 76 were accepted into this final data set.
  2. +
  3. Batch 2: January 2006, n = 62 arrays of which 62 were accepted.
  4. +
  5. Batch 3: August 2006, n = 39 arrays of which 36 were accepted. (These three batches, including some arrays that were eventually dropped from the final 2008 data set, were combined to form the September 2006 data set.)
  6. +
  7. Batch 4: Summer 2008, n = 53 arrays of which 47 were accepted.
  8. +
+ +

Table 1: HEIMED case IDs, including sample tube ID, strain, age, sex, and source of mice (see Table 2 for information on array quality control)

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexTubeIDGroupStrainAgeSexSource
1R2595E.1GDP129S1/SvImJ59FUTHSC RW
2R2533E.1GDP129S1/SvImJ60MUTHSC RW
3R0754E.1GDPA/J60MJAX
4R4521EKOB6129P2F2N1-Clcn369MTChoi_Deltagen
5R4522EKOB6129P2F2N1-Clcn369MTChoi_Deltagen
6R4523EKOB6129P2F2N1-Clcn367MTChoi_Deltagen
7R4526EKOB6129P2F2N1-Gabbr116FTChoi_Deltagen
8R4509EKOB6129P2F2N1-Gabbr116MTChoi_Deltagen
9R4510EKOB6129P2F2N1-Gabbr119MTChoi_Deltagen
10R4511EKOB6129P2F2N1-Gabbr120MTChoi_Deltagen
11R4524EKOB6129P2F2N1-Gabbr119MTChoi_Deltagen
12R4525EKOB6129P2F2N1-Gabbr122MTChoi_Deltagen
13R4515EKOB6129P2F2N1-Gabra167MTChoi_Deltagen
14R4516EKOB6129P2F2N1-Gabra169MTChoi_Deltagen
15R4517EKOB6129P2F2N1-Gabra167MTChoi_Deltagen
16R4512EKOB6129P2F2N1-Gnb522FTChoi_Deltagen
17R4513EKOB6129P2F2N1-Gnb525MTChoi_Deltagen
18R4514EKOB6129P2F2N1-Gnb522MTChoi_Deltagen
19R4518EKOB6129P2F2N1-Gpr1970MTChoi_Deltagen
20R4519EKOB6129P2F2N1-Gpr1968MTChoi_Deltagen
21R2601E.1GDP BXDB6D2F173FUTHSC RW
22R2602E.1GDP BXDB6D2F173MUTHSC RW
23R1676E.1GDPBALB/cByJ83FJAX
24R1672E.1GDPBALB/cByJ83MJAX
25R4530EGDPBALB/cJ66FJAX
26R4529EGDPBALB/cJ66MJAX
27R2704E.2BXDBXD159FUTHSC RW
28R2707E.3BXDBXD159MBIDMC GR
29R1231E.2BXDBXD264FUTHSC RW
30R2598E.1BXDBXD261MUTHSC RW
31R2591E.1BXDBXD560FBIDMC GR
32R2714E.2BXDBXD558MUTHSC RW
33R2570E.1BXDBXD665FUTHSC RW
34R2694E.2BXDBXD658MUTHSC RW
35R2538E.1BXDBXD877FUTHSC RW
36R2709E.2BXDBXD861MUTHSC RW
37R2708E.2BXDBXD960FUTHSC RW
38R2569E.1BXDBXD967MUTHSC RW
39R2581E.1BXDBXD1165FUTHSC RW
40R2612E.2BXDBXD1170MUTHSC RW
41R2742E.2BXDBXD1271FUTHSC RW
42R2543E.1BXDBXD1263MUTHSC RW
43R2586E.1BXDBXD1360FBIDMC GR
44R877E.2BXDBXD1376MUTHSC RW
45R2557E.1BXDBXD1460FBIDMC GR
46R1128E.2BXDBXD1465MUTHSC RW
47R2701E.3BXDBXD1560FBIDMC GR
48R2716E.2BXDBXD1560MUTHSC RW
49R2711E.2BXDBXD1661FUTHSC RW
50R2567E.1BXDBXD1660MBIDMC GR
51R2720E.2BXDBXD1859FUTHSC RW
52R2559E.1BXDBXD1859MBIDMC GR
53R2560E.1BXDBXD1960FBIDMC GR
54R2713E.2BXDBXD1960MUTHSC RW
55R2584E.1BXDBXD2059FBIDMC GR
56R2731E.2BXDBXD2060MUTHSC RW
57R2702E.2BXDBXD2159FUTHSC RW
58R2541E2.1BXDBXD2161MUTHSC RW
59R2553E.1BXDBXD2258FBIDMC GR
60R2700E.2BXDBXD2259MUTHSC RW
61R2558E-2.1BXDBXD2360FBIDMC GR
62R1086E.2BXDBXD2355MUTHSC RW
63R2719E.2BXDBXD24123FUTHSC RW
64R2589E2.1BXDBXD2459MBIDMC GR
65R2573E-2.1BXDBXD2567FUAB
66R2683E.2BXDBXD2558MUTHSC RW
67R2703E.2BXDBXD2760FUTHSC RW
68R2729E.3BXDBXD2768MUTHSC RW
69R2562E.3BXDBXD2860FBIDMC GR
70R2721E.2BXDBXD2860MUTHSC RW
71R2561E.3BXDBXD2960MBIDMC GR
72R1258E.2BXDBXD3157FUTHSC RW
73R2597E.1BXDBXD3161MBIDMC GR
74R2563E.1BXDBXD3263FUTHSC RW
75R1216E.2BXDBXD3276MUTHSC RW
76R2542E.1BXDBXD3367FUTHSC RW
77R857E.2BXDBXD3377MUTHSC RW
78R1451E.2BXDBXD3461FUTHSC RW
79R2585E.1BXDBXD3460MBIDMC GR
80R2698E.3BXDBXD3658FBIDMC GR
81R2705E.3BXDBXD3657MBIDMC GR
82R2710E.2BXDBXD3855FUTHSC RW
83R2532E.1BXDBXD3862MUTHSC RW
84R2574E.1BXDBXD3970FUTHSC RW
85R2695E.2BXDBXD3959MUTHSC RW
86R2699E.2BXDBXD4059FUTHSC RW
87R2590E.1BXDBXD4060MBIDMC GR
88R2696E.2BXDBXD4258FUTHSC RW
89R2596E.1BXDBXD4259MBIDMC GR
90R994E.2BXDBXD4360FUTHSC RW
91R2607E.1BXDBXD4367MUTHSC RW
92R2594E.1BXDBXD4463FUTHSC RW
93R2610E.2BXDBXD4468MUTHSC RW
94R2732E.2BXDBXD4563FUTHSC RW
95R2592E.1BXDBXD4562MUTHSC RW
96R967E.2BXDBXD4864FUTHSC RW
97R2606E.1BXDBXD4878MUTHSC RW
98R2933E.3BXDBXD5061FUTHSC RW
99R2937E.3BXDBXD5061MUTHSC RW
100R2603E.1BXDBXD5166FUTHSC RW
101R1042E.2BXDBXD5162MUTHSC RW
102R2980E.3BXDBXD5576FUTHSC RW
103R2690E.2BXDBXD5565MUTHSC RW
104R4176EBXDBXD5667FUTHSC RW
105R4175EBXDBXD5653MUTHSC RW
106R1006E.3BXDBXD6060FUTHSC RW
107R2725E.2BXDBXD6061FUTHSC RW
108R1074E.3BXDBXD6059MUTHSC RW
109R2534E2.1BXDBXD6170FUTHSC RW
110R2684E.2BXDBXD6162MUTHSC RW
111R1107E.3BXDBXD6254FUTHSC RW
112R2681E.2BXDBXD6262MUTHSC RW
113R965E.3BXDBXD6254MUTHSC RW
114R1425E.2BXDBXD6361FUTHSC RW
115R2576E.3BXDBXD6370MUTHSC RW
116R943E-2.2BXDBXD6456FUTHSC RW
117R2611E.1BXDBXD6468MUTHSC RW
118R2689E.2BXDBXD6563FUTHSC RW
119R2583E.1BXDBXD6560MUTHSC RW
120R2728E.2BXDBXD6667FUTHSC RW
121R2536E2.1BXDBXD6664FUTHSC RW
122R1207E.2BXDBXD6683MUTHSC RW
123R1192E.2BXDBXD6764FUTHSC RW
124R2727E.3BXDBXD6765FUTHSC RW
125R2691E.3BXDBXD6765MUTHSC RW
126R2551E.1BXDBXD6867FUTHSC RW
127R2726E.2BXDBXD6864MUTHSC RW
128R2593E.1BXDBXD6959FUTHSC RW
129R975E.2BXDBXD7064FUTHSC RW
130R2537E2.1BXDBXD7059MUTHSC RW
131R4531EBXDBXD7187FUTHSC RW
132R4532EBXDBXD7186MUTHSC RW
133R2779E.2BXDBXD7364FUTHSC RW
134R3024E.3BXDBXD7354MUTHSC RW
135R2565E.1BXDBXD7561FUTHSC RW
136R1397E-re.2BXDBXD7558MUTHSC RW
137R2687E.3BXDBXD7760FUTHSC RW
138R2717E.2BXDBXD77107MUTHSC RW
139R1421E.3BXDBXD7762MUTHSC RW
140R2579E.1BXDBXD8065FUTHSC RW
141R2686E.2BXDBXD8061MUTHSC RW
142R2956E.3BXDBXD8358FUTHSC RW
143R2960E.3BXDBXD8358MUTHSC RW
144R2922E.3BXDBXD8461FUTHSC RW
145R2895E.3BXDBXD8467MUTHSC RW
146R2692E.2BXDBXD8563FUTHSC RW
147R2715E.2BXDBXD8591MUTHSC RW
148R1405E.2BXDBXD8658FUTHSC RW
149R1225E.3BXDBXD8658MUTHSC RW
150R2724E.2BXDBXD8763FUTHSC RW
151R2540E.1BXDBXD8763MUTHSC RW
152R1433E.2BXDBXD8963FUTHSC RW
153R2546E.1BXDBXD8966MUTHSC RW
154R2578E2.1BXDBXD9061FUTHSC RW
155R859E.2BXDBXD9072MUTHSC RW
156R2682E.2BXDBXD9266FUTHSC RW
157R1388E.3BXDBXD9262FUTHSC RW
158R1322E.3BXDBXD9255MUTHSC RW
159R2733E.2BXDBXD9667FUTHSC RW
160R2554E.1BXDBXD9667MUTHSC RW
161R2649E.2BXDBXD9774FUTHSC RW
162R2577E.1BXDBXD9755MUTHSC RW
163R2645E.3BXDBXD9866FUTHSC RW
164R2688E.2BXDBXD9867MUTHSC RW
165R4533EBXDBXD9980FUTHSC RW
166R4534EBXDBXD9991MUTHSC RW
167R2885E.3GDPBXSB/MpJ61FBIDMC GR
168R2883E.3GDPBXSB/MpJ61MBIDMC GR
169R1700E.1GDPC3H/HeJ83FUTHSC RW
170R1704E.1GDPC3H/HeJ83MUTHSC RW
171R2605E.1GDP BXDC57BL/6J79FUTHSC RW
172R0871EGDP BXDC57BL/6J65FUTHSC RW
173R0872E.1GDP BXDC57BL/6J66MUTHSC RW
174R0872EGDP BXDC57BL/6J66MUTHSC RW
175R4507EKOC57BL/6J-Nyx57MGeisert
176R4508EKOC57BL/6J-Nyx57MGeisert
177R4505EKOC57BL/6J-Rpe6557FGeisert
178R4506EKOC57BL/6J-Rpe6557FGeisert
179R4535EGDPC57BLKS/J66FJAX
180R4536EGDPC57BLKS/J66MJAX
181R2564E.1GDPCAST/EiJ64FJAX
182R2580E.1GDPCAST/EiJ64MJAX
183R4537EGDPCBA/CaJ66FJAX
184R4538EGDPCBA/CaJ66MJAX
185R4539EGDPCZECHII/EiJ66FJAX
186R4540EGDPCZECHII/EiJ66MJAX
187R2600E.1GDP BXDD2B6F172FUTHSC RW
188R2604E.1GDP BXDD2B6F169MUTHSC RW
189R1002E.3GDP BXDDBA/2J72FUTHSC RW
190R4541EGDP BXDDBA/2J65FJAX
191R959E.3GDP BXDDBA/2J60MUTHSC RW
192R2572E.1GDP BXDDBA/2J65MUTHSC RW
193R4542EGDP BXDDBA/2J59MJAX
194R2771E.3GDPFVB/NJ60FBIDMC GR
195R2772E.3GDPFVB/NJ60MBIDMC GR
196R2636E.1GDPKK/HlJ64FUTHSC RW
197R2637E.1GDPKK/HlJ64MUTHSC RW
198R0999E.1GDPLG/J57FUTHSC RW
199R1004E.1GDPLG/J65MUTHSC RW
200R4543EGDPLP/J65FJAX
201R4544EGDPLP/J65MJAX
202R2858E.3GDPMOLF/EiJ60FBIDMC GR
203R2919.3GDPMOLF/EiJ60MBIDMC GR
204R1688E.1GDPNOD/LtJ66FJAX
205R2566E-2.1GDPNOD/LtJ76MUTHSC RW
206R4545EGDPNZB/BlNJ61FBIDMC GR
207R4546EGDPNZB/BlNJ58MBIDMC GR
208R2535E.1GDPNZO/HlLtJ62FJAX
209R2550E.1GDPNZO/HlLtJ96MJAX
210R2817E.3GDPNZW/LacJ65FBIDMC GR
211R2810EGDPNZW/LacJ60MBIDMC GR
212R2810E.3GDPNZW/LacJ60MBIDMC GR
213R4547EGDPPANCEVO/EiJ68FJAX
214R4548EGDPPANCEVO/EiJ68MJAX
215R2635E.1GDPPWD/PhJ62FJAX
216R2634E.1GDPPWD/PhJ62MJAX
217R2544E.1GDPPWK/PhJ63FJAX
218R2549E.1GDPPWK/PhJ83MJAX
219R4550EGDPSJL/J65M+FJAX
220R2368E.1GDPWSB/EiJ67FUTHSC RW
221R2547E.1GDPWSB/EiJ67MUTHSC RW
+
diff --git a/general/datasets/Eye_m2_0908_r_nb/acknowledgment.rtf b/general/datasets/Eye_m2_0908_r_nb/acknowledgment.rtf new file mode 100644 index 0000000..5098d32 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_nb/acknowledgment.rtf @@ -0,0 +1,3 @@ +

Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant and from funds from NEI grant to Dr. Eldon Geisert (R01EY017841), an NEI Vision Core grant (EY14080) and an Unrestricted Grant from Research To Prevent Blindness.

+ +

We thank Dr. Ted Choi, Chief Scientific Director of Predictive Biology, Inc. (past director of molecular genetics at Deltagen Inc.) for providing us with eye samples from several interesting DeltaGen knockouts.

diff --git a/general/datasets/Eye_m2_0908_r_nb/cases.rtf b/general/datasets/Eye_m2_0908_r_nb/cases.rtf new file mode 100644 index 0000000..552d4a5 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_nb/cases.rtf @@ -0,0 +1,57 @@ +

This is the complete and final HEIMED data set. HEIMED consists of expression data for 103 genetically defined lines of mice with standard errors of the mean. Almost all animals are young adults between 50 and 80 days of age (Table 1, maximum age is 123 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, reciprocal F1s between C57BL/6J and DBA/2J, and several mutant and knockout lines. We have combined all common strains, F1 hybrids, and mutants into a group called the Mouse Diversity Panel (MDP). Four lines, namely, C57BL/6J (B6), DBA/2J (D2), and the pair of B6D2F1 and D2B6F1 hybrids are common to both the MDP and the BXD set. This is a breakdown of cases that are part of HEIMED:

+ +
    +
  1. 68 BXD strains. The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. Only one of these strains, BXD24 (know also known as BXD24b), has retinal degeneration (a spontaneous mutation). The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA.
  2. +
  3. 35 MDP lines, including 26 inbred strains representing closely related substrains (e.g, BALB/cJ and BALB/cByJ), many of the most widely used common Mus musculus domesticus inbred strains (e.g., C57BL/6J and 129S1/SvImJ), inbred but wild-derived representatives of common subspecies (Mus musculus domesticus, e.g, WSB/EiJ; M. musculus musculus, e.g., CZECHII/EiJ; M. musculus molossinus, e.g., MOLF/EiJ; M. musculus castaneus, e.g., CAST/EiJ); and even one different species of mouse (Mus spicilegus, PANCEVO/EiJ). The MDP also includes the reciprocal F1 hybrids (B6D2F1 and D2B6F1) and the following 6 KO lines and the Nyx-nob mutant:
  4. +
  5. 6 knockouts (KO), including a KO of Rpe65, and 5 DeltaGen Inc. knockout lines provided by Dr. Ted Choi. These KO lines have had a bacterial lacZ construct inserted into the gene. The endogenous promoter drives expression of beta-galactosidase. RT-PCR analysis detects a gene transcript in most tissues. The following KOs from DeltaGen were studied: Gabra1, Gabbr1, Gnb1, Gpr19, and Clcn3. We also included one spontaneous mutant of the nyctalopin (Nyx no b wave "nob") gene (Pardue et al., 1998) that is on a BALB/cByJ background.
  6. +
+ +

Rod photoreceptor degeneration in inbred mice: Six strains of mice included in HEIMED suffer from severe loss of photoreceptors (mainly rods) and have the equivalent of night blindness in human patients. The death of photoreceptors in these strains occurs by one to two months of age and is often caused by the retinal degeneration 1 (rd1) mutant allele in the rod cyclic-GMP phosphodiesterase 6 beta subunit gene (Pde6b). The following strains are known to have photoreceptor degeneration: C3H/HeJ, FVB/NJ, MOLF/EiJ, SJL/J and BXD24/TyJ. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEIMED data set.

+ +

As expected (Dickerson LW et al., 2002) and as judged from the absence of rhodopsin expression, one of the DeltaGen KO lines (chloride ion channel 3, Clcn3) also has retinal degeneration: B6129P2F2N1-Clcn3. Degeneration in this strain is likely to include all rods and all cones. The cone defect is obvious from the decrease in expression of Gnat2, a gene associated with cones and achromatopsia in mice and humans.

+ +

Lines of mice were selected using the following criteria:

+ + + +

We have included all eight parents of the Collaborative Cross (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/LtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ) in the MDP. Fourteen MDP strains have been partially sequenced by Perlegen for the NIEHS, including including 129S1/SvImJ, A/J, AKR/J, BALB/cByJ, C3H/HeJ, CAST/EiJ, DBA/2J, FVB/NJ, KK/HlJ, MOLF/EiJ, NOD/LtJ, NZW/LacJ, PWD/PhJ, and WSB/EiJ (see the GeneNetwork SNP Browser for data, details, and see Perlegen's excellent data resources and browser).

+ +
    +
  1. 129S1/SvImJ : Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene. It is also a cone photoreceptor function loss 3 mutant (Cpfl3 allele) of the Gnat2 gene that is a model for achromatopsia (JAX Stock Number: 002448)
  2. +
  3. A/J: Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase (Tyr c allele) albino mutant. This strain is particularly sensitive to light-induced photoreceptor loss (Danciger et al., 2007). (JAX Stock Number: 000646)
  4. +
  5. BALB/cByJ: Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project old group A list. A tyrosinase (Tyr c allele) albino mutant and also a tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. Small brain, not aggressive (JAX Stock Number: 001026)
  6. +
  7. BALB/cJ: Phenome Project A list. A tyrosinase (Tyr c allele) albino mutant and also a tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. Large brain and aggressive (JAX Stock Number: 000651)
  8. +
  9. BXSB/MpJ: A white-bellied agouti strains with interesting autoimmune disease restricted to males that is associated with a mutation in the Yaa gene that causes glomerulonephritis, a dramatic increase in number of peripheral monocytes, and pre-B-cell deficiency (JAX Stock Number: 000740)
  10. +
  11. C3H/HeJ: The Heston (He) substrain with a wildtype agouti (A allele) coat color. Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project old group A list. Important to note for this eye expression dataset, C3H/HeJ is a Pdeb6 rd1 mutant with near total photoreceptor loss at as early as postnatal day 30. Also a Tlr4 mutant that is endotoxin resistant. (JAX Stock Number: 000659)
  12. +
  13. C57BL/6J: Sequenced by NIH/NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list. Single most widely used inbred strain of mouse. (JAX Stock Number: 000664)
  14. +
  15. C57BLKS/J: Black Kaliss strain (non-agouti a allele) derived from C57BL/6J, but genetically contaminated at some point mainly with DBA/2J and then reinbred. Now at the Jackson Laboratory. (JAX Stock Number: 000662)
  16. +
  17. CAST/EiJ: A wild-derived inbred Mus musculus castaneus strain. Samples of this subspecies were captured in Southeast Asia. One of three wild-derived strains in the Collaborative Cross sequenced by NIEHS; Phenome Project A list. CAST/Ei and CAST/EiJ are the same strain. The addition of the "J" is trivial and was added when stock were transferred from Dr. Eicher's lab to the Jackson Laboratory production facility in about 2004. (JAX Stock Number: 000928)
  18. +
  19. CBA/CaJ: Agouti strain from the Jackson Laboratory. Wildtype pigment genes. (JAX Stock Number: 000654)
  20. +
  21. CZECHII/EiJ: Czech 2 is a wild-derived inbred strain M. musculus musculus strain. Samples of this subspecies were caught in the Czech Republic and inbred at the Jackson Laboratory by Eva Eicher. White-bellied agouti. (JAX Stock Number: 001144).
  22. +
  23. DBA/2J: The dilute, brown, agouti (dba) strain is the oldest inbred strain of mouse. Inbreeding was started in 1909 by Little. A tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. A myosin 5a (Myo5a d) dilute allele mutant. Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project old A group list. (JAX Stock Number: 000671)
  24. +
  25. FVB/NJ: Friend's leukemia virus B (FVB) strain. Sequenced by Perlegen/NIEHS and Celera. Tyr c locus albino and a Pdeb6 rd1 mutant derived from Swiss mice at NIH. This has been the most common strain used to make transgenic mice due to large and easily injected oocytes; Phenome Project A list (JAX Stock Number: 001800).
  26. +
  27. KK/HlJ: K Kondo's (KK) Kasukabe strain is a homozygous age-related hearing loss (ahl) allele mutant of the Cdh23 gene. A Tyr c locus albino strain. Males have a form of type 2 diabetes. Sequenced by Perlegen/NIEHS. (JAX Stock Number: 002106)
  28. +
  29. LG/J: Large (LG) strain. Paternal parent of the Large-by-Small set of RI strains made by James Cheverud and colleagues (the LGXSM panel, not to be confused with the LongXShort or LXS panel). A Tyr c locus albino strain. (JAX Stock Number: 000675)
  30. +
  31. LP/J: White-bellied agouit strain with a piebald mutation in the endothelin receptor type B Ednrb gene from at the Jackson Laboratory. Some reduction in melanocytes in choroid of eye due to neural creast migration abnormalities. (JAX Stock Number: 000676)
  32. +
  33. MOLF/EiJ: A wild-derived inbred strain derived from M. musculus molossinus samples camputered in Fukuoka, Japan. This strain has the retinal degeneration rd1 allele in Pde6b. There appears to have been some genetic contamination of this strain with conventional inbred strains in the past several decades (F. Pardo, personal communication to RWW, August 2006). However, the strain is currently fully inbred. (JAX Stock Number: 000550)
  34. +
  35. NOD/LtJ: Non-obese diabetic strain, originally from M. Hattori in Kyoto, Japan. This is the Edward Leiter (Lt) substrain from the Jackson Laboratory. Collaborative Cross strain sequenced by NIEHS; Phenome Project B list. Homozygous age-related hearing loss (ahl) allele mutant of the Cdh23 gene. A Tyr c locus albino strain. (JAX Stock Number: 001976)
  36. +
  37. NZO/HlLtJ: New Zealand Obese strain. This is a severely obese and hypertensive strain. Males often develop a type 2 diabetes. Collaborative Cross strain. Agouti coat color. (JAX Stock Number: 002105)
  38. +
  39. NZB/BlNJ: New Zealand Black inbred strain from Bielschowsky (BL, substrain is "B lowercase L N", not "BiN") now maintained at the Jackson Laboratory. (JAX Stock Number: 000648)
  40. +
  41. NZW/LacJ: New Zealand White strain from the Laboratory Animal Center (Carshalton, UK), now maintained at the Jackson Laboratory. Carries the Tyr c locus albino mutation, the pink-eye dilution mutation in the Oca2 or p locus, and the brown allele at Tyrp1. (JAX Stock Number: 001058)
  42. +
  43. PANCEVO/EiJ: PANCEVO/EiJ is a wild-derived inbred strain from the Mus spicilegus samples caught in the Pancevo, Serbia. This species of mouse is also known as the Steppe mouse (taxon identifier 10103). M. spicilegus is a colonial mound-building species. No known ocular or retina mutations, but the expression level of Gnat2 is low in this strain, either due to a 3' UTR length variant or possible achromatosia (cone degeneration) (JAX Stock Number: 001384)
  44. +
  45. PWD/PhJ: A wild-derived Mus musculus musculus agouti strain inbred from samples caught near Prague, Czech Republic. Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues. (JAX Stock Number: 004660)
  46. +
  47. PWK/PhJ: A wild-derived Mus musculus musculus inbred strain from samples caught near Lhotka, Czech Republic. Collaborative Cross strain; Phenome Project D list. (JAX Stock Number: 003715)
  48. +
  49. SJL/J: Swiss Webster inbred strain from Jim Lambert's lab at the Jackson Laboratory. This strain has the retinal degeneration rd1 allele in Pde6b. It also carries both the Tyr c albino mutation and the pink-eye dilution mutation in the Oca2 or p locus. Highly aggressive males. (JAX Stock Number: 000686)
  50. +
  51. WSB/EiJ: Watkin Star line B (or "wild son-of-a-bitch") is a wild-derived Mus musculus domesticus inbred strain from samples caught in Maryland, USA. A Collaborative Cross strain sequenced by NIEHS; Phenome Project C list (JAX Stock Number: 001145)
  52. +
  53. B6D2F1 and D2B6F1 (also listed as BDF1 and DBF1 in some graphs and tables): F1 hybrids generated by crossing C57BL/6J with DBA/2J. These black reciprocal F1 can be used to detect dominance effects. Comparison of the two reciprocal F1s can be used to detect parental origin (imprinting) effects. The D2B6F1 animals are currently available from the Jackson Laboratory as a special order.) (JAX Stock Number for B6D2F1 hybrids obtained from the Jackson Laboratory, aka B6D2F1/J 100006)
  54. +
+ +

Most of the common inbred strains harbor mutations in genes the control pigmentation (Silvers, 2008 and material above in this INFO file). These gene include the albino and chinchilla alleles of the tyrosinase gene (Tyr, or human OCA1), the brown allele of the tyrosinase related protein 1 (Tyrp1), the pink-eye dilution allele of Oca2 (probe set 1418211), the non-agouti (black) and white-bellied alleles of the agouti signaling protein Asip, the steel allele of Kitlg, the dilute allele of Myo5a (probe set 1419754), and the piebald allele of Ednrb. In some of these cases, effects of the mutation are easily detected at the transcript level (Tyrp1, Oca2, and Myo5a), but in the other cases (Tyr, Asip, Ednrb, and Kitlg), mutations do not leave a strong imprint on expression.

diff --git a/general/datasets/Eye_m2_0908_r_nb/citation.rtf b/general/datasets/Eye_m2_0908_r_nb/citation.rtf new file mode 100644 index 0000000..ddd98e4 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_nb/citation.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Xusheng Wang, Weikuan Gu, Yan Jiao, Robert W. Williams. Gene expression landscape of the mammalian eye: A global survey and database of mRNAs of 103 varieties of mice. Molecular Vision 2009; in press.

diff --git a/general/datasets/Eye_m2_0908_r_nb/contributors.rtf b/general/datasets/Eye_m2_0908_r_nb/contributors.rtf new file mode 100644 index 0000000..d155833 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_nb/contributors.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Xusheng Wang, Weikuan Gu, Yan Jiao, Robert W. Williams

diff --git a/general/datasets/Eye_m2_0908_r_nb/experiment-design.rtf b/general/datasets/Eye_m2_0908_r_nb/experiment-design.rtf new file mode 100644 index 0000000..1ebe0ad --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_nb/experiment-design.rtf @@ -0,0 +1 @@ +

Expression profiling by array

diff --git a/general/datasets/Eye_m2_0908_r_nb/notes.rtf b/general/datasets/Eye_m2_0908_r_nb/notes.rtf new file mode 100644 index 0000000..7a26eb5 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_nb/notes.rtf @@ -0,0 +1 @@ +

This data set is available as a bulk download in several formats. The data are available as either strain means or the individual arrays. Due to the involved normalization procedures required to correct for batch effects we strongly recommend not using the raw CEL files without special statistical procedures.

diff --git a/general/datasets/Eye_m2_0908_r_nb/platform.rtf b/general/datasets/Eye_m2_0908_r_nb/platform.rtf new file mode 100644 index 0000000..9024a99 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_nb/platform.rtf @@ -0,0 +1,11 @@ +

Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many probes overlap and target the same transcript). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequences as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

+ +

As part of the development of HEIMED, we have manually annotated individual probe sets by sequence alignment to the mouse genome and transcriptome. Approximately 13,000 probe sets that have comparatively high expression in eye and CNS were curated by one of the authors (RWW) and now have specific information on the part of the transcript targeted by each probe set. The other 33,000 transcripts have corresponding data that was generated by Xusheng Wang using computational methods (BLAT analysis combined with annotated genome sequence).

+ +

One example may help explain how to exploit this annotation. The four probe sets for rhodopsin include information on the target location. Only the first probe set targets the last two coding exons. The other three probe sets target different parts of the 3’ UTR (mid, distal, and far distal regions). The probe sets can be reordered by from high to low expression using the Sort By function in Search Results pages. In the case of rhodopsin, the probe set that targets that last two coding exons and proximal parts of the 3’ UTR also has the highest expression . Finally, the HEIMED gene descriptions have been customized to help vision researchers. In the case of rhodopsin, the description appended after the gene name reads “rod photoreceptor pigment, retinitis pigmentosa-associated”. For less well known genes this kind of annotation can be extremely useful. For example, the more verbose annotation for Cerkl reads “neuronal survival and apoptosis-related, retinal ganglion cell expressed, retinitis pigmentosa 26); alternative 3' UTR of short form message, intron 2”.

+ +

 

+ +

+ +

Legend: Distribution of expression values for all probe sets in HEIMED.

diff --git a/general/datasets/Eye_m2_0908_r_nb/processing.rtf b/general/datasets/Eye_m2_0908_r_nb/processing.rtf new file mode 100644 index 0000000..4349e60 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_nb/processing.rtf @@ -0,0 +1,3381 @@ +

Range of Gene Expression in the Eye. Expression of transcripts in the HEIMED and most other GN data sets is measured on a log2 scale. Each unit corresponding approximately to a 2-fold difference in hybridization signal intensity. To simplify comparisons among different data sets and cases, log2 RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units (variance stabilized). Values of all 45,101 probe sets in this data set range from a low of 4.8 (Tcf15, probe set 1420281_at) to a high of 15.5 (crystallin gamma C, Crygc, probe set 1422674_s_at). This corresponds to 10.7 units or a 1 to 1700 dynamic range of expression (2^10.73).

+ +

We used pooled RNA samples of whole eyes, usually two independent pools--one male, one female pool--for most lines of mice. This data set was processed using the RMA protocol. A total of 2223 probes sets are associated with LRS values greater than 46 (LOD >10).

+ +

We calibrated this log intensity scale using Affymetrix spike-in control probe sets. These 18 control probe sets target exogenous bacterial mRNAs that are added to each sample (a graded dose spike cocktail) during preparation at concentrations of 1.5, 5, 25, and 100 pM. (To find these probe sets, search GN’s ALL search field using the string “AFFX pM”.) A value of 6 or less is equivalent to an mRNA concentration of under 0.4 pM, a value of 8 is equivalent to ~1.5 pM, 9.5 is equivalent to ~5 pM, 11.5 is equivalent to ~25 pM, 13.5 is equivalent to ~100 pM, and a value of 15.5 is equivalent to an mRNA concentration of 400 pM or greater.

+ +

This range can be converted to the mRNA molecules per cell in the eye assuming that a value of 8 is equivalent to about 1 mRNA copy per cell (Kanno et al. 2006, see http://www.biomedcentral.com/1471-2164/7/64). Since the expression of rhodopsin mRNA is normally 15 units, we predict that there are 27 or ~128 Rho mRNAs per cell in the whole eye and ~256 in rods themselves (assuming that rods make up about half of all cells in the eye). For this purpose it may be useful to know that a normal mouse eye contains between 6 and 8 million rod photoreceptors (Guo, Lu, and Williams; GN BXD Phenotype ID 11024).

+ +

Note that some probe sets with very low expression still provide reliable data. For example, probe set 1440397_at (Cacna2d1) has expression of only 5.5 units (a value that would be declared as "absent" using conventional Affymetrix procedures), but the values for this calcium channel transcript are associated with a very strong cis QTL with an LRS of 79 (LOD = 17). This strong linkage is definitely not due to chance since the probability of the expression data mapping precisely to the location of the parent gene itself is about 10e-16. This indicates a high signal to noise ratio and the detection of significant strain variation of the correct transcript.

+ +

The standard error of the mean for the HEIMED data set is computed for 2 to 6 biological replicates. The standard error of such small samples tends to systematically underestimate the population standard error. With n = 2 the underestimate is about 25%, whereas for n = 6 the underestimate is 5%. Gurland and Tripathi (1971) provide a correction and equation for this effect (see Sokal and Rohlf, Biometry, 2nd ed., 1981, p 53 for an equation of the correction factor for small samples of n < 20.) Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. The CEL files were processed using the RMA protocol. We processed the first three batches together. The last batch was processed separately and merged as described below.

+ + + +

After RMA processing using Biobase affy10 build running under R version 2.7.1, all array data sets were rank-order normalized. This second round of quantile normalization removes much residual non-linearity across arrays and forces every array to have the same distribution of values as the mean of all arrays. Comparative array data quality was then evaluated in DataDesk. Outlier arrays were flagged by visual inspection in DataDesk, usually by means of an analysis of scatter plots and more quantitatively by generating a correlation matrix of all arrays. Those arrays with mean correlation <0.96 versus all other arrays indicates trouble or a biological outlier). In some cases, outliers were expected, such as samples from strains with retinal degeneration (FVB/NJ, NOD/LtJ, MOLF/EiJ, C3H/HeJ and BXD24), samples from wild subspecies such as WSB/EiJ, CAST/EiJ, PWD/PhJ, and PWK/PhJ, and knockouts. However, when arrays were anomolous both within strain and across strains, they were often simply discarded. The assumption is that anomolous data are much more likely due to experimental and technical errors than to informative biological variation. Approximately 10% of arrays were discarded.

+ +

After this process, the acceptable set of arrays was renormalized using all step as above, starting with the original RMA procedure, etc.

+ +

We reviewed the data set using a new method developed by RW Williams, Jeremy Peirce, and Hongqiang Li. For the full set of arrays that passed standard QC protocols described above, we computed the strain means for the BXD strains, B6, D2, and F1s. Using this set of strain means we then computed LRS scores for all 45101 probe sets and counted the number of transcripts that generated QTLs with LRS values greater than 50. This value (e.g., 1800) represented the QTL harvest for the full data set. We then dropped a single array from the data set, recomputed strain means, and recomputed the number of transcripts with LRS scores great than 50. This value is expected to typically reduce the number of QTLs that reach the criterion level (e.g., 1750 QTLs > 50). This process was repeated for every array to obtain an array-specific difference value--the effect of removing that array on the total QTL count. For example, the loss of a single array might cause a decrease in 50 QTLs. Values ranged from approximately -90 (good arrays) to +40 (bad arrays). This procedure is similar in some ways to a jackknife protocol, although we are not using this procedure to esimate an error term, but rather as a method to polish a data set.

+ +

During this process we discovered that nearly 20 arrays in the batch 2 had been mislabeled at some point in processing. We computed the correct strain membership of each array using a large number of Mendelian probe sets (more than 50) and comparing their match to standard SNP and microsatellite markers and the original array data set of November 2005. This allowed us to rescue a large number of arrays that were of high quality.

+ +

A third batch of approximately 40 arrays were processed by Yan Jiao and Weikuan Gu in August 2006. These complete data set assembled by Hongqiang Li. This process again included a correction for a batch effect.

+ +

For the June 2006 data set Hongqiang Li used a new batch correction method that stabilizes the range of expression in each batch. For each of the three large batches, we extracted the minumum and maximum raw probe expression (CEL file level) value. We then adjusted raw probe values in each batch to have the same range as the first and largest batch (batch 1) using a simple linear interpolation. These procedures generated new correct CEL files which were then used with RMA to generate final probe set estimates.

+ +

For the final fourth batch of arrays (Sept 2008) Arthur Centeno and Rob Williams corrected for a systematic difference in probe set expression values between original arrays run in 2005 and 2006 and the new arrays added in 2008 (n = 45 acceptable arrays). This difference is due to unknown technical batch effects that are probably associated with labeling, hybridization, and scanning. We performed a simple correction to normalize values of the new set of arrays to those of the old set (batches 1 through 3). No changes were made to any values of the previous three batches. We corrected only the probe set level (RMA) values and not the CEL files. For this final batch, we corrected for the difference (offset) in probe set expression between the first three batches arrays run in 2005 and 2006 (a total of 174 acceptable arrays) and the new batch (n = 47 acceptable arrays). This difference is due to unknown technical effects that are probably related to various steps in labeling, hybridization, and scanning. The correction was applied as follows: (1) RWW selected 51 high quality arrays with similar expression characteristics (r = 0.97 or better between pairs of arrays) in the old data set (from batches 1, 2, and 3) and 34 high quality arrays in the final batch. RWW used scatterplots of full RMA transcriptome data sets to review many pairs of arrays within these new and old array batches. Strains with retinal degeneration or unusual eye gene expression characteristics were excluded from these selected subsets. The average expression values for each probe set were then computed for both the old and new array subsets. The offset value (old minus new) was added to each probe set across all 47 new arrays. This processes forces the average probe set in the new arrays to be very close to that of the previous arrays.

+ +

Table 2: Sample tube ID, strain, original CEL filename, and Affymetrix quality control values. Columns labeled Scale factor, Background Average, Present, Absent, Marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files.

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
2R2533E.1129S1/SvImJR2533E.1.CEL2.119457.90%40.50%1.60%1.370.781Y
3R0754E.1A/JR0754E.1.CEL2.728659.80%38.70%1.50%1.360.761Y
4R4521EB6129P2F2N1-Clcn3R4521E.CEL4.8338.763.30%35.30%1.40%1.250.774 
5R4522EB6129P2F2N1-Clcn3R4522E.CEL5.7637.3662.90%35.70%1.40%1.370.834 
6R4523EB6129P2F2N1-Clcn3R4523E.CEL4.8840.4263.90%34.70%1.40%1.270.774 
7R4526EB6129P2F2N1-Gabbr1R4526E.CEL3.8444.1865.00%33.70%1.30%1.340.784Y
8R4509EB6129P2F2N1-Gabbr1R4509E.CEL7.4534.7658.90%39.70%1.40%1.450.834 
9R4510EB6129P2F2N1-Gabbr1R4510E.CEL8.4437.4457.40%41.10%1.50%1.350.834 
10R4511EB6129P2F2N1-Gabbr1R4511E.CEL5.9142.0261.40%37.20%1.40%1.410.834 
11R4524EB6129P2F2N1-Gabbr1R4524E.CEL5.4942.3462.40%36.20%1.40%1.290.784Y
12R4525EB6129P2F2N1-Gabbr1R4525E.CEL4.6941.363.10%35.50%1.40%1.270.84Y
13R4515EB6129P2F2N1-Gabra1R4515E.CEL5.7541.7662.80%35.80%1.40%1.410.814Y
14R4516EB6129P2F2N1-Gabra1R4516E.CEL7.0740.7360.20%38.40%1.40%1.320.874Y
15R4517EB6129P2F2N1-Gabra1R4517E.CEL5.4538.0962.70%35.80%1.40%1.340.824Y
16R4512EB6129P2F2N1-Gnb5R4512E.CEL6.5638.0259.90%38.70%1.50%1.330.834 
17R4513EB6129P2F2N1-Gnb5R4513E.CEL4.1541.663.40%35.10%1.50%1.340.824 
18R4514EB6129P2F2N1-Gnb5R4514E.CEL5.8639.261.20%37.30%1.50%1.340.814 
19R4518EB6129P2F2N1-Gpr19R4518E.CEL5.5838.962.60%36.00%1.30%1.390.794Y
20R4519EB6129P2F2N1-Gpr19R4519E.CEL5.9541.9161.30%37.30%1.40%1.350.844Y
21R2601E.1B6D2F1R2601E.1.CEL2.559258.90%39.60%1.50%1.440.781Y
22R2602E.1B6D2F1R2602E.1.CEL2.68459.70%38.80%1.50%1.370.781Y
23R1676E.1BALB/cByJR1676E.1.CEL2.699858.90%39.60%1.50%1.460.741 
24R1672E.1BALB/cByJR1672E.1.CEL2.2211159.90%38.60%1.50%1.260.81Y
25R4530EBALB/cJR4530E.CEL6.3737.5360.80%37.80%1.40%1.30.844Y
26R4529EBALB/cJR4529E.CEL5.7141.3360.50%38.00%1.50%1.480.84Y
27R2704E.2BXD1R2704E.2.CEL2.066139.6156.60%41.90%1.50%1.310.812 
28R2707E.3BXD1R2707E.3.CEL18056.40%42.10%1.50%1.430.793 
29R1231E.2BXD2R1231E.2.CEL2.197138.7357.30%41.30%1.40%1.410.772 
30R2598E.1BXD2R2598E.1.CEL1.9910660.90%37.60%1.50%1.270.781Y
31R2591E.1BXD5R2591E.1.CEL1.713658.50%40.00%1.50%1.330.781Y
32R2714E.2BXD5R2714E.2.CEL1.404144.3560.60%37.90%1.50%1.430.792 
33R2570E.1BXD6R2570E.1.CEL1.998758.50%40.00%1.50%1.460.761Y
34R2694E.2BXD6R2694E.2.CEL1.98397.2361.60%37.10%1.30%1.390.822 
35R2538E.1BXD8R2538E.1.CEL1.9110261.20%37.30%1.50%1.520.791Y
36R2709E.2BXD8R2709E.2.CEL1.9999.7960.90%37.60%1.50%1.420.762 
37R2708E.2BXD9R2708E.2.CEL1.966126.4657.70%40.70%1.50%1.40.842 
38R2569E.1BXD9R2569E.1.CEL1.758755.10%43.40%1.50%2.823.141 
39R2581E.1BXD11R2581E.1.CEL1.948962.10%36.40%1.60%1.550.811Y
40R2612E.2BXD11R2612E.2.CEL1.83142.0358.20%40.50%1.40%1.780.812 
41R2742E.2BXD12R2742E.2.CEL2.127134.1457.00%41.60%1.40%1.640.782 
42R2543E.1BXD12R2543E.1.CEL1.6111858.60%39.90%1.60%1.430.771Y
43R2586E.1BXD13R2586E.1.CEL2.017456.40%42.00%1.60%2.853.811 
44R877E.2BXD13R877E.2.CEL1.558125.6361.20%37.50%1.20%1.420.812 
45R2557E.1BXD14R2557E.1.CEL1.839962.50%36.10%1.40%1.310.781Y
46R1128E.2BXD14R1128E.2.CEL1.9111559.90%38.80%1.40%1.20.821Y
47R2701E.3BXD15R2701E.3.CEL18860.60%37.90%1.40%1.50.773 
48R2716E.2BXD15R2716E.2.CEL2.015150.8356.40%42.10%1.60%1.420.812 
49R2711E.2BXD16R2711E.2.CEL1.953118.5359.00%39.60%1.50%1.450.82 
50R2567E.1BXD16R2567E.1.CEL2.248256.70%41.60%1.70%1.370.751 
51R2720E.2BXD18R2720E.2.CEL2.3299.9359.50%39.00%1.50%1.330.772 
52R2559E.1BXD18R2559E.1.CEL1.6510460.80%37.70%1.50%1.270.781Y
53R2560E.1BXD19R2560E.1.CEL1.799860.90%37.50%1.60%1.350.81Y
54R2713E.2BXD19R2713E.2.CEL1.67120.8260.20%38.30%1.50%1.450.82 
55R2584E.1BXD20R2584E.1.CEL2.078459.30%39.10%1.60%1.40.761Y
56R2731E.2BXD20R2731E.2.CEL1.82514759.00%39.50%1.50%1.40.82 
57R2702E.2BXD21R2702E.2.CEL1.811128.6559.40%39.10%1.40%1.260.82 
58R2541E2.1BXD21R2541E2.1.CEL2.6312556.00%42.40%1.50%1.290.781 
59R2553E.1BXD22R2553E.1.CEL1.9511159.90%38.50%1.50%1.280.761Y
60R2700E.2BXD22R2700E.2.CEL1.858102.9661.50%37.10%1.30%1.480.792 
61R2558E-2.1BXD23R2558E-2.1.CEL2.233125.0558.60%39.90%1.50%1.430.772 
62R1086E.2BXD23R1086E.2.CEL2.233125.0558.60%39.90%1.50%1.430.772 
63R2719E.2BXD24R2719E.2.CEL1.47140.3861.50%37.20%1.30%1.380.792 
64R2589E2.1BXD24R2589E2.1.CEL2.6111257.50%40.90%1.60%1.240.81 
65R2573E-2.1BXD25R2573E-2.1.CEL3.157257.90%40.70%1.40%1.770.971 
66R2683E.2BXD25R2683E.2.CEL1.777115.6458.30%40.30%1.40%2.010.792 
67R2703E.2BXD27R2703E.2.CEL1.263134.7862.60%36.10%1.40%1.440.782 
68R2729E.3BXD27R2729E.3.CEL18757.90%40.60%1.50%1.560.843Y
69R2562E.3BXD28R2562E.3.CEL1.6511659.90%38.40%1.70%1.370.793Y
70R2721E.2BXD28R2721E.2.CEL2.065157.3956.10%42.40%1.50%1.310.812 
71R2561E.3BXD29R2561E.3.CEL17753.30%45.40%1.40%3.3619.663 
72R1258E.2BXD31R1258E.2.CEL2.063117.0959.00%39.50%1.50%1.540.782 
73R2597E.1BXD31R2597E.1.CEL2.379460.30%38.30%1.50%1.340.771Y
74R2563E.1BXD32R2563E.1.CEL1.5510261.90%36.70%1.40%1.50.81 
75R1216E.2BXD32R1216E.2.CEL2.23111.9958.80%39.80%1.40%1.350.792 
76R2542E.1BXD33R2542E.1.CEL2.139756.50%41.80%1.60%1.910.931 
77R857E.2BXD33R857E.2.CEL1.737113.9861.90%36.70%1.30%1.60.772 
78R1451E.2BXD34R1451E.2.CEL1.843140.0559.00%39.50%1.50%1.420.812Y
79R2585E.1BXD34R2585E.1.CEL2.647558.30%40.00%1.70%1.250.771 
80R2698E.3BXD36R2698E.3.CEL18659.70%39.00%1.30%1.460.783 
81R2705E.3BXD36R2705E.3.CEL18660.20%38.40%1.40%1.460.773 
82R2710E.2BXD38R2710E.2.CEL2.112122.158.80%39.80%1.40%1.370.782 
83R2532E.1BXD38R2532E.1.CEL2.049459.80%38.70%1.50%1.370.81Y
84R2574E.1BXD39R2574E.1.CEL1.989161.20%37.30%1.50%1.390.781 
85R2695E.2BXD39R2695E.2.CEL1.638122.760.80%37.80%1.50%1.420.82 
86R2699E.2BXD40R2699E.2.CEL1.827105.2361.70%36.90%1.40%1.420.812 
87R2590E.1BXD40R2590E.1.CEL2.717759.10%39.30%1.50%1.40.771Y
88R2696E.2BXD42R2696E.2.CEL1.622118.9562.00%36.60%1.50%1.530.792 
89R2596E.1BXD42R2596E.1.CEL2.6310859.00%39.60%1.50%1.240.81 
90R994E.2BXD43R994E.2.CEL1.966113.1260.80%37.80%1.40%1.660.82 
91R2607E.1BXD43R2607E.1.CEL2.4311558.60%40.00%1.40%1.310.761Y
92R2594E.1BXD44R2594E.1.CEL1.7711759.80%38.80%1.40%1.350.851 
93R2610E.2BXD44R2610E.2.CEL1.814142.9159.00%39.50%1.50%1.350.82 
94R2732E.2BXD45R2732E.2.CEL2.154122.4556.50%42.10%1.40%1.80.832 
95R2592E.1BXD45R2592E.1.CEL1.8510660.10%38.60%1.30%1.430.851Y
96R967E.2BXD48R967E.2.CEL1.948130.9557.30%41.20%1.50%1.630.812 
97R2606E.1BXD48R2606E.1.CEL2.5610658.90%39.70%1.40%1.350.831Y
98R2933E.3BXD50R2933E.3.CEL17252.90%45.60%1.50%2.450.983 
99R2937E.3BXD50R2937E.3.CEL18956.90%41.60%1.40%1.810.823 
100R2603E.1BXD51R2603E.1.CEL2.4911557.70%40.80%1.50%1.240.791 
101R1042E.2BXD51R1042E.2.CEL2.352104.1258.70%39.90%1.40%1.530.822 
102R2980E.3BXD55R2980E.3.CEL18256.90%41.70%1.50%1.770.843 
103R2690E.2BXD55R2690E.2.CEL1.887164.0156.10%42.30%1.60%1.430.82 
104R4176EBXD56R4176E.CEL4.7543.0863.00%35.60%1.30%1.390.814Y
105R4175EBXD56R4175E.CEL638.4961.30%37.30%1.40%1.470.814Y
106R1006E.3BXD60R1006E.3.CEL19854.90%43.70%1.50%2.70.863 
107R2725E.2BXD60R2725E.2.CEL1.551148.0159.80%38.80%1.40%1.430.792 
108R1074E.3BXD60R1074E.3.CEL111855.50%43.10%1.40%1.960.813 
109R2534E2.1BXD61R2534E2.1.CEL2.4711857.90%40.60%1.50%1.420.791 
110R2684E.2BXD61R2684E.2.CEL2.01131.0357.00%41.50%1.50%1.340.782 
111R1107E.3BXD62R1107E.3.CEL18355.20%43.40%1.40%2.430.933 
112R2681E.2BXD62R2681E.2.CEL2.086148.2457.20%41.30%1.50%1.290.812 
113R965E.3BXD62R965E.3.CEL193.5553.30%45.20%1.50%3.110.943 
114R1425E.2BXD63R1425E.2.CEL1.713659.30%39.30%1.40%1.430.822 
115R2576E.3BXD63R2576E.3.CEL18461.30%37.40%1.40%1.480.763 
116R943E-2.2BXD64R943E-2.2.CEL1.591141.3460.10%38.40%1.50%1.320.762 
117R2611E.1BXD64R2611E.1.CEL2.299258.00%40.50%1.50%1.571.061 
118R2689E.2BXD65R2689E.2.CEL1.721142.4459.90%38.60%1.50%1.380.762 
119R2583E.1BXD65R2583E.1.CEL2.497056.90%41.50%1.60%1.671.011 
120R2728E.2BXD66R2728E.2.CEL1.714137.4559.40%39.00%1.60%1.380.792 
121R2536E2.1BXD66R2536E2.1.CEL2.7410956.10%42.30%1.70%1.280.791 
122R1207E.2BXD66R1207E.2.CEL1.681136.8660.40%38.10%1.50%1.450.772 
123R1192E.2BXD67R1192E.2.CEL2.126123.3757.90%40.60%1.50%1.50.82 
124R2727E.3BXD67R2727E.3.CEL182.5556.10%42.40%1.50%1.970.872 
125R2691E.3BXD67R2691E.3.CEL19054.80%43.80%1.50%2.610.813 
126R2551E.1BXD68R2551E.1.CEL2.499254.30%44.10%1.60%2.911.551 
127R2726E.2BXD68R2726E.2.CEL1.811153.0958.70%39.80%1.50%1.390.782 
128R2593E.1BXD69R2593E.1.CEL1.6712859.20%39.50%1.30%1.470.921Y
129R975E.2BXD70R975E.2.CEL1.841137.9758.00%40.50%1.40%1.360.792 
130R2537E2.1BXD70R2537E2.1.CEL2.939958.00%40.50%1.60%1.290.751 
131R4531EBXD71R4531E.CEL4.7743.4862.40%36.30%1.40%1.230.774Y
132R4532EBXD71R4532E.CEL5.8940.6860.90%37.60%1.50%1.240.794Y
133R2779E.2BXD73R2779E.2.CEL1.746121.1159.60%39.00%1.40%1.50.82 
134R3024E.3BXD73R3024E.3.CEL178.0551.70%46.60%1.70%2.30.943 
135R2565E.1BXD75R2565E.1.CEL1.7910258.00%40.50%1.50%2.313.471 
136R1397E-re.2BXD75R1397E-re.2.CEL1.449189.7159.60%39.00%1.40%1.390.822 
137R2687E.3BXD77R2687E.3.CEL18058.00%40.60%1.40%1.570.83Y
138R2717E.2BXD77R2717E.2.CEL1.79784.4361.60%36.90%1.40%1.490.762 
139R1421E.3BXD77R1421E.3.CEL19452.40%46.20%1.40%2.290.823 
140R2579E.1BXD80R2579E.1.CEL2.427259.20%39.40%1.50%1.730.821 
141R2686E.2BXD80R2686E.2.CEL2.342119.6356.00%42.60%1.50%1.380.792 
142R2956E.3BXD83R2956E.3.CEL18455.40%43.20%1.40%1.390.843 
143R2960E.3BXD83R2960E.3.CEL18056.60%41.90%1.50%1.50.823Y
144R2922E.3BXD84R2922E.3.CEL19157.80%40.80%1.50%1.470.833Y
145R2895E.3BXD84R2895E.3.CEL17558.30%40.20%1.50%1.560.773Y
146R2692E.2BXD85R2692E.2.CEL1.423160.8760.20%38.30%1.40%1.460.792 
147R2715E.2BXD85R2715E.2.CEL1.488142.661.20%37.30%1.40%1.50.782 
148R1405E.2BXD86R1405E.2.CEL2.351119.3456.40%42.20%1.40%1.640.812 
149R1225E.3BXD86R1225E.3.CEL17153.90%44.60%1.40%3.21.613 
150R2724E.2BXD87R2724E.2.CEL1.906113.7160.70%37.90%1.40%1.450.792 
151R2540E.1BXD87R2540E.1.CEL2.339361.10%37.40%1.40%1.220.811Y
152R1433E.2BXD89R1433E.2.CEL12.24157.70%40.80%1.50%1.410.782 
153R2546E.1BXD89R2546E.1.CEL1.999658.60%39.70%1.70%1.470.781 
154R2578E2.1BXD90R2578E2.1.CEL2.799258.60%39.80%1.60%1.520.771Y
155R859E.2BXD90R859E.2.CEL1.847152.2257.90%40.70%1.40%1.360.772 
156R2682E.2BXD92R2682E.2.CEL1.547156.3160.40%38.20%1.40%1.370.772 
157R1388E.3BXD92R1388E.3.CEL16360.00%38.60%1.40%1.851.033 
158R1322E.3BXD92R1322E.3.CEL18055.90%42.60%1.50%1.750.743 
159R2733E.2BXD96R2733E.2.CEL1.7113.9962.10%36.60%1.30%1.40.782 
160R2554E.1BXD96R2554E.1.CEL2.189360.20%38.30%1.50%1.460.771Y
161R2649E.2BXD97R2649E.2.CEL2.343119.0457.50%41.20%1.40%1.530.82 
162R2577E.1BXD97R2577E.1.CEL2.077759.50%39.10%1.40%1.871.291 
163R2645E.3BXD98R2645E.3.CEL18859.40%39.20%1.50%1.590.813Y
164R2688E.2BXD98R2688E.2.CEL1.772145.2458.50%40.00%1.50%1.480.812 
165R4533EBXD99R4533E.CEL137.6960.30%38.20%1.40%1.330.894Y
166R4534EBXD99R4534E.CEL5.6936.6262.90%35.70%1.40%1.160.84Y
167R2885E.3BXSB/MpJR2885E.3.CEL17658.10%40.60%1.30%1.881.063 
168R2883E.3BXSB/MpJR2883E.3.CEL17156.40%42.00%1.50%1.590.843Y
169R1700E.1C3H/HeJR1700E.1.CEL2.986960.80%37.90%1.40%1.480.781 
170R1704E.1C3H/HeJR1704E.1.CEL2.588860.10%38.60%1.30%1.380.841 
171R2605E.1C57BL/6JR2605E.1.CEL1.8213160.50%38.20%1.30%1.320.81Y
172R0871EC57BL/6JR0871E.CEL6.2437.3861.90%36.70%1.40%1.410.84Y
173R0872E.1C57BL/6JR0872E.1.CEL3.138958.90%39.60%1.50%1.30.791Y
174R0872EC57BL/6JR0872E.CEL3.12888.5858.90%39.60%1.50%1.30.791 
175R4507EC57BL/6J-NyxR4507E.CEL8.1337.559.30%39.30%1.40%1.320.84Y
176R4508EC57BL/6J-NyxR4508E.CEL6.3337.2660.90%37.80%1.30%1.240.824Y
177R4505EC57BL/6J-Rpe65R4505E.CEL5.9837.4861.80%36.80%1.40%1.450.854Y
178R4506EC57BL/6J-Rpe65R4506E.CEL6.9437.961.10%37.50%1.30%1.50.834Y
179R4535EC57BLKS/JR4535E.CEL6.5937.2861.20%37.30%1.40%1.260.834Y
180R4536EC57BLKS/JR4536E.CEL140.7160.30%38.20%1.50%1.250.774Y
181R2564E.1CAST/EiJR2564E.1.CEL1.948958.50%39.90%1.60%1.60.771 
182R2580E.1CAST/EiJR2580E.1.CEL2.099558.20%40.10%1.70%1.40.761 
183R4537ECBA/CaJR4537E.CEL138.4560.60%37.90%1.50%1.630.824Y
184R4538ECBA/CaJR4538E.CEL5.8939.1861.70%36.90%1.40%1.450.84Y
185R4539ECZECHII/EiJR4539E.CEL7.7337.158.30%40.10%1.50%1.70.954Y
186R4540ECZECHII/EiJR4540E.CEL11.0436.6953.00%45.30%1.70%1.831.324 
187R2600E.1D2B6F1R2600E.1.CEL2.479558.10%40.20%1.70%1.410.781Y
188R2604E.1D2B6F1R2604E.1.CEL2.669059.40%39.20%1.50%1.280.791Y
189R1002E.3DBA/2JR1002E.3.CEL110254.80%43.70%1.50%2.840.833 
190R4541EDBA/2JR4541E.CEL143.461.40%37.00%1.50%1.370.734Y
191R959E.3DBA/2JR959E.3.CEL189.9753.20%45.30%1.50%3.661.094 
192R2572E.1DBA/2JR2572E.1.CEL2.417955.50%42.90%1.60%1.370.791 
193R4542EDBA/2JR4542E.CEL5.739.9561.00%37.40%1.50%1.230.814Y
194R2771E.3FVB/NJR2771E.3.CEL17055.30%43.20%1.50%1.690.833 
195R2772E.3FVB/NJR2772E.3.CEL17655.20%43.40%1.40%2.131.023 
196R2636E.1KK/HlJR2636E.1.CEL2.619358.90%39.50%1.50%1.390.761Y
197R2637E.1KK/HlJR2637E.1.CEL2.1910359.40%39.00%1.50%1.30.791Y
198R0999E.1LG/JR0999E.1.CEL2.458259.40%39.10%1.50%1.380.791Y
199R1004E.1LG/JR1004E.1.CEL2.449258.70%39.80%1.50%1.380.791Y
200R4543ELP/JR4543E.CEL6.5741.9960.30%38.20%1.50%1.280.754Y
201R4544ELP/JR4544E.CEL4.5639.962.40%36.10%1.50%1.230.774Y
202R2858E.3MOLF/EiJR2858E.3.CEL16453.80%44.70%1.50%1.590.953 
203R2919.3MOLF/EiJR2919.3.CEL16452.40%46.00%1.60%2.151.073 
204R1688E.1NOD/LtJR1688E.1.CEL2.669858.60%39.90%1.50%1.260.81Y
205R2566E-2.1NOD/LtJR2566E-2.1.CEL3.036959.80%38.80%1.50%1.380.751Y
206R4545ENZB/BlNJR4545E.CEL4.2343.4862.10%36.40%1.50%1.330.764Y
207R4546ENZB/BlNJR4546E.CEL6.2744.2259.40%39.10%1.50%1.170.824Y
208R2535E.1NZO/HlLtJR2535E.1.CEL1.898660.40%38.20%1.40%1.410.851 
209R2550E.1NZO/HlLtJR2550E.1.CEL1.798760.70%37.80%1.50%1.520.821 
210R2817E.3NZW/LacJR2817E.3.CEL15950.90%47.60%1.50%3.591.483 
211R2810ENZW/LacJR2810E.CEL       3 
212R2810E.3NZW/LacJR2810E.3.CEL17457.00%41.70%1.40%2.151.034Y
213R4547EPANCEVO/EiJR4547E.CEL5.2751.3457.20%41.10%1.70%1.70.834 
214R4548EPANCEVO/EiJR4548E.CEL10.5437.3950.30%48.00%1.70%1.681.094 
215R2635E.1PWD/PhJR2635E.1.CEL3.728054.20%44.10%1.70%1.530.851 
216R2634E.1PWD/PhJR2634E.1.CEL3.299055.90%42.50%1.60%1.570.811 
217R2544E.1PWK/PhJR2544E.1.CEL2.210854.90%43.50%1.70%1.360.821 
218R2549E.1PWK/PhJR2549E.1.CEL2.288457.30%41.20%1.50%1.570.831 
219R4550ESJL/JR4550E.CEL5.3540.4462.30%36.20%1.40%1.240.794 
220R2368E.1WSB/EiJR2368E.1.CEL2.578659.50%39.10%1.40%1.290.741Y
221R2547E.1WSB/EiJR2547E.1.CEL2.149058.20%40.10%1.60%1.320.771Y
+
diff --git a/general/datasets/Eye_m2_0908_r_nb/summary.rtf b/general/datasets/Eye_m2_0908_r_nb/summary.rtf new file mode 100644 index 0000000..44b7e23 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_nb/summary.rtf @@ -0,0 +1,12 @@ +

FINAL RECOMMENDED EYE DATA SET. The HEIMED September 2008 RMA data release provides estimates of gene expression in whole eyes of 103 lines of young adult mice generated using 221 Affymetrix M430 2.0 arrays. This data set is intended for exploration of the genetics and genomics of the mouse eye, retina, lens, retinal pigment epithelium, cornea, iris and choroid. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). We used pooled RNA samples, usually two independent pools--one male, one female pool--for most lines of mice. This data set was processed using the RMA protocol. A total of 2223 probes sets are associated with LRS values greater than 46 (LOD >10).

+ +

Users of these mouse eye data may also find the following complementary resources extremely useful:

+ +
    +
  1. NEIBank collection of ESTs and SAGE data.
  2. +
  3. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases
  4. +
  5. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.
  6. +
  7. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus.
  8. +
  9. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430).
  10. +
  11. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.
  12. +
diff --git a/general/datasets/Eye_m2_0908_r_nb/tissue.rtf b/general/datasets/Eye_m2_0908_r_nb/tissue.rtf new file mode 100644 index 0000000..9b6ee0f --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_nb/tissue.rtf @@ -0,0 +1,2058 @@ +

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube.

+ +

Each array was hybridized with a pool of cRNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

+ +

Dissecting and preparing eyes for RNA extraction

+ +
    +
  1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below).
  2. +
  3. Store RNA in 75% ethanol at –80 deg. C until use.
  4. +
+ +

Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we:

+ +
    +
  1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue)
  2. +
  3. allowed the homogenate to stand for 5 min at room temperature
  4. +
  5. added 0.2 ml of chloroform per 1 ml RNA STAT-60
  6. +
  7. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min
  8. +
  9. centrifuged at 12,000 G for 15 min
  10. +
  11. transfered the aqueous phase to a fresh tube
  12. +
  13. added 0.5 ml of isopropanol per 1 ml RNA STAT-60
  14. +
  15. vortexed and allowed sample to stand at room temperature for 5-10 min
  16. +
  17. centrifuged at 12,000 G for 10-15 min
  18. +
  19. removed the supernatant and washed the RNA pellet with 75% ethanol
  20. +
  21. stored the pellet in 75% ethanol at -80 deg C until use
  22. +
+ +

Sample Processing. All samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center led by Dr. Weikuan Gu. All arrays were processed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. C until use (roughly one third) or were used immediately for hybridization.

+ +

Dealing with ocular pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations taken from brown and beige colored mice tend to have faint residual pigmentation that affects hybridization signal. To address this problem, Dr. Yan Jiao purified total RNA using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204) all four batches.

+ +

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well balanced sample of males and females, in general without within-strain-by-sex replication. Two strains are represented by a single male sample pool (BXD29 and A/J). Four lines are represented by two or three male sample pools (all of the five DeltaGen KO line). The SJL/J may be a single mixed sex sample. Users can study possible sex effects by comparing any results of expression data to that of a surrogate measurement that summarizes the overall sex balance of HEIMED. To do this just compare your data to those of probe sets 1427262_at (Xist, high in females) and probe set 1426438_at (Ddx3y, high in males). These two sex-specific probes are quantitative surrogates for the sex balance in this data set.

+ +

Technical duplicates: One sample, highlighted in the tables below, is a technical duplicate. The pair of technical duplicates were both of high quality. For statistical analysis, they should be combined and treated as single biological sample.

+ +

Batch structure: This data set consists of four batches (Table 2, far right column). The final September 2008 data set consists of a total of 221 arrays and 220 independent samples.

+ +
    +
  1. Batch 1: November 2005, n = 78 arrays original arrays of which 76 were accepted into this final data set.
  2. +
  3. Batch 2: January 2006, n = 62 arrays of which 62 were accepted.
  4. +
  5. Batch 3: August 2006, n = 39 arrays of which 36 were accepted. (These three batches, including some arrays that were eventually dropped from the final 2008 data set, were combined to form the September 2006 data set.)
  6. +
  7. Batch 4: Summer 2008, n = 53 arrays of which 47 were accepted.
  8. +
+ +

Table 1: HEIMED case IDs, including sample tube ID, strain, age, sex, and source of mice (see Table 2 for information on array quality control)

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexTubeIDGroupStrainAgeSexSource
1R2595E.1GDP129S1/SvImJ59FUTHSC RW
2R2533E.1GDP129S1/SvImJ60MUTHSC RW
3R0754E.1GDPA/J60MJAX
4R4521EKOB6129P2F2N1-Clcn369MTChoi_Deltagen
5R4522EKOB6129P2F2N1-Clcn369MTChoi_Deltagen
6R4523EKOB6129P2F2N1-Clcn367MTChoi_Deltagen
7R4526EKOB6129P2F2N1-Gabbr116FTChoi_Deltagen
8R4509EKOB6129P2F2N1-Gabbr116MTChoi_Deltagen
9R4510EKOB6129P2F2N1-Gabbr119MTChoi_Deltagen
10R4511EKOB6129P2F2N1-Gabbr120MTChoi_Deltagen
11R4524EKOB6129P2F2N1-Gabbr119MTChoi_Deltagen
12R4525EKOB6129P2F2N1-Gabbr122MTChoi_Deltagen
13R4515EKOB6129P2F2N1-Gabra167MTChoi_Deltagen
14R4516EKOB6129P2F2N1-Gabra169MTChoi_Deltagen
15R4517EKOB6129P2F2N1-Gabra167MTChoi_Deltagen
16R4512EKOB6129P2F2N1-Gnb522FTChoi_Deltagen
17R4513EKOB6129P2F2N1-Gnb525MTChoi_Deltagen
18R4514EKOB6129P2F2N1-Gnb522MTChoi_Deltagen
19R4518EKOB6129P2F2N1-Gpr1970MTChoi_Deltagen
20R4519EKOB6129P2F2N1-Gpr1968MTChoi_Deltagen
21R2601E.1GDP BXDB6D2F173FUTHSC RW
22R2602E.1GDP BXDB6D2F173MUTHSC RW
23R1676E.1GDPBALB/cByJ83FJAX
24R1672E.1GDPBALB/cByJ83MJAX
25R4530EGDPBALB/cJ66FJAX
26R4529EGDPBALB/cJ66MJAX
27R2704E.2BXDBXD159FUTHSC RW
28R2707E.3BXDBXD159MBIDMC GR
29R1231E.2BXDBXD264FUTHSC RW
30R2598E.1BXDBXD261MUTHSC RW
31R2591E.1BXDBXD560FBIDMC GR
32R2714E.2BXDBXD558MUTHSC RW
33R2570E.1BXDBXD665FUTHSC RW
34R2694E.2BXDBXD658MUTHSC RW
35R2538E.1BXDBXD877FUTHSC RW
36R2709E.2BXDBXD861MUTHSC RW
37R2708E.2BXDBXD960FUTHSC RW
38R2569E.1BXDBXD967MUTHSC RW
39R2581E.1BXDBXD1165FUTHSC RW
40R2612E.2BXDBXD1170MUTHSC RW
41R2742E.2BXDBXD1271FUTHSC RW
42R2543E.1BXDBXD1263MUTHSC RW
43R2586E.1BXDBXD1360FBIDMC GR
44R877E.2BXDBXD1376MUTHSC RW
45R2557E.1BXDBXD1460FBIDMC GR
46R1128E.2BXDBXD1465MUTHSC RW
47R2701E.3BXDBXD1560FBIDMC GR
48R2716E.2BXDBXD1560MUTHSC RW
49R2711E.2BXDBXD1661FUTHSC RW
50R2567E.1BXDBXD1660MBIDMC GR
51R2720E.2BXDBXD1859FUTHSC RW
52R2559E.1BXDBXD1859MBIDMC GR
53R2560E.1BXDBXD1960FBIDMC GR
54R2713E.2BXDBXD1960MUTHSC RW
55R2584E.1BXDBXD2059FBIDMC GR
56R2731E.2BXDBXD2060MUTHSC RW
57R2702E.2BXDBXD2159FUTHSC RW
58R2541E2.1BXDBXD2161MUTHSC RW
59R2553E.1BXDBXD2258FBIDMC GR
60R2700E.2BXDBXD2259MUTHSC RW
61R2558E-2.1BXDBXD2360FBIDMC GR
62R1086E.2BXDBXD2355MUTHSC RW
63R2719E.2BXDBXD24123FUTHSC RW
64R2589E2.1BXDBXD2459MBIDMC GR
65R2573E-2.1BXDBXD2567FUAB
66R2683E.2BXDBXD2558MUTHSC RW
67R2703E.2BXDBXD2760FUTHSC RW
68R2729E.3BXDBXD2768MUTHSC RW
69R2562E.3BXDBXD2860FBIDMC GR
70R2721E.2BXDBXD2860MUTHSC RW
71R2561E.3BXDBXD2960MBIDMC GR
72R1258E.2BXDBXD3157FUTHSC RW
73R2597E.1BXDBXD3161MBIDMC GR
74R2563E.1BXDBXD3263FUTHSC RW
75R1216E.2BXDBXD3276MUTHSC RW
76R2542E.1BXDBXD3367FUTHSC RW
77R857E.2BXDBXD3377MUTHSC RW
78R1451E.2BXDBXD3461FUTHSC RW
79R2585E.1BXDBXD3460MBIDMC GR
80R2698E.3BXDBXD3658FBIDMC GR
81R2705E.3BXDBXD3657MBIDMC GR
82R2710E.2BXDBXD3855FUTHSC RW
83R2532E.1BXDBXD3862MUTHSC RW
84R2574E.1BXDBXD3970FUTHSC RW
85R2695E.2BXDBXD3959MUTHSC RW
86R2699E.2BXDBXD4059FUTHSC RW
87R2590E.1BXDBXD4060MBIDMC GR
88R2696E.2BXDBXD4258FUTHSC RW
89R2596E.1BXDBXD4259MBIDMC GR
90R994E.2BXDBXD4360FUTHSC RW
91R2607E.1BXDBXD4367MUTHSC RW
92R2594E.1BXDBXD4463FUTHSC RW
93R2610E.2BXDBXD4468MUTHSC RW
94R2732E.2BXDBXD4563FUTHSC RW
95R2592E.1BXDBXD4562MUTHSC RW
96R967E.2BXDBXD4864FUTHSC RW
97R2606E.1BXDBXD4878MUTHSC RW
98R2933E.3BXDBXD5061FUTHSC RW
99R2937E.3BXDBXD5061MUTHSC RW
100R2603E.1BXDBXD5166FUTHSC RW
101R1042E.2BXDBXD5162MUTHSC RW
102R2980E.3BXDBXD5576FUTHSC RW
103R2690E.2BXDBXD5565MUTHSC RW
104R4176EBXDBXD5667FUTHSC RW
105R4175EBXDBXD5653MUTHSC RW
106R1006E.3BXDBXD6060FUTHSC RW
107R2725E.2BXDBXD6061FUTHSC RW
108R1074E.3BXDBXD6059MUTHSC RW
109R2534E2.1BXDBXD6170FUTHSC RW
110R2684E.2BXDBXD6162MUTHSC RW
111R1107E.3BXDBXD6254FUTHSC RW
112R2681E.2BXDBXD6262MUTHSC RW
113R965E.3BXDBXD6254MUTHSC RW
114R1425E.2BXDBXD6361FUTHSC RW
115R2576E.3BXDBXD6370MUTHSC RW
116R943E-2.2BXDBXD6456FUTHSC RW
117R2611E.1BXDBXD6468MUTHSC RW
118R2689E.2BXDBXD6563FUTHSC RW
119R2583E.1BXDBXD6560MUTHSC RW
120R2728E.2BXDBXD6667FUTHSC RW
121R2536E2.1BXDBXD6664FUTHSC RW
122R1207E.2BXDBXD6683MUTHSC RW
123R1192E.2BXDBXD6764FUTHSC RW
124R2727E.3BXDBXD6765FUTHSC RW
125R2691E.3BXDBXD6765MUTHSC RW
126R2551E.1BXDBXD6867FUTHSC RW
127R2726E.2BXDBXD6864MUTHSC RW
128R2593E.1BXDBXD6959FUTHSC RW
129R975E.2BXDBXD7064FUTHSC RW
130R2537E2.1BXDBXD7059MUTHSC RW
131R4531EBXDBXD7187FUTHSC RW
132R4532EBXDBXD7186MUTHSC RW
133R2779E.2BXDBXD7364FUTHSC RW
134R3024E.3BXDBXD7354MUTHSC RW
135R2565E.1BXDBXD7561FUTHSC RW
136R1397E-re.2BXDBXD7558MUTHSC RW
137R2687E.3BXDBXD7760FUTHSC RW
138R2717E.2BXDBXD77107MUTHSC RW
139R1421E.3BXDBXD7762MUTHSC RW
140R2579E.1BXDBXD8065FUTHSC RW
141R2686E.2BXDBXD8061MUTHSC RW
142R2956E.3BXDBXD8358FUTHSC RW
143R2960E.3BXDBXD8358MUTHSC RW
144R2922E.3BXDBXD8461FUTHSC RW
145R2895E.3BXDBXD8467MUTHSC RW
146R2692E.2BXDBXD8563FUTHSC RW
147R2715E.2BXDBXD8591MUTHSC RW
148R1405E.2BXDBXD8658FUTHSC RW
149R1225E.3BXDBXD8658MUTHSC RW
150R2724E.2BXDBXD8763FUTHSC RW
151R2540E.1BXDBXD8763MUTHSC RW
152R1433E.2BXDBXD8963FUTHSC RW
153R2546E.1BXDBXD8966MUTHSC RW
154R2578E2.1BXDBXD9061FUTHSC RW
155R859E.2BXDBXD9072MUTHSC RW
156R2682E.2BXDBXD9266FUTHSC RW
157R1388E.3BXDBXD9262FUTHSC RW
158R1322E.3BXDBXD9255MUTHSC RW
159R2733E.2BXDBXD9667FUTHSC RW
160R2554E.1BXDBXD9667MUTHSC RW
161R2649E.2BXDBXD9774FUTHSC RW
162R2577E.1BXDBXD9755MUTHSC RW
163R2645E.3BXDBXD9866FUTHSC RW
164R2688E.2BXDBXD9867MUTHSC RW
165R4533EBXDBXD9980FUTHSC RW
166R4534EBXDBXD9991MUTHSC RW
167R2885E.3GDPBXSB/MpJ61FBIDMC GR
168R2883E.3GDPBXSB/MpJ61MBIDMC GR
169R1700E.1GDPC3H/HeJ83FUTHSC RW
170R1704E.1GDPC3H/HeJ83MUTHSC RW
171R2605E.1GDP BXDC57BL/6J79FUTHSC RW
172R0871EGDP BXDC57BL/6J65FUTHSC RW
173R0872E.1GDP BXDC57BL/6J66MUTHSC RW
174R0872EGDP BXDC57BL/6J66MUTHSC RW
175R4507EKOC57BL/6J-Nyx57MGeisert
176R4508EKOC57BL/6J-Nyx57MGeisert
177R4505EKOC57BL/6J-Rpe6557FGeisert
178R4506EKOC57BL/6J-Rpe6557FGeisert
179R4535EGDPC57BLKS/J66FJAX
180R4536EGDPC57BLKS/J66MJAX
181R2564E.1GDPCAST/EiJ64FJAX
182R2580E.1GDPCAST/EiJ64MJAX
183R4537EGDPCBA/CaJ66FJAX
184R4538EGDPCBA/CaJ66MJAX
185R4539EGDPCZECHII/EiJ66FJAX
186R4540EGDPCZECHII/EiJ66MJAX
187R2600E.1GDP BXDD2B6F172FUTHSC RW
188R2604E.1GDP BXDD2B6F169MUTHSC RW
189R1002E.3GDP BXDDBA/2J72FUTHSC RW
190R4541EGDP BXDDBA/2J65FJAX
191R959E.3GDP BXDDBA/2J60MUTHSC RW
192R2572E.1GDP BXDDBA/2J65MUTHSC RW
193R4542EGDP BXDDBA/2J59MJAX
194R2771E.3GDPFVB/NJ60FBIDMC GR
195R2772E.3GDPFVB/NJ60MBIDMC GR
196R2636E.1GDPKK/HlJ64FUTHSC RW
197R2637E.1GDPKK/HlJ64MUTHSC RW
198R0999E.1GDPLG/J57FUTHSC RW
199R1004E.1GDPLG/J65MUTHSC RW
200R4543EGDPLP/J65FJAX
201R4544EGDPLP/J65MJAX
202R2858E.3GDPMOLF/EiJ60FBIDMC GR
203R2919.3GDPMOLF/EiJ60MBIDMC GR
204R1688E.1GDPNOD/LtJ66FJAX
205R2566E-2.1GDPNOD/LtJ76MUTHSC RW
206R4545EGDPNZB/BlNJ61FBIDMC GR
207R4546EGDPNZB/BlNJ58MBIDMC GR
208R2535E.1GDPNZO/HlLtJ62FJAX
209R2550E.1GDPNZO/HlLtJ96MJAX
210R2817E.3GDPNZW/LacJ65FBIDMC GR
211R2810EGDPNZW/LacJ60MBIDMC GR
212R2810E.3GDPNZW/LacJ60MBIDMC GR
213R4547EGDPPANCEVO/EiJ68FJAX
214R4548EGDPPANCEVO/EiJ68MJAX
215R2635E.1GDPPWD/PhJ62FJAX
216R2634E.1GDPPWD/PhJ62MJAX
217R2544E.1GDPPWK/PhJ63FJAX
218R2549E.1GDPPWK/PhJ83MJAX
219R4550EGDPSJL/J65M+FJAX
220R2368E.1GDPWSB/EiJ67FUTHSC RW
221R2547E.1GDPWSB/EiJ67MUTHSC RW
+
diff --git a/general/datasets/Eye_m2_0908_r_nd/acknowledgment.rtf b/general/datasets/Eye_m2_0908_r_nd/acknowledgment.rtf new file mode 100644 index 0000000..5098d32 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_nd/acknowledgment.rtf @@ -0,0 +1,3 @@ +

Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant and from funds from NEI grant to Dr. Eldon Geisert (R01EY017841), an NEI Vision Core grant (EY14080) and an Unrestricted Grant from Research To Prevent Blindness.

+ +

We thank Dr. Ted Choi, Chief Scientific Director of Predictive Biology, Inc. (past director of molecular genetics at Deltagen Inc.) for providing us with eye samples from several interesting DeltaGen knockouts.

diff --git a/general/datasets/Eye_m2_0908_r_nd/cases.rtf b/general/datasets/Eye_m2_0908_r_nd/cases.rtf new file mode 100644 index 0000000..552d4a5 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_nd/cases.rtf @@ -0,0 +1,57 @@ +

This is the complete and final HEIMED data set. HEIMED consists of expression data for 103 genetically defined lines of mice with standard errors of the mean. Almost all animals are young adults between 50 and 80 days of age (Table 1, maximum age is 123 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, reciprocal F1s between C57BL/6J and DBA/2J, and several mutant and knockout lines. We have combined all common strains, F1 hybrids, and mutants into a group called the Mouse Diversity Panel (MDP). Four lines, namely, C57BL/6J (B6), DBA/2J (D2), and the pair of B6D2F1 and D2B6F1 hybrids are common to both the MDP and the BXD set. This is a breakdown of cases that are part of HEIMED:

+ +
    +
  1. 68 BXD strains. The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. Only one of these strains, BXD24 (know also known as BXD24b), has retinal degeneration (a spontaneous mutation). The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA.
  2. +
  3. 35 MDP lines, including 26 inbred strains representing closely related substrains (e.g, BALB/cJ and BALB/cByJ), many of the most widely used common Mus musculus domesticus inbred strains (e.g., C57BL/6J and 129S1/SvImJ), inbred but wild-derived representatives of common subspecies (Mus musculus domesticus, e.g, WSB/EiJ; M. musculus musculus, e.g., CZECHII/EiJ; M. musculus molossinus, e.g., MOLF/EiJ; M. musculus castaneus, e.g., CAST/EiJ); and even one different species of mouse (Mus spicilegus, PANCEVO/EiJ). The MDP also includes the reciprocal F1 hybrids (B6D2F1 and D2B6F1) and the following 6 KO lines and the Nyx-nob mutant:
  4. +
  5. 6 knockouts (KO), including a KO of Rpe65, and 5 DeltaGen Inc. knockout lines provided by Dr. Ted Choi. These KO lines have had a bacterial lacZ construct inserted into the gene. The endogenous promoter drives expression of beta-galactosidase. RT-PCR analysis detects a gene transcript in most tissues. The following KOs from DeltaGen were studied: Gabra1, Gabbr1, Gnb1, Gpr19, and Clcn3. We also included one spontaneous mutant of the nyctalopin (Nyx no b wave "nob") gene (Pardue et al., 1998) that is on a BALB/cByJ background.
  6. +
+ +

Rod photoreceptor degeneration in inbred mice: Six strains of mice included in HEIMED suffer from severe loss of photoreceptors (mainly rods) and have the equivalent of night blindness in human patients. The death of photoreceptors in these strains occurs by one to two months of age and is often caused by the retinal degeneration 1 (rd1) mutant allele in the rod cyclic-GMP phosphodiesterase 6 beta subunit gene (Pde6b). The following strains are known to have photoreceptor degeneration: C3H/HeJ, FVB/NJ, MOLF/EiJ, SJL/J and BXD24/TyJ. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEIMED data set.

+ +

As expected (Dickerson LW et al., 2002) and as judged from the absence of rhodopsin expression, one of the DeltaGen KO lines (chloride ion channel 3, Clcn3) also has retinal degeneration: B6129P2F2N1-Clcn3. Degeneration in this strain is likely to include all rods and all cones. The cone defect is obvious from the decrease in expression of Gnat2, a gene associated with cones and achromatopsia in mice and humans.

+ +

Lines of mice were selected using the following criteria:

+ + + +

We have included all eight parents of the Collaborative Cross (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/LtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ) in the MDP. Fourteen MDP strains have been partially sequenced by Perlegen for the NIEHS, including including 129S1/SvImJ, A/J, AKR/J, BALB/cByJ, C3H/HeJ, CAST/EiJ, DBA/2J, FVB/NJ, KK/HlJ, MOLF/EiJ, NOD/LtJ, NZW/LacJ, PWD/PhJ, and WSB/EiJ (see the GeneNetwork SNP Browser for data, details, and see Perlegen's excellent data resources and browser).

+ +
    +
  1. 129S1/SvImJ : Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene. It is also a cone photoreceptor function loss 3 mutant (Cpfl3 allele) of the Gnat2 gene that is a model for achromatopsia (JAX Stock Number: 002448)
  2. +
  3. A/J: Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase (Tyr c allele) albino mutant. This strain is particularly sensitive to light-induced photoreceptor loss (Danciger et al., 2007). (JAX Stock Number: 000646)
  4. +
  5. BALB/cByJ: Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project old group A list. A tyrosinase (Tyr c allele) albino mutant and also a tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. Small brain, not aggressive (JAX Stock Number: 001026)
  6. +
  7. BALB/cJ: Phenome Project A list. A tyrosinase (Tyr c allele) albino mutant and also a tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. Large brain and aggressive (JAX Stock Number: 000651)
  8. +
  9. BXSB/MpJ: A white-bellied agouti strains with interesting autoimmune disease restricted to males that is associated with a mutation in the Yaa gene that causes glomerulonephritis, a dramatic increase in number of peripheral monocytes, and pre-B-cell deficiency (JAX Stock Number: 000740)
  10. +
  11. C3H/HeJ: The Heston (He) substrain with a wildtype agouti (A allele) coat color. Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project old group A list. Important to note for this eye expression dataset, C3H/HeJ is a Pdeb6 rd1 mutant with near total photoreceptor loss at as early as postnatal day 30. Also a Tlr4 mutant that is endotoxin resistant. (JAX Stock Number: 000659)
  12. +
  13. C57BL/6J: Sequenced by NIH/NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list. Single most widely used inbred strain of mouse. (JAX Stock Number: 000664)
  14. +
  15. C57BLKS/J: Black Kaliss strain (non-agouti a allele) derived from C57BL/6J, but genetically contaminated at some point mainly with DBA/2J and then reinbred. Now at the Jackson Laboratory. (JAX Stock Number: 000662)
  16. +
  17. CAST/EiJ: A wild-derived inbred Mus musculus castaneus strain. Samples of this subspecies were captured in Southeast Asia. One of three wild-derived strains in the Collaborative Cross sequenced by NIEHS; Phenome Project A list. CAST/Ei and CAST/EiJ are the same strain. The addition of the "J" is trivial and was added when stock were transferred from Dr. Eicher's lab to the Jackson Laboratory production facility in about 2004. (JAX Stock Number: 000928)
  18. +
  19. CBA/CaJ: Agouti strain from the Jackson Laboratory. Wildtype pigment genes. (JAX Stock Number: 000654)
  20. +
  21. CZECHII/EiJ: Czech 2 is a wild-derived inbred strain M. musculus musculus strain. Samples of this subspecies were caught in the Czech Republic and inbred at the Jackson Laboratory by Eva Eicher. White-bellied agouti. (JAX Stock Number: 001144).
  22. +
  23. DBA/2J: The dilute, brown, agouti (dba) strain is the oldest inbred strain of mouse. Inbreeding was started in 1909 by Little. A tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. A myosin 5a (Myo5a d) dilute allele mutant. Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project old A group list. (JAX Stock Number: 000671)
  24. +
  25. FVB/NJ: Friend's leukemia virus B (FVB) strain. Sequenced by Perlegen/NIEHS and Celera. Tyr c locus albino and a Pdeb6 rd1 mutant derived from Swiss mice at NIH. This has been the most common strain used to make transgenic mice due to large and easily injected oocytes; Phenome Project A list (JAX Stock Number: 001800).
  26. +
  27. KK/HlJ: K Kondo's (KK) Kasukabe strain is a homozygous age-related hearing loss (ahl) allele mutant of the Cdh23 gene. A Tyr c locus albino strain. Males have a form of type 2 diabetes. Sequenced by Perlegen/NIEHS. (JAX Stock Number: 002106)
  28. +
  29. LG/J: Large (LG) strain. Paternal parent of the Large-by-Small set of RI strains made by James Cheverud and colleagues (the LGXSM panel, not to be confused with the LongXShort or LXS panel). A Tyr c locus albino strain. (JAX Stock Number: 000675)
  30. +
  31. LP/J: White-bellied agouit strain with a piebald mutation in the endothelin receptor type B Ednrb gene from at the Jackson Laboratory. Some reduction in melanocytes in choroid of eye due to neural creast migration abnormalities. (JAX Stock Number: 000676)
  32. +
  33. MOLF/EiJ: A wild-derived inbred strain derived from M. musculus molossinus samples camputered in Fukuoka, Japan. This strain has the retinal degeneration rd1 allele in Pde6b. There appears to have been some genetic contamination of this strain with conventional inbred strains in the past several decades (F. Pardo, personal communication to RWW, August 2006). However, the strain is currently fully inbred. (JAX Stock Number: 000550)
  34. +
  35. NOD/LtJ: Non-obese diabetic strain, originally from M. Hattori in Kyoto, Japan. This is the Edward Leiter (Lt) substrain from the Jackson Laboratory. Collaborative Cross strain sequenced by NIEHS; Phenome Project B list. Homozygous age-related hearing loss (ahl) allele mutant of the Cdh23 gene. A Tyr c locus albino strain. (JAX Stock Number: 001976)
  36. +
  37. NZO/HlLtJ: New Zealand Obese strain. This is a severely obese and hypertensive strain. Males often develop a type 2 diabetes. Collaborative Cross strain. Agouti coat color. (JAX Stock Number: 002105)
  38. +
  39. NZB/BlNJ: New Zealand Black inbred strain from Bielschowsky (BL, substrain is "B lowercase L N", not "BiN") now maintained at the Jackson Laboratory. (JAX Stock Number: 000648)
  40. +
  41. NZW/LacJ: New Zealand White strain from the Laboratory Animal Center (Carshalton, UK), now maintained at the Jackson Laboratory. Carries the Tyr c locus albino mutation, the pink-eye dilution mutation in the Oca2 or p locus, and the brown allele at Tyrp1. (JAX Stock Number: 001058)
  42. +
  43. PANCEVO/EiJ: PANCEVO/EiJ is a wild-derived inbred strain from the Mus spicilegus samples caught in the Pancevo, Serbia. This species of mouse is also known as the Steppe mouse (taxon identifier 10103). M. spicilegus is a colonial mound-building species. No known ocular or retina mutations, but the expression level of Gnat2 is low in this strain, either due to a 3' UTR length variant or possible achromatosia (cone degeneration) (JAX Stock Number: 001384)
  44. +
  45. PWD/PhJ: A wild-derived Mus musculus musculus agouti strain inbred from samples caught near Prague, Czech Republic. Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues. (JAX Stock Number: 004660)
  46. +
  47. PWK/PhJ: A wild-derived Mus musculus musculus inbred strain from samples caught near Lhotka, Czech Republic. Collaborative Cross strain; Phenome Project D list. (JAX Stock Number: 003715)
  48. +
  49. SJL/J: Swiss Webster inbred strain from Jim Lambert's lab at the Jackson Laboratory. This strain has the retinal degeneration rd1 allele in Pde6b. It also carries both the Tyr c albino mutation and the pink-eye dilution mutation in the Oca2 or p locus. Highly aggressive males. (JAX Stock Number: 000686)
  50. +
  51. WSB/EiJ: Watkin Star line B (or "wild son-of-a-bitch") is a wild-derived Mus musculus domesticus inbred strain from samples caught in Maryland, USA. A Collaborative Cross strain sequenced by NIEHS; Phenome Project C list (JAX Stock Number: 001145)
  52. +
  53. B6D2F1 and D2B6F1 (also listed as BDF1 and DBF1 in some graphs and tables): F1 hybrids generated by crossing C57BL/6J with DBA/2J. These black reciprocal F1 can be used to detect dominance effects. Comparison of the two reciprocal F1s can be used to detect parental origin (imprinting) effects. The D2B6F1 animals are currently available from the Jackson Laboratory as a special order.) (JAX Stock Number for B6D2F1 hybrids obtained from the Jackson Laboratory, aka B6D2F1/J 100006)
  54. +
+ +

Most of the common inbred strains harbor mutations in genes the control pigmentation (Silvers, 2008 and material above in this INFO file). These gene include the albino and chinchilla alleles of the tyrosinase gene (Tyr, or human OCA1), the brown allele of the tyrosinase related protein 1 (Tyrp1), the pink-eye dilution allele of Oca2 (probe set 1418211), the non-agouti (black) and white-bellied alleles of the agouti signaling protein Asip, the steel allele of Kitlg, the dilute allele of Myo5a (probe set 1419754), and the piebald allele of Ednrb. In some of these cases, effects of the mutation are easily detected at the transcript level (Tyrp1, Oca2, and Myo5a), but in the other cases (Tyr, Asip, Ednrb, and Kitlg), mutations do not leave a strong imprint on expression.

diff --git a/general/datasets/Eye_m2_0908_r_nd/citation.rtf b/general/datasets/Eye_m2_0908_r_nd/citation.rtf new file mode 100644 index 0000000..ddd98e4 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_nd/citation.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Xusheng Wang, Weikuan Gu, Yan Jiao, Robert W. Williams. Gene expression landscape of the mammalian eye: A global survey and database of mRNAs of 103 varieties of mice. Molecular Vision 2009; in press.

diff --git a/general/datasets/Eye_m2_0908_r_nd/contributors.rtf b/general/datasets/Eye_m2_0908_r_nd/contributors.rtf new file mode 100644 index 0000000..d155833 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_nd/contributors.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Xusheng Wang, Weikuan Gu, Yan Jiao, Robert W. Williams

diff --git a/general/datasets/Eye_m2_0908_r_nd/experiment-design.rtf b/general/datasets/Eye_m2_0908_r_nd/experiment-design.rtf new file mode 100644 index 0000000..1ebe0ad --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_nd/experiment-design.rtf @@ -0,0 +1 @@ +

Expression profiling by array

diff --git a/general/datasets/Eye_m2_0908_r_nd/notes.rtf b/general/datasets/Eye_m2_0908_r_nd/notes.rtf new file mode 100644 index 0000000..7a26eb5 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_nd/notes.rtf @@ -0,0 +1 @@ +

This data set is available as a bulk download in several formats. The data are available as either strain means or the individual arrays. Due to the involved normalization procedures required to correct for batch effects we strongly recommend not using the raw CEL files without special statistical procedures.

diff --git a/general/datasets/Eye_m2_0908_r_nd/platform.rtf b/general/datasets/Eye_m2_0908_r_nd/platform.rtf new file mode 100644 index 0000000..9024a99 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_nd/platform.rtf @@ -0,0 +1,11 @@ +

Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many probes overlap and target the same transcript). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequences as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

+ +

As part of the development of HEIMED, we have manually annotated individual probe sets by sequence alignment to the mouse genome and transcriptome. Approximately 13,000 probe sets that have comparatively high expression in eye and CNS were curated by one of the authors (RWW) and now have specific information on the part of the transcript targeted by each probe set. The other 33,000 transcripts have corresponding data that was generated by Xusheng Wang using computational methods (BLAT analysis combined with annotated genome sequence).

+ +

One example may help explain how to exploit this annotation. The four probe sets for rhodopsin include information on the target location. Only the first probe set targets the last two coding exons. The other three probe sets target different parts of the 3’ UTR (mid, distal, and far distal regions). The probe sets can be reordered by from high to low expression using the Sort By function in Search Results pages. In the case of rhodopsin, the probe set that targets that last two coding exons and proximal parts of the 3’ UTR also has the highest expression . Finally, the HEIMED gene descriptions have been customized to help vision researchers. In the case of rhodopsin, the description appended after the gene name reads “rod photoreceptor pigment, retinitis pigmentosa-associated”. For less well known genes this kind of annotation can be extremely useful. For example, the more verbose annotation for Cerkl reads “neuronal survival and apoptosis-related, retinal ganglion cell expressed, retinitis pigmentosa 26); alternative 3' UTR of short form message, intron 2”.

+ +

 

+ +

+ +

Legend: Distribution of expression values for all probe sets in HEIMED.

diff --git a/general/datasets/Eye_m2_0908_r_nd/processing.rtf b/general/datasets/Eye_m2_0908_r_nd/processing.rtf new file mode 100644 index 0000000..4349e60 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_nd/processing.rtf @@ -0,0 +1,3381 @@ +

Range of Gene Expression in the Eye. Expression of transcripts in the HEIMED and most other GN data sets is measured on a log2 scale. Each unit corresponding approximately to a 2-fold difference in hybridization signal intensity. To simplify comparisons among different data sets and cases, log2 RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units (variance stabilized). Values of all 45,101 probe sets in this data set range from a low of 4.8 (Tcf15, probe set 1420281_at) to a high of 15.5 (crystallin gamma C, Crygc, probe set 1422674_s_at). This corresponds to 10.7 units or a 1 to 1700 dynamic range of expression (2^10.73).

+ +

We used pooled RNA samples of whole eyes, usually two independent pools--one male, one female pool--for most lines of mice. This data set was processed using the RMA protocol. A total of 2223 probes sets are associated with LRS values greater than 46 (LOD >10).

+ +

We calibrated this log intensity scale using Affymetrix spike-in control probe sets. These 18 control probe sets target exogenous bacterial mRNAs that are added to each sample (a graded dose spike cocktail) during preparation at concentrations of 1.5, 5, 25, and 100 pM. (To find these probe sets, search GN’s ALL search field using the string “AFFX pM”.) A value of 6 or less is equivalent to an mRNA concentration of under 0.4 pM, a value of 8 is equivalent to ~1.5 pM, 9.5 is equivalent to ~5 pM, 11.5 is equivalent to ~25 pM, 13.5 is equivalent to ~100 pM, and a value of 15.5 is equivalent to an mRNA concentration of 400 pM or greater.

+ +

This range can be converted to the mRNA molecules per cell in the eye assuming that a value of 8 is equivalent to about 1 mRNA copy per cell (Kanno et al. 2006, see http://www.biomedcentral.com/1471-2164/7/64). Since the expression of rhodopsin mRNA is normally 15 units, we predict that there are 27 or ~128 Rho mRNAs per cell in the whole eye and ~256 in rods themselves (assuming that rods make up about half of all cells in the eye). For this purpose it may be useful to know that a normal mouse eye contains between 6 and 8 million rod photoreceptors (Guo, Lu, and Williams; GN BXD Phenotype ID 11024).

+ +

Note that some probe sets with very low expression still provide reliable data. For example, probe set 1440397_at (Cacna2d1) has expression of only 5.5 units (a value that would be declared as "absent" using conventional Affymetrix procedures), but the values for this calcium channel transcript are associated with a very strong cis QTL with an LRS of 79 (LOD = 17). This strong linkage is definitely not due to chance since the probability of the expression data mapping precisely to the location of the parent gene itself is about 10e-16. This indicates a high signal to noise ratio and the detection of significant strain variation of the correct transcript.

+ +

The standard error of the mean for the HEIMED data set is computed for 2 to 6 biological replicates. The standard error of such small samples tends to systematically underestimate the population standard error. With n = 2 the underestimate is about 25%, whereas for n = 6 the underestimate is 5%. Gurland and Tripathi (1971) provide a correction and equation for this effect (see Sokal and Rohlf, Biometry, 2nd ed., 1981, p 53 for an equation of the correction factor for small samples of n < 20.) Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. The CEL files were processed using the RMA protocol. We processed the first three batches together. The last batch was processed separately and merged as described below.

+ + + +

After RMA processing using Biobase affy10 build running under R version 2.7.1, all array data sets were rank-order normalized. This second round of quantile normalization removes much residual non-linearity across arrays and forces every array to have the same distribution of values as the mean of all arrays. Comparative array data quality was then evaluated in DataDesk. Outlier arrays were flagged by visual inspection in DataDesk, usually by means of an analysis of scatter plots and more quantitatively by generating a correlation matrix of all arrays. Those arrays with mean correlation <0.96 versus all other arrays indicates trouble or a biological outlier). In some cases, outliers were expected, such as samples from strains with retinal degeneration (FVB/NJ, NOD/LtJ, MOLF/EiJ, C3H/HeJ and BXD24), samples from wild subspecies such as WSB/EiJ, CAST/EiJ, PWD/PhJ, and PWK/PhJ, and knockouts. However, when arrays were anomolous both within strain and across strains, they were often simply discarded. The assumption is that anomolous data are much more likely due to experimental and technical errors than to informative biological variation. Approximately 10% of arrays were discarded.

+ +

After this process, the acceptable set of arrays was renormalized using all step as above, starting with the original RMA procedure, etc.

+ +

We reviewed the data set using a new method developed by RW Williams, Jeremy Peirce, and Hongqiang Li. For the full set of arrays that passed standard QC protocols described above, we computed the strain means for the BXD strains, B6, D2, and F1s. Using this set of strain means we then computed LRS scores for all 45101 probe sets and counted the number of transcripts that generated QTLs with LRS values greater than 50. This value (e.g., 1800) represented the QTL harvest for the full data set. We then dropped a single array from the data set, recomputed strain means, and recomputed the number of transcripts with LRS scores great than 50. This value is expected to typically reduce the number of QTLs that reach the criterion level (e.g., 1750 QTLs > 50). This process was repeated for every array to obtain an array-specific difference value--the effect of removing that array on the total QTL count. For example, the loss of a single array might cause a decrease in 50 QTLs. Values ranged from approximately -90 (good arrays) to +40 (bad arrays). This procedure is similar in some ways to a jackknife protocol, although we are not using this procedure to esimate an error term, but rather as a method to polish a data set.

+ +

During this process we discovered that nearly 20 arrays in the batch 2 had been mislabeled at some point in processing. We computed the correct strain membership of each array using a large number of Mendelian probe sets (more than 50) and comparing their match to standard SNP and microsatellite markers and the original array data set of November 2005. This allowed us to rescue a large number of arrays that were of high quality.

+ +

A third batch of approximately 40 arrays were processed by Yan Jiao and Weikuan Gu in August 2006. These complete data set assembled by Hongqiang Li. This process again included a correction for a batch effect.

+ +

For the June 2006 data set Hongqiang Li used a new batch correction method that stabilizes the range of expression in each batch. For each of the three large batches, we extracted the minumum and maximum raw probe expression (CEL file level) value. We then adjusted raw probe values in each batch to have the same range as the first and largest batch (batch 1) using a simple linear interpolation. These procedures generated new correct CEL files which were then used with RMA to generate final probe set estimates.

+ +

For the final fourth batch of arrays (Sept 2008) Arthur Centeno and Rob Williams corrected for a systematic difference in probe set expression values between original arrays run in 2005 and 2006 and the new arrays added in 2008 (n = 45 acceptable arrays). This difference is due to unknown technical batch effects that are probably associated with labeling, hybridization, and scanning. We performed a simple correction to normalize values of the new set of arrays to those of the old set (batches 1 through 3). No changes were made to any values of the previous three batches. We corrected only the probe set level (RMA) values and not the CEL files. For this final batch, we corrected for the difference (offset) in probe set expression between the first three batches arrays run in 2005 and 2006 (a total of 174 acceptable arrays) and the new batch (n = 47 acceptable arrays). This difference is due to unknown technical effects that are probably related to various steps in labeling, hybridization, and scanning. The correction was applied as follows: (1) RWW selected 51 high quality arrays with similar expression characteristics (r = 0.97 or better between pairs of arrays) in the old data set (from batches 1, 2, and 3) and 34 high quality arrays in the final batch. RWW used scatterplots of full RMA transcriptome data sets to review many pairs of arrays within these new and old array batches. Strains with retinal degeneration or unusual eye gene expression characteristics were excluded from these selected subsets. The average expression values for each probe set were then computed for both the old and new array subsets. The offset value (old minus new) was added to each probe set across all 47 new arrays. This processes forces the average probe set in the new arrays to be very close to that of the previous arrays.

+ +

Table 2: Sample tube ID, strain, original CEL filename, and Affymetrix quality control values. Columns labeled Scale factor, Background Average, Present, Absent, Marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files.

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
2R2533E.1129S1/SvImJR2533E.1.CEL2.119457.90%40.50%1.60%1.370.781Y
3R0754E.1A/JR0754E.1.CEL2.728659.80%38.70%1.50%1.360.761Y
4R4521EB6129P2F2N1-Clcn3R4521E.CEL4.8338.763.30%35.30%1.40%1.250.774 
5R4522EB6129P2F2N1-Clcn3R4522E.CEL5.7637.3662.90%35.70%1.40%1.370.834 
6R4523EB6129P2F2N1-Clcn3R4523E.CEL4.8840.4263.90%34.70%1.40%1.270.774 
7R4526EB6129P2F2N1-Gabbr1R4526E.CEL3.8444.1865.00%33.70%1.30%1.340.784Y
8R4509EB6129P2F2N1-Gabbr1R4509E.CEL7.4534.7658.90%39.70%1.40%1.450.834 
9R4510EB6129P2F2N1-Gabbr1R4510E.CEL8.4437.4457.40%41.10%1.50%1.350.834 
10R4511EB6129P2F2N1-Gabbr1R4511E.CEL5.9142.0261.40%37.20%1.40%1.410.834 
11R4524EB6129P2F2N1-Gabbr1R4524E.CEL5.4942.3462.40%36.20%1.40%1.290.784Y
12R4525EB6129P2F2N1-Gabbr1R4525E.CEL4.6941.363.10%35.50%1.40%1.270.84Y
13R4515EB6129P2F2N1-Gabra1R4515E.CEL5.7541.7662.80%35.80%1.40%1.410.814Y
14R4516EB6129P2F2N1-Gabra1R4516E.CEL7.0740.7360.20%38.40%1.40%1.320.874Y
15R4517EB6129P2F2N1-Gabra1R4517E.CEL5.4538.0962.70%35.80%1.40%1.340.824Y
16R4512EB6129P2F2N1-Gnb5R4512E.CEL6.5638.0259.90%38.70%1.50%1.330.834 
17R4513EB6129P2F2N1-Gnb5R4513E.CEL4.1541.663.40%35.10%1.50%1.340.824 
18R4514EB6129P2F2N1-Gnb5R4514E.CEL5.8639.261.20%37.30%1.50%1.340.814 
19R4518EB6129P2F2N1-Gpr19R4518E.CEL5.5838.962.60%36.00%1.30%1.390.794Y
20R4519EB6129P2F2N1-Gpr19R4519E.CEL5.9541.9161.30%37.30%1.40%1.350.844Y
21R2601E.1B6D2F1R2601E.1.CEL2.559258.90%39.60%1.50%1.440.781Y
22R2602E.1B6D2F1R2602E.1.CEL2.68459.70%38.80%1.50%1.370.781Y
23R1676E.1BALB/cByJR1676E.1.CEL2.699858.90%39.60%1.50%1.460.741 
24R1672E.1BALB/cByJR1672E.1.CEL2.2211159.90%38.60%1.50%1.260.81Y
25R4530EBALB/cJR4530E.CEL6.3737.5360.80%37.80%1.40%1.30.844Y
26R4529EBALB/cJR4529E.CEL5.7141.3360.50%38.00%1.50%1.480.84Y
27R2704E.2BXD1R2704E.2.CEL2.066139.6156.60%41.90%1.50%1.310.812 
28R2707E.3BXD1R2707E.3.CEL18056.40%42.10%1.50%1.430.793 
29R1231E.2BXD2R1231E.2.CEL2.197138.7357.30%41.30%1.40%1.410.772 
30R2598E.1BXD2R2598E.1.CEL1.9910660.90%37.60%1.50%1.270.781Y
31R2591E.1BXD5R2591E.1.CEL1.713658.50%40.00%1.50%1.330.781Y
32R2714E.2BXD5R2714E.2.CEL1.404144.3560.60%37.90%1.50%1.430.792 
33R2570E.1BXD6R2570E.1.CEL1.998758.50%40.00%1.50%1.460.761Y
34R2694E.2BXD6R2694E.2.CEL1.98397.2361.60%37.10%1.30%1.390.822 
35R2538E.1BXD8R2538E.1.CEL1.9110261.20%37.30%1.50%1.520.791Y
36R2709E.2BXD8R2709E.2.CEL1.9999.7960.90%37.60%1.50%1.420.762 
37R2708E.2BXD9R2708E.2.CEL1.966126.4657.70%40.70%1.50%1.40.842 
38R2569E.1BXD9R2569E.1.CEL1.758755.10%43.40%1.50%2.823.141 
39R2581E.1BXD11R2581E.1.CEL1.948962.10%36.40%1.60%1.550.811Y
40R2612E.2BXD11R2612E.2.CEL1.83142.0358.20%40.50%1.40%1.780.812 
41R2742E.2BXD12R2742E.2.CEL2.127134.1457.00%41.60%1.40%1.640.782 
42R2543E.1BXD12R2543E.1.CEL1.6111858.60%39.90%1.60%1.430.771Y
43R2586E.1BXD13R2586E.1.CEL2.017456.40%42.00%1.60%2.853.811 
44R877E.2BXD13R877E.2.CEL1.558125.6361.20%37.50%1.20%1.420.812 
45R2557E.1BXD14R2557E.1.CEL1.839962.50%36.10%1.40%1.310.781Y
46R1128E.2BXD14R1128E.2.CEL1.9111559.90%38.80%1.40%1.20.821Y
47R2701E.3BXD15R2701E.3.CEL18860.60%37.90%1.40%1.50.773 
48R2716E.2BXD15R2716E.2.CEL2.015150.8356.40%42.10%1.60%1.420.812 
49R2711E.2BXD16R2711E.2.CEL1.953118.5359.00%39.60%1.50%1.450.82 
50R2567E.1BXD16R2567E.1.CEL2.248256.70%41.60%1.70%1.370.751 
51R2720E.2BXD18R2720E.2.CEL2.3299.9359.50%39.00%1.50%1.330.772 
52R2559E.1BXD18R2559E.1.CEL1.6510460.80%37.70%1.50%1.270.781Y
53R2560E.1BXD19R2560E.1.CEL1.799860.90%37.50%1.60%1.350.81Y
54R2713E.2BXD19R2713E.2.CEL1.67120.8260.20%38.30%1.50%1.450.82 
55R2584E.1BXD20R2584E.1.CEL2.078459.30%39.10%1.60%1.40.761Y
56R2731E.2BXD20R2731E.2.CEL1.82514759.00%39.50%1.50%1.40.82 
57R2702E.2BXD21R2702E.2.CEL1.811128.6559.40%39.10%1.40%1.260.82 
58R2541E2.1BXD21R2541E2.1.CEL2.6312556.00%42.40%1.50%1.290.781 
59R2553E.1BXD22R2553E.1.CEL1.9511159.90%38.50%1.50%1.280.761Y
60R2700E.2BXD22R2700E.2.CEL1.858102.9661.50%37.10%1.30%1.480.792 
61R2558E-2.1BXD23R2558E-2.1.CEL2.233125.0558.60%39.90%1.50%1.430.772 
62R1086E.2BXD23R1086E.2.CEL2.233125.0558.60%39.90%1.50%1.430.772 
63R2719E.2BXD24R2719E.2.CEL1.47140.3861.50%37.20%1.30%1.380.792 
64R2589E2.1BXD24R2589E2.1.CEL2.6111257.50%40.90%1.60%1.240.81 
65R2573E-2.1BXD25R2573E-2.1.CEL3.157257.90%40.70%1.40%1.770.971 
66R2683E.2BXD25R2683E.2.CEL1.777115.6458.30%40.30%1.40%2.010.792 
67R2703E.2BXD27R2703E.2.CEL1.263134.7862.60%36.10%1.40%1.440.782 
68R2729E.3BXD27R2729E.3.CEL18757.90%40.60%1.50%1.560.843Y
69R2562E.3BXD28R2562E.3.CEL1.6511659.90%38.40%1.70%1.370.793Y
70R2721E.2BXD28R2721E.2.CEL2.065157.3956.10%42.40%1.50%1.310.812 
71R2561E.3BXD29R2561E.3.CEL17753.30%45.40%1.40%3.3619.663 
72R1258E.2BXD31R1258E.2.CEL2.063117.0959.00%39.50%1.50%1.540.782 
73R2597E.1BXD31R2597E.1.CEL2.379460.30%38.30%1.50%1.340.771Y
74R2563E.1BXD32R2563E.1.CEL1.5510261.90%36.70%1.40%1.50.81 
75R1216E.2BXD32R1216E.2.CEL2.23111.9958.80%39.80%1.40%1.350.792 
76R2542E.1BXD33R2542E.1.CEL2.139756.50%41.80%1.60%1.910.931 
77R857E.2BXD33R857E.2.CEL1.737113.9861.90%36.70%1.30%1.60.772 
78R1451E.2BXD34R1451E.2.CEL1.843140.0559.00%39.50%1.50%1.420.812Y
79R2585E.1BXD34R2585E.1.CEL2.647558.30%40.00%1.70%1.250.771 
80R2698E.3BXD36R2698E.3.CEL18659.70%39.00%1.30%1.460.783 
81R2705E.3BXD36R2705E.3.CEL18660.20%38.40%1.40%1.460.773 
82R2710E.2BXD38R2710E.2.CEL2.112122.158.80%39.80%1.40%1.370.782 
83R2532E.1BXD38R2532E.1.CEL2.049459.80%38.70%1.50%1.370.81Y
84R2574E.1BXD39R2574E.1.CEL1.989161.20%37.30%1.50%1.390.781 
85R2695E.2BXD39R2695E.2.CEL1.638122.760.80%37.80%1.50%1.420.82 
86R2699E.2BXD40R2699E.2.CEL1.827105.2361.70%36.90%1.40%1.420.812 
87R2590E.1BXD40R2590E.1.CEL2.717759.10%39.30%1.50%1.40.771Y
88R2696E.2BXD42R2696E.2.CEL1.622118.9562.00%36.60%1.50%1.530.792 
89R2596E.1BXD42R2596E.1.CEL2.6310859.00%39.60%1.50%1.240.81 
90R994E.2BXD43R994E.2.CEL1.966113.1260.80%37.80%1.40%1.660.82 
91R2607E.1BXD43R2607E.1.CEL2.4311558.60%40.00%1.40%1.310.761Y
92R2594E.1BXD44R2594E.1.CEL1.7711759.80%38.80%1.40%1.350.851 
93R2610E.2BXD44R2610E.2.CEL1.814142.9159.00%39.50%1.50%1.350.82 
94R2732E.2BXD45R2732E.2.CEL2.154122.4556.50%42.10%1.40%1.80.832 
95R2592E.1BXD45R2592E.1.CEL1.8510660.10%38.60%1.30%1.430.851Y
96R967E.2BXD48R967E.2.CEL1.948130.9557.30%41.20%1.50%1.630.812 
97R2606E.1BXD48R2606E.1.CEL2.5610658.90%39.70%1.40%1.350.831Y
98R2933E.3BXD50R2933E.3.CEL17252.90%45.60%1.50%2.450.983 
99R2937E.3BXD50R2937E.3.CEL18956.90%41.60%1.40%1.810.823 
100R2603E.1BXD51R2603E.1.CEL2.4911557.70%40.80%1.50%1.240.791 
101R1042E.2BXD51R1042E.2.CEL2.352104.1258.70%39.90%1.40%1.530.822 
102R2980E.3BXD55R2980E.3.CEL18256.90%41.70%1.50%1.770.843 
103R2690E.2BXD55R2690E.2.CEL1.887164.0156.10%42.30%1.60%1.430.82 
104R4176EBXD56R4176E.CEL4.7543.0863.00%35.60%1.30%1.390.814Y
105R4175EBXD56R4175E.CEL638.4961.30%37.30%1.40%1.470.814Y
106R1006E.3BXD60R1006E.3.CEL19854.90%43.70%1.50%2.70.863 
107R2725E.2BXD60R2725E.2.CEL1.551148.0159.80%38.80%1.40%1.430.792 
108R1074E.3BXD60R1074E.3.CEL111855.50%43.10%1.40%1.960.813 
109R2534E2.1BXD61R2534E2.1.CEL2.4711857.90%40.60%1.50%1.420.791 
110R2684E.2BXD61R2684E.2.CEL2.01131.0357.00%41.50%1.50%1.340.782 
111R1107E.3BXD62R1107E.3.CEL18355.20%43.40%1.40%2.430.933 
112R2681E.2BXD62R2681E.2.CEL2.086148.2457.20%41.30%1.50%1.290.812 
113R965E.3BXD62R965E.3.CEL193.5553.30%45.20%1.50%3.110.943 
114R1425E.2BXD63R1425E.2.CEL1.713659.30%39.30%1.40%1.430.822 
115R2576E.3BXD63R2576E.3.CEL18461.30%37.40%1.40%1.480.763 
116R943E-2.2BXD64R943E-2.2.CEL1.591141.3460.10%38.40%1.50%1.320.762 
117R2611E.1BXD64R2611E.1.CEL2.299258.00%40.50%1.50%1.571.061 
118R2689E.2BXD65R2689E.2.CEL1.721142.4459.90%38.60%1.50%1.380.762 
119R2583E.1BXD65R2583E.1.CEL2.497056.90%41.50%1.60%1.671.011 
120R2728E.2BXD66R2728E.2.CEL1.714137.4559.40%39.00%1.60%1.380.792 
121R2536E2.1BXD66R2536E2.1.CEL2.7410956.10%42.30%1.70%1.280.791 
122R1207E.2BXD66R1207E.2.CEL1.681136.8660.40%38.10%1.50%1.450.772 
123R1192E.2BXD67R1192E.2.CEL2.126123.3757.90%40.60%1.50%1.50.82 
124R2727E.3BXD67R2727E.3.CEL182.5556.10%42.40%1.50%1.970.872 
125R2691E.3BXD67R2691E.3.CEL19054.80%43.80%1.50%2.610.813 
126R2551E.1BXD68R2551E.1.CEL2.499254.30%44.10%1.60%2.911.551 
127R2726E.2BXD68R2726E.2.CEL1.811153.0958.70%39.80%1.50%1.390.782 
128R2593E.1BXD69R2593E.1.CEL1.6712859.20%39.50%1.30%1.470.921Y
129R975E.2BXD70R975E.2.CEL1.841137.9758.00%40.50%1.40%1.360.792 
130R2537E2.1BXD70R2537E2.1.CEL2.939958.00%40.50%1.60%1.290.751 
131R4531EBXD71R4531E.CEL4.7743.4862.40%36.30%1.40%1.230.774Y
132R4532EBXD71R4532E.CEL5.8940.6860.90%37.60%1.50%1.240.794Y
133R2779E.2BXD73R2779E.2.CEL1.746121.1159.60%39.00%1.40%1.50.82 
134R3024E.3BXD73R3024E.3.CEL178.0551.70%46.60%1.70%2.30.943 
135R2565E.1BXD75R2565E.1.CEL1.7910258.00%40.50%1.50%2.313.471 
136R1397E-re.2BXD75R1397E-re.2.CEL1.449189.7159.60%39.00%1.40%1.390.822 
137R2687E.3BXD77R2687E.3.CEL18058.00%40.60%1.40%1.570.83Y
138R2717E.2BXD77R2717E.2.CEL1.79784.4361.60%36.90%1.40%1.490.762 
139R1421E.3BXD77R1421E.3.CEL19452.40%46.20%1.40%2.290.823 
140R2579E.1BXD80R2579E.1.CEL2.427259.20%39.40%1.50%1.730.821 
141R2686E.2BXD80R2686E.2.CEL2.342119.6356.00%42.60%1.50%1.380.792 
142R2956E.3BXD83R2956E.3.CEL18455.40%43.20%1.40%1.390.843 
143R2960E.3BXD83R2960E.3.CEL18056.60%41.90%1.50%1.50.823Y
144R2922E.3BXD84R2922E.3.CEL19157.80%40.80%1.50%1.470.833Y
145R2895E.3BXD84R2895E.3.CEL17558.30%40.20%1.50%1.560.773Y
146R2692E.2BXD85R2692E.2.CEL1.423160.8760.20%38.30%1.40%1.460.792 
147R2715E.2BXD85R2715E.2.CEL1.488142.661.20%37.30%1.40%1.50.782 
148R1405E.2BXD86R1405E.2.CEL2.351119.3456.40%42.20%1.40%1.640.812 
149R1225E.3BXD86R1225E.3.CEL17153.90%44.60%1.40%3.21.613 
150R2724E.2BXD87R2724E.2.CEL1.906113.7160.70%37.90%1.40%1.450.792 
151R2540E.1BXD87R2540E.1.CEL2.339361.10%37.40%1.40%1.220.811Y
152R1433E.2BXD89R1433E.2.CEL12.24157.70%40.80%1.50%1.410.782 
153R2546E.1BXD89R2546E.1.CEL1.999658.60%39.70%1.70%1.470.781 
154R2578E2.1BXD90R2578E2.1.CEL2.799258.60%39.80%1.60%1.520.771Y
155R859E.2BXD90R859E.2.CEL1.847152.2257.90%40.70%1.40%1.360.772 
156R2682E.2BXD92R2682E.2.CEL1.547156.3160.40%38.20%1.40%1.370.772 
157R1388E.3BXD92R1388E.3.CEL16360.00%38.60%1.40%1.851.033 
158R1322E.3BXD92R1322E.3.CEL18055.90%42.60%1.50%1.750.743 
159R2733E.2BXD96R2733E.2.CEL1.7113.9962.10%36.60%1.30%1.40.782 
160R2554E.1BXD96R2554E.1.CEL2.189360.20%38.30%1.50%1.460.771Y
161R2649E.2BXD97R2649E.2.CEL2.343119.0457.50%41.20%1.40%1.530.82 
162R2577E.1BXD97R2577E.1.CEL2.077759.50%39.10%1.40%1.871.291 
163R2645E.3BXD98R2645E.3.CEL18859.40%39.20%1.50%1.590.813Y
164R2688E.2BXD98R2688E.2.CEL1.772145.2458.50%40.00%1.50%1.480.812 
165R4533EBXD99R4533E.CEL137.6960.30%38.20%1.40%1.330.894Y
166R4534EBXD99R4534E.CEL5.6936.6262.90%35.70%1.40%1.160.84Y
167R2885E.3BXSB/MpJR2885E.3.CEL17658.10%40.60%1.30%1.881.063 
168R2883E.3BXSB/MpJR2883E.3.CEL17156.40%42.00%1.50%1.590.843Y
169R1700E.1C3H/HeJR1700E.1.CEL2.986960.80%37.90%1.40%1.480.781 
170R1704E.1C3H/HeJR1704E.1.CEL2.588860.10%38.60%1.30%1.380.841 
171R2605E.1C57BL/6JR2605E.1.CEL1.8213160.50%38.20%1.30%1.320.81Y
172R0871EC57BL/6JR0871E.CEL6.2437.3861.90%36.70%1.40%1.410.84Y
173R0872E.1C57BL/6JR0872E.1.CEL3.138958.90%39.60%1.50%1.30.791Y
174R0872EC57BL/6JR0872E.CEL3.12888.5858.90%39.60%1.50%1.30.791 
175R4507EC57BL/6J-NyxR4507E.CEL8.1337.559.30%39.30%1.40%1.320.84Y
176R4508EC57BL/6J-NyxR4508E.CEL6.3337.2660.90%37.80%1.30%1.240.824Y
177R4505EC57BL/6J-Rpe65R4505E.CEL5.9837.4861.80%36.80%1.40%1.450.854Y
178R4506EC57BL/6J-Rpe65R4506E.CEL6.9437.961.10%37.50%1.30%1.50.834Y
179R4535EC57BLKS/JR4535E.CEL6.5937.2861.20%37.30%1.40%1.260.834Y
180R4536EC57BLKS/JR4536E.CEL140.7160.30%38.20%1.50%1.250.774Y
181R2564E.1CAST/EiJR2564E.1.CEL1.948958.50%39.90%1.60%1.60.771 
182R2580E.1CAST/EiJR2580E.1.CEL2.099558.20%40.10%1.70%1.40.761 
183R4537ECBA/CaJR4537E.CEL138.4560.60%37.90%1.50%1.630.824Y
184R4538ECBA/CaJR4538E.CEL5.8939.1861.70%36.90%1.40%1.450.84Y
185R4539ECZECHII/EiJR4539E.CEL7.7337.158.30%40.10%1.50%1.70.954Y
186R4540ECZECHII/EiJR4540E.CEL11.0436.6953.00%45.30%1.70%1.831.324 
187R2600E.1D2B6F1R2600E.1.CEL2.479558.10%40.20%1.70%1.410.781Y
188R2604E.1D2B6F1R2604E.1.CEL2.669059.40%39.20%1.50%1.280.791Y
189R1002E.3DBA/2JR1002E.3.CEL110254.80%43.70%1.50%2.840.833 
190R4541EDBA/2JR4541E.CEL143.461.40%37.00%1.50%1.370.734Y
191R959E.3DBA/2JR959E.3.CEL189.9753.20%45.30%1.50%3.661.094 
192R2572E.1DBA/2JR2572E.1.CEL2.417955.50%42.90%1.60%1.370.791 
193R4542EDBA/2JR4542E.CEL5.739.9561.00%37.40%1.50%1.230.814Y
194R2771E.3FVB/NJR2771E.3.CEL17055.30%43.20%1.50%1.690.833 
195R2772E.3FVB/NJR2772E.3.CEL17655.20%43.40%1.40%2.131.023 
196R2636E.1KK/HlJR2636E.1.CEL2.619358.90%39.50%1.50%1.390.761Y
197R2637E.1KK/HlJR2637E.1.CEL2.1910359.40%39.00%1.50%1.30.791Y
198R0999E.1LG/JR0999E.1.CEL2.458259.40%39.10%1.50%1.380.791Y
199R1004E.1LG/JR1004E.1.CEL2.449258.70%39.80%1.50%1.380.791Y
200R4543ELP/JR4543E.CEL6.5741.9960.30%38.20%1.50%1.280.754Y
201R4544ELP/JR4544E.CEL4.5639.962.40%36.10%1.50%1.230.774Y
202R2858E.3MOLF/EiJR2858E.3.CEL16453.80%44.70%1.50%1.590.953 
203R2919.3MOLF/EiJR2919.3.CEL16452.40%46.00%1.60%2.151.073 
204R1688E.1NOD/LtJR1688E.1.CEL2.669858.60%39.90%1.50%1.260.81Y
205R2566E-2.1NOD/LtJR2566E-2.1.CEL3.036959.80%38.80%1.50%1.380.751Y
206R4545ENZB/BlNJR4545E.CEL4.2343.4862.10%36.40%1.50%1.330.764Y
207R4546ENZB/BlNJR4546E.CEL6.2744.2259.40%39.10%1.50%1.170.824Y
208R2535E.1NZO/HlLtJR2535E.1.CEL1.898660.40%38.20%1.40%1.410.851 
209R2550E.1NZO/HlLtJR2550E.1.CEL1.798760.70%37.80%1.50%1.520.821 
210R2817E.3NZW/LacJR2817E.3.CEL15950.90%47.60%1.50%3.591.483 
211R2810ENZW/LacJR2810E.CEL       3 
212R2810E.3NZW/LacJR2810E.3.CEL17457.00%41.70%1.40%2.151.034Y
213R4547EPANCEVO/EiJR4547E.CEL5.2751.3457.20%41.10%1.70%1.70.834 
214R4548EPANCEVO/EiJR4548E.CEL10.5437.3950.30%48.00%1.70%1.681.094 
215R2635E.1PWD/PhJR2635E.1.CEL3.728054.20%44.10%1.70%1.530.851 
216R2634E.1PWD/PhJR2634E.1.CEL3.299055.90%42.50%1.60%1.570.811 
217R2544E.1PWK/PhJR2544E.1.CEL2.210854.90%43.50%1.70%1.360.821 
218R2549E.1PWK/PhJR2549E.1.CEL2.288457.30%41.20%1.50%1.570.831 
219R4550ESJL/JR4550E.CEL5.3540.4462.30%36.20%1.40%1.240.794 
220R2368E.1WSB/EiJR2368E.1.CEL2.578659.50%39.10%1.40%1.290.741Y
221R2547E.1WSB/EiJR2547E.1.CEL2.149058.20%40.10%1.60%1.320.771Y
+
diff --git a/general/datasets/Eye_m2_0908_r_nd/summary.rtf b/general/datasets/Eye_m2_0908_r_nd/summary.rtf new file mode 100644 index 0000000..44b7e23 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_nd/summary.rtf @@ -0,0 +1,12 @@ +

FINAL RECOMMENDED EYE DATA SET. The HEIMED September 2008 RMA data release provides estimates of gene expression in whole eyes of 103 lines of young adult mice generated using 221 Affymetrix M430 2.0 arrays. This data set is intended for exploration of the genetics and genomics of the mouse eye, retina, lens, retinal pigment epithelium, cornea, iris and choroid. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). We used pooled RNA samples, usually two independent pools--one male, one female pool--for most lines of mice. This data set was processed using the RMA protocol. A total of 2223 probes sets are associated with LRS values greater than 46 (LOD >10).

+ +

Users of these mouse eye data may also find the following complementary resources extremely useful:

+ +
    +
  1. NEIBank collection of ESTs and SAGE data.
  2. +
  3. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases
  4. +
  5. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.
  6. +
  7. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus.
  8. +
  9. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430).
  10. +
  11. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.
  12. +
diff --git a/general/datasets/Eye_m2_0908_r_nd/tissue.rtf b/general/datasets/Eye_m2_0908_r_nd/tissue.rtf new file mode 100644 index 0000000..9b6ee0f --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_nd/tissue.rtf @@ -0,0 +1,2058 @@ +

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube.

+ +

Each array was hybridized with a pool of cRNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

+ +

Dissecting and preparing eyes for RNA extraction

+ +
    +
  1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below).
  2. +
  3. Store RNA in 75% ethanol at –80 deg. C until use.
  4. +
+ +

Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we:

+ +
    +
  1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue)
  2. +
  3. allowed the homogenate to stand for 5 min at room temperature
  4. +
  5. added 0.2 ml of chloroform per 1 ml RNA STAT-60
  6. +
  7. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min
  8. +
  9. centrifuged at 12,000 G for 15 min
  10. +
  11. transfered the aqueous phase to a fresh tube
  12. +
  13. added 0.5 ml of isopropanol per 1 ml RNA STAT-60
  14. +
  15. vortexed and allowed sample to stand at room temperature for 5-10 min
  16. +
  17. centrifuged at 12,000 G for 10-15 min
  18. +
  19. removed the supernatant and washed the RNA pellet with 75% ethanol
  20. +
  21. stored the pellet in 75% ethanol at -80 deg C until use
  22. +
+ +

Sample Processing. All samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center led by Dr. Weikuan Gu. All arrays were processed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. C until use (roughly one third) or were used immediately for hybridization.

+ +

Dealing with ocular pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations taken from brown and beige colored mice tend to have faint residual pigmentation that affects hybridization signal. To address this problem, Dr. Yan Jiao purified total RNA using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204) all four batches.

+ +

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well balanced sample of males and females, in general without within-strain-by-sex replication. Two strains are represented by a single male sample pool (BXD29 and A/J). Four lines are represented by two or three male sample pools (all of the five DeltaGen KO line). The SJL/J may be a single mixed sex sample. Users can study possible sex effects by comparing any results of expression data to that of a surrogate measurement that summarizes the overall sex balance of HEIMED. To do this just compare your data to those of probe sets 1427262_at (Xist, high in females) and probe set 1426438_at (Ddx3y, high in males). These two sex-specific probes are quantitative surrogates for the sex balance in this data set.

+ +

Technical duplicates: One sample, highlighted in the tables below, is a technical duplicate. The pair of technical duplicates were both of high quality. For statistical analysis, they should be combined and treated as single biological sample.

+ +

Batch structure: This data set consists of four batches (Table 2, far right column). The final September 2008 data set consists of a total of 221 arrays and 220 independent samples.

+ +
    +
  1. Batch 1: November 2005, n = 78 arrays original arrays of which 76 were accepted into this final data set.
  2. +
  3. Batch 2: January 2006, n = 62 arrays of which 62 were accepted.
  4. +
  5. Batch 3: August 2006, n = 39 arrays of which 36 were accepted. (These three batches, including some arrays that were eventually dropped from the final 2008 data set, were combined to form the September 2006 data set.)
  6. +
  7. Batch 4: Summer 2008, n = 53 arrays of which 47 were accepted.
  8. +
+ +

Table 1: HEIMED case IDs, including sample tube ID, strain, age, sex, and source of mice (see Table 2 for information on array quality control)

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexTubeIDGroupStrainAgeSexSource
1R2595E.1GDP129S1/SvImJ59FUTHSC RW
2R2533E.1GDP129S1/SvImJ60MUTHSC RW
3R0754E.1GDPA/J60MJAX
4R4521EKOB6129P2F2N1-Clcn369MTChoi_Deltagen
5R4522EKOB6129P2F2N1-Clcn369MTChoi_Deltagen
6R4523EKOB6129P2F2N1-Clcn367MTChoi_Deltagen
7R4526EKOB6129P2F2N1-Gabbr116FTChoi_Deltagen
8R4509EKOB6129P2F2N1-Gabbr116MTChoi_Deltagen
9R4510EKOB6129P2F2N1-Gabbr119MTChoi_Deltagen
10R4511EKOB6129P2F2N1-Gabbr120MTChoi_Deltagen
11R4524EKOB6129P2F2N1-Gabbr119MTChoi_Deltagen
12R4525EKOB6129P2F2N1-Gabbr122MTChoi_Deltagen
13R4515EKOB6129P2F2N1-Gabra167MTChoi_Deltagen
14R4516EKOB6129P2F2N1-Gabra169MTChoi_Deltagen
15R4517EKOB6129P2F2N1-Gabra167MTChoi_Deltagen
16R4512EKOB6129P2F2N1-Gnb522FTChoi_Deltagen
17R4513EKOB6129P2F2N1-Gnb525MTChoi_Deltagen
18R4514EKOB6129P2F2N1-Gnb522MTChoi_Deltagen
19R4518EKOB6129P2F2N1-Gpr1970MTChoi_Deltagen
20R4519EKOB6129P2F2N1-Gpr1968MTChoi_Deltagen
21R2601E.1GDP BXDB6D2F173FUTHSC RW
22R2602E.1GDP BXDB6D2F173MUTHSC RW
23R1676E.1GDPBALB/cByJ83FJAX
24R1672E.1GDPBALB/cByJ83MJAX
25R4530EGDPBALB/cJ66FJAX
26R4529EGDPBALB/cJ66MJAX
27R2704E.2BXDBXD159FUTHSC RW
28R2707E.3BXDBXD159MBIDMC GR
29R1231E.2BXDBXD264FUTHSC RW
30R2598E.1BXDBXD261MUTHSC RW
31R2591E.1BXDBXD560FBIDMC GR
32R2714E.2BXDBXD558MUTHSC RW
33R2570E.1BXDBXD665FUTHSC RW
34R2694E.2BXDBXD658MUTHSC RW
35R2538E.1BXDBXD877FUTHSC RW
36R2709E.2BXDBXD861MUTHSC RW
37R2708E.2BXDBXD960FUTHSC RW
38R2569E.1BXDBXD967MUTHSC RW
39R2581E.1BXDBXD1165FUTHSC RW
40R2612E.2BXDBXD1170MUTHSC RW
41R2742E.2BXDBXD1271FUTHSC RW
42R2543E.1BXDBXD1263MUTHSC RW
43R2586E.1BXDBXD1360FBIDMC GR
44R877E.2BXDBXD1376MUTHSC RW
45R2557E.1BXDBXD1460FBIDMC GR
46R1128E.2BXDBXD1465MUTHSC RW
47R2701E.3BXDBXD1560FBIDMC GR
48R2716E.2BXDBXD1560MUTHSC RW
49R2711E.2BXDBXD1661FUTHSC RW
50R2567E.1BXDBXD1660MBIDMC GR
51R2720E.2BXDBXD1859FUTHSC RW
52R2559E.1BXDBXD1859MBIDMC GR
53R2560E.1BXDBXD1960FBIDMC GR
54R2713E.2BXDBXD1960MUTHSC RW
55R2584E.1BXDBXD2059FBIDMC GR
56R2731E.2BXDBXD2060MUTHSC RW
57R2702E.2BXDBXD2159FUTHSC RW
58R2541E2.1BXDBXD2161MUTHSC RW
59R2553E.1BXDBXD2258FBIDMC GR
60R2700E.2BXDBXD2259MUTHSC RW
61R2558E-2.1BXDBXD2360FBIDMC GR
62R1086E.2BXDBXD2355MUTHSC RW
63R2719E.2BXDBXD24123FUTHSC RW
64R2589E2.1BXDBXD2459MBIDMC GR
65R2573E-2.1BXDBXD2567FUAB
66R2683E.2BXDBXD2558MUTHSC RW
67R2703E.2BXDBXD2760FUTHSC RW
68R2729E.3BXDBXD2768MUTHSC RW
69R2562E.3BXDBXD2860FBIDMC GR
70R2721E.2BXDBXD2860MUTHSC RW
71R2561E.3BXDBXD2960MBIDMC GR
72R1258E.2BXDBXD3157FUTHSC RW
73R2597E.1BXDBXD3161MBIDMC GR
74R2563E.1BXDBXD3263FUTHSC RW
75R1216E.2BXDBXD3276MUTHSC RW
76R2542E.1BXDBXD3367FUTHSC RW
77R857E.2BXDBXD3377MUTHSC RW
78R1451E.2BXDBXD3461FUTHSC RW
79R2585E.1BXDBXD3460MBIDMC GR
80R2698E.3BXDBXD3658FBIDMC GR
81R2705E.3BXDBXD3657MBIDMC GR
82R2710E.2BXDBXD3855FUTHSC RW
83R2532E.1BXDBXD3862MUTHSC RW
84R2574E.1BXDBXD3970FUTHSC RW
85R2695E.2BXDBXD3959MUTHSC RW
86R2699E.2BXDBXD4059FUTHSC RW
87R2590E.1BXDBXD4060MBIDMC GR
88R2696E.2BXDBXD4258FUTHSC RW
89R2596E.1BXDBXD4259MBIDMC GR
90R994E.2BXDBXD4360FUTHSC RW
91R2607E.1BXDBXD4367MUTHSC RW
92R2594E.1BXDBXD4463FUTHSC RW
93R2610E.2BXDBXD4468MUTHSC RW
94R2732E.2BXDBXD4563FUTHSC RW
95R2592E.1BXDBXD4562MUTHSC RW
96R967E.2BXDBXD4864FUTHSC RW
97R2606E.1BXDBXD4878MUTHSC RW
98R2933E.3BXDBXD5061FUTHSC RW
99R2937E.3BXDBXD5061MUTHSC RW
100R2603E.1BXDBXD5166FUTHSC RW
101R1042E.2BXDBXD5162MUTHSC RW
102R2980E.3BXDBXD5576FUTHSC RW
103R2690E.2BXDBXD5565MUTHSC RW
104R4176EBXDBXD5667FUTHSC RW
105R4175EBXDBXD5653MUTHSC RW
106R1006E.3BXDBXD6060FUTHSC RW
107R2725E.2BXDBXD6061FUTHSC RW
108R1074E.3BXDBXD6059MUTHSC RW
109R2534E2.1BXDBXD6170FUTHSC RW
110R2684E.2BXDBXD6162MUTHSC RW
111R1107E.3BXDBXD6254FUTHSC RW
112R2681E.2BXDBXD6262MUTHSC RW
113R965E.3BXDBXD6254MUTHSC RW
114R1425E.2BXDBXD6361FUTHSC RW
115R2576E.3BXDBXD6370MUTHSC RW
116R943E-2.2BXDBXD6456FUTHSC RW
117R2611E.1BXDBXD6468MUTHSC RW
118R2689E.2BXDBXD6563FUTHSC RW
119R2583E.1BXDBXD6560MUTHSC RW
120R2728E.2BXDBXD6667FUTHSC RW
121R2536E2.1BXDBXD6664FUTHSC RW
122R1207E.2BXDBXD6683MUTHSC RW
123R1192E.2BXDBXD6764FUTHSC RW
124R2727E.3BXDBXD6765FUTHSC RW
125R2691E.3BXDBXD6765MUTHSC RW
126R2551E.1BXDBXD6867FUTHSC RW
127R2726E.2BXDBXD6864MUTHSC RW
128R2593E.1BXDBXD6959FUTHSC RW
129R975E.2BXDBXD7064FUTHSC RW
130R2537E2.1BXDBXD7059MUTHSC RW
131R4531EBXDBXD7187FUTHSC RW
132R4532EBXDBXD7186MUTHSC RW
133R2779E.2BXDBXD7364FUTHSC RW
134R3024E.3BXDBXD7354MUTHSC RW
135R2565E.1BXDBXD7561FUTHSC RW
136R1397E-re.2BXDBXD7558MUTHSC RW
137R2687E.3BXDBXD7760FUTHSC RW
138R2717E.2BXDBXD77107MUTHSC RW
139R1421E.3BXDBXD7762MUTHSC RW
140R2579E.1BXDBXD8065FUTHSC RW
141R2686E.2BXDBXD8061MUTHSC RW
142R2956E.3BXDBXD8358FUTHSC RW
143R2960E.3BXDBXD8358MUTHSC RW
144R2922E.3BXDBXD8461FUTHSC RW
145R2895E.3BXDBXD8467MUTHSC RW
146R2692E.2BXDBXD8563FUTHSC RW
147R2715E.2BXDBXD8591MUTHSC RW
148R1405E.2BXDBXD8658FUTHSC RW
149R1225E.3BXDBXD8658MUTHSC RW
150R2724E.2BXDBXD8763FUTHSC RW
151R2540E.1BXDBXD8763MUTHSC RW
152R1433E.2BXDBXD8963FUTHSC RW
153R2546E.1BXDBXD8966MUTHSC RW
154R2578E2.1BXDBXD9061FUTHSC RW
155R859E.2BXDBXD9072MUTHSC RW
156R2682E.2BXDBXD9266FUTHSC RW
157R1388E.3BXDBXD9262FUTHSC RW
158R1322E.3BXDBXD9255MUTHSC RW
159R2733E.2BXDBXD9667FUTHSC RW
160R2554E.1BXDBXD9667MUTHSC RW
161R2649E.2BXDBXD9774FUTHSC RW
162R2577E.1BXDBXD9755MUTHSC RW
163R2645E.3BXDBXD9866FUTHSC RW
164R2688E.2BXDBXD9867MUTHSC RW
165R4533EBXDBXD9980FUTHSC RW
166R4534EBXDBXD9991MUTHSC RW
167R2885E.3GDPBXSB/MpJ61FBIDMC GR
168R2883E.3GDPBXSB/MpJ61MBIDMC GR
169R1700E.1GDPC3H/HeJ83FUTHSC RW
170R1704E.1GDPC3H/HeJ83MUTHSC RW
171R2605E.1GDP BXDC57BL/6J79FUTHSC RW
172R0871EGDP BXDC57BL/6J65FUTHSC RW
173R0872E.1GDP BXDC57BL/6J66MUTHSC RW
174R0872EGDP BXDC57BL/6J66MUTHSC RW
175R4507EKOC57BL/6J-Nyx57MGeisert
176R4508EKOC57BL/6J-Nyx57MGeisert
177R4505EKOC57BL/6J-Rpe6557FGeisert
178R4506EKOC57BL/6J-Rpe6557FGeisert
179R4535EGDPC57BLKS/J66FJAX
180R4536EGDPC57BLKS/J66MJAX
181R2564E.1GDPCAST/EiJ64FJAX
182R2580E.1GDPCAST/EiJ64MJAX
183R4537EGDPCBA/CaJ66FJAX
184R4538EGDPCBA/CaJ66MJAX
185R4539EGDPCZECHII/EiJ66FJAX
186R4540EGDPCZECHII/EiJ66MJAX
187R2600E.1GDP BXDD2B6F172FUTHSC RW
188R2604E.1GDP BXDD2B6F169MUTHSC RW
189R1002E.3GDP BXDDBA/2J72FUTHSC RW
190R4541EGDP BXDDBA/2J65FJAX
191R959E.3GDP BXDDBA/2J60MUTHSC RW
192R2572E.1GDP BXDDBA/2J65MUTHSC RW
193R4542EGDP BXDDBA/2J59MJAX
194R2771E.3GDPFVB/NJ60FBIDMC GR
195R2772E.3GDPFVB/NJ60MBIDMC GR
196R2636E.1GDPKK/HlJ64FUTHSC RW
197R2637E.1GDPKK/HlJ64MUTHSC RW
198R0999E.1GDPLG/J57FUTHSC RW
199R1004E.1GDPLG/J65MUTHSC RW
200R4543EGDPLP/J65FJAX
201R4544EGDPLP/J65MJAX
202R2858E.3GDPMOLF/EiJ60FBIDMC GR
203R2919.3GDPMOLF/EiJ60MBIDMC GR
204R1688E.1GDPNOD/LtJ66FJAX
205R2566E-2.1GDPNOD/LtJ76MUTHSC RW
206R4545EGDPNZB/BlNJ61FBIDMC GR
207R4546EGDPNZB/BlNJ58MBIDMC GR
208R2535E.1GDPNZO/HlLtJ62FJAX
209R2550E.1GDPNZO/HlLtJ96MJAX
210R2817E.3GDPNZW/LacJ65FBIDMC GR
211R2810EGDPNZW/LacJ60MBIDMC GR
212R2810E.3GDPNZW/LacJ60MBIDMC GR
213R4547EGDPPANCEVO/EiJ68FJAX
214R4548EGDPPANCEVO/EiJ68MJAX
215R2635E.1GDPPWD/PhJ62FJAX
216R2634E.1GDPPWD/PhJ62MJAX
217R2544E.1GDPPWK/PhJ63FJAX
218R2549E.1GDPPWK/PhJ83MJAX
219R4550EGDPSJL/J65M+FJAX
220R2368E.1GDPWSB/EiJ67FUTHSC RW
221R2547E.1GDPWSB/EiJ67MUTHSC RW
+
diff --git a/general/datasets/Eye_m2_0908_r_wt/acknowledgment.rtf b/general/datasets/Eye_m2_0908_r_wt/acknowledgment.rtf new file mode 100644 index 0000000..5098d32 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_wt/acknowledgment.rtf @@ -0,0 +1,3 @@ +

Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant and from funds from NEI grant to Dr. Eldon Geisert (R01EY017841), an NEI Vision Core grant (EY14080) and an Unrestricted Grant from Research To Prevent Blindness.

+ +

We thank Dr. Ted Choi, Chief Scientific Director of Predictive Biology, Inc. (past director of molecular genetics at Deltagen Inc.) for providing us with eye samples from several interesting DeltaGen knockouts.

diff --git a/general/datasets/Eye_m2_0908_r_wt/cases.rtf b/general/datasets/Eye_m2_0908_r_wt/cases.rtf new file mode 100644 index 0000000..552d4a5 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_wt/cases.rtf @@ -0,0 +1,57 @@ +

This is the complete and final HEIMED data set. HEIMED consists of expression data for 103 genetically defined lines of mice with standard errors of the mean. Almost all animals are young adults between 50 and 80 days of age (Table 1, maximum age is 123 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, reciprocal F1s between C57BL/6J and DBA/2J, and several mutant and knockout lines. We have combined all common strains, F1 hybrids, and mutants into a group called the Mouse Diversity Panel (MDP). Four lines, namely, C57BL/6J (B6), DBA/2J (D2), and the pair of B6D2F1 and D2B6F1 hybrids are common to both the MDP and the BXD set. This is a breakdown of cases that are part of HEIMED:

+ +
    +
  1. 68 BXD strains. The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. Only one of these strains, BXD24 (know also known as BXD24b), has retinal degeneration (a spontaneous mutation). The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA.
  2. +
  3. 35 MDP lines, including 26 inbred strains representing closely related substrains (e.g, BALB/cJ and BALB/cByJ), many of the most widely used common Mus musculus domesticus inbred strains (e.g., C57BL/6J and 129S1/SvImJ), inbred but wild-derived representatives of common subspecies (Mus musculus domesticus, e.g, WSB/EiJ; M. musculus musculus, e.g., CZECHII/EiJ; M. musculus molossinus, e.g., MOLF/EiJ; M. musculus castaneus, e.g., CAST/EiJ); and even one different species of mouse (Mus spicilegus, PANCEVO/EiJ). The MDP also includes the reciprocal F1 hybrids (B6D2F1 and D2B6F1) and the following 6 KO lines and the Nyx-nob mutant:
  4. +
  5. 6 knockouts (KO), including a KO of Rpe65, and 5 DeltaGen Inc. knockout lines provided by Dr. Ted Choi. These KO lines have had a bacterial lacZ construct inserted into the gene. The endogenous promoter drives expression of beta-galactosidase. RT-PCR analysis detects a gene transcript in most tissues. The following KOs from DeltaGen were studied: Gabra1, Gabbr1, Gnb1, Gpr19, and Clcn3. We also included one spontaneous mutant of the nyctalopin (Nyx no b wave "nob") gene (Pardue et al., 1998) that is on a BALB/cByJ background.
  6. +
+ +

Rod photoreceptor degeneration in inbred mice: Six strains of mice included in HEIMED suffer from severe loss of photoreceptors (mainly rods) and have the equivalent of night blindness in human patients. The death of photoreceptors in these strains occurs by one to two months of age and is often caused by the retinal degeneration 1 (rd1) mutant allele in the rod cyclic-GMP phosphodiesterase 6 beta subunit gene (Pde6b). The following strains are known to have photoreceptor degeneration: C3H/HeJ, FVB/NJ, MOLF/EiJ, SJL/J and BXD24/TyJ. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEIMED data set.

+ +

As expected (Dickerson LW et al., 2002) and as judged from the absence of rhodopsin expression, one of the DeltaGen KO lines (chloride ion channel 3, Clcn3) also has retinal degeneration: B6129P2F2N1-Clcn3. Degeneration in this strain is likely to include all rods and all cones. The cone defect is obvious from the decrease in expression of Gnat2, a gene associated with cones and achromatopsia in mice and humans.

+ +

Lines of mice were selected using the following criteria:

+ + + +

We have included all eight parents of the Collaborative Cross (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/LtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ) in the MDP. Fourteen MDP strains have been partially sequenced by Perlegen for the NIEHS, including including 129S1/SvImJ, A/J, AKR/J, BALB/cByJ, C3H/HeJ, CAST/EiJ, DBA/2J, FVB/NJ, KK/HlJ, MOLF/EiJ, NOD/LtJ, NZW/LacJ, PWD/PhJ, and WSB/EiJ (see the GeneNetwork SNP Browser for data, details, and see Perlegen's excellent data resources and browser).

+ +
    +
  1. 129S1/SvImJ : Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene. It is also a cone photoreceptor function loss 3 mutant (Cpfl3 allele) of the Gnat2 gene that is a model for achromatopsia (JAX Stock Number: 002448)
  2. +
  3. A/J: Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase (Tyr c allele) albino mutant. This strain is particularly sensitive to light-induced photoreceptor loss (Danciger et al., 2007). (JAX Stock Number: 000646)
  4. +
  5. BALB/cByJ: Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project old group A list. A tyrosinase (Tyr c allele) albino mutant and also a tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. Small brain, not aggressive (JAX Stock Number: 001026)
  6. +
  7. BALB/cJ: Phenome Project A list. A tyrosinase (Tyr c allele) albino mutant and also a tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. Large brain and aggressive (JAX Stock Number: 000651)
  8. +
  9. BXSB/MpJ: A white-bellied agouti strains with interesting autoimmune disease restricted to males that is associated with a mutation in the Yaa gene that causes glomerulonephritis, a dramatic increase in number of peripheral monocytes, and pre-B-cell deficiency (JAX Stock Number: 000740)
  10. +
  11. C3H/HeJ: The Heston (He) substrain with a wildtype agouti (A allele) coat color. Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project old group A list. Important to note for this eye expression dataset, C3H/HeJ is a Pdeb6 rd1 mutant with near total photoreceptor loss at as early as postnatal day 30. Also a Tlr4 mutant that is endotoxin resistant. (JAX Stock Number: 000659)
  12. +
  13. C57BL/6J: Sequenced by NIH/NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list. Single most widely used inbred strain of mouse. (JAX Stock Number: 000664)
  14. +
  15. C57BLKS/J: Black Kaliss strain (non-agouti a allele) derived from C57BL/6J, but genetically contaminated at some point mainly with DBA/2J and then reinbred. Now at the Jackson Laboratory. (JAX Stock Number: 000662)
  16. +
  17. CAST/EiJ: A wild-derived inbred Mus musculus castaneus strain. Samples of this subspecies were captured in Southeast Asia. One of three wild-derived strains in the Collaborative Cross sequenced by NIEHS; Phenome Project A list. CAST/Ei and CAST/EiJ are the same strain. The addition of the "J" is trivial and was added when stock were transferred from Dr. Eicher's lab to the Jackson Laboratory production facility in about 2004. (JAX Stock Number: 000928)
  18. +
  19. CBA/CaJ: Agouti strain from the Jackson Laboratory. Wildtype pigment genes. (JAX Stock Number: 000654)
  20. +
  21. CZECHII/EiJ: Czech 2 is a wild-derived inbred strain M. musculus musculus strain. Samples of this subspecies were caught in the Czech Republic and inbred at the Jackson Laboratory by Eva Eicher. White-bellied agouti. (JAX Stock Number: 001144).
  22. +
  23. DBA/2J: The dilute, brown, agouti (dba) strain is the oldest inbred strain of mouse. Inbreeding was started in 1909 by Little. A tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. A myosin 5a (Myo5a d) dilute allele mutant. Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project old A group list. (JAX Stock Number: 000671)
  24. +
  25. FVB/NJ: Friend's leukemia virus B (FVB) strain. Sequenced by Perlegen/NIEHS and Celera. Tyr c locus albino and a Pdeb6 rd1 mutant derived from Swiss mice at NIH. This has been the most common strain used to make transgenic mice due to large and easily injected oocytes; Phenome Project A list (JAX Stock Number: 001800).
  26. +
  27. KK/HlJ: K Kondo's (KK) Kasukabe strain is a homozygous age-related hearing loss (ahl) allele mutant of the Cdh23 gene. A Tyr c locus albino strain. Males have a form of type 2 diabetes. Sequenced by Perlegen/NIEHS. (JAX Stock Number: 002106)
  28. +
  29. LG/J: Large (LG) strain. Paternal parent of the Large-by-Small set of RI strains made by James Cheverud and colleagues (the LGXSM panel, not to be confused with the LongXShort or LXS panel). A Tyr c locus albino strain. (JAX Stock Number: 000675)
  30. +
  31. LP/J: White-bellied agouit strain with a piebald mutation in the endothelin receptor type B Ednrb gene from at the Jackson Laboratory. Some reduction in melanocytes in choroid of eye due to neural creast migration abnormalities. (JAX Stock Number: 000676)
  32. +
  33. MOLF/EiJ: A wild-derived inbred strain derived from M. musculus molossinus samples camputered in Fukuoka, Japan. This strain has the retinal degeneration rd1 allele in Pde6b. There appears to have been some genetic contamination of this strain with conventional inbred strains in the past several decades (F. Pardo, personal communication to RWW, August 2006). However, the strain is currently fully inbred. (JAX Stock Number: 000550)
  34. +
  35. NOD/LtJ: Non-obese diabetic strain, originally from M. Hattori in Kyoto, Japan. This is the Edward Leiter (Lt) substrain from the Jackson Laboratory. Collaborative Cross strain sequenced by NIEHS; Phenome Project B list. Homozygous age-related hearing loss (ahl) allele mutant of the Cdh23 gene. A Tyr c locus albino strain. (JAX Stock Number: 001976)
  36. +
  37. NZO/HlLtJ: New Zealand Obese strain. This is a severely obese and hypertensive strain. Males often develop a type 2 diabetes. Collaborative Cross strain. Agouti coat color. (JAX Stock Number: 002105)
  38. +
  39. NZB/BlNJ: New Zealand Black inbred strain from Bielschowsky (BL, substrain is "B lowercase L N", not "BiN") now maintained at the Jackson Laboratory. (JAX Stock Number: 000648)
  40. +
  41. NZW/LacJ: New Zealand White strain from the Laboratory Animal Center (Carshalton, UK), now maintained at the Jackson Laboratory. Carries the Tyr c locus albino mutation, the pink-eye dilution mutation in the Oca2 or p locus, and the brown allele at Tyrp1. (JAX Stock Number: 001058)
  42. +
  43. PANCEVO/EiJ: PANCEVO/EiJ is a wild-derived inbred strain from the Mus spicilegus samples caught in the Pancevo, Serbia. This species of mouse is also known as the Steppe mouse (taxon identifier 10103). M. spicilegus is a colonial mound-building species. No known ocular or retina mutations, but the expression level of Gnat2 is low in this strain, either due to a 3' UTR length variant or possible achromatosia (cone degeneration) (JAX Stock Number: 001384)
  44. +
  45. PWD/PhJ: A wild-derived Mus musculus musculus agouti strain inbred from samples caught near Prague, Czech Republic. Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues. (JAX Stock Number: 004660)
  46. +
  47. PWK/PhJ: A wild-derived Mus musculus musculus inbred strain from samples caught near Lhotka, Czech Republic. Collaborative Cross strain; Phenome Project D list. (JAX Stock Number: 003715)
  48. +
  49. SJL/J: Swiss Webster inbred strain from Jim Lambert's lab at the Jackson Laboratory. This strain has the retinal degeneration rd1 allele in Pde6b. It also carries both the Tyr c albino mutation and the pink-eye dilution mutation in the Oca2 or p locus. Highly aggressive males. (JAX Stock Number: 000686)
  50. +
  51. WSB/EiJ: Watkin Star line B (or "wild son-of-a-bitch") is a wild-derived Mus musculus domesticus inbred strain from samples caught in Maryland, USA. A Collaborative Cross strain sequenced by NIEHS; Phenome Project C list (JAX Stock Number: 001145)
  52. +
  53. B6D2F1 and D2B6F1 (also listed as BDF1 and DBF1 in some graphs and tables): F1 hybrids generated by crossing C57BL/6J with DBA/2J. These black reciprocal F1 can be used to detect dominance effects. Comparison of the two reciprocal F1s can be used to detect parental origin (imprinting) effects. The D2B6F1 animals are currently available from the Jackson Laboratory as a special order.) (JAX Stock Number for B6D2F1 hybrids obtained from the Jackson Laboratory, aka B6D2F1/J 100006)
  54. +
+ +

Most of the common inbred strains harbor mutations in genes the control pigmentation (Silvers, 2008 and material above in this INFO file). These gene include the albino and chinchilla alleles of the tyrosinase gene (Tyr, or human OCA1), the brown allele of the tyrosinase related protein 1 (Tyrp1), the pink-eye dilution allele of Oca2 (probe set 1418211), the non-agouti (black) and white-bellied alleles of the agouti signaling protein Asip, the steel allele of Kitlg, the dilute allele of Myo5a (probe set 1419754), and the piebald allele of Ednrb. In some of these cases, effects of the mutation are easily detected at the transcript level (Tyrp1, Oca2, and Myo5a), but in the other cases (Tyr, Asip, Ednrb, and Kitlg), mutations do not leave a strong imprint on expression.

diff --git a/general/datasets/Eye_m2_0908_r_wt/citation.rtf b/general/datasets/Eye_m2_0908_r_wt/citation.rtf new file mode 100644 index 0000000..ddd98e4 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_wt/citation.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Xusheng Wang, Weikuan Gu, Yan Jiao, Robert W. Williams. Gene expression landscape of the mammalian eye: A global survey and database of mRNAs of 103 varieties of mice. Molecular Vision 2009; in press.

diff --git a/general/datasets/Eye_m2_0908_r_wt/contributors.rtf b/general/datasets/Eye_m2_0908_r_wt/contributors.rtf new file mode 100644 index 0000000..d155833 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_wt/contributors.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Xusheng Wang, Weikuan Gu, Yan Jiao, Robert W. Williams

diff --git a/general/datasets/Eye_m2_0908_r_wt/experiment-design.rtf b/general/datasets/Eye_m2_0908_r_wt/experiment-design.rtf new file mode 100644 index 0000000..1ebe0ad --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_wt/experiment-design.rtf @@ -0,0 +1 @@ +

Expression profiling by array

diff --git a/general/datasets/Eye_m2_0908_r_wt/notes.rtf b/general/datasets/Eye_m2_0908_r_wt/notes.rtf new file mode 100644 index 0000000..7a26eb5 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_wt/notes.rtf @@ -0,0 +1 @@ +

This data set is available as a bulk download in several formats. The data are available as either strain means or the individual arrays. Due to the involved normalization procedures required to correct for batch effects we strongly recommend not using the raw CEL files without special statistical procedures.

diff --git a/general/datasets/Eye_m2_0908_r_wt/platform.rtf b/general/datasets/Eye_m2_0908_r_wt/platform.rtf new file mode 100644 index 0000000..9024a99 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_wt/platform.rtf @@ -0,0 +1,11 @@ +

Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many probes overlap and target the same transcript). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequences as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

+ +

As part of the development of HEIMED, we have manually annotated individual probe sets by sequence alignment to the mouse genome and transcriptome. Approximately 13,000 probe sets that have comparatively high expression in eye and CNS were curated by one of the authors (RWW) and now have specific information on the part of the transcript targeted by each probe set. The other 33,000 transcripts have corresponding data that was generated by Xusheng Wang using computational methods (BLAT analysis combined with annotated genome sequence).

+ +

One example may help explain how to exploit this annotation. The four probe sets for rhodopsin include information on the target location. Only the first probe set targets the last two coding exons. The other three probe sets target different parts of the 3’ UTR (mid, distal, and far distal regions). The probe sets can be reordered by from high to low expression using the Sort By function in Search Results pages. In the case of rhodopsin, the probe set that targets that last two coding exons and proximal parts of the 3’ UTR also has the highest expression . Finally, the HEIMED gene descriptions have been customized to help vision researchers. In the case of rhodopsin, the description appended after the gene name reads “rod photoreceptor pigment, retinitis pigmentosa-associated”. For less well known genes this kind of annotation can be extremely useful. For example, the more verbose annotation for Cerkl reads “neuronal survival and apoptosis-related, retinal ganglion cell expressed, retinitis pigmentosa 26); alternative 3' UTR of short form message, intron 2”.

+ +

 

+ +

+ +

Legend: Distribution of expression values for all probe sets in HEIMED.

diff --git a/general/datasets/Eye_m2_0908_r_wt/processing.rtf b/general/datasets/Eye_m2_0908_r_wt/processing.rtf new file mode 100644 index 0000000..4349e60 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_wt/processing.rtf @@ -0,0 +1,3381 @@ +

Range of Gene Expression in the Eye. Expression of transcripts in the HEIMED and most other GN data sets is measured on a log2 scale. Each unit corresponding approximately to a 2-fold difference in hybridization signal intensity. To simplify comparisons among different data sets and cases, log2 RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units (variance stabilized). Values of all 45,101 probe sets in this data set range from a low of 4.8 (Tcf15, probe set 1420281_at) to a high of 15.5 (crystallin gamma C, Crygc, probe set 1422674_s_at). This corresponds to 10.7 units or a 1 to 1700 dynamic range of expression (2^10.73).

+ +

We used pooled RNA samples of whole eyes, usually two independent pools--one male, one female pool--for most lines of mice. This data set was processed using the RMA protocol. A total of 2223 probes sets are associated with LRS values greater than 46 (LOD >10).

+ +

We calibrated this log intensity scale using Affymetrix spike-in control probe sets. These 18 control probe sets target exogenous bacterial mRNAs that are added to each sample (a graded dose spike cocktail) during preparation at concentrations of 1.5, 5, 25, and 100 pM. (To find these probe sets, search GN’s ALL search field using the string “AFFX pM”.) A value of 6 or less is equivalent to an mRNA concentration of under 0.4 pM, a value of 8 is equivalent to ~1.5 pM, 9.5 is equivalent to ~5 pM, 11.5 is equivalent to ~25 pM, 13.5 is equivalent to ~100 pM, and a value of 15.5 is equivalent to an mRNA concentration of 400 pM or greater.

+ +

This range can be converted to the mRNA molecules per cell in the eye assuming that a value of 8 is equivalent to about 1 mRNA copy per cell (Kanno et al. 2006, see http://www.biomedcentral.com/1471-2164/7/64). Since the expression of rhodopsin mRNA is normally 15 units, we predict that there are 27 or ~128 Rho mRNAs per cell in the whole eye and ~256 in rods themselves (assuming that rods make up about half of all cells in the eye). For this purpose it may be useful to know that a normal mouse eye contains between 6 and 8 million rod photoreceptors (Guo, Lu, and Williams; GN BXD Phenotype ID 11024).

+ +

Note that some probe sets with very low expression still provide reliable data. For example, probe set 1440397_at (Cacna2d1) has expression of only 5.5 units (a value that would be declared as "absent" using conventional Affymetrix procedures), but the values for this calcium channel transcript are associated with a very strong cis QTL with an LRS of 79 (LOD = 17). This strong linkage is definitely not due to chance since the probability of the expression data mapping precisely to the location of the parent gene itself is about 10e-16. This indicates a high signal to noise ratio and the detection of significant strain variation of the correct transcript.

+ +

The standard error of the mean for the HEIMED data set is computed for 2 to 6 biological replicates. The standard error of such small samples tends to systematically underestimate the population standard error. With n = 2 the underestimate is about 25%, whereas for n = 6 the underestimate is 5%. Gurland and Tripathi (1971) provide a correction and equation for this effect (see Sokal and Rohlf, Biometry, 2nd ed., 1981, p 53 for an equation of the correction factor for small samples of n < 20.) Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. The CEL files were processed using the RMA protocol. We processed the first three batches together. The last batch was processed separately and merged as described below.

+ + + +

After RMA processing using Biobase affy10 build running under R version 2.7.1, all array data sets were rank-order normalized. This second round of quantile normalization removes much residual non-linearity across arrays and forces every array to have the same distribution of values as the mean of all arrays. Comparative array data quality was then evaluated in DataDesk. Outlier arrays were flagged by visual inspection in DataDesk, usually by means of an analysis of scatter plots and more quantitatively by generating a correlation matrix of all arrays. Those arrays with mean correlation <0.96 versus all other arrays indicates trouble or a biological outlier). In some cases, outliers were expected, such as samples from strains with retinal degeneration (FVB/NJ, NOD/LtJ, MOLF/EiJ, C3H/HeJ and BXD24), samples from wild subspecies such as WSB/EiJ, CAST/EiJ, PWD/PhJ, and PWK/PhJ, and knockouts. However, when arrays were anomolous both within strain and across strains, they were often simply discarded. The assumption is that anomolous data are much more likely due to experimental and technical errors than to informative biological variation. Approximately 10% of arrays were discarded.

+ +

After this process, the acceptable set of arrays was renormalized using all step as above, starting with the original RMA procedure, etc.

+ +

We reviewed the data set using a new method developed by RW Williams, Jeremy Peirce, and Hongqiang Li. For the full set of arrays that passed standard QC protocols described above, we computed the strain means for the BXD strains, B6, D2, and F1s. Using this set of strain means we then computed LRS scores for all 45101 probe sets and counted the number of transcripts that generated QTLs with LRS values greater than 50. This value (e.g., 1800) represented the QTL harvest for the full data set. We then dropped a single array from the data set, recomputed strain means, and recomputed the number of transcripts with LRS scores great than 50. This value is expected to typically reduce the number of QTLs that reach the criterion level (e.g., 1750 QTLs > 50). This process was repeated for every array to obtain an array-specific difference value--the effect of removing that array on the total QTL count. For example, the loss of a single array might cause a decrease in 50 QTLs. Values ranged from approximately -90 (good arrays) to +40 (bad arrays). This procedure is similar in some ways to a jackknife protocol, although we are not using this procedure to esimate an error term, but rather as a method to polish a data set.

+ +

During this process we discovered that nearly 20 arrays in the batch 2 had been mislabeled at some point in processing. We computed the correct strain membership of each array using a large number of Mendelian probe sets (more than 50) and comparing their match to standard SNP and microsatellite markers and the original array data set of November 2005. This allowed us to rescue a large number of arrays that were of high quality.

+ +

A third batch of approximately 40 arrays were processed by Yan Jiao and Weikuan Gu in August 2006. These complete data set assembled by Hongqiang Li. This process again included a correction for a batch effect.

+ +

For the June 2006 data set Hongqiang Li used a new batch correction method that stabilizes the range of expression in each batch. For each of the three large batches, we extracted the minumum and maximum raw probe expression (CEL file level) value. We then adjusted raw probe values in each batch to have the same range as the first and largest batch (batch 1) using a simple linear interpolation. These procedures generated new correct CEL files which were then used with RMA to generate final probe set estimates.

+ +

For the final fourth batch of arrays (Sept 2008) Arthur Centeno and Rob Williams corrected for a systematic difference in probe set expression values between original arrays run in 2005 and 2006 and the new arrays added in 2008 (n = 45 acceptable arrays). This difference is due to unknown technical batch effects that are probably associated with labeling, hybridization, and scanning. We performed a simple correction to normalize values of the new set of arrays to those of the old set (batches 1 through 3). No changes were made to any values of the previous three batches. We corrected only the probe set level (RMA) values and not the CEL files. For this final batch, we corrected for the difference (offset) in probe set expression between the first three batches arrays run in 2005 and 2006 (a total of 174 acceptable arrays) and the new batch (n = 47 acceptable arrays). This difference is due to unknown technical effects that are probably related to various steps in labeling, hybridization, and scanning. The correction was applied as follows: (1) RWW selected 51 high quality arrays with similar expression characteristics (r = 0.97 or better between pairs of arrays) in the old data set (from batches 1, 2, and 3) and 34 high quality arrays in the final batch. RWW used scatterplots of full RMA transcriptome data sets to review many pairs of arrays within these new and old array batches. Strains with retinal degeneration or unusual eye gene expression characteristics were excluded from these selected subsets. The average expression values for each probe set were then computed for both the old and new array subsets. The offset value (old minus new) was added to each probe set across all 47 new arrays. This processes forces the average probe set in the new arrays to be very close to that of the previous arrays.

+ +

Table 2: Sample tube ID, strain, original CEL filename, and Affymetrix quality control values. Columns labeled Scale factor, Background Average, Present, Absent, Marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files.

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
2R2533E.1129S1/SvImJR2533E.1.CEL2.119457.90%40.50%1.60%1.370.781Y
3R0754E.1A/JR0754E.1.CEL2.728659.80%38.70%1.50%1.360.761Y
4R4521EB6129P2F2N1-Clcn3R4521E.CEL4.8338.763.30%35.30%1.40%1.250.774 
5R4522EB6129P2F2N1-Clcn3R4522E.CEL5.7637.3662.90%35.70%1.40%1.370.834 
6R4523EB6129P2F2N1-Clcn3R4523E.CEL4.8840.4263.90%34.70%1.40%1.270.774 
7R4526EB6129P2F2N1-Gabbr1R4526E.CEL3.8444.1865.00%33.70%1.30%1.340.784Y
8R4509EB6129P2F2N1-Gabbr1R4509E.CEL7.4534.7658.90%39.70%1.40%1.450.834 
9R4510EB6129P2F2N1-Gabbr1R4510E.CEL8.4437.4457.40%41.10%1.50%1.350.834 
10R4511EB6129P2F2N1-Gabbr1R4511E.CEL5.9142.0261.40%37.20%1.40%1.410.834 
11R4524EB6129P2F2N1-Gabbr1R4524E.CEL5.4942.3462.40%36.20%1.40%1.290.784Y
12R4525EB6129P2F2N1-Gabbr1R4525E.CEL4.6941.363.10%35.50%1.40%1.270.84Y
13R4515EB6129P2F2N1-Gabra1R4515E.CEL5.7541.7662.80%35.80%1.40%1.410.814Y
14R4516EB6129P2F2N1-Gabra1R4516E.CEL7.0740.7360.20%38.40%1.40%1.320.874Y
15R4517EB6129P2F2N1-Gabra1R4517E.CEL5.4538.0962.70%35.80%1.40%1.340.824Y
16R4512EB6129P2F2N1-Gnb5R4512E.CEL6.5638.0259.90%38.70%1.50%1.330.834 
17R4513EB6129P2F2N1-Gnb5R4513E.CEL4.1541.663.40%35.10%1.50%1.340.824 
18R4514EB6129P2F2N1-Gnb5R4514E.CEL5.8639.261.20%37.30%1.50%1.340.814 
19R4518EB6129P2F2N1-Gpr19R4518E.CEL5.5838.962.60%36.00%1.30%1.390.794Y
20R4519EB6129P2F2N1-Gpr19R4519E.CEL5.9541.9161.30%37.30%1.40%1.350.844Y
21R2601E.1B6D2F1R2601E.1.CEL2.559258.90%39.60%1.50%1.440.781Y
22R2602E.1B6D2F1R2602E.1.CEL2.68459.70%38.80%1.50%1.370.781Y
23R1676E.1BALB/cByJR1676E.1.CEL2.699858.90%39.60%1.50%1.460.741 
24R1672E.1BALB/cByJR1672E.1.CEL2.2211159.90%38.60%1.50%1.260.81Y
25R4530EBALB/cJR4530E.CEL6.3737.5360.80%37.80%1.40%1.30.844Y
26R4529EBALB/cJR4529E.CEL5.7141.3360.50%38.00%1.50%1.480.84Y
27R2704E.2BXD1R2704E.2.CEL2.066139.6156.60%41.90%1.50%1.310.812 
28R2707E.3BXD1R2707E.3.CEL18056.40%42.10%1.50%1.430.793 
29R1231E.2BXD2R1231E.2.CEL2.197138.7357.30%41.30%1.40%1.410.772 
30R2598E.1BXD2R2598E.1.CEL1.9910660.90%37.60%1.50%1.270.781Y
31R2591E.1BXD5R2591E.1.CEL1.713658.50%40.00%1.50%1.330.781Y
32R2714E.2BXD5R2714E.2.CEL1.404144.3560.60%37.90%1.50%1.430.792 
33R2570E.1BXD6R2570E.1.CEL1.998758.50%40.00%1.50%1.460.761Y
34R2694E.2BXD6R2694E.2.CEL1.98397.2361.60%37.10%1.30%1.390.822 
35R2538E.1BXD8R2538E.1.CEL1.9110261.20%37.30%1.50%1.520.791Y
36R2709E.2BXD8R2709E.2.CEL1.9999.7960.90%37.60%1.50%1.420.762 
37R2708E.2BXD9R2708E.2.CEL1.966126.4657.70%40.70%1.50%1.40.842 
38R2569E.1BXD9R2569E.1.CEL1.758755.10%43.40%1.50%2.823.141 
39R2581E.1BXD11R2581E.1.CEL1.948962.10%36.40%1.60%1.550.811Y
40R2612E.2BXD11R2612E.2.CEL1.83142.0358.20%40.50%1.40%1.780.812 
41R2742E.2BXD12R2742E.2.CEL2.127134.1457.00%41.60%1.40%1.640.782 
42R2543E.1BXD12R2543E.1.CEL1.6111858.60%39.90%1.60%1.430.771Y
43R2586E.1BXD13R2586E.1.CEL2.017456.40%42.00%1.60%2.853.811 
44R877E.2BXD13R877E.2.CEL1.558125.6361.20%37.50%1.20%1.420.812 
45R2557E.1BXD14R2557E.1.CEL1.839962.50%36.10%1.40%1.310.781Y
46R1128E.2BXD14R1128E.2.CEL1.9111559.90%38.80%1.40%1.20.821Y
47R2701E.3BXD15R2701E.3.CEL18860.60%37.90%1.40%1.50.773 
48R2716E.2BXD15R2716E.2.CEL2.015150.8356.40%42.10%1.60%1.420.812 
49R2711E.2BXD16R2711E.2.CEL1.953118.5359.00%39.60%1.50%1.450.82 
50R2567E.1BXD16R2567E.1.CEL2.248256.70%41.60%1.70%1.370.751 
51R2720E.2BXD18R2720E.2.CEL2.3299.9359.50%39.00%1.50%1.330.772 
52R2559E.1BXD18R2559E.1.CEL1.6510460.80%37.70%1.50%1.270.781Y
53R2560E.1BXD19R2560E.1.CEL1.799860.90%37.50%1.60%1.350.81Y
54R2713E.2BXD19R2713E.2.CEL1.67120.8260.20%38.30%1.50%1.450.82 
55R2584E.1BXD20R2584E.1.CEL2.078459.30%39.10%1.60%1.40.761Y
56R2731E.2BXD20R2731E.2.CEL1.82514759.00%39.50%1.50%1.40.82 
57R2702E.2BXD21R2702E.2.CEL1.811128.6559.40%39.10%1.40%1.260.82 
58R2541E2.1BXD21R2541E2.1.CEL2.6312556.00%42.40%1.50%1.290.781 
59R2553E.1BXD22R2553E.1.CEL1.9511159.90%38.50%1.50%1.280.761Y
60R2700E.2BXD22R2700E.2.CEL1.858102.9661.50%37.10%1.30%1.480.792 
61R2558E-2.1BXD23R2558E-2.1.CEL2.233125.0558.60%39.90%1.50%1.430.772 
62R1086E.2BXD23R1086E.2.CEL2.233125.0558.60%39.90%1.50%1.430.772 
63R2719E.2BXD24R2719E.2.CEL1.47140.3861.50%37.20%1.30%1.380.792 
64R2589E2.1BXD24R2589E2.1.CEL2.6111257.50%40.90%1.60%1.240.81 
65R2573E-2.1BXD25R2573E-2.1.CEL3.157257.90%40.70%1.40%1.770.971 
66R2683E.2BXD25R2683E.2.CEL1.777115.6458.30%40.30%1.40%2.010.792 
67R2703E.2BXD27R2703E.2.CEL1.263134.7862.60%36.10%1.40%1.440.782 
68R2729E.3BXD27R2729E.3.CEL18757.90%40.60%1.50%1.560.843Y
69R2562E.3BXD28R2562E.3.CEL1.6511659.90%38.40%1.70%1.370.793Y
70R2721E.2BXD28R2721E.2.CEL2.065157.3956.10%42.40%1.50%1.310.812 
71R2561E.3BXD29R2561E.3.CEL17753.30%45.40%1.40%3.3619.663 
72R1258E.2BXD31R1258E.2.CEL2.063117.0959.00%39.50%1.50%1.540.782 
73R2597E.1BXD31R2597E.1.CEL2.379460.30%38.30%1.50%1.340.771Y
74R2563E.1BXD32R2563E.1.CEL1.5510261.90%36.70%1.40%1.50.81 
75R1216E.2BXD32R1216E.2.CEL2.23111.9958.80%39.80%1.40%1.350.792 
76R2542E.1BXD33R2542E.1.CEL2.139756.50%41.80%1.60%1.910.931 
77R857E.2BXD33R857E.2.CEL1.737113.9861.90%36.70%1.30%1.60.772 
78R1451E.2BXD34R1451E.2.CEL1.843140.0559.00%39.50%1.50%1.420.812Y
79R2585E.1BXD34R2585E.1.CEL2.647558.30%40.00%1.70%1.250.771 
80R2698E.3BXD36R2698E.3.CEL18659.70%39.00%1.30%1.460.783 
81R2705E.3BXD36R2705E.3.CEL18660.20%38.40%1.40%1.460.773 
82R2710E.2BXD38R2710E.2.CEL2.112122.158.80%39.80%1.40%1.370.782 
83R2532E.1BXD38R2532E.1.CEL2.049459.80%38.70%1.50%1.370.81Y
84R2574E.1BXD39R2574E.1.CEL1.989161.20%37.30%1.50%1.390.781 
85R2695E.2BXD39R2695E.2.CEL1.638122.760.80%37.80%1.50%1.420.82 
86R2699E.2BXD40R2699E.2.CEL1.827105.2361.70%36.90%1.40%1.420.812 
87R2590E.1BXD40R2590E.1.CEL2.717759.10%39.30%1.50%1.40.771Y
88R2696E.2BXD42R2696E.2.CEL1.622118.9562.00%36.60%1.50%1.530.792 
89R2596E.1BXD42R2596E.1.CEL2.6310859.00%39.60%1.50%1.240.81 
90R994E.2BXD43R994E.2.CEL1.966113.1260.80%37.80%1.40%1.660.82 
91R2607E.1BXD43R2607E.1.CEL2.4311558.60%40.00%1.40%1.310.761Y
92R2594E.1BXD44R2594E.1.CEL1.7711759.80%38.80%1.40%1.350.851 
93R2610E.2BXD44R2610E.2.CEL1.814142.9159.00%39.50%1.50%1.350.82 
94R2732E.2BXD45R2732E.2.CEL2.154122.4556.50%42.10%1.40%1.80.832 
95R2592E.1BXD45R2592E.1.CEL1.8510660.10%38.60%1.30%1.430.851Y
96R967E.2BXD48R967E.2.CEL1.948130.9557.30%41.20%1.50%1.630.812 
97R2606E.1BXD48R2606E.1.CEL2.5610658.90%39.70%1.40%1.350.831Y
98R2933E.3BXD50R2933E.3.CEL17252.90%45.60%1.50%2.450.983 
99R2937E.3BXD50R2937E.3.CEL18956.90%41.60%1.40%1.810.823 
100R2603E.1BXD51R2603E.1.CEL2.4911557.70%40.80%1.50%1.240.791 
101R1042E.2BXD51R1042E.2.CEL2.352104.1258.70%39.90%1.40%1.530.822 
102R2980E.3BXD55R2980E.3.CEL18256.90%41.70%1.50%1.770.843 
103R2690E.2BXD55R2690E.2.CEL1.887164.0156.10%42.30%1.60%1.430.82 
104R4176EBXD56R4176E.CEL4.7543.0863.00%35.60%1.30%1.390.814Y
105R4175EBXD56R4175E.CEL638.4961.30%37.30%1.40%1.470.814Y
106R1006E.3BXD60R1006E.3.CEL19854.90%43.70%1.50%2.70.863 
107R2725E.2BXD60R2725E.2.CEL1.551148.0159.80%38.80%1.40%1.430.792 
108R1074E.3BXD60R1074E.3.CEL111855.50%43.10%1.40%1.960.813 
109R2534E2.1BXD61R2534E2.1.CEL2.4711857.90%40.60%1.50%1.420.791 
110R2684E.2BXD61R2684E.2.CEL2.01131.0357.00%41.50%1.50%1.340.782 
111R1107E.3BXD62R1107E.3.CEL18355.20%43.40%1.40%2.430.933 
112R2681E.2BXD62R2681E.2.CEL2.086148.2457.20%41.30%1.50%1.290.812 
113R965E.3BXD62R965E.3.CEL193.5553.30%45.20%1.50%3.110.943 
114R1425E.2BXD63R1425E.2.CEL1.713659.30%39.30%1.40%1.430.822 
115R2576E.3BXD63R2576E.3.CEL18461.30%37.40%1.40%1.480.763 
116R943E-2.2BXD64R943E-2.2.CEL1.591141.3460.10%38.40%1.50%1.320.762 
117R2611E.1BXD64R2611E.1.CEL2.299258.00%40.50%1.50%1.571.061 
118R2689E.2BXD65R2689E.2.CEL1.721142.4459.90%38.60%1.50%1.380.762 
119R2583E.1BXD65R2583E.1.CEL2.497056.90%41.50%1.60%1.671.011 
120R2728E.2BXD66R2728E.2.CEL1.714137.4559.40%39.00%1.60%1.380.792 
121R2536E2.1BXD66R2536E2.1.CEL2.7410956.10%42.30%1.70%1.280.791 
122R1207E.2BXD66R1207E.2.CEL1.681136.8660.40%38.10%1.50%1.450.772 
123R1192E.2BXD67R1192E.2.CEL2.126123.3757.90%40.60%1.50%1.50.82 
124R2727E.3BXD67R2727E.3.CEL182.5556.10%42.40%1.50%1.970.872 
125R2691E.3BXD67R2691E.3.CEL19054.80%43.80%1.50%2.610.813 
126R2551E.1BXD68R2551E.1.CEL2.499254.30%44.10%1.60%2.911.551 
127R2726E.2BXD68R2726E.2.CEL1.811153.0958.70%39.80%1.50%1.390.782 
128R2593E.1BXD69R2593E.1.CEL1.6712859.20%39.50%1.30%1.470.921Y
129R975E.2BXD70R975E.2.CEL1.841137.9758.00%40.50%1.40%1.360.792 
130R2537E2.1BXD70R2537E2.1.CEL2.939958.00%40.50%1.60%1.290.751 
131R4531EBXD71R4531E.CEL4.7743.4862.40%36.30%1.40%1.230.774Y
132R4532EBXD71R4532E.CEL5.8940.6860.90%37.60%1.50%1.240.794Y
133R2779E.2BXD73R2779E.2.CEL1.746121.1159.60%39.00%1.40%1.50.82 
134R3024E.3BXD73R3024E.3.CEL178.0551.70%46.60%1.70%2.30.943 
135R2565E.1BXD75R2565E.1.CEL1.7910258.00%40.50%1.50%2.313.471 
136R1397E-re.2BXD75R1397E-re.2.CEL1.449189.7159.60%39.00%1.40%1.390.822 
137R2687E.3BXD77R2687E.3.CEL18058.00%40.60%1.40%1.570.83Y
138R2717E.2BXD77R2717E.2.CEL1.79784.4361.60%36.90%1.40%1.490.762 
139R1421E.3BXD77R1421E.3.CEL19452.40%46.20%1.40%2.290.823 
140R2579E.1BXD80R2579E.1.CEL2.427259.20%39.40%1.50%1.730.821 
141R2686E.2BXD80R2686E.2.CEL2.342119.6356.00%42.60%1.50%1.380.792 
142R2956E.3BXD83R2956E.3.CEL18455.40%43.20%1.40%1.390.843 
143R2960E.3BXD83R2960E.3.CEL18056.60%41.90%1.50%1.50.823Y
144R2922E.3BXD84R2922E.3.CEL19157.80%40.80%1.50%1.470.833Y
145R2895E.3BXD84R2895E.3.CEL17558.30%40.20%1.50%1.560.773Y
146R2692E.2BXD85R2692E.2.CEL1.423160.8760.20%38.30%1.40%1.460.792 
147R2715E.2BXD85R2715E.2.CEL1.488142.661.20%37.30%1.40%1.50.782 
148R1405E.2BXD86R1405E.2.CEL2.351119.3456.40%42.20%1.40%1.640.812 
149R1225E.3BXD86R1225E.3.CEL17153.90%44.60%1.40%3.21.613 
150R2724E.2BXD87R2724E.2.CEL1.906113.7160.70%37.90%1.40%1.450.792 
151R2540E.1BXD87R2540E.1.CEL2.339361.10%37.40%1.40%1.220.811Y
152R1433E.2BXD89R1433E.2.CEL12.24157.70%40.80%1.50%1.410.782 
153R2546E.1BXD89R2546E.1.CEL1.999658.60%39.70%1.70%1.470.781 
154R2578E2.1BXD90R2578E2.1.CEL2.799258.60%39.80%1.60%1.520.771Y
155R859E.2BXD90R859E.2.CEL1.847152.2257.90%40.70%1.40%1.360.772 
156R2682E.2BXD92R2682E.2.CEL1.547156.3160.40%38.20%1.40%1.370.772 
157R1388E.3BXD92R1388E.3.CEL16360.00%38.60%1.40%1.851.033 
158R1322E.3BXD92R1322E.3.CEL18055.90%42.60%1.50%1.750.743 
159R2733E.2BXD96R2733E.2.CEL1.7113.9962.10%36.60%1.30%1.40.782 
160R2554E.1BXD96R2554E.1.CEL2.189360.20%38.30%1.50%1.460.771Y
161R2649E.2BXD97R2649E.2.CEL2.343119.0457.50%41.20%1.40%1.530.82 
162R2577E.1BXD97R2577E.1.CEL2.077759.50%39.10%1.40%1.871.291 
163R2645E.3BXD98R2645E.3.CEL18859.40%39.20%1.50%1.590.813Y
164R2688E.2BXD98R2688E.2.CEL1.772145.2458.50%40.00%1.50%1.480.812 
165R4533EBXD99R4533E.CEL137.6960.30%38.20%1.40%1.330.894Y
166R4534EBXD99R4534E.CEL5.6936.6262.90%35.70%1.40%1.160.84Y
167R2885E.3BXSB/MpJR2885E.3.CEL17658.10%40.60%1.30%1.881.063 
168R2883E.3BXSB/MpJR2883E.3.CEL17156.40%42.00%1.50%1.590.843Y
169R1700E.1C3H/HeJR1700E.1.CEL2.986960.80%37.90%1.40%1.480.781 
170R1704E.1C3H/HeJR1704E.1.CEL2.588860.10%38.60%1.30%1.380.841 
171R2605E.1C57BL/6JR2605E.1.CEL1.8213160.50%38.20%1.30%1.320.81Y
172R0871EC57BL/6JR0871E.CEL6.2437.3861.90%36.70%1.40%1.410.84Y
173R0872E.1C57BL/6JR0872E.1.CEL3.138958.90%39.60%1.50%1.30.791Y
174R0872EC57BL/6JR0872E.CEL3.12888.5858.90%39.60%1.50%1.30.791 
175R4507EC57BL/6J-NyxR4507E.CEL8.1337.559.30%39.30%1.40%1.320.84Y
176R4508EC57BL/6J-NyxR4508E.CEL6.3337.2660.90%37.80%1.30%1.240.824Y
177R4505EC57BL/6J-Rpe65R4505E.CEL5.9837.4861.80%36.80%1.40%1.450.854Y
178R4506EC57BL/6J-Rpe65R4506E.CEL6.9437.961.10%37.50%1.30%1.50.834Y
179R4535EC57BLKS/JR4535E.CEL6.5937.2861.20%37.30%1.40%1.260.834Y
180R4536EC57BLKS/JR4536E.CEL140.7160.30%38.20%1.50%1.250.774Y
181R2564E.1CAST/EiJR2564E.1.CEL1.948958.50%39.90%1.60%1.60.771 
182R2580E.1CAST/EiJR2580E.1.CEL2.099558.20%40.10%1.70%1.40.761 
183R4537ECBA/CaJR4537E.CEL138.4560.60%37.90%1.50%1.630.824Y
184R4538ECBA/CaJR4538E.CEL5.8939.1861.70%36.90%1.40%1.450.84Y
185R4539ECZECHII/EiJR4539E.CEL7.7337.158.30%40.10%1.50%1.70.954Y
186R4540ECZECHII/EiJR4540E.CEL11.0436.6953.00%45.30%1.70%1.831.324 
187R2600E.1D2B6F1R2600E.1.CEL2.479558.10%40.20%1.70%1.410.781Y
188R2604E.1D2B6F1R2604E.1.CEL2.669059.40%39.20%1.50%1.280.791Y
189R1002E.3DBA/2JR1002E.3.CEL110254.80%43.70%1.50%2.840.833 
190R4541EDBA/2JR4541E.CEL143.461.40%37.00%1.50%1.370.734Y
191R959E.3DBA/2JR959E.3.CEL189.9753.20%45.30%1.50%3.661.094 
192R2572E.1DBA/2JR2572E.1.CEL2.417955.50%42.90%1.60%1.370.791 
193R4542EDBA/2JR4542E.CEL5.739.9561.00%37.40%1.50%1.230.814Y
194R2771E.3FVB/NJR2771E.3.CEL17055.30%43.20%1.50%1.690.833 
195R2772E.3FVB/NJR2772E.3.CEL17655.20%43.40%1.40%2.131.023 
196R2636E.1KK/HlJR2636E.1.CEL2.619358.90%39.50%1.50%1.390.761Y
197R2637E.1KK/HlJR2637E.1.CEL2.1910359.40%39.00%1.50%1.30.791Y
198R0999E.1LG/JR0999E.1.CEL2.458259.40%39.10%1.50%1.380.791Y
199R1004E.1LG/JR1004E.1.CEL2.449258.70%39.80%1.50%1.380.791Y
200R4543ELP/JR4543E.CEL6.5741.9960.30%38.20%1.50%1.280.754Y
201R4544ELP/JR4544E.CEL4.5639.962.40%36.10%1.50%1.230.774Y
202R2858E.3MOLF/EiJR2858E.3.CEL16453.80%44.70%1.50%1.590.953 
203R2919.3MOLF/EiJR2919.3.CEL16452.40%46.00%1.60%2.151.073 
204R1688E.1NOD/LtJR1688E.1.CEL2.669858.60%39.90%1.50%1.260.81Y
205R2566E-2.1NOD/LtJR2566E-2.1.CEL3.036959.80%38.80%1.50%1.380.751Y
206R4545ENZB/BlNJR4545E.CEL4.2343.4862.10%36.40%1.50%1.330.764Y
207R4546ENZB/BlNJR4546E.CEL6.2744.2259.40%39.10%1.50%1.170.824Y
208R2535E.1NZO/HlLtJR2535E.1.CEL1.898660.40%38.20%1.40%1.410.851 
209R2550E.1NZO/HlLtJR2550E.1.CEL1.798760.70%37.80%1.50%1.520.821 
210R2817E.3NZW/LacJR2817E.3.CEL15950.90%47.60%1.50%3.591.483 
211R2810ENZW/LacJR2810E.CEL       3 
212R2810E.3NZW/LacJR2810E.3.CEL17457.00%41.70%1.40%2.151.034Y
213R4547EPANCEVO/EiJR4547E.CEL5.2751.3457.20%41.10%1.70%1.70.834 
214R4548EPANCEVO/EiJR4548E.CEL10.5437.3950.30%48.00%1.70%1.681.094 
215R2635E.1PWD/PhJR2635E.1.CEL3.728054.20%44.10%1.70%1.530.851 
216R2634E.1PWD/PhJR2634E.1.CEL3.299055.90%42.50%1.60%1.570.811 
217R2544E.1PWK/PhJR2544E.1.CEL2.210854.90%43.50%1.70%1.360.821 
218R2549E.1PWK/PhJR2549E.1.CEL2.288457.30%41.20%1.50%1.570.831 
219R4550ESJL/JR4550E.CEL5.3540.4462.30%36.20%1.40%1.240.794 
220R2368E.1WSB/EiJR2368E.1.CEL2.578659.50%39.10%1.40%1.290.741Y
221R2547E.1WSB/EiJR2547E.1.CEL2.149058.20%40.10%1.60%1.320.771Y
+
diff --git a/general/datasets/Eye_m2_0908_r_wt/summary.rtf b/general/datasets/Eye_m2_0908_r_wt/summary.rtf new file mode 100644 index 0000000..44b7e23 --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_wt/summary.rtf @@ -0,0 +1,12 @@ +

FINAL RECOMMENDED EYE DATA SET. The HEIMED September 2008 RMA data release provides estimates of gene expression in whole eyes of 103 lines of young adult mice generated using 221 Affymetrix M430 2.0 arrays. This data set is intended for exploration of the genetics and genomics of the mouse eye, retina, lens, retinal pigment epithelium, cornea, iris and choroid. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). We used pooled RNA samples, usually two independent pools--one male, one female pool--for most lines of mice. This data set was processed using the RMA protocol. A total of 2223 probes sets are associated with LRS values greater than 46 (LOD >10).

+ +

Users of these mouse eye data may also find the following complementary resources extremely useful:

+ +
    +
  1. NEIBank collection of ESTs and SAGE data.
  2. +
  3. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases
  4. +
  5. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.
  6. +
  7. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus.
  8. +
  9. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430).
  10. +
  11. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.
  12. +
diff --git a/general/datasets/Eye_m2_0908_r_wt/tissue.rtf b/general/datasets/Eye_m2_0908_r_wt/tissue.rtf new file mode 100644 index 0000000..9b6ee0f --- /dev/null +++ b/general/datasets/Eye_m2_0908_r_wt/tissue.rtf @@ -0,0 +1,2058 @@ +

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube.

+ +

Each array was hybridized with a pool of cRNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

+ +

Dissecting and preparing eyes for RNA extraction

+ +
    +
  1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below).
  2. +
  3. Store RNA in 75% ethanol at –80 deg. C until use.
  4. +
+ +

Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we:

+ +
    +
  1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue)
  2. +
  3. allowed the homogenate to stand for 5 min at room temperature
  4. +
  5. added 0.2 ml of chloroform per 1 ml RNA STAT-60
  6. +
  7. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min
  8. +
  9. centrifuged at 12,000 G for 15 min
  10. +
  11. transfered the aqueous phase to a fresh tube
  12. +
  13. added 0.5 ml of isopropanol per 1 ml RNA STAT-60
  14. +
  15. vortexed and allowed sample to stand at room temperature for 5-10 min
  16. +
  17. centrifuged at 12,000 G for 10-15 min
  18. +
  19. removed the supernatant and washed the RNA pellet with 75% ethanol
  20. +
  21. stored the pellet in 75% ethanol at -80 deg C until use
  22. +
+ +

Sample Processing. All samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center led by Dr. Weikuan Gu. All arrays were processed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. C until use (roughly one third) or were used immediately for hybridization.

+ +

Dealing with ocular pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations taken from brown and beige colored mice tend to have faint residual pigmentation that affects hybridization signal. To address this problem, Dr. Yan Jiao purified total RNA using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204) all four batches.

+ +

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well balanced sample of males and females, in general without within-strain-by-sex replication. Two strains are represented by a single male sample pool (BXD29 and A/J). Four lines are represented by two or three male sample pools (all of the five DeltaGen KO line). The SJL/J may be a single mixed sex sample. Users can study possible sex effects by comparing any results of expression data to that of a surrogate measurement that summarizes the overall sex balance of HEIMED. To do this just compare your data to those of probe sets 1427262_at (Xist, high in females) and probe set 1426438_at (Ddx3y, high in males). These two sex-specific probes are quantitative surrogates for the sex balance in this data set.

+ +

Technical duplicates: One sample, highlighted in the tables below, is a technical duplicate. The pair of technical duplicates were both of high quality. For statistical analysis, they should be combined and treated as single biological sample.

+ +

Batch structure: This data set consists of four batches (Table 2, far right column). The final September 2008 data set consists of a total of 221 arrays and 220 independent samples.

+ +
    +
  1. Batch 1: November 2005, n = 78 arrays original arrays of which 76 were accepted into this final data set.
  2. +
  3. Batch 2: January 2006, n = 62 arrays of which 62 were accepted.
  4. +
  5. Batch 3: August 2006, n = 39 arrays of which 36 were accepted. (These three batches, including some arrays that were eventually dropped from the final 2008 data set, were combined to form the September 2006 data set.)
  6. +
  7. Batch 4: Summer 2008, n = 53 arrays of which 47 were accepted.
  8. +
+ +

Table 1: HEIMED case IDs, including sample tube ID, strain, age, sex, and source of mice (see Table 2 for information on array quality control)

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexTubeIDGroupStrainAgeSexSource
1R2595E.1GDP129S1/SvImJ59FUTHSC RW
2R2533E.1GDP129S1/SvImJ60MUTHSC RW
3R0754E.1GDPA/J60MJAX
4R4521EKOB6129P2F2N1-Clcn369MTChoi_Deltagen
5R4522EKOB6129P2F2N1-Clcn369MTChoi_Deltagen
6R4523EKOB6129P2F2N1-Clcn367MTChoi_Deltagen
7R4526EKOB6129P2F2N1-Gabbr116FTChoi_Deltagen
8R4509EKOB6129P2F2N1-Gabbr116MTChoi_Deltagen
9R4510EKOB6129P2F2N1-Gabbr119MTChoi_Deltagen
10R4511EKOB6129P2F2N1-Gabbr120MTChoi_Deltagen
11R4524EKOB6129P2F2N1-Gabbr119MTChoi_Deltagen
12R4525EKOB6129P2F2N1-Gabbr122MTChoi_Deltagen
13R4515EKOB6129P2F2N1-Gabra167MTChoi_Deltagen
14R4516EKOB6129P2F2N1-Gabra169MTChoi_Deltagen
15R4517EKOB6129P2F2N1-Gabra167MTChoi_Deltagen
16R4512EKOB6129P2F2N1-Gnb522FTChoi_Deltagen
17R4513EKOB6129P2F2N1-Gnb525MTChoi_Deltagen
18R4514EKOB6129P2F2N1-Gnb522MTChoi_Deltagen
19R4518EKOB6129P2F2N1-Gpr1970MTChoi_Deltagen
20R4519EKOB6129P2F2N1-Gpr1968MTChoi_Deltagen
21R2601E.1GDP BXDB6D2F173FUTHSC RW
22R2602E.1GDP BXDB6D2F173MUTHSC RW
23R1676E.1GDPBALB/cByJ83FJAX
24R1672E.1GDPBALB/cByJ83MJAX
25R4530EGDPBALB/cJ66FJAX
26R4529EGDPBALB/cJ66MJAX
27R2704E.2BXDBXD159FUTHSC RW
28R2707E.3BXDBXD159MBIDMC GR
29R1231E.2BXDBXD264FUTHSC RW
30R2598E.1BXDBXD261MUTHSC RW
31R2591E.1BXDBXD560FBIDMC GR
32R2714E.2BXDBXD558MUTHSC RW
33R2570E.1BXDBXD665FUTHSC RW
34R2694E.2BXDBXD658MUTHSC RW
35R2538E.1BXDBXD877FUTHSC RW
36R2709E.2BXDBXD861MUTHSC RW
37R2708E.2BXDBXD960FUTHSC RW
38R2569E.1BXDBXD967MUTHSC RW
39R2581E.1BXDBXD1165FUTHSC RW
40R2612E.2BXDBXD1170MUTHSC RW
41R2742E.2BXDBXD1271FUTHSC RW
42R2543E.1BXDBXD1263MUTHSC RW
43R2586E.1BXDBXD1360FBIDMC GR
44R877E.2BXDBXD1376MUTHSC RW
45R2557E.1BXDBXD1460FBIDMC GR
46R1128E.2BXDBXD1465MUTHSC RW
47R2701E.3BXDBXD1560FBIDMC GR
48R2716E.2BXDBXD1560MUTHSC RW
49R2711E.2BXDBXD1661FUTHSC RW
50R2567E.1BXDBXD1660MBIDMC GR
51R2720E.2BXDBXD1859FUTHSC RW
52R2559E.1BXDBXD1859MBIDMC GR
53R2560E.1BXDBXD1960FBIDMC GR
54R2713E.2BXDBXD1960MUTHSC RW
55R2584E.1BXDBXD2059FBIDMC GR
56R2731E.2BXDBXD2060MUTHSC RW
57R2702E.2BXDBXD2159FUTHSC RW
58R2541E2.1BXDBXD2161MUTHSC RW
59R2553E.1BXDBXD2258FBIDMC GR
60R2700E.2BXDBXD2259MUTHSC RW
61R2558E-2.1BXDBXD2360FBIDMC GR
62R1086E.2BXDBXD2355MUTHSC RW
63R2719E.2BXDBXD24123FUTHSC RW
64R2589E2.1BXDBXD2459MBIDMC GR
65R2573E-2.1BXDBXD2567FUAB
66R2683E.2BXDBXD2558MUTHSC RW
67R2703E.2BXDBXD2760FUTHSC RW
68R2729E.3BXDBXD2768MUTHSC RW
69R2562E.3BXDBXD2860FBIDMC GR
70R2721E.2BXDBXD2860MUTHSC RW
71R2561E.3BXDBXD2960MBIDMC GR
72R1258E.2BXDBXD3157FUTHSC RW
73R2597E.1BXDBXD3161MBIDMC GR
74R2563E.1BXDBXD3263FUTHSC RW
75R1216E.2BXDBXD3276MUTHSC RW
76R2542E.1BXDBXD3367FUTHSC RW
77R857E.2BXDBXD3377MUTHSC RW
78R1451E.2BXDBXD3461FUTHSC RW
79R2585E.1BXDBXD3460MBIDMC GR
80R2698E.3BXDBXD3658FBIDMC GR
81R2705E.3BXDBXD3657MBIDMC GR
82R2710E.2BXDBXD3855FUTHSC RW
83R2532E.1BXDBXD3862MUTHSC RW
84R2574E.1BXDBXD3970FUTHSC RW
85R2695E.2BXDBXD3959MUTHSC RW
86R2699E.2BXDBXD4059FUTHSC RW
87R2590E.1BXDBXD4060MBIDMC GR
88R2696E.2BXDBXD4258FUTHSC RW
89R2596E.1BXDBXD4259MBIDMC GR
90R994E.2BXDBXD4360FUTHSC RW
91R2607E.1BXDBXD4367MUTHSC RW
92R2594E.1BXDBXD4463FUTHSC RW
93R2610E.2BXDBXD4468MUTHSC RW
94R2732E.2BXDBXD4563FUTHSC RW
95R2592E.1BXDBXD4562MUTHSC RW
96R967E.2BXDBXD4864FUTHSC RW
97R2606E.1BXDBXD4878MUTHSC RW
98R2933E.3BXDBXD5061FUTHSC RW
99R2937E.3BXDBXD5061MUTHSC RW
100R2603E.1BXDBXD5166FUTHSC RW
101R1042E.2BXDBXD5162MUTHSC RW
102R2980E.3BXDBXD5576FUTHSC RW
103R2690E.2BXDBXD5565MUTHSC RW
104R4176EBXDBXD5667FUTHSC RW
105R4175EBXDBXD5653MUTHSC RW
106R1006E.3BXDBXD6060FUTHSC RW
107R2725E.2BXDBXD6061FUTHSC RW
108R1074E.3BXDBXD6059MUTHSC RW
109R2534E2.1BXDBXD6170FUTHSC RW
110R2684E.2BXDBXD6162MUTHSC RW
111R1107E.3BXDBXD6254FUTHSC RW
112R2681E.2BXDBXD6262MUTHSC RW
113R965E.3BXDBXD6254MUTHSC RW
114R1425E.2BXDBXD6361FUTHSC RW
115R2576E.3BXDBXD6370MUTHSC RW
116R943E-2.2BXDBXD6456FUTHSC RW
117R2611E.1BXDBXD6468MUTHSC RW
118R2689E.2BXDBXD6563FUTHSC RW
119R2583E.1BXDBXD6560MUTHSC RW
120R2728E.2BXDBXD6667FUTHSC RW
121R2536E2.1BXDBXD6664FUTHSC RW
122R1207E.2BXDBXD6683MUTHSC RW
123R1192E.2BXDBXD6764FUTHSC RW
124R2727E.3BXDBXD6765FUTHSC RW
125R2691E.3BXDBXD6765MUTHSC RW
126R2551E.1BXDBXD6867FUTHSC RW
127R2726E.2BXDBXD6864MUTHSC RW
128R2593E.1BXDBXD6959FUTHSC RW
129R975E.2BXDBXD7064FUTHSC RW
130R2537E2.1BXDBXD7059MUTHSC RW
131R4531EBXDBXD7187FUTHSC RW
132R4532EBXDBXD7186MUTHSC RW
133R2779E.2BXDBXD7364FUTHSC RW
134R3024E.3BXDBXD7354MUTHSC RW
135R2565E.1BXDBXD7561FUTHSC RW
136R1397E-re.2BXDBXD7558MUTHSC RW
137R2687E.3BXDBXD7760FUTHSC RW
138R2717E.2BXDBXD77107MUTHSC RW
139R1421E.3BXDBXD7762MUTHSC RW
140R2579E.1BXDBXD8065FUTHSC RW
141R2686E.2BXDBXD8061MUTHSC RW
142R2956E.3BXDBXD8358FUTHSC RW
143R2960E.3BXDBXD8358MUTHSC RW
144R2922E.3BXDBXD8461FUTHSC RW
145R2895E.3BXDBXD8467MUTHSC RW
146R2692E.2BXDBXD8563FUTHSC RW
147R2715E.2BXDBXD8591MUTHSC RW
148R1405E.2BXDBXD8658FUTHSC RW
149R1225E.3BXDBXD8658MUTHSC RW
150R2724E.2BXDBXD8763FUTHSC RW
151R2540E.1BXDBXD8763MUTHSC RW
152R1433E.2BXDBXD8963FUTHSC RW
153R2546E.1BXDBXD8966MUTHSC RW
154R2578E2.1BXDBXD9061FUTHSC RW
155R859E.2BXDBXD9072MUTHSC RW
156R2682E.2BXDBXD9266FUTHSC RW
157R1388E.3BXDBXD9262FUTHSC RW
158R1322E.3BXDBXD9255MUTHSC RW
159R2733E.2BXDBXD9667FUTHSC RW
160R2554E.1BXDBXD9667MUTHSC RW
161R2649E.2BXDBXD9774FUTHSC RW
162R2577E.1BXDBXD9755MUTHSC RW
163R2645E.3BXDBXD9866FUTHSC RW
164R2688E.2BXDBXD9867MUTHSC RW
165R4533EBXDBXD9980FUTHSC RW
166R4534EBXDBXD9991MUTHSC RW
167R2885E.3GDPBXSB/MpJ61FBIDMC GR
168R2883E.3GDPBXSB/MpJ61MBIDMC GR
169R1700E.1GDPC3H/HeJ83FUTHSC RW
170R1704E.1GDPC3H/HeJ83MUTHSC RW
171R2605E.1GDP BXDC57BL/6J79FUTHSC RW
172R0871EGDP BXDC57BL/6J65FUTHSC RW
173R0872E.1GDP BXDC57BL/6J66MUTHSC RW
174R0872EGDP BXDC57BL/6J66MUTHSC RW
175R4507EKOC57BL/6J-Nyx57MGeisert
176R4508EKOC57BL/6J-Nyx57MGeisert
177R4505EKOC57BL/6J-Rpe6557FGeisert
178R4506EKOC57BL/6J-Rpe6557FGeisert
179R4535EGDPC57BLKS/J66FJAX
180R4536EGDPC57BLKS/J66MJAX
181R2564E.1GDPCAST/EiJ64FJAX
182R2580E.1GDPCAST/EiJ64MJAX
183R4537EGDPCBA/CaJ66FJAX
184R4538EGDPCBA/CaJ66MJAX
185R4539EGDPCZECHII/EiJ66FJAX
186R4540EGDPCZECHII/EiJ66MJAX
187R2600E.1GDP BXDD2B6F172FUTHSC RW
188R2604E.1GDP BXDD2B6F169MUTHSC RW
189R1002E.3GDP BXDDBA/2J72FUTHSC RW
190R4541EGDP BXDDBA/2J65FJAX
191R959E.3GDP BXDDBA/2J60MUTHSC RW
192R2572E.1GDP BXDDBA/2J65MUTHSC RW
193R4542EGDP BXDDBA/2J59MJAX
194R2771E.3GDPFVB/NJ60FBIDMC GR
195R2772E.3GDPFVB/NJ60MBIDMC GR
196R2636E.1GDPKK/HlJ64FUTHSC RW
197R2637E.1GDPKK/HlJ64MUTHSC RW
198R0999E.1GDPLG/J57FUTHSC RW
199R1004E.1GDPLG/J65MUTHSC RW
200R4543EGDPLP/J65FJAX
201R4544EGDPLP/J65MJAX
202R2858E.3GDPMOLF/EiJ60FBIDMC GR
203R2919.3GDPMOLF/EiJ60MBIDMC GR
204R1688E.1GDPNOD/LtJ66FJAX
205R2566E-2.1GDPNOD/LtJ76MUTHSC RW
206R4545EGDPNZB/BlNJ61FBIDMC GR
207R4546EGDPNZB/BlNJ58MBIDMC GR
208R2535E.1GDPNZO/HlLtJ62FJAX
209R2550E.1GDPNZO/HlLtJ96MJAX
210R2817E.3GDPNZW/LacJ65FBIDMC GR
211R2810EGDPNZW/LacJ60MBIDMC GR
212R2810E.3GDPNZW/LacJ60MBIDMC GR
213R4547EGDPPANCEVO/EiJ68FJAX
214R4548EGDPPANCEVO/EiJ68MJAX
215R2635E.1GDPPWD/PhJ62FJAX
216R2634E.1GDPPWD/PhJ62MJAX
217R2544E.1GDPPWK/PhJ63FJAX
218R2549E.1GDPPWK/PhJ83MJAX
219R4550EGDPSJL/J65M+FJAX
220R2368E.1GDPWSB/EiJ67FUTHSC RW
221R2547E.1GDPWSB/EiJ67MUTHSC RW
+
diff --git a/general/datasets/Eye_m2_0908_wtwt/acknowledgment.rtf b/general/datasets/Eye_m2_0908_wtwt/acknowledgment.rtf new file mode 100644 index 0000000..5098d32 --- /dev/null +++ b/general/datasets/Eye_m2_0908_wtwt/acknowledgment.rtf @@ -0,0 +1,3 @@ +

Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant and from funds from NEI grant to Dr. Eldon Geisert (R01EY017841), an NEI Vision Core grant (EY14080) and an Unrestricted Grant from Research To Prevent Blindness.

+ +

We thank Dr. Ted Choi, Chief Scientific Director of Predictive Biology, Inc. (past director of molecular genetics at Deltagen Inc.) for providing us with eye samples from several interesting DeltaGen knockouts.

diff --git a/general/datasets/Eye_m2_0908_wtwt/cases.rtf b/general/datasets/Eye_m2_0908_wtwt/cases.rtf new file mode 100644 index 0000000..552d4a5 --- /dev/null +++ b/general/datasets/Eye_m2_0908_wtwt/cases.rtf @@ -0,0 +1,57 @@ +

This is the complete and final HEIMED data set. HEIMED consists of expression data for 103 genetically defined lines of mice with standard errors of the mean. Almost all animals are young adults between 50 and 80 days of age (Table 1, maximum age is 123 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, reciprocal F1s between C57BL/6J and DBA/2J, and several mutant and knockout lines. We have combined all common strains, F1 hybrids, and mutants into a group called the Mouse Diversity Panel (MDP). Four lines, namely, C57BL/6J (B6), DBA/2J (D2), and the pair of B6D2F1 and D2B6F1 hybrids are common to both the MDP and the BXD set. This is a breakdown of cases that are part of HEIMED:

+ +
    +
  1. 68 BXD strains. The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. Only one of these strains, BXD24 (know also known as BXD24b), has retinal degeneration (a spontaneous mutation). The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA.
  2. +
  3. 35 MDP lines, including 26 inbred strains representing closely related substrains (e.g, BALB/cJ and BALB/cByJ), many of the most widely used common Mus musculus domesticus inbred strains (e.g., C57BL/6J and 129S1/SvImJ), inbred but wild-derived representatives of common subspecies (Mus musculus domesticus, e.g, WSB/EiJ; M. musculus musculus, e.g., CZECHII/EiJ; M. musculus molossinus, e.g., MOLF/EiJ; M. musculus castaneus, e.g., CAST/EiJ); and even one different species of mouse (Mus spicilegus, PANCEVO/EiJ). The MDP also includes the reciprocal F1 hybrids (B6D2F1 and D2B6F1) and the following 6 KO lines and the Nyx-nob mutant:
  4. +
  5. 6 knockouts (KO), including a KO of Rpe65, and 5 DeltaGen Inc. knockout lines provided by Dr. Ted Choi. These KO lines have had a bacterial lacZ construct inserted into the gene. The endogenous promoter drives expression of beta-galactosidase. RT-PCR analysis detects a gene transcript in most tissues. The following KOs from DeltaGen were studied: Gabra1, Gabbr1, Gnb1, Gpr19, and Clcn3. We also included one spontaneous mutant of the nyctalopin (Nyx no b wave "nob") gene (Pardue et al., 1998) that is on a BALB/cByJ background.
  6. +
+ +

Rod photoreceptor degeneration in inbred mice: Six strains of mice included in HEIMED suffer from severe loss of photoreceptors (mainly rods) and have the equivalent of night blindness in human patients. The death of photoreceptors in these strains occurs by one to two months of age and is often caused by the retinal degeneration 1 (rd1) mutant allele in the rod cyclic-GMP phosphodiesterase 6 beta subunit gene (Pde6b). The following strains are known to have photoreceptor degeneration: C3H/HeJ, FVB/NJ, MOLF/EiJ, SJL/J and BXD24/TyJ. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEIMED data set.

+ +

As expected (Dickerson LW et al., 2002) and as judged from the absence of rhodopsin expression, one of the DeltaGen KO lines (chloride ion channel 3, Clcn3) also has retinal degeneration: B6129P2F2N1-Clcn3. Degeneration in this strain is likely to include all rods and all cones. The cone defect is obvious from the decrease in expression of Gnat2, a gene associated with cones and achromatopsia in mice and humans.

+ +

Lines of mice were selected using the following criteria:

+ + + +

We have included all eight parents of the Collaborative Cross (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/LtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ) in the MDP. Fourteen MDP strains have been partially sequenced by Perlegen for the NIEHS, including including 129S1/SvImJ, A/J, AKR/J, BALB/cByJ, C3H/HeJ, CAST/EiJ, DBA/2J, FVB/NJ, KK/HlJ, MOLF/EiJ, NOD/LtJ, NZW/LacJ, PWD/PhJ, and WSB/EiJ (see the GeneNetwork SNP Browser for data, details, and see Perlegen's excellent data resources and browser).

+ +
    +
  1. 129S1/SvImJ : Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene. It is also a cone photoreceptor function loss 3 mutant (Cpfl3 allele) of the Gnat2 gene that is a model for achromatopsia (JAX Stock Number: 002448)
  2. +
  3. A/J: Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase (Tyr c allele) albino mutant. This strain is particularly sensitive to light-induced photoreceptor loss (Danciger et al., 2007). (JAX Stock Number: 000646)
  4. +
  5. BALB/cByJ: Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project old group A list. A tyrosinase (Tyr c allele) albino mutant and also a tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. Small brain, not aggressive (JAX Stock Number: 001026)
  6. +
  7. BALB/cJ: Phenome Project A list. A tyrosinase (Tyr c allele) albino mutant and also a tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. Large brain and aggressive (JAX Stock Number: 000651)
  8. +
  9. BXSB/MpJ: A white-bellied agouti strains with interesting autoimmune disease restricted to males that is associated with a mutation in the Yaa gene that causes glomerulonephritis, a dramatic increase in number of peripheral monocytes, and pre-B-cell deficiency (JAX Stock Number: 000740)
  10. +
  11. C3H/HeJ: The Heston (He) substrain with a wildtype agouti (A allele) coat color. Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project old group A list. Important to note for this eye expression dataset, C3H/HeJ is a Pdeb6 rd1 mutant with near total photoreceptor loss at as early as postnatal day 30. Also a Tlr4 mutant that is endotoxin resistant. (JAX Stock Number: 000659)
  12. +
  13. C57BL/6J: Sequenced by NIH/NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list. Single most widely used inbred strain of mouse. (JAX Stock Number: 000664)
  14. +
  15. C57BLKS/J: Black Kaliss strain (non-agouti a allele) derived from C57BL/6J, but genetically contaminated at some point mainly with DBA/2J and then reinbred. Now at the Jackson Laboratory. (JAX Stock Number: 000662)
  16. +
  17. CAST/EiJ: A wild-derived inbred Mus musculus castaneus strain. Samples of this subspecies were captured in Southeast Asia. One of three wild-derived strains in the Collaborative Cross sequenced by NIEHS; Phenome Project A list. CAST/Ei and CAST/EiJ are the same strain. The addition of the "J" is trivial and was added when stock were transferred from Dr. Eicher's lab to the Jackson Laboratory production facility in about 2004. (JAX Stock Number: 000928)
  18. +
  19. CBA/CaJ: Agouti strain from the Jackson Laboratory. Wildtype pigment genes. (JAX Stock Number: 000654)
  20. +
  21. CZECHII/EiJ: Czech 2 is a wild-derived inbred strain M. musculus musculus strain. Samples of this subspecies were caught in the Czech Republic and inbred at the Jackson Laboratory by Eva Eicher. White-bellied agouti. (JAX Stock Number: 001144).
  22. +
  23. DBA/2J: The dilute, brown, agouti (dba) strain is the oldest inbred strain of mouse. Inbreeding was started in 1909 by Little. A tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. A myosin 5a (Myo5a d) dilute allele mutant. Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project old A group list. (JAX Stock Number: 000671)
  24. +
  25. FVB/NJ: Friend's leukemia virus B (FVB) strain. Sequenced by Perlegen/NIEHS and Celera. Tyr c locus albino and a Pdeb6 rd1 mutant derived from Swiss mice at NIH. This has been the most common strain used to make transgenic mice due to large and easily injected oocytes; Phenome Project A list (JAX Stock Number: 001800).
  26. +
  27. KK/HlJ: K Kondo's (KK) Kasukabe strain is a homozygous age-related hearing loss (ahl) allele mutant of the Cdh23 gene. A Tyr c locus albino strain. Males have a form of type 2 diabetes. Sequenced by Perlegen/NIEHS. (JAX Stock Number: 002106)
  28. +
  29. LG/J: Large (LG) strain. Paternal parent of the Large-by-Small set of RI strains made by James Cheverud and colleagues (the LGXSM panel, not to be confused with the LongXShort or LXS panel). A Tyr c locus albino strain. (JAX Stock Number: 000675)
  30. +
  31. LP/J: White-bellied agouit strain with a piebald mutation in the endothelin receptor type B Ednrb gene from at the Jackson Laboratory. Some reduction in melanocytes in choroid of eye due to neural creast migration abnormalities. (JAX Stock Number: 000676)
  32. +
  33. MOLF/EiJ: A wild-derived inbred strain derived from M. musculus molossinus samples camputered in Fukuoka, Japan. This strain has the retinal degeneration rd1 allele in Pde6b. There appears to have been some genetic contamination of this strain with conventional inbred strains in the past several decades (F. Pardo, personal communication to RWW, August 2006). However, the strain is currently fully inbred. (JAX Stock Number: 000550)
  34. +
  35. NOD/LtJ: Non-obese diabetic strain, originally from M. Hattori in Kyoto, Japan. This is the Edward Leiter (Lt) substrain from the Jackson Laboratory. Collaborative Cross strain sequenced by NIEHS; Phenome Project B list. Homozygous age-related hearing loss (ahl) allele mutant of the Cdh23 gene. A Tyr c locus albino strain. (JAX Stock Number: 001976)
  36. +
  37. NZO/HlLtJ: New Zealand Obese strain. This is a severely obese and hypertensive strain. Males often develop a type 2 diabetes. Collaborative Cross strain. Agouti coat color. (JAX Stock Number: 002105)
  38. +
  39. NZB/BlNJ: New Zealand Black inbred strain from Bielschowsky (BL, substrain is "B lowercase L N", not "BiN") now maintained at the Jackson Laboratory. (JAX Stock Number: 000648)
  40. +
  41. NZW/LacJ: New Zealand White strain from the Laboratory Animal Center (Carshalton, UK), now maintained at the Jackson Laboratory. Carries the Tyr c locus albino mutation, the pink-eye dilution mutation in the Oca2 or p locus, and the brown allele at Tyrp1. (JAX Stock Number: 001058)
  42. +
  43. PANCEVO/EiJ: PANCEVO/EiJ is a wild-derived inbred strain from the Mus spicilegus samples caught in the Pancevo, Serbia. This species of mouse is also known as the Steppe mouse (taxon identifier 10103). M. spicilegus is a colonial mound-building species. No known ocular or retina mutations, but the expression level of Gnat2 is low in this strain, either due to a 3' UTR length variant or possible achromatosia (cone degeneration) (JAX Stock Number: 001384)
  44. +
  45. PWD/PhJ: A wild-derived Mus musculus musculus agouti strain inbred from samples caught near Prague, Czech Republic. Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues. (JAX Stock Number: 004660)
  46. +
  47. PWK/PhJ: A wild-derived Mus musculus musculus inbred strain from samples caught near Lhotka, Czech Republic. Collaborative Cross strain; Phenome Project D list. (JAX Stock Number: 003715)
  48. +
  49. SJL/J: Swiss Webster inbred strain from Jim Lambert's lab at the Jackson Laboratory. This strain has the retinal degeneration rd1 allele in Pde6b. It also carries both the Tyr c albino mutation and the pink-eye dilution mutation in the Oca2 or p locus. Highly aggressive males. (JAX Stock Number: 000686)
  50. +
  51. WSB/EiJ: Watkin Star line B (or "wild son-of-a-bitch") is a wild-derived Mus musculus domesticus inbred strain from samples caught in Maryland, USA. A Collaborative Cross strain sequenced by NIEHS; Phenome Project C list (JAX Stock Number: 001145)
  52. +
  53. B6D2F1 and D2B6F1 (also listed as BDF1 and DBF1 in some graphs and tables): F1 hybrids generated by crossing C57BL/6J with DBA/2J. These black reciprocal F1 can be used to detect dominance effects. Comparison of the two reciprocal F1s can be used to detect parental origin (imprinting) effects. The D2B6F1 animals are currently available from the Jackson Laboratory as a special order.) (JAX Stock Number for B6D2F1 hybrids obtained from the Jackson Laboratory, aka B6D2F1/J 100006)
  54. +
+ +

Most of the common inbred strains harbor mutations in genes the control pigmentation (Silvers, 2008 and material above in this INFO file). These gene include the albino and chinchilla alleles of the tyrosinase gene (Tyr, or human OCA1), the brown allele of the tyrosinase related protein 1 (Tyrp1), the pink-eye dilution allele of Oca2 (probe set 1418211), the non-agouti (black) and white-bellied alleles of the agouti signaling protein Asip, the steel allele of Kitlg, the dilute allele of Myo5a (probe set 1419754), and the piebald allele of Ednrb. In some of these cases, effects of the mutation are easily detected at the transcript level (Tyrp1, Oca2, and Myo5a), but in the other cases (Tyr, Asip, Ednrb, and Kitlg), mutations do not leave a strong imprint on expression.

diff --git a/general/datasets/Eye_m2_0908_wtwt/citation.rtf b/general/datasets/Eye_m2_0908_wtwt/citation.rtf new file mode 100644 index 0000000..ddd98e4 --- /dev/null +++ b/general/datasets/Eye_m2_0908_wtwt/citation.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Xusheng Wang, Weikuan Gu, Yan Jiao, Robert W. Williams. Gene expression landscape of the mammalian eye: A global survey and database of mRNAs of 103 varieties of mice. Molecular Vision 2009; in press.

diff --git a/general/datasets/Eye_m2_0908_wtwt/contributors.rtf b/general/datasets/Eye_m2_0908_wtwt/contributors.rtf new file mode 100644 index 0000000..d155833 --- /dev/null +++ b/general/datasets/Eye_m2_0908_wtwt/contributors.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Xusheng Wang, Weikuan Gu, Yan Jiao, Robert W. Williams

diff --git a/general/datasets/Eye_m2_0908_wtwt/experiment-design.rtf b/general/datasets/Eye_m2_0908_wtwt/experiment-design.rtf new file mode 100644 index 0000000..1ebe0ad --- /dev/null +++ b/general/datasets/Eye_m2_0908_wtwt/experiment-design.rtf @@ -0,0 +1 @@ +

Expression profiling by array

diff --git a/general/datasets/Eye_m2_0908_wtwt/notes.rtf b/general/datasets/Eye_m2_0908_wtwt/notes.rtf new file mode 100644 index 0000000..7a26eb5 --- /dev/null +++ b/general/datasets/Eye_m2_0908_wtwt/notes.rtf @@ -0,0 +1 @@ +

This data set is available as a bulk download in several formats. The data are available as either strain means or the individual arrays. Due to the involved normalization procedures required to correct for batch effects we strongly recommend not using the raw CEL files without special statistical procedures.

diff --git a/general/datasets/Eye_m2_0908_wtwt/platform.rtf b/general/datasets/Eye_m2_0908_wtwt/platform.rtf new file mode 100644 index 0000000..9024a99 --- /dev/null +++ b/general/datasets/Eye_m2_0908_wtwt/platform.rtf @@ -0,0 +1,11 @@ +

Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many probes overlap and target the same transcript). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequences as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

+ +

As part of the development of HEIMED, we have manually annotated individual probe sets by sequence alignment to the mouse genome and transcriptome. Approximately 13,000 probe sets that have comparatively high expression in eye and CNS were curated by one of the authors (RWW) and now have specific information on the part of the transcript targeted by each probe set. The other 33,000 transcripts have corresponding data that was generated by Xusheng Wang using computational methods (BLAT analysis combined with annotated genome sequence).

+ +

One example may help explain how to exploit this annotation. The four probe sets for rhodopsin include information on the target location. Only the first probe set targets the last two coding exons. The other three probe sets target different parts of the 3’ UTR (mid, distal, and far distal regions). The probe sets can be reordered by from high to low expression using the Sort By function in Search Results pages. In the case of rhodopsin, the probe set that targets that last two coding exons and proximal parts of the 3’ UTR also has the highest expression . Finally, the HEIMED gene descriptions have been customized to help vision researchers. In the case of rhodopsin, the description appended after the gene name reads “rod photoreceptor pigment, retinitis pigmentosa-associated”. For less well known genes this kind of annotation can be extremely useful. For example, the more verbose annotation for Cerkl reads “neuronal survival and apoptosis-related, retinal ganglion cell expressed, retinitis pigmentosa 26); alternative 3' UTR of short form message, intron 2”.

+ +

 

+ +

+ +

Legend: Distribution of expression values for all probe sets in HEIMED.

diff --git a/general/datasets/Eye_m2_0908_wtwt/processing.rtf b/general/datasets/Eye_m2_0908_wtwt/processing.rtf new file mode 100644 index 0000000..4349e60 --- /dev/null +++ b/general/datasets/Eye_m2_0908_wtwt/processing.rtf @@ -0,0 +1,3381 @@ +

Range of Gene Expression in the Eye. Expression of transcripts in the HEIMED and most other GN data sets is measured on a log2 scale. Each unit corresponding approximately to a 2-fold difference in hybridization signal intensity. To simplify comparisons among different data sets and cases, log2 RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units (variance stabilized). Values of all 45,101 probe sets in this data set range from a low of 4.8 (Tcf15, probe set 1420281_at) to a high of 15.5 (crystallin gamma C, Crygc, probe set 1422674_s_at). This corresponds to 10.7 units or a 1 to 1700 dynamic range of expression (2^10.73).

+ +

We used pooled RNA samples of whole eyes, usually two independent pools--one male, one female pool--for most lines of mice. This data set was processed using the RMA protocol. A total of 2223 probes sets are associated with LRS values greater than 46 (LOD >10).

+ +

We calibrated this log intensity scale using Affymetrix spike-in control probe sets. These 18 control probe sets target exogenous bacterial mRNAs that are added to each sample (a graded dose spike cocktail) during preparation at concentrations of 1.5, 5, 25, and 100 pM. (To find these probe sets, search GN’s ALL search field using the string “AFFX pM”.) A value of 6 or less is equivalent to an mRNA concentration of under 0.4 pM, a value of 8 is equivalent to ~1.5 pM, 9.5 is equivalent to ~5 pM, 11.5 is equivalent to ~25 pM, 13.5 is equivalent to ~100 pM, and a value of 15.5 is equivalent to an mRNA concentration of 400 pM or greater.

+ +

This range can be converted to the mRNA molecules per cell in the eye assuming that a value of 8 is equivalent to about 1 mRNA copy per cell (Kanno et al. 2006, see http://www.biomedcentral.com/1471-2164/7/64). Since the expression of rhodopsin mRNA is normally 15 units, we predict that there are 27 or ~128 Rho mRNAs per cell in the whole eye and ~256 in rods themselves (assuming that rods make up about half of all cells in the eye). For this purpose it may be useful to know that a normal mouse eye contains between 6 and 8 million rod photoreceptors (Guo, Lu, and Williams; GN BXD Phenotype ID 11024).

+ +

Note that some probe sets with very low expression still provide reliable data. For example, probe set 1440397_at (Cacna2d1) has expression of only 5.5 units (a value that would be declared as "absent" using conventional Affymetrix procedures), but the values for this calcium channel transcript are associated with a very strong cis QTL with an LRS of 79 (LOD = 17). This strong linkage is definitely not due to chance since the probability of the expression data mapping precisely to the location of the parent gene itself is about 10e-16. This indicates a high signal to noise ratio and the detection of significant strain variation of the correct transcript.

+ +

The standard error of the mean for the HEIMED data set is computed for 2 to 6 biological replicates. The standard error of such small samples tends to systematically underestimate the population standard error. With n = 2 the underestimate is about 25%, whereas for n = 6 the underestimate is 5%. Gurland and Tripathi (1971) provide a correction and equation for this effect (see Sokal and Rohlf, Biometry, 2nd ed., 1981, p 53 for an equation of the correction factor for small samples of n < 20.) Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. The CEL files were processed using the RMA protocol. We processed the first three batches together. The last batch was processed separately and merged as described below.

+ + + +

After RMA processing using Biobase affy10 build running under R version 2.7.1, all array data sets were rank-order normalized. This second round of quantile normalization removes much residual non-linearity across arrays and forces every array to have the same distribution of values as the mean of all arrays. Comparative array data quality was then evaluated in DataDesk. Outlier arrays were flagged by visual inspection in DataDesk, usually by means of an analysis of scatter plots and more quantitatively by generating a correlation matrix of all arrays. Those arrays with mean correlation <0.96 versus all other arrays indicates trouble or a biological outlier). In some cases, outliers were expected, such as samples from strains with retinal degeneration (FVB/NJ, NOD/LtJ, MOLF/EiJ, C3H/HeJ and BXD24), samples from wild subspecies such as WSB/EiJ, CAST/EiJ, PWD/PhJ, and PWK/PhJ, and knockouts. However, when arrays were anomolous both within strain and across strains, they were often simply discarded. The assumption is that anomolous data are much more likely due to experimental and technical errors than to informative biological variation. Approximately 10% of arrays were discarded.

+ +

After this process, the acceptable set of arrays was renormalized using all step as above, starting with the original RMA procedure, etc.

+ +

We reviewed the data set using a new method developed by RW Williams, Jeremy Peirce, and Hongqiang Li. For the full set of arrays that passed standard QC protocols described above, we computed the strain means for the BXD strains, B6, D2, and F1s. Using this set of strain means we then computed LRS scores for all 45101 probe sets and counted the number of transcripts that generated QTLs with LRS values greater than 50. This value (e.g., 1800) represented the QTL harvest for the full data set. We then dropped a single array from the data set, recomputed strain means, and recomputed the number of transcripts with LRS scores great than 50. This value is expected to typically reduce the number of QTLs that reach the criterion level (e.g., 1750 QTLs > 50). This process was repeated for every array to obtain an array-specific difference value--the effect of removing that array on the total QTL count. For example, the loss of a single array might cause a decrease in 50 QTLs. Values ranged from approximately -90 (good arrays) to +40 (bad arrays). This procedure is similar in some ways to a jackknife protocol, although we are not using this procedure to esimate an error term, but rather as a method to polish a data set.

+ +

During this process we discovered that nearly 20 arrays in the batch 2 had been mislabeled at some point in processing. We computed the correct strain membership of each array using a large number of Mendelian probe sets (more than 50) and comparing their match to standard SNP and microsatellite markers and the original array data set of November 2005. This allowed us to rescue a large number of arrays that were of high quality.

+ +

A third batch of approximately 40 arrays were processed by Yan Jiao and Weikuan Gu in August 2006. These complete data set assembled by Hongqiang Li. This process again included a correction for a batch effect.

+ +

For the June 2006 data set Hongqiang Li used a new batch correction method that stabilizes the range of expression in each batch. For each of the three large batches, we extracted the minumum and maximum raw probe expression (CEL file level) value. We then adjusted raw probe values in each batch to have the same range as the first and largest batch (batch 1) using a simple linear interpolation. These procedures generated new correct CEL files which were then used with RMA to generate final probe set estimates.

+ +

For the final fourth batch of arrays (Sept 2008) Arthur Centeno and Rob Williams corrected for a systematic difference in probe set expression values between original arrays run in 2005 and 2006 and the new arrays added in 2008 (n = 45 acceptable arrays). This difference is due to unknown technical batch effects that are probably associated with labeling, hybridization, and scanning. We performed a simple correction to normalize values of the new set of arrays to those of the old set (batches 1 through 3). No changes were made to any values of the previous three batches. We corrected only the probe set level (RMA) values and not the CEL files. For this final batch, we corrected for the difference (offset) in probe set expression between the first three batches arrays run in 2005 and 2006 (a total of 174 acceptable arrays) and the new batch (n = 47 acceptable arrays). This difference is due to unknown technical effects that are probably related to various steps in labeling, hybridization, and scanning. The correction was applied as follows: (1) RWW selected 51 high quality arrays with similar expression characteristics (r = 0.97 or better between pairs of arrays) in the old data set (from batches 1, 2, and 3) and 34 high quality arrays in the final batch. RWW used scatterplots of full RMA transcriptome data sets to review many pairs of arrays within these new and old array batches. Strains with retinal degeneration or unusual eye gene expression characteristics were excluded from these selected subsets. The average expression values for each probe set were then computed for both the old and new array subsets. The offset value (old minus new) was added to each probe set across all 47 new arrays. This processes forces the average probe set in the new arrays to be very close to that of the previous arrays.

+ +

Table 2: Sample tube ID, strain, original CEL filename, and Affymetrix quality control values. Columns labeled Scale factor, Background Average, Present, Absent, Marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files.

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
2R2533E.1129S1/SvImJR2533E.1.CEL2.119457.90%40.50%1.60%1.370.781Y
3R0754E.1A/JR0754E.1.CEL2.728659.80%38.70%1.50%1.360.761Y
4R4521EB6129P2F2N1-Clcn3R4521E.CEL4.8338.763.30%35.30%1.40%1.250.774 
5R4522EB6129P2F2N1-Clcn3R4522E.CEL5.7637.3662.90%35.70%1.40%1.370.834 
6R4523EB6129P2F2N1-Clcn3R4523E.CEL4.8840.4263.90%34.70%1.40%1.270.774 
7R4526EB6129P2F2N1-Gabbr1R4526E.CEL3.8444.1865.00%33.70%1.30%1.340.784Y
8R4509EB6129P2F2N1-Gabbr1R4509E.CEL7.4534.7658.90%39.70%1.40%1.450.834 
9R4510EB6129P2F2N1-Gabbr1R4510E.CEL8.4437.4457.40%41.10%1.50%1.350.834 
10R4511EB6129P2F2N1-Gabbr1R4511E.CEL5.9142.0261.40%37.20%1.40%1.410.834 
11R4524EB6129P2F2N1-Gabbr1R4524E.CEL5.4942.3462.40%36.20%1.40%1.290.784Y
12R4525EB6129P2F2N1-Gabbr1R4525E.CEL4.6941.363.10%35.50%1.40%1.270.84Y
13R4515EB6129P2F2N1-Gabra1R4515E.CEL5.7541.7662.80%35.80%1.40%1.410.814Y
14R4516EB6129P2F2N1-Gabra1R4516E.CEL7.0740.7360.20%38.40%1.40%1.320.874Y
15R4517EB6129P2F2N1-Gabra1R4517E.CEL5.4538.0962.70%35.80%1.40%1.340.824Y
16R4512EB6129P2F2N1-Gnb5R4512E.CEL6.5638.0259.90%38.70%1.50%1.330.834 
17R4513EB6129P2F2N1-Gnb5R4513E.CEL4.1541.663.40%35.10%1.50%1.340.824 
18R4514EB6129P2F2N1-Gnb5R4514E.CEL5.8639.261.20%37.30%1.50%1.340.814 
19R4518EB6129P2F2N1-Gpr19R4518E.CEL5.5838.962.60%36.00%1.30%1.390.794Y
20R4519EB6129P2F2N1-Gpr19R4519E.CEL5.9541.9161.30%37.30%1.40%1.350.844Y
21R2601E.1B6D2F1R2601E.1.CEL2.559258.90%39.60%1.50%1.440.781Y
22R2602E.1B6D2F1R2602E.1.CEL2.68459.70%38.80%1.50%1.370.781Y
23R1676E.1BALB/cByJR1676E.1.CEL2.699858.90%39.60%1.50%1.460.741 
24R1672E.1BALB/cByJR1672E.1.CEL2.2211159.90%38.60%1.50%1.260.81Y
25R4530EBALB/cJR4530E.CEL6.3737.5360.80%37.80%1.40%1.30.844Y
26R4529EBALB/cJR4529E.CEL5.7141.3360.50%38.00%1.50%1.480.84Y
27R2704E.2BXD1R2704E.2.CEL2.066139.6156.60%41.90%1.50%1.310.812 
28R2707E.3BXD1R2707E.3.CEL18056.40%42.10%1.50%1.430.793 
29R1231E.2BXD2R1231E.2.CEL2.197138.7357.30%41.30%1.40%1.410.772 
30R2598E.1BXD2R2598E.1.CEL1.9910660.90%37.60%1.50%1.270.781Y
31R2591E.1BXD5R2591E.1.CEL1.713658.50%40.00%1.50%1.330.781Y
32R2714E.2BXD5R2714E.2.CEL1.404144.3560.60%37.90%1.50%1.430.792 
33R2570E.1BXD6R2570E.1.CEL1.998758.50%40.00%1.50%1.460.761Y
34R2694E.2BXD6R2694E.2.CEL1.98397.2361.60%37.10%1.30%1.390.822 
35R2538E.1BXD8R2538E.1.CEL1.9110261.20%37.30%1.50%1.520.791Y
36R2709E.2BXD8R2709E.2.CEL1.9999.7960.90%37.60%1.50%1.420.762 
37R2708E.2BXD9R2708E.2.CEL1.966126.4657.70%40.70%1.50%1.40.842 
38R2569E.1BXD9R2569E.1.CEL1.758755.10%43.40%1.50%2.823.141 
39R2581E.1BXD11R2581E.1.CEL1.948962.10%36.40%1.60%1.550.811Y
40R2612E.2BXD11R2612E.2.CEL1.83142.0358.20%40.50%1.40%1.780.812 
41R2742E.2BXD12R2742E.2.CEL2.127134.1457.00%41.60%1.40%1.640.782 
42R2543E.1BXD12R2543E.1.CEL1.6111858.60%39.90%1.60%1.430.771Y
43R2586E.1BXD13R2586E.1.CEL2.017456.40%42.00%1.60%2.853.811 
44R877E.2BXD13R877E.2.CEL1.558125.6361.20%37.50%1.20%1.420.812 
45R2557E.1BXD14R2557E.1.CEL1.839962.50%36.10%1.40%1.310.781Y
46R1128E.2BXD14R1128E.2.CEL1.9111559.90%38.80%1.40%1.20.821Y
47R2701E.3BXD15R2701E.3.CEL18860.60%37.90%1.40%1.50.773 
48R2716E.2BXD15R2716E.2.CEL2.015150.8356.40%42.10%1.60%1.420.812 
49R2711E.2BXD16R2711E.2.CEL1.953118.5359.00%39.60%1.50%1.450.82 
50R2567E.1BXD16R2567E.1.CEL2.248256.70%41.60%1.70%1.370.751 
51R2720E.2BXD18R2720E.2.CEL2.3299.9359.50%39.00%1.50%1.330.772 
52R2559E.1BXD18R2559E.1.CEL1.6510460.80%37.70%1.50%1.270.781Y
53R2560E.1BXD19R2560E.1.CEL1.799860.90%37.50%1.60%1.350.81Y
54R2713E.2BXD19R2713E.2.CEL1.67120.8260.20%38.30%1.50%1.450.82 
55R2584E.1BXD20R2584E.1.CEL2.078459.30%39.10%1.60%1.40.761Y
56R2731E.2BXD20R2731E.2.CEL1.82514759.00%39.50%1.50%1.40.82 
57R2702E.2BXD21R2702E.2.CEL1.811128.6559.40%39.10%1.40%1.260.82 
58R2541E2.1BXD21R2541E2.1.CEL2.6312556.00%42.40%1.50%1.290.781 
59R2553E.1BXD22R2553E.1.CEL1.9511159.90%38.50%1.50%1.280.761Y
60R2700E.2BXD22R2700E.2.CEL1.858102.9661.50%37.10%1.30%1.480.792 
61R2558E-2.1BXD23R2558E-2.1.CEL2.233125.0558.60%39.90%1.50%1.430.772 
62R1086E.2BXD23R1086E.2.CEL2.233125.0558.60%39.90%1.50%1.430.772 
63R2719E.2BXD24R2719E.2.CEL1.47140.3861.50%37.20%1.30%1.380.792 
64R2589E2.1BXD24R2589E2.1.CEL2.6111257.50%40.90%1.60%1.240.81 
65R2573E-2.1BXD25R2573E-2.1.CEL3.157257.90%40.70%1.40%1.770.971 
66R2683E.2BXD25R2683E.2.CEL1.777115.6458.30%40.30%1.40%2.010.792 
67R2703E.2BXD27R2703E.2.CEL1.263134.7862.60%36.10%1.40%1.440.782 
68R2729E.3BXD27R2729E.3.CEL18757.90%40.60%1.50%1.560.843Y
69R2562E.3BXD28R2562E.3.CEL1.6511659.90%38.40%1.70%1.370.793Y
70R2721E.2BXD28R2721E.2.CEL2.065157.3956.10%42.40%1.50%1.310.812 
71R2561E.3BXD29R2561E.3.CEL17753.30%45.40%1.40%3.3619.663 
72R1258E.2BXD31R1258E.2.CEL2.063117.0959.00%39.50%1.50%1.540.782 
73R2597E.1BXD31R2597E.1.CEL2.379460.30%38.30%1.50%1.340.771Y
74R2563E.1BXD32R2563E.1.CEL1.5510261.90%36.70%1.40%1.50.81 
75R1216E.2BXD32R1216E.2.CEL2.23111.9958.80%39.80%1.40%1.350.792 
76R2542E.1BXD33R2542E.1.CEL2.139756.50%41.80%1.60%1.910.931 
77R857E.2BXD33R857E.2.CEL1.737113.9861.90%36.70%1.30%1.60.772 
78R1451E.2BXD34R1451E.2.CEL1.843140.0559.00%39.50%1.50%1.420.812Y
79R2585E.1BXD34R2585E.1.CEL2.647558.30%40.00%1.70%1.250.771 
80R2698E.3BXD36R2698E.3.CEL18659.70%39.00%1.30%1.460.783 
81R2705E.3BXD36R2705E.3.CEL18660.20%38.40%1.40%1.460.773 
82R2710E.2BXD38R2710E.2.CEL2.112122.158.80%39.80%1.40%1.370.782 
83R2532E.1BXD38R2532E.1.CEL2.049459.80%38.70%1.50%1.370.81Y
84R2574E.1BXD39R2574E.1.CEL1.989161.20%37.30%1.50%1.390.781 
85R2695E.2BXD39R2695E.2.CEL1.638122.760.80%37.80%1.50%1.420.82 
86R2699E.2BXD40R2699E.2.CEL1.827105.2361.70%36.90%1.40%1.420.812 
87R2590E.1BXD40R2590E.1.CEL2.717759.10%39.30%1.50%1.40.771Y
88R2696E.2BXD42R2696E.2.CEL1.622118.9562.00%36.60%1.50%1.530.792 
89R2596E.1BXD42R2596E.1.CEL2.6310859.00%39.60%1.50%1.240.81 
90R994E.2BXD43R994E.2.CEL1.966113.1260.80%37.80%1.40%1.660.82 
91R2607E.1BXD43R2607E.1.CEL2.4311558.60%40.00%1.40%1.310.761Y
92R2594E.1BXD44R2594E.1.CEL1.7711759.80%38.80%1.40%1.350.851 
93R2610E.2BXD44R2610E.2.CEL1.814142.9159.00%39.50%1.50%1.350.82 
94R2732E.2BXD45R2732E.2.CEL2.154122.4556.50%42.10%1.40%1.80.832 
95R2592E.1BXD45R2592E.1.CEL1.8510660.10%38.60%1.30%1.430.851Y
96R967E.2BXD48R967E.2.CEL1.948130.9557.30%41.20%1.50%1.630.812 
97R2606E.1BXD48R2606E.1.CEL2.5610658.90%39.70%1.40%1.350.831Y
98R2933E.3BXD50R2933E.3.CEL17252.90%45.60%1.50%2.450.983 
99R2937E.3BXD50R2937E.3.CEL18956.90%41.60%1.40%1.810.823 
100R2603E.1BXD51R2603E.1.CEL2.4911557.70%40.80%1.50%1.240.791 
101R1042E.2BXD51R1042E.2.CEL2.352104.1258.70%39.90%1.40%1.530.822 
102R2980E.3BXD55R2980E.3.CEL18256.90%41.70%1.50%1.770.843 
103R2690E.2BXD55R2690E.2.CEL1.887164.0156.10%42.30%1.60%1.430.82 
104R4176EBXD56R4176E.CEL4.7543.0863.00%35.60%1.30%1.390.814Y
105R4175EBXD56R4175E.CEL638.4961.30%37.30%1.40%1.470.814Y
106R1006E.3BXD60R1006E.3.CEL19854.90%43.70%1.50%2.70.863 
107R2725E.2BXD60R2725E.2.CEL1.551148.0159.80%38.80%1.40%1.430.792 
108R1074E.3BXD60R1074E.3.CEL111855.50%43.10%1.40%1.960.813 
109R2534E2.1BXD61R2534E2.1.CEL2.4711857.90%40.60%1.50%1.420.791 
110R2684E.2BXD61R2684E.2.CEL2.01131.0357.00%41.50%1.50%1.340.782 
111R1107E.3BXD62R1107E.3.CEL18355.20%43.40%1.40%2.430.933 
112R2681E.2BXD62R2681E.2.CEL2.086148.2457.20%41.30%1.50%1.290.812 
113R965E.3BXD62R965E.3.CEL193.5553.30%45.20%1.50%3.110.943 
114R1425E.2BXD63R1425E.2.CEL1.713659.30%39.30%1.40%1.430.822 
115R2576E.3BXD63R2576E.3.CEL18461.30%37.40%1.40%1.480.763 
116R943E-2.2BXD64R943E-2.2.CEL1.591141.3460.10%38.40%1.50%1.320.762 
117R2611E.1BXD64R2611E.1.CEL2.299258.00%40.50%1.50%1.571.061 
118R2689E.2BXD65R2689E.2.CEL1.721142.4459.90%38.60%1.50%1.380.762 
119R2583E.1BXD65R2583E.1.CEL2.497056.90%41.50%1.60%1.671.011 
120R2728E.2BXD66R2728E.2.CEL1.714137.4559.40%39.00%1.60%1.380.792 
121R2536E2.1BXD66R2536E2.1.CEL2.7410956.10%42.30%1.70%1.280.791 
122R1207E.2BXD66R1207E.2.CEL1.681136.8660.40%38.10%1.50%1.450.772 
123R1192E.2BXD67R1192E.2.CEL2.126123.3757.90%40.60%1.50%1.50.82 
124R2727E.3BXD67R2727E.3.CEL182.5556.10%42.40%1.50%1.970.872 
125R2691E.3BXD67R2691E.3.CEL19054.80%43.80%1.50%2.610.813 
126R2551E.1BXD68R2551E.1.CEL2.499254.30%44.10%1.60%2.911.551 
127R2726E.2BXD68R2726E.2.CEL1.811153.0958.70%39.80%1.50%1.390.782 
128R2593E.1BXD69R2593E.1.CEL1.6712859.20%39.50%1.30%1.470.921Y
129R975E.2BXD70R975E.2.CEL1.841137.9758.00%40.50%1.40%1.360.792 
130R2537E2.1BXD70R2537E2.1.CEL2.939958.00%40.50%1.60%1.290.751 
131R4531EBXD71R4531E.CEL4.7743.4862.40%36.30%1.40%1.230.774Y
132R4532EBXD71R4532E.CEL5.8940.6860.90%37.60%1.50%1.240.794Y
133R2779E.2BXD73R2779E.2.CEL1.746121.1159.60%39.00%1.40%1.50.82 
134R3024E.3BXD73R3024E.3.CEL178.0551.70%46.60%1.70%2.30.943 
135R2565E.1BXD75R2565E.1.CEL1.7910258.00%40.50%1.50%2.313.471 
136R1397E-re.2BXD75R1397E-re.2.CEL1.449189.7159.60%39.00%1.40%1.390.822 
137R2687E.3BXD77R2687E.3.CEL18058.00%40.60%1.40%1.570.83Y
138R2717E.2BXD77R2717E.2.CEL1.79784.4361.60%36.90%1.40%1.490.762 
139R1421E.3BXD77R1421E.3.CEL19452.40%46.20%1.40%2.290.823 
140R2579E.1BXD80R2579E.1.CEL2.427259.20%39.40%1.50%1.730.821 
141R2686E.2BXD80R2686E.2.CEL2.342119.6356.00%42.60%1.50%1.380.792 
142R2956E.3BXD83R2956E.3.CEL18455.40%43.20%1.40%1.390.843 
143R2960E.3BXD83R2960E.3.CEL18056.60%41.90%1.50%1.50.823Y
144R2922E.3BXD84R2922E.3.CEL19157.80%40.80%1.50%1.470.833Y
145R2895E.3BXD84R2895E.3.CEL17558.30%40.20%1.50%1.560.773Y
146R2692E.2BXD85R2692E.2.CEL1.423160.8760.20%38.30%1.40%1.460.792 
147R2715E.2BXD85R2715E.2.CEL1.488142.661.20%37.30%1.40%1.50.782 
148R1405E.2BXD86R1405E.2.CEL2.351119.3456.40%42.20%1.40%1.640.812 
149R1225E.3BXD86R1225E.3.CEL17153.90%44.60%1.40%3.21.613 
150R2724E.2BXD87R2724E.2.CEL1.906113.7160.70%37.90%1.40%1.450.792 
151R2540E.1BXD87R2540E.1.CEL2.339361.10%37.40%1.40%1.220.811Y
152R1433E.2BXD89R1433E.2.CEL12.24157.70%40.80%1.50%1.410.782 
153R2546E.1BXD89R2546E.1.CEL1.999658.60%39.70%1.70%1.470.781 
154R2578E2.1BXD90R2578E2.1.CEL2.799258.60%39.80%1.60%1.520.771Y
155R859E.2BXD90R859E.2.CEL1.847152.2257.90%40.70%1.40%1.360.772 
156R2682E.2BXD92R2682E.2.CEL1.547156.3160.40%38.20%1.40%1.370.772 
157R1388E.3BXD92R1388E.3.CEL16360.00%38.60%1.40%1.851.033 
158R1322E.3BXD92R1322E.3.CEL18055.90%42.60%1.50%1.750.743 
159R2733E.2BXD96R2733E.2.CEL1.7113.9962.10%36.60%1.30%1.40.782 
160R2554E.1BXD96R2554E.1.CEL2.189360.20%38.30%1.50%1.460.771Y
161R2649E.2BXD97R2649E.2.CEL2.343119.0457.50%41.20%1.40%1.530.82 
162R2577E.1BXD97R2577E.1.CEL2.077759.50%39.10%1.40%1.871.291 
163R2645E.3BXD98R2645E.3.CEL18859.40%39.20%1.50%1.590.813Y
164R2688E.2BXD98R2688E.2.CEL1.772145.2458.50%40.00%1.50%1.480.812 
165R4533EBXD99R4533E.CEL137.6960.30%38.20%1.40%1.330.894Y
166R4534EBXD99R4534E.CEL5.6936.6262.90%35.70%1.40%1.160.84Y
167R2885E.3BXSB/MpJR2885E.3.CEL17658.10%40.60%1.30%1.881.063 
168R2883E.3BXSB/MpJR2883E.3.CEL17156.40%42.00%1.50%1.590.843Y
169R1700E.1C3H/HeJR1700E.1.CEL2.986960.80%37.90%1.40%1.480.781 
170R1704E.1C3H/HeJR1704E.1.CEL2.588860.10%38.60%1.30%1.380.841 
171R2605E.1C57BL/6JR2605E.1.CEL1.8213160.50%38.20%1.30%1.320.81Y
172R0871EC57BL/6JR0871E.CEL6.2437.3861.90%36.70%1.40%1.410.84Y
173R0872E.1C57BL/6JR0872E.1.CEL3.138958.90%39.60%1.50%1.30.791Y
174R0872EC57BL/6JR0872E.CEL3.12888.5858.90%39.60%1.50%1.30.791 
175R4507EC57BL/6J-NyxR4507E.CEL8.1337.559.30%39.30%1.40%1.320.84Y
176R4508EC57BL/6J-NyxR4508E.CEL6.3337.2660.90%37.80%1.30%1.240.824Y
177R4505EC57BL/6J-Rpe65R4505E.CEL5.9837.4861.80%36.80%1.40%1.450.854Y
178R4506EC57BL/6J-Rpe65R4506E.CEL6.9437.961.10%37.50%1.30%1.50.834Y
179R4535EC57BLKS/JR4535E.CEL6.5937.2861.20%37.30%1.40%1.260.834Y
180R4536EC57BLKS/JR4536E.CEL140.7160.30%38.20%1.50%1.250.774Y
181R2564E.1CAST/EiJR2564E.1.CEL1.948958.50%39.90%1.60%1.60.771 
182R2580E.1CAST/EiJR2580E.1.CEL2.099558.20%40.10%1.70%1.40.761 
183R4537ECBA/CaJR4537E.CEL138.4560.60%37.90%1.50%1.630.824Y
184R4538ECBA/CaJR4538E.CEL5.8939.1861.70%36.90%1.40%1.450.84Y
185R4539ECZECHII/EiJR4539E.CEL7.7337.158.30%40.10%1.50%1.70.954Y
186R4540ECZECHII/EiJR4540E.CEL11.0436.6953.00%45.30%1.70%1.831.324 
187R2600E.1D2B6F1R2600E.1.CEL2.479558.10%40.20%1.70%1.410.781Y
188R2604E.1D2B6F1R2604E.1.CEL2.669059.40%39.20%1.50%1.280.791Y
189R1002E.3DBA/2JR1002E.3.CEL110254.80%43.70%1.50%2.840.833 
190R4541EDBA/2JR4541E.CEL143.461.40%37.00%1.50%1.370.734Y
191R959E.3DBA/2JR959E.3.CEL189.9753.20%45.30%1.50%3.661.094 
192R2572E.1DBA/2JR2572E.1.CEL2.417955.50%42.90%1.60%1.370.791 
193R4542EDBA/2JR4542E.CEL5.739.9561.00%37.40%1.50%1.230.814Y
194R2771E.3FVB/NJR2771E.3.CEL17055.30%43.20%1.50%1.690.833 
195R2772E.3FVB/NJR2772E.3.CEL17655.20%43.40%1.40%2.131.023 
196R2636E.1KK/HlJR2636E.1.CEL2.619358.90%39.50%1.50%1.390.761Y
197R2637E.1KK/HlJR2637E.1.CEL2.1910359.40%39.00%1.50%1.30.791Y
198R0999E.1LG/JR0999E.1.CEL2.458259.40%39.10%1.50%1.380.791Y
199R1004E.1LG/JR1004E.1.CEL2.449258.70%39.80%1.50%1.380.791Y
200R4543ELP/JR4543E.CEL6.5741.9960.30%38.20%1.50%1.280.754Y
201R4544ELP/JR4544E.CEL4.5639.962.40%36.10%1.50%1.230.774Y
202R2858E.3MOLF/EiJR2858E.3.CEL16453.80%44.70%1.50%1.590.953 
203R2919.3MOLF/EiJR2919.3.CEL16452.40%46.00%1.60%2.151.073 
204R1688E.1NOD/LtJR1688E.1.CEL2.669858.60%39.90%1.50%1.260.81Y
205R2566E-2.1NOD/LtJR2566E-2.1.CEL3.036959.80%38.80%1.50%1.380.751Y
206R4545ENZB/BlNJR4545E.CEL4.2343.4862.10%36.40%1.50%1.330.764Y
207R4546ENZB/BlNJR4546E.CEL6.2744.2259.40%39.10%1.50%1.170.824Y
208R2535E.1NZO/HlLtJR2535E.1.CEL1.898660.40%38.20%1.40%1.410.851 
209R2550E.1NZO/HlLtJR2550E.1.CEL1.798760.70%37.80%1.50%1.520.821 
210R2817E.3NZW/LacJR2817E.3.CEL15950.90%47.60%1.50%3.591.483 
211R2810ENZW/LacJR2810E.CEL       3 
212R2810E.3NZW/LacJR2810E.3.CEL17457.00%41.70%1.40%2.151.034Y
213R4547EPANCEVO/EiJR4547E.CEL5.2751.3457.20%41.10%1.70%1.70.834 
214R4548EPANCEVO/EiJR4548E.CEL10.5437.3950.30%48.00%1.70%1.681.094 
215R2635E.1PWD/PhJR2635E.1.CEL3.728054.20%44.10%1.70%1.530.851 
216R2634E.1PWD/PhJR2634E.1.CEL3.299055.90%42.50%1.60%1.570.811 
217R2544E.1PWK/PhJR2544E.1.CEL2.210854.90%43.50%1.70%1.360.821 
218R2549E.1PWK/PhJR2549E.1.CEL2.288457.30%41.20%1.50%1.570.831 
219R4550ESJL/JR4550E.CEL5.3540.4462.30%36.20%1.40%1.240.794 
220R2368E.1WSB/EiJR2368E.1.CEL2.578659.50%39.10%1.40%1.290.741Y
221R2547E.1WSB/EiJR2547E.1.CEL2.149058.20%40.10%1.60%1.320.771Y
+
diff --git a/general/datasets/Eye_m2_0908_wtwt/summary.rtf b/general/datasets/Eye_m2_0908_wtwt/summary.rtf new file mode 100644 index 0000000..44b7e23 --- /dev/null +++ b/general/datasets/Eye_m2_0908_wtwt/summary.rtf @@ -0,0 +1,12 @@ +

FINAL RECOMMENDED EYE DATA SET. The HEIMED September 2008 RMA data release provides estimates of gene expression in whole eyes of 103 lines of young adult mice generated using 221 Affymetrix M430 2.0 arrays. This data set is intended for exploration of the genetics and genomics of the mouse eye, retina, lens, retinal pigment epithelium, cornea, iris and choroid. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). We used pooled RNA samples, usually two independent pools--one male, one female pool--for most lines of mice. This data set was processed using the RMA protocol. A total of 2223 probes sets are associated with LRS values greater than 46 (LOD >10).

+ +

Users of these mouse eye data may also find the following complementary resources extremely useful:

+ +
    +
  1. NEIBank collection of ESTs and SAGE data.
  2. +
  3. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases
  4. +
  5. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.
  6. +
  7. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus.
  8. +
  9. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430).
  10. +
  11. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.
  12. +
diff --git a/general/datasets/Eye_m2_0908_wtwt/tissue.rtf b/general/datasets/Eye_m2_0908_wtwt/tissue.rtf new file mode 100644 index 0000000..9b6ee0f --- /dev/null +++ b/general/datasets/Eye_m2_0908_wtwt/tissue.rtf @@ -0,0 +1,2058 @@ +

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube.

+ +

Each array was hybridized with a pool of cRNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

+ +

Dissecting and preparing eyes for RNA extraction

+ +
    +
  1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below).
  2. +
  3. Store RNA in 75% ethanol at –80 deg. C until use.
  4. +
+ +

Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we:

+ +
    +
  1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue)
  2. +
  3. allowed the homogenate to stand for 5 min at room temperature
  4. +
  5. added 0.2 ml of chloroform per 1 ml RNA STAT-60
  6. +
  7. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min
  8. +
  9. centrifuged at 12,000 G for 15 min
  10. +
  11. transfered the aqueous phase to a fresh tube
  12. +
  13. added 0.5 ml of isopropanol per 1 ml RNA STAT-60
  14. +
  15. vortexed and allowed sample to stand at room temperature for 5-10 min
  16. +
  17. centrifuged at 12,000 G for 10-15 min
  18. +
  19. removed the supernatant and washed the RNA pellet with 75% ethanol
  20. +
  21. stored the pellet in 75% ethanol at -80 deg C until use
  22. +
+ +

Sample Processing. All samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center led by Dr. Weikuan Gu. All arrays were processed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. C until use (roughly one third) or were used immediately for hybridization.

+ +

Dealing with ocular pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations taken from brown and beige colored mice tend to have faint residual pigmentation that affects hybridization signal. To address this problem, Dr. Yan Jiao purified total RNA using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204) all four batches.

+ +

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well balanced sample of males and females, in general without within-strain-by-sex replication. Two strains are represented by a single male sample pool (BXD29 and A/J). Four lines are represented by two or three male sample pools (all of the five DeltaGen KO line). The SJL/J may be a single mixed sex sample. Users can study possible sex effects by comparing any results of expression data to that of a surrogate measurement that summarizes the overall sex balance of HEIMED. To do this just compare your data to those of probe sets 1427262_at (Xist, high in females) and probe set 1426438_at (Ddx3y, high in males). These two sex-specific probes are quantitative surrogates for the sex balance in this data set.

+ +

Technical duplicates: One sample, highlighted in the tables below, is a technical duplicate. The pair of technical duplicates were both of high quality. For statistical analysis, they should be combined and treated as single biological sample.

+ +

Batch structure: This data set consists of four batches (Table 2, far right column). The final September 2008 data set consists of a total of 221 arrays and 220 independent samples.

+ +
    +
  1. Batch 1: November 2005, n = 78 arrays original arrays of which 76 were accepted into this final data set.
  2. +
  3. Batch 2: January 2006, n = 62 arrays of which 62 were accepted.
  4. +
  5. Batch 3: August 2006, n = 39 arrays of which 36 were accepted. (These three batches, including some arrays that were eventually dropped from the final 2008 data set, were combined to form the September 2006 data set.)
  6. +
  7. Batch 4: Summer 2008, n = 53 arrays of which 47 were accepted.
  8. +
+ +

Table 1: HEIMED case IDs, including sample tube ID, strain, age, sex, and source of mice (see Table 2 for information on array quality control)

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexTubeIDGroupStrainAgeSexSource
1R2595E.1GDP129S1/SvImJ59FUTHSC RW
2R2533E.1GDP129S1/SvImJ60MUTHSC RW
3R0754E.1GDPA/J60MJAX
4R4521EKOB6129P2F2N1-Clcn369MTChoi_Deltagen
5R4522EKOB6129P2F2N1-Clcn369MTChoi_Deltagen
6R4523EKOB6129P2F2N1-Clcn367MTChoi_Deltagen
7R4526EKOB6129P2F2N1-Gabbr116FTChoi_Deltagen
8R4509EKOB6129P2F2N1-Gabbr116MTChoi_Deltagen
9R4510EKOB6129P2F2N1-Gabbr119MTChoi_Deltagen
10R4511EKOB6129P2F2N1-Gabbr120MTChoi_Deltagen
11R4524EKOB6129P2F2N1-Gabbr119MTChoi_Deltagen
12R4525EKOB6129P2F2N1-Gabbr122MTChoi_Deltagen
13R4515EKOB6129P2F2N1-Gabra167MTChoi_Deltagen
14R4516EKOB6129P2F2N1-Gabra169MTChoi_Deltagen
15R4517EKOB6129P2F2N1-Gabra167MTChoi_Deltagen
16R4512EKOB6129P2F2N1-Gnb522FTChoi_Deltagen
17R4513EKOB6129P2F2N1-Gnb525MTChoi_Deltagen
18R4514EKOB6129P2F2N1-Gnb522MTChoi_Deltagen
19R4518EKOB6129P2F2N1-Gpr1970MTChoi_Deltagen
20R4519EKOB6129P2F2N1-Gpr1968MTChoi_Deltagen
21R2601E.1GDP BXDB6D2F173FUTHSC RW
22R2602E.1GDP BXDB6D2F173MUTHSC RW
23R1676E.1GDPBALB/cByJ83FJAX
24R1672E.1GDPBALB/cByJ83MJAX
25R4530EGDPBALB/cJ66FJAX
26R4529EGDPBALB/cJ66MJAX
27R2704E.2BXDBXD159FUTHSC RW
28R2707E.3BXDBXD159MBIDMC GR
29R1231E.2BXDBXD264FUTHSC RW
30R2598E.1BXDBXD261MUTHSC RW
31R2591E.1BXDBXD560FBIDMC GR
32R2714E.2BXDBXD558MUTHSC RW
33R2570E.1BXDBXD665FUTHSC RW
34R2694E.2BXDBXD658MUTHSC RW
35R2538E.1BXDBXD877FUTHSC RW
36R2709E.2BXDBXD861MUTHSC RW
37R2708E.2BXDBXD960FUTHSC RW
38R2569E.1BXDBXD967MUTHSC RW
39R2581E.1BXDBXD1165FUTHSC RW
40R2612E.2BXDBXD1170MUTHSC RW
41R2742E.2BXDBXD1271FUTHSC RW
42R2543E.1BXDBXD1263MUTHSC RW
43R2586E.1BXDBXD1360FBIDMC GR
44R877E.2BXDBXD1376MUTHSC RW
45R2557E.1BXDBXD1460FBIDMC GR
46R1128E.2BXDBXD1465MUTHSC RW
47R2701E.3BXDBXD1560FBIDMC GR
48R2716E.2BXDBXD1560MUTHSC RW
49R2711E.2BXDBXD1661FUTHSC RW
50R2567E.1BXDBXD1660MBIDMC GR
51R2720E.2BXDBXD1859FUTHSC RW
52R2559E.1BXDBXD1859MBIDMC GR
53R2560E.1BXDBXD1960FBIDMC GR
54R2713E.2BXDBXD1960MUTHSC RW
55R2584E.1BXDBXD2059FBIDMC GR
56R2731E.2BXDBXD2060MUTHSC RW
57R2702E.2BXDBXD2159FUTHSC RW
58R2541E2.1BXDBXD2161MUTHSC RW
59R2553E.1BXDBXD2258FBIDMC GR
60R2700E.2BXDBXD2259MUTHSC RW
61R2558E-2.1BXDBXD2360FBIDMC GR
62R1086E.2BXDBXD2355MUTHSC RW
63R2719E.2BXDBXD24123FUTHSC RW
64R2589E2.1BXDBXD2459MBIDMC GR
65R2573E-2.1BXDBXD2567FUAB
66R2683E.2BXDBXD2558MUTHSC RW
67R2703E.2BXDBXD2760FUTHSC RW
68R2729E.3BXDBXD2768MUTHSC RW
69R2562E.3BXDBXD2860FBIDMC GR
70R2721E.2BXDBXD2860MUTHSC RW
71R2561E.3BXDBXD2960MBIDMC GR
72R1258E.2BXDBXD3157FUTHSC RW
73R2597E.1BXDBXD3161MBIDMC GR
74R2563E.1BXDBXD3263FUTHSC RW
75R1216E.2BXDBXD3276MUTHSC RW
76R2542E.1BXDBXD3367FUTHSC RW
77R857E.2BXDBXD3377MUTHSC RW
78R1451E.2BXDBXD3461FUTHSC RW
79R2585E.1BXDBXD3460MBIDMC GR
80R2698E.3BXDBXD3658FBIDMC GR
81R2705E.3BXDBXD3657MBIDMC GR
82R2710E.2BXDBXD3855FUTHSC RW
83R2532E.1BXDBXD3862MUTHSC RW
84R2574E.1BXDBXD3970FUTHSC RW
85R2695E.2BXDBXD3959MUTHSC RW
86R2699E.2BXDBXD4059FUTHSC RW
87R2590E.1BXDBXD4060MBIDMC GR
88R2696E.2BXDBXD4258FUTHSC RW
89R2596E.1BXDBXD4259MBIDMC GR
90R994E.2BXDBXD4360FUTHSC RW
91R2607E.1BXDBXD4367MUTHSC RW
92R2594E.1BXDBXD4463FUTHSC RW
93R2610E.2BXDBXD4468MUTHSC RW
94R2732E.2BXDBXD4563FUTHSC RW
95R2592E.1BXDBXD4562MUTHSC RW
96R967E.2BXDBXD4864FUTHSC RW
97R2606E.1BXDBXD4878MUTHSC RW
98R2933E.3BXDBXD5061FUTHSC RW
99R2937E.3BXDBXD5061MUTHSC RW
100R2603E.1BXDBXD5166FUTHSC RW
101R1042E.2BXDBXD5162MUTHSC RW
102R2980E.3BXDBXD5576FUTHSC RW
103R2690E.2BXDBXD5565MUTHSC RW
104R4176EBXDBXD5667FUTHSC RW
105R4175EBXDBXD5653MUTHSC RW
106R1006E.3BXDBXD6060FUTHSC RW
107R2725E.2BXDBXD6061FUTHSC RW
108R1074E.3BXDBXD6059MUTHSC RW
109R2534E2.1BXDBXD6170FUTHSC RW
110R2684E.2BXDBXD6162MUTHSC RW
111R1107E.3BXDBXD6254FUTHSC RW
112R2681E.2BXDBXD6262MUTHSC RW
113R965E.3BXDBXD6254MUTHSC RW
114R1425E.2BXDBXD6361FUTHSC RW
115R2576E.3BXDBXD6370MUTHSC RW
116R943E-2.2BXDBXD6456FUTHSC RW
117R2611E.1BXDBXD6468MUTHSC RW
118R2689E.2BXDBXD6563FUTHSC RW
119R2583E.1BXDBXD6560MUTHSC RW
120R2728E.2BXDBXD6667FUTHSC RW
121R2536E2.1BXDBXD6664FUTHSC RW
122R1207E.2BXDBXD6683MUTHSC RW
123R1192E.2BXDBXD6764FUTHSC RW
124R2727E.3BXDBXD6765FUTHSC RW
125R2691E.3BXDBXD6765MUTHSC RW
126R2551E.1BXDBXD6867FUTHSC RW
127R2726E.2BXDBXD6864MUTHSC RW
128R2593E.1BXDBXD6959FUTHSC RW
129R975E.2BXDBXD7064FUTHSC RW
130R2537E2.1BXDBXD7059MUTHSC RW
131R4531EBXDBXD7187FUTHSC RW
132R4532EBXDBXD7186MUTHSC RW
133R2779E.2BXDBXD7364FUTHSC RW
134R3024E.3BXDBXD7354MUTHSC RW
135R2565E.1BXDBXD7561FUTHSC RW
136R1397E-re.2BXDBXD7558MUTHSC RW
137R2687E.3BXDBXD7760FUTHSC RW
138R2717E.2BXDBXD77107MUTHSC RW
139R1421E.3BXDBXD7762MUTHSC RW
140R2579E.1BXDBXD8065FUTHSC RW
141R2686E.2BXDBXD8061MUTHSC RW
142R2956E.3BXDBXD8358FUTHSC RW
143R2960E.3BXDBXD8358MUTHSC RW
144R2922E.3BXDBXD8461FUTHSC RW
145R2895E.3BXDBXD8467MUTHSC RW
146R2692E.2BXDBXD8563FUTHSC RW
147R2715E.2BXDBXD8591MUTHSC RW
148R1405E.2BXDBXD8658FUTHSC RW
149R1225E.3BXDBXD8658MUTHSC RW
150R2724E.2BXDBXD8763FUTHSC RW
151R2540E.1BXDBXD8763MUTHSC RW
152R1433E.2BXDBXD8963FUTHSC RW
153R2546E.1BXDBXD8966MUTHSC RW
154R2578E2.1BXDBXD9061FUTHSC RW
155R859E.2BXDBXD9072MUTHSC RW
156R2682E.2BXDBXD9266FUTHSC RW
157R1388E.3BXDBXD9262FUTHSC RW
158R1322E.3BXDBXD9255MUTHSC RW
159R2733E.2BXDBXD9667FUTHSC RW
160R2554E.1BXDBXD9667MUTHSC RW
161R2649E.2BXDBXD9774FUTHSC RW
162R2577E.1BXDBXD9755MUTHSC RW
163R2645E.3BXDBXD9866FUTHSC RW
164R2688E.2BXDBXD9867MUTHSC RW
165R4533EBXDBXD9980FUTHSC RW
166R4534EBXDBXD9991MUTHSC RW
167R2885E.3GDPBXSB/MpJ61FBIDMC GR
168R2883E.3GDPBXSB/MpJ61MBIDMC GR
169R1700E.1GDPC3H/HeJ83FUTHSC RW
170R1704E.1GDPC3H/HeJ83MUTHSC RW
171R2605E.1GDP BXDC57BL/6J79FUTHSC RW
172R0871EGDP BXDC57BL/6J65FUTHSC RW
173R0872E.1GDP BXDC57BL/6J66MUTHSC RW
174R0872EGDP BXDC57BL/6J66MUTHSC RW
175R4507EKOC57BL/6J-Nyx57MGeisert
176R4508EKOC57BL/6J-Nyx57MGeisert
177R4505EKOC57BL/6J-Rpe6557FGeisert
178R4506EKOC57BL/6J-Rpe6557FGeisert
179R4535EGDPC57BLKS/J66FJAX
180R4536EGDPC57BLKS/J66MJAX
181R2564E.1GDPCAST/EiJ64FJAX
182R2580E.1GDPCAST/EiJ64MJAX
183R4537EGDPCBA/CaJ66FJAX
184R4538EGDPCBA/CaJ66MJAX
185R4539EGDPCZECHII/EiJ66FJAX
186R4540EGDPCZECHII/EiJ66MJAX
187R2600E.1GDP BXDD2B6F172FUTHSC RW
188R2604E.1GDP BXDD2B6F169MUTHSC RW
189R1002E.3GDP BXDDBA/2J72FUTHSC RW
190R4541EGDP BXDDBA/2J65FJAX
191R959E.3GDP BXDDBA/2J60MUTHSC RW
192R2572E.1GDP BXDDBA/2J65MUTHSC RW
193R4542EGDP BXDDBA/2J59MJAX
194R2771E.3GDPFVB/NJ60FBIDMC GR
195R2772E.3GDPFVB/NJ60MBIDMC GR
196R2636E.1GDPKK/HlJ64FUTHSC RW
197R2637E.1GDPKK/HlJ64MUTHSC RW
198R0999E.1GDPLG/J57FUTHSC RW
199R1004E.1GDPLG/J65MUTHSC RW
200R4543EGDPLP/J65FJAX
201R4544EGDPLP/J65MJAX
202R2858E.3GDPMOLF/EiJ60FBIDMC GR
203R2919.3GDPMOLF/EiJ60MBIDMC GR
204R1688E.1GDPNOD/LtJ66FJAX
205R2566E-2.1GDPNOD/LtJ76MUTHSC RW
206R4545EGDPNZB/BlNJ61FBIDMC GR
207R4546EGDPNZB/BlNJ58MBIDMC GR
208R2535E.1GDPNZO/HlLtJ62FJAX
209R2550E.1GDPNZO/HlLtJ96MJAX
210R2817E.3GDPNZW/LacJ65FBIDMC GR
211R2810EGDPNZW/LacJ60MBIDMC GR
212R2810E.3GDPNZW/LacJ60MBIDMC GR
213R4547EGDPPANCEVO/EiJ68FJAX
214R4548EGDPPANCEVO/EiJ68MJAX
215R2635E.1GDPPWD/PhJ62FJAX
216R2634E.1GDPPWD/PhJ62MJAX
217R2544E.1GDPPWK/PhJ63FJAX
218R2549E.1GDPPWK/PhJ83MJAX
219R4550EGDPSJL/J65M+FJAX
220R2368E.1GDPWSB/EiJ67FUTHSC RW
221R2547E.1GDPWSB/EiJ67MUTHSC RW
+
diff --git a/general/datasets/Eye_m2_1105_m/acknowledgment.rtf b/general/datasets/Eye_m2_1105_m/acknowledgment.rtf new file mode 100644 index 0000000..3f040d2 --- /dev/null +++ b/general/datasets/Eye_m2_1105_m/acknowledgment.rtf @@ -0,0 +1 @@ +
Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant. All arrays were processed at the VA Medical Center, Memphis by Weikuan Gu.
diff --git a/general/datasets/Eye_m2_1105_m/cases.rtf b/general/datasets/Eye_m2_1105_m/cases.rtf new file mode 100644 index 0000000..687970b --- /dev/null +++ b/general/datasets/Eye_m2_1105_m/cases.rtf @@ -0,0 +1,51 @@ +
We have used a set of 14 conventional inbred strains, reciprocal F1s between C57BL/6J (B6 or B) and DBA/2J D2 (or D), and 47 BXD recombinant inbred strains. The BXD strains were generated by crossing C57BL/6J with DBA/2J. The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D). Physical maps in WebQTL incorporate approximately 2 million B vs D SNPs from Celera Genomics and from the Perlegen-NIEHS sequencing effort. BXD1 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. + +

Please note that BXD24/TyJ (JAX stock number 000031) used in this study is also known as BXD24b/TyJ and has complete retinal degeneration. BXD24a/TyJ, a 1988 F80 stock that has now been rederived, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control.

+ +

BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues.

+ +

Mouse Diversity Panel (MDP). In addition to the BXD strains, we have profiled a MDP consisting 14 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons:

+ + + +

All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants.

+ +
    +
  1. 129S1/SvImJ
    +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) also carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene.
  2. +
  3. A/J
    +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase-negative albino (c) mutant
  4. +
  5. BALB/cByJ
    +      Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list. A tyrosinase-negative albino (c) mutant
  6. +
  7. C3H/HeJ
    +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list. Important to note for this Eye dataset, C3H/HeJ is a Pdeb6 mutant with near total photoreceptor loss at maturity.
  8. +
  9. C57BL/6J
    +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
  10. +
  11. CAST/Ei
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
  12. +
  13. DBA/2J
    +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
  14. +
  15. KK/HlJ
    +     Sequenced by Perlegen/NIEHS
  16. +
  17. LG/J
    +     Paternal parent of the LGXSM panel
  18. +
  19. NOD/LtJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
  20. +
  21. NZO/HILtJ
    +     Collaborative Cross strain
  22. +
  23. PWD/PhJ
    +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
  24. +
  25. PWK/PhJ
    +     Collaborative Cross strain; Phenome Project D list
  26. +
  27. WSB/EiJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
  28. +
  29. B6D2F1 and D2B6F1, aka F1 in some graphs and tables
    + F1 hybrids generated by crossing C57BL/6J with DBA/2J
  30. +
+
diff --git a/general/datasets/Eye_m2_1105_m/notes.rtf b/general/datasets/Eye_m2_1105_m/notes.rtf new file mode 100644 index 0000000..48a01ef --- /dev/null +++ b/general/datasets/Eye_m2_1105_m/notes.rtf @@ -0,0 +1,7 @@ +
+

CAUTION: DO NOT USE THE PDNN TRANSFORM of the HEIMED EYE Database. USE RMA INSTEAD. This April 2005 data freeze provides estimates of mRNA expression in adult eye from 50 lines of mice including C57BL/6J, DBA/2J, their F1 hybrids, and 47 BXD recombinant inbred strains. Data were generated at UTHSC. Samples were hybridized in small pools (n = 3) to Affymetrix M430 2.0 arrays. This particular data set was processed using the PDNN method of Zhang. To simplify comparison among transforms, PDNN values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.

+
+ +
+

This text file originally generated by RWW, Nov 4, 2005. Updated by RWW, Nov 5, 2005. Modified Nov 7 with help of Y. Jiao.

+
diff --git a/general/datasets/Eye_m2_1105_m/platform.rtf b/general/datasets/Eye_m2_1105_m/platform.rtf new file mode 100644 index 0000000..fa332f1 --- /dev/null +++ b/general/datasets/Eye_m2_1105_m/platform.rtf @@ -0,0 +1,3 @@ +
+

Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are essentially duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contain the same probe sequence as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

+
diff --git a/general/datasets/Eye_m2_1105_m/processing.rtf b/general/datasets/Eye_m2_1105_m/processing.rtf new file mode 100644 index 0000000..ff25e0d --- /dev/null +++ b/general/datasets/Eye_m2_1105_m/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + + +
diff --git a/general/datasets/Eye_m2_1105_m/summary.rtf b/general/datasets/Eye_m2_1105_m/summary.rtf new file mode 100644 index 0000000..6c0fcbd --- /dev/null +++ b/general/datasets/Eye_m2_1105_m/summary.rtf @@ -0,0 +1,3 @@ +
+

SUPERCEDED EYE DATASET. The HEIMED November 2005 data set provides estimates of mRNA expression in whole eyes of 63 lines of mice without significant biological replication. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). Pooled RNA samples were hybridized to Affymetrix M430 2.0 arrays. This particular data set was processed using the RMA protocol. To simplify comparison among different transforms, RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units.

+
diff --git a/general/datasets/Eye_m2_1105_m/tissue.rtf b/general/datasets/Eye_m2_1105_m/tissue.rtf new file mode 100644 index 0000000..ec39390 --- /dev/null +++ b/general/datasets/Eye_m2_1105_m/tissue.rtf @@ -0,0 +1,1554 @@ +
+

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube.

+ +

Each array was hybridized with a pool of RNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

+ +

Dissecting and preparing eyes for RNA extraction

+ +
    +
  1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below).
  2. +
  3. Store RNA in 75% ethanol at –80 deg. C until use.
  4. +
+ +

Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we:

+ +
    +
  1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue)
  2. +
  3. allowed the homogenate to stand for 5 min at room temperature
  4. +
  5. added 0.2 ml of chloroform per 1 ml RNA STAT-60
  6. +
  7. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min
  8. +
  9. centrifuged at 12,000 G for 15 min
  10. +
  11. transfered the aqueous phase to a fresh tube
  12. +
  13. added 0.5 ml of isopropanol per 1 ml RNA STAT-60
  14. +
  15. vortexed and allowed sample to stand at room temperature for 5-10 min
  16. +
  17. centrifuged at 12,000 G for 10-15 min
  18. +
  19. removed the supernatant and washed the RNA pellet with 75% ethanol
  20. +
  21. stored the pellet in 75% ethanol at -80 deg C until use
  22. +
+ +

Sample Processing. Samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center lead by Drs. John Stuart and Weikuan Gu. All processing steps were performed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. centrigrade until use (one third roughly) or were immediately used for hybridization.

+ +

Dealing with Ocular Pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations of brown and beige colored mice tend to have faint residual pigmentation that does affect hybridization signal. The key determinant of this interesting effect is the Tyrp1 (brown) locus on Chr 5 at about 80 Mb. Loci on Chr 4 that map at this location should be considered with skepticism and reviewed carefully. To address this problem Yan Jiao purified total RNA a second time using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204). This was done for 8 colored samples (R2534E2, R2578E2, R1441E2, R2537E2, R2536E2, R2589E2, R2539E2), of which 5 were finally included in this data set (cases in which the strain ID is labeled with asterisks in the table).

+ +

Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. The current first batch of array data, represents a balanced sample of males and females, but without within-strain replication. We expect to add roughly 100 additional samples inthe next few months.

+ +

Batch Structure: This data set consists of a single batch. The great majority of arrays are from a single lot.

+ +

The table below summarizes information on strain, age, sex, original CEL filename, several quality control values, and source of mice. Columns labeled "PDNN 2Z outlier" and "RMA 2Z outlier" list the fraction of probe sets with values that deviated more than 2 z units from the mean. Scale factor, background average, present, absent, marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files.

+
+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Idtube IDgroup typeStrainagesexoriginal CEL filenamePDNN 2Z outlierRMA 2Z outlierscale factorbackground averagepresentabsentmarginalAFFX-b-ActinMur(3'/5')AFFX-GapdhMur(3'/5')source
1R2607E1GDP BXDC57BL/6J67FR2605E.CEL0.0050.0092.428115.120.5860.40.0141.310.76UTM RW
2R0872E2GDP BXDC57BL/6J66MR0872E.CEL0.0130.0123.12888.580.5890.3960.0151.30.79UTM RW
3R2572E1GDP BXDDBA/2J65MR2572E.CEL0.0410.0512.40679.070.5550.4290.0161.370.79UTM RW
4R2601E1GDP BXDB6D2F173FR2601E.CEL0.0030.0042.54591.960.5890.3960.0151.440.78UTM RW
5R2602E1GDP BXDB6D2F173MR2602E.CEL0.0010.0042.59984.440.5970.3880.0151.370.78UTM RW
6R2600E1GDP BXDD2B6F172FR2600E.CEL0.0030.0082.4794.750.5810.4020.0171.410.78UTM RW
7R2604E1GDP BXDD2B6F169MR2604E.CEL0.0030.0072.65789.630.5940.3920.0151.280.79UTM RW
8R2597E1BXDBXD261MR2597E.CEL0.0030.0072.37493.560.6030.3830.0151.340.77Glenn
9R2591E1BXDBXD560FR2591E.CEL0.0510.0091.7136.480.5850.40.0151.330.78Glenn
10R2570E1BXDBXD665FR2570E.CEL0.0020.0061.98786.730.5850.40.0151.460.76UTM RW
11R2538E1BXDBXD877FR2538E.CEL0.0370.0281.905101.980.6120.3730.0151.520.79UTM RW
12R2569E1BXDBXD967MR2569E.CEL0.0140.0271.75387.360.5510.4340.0152.823.14UTM RW
13R2581E1BXDBXD1165FR2581E.CEL0.0060.0121.94188.550.6210.3640.0161.550.81UTM RW
14R2543E1BXDBXD1263MR2543E.CEL0.0360.0071.605117.690.5860.3990.0161.430.77UTM RW
15R2586E1BXDBXD1360FR2586E.CEL0.0200.0352.00673.610.5640.420.0162.853.81Glenn
16R2557E1BXDBXD1460FR2557E.CEL0.0140.0171.8398.760.6250.3610.0141.310.78Glenn
17R2567E1BXDBXD1660MR2567E.CEL0.0160.0252.23982.350.5670.4160.0171.370.75Glenn
18R2559E1BXDBXD1859MR2559E.CEL0.0350.0061.654103.680.6080.3770.0151.270.78Glenn
19R2560E1BXDBXD1960FR2560E.CEL0.0260.0071.79298.330.6090.3750.0161.350.8Glenn
20R2584E1BXDBXD2059FR2584E.CEL0.0030.0072.0783.820.5930.3910.0161.40.76Glenn
21R2541E2BXDBXD2161MR2541E2.CEL0.0490.0362.625125.080.560.4240.0151.290.78UTM RW
22R2553E1BXDBXD2258FR2553E.CEL0.0030.0051.952111.30.5990.3850.0151.280.76Glenn
23R2558E1BXDBXD2360FR2558E2.CEL0.0130.0151.908114.530.5990.3880.0141.20.82Glenn
24R2589E2BXDBXD24-rd*59MR2589E2.CEL0.0980.0982.606112.190.5750.4090.0161.240.8Glenn
25R2573E1BXDBXD2567FR2573E2.CEL0.0090.0183.15371.880.5790.4070.0141.770.97UAB
26R2562E1BXDBXD2860FR2562E.CEL0.0030.0051.649116.350.5990.3840.0171.370.79Glenn
27R2561E1BXDBXD2960FR2561E.CEL0.0190.0291.95293.320.5830.4020.0152.191Glenn
28R2598E1BXDBXD3161MR2598E.CEL0.0030.0061.989106.480.6090.3760.0151.270.78UTM RW
29R2563E1BXDBXD3263FR2563E.CEL0.0080.0111.547101.520.6190.3670.0141.50.8UTM RW
30R2542E1BXDBXD3367FR2542E.CEL0.0100.0162.12897.080.5650.4180.0161.910.93UTM RW
31R2585E1BXDBXD3460MR2585E.CEL0.0070.0142.6475.130.5830.40.0171.250.77Glenn
32R2532E1BXDBXD3862MR2532E.CEL0.0020.0032.03893.650.5980.3870.0151.370.8UTM RW
33R2574E1BXDBXD3970FR2574E.CEL0.0010.0041.98190.640.6120.3730.0151.390.78UTM RW
34R2590E1BXDBXD4060MR2590E.CEL0.0040.0072.70877.30.5910.3930.0151.40.77Glenn
35R2596E1BXDBXD4259MR2596E.CEL0.0130.0172.632108.460.590.3960.0151.240.8Glenn
36R2605E1BXDBXD4379MR2607E.CEL0.0030.0061.817131.220.6050.3820.0131.320.8UTM RW
37R2594E1BXDBXD4463FR2594E.CEL0.0040.0091.766117.330.5980.3880.0141.350.85UTM RW
38R2592E1BXDBXD4562MR2592E.CEL0.0020.0041.85106.160.6010.3860.0131.430.85UTM RW
39R2606E1BXDBXD4878MR2606E.CEL0.0030.0102.556106.160.5890.3970.0141.350.83UTM RW
40R2603E1BXDBXD5166FR2603E.CEL0.0030.0092.488115.160.5770.4080.0151.240.79UTM RW
41R2534E2BXDBXD61*70FR2534E2.CEL0.0300.0282.473117.760.5790.4060.0151.420.79UTM RW
42R2611E1BXDBXD6468MR2611E.CEL0.0130.0222.29291.990.580.4050.0151.571.06UTM RW
43R2583E1BXDBXD6560MR2583E.CEL0.0050.0102.49270.430.5690.4150.0161.671.01UTM RW
44R2536E2BXDBXD66*64FR2536E2.CEL0.0390.0652.74108.620.5610.4230.0171.280.79UTM RW
45R2551E1BXDBXD6867FR2551E.CEL0.0370.0392.49392.380.5430.4410.0162.911.55UTM RW
46R2593E1BXDBXD6959FR2593E.CEL0.0080.0131.672127.60.5920.3950.0131.470.92UTM RW
47R2537E2BXDBXD70*59MR2537E2.CEL0.0460.0442.9398.660.580.4050.0161.290.75UTM RW
48R2565E1BXDBXD7561FR2565E.CEL0.0090.0171.79101.680.580.4050.0152.313.47UTM RW
49R2579E1BXDBXD8065FR2579E.CEL0.0050.0102.41972.130.5920.3940.0151.730.82UTM RW
50R2540E1BXDBXD8763MR2540E.CEL0.0130.0162.33393.150.6110.3740.0141.220.81UTM RW
51R2545E1BXDBXD8967MR2546E.CEL0.0460.0461.667104.760.5620.4230.0153.69.84UTM RW
52R2578E2BXDBXD90*61FR2578E2.CEL0.0330.0342.78592.270.5860.3980.0161.520.77UTM RW
53R2554E1BXDBXD9667MR2554E.CEL0.0040.0042.17793.020.6020.3830.0151.460.77UTM RW
54R2577E1BXDBXD9755MR2577E.CEL0.0190.0162.0776.580.5950.3910.0141.871.29UTM RW
55R2595E1GDP129S1/SvImJ59FR2595E.CEL0.0170.0211.792115.390.610.3750.0151.460.77UTM RW
56R2533E1GDP129S1/SvImJ60MR2533E.CEL0.0210.0132.10793.550.5790.4050.0161.370.78UTM RW
57R2546E1GDPA/J66FR2545E.CEL0.0180.0141.98995.590.5860.3970.0171.470.78UTM RW
58R0754E2GDPA/J60MR0754E.CEL0.0140.0162.71885.630.5980.3870.0151.360.76JAX
59R1676E1GDPBALB/cByJ83FR1676E.CEL0.0420.0412.68598.370.5890.3960.0151.460.74JAX
60R1672E1GDPBALB/cByJ83MR1672E.CEL0.0220.0222.216110.520.5990.3860.0151.260.8JAX
61R1700E1GDPC3H/HeJ83FR1700E.CEL0.0900.0922.97868.770.6080.3790.0141.480.78UTM RW
62R1704E1GDPC3H/HeJ83MR1704E.CEL0.0860.0892.58188.290.6010.3860.0131.380.84UTM RW
63R2564E1GDPCAST/Ei64FR2564E.CEL0.0780.0641.93788.890.5850.3990.0161.60.77JAX
64R2580E1GDPCAST/Ei64MR2580E.CEL0.0760.0672.08994.640.5820.4010.0171.40.76JAX
65R2636E1GDPKK/HIJ64FR2636E.CEL0.0230.0262.6193.10.5890.3950.0151.390.76UTM RW
66R2637E1GDPKK/HIJ64MR2637E.CEL0.0390.0202.189102.780.5940.390.0151.30.79UTM RW
67R0999E1GDPLG/J57FR0999E.CEL0.0120.0122.44882.090.5940.3910.0151.380.79UTM RW
68R1004E1GDPLG/J65MR1004E.CEL0.0130.0152.43891.710.5870.3980.0151.380.79UTM RW
69R1688E1GDPNOD/LtJ66FR1688E.CEL0.0170.0192.66497.650.5860.3990.0151.260.8JAX
70R2566E1GDPNOD/LtJ76MR2566E2.CEL0.0190.0253.03169.440.5980.3880.0151.380.75UTM RW
71R2550E1GDPNZO/HlLtJ96MR2550E.CEL0.0230.0151.79487.160.6070.3780.0151.520.82JAX
72R2535E1GDPNZO/HlLtJ62FR2535E.CEL0.0460.0251.89385.670.6040.3820.0141.410.85JAX
73R2634E1GDPPWD/PhJ62FR2635E.CEL0.0770.0693.29289.80.5590.4250.0161.570.81JAX
74R2635E1GDPPWD/PhJ62MR2634E.CEL0.0880.0813.72280.050.5420.4410.0171.530.85JAX
75R2544E1GDPPWK/PhJ63FR2544E.CEL0.1060.1002.196107.510.5490.4350.0171.360.82JAX
76R2549E1GDPPWK/PhJ83MR2549E.CEL0.0650.0482.27583.80.5730.4120.0151.570.83JAX
77R2368E1GDPWSB/EiJ67FR2368E.CEL0.0250.0282.56785.70.5950.3910.0141.290.74UTM RW
78R2547E1GDPWSB/EiJ67MR2547E.CEL0.0320.0212.13590.040.5820.4010.0161.320.77UTM RW
+
+
diff --git a/general/datasets/Eye_m2_1105_p/acknowledgment.rtf b/general/datasets/Eye_m2_1105_p/acknowledgment.rtf new file mode 100644 index 0000000..3f040d2 --- /dev/null +++ b/general/datasets/Eye_m2_1105_p/acknowledgment.rtf @@ -0,0 +1 @@ +
Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant. All arrays were processed at the VA Medical Center, Memphis by Weikuan Gu.
diff --git a/general/datasets/Eye_m2_1105_p/cases.rtf b/general/datasets/Eye_m2_1105_p/cases.rtf new file mode 100644 index 0000000..687970b --- /dev/null +++ b/general/datasets/Eye_m2_1105_p/cases.rtf @@ -0,0 +1,51 @@ +
We have used a set of 14 conventional inbred strains, reciprocal F1s between C57BL/6J (B6 or B) and DBA/2J D2 (or D), and 47 BXD recombinant inbred strains. The BXD strains were generated by crossing C57BL/6J with DBA/2J. The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D). Physical maps in WebQTL incorporate approximately 2 million B vs D SNPs from Celera Genomics and from the Perlegen-NIEHS sequencing effort. BXD1 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. + +

Please note that BXD24/TyJ (JAX stock number 000031) used in this study is also known as BXD24b/TyJ and has complete retinal degeneration. BXD24a/TyJ, a 1988 F80 stock that has now been rederived, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control.

+ +

BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues.

+ +

Mouse Diversity Panel (MDP). In addition to the BXD strains, we have profiled a MDP consisting 14 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons:

+ + + +

All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants.

+ +
    +
  1. 129S1/SvImJ
    +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) also carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene.
  2. +
  3. A/J
    +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase-negative albino (c) mutant
  4. +
  5. BALB/cByJ
    +      Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list. A tyrosinase-negative albino (c) mutant
  6. +
  7. C3H/HeJ
    +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list. Important to note for this Eye dataset, C3H/HeJ is a Pdeb6 mutant with near total photoreceptor loss at maturity.
  8. +
  9. C57BL/6J
    +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
  10. +
  11. CAST/Ei
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
  12. +
  13. DBA/2J
    +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
  14. +
  15. KK/HlJ
    +     Sequenced by Perlegen/NIEHS
  16. +
  17. LG/J
    +     Paternal parent of the LGXSM panel
  18. +
  19. NOD/LtJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
  20. +
  21. NZO/HILtJ
    +     Collaborative Cross strain
  22. +
  23. PWD/PhJ
    +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
  24. +
  25. PWK/PhJ
    +     Collaborative Cross strain; Phenome Project D list
  26. +
  27. WSB/EiJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
  28. +
  29. B6D2F1 and D2B6F1, aka F1 in some graphs and tables
    + F1 hybrids generated by crossing C57BL/6J with DBA/2J
  30. +
+
diff --git a/general/datasets/Eye_m2_1105_p/notes.rtf b/general/datasets/Eye_m2_1105_p/notes.rtf new file mode 100644 index 0000000..48a01ef --- /dev/null +++ b/general/datasets/Eye_m2_1105_p/notes.rtf @@ -0,0 +1,7 @@ +
+

CAUTION: DO NOT USE THE PDNN TRANSFORM of the HEIMED EYE Database. USE RMA INSTEAD. This April 2005 data freeze provides estimates of mRNA expression in adult eye from 50 lines of mice including C57BL/6J, DBA/2J, their F1 hybrids, and 47 BXD recombinant inbred strains. Data were generated at UTHSC. Samples were hybridized in small pools (n = 3) to Affymetrix M430 2.0 arrays. This particular data set was processed using the PDNN method of Zhang. To simplify comparison among transforms, PDNN values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.

+
+ +
+

This text file originally generated by RWW, Nov 4, 2005. Updated by RWW, Nov 5, 2005. Modified Nov 7 with help of Y. Jiao.

+
diff --git a/general/datasets/Eye_m2_1105_p/platform.rtf b/general/datasets/Eye_m2_1105_p/platform.rtf new file mode 100644 index 0000000..fa332f1 --- /dev/null +++ b/general/datasets/Eye_m2_1105_p/platform.rtf @@ -0,0 +1,3 @@ +
+

Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are essentially duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contain the same probe sequence as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

+
diff --git a/general/datasets/Eye_m2_1105_p/processing.rtf b/general/datasets/Eye_m2_1105_p/processing.rtf new file mode 100644 index 0000000..ff25e0d --- /dev/null +++ b/general/datasets/Eye_m2_1105_p/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + + +
diff --git a/general/datasets/Eye_m2_1105_p/summary.rtf b/general/datasets/Eye_m2_1105_p/summary.rtf new file mode 100644 index 0000000..6c0fcbd --- /dev/null +++ b/general/datasets/Eye_m2_1105_p/summary.rtf @@ -0,0 +1,3 @@ +
+

SUPERCEDED EYE DATASET. The HEIMED November 2005 data set provides estimates of mRNA expression in whole eyes of 63 lines of mice without significant biological replication. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). Pooled RNA samples were hybridized to Affymetrix M430 2.0 arrays. This particular data set was processed using the RMA protocol. To simplify comparison among different transforms, RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units.

+
diff --git a/general/datasets/Eye_m2_1105_p/tissue.rtf b/general/datasets/Eye_m2_1105_p/tissue.rtf new file mode 100644 index 0000000..ec39390 --- /dev/null +++ b/general/datasets/Eye_m2_1105_p/tissue.rtf @@ -0,0 +1,1554 @@ +
+

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube.

+ +

Each array was hybridized with a pool of RNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

+ +

Dissecting and preparing eyes for RNA extraction

+ +
    +
  1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below).
  2. +
  3. Store RNA in 75% ethanol at –80 deg. C until use.
  4. +
+ +

Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we:

+ +
    +
  1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue)
  2. +
  3. allowed the homogenate to stand for 5 min at room temperature
  4. +
  5. added 0.2 ml of chloroform per 1 ml RNA STAT-60
  6. +
  7. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min
  8. +
  9. centrifuged at 12,000 G for 15 min
  10. +
  11. transfered the aqueous phase to a fresh tube
  12. +
  13. added 0.5 ml of isopropanol per 1 ml RNA STAT-60
  14. +
  15. vortexed and allowed sample to stand at room temperature for 5-10 min
  16. +
  17. centrifuged at 12,000 G for 10-15 min
  18. +
  19. removed the supernatant and washed the RNA pellet with 75% ethanol
  20. +
  21. stored the pellet in 75% ethanol at -80 deg C until use
  22. +
+ +

Sample Processing. Samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center lead by Drs. John Stuart and Weikuan Gu. All processing steps were performed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. centrigrade until use (one third roughly) or were immediately used for hybridization.

+ +

Dealing with Ocular Pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations of brown and beige colored mice tend to have faint residual pigmentation that does affect hybridization signal. The key determinant of this interesting effect is the Tyrp1 (brown) locus on Chr 5 at about 80 Mb. Loci on Chr 4 that map at this location should be considered with skepticism and reviewed carefully. To address this problem Yan Jiao purified total RNA a second time using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204). This was done for 8 colored samples (R2534E2, R2578E2, R1441E2, R2537E2, R2536E2, R2589E2, R2539E2), of which 5 were finally included in this data set (cases in which the strain ID is labeled with asterisks in the table).

+ +

Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. The current first batch of array data, represents a balanced sample of males and females, but without within-strain replication. We expect to add roughly 100 additional samples inthe next few months.

+ +

Batch Structure: This data set consists of a single batch. The great majority of arrays are from a single lot.

+ +

The table below summarizes information on strain, age, sex, original CEL filename, several quality control values, and source of mice. Columns labeled "PDNN 2Z outlier" and "RMA 2Z outlier" list the fraction of probe sets with values that deviated more than 2 z units from the mean. Scale factor, background average, present, absent, marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files.

+
+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Idtube IDgroup typeStrainagesexoriginal CEL filenamePDNN 2Z outlierRMA 2Z outlierscale factorbackground averagepresentabsentmarginalAFFX-b-ActinMur(3'/5')AFFX-GapdhMur(3'/5')source
1R2607E1GDP BXDC57BL/6J67FR2605E.CEL0.0050.0092.428115.120.5860.40.0141.310.76UTM RW
2R0872E2GDP BXDC57BL/6J66MR0872E.CEL0.0130.0123.12888.580.5890.3960.0151.30.79UTM RW
3R2572E1GDP BXDDBA/2J65MR2572E.CEL0.0410.0512.40679.070.5550.4290.0161.370.79UTM RW
4R2601E1GDP BXDB6D2F173FR2601E.CEL0.0030.0042.54591.960.5890.3960.0151.440.78UTM RW
5R2602E1GDP BXDB6D2F173MR2602E.CEL0.0010.0042.59984.440.5970.3880.0151.370.78UTM RW
6R2600E1GDP BXDD2B6F172FR2600E.CEL0.0030.0082.4794.750.5810.4020.0171.410.78UTM RW
7R2604E1GDP BXDD2B6F169MR2604E.CEL0.0030.0072.65789.630.5940.3920.0151.280.79UTM RW
8R2597E1BXDBXD261MR2597E.CEL0.0030.0072.37493.560.6030.3830.0151.340.77Glenn
9R2591E1BXDBXD560FR2591E.CEL0.0510.0091.7136.480.5850.40.0151.330.78Glenn
10R2570E1BXDBXD665FR2570E.CEL0.0020.0061.98786.730.5850.40.0151.460.76UTM RW
11R2538E1BXDBXD877FR2538E.CEL0.0370.0281.905101.980.6120.3730.0151.520.79UTM RW
12R2569E1BXDBXD967MR2569E.CEL0.0140.0271.75387.360.5510.4340.0152.823.14UTM RW
13R2581E1BXDBXD1165FR2581E.CEL0.0060.0121.94188.550.6210.3640.0161.550.81UTM RW
14R2543E1BXDBXD1263MR2543E.CEL0.0360.0071.605117.690.5860.3990.0161.430.77UTM RW
15R2586E1BXDBXD1360FR2586E.CEL0.0200.0352.00673.610.5640.420.0162.853.81Glenn
16R2557E1BXDBXD1460FR2557E.CEL0.0140.0171.8398.760.6250.3610.0141.310.78Glenn
17R2567E1BXDBXD1660MR2567E.CEL0.0160.0252.23982.350.5670.4160.0171.370.75Glenn
18R2559E1BXDBXD1859MR2559E.CEL0.0350.0061.654103.680.6080.3770.0151.270.78Glenn
19R2560E1BXDBXD1960FR2560E.CEL0.0260.0071.79298.330.6090.3750.0161.350.8Glenn
20R2584E1BXDBXD2059FR2584E.CEL0.0030.0072.0783.820.5930.3910.0161.40.76Glenn
21R2541E2BXDBXD2161MR2541E2.CEL0.0490.0362.625125.080.560.4240.0151.290.78UTM RW
22R2553E1BXDBXD2258FR2553E.CEL0.0030.0051.952111.30.5990.3850.0151.280.76Glenn
23R2558E1BXDBXD2360FR2558E2.CEL0.0130.0151.908114.530.5990.3880.0141.20.82Glenn
24R2589E2BXDBXD24-rd*59MR2589E2.CEL0.0980.0982.606112.190.5750.4090.0161.240.8Glenn
25R2573E1BXDBXD2567FR2573E2.CEL0.0090.0183.15371.880.5790.4070.0141.770.97UAB
26R2562E1BXDBXD2860FR2562E.CEL0.0030.0051.649116.350.5990.3840.0171.370.79Glenn
27R2561E1BXDBXD2960FR2561E.CEL0.0190.0291.95293.320.5830.4020.0152.191Glenn
28R2598E1BXDBXD3161MR2598E.CEL0.0030.0061.989106.480.6090.3760.0151.270.78UTM RW
29R2563E1BXDBXD3263FR2563E.CEL0.0080.0111.547101.520.6190.3670.0141.50.8UTM RW
30R2542E1BXDBXD3367FR2542E.CEL0.0100.0162.12897.080.5650.4180.0161.910.93UTM RW
31R2585E1BXDBXD3460MR2585E.CEL0.0070.0142.6475.130.5830.40.0171.250.77Glenn
32R2532E1BXDBXD3862MR2532E.CEL0.0020.0032.03893.650.5980.3870.0151.370.8UTM RW
33R2574E1BXDBXD3970FR2574E.CEL0.0010.0041.98190.640.6120.3730.0151.390.78UTM RW
34R2590E1BXDBXD4060MR2590E.CEL0.0040.0072.70877.30.5910.3930.0151.40.77Glenn
35R2596E1BXDBXD4259MR2596E.CEL0.0130.0172.632108.460.590.3960.0151.240.8Glenn
36R2605E1BXDBXD4379MR2607E.CEL0.0030.0061.817131.220.6050.3820.0131.320.8UTM RW
37R2594E1BXDBXD4463FR2594E.CEL0.0040.0091.766117.330.5980.3880.0141.350.85UTM RW
38R2592E1BXDBXD4562MR2592E.CEL0.0020.0041.85106.160.6010.3860.0131.430.85UTM RW
39R2606E1BXDBXD4878MR2606E.CEL0.0030.0102.556106.160.5890.3970.0141.350.83UTM RW
40R2603E1BXDBXD5166FR2603E.CEL0.0030.0092.488115.160.5770.4080.0151.240.79UTM RW
41R2534E2BXDBXD61*70FR2534E2.CEL0.0300.0282.473117.760.5790.4060.0151.420.79UTM RW
42R2611E1BXDBXD6468MR2611E.CEL0.0130.0222.29291.990.580.4050.0151.571.06UTM RW
43R2583E1BXDBXD6560MR2583E.CEL0.0050.0102.49270.430.5690.4150.0161.671.01UTM RW
44R2536E2BXDBXD66*64FR2536E2.CEL0.0390.0652.74108.620.5610.4230.0171.280.79UTM RW
45R2551E1BXDBXD6867FR2551E.CEL0.0370.0392.49392.380.5430.4410.0162.911.55UTM RW
46R2593E1BXDBXD6959FR2593E.CEL0.0080.0131.672127.60.5920.3950.0131.470.92UTM RW
47R2537E2BXDBXD70*59MR2537E2.CEL0.0460.0442.9398.660.580.4050.0161.290.75UTM RW
48R2565E1BXDBXD7561FR2565E.CEL0.0090.0171.79101.680.580.4050.0152.313.47UTM RW
49R2579E1BXDBXD8065FR2579E.CEL0.0050.0102.41972.130.5920.3940.0151.730.82UTM RW
50R2540E1BXDBXD8763MR2540E.CEL0.0130.0162.33393.150.6110.3740.0141.220.81UTM RW
51R2545E1BXDBXD8967MR2546E.CEL0.0460.0461.667104.760.5620.4230.0153.69.84UTM RW
52R2578E2BXDBXD90*61FR2578E2.CEL0.0330.0342.78592.270.5860.3980.0161.520.77UTM RW
53R2554E1BXDBXD9667MR2554E.CEL0.0040.0042.17793.020.6020.3830.0151.460.77UTM RW
54R2577E1BXDBXD9755MR2577E.CEL0.0190.0162.0776.580.5950.3910.0141.871.29UTM RW
55R2595E1GDP129S1/SvImJ59FR2595E.CEL0.0170.0211.792115.390.610.3750.0151.460.77UTM RW
56R2533E1GDP129S1/SvImJ60MR2533E.CEL0.0210.0132.10793.550.5790.4050.0161.370.78UTM RW
57R2546E1GDPA/J66FR2545E.CEL0.0180.0141.98995.590.5860.3970.0171.470.78UTM RW
58R0754E2GDPA/J60MR0754E.CEL0.0140.0162.71885.630.5980.3870.0151.360.76JAX
59R1676E1GDPBALB/cByJ83FR1676E.CEL0.0420.0412.68598.370.5890.3960.0151.460.74JAX
60R1672E1GDPBALB/cByJ83MR1672E.CEL0.0220.0222.216110.520.5990.3860.0151.260.8JAX
61R1700E1GDPC3H/HeJ83FR1700E.CEL0.0900.0922.97868.770.6080.3790.0141.480.78UTM RW
62R1704E1GDPC3H/HeJ83MR1704E.CEL0.0860.0892.58188.290.6010.3860.0131.380.84UTM RW
63R2564E1GDPCAST/Ei64FR2564E.CEL0.0780.0641.93788.890.5850.3990.0161.60.77JAX
64R2580E1GDPCAST/Ei64MR2580E.CEL0.0760.0672.08994.640.5820.4010.0171.40.76JAX
65R2636E1GDPKK/HIJ64FR2636E.CEL0.0230.0262.6193.10.5890.3950.0151.390.76UTM RW
66R2637E1GDPKK/HIJ64MR2637E.CEL0.0390.0202.189102.780.5940.390.0151.30.79UTM RW
67R0999E1GDPLG/J57FR0999E.CEL0.0120.0122.44882.090.5940.3910.0151.380.79UTM RW
68R1004E1GDPLG/J65MR1004E.CEL0.0130.0152.43891.710.5870.3980.0151.380.79UTM RW
69R1688E1GDPNOD/LtJ66FR1688E.CEL0.0170.0192.66497.650.5860.3990.0151.260.8JAX
70R2566E1GDPNOD/LtJ76MR2566E2.CEL0.0190.0253.03169.440.5980.3880.0151.380.75UTM RW
71R2550E1GDPNZO/HlLtJ96MR2550E.CEL0.0230.0151.79487.160.6070.3780.0151.520.82JAX
72R2535E1GDPNZO/HlLtJ62FR2535E.CEL0.0460.0251.89385.670.6040.3820.0141.410.85JAX
73R2634E1GDPPWD/PhJ62FR2635E.CEL0.0770.0693.29289.80.5590.4250.0161.570.81JAX
74R2635E1GDPPWD/PhJ62MR2634E.CEL0.0880.0813.72280.050.5420.4410.0171.530.85JAX
75R2544E1GDPPWK/PhJ63FR2544E.CEL0.1060.1002.196107.510.5490.4350.0171.360.82JAX
76R2549E1GDPPWK/PhJ83MR2549E.CEL0.0650.0482.27583.80.5730.4120.0151.570.83JAX
77R2368E1GDPWSB/EiJ67FR2368E.CEL0.0250.0282.56785.70.5950.3910.0141.290.74UTM RW
78R2547E1GDPWSB/EiJ67MR2547E.CEL0.0320.0212.13590.040.5820.4010.0161.320.77UTM RW
+
+
diff --git a/general/datasets/Eye_m2_1105_r/acknowledgment.rtf b/general/datasets/Eye_m2_1105_r/acknowledgment.rtf new file mode 100644 index 0000000..3f040d2 --- /dev/null +++ b/general/datasets/Eye_m2_1105_r/acknowledgment.rtf @@ -0,0 +1 @@ +
Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant. All arrays were processed at the VA Medical Center, Memphis by Weikuan Gu.
diff --git a/general/datasets/Eye_m2_1105_r/cases.rtf b/general/datasets/Eye_m2_1105_r/cases.rtf new file mode 100644 index 0000000..687970b --- /dev/null +++ b/general/datasets/Eye_m2_1105_r/cases.rtf @@ -0,0 +1,51 @@ +
We have used a set of 14 conventional inbred strains, reciprocal F1s between C57BL/6J (B6 or B) and DBA/2J D2 (or D), and 47 BXD recombinant inbred strains. The BXD strains were generated by crossing C57BL/6J with DBA/2J. The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D). Physical maps in WebQTL incorporate approximately 2 million B vs D SNPs from Celera Genomics and from the Perlegen-NIEHS sequencing effort. BXD1 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. + +

Please note that BXD24/TyJ (JAX stock number 000031) used in this study is also known as BXD24b/TyJ and has complete retinal degeneration. BXD24a/TyJ, a 1988 F80 stock that has now been rederived, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control.

+ +

BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues.

+ +

Mouse Diversity Panel (MDP). In addition to the BXD strains, we have profiled a MDP consisting 14 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons:

+ + + +

All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants.

+ +
    +
  1. 129S1/SvImJ
    +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) also carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene.
  2. +
  3. A/J
    +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase-negative albino (c) mutant
  4. +
  5. BALB/cByJ
    +      Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list. A tyrosinase-negative albino (c) mutant
  6. +
  7. C3H/HeJ
    +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list. Important to note for this Eye dataset, C3H/HeJ is a Pdeb6 mutant with near total photoreceptor loss at maturity.
  8. +
  9. C57BL/6J
    +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
  10. +
  11. CAST/Ei
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
  12. +
  13. DBA/2J
    +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
  14. +
  15. KK/HlJ
    +     Sequenced by Perlegen/NIEHS
  16. +
  17. LG/J
    +     Paternal parent of the LGXSM panel
  18. +
  19. NOD/LtJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
  20. +
  21. NZO/HILtJ
    +     Collaborative Cross strain
  22. +
  23. PWD/PhJ
    +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
  24. +
  25. PWK/PhJ
    +     Collaborative Cross strain; Phenome Project D list
  26. +
  27. WSB/EiJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
  28. +
  29. B6D2F1 and D2B6F1, aka F1 in some graphs and tables
    + F1 hybrids generated by crossing C57BL/6J with DBA/2J
  30. +
+
diff --git a/general/datasets/Eye_m2_1105_r/notes.rtf b/general/datasets/Eye_m2_1105_r/notes.rtf new file mode 100644 index 0000000..48a01ef --- /dev/null +++ b/general/datasets/Eye_m2_1105_r/notes.rtf @@ -0,0 +1,7 @@ +
+

CAUTION: DO NOT USE THE PDNN TRANSFORM of the HEIMED EYE Database. USE RMA INSTEAD. This April 2005 data freeze provides estimates of mRNA expression in adult eye from 50 lines of mice including C57BL/6J, DBA/2J, their F1 hybrids, and 47 BXD recombinant inbred strains. Data were generated at UTHSC. Samples were hybridized in small pools (n = 3) to Affymetrix M430 2.0 arrays. This particular data set was processed using the PDNN method of Zhang. To simplify comparison among transforms, PDNN values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.

+
+ +
+

This text file originally generated by RWW, Nov 4, 2005. Updated by RWW, Nov 5, 2005. Modified Nov 7 with help of Y. Jiao.

+
diff --git a/general/datasets/Eye_m2_1105_r/platform.rtf b/general/datasets/Eye_m2_1105_r/platform.rtf new file mode 100644 index 0000000..fa332f1 --- /dev/null +++ b/general/datasets/Eye_m2_1105_r/platform.rtf @@ -0,0 +1,3 @@ +
+

Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are essentially duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contain the same probe sequence as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

+
diff --git a/general/datasets/Eye_m2_1105_r/processing.rtf b/general/datasets/Eye_m2_1105_r/processing.rtf new file mode 100644 index 0000000..ff25e0d --- /dev/null +++ b/general/datasets/Eye_m2_1105_r/processing.rtf @@ -0,0 +1,11 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + + +
diff --git a/general/datasets/Eye_m2_1105_r/summary.rtf b/general/datasets/Eye_m2_1105_r/summary.rtf new file mode 100644 index 0000000..6c0fcbd --- /dev/null +++ b/general/datasets/Eye_m2_1105_r/summary.rtf @@ -0,0 +1,3 @@ +
+

SUPERCEDED EYE DATASET. The HEIMED November 2005 data set provides estimates of mRNA expression in whole eyes of 63 lines of mice without significant biological replication. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). Pooled RNA samples were hybridized to Affymetrix M430 2.0 arrays. This particular data set was processed using the RMA protocol. To simplify comparison among different transforms, RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units.

+
diff --git a/general/datasets/Eye_m2_1105_r/tissue.rtf b/general/datasets/Eye_m2_1105_r/tissue.rtf new file mode 100644 index 0000000..ec39390 --- /dev/null +++ b/general/datasets/Eye_m2_1105_r/tissue.rtf @@ -0,0 +1,1554 @@ +
+

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube.

+ +

Each array was hybridized with a pool of RNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

+ +

Dissecting and preparing eyes for RNA extraction

+ +
    +
  1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below).
  2. +
  3. Store RNA in 75% ethanol at –80 deg. C until use.
  4. +
+ +

Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we:

+ +
    +
  1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue)
  2. +
  3. allowed the homogenate to stand for 5 min at room temperature
  4. +
  5. added 0.2 ml of chloroform per 1 ml RNA STAT-60
  6. +
  7. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min
  8. +
  9. centrifuged at 12,000 G for 15 min
  10. +
  11. transfered the aqueous phase to a fresh tube
  12. +
  13. added 0.5 ml of isopropanol per 1 ml RNA STAT-60
  14. +
  15. vortexed and allowed sample to stand at room temperature for 5-10 min
  16. +
  17. centrifuged at 12,000 G for 10-15 min
  18. +
  19. removed the supernatant and washed the RNA pellet with 75% ethanol
  20. +
  21. stored the pellet in 75% ethanol at -80 deg C until use
  22. +
+ +

Sample Processing. Samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center lead by Drs. John Stuart and Weikuan Gu. All processing steps were performed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. centrigrade until use (one third roughly) or were immediately used for hybridization.

+ +

Dealing with Ocular Pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations of brown and beige colored mice tend to have faint residual pigmentation that does affect hybridization signal. The key determinant of this interesting effect is the Tyrp1 (brown) locus on Chr 5 at about 80 Mb. Loci on Chr 4 that map at this location should be considered with skepticism and reviewed carefully. To address this problem Yan Jiao purified total RNA a second time using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204). This was done for 8 colored samples (R2534E2, R2578E2, R1441E2, R2537E2, R2536E2, R2589E2, R2539E2), of which 5 were finally included in this data set (cases in which the strain ID is labeled with asterisks in the table).

+ +

Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. The current first batch of array data, represents a balanced sample of males and females, but without within-strain replication. We expect to add roughly 100 additional samples inthe next few months.

+ +

Batch Structure: This data set consists of a single batch. The great majority of arrays are from a single lot.

+ +

The table below summarizes information on strain, age, sex, original CEL filename, several quality control values, and source of mice. Columns labeled "PDNN 2Z outlier" and "RMA 2Z outlier" list the fraction of probe sets with values that deviated more than 2 z units from the mean. Scale factor, background average, present, absent, marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files.

+
+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Idtube IDgroup typeStrainagesexoriginal CEL filenamePDNN 2Z outlierRMA 2Z outlierscale factorbackground averagepresentabsentmarginalAFFX-b-ActinMur(3'/5')AFFX-GapdhMur(3'/5')source
1R2607E1GDP BXDC57BL/6J67FR2605E.CEL0.0050.0092.428115.120.5860.40.0141.310.76UTM RW
2R0872E2GDP BXDC57BL/6J66MR0872E.CEL0.0130.0123.12888.580.5890.3960.0151.30.79UTM RW
3R2572E1GDP BXDDBA/2J65MR2572E.CEL0.0410.0512.40679.070.5550.4290.0161.370.79UTM RW
4R2601E1GDP BXDB6D2F173FR2601E.CEL0.0030.0042.54591.960.5890.3960.0151.440.78UTM RW
5R2602E1GDP BXDB6D2F173MR2602E.CEL0.0010.0042.59984.440.5970.3880.0151.370.78UTM RW
6R2600E1GDP BXDD2B6F172FR2600E.CEL0.0030.0082.4794.750.5810.4020.0171.410.78UTM RW
7R2604E1GDP BXDD2B6F169MR2604E.CEL0.0030.0072.65789.630.5940.3920.0151.280.79UTM RW
8R2597E1BXDBXD261MR2597E.CEL0.0030.0072.37493.560.6030.3830.0151.340.77Glenn
9R2591E1BXDBXD560FR2591E.CEL0.0510.0091.7136.480.5850.40.0151.330.78Glenn
10R2570E1BXDBXD665FR2570E.CEL0.0020.0061.98786.730.5850.40.0151.460.76UTM RW
11R2538E1BXDBXD877FR2538E.CEL0.0370.0281.905101.980.6120.3730.0151.520.79UTM RW
12R2569E1BXDBXD967MR2569E.CEL0.0140.0271.75387.360.5510.4340.0152.823.14UTM RW
13R2581E1BXDBXD1165FR2581E.CEL0.0060.0121.94188.550.6210.3640.0161.550.81UTM RW
14R2543E1BXDBXD1263MR2543E.CEL0.0360.0071.605117.690.5860.3990.0161.430.77UTM RW
15R2586E1BXDBXD1360FR2586E.CEL0.0200.0352.00673.610.5640.420.0162.853.81Glenn
16R2557E1BXDBXD1460FR2557E.CEL0.0140.0171.8398.760.6250.3610.0141.310.78Glenn
17R2567E1BXDBXD1660MR2567E.CEL0.0160.0252.23982.350.5670.4160.0171.370.75Glenn
18R2559E1BXDBXD1859MR2559E.CEL0.0350.0061.654103.680.6080.3770.0151.270.78Glenn
19R2560E1BXDBXD1960FR2560E.CEL0.0260.0071.79298.330.6090.3750.0161.350.8Glenn
20R2584E1BXDBXD2059FR2584E.CEL0.0030.0072.0783.820.5930.3910.0161.40.76Glenn
21R2541E2BXDBXD2161MR2541E2.CEL0.0490.0362.625125.080.560.4240.0151.290.78UTM RW
22R2553E1BXDBXD2258FR2553E.CEL0.0030.0051.952111.30.5990.3850.0151.280.76Glenn
23R2558E1BXDBXD2360FR2558E2.CEL0.0130.0151.908114.530.5990.3880.0141.20.82Glenn
24R2589E2BXDBXD24-rd*59MR2589E2.CEL0.0980.0982.606112.190.5750.4090.0161.240.8Glenn
25R2573E1BXDBXD2567FR2573E2.CEL0.0090.0183.15371.880.5790.4070.0141.770.97UAB
26R2562E1BXDBXD2860FR2562E.CEL0.0030.0051.649116.350.5990.3840.0171.370.79Glenn
27R2561E1BXDBXD2960FR2561E.CEL0.0190.0291.95293.320.5830.4020.0152.191Glenn
28R2598E1BXDBXD3161MR2598E.CEL0.0030.0061.989106.480.6090.3760.0151.270.78UTM RW
29R2563E1BXDBXD3263FR2563E.CEL0.0080.0111.547101.520.6190.3670.0141.50.8UTM RW
30R2542E1BXDBXD3367FR2542E.CEL0.0100.0162.12897.080.5650.4180.0161.910.93UTM RW
31R2585E1BXDBXD3460MR2585E.CEL0.0070.0142.6475.130.5830.40.0171.250.77Glenn
32R2532E1BXDBXD3862MR2532E.CEL0.0020.0032.03893.650.5980.3870.0151.370.8UTM RW
33R2574E1BXDBXD3970FR2574E.CEL0.0010.0041.98190.640.6120.3730.0151.390.78UTM RW
34R2590E1BXDBXD4060MR2590E.CEL0.0040.0072.70877.30.5910.3930.0151.40.77Glenn
35R2596E1BXDBXD4259MR2596E.CEL0.0130.0172.632108.460.590.3960.0151.240.8Glenn
36R2605E1BXDBXD4379MR2607E.CEL0.0030.0061.817131.220.6050.3820.0131.320.8UTM RW
37R2594E1BXDBXD4463FR2594E.CEL0.0040.0091.766117.330.5980.3880.0141.350.85UTM RW
38R2592E1BXDBXD4562MR2592E.CEL0.0020.0041.85106.160.6010.3860.0131.430.85UTM RW
39R2606E1BXDBXD4878MR2606E.CEL0.0030.0102.556106.160.5890.3970.0141.350.83UTM RW
40R2603E1BXDBXD5166FR2603E.CEL0.0030.0092.488115.160.5770.4080.0151.240.79UTM RW
41R2534E2BXDBXD61*70FR2534E2.CEL0.0300.0282.473117.760.5790.4060.0151.420.79UTM RW
42R2611E1BXDBXD6468MR2611E.CEL0.0130.0222.29291.990.580.4050.0151.571.06UTM RW
43R2583E1BXDBXD6560MR2583E.CEL0.0050.0102.49270.430.5690.4150.0161.671.01UTM RW
44R2536E2BXDBXD66*64FR2536E2.CEL0.0390.0652.74108.620.5610.4230.0171.280.79UTM RW
45R2551E1BXDBXD6867FR2551E.CEL0.0370.0392.49392.380.5430.4410.0162.911.55UTM RW
46R2593E1BXDBXD6959FR2593E.CEL0.0080.0131.672127.60.5920.3950.0131.470.92UTM RW
47R2537E2BXDBXD70*59MR2537E2.CEL0.0460.0442.9398.660.580.4050.0161.290.75UTM RW
48R2565E1BXDBXD7561FR2565E.CEL0.0090.0171.79101.680.580.4050.0152.313.47UTM RW
49R2579E1BXDBXD8065FR2579E.CEL0.0050.0102.41972.130.5920.3940.0151.730.82UTM RW
50R2540E1BXDBXD8763MR2540E.CEL0.0130.0162.33393.150.6110.3740.0141.220.81UTM RW
51R2545E1BXDBXD8967MR2546E.CEL0.0460.0461.667104.760.5620.4230.0153.69.84UTM RW
52R2578E2BXDBXD90*61FR2578E2.CEL0.0330.0342.78592.270.5860.3980.0161.520.77UTM RW
53R2554E1BXDBXD9667MR2554E.CEL0.0040.0042.17793.020.6020.3830.0151.460.77UTM RW
54R2577E1BXDBXD9755MR2577E.CEL0.0190.0162.0776.580.5950.3910.0141.871.29UTM RW
55R2595E1GDP129S1/SvImJ59FR2595E.CEL0.0170.0211.792115.390.610.3750.0151.460.77UTM RW
56R2533E1GDP129S1/SvImJ60MR2533E.CEL0.0210.0132.10793.550.5790.4050.0161.370.78UTM RW
57R2546E1GDPA/J66FR2545E.CEL0.0180.0141.98995.590.5860.3970.0171.470.78UTM RW
58R0754E2GDPA/J60MR0754E.CEL0.0140.0162.71885.630.5980.3870.0151.360.76JAX
59R1676E1GDPBALB/cByJ83FR1676E.CEL0.0420.0412.68598.370.5890.3960.0151.460.74JAX
60R1672E1GDPBALB/cByJ83MR1672E.CEL0.0220.0222.216110.520.5990.3860.0151.260.8JAX
61R1700E1GDPC3H/HeJ83FR1700E.CEL0.0900.0922.97868.770.6080.3790.0141.480.78UTM RW
62R1704E1GDPC3H/HeJ83MR1704E.CEL0.0860.0892.58188.290.6010.3860.0131.380.84UTM RW
63R2564E1GDPCAST/Ei64FR2564E.CEL0.0780.0641.93788.890.5850.3990.0161.60.77JAX
64R2580E1GDPCAST/Ei64MR2580E.CEL0.0760.0672.08994.640.5820.4010.0171.40.76JAX
65R2636E1GDPKK/HIJ64FR2636E.CEL0.0230.0262.6193.10.5890.3950.0151.390.76UTM RW
66R2637E1GDPKK/HIJ64MR2637E.CEL0.0390.0202.189102.780.5940.390.0151.30.79UTM RW
67R0999E1GDPLG/J57FR0999E.CEL0.0120.0122.44882.090.5940.3910.0151.380.79UTM RW
68R1004E1GDPLG/J65MR1004E.CEL0.0130.0152.43891.710.5870.3980.0151.380.79UTM RW
69R1688E1GDPNOD/LtJ66FR1688E.CEL0.0170.0192.66497.650.5860.3990.0151.260.8JAX
70R2566E1GDPNOD/LtJ76MR2566E2.CEL0.0190.0253.03169.440.5980.3880.0151.380.75UTM RW
71R2550E1GDPNZO/HlLtJ96MR2550E.CEL0.0230.0151.79487.160.6070.3780.0151.520.82JAX
72R2535E1GDPNZO/HlLtJ62FR2535E.CEL0.0460.0251.89385.670.6040.3820.0141.410.85JAX
73R2634E1GDPPWD/PhJ62FR2635E.CEL0.0770.0693.29289.80.5590.4250.0161.570.81JAX
74R2635E1GDPPWD/PhJ62MR2634E.CEL0.0880.0813.72280.050.5420.4410.0171.530.85JAX
75R2544E1GDPPWK/PhJ63FR2544E.CEL0.1060.1002.196107.510.5490.4350.0171.360.82JAX
76R2549E1GDPPWK/PhJ83MR2549E.CEL0.0650.0482.27583.80.5730.4120.0151.570.83JAX
77R2368E1GDPWSB/EiJ67FR2368E.CEL0.0250.0282.56785.70.5950.3910.0141.290.74UTM RW
78R2547E1GDPWSB/EiJ67MR2547E.CEL0.0320.0212.13590.040.5820.4010.0161.320.77UTM RW
+
+
diff --git a/general/datasets/FGUCAS_BAdip0516/summary.rtf b/general/datasets/FGUCAS_BAdip0516/summary.rtf deleted file mode 100644 index 7de9a53..0000000 --- a/general/datasets/FGUCAS_BAdip0516/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This dataset is currently unpublished, please refer to the contact information above if you want to use this data.

diff --git a/general/datasets/Fgucas_badip0516/summary.rtf b/general/datasets/Fgucas_badip0516/summary.rtf new file mode 100644 index 0000000..7de9a53 --- /dev/null +++ b/general/datasets/Fgucas_badip0516/summary.rtf @@ -0,0 +1 @@ +

This dataset is currently unpublished, please refer to the contact information above if you want to use this data.

diff --git a/general/datasets/Ft_2a_0605_rz/acknowledgment.rtf b/general/datasets/Ft_2a_0605_rz/acknowledgment.rtf new file mode 100644 index 0000000..f6b54b6 --- /dev/null +++ b/general/datasets/Ft_2a_0605_rz/acknowledgment.rtf @@ -0,0 +1 @@ +

This work was supported with funds to TJA by the MRC Clinical Sciences Centre, the British Heart Foundation, and the Wellcome Trust Cardiovascular Functional Genomics Intiative; to NH from the German Ministry for Science and Education (National Genome Research Network, NGFN); to MP and Vladimir Kren from the Grant Agency of the Czech Republic; to MP and TJA from the Wellcome Trust Collaborative Research Initiative grant, to Theodore W Kurtz from the NIH, to TWK and MP from a Fogarty International Research Collaboration Award. Microarrays were a generous donation of Affymetrix Inc. MP is an International Research Scholar of the Howard Hughes Medical Institute.

diff --git a/general/datasets/Ft_2a_0605_rz/cases.rtf b/general/datasets/Ft_2a_0605_rz/cases.rtf new file mode 100644 index 0000000..f953b8d --- /dev/null +++ b/general/datasets/Ft_2a_0605_rz/cases.rtf @@ -0,0 +1,7 @@ +
We have exploited a set of HXB/BXH recombinant inbred strains of rats generated over the past 20 years in Prague. The parental strains from which all HXB lines are derived are SHR (SHR/OlaIpcv or HSR = H) and Brown Norway (BN.Lx/Cub= B). These parental strains have been used extensively to study cardiovascular system physiology and genetics. +

 

+ +

The HXB strains were generated by Michal Pravenec at the Institute of Physiology, Czech Academy of Sciences. The BXH strains were generated by Vladimir Kren (see Pravenec et al. 1989, 2004) at a similar animal facility at the Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University. These strains are at approximately the 60th generation of continuous inbreeding (F60).

+ +

Animals used in the transcriptome analyses of kidney and fat (Hübner and colleagues, 2005) were weaned at 4 weeks. Those born at the Charles University were transferred to the Institute of Physiology. Animals were reared on a commercial rat chow (ST-1 from VELAZ, Czech Republic). Four males were house per cage. Cages were made of polystyrene and have a floor size of 22 x 38 cm and height of 23 cm. The bedding was changed twice a week. Light cycle was 12:12 on-off. Vivarium rooms were maintained at 23 degrees C. Rats were sexually naive. All males used in the initial transcriptome studies (Hubner et al., 2005) were born between May and August 2002. They were sacrificed unfastged by rapid cervical dislocation between 9 and 10 AM, following an approved animal protocol (Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague; Animal Protection Law of the Czech Republic (311/1997).

+
diff --git a/general/datasets/Ft_2a_0605_rz/notes.rtf b/general/datasets/Ft_2a_0605_rz/notes.rtf new file mode 100644 index 0000000..815c6d4 --- /dev/null +++ b/general/datasets/Ft_2a_0605_rz/notes.rtf @@ -0,0 +1,3 @@ +

This approved text file originally generated by Robert Williams, Norbert Hubner, Michal Pravenec, Timothy Aitman, April 19, 2005. Updated by RWW, April 20, 2005; April 28, 2005. June 15, 2005 by RWW and SY; June 20 by RWW and NH.

+ +

 

diff --git a/general/datasets/Ft_2a_0605_rz/platform.rtf b/general/datasets/Ft_2a_0605_rz/platform.rtf new file mode 100644 index 0000000..238952f --- /dev/null +++ b/general/datasets/Ft_2a_0605_rz/platform.rtf @@ -0,0 +1 @@ +

Affymetrix 230A GeneChip: Expression data were generated using 230A array. The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Rat Genome Sequencing Consortium assembly.

diff --git a/general/datasets/Ft_2a_0605_rz/processing.rtf b/general/datasets/Ft_2a_0605_rz/processing.rtf new file mode 100644 index 0000000..e119fda --- /dev/null +++ b/general/datasets/Ft_2a_0605_rz/processing.rtf @@ -0,0 +1,25 @@ +

Probe and Probe set data: The original cell-level files (in text format) were downloaded from Array Express. These files were then converted to a standard Affymetrix CEL file (old MAS5 style) format using a Perl script written by Senhua Yu. These files were then processed as a large batch (either all 130 arrays or the final 124 arrays) using a custom quantile normalization program written by KF Manly. The output of this program automatically performs the log normalization and variance stabilization at the probe level. We then computed the mean and standard error for each strain using these normalized probe data.

+ +

Probe set data were generated starting with the raw Affymetrix CEL file described above (prior to any normalization) and were processed using the Robust Multichip Average (RMA) method (Irrizary et al. 2003).

+ +

This data set include further normalization to produce final estimates of expression that can be compared directly to the other transforms (average of 8 units and stabilized variance of 2 units within each array). Data were further transformed as follows:

+ + + +

All transformation steps were carried out by Senhua Yu at UTHSC.

+ +

About Quality Control Procedures:

+ +

RNA processing:RNA was extracted using Trizol reagent (Invitrogen) and purified using an RNeasy Mini kit from Qiagen. Double-stranded cDNA was generated without pooling. Fat samples were processed using the Enzo Diagnostics Bioarray High Yield RNA Transcript labeling kit. See Hubner et al. 2005 for additional detail. One-hundred and twenty eight samples passed RNA quality control assays.

+ +

Probe level QC: All 130 CEL files were collected into a single DataDesk 6.2 analysis file. Probe data from pairs of arrays were plotted and compared after quantile normalization. Six arrays were considered potential outliers (despite having passed RNA quality control) and in the interest of minimizing technical variance, a decision was made to withhold them from the calculation of strain means. The remaining 124 arrays were then quantile normalized again and reexamined in DataDesk to ensure reasonable colinearity of all final array data sets.

+ +

Strain assignment check: To confirm strain assignment we exploit a set of transcripts with near-Mendelian segregation patterns (search for "test Mendelian"). Strain means with both intermediate expression values AND unusually high error terms often indicate at a misassignment of a case to a particular strain. This error checking has identified 4 strains with possible errors in this data set.

+ +

 

diff --git a/general/datasets/Ft_2a_0605_rz/summary.rtf b/general/datasets/Ft_2a_0605_rz/summary.rtf new file mode 100644 index 0000000..f522e76 --- /dev/null +++ b/general/datasets/Ft_2a_0605_rz/summary.rtf @@ -0,0 +1,16 @@ +

This June 2005 data set provides estimates of mRNA expression in normal peritoneal fat of 32 strains of rats. The set includes the hypertensive SHR strain, the normotensive BN strain, and 30 HXB/BXH recombinant inbred strains. Each strain was sampled in quadruplicate (6-week-old males). Animals and tissues were generated by Michal Pravenec and colleagues at the Czech Academy of Sciences (CAS). RNA samples were processed at the Max-Delbrück-Center for Molecular Medicine (MDC), Berlin-Buch, by Norbert Hubner and colleagues. Transcriptome mapping was carried out by Norbert Hubner, Timothy Aitman and colleagues at the MDC and the MRC Clinicial Sciences Centre, Imperial College London (ICL). Samples were hybridized individually to a total of 130 Affymetrix RAE230A array. This particular data set includes 124 arrays processed using the RMA protocol. RMA values of each array were adjusted to an average of 8 units and a standard deviation of 2 units (2ZPlus8). This data set complements the MAS5 data set exploited by Hubner and colleagues 2005. Download the particular transform in an Excel work book with both strain means and SEMs.

+ +

Genome-wide co-expression analysis in multiple tissues.

+ +

And see closely associate set of papers:

+ +
    +
  1. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease.
  2. +
  3. Heritability and tissue specificity of expression quantitative trait loci.
  4. +
  5. Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass.
  6. +
  7. New insights into the genetic control of gene expression using a Bayesian multi-tissue approach.
  8. +
  9. The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance.
  10. +
  11. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk.
  12. +
  13. Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat.
  14. +
  15. Systems-level approaches reveal conservation of trans-regulated genes in the rat and genetic determinants of blood pressure in humans.
  16. +
diff --git a/general/datasets/Ft_2a_0605_rz/tissue.rtf b/general/datasets/Ft_2a_0605_rz/tissue.rtf new file mode 100644 index 0000000..85eb931 --- /dev/null +++ b/general/datasets/Ft_2a_0605_rz/tissue.rtf @@ -0,0 +1,542 @@ +
All tissues were collected at the age of 6 weeks. Peritoneal fat pads were rapidly dissected and cleaned extraneous tissue, inserted into a vial, and immersed in liquid nitrogen for storage until RNA extraction.
+ +
The table below lists 130 arrays by strain and sample identifier. Each array was hybridized with mRNA from a single young male rat. Six arrays marked with asterisks were eventually excluded.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
StrainSampleID
BNBN1
BNBN2
BNBN3
BNBN5
BNBN6
BXH10RI 10c-1
BXH10RI 10c-2
BXH10RI 10c-3
BXH10RI 10c-5
BXH11RI 11c-1
BXH11RI 11c-2
BXH11RI 11c-3
BXH11RI 11c-4
BXH12RI 12c-1
BXH12RI 12c-2
BXH12RI 12c-3
BXH12RI 12c-4
BXH13RI 13c-1
BXH13RI 13c-2
BXH13RI 13c-3
BXH13RI 13c-4
BXH2RI 02c-1
BXH2RI 02c-2
BXH2RI 02c-4
BXH2RI 02c-5
BXH3RI 03c-1
BXH3RI 03c-2
BXH3RI 03c-3
BXH3RI 03c-4
BXH5RI 05c-1
BXH5RI 05c-2
BXH5*RI 05c-3
BXH5RI 05c-5
BXH6RI 06c-1
BXH6RI 06c-4
BXH6RI 06c-5
BXH6RI 06c-6
BXH8RI 08c-2
BXH8RI 08c-3
BXH8RI 08c-4
BXH8RI 08c-5
BXH9RI 09c-1
BXH9RI 09c-2
BXH9RI 09c-4
BXH9RI 09c-5
HXB1RI 01-1
HXB1RI 01-2
HXB1RI 01-4
HXB1RI 01-5
HXB10RI 10-2
HXB10RI 10-3
HXB10RI 10-4
HXB10RI 10-5
HXB15RI 15-1
HXB15RI 15-2
HXB15RI 15-5
HXB15RI 15-6
HXB17RI 17-1
HXB17RI 17-2
HXB17*RI 17-3
HXB17RI 17-4
HXB18RI 18-1
HXB18RI 18-2
HXB18*RI 18-3
HXB18RI 18-4
HXB2RI 02-1
HXB2RI 02-2
HXB2RI 02-3
HXB2RI 02-4
HXB20RI 20-1
HXB20RI 20-2
HXB20*RI 20-3
HXB20RI 20-4
HXB21RI 21-1
HXB21RI 21-2
HXB21RI 21-3
HXB21RI 21-4
HXB22RI 22-1
HXB22RI 22-2
HXB22*RI 22-3
HXB22RI 22-4
HXB23RI 23-1
HXB23RI 23-2
HXB23RI 23-3
HXB23RI 23-4
HXB24RI 24-1
HXB24RI 24-2
HXB24RI 24-3
HXB24RI 24-5
HXB25RI 25-1
HXB25RI 25-3
HXB25RI 25-4
HXB25RI 25-5
HXB26RI 26-1
HXB26RI 26-2
HXB26*RI 26-3
HXB26RI 26-4
HXB27RI 27-1
HXB27RI 27-2
HXB27RI 27-3
HXB27RI 27-4
HXB29RI 29-1
HXB29RI 29-2
HXB29RI 29-4
HXB29RI 29-5
HXB3RI 03-1
HXB3RI 03-2
HXB3RI 03-3
HXB3RI 03-4
HXB31RI 31-1
HXB31RI 31-2
HXB31RI 31-3
HXB31RI 31-4
HXB4RI 04-1
HXB4RI 04-2
HXB4RI 04-3
HXB4RI 04-4
HXB5RI 05-1
HXB5RI 05-2
HXB5RI 05-3
HXB5RI 05-4
HXB7RI 07-1
HXB7RI 07-2
HXB7RI 07-3
HXB7RI 07-4
HSRHSR1
HSRHSR2
HSRHSR6
HSRHSR7
HSRHSR8
+
+ +

*: These six arrays were excluded in the final strain summary data. See section of Quality Control for further explanation.

diff --git a/general/datasets/Ft_2a_0805_m/acknowledgment.rtf b/general/datasets/Ft_2a_0805_m/acknowledgment.rtf new file mode 100644 index 0000000..f6b54b6 --- /dev/null +++ b/general/datasets/Ft_2a_0805_m/acknowledgment.rtf @@ -0,0 +1 @@ +

This work was supported with funds to TJA by the MRC Clinical Sciences Centre, the British Heart Foundation, and the Wellcome Trust Cardiovascular Functional Genomics Intiative; to NH from the German Ministry for Science and Education (National Genome Research Network, NGFN); to MP and Vladimir Kren from the Grant Agency of the Czech Republic; to MP and TJA from the Wellcome Trust Collaborative Research Initiative grant, to Theodore W Kurtz from the NIH, to TWK and MP from a Fogarty International Research Collaboration Award. Microarrays were a generous donation of Affymetrix Inc. MP is an International Research Scholar of the Howard Hughes Medical Institute.

diff --git a/general/datasets/Ft_2a_0805_m/cases.rtf b/general/datasets/Ft_2a_0805_m/cases.rtf new file mode 100644 index 0000000..f953b8d --- /dev/null +++ b/general/datasets/Ft_2a_0805_m/cases.rtf @@ -0,0 +1,7 @@ +
We have exploited a set of HXB/BXH recombinant inbred strains of rats generated over the past 20 years in Prague. The parental strains from which all HXB lines are derived are SHR (SHR/OlaIpcv or HSR = H) and Brown Norway (BN.Lx/Cub= B). These parental strains have been used extensively to study cardiovascular system physiology and genetics. +

 

+ +

The HXB strains were generated by Michal Pravenec at the Institute of Physiology, Czech Academy of Sciences. The BXH strains were generated by Vladimir Kren (see Pravenec et al. 1989, 2004) at a similar animal facility at the Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University. These strains are at approximately the 60th generation of continuous inbreeding (F60).

+ +

Animals used in the transcriptome analyses of kidney and fat (Hübner and colleagues, 2005) were weaned at 4 weeks. Those born at the Charles University were transferred to the Institute of Physiology. Animals were reared on a commercial rat chow (ST-1 from VELAZ, Czech Republic). Four males were house per cage. Cages were made of polystyrene and have a floor size of 22 x 38 cm and height of 23 cm. The bedding was changed twice a week. Light cycle was 12:12 on-off. Vivarium rooms were maintained at 23 degrees C. Rats were sexually naive. All males used in the initial transcriptome studies (Hubner et al., 2005) were born between May and August 2002. They were sacrificed unfastged by rapid cervical dislocation between 9 and 10 AM, following an approved animal protocol (Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague; Animal Protection Law of the Czech Republic (311/1997).

+
diff --git a/general/datasets/Ft_2a_0805_m/notes.rtf b/general/datasets/Ft_2a_0805_m/notes.rtf new file mode 100644 index 0000000..815c6d4 --- /dev/null +++ b/general/datasets/Ft_2a_0805_m/notes.rtf @@ -0,0 +1,3 @@ +

This approved text file originally generated by Robert Williams, Norbert Hubner, Michal Pravenec, Timothy Aitman, April 19, 2005. Updated by RWW, April 20, 2005; April 28, 2005. June 15, 2005 by RWW and SY; June 20 by RWW and NH.

+ +

 

diff --git a/general/datasets/Ft_2a_0805_m/platform.rtf b/general/datasets/Ft_2a_0805_m/platform.rtf new file mode 100644 index 0000000..238952f --- /dev/null +++ b/general/datasets/Ft_2a_0805_m/platform.rtf @@ -0,0 +1 @@ +

Affymetrix 230A GeneChip: Expression data were generated using 230A array. The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Rat Genome Sequencing Consortium assembly.

diff --git a/general/datasets/Ft_2a_0805_m/processing.rtf b/general/datasets/Ft_2a_0805_m/processing.rtf new file mode 100644 index 0000000..e119fda --- /dev/null +++ b/general/datasets/Ft_2a_0805_m/processing.rtf @@ -0,0 +1,25 @@ +

Probe and Probe set data: The original cell-level files (in text format) were downloaded from Array Express. These files were then converted to a standard Affymetrix CEL file (old MAS5 style) format using a Perl script written by Senhua Yu. These files were then processed as a large batch (either all 130 arrays or the final 124 arrays) using a custom quantile normalization program written by KF Manly. The output of this program automatically performs the log normalization and variance stabilization at the probe level. We then computed the mean and standard error for each strain using these normalized probe data.

+ +

Probe set data were generated starting with the raw Affymetrix CEL file described above (prior to any normalization) and were processed using the Robust Multichip Average (RMA) method (Irrizary et al. 2003).

+ +

This data set include further normalization to produce final estimates of expression that can be compared directly to the other transforms (average of 8 units and stabilized variance of 2 units within each array). Data were further transformed as follows:

+ + + +

All transformation steps were carried out by Senhua Yu at UTHSC.

+ +

About Quality Control Procedures:

+ +

RNA processing:RNA was extracted using Trizol reagent (Invitrogen) and purified using an RNeasy Mini kit from Qiagen. Double-stranded cDNA was generated without pooling. Fat samples were processed using the Enzo Diagnostics Bioarray High Yield RNA Transcript labeling kit. See Hubner et al. 2005 for additional detail. One-hundred and twenty eight samples passed RNA quality control assays.

+ +

Probe level QC: All 130 CEL files were collected into a single DataDesk 6.2 analysis file. Probe data from pairs of arrays were plotted and compared after quantile normalization. Six arrays were considered potential outliers (despite having passed RNA quality control) and in the interest of minimizing technical variance, a decision was made to withhold them from the calculation of strain means. The remaining 124 arrays were then quantile normalized again and reexamined in DataDesk to ensure reasonable colinearity of all final array data sets.

+ +

Strain assignment check: To confirm strain assignment we exploit a set of transcripts with near-Mendelian segregation patterns (search for "test Mendelian"). Strain means with both intermediate expression values AND unusually high error terms often indicate at a misassignment of a case to a particular strain. This error checking has identified 4 strains with possible errors in this data set.

+ +

 

diff --git a/general/datasets/Ft_2a_0805_m/summary.rtf b/general/datasets/Ft_2a_0805_m/summary.rtf new file mode 100644 index 0000000..f522e76 --- /dev/null +++ b/general/datasets/Ft_2a_0805_m/summary.rtf @@ -0,0 +1,16 @@ +

This June 2005 data set provides estimates of mRNA expression in normal peritoneal fat of 32 strains of rats. The set includes the hypertensive SHR strain, the normotensive BN strain, and 30 HXB/BXH recombinant inbred strains. Each strain was sampled in quadruplicate (6-week-old males). Animals and tissues were generated by Michal Pravenec and colleagues at the Czech Academy of Sciences (CAS). RNA samples were processed at the Max-Delbrück-Center for Molecular Medicine (MDC), Berlin-Buch, by Norbert Hubner and colleagues. Transcriptome mapping was carried out by Norbert Hubner, Timothy Aitman and colleagues at the MDC and the MRC Clinicial Sciences Centre, Imperial College London (ICL). Samples were hybridized individually to a total of 130 Affymetrix RAE230A array. This particular data set includes 124 arrays processed using the RMA protocol. RMA values of each array were adjusted to an average of 8 units and a standard deviation of 2 units (2ZPlus8). This data set complements the MAS5 data set exploited by Hubner and colleagues 2005. Download the particular transform in an Excel work book with both strain means and SEMs.

+ +

Genome-wide co-expression analysis in multiple tissues.

+ +

And see closely associate set of papers:

+ +
    +
  1. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease.
  2. +
  3. Heritability and tissue specificity of expression quantitative trait loci.
  4. +
  5. Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass.
  6. +
  7. New insights into the genetic control of gene expression using a Bayesian multi-tissue approach.
  8. +
  9. The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance.
  10. +
  11. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk.
  12. +
  13. Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat.
  14. +
  15. Systems-level approaches reveal conservation of trans-regulated genes in the rat and genetic determinants of blood pressure in humans.
  16. +
diff --git a/general/datasets/Ft_2a_0805_m/tissue.rtf b/general/datasets/Ft_2a_0805_m/tissue.rtf new file mode 100644 index 0000000..85eb931 --- /dev/null +++ b/general/datasets/Ft_2a_0805_m/tissue.rtf @@ -0,0 +1,542 @@ +
All tissues were collected at the age of 6 weeks. Peritoneal fat pads were rapidly dissected and cleaned extraneous tissue, inserted into a vial, and immersed in liquid nitrogen for storage until RNA extraction.
+ +
The table below lists 130 arrays by strain and sample identifier. Each array was hybridized with mRNA from a single young male rat. Six arrays marked with asterisks were eventually excluded.
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
StrainSampleID
BNBN1
BNBN2
BNBN3
BNBN5
BNBN6
BXH10RI 10c-1
BXH10RI 10c-2
BXH10RI 10c-3
BXH10RI 10c-5
BXH11RI 11c-1
BXH11RI 11c-2
BXH11RI 11c-3
BXH11RI 11c-4
BXH12RI 12c-1
BXH12RI 12c-2
BXH12RI 12c-3
BXH12RI 12c-4
BXH13RI 13c-1
BXH13RI 13c-2
BXH13RI 13c-3
BXH13RI 13c-4
BXH2RI 02c-1
BXH2RI 02c-2
BXH2RI 02c-4
BXH2RI 02c-5
BXH3RI 03c-1
BXH3RI 03c-2
BXH3RI 03c-3
BXH3RI 03c-4
BXH5RI 05c-1
BXH5RI 05c-2
BXH5*RI 05c-3
BXH5RI 05c-5
BXH6RI 06c-1
BXH6RI 06c-4
BXH6RI 06c-5
BXH6RI 06c-6
BXH8RI 08c-2
BXH8RI 08c-3
BXH8RI 08c-4
BXH8RI 08c-5
BXH9RI 09c-1
BXH9RI 09c-2
BXH9RI 09c-4
BXH9RI 09c-5
HXB1RI 01-1
HXB1RI 01-2
HXB1RI 01-4
HXB1RI 01-5
HXB10RI 10-2
HXB10RI 10-3
HXB10RI 10-4
HXB10RI 10-5
HXB15RI 15-1
HXB15RI 15-2
HXB15RI 15-5
HXB15RI 15-6
HXB17RI 17-1
HXB17RI 17-2
HXB17*RI 17-3
HXB17RI 17-4
HXB18RI 18-1
HXB18RI 18-2
HXB18*RI 18-3
HXB18RI 18-4
HXB2RI 02-1
HXB2RI 02-2
HXB2RI 02-3
HXB2RI 02-4
HXB20RI 20-1
HXB20RI 20-2
HXB20*RI 20-3
HXB20RI 20-4
HXB21RI 21-1
HXB21RI 21-2
HXB21RI 21-3
HXB21RI 21-4
HXB22RI 22-1
HXB22RI 22-2
HXB22*RI 22-3
HXB22RI 22-4
HXB23RI 23-1
HXB23RI 23-2
HXB23RI 23-3
HXB23RI 23-4
HXB24RI 24-1
HXB24RI 24-2
HXB24RI 24-3
HXB24RI 24-5
HXB25RI 25-1
HXB25RI 25-3
HXB25RI 25-4
HXB25RI 25-5
HXB26RI 26-1
HXB26RI 26-2
HXB26*RI 26-3
HXB26RI 26-4
HXB27RI 27-1
HXB27RI 27-2
HXB27RI 27-3
HXB27RI 27-4
HXB29RI 29-1
HXB29RI 29-2
HXB29RI 29-4
HXB29RI 29-5
HXB3RI 03-1
HXB3RI 03-2
HXB3RI 03-3
HXB3RI 03-4
HXB31RI 31-1
HXB31RI 31-2
HXB31RI 31-3
HXB31RI 31-4
HXB4RI 04-1
HXB4RI 04-2
HXB4RI 04-3
HXB4RI 04-4
HXB5RI 05-1
HXB5RI 05-2
HXB5RI 05-3
HXB5RI 05-4
HXB7RI 07-1
HXB7RI 07-2
HXB7RI 07-3
HXB7RI 07-4
HSRHSR1
HSRHSR2
HSRHSR6
HSRHSR7
HSRHSR8
+
+ +

*: These six arrays were excluded in the final strain summary data. See section of Quality Control for further explanation.

diff --git a/general/datasets/G2heioncretilm6_0911/acknowledgment.rtf b/general/datasets/G2heioncretilm6_0911/acknowledgment.rtf new file mode 100644 index 0000000..a41ff76 --- /dev/null +++ b/general/datasets/G2heioncretilm6_0911/acknowledgment.rtf @@ -0,0 +1,13 @@ +

The HEI Retinal Database is supported by National Eye Institute Grants:

+ +

 

+ + diff --git a/general/datasets/G2heioncretilm6_0911/cases.rtf b/general/datasets/G2heioncretilm6_0911/cases.rtf new file mode 100644 index 0000000..b37d700 --- /dev/null +++ b/general/datasets/G2heioncretilm6_0911/cases.rtf @@ -0,0 +1,14 @@ +
+

Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 48 and maximum age is 118 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J.

+ +
BXD strains: + + +
+
+ +

What Makes the G2 HEI Retina Database different from the HEI Retina Database Examination of Gfap expression across all of the strains in the HEI Retinal Dataset, reveals that some strains express very high levels of Gfap relative to others. For example, BXD24 expresses Gfap at a 9-fold higher level, than BXD22. It has been established that BXD24 acquired a mutation in Cep290 that results in early onset photoreceptor degeneration (Chang et al., 2006). This degeneration results in reactive gliosis throughout the retina. In addition to BXD24, other BXD strains expressed very high levels of Gfap including: BXD32, BXD49, BXD70, BXD83 and BXD89. For the G2 dataset all of these strains with potential reactive gliosis were removed from the dataset.

diff --git a/general/datasets/G2heioncretilm6_0911/contributors.rtf b/general/datasets/G2heioncretilm6_0911/contributors.rtf new file mode 100644 index 0000000..b1f321b --- /dev/null +++ b/general/datasets/G2heioncretilm6_0911/contributors.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Justin P. Templeton, Robert W. Williams

diff --git a/general/datasets/G2heioncretilm6_0911/experiment-design.rtf b/general/datasets/G2heioncretilm6_0911/experiment-design.rtf new file mode 100644 index 0000000..4fff707 --- /dev/null +++ b/general/datasets/G2heioncretilm6_0911/experiment-design.rtf @@ -0,0 +1,12 @@ +

Expression profiling by array

+ +

We used pooled RNA samples of retinas, usually two independent pools--two male, two female pool--for most lines of mice.

+ +

All normalization was performed by William E. Orr in the HEI Vision Core Facility

+ +
    +
  1. Computed the log base 2 of each raw signal value
  2. +
  3. Calculated the mean and standard Deviation of each Mouse WG-6 v2.0 array
  4. +
  5. Normalized each array using the formula, 2 (z-score of log2 [intensity]) The result is to produce arrays that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage is that a two-fold difference in expression level corresponds approximately to a 1 unit difference.
  6. +
  7. computed the mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples.
  8. +
diff --git a/general/datasets/G2heioncretilm6_0911/experiment-type.rtf b/general/datasets/G2heioncretilm6_0911/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/G2heioncretilm6_0911/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/G2heioncretilm6_0911/notes.rtf b/general/datasets/G2heioncretilm6_0911/notes.rtf new file mode 100644 index 0000000..13ff99a --- /dev/null +++ b/general/datasets/G2heioncretilm6_0911/notes.rtf @@ -0,0 +1 @@ +

This data set is available as a bulk download in several formats. The data are available as either strain means or the individual arrays. Due to the involved normalization procedures required to correct for batch effects we strongly recommend not using the raw CEL files without special statistical procedures.

diff --git a/general/datasets/G2heioncretilm6_0911/platform.rtf b/general/datasets/G2heioncretilm6_0911/platform.rtf new file mode 100644 index 0000000..2c52707 --- /dev/null +++ b/general/datasets/G2heioncretilm6_0911/platform.rtf @@ -0,0 +1 @@ +

Illumina MouseWG-6 v2.0 arrays: The Illumina Sentrix Mouse-6 BeadChip uses 50-nucleotide probes to interrogate approximately 46,000 sequences from the mouse transcriptome. For each array, the RNA was pooled from two retinas.

diff --git a/general/datasets/G2heioncretilm6_0911/processing.rtf b/general/datasets/G2heioncretilm6_0911/processing.rtf new file mode 100644 index 0000000..97cc2be --- /dev/null +++ b/general/datasets/G2heioncretilm6_0911/processing.rtf @@ -0,0 +1,2654 @@ +

Values of all 45,281 probe sets in this data set range from a low of 6.25 (Rho GTPase activating protein 11A, Arhgap11a, probe ID ILMN_2747167) to a high of 18.08 (Ubiquitin B, Ubb, probe ID ILMN_2516699). This corresponds to 11.83 units or a 1 to 3641 dynamic range of expression (2^11.83). We normalized raw signal values using Beadstudio’s rank invariant normalization algorithm. BXD62 was the strain used as the control group

+ +

 

+ +

Sample Processing: Drs. Natalie E. Freeman-Anderson and Justin P. Templeton extracted the retinas from the mice and Dr. Natalie Freeman-Anderson processed all samples in the HEI Vision Core Facility. The tissue was homogenized and extracted according to the RNA-Stat-60 protocol as described by the manufacturer (Tel-Test, Friendswood, TX) listed above. The quality and purity of RNA was assessed using an Agilent Bioanalyzer 2100 system. The RNA from each sample was processed with the Illumina TotalPrep RNA Amplification Kit (Ambion, Austin, TX) to produce labeled cRNA. The cRNA for each sample was then hybridized to an Illumina Sentrix® Mouse-6-V2 BeadChip (Illumina, San Diego, CA)

+ +

 

+ +

 

+ +

Quality control analysis of the raw image data was performed using the Illumina BeadStudio software. MIAME standards were used for all microarray data. Rank invariant normalization with BeadStudio software was used to calculate the data. Once this data was collected, the data was globally normalized across all samples using the formula 2 (z-score of log2 [intensity]) + 8.

+ +

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

+ +

Table 1: HEI Retina case IDs, including sample tube ID, strain, age, sex, and source of mice

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexSample IDStrainAgeSexSource of Animal
1121608_11-C57BL/6JcFAC57BL/6J69FJAX
2121608_12-C57BL/6JcFBC57BL/6J69FJAX
3KA7444-C57BL/6JcMCC57BL/6J97MUTHSC RW
4KA7444-C57BL/6JcMDC57BL/6J97MUTHSC RW
531209.05-DBA2JcFADBA2J75FUTHSC RW
631209.05-DBA2JcFBDBA2J75FUTHSC RW
7121608_13-DBA/2JcMADBA/2J89MUTHSC RW
8121608_14-DBA/2JcMBDBA/2J89MUTHSC RW
9KA7446-B6D2F1cFAB6D2F192FUTHSC RW
10KA7446-B6D2F1cFBB6D2F192FUTHSC RW
11KA7446-B6D2F1cMCB6D2F192MUTHSC RW
12KA7446-B6D2F1cMDB6D2F192MUTHSC RW
13KA7466-D2B6F1cFAD2B6F170FUTHSC RW
14KA7466-D2B6F1cFBD2B6F170FUTHSC RW
15KA7466-D2B6F1cMCD2B6F170MUTHSC RW
16KA7466-D2B6F1cMDD2B6F170MUTHSC RW
1782609.13-1cFABXD0162FJAX
1882609.14-1cFBBXD0162FJAX
19KA7389-1cFABXD0151FUTHSC RW
20KA7389-1cFBBXD0151FUTHSC RW
21KA7389-1cMCBXD0151MUTHSC RW
22KA7389-1cMDBXD0151MUTHSC RW
23KA7300-2cFABXD0275FUTHSC RW
24KA7300-2cFBBXD0275FUTHSC RW
25100909.01-2cMABXD0265MJAX
26100909.02-2cMBBXD0265MJAX
27KA6699-5cFABXD0562FUTHSC RW
28KA6699-5cFBBXD0562FUTHSC RW
29KA6699-5cFCBXD0562FUTHSC RW
30KA6699-5cFDBXD0562FUTHSC RW
3182609.09-5cMABXD0560MJAX
3282609.1-5cMBBXD0560MJAX
33KA6763-6cFABXD0648FUTHSC RW
34KA6763-6cFBBXD0648FUTHSC RW
3581209.06-6cMABXD0669MVAMC
3681209.07-6cMBBXD0669MVAMC
3782609.07-8cFABXD0868FJAX
3882609.08-8cFBBXD0868FJAX
39JAX-8cMABXD0876MJAX
40JAX-8cMBBXD0876MJAX
41KA7289-9cFABXD0987FUTHSC RW
42KA7289-9cFBBXD0987FUTHSC RW
43KA7289-9cMCBXD0987MUTHSC RW
44KA7289-9cMDBXD0987MUTHSC RW
45JAX-11cFABXD1184FJAX
46JAX-11cFBBXD1184FJAX
47JAX-11cMCBXD1171MJAX
48JAX-11cMDBXD1171MJAX
4940209.07-12cFABXD1265FVAMC
5040209.08-12cFBBXD1265FVAMC
51011309.01-12cMABXD1265MUTHSC RW
52011309.02-12cMBBXD1265MUTHSC RW
53KA7286-13cFABXD1389FUTHSC RW
54KA7286-13cFBBXD1389FUTHSC RW
55KA7286-13cMCBXD1389MUTHSC RW
56KA7286-13cMDBXD1389MUTHSC RW
57KA7302-14cFABXD1473FUTHSC RW
58KA7302-14cFBBXD1473FUTHSC RW
59100909.05-14cMABXD1466MJAX
60100909.06-14cMBBXD1466MJAX
61KA7288-15cFABXD1589FUTHSC RW
62KA7288-15cFBBXD1589FUTHSC RW
63KA7288-15cMCBXD1589MUTHSC RW
64KA7288-15cMDBXD1589MUTHSC RW
65062509.01-16cFABXD1668FUTHSC RW
66KA7267-16cMABXD1691MUTHSC RW
67KA7267-16cMBBXD1691MUTHSC RW
68KA6686-18cFBBXD1865FUTHSC RW
69KA6686-18cFCBXD1865FUTHSC RW
70KA6686-18cMEBXD1865MUTHSC RW
71KA6686-18cMFBXD1865MUTHSC RW
72KA6676-19cFBBXD1963FUTHSC RW
73KA6676-19cFCBXD1963FUTHSC RW
74KA6676-19cMEBXD1963MUTHSC RW
75KA6676-19cMFBXD1963MUTHSC RW
76060409.05-20cFABXD2067FUTHSC RW
77060409.06-20cFBBXD2067FUTHSC RW
78021909.03-20cMABXD2064MUTHSC RW
79021909.04-20cMBBXD2064MUTHSC RW
8082609.02-21cFCBXD2165FJAX
8182609.03-21cFDBXD2165FJAX
82121709.01-21cMABXD2180MJAX
83121709.02-21cMBBXD2180MJAX
84121709.03-22cFABXD2262FJAX
85121709.04-22cFBBXD2262FJAX
86092308_03-22cMABXD22118MUTHSC RW
87092308_04-22cMBBXD22118MUTHSC RW
8880409.01-24AcFABXD24A72FUTHSC RW
89080409_02_24AcFBBXD24A72FUTHSC RW
9082609.26-24AcFCBXD24A64FUTHSC RW
9181209.03-24AcMCBXD24A62MUTHSC RW
92KA6678-24cFABXD2462FUTHSC RW
93KA6678-24cFBBXD2462FUTHSC RW
94KA6678-24cMEBXD2462MUTHSC RW
95KA6678-24cMFBXD2462MUTHSC RW
96060409.07-27cFABXD2763FUTHSC RW
97060409.08-27cFBBXD2763FUTHSC RW
9880409.03-27cMABXD2774MUTHSC RW
9980409.04-27cMBBXD2774MUTHSC RW
100JAX-28cFABXD2867FJAX
101JAX-28cFBBXD2867FJAX
102JAX-28cMCBXD2867MJAX
103JAX-28cMDBXD2867MJAX
10482609.11-29cFABXD2966FJAX
10582609.12-29cFBBXD2966FJAX
10682609.04-29cMABXD2966MJAX
10782609.05-29cMBBXD2966MJAX
108JAX-31cMBBXD 3156MJAX
109JAX-31cFCBXD 3169FJAX
110JAX-31cFDBXD 3169FJAX
111011309.03-32cFABXD3262FUTHSC RW
112011309.04-32cFBBXD3262FUTHSC RW
113KA7318-32cFCBXD3271FUTHSC RW
114KA7319-32cMABXD3274MUTHSC RW
115KA7319-32cMBBXD3274MUTHSC RW
116100909.07-33cFABXD3365FJAX
117100909.08-33cFBBXD3365FJAX
118022609.01-33cMABXD3392MUTHSC RW
119022609.02-33cMBBXD3392MUTHSC RW
120KA7416-34cFABXD3497FUTHSC RW
121KA7416-34cFBBXD3497FUTHSC RW
122KA6321-34cMABXD3466MUTHSC RW
123KA6321-34cMBBXD3466MUTHSC RW
124060409.01-36cFABXD3663FUTHSC RW
125060409.02-36cFBBXD3663FUTHSC RW
126060409.03-36cMCBXD3663MUTHSC RW
127KA6702-38cFABXD3863FUTHSC RW
128KA6702-38cFBBXD3863FUTHSC RW
12982609.24-38cFABXD3885FUTHSC RW
13082609.25-38cFBBXD3885FUTHSC RW
131100909.03-38cMABXD3861MJAX
132100909.04-38cMBBXD3861MJAX
133022609.05-39cFABXD3965FUTHSC RW
134022609.06-39cFBBXD3965FUTHSC RW
13531209.01-39cMCBXD3967MUTHSC RW
13692409.01-40cFABXD4064FUTHSC RW
13792409.02-40cFBBXD4064FUTHSC RW
138KA6173-40cMABXD4059MUTHSC RW
139KA6173-40cMBBXD4059MUTHSC RW
140KA6173-40cMCBXD4059MUTHSC RW
141091809.01-42cFABXD4273FUTHSC RW
142091809.02-42cFBBXD4273FUTHSC RW
143021909.01-42cFABXD4289FUTHSC RW
144011309.06-42cMABXD4267MUTHSC RW
145011309.07-42cMBBXD4267MUTHSC RW
146110408_02-43cFABXD4361FUTHSC RW
147110408_03-43cFBBXD4361FUTHSC RW
148KA6158-43cMABXD4366MUTHSC RW
149KA6158-43cMBBXD4366MUTHSC RW
150100308_01-44cFABXD4467FUTHSC RW
151102208_02-44cMDBXD4464MUTHSC RW
152103009.03-45cFABXD4568FUTHSC RW
153103009.04-45cFBBXD4568FUTHSC RW
154022609.03-45cFABXD4578FUTHSC RW
155022609.04-45cFBBXD4578FUTHSC RW
15640309.05-45cMBBXD4565MUTHSC RW
15740209.05-48cFBBXD4858FVAMC
15840209.06-48cFCBXD4858FVAMC
15981209.04-48cMABXD4882MUTHSC RW
16081209.05-48cMBBXD4882MUTHSC RW
16181209.08-49cFABXD4970FVAMC
16281209.09-49cFBBXD4970FVAMC
16340209.01-49cMABXD4987MVAMC
16440209.02-49cMBBXD4987MVAMC
16540209.03-49cMCBXD4987MVAMC
166KA737850cFABXD5050FUTHSC RW
167KA737850cFBBXD5050FUTHSC RW
168121908_01-50cMABXD5049MUTHSC RW
169121908_02-50cMBBXD5049MUTHSC RW
170111208_01-51cFABXD5199FUTHSC RW
171102208_03-51cMABXD5156MUTHSC RW
172102208_04-51cMBBXD5156MUTHSC RW
173090208_14-53BcFABXD53B93FUTHSC RW
174090208_15-53BcFBBXD53B93FUTHSC RW
175090208_16-53BcMCBXD53B93MUTHSC RW
176090208_17-53BcMDBXD53B93MUTHSC RW
177111208_05-55cFBBXD5570FUTHSC RW
178KA6183-55cMABXD5563MUTHSC RW
179KA6183-55cMBBXD5563MUTHSC RW
180KA7362-56cFBBXD 5654FUTHSC RW
181KA6088-56cMABXD5687MUTHSC RW
182KA6088-56cMBBXD5687MUTHSC RW
183KA6088-56cMCBXD5687MUTHSC RW
18421810.01-60RFABXD 6067FUTHSC RW
18521810.02-60RFBBXD 6067FUTHSC RW
18621810.02-60RFCBXD 6067FUTHSC RW
187SQ7325-60cMABXD6085MUTHSC RW
188SQ7325-60cMBBXD6085MUTHSC RW
189092308_10-61cFABXD61110FUTHSC RW
190092308_11-61cFBBXD61110FUTHSC RW
19131909.01-61cMABXD6167MUTHSC RW
19231909.02-61cMBBXD6167MUTHSC RW
193KA7462-62cFABXD6276FUTHSC RW
194KA7462-62cFBBXD6276FUTHSC RW
195KA5996-62cMABXD62113MUTHSC RW
196KA5996-62cMBBXD62113MUTHSC RW
197KA5996-62cMCBXD62113MUTHSC RW
198090309.01-63cFABXD6369FUTHSC RW
199090309.02-63cFBBXD6369FUTHSC RW
200110609.01-63cMABXD6366MUTHSC RW
201110609.02-63cMBBXD6366MUTHSC RW
202091809.03-65cFABXD6565FUTHSC RW
203091809.04-65cFBBXD6565FUTHSC RW
204103009.01-65cMABXD6574MUTHSC RW
205103009.02-65cMBBXD6574MUTHSC RW
206110408_05-66cFBBXD6659FUTHSC RW
207KA7165-66cMABXD6695MUTHSC RW
208KA7165-66cMBBXD6695MUTHSC RW
20990809.01-67cMABXD6761MUTHSC RW
21090809.02-67cMBBXD6761MUTHSC RW
211110609.03-67cFABXD6768FUTHSC RW
212110609.04-67cFBBXD6768FUTHSC RW
213120408_01-68cFABXD6867FUTHSC RW
214120408_02-68cFBBXD6867FUTHSC RW
215SQ7205-68cMABXD6887MUTHSC RW
216SQ7205-68cMBBXD6887MUTHSC RW
217KA6316-68cMABXD6876MUTHSC RW
218KA6316-68cMBBXD6876MUTHSC RW
219KA6316-68cMCBXD6876MUTHSC RW
220KA76-69cFABXD6948FUTHSC RW
221KA76-69cFBBXD6948FUTHSC RW
222KA6074-69cMABXD6990MUTHSC RW
223KA6074-69cMBBXD6990MUTHSC RW
224121608_01-70cFABXD7080FUTHSC RW
225121608_02-70cFBBXD7080FUTHSC RW
226KA7394-70cMABXD7051MUTHSC RW
22781209.08-70cMABXD7071MVAMC
22881209.09-70cMBBXD7071MVAMC
229052809.01-71cFABXD7170FUTHSC RW
230060409.09-71cMABXD7162MUTHSC RW
231060409.10-71cMBBXD7162MUTHSC RW
23240809.01-73cFABXD7383FUTHSC RW
23340809.02-73cFBBXD7383FUTHSC RW
234111708_01-73cFABXD7355FUTHSC RW
235111708_01-73cFBBXD7355FUTHSC RW
236KA6164-73cMBBXD7359MUTHSC RW
237KA6164-73cMCBXD7359MUTHSC RW
23882609.22-74cFABXD7468FVAMC
23982609.23-74cFBBXD7468FVAMC
24082609.20-74cMABXD7468MVAMC
24182609.21-74cMBBXD7468MVAMC
242KA733675cFABXD7559FUTHSC RW
243KA733675cFBBXD7559FUTHSC RW
244KA38-75cMBBXD7562MUTHSC RW
245KA38-75cMCBXD7562MUTHSC RW
24641509.01-77cFABXD7770FUTHSC RW
24741509.02-77cFBBXD7770FUTHSC RW
24841509.03-77cMCBXD7770MUTHSC RW
24941509.04-77cMDBXD7770MUTHSC RW
250121608_03-80cFABXD8077FUTHSC RW
251121608_05-80cMCBXD8070MUTHSC RW
252KA23-80cMCBXD8077MUTHSC RW
253KA7305-81cFABXD8151FUTHSC RW
254KA7305-81cFBBXD8151FUTHSC RW
255KA7305-81cMDBXD8151MUTHSC RW
256060409.11-83cFABXD8365FUTHSC RW
257KA24-83cFABXD8378FUTHSC RW
258121608_07-83cMABXD8378MUTHSC RW
259121608_08-83cMBBXD8378MUTHSC RW
260KA24-83cMDBXD8378MUTHSC RW
261090409.05-84cFABXD8465FVAMC
262090409.06-84cFBBXD8465FVAMC
263KA6203-84cMABXD8459MUTHSC RW
264KA6203-84cMBBXD8459MUTHSC RW
26540309.02-85cFDBXD8558FUTHSC RW
26640309.03-85cFEBXD8558FUTHSC RW
26732609.01-85cMABXD8567MUTHSC RW
26832609.02-85cMBBXD8567MUTHSC RW
26941509.05-86cFABXD8673FUTHSC RW
27041509.06-86cFBBXD8673FUTHSC RW
271KA6101-86cMABXD8682MUTHSC RW
272KA6101-86cMCBXD8682MUTHSC RW
273070909.02-87cFABXD8786FUTHSC RW
274070909.03-87cFBBXD8786FUTHSC RW
275KA7407-87cMABXD87113MUTHSC RW
276KA7407-87cMBBXD87113MUTHSC RW
277102208_05-89cFABXD8982FUTHSC RW
278KA5974-89cMABXD89113MUTHSC RW
279KA5974-89cMBBXD89113MUTHSC RW
280102208_06-89cMCBXD8982MUTHSC RW
28172309.01-90cFABXD9067FUTHSC RW
28272309.02-90cFBBXD9067FUTHSC RW
283090409.03-90cMABXD9064MVAMC
284090409.04-90cMBBXD9064MVAMC
285KA6094-92cMABXD9285MUTHSC RW
286020609.01-95cFABXD9571FUTHSC RW
287020609.02-95cFBBXD9571FUTHSC RW
288KA6181-95cMABXD9561MUTHSC RW
289KA6181-95cMBBXD9561MUTHSC RW
29031209.03-96cFABXD9662FUTHSC RW
29131209.04-96cFBBXD9662FUTHSC RW
292KA7246-96cMABXD9673MUTHSC RW
293KA7246-96cMBBXD9673MUTHSC RW
29481209.10-97cFABXD9783FVAMC
29581209.11-97cFBBXD9783FVAMC
29681209.1-97cMABXD9783MVAMC
29781209.11-97cMBBXD9783MVAMC
298SQ7520-98cFABXD9859FUTHSC RW
299SQ7520-98cFBBXD9859FUTHSC RW
300SQ7520-98cMCBXD9859MUTHSC RW
301SQ7520-98cMDBXD9859MUTHSC RW
30282609.17-99cFABXD9964FVAMC
30382609.18-99cFBBXD9964FVAMC
30481409.01-99cMABXD9966MUTHSC RW
30581409.02-99cMBBXD9966MUTHSC RW
306121608_09-100cFABXD10081FUTHSC RW
307121608_10-100cFBBXD10081FUTHSC RW
308KA6001-100cMABXD100111MUTHSC RW
309KA6001-100cMBBXD100111MUTHSC RW
31081209.12-101cFABXD10172FVAMC
31181209.13-101cFBBXD10172FVAMC
312KA7296-101cMABXD10175MUTHSC RW
313KA7296-101cMBBXD10175MUTHSC RW
31492409.03-102cFABXD10271FVAMC
31592409.04-102cFBBXD10271FVAMC
316KA7380-102cMABXD102115MUTHSC RW
31743009.01-103cFABXD10368FUTHSC RW
31843009.02-103cFBBXD10368FUTHSC RW
319KA79-103cFABXD10348FUTHSC RW
320KA79-103cFBBXD10348FUTHSC RW
321KA79-103cMCBXD10348MUTHSC RW
32282609.15-103cMABXD10369MVAMC
32382609.16-103cMBBXD10369MVAMC
324102909.01-BALBCcFABALB/cByJ78FJAX
325102909.02-BALBCcFBBALB/cByJ78FJAX
326102909.03-BALBCcMABALB/cByJ78MJAX
327102909.04-BALBCcMBBALB/cByJ78MJAX
+
diff --git a/general/datasets/G2heioncretilm6_0911/summary.rtf b/general/datasets/G2heioncretilm6_0911/summary.rtf new file mode 100644 index 0000000..44e98a7 --- /dev/null +++ b/general/datasets/G2heioncretilm6_0911/summary.rtf @@ -0,0 +1,50 @@ +
+

This is a subtractive dataset. The Normal retina dataset was subtracted from the ONC data set probe by probe to create a data set of the changes occurring following ONC. This data set can be used to define gene changes following ONC. It is not compatible with most of the bioinformatic tools available on GeneNetwork.

+ +

HEI Retina Illumina V6.2 (April 2010) RankInv was normalized and scaled by William E. Orr and uploaded by Arthur Centeno and Xiaodong Zhou on April 7, 2010. This data set consists of either 69 BXD strains (Normal data set) or 75 BXD strains (Full data set), C57BL/6J, DBA/2J, both reciprocal F1s, and BALB/cByJ. A total of either 74 strains (Normal data set) or 80 strains (Full data set) were quantified.

+ +

COMMENT on  FULL versus NORMAL data sets: For many general uses there is no significant difference between FULL and NORMAL data sets. However, the FULL data set includes strains with high endogenous Gfap mRNA expression, indicative of reactive gliosis. For that reason, and to compare to OPTIC NERVE CRUSH (ONC), we removed data from six strains to make the NORMAL data set.

+ +

The NORMAL data set exludes data from BXD24, BXD32, BXD49, BXD70, BXD83, and BXD89. BXD24 has known retinal degeneration and is now known officially as  BXD24/TyJ-Cep290/J, JAX Stock number 000031. BXD32 has mild retinal degeneration. The NORMAL data set does include BXD24a, now also known as BXD24/TyJ (JAX Stock number 005243).

+ +

The data are now open and available for analysis.

+ +

Please cite: Freeman NE, Templeton JP, Orr WE, Lu L, Williams RW, Geisert EE (2011) Genetic networks in the mouse retina: Growth Associated Protein 43 and Phosphate Tensin Homology network. Molecular Vision 17:1355-1372. Full Text PDF or HTML

+ +

This is rank invariant expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 6.25 to 18.08 (11.83 units), a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

+ +

The lowest level of expression is 6.254 for ILMN_2747167 (Arhgap11a) from HEI Retina Illumina V6.2 (April 2010) RankInv **. Lowest single data about 5.842.

+ +

The highest level of expression is 18.077 for ILMN_2516699 (Ubb). Highest single value is about 18.934.

+ +

 

+
+ +

Other Related Publications

+ +
+

 

+ +
    +
  1. Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link)
  2. +
  3. Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674
  4. +
  5. Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link)
  6. +
  7. Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.(Link) +

     

    + +

     

    +
  8. +
+
+ +
Other Data Sets Users of these mouse retina data may also find the following complementary resources useful: + +
    +
  1. NEIBank collection of ESTs and SAGE data.
  2. +
  3. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases
  4. +
  5. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.
  6. +
  7. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus.
  8. +
  9. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430).
  10. +
  11. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.
  12. +
+
diff --git a/general/datasets/G2heioncretilm6_0911/tissue.rtf b/general/datasets/G2heioncretilm6_0911/tissue.rtf new file mode 100644 index 0000000..766ab59 --- /dev/null +++ b/general/datasets/G2heioncretilm6_0911/tissue.rtf @@ -0,0 +1,32 @@ +
+

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RNAlater at room temperature. Two retinas from one mouse were stored in a single tube.

+ +

Each array was hybridized with a pool of cRNA from 2 retinas (1 mouse). Natalie Freeman-Anderson extracted RNA at UTHSC.

+ +

 

+ +

Dissecting and preparing eyes for RNA extraction

+ +

 

+ +

Retinas for RNA extraction were placed in RNA STAT-60 (Tel-Test Inc.) and processed per manufacturer’s instructions (in brief form below). Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we:

+ +

 

+ + +
diff --git a/general/datasets/G2nei_ilm_retina_bxd_ri0410/acknowledgment.rtf b/general/datasets/G2nei_ilm_retina_bxd_ri0410/acknowledgment.rtf new file mode 100644 index 0000000..a41ff76 --- /dev/null +++ b/general/datasets/G2nei_ilm_retina_bxd_ri0410/acknowledgment.rtf @@ -0,0 +1,13 @@ +

The HEI Retinal Database is supported by National Eye Institute Grants:

+ +

 

+ + diff --git a/general/datasets/G2nei_ilm_retina_bxd_ri0410/cases.rtf b/general/datasets/G2nei_ilm_retina_bxd_ri0410/cases.rtf new file mode 100644 index 0000000..b37d700 --- /dev/null +++ b/general/datasets/G2nei_ilm_retina_bxd_ri0410/cases.rtf @@ -0,0 +1,14 @@ +
+

Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 48 and maximum age is 118 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J.

+ +
BXD strains: + + +
+
+ +

What Makes the G2 HEI Retina Database different from the HEI Retina Database Examination of Gfap expression across all of the strains in the HEI Retinal Dataset, reveals that some strains express very high levels of Gfap relative to others. For example, BXD24 expresses Gfap at a 9-fold higher level, than BXD22. It has been established that BXD24 acquired a mutation in Cep290 that results in early onset photoreceptor degeneration (Chang et al., 2006). This degeneration results in reactive gliosis throughout the retina. In addition to BXD24, other BXD strains expressed very high levels of Gfap including: BXD32, BXD49, BXD70, BXD83 and BXD89. For the G2 dataset all of these strains with potential reactive gliosis were removed from the dataset.

diff --git a/general/datasets/G2nei_ilm_retina_bxd_ri0410/contributors.rtf b/general/datasets/G2nei_ilm_retina_bxd_ri0410/contributors.rtf new file mode 100644 index 0000000..b1f321b --- /dev/null +++ b/general/datasets/G2nei_ilm_retina_bxd_ri0410/contributors.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Justin P. Templeton, Robert W. Williams

diff --git a/general/datasets/G2nei_ilm_retina_bxd_ri0410/experiment-design.rtf b/general/datasets/G2nei_ilm_retina_bxd_ri0410/experiment-design.rtf new file mode 100644 index 0000000..4fff707 --- /dev/null +++ b/general/datasets/G2nei_ilm_retina_bxd_ri0410/experiment-design.rtf @@ -0,0 +1,12 @@ +

Expression profiling by array

+ +

We used pooled RNA samples of retinas, usually two independent pools--two male, two female pool--for most lines of mice.

+ +

All normalization was performed by William E. Orr in the HEI Vision Core Facility

+ +
    +
  1. Computed the log base 2 of each raw signal value
  2. +
  3. Calculated the mean and standard Deviation of each Mouse WG-6 v2.0 array
  4. +
  5. Normalized each array using the formula, 2 (z-score of log2 [intensity]) The result is to produce arrays that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage is that a two-fold difference in expression level corresponds approximately to a 1 unit difference.
  6. +
  7. computed the mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples.
  8. +
diff --git a/general/datasets/G2nei_ilm_retina_bxd_ri0410/experiment-type.rtf b/general/datasets/G2nei_ilm_retina_bxd_ri0410/experiment-type.rtf new file mode 100644 index 0000000..0546e04 --- /dev/null +++ b/general/datasets/G2nei_ilm_retina_bxd_ri0410/experiment-type.rtf @@ -0,0 +1 @@ +Expression profiling by array \ No newline at end of file diff --git a/general/datasets/G2nei_ilm_retina_bxd_ri0410/notes.rtf b/general/datasets/G2nei_ilm_retina_bxd_ri0410/notes.rtf new file mode 100644 index 0000000..13ff99a --- /dev/null +++ b/general/datasets/G2nei_ilm_retina_bxd_ri0410/notes.rtf @@ -0,0 +1 @@ +

This data set is available as a bulk download in several formats. The data are available as either strain means or the individual arrays. Due to the involved normalization procedures required to correct for batch effects we strongly recommend not using the raw CEL files without special statistical procedures.

diff --git a/general/datasets/G2nei_ilm_retina_bxd_ri0410/platform.rtf b/general/datasets/G2nei_ilm_retina_bxd_ri0410/platform.rtf new file mode 100644 index 0000000..2c52707 --- /dev/null +++ b/general/datasets/G2nei_ilm_retina_bxd_ri0410/platform.rtf @@ -0,0 +1 @@ +

Illumina MouseWG-6 v2.0 arrays: The Illumina Sentrix Mouse-6 BeadChip uses 50-nucleotide probes to interrogate approximately 46,000 sequences from the mouse transcriptome. For each array, the RNA was pooled from two retinas.

diff --git a/general/datasets/G2nei_ilm_retina_bxd_ri0410/processing.rtf b/general/datasets/G2nei_ilm_retina_bxd_ri0410/processing.rtf new file mode 100644 index 0000000..97cc2be --- /dev/null +++ b/general/datasets/G2nei_ilm_retina_bxd_ri0410/processing.rtf @@ -0,0 +1,2654 @@ +

Values of all 45,281 probe sets in this data set range from a low of 6.25 (Rho GTPase activating protein 11A, Arhgap11a, probe ID ILMN_2747167) to a high of 18.08 (Ubiquitin B, Ubb, probe ID ILMN_2516699). This corresponds to 11.83 units or a 1 to 3641 dynamic range of expression (2^11.83). We normalized raw signal values using Beadstudio’s rank invariant normalization algorithm. BXD62 was the strain used as the control group

+ +

 

+ +

Sample Processing: Drs. Natalie E. Freeman-Anderson and Justin P. Templeton extracted the retinas from the mice and Dr. Natalie Freeman-Anderson processed all samples in the HEI Vision Core Facility. The tissue was homogenized and extracted according to the RNA-Stat-60 protocol as described by the manufacturer (Tel-Test, Friendswood, TX) listed above. The quality and purity of RNA was assessed using an Agilent Bioanalyzer 2100 system. The RNA from each sample was processed with the Illumina TotalPrep RNA Amplification Kit (Ambion, Austin, TX) to produce labeled cRNA. The cRNA for each sample was then hybridized to an Illumina Sentrix® Mouse-6-V2 BeadChip (Illumina, San Diego, CA)

+ +

 

+ +

 

+ +

Quality control analysis of the raw image data was performed using the Illumina BeadStudio software. MIAME standards were used for all microarray data. Rank invariant normalization with BeadStudio software was used to calculate the data. Once this data was collected, the data was globally normalized across all samples using the formula 2 (z-score of log2 [intensity]) + 8.

+ +

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

+ +

Table 1: HEI Retina case IDs, including sample tube ID, strain, age, sex, and source of mice

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexSample IDStrainAgeSexSource of Animal
1121608_11-C57BL/6JcFAC57BL/6J69FJAX
2121608_12-C57BL/6JcFBC57BL/6J69FJAX
3KA7444-C57BL/6JcMCC57BL/6J97MUTHSC RW
4KA7444-C57BL/6JcMDC57BL/6J97MUTHSC RW
531209.05-DBA2JcFADBA2J75FUTHSC RW
631209.05-DBA2JcFBDBA2J75FUTHSC RW
7121608_13-DBA/2JcMADBA/2J89MUTHSC RW
8121608_14-DBA/2JcMBDBA/2J89MUTHSC RW
9KA7446-B6D2F1cFAB6D2F192FUTHSC RW
10KA7446-B6D2F1cFBB6D2F192FUTHSC RW
11KA7446-B6D2F1cMCB6D2F192MUTHSC RW
12KA7446-B6D2F1cMDB6D2F192MUTHSC RW
13KA7466-D2B6F1cFAD2B6F170FUTHSC RW
14KA7466-D2B6F1cFBD2B6F170FUTHSC RW
15KA7466-D2B6F1cMCD2B6F170MUTHSC RW
16KA7466-D2B6F1cMDD2B6F170MUTHSC RW
1782609.13-1cFABXD0162FJAX
1882609.14-1cFBBXD0162FJAX
19KA7389-1cFABXD0151FUTHSC RW
20KA7389-1cFBBXD0151FUTHSC RW
21KA7389-1cMCBXD0151MUTHSC RW
22KA7389-1cMDBXD0151MUTHSC RW
23KA7300-2cFABXD0275FUTHSC RW
24KA7300-2cFBBXD0275FUTHSC RW
25100909.01-2cMABXD0265MJAX
26100909.02-2cMBBXD0265MJAX
27KA6699-5cFABXD0562FUTHSC RW
28KA6699-5cFBBXD0562FUTHSC RW
29KA6699-5cFCBXD0562FUTHSC RW
30KA6699-5cFDBXD0562FUTHSC RW
3182609.09-5cMABXD0560MJAX
3282609.1-5cMBBXD0560MJAX
33KA6763-6cFABXD0648FUTHSC RW
34KA6763-6cFBBXD0648FUTHSC RW
3581209.06-6cMABXD0669MVAMC
3681209.07-6cMBBXD0669MVAMC
3782609.07-8cFABXD0868FJAX
3882609.08-8cFBBXD0868FJAX
39JAX-8cMABXD0876MJAX
40JAX-8cMBBXD0876MJAX
41KA7289-9cFABXD0987FUTHSC RW
42KA7289-9cFBBXD0987FUTHSC RW
43KA7289-9cMCBXD0987MUTHSC RW
44KA7289-9cMDBXD0987MUTHSC RW
45JAX-11cFABXD1184FJAX
46JAX-11cFBBXD1184FJAX
47JAX-11cMCBXD1171MJAX
48JAX-11cMDBXD1171MJAX
4940209.07-12cFABXD1265FVAMC
5040209.08-12cFBBXD1265FVAMC
51011309.01-12cMABXD1265MUTHSC RW
52011309.02-12cMBBXD1265MUTHSC RW
53KA7286-13cFABXD1389FUTHSC RW
54KA7286-13cFBBXD1389FUTHSC RW
55KA7286-13cMCBXD1389MUTHSC RW
56KA7286-13cMDBXD1389MUTHSC RW
57KA7302-14cFABXD1473FUTHSC RW
58KA7302-14cFBBXD1473FUTHSC RW
59100909.05-14cMABXD1466MJAX
60100909.06-14cMBBXD1466MJAX
61KA7288-15cFABXD1589FUTHSC RW
62KA7288-15cFBBXD1589FUTHSC RW
63KA7288-15cMCBXD1589MUTHSC RW
64KA7288-15cMDBXD1589MUTHSC RW
65062509.01-16cFABXD1668FUTHSC RW
66KA7267-16cMABXD1691MUTHSC RW
67KA7267-16cMBBXD1691MUTHSC RW
68KA6686-18cFBBXD1865FUTHSC RW
69KA6686-18cFCBXD1865FUTHSC RW
70KA6686-18cMEBXD1865MUTHSC RW
71KA6686-18cMFBXD1865MUTHSC RW
72KA6676-19cFBBXD1963FUTHSC RW
73KA6676-19cFCBXD1963FUTHSC RW
74KA6676-19cMEBXD1963MUTHSC RW
75KA6676-19cMFBXD1963MUTHSC RW
76060409.05-20cFABXD2067FUTHSC RW
77060409.06-20cFBBXD2067FUTHSC RW
78021909.03-20cMABXD2064MUTHSC RW
79021909.04-20cMBBXD2064MUTHSC RW
8082609.02-21cFCBXD2165FJAX
8182609.03-21cFDBXD2165FJAX
82121709.01-21cMABXD2180MJAX
83121709.02-21cMBBXD2180MJAX
84121709.03-22cFABXD2262FJAX
85121709.04-22cFBBXD2262FJAX
86092308_03-22cMABXD22118MUTHSC RW
87092308_04-22cMBBXD22118MUTHSC RW
8880409.01-24AcFABXD24A72FUTHSC RW
89080409_02_24AcFBBXD24A72FUTHSC RW
9082609.26-24AcFCBXD24A64FUTHSC RW
9181209.03-24AcMCBXD24A62MUTHSC RW
92KA6678-24cFABXD2462FUTHSC RW
93KA6678-24cFBBXD2462FUTHSC RW
94KA6678-24cMEBXD2462MUTHSC RW
95KA6678-24cMFBXD2462MUTHSC RW
96060409.07-27cFABXD2763FUTHSC RW
97060409.08-27cFBBXD2763FUTHSC RW
9880409.03-27cMABXD2774MUTHSC RW
9980409.04-27cMBBXD2774MUTHSC RW
100JAX-28cFABXD2867FJAX
101JAX-28cFBBXD2867FJAX
102JAX-28cMCBXD2867MJAX
103JAX-28cMDBXD2867MJAX
10482609.11-29cFABXD2966FJAX
10582609.12-29cFBBXD2966FJAX
10682609.04-29cMABXD2966MJAX
10782609.05-29cMBBXD2966MJAX
108JAX-31cMBBXD 3156MJAX
109JAX-31cFCBXD 3169FJAX
110JAX-31cFDBXD 3169FJAX
111011309.03-32cFABXD3262FUTHSC RW
112011309.04-32cFBBXD3262FUTHSC RW
113KA7318-32cFCBXD3271FUTHSC RW
114KA7319-32cMABXD3274MUTHSC RW
115KA7319-32cMBBXD3274MUTHSC RW
116100909.07-33cFABXD3365FJAX
117100909.08-33cFBBXD3365FJAX
118022609.01-33cMABXD3392MUTHSC RW
119022609.02-33cMBBXD3392MUTHSC RW
120KA7416-34cFABXD3497FUTHSC RW
121KA7416-34cFBBXD3497FUTHSC RW
122KA6321-34cMABXD3466MUTHSC RW
123KA6321-34cMBBXD3466MUTHSC RW
124060409.01-36cFABXD3663FUTHSC RW
125060409.02-36cFBBXD3663FUTHSC RW
126060409.03-36cMCBXD3663MUTHSC RW
127KA6702-38cFABXD3863FUTHSC RW
128KA6702-38cFBBXD3863FUTHSC RW
12982609.24-38cFABXD3885FUTHSC RW
13082609.25-38cFBBXD3885FUTHSC RW
131100909.03-38cMABXD3861MJAX
132100909.04-38cMBBXD3861MJAX
133022609.05-39cFABXD3965FUTHSC RW
134022609.06-39cFBBXD3965FUTHSC RW
13531209.01-39cMCBXD3967MUTHSC RW
13692409.01-40cFABXD4064FUTHSC RW
13792409.02-40cFBBXD4064FUTHSC RW
138KA6173-40cMABXD4059MUTHSC RW
139KA6173-40cMBBXD4059MUTHSC RW
140KA6173-40cMCBXD4059MUTHSC RW
141091809.01-42cFABXD4273FUTHSC RW
142091809.02-42cFBBXD4273FUTHSC RW
143021909.01-42cFABXD4289FUTHSC RW
144011309.06-42cMABXD4267MUTHSC RW
145011309.07-42cMBBXD4267MUTHSC RW
146110408_02-43cFABXD4361FUTHSC RW
147110408_03-43cFBBXD4361FUTHSC RW
148KA6158-43cMABXD4366MUTHSC RW
149KA6158-43cMBBXD4366MUTHSC RW
150100308_01-44cFABXD4467FUTHSC RW
151102208_02-44cMDBXD4464MUTHSC RW
152103009.03-45cFABXD4568FUTHSC RW
153103009.04-45cFBBXD4568FUTHSC RW
154022609.03-45cFABXD4578FUTHSC RW
155022609.04-45cFBBXD4578FUTHSC RW
15640309.05-45cMBBXD4565MUTHSC RW
15740209.05-48cFBBXD4858FVAMC
15840209.06-48cFCBXD4858FVAMC
15981209.04-48cMABXD4882MUTHSC RW
16081209.05-48cMBBXD4882MUTHSC RW
16181209.08-49cFABXD4970FVAMC
16281209.09-49cFBBXD4970FVAMC
16340209.01-49cMABXD4987MVAMC
16440209.02-49cMBBXD4987MVAMC
16540209.03-49cMCBXD4987MVAMC
166KA737850cFABXD5050FUTHSC RW
167KA737850cFBBXD5050FUTHSC RW
168121908_01-50cMABXD5049MUTHSC RW
169121908_02-50cMBBXD5049MUTHSC RW
170111208_01-51cFABXD5199FUTHSC RW
171102208_03-51cMABXD5156MUTHSC RW
172102208_04-51cMBBXD5156MUTHSC RW
173090208_14-53BcFABXD53B93FUTHSC RW
174090208_15-53BcFBBXD53B93FUTHSC RW
175090208_16-53BcMCBXD53B93MUTHSC RW
176090208_17-53BcMDBXD53B93MUTHSC RW
177111208_05-55cFBBXD5570FUTHSC RW
178KA6183-55cMABXD5563MUTHSC RW
179KA6183-55cMBBXD5563MUTHSC RW
180KA7362-56cFBBXD 5654FUTHSC RW
181KA6088-56cMABXD5687MUTHSC RW
182KA6088-56cMBBXD5687MUTHSC RW
183KA6088-56cMCBXD5687MUTHSC RW
18421810.01-60RFABXD 6067FUTHSC RW
18521810.02-60RFBBXD 6067FUTHSC RW
18621810.02-60RFCBXD 6067FUTHSC RW
187SQ7325-60cMABXD6085MUTHSC RW
188SQ7325-60cMBBXD6085MUTHSC RW
189092308_10-61cFABXD61110FUTHSC RW
190092308_11-61cFBBXD61110FUTHSC RW
19131909.01-61cMABXD6167MUTHSC RW
19231909.02-61cMBBXD6167MUTHSC RW
193KA7462-62cFABXD6276FUTHSC RW
194KA7462-62cFBBXD6276FUTHSC RW
195KA5996-62cMABXD62113MUTHSC RW
196KA5996-62cMBBXD62113MUTHSC RW
197KA5996-62cMCBXD62113MUTHSC RW
198090309.01-63cFABXD6369FUTHSC RW
199090309.02-63cFBBXD6369FUTHSC RW
200110609.01-63cMABXD6366MUTHSC RW
201110609.02-63cMBBXD6366MUTHSC RW
202091809.03-65cFABXD6565FUTHSC RW
203091809.04-65cFBBXD6565FUTHSC RW
204103009.01-65cMABXD6574MUTHSC RW
205103009.02-65cMBBXD6574MUTHSC RW
206110408_05-66cFBBXD6659FUTHSC RW
207KA7165-66cMABXD6695MUTHSC RW
208KA7165-66cMBBXD6695MUTHSC RW
20990809.01-67cMABXD6761MUTHSC RW
21090809.02-67cMBBXD6761MUTHSC RW
211110609.03-67cFABXD6768FUTHSC RW
212110609.04-67cFBBXD6768FUTHSC RW
213120408_01-68cFABXD6867FUTHSC RW
214120408_02-68cFBBXD6867FUTHSC RW
215SQ7205-68cMABXD6887MUTHSC RW
216SQ7205-68cMBBXD6887MUTHSC RW
217KA6316-68cMABXD6876MUTHSC RW
218KA6316-68cMBBXD6876MUTHSC RW
219KA6316-68cMCBXD6876MUTHSC RW
220KA76-69cFABXD6948FUTHSC RW
221KA76-69cFBBXD6948FUTHSC RW
222KA6074-69cMABXD6990MUTHSC RW
223KA6074-69cMBBXD6990MUTHSC RW
224121608_01-70cFABXD7080FUTHSC RW
225121608_02-70cFBBXD7080FUTHSC RW
226KA7394-70cMABXD7051MUTHSC RW
22781209.08-70cMABXD7071MVAMC
22881209.09-70cMBBXD7071MVAMC
229052809.01-71cFABXD7170FUTHSC RW
230060409.09-71cMABXD7162MUTHSC RW
231060409.10-71cMBBXD7162MUTHSC RW
23240809.01-73cFABXD7383FUTHSC RW
23340809.02-73cFBBXD7383FUTHSC RW
234111708_01-73cFABXD7355FUTHSC RW
235111708_01-73cFBBXD7355FUTHSC RW
236KA6164-73cMBBXD7359MUTHSC RW
237KA6164-73cMCBXD7359MUTHSC RW
23882609.22-74cFABXD7468FVAMC
23982609.23-74cFBBXD7468FVAMC
24082609.20-74cMABXD7468MVAMC
24182609.21-74cMBBXD7468MVAMC
242KA733675cFABXD7559FUTHSC RW
243KA733675cFBBXD7559FUTHSC RW
244KA38-75cMBBXD7562MUTHSC RW
245KA38-75cMCBXD7562MUTHSC RW
24641509.01-77cFABXD7770FUTHSC RW
24741509.02-77cFBBXD7770FUTHSC RW
24841509.03-77cMCBXD7770MUTHSC RW
24941509.04-77cMDBXD7770MUTHSC RW
250121608_03-80cFABXD8077FUTHSC RW
251121608_05-80cMCBXD8070MUTHSC RW
252KA23-80cMCBXD8077MUTHSC RW
253KA7305-81cFABXD8151FUTHSC RW
254KA7305-81cFBBXD8151FUTHSC RW
255KA7305-81cMDBXD8151MUTHSC RW
256060409.11-83cFABXD8365FUTHSC RW
257KA24-83cFABXD8378FUTHSC RW
258121608_07-83cMABXD8378MUTHSC RW
259121608_08-83cMBBXD8378MUTHSC RW
260KA24-83cMDBXD8378MUTHSC RW
261090409.05-84cFABXD8465FVAMC
262090409.06-84cFBBXD8465FVAMC
263KA6203-84cMABXD8459MUTHSC RW
264KA6203-84cMBBXD8459MUTHSC RW
26540309.02-85cFDBXD8558FUTHSC RW
26640309.03-85cFEBXD8558FUTHSC RW
26732609.01-85cMABXD8567MUTHSC RW
26832609.02-85cMBBXD8567MUTHSC RW
26941509.05-86cFABXD8673FUTHSC RW
27041509.06-86cFBBXD8673FUTHSC RW
271KA6101-86cMABXD8682MUTHSC RW
272KA6101-86cMCBXD8682MUTHSC RW
273070909.02-87cFABXD8786FUTHSC RW
274070909.03-87cFBBXD8786FUTHSC RW
275KA7407-87cMABXD87113MUTHSC RW
276KA7407-87cMBBXD87113MUTHSC RW
277102208_05-89cFABXD8982FUTHSC RW
278KA5974-89cMABXD89113MUTHSC RW
279KA5974-89cMBBXD89113MUTHSC RW
280102208_06-89cMCBXD8982MUTHSC RW
28172309.01-90cFABXD9067FUTHSC RW
28272309.02-90cFBBXD9067FUTHSC RW
283090409.03-90cMABXD9064MVAMC
284090409.04-90cMBBXD9064MVAMC
285KA6094-92cMABXD9285MUTHSC RW
286020609.01-95cFABXD9571FUTHSC RW
287020609.02-95cFBBXD9571FUTHSC RW
288KA6181-95cMABXD9561MUTHSC RW
289KA6181-95cMBBXD9561MUTHSC RW
29031209.03-96cFABXD9662FUTHSC RW
29131209.04-96cFBBXD9662FUTHSC RW
292KA7246-96cMABXD9673MUTHSC RW
293KA7246-96cMBBXD9673MUTHSC RW
29481209.10-97cFABXD9783FVAMC
29581209.11-97cFBBXD9783FVAMC
29681209.1-97cMABXD9783MVAMC
29781209.11-97cMBBXD9783MVAMC
298SQ7520-98cFABXD9859FUTHSC RW
299SQ7520-98cFBBXD9859FUTHSC RW
300SQ7520-98cMCBXD9859MUTHSC RW
301SQ7520-98cMDBXD9859MUTHSC RW
30282609.17-99cFABXD9964FVAMC
30382609.18-99cFBBXD9964FVAMC
30481409.01-99cMABXD9966MUTHSC RW
30581409.02-99cMBBXD9966MUTHSC RW
306121608_09-100cFABXD10081FUTHSC RW
307121608_10-100cFBBXD10081FUTHSC RW
308KA6001-100cMABXD100111MUTHSC RW
309KA6001-100cMBBXD100111MUTHSC RW
31081209.12-101cFABXD10172FVAMC
31181209.13-101cFBBXD10172FVAMC
312KA7296-101cMABXD10175MUTHSC RW
313KA7296-101cMBBXD10175MUTHSC RW
31492409.03-102cFABXD10271FVAMC
31592409.04-102cFBBXD10271FVAMC
316KA7380-102cMABXD102115MUTHSC RW
31743009.01-103cFABXD10368FUTHSC RW
31843009.02-103cFBBXD10368FUTHSC RW
319KA79-103cFABXD10348FUTHSC RW
320KA79-103cFBBXD10348FUTHSC RW
321KA79-103cMCBXD10348MUTHSC RW
32282609.15-103cMABXD10369MVAMC
32382609.16-103cMBBXD10369MVAMC
324102909.01-BALBCcFABALB/cByJ78FJAX
325102909.02-BALBCcFBBALB/cByJ78FJAX
326102909.03-BALBCcMABALB/cByJ78MJAX
327102909.04-BALBCcMBBALB/cByJ78MJAX
+
diff --git a/general/datasets/G2nei_ilm_retina_bxd_ri0410/summary.rtf b/general/datasets/G2nei_ilm_retina_bxd_ri0410/summary.rtf new file mode 100644 index 0000000..44e98a7 --- /dev/null +++ b/general/datasets/G2nei_ilm_retina_bxd_ri0410/summary.rtf @@ -0,0 +1,50 @@ +
+

This is a subtractive dataset. The Normal retina dataset was subtracted from the ONC data set probe by probe to create a data set of the changes occurring following ONC. This data set can be used to define gene changes following ONC. It is not compatible with most of the bioinformatic tools available on GeneNetwork.

+ +

HEI Retina Illumina V6.2 (April 2010) RankInv was normalized and scaled by William E. Orr and uploaded by Arthur Centeno and Xiaodong Zhou on April 7, 2010. This data set consists of either 69 BXD strains (Normal data set) or 75 BXD strains (Full data set), C57BL/6J, DBA/2J, both reciprocal F1s, and BALB/cByJ. A total of either 74 strains (Normal data set) or 80 strains (Full data set) were quantified.

+ +

COMMENT on  FULL versus NORMAL data sets: For many general uses there is no significant difference between FULL and NORMAL data sets. However, the FULL data set includes strains with high endogenous Gfap mRNA expression, indicative of reactive gliosis. For that reason, and to compare to OPTIC NERVE CRUSH (ONC), we removed data from six strains to make the NORMAL data set.

+ +

The NORMAL data set exludes data from BXD24, BXD32, BXD49, BXD70, BXD83, and BXD89. BXD24 has known retinal degeneration and is now known officially as  BXD24/TyJ-Cep290/J, JAX Stock number 000031. BXD32 has mild retinal degeneration. The NORMAL data set does include BXD24a, now also known as BXD24/TyJ (JAX Stock number 005243).

+ +

The data are now open and available for analysis.

+ +

Please cite: Freeman NE, Templeton JP, Orr WE, Lu L, Williams RW, Geisert EE (2011) Genetic networks in the mouse retina: Growth Associated Protein 43 and Phosphate Tensin Homology network. Molecular Vision 17:1355-1372. Full Text PDF or HTML

+ +

This is rank invariant expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 6.25 to 18.08 (11.83 units), a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

+ +

The lowest level of expression is 6.254 for ILMN_2747167 (Arhgap11a) from HEI Retina Illumina V6.2 (April 2010) RankInv **. Lowest single data about 5.842.

+ +

The highest level of expression is 18.077 for ILMN_2516699 (Ubb). Highest single value is about 18.934.

+ +

 

+
+ +

Other Related Publications

+ +
+

 

+ +
    +
  1. Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link)
  2. +
  3. Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674
  4. +
  5. Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link)
  6. +
  7. Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.(Link) +

     

    + +

     

    +
  8. +
+
+ +
Other Data Sets Users of these mouse retina data may also find the following complementary resources useful: + +
    +
  1. NEIBank collection of ESTs and SAGE data.
  2. +
  3. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases
  4. +
  5. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.
  6. +
  7. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus.
  8. +
  9. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430).
  10. +
  11. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.
  12. +
+
diff --git a/general/datasets/G2nei_ilm_retina_bxd_ri0410/tissue.rtf b/general/datasets/G2nei_ilm_retina_bxd_ri0410/tissue.rtf new file mode 100644 index 0000000..766ab59 --- /dev/null +++ b/general/datasets/G2nei_ilm_retina_bxd_ri0410/tissue.rtf @@ -0,0 +1,32 @@ +
+

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RNAlater at room temperature. Two retinas from one mouse were stored in a single tube.

+ +

Each array was hybridized with a pool of cRNA from 2 retinas (1 mouse). Natalie Freeman-Anderson extracted RNA at UTHSC.

+ +

 

+ +

Dissecting and preparing eyes for RNA extraction

+ +

 

+ +

Retinas for RNA extraction were placed in RNA STAT-60 (Tel-Test Inc.) and processed per manufacturer’s instructions (in brief form below). Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we:

+ +

 

+ + +
diff --git a/general/datasets/GITrMetPublish/summary.rtf b/general/datasets/GITrMetPublish/summary.rtf deleted file mode 100644 index 3847a3b..0000000 --- a/general/datasets/GITrMetPublish/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

GI Tract Metagenome Phenotypes

diff --git a/general/datasets/GRNG_GSE23545HLT0613/summary.rtf b/general/datasets/GRNG_GSE23545HLT0613/summary.rtf deleted file mode 100644 index 9cb9538..0000000 --- a/general/datasets/GRNG_GSE23545HLT0613/summary.rtf +++ /dev/null @@ -1,15 +0,0 @@ -

This SuperSeries is composed of the following SubSeries:

- - - - - - - - - - - - - -
GSE23352 Whole-genome gene expression profiles of non-tumorous human lung tissues: Laval set
GSE23529 Whole-genome gene expression profiles of non-tumorous human lung tissues: UBC set
GSE23545 Whole-genome gene expression profiles of non-tumorous human lung tissues: GRNG set
diff --git a/general/datasets/GSE15745_GPL6104_Cer0510/experiment-design.rtf b/general/datasets/GSE15745_GPL6104_Cer0510/experiment-design.rtf deleted file mode 100644 index e93df25..0000000 --- a/general/datasets/GSE15745_GPL6104_Cer0510/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

North American Brain Expression Consortium and UK Human Brain Expression Database: Gene Expression. Genome-wide association studies have nominated many genetic variants for common human traits, including diseases, but in many cases the underlying biological reason for a trait association is unknown. Subsets of genetic polymorphisms show a statistical association with transcript expression levels, and have therefore been nominated as expression quantitative trait loci (eQTL). However, many tissue and cell types have specific gene expression patterns and so it is not clear how frequently eQTLs found in one tissue type will be replicated in others. In the present study we used two appropriately powered sample series to examine the genetic control of gene expression in blood and brain. We find that while many eQTLs associated with human traits are shared between these two tissues, there are also examples where blood and brain differ, either by restricted gene expression patterns in one tissue or because of differences in how genetic variants are associated with transcript levels. These observations suggest that design of eQTL mapping experiments should consider tissue of interest for the disease or other traits studied. Published by Elsevier Inc.

diff --git a/general/datasets/GSE15745_GPL6104_Cer0510/summary.rtf b/general/datasets/GSE15745_GPL6104_Cer0510/summary.rtf deleted file mode 100644 index 4bc5546..0000000 --- a/general/datasets/GSE15745_GPL6104_Cer0510/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

Summary from GEO Series GSE36192 and GSE: GSE36194 "A fundamental challenge in the post-genome era is to understand and annotate the consequences of genetic variation, particularly within the context of human tissues. We describe a set of integrated experiments designed to investigate the effects of common genetic variability on mRNA expression distinct human brain regions. We show that brain tissues may be readily distinguished based on expression profile. We find an abundance of genetic cis regulation mRNA expression. We observe that the largest magnitude effects occur across distinct brain regions. We believe these data, which we have made publicly available, will be useful in understanding the biological effects of genetic variation."

diff --git a/general/datasets/GSE15745_GPL6104_PFC0510/experiment-design.rtf b/general/datasets/GSE15745_GPL6104_PFC0510/experiment-design.rtf deleted file mode 100644 index e93df25..0000000 --- a/general/datasets/GSE15745_GPL6104_PFC0510/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

North American Brain Expression Consortium and UK Human Brain Expression Database: Gene Expression. Genome-wide association studies have nominated many genetic variants for common human traits, including diseases, but in many cases the underlying biological reason for a trait association is unknown. Subsets of genetic polymorphisms show a statistical association with transcript expression levels, and have therefore been nominated as expression quantitative trait loci (eQTL). However, many tissue and cell types have specific gene expression patterns and so it is not clear how frequently eQTLs found in one tissue type will be replicated in others. In the present study we used two appropriately powered sample series to examine the genetic control of gene expression in blood and brain. We find that while many eQTLs associated with human traits are shared between these two tissues, there are also examples where blood and brain differ, either by restricted gene expression patterns in one tissue or because of differences in how genetic variants are associated with transcript levels. These observations suggest that design of eQTL mapping experiments should consider tissue of interest for the disease or other traits studied. Published by Elsevier Inc.

diff --git a/general/datasets/GSE15745_GPL6104_PFC0510/summary.rtf b/general/datasets/GSE15745_GPL6104_PFC0510/summary.rtf deleted file mode 100644 index 4bc5546..0000000 --- a/general/datasets/GSE15745_GPL6104_PFC0510/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

Summary from GEO Series GSE36192 and GSE: GSE36194 "A fundamental challenge in the post-genome era is to understand and annotate the consequences of genetic variation, particularly within the context of human tissues. We describe a set of integrated experiments designed to investigate the effects of common genetic variability on mRNA expression distinct human brain regions. We show that brain tissues may be readily distinguished based on expression profile. We find an abundance of genetic cis regulation mRNA expression. We observe that the largest magnitude effects occur across distinct brain regions. We believe these data, which we have made publicly available, will be useful in understanding the biological effects of genetic variation."

diff --git a/general/datasets/GSE15745_GPL6104_Po0510/experiment-design.rtf b/general/datasets/GSE15745_GPL6104_Po0510/experiment-design.rtf deleted file mode 100644 index e93df25..0000000 --- a/general/datasets/GSE15745_GPL6104_Po0510/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

North American Brain Expression Consortium and UK Human Brain Expression Database: Gene Expression. Genome-wide association studies have nominated many genetic variants for common human traits, including diseases, but in many cases the underlying biological reason for a trait association is unknown. Subsets of genetic polymorphisms show a statistical association with transcript expression levels, and have therefore been nominated as expression quantitative trait loci (eQTL). However, many tissue and cell types have specific gene expression patterns and so it is not clear how frequently eQTLs found in one tissue type will be replicated in others. In the present study we used two appropriately powered sample series to examine the genetic control of gene expression in blood and brain. We find that while many eQTLs associated with human traits are shared between these two tissues, there are also examples where blood and brain differ, either by restricted gene expression patterns in one tissue or because of differences in how genetic variants are associated with transcript levels. These observations suggest that design of eQTL mapping experiments should consider tissue of interest for the disease or other traits studied. Published by Elsevier Inc.

diff --git a/general/datasets/GSE15745_GPL6104_Po0510/summary.rtf b/general/datasets/GSE15745_GPL6104_Po0510/summary.rtf deleted file mode 100644 index 4bc5546..0000000 --- a/general/datasets/GSE15745_GPL6104_Po0510/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

Summary from GEO Series GSE36192 and GSE: GSE36194 "A fundamental challenge in the post-genome era is to understand and annotate the consequences of genetic variation, particularly within the context of human tissues. We describe a set of integrated experiments designed to investigate the effects of common genetic variability on mRNA expression distinct human brain regions. We show that brain tissues may be readily distinguished based on expression profile. We find an abundance of genetic cis regulation mRNA expression. We observe that the largest magnitude effects occur across distinct brain regions. We believe these data, which we have made publicly available, will be useful in understanding the biological effects of genetic variation."

diff --git a/general/datasets/GSE23546HLT0613/summary.rtf b/general/datasets/GSE23546HLT0613/summary.rtf deleted file mode 100644 index 9cb9538..0000000 --- a/general/datasets/GSE23546HLT0613/summary.rtf +++ /dev/null @@ -1,15 +0,0 @@ -

This SuperSeries is composed of the following SubSeries:

- - - - - - - - - - - - - -
GSE23352 Whole-genome gene expression profiles of non-tumorous human lung tissues: Laval set
GSE23529 Whole-genome gene expression profiles of non-tumorous human lung tissues: UBC set
GSE23545 Whole-genome gene expression profiles of non-tumorous human lung tissues: GRNG set
diff --git a/general/datasets/GTEXv5_AdiVis_0915/cases.rtf b/general/datasets/GTEXv5_AdiVis_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_AdiVis_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_AdiVis_0915/experiment-design.rtf b/general/datasets/GTEXv5_AdiVis_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_AdiVis_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_AdiVis_0915/platform.rtf b/general/datasets/GTEXv5_AdiVis_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_AdiVis_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_AdiVis_0915/processing.rtf b/general/datasets/GTEXv5_AdiVis_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_AdiVis_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_AdiVis_0915/specifics.rtf b/general/datasets/GTEXv5_AdiVis_0915/specifics.rtf deleted file mode 100644 index 055221e..0000000 --- a/general/datasets/GTEXv5_AdiVis_0915/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Human Adipose Visceral Omentum \ No newline at end of file diff --git a/general/datasets/GTEXv5_AdiVis_0915/summary.rtf b/general/datasets/GTEXv5_AdiVis_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_AdiVis_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_AdiVis_0915/tissue.rtf b/general/datasets/GTEXv5_AdiVis_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_AdiVis_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_AdipSub_0915/cases.rtf b/general/datasets/GTEXv5_AdipSub_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_AdipSub_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_AdipSub_0915/experiment-design.rtf b/general/datasets/GTEXv5_AdipSub_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_AdipSub_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_AdipSub_0915/platform.rtf b/general/datasets/GTEXv5_AdipSub_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_AdipSub_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_AdipSub_0915/processing.rtf b/general/datasets/GTEXv5_AdipSub_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_AdipSub_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_AdipSub_0915/specifics.rtf b/general/datasets/GTEXv5_AdipSub_0915/specifics.rtf deleted file mode 100644 index 60a3e92..0000000 --- a/general/datasets/GTEXv5_AdipSub_0915/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Human Adipose Subcutaneous \ No newline at end of file diff --git a/general/datasets/GTEXv5_AdipSub_0915/summary.rtf b/general/datasets/GTEXv5_AdipSub_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_AdipSub_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_AdipSub_0915/tissue.rtf b/general/datasets/GTEXv5_AdipSub_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_AdipSub_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_AdrGla_0915/cases.rtf b/general/datasets/GTEXv5_AdrGla_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_AdrGla_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_AdrGla_0915/experiment-design.rtf b/general/datasets/GTEXv5_AdrGla_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_AdrGla_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_AdrGla_0915/platform.rtf b/general/datasets/GTEXv5_AdrGla_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_AdrGla_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_AdrGla_0915/processing.rtf b/general/datasets/GTEXv5_AdrGla_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_AdrGla_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_AdrGla_0915/specifics.rtf b/general/datasets/GTEXv5_AdrGla_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_AdrGla_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_AdrGla_0915/summary.rtf b/general/datasets/GTEXv5_AdrGla_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_AdrGla_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_AdrGla_0915/tissue.rtf b/general/datasets/GTEXv5_AdrGla_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_AdrGla_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_Amy_0915/cases.rtf b/general/datasets/GTEXv5_Amy_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_Amy_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_Amy_0915/experiment-design.rtf b/general/datasets/GTEXv5_Amy_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_Amy_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_Amy_0915/platform.rtf b/general/datasets/GTEXv5_Amy_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_Amy_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_Amy_0915/processing.rtf b/general/datasets/GTEXv5_Amy_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_Amy_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_Amy_0915/specifics.rtf b/general/datasets/GTEXv5_Amy_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_Amy_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_Amy_0915/summary.rtf b/general/datasets/GTEXv5_Amy_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_Amy_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_Amy_0915/tissue.rtf b/general/datasets/GTEXv5_Amy_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_Amy_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_AntCtx_0915/cases.rtf b/general/datasets/GTEXv5_AntCtx_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_AntCtx_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_AntCtx_0915/experiment-design.rtf b/general/datasets/GTEXv5_AntCtx_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_AntCtx_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_AntCtx_0915/platform.rtf b/general/datasets/GTEXv5_AntCtx_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_AntCtx_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_AntCtx_0915/processing.rtf b/general/datasets/GTEXv5_AntCtx_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_AntCtx_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_AntCtx_0915/specifics.rtf b/general/datasets/GTEXv5_AntCtx_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_AntCtx_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_AntCtx_0915/summary.rtf b/general/datasets/GTEXv5_AntCtx_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_AntCtx_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_AntCtx_0915/tissue.rtf b/general/datasets/GTEXv5_AntCtx_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_AntCtx_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_ArtAor_0915/cases.rtf b/general/datasets/GTEXv5_ArtAor_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_ArtAor_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_ArtAor_0915/experiment-design.rtf b/general/datasets/GTEXv5_ArtAor_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_ArtAor_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_ArtAor_0915/platform.rtf b/general/datasets/GTEXv5_ArtAor_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_ArtAor_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_ArtAor_0915/processing.rtf b/general/datasets/GTEXv5_ArtAor_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_ArtAor_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_ArtAor_0915/specifics.rtf b/general/datasets/GTEXv5_ArtAor_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_ArtAor_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_ArtAor_0915/summary.rtf b/general/datasets/GTEXv5_ArtAor_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_ArtAor_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_ArtAor_0915/tissue.rtf b/general/datasets/GTEXv5_ArtAor_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_ArtAor_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_ArtCor_0915/cases.rtf b/general/datasets/GTEXv5_ArtCor_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_ArtCor_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_ArtCor_0915/experiment-design.rtf b/general/datasets/GTEXv5_ArtCor_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_ArtCor_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_ArtCor_0915/platform.rtf b/general/datasets/GTEXv5_ArtCor_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_ArtCor_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_ArtCor_0915/processing.rtf b/general/datasets/GTEXv5_ArtCor_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_ArtCor_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_ArtCor_0915/specifics.rtf b/general/datasets/GTEXv5_ArtCor_0915/specifics.rtf deleted file mode 100644 index 9288089..0000000 --- a/general/datasets/GTEXv5_ArtCor_0915/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Human Artery Coronary \ No newline at end of file diff --git a/general/datasets/GTEXv5_ArtCor_0915/summary.rtf b/general/datasets/GTEXv5_ArtCor_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_ArtCor_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_ArtCor_0915/tissue.rtf b/general/datasets/GTEXv5_ArtCor_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_ArtCor_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_BM_0915/cases.rtf b/general/datasets/GTEXv5_BM_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_BM_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_BM_0915/experiment-design.rtf b/general/datasets/GTEXv5_BM_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_BM_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_BM_0915/platform.rtf b/general/datasets/GTEXv5_BM_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_BM_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_BM_0915/processing.rtf b/general/datasets/GTEXv5_BM_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_BM_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_BM_0915/specifics.rtf b/general/datasets/GTEXv5_BM_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_BM_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_BM_0915/summary.rtf b/general/datasets/GTEXv5_BM_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_BM_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_BM_0915/tissue.rtf b/general/datasets/GTEXv5_BM_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_BM_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_BrCe_0915/cases.rtf b/general/datasets/GTEXv5_BrCe_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_BrCe_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_BrCe_0915/experiment-design.rtf b/general/datasets/GTEXv5_BrCe_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_BrCe_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_BrCe_0915/platform.rtf b/general/datasets/GTEXv5_BrCe_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_BrCe_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_BrCe_0915/processing.rtf b/general/datasets/GTEXv5_BrCe_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_BrCe_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_BrCe_0915/specifics.rtf b/general/datasets/GTEXv5_BrCe_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_BrCe_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_BrCe_0915/summary.rtf b/general/datasets/GTEXv5_BrCe_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_BrCe_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_BrCe_0915/tissue.rtf b/general/datasets/GTEXv5_BrCe_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_BrCe_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_BrMa_0915/cases.rtf b/general/datasets/GTEXv5_BrMa_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_BrMa_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_BrMa_0915/experiment-design.rtf b/general/datasets/GTEXv5_BrMa_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_BrMa_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_BrMa_0915/platform.rtf b/general/datasets/GTEXv5_BrMa_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_BrMa_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_BrMa_0915/processing.rtf b/general/datasets/GTEXv5_BrMa_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_BrMa_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_BrMa_0915/specifics.rtf b/general/datasets/GTEXv5_BrMa_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_BrMa_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_BrMa_0915/summary.rtf b/general/datasets/GTEXv5_BrMa_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_BrMa_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_BrMa_0915/tissue.rtf b/general/datasets/GTEXv5_BrMa_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_BrMa_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_CTF_0915/cases.rtf b/general/datasets/GTEXv5_CTF_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_CTF_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_CTF_0915/experiment-design.rtf b/general/datasets/GTEXv5_CTF_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_CTF_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_CTF_0915/platform.rtf b/general/datasets/GTEXv5_CTF_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_CTF_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_CTF_0915/processing.rtf b/general/datasets/GTEXv5_CTF_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_CTF_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_CTF_0915/specifics.rtf b/general/datasets/GTEXv5_CTF_0915/specifics.rtf deleted file mode 100644 index 8515741..0000000 --- a/general/datasets/GTEXv5_CTF_0915/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Cell Transformed Fibroblasts \ No newline at end of file diff --git a/general/datasets/GTEXv5_CTF_0915/summary.rtf b/general/datasets/GTEXv5_CTF_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_CTF_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_CTF_0915/tissue.rtf b/general/datasets/GTEXv5_CTF_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_CTF_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_ColSig_0915/cases.rtf b/general/datasets/GTEXv5_ColSig_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_ColSig_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_ColSig_0915/experiment-design.rtf b/general/datasets/GTEXv5_ColSig_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_ColSig_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_ColSig_0915/platform.rtf b/general/datasets/GTEXv5_ColSig_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_ColSig_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_ColSig_0915/processing.rtf b/general/datasets/GTEXv5_ColSig_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_ColSig_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_ColSig_0915/specifics.rtf b/general/datasets/GTEXv5_ColSig_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_ColSig_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_ColSig_0915/summary.rtf b/general/datasets/GTEXv5_ColSig_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_ColSig_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_ColSig_0915/tissue.rtf b/general/datasets/GTEXv5_ColSig_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_ColSig_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_GastJun_0915/cases.rtf b/general/datasets/GTEXv5_GastJun_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_GastJun_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_GastJun_0915/experiment-design.rtf b/general/datasets/GTEXv5_GastJun_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_GastJun_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_GastJun_0915/platform.rtf b/general/datasets/GTEXv5_GastJun_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_GastJun_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_GastJun_0915/processing.rtf b/general/datasets/GTEXv5_GastJun_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_GastJun_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_GastJun_0915/specifics.rtf b/general/datasets/GTEXv5_GastJun_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_GastJun_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_GastJun_0915/summary.rtf b/general/datasets/GTEXv5_GastJun_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_GastJun_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_GastJun_0915/tissue.rtf b/general/datasets/GTEXv5_GastJun_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_GastJun_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_HAA_0915/cases.rtf b/general/datasets/GTEXv5_HAA_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_HAA_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_HAA_0915/experiment-design.rtf b/general/datasets/GTEXv5_HAA_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_HAA_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_HAA_0915/platform.rtf b/general/datasets/GTEXv5_HAA_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_HAA_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_HAA_0915/processing.rtf b/general/datasets/GTEXv5_HAA_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_HAA_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_HAA_0915/specifics.rtf b/general/datasets/GTEXv5_HAA_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_HAA_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_HAA_0915/summary.rtf b/general/datasets/GTEXv5_HAA_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_HAA_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_HAA_0915/tissue.rtf b/general/datasets/GTEXv5_HAA_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_HAA_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_Hip_0915/cases.rtf b/general/datasets/GTEXv5_Hip_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_Hip_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_Hip_0915/experiment-design.rtf b/general/datasets/GTEXv5_Hip_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_Hip_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_Hip_0915/platform.rtf b/general/datasets/GTEXv5_Hip_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_Hip_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_Hip_0915/processing.rtf b/general/datasets/GTEXv5_Hip_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_Hip_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_Hip_0915/specifics.rtf b/general/datasets/GTEXv5_Hip_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_Hip_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_Hip_0915/summary.rtf b/general/datasets/GTEXv5_Hip_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_Hip_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_Hip_0915/tissue.rtf b/general/datasets/GTEXv5_Hip_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_Hip_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_Hiptha_0915/cases.rtf b/general/datasets/GTEXv5_Hiptha_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_Hiptha_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_Hiptha_0915/experiment-design.rtf b/general/datasets/GTEXv5_Hiptha_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_Hiptha_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_Hiptha_0915/platform.rtf b/general/datasets/GTEXv5_Hiptha_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_Hiptha_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_Hiptha_0915/processing.rtf b/general/datasets/GTEXv5_Hiptha_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_Hiptha_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_Hiptha_0915/specifics.rtf b/general/datasets/GTEXv5_Hiptha_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_Hiptha_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_Hiptha_0915/summary.rtf b/general/datasets/GTEXv5_Hiptha_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_Hiptha_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_Hiptha_0915/tissue.rtf b/general/datasets/GTEXv5_Hiptha_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_Hiptha_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_Kidn_0915/cases.rtf b/general/datasets/GTEXv5_Kidn_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_Kidn_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_Kidn_0915/experiment-design.rtf b/general/datasets/GTEXv5_Kidn_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_Kidn_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_Kidn_0915/platform.rtf b/general/datasets/GTEXv5_Kidn_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_Kidn_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_Kidn_0915/processing.rtf b/general/datasets/GTEXv5_Kidn_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_Kidn_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_Kidn_0915/specifics.rtf b/general/datasets/GTEXv5_Kidn_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_Kidn_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_Kidn_0915/summary.rtf b/general/datasets/GTEXv5_Kidn_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_Kidn_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_Kidn_0915/tissue.rtf b/general/datasets/GTEXv5_Kidn_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_Kidn_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_Liv_0915/cases.rtf b/general/datasets/GTEXv5_Liv_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_Liv_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_Liv_0915/experiment-design.rtf b/general/datasets/GTEXv5_Liv_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_Liv_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_Liv_0915/platform.rtf b/general/datasets/GTEXv5_Liv_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_Liv_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_Liv_0915/processing.rtf b/general/datasets/GTEXv5_Liv_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_Liv_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_Liv_0915/specifics.rtf b/general/datasets/GTEXv5_Liv_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_Liv_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_Liv_0915/summary.rtf b/general/datasets/GTEXv5_Liv_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_Liv_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_Liv_0915/tissue.rtf b/general/datasets/GTEXv5_Liv_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_Liv_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_MuSk_0915/cases.rtf b/general/datasets/GTEXv5_MuSk_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_MuSk_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_MuSk_0915/experiment-design.rtf b/general/datasets/GTEXv5_MuSk_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_MuSk_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_MuSk_0915/platform.rtf b/general/datasets/GTEXv5_MuSk_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_MuSk_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_MuSk_0915/processing.rtf b/general/datasets/GTEXv5_MuSk_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_MuSk_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_MuSk_0915/specifics.rtf b/general/datasets/GTEXv5_MuSk_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_MuSk_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_MuSk_0915/summary.rtf b/general/datasets/GTEXv5_MuSk_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_MuSk_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_MuSk_0915/tissue.rtf b/general/datasets/GTEXv5_MuSk_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_MuSk_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_Ov_0915/cases.rtf b/general/datasets/GTEXv5_Ov_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_Ov_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_Ov_0915/experiment-design.rtf b/general/datasets/GTEXv5_Ov_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_Ov_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_Ov_0915/platform.rtf b/general/datasets/GTEXv5_Ov_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_Ov_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_Ov_0915/processing.rtf b/general/datasets/GTEXv5_Ov_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_Ov_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_Ov_0915/specifics.rtf b/general/datasets/GTEXv5_Ov_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_Ov_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_Ov_0915/summary.rtf b/general/datasets/GTEXv5_Ov_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_Ov_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_Ov_0915/tissue.rtf b/general/datasets/GTEXv5_Ov_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_Ov_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_Pit_0915/cases.rtf b/general/datasets/GTEXv5_Pit_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_Pit_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_Pit_0915/experiment-design.rtf b/general/datasets/GTEXv5_Pit_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_Pit_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_Pit_0915/platform.rtf b/general/datasets/GTEXv5_Pit_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_Pit_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_Pit_0915/processing.rtf b/general/datasets/GTEXv5_Pit_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_Pit_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_Pit_0915/specifics.rtf b/general/datasets/GTEXv5_Pit_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_Pit_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_Pit_0915/summary.rtf b/general/datasets/GTEXv5_Pit_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_Pit_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_Pit_0915/tissue.rtf b/general/datasets/GTEXv5_Pit_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_Pit_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_Prost_0915/cases.rtf b/general/datasets/GTEXv5_Prost_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_Prost_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_Prost_0915/experiment-design.rtf b/general/datasets/GTEXv5_Prost_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_Prost_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_Prost_0915/platform.rtf b/general/datasets/GTEXv5_Prost_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_Prost_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_Prost_0915/processing.rtf b/general/datasets/GTEXv5_Prost_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_Prost_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_Prost_0915/specifics.rtf b/general/datasets/GTEXv5_Prost_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_Prost_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_Prost_0915/summary.rtf b/general/datasets/GTEXv5_Prost_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_Prost_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_Prost_0915/tissue.rtf b/general/datasets/GTEXv5_Prost_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_Prost_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_SalGl_0915/cases.rtf b/general/datasets/GTEXv5_SalGl_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_SalGl_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_SalGl_0915/experiment-design.rtf b/general/datasets/GTEXv5_SalGl_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_SalGl_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_SalGl_0915/platform.rtf b/general/datasets/GTEXv5_SalGl_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_SalGl_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_SalGl_0915/processing.rtf b/general/datasets/GTEXv5_SalGl_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_SalGl_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_SalGl_0915/specifics.rtf b/general/datasets/GTEXv5_SalGl_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_SalGl_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_SalGl_0915/summary.rtf b/general/datasets/GTEXv5_SalGl_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_SalGl_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_SalGl_0915/tissue.rtf b/general/datasets/GTEXv5_SalGl_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_SalGl_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_SkS_0915/cases.rtf b/general/datasets/GTEXv5_SkS_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_SkS_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_SkS_0915/experiment-design.rtf b/general/datasets/GTEXv5_SkS_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_SkS_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_SkS_0915/platform.rtf b/general/datasets/GTEXv5_SkS_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_SkS_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_SkS_0915/processing.rtf b/general/datasets/GTEXv5_SkS_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_SkS_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_SkS_0915/specifics.rtf b/general/datasets/GTEXv5_SkS_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_SkS_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_SkS_0915/summary.rtf b/general/datasets/GTEXv5_SkS_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_SkS_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_SkS_0915/tissue.rtf b/general/datasets/GTEXv5_SkS_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_SkS_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_Sto_0915/cases.rtf b/general/datasets/GTEXv5_Sto_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_Sto_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_Sto_0915/experiment-design.rtf b/general/datasets/GTEXv5_Sto_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_Sto_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_Sto_0915/platform.rtf b/general/datasets/GTEXv5_Sto_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_Sto_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_Sto_0915/processing.rtf b/general/datasets/GTEXv5_Sto_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_Sto_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_Sto_0915/specifics.rtf b/general/datasets/GTEXv5_Sto_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_Sto_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_Sto_0915/summary.rtf b/general/datasets/GTEXv5_Sto_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_Sto_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_Sto_0915/tissue.rtf b/general/datasets/GTEXv5_Sto_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_Sto_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_Test_0915/cases.rtf b/general/datasets/GTEXv5_Test_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_Test_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_Test_0915/experiment-design.rtf b/general/datasets/GTEXv5_Test_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_Test_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_Test_0915/platform.rtf b/general/datasets/GTEXv5_Test_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_Test_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_Test_0915/processing.rtf b/general/datasets/GTEXv5_Test_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_Test_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_Test_0915/specifics.rtf b/general/datasets/GTEXv5_Test_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_Test_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_Test_0915/summary.rtf b/general/datasets/GTEXv5_Test_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_Test_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_Test_0915/tissue.rtf b/general/datasets/GTEXv5_Test_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_Test_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_Thy_0915/cases.rtf b/general/datasets/GTEXv5_Thy_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_Thy_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_Thy_0915/experiment-design.rtf b/general/datasets/GTEXv5_Thy_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_Thy_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_Thy_0915/platform.rtf b/general/datasets/GTEXv5_Thy_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_Thy_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_Thy_0915/processing.rtf b/general/datasets/GTEXv5_Thy_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_Thy_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_Thy_0915/specifics.rtf b/general/datasets/GTEXv5_Thy_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_Thy_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_Thy_0915/summary.rtf b/general/datasets/GTEXv5_Thy_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_Thy_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_Thy_0915/tissue.rtf b/general/datasets/GTEXv5_Thy_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_Thy_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_Ut_0915/cases.rtf b/general/datasets/GTEXv5_Ut_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_Ut_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_Ut_0915/experiment-design.rtf b/general/datasets/GTEXv5_Ut_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_Ut_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_Ut_0915/platform.rtf b/general/datasets/GTEXv5_Ut_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_Ut_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_Ut_0915/processing.rtf b/general/datasets/GTEXv5_Ut_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_Ut_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_Ut_0915/specifics.rtf b/general/datasets/GTEXv5_Ut_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_Ut_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_Ut_0915/summary.rtf b/general/datasets/GTEXv5_Ut_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_Ut_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_Ut_0915/tissue.rtf b/general/datasets/GTEXv5_Ut_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_Ut_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEXv5_Wbl_0915/cases.rtf b/general/datasets/GTEXv5_Wbl_0915/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEXv5_Wbl_0915/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEXv5_Wbl_0915/experiment-design.rtf b/general/datasets/GTEXv5_Wbl_0915/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEXv5_Wbl_0915/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEXv5_Wbl_0915/platform.rtf b/general/datasets/GTEXv5_Wbl_0915/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEXv5_Wbl_0915/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEXv5_Wbl_0915/processing.rtf b/general/datasets/GTEXv5_Wbl_0915/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEXv5_Wbl_0915/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEXv5_Wbl_0915/specifics.rtf b/general/datasets/GTEXv5_Wbl_0915/specifics.rtf deleted file mode 100644 index 80bf41d..0000000 --- a/general/datasets/GTEXv5_Wbl_0915/specifics.rtf +++ /dev/null @@ -1,10 +0,0 @@ -
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. - - - -

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

- -

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

-
diff --git a/general/datasets/GTEXv5_Wbl_0915/summary.rtf b/general/datasets/GTEXv5_Wbl_0915/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEXv5_Wbl_0915/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEXv5_Wbl_0915/tissue.rtf b/general/datasets/GTEXv5_Wbl_0915/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEXv5_Wbl_0915/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_AMY_0314/cases.rtf b/general/datasets/GTEx_AMY_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_AMY_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_AMY_0314/experiment-design.rtf b/general/datasets/GTEx_AMY_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_AMY_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_AMY_0314/platform.rtf b/general/datasets/GTEx_AMY_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_AMY_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_AMY_0314/processing.rtf b/general/datasets/GTEx_AMY_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_AMY_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_AMY_0314/summary.rtf b/general/datasets/GTEx_AMY_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_AMY_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_AMY_0314/tissue.rtf b/general/datasets/GTEx_AMY_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_AMY_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Adren_0414/cases.rtf b/general/datasets/GTEx_Adren_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Adren_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Adren_0414/experiment-design.rtf b/general/datasets/GTEx_Adren_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Adren_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Adren_0414/platform.rtf b/general/datasets/GTEx_Adren_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Adren_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Adren_0414/processing.rtf b/general/datasets/GTEx_Adren_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Adren_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Adren_0414/summary.rtf b/general/datasets/GTEx_Adren_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Adren_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Adren_0414/tissue.rtf b/general/datasets/GTEx_Adren_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Adren_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Anter_0414/cases.rtf b/general/datasets/GTEx_Anter_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Anter_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Anter_0414/experiment-design.rtf b/general/datasets/GTEx_Anter_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Anter_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Anter_0414/platform.rtf b/general/datasets/GTEx_Anter_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Anter_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Anter_0414/processing.rtf b/general/datasets/GTEx_Anter_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Anter_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Anter_0414/summary.rtf b/general/datasets/GTEx_Anter_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Anter_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Anter_0414/tissue.rtf b/general/datasets/GTEx_Anter_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Anter_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Aorta_0414/cases.rtf b/general/datasets/GTEx_Aorta_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Aorta_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Aorta_0414/experiment-design.rtf b/general/datasets/GTEx_Aorta_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Aorta_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Aorta_0414/platform.rtf b/general/datasets/GTEx_Aorta_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Aorta_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Aorta_0414/processing.rtf b/general/datasets/GTEx_Aorta_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Aorta_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Aorta_0414/summary.rtf b/general/datasets/GTEx_Aorta_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Aorta_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Aorta_0414/tissue.rtf b/general/datasets/GTEx_Aorta_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Aorta_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Blood_0414/cases.rtf b/general/datasets/GTEx_Blood_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Blood_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Blood_0414/experiment-design.rtf b/general/datasets/GTEx_Blood_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Blood_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Blood_0414/platform.rtf b/general/datasets/GTEx_Blood_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Blood_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Blood_0414/processing.rtf b/general/datasets/GTEx_Blood_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Blood_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Blood_0414/summary.rtf b/general/datasets/GTEx_Blood_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Blood_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Blood_0414/tissue.rtf b/general/datasets/GTEx_Blood_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Blood_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Breas_0414/cases.rtf b/general/datasets/GTEx_Breas_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Breas_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Breas_0414/experiment-design.rtf b/general/datasets/GTEx_Breas_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Breas_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Breas_0414/platform.rtf b/general/datasets/GTEx_Breas_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Breas_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Breas_0414/processing.rtf b/general/datasets/GTEx_Breas_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Breas_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Breas_0414/summary.rtf b/general/datasets/GTEx_Breas_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Breas_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Breas_0414/tissue.rtf b/general/datasets/GTEx_Breas_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Breas_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_CER_0314/cases.rtf b/general/datasets/GTEx_CER_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_CER_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_CER_0314/experiment-design.rtf b/general/datasets/GTEx_CER_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_CER_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_CER_0314/platform.rtf b/general/datasets/GTEx_CER_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_CER_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_CER_0314/processing.rtf b/general/datasets/GTEx_CER_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_CER_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_CER_0314/summary.rtf b/general/datasets/GTEx_CER_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_CER_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_CER_0314/tissue.rtf b/general/datasets/GTEx_CER_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_CER_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Cauda_0414/cases.rtf b/general/datasets/GTEx_Cauda_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Cauda_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Cauda_0414/experiment-design.rtf b/general/datasets/GTEx_Cauda_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Cauda_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Cauda_0414/platform.rtf b/general/datasets/GTEx_Cauda_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Cauda_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Cauda_0414/processing.rtf b/general/datasets/GTEx_Cauda_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Cauda_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Cauda_0414/summary.rtf b/general/datasets/GTEx_Cauda_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Cauda_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Cauda_0414/tissue.rtf b/general/datasets/GTEx_Cauda_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Cauda_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_CellsEBV_0414/cases.rtf b/general/datasets/GTEx_CellsEBV_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_CellsEBV_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_CellsEBV_0414/experiment-design.rtf b/general/datasets/GTEx_CellsEBV_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_CellsEBV_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_CellsEBV_0414/platform.rtf b/general/datasets/GTEx_CellsEBV_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_CellsEBV_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_CellsEBV_0414/processing.rtf b/general/datasets/GTEx_CellsEBV_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_CellsEBV_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_CellsEBV_0414/summary.rtf b/general/datasets/GTEx_CellsEBV_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_CellsEBV_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_CellsEBV_0414/tissue.rtf b/general/datasets/GTEx_CellsEBV_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_CellsEBV_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_CellsLe_0414/experiment-design.rtf b/general/datasets/GTEx_CellsLe_0414/experiment-design.rtf deleted file mode 100644 index f6a3038..0000000 --- a/general/datasets/GTEx_CellsLe_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

Postmortem brain tissue was collected from ADRC brain banks. Cases were preferentially selected where 3 or more brain regions were available.

diff --git a/general/datasets/GTEx_CellsLe_0414/summary.rtf b/general/datasets/GTEx_CellsLe_0414/summary.rtf deleted file mode 100644 index fea08e6..0000000 --- a/general/datasets/GTEx_CellsLe_0414/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

Gene expression profiles were assessed in the hippocampus (HC), entorhinal cortex (EC), superior frontal gyrus (SG), and postcentral gyrus (PCG) across the lifespan of 63 cognitively intact individuals from 20-99 years old. New perspectives on the global gene changes that are associated with brain aging emerged, revealing two overarching concepts. First, different regions of the forebrain exhibited substantially different gene profile changes with age. For example, comparing equally powered groups, 5,029 probe sets were significantly altered with age (20-59 vs. 60-99) in the superior frontal gyrus, compared with 1,110 in the entorhinal cortex. Prominent change occurred in the 6th-7th decades across cortical regions, suggesting that this period is a critical transition point in brain aging, particularly in males. Second, clear gender differences in brain aging were evident across the lifespan, suggesting that the brain undergoes sexually dimorphic changes in gene expression not only in development but also in later life. Globally across all brain regions, males showed more gene change than females. Further, Gene Ontology analysis revealed that different categories of genes were predominantly affected in males vs. females. Notably, the male brain was characterized by global decreased catabolic and anabolic capacity with aging, with downregulated genes heavily enriched in energy production and protein synthesis/transport categories. Increased immune activation was a prominent feature of aging in both sexes, with more widespread activation in the female brain. These data open new opportunities to explore age-dependent changes in gene expression that set the balance between neurodegeneration and compensatory mechanisms in the brain, and suggest that this balance is set differently in males and females, an intriguing and novel idea. HgU133plus2.0 microarray chips were used to profile gene expression in 4 brain regions of cognitively intact humans, across the adult lifespan (ages 20-99).

diff --git a/general/datasets/GTEx_CellsTr_0414/cases.rtf b/general/datasets/GTEx_CellsTr_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_CellsTr_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_CellsTr_0414/experiment-design.rtf b/general/datasets/GTEx_CellsTr_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_CellsTr_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_CellsTr_0414/platform.rtf b/general/datasets/GTEx_CellsTr_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_CellsTr_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_CellsTr_0414/processing.rtf b/general/datasets/GTEx_CellsTr_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_CellsTr_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_CellsTr_0414/summary.rtf b/general/datasets/GTEx_CellsTr_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_CellsTr_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_CellsTr_0414/tissue.rtf b/general/datasets/GTEx_CellsTr_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_CellsTr_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_CerebC_0414/cases.rtf b/general/datasets/GTEx_CerebC_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_CerebC_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_CerebC_0414/experiment-design.rtf b/general/datasets/GTEx_CerebC_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_CerebC_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_CerebC_0414/platform.rtf b/general/datasets/GTEx_CerebC_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_CerebC_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_CerebC_0414/processing.rtf b/general/datasets/GTEx_CerebC_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_CerebC_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_CerebC_0414/summary.rtf b/general/datasets/GTEx_CerebC_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_CerebC_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_CerebC_0414/tissue.rtf b/general/datasets/GTEx_CerebC_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_CerebC_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_CerebH_0414/cases.rtf b/general/datasets/GTEx_CerebH_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_CerebH_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_CerebH_0414/experiment-design.rtf b/general/datasets/GTEx_CerebH_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_CerebH_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_CerebH_0414/platform.rtf b/general/datasets/GTEx_CerebH_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_CerebH_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_CerebH_0414/processing.rtf b/general/datasets/GTEx_CerebH_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_CerebH_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_CerebH_0414/summary.rtf b/general/datasets/GTEx_CerebH_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_CerebH_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_CerebH_0414/tissue.rtf b/general/datasets/GTEx_CerebH_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_CerebH_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Colon_0414/cases.rtf b/general/datasets/GTEx_Colon_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Colon_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Colon_0414/experiment-design.rtf b/general/datasets/GTEx_Colon_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Colon_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Colon_0414/platform.rtf b/general/datasets/GTEx_Colon_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Colon_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Colon_0414/processing.rtf b/general/datasets/GTEx_Colon_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Colon_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Colon_0414/summary.rtf b/general/datasets/GTEx_Colon_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Colon_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Colon_0414/tissue.rtf b/general/datasets/GTEx_Colon_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Colon_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Coron_0414/cases.rtf b/general/datasets/GTEx_Coron_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Coron_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Coron_0414/experiment-design.rtf b/general/datasets/GTEx_Coron_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Coron_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Coron_0414/platform.rtf b/general/datasets/GTEx_Coron_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Coron_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Coron_0414/processing.rtf b/general/datasets/GTEx_Coron_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Coron_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Coron_0414/summary.rtf b/general/datasets/GTEx_Coron_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Coron_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Coron_0414/tissue.rtf b/general/datasets/GTEx_Coron_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Coron_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_EsophMuc_0414/cases.rtf b/general/datasets/GTEx_EsophMuc_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_EsophMuc_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_EsophMuc_0414/experiment-design.rtf b/general/datasets/GTEx_EsophMuc_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_EsophMuc_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_EsophMuc_0414/platform.rtf b/general/datasets/GTEx_EsophMuc_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_EsophMuc_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_EsophMuc_0414/processing.rtf b/general/datasets/GTEx_EsophMuc_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_EsophMuc_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_EsophMuc_0414/summary.rtf b/general/datasets/GTEx_EsophMuc_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_EsophMuc_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_EsophMuc_0414/tissue.rtf b/general/datasets/GTEx_EsophMuc_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_EsophMuc_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_EsophMus_0414/cases.rtf b/general/datasets/GTEx_EsophMus_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_EsophMus_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_EsophMus_0414/experiment-design.rtf b/general/datasets/GTEx_EsophMus_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_EsophMus_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_EsophMus_0414/platform.rtf b/general/datasets/GTEx_EsophMus_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_EsophMus_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_EsophMus_0414/processing.rtf b/general/datasets/GTEx_EsophMus_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_EsophMus_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_EsophMus_0414/summary.rtf b/general/datasets/GTEx_EsophMus_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_EsophMus_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_EsophMus_0414/tissue.rtf b/general/datasets/GTEx_EsophMus_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_EsophMus_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Fallo_0414/cases.rtf b/general/datasets/GTEx_Fallo_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Fallo_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Fallo_0414/experiment-design.rtf b/general/datasets/GTEx_Fallo_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Fallo_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Fallo_0414/platform.rtf b/general/datasets/GTEx_Fallo_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Fallo_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Fallo_0414/processing.rtf b/general/datasets/GTEx_Fallo_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Fallo_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Fallo_0414/summary.rtf b/general/datasets/GTEx_Fallo_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Fallo_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Fallo_0414/tissue.rtf b/general/datasets/GTEx_Fallo_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Fallo_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Front_0414/cases.rtf b/general/datasets/GTEx_Front_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Front_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Front_0414/experiment-design.rtf b/general/datasets/GTEx_Front_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Front_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Front_0414/platform.rtf b/general/datasets/GTEx_Front_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Front_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Front_0414/processing.rtf b/general/datasets/GTEx_Front_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Front_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Front_0414/summary.rtf b/general/datasets/GTEx_Front_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Front_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Front_0414/tissue.rtf b/general/datasets/GTEx_Front_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Front_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_HIP_0314/cases.rtf b/general/datasets/GTEx_HIP_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_HIP_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_HIP_0314/experiment-design.rtf b/general/datasets/GTEx_HIP_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_HIP_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_HIP_0314/platform.rtf b/general/datasets/GTEx_HIP_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_HIP_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_HIP_0314/processing.rtf b/general/datasets/GTEx_HIP_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_HIP_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_HIP_0314/summary.rtf b/general/datasets/GTEx_HIP_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_HIP_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_HIP_0314/tissue.rtf b/general/datasets/GTEx_HIP_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_HIP_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_HeartAt_0414/cases.rtf b/general/datasets/GTEx_HeartAt_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_HeartAt_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_HeartAt_0414/experiment-design.rtf b/general/datasets/GTEx_HeartAt_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_HeartAt_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_HeartAt_0414/platform.rtf b/general/datasets/GTEx_HeartAt_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_HeartAt_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_HeartAt_0414/processing.rtf b/general/datasets/GTEx_HeartAt_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_HeartAt_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_HeartAt_0414/summary.rtf b/general/datasets/GTEx_HeartAt_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_HeartAt_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_HeartAt_0414/tissue.rtf b/general/datasets/GTEx_HeartAt_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_HeartAt_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_HeartLV_0414/cases.rtf b/general/datasets/GTEx_HeartLV_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_HeartLV_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_HeartLV_0414/experiment-design.rtf b/general/datasets/GTEx_HeartLV_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_HeartLV_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_HeartLV_0414/platform.rtf b/general/datasets/GTEx_HeartLV_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_HeartLV_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_HeartLV_0414/processing.rtf b/general/datasets/GTEx_HeartLV_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_HeartLV_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_HeartLV_0414/summary.rtf b/general/datasets/GTEx_HeartLV_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_HeartLV_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_HeartLV_0414/tissue.rtf b/general/datasets/GTEx_HeartLV_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_HeartLV_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Hypot_0414/cases.rtf b/general/datasets/GTEx_Hypot_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Hypot_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Hypot_0414/experiment-design.rtf b/general/datasets/GTEx_Hypot_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Hypot_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Hypot_0414/platform.rtf b/general/datasets/GTEx_Hypot_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Hypot_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Hypot_0414/processing.rtf b/general/datasets/GTEx_Hypot_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Hypot_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Hypot_0414/summary.rtf b/general/datasets/GTEx_Hypot_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Hypot_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Hypot_0414/tissue.rtf b/general/datasets/GTEx_Hypot_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Hypot_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Kidne_0414/cases.rtf b/general/datasets/GTEx_Kidne_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Kidne_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Kidne_0414/experiment-design.rtf b/general/datasets/GTEx_Kidne_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Kidne_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Kidne_0414/platform.rtf b/general/datasets/GTEx_Kidne_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Kidne_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Kidne_0414/processing.rtf b/general/datasets/GTEx_Kidne_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Kidne_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Kidne_0414/summary.rtf b/general/datasets/GTEx_Kidne_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Kidne_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Kidne_0414/tissue.rtf b/general/datasets/GTEx_Kidne_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Kidne_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Liver_0414/cases.rtf b/general/datasets/GTEx_Liver_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Liver_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Liver_0414/experiment-design.rtf b/general/datasets/GTEx_Liver_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Liver_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Liver_0414/platform.rtf b/general/datasets/GTEx_Liver_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Liver_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Liver_0414/processing.rtf b/general/datasets/GTEx_Liver_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Liver_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Liver_0414/summary.rtf b/general/datasets/GTEx_Liver_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Liver_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Liver_0414/tissue.rtf b/general/datasets/GTEx_Liver_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Liver_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Lung__0414/cases.rtf b/general/datasets/GTEx_Lung__0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Lung__0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Lung__0414/experiment-design.rtf b/general/datasets/GTEx_Lung__0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Lung__0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Lung__0414/platform.rtf b/general/datasets/GTEx_Lung__0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Lung__0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Lung__0414/processing.rtf b/general/datasets/GTEx_Lung__0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Lung__0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Lung__0414/summary.rtf b/general/datasets/GTEx_Lung__0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Lung__0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Lung__0414/tissue.rtf b/general/datasets/GTEx_Lung__0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Lung__0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Muscl_0414/cases.rtf b/general/datasets/GTEx_Muscl_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Muscl_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Muscl_0414/experiment-design.rtf b/general/datasets/GTEx_Muscl_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Muscl_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Muscl_0414/platform.rtf b/general/datasets/GTEx_Muscl_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Muscl_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Muscl_0414/processing.rtf b/general/datasets/GTEx_Muscl_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Muscl_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Muscl_0414/summary.rtf b/general/datasets/GTEx_Muscl_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Muscl_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Muscl_0414/tissue.rtf b/general/datasets/GTEx_Muscl_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Muscl_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Nerve_0414/cases.rtf b/general/datasets/GTEx_Nerve_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Nerve_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Nerve_0414/experiment-design.rtf b/general/datasets/GTEx_Nerve_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Nerve_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Nerve_0414/platform.rtf b/general/datasets/GTEx_Nerve_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Nerve_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Nerve_0414/processing.rtf b/general/datasets/GTEx_Nerve_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Nerve_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Nerve_0414/summary.rtf b/general/datasets/GTEx_Nerve_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Nerve_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Nerve_0414/tissue.rtf b/general/datasets/GTEx_Nerve_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Nerve_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Nucle_0414/cases.rtf b/general/datasets/GTEx_Nucle_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Nucle_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Nucle_0414/experiment-design.rtf b/general/datasets/GTEx_Nucle_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Nucle_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Nucle_0414/platform.rtf b/general/datasets/GTEx_Nucle_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Nucle_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Nucle_0414/processing.rtf b/general/datasets/GTEx_Nucle_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Nucle_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Nucle_0414/summary.rtf b/general/datasets/GTEx_Nucle_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Nucle_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Nucle_0414/tissue.rtf b/general/datasets/GTEx_Nucle_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Nucle_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Ovary_0414/cases.rtf b/general/datasets/GTEx_Ovary_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Ovary_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Ovary_0414/experiment-design.rtf b/general/datasets/GTEx_Ovary_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Ovary_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Ovary_0414/platform.rtf b/general/datasets/GTEx_Ovary_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Ovary_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Ovary_0414/processing.rtf b/general/datasets/GTEx_Ovary_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Ovary_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Ovary_0414/summary.rtf b/general/datasets/GTEx_Ovary_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Ovary_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Ovary_0414/tissue.rtf b/general/datasets/GTEx_Ovary_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Ovary_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Pancr_0414/cases.rtf b/general/datasets/GTEx_Pancr_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Pancr_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Pancr_0414/experiment-design.rtf b/general/datasets/GTEx_Pancr_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Pancr_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Pancr_0414/platform.rtf b/general/datasets/GTEx_Pancr_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Pancr_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Pancr_0414/processing.rtf b/general/datasets/GTEx_Pancr_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Pancr_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Pancr_0414/summary.rtf b/general/datasets/GTEx_Pancr_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Pancr_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Pancr_0414/tissue.rtf b/general/datasets/GTEx_Pancr_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Pancr_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Pitui_0414/cases.rtf b/general/datasets/GTEx_Pitui_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Pitui_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Pitui_0414/experiment-design.rtf b/general/datasets/GTEx_Pitui_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Pitui_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Pitui_0414/platform.rtf b/general/datasets/GTEx_Pitui_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Pitui_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Pitui_0414/processing.rtf b/general/datasets/GTEx_Pitui_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Pitui_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Pitui_0414/summary.rtf b/general/datasets/GTEx_Pitui_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Pitui_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Pitui_0414/tissue.rtf b/general/datasets/GTEx_Pitui_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Pitui_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Prost_0414/cases.rtf b/general/datasets/GTEx_Prost_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Prost_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Prost_0414/experiment-design.rtf b/general/datasets/GTEx_Prost_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Prost_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Prost_0414/platform.rtf b/general/datasets/GTEx_Prost_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Prost_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Prost_0414/processing.rtf b/general/datasets/GTEx_Prost_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Prost_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Prost_0414/summary.rtf b/general/datasets/GTEx_Prost_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Prost_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Prost_0414/tissue.rtf b/general/datasets/GTEx_Prost_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Prost_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Putam_0414/cases.rtf b/general/datasets/GTEx_Putam_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Putam_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Putam_0414/experiment-design.rtf b/general/datasets/GTEx_Putam_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Putam_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Putam_0414/platform.rtf b/general/datasets/GTEx_Putam_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Putam_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Putam_0414/processing.rtf b/general/datasets/GTEx_Putam_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Putam_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Putam_0414/summary.rtf b/general/datasets/GTEx_Putam_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Putam_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Putam_0414/tissue.rtf b/general/datasets/GTEx_Putam_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Putam_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_SkinE_0414/cases.rtf b/general/datasets/GTEx_SkinE_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_SkinE_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_SkinE_0414/experiment-design.rtf b/general/datasets/GTEx_SkinE_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_SkinE_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_SkinE_0414/platform.rtf b/general/datasets/GTEx_SkinE_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_SkinE_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_SkinE_0414/processing.rtf b/general/datasets/GTEx_SkinE_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_SkinE_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_SkinE_0414/summary.rtf b/general/datasets/GTEx_SkinE_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_SkinE_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_SkinE_0414/tissue.rtf b/general/datasets/GTEx_SkinE_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_SkinE_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_SkinN_0414/cases.rtf b/general/datasets/GTEx_SkinN_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_SkinN_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_SkinN_0414/experiment-design.rtf b/general/datasets/GTEx_SkinN_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_SkinN_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_SkinN_0414/platform.rtf b/general/datasets/GTEx_SkinN_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_SkinN_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_SkinN_0414/processing.rtf b/general/datasets/GTEx_SkinN_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_SkinN_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_SkinN_0414/summary.rtf b/general/datasets/GTEx_SkinN_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_SkinN_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_SkinN_0414/tissue.rtf b/general/datasets/GTEx_SkinN_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_SkinN_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Spina_0414/cases.rtf b/general/datasets/GTEx_Spina_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Spina_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Spina_0414/experiment-design.rtf b/general/datasets/GTEx_Spina_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Spina_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Spina_0414/platform.rtf b/general/datasets/GTEx_Spina_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Spina_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Spina_0414/processing.rtf b/general/datasets/GTEx_Spina_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Spina_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Spina_0414/summary.rtf b/general/datasets/GTEx_Spina_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Spina_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Spina_0414/tissue.rtf b/general/datasets/GTEx_Spina_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Spina_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Stoma_0414/cases.rtf b/general/datasets/GTEx_Stoma_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Stoma_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Stoma_0414/experiment-design.rtf b/general/datasets/GTEx_Stoma_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Stoma_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Stoma_0414/platform.rtf b/general/datasets/GTEx_Stoma_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Stoma_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Stoma_0414/processing.rtf b/general/datasets/GTEx_Stoma_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Stoma_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Stoma_0414/summary.rtf b/general/datasets/GTEx_Stoma_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Stoma_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Stoma_0414/tissue.rtf b/general/datasets/GTEx_Stoma_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Stoma_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Subcu_0414/cases.rtf b/general/datasets/GTEx_Subcu_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Subcu_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Subcu_0414/experiment-design.rtf b/general/datasets/GTEx_Subcu_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Subcu_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Subcu_0414/platform.rtf b/general/datasets/GTEx_Subcu_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Subcu_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Subcu_0414/processing.rtf b/general/datasets/GTEx_Subcu_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Subcu_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Subcu_0414/summary.rtf b/general/datasets/GTEx_Subcu_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Subcu_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Subcu_0414/tissue.rtf b/general/datasets/GTEx_Subcu_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Subcu_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Subst_0414/cases.rtf b/general/datasets/GTEx_Subst_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Subst_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Subst_0414/experiment-design.rtf b/general/datasets/GTEx_Subst_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Subst_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Subst_0414/platform.rtf b/general/datasets/GTEx_Subst_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Subst_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Subst_0414/processing.rtf b/general/datasets/GTEx_Subst_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Subst_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Subst_0414/summary.rtf b/general/datasets/GTEx_Subst_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Subst_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Subst_0414/tissue.rtf b/general/datasets/GTEx_Subst_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Subst_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Testi_0414/cases.rtf b/general/datasets/GTEx_Testi_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Testi_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Testi_0414/experiment-design.rtf b/general/datasets/GTEx_Testi_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Testi_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Testi_0414/platform.rtf b/general/datasets/GTEx_Testi_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Testi_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Testi_0414/processing.rtf b/general/datasets/GTEx_Testi_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Testi_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Testi_0414/summary.rtf b/general/datasets/GTEx_Testi_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Testi_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Testi_0414/tissue.rtf b/general/datasets/GTEx_Testi_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Testi_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Thyro_0414/cases.rtf b/general/datasets/GTEx_Thyro_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Thyro_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Thyro_0414/experiment-design.rtf b/general/datasets/GTEx_Thyro_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Thyro_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Thyro_0414/platform.rtf b/general/datasets/GTEx_Thyro_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Thyro_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Thyro_0414/processing.rtf b/general/datasets/GTEx_Thyro_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Thyro_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Thyro_0414/summary.rtf b/general/datasets/GTEx_Thyro_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Thyro_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Thyro_0414/tissue.rtf b/general/datasets/GTEx_Thyro_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Thyro_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Tibia_0414/cases.rtf b/general/datasets/GTEx_Tibia_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Tibia_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Tibia_0414/experiment-design.rtf b/general/datasets/GTEx_Tibia_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Tibia_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Tibia_0414/platform.rtf b/general/datasets/GTEx_Tibia_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Tibia_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Tibia_0414/processing.rtf b/general/datasets/GTEx_Tibia_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Tibia_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Tibia_0414/summary.rtf b/general/datasets/GTEx_Tibia_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Tibia_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Tibia_0414/tissue.rtf b/general/datasets/GTEx_Tibia_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Tibia_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Uteru_0414/cases.rtf b/general/datasets/GTEx_Uteru_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Uteru_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Uteru_0414/experiment-design.rtf b/general/datasets/GTEx_Uteru_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Uteru_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Uteru_0414/platform.rtf b/general/datasets/GTEx_Uteru_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Uteru_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Uteru_0414/processing.rtf b/general/datasets/GTEx_Uteru_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Uteru_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Uteru_0414/summary.rtf b/general/datasets/GTEx_Uteru_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Uteru_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Uteru_0414/tissue.rtf b/general/datasets/GTEx_Uteru_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Uteru_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Vagin_0414/cases.rtf b/general/datasets/GTEx_Vagin_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Vagin_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Vagin_0414/experiment-design.rtf b/general/datasets/GTEx_Vagin_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Vagin_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Vagin_0414/platform.rtf b/general/datasets/GTEx_Vagin_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Vagin_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Vagin_0414/processing.rtf b/general/datasets/GTEx_Vagin_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Vagin_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Vagin_0414/summary.rtf b/general/datasets/GTEx_Vagin_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Vagin_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Vagin_0414/tissue.rtf b/general/datasets/GTEx_Vagin_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Vagin_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Visce_0414/cases.rtf b/general/datasets/GTEx_Visce_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Visce_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Visce_0414/experiment-design.rtf b/general/datasets/GTEx_Visce_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Visce_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Visce_0414/platform.rtf b/general/datasets/GTEx_Visce_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Visce_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Visce_0414/processing.rtf b/general/datasets/GTEx_Visce_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Visce_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Visce_0414/summary.rtf b/general/datasets/GTEx_Visce_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Visce_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Visce_0414/tissue.rtf b/general/datasets/GTEx_Visce_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Visce_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_Whole_0414/cases.rtf b/general/datasets/GTEx_Whole_0414/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_Whole_0414/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_Whole_0414/experiment-design.rtf b/general/datasets/GTEx_Whole_0414/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_Whole_0414/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_Whole_0414/platform.rtf b/general/datasets/GTEx_Whole_0414/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_Whole_0414/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_Whole_0414/processing.rtf b/general/datasets/GTEx_Whole_0414/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_Whole_0414/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_Whole_0414/summary.rtf b/general/datasets/GTEx_Whole_0414/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_Whole_0414/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_Whole_0414/tissue.rtf b/general/datasets/GTEx_Whole_0414/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_Whole_0414/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_AMY_0314/cases.rtf b/general/datasets/GTEx_log2_AMY_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_AMY_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_AMY_0314/experiment-design.rtf b/general/datasets/GTEx_log2_AMY_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_AMY_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_AMY_0314/platform.rtf b/general/datasets/GTEx_log2_AMY_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_AMY_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_AMY_0314/processing.rtf b/general/datasets/GTEx_log2_AMY_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_AMY_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_AMY_0314/summary.rtf b/general/datasets/GTEx_log2_AMY_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_AMY_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_AMY_0314/tissue.rtf b/general/datasets/GTEx_log2_AMY_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_AMY_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Adren_0314/cases.rtf b/general/datasets/GTEx_log2_Adren_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Adren_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Adren_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Adren_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Adren_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Adren_0314/platform.rtf b/general/datasets/GTEx_log2_Adren_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Adren_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Adren_0314/processing.rtf b/general/datasets/GTEx_log2_Adren_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Adren_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Adren_0314/summary.rtf b/general/datasets/GTEx_log2_Adren_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Adren_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Adren_0314/tissue.rtf b/general/datasets/GTEx_log2_Adren_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Adren_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Anter_0314/cases.rtf b/general/datasets/GTEx_log2_Anter_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Anter_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Anter_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Anter_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Anter_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Anter_0314/platform.rtf b/general/datasets/GTEx_log2_Anter_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Anter_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Anter_0314/processing.rtf b/general/datasets/GTEx_log2_Anter_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Anter_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Anter_0314/summary.rtf b/general/datasets/GTEx_log2_Anter_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Anter_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Anter_0314/tissue.rtf b/general/datasets/GTEx_log2_Anter_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Anter_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Aorta_0314/cases.rtf b/general/datasets/GTEx_log2_Aorta_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Aorta_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Aorta_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Aorta_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Aorta_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Aorta_0314/platform.rtf b/general/datasets/GTEx_log2_Aorta_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Aorta_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Aorta_0314/processing.rtf b/general/datasets/GTEx_log2_Aorta_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Aorta_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Aorta_0314/summary.rtf b/general/datasets/GTEx_log2_Aorta_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Aorta_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Aorta_0314/tissue.rtf b/general/datasets/GTEx_log2_Aorta_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Aorta_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Blood_0314/cases.rtf b/general/datasets/GTEx_log2_Blood_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Blood_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Blood_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Blood_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Blood_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Blood_0314/platform.rtf b/general/datasets/GTEx_log2_Blood_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Blood_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Blood_0314/processing.rtf b/general/datasets/GTEx_log2_Blood_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Blood_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Blood_0314/summary.rtf b/general/datasets/GTEx_log2_Blood_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Blood_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Blood_0314/tissue.rtf b/general/datasets/GTEx_log2_Blood_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Blood_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Breas_0314/cases.rtf b/general/datasets/GTEx_log2_Breas_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Breas_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Breas_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Breas_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Breas_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Breas_0314/platform.rtf b/general/datasets/GTEx_log2_Breas_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Breas_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Breas_0314/processing.rtf b/general/datasets/GTEx_log2_Breas_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Breas_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Breas_0314/summary.rtf b/general/datasets/GTEx_log2_Breas_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Breas_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Breas_0314/tissue.rtf b/general/datasets/GTEx_log2_Breas_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Breas_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_CER_0314/cases.rtf b/general/datasets/GTEx_log2_CER_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_CER_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_CER_0314/experiment-design.rtf b/general/datasets/GTEx_log2_CER_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_CER_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_CER_0314/platform.rtf b/general/datasets/GTEx_log2_CER_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_CER_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_CER_0314/processing.rtf b/general/datasets/GTEx_log2_CER_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_CER_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_CER_0314/summary.rtf b/general/datasets/GTEx_log2_CER_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_CER_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_CER_0314/tissue.rtf b/general/datasets/GTEx_log2_CER_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_CER_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Cauda_0314/cases.rtf b/general/datasets/GTEx_log2_Cauda_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Cauda_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Cauda_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Cauda_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Cauda_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Cauda_0314/platform.rtf b/general/datasets/GTEx_log2_Cauda_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Cauda_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Cauda_0314/processing.rtf b/general/datasets/GTEx_log2_Cauda_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Cauda_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Cauda_0314/summary.rtf b/general/datasets/GTEx_log2_Cauda_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Cauda_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Cauda_0314/tissue.rtf b/general/datasets/GTEx_log2_Cauda_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Cauda_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_CellsEBV_0314/cases.rtf b/general/datasets/GTEx_log2_CellsEBV_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_CellsEBV_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_CellsEBV_0314/experiment-design.rtf b/general/datasets/GTEx_log2_CellsEBV_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_CellsEBV_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_CellsEBV_0314/platform.rtf b/general/datasets/GTEx_log2_CellsEBV_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_CellsEBV_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_CellsEBV_0314/processing.rtf b/general/datasets/GTEx_log2_CellsEBV_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_CellsEBV_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_CellsEBV_0314/summary.rtf b/general/datasets/GTEx_log2_CellsEBV_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_CellsEBV_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_CellsEBV_0314/tissue.rtf b/general/datasets/GTEx_log2_CellsEBV_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_CellsEBV_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_CellsLe_0314/cases.rtf b/general/datasets/GTEx_log2_CellsLe_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_CellsLe_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_CellsLe_0314/experiment-design.rtf b/general/datasets/GTEx_log2_CellsLe_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_CellsLe_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_CellsLe_0314/platform.rtf b/general/datasets/GTEx_log2_CellsLe_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_CellsLe_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_CellsLe_0314/processing.rtf b/general/datasets/GTEx_log2_CellsLe_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_CellsLe_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_CellsLe_0314/summary.rtf b/general/datasets/GTEx_log2_CellsLe_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_CellsLe_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_CellsLe_0314/tissue.rtf b/general/datasets/GTEx_log2_CellsLe_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_CellsLe_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_CellsTr_0314/cases.rtf b/general/datasets/GTEx_log2_CellsTr_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_CellsTr_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_CellsTr_0314/experiment-design.rtf b/general/datasets/GTEx_log2_CellsTr_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_CellsTr_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_CellsTr_0314/platform.rtf b/general/datasets/GTEx_log2_CellsTr_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_CellsTr_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_CellsTr_0314/processing.rtf b/general/datasets/GTEx_log2_CellsTr_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_CellsTr_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_CellsTr_0314/summary.rtf b/general/datasets/GTEx_log2_CellsTr_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_CellsTr_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_CellsTr_0314/tissue.rtf b/general/datasets/GTEx_log2_CellsTr_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_CellsTr_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_CerebC_0314/cases.rtf b/general/datasets/GTEx_log2_CerebC_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_CerebC_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_CerebC_0314/experiment-design.rtf b/general/datasets/GTEx_log2_CerebC_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_CerebC_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_CerebC_0314/platform.rtf b/general/datasets/GTEx_log2_CerebC_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_CerebC_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_CerebC_0314/processing.rtf b/general/datasets/GTEx_log2_CerebC_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_CerebC_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_CerebC_0314/summary.rtf b/general/datasets/GTEx_log2_CerebC_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_CerebC_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_CerebC_0314/tissue.rtf b/general/datasets/GTEx_log2_CerebC_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_CerebC_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_CerebH_0314/cases.rtf b/general/datasets/GTEx_log2_CerebH_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_CerebH_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_CerebH_0314/experiment-design.rtf b/general/datasets/GTEx_log2_CerebH_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_CerebH_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_CerebH_0314/platform.rtf b/general/datasets/GTEx_log2_CerebH_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_CerebH_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_CerebH_0314/processing.rtf b/general/datasets/GTEx_log2_CerebH_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_CerebH_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_CerebH_0314/summary.rtf b/general/datasets/GTEx_log2_CerebH_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_CerebH_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_CerebH_0314/tissue.rtf b/general/datasets/GTEx_log2_CerebH_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_CerebH_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Colon_0314/cases.rtf b/general/datasets/GTEx_log2_Colon_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Colon_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Colon_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Colon_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Colon_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Colon_0314/platform.rtf b/general/datasets/GTEx_log2_Colon_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Colon_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Colon_0314/processing.rtf b/general/datasets/GTEx_log2_Colon_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Colon_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Colon_0314/summary.rtf b/general/datasets/GTEx_log2_Colon_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Colon_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Colon_0314/tissue.rtf b/general/datasets/GTEx_log2_Colon_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Colon_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Coron_0314/cases.rtf b/general/datasets/GTEx_log2_Coron_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Coron_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Coron_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Coron_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Coron_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Coron_0314/platform.rtf b/general/datasets/GTEx_log2_Coron_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Coron_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Coron_0314/processing.rtf b/general/datasets/GTEx_log2_Coron_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Coron_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Coron_0314/summary.rtf b/general/datasets/GTEx_log2_Coron_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Coron_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Coron_0314/tissue.rtf b/general/datasets/GTEx_log2_Coron_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Coron_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_EsophMuc_0314/cases.rtf b/general/datasets/GTEx_log2_EsophMuc_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_EsophMuc_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_EsophMuc_0314/experiment-design.rtf b/general/datasets/GTEx_log2_EsophMuc_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_EsophMuc_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_EsophMuc_0314/platform.rtf b/general/datasets/GTEx_log2_EsophMuc_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_EsophMuc_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_EsophMuc_0314/processing.rtf b/general/datasets/GTEx_log2_EsophMuc_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_EsophMuc_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_EsophMuc_0314/summary.rtf b/general/datasets/GTEx_log2_EsophMuc_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_EsophMuc_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_EsophMuc_0314/tissue.rtf b/general/datasets/GTEx_log2_EsophMuc_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_EsophMuc_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_EsophMus_0314/cases.rtf b/general/datasets/GTEx_log2_EsophMus_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_EsophMus_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_EsophMus_0314/experiment-design.rtf b/general/datasets/GTEx_log2_EsophMus_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_EsophMus_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_EsophMus_0314/platform.rtf b/general/datasets/GTEx_log2_EsophMus_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_EsophMus_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_EsophMus_0314/processing.rtf b/general/datasets/GTEx_log2_EsophMus_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_EsophMus_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_EsophMus_0314/summary.rtf b/general/datasets/GTEx_log2_EsophMus_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_EsophMus_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_EsophMus_0314/tissue.rtf b/general/datasets/GTEx_log2_EsophMus_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_EsophMus_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Fallo_0314/cases.rtf b/general/datasets/GTEx_log2_Fallo_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Fallo_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Fallo_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Fallo_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Fallo_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Fallo_0314/platform.rtf b/general/datasets/GTEx_log2_Fallo_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Fallo_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Fallo_0314/processing.rtf b/general/datasets/GTEx_log2_Fallo_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Fallo_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Fallo_0314/summary.rtf b/general/datasets/GTEx_log2_Fallo_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Fallo_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Fallo_0314/tissue.rtf b/general/datasets/GTEx_log2_Fallo_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Fallo_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Front_0314/cases.rtf b/general/datasets/GTEx_log2_Front_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Front_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Front_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Front_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Front_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Front_0314/platform.rtf b/general/datasets/GTEx_log2_Front_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Front_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Front_0314/processing.rtf b/general/datasets/GTEx_log2_Front_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Front_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Front_0314/summary.rtf b/general/datasets/GTEx_log2_Front_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Front_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Front_0314/tissue.rtf b/general/datasets/GTEx_log2_Front_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Front_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_HIP_0314/cases.rtf b/general/datasets/GTEx_log2_HIP_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_HIP_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_HIP_0314/experiment-design.rtf b/general/datasets/GTEx_log2_HIP_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_HIP_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_HIP_0314/platform.rtf b/general/datasets/GTEx_log2_HIP_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_HIP_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_HIP_0314/processing.rtf b/general/datasets/GTEx_log2_HIP_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_HIP_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_HIP_0314/summary.rtf b/general/datasets/GTEx_log2_HIP_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_HIP_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_HIP_0314/tissue.rtf b/general/datasets/GTEx_log2_HIP_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_HIP_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_HeartAt_0314/cases.rtf b/general/datasets/GTEx_log2_HeartAt_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_HeartAt_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_HeartAt_0314/experiment-design.rtf b/general/datasets/GTEx_log2_HeartAt_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_HeartAt_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_HeartAt_0314/platform.rtf b/general/datasets/GTEx_log2_HeartAt_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_HeartAt_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_HeartAt_0314/processing.rtf b/general/datasets/GTEx_log2_HeartAt_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_HeartAt_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_HeartAt_0314/summary.rtf b/general/datasets/GTEx_log2_HeartAt_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_HeartAt_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_HeartAt_0314/tissue.rtf b/general/datasets/GTEx_log2_HeartAt_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_HeartAt_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_HeartLV_0314/cases.rtf b/general/datasets/GTEx_log2_HeartLV_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_HeartLV_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_HeartLV_0314/experiment-design.rtf b/general/datasets/GTEx_log2_HeartLV_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_HeartLV_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_HeartLV_0314/platform.rtf b/general/datasets/GTEx_log2_HeartLV_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_HeartLV_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_HeartLV_0314/processing.rtf b/general/datasets/GTEx_log2_HeartLV_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_HeartLV_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_HeartLV_0314/summary.rtf b/general/datasets/GTEx_log2_HeartLV_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_HeartLV_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_HeartLV_0314/tissue.rtf b/general/datasets/GTEx_log2_HeartLV_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_HeartLV_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Hypot_0314/cases.rtf b/general/datasets/GTEx_log2_Hypot_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Hypot_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Hypot_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Hypot_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Hypot_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Hypot_0314/platform.rtf b/general/datasets/GTEx_log2_Hypot_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Hypot_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Hypot_0314/processing.rtf b/general/datasets/GTEx_log2_Hypot_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Hypot_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Hypot_0314/summary.rtf b/general/datasets/GTEx_log2_Hypot_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Hypot_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Hypot_0314/tissue.rtf b/general/datasets/GTEx_log2_Hypot_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Hypot_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Kidne_0314/cases.rtf b/general/datasets/GTEx_log2_Kidne_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Kidne_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Kidne_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Kidne_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Kidne_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Kidne_0314/platform.rtf b/general/datasets/GTEx_log2_Kidne_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Kidne_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Kidne_0314/processing.rtf b/general/datasets/GTEx_log2_Kidne_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Kidne_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Kidne_0314/summary.rtf b/general/datasets/GTEx_log2_Kidne_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Kidne_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Kidne_0314/tissue.rtf b/general/datasets/GTEx_log2_Kidne_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Kidne_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Liver_0314/cases.rtf b/general/datasets/GTEx_log2_Liver_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Liver_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Liver_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Liver_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Liver_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Liver_0314/platform.rtf b/general/datasets/GTEx_log2_Liver_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Liver_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Liver_0314/processing.rtf b/general/datasets/GTEx_log2_Liver_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Liver_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Liver_0314/summary.rtf b/general/datasets/GTEx_log2_Liver_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Liver_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Liver_0314/tissue.rtf b/general/datasets/GTEx_log2_Liver_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Liver_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Lung_0314/cases.rtf b/general/datasets/GTEx_log2_Lung_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Lung_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Lung_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Lung_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Lung_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Lung_0314/platform.rtf b/general/datasets/GTEx_log2_Lung_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Lung_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Lung_0314/processing.rtf b/general/datasets/GTEx_log2_Lung_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Lung_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Lung_0314/summary.rtf b/general/datasets/GTEx_log2_Lung_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Lung_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Lung_0314/tissue.rtf b/general/datasets/GTEx_log2_Lung_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Lung_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Muscle_0314/cases.rtf b/general/datasets/GTEx_log2_Muscle_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Muscle_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Muscle_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Muscle_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Muscle_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Muscle_0314/platform.rtf b/general/datasets/GTEx_log2_Muscle_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Muscle_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Muscle_0314/processing.rtf b/general/datasets/GTEx_log2_Muscle_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Muscle_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Muscle_0314/summary.rtf b/general/datasets/GTEx_log2_Muscle_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Muscle_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Muscle_0314/tissue.rtf b/general/datasets/GTEx_log2_Muscle_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Muscle_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Nerve_0314/cases.rtf b/general/datasets/GTEx_log2_Nerve_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Nerve_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Nerve_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Nerve_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Nerve_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Nerve_0314/platform.rtf b/general/datasets/GTEx_log2_Nerve_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Nerve_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Nerve_0314/processing.rtf b/general/datasets/GTEx_log2_Nerve_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Nerve_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Nerve_0314/summary.rtf b/general/datasets/GTEx_log2_Nerve_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Nerve_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Nerve_0314/tissue.rtf b/general/datasets/GTEx_log2_Nerve_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Nerve_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Nucle_0314/cases.rtf b/general/datasets/GTEx_log2_Nucle_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Nucle_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Nucle_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Nucle_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Nucle_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Nucle_0314/platform.rtf b/general/datasets/GTEx_log2_Nucle_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Nucle_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Nucle_0314/processing.rtf b/general/datasets/GTEx_log2_Nucle_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Nucle_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Nucle_0314/summary.rtf b/general/datasets/GTEx_log2_Nucle_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Nucle_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Nucle_0314/tissue.rtf b/general/datasets/GTEx_log2_Nucle_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Nucle_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Ovary_0314/cases.rtf b/general/datasets/GTEx_log2_Ovary_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Ovary_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Ovary_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Ovary_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Ovary_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Ovary_0314/platform.rtf b/general/datasets/GTEx_log2_Ovary_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Ovary_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Ovary_0314/processing.rtf b/general/datasets/GTEx_log2_Ovary_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Ovary_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Ovary_0314/summary.rtf b/general/datasets/GTEx_log2_Ovary_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Ovary_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Ovary_0314/tissue.rtf b/general/datasets/GTEx_log2_Ovary_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Ovary_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Pancr_0314/cases.rtf b/general/datasets/GTEx_log2_Pancr_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Pancr_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Pancr_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Pancr_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Pancr_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Pancr_0314/platform.rtf b/general/datasets/GTEx_log2_Pancr_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Pancr_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Pancr_0314/processing.rtf b/general/datasets/GTEx_log2_Pancr_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Pancr_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Pancr_0314/summary.rtf b/general/datasets/GTEx_log2_Pancr_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Pancr_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Pancr_0314/tissue.rtf b/general/datasets/GTEx_log2_Pancr_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Pancr_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Pitui_0314/cases.rtf b/general/datasets/GTEx_log2_Pitui_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Pitui_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Pitui_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Pitui_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Pitui_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Pitui_0314/platform.rtf b/general/datasets/GTEx_log2_Pitui_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Pitui_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Pitui_0314/processing.rtf b/general/datasets/GTEx_log2_Pitui_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Pitui_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Pitui_0314/summary.rtf b/general/datasets/GTEx_log2_Pitui_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Pitui_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Pitui_0314/tissue.rtf b/general/datasets/GTEx_log2_Pitui_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Pitui_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Prost_0314/cases.rtf b/general/datasets/GTEx_log2_Prost_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Prost_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Prost_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Prost_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Prost_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Prost_0314/platform.rtf b/general/datasets/GTEx_log2_Prost_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Prost_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Prost_0314/processing.rtf b/general/datasets/GTEx_log2_Prost_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Prost_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Prost_0314/summary.rtf b/general/datasets/GTEx_log2_Prost_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Prost_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Prost_0314/tissue.rtf b/general/datasets/GTEx_log2_Prost_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Prost_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Putam_0314/cases.rtf b/general/datasets/GTEx_log2_Putam_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Putam_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Putam_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Putam_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Putam_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Putam_0314/platform.rtf b/general/datasets/GTEx_log2_Putam_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Putam_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Putam_0314/processing.rtf b/general/datasets/GTEx_log2_Putam_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Putam_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Putam_0314/summary.rtf b/general/datasets/GTEx_log2_Putam_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Putam_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Putam_0314/tissue.rtf b/general/datasets/GTEx_log2_Putam_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Putam_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_SkinE_0314/cases.rtf b/general/datasets/GTEx_log2_SkinE_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_SkinE_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_SkinE_0314/experiment-design.rtf b/general/datasets/GTEx_log2_SkinE_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_SkinE_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_SkinE_0314/platform.rtf b/general/datasets/GTEx_log2_SkinE_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_SkinE_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_SkinE_0314/processing.rtf b/general/datasets/GTEx_log2_SkinE_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_SkinE_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_SkinE_0314/summary.rtf b/general/datasets/GTEx_log2_SkinE_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_SkinE_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_SkinE_0314/tissue.rtf b/general/datasets/GTEx_log2_SkinE_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_SkinE_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_SkinN_0314/cases.rtf b/general/datasets/GTEx_log2_SkinN_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_SkinN_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_SkinN_0314/experiment-design.rtf b/general/datasets/GTEx_log2_SkinN_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_SkinN_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_SkinN_0314/platform.rtf b/general/datasets/GTEx_log2_SkinN_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_SkinN_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_SkinN_0314/processing.rtf b/general/datasets/GTEx_log2_SkinN_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_SkinN_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_SkinN_0314/summary.rtf b/general/datasets/GTEx_log2_SkinN_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_SkinN_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_SkinN_0314/tissue.rtf b/general/datasets/GTEx_log2_SkinN_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_SkinN_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Spina_0314/cases.rtf b/general/datasets/GTEx_log2_Spina_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Spina_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Spina_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Spina_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Spina_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Spina_0314/platform.rtf b/general/datasets/GTEx_log2_Spina_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Spina_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Spina_0314/processing.rtf b/general/datasets/GTEx_log2_Spina_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Spina_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Spina_0314/summary.rtf b/general/datasets/GTEx_log2_Spina_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Spina_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Spina_0314/tissue.rtf b/general/datasets/GTEx_log2_Spina_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Spina_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Stoma_0314/cases.rtf b/general/datasets/GTEx_log2_Stoma_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Stoma_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Stoma_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Stoma_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Stoma_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Stoma_0314/platform.rtf b/general/datasets/GTEx_log2_Stoma_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Stoma_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Stoma_0314/processing.rtf b/general/datasets/GTEx_log2_Stoma_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Stoma_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Stoma_0314/summary.rtf b/general/datasets/GTEx_log2_Stoma_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Stoma_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Stoma_0314/tissue.rtf b/general/datasets/GTEx_log2_Stoma_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Stoma_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Subcu_0314/cases.rtf b/general/datasets/GTEx_log2_Subcu_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Subcu_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Subcu_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Subcu_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Subcu_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Subcu_0314/platform.rtf b/general/datasets/GTEx_log2_Subcu_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Subcu_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Subcu_0314/processing.rtf b/general/datasets/GTEx_log2_Subcu_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Subcu_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Subcu_0314/summary.rtf b/general/datasets/GTEx_log2_Subcu_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Subcu_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Subcu_0314/tissue.rtf b/general/datasets/GTEx_log2_Subcu_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Subcu_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Subst_0314/cases.rtf b/general/datasets/GTEx_log2_Subst_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Subst_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Subst_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Subst_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Subst_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Subst_0314/platform.rtf b/general/datasets/GTEx_log2_Subst_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Subst_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Subst_0314/processing.rtf b/general/datasets/GTEx_log2_Subst_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Subst_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Subst_0314/summary.rtf b/general/datasets/GTEx_log2_Subst_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Subst_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Subst_0314/tissue.rtf b/general/datasets/GTEx_log2_Subst_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Subst_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Testi_0314/cases.rtf b/general/datasets/GTEx_log2_Testi_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Testi_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Testi_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Testi_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Testi_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Testi_0314/platform.rtf b/general/datasets/GTEx_log2_Testi_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Testi_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Testi_0314/processing.rtf b/general/datasets/GTEx_log2_Testi_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Testi_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Testi_0314/summary.rtf b/general/datasets/GTEx_log2_Testi_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Testi_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Testi_0314/tissue.rtf b/general/datasets/GTEx_log2_Testi_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Testi_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Thyro_0314/cases.rtf b/general/datasets/GTEx_log2_Thyro_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Thyro_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Thyro_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Thyro_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Thyro_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Thyro_0314/platform.rtf b/general/datasets/GTEx_log2_Thyro_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Thyro_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Thyro_0314/processing.rtf b/general/datasets/GTEx_log2_Thyro_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Thyro_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Thyro_0314/summary.rtf b/general/datasets/GTEx_log2_Thyro_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Thyro_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Thyro_0314/tissue.rtf b/general/datasets/GTEx_log2_Thyro_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Thyro_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Tibial_0314/cases.rtf b/general/datasets/GTEx_log2_Tibial_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Tibial_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Tibial_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Tibial_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Tibial_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Tibial_0314/platform.rtf b/general/datasets/GTEx_log2_Tibial_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Tibial_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Tibial_0314/processing.rtf b/general/datasets/GTEx_log2_Tibial_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Tibial_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Tibial_0314/summary.rtf b/general/datasets/GTEx_log2_Tibial_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Tibial_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Tibial_0314/tissue.rtf b/general/datasets/GTEx_log2_Tibial_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Tibial_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Uterus_0314/cases.rtf b/general/datasets/GTEx_log2_Uterus_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Uterus_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Uterus_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Uterus_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Uterus_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Uterus_0314/platform.rtf b/general/datasets/GTEx_log2_Uterus_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Uterus_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Uterus_0314/processing.rtf b/general/datasets/GTEx_log2_Uterus_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Uterus_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Uterus_0314/summary.rtf b/general/datasets/GTEx_log2_Uterus_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Uterus_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Uterus_0314/tissue.rtf b/general/datasets/GTEx_log2_Uterus_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Uterus_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Vagin_0314/cases.rtf b/general/datasets/GTEx_log2_Vagin_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Vagin_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Vagin_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Vagin_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Vagin_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Vagin_0314/platform.rtf b/general/datasets/GTEx_log2_Vagin_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Vagin_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Vagin_0314/processing.rtf b/general/datasets/GTEx_log2_Vagin_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Vagin_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Vagin_0314/summary.rtf b/general/datasets/GTEx_log2_Vagin_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Vagin_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Vagin_0314/tissue.rtf b/general/datasets/GTEx_log2_Vagin_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Vagin_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_Visce_0314/cases.rtf b/general/datasets/GTEx_log2_Visce_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_Visce_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_Visce_0314/experiment-design.rtf b/general/datasets/GTEx_log2_Visce_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_Visce_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_Visce_0314/platform.rtf b/general/datasets/GTEx_log2_Visce_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_Visce_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_Visce_0314/processing.rtf b/general/datasets/GTEx_log2_Visce_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_Visce_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_Visce_0314/summary.rtf b/general/datasets/GTEx_log2_Visce_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_Visce_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_Visce_0314/tissue.rtf b/general/datasets/GTEx_log2_Visce_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_Visce_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GTEx_log2_WholeB_0314/cases.rtf b/general/datasets/GTEx_log2_WholeB_0314/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GTEx_log2_WholeB_0314/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GTEx_log2_WholeB_0314/experiment-design.rtf b/general/datasets/GTEx_log2_WholeB_0314/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GTEx_log2_WholeB_0314/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GTEx_log2_WholeB_0314/platform.rtf b/general/datasets/GTEx_log2_WholeB_0314/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GTEx_log2_WholeB_0314/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GTEx_log2_WholeB_0314/processing.rtf b/general/datasets/GTEx_log2_WholeB_0314/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GTEx_log2_WholeB_0314/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GTEx_log2_WholeB_0314/summary.rtf b/general/datasets/GTEx_log2_WholeB_0314/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GTEx_log2_WholeB_0314/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GTEx_log2_WholeB_0314/tissue.rtf b/general/datasets/GTEx_log2_WholeB_0314/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GTEx_log2_WholeB_0314/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/Gcb_m2_0505_m/acknowledgment.rtf b/general/datasets/Gcb_m2_0505_m/acknowledgment.rtf new file mode 100644 index 0000000..9ff420d --- /dev/null +++ b/general/datasets/Gcb_m2_0505_m/acknowledgment.rtf @@ -0,0 +1 @@ +
Data were generated with funds to Genome Explorations, Inc., for the NIAAA as part of an SBIR grant to Dr. Divyen Patel. Mouse colony resources and integration of data into GeneNetwork was carried out by Drs. RW Williams and Lu Lu at UTHSC.
diff --git a/general/datasets/Gcb_m2_0505_m/cases.rtf b/general/datasets/Gcb_m2_0505_m/cases.rtf new file mode 100644 index 0000000..a843e87 --- /dev/null +++ b/general/datasets/Gcb_m2_0505_m/cases.rtf @@ -0,0 +1,3 @@ +

We use a set of BXD recombinant inbred strains and standard inbred strains. The BXD lines are derived crossed between C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D parental strains have been almost fully sequenced (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera Discovery Systems) and data for 1.75 millioin B vs D SNPs are incorporated into WebQTL's genetic maps for the BXDs. BXD2 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were also produced by Taylor, but they were generated in the 1990s. These strains are all available from The Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004).

+ +

Most BXD animals were generated in-house at the University of Tennessee Health Science Center by Lu Lu and Robert Williams using stock obtained from The Jackson Laboratory between 1999 and 2004. All BXD strains with numbers above 42 are new advanced intecross type BXDs (Peirce et al. 2004) that are current available from UTHSC. Additional cases were provided by Glenn Rosen, John Mountz, and Hui-Chen Hsu. These cases were bred either at The Jackson Laboratory (GR) or at the University of Alabama (JM and HCH).

diff --git a/general/datasets/Gcb_m2_0505_m/notes.rtf b/general/datasets/Gcb_m2_0505_m/notes.rtf new file mode 100644 index 0000000..67339ea --- /dev/null +++ b/general/datasets/Gcb_m2_0505_m/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW and YHQ, March 21, 2005. Updated by RWW, March 23, 2005; RWW April 8.

diff --git a/general/datasets/Gcb_m2_0505_m/platform.rtf b/general/datasets/Gcb_m2_0505_m/platform.rtf new file mode 100644 index 0000000..fdbfe32 --- /dev/null +++ b/general/datasets/Gcb_m2_0505_m/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Genome 430 2.0: The 430 2.0 array consist of approximately 992936 25-nucleotide probes that collectively estimate the expression of approximately 39,000 transcripts. The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequences as the 430A and 430B series. However, we have found that roughy 75000 probes differ from those on A and B arrays and those on the 430 2.0

diff --git a/general/datasets/Gcb_m2_0505_m/processing.rtf b/general/datasets/Gcb_m2_0505_m/processing.rtf new file mode 100644 index 0000000..6c56850 --- /dev/null +++ b/general/datasets/Gcb_m2_0505_m/processing.rtf @@ -0,0 +1,15 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). Probe set data were generated from the fully normalized CEL files (quantile and batch corrected) using the standard MAS 5 Tukey biweight procedure. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
+ +

About the chromosome and megabase position values:

+ +
The chromosomal locations of probe sets included on the microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium March 2005 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
diff --git a/general/datasets/Gcb_m2_0505_m/summary.rtf b/general/datasets/Gcb_m2_0505_m/summary.rtf new file mode 100644 index 0000000..ac3d506 --- /dev/null +++ b/general/datasets/Gcb_m2_0505_m/summary.rtf @@ -0,0 +1,3 @@ +
+

NOT RECOMMENDED: This May 2005 data freeze provides estimates of mRNA expression in adult cerebellum of 40 lines of mice including 28 BXD recombinant inbred strains, C57BL/6J, DBA/2J, and 10 other common inbred strains of mice. Data were generated by Genome Explorations Inc. (Divyen Patel and colleagues). Cerebellar samples were hybridized in small pools (n = 3) to Affymetrix M430 2.0 arrays. This particular data set was processed using the Microarray Suite 5

+
diff --git a/general/datasets/Gcb_m2_0505_m/tissue.rtf b/general/datasets/Gcb_m2_0505_m/tissue.rtf new file mode 100644 index 0000000..af10195 --- /dev/null +++ b/general/datasets/Gcb_m2_0505_m/tissue.rtf @@ -0,0 +1,13 @@ +

The May 2005 data set consists of a total of 61 array (Affymetrix 430 2.0 arrays) from 40 different genotypes. Each sample consists of whole cerebellum taken from three adult animals of the same age and sex. The M430 2.0 arrays were processed in several batches.

+ +

Replication and Sample Balance: We obtained data independent biological sample pools from both sexes for half of the strain, including most of the standard inbred strains (129S1/SvImJ is the exception and is represented by two female-only arrays). Most BXD strains are represented by single pooled samples. You can determine the sex of a sample from the table below or by reviewing the expression of the Ddx3y and Xist RNA signal.

+ +

 

+ +

+ +

Legend: Sex balance of the GE-NIAAA data set can be easily evaluated by analysis of this scatterplot of Ddx3y and Xist. Ddx3y (also called Dby) is a transcript with high expression in males whereas Xist is a transcript with high expression in females. Strains that fall in the upper left quadrant are represented only by a single female sample (except in the case of the 129S1/SvImJ data) whereas strains that fall in the lower right quadrant are represented only a a single male sample.

+ +

RNA was extracted at Genome Explorations.

+ +

All samples were subsequently processed at the Genome Explorations Inc. by Divyen Patel and colleagues.

diff --git a/general/datasets/Gcb_m2_0505_p/acknowledgment.rtf b/general/datasets/Gcb_m2_0505_p/acknowledgment.rtf new file mode 100644 index 0000000..9ff420d --- /dev/null +++ b/general/datasets/Gcb_m2_0505_p/acknowledgment.rtf @@ -0,0 +1 @@ +
Data were generated with funds to Genome Explorations, Inc., for the NIAAA as part of an SBIR grant to Dr. Divyen Patel. Mouse colony resources and integration of data into GeneNetwork was carried out by Drs. RW Williams and Lu Lu at UTHSC.
diff --git a/general/datasets/Gcb_m2_0505_p/cases.rtf b/general/datasets/Gcb_m2_0505_p/cases.rtf new file mode 100644 index 0000000..a843e87 --- /dev/null +++ b/general/datasets/Gcb_m2_0505_p/cases.rtf @@ -0,0 +1,3 @@ +

We use a set of BXD recombinant inbred strains and standard inbred strains. The BXD lines are derived crossed between C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D parental strains have been almost fully sequenced (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera Discovery Systems) and data for 1.75 millioin B vs D SNPs are incorporated into WebQTL's genetic maps for the BXDs. BXD2 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were also produced by Taylor, but they were generated in the 1990s. These strains are all available from The Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004).

+ +

Most BXD animals were generated in-house at the University of Tennessee Health Science Center by Lu Lu and Robert Williams using stock obtained from The Jackson Laboratory between 1999 and 2004. All BXD strains with numbers above 42 are new advanced intecross type BXDs (Peirce et al. 2004) that are current available from UTHSC. Additional cases were provided by Glenn Rosen, John Mountz, and Hui-Chen Hsu. These cases were bred either at The Jackson Laboratory (GR) or at the University of Alabama (JM and HCH).

diff --git a/general/datasets/Gcb_m2_0505_p/notes.rtf b/general/datasets/Gcb_m2_0505_p/notes.rtf new file mode 100644 index 0000000..67339ea --- /dev/null +++ b/general/datasets/Gcb_m2_0505_p/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW and YHQ, March 21, 2005. Updated by RWW, March 23, 2005; RWW April 8.

diff --git a/general/datasets/Gcb_m2_0505_p/platform.rtf b/general/datasets/Gcb_m2_0505_p/platform.rtf new file mode 100644 index 0000000..fdbfe32 --- /dev/null +++ b/general/datasets/Gcb_m2_0505_p/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Genome 430 2.0: The 430 2.0 array consist of approximately 992936 25-nucleotide probes that collectively estimate the expression of approximately 39,000 transcripts. The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequences as the 430A and 430B series. However, we have found that roughy 75000 probes differ from those on A and B arrays and those on the 430 2.0

diff --git a/general/datasets/Gcb_m2_0505_p/processing.rtf b/general/datasets/Gcb_m2_0505_p/processing.rtf new file mode 100644 index 0000000..6c56850 --- /dev/null +++ b/general/datasets/Gcb_m2_0505_p/processing.rtf @@ -0,0 +1,15 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). Probe set data were generated from the fully normalized CEL files (quantile and batch corrected) using the standard MAS 5 Tukey biweight procedure. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
+ +

About the chromosome and megabase position values:

+ +
The chromosomal locations of probe sets included on the microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium March 2005 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
diff --git a/general/datasets/Gcb_m2_0505_p/summary.rtf b/general/datasets/Gcb_m2_0505_p/summary.rtf new file mode 100644 index 0000000..ac3d506 --- /dev/null +++ b/general/datasets/Gcb_m2_0505_p/summary.rtf @@ -0,0 +1,3 @@ +
+

NOT RECOMMENDED: This May 2005 data freeze provides estimates of mRNA expression in adult cerebellum of 40 lines of mice including 28 BXD recombinant inbred strains, C57BL/6J, DBA/2J, and 10 other common inbred strains of mice. Data were generated by Genome Explorations Inc. (Divyen Patel and colleagues). Cerebellar samples were hybridized in small pools (n = 3) to Affymetrix M430 2.0 arrays. This particular data set was processed using the Microarray Suite 5

+
diff --git a/general/datasets/Gcb_m2_0505_p/tissue.rtf b/general/datasets/Gcb_m2_0505_p/tissue.rtf new file mode 100644 index 0000000..af10195 --- /dev/null +++ b/general/datasets/Gcb_m2_0505_p/tissue.rtf @@ -0,0 +1,13 @@ +

The May 2005 data set consists of a total of 61 array (Affymetrix 430 2.0 arrays) from 40 different genotypes. Each sample consists of whole cerebellum taken from three adult animals of the same age and sex. The M430 2.0 arrays were processed in several batches.

+ +

Replication and Sample Balance: We obtained data independent biological sample pools from both sexes for half of the strain, including most of the standard inbred strains (129S1/SvImJ is the exception and is represented by two female-only arrays). Most BXD strains are represented by single pooled samples. You can determine the sex of a sample from the table below or by reviewing the expression of the Ddx3y and Xist RNA signal.

+ +

 

+ +

+ +

Legend: Sex balance of the GE-NIAAA data set can be easily evaluated by analysis of this scatterplot of Ddx3y and Xist. Ddx3y (also called Dby) is a transcript with high expression in males whereas Xist is a transcript with high expression in females. Strains that fall in the upper left quadrant are represented only by a single female sample (except in the case of the 129S1/SvImJ data) whereas strains that fall in the lower right quadrant are represented only a a single male sample.

+ +

RNA was extracted at Genome Explorations.

+ +

All samples were subsequently processed at the Genome Explorations Inc. by Divyen Patel and colleagues.

diff --git a/general/datasets/Gcb_m2_0505_r/acknowledgment.rtf b/general/datasets/Gcb_m2_0505_r/acknowledgment.rtf new file mode 100644 index 0000000..9ff420d --- /dev/null +++ b/general/datasets/Gcb_m2_0505_r/acknowledgment.rtf @@ -0,0 +1 @@ +
Data were generated with funds to Genome Explorations, Inc., for the NIAAA as part of an SBIR grant to Dr. Divyen Patel. Mouse colony resources and integration of data into GeneNetwork was carried out by Drs. RW Williams and Lu Lu at UTHSC.
diff --git a/general/datasets/Gcb_m2_0505_r/cases.rtf b/general/datasets/Gcb_m2_0505_r/cases.rtf new file mode 100644 index 0000000..a843e87 --- /dev/null +++ b/general/datasets/Gcb_m2_0505_r/cases.rtf @@ -0,0 +1,3 @@ +

We use a set of BXD recombinant inbred strains and standard inbred strains. The BXD lines are derived crossed between C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D parental strains have been almost fully sequenced (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera Discovery Systems) and data for 1.75 millioin B vs D SNPs are incorporated into WebQTL's genetic maps for the BXDs. BXD2 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were also produced by Taylor, but they were generated in the 1990s. These strains are all available from The Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004).

+ +

Most BXD animals were generated in-house at the University of Tennessee Health Science Center by Lu Lu and Robert Williams using stock obtained from The Jackson Laboratory between 1999 and 2004. All BXD strains with numbers above 42 are new advanced intecross type BXDs (Peirce et al. 2004) that are current available from UTHSC. Additional cases were provided by Glenn Rosen, John Mountz, and Hui-Chen Hsu. These cases were bred either at The Jackson Laboratory (GR) or at the University of Alabama (JM and HCH).

diff --git a/general/datasets/Gcb_m2_0505_r/notes.rtf b/general/datasets/Gcb_m2_0505_r/notes.rtf new file mode 100644 index 0000000..67339ea --- /dev/null +++ b/general/datasets/Gcb_m2_0505_r/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW and YHQ, March 21, 2005. Updated by RWW, March 23, 2005; RWW April 8.

diff --git a/general/datasets/Gcb_m2_0505_r/platform.rtf b/general/datasets/Gcb_m2_0505_r/platform.rtf new file mode 100644 index 0000000..fdbfe32 --- /dev/null +++ b/general/datasets/Gcb_m2_0505_r/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Genome 430 2.0: The 430 2.0 array consist of approximately 992936 25-nucleotide probes that collectively estimate the expression of approximately 39,000 transcripts. The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequences as the 430A and 430B series. However, we have found that roughy 75000 probes differ from those on A and B arrays and those on the 430 2.0

diff --git a/general/datasets/Gcb_m2_0505_r/processing.rtf b/general/datasets/Gcb_m2_0505_r/processing.rtf new file mode 100644 index 0000000..6c56850 --- /dev/null +++ b/general/datasets/Gcb_m2_0505_r/processing.rtf @@ -0,0 +1,15 @@ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). Probe set data were generated from the fully normalized CEL files (quantile and batch corrected) using the standard MAS 5 Tukey biweight procedure. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
+ +

About the chromosome and megabase position values:

+ +
The chromosomal locations of probe sets included on the microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium March 2005 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
diff --git a/general/datasets/Gcb_m2_0505_r/summary.rtf b/general/datasets/Gcb_m2_0505_r/summary.rtf new file mode 100644 index 0000000..ac3d506 --- /dev/null +++ b/general/datasets/Gcb_m2_0505_r/summary.rtf @@ -0,0 +1,3 @@ +
+

NOT RECOMMENDED: This May 2005 data freeze provides estimates of mRNA expression in adult cerebellum of 40 lines of mice including 28 BXD recombinant inbred strains, C57BL/6J, DBA/2J, and 10 other common inbred strains of mice. Data were generated by Genome Explorations Inc. (Divyen Patel and colleagues). Cerebellar samples were hybridized in small pools (n = 3) to Affymetrix M430 2.0 arrays. This particular data set was processed using the Microarray Suite 5

+
diff --git a/general/datasets/Gcb_m2_0505_r/tissue.rtf b/general/datasets/Gcb_m2_0505_r/tissue.rtf new file mode 100644 index 0000000..af10195 --- /dev/null +++ b/general/datasets/Gcb_m2_0505_r/tissue.rtf @@ -0,0 +1,13 @@ +

The May 2005 data set consists of a total of 61 array (Affymetrix 430 2.0 arrays) from 40 different genotypes. Each sample consists of whole cerebellum taken from three adult animals of the same age and sex. The M430 2.0 arrays were processed in several batches.

+ +

Replication and Sample Balance: We obtained data independent biological sample pools from both sexes for half of the strain, including most of the standard inbred strains (129S1/SvImJ is the exception and is represented by two female-only arrays). Most BXD strains are represented by single pooled samples. You can determine the sex of a sample from the table below or by reviewing the expression of the Ddx3y and Xist RNA signal.

+ +

 

+ +

+ +

Legend: Sex balance of the GE-NIAAA data set can be easily evaluated by analysis of this scatterplot of Ddx3y and Xist. Ddx3y (also called Dby) is a transcript with high expression in males whereas Xist is a transcript with high expression in females. Strains that fall in the upper left quadrant are represented only by a single female sample (except in the case of the 129S1/SvImJ data) whereas strains that fall in the lower right quadrant are represented only a a single male sample.

+ +

RNA was extracted at Genome Explorations.

+ +

All samples were subsequently processed at the Genome Explorations Inc. by Divyen Patel and colleagues.

diff --git a/general/datasets/GenEx_BXD_CerebEt_RMA_0213/summary.rtf b/general/datasets/GenEx_BXD_CerebEt_RMA_0213/summary.rtf deleted file mode 100644 index 335e540..0000000 --- a/general/datasets/GenEx_BXD_CerebEt_RMA_0213/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -Summary of DatasetId 166, Name: GenEx BXD Sal Cerebellum Affy M430 2.0 (Feb13) \ No newline at end of file diff --git a/general/datasets/GenEx_BXD_CerebEt_RMA_M_0213/summary.rtf b/general/datasets/GenEx_BXD_CerebEt_RMA_M_0213/summary.rtf deleted file mode 100644 index 335e540..0000000 --- a/general/datasets/GenEx_BXD_CerebEt_RMA_M_0213/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -Summary of DatasetId 166, Name: GenEx BXD Sal Cerebellum Affy M430 2.0 (Feb13) \ No newline at end of file diff --git a/general/datasets/GenEx_BXD_CerebSal_RMA_0213/summary.rtf b/general/datasets/GenEx_BXD_CerebSal_RMA_0213/summary.rtf deleted file mode 100644 index 335e540..0000000 --- a/general/datasets/GenEx_BXD_CerebSal_RMA_0213/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -Summary of DatasetId 166, Name: GenEx BXD Sal Cerebellum Affy M430 2.0 (Feb13) \ No newline at end of file diff --git a/general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/cases.rtf b/general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/cases.rtf deleted file mode 100644 index 3453126..0000000 --- a/general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

- -

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

- -

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/experiment-design.rtf b/general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/experiment-design.rtf deleted file mode 100644 index 5e876e0..0000000 --- a/general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/platform.rtf b/general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/platform.rtf deleted file mode 100644 index f276bf8..0000000 --- a/general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/platform.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Expression

- -

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/processing.rtf b/general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/processing.rtf deleted file mode 100644 index 6635893..0000000 --- a/general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/processing.rtf +++ /dev/null @@ -1,102 +0,0 @@ -

Analysis Methods

- -

Preprocessing

- -

RNA-seq

- -

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

- -

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

- -

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

- -

Genotyping

- -

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

- -

Expression Quantification

- -

Gene/Transcript Model

- -

Gencode Version 12
-Contig names modified to match the reference genome used for alignment
-Procedure for collapsing transcript model into gene model

- -

Primary source: gencode.v12
-List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
-Create a separate bin for other types of transcripts and process them independently.
-Merge overlapping intervals.
-Discard intervals associated with multiple genes.
-Map intervals back to gene identifiers and output in GTF format.
-Quantification

- -

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

- -

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
-Reads must have proper pairs.
-Alignment distance must be <=6.
-Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
-Exon

- -

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

- -

Transcript

- -

Transcript-level quantification is provided by Flux Capacitor.

- -

eQTL Analysis

- -

QC and Sample Exclusion Process

- -

D statistic outliers are removed.
-Gender-specific expression outliers are removed.
-Samples with less than 10 million mapped reads are removed.
-In the case of replicates, the samples with the greater number of reads are chosen.
-Covariates

- -

3 Genotyping PCs.
-15 Peer factors:

- -


-The input to PEER are the post-normalization expression values described below.
-Gender.
-Expression

- -

RPKM data are used as produced by RNA-SeQC.
-Filter on >=10 individuals having >0.1RPKM.
-Log and quantile normalize the expression values across all samples.
-Outlier correction: for each gene, rank values across samples then map to a standard normal.
-Genotypes

- -

Imputation-based genotypes:
-Call Rate Threshold 95%.
-Info score Threshold 0.4.
-Minor Allele Frequency >= 5%.
-Sex chromosomes have been excluded excluded.
-Matrix eQTL Parameters

- -

Produced for radius +-1mb from TSS.
-P value threshold set to 1 to emit all p-values.
-Storey FDR

- -

The Storey q-value method was applied using the public R package with default values.
-eQTLs were filtered for an FDR <=5%.
-Tissues

- -

There are 9 Tissues that have sufficient sample numbers (n > 80).

- -

Adipose_Subcutaneous
-Artery_Tibial
-Heart_Left_Ventricle
-Lung
-Muscle_Skeletal
-Nerve_Tibial
-Skin_Sun_Exposed_Lower_leg
-Thyroid
-Whole_Blood

- -

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

- -

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

- -

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/summary.rtf b/general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/summary.rtf deleted file mode 100644 index dff008b..0000000 --- a/general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

- -

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/tissue.rtf b/general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/tissue.rtf deleted file mode 100644 index 7e60b80..0000000 --- a/general/datasets/GenEx_BXD_CerebSal_RMA_F_0213/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

GTEx explore all tissues:

- -

GTEx explore all tissues

diff --git a/general/datasets/GenEx_BXD_CerebSal_RMA_M_0213/summary.rtf b/general/datasets/GenEx_BXD_CerebSal_RMA_M_0213/summary.rtf deleted file mode 100644 index 335e540..0000000 --- a/general/datasets/GenEx_BXD_CerebSal_RMA_M_0213/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -Summary of DatasetId 166, Name: GenEx BXD Sal Cerebellum Affy M430 2.0 (Feb13) \ No newline at end of file diff --git a/general/datasets/Genex_bxd_cerebet_rma_0213/summary.rtf b/general/datasets/Genex_bxd_cerebet_rma_0213/summary.rtf new file mode 100644 index 0000000..335e540 --- /dev/null +++ b/general/datasets/Genex_bxd_cerebet_rma_0213/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 166, Name: GenEx BXD Sal Cerebellum Affy M430 2.0 (Feb13) \ No newline at end of file diff --git a/general/datasets/Genex_bxd_cerebet_rma_m_0213/summary.rtf b/general/datasets/Genex_bxd_cerebet_rma_m_0213/summary.rtf new file mode 100644 index 0000000..335e540 --- /dev/null +++ b/general/datasets/Genex_bxd_cerebet_rma_m_0213/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 166, Name: GenEx BXD Sal Cerebellum Affy M430 2.0 (Feb13) \ No newline at end of file diff --git a/general/datasets/Genex_bxd_cerebsal_rma_0213/summary.rtf b/general/datasets/Genex_bxd_cerebsal_rma_0213/summary.rtf new file mode 100644 index 0000000..335e540 --- /dev/null +++ b/general/datasets/Genex_bxd_cerebsal_rma_0213/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 166, Name: GenEx BXD Sal Cerebellum Affy M430 2.0 (Feb13) \ No newline at end of file diff --git a/general/datasets/Genex_bxd_cerebsal_rma_f_0213/cases.rtf b/general/datasets/Genex_bxd_cerebsal_rma_f_0213/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Genex_bxd_cerebsal_rma_f_0213/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Genex_bxd_cerebsal_rma_f_0213/contributors.rtf b/general/datasets/Genex_bxd_cerebsal_rma_f_0213/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Genex_bxd_cerebsal_rma_f_0213/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Genex_bxd_cerebsal_rma_f_0213/experiment-design.rtf b/general/datasets/Genex_bxd_cerebsal_rma_f_0213/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Genex_bxd_cerebsal_rma_f_0213/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Genex_bxd_cerebsal_rma_f_0213/platform.rtf b/general/datasets/Genex_bxd_cerebsal_rma_f_0213/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Genex_bxd_cerebsal_rma_f_0213/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Genex_bxd_cerebsal_rma_f_0213/processing.rtf b/general/datasets/Genex_bxd_cerebsal_rma_f_0213/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Genex_bxd_cerebsal_rma_f_0213/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Genex_bxd_cerebsal_rma_f_0213/summary.rtf b/general/datasets/Genex_bxd_cerebsal_rma_f_0213/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Genex_bxd_cerebsal_rma_f_0213/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Genex_bxd_cerebsal_rma_f_0213/tissue.rtf b/general/datasets/Genex_bxd_cerebsal_rma_f_0213/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Genex_bxd_cerebsal_rma_f_0213/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Genex_bxd_cerebsal_rma_m_0213/summary.rtf b/general/datasets/Genex_bxd_cerebsal_rma_m_0213/summary.rtf new file mode 100644 index 0000000..335e540 --- /dev/null +++ b/general/datasets/Genex_bxd_cerebsal_rma_m_0213/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 166, Name: GenEx BXD Sal Cerebellum Affy M430 2.0 (Feb13) \ No newline at end of file diff --git a/general/datasets/Genex_bxd_liveret_m5_0912/notes.rtf b/general/datasets/Genex_bxd_liveret_m5_0912/notes.rtf new file mode 100644 index 0000000..3c8d261 --- /dev/null +++ b/general/datasets/Genex_bxd_liveret_m5_0912/notes.rtf @@ -0,0 +1,3 @@ +

A total of 239 probe sets have LRS >46. Maximum LRS of 124.5. Perfect concordance between phenotype of probe set and genotype for St3gal4 on Chr 9 at 34.9 Mb.

+ +

Xist expression is uniformly high in BXD55 and BXD70 using probe set 1427262_at, but this is probably due to ethanol effect. Note that Eif2s3y indicates all strains have balanced male and female data.

diff --git a/general/datasets/Genex_bxd_liveret_m5_0912/summary.rtf b/general/datasets/Genex_bxd_liveret_m5_0912/summary.rtf new file mode 100644 index 0000000..60d23d4 --- /dev/null +++ b/general/datasets/Genex_bxd_liveret_m5_0912/summary.rtf @@ -0,0 +1,29 @@ +

These data generated by Dr. Robert Rooney, Kristin Hamre, Divyen Patel, and colleagues at Genome Explorations as part of an SBIR from NIAAA (2010-2011).

+ +

Data entered by Arthur Centeno, Jan and Feb 2011.

+ +

Data error checked by Robert W. Williams, Jan-May 2011.

+ +

eQTLs with LOD > 10

+ +

 

+ +
    +
  1. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Females: 303
  2. +
  3. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Males: 279
  4. +
  5. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Both Sexes: 493
  6. +
  7. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Females: 320
  8. +
  9. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Males: 207
  10. +
  11. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 513
  12. +
  13. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Females: 189
  14. +
  15. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Males: 97
  16. +
  17. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 327
  18. +
  19. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Females: 274
  20. +
  21. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Males: 175
  22. +
  23. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 444
  24. +
  25. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Females: 139
  26. +
  27. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Males: 73
  28. +
  29. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 230
  30. +
+ +

 

diff --git a/general/datasets/Genex_bxd_liveret_m5f_0912/notes.rtf b/general/datasets/Genex_bxd_liveret_m5f_0912/notes.rtf new file mode 100644 index 0000000..3c8d261 --- /dev/null +++ b/general/datasets/Genex_bxd_liveret_m5f_0912/notes.rtf @@ -0,0 +1,3 @@ +

A total of 239 probe sets have LRS >46. Maximum LRS of 124.5. Perfect concordance between phenotype of probe set and genotype for St3gal4 on Chr 9 at 34.9 Mb.

+ +

Xist expression is uniformly high in BXD55 and BXD70 using probe set 1427262_at, but this is probably due to ethanol effect. Note that Eif2s3y indicates all strains have balanced male and female data.

diff --git a/general/datasets/Genex_bxd_liveret_m5f_0912/summary.rtf b/general/datasets/Genex_bxd_liveret_m5f_0912/summary.rtf new file mode 100644 index 0000000..60d23d4 --- /dev/null +++ b/general/datasets/Genex_bxd_liveret_m5f_0912/summary.rtf @@ -0,0 +1,29 @@ +

These data generated by Dr. Robert Rooney, Kristin Hamre, Divyen Patel, and colleagues at Genome Explorations as part of an SBIR from NIAAA (2010-2011).

+ +

Data entered by Arthur Centeno, Jan and Feb 2011.

+ +

Data error checked by Robert W. Williams, Jan-May 2011.

+ +

eQTLs with LOD > 10

+ +

 

+ +
    +
  1. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Females: 303
  2. +
  3. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Males: 279
  4. +
  5. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Both Sexes: 493
  6. +
  7. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Females: 320
  8. +
  9. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Males: 207
  10. +
  11. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 513
  12. +
  13. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Females: 189
  14. +
  15. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Males: 97
  16. +
  17. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 327
  18. +
  19. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Females: 274
  20. +
  21. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Males: 175
  22. +
  23. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 444
  24. +
  25. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Females: 139
  26. +
  27. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Males: 73
  28. +
  29. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 230
  30. +
+ +

 

diff --git a/general/datasets/Genex_bxd_liveret_m5m_0912/notes.rtf b/general/datasets/Genex_bxd_liveret_m5m_0912/notes.rtf new file mode 100644 index 0000000..3c8d261 --- /dev/null +++ b/general/datasets/Genex_bxd_liveret_m5m_0912/notes.rtf @@ -0,0 +1,3 @@ +

A total of 239 probe sets have LRS >46. Maximum LRS of 124.5. Perfect concordance between phenotype of probe set and genotype for St3gal4 on Chr 9 at 34.9 Mb.

+ +

Xist expression is uniformly high in BXD55 and BXD70 using probe set 1427262_at, but this is probably due to ethanol effect. Note that Eif2s3y indicates all strains have balanced male and female data.

diff --git a/general/datasets/Genex_bxd_liveret_m5m_0912/summary.rtf b/general/datasets/Genex_bxd_liveret_m5m_0912/summary.rtf new file mode 100644 index 0000000..60d23d4 --- /dev/null +++ b/general/datasets/Genex_bxd_liveret_m5m_0912/summary.rtf @@ -0,0 +1,29 @@ +

These data generated by Dr. Robert Rooney, Kristin Hamre, Divyen Patel, and colleagues at Genome Explorations as part of an SBIR from NIAAA (2010-2011).

+ +

Data entered by Arthur Centeno, Jan and Feb 2011.

+ +

Data error checked by Robert W. Williams, Jan-May 2011.

+ +

eQTLs with LOD > 10

+ +

 

+ +
    +
  1. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Females: 303
  2. +
  3. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Males: 279
  4. +
  5. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Both Sexes: 493
  6. +
  7. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Females: 320
  8. +
  9. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Males: 207
  10. +
  11. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 513
  12. +
  13. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Females: 189
  14. +
  15. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Males: 97
  16. +
  17. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 327
  18. +
  19. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Females: 274
  20. +
  21. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Males: 175
  22. +
  23. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 444
  24. +
  25. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Females: 139
  26. +
  27. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Males: 73
  28. +
  29. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 230
  30. +
+ +

 

diff --git a/general/datasets/Genex_bxd_liveret_rma_0211/notes.rtf b/general/datasets/Genex_bxd_liveret_rma_0211/notes.rtf new file mode 100644 index 0000000..3c8d261 --- /dev/null +++ b/general/datasets/Genex_bxd_liveret_rma_0211/notes.rtf @@ -0,0 +1,3 @@ +

A total of 239 probe sets have LRS >46. Maximum LRS of 124.5. Perfect concordance between phenotype of probe set and genotype for St3gal4 on Chr 9 at 34.9 Mb.

+ +

Xist expression is uniformly high in BXD55 and BXD70 using probe set 1427262_at, but this is probably due to ethanol effect. Note that Eif2s3y indicates all strains have balanced male and female data.

diff --git a/general/datasets/Genex_bxd_liveret_rma_0211/summary.rtf b/general/datasets/Genex_bxd_liveret_rma_0211/summary.rtf new file mode 100644 index 0000000..60d23d4 --- /dev/null +++ b/general/datasets/Genex_bxd_liveret_rma_0211/summary.rtf @@ -0,0 +1,29 @@ +

These data generated by Dr. Robert Rooney, Kristin Hamre, Divyen Patel, and colleagues at Genome Explorations as part of an SBIR from NIAAA (2010-2011).

+ +

Data entered by Arthur Centeno, Jan and Feb 2011.

+ +

Data error checked by Robert W. Williams, Jan-May 2011.

+ +

eQTLs with LOD > 10

+ +

 

+ +
    +
  1. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Females: 303
  2. +
  3. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Males: 279
  4. +
  5. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Both Sexes: 493
  6. +
  7. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Females: 320
  8. +
  9. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Males: 207
  10. +
  11. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 513
  12. +
  13. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Females: 189
  14. +
  15. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Males: 97
  16. +
  17. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 327
  18. +
  19. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Females: 274
  20. +
  21. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Males: 175
  22. +
  23. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 444
  24. +
  25. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Females: 139
  26. +
  27. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Males: 73
  28. +
  29. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 230
  30. +
+ +

 

diff --git a/general/datasets/Genex_bxd_liveret_rma_f_0211/notes.rtf b/general/datasets/Genex_bxd_liveret_rma_f_0211/notes.rtf new file mode 100644 index 0000000..3c8d261 --- /dev/null +++ b/general/datasets/Genex_bxd_liveret_rma_f_0211/notes.rtf @@ -0,0 +1,3 @@ +

A total of 239 probe sets have LRS >46. Maximum LRS of 124.5. Perfect concordance between phenotype of probe set and genotype for St3gal4 on Chr 9 at 34.9 Mb.

+ +

Xist expression is uniformly high in BXD55 and BXD70 using probe set 1427262_at, but this is probably due to ethanol effect. Note that Eif2s3y indicates all strains have balanced male and female data.

diff --git a/general/datasets/Genex_bxd_liveret_rma_f_0211/summary.rtf b/general/datasets/Genex_bxd_liveret_rma_f_0211/summary.rtf new file mode 100644 index 0000000..60d23d4 --- /dev/null +++ b/general/datasets/Genex_bxd_liveret_rma_f_0211/summary.rtf @@ -0,0 +1,29 @@ +

These data generated by Dr. Robert Rooney, Kristin Hamre, Divyen Patel, and colleagues at Genome Explorations as part of an SBIR from NIAAA (2010-2011).

+ +

Data entered by Arthur Centeno, Jan and Feb 2011.

+ +

Data error checked by Robert W. Williams, Jan-May 2011.

+ +

eQTLs with LOD > 10

+ +

 

+ +
    +
  1. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Females: 303
  2. +
  3. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Males: 279
  4. +
  5. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Both Sexes: 493
  6. +
  7. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Females: 320
  8. +
  9. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Males: 207
  10. +
  11. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 513
  12. +
  13. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Females: 189
  14. +
  15. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Males: 97
  16. +
  17. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 327
  18. +
  19. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Females: 274
  20. +
  21. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Males: 175
  22. +
  23. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 444
  24. +
  25. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Females: 139
  26. +
  27. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Males: 73
  28. +
  29. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 230
  30. +
+ +

 

diff --git a/general/datasets/Genex_bxd_liveret_rma_m_0211/notes.rtf b/general/datasets/Genex_bxd_liveret_rma_m_0211/notes.rtf new file mode 100644 index 0000000..3c8d261 --- /dev/null +++ b/general/datasets/Genex_bxd_liveret_rma_m_0211/notes.rtf @@ -0,0 +1,3 @@ +

A total of 239 probe sets have LRS >46. Maximum LRS of 124.5. Perfect concordance between phenotype of probe set and genotype for St3gal4 on Chr 9 at 34.9 Mb.

+ +

Xist expression is uniformly high in BXD55 and BXD70 using probe set 1427262_at, but this is probably due to ethanol effect. Note that Eif2s3y indicates all strains have balanced male and female data.

diff --git a/general/datasets/Genex_bxd_liveret_rma_m_0211/summary.rtf b/general/datasets/Genex_bxd_liveret_rma_m_0211/summary.rtf new file mode 100644 index 0000000..60d23d4 --- /dev/null +++ b/general/datasets/Genex_bxd_liveret_rma_m_0211/summary.rtf @@ -0,0 +1,29 @@ +

These data generated by Dr. Robert Rooney, Kristin Hamre, Divyen Patel, and colleagues at Genome Explorations as part of an SBIR from NIAAA (2010-2011).

+ +

Data entered by Arthur Centeno, Jan and Feb 2011.

+ +

Data error checked by Robert W. Williams, Jan-May 2011.

+ +

eQTLs with LOD > 10

+ +

 

+ +
    +
  1. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Females: 303
  2. +
  3. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Males: 279
  4. +
  5. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Both Sexes: 493
  6. +
  7. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Females: 320
  8. +
  9. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Males: 207
  10. +
  11. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 513
  12. +
  13. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Females: 189
  14. +
  15. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Males: 97
  16. +
  17. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 327
  18. +
  19. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Females: 274
  20. +
  21. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Males: 175
  22. +
  23. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 444
  24. +
  25. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Females: 139
  26. +
  27. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Males: 73
  28. +
  29. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 230
  30. +
+ +

 

diff --git a/general/datasets/Genex_bxd_liversal_rma_0211/notes.rtf b/general/datasets/Genex_bxd_liversal_rma_0211/notes.rtf new file mode 100644 index 0000000..3c8d261 --- /dev/null +++ b/general/datasets/Genex_bxd_liversal_rma_0211/notes.rtf @@ -0,0 +1,3 @@ +

A total of 239 probe sets have LRS >46. Maximum LRS of 124.5. Perfect concordance between phenotype of probe set and genotype for St3gal4 on Chr 9 at 34.9 Mb.

+ +

Xist expression is uniformly high in BXD55 and BXD70 using probe set 1427262_at, but this is probably due to ethanol effect. Note that Eif2s3y indicates all strains have balanced male and female data.

diff --git a/general/datasets/Genex_bxd_liversal_rma_0211/summary.rtf b/general/datasets/Genex_bxd_liversal_rma_0211/summary.rtf new file mode 100644 index 0000000..60d23d4 --- /dev/null +++ b/general/datasets/Genex_bxd_liversal_rma_0211/summary.rtf @@ -0,0 +1,29 @@ +

These data generated by Dr. Robert Rooney, Kristin Hamre, Divyen Patel, and colleagues at Genome Explorations as part of an SBIR from NIAAA (2010-2011).

+ +

Data entered by Arthur Centeno, Jan and Feb 2011.

+ +

Data error checked by Robert W. Williams, Jan-May 2011.

+ +

eQTLs with LOD > 10

+ +

 

+ +
    +
  1. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Females: 303
  2. +
  3. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Males: 279
  4. +
  5. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Both Sexes: 493
  6. +
  7. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Females: 320
  8. +
  9. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Males: 207
  10. +
  11. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 513
  12. +
  13. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Females: 189
  14. +
  15. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Males: 97
  16. +
  17. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 327
  18. +
  19. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Females: 274
  20. +
  21. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Males: 175
  22. +
  23. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 444
  24. +
  25. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Females: 139
  26. +
  27. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Males: 73
  28. +
  29. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 230
  30. +
+ +

 

diff --git a/general/datasets/Genex_bxd_liversal_rma_f_0211/notes.rtf b/general/datasets/Genex_bxd_liversal_rma_f_0211/notes.rtf new file mode 100644 index 0000000..3c8d261 --- /dev/null +++ b/general/datasets/Genex_bxd_liversal_rma_f_0211/notes.rtf @@ -0,0 +1,3 @@ +

A total of 239 probe sets have LRS >46. Maximum LRS of 124.5. Perfect concordance between phenotype of probe set and genotype for St3gal4 on Chr 9 at 34.9 Mb.

+ +

Xist expression is uniformly high in BXD55 and BXD70 using probe set 1427262_at, but this is probably due to ethanol effect. Note that Eif2s3y indicates all strains have balanced male and female data.

diff --git a/general/datasets/Genex_bxd_liversal_rma_f_0211/summary.rtf b/general/datasets/Genex_bxd_liversal_rma_f_0211/summary.rtf new file mode 100644 index 0000000..60d23d4 --- /dev/null +++ b/general/datasets/Genex_bxd_liversal_rma_f_0211/summary.rtf @@ -0,0 +1,29 @@ +

These data generated by Dr. Robert Rooney, Kristin Hamre, Divyen Patel, and colleagues at Genome Explorations as part of an SBIR from NIAAA (2010-2011).

+ +

Data entered by Arthur Centeno, Jan and Feb 2011.

+ +

Data error checked by Robert W. Williams, Jan-May 2011.

+ +

eQTLs with LOD > 10

+ +

 

+ +
    +
  1. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Females: 303
  2. +
  3. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Males: 279
  4. +
  5. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Both Sexes: 493
  6. +
  7. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Females: 320
  8. +
  9. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Males: 207
  10. +
  11. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 513
  12. +
  13. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Females: 189
  14. +
  15. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Males: 97
  16. +
  17. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 327
  18. +
  19. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Females: 274
  20. +
  21. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Males: 175
  22. +
  23. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 444
  24. +
  25. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Females: 139
  26. +
  27. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Males: 73
  28. +
  29. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 230
  30. +
+ +

 

diff --git a/general/datasets/Genex_bxd_liversal_rma_m_0211/notes.rtf b/general/datasets/Genex_bxd_liversal_rma_m_0211/notes.rtf new file mode 100644 index 0000000..3c8d261 --- /dev/null +++ b/general/datasets/Genex_bxd_liversal_rma_m_0211/notes.rtf @@ -0,0 +1,3 @@ +

A total of 239 probe sets have LRS >46. Maximum LRS of 124.5. Perfect concordance between phenotype of probe set and genotype for St3gal4 on Chr 9 at 34.9 Mb.

+ +

Xist expression is uniformly high in BXD55 and BXD70 using probe set 1427262_at, but this is probably due to ethanol effect. Note that Eif2s3y indicates all strains have balanced male and female data.

diff --git a/general/datasets/Genex_bxd_liversal_rma_m_0211/summary.rtf b/general/datasets/Genex_bxd_liversal_rma_m_0211/summary.rtf new file mode 100644 index 0000000..60d23d4 --- /dev/null +++ b/general/datasets/Genex_bxd_liversal_rma_m_0211/summary.rtf @@ -0,0 +1,29 @@ +

These data generated by Dr. Robert Rooney, Kristin Hamre, Divyen Patel, and colleagues at Genome Explorations as part of an SBIR from NIAAA (2010-2011).

+ +

Data entered by Arthur Centeno, Jan and Feb 2011.

+ +

Data error checked by Robert W. Williams, Jan-May 2011.

+ +

eQTLs with LOD > 10

+ +

 

+ +
    +
  1. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Females: 303
  2. +
  3. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Males: 279
  4. +
  5. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Both Sexes: 493
  6. +
  7. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Females: 320
  8. +
  9. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Males: 207
  10. +
  11. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 513
  12. +
  13. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Females: 189
  14. +
  15. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Males: 97
  16. +
  17. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 327
  18. +
  19. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Females: 274
  20. +
  21. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Males: 175
  22. +
  23. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 444
  24. +
  25. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Females: 139
  26. +
  27. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Males: 73
  28. +
  29. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 230
  30. +
+ +

 

diff --git a/general/datasets/Gitrmetpublish/summary.rtf b/general/datasets/Gitrmetpublish/summary.rtf new file mode 100644 index 0000000..3847a3b --- /dev/null +++ b/general/datasets/Gitrmetpublish/summary.rtf @@ -0,0 +1 @@ +

GI Tract Metagenome Phenotypes

diff --git a/general/datasets/Gn10/acknowledgment.rtf b/general/datasets/Gn10/acknowledgment.rtf new file mode 100644 index 0000000..5098d32 --- /dev/null +++ b/general/datasets/Gn10/acknowledgment.rtf @@ -0,0 +1,3 @@ +

Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant and from funds from NEI grant to Dr. Eldon Geisert (R01EY017841), an NEI Vision Core grant (EY14080) and an Unrestricted Grant from Research To Prevent Blindness.

+ +

We thank Dr. Ted Choi, Chief Scientific Director of Predictive Biology, Inc. (past director of molecular genetics at Deltagen Inc.) for providing us with eye samples from several interesting DeltaGen knockouts.

diff --git a/general/datasets/Gn10/cases.rtf b/general/datasets/Gn10/cases.rtf new file mode 100644 index 0000000..552d4a5 --- /dev/null +++ b/general/datasets/Gn10/cases.rtf @@ -0,0 +1,57 @@ +

This is the complete and final HEIMED data set. HEIMED consists of expression data for 103 genetically defined lines of mice with standard errors of the mean. Almost all animals are young adults between 50 and 80 days of age (Table 1, maximum age is 123 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, reciprocal F1s between C57BL/6J and DBA/2J, and several mutant and knockout lines. We have combined all common strains, F1 hybrids, and mutants into a group called the Mouse Diversity Panel (MDP). Four lines, namely, C57BL/6J (B6), DBA/2J (D2), and the pair of B6D2F1 and D2B6F1 hybrids are common to both the MDP and the BXD set. This is a breakdown of cases that are part of HEIMED:

+ +
    +
  1. 68 BXD strains. The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. Only one of these strains, BXD24 (know also known as BXD24b), has retinal degeneration (a spontaneous mutation). The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA.
  2. +
  3. 35 MDP lines, including 26 inbred strains representing closely related substrains (e.g, BALB/cJ and BALB/cByJ), many of the most widely used common Mus musculus domesticus inbred strains (e.g., C57BL/6J and 129S1/SvImJ), inbred but wild-derived representatives of common subspecies (Mus musculus domesticus, e.g, WSB/EiJ; M. musculus musculus, e.g., CZECHII/EiJ; M. musculus molossinus, e.g., MOLF/EiJ; M. musculus castaneus, e.g., CAST/EiJ); and even one different species of mouse (Mus spicilegus, PANCEVO/EiJ). The MDP also includes the reciprocal F1 hybrids (B6D2F1 and D2B6F1) and the following 6 KO lines and the Nyx-nob mutant:
  4. +
  5. 6 knockouts (KO), including a KO of Rpe65, and 5 DeltaGen Inc. knockout lines provided by Dr. Ted Choi. These KO lines have had a bacterial lacZ construct inserted into the gene. The endogenous promoter drives expression of beta-galactosidase. RT-PCR analysis detects a gene transcript in most tissues. The following KOs from DeltaGen were studied: Gabra1, Gabbr1, Gnb1, Gpr19, and Clcn3. We also included one spontaneous mutant of the nyctalopin (Nyx no b wave "nob") gene (Pardue et al., 1998) that is on a BALB/cByJ background.
  6. +
+ +

Rod photoreceptor degeneration in inbred mice: Six strains of mice included in HEIMED suffer from severe loss of photoreceptors (mainly rods) and have the equivalent of night blindness in human patients. The death of photoreceptors in these strains occurs by one to two months of age and is often caused by the retinal degeneration 1 (rd1) mutant allele in the rod cyclic-GMP phosphodiesterase 6 beta subunit gene (Pde6b). The following strains are known to have photoreceptor degeneration: C3H/HeJ, FVB/NJ, MOLF/EiJ, SJL/J and BXD24/TyJ. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEIMED data set.

+ +

As expected (Dickerson LW et al., 2002) and as judged from the absence of rhodopsin expression, one of the DeltaGen KO lines (chloride ion channel 3, Clcn3) also has retinal degeneration: B6129P2F2N1-Clcn3. Degeneration in this strain is likely to include all rods and all cones. The cone defect is obvious from the decrease in expression of Gnat2, a gene associated with cones and achromatopsia in mice and humans.

+ +

Lines of mice were selected using the following criteria:

+ + + +

We have included all eight parents of the Collaborative Cross (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/LtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ) in the MDP. Fourteen MDP strains have been partially sequenced by Perlegen for the NIEHS, including including 129S1/SvImJ, A/J, AKR/J, BALB/cByJ, C3H/HeJ, CAST/EiJ, DBA/2J, FVB/NJ, KK/HlJ, MOLF/EiJ, NOD/LtJ, NZW/LacJ, PWD/PhJ, and WSB/EiJ (see the GeneNetwork SNP Browser for data, details, and see Perlegen's excellent data resources and browser).

+ +
    +
  1. 129S1/SvImJ : Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene. It is also a cone photoreceptor function loss 3 mutant (Cpfl3 allele) of the Gnat2 gene that is a model for achromatopsia (JAX Stock Number: 002448)
  2. +
  3. A/J: Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase (Tyr c allele) albino mutant. This strain is particularly sensitive to light-induced photoreceptor loss (Danciger et al., 2007). (JAX Stock Number: 000646)
  4. +
  5. BALB/cByJ: Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project old group A list. A tyrosinase (Tyr c allele) albino mutant and also a tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. Small brain, not aggressive (JAX Stock Number: 001026)
  6. +
  7. BALB/cJ: Phenome Project A list. A tyrosinase (Tyr c allele) albino mutant and also a tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. Large brain and aggressive (JAX Stock Number: 000651)
  8. +
  9. BXSB/MpJ: A white-bellied agouti strains with interesting autoimmune disease restricted to males that is associated with a mutation in the Yaa gene that causes glomerulonephritis, a dramatic increase in number of peripheral monocytes, and pre-B-cell deficiency (JAX Stock Number: 000740)
  10. +
  11. C3H/HeJ: The Heston (He) substrain with a wildtype agouti (A allele) coat color. Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project old group A list. Important to note for this eye expression dataset, C3H/HeJ is a Pdeb6 rd1 mutant with near total photoreceptor loss at as early as postnatal day 30. Also a Tlr4 mutant that is endotoxin resistant. (JAX Stock Number: 000659)
  12. +
  13. C57BL/6J: Sequenced by NIH/NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list. Single most widely used inbred strain of mouse. (JAX Stock Number: 000664)
  14. +
  15. C57BLKS/J: Black Kaliss strain (non-agouti a allele) derived from C57BL/6J, but genetically contaminated at some point mainly with DBA/2J and then reinbred. Now at the Jackson Laboratory. (JAX Stock Number: 000662)
  16. +
  17. CAST/EiJ: A wild-derived inbred Mus musculus castaneus strain. Samples of this subspecies were captured in Southeast Asia. One of three wild-derived strains in the Collaborative Cross sequenced by NIEHS; Phenome Project A list. CAST/Ei and CAST/EiJ are the same strain. The addition of the "J" is trivial and was added when stock were transferred from Dr. Eicher's lab to the Jackson Laboratory production facility in about 2004. (JAX Stock Number: 000928)
  18. +
  19. CBA/CaJ: Agouti strain from the Jackson Laboratory. Wildtype pigment genes. (JAX Stock Number: 000654)
  20. +
  21. CZECHII/EiJ: Czech 2 is a wild-derived inbred strain M. musculus musculus strain. Samples of this subspecies were caught in the Czech Republic and inbred at the Jackson Laboratory by Eva Eicher. White-bellied agouti. (JAX Stock Number: 001144).
  22. +
  23. DBA/2J: The dilute, brown, agouti (dba) strain is the oldest inbred strain of mouse. Inbreeding was started in 1909 by Little. A tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. A myosin 5a (Myo5a d) dilute allele mutant. Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project old A group list. (JAX Stock Number: 000671)
  24. +
  25. FVB/NJ: Friend's leukemia virus B (FVB) strain. Sequenced by Perlegen/NIEHS and Celera. Tyr c locus albino and a Pdeb6 rd1 mutant derived from Swiss mice at NIH. This has been the most common strain used to make transgenic mice due to large and easily injected oocytes; Phenome Project A list (JAX Stock Number: 001800).
  26. +
  27. KK/HlJ: K Kondo's (KK) Kasukabe strain is a homozygous age-related hearing loss (ahl) allele mutant of the Cdh23 gene. A Tyr c locus albino strain. Males have a form of type 2 diabetes. Sequenced by Perlegen/NIEHS. (JAX Stock Number: 002106)
  28. +
  29. LG/J: Large (LG) strain. Paternal parent of the Large-by-Small set of RI strains made by James Cheverud and colleagues (the LGXSM panel, not to be confused with the LongXShort or LXS panel). A Tyr c locus albino strain. (JAX Stock Number: 000675)
  30. +
  31. LP/J: White-bellied agouit strain with a piebald mutation in the endothelin receptor type B Ednrb gene from at the Jackson Laboratory. Some reduction in melanocytes in choroid of eye due to neural creast migration abnormalities. (JAX Stock Number: 000676)
  32. +
  33. MOLF/EiJ: A wild-derived inbred strain derived from M. musculus molossinus samples camputered in Fukuoka, Japan. This strain has the retinal degeneration rd1 allele in Pde6b. There appears to have been some genetic contamination of this strain with conventional inbred strains in the past several decades (F. Pardo, personal communication to RWW, August 2006). However, the strain is currently fully inbred. (JAX Stock Number: 000550)
  34. +
  35. NOD/LtJ: Non-obese diabetic strain, originally from M. Hattori in Kyoto, Japan. This is the Edward Leiter (Lt) substrain from the Jackson Laboratory. Collaborative Cross strain sequenced by NIEHS; Phenome Project B list. Homozygous age-related hearing loss (ahl) allele mutant of the Cdh23 gene. A Tyr c locus albino strain. (JAX Stock Number: 001976)
  36. +
  37. NZO/HlLtJ: New Zealand Obese strain. This is a severely obese and hypertensive strain. Males often develop a type 2 diabetes. Collaborative Cross strain. Agouti coat color. (JAX Stock Number: 002105)
  38. +
  39. NZB/BlNJ: New Zealand Black inbred strain from Bielschowsky (BL, substrain is "B lowercase L N", not "BiN") now maintained at the Jackson Laboratory. (JAX Stock Number: 000648)
  40. +
  41. NZW/LacJ: New Zealand White strain from the Laboratory Animal Center (Carshalton, UK), now maintained at the Jackson Laboratory. Carries the Tyr c locus albino mutation, the pink-eye dilution mutation in the Oca2 or p locus, and the brown allele at Tyrp1. (JAX Stock Number: 001058)
  42. +
  43. PANCEVO/EiJ: PANCEVO/EiJ is a wild-derived inbred strain from the Mus spicilegus samples caught in the Pancevo, Serbia. This species of mouse is also known as the Steppe mouse (taxon identifier 10103). M. spicilegus is a colonial mound-building species. No known ocular or retina mutations, but the expression level of Gnat2 is low in this strain, either due to a 3' UTR length variant or possible achromatosia (cone degeneration) (JAX Stock Number: 001384)
  44. +
  45. PWD/PhJ: A wild-derived Mus musculus musculus agouti strain inbred from samples caught near Prague, Czech Republic. Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues. (JAX Stock Number: 004660)
  46. +
  47. PWK/PhJ: A wild-derived Mus musculus musculus inbred strain from samples caught near Lhotka, Czech Republic. Collaborative Cross strain; Phenome Project D list. (JAX Stock Number: 003715)
  48. +
  49. SJL/J: Swiss Webster inbred strain from Jim Lambert's lab at the Jackson Laboratory. This strain has the retinal degeneration rd1 allele in Pde6b. It also carries both the Tyr c albino mutation and the pink-eye dilution mutation in the Oca2 or p locus. Highly aggressive males. (JAX Stock Number: 000686)
  50. +
  51. WSB/EiJ: Watkin Star line B (or "wild son-of-a-bitch") is a wild-derived Mus musculus domesticus inbred strain from samples caught in Maryland, USA. A Collaborative Cross strain sequenced by NIEHS; Phenome Project C list (JAX Stock Number: 001145)
  52. +
  53. B6D2F1 and D2B6F1 (also listed as BDF1 and DBF1 in some graphs and tables): F1 hybrids generated by crossing C57BL/6J with DBA/2J. These black reciprocal F1 can be used to detect dominance effects. Comparison of the two reciprocal F1s can be used to detect parental origin (imprinting) effects. The D2B6F1 animals are currently available from the Jackson Laboratory as a special order.) (JAX Stock Number for B6D2F1 hybrids obtained from the Jackson Laboratory, aka B6D2F1/J 100006)
  54. +
+ +

Most of the common inbred strains harbor mutations in genes the control pigmentation (Silvers, 2008 and material above in this INFO file). These gene include the albino and chinchilla alleles of the tyrosinase gene (Tyr, or human OCA1), the brown allele of the tyrosinase related protein 1 (Tyrp1), the pink-eye dilution allele of Oca2 (probe set 1418211), the non-agouti (black) and white-bellied alleles of the agouti signaling protein Asip, the steel allele of Kitlg, the dilute allele of Myo5a (probe set 1419754), and the piebald allele of Ednrb. In some of these cases, effects of the mutation are easily detected at the transcript level (Tyrp1, Oca2, and Myo5a), but in the other cases (Tyr, Asip, Ednrb, and Kitlg), mutations do not leave a strong imprint on expression.

diff --git a/general/datasets/Gn10/citation.rtf b/general/datasets/Gn10/citation.rtf new file mode 100644 index 0000000..ddd98e4 --- /dev/null +++ b/general/datasets/Gn10/citation.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Xusheng Wang, Weikuan Gu, Yan Jiao, Robert W. Williams. Gene expression landscape of the mammalian eye: A global survey and database of mRNAs of 103 varieties of mice. Molecular Vision 2009; in press.

diff --git a/general/datasets/Gn10/contributors.rtf b/general/datasets/Gn10/contributors.rtf new file mode 100644 index 0000000..d155833 --- /dev/null +++ b/general/datasets/Gn10/contributors.rtf @@ -0,0 +1 @@ +

Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Xusheng Wang, Weikuan Gu, Yan Jiao, Robert W. Williams

diff --git a/general/datasets/Gn10/experiment-design.rtf b/general/datasets/Gn10/experiment-design.rtf new file mode 100644 index 0000000..1ebe0ad --- /dev/null +++ b/general/datasets/Gn10/experiment-design.rtf @@ -0,0 +1 @@ +

Expression profiling by array

diff --git a/general/datasets/Gn10/experiment-type.rtf b/general/datasets/Gn10/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Gn10/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Gn10/notes.rtf b/general/datasets/Gn10/notes.rtf new file mode 100644 index 0000000..7a26eb5 --- /dev/null +++ b/general/datasets/Gn10/notes.rtf @@ -0,0 +1 @@ +

This data set is available as a bulk download in several formats. The data are available as either strain means or the individual arrays. Due to the involved normalization procedures required to correct for batch effects we strongly recommend not using the raw CEL files without special statistical procedures.

diff --git a/general/datasets/Gn10/platform.rtf b/general/datasets/Gn10/platform.rtf new file mode 100644 index 0000000..9024a99 --- /dev/null +++ b/general/datasets/Gn10/platform.rtf @@ -0,0 +1,11 @@ +

Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many probes overlap and target the same transcript). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequences as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

+ +

As part of the development of HEIMED, we have manually annotated individual probe sets by sequence alignment to the mouse genome and transcriptome. Approximately 13,000 probe sets that have comparatively high expression in eye and CNS were curated by one of the authors (RWW) and now have specific information on the part of the transcript targeted by each probe set. The other 33,000 transcripts have corresponding data that was generated by Xusheng Wang using computational methods (BLAT analysis combined with annotated genome sequence).

+ +

One example may help explain how to exploit this annotation. The four probe sets for rhodopsin include information on the target location. Only the first probe set targets the last two coding exons. The other three probe sets target different parts of the 3’ UTR (mid, distal, and far distal regions). The probe sets can be reordered by from high to low expression using the Sort By function in Search Results pages. In the case of rhodopsin, the probe set that targets that last two coding exons and proximal parts of the 3’ UTR also has the highest expression . Finally, the HEIMED gene descriptions have been customized to help vision researchers. In the case of rhodopsin, the description appended after the gene name reads “rod photoreceptor pigment, retinitis pigmentosa-associated”. For less well known genes this kind of annotation can be extremely useful. For example, the more verbose annotation for Cerkl reads “neuronal survival and apoptosis-related, retinal ganglion cell expressed, retinitis pigmentosa 26); alternative 3' UTR of short form message, intron 2”.

+ +

 

+ +

+ +

Legend: Distribution of expression values for all probe sets in HEIMED.

diff --git a/general/datasets/Gn10/processing.rtf b/general/datasets/Gn10/processing.rtf new file mode 100644 index 0000000..4349e60 --- /dev/null +++ b/general/datasets/Gn10/processing.rtf @@ -0,0 +1,3381 @@ +

Range of Gene Expression in the Eye. Expression of transcripts in the HEIMED and most other GN data sets is measured on a log2 scale. Each unit corresponding approximately to a 2-fold difference in hybridization signal intensity. To simplify comparisons among different data sets and cases, log2 RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units (variance stabilized). Values of all 45,101 probe sets in this data set range from a low of 4.8 (Tcf15, probe set 1420281_at) to a high of 15.5 (crystallin gamma C, Crygc, probe set 1422674_s_at). This corresponds to 10.7 units or a 1 to 1700 dynamic range of expression (2^10.73).

+ +

We used pooled RNA samples of whole eyes, usually two independent pools--one male, one female pool--for most lines of mice. This data set was processed using the RMA protocol. A total of 2223 probes sets are associated with LRS values greater than 46 (LOD >10).

+ +

We calibrated this log intensity scale using Affymetrix spike-in control probe sets. These 18 control probe sets target exogenous bacterial mRNAs that are added to each sample (a graded dose spike cocktail) during preparation at concentrations of 1.5, 5, 25, and 100 pM. (To find these probe sets, search GN’s ALL search field using the string “AFFX pM”.) A value of 6 or less is equivalent to an mRNA concentration of under 0.4 pM, a value of 8 is equivalent to ~1.5 pM, 9.5 is equivalent to ~5 pM, 11.5 is equivalent to ~25 pM, 13.5 is equivalent to ~100 pM, and a value of 15.5 is equivalent to an mRNA concentration of 400 pM or greater.

+ +

This range can be converted to the mRNA molecules per cell in the eye assuming that a value of 8 is equivalent to about 1 mRNA copy per cell (Kanno et al. 2006, see http://www.biomedcentral.com/1471-2164/7/64). Since the expression of rhodopsin mRNA is normally 15 units, we predict that there are 27 or ~128 Rho mRNAs per cell in the whole eye and ~256 in rods themselves (assuming that rods make up about half of all cells in the eye). For this purpose it may be useful to know that a normal mouse eye contains between 6 and 8 million rod photoreceptors (Guo, Lu, and Williams; GN BXD Phenotype ID 11024).

+ +

Note that some probe sets with very low expression still provide reliable data. For example, probe set 1440397_at (Cacna2d1) has expression of only 5.5 units (a value that would be declared as "absent" using conventional Affymetrix procedures), but the values for this calcium channel transcript are associated with a very strong cis QTL with an LRS of 79 (LOD = 17). This strong linkage is definitely not due to chance since the probability of the expression data mapping precisely to the location of the parent gene itself is about 10e-16. This indicates a high signal to noise ratio and the detection of significant strain variation of the correct transcript.

+ +

The standard error of the mean for the HEIMED data set is computed for 2 to 6 biological replicates. The standard error of such small samples tends to systematically underestimate the population standard error. With n = 2 the underestimate is about 25%, whereas for n = 6 the underestimate is 5%. Gurland and Tripathi (1971) provide a correction and equation for this effect (see Sokal and Rohlf, Biometry, 2nd ed., 1981, p 53 for an equation of the correction factor for small samples of n < 20.) Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. The CEL files were processed using the RMA protocol. We processed the first three batches together. The last batch was processed separately and merged as described below.

+ + + +

After RMA processing using Biobase affy10 build running under R version 2.7.1, all array data sets were rank-order normalized. This second round of quantile normalization removes much residual non-linearity across arrays and forces every array to have the same distribution of values as the mean of all arrays. Comparative array data quality was then evaluated in DataDesk. Outlier arrays were flagged by visual inspection in DataDesk, usually by means of an analysis of scatter plots and more quantitatively by generating a correlation matrix of all arrays. Those arrays with mean correlation <0.96 versus all other arrays indicates trouble or a biological outlier). In some cases, outliers were expected, such as samples from strains with retinal degeneration (FVB/NJ, NOD/LtJ, MOLF/EiJ, C3H/HeJ and BXD24), samples from wild subspecies such as WSB/EiJ, CAST/EiJ, PWD/PhJ, and PWK/PhJ, and knockouts. However, when arrays were anomolous both within strain and across strains, they were often simply discarded. The assumption is that anomolous data are much more likely due to experimental and technical errors than to informative biological variation. Approximately 10% of arrays were discarded.

+ +

After this process, the acceptable set of arrays was renormalized using all step as above, starting with the original RMA procedure, etc.

+ +

We reviewed the data set using a new method developed by RW Williams, Jeremy Peirce, and Hongqiang Li. For the full set of arrays that passed standard QC protocols described above, we computed the strain means for the BXD strains, B6, D2, and F1s. Using this set of strain means we then computed LRS scores for all 45101 probe sets and counted the number of transcripts that generated QTLs with LRS values greater than 50. This value (e.g., 1800) represented the QTL harvest for the full data set. We then dropped a single array from the data set, recomputed strain means, and recomputed the number of transcripts with LRS scores great than 50. This value is expected to typically reduce the number of QTLs that reach the criterion level (e.g., 1750 QTLs > 50). This process was repeated for every array to obtain an array-specific difference value--the effect of removing that array on the total QTL count. For example, the loss of a single array might cause a decrease in 50 QTLs. Values ranged from approximately -90 (good arrays) to +40 (bad arrays). This procedure is similar in some ways to a jackknife protocol, although we are not using this procedure to esimate an error term, but rather as a method to polish a data set.

+ +

During this process we discovered that nearly 20 arrays in the batch 2 had been mislabeled at some point in processing. We computed the correct strain membership of each array using a large number of Mendelian probe sets (more than 50) and comparing their match to standard SNP and microsatellite markers and the original array data set of November 2005. This allowed us to rescue a large number of arrays that were of high quality.

+ +

A third batch of approximately 40 arrays were processed by Yan Jiao and Weikuan Gu in August 2006. These complete data set assembled by Hongqiang Li. This process again included a correction for a batch effect.

+ +

For the June 2006 data set Hongqiang Li used a new batch correction method that stabilizes the range of expression in each batch. For each of the three large batches, we extracted the minumum and maximum raw probe expression (CEL file level) value. We then adjusted raw probe values in each batch to have the same range as the first and largest batch (batch 1) using a simple linear interpolation. These procedures generated new correct CEL files which were then used with RMA to generate final probe set estimates.

+ +

For the final fourth batch of arrays (Sept 2008) Arthur Centeno and Rob Williams corrected for a systematic difference in probe set expression values between original arrays run in 2005 and 2006 and the new arrays added in 2008 (n = 45 acceptable arrays). This difference is due to unknown technical batch effects that are probably associated with labeling, hybridization, and scanning. We performed a simple correction to normalize values of the new set of arrays to those of the old set (batches 1 through 3). No changes were made to any values of the previous three batches. We corrected only the probe set level (RMA) values and not the CEL files. For this final batch, we corrected for the difference (offset) in probe set expression between the first three batches arrays run in 2005 and 2006 (a total of 174 acceptable arrays) and the new batch (n = 47 acceptable arrays). This difference is due to unknown technical effects that are probably related to various steps in labeling, hybridization, and scanning. The correction was applied as follows: (1) RWW selected 51 high quality arrays with similar expression characteristics (r = 0.97 or better between pairs of arrays) in the old data set (from batches 1, 2, and 3) and 34 high quality arrays in the final batch. RWW used scatterplots of full RMA transcriptome data sets to review many pairs of arrays within these new and old array batches. Strains with retinal degeneration or unusual eye gene expression characteristics were excluded from these selected subsets. The average expression values for each probe set were then computed for both the old and new array subsets. The offset value (old minus new) was added to each probe set across all 47 new arrays. This processes forces the average probe set in the new arrays to be very close to that of the previous arrays.

+ +

Table 2: Sample tube ID, strain, original CEL filename, and Affymetrix quality control values. Columns labeled Scale factor, Background Average, Present, Absent, Marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files.

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
2R2533E.1129S1/SvImJR2533E.1.CEL2.119457.90%40.50%1.60%1.370.781Y
3R0754E.1A/JR0754E.1.CEL2.728659.80%38.70%1.50%1.360.761Y
4R4521EB6129P2F2N1-Clcn3R4521E.CEL4.8338.763.30%35.30%1.40%1.250.774 
5R4522EB6129P2F2N1-Clcn3R4522E.CEL5.7637.3662.90%35.70%1.40%1.370.834 
6R4523EB6129P2F2N1-Clcn3R4523E.CEL4.8840.4263.90%34.70%1.40%1.270.774 
7R4526EB6129P2F2N1-Gabbr1R4526E.CEL3.8444.1865.00%33.70%1.30%1.340.784Y
8R4509EB6129P2F2N1-Gabbr1R4509E.CEL7.4534.7658.90%39.70%1.40%1.450.834 
9R4510EB6129P2F2N1-Gabbr1R4510E.CEL8.4437.4457.40%41.10%1.50%1.350.834 
10R4511EB6129P2F2N1-Gabbr1R4511E.CEL5.9142.0261.40%37.20%1.40%1.410.834 
11R4524EB6129P2F2N1-Gabbr1R4524E.CEL5.4942.3462.40%36.20%1.40%1.290.784Y
12R4525EB6129P2F2N1-Gabbr1R4525E.CEL4.6941.363.10%35.50%1.40%1.270.84Y
13R4515EB6129P2F2N1-Gabra1R4515E.CEL5.7541.7662.80%35.80%1.40%1.410.814Y
14R4516EB6129P2F2N1-Gabra1R4516E.CEL7.0740.7360.20%38.40%1.40%1.320.874Y
15R4517EB6129P2F2N1-Gabra1R4517E.CEL5.4538.0962.70%35.80%1.40%1.340.824Y
16R4512EB6129P2F2N1-Gnb5R4512E.CEL6.5638.0259.90%38.70%1.50%1.330.834 
17R4513EB6129P2F2N1-Gnb5R4513E.CEL4.1541.663.40%35.10%1.50%1.340.824 
18R4514EB6129P2F2N1-Gnb5R4514E.CEL5.8639.261.20%37.30%1.50%1.340.814 
19R4518EB6129P2F2N1-Gpr19R4518E.CEL5.5838.962.60%36.00%1.30%1.390.794Y
20R4519EB6129P2F2N1-Gpr19R4519E.CEL5.9541.9161.30%37.30%1.40%1.350.844Y
21R2601E.1B6D2F1R2601E.1.CEL2.559258.90%39.60%1.50%1.440.781Y
22R2602E.1B6D2F1R2602E.1.CEL2.68459.70%38.80%1.50%1.370.781Y
23R1676E.1BALB/cByJR1676E.1.CEL2.699858.90%39.60%1.50%1.460.741 
24R1672E.1BALB/cByJR1672E.1.CEL2.2211159.90%38.60%1.50%1.260.81Y
25R4530EBALB/cJR4530E.CEL6.3737.5360.80%37.80%1.40%1.30.844Y
26R4529EBALB/cJR4529E.CEL5.7141.3360.50%38.00%1.50%1.480.84Y
27R2704E.2BXD1R2704E.2.CEL2.066139.6156.60%41.90%1.50%1.310.812 
28R2707E.3BXD1R2707E.3.CEL18056.40%42.10%1.50%1.430.793 
29R1231E.2BXD2R1231E.2.CEL2.197138.7357.30%41.30%1.40%1.410.772 
30R2598E.1BXD2R2598E.1.CEL1.9910660.90%37.60%1.50%1.270.781Y
31R2591E.1BXD5R2591E.1.CEL1.713658.50%40.00%1.50%1.330.781Y
32R2714E.2BXD5R2714E.2.CEL1.404144.3560.60%37.90%1.50%1.430.792 
33R2570E.1BXD6R2570E.1.CEL1.998758.50%40.00%1.50%1.460.761Y
34R2694E.2BXD6R2694E.2.CEL1.98397.2361.60%37.10%1.30%1.390.822 
35R2538E.1BXD8R2538E.1.CEL1.9110261.20%37.30%1.50%1.520.791Y
36R2709E.2BXD8R2709E.2.CEL1.9999.7960.90%37.60%1.50%1.420.762 
37R2708E.2BXD9R2708E.2.CEL1.966126.4657.70%40.70%1.50%1.40.842 
38R2569E.1BXD9R2569E.1.CEL1.758755.10%43.40%1.50%2.823.141 
39R2581E.1BXD11R2581E.1.CEL1.948962.10%36.40%1.60%1.550.811Y
40R2612E.2BXD11R2612E.2.CEL1.83142.0358.20%40.50%1.40%1.780.812 
41R2742E.2BXD12R2742E.2.CEL2.127134.1457.00%41.60%1.40%1.640.782 
42R2543E.1BXD12R2543E.1.CEL1.6111858.60%39.90%1.60%1.430.771Y
43R2586E.1BXD13R2586E.1.CEL2.017456.40%42.00%1.60%2.853.811 
44R877E.2BXD13R877E.2.CEL1.558125.6361.20%37.50%1.20%1.420.812 
45R2557E.1BXD14R2557E.1.CEL1.839962.50%36.10%1.40%1.310.781Y
46R1128E.2BXD14R1128E.2.CEL1.9111559.90%38.80%1.40%1.20.821Y
47R2701E.3BXD15R2701E.3.CEL18860.60%37.90%1.40%1.50.773 
48R2716E.2BXD15R2716E.2.CEL2.015150.8356.40%42.10%1.60%1.420.812 
49R2711E.2BXD16R2711E.2.CEL1.953118.5359.00%39.60%1.50%1.450.82 
50R2567E.1BXD16R2567E.1.CEL2.248256.70%41.60%1.70%1.370.751 
51R2720E.2BXD18R2720E.2.CEL2.3299.9359.50%39.00%1.50%1.330.772 
52R2559E.1BXD18R2559E.1.CEL1.6510460.80%37.70%1.50%1.270.781Y
53R2560E.1BXD19R2560E.1.CEL1.799860.90%37.50%1.60%1.350.81Y
54R2713E.2BXD19R2713E.2.CEL1.67120.8260.20%38.30%1.50%1.450.82 
55R2584E.1BXD20R2584E.1.CEL2.078459.30%39.10%1.60%1.40.761Y
56R2731E.2BXD20R2731E.2.CEL1.82514759.00%39.50%1.50%1.40.82 
57R2702E.2BXD21R2702E.2.CEL1.811128.6559.40%39.10%1.40%1.260.82 
58R2541E2.1BXD21R2541E2.1.CEL2.6312556.00%42.40%1.50%1.290.781 
59R2553E.1BXD22R2553E.1.CEL1.9511159.90%38.50%1.50%1.280.761Y
60R2700E.2BXD22R2700E.2.CEL1.858102.9661.50%37.10%1.30%1.480.792 
61R2558E-2.1BXD23R2558E-2.1.CEL2.233125.0558.60%39.90%1.50%1.430.772 
62R1086E.2BXD23R1086E.2.CEL2.233125.0558.60%39.90%1.50%1.430.772 
63R2719E.2BXD24R2719E.2.CEL1.47140.3861.50%37.20%1.30%1.380.792 
64R2589E2.1BXD24R2589E2.1.CEL2.6111257.50%40.90%1.60%1.240.81 
65R2573E-2.1BXD25R2573E-2.1.CEL3.157257.90%40.70%1.40%1.770.971 
66R2683E.2BXD25R2683E.2.CEL1.777115.6458.30%40.30%1.40%2.010.792 
67R2703E.2BXD27R2703E.2.CEL1.263134.7862.60%36.10%1.40%1.440.782 
68R2729E.3BXD27R2729E.3.CEL18757.90%40.60%1.50%1.560.843Y
69R2562E.3BXD28R2562E.3.CEL1.6511659.90%38.40%1.70%1.370.793Y
70R2721E.2BXD28R2721E.2.CEL2.065157.3956.10%42.40%1.50%1.310.812 
71R2561E.3BXD29R2561E.3.CEL17753.30%45.40%1.40%3.3619.663 
72R1258E.2BXD31R1258E.2.CEL2.063117.0959.00%39.50%1.50%1.540.782 
73R2597E.1BXD31R2597E.1.CEL2.379460.30%38.30%1.50%1.340.771Y
74R2563E.1BXD32R2563E.1.CEL1.5510261.90%36.70%1.40%1.50.81 
75R1216E.2BXD32R1216E.2.CEL2.23111.9958.80%39.80%1.40%1.350.792 
76R2542E.1BXD33R2542E.1.CEL2.139756.50%41.80%1.60%1.910.931 
77R857E.2BXD33R857E.2.CEL1.737113.9861.90%36.70%1.30%1.60.772 
78R1451E.2BXD34R1451E.2.CEL1.843140.0559.00%39.50%1.50%1.420.812Y
79R2585E.1BXD34R2585E.1.CEL2.647558.30%40.00%1.70%1.250.771 
80R2698E.3BXD36R2698E.3.CEL18659.70%39.00%1.30%1.460.783 
81R2705E.3BXD36R2705E.3.CEL18660.20%38.40%1.40%1.460.773 
82R2710E.2BXD38R2710E.2.CEL2.112122.158.80%39.80%1.40%1.370.782 
83R2532E.1BXD38R2532E.1.CEL2.049459.80%38.70%1.50%1.370.81Y
84R2574E.1BXD39R2574E.1.CEL1.989161.20%37.30%1.50%1.390.781 
85R2695E.2BXD39R2695E.2.CEL1.638122.760.80%37.80%1.50%1.420.82 
86R2699E.2BXD40R2699E.2.CEL1.827105.2361.70%36.90%1.40%1.420.812 
87R2590E.1BXD40R2590E.1.CEL2.717759.10%39.30%1.50%1.40.771Y
88R2696E.2BXD42R2696E.2.CEL1.622118.9562.00%36.60%1.50%1.530.792 
89R2596E.1BXD42R2596E.1.CEL2.6310859.00%39.60%1.50%1.240.81 
90R994E.2BXD43R994E.2.CEL1.966113.1260.80%37.80%1.40%1.660.82 
91R2607E.1BXD43R2607E.1.CEL2.4311558.60%40.00%1.40%1.310.761Y
92R2594E.1BXD44R2594E.1.CEL1.7711759.80%38.80%1.40%1.350.851 
93R2610E.2BXD44R2610E.2.CEL1.814142.9159.00%39.50%1.50%1.350.82 
94R2732E.2BXD45R2732E.2.CEL2.154122.4556.50%42.10%1.40%1.80.832 
95R2592E.1BXD45R2592E.1.CEL1.8510660.10%38.60%1.30%1.430.851Y
96R967E.2BXD48R967E.2.CEL1.948130.9557.30%41.20%1.50%1.630.812 
97R2606E.1BXD48R2606E.1.CEL2.5610658.90%39.70%1.40%1.350.831Y
98R2933E.3BXD50R2933E.3.CEL17252.90%45.60%1.50%2.450.983 
99R2937E.3BXD50R2937E.3.CEL18956.90%41.60%1.40%1.810.823 
100R2603E.1BXD51R2603E.1.CEL2.4911557.70%40.80%1.50%1.240.791 
101R1042E.2BXD51R1042E.2.CEL2.352104.1258.70%39.90%1.40%1.530.822 
102R2980E.3BXD55R2980E.3.CEL18256.90%41.70%1.50%1.770.843 
103R2690E.2BXD55R2690E.2.CEL1.887164.0156.10%42.30%1.60%1.430.82 
104R4176EBXD56R4176E.CEL4.7543.0863.00%35.60%1.30%1.390.814Y
105R4175EBXD56R4175E.CEL638.4961.30%37.30%1.40%1.470.814Y
106R1006E.3BXD60R1006E.3.CEL19854.90%43.70%1.50%2.70.863 
107R2725E.2BXD60R2725E.2.CEL1.551148.0159.80%38.80%1.40%1.430.792 
108R1074E.3BXD60R1074E.3.CEL111855.50%43.10%1.40%1.960.813 
109R2534E2.1BXD61R2534E2.1.CEL2.4711857.90%40.60%1.50%1.420.791 
110R2684E.2BXD61R2684E.2.CEL2.01131.0357.00%41.50%1.50%1.340.782 
111R1107E.3BXD62R1107E.3.CEL18355.20%43.40%1.40%2.430.933 
112R2681E.2BXD62R2681E.2.CEL2.086148.2457.20%41.30%1.50%1.290.812 
113R965E.3BXD62R965E.3.CEL193.5553.30%45.20%1.50%3.110.943 
114R1425E.2BXD63R1425E.2.CEL1.713659.30%39.30%1.40%1.430.822 
115R2576E.3BXD63R2576E.3.CEL18461.30%37.40%1.40%1.480.763 
116R943E-2.2BXD64R943E-2.2.CEL1.591141.3460.10%38.40%1.50%1.320.762 
117R2611E.1BXD64R2611E.1.CEL2.299258.00%40.50%1.50%1.571.061 
118R2689E.2BXD65R2689E.2.CEL1.721142.4459.90%38.60%1.50%1.380.762 
119R2583E.1BXD65R2583E.1.CEL2.497056.90%41.50%1.60%1.671.011 
120R2728E.2BXD66R2728E.2.CEL1.714137.4559.40%39.00%1.60%1.380.792 
121R2536E2.1BXD66R2536E2.1.CEL2.7410956.10%42.30%1.70%1.280.791 
122R1207E.2BXD66R1207E.2.CEL1.681136.8660.40%38.10%1.50%1.450.772 
123R1192E.2BXD67R1192E.2.CEL2.126123.3757.90%40.60%1.50%1.50.82 
124R2727E.3BXD67R2727E.3.CEL182.5556.10%42.40%1.50%1.970.872 
125R2691E.3BXD67R2691E.3.CEL19054.80%43.80%1.50%2.610.813 
126R2551E.1BXD68R2551E.1.CEL2.499254.30%44.10%1.60%2.911.551 
127R2726E.2BXD68R2726E.2.CEL1.811153.0958.70%39.80%1.50%1.390.782 
128R2593E.1BXD69R2593E.1.CEL1.6712859.20%39.50%1.30%1.470.921Y
129R975E.2BXD70R975E.2.CEL1.841137.9758.00%40.50%1.40%1.360.792 
130R2537E2.1BXD70R2537E2.1.CEL2.939958.00%40.50%1.60%1.290.751 
131R4531EBXD71R4531E.CEL4.7743.4862.40%36.30%1.40%1.230.774Y
132R4532EBXD71R4532E.CEL5.8940.6860.90%37.60%1.50%1.240.794Y
133R2779E.2BXD73R2779E.2.CEL1.746121.1159.60%39.00%1.40%1.50.82 
134R3024E.3BXD73R3024E.3.CEL178.0551.70%46.60%1.70%2.30.943 
135R2565E.1BXD75R2565E.1.CEL1.7910258.00%40.50%1.50%2.313.471 
136R1397E-re.2BXD75R1397E-re.2.CEL1.449189.7159.60%39.00%1.40%1.390.822 
137R2687E.3BXD77R2687E.3.CEL18058.00%40.60%1.40%1.570.83Y
138R2717E.2BXD77R2717E.2.CEL1.79784.4361.60%36.90%1.40%1.490.762 
139R1421E.3BXD77R1421E.3.CEL19452.40%46.20%1.40%2.290.823 
140R2579E.1BXD80R2579E.1.CEL2.427259.20%39.40%1.50%1.730.821 
141R2686E.2BXD80R2686E.2.CEL2.342119.6356.00%42.60%1.50%1.380.792 
142R2956E.3BXD83R2956E.3.CEL18455.40%43.20%1.40%1.390.843 
143R2960E.3BXD83R2960E.3.CEL18056.60%41.90%1.50%1.50.823Y
144R2922E.3BXD84R2922E.3.CEL19157.80%40.80%1.50%1.470.833Y
145R2895E.3BXD84R2895E.3.CEL17558.30%40.20%1.50%1.560.773Y
146R2692E.2BXD85R2692E.2.CEL1.423160.8760.20%38.30%1.40%1.460.792 
147R2715E.2BXD85R2715E.2.CEL1.488142.661.20%37.30%1.40%1.50.782 
148R1405E.2BXD86R1405E.2.CEL2.351119.3456.40%42.20%1.40%1.640.812 
149R1225E.3BXD86R1225E.3.CEL17153.90%44.60%1.40%3.21.613 
150R2724E.2BXD87R2724E.2.CEL1.906113.7160.70%37.90%1.40%1.450.792 
151R2540E.1BXD87R2540E.1.CEL2.339361.10%37.40%1.40%1.220.811Y
152R1433E.2BXD89R1433E.2.CEL12.24157.70%40.80%1.50%1.410.782 
153R2546E.1BXD89R2546E.1.CEL1.999658.60%39.70%1.70%1.470.781 
154R2578E2.1BXD90R2578E2.1.CEL2.799258.60%39.80%1.60%1.520.771Y
155R859E.2BXD90R859E.2.CEL1.847152.2257.90%40.70%1.40%1.360.772 
156R2682E.2BXD92R2682E.2.CEL1.547156.3160.40%38.20%1.40%1.370.772 
157R1388E.3BXD92R1388E.3.CEL16360.00%38.60%1.40%1.851.033 
158R1322E.3BXD92R1322E.3.CEL18055.90%42.60%1.50%1.750.743 
159R2733E.2BXD96R2733E.2.CEL1.7113.9962.10%36.60%1.30%1.40.782 
160R2554E.1BXD96R2554E.1.CEL2.189360.20%38.30%1.50%1.460.771Y
161R2649E.2BXD97R2649E.2.CEL2.343119.0457.50%41.20%1.40%1.530.82 
162R2577E.1BXD97R2577E.1.CEL2.077759.50%39.10%1.40%1.871.291 
163R2645E.3BXD98R2645E.3.CEL18859.40%39.20%1.50%1.590.813Y
164R2688E.2BXD98R2688E.2.CEL1.772145.2458.50%40.00%1.50%1.480.812 
165R4533EBXD99R4533E.CEL137.6960.30%38.20%1.40%1.330.894Y
166R4534EBXD99R4534E.CEL5.6936.6262.90%35.70%1.40%1.160.84Y
167R2885E.3BXSB/MpJR2885E.3.CEL17658.10%40.60%1.30%1.881.063 
168R2883E.3BXSB/MpJR2883E.3.CEL17156.40%42.00%1.50%1.590.843Y
169R1700E.1C3H/HeJR1700E.1.CEL2.986960.80%37.90%1.40%1.480.781 
170R1704E.1C3H/HeJR1704E.1.CEL2.588860.10%38.60%1.30%1.380.841 
171R2605E.1C57BL/6JR2605E.1.CEL1.8213160.50%38.20%1.30%1.320.81Y
172R0871EC57BL/6JR0871E.CEL6.2437.3861.90%36.70%1.40%1.410.84Y
173R0872E.1C57BL/6JR0872E.1.CEL3.138958.90%39.60%1.50%1.30.791Y
174R0872EC57BL/6JR0872E.CEL3.12888.5858.90%39.60%1.50%1.30.791 
175R4507EC57BL/6J-NyxR4507E.CEL8.1337.559.30%39.30%1.40%1.320.84Y
176R4508EC57BL/6J-NyxR4508E.CEL6.3337.2660.90%37.80%1.30%1.240.824Y
177R4505EC57BL/6J-Rpe65R4505E.CEL5.9837.4861.80%36.80%1.40%1.450.854Y
178R4506EC57BL/6J-Rpe65R4506E.CEL6.9437.961.10%37.50%1.30%1.50.834Y
179R4535EC57BLKS/JR4535E.CEL6.5937.2861.20%37.30%1.40%1.260.834Y
180R4536EC57BLKS/JR4536E.CEL140.7160.30%38.20%1.50%1.250.774Y
181R2564E.1CAST/EiJR2564E.1.CEL1.948958.50%39.90%1.60%1.60.771 
182R2580E.1CAST/EiJR2580E.1.CEL2.099558.20%40.10%1.70%1.40.761 
183R4537ECBA/CaJR4537E.CEL138.4560.60%37.90%1.50%1.630.824Y
184R4538ECBA/CaJR4538E.CEL5.8939.1861.70%36.90%1.40%1.450.84Y
185R4539ECZECHII/EiJR4539E.CEL7.7337.158.30%40.10%1.50%1.70.954Y
186R4540ECZECHII/EiJR4540E.CEL11.0436.6953.00%45.30%1.70%1.831.324 
187R2600E.1D2B6F1R2600E.1.CEL2.479558.10%40.20%1.70%1.410.781Y
188R2604E.1D2B6F1R2604E.1.CEL2.669059.40%39.20%1.50%1.280.791Y
189R1002E.3DBA/2JR1002E.3.CEL110254.80%43.70%1.50%2.840.833 
190R4541EDBA/2JR4541E.CEL143.461.40%37.00%1.50%1.370.734Y
191R959E.3DBA/2JR959E.3.CEL189.9753.20%45.30%1.50%3.661.094 
192R2572E.1DBA/2JR2572E.1.CEL2.417955.50%42.90%1.60%1.370.791 
193R4542EDBA/2JR4542E.CEL5.739.9561.00%37.40%1.50%1.230.814Y
194R2771E.3FVB/NJR2771E.3.CEL17055.30%43.20%1.50%1.690.833 
195R2772E.3FVB/NJR2772E.3.CEL17655.20%43.40%1.40%2.131.023 
196R2636E.1KK/HlJR2636E.1.CEL2.619358.90%39.50%1.50%1.390.761Y
197R2637E.1KK/HlJR2637E.1.CEL2.1910359.40%39.00%1.50%1.30.791Y
198R0999E.1LG/JR0999E.1.CEL2.458259.40%39.10%1.50%1.380.791Y
199R1004E.1LG/JR1004E.1.CEL2.449258.70%39.80%1.50%1.380.791Y
200R4543ELP/JR4543E.CEL6.5741.9960.30%38.20%1.50%1.280.754Y
201R4544ELP/JR4544E.CEL4.5639.962.40%36.10%1.50%1.230.774Y
202R2858E.3MOLF/EiJR2858E.3.CEL16453.80%44.70%1.50%1.590.953 
203R2919.3MOLF/EiJR2919.3.CEL16452.40%46.00%1.60%2.151.073 
204R1688E.1NOD/LtJR1688E.1.CEL2.669858.60%39.90%1.50%1.260.81Y
205R2566E-2.1NOD/LtJR2566E-2.1.CEL3.036959.80%38.80%1.50%1.380.751Y
206R4545ENZB/BlNJR4545E.CEL4.2343.4862.10%36.40%1.50%1.330.764Y
207R4546ENZB/BlNJR4546E.CEL6.2744.2259.40%39.10%1.50%1.170.824Y
208R2535E.1NZO/HlLtJR2535E.1.CEL1.898660.40%38.20%1.40%1.410.851 
209R2550E.1NZO/HlLtJR2550E.1.CEL1.798760.70%37.80%1.50%1.520.821 
210R2817E.3NZW/LacJR2817E.3.CEL15950.90%47.60%1.50%3.591.483 
211R2810ENZW/LacJR2810E.CEL       3 
212R2810E.3NZW/LacJR2810E.3.CEL17457.00%41.70%1.40%2.151.034Y
213R4547EPANCEVO/EiJR4547E.CEL5.2751.3457.20%41.10%1.70%1.70.834 
214R4548EPANCEVO/EiJR4548E.CEL10.5437.3950.30%48.00%1.70%1.681.094 
215R2635E.1PWD/PhJR2635E.1.CEL3.728054.20%44.10%1.70%1.530.851 
216R2634E.1PWD/PhJR2634E.1.CEL3.299055.90%42.50%1.60%1.570.811 
217R2544E.1PWK/PhJR2544E.1.CEL2.210854.90%43.50%1.70%1.360.821 
218R2549E.1PWK/PhJR2549E.1.CEL2.288457.30%41.20%1.50%1.570.831 
219R4550ESJL/JR4550E.CEL5.3540.4462.30%36.20%1.40%1.240.794 
220R2368E.1WSB/EiJR2368E.1.CEL2.578659.50%39.10%1.40%1.290.741Y
221R2547E.1WSB/EiJR2547E.1.CEL2.149058.20%40.10%1.60%1.320.771Y
+
diff --git a/general/datasets/Gn10/summary.rtf b/general/datasets/Gn10/summary.rtf new file mode 100644 index 0000000..44b7e23 --- /dev/null +++ b/general/datasets/Gn10/summary.rtf @@ -0,0 +1,12 @@ +

FINAL RECOMMENDED EYE DATA SET. The HEIMED September 2008 RMA data release provides estimates of gene expression in whole eyes of 103 lines of young adult mice generated using 221 Affymetrix M430 2.0 arrays. This data set is intended for exploration of the genetics and genomics of the mouse eye, retina, lens, retinal pigment epithelium, cornea, iris and choroid. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). We used pooled RNA samples, usually two independent pools--one male, one female pool--for most lines of mice. This data set was processed using the RMA protocol. A total of 2223 probes sets are associated with LRS values greater than 46 (LOD >10).

+ +

Users of these mouse eye data may also find the following complementary resources extremely useful:

+ +
    +
  1. NEIBank collection of ESTs and SAGE data.
  2. +
  3. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases
  4. +
  5. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.
  6. +
  7. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus.
  8. +
  9. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430).
  10. +
  11. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.
  12. +
diff --git a/general/datasets/Gn10/tissue.rtf b/general/datasets/Gn10/tissue.rtf new file mode 100644 index 0000000..9b6ee0f --- /dev/null +++ b/general/datasets/Gn10/tissue.rtf @@ -0,0 +1,2058 @@ +

Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube.

+ +

Each array was hybridized with a pool of cRNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

+ +

Dissecting and preparing eyes for RNA extraction

+ +
    +
  1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below).
  2. +
  3. Store RNA in 75% ethanol at –80 deg. C until use.
  4. +
+ +

Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we:

+ +
    +
  1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue)
  2. +
  3. allowed the homogenate to stand for 5 min at room temperature
  4. +
  5. added 0.2 ml of chloroform per 1 ml RNA STAT-60
  6. +
  7. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min
  8. +
  9. centrifuged at 12,000 G for 15 min
  10. +
  11. transfered the aqueous phase to a fresh tube
  12. +
  13. added 0.5 ml of isopropanol per 1 ml RNA STAT-60
  14. +
  15. vortexed and allowed sample to stand at room temperature for 5-10 min
  16. +
  17. centrifuged at 12,000 G for 10-15 min
  18. +
  19. removed the supernatant and washed the RNA pellet with 75% ethanol
  20. +
  21. stored the pellet in 75% ethanol at -80 deg C until use
  22. +
+ +

Sample Processing. All samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center led by Dr. Weikuan Gu. All arrays were processed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. C until use (roughly one third) or were used immediately for hybridization.

+ +

Dealing with ocular pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations taken from brown and beige colored mice tend to have faint residual pigmentation that affects hybridization signal. To address this problem, Dr. Yan Jiao purified total RNA using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204) all four batches.

+ +

Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well balanced sample of males and females, in general without within-strain-by-sex replication. Two strains are represented by a single male sample pool (BXD29 and A/J). Four lines are represented by two or three male sample pools (all of the five DeltaGen KO line). The SJL/J may be a single mixed sex sample. Users can study possible sex effects by comparing any results of expression data to that of a surrogate measurement that summarizes the overall sex balance of HEIMED. To do this just compare your data to those of probe sets 1427262_at (Xist, high in females) and probe set 1426438_at (Ddx3y, high in males). These two sex-specific probes are quantitative surrogates for the sex balance in this data set.

+ +

Technical duplicates: One sample, highlighted in the tables below, is a technical duplicate. The pair of technical duplicates were both of high quality. For statistical analysis, they should be combined and treated as single biological sample.

+ +

Batch structure: This data set consists of four batches (Table 2, far right column). The final September 2008 data set consists of a total of 221 arrays and 220 independent samples.

+ +
    +
  1. Batch 1: November 2005, n = 78 arrays original arrays of which 76 were accepted into this final data set.
  2. +
  3. Batch 2: January 2006, n = 62 arrays of which 62 were accepted.
  4. +
  5. Batch 3: August 2006, n = 39 arrays of which 36 were accepted. (These three batches, including some arrays that were eventually dropped from the final 2008 data set, were combined to form the September 2006 data set.)
  6. +
  7. Batch 4: Summer 2008, n = 53 arrays of which 47 were accepted.
  8. +
+ +

Table 1: HEIMED case IDs, including sample tube ID, strain, age, sex, and source of mice (see Table 2 for information on array quality control)

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexTubeIDGroupStrainAgeSexSource
1R2595E.1GDP129S1/SvImJ59FUTHSC RW
2R2533E.1GDP129S1/SvImJ60MUTHSC RW
3R0754E.1GDPA/J60MJAX
4R4521EKOB6129P2F2N1-Clcn369MTChoi_Deltagen
5R4522EKOB6129P2F2N1-Clcn369MTChoi_Deltagen
6R4523EKOB6129P2F2N1-Clcn367MTChoi_Deltagen
7R4526EKOB6129P2F2N1-Gabbr116FTChoi_Deltagen
8R4509EKOB6129P2F2N1-Gabbr116MTChoi_Deltagen
9R4510EKOB6129P2F2N1-Gabbr119MTChoi_Deltagen
10R4511EKOB6129P2F2N1-Gabbr120MTChoi_Deltagen
11R4524EKOB6129P2F2N1-Gabbr119MTChoi_Deltagen
12R4525EKOB6129P2F2N1-Gabbr122MTChoi_Deltagen
13R4515EKOB6129P2F2N1-Gabra167MTChoi_Deltagen
14R4516EKOB6129P2F2N1-Gabra169MTChoi_Deltagen
15R4517EKOB6129P2F2N1-Gabra167MTChoi_Deltagen
16R4512EKOB6129P2F2N1-Gnb522FTChoi_Deltagen
17R4513EKOB6129P2F2N1-Gnb525MTChoi_Deltagen
18R4514EKOB6129P2F2N1-Gnb522MTChoi_Deltagen
19R4518EKOB6129P2F2N1-Gpr1970MTChoi_Deltagen
20R4519EKOB6129P2F2N1-Gpr1968MTChoi_Deltagen
21R2601E.1GDP BXDB6D2F173FUTHSC RW
22R2602E.1GDP BXDB6D2F173MUTHSC RW
23R1676E.1GDPBALB/cByJ83FJAX
24R1672E.1GDPBALB/cByJ83MJAX
25R4530EGDPBALB/cJ66FJAX
26R4529EGDPBALB/cJ66MJAX
27R2704E.2BXDBXD159FUTHSC RW
28R2707E.3BXDBXD159MBIDMC GR
29R1231E.2BXDBXD264FUTHSC RW
30R2598E.1BXDBXD261MUTHSC RW
31R2591E.1BXDBXD560FBIDMC GR
32R2714E.2BXDBXD558MUTHSC RW
33R2570E.1BXDBXD665FUTHSC RW
34R2694E.2BXDBXD658MUTHSC RW
35R2538E.1BXDBXD877FUTHSC RW
36R2709E.2BXDBXD861MUTHSC RW
37R2708E.2BXDBXD960FUTHSC RW
38R2569E.1BXDBXD967MUTHSC RW
39R2581E.1BXDBXD1165FUTHSC RW
40R2612E.2BXDBXD1170MUTHSC RW
41R2742E.2BXDBXD1271FUTHSC RW
42R2543E.1BXDBXD1263MUTHSC RW
43R2586E.1BXDBXD1360FBIDMC GR
44R877E.2BXDBXD1376MUTHSC RW
45R2557E.1BXDBXD1460FBIDMC GR
46R1128E.2BXDBXD1465MUTHSC RW
47R2701E.3BXDBXD1560FBIDMC GR
48R2716E.2BXDBXD1560MUTHSC RW
49R2711E.2BXDBXD1661FUTHSC RW
50R2567E.1BXDBXD1660MBIDMC GR
51R2720E.2BXDBXD1859FUTHSC RW
52R2559E.1BXDBXD1859MBIDMC GR
53R2560E.1BXDBXD1960FBIDMC GR
54R2713E.2BXDBXD1960MUTHSC RW
55R2584E.1BXDBXD2059FBIDMC GR
56R2731E.2BXDBXD2060MUTHSC RW
57R2702E.2BXDBXD2159FUTHSC RW
58R2541E2.1BXDBXD2161MUTHSC RW
59R2553E.1BXDBXD2258FBIDMC GR
60R2700E.2BXDBXD2259MUTHSC RW
61R2558E-2.1BXDBXD2360FBIDMC GR
62R1086E.2BXDBXD2355MUTHSC RW
63R2719E.2BXDBXD24123FUTHSC RW
64R2589E2.1BXDBXD2459MBIDMC GR
65R2573E-2.1BXDBXD2567FUAB
66R2683E.2BXDBXD2558MUTHSC RW
67R2703E.2BXDBXD2760FUTHSC RW
68R2729E.3BXDBXD2768MUTHSC RW
69R2562E.3BXDBXD2860FBIDMC GR
70R2721E.2BXDBXD2860MUTHSC RW
71R2561E.3BXDBXD2960MBIDMC GR
72R1258E.2BXDBXD3157FUTHSC RW
73R2597E.1BXDBXD3161MBIDMC GR
74R2563E.1BXDBXD3263FUTHSC RW
75R1216E.2BXDBXD3276MUTHSC RW
76R2542E.1BXDBXD3367FUTHSC RW
77R857E.2BXDBXD3377MUTHSC RW
78R1451E.2BXDBXD3461FUTHSC RW
79R2585E.1BXDBXD3460MBIDMC GR
80R2698E.3BXDBXD3658FBIDMC GR
81R2705E.3BXDBXD3657MBIDMC GR
82R2710E.2BXDBXD3855FUTHSC RW
83R2532E.1BXDBXD3862MUTHSC RW
84R2574E.1BXDBXD3970FUTHSC RW
85R2695E.2BXDBXD3959MUTHSC RW
86R2699E.2BXDBXD4059FUTHSC RW
87R2590E.1BXDBXD4060MBIDMC GR
88R2696E.2BXDBXD4258FUTHSC RW
89R2596E.1BXDBXD4259MBIDMC GR
90R994E.2BXDBXD4360FUTHSC RW
91R2607E.1BXDBXD4367MUTHSC RW
92R2594E.1BXDBXD4463FUTHSC RW
93R2610E.2BXDBXD4468MUTHSC RW
94R2732E.2BXDBXD4563FUTHSC RW
95R2592E.1BXDBXD4562MUTHSC RW
96R967E.2BXDBXD4864FUTHSC RW
97R2606E.1BXDBXD4878MUTHSC RW
98R2933E.3BXDBXD5061FUTHSC RW
99R2937E.3BXDBXD5061MUTHSC RW
100R2603E.1BXDBXD5166FUTHSC RW
101R1042E.2BXDBXD5162MUTHSC RW
102R2980E.3BXDBXD5576FUTHSC RW
103R2690E.2BXDBXD5565MUTHSC RW
104R4176EBXDBXD5667FUTHSC RW
105R4175EBXDBXD5653MUTHSC RW
106R1006E.3BXDBXD6060FUTHSC RW
107R2725E.2BXDBXD6061FUTHSC RW
108R1074E.3BXDBXD6059MUTHSC RW
109R2534E2.1BXDBXD6170FUTHSC RW
110R2684E.2BXDBXD6162MUTHSC RW
111R1107E.3BXDBXD6254FUTHSC RW
112R2681E.2BXDBXD6262MUTHSC RW
113R965E.3BXDBXD6254MUTHSC RW
114R1425E.2BXDBXD6361FUTHSC RW
115R2576E.3BXDBXD6370MUTHSC RW
116R943E-2.2BXDBXD6456FUTHSC RW
117R2611E.1BXDBXD6468MUTHSC RW
118R2689E.2BXDBXD6563FUTHSC RW
119R2583E.1BXDBXD6560MUTHSC RW
120R2728E.2BXDBXD6667FUTHSC RW
121R2536E2.1BXDBXD6664FUTHSC RW
122R1207E.2BXDBXD6683MUTHSC RW
123R1192E.2BXDBXD6764FUTHSC RW
124R2727E.3BXDBXD6765FUTHSC RW
125R2691E.3BXDBXD6765MUTHSC RW
126R2551E.1BXDBXD6867FUTHSC RW
127R2726E.2BXDBXD6864MUTHSC RW
128R2593E.1BXDBXD6959FUTHSC RW
129R975E.2BXDBXD7064FUTHSC RW
130R2537E2.1BXDBXD7059MUTHSC RW
131R4531EBXDBXD7187FUTHSC RW
132R4532EBXDBXD7186MUTHSC RW
133R2779E.2BXDBXD7364FUTHSC RW
134R3024E.3BXDBXD7354MUTHSC RW
135R2565E.1BXDBXD7561FUTHSC RW
136R1397E-re.2BXDBXD7558MUTHSC RW
137R2687E.3BXDBXD7760FUTHSC RW
138R2717E.2BXDBXD77107MUTHSC RW
139R1421E.3BXDBXD7762MUTHSC RW
140R2579E.1BXDBXD8065FUTHSC RW
141R2686E.2BXDBXD8061MUTHSC RW
142R2956E.3BXDBXD8358FUTHSC RW
143R2960E.3BXDBXD8358MUTHSC RW
144R2922E.3BXDBXD8461FUTHSC RW
145R2895E.3BXDBXD8467MUTHSC RW
146R2692E.2BXDBXD8563FUTHSC RW
147R2715E.2BXDBXD8591MUTHSC RW
148R1405E.2BXDBXD8658FUTHSC RW
149R1225E.3BXDBXD8658MUTHSC RW
150R2724E.2BXDBXD8763FUTHSC RW
151R2540E.1BXDBXD8763MUTHSC RW
152R1433E.2BXDBXD8963FUTHSC RW
153R2546E.1BXDBXD8966MUTHSC RW
154R2578E2.1BXDBXD9061FUTHSC RW
155R859E.2BXDBXD9072MUTHSC RW
156R2682E.2BXDBXD9266FUTHSC RW
157R1388E.3BXDBXD9262FUTHSC RW
158R1322E.3BXDBXD9255MUTHSC RW
159R2733E.2BXDBXD9667FUTHSC RW
160R2554E.1BXDBXD9667MUTHSC RW
161R2649E.2BXDBXD9774FUTHSC RW
162R2577E.1BXDBXD9755MUTHSC RW
163R2645E.3BXDBXD9866FUTHSC RW
164R2688E.2BXDBXD9867MUTHSC RW
165R4533EBXDBXD9980FUTHSC RW
166R4534EBXDBXD9991MUTHSC RW
167R2885E.3GDPBXSB/MpJ61FBIDMC GR
168R2883E.3GDPBXSB/MpJ61MBIDMC GR
169R1700E.1GDPC3H/HeJ83FUTHSC RW
170R1704E.1GDPC3H/HeJ83MUTHSC RW
171R2605E.1GDP BXDC57BL/6J79FUTHSC RW
172R0871EGDP BXDC57BL/6J65FUTHSC RW
173R0872E.1GDP BXDC57BL/6J66MUTHSC RW
174R0872EGDP BXDC57BL/6J66MUTHSC RW
175R4507EKOC57BL/6J-Nyx57MGeisert
176R4508EKOC57BL/6J-Nyx57MGeisert
177R4505EKOC57BL/6J-Rpe6557FGeisert
178R4506EKOC57BL/6J-Rpe6557FGeisert
179R4535EGDPC57BLKS/J66FJAX
180R4536EGDPC57BLKS/J66MJAX
181R2564E.1GDPCAST/EiJ64FJAX
182R2580E.1GDPCAST/EiJ64MJAX
183R4537EGDPCBA/CaJ66FJAX
184R4538EGDPCBA/CaJ66MJAX
185R4539EGDPCZECHII/EiJ66FJAX
186R4540EGDPCZECHII/EiJ66MJAX
187R2600E.1GDP BXDD2B6F172FUTHSC RW
188R2604E.1GDP BXDD2B6F169MUTHSC RW
189R1002E.3GDP BXDDBA/2J72FUTHSC RW
190R4541EGDP BXDDBA/2J65FJAX
191R959E.3GDP BXDDBA/2J60MUTHSC RW
192R2572E.1GDP BXDDBA/2J65MUTHSC RW
193R4542EGDP BXDDBA/2J59MJAX
194R2771E.3GDPFVB/NJ60FBIDMC GR
195R2772E.3GDPFVB/NJ60MBIDMC GR
196R2636E.1GDPKK/HlJ64FUTHSC RW
197R2637E.1GDPKK/HlJ64MUTHSC RW
198R0999E.1GDPLG/J57FUTHSC RW
199R1004E.1GDPLG/J65MUTHSC RW
200R4543EGDPLP/J65FJAX
201R4544EGDPLP/J65MJAX
202R2858E.3GDPMOLF/EiJ60FBIDMC GR
203R2919.3GDPMOLF/EiJ60MBIDMC GR
204R1688E.1GDPNOD/LtJ66FJAX
205R2566E-2.1GDPNOD/LtJ76MUTHSC RW
206R4545EGDPNZB/BlNJ61FBIDMC GR
207R4546EGDPNZB/BlNJ58MBIDMC GR
208R2535E.1GDPNZO/HlLtJ62FJAX
209R2550E.1GDPNZO/HlLtJ96MJAX
210R2817E.3GDPNZW/LacJ65FBIDMC GR
211R2810EGDPNZW/LacJ60MBIDMC GR
212R2810E.3GDPNZW/LacJ60MBIDMC GR
213R4547EGDPPANCEVO/EiJ68FJAX
214R4548EGDPPANCEVO/EiJ68MJAX
215R2635E.1GDPPWD/PhJ62FJAX
216R2634E.1GDPPWD/PhJ62MJAX
217R2544E.1GDPPWK/PhJ63FJAX
218R2549E.1GDPPWK/PhJ83MJAX
219R4550EGDPSJL/J65M+FJAX
220R2368E.1GDPWSB/EiJ67FUTHSC RW
221R2547E.1GDPWSB/EiJ67MUTHSC RW
+
diff --git a/general/datasets/Grng_gse23545hlt0613/citation.rtf b/general/datasets/Grng_gse23545hlt0613/citation.rtf new file mode 100644 index 0000000..2aafa46 --- /dev/null +++ b/general/datasets/Grng_gse23545hlt0613/citation.rtf @@ -0,0 +1 @@ +

Bossé Y, Postma DS, Sin DD, Lamontagne M et al. Molecular signature of smoking in human lung tissues. Cancer Res 2012 Aug 1;72(15):3753-63. PMID: 22659451

diff --git a/general/datasets/Grng_gse23545hlt0613/contributors.rtf b/general/datasets/Grng_gse23545hlt0613/contributors.rtf new file mode 100644 index 0000000..a22a4a5 --- /dev/null +++ b/general/datasets/Grng_gse23545hlt0613/contributors.rtf @@ -0,0 +1 @@ +

Bossé Y, Laviolette M

diff --git a/general/datasets/Grng_gse23545hlt0613/summary.rtf b/general/datasets/Grng_gse23545hlt0613/summary.rtf new file mode 100644 index 0000000..9cb9538 --- /dev/null +++ b/general/datasets/Grng_gse23545hlt0613/summary.rtf @@ -0,0 +1,15 @@ +

This SuperSeries is composed of the following SubSeries:

+ + + + + + + + + + + + + +
GSE23352 Whole-genome gene expression profiles of non-tumorous human lung tissues: Laval set
GSE23529 Whole-genome gene expression profiles of non-tumorous human lung tissues: UBC set
GSE23545 Whole-genome gene expression profiles of non-tumorous human lung tissues: GRNG set
diff --git a/general/datasets/Gse15222_f_a_ri_0409/acknowledgment.rtf b/general/datasets/Gse15222_f_a_ri_0409/acknowledgment.rtf new file mode 100644 index 0000000..c203ed9 --- /dev/null +++ b/general/datasets/Gse15222_f_a_ri_0409/acknowledgment.rtf @@ -0,0 +1 @@ +

http://labs.med.miami.edu/myers

diff --git a/general/datasets/Gse15222_f_a_ri_0409/cases.rtf b/general/datasets/Gse15222_f_a_ri_0409/cases.rtf new file mode 100644 index 0000000..6933d14 --- /dev/null +++ b/general/datasets/Gse15222_f_a_ri_0409/cases.rtf @@ -0,0 +1,3290 @@ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexGEO SeriesOrgan RegionTissueCase IDAgeSex
1GSM225652Temporal CortexNormalC225652M85N85M
2GSM225662Temporal CortexNormalC225662M85N85M
3GSM225664Temporal CortexNormalC225664F79N79F
4GSM225665Temporal CortexNormalC225665F85N85F
5GSM225666Temporal CortexNormalC225666F73N73F
6GSM225667Temporal CortexNormalC225667M81N81M
7GSM225668Temporal CortexNormalC225668M79N79M
8GSM225669Temporal CortexNormalC225669M77N77M
9GSM225670Temporal CortexNormalC225670M69N69M
10GSM225671Temporal CortexNormalC225671M86N86M
11GSM225672Temporal CortexNormalC225672F83N83F
12GSM225673Temporal CortexNormalC225673M78N78M
13GSM225674Temporal CortexNormalC225674M94N94M
14GSM225675Temporal CortexNormalC225675F81N81F
15GSM225676Temporal CortexNormalC225676M76N76M
16GSM225677Temporal CortexNormalC225677M83N83M
17GSM225678Temporal CortexNormalC225678M68N68M
18GSM225679Temporal CortexNormalC225679F82N82F
19GSM225680Temporal CortexNormalC225680F70N70F
20GSM225681Temporal CortexNormalC225681M86N86M
21GSM225682Temporal CortexNormalC225682M78N78M
22GSM225683Temporal CortexNormalC225683M82N82M
23GSM225684Temporal CortexNormalC225684F94N94F
24GSM225685Temporal CortexNormalC225685F87N87F
25GSM225686Temporal CortexNormalC225686M74N74M
26GSM225687Temporal CortexNormalC225687M85N85M
27GSM225688Temporal CortexNormalC225688M75N75M
28GSM225689Temporal CortexNormalC225689F86N86F
29GSM225690Temporal CortexNormalC225690M75N75M
30GSM225691Temporal CortexNormalC225691M81N81M
31GSM225692Temporal CortexNormalC225692F72N72F
32GSM225693Temporal CortexNormalC225693F81N81F
33GSM225695Temporal CortexNormalC225695M81N81M
34GSM225696Temporal CortexNormalC225696M81N81M
35GSM225697Temporal CortexNormalC225697M91N91M
36GSM225698Temporal CortexNormalC225698M84N84M
37GSM225699Temporal CortexNormalC225699M96N96M
38GSM225700Temporal CortexNormalC225700F97N97F
39GSM225701Temporal CortexNormalC225701M90N90M
40GSM225702Temporal CortexNormalC225702F67N67F
41GSM225703Temporal CortexNormalC225703F83N83F
42GSM225704Temporal CortexNormalC225704F82N82F
43GSM225705Temporal CortexNormalC225705F66N66F
44GSM225706Temporal CortexNormalC225706F72N72F
45GSM225707Temporal CortexNormalC225707F65N65F
46GSM225708Temporal CortexNormalC225708F75N75F
47GSM225709Temporal CortexNormalC225709F74N74F
48GSM225711Temporal CortexNormalC225711M68N68M
49GSM225713Temporal CortexNormalC225713F80N80F
50GSM225714Temporal CortexNormalC225714M80N80M
51GSM225715Temporal CortexNormalC225715M66N66M
52GSM225717Temporal CortexNormalC225717M88N88M
53GSM225718Temporal CortexNormalC225718F91N91F
54GSM225719Temporal CortexNormalC225719M73N73M
55GSM225720Temporal CortexNormalC225720M76N76M
56GSM225721Temporal CortexNormalC225721M75N75M
57GSM225722Temporal CortexNormalC225722F86N86F
58GSM225723Temporal CortexNormalC225723F72N72F
59GSM225724Temporal CortexNormalC225724M97N97M
60GSM225725Temporal CortexNormalC225725M86N86M
61GSM225726Temporal CortexNormalC225726M82N82M
62GSM225727Temporal CortexNormalC225727F95N95F
63GSM225728Temporal CortexNormalC225728F76N76F
64GSM225729Temporal CortexNormalC225729M76N76M
65GSM225730Temporal CortexNormalC225730M69N69M
66GSM225731Temporal CortexNormalC225731F80N80F
67GSM225732Temporal CortexNormalC225732F99N99F
68GSM225733Temporal CortexNormalC225733M68N68M
69GSM225734Temporal CortexNormalC225734M70N70M
70GSM225735Temporal CortexNormalC225735F87N87F
71GSM225736Temporal CortexNormalC225736F99N99F
72GSM225737Temporal CortexNormalC225737F88N88F
73GSM225739Temporal CortexNormalC225739M65N65M
74GSM225741Temporal CortexNormalC225741M82N82M
75GSM225742Temporal CortexNormalC225742F78N78F
76GSM225743Temporal CortexNormalC225743F85N85F
77GSM225744Temporal CortexNormalC225744F100N100F
78GSM225745Temporal CortexNormalC225745F87N87F
79GSM225746Temporal CortexNormalC225746F85N85F
80GSM225747Temporal CortexNormalC225747F97N97F
81GSM225748Temporal CortexNormalC225748M65N65M
82GSM225749Temporal CortexNormalC225749M65N65M
83GSM225751Temporal CortexNormalC225751F87N87F
84GSM225752Temporal CortexNormalC225752F85N85F
85GSM225753Temporal CortexNormalC225753M68N68M
86GSM225754Temporal CortexNormalC225754M71N71M
87GSM225755Temporal CortexNormalC225755F83N83F
88GSM225756Temporal CortexNormalC225756M76N76M
89GSM225757Temporal CortexNormalC225757M67N67M
90GSM225758Temporal CortexNormalC225758F100N100F
91GSM225759Temporal CortexNormalC225759M79N79M
92GSM225760Temporal CortexNormalC225760M74N74M
93GSM225761Temporal CortexNormalC225761F88N88F
94GSM225762Temporal CortexNormalC225762M70N70M
95GSM225763Temporal CortexNormalC225763F97N97F
96GSM225764Temporal CortexNormalC225764M69N69M
97GSM225915Temporal CortexNormalC225915F99N99F
98GSM225916Temporal CortexNormalC225916M81N81M
99GSM225917Temporal CortexNormalC225917F85N85F
100GSM225918Temporal CortexNormalC225918F82N82F
101GSM225919Temporal CortexNormalC225919M70N70M
102GSM225920Temporal CortexNormalC225920M73N73M
103GSM225921Temporal CortexNormalC225921M83N83M
104GSM225922Temporal CortexNormalC225922M74N74M
105GSM225923Temporal CortexNormalC225923M77N77M
106GSM225924Temporal CortexNormalC225924M81N81M
107GSM225925Temporal CortexNormalC225925M65N65M
108GSM225926Temporal CortexNormalC225926F73N73F
109GSM225927Temporal CortexNormalC225927F85N85F
110GSM225928Temporal CortexNormalC225928M69N69M
111GSM225929Temporal CortexNormalC225929M72N72M
112GSM225930Temporal CortexNormalC225930F76N76F
113GSM225931Temporal CortexNormalC225931M73N73M
114GSM225932Temporal CortexNormalC225932M66N66M
115GSM225933Temporal CortexNormalC225933F85N85F
116GSM225934Temporal CortexNormalC225934M87N87M
117GSM225935Temporal CortexNormalC225935F86N86F
118GSM225936Temporal CortexNormalC225936F73N73F
119GSM225937Temporal CortexNormalC225937M86N86M
120GSM225938Temporal CortexNormalC225938M72N72M
121GSM225939Temporal CortexNormalC225939F69N69F
122GSM225940Temporal CortexNormalC225940F88N88F
123GSM225941Temporal CortexNormalC225941M77N77M
124GSM225942Temporal CortexNormalC225942M96N96M
125GSM225943Temporal CortexNormalC225943F78N78F
126GSM225944Temporal CortexNormalC225944M77N77M
127GSM225945Temporal CortexNormalC225945F99N99F
128GSM225946Temporal CortexNormalC225946M78N78M
129GSM225947Temporal CortexNormalC225947F76N76F
130GSM225948Temporal CortexNormalC225948M78N78M
131GSM225949Temporal CortexNormalC225949F97N97F
132GSM225950Temporal CortexNormalC225950F86N86F
133GSM225951Temporal CortexNormalC225951M77N77M
134GSM225952Temporal CortexNormalC225952M87N87M
135GSM225953Temporal CortexNormalC225953F72N72F
136GSM225954Temporal CortexNormalC225954F91N91F
137GSM225955Temporal CortexNormalC225955F85N85F
138GSM225956Temporal CortexNormalC225956M88N88M
139GSM225957Temporal CortexNormalC225957F86N86F
140GSM225958Temporal CortexNormalC225958F93N93F
141GSM225959Temporal CortexNormalC225959M82N82M
142GSM225961Temporal CortexNormalC225961F72N72F
143GSM225962Temporal CortexNormalC225962F85N85F
144GSM225963Temporal CortexNormalC225963M70N70M
145GSM225964Temporal CortexNormalC225964F67N67F
146GSM225965Temporal CortexNormalC225965F74N74F
147GSM226034Temporal CortexNormalC226034M69N69M
148GSM226035Temporal CortexNormalC226035M85N85M
149GSM226037Temporal CortexNormalC226037M89N89M
150GSM226038Temporal CortexNormalC226038M86N86M
151GSM226039Temporal CortexNormalC226039M90N90M
152GSM226040Temporal CortexNormalC226040F94N94F
153GSM226041Temporal CortexNormalC226041F91N91F
154GSM226042Temporal CortexNormalC226042F91N91F
155GSM226044Temporal CortexNormalC226044F95N95F
156GSM226045Temporal CortexNormalC226045F95N95F
157GSM226046Temporal CortexNormalC226046F91N91F
158GSM226047Temporal CortexNormalC226047M80N80M
159GSM226048Temporal CortexNormalC226048M83N83M
160GSM226049Temporal CortexNormalC226049M67N67M
161GSM226050Temporal CortexNormalC226050M76N76M
162GSM226051Temporal CortexNormalC226051F86N86F
163GSM226052Temporal CortexNormalC226052F86N86F
164GSM226053Temporal CortexNormalC226053M83N83M
165GSM226055Temporal CortexNormalC226055M84N84M
166GSM226056Temporal CortexNormalC226056M80N80M
167GSM226082Temporal CortexNormalC226082M72N72M
168GSM226145Temporal CortexNormalC226145M67N67M
169GSM226146Temporal CortexNormalC226146F96N96F
170GSM226147Temporal CortexNormalC226147F75N75F
171GSM226148Temporal CortexNormalC226148F89N89F
172GSM226149Temporal CortexNormalC226149F86N86F
173GSM226150Temporal CortexNormalC226150M67N67M
174GSM226151Temporal CortexNormalC226151M77N77M
175GSM226154Temporal CortexNormalC226154M65N65M
176GSM226155Temporal CortexNormalC226155M69N69M
177GSM226156Temporal CortexNormalC226156M84N84M
178GSM226157Temporal CortexNormalC226157F85N85F
179GSM226158Temporal CortexNormalC226158M94N94M
180GSM226159Temporal CortexNormalC226159F89N89F
181GSM226160Temporal CortexNormalC226160M87N87M
182GSM226162Temporal CortexNormalC226162M90N90M
183GSM226163Temporal CortexNormalC226163F88N88F
184GSM226164Temporal CortexNormalC226164M94N94M
185GSM226165Temporal CortexNormalC226165F86N86F
186GSM226167Temporal CortexNormalC226167F93N93F
187GSM226168Temporal CortexNormalC226168M91N91M
188GSM388217Cortical TissueAlzheimer'sC388217F97A97F
189GSM388218Cortical TissueAlzheimer'sC388218F101A101F
190GSM388219Cortical TissueAlzheimer'sC388219M84A84M
191GSM388220Cortical TissueAlzheimer'sC388220F95A95F
192GSM388221Cortical TissueAlzheimer'sC388221F97A97F
193GSM388222Cortical TissueAlzheimer'sC388222F102A102F
194GSM388223Cortical TissueAlzheimer'sC388223M87A87M
195GSM388224Cortical TissueAlzheimer'sC388224F77A77F
196GSM388225Cortical TissueAlzheimer'sC388225M87A87M
197GSM388226Cortical TissueAlzheimer'sC388226M84A84M
198GSM388228Cortical TissueAlzheimer'sC388228F92A92F
199GSM388229Cortical TissueAlzheimer'sC388229M93A93M
200GSM388230Cortical TissueAlzheimer'sC388230F93A93F
201GSM388231Cortical TissueAlzheimer'sC388231F87A87F
202GSM388232Cortical TissueAlzheimer'sC388232F90A90F
203GSM388233Cortical TissueAlzheimer'sC388233M75A75M
204GSM388234Cortical TissueAlzheimer'sC388234M92A92M
205GSM388235Cortical TissueAlzheimer'sC388235M83A83M
206GSM388236Cortical TissueAlzheimer'sC388236M88A88M
207GSM388237Cortical TissueAlzheimer'sC388237M89A89M
208GSM388238Cortical TissueAlzheimer'sC388238F74A74F
209GSM388239Cortical TissueAlzheimer'sC388239F79A79F
210GSM388240Cortical TissueAlzheimer'sC388240M80A80M
211GSM388241Cortical TissueAlzheimer'sC388241F97A97F
212GSM388242Cortical TissueAlzheimer'sC388242M87A87M
213GSM388243Cortical TissueAlzheimer'sC388243F89A89F
214GSM388244Cortical TissueAlzheimer'sC388244F90A90F
215GSM388245Cortical TissueAlzheimer'sC388245M90A90M
216GSM388246Cortical TissueAlzheimer'sC388246M78A78M
217GSM388247Cortical TissueAlzheimer'sC388247F80A80F
218GSM388248Cortical TissueAlzheimer'sC388248F79A79F
219GSM388249Cortical TissueAlzheimer'sC388249F87A87F
220GSM388250Cortical TissueAlzheimer'sC388250F88A88F
221GSM388251Cortical TissueAlzheimer'sC388251M86A86M
222GSM388252Cortical TissueAlzheimer'sC388252F74A74F
223GSM388253Cortical TissueAlzheimer'sC388253F72A72F
224GSM388254Cortical TissueAlzheimer'sC388254M81A81M
225GSM388255Cortical TissueAlzheimer'sC388255F68A68F
226GSM388256Cortical TissueAlzheimer'sC388256F81A81F
227GSM388257Cortical TissueAlzheimer'sC388257F82A82F
228GSM388258Cortical TissueAlzheimer'sC388258M78A78M
229GSM388259Cortical TissueAlzheimer'sC388259M74A74M
230GSM388260Cortical TissueAlzheimer'sC388260M88A88M
231GSM388261Cortical TissueAlzheimer'sC388261F78A78F
232GSM388262Cortical TissueAlzheimer'sC388262M83A83M
233GSM388263Cortical TissueAlzheimer'sC388263M83A83M
234GSM388264Cortical TissueAlzheimer'sC388264M80A80M
235GSM388265Cortical TissueAlzheimer'sC388265M84A84M
236GSM388266Cortical TissueAlzheimer'sC388266F79A79F
237GSM388267Cortical TissueAlzheimer'sC388267F86A86F
238GSM388268Cortical TissueAlzheimer'sC388268M92A92M
239GSM388269Cortical TissueAlzheimer'sC388269F81A81F
240GSM388270Cortical TissueAlzheimer'sC388270F79A79F
241GSM388271Cortical TissueAlzheimer'sC388271M74A74M
242GSM388272Cortical TissueAlzheimer'sC388272F73A73F
243GSM388273Cortical TissueAlzheimer'sC388273M87A87M
244GSM388274Cortical TissueAlzheimer'sC388274F86A86F
245GSM388275Cortical TissueAlzheimer'sC388275F86A86F
246GSM388276Cortical TissueAlzheimer'sC388276F87A87F
247GSM388277Cortical TissueAlzheimer'sC388277F92A92F
248GSM388278Cortical TissueAlzheimer'sC388278F78A78F
249GSM388279Cortical TissueAlzheimer'sC388279F94A94F
250GSM388281Cortical TissueAlzheimer'sC388281F94A94F
251GSM388282Cortical TissueAlzheimer'sC388282M76A76M
252GSM388284Cortical TissueAlzheimer'sC388284M91A91M
253GSM388285Cortical TissueAlzheimer'sC388285M86A86M
254GSM388286Cortical TissueAlzheimer'sC388286M77A77M
255GSM388287Cortical TissueAlzheimer'sC388287M82A82M
256GSM388288Cortical TissueAlzheimer'sC388288M78A78M
257GSM388289Cortical TissueAlzheimer'sC388289M79A79M
258GSM388290Cortical TissueAlzheimer'sC388290F84A84F
259GSM388291Cortical TissueAlzheimer'sC388291F87A87F
260GSM388292Cortical TissueAlzheimer'sC388292F86A86F
261GSM388294Cortical TissueAlzheimer'sC388294M83A83M
262GSM388295Cortical TissueAlzheimer'sC388295M83A83M
263GSM388296Cortical TissueAlzheimer'sC388296M81A81M
264GSM388297Cortical TissueAlzheimer'sC388297F93A93F
265GSM388298Cortical TissueAlzheimer'sC388298M71A71M
266GSM388299Cortical TissueAlzheimer'sC388299M78A78M
267GSM388300Cortical TissueAlzheimer'sC388300F75A75F
268GSM388301Cortical TissueAlzheimer'sC388301F84A84F
269GSM388302Cortical TissueAlzheimer'sC388302M73A73M
270GSM388303Cortical TissueAlzheimer'sC388303F89A89F
271GSM388304Cortical TissueAlzheimer'sC388304FNAANAF
272GSM388305Cortical TissueAlzheimer'sC388305M69A69M
273GSM388306Cortical TissueAlzheimer'sC388306M83A83M
274GSM388307Cortical TissueAlzheimer'sC388307M71A71M
275GSM388308Cortical TissueAlzheimer'sC388308F86A86F
276GSM388309Cortical TissueAlzheimer'sC388309M82A82M
277GSM388310Cortical TissueAlzheimer'sC388310FNAANAF
278GSM388311Cortical TissueAlzheimer'sC388311M88A88M
279GSM388312Cortical TissueAlzheimer'sC388312M77A77M
280GSM388313Cortical TissueAlzheimer'sC388313M85A85M
281GSM388314Cortical TissueAlzheimer'sC388314F81A81F
282GSM388315Cortical TissueAlzheimer'sC388315F86A86F
283GSM388316Cortical TissueAlzheimer'sC388316M89A89M
284GSM388317Cortical TissueAlzheimer'sC388317F73A73F
285GSM388318Cortical TissueAlzheimer'sC388318F96A96F
286GSM388319Cortical TissueAlzheimer'sC388319M73A73M
287GSM388320Cortical TissueAlzheimer'sC388320M81A81M
288GSM388321Cortical TissueAlzheimer'sC388321F84A84F
289GSM388322Cortical TissueAlzheimer'sC388322F93A93F
290GSM388323Cortical TissueAlzheimer'sC388323F82A82F
291GSM388324Cortical TissueAlzheimer'sC388324M76A76M
292GSM388325Cortical TissueAlzheimer'sC388325M77A77M
293GSM388326Cortical TissueAlzheimer'sC388326F86A86F
294GSM388327Cortical TissueAlzheimer'sC388327F85A85F
295GSM388328Cortical TissueAlzheimer'sC388328M83A83M
296GSM388329Cortical TissueAlzheimer'sC388329M76A76M
297GSM388330Cortical TissueAlzheimer'sC388330M81A81M
298GSM388331Cortical TissueAlzheimer'sC388331M79A79M
299GSM388332Cortical TissueAlzheimer'sC388332M81A81M
300GSM388333Cortical TissueAlzheimer'sC388333F78A78F
301GSM388334Cortical TissueAlzheimer'sC388334M80A80M
302GSM388335Cortical TissueAlzheimer'sC388335M84A84M
303GSM388336Cortical TissueAlzheimer'sC388336F85A85F
304GSM388337Cortical TissueAlzheimer'sC388337M75A75M
305GSM388338Cortical TissueAlzheimer'sC388338F80A80F
306GSM388339Cortical TissueAlzheimer'sC388339F97A97F
307GSM388340Cortical TissueAlzheimer'sC388340F82A82F
308GSM388341Cortical TissueAlzheimer'sC388341M82A82M
309GSM388342Cortical TissueAlzheimer'sC388342M77A77M
310GSM388343Cortical TissueAlzheimer'sC388343M81A81M
311GSM388345Cortical TissueAlzheimer'sC388345F96A96F
312GSM388346Cortical TissueAlzheimer'sC388346F90A90F
313GSM388347Cortical TissueAlzheimer'sC388347M86A86M
314GSM388348Cortical TissueAlzheimer'sC388348M88A88M
315GSM388349Cortical TissueAlzheimer'sC388349F90A90F
316GSM388350Cortical TissueAlzheimer'sC388350F90A90F
317GSM388351Cortical TissueAlzheimer'sC388351F84A84F
318GSM388352Cortical TissueAlzheimer'sC388352M84A84M
319GSM388353Cortical TissueAlzheimer'sC388353F91A91F
320GSM388354Cortical TissueAlzheimer'sC388354F81A81F
321GSM388355Cortical TissueAlzheimer'sC388355F84A84F
322GSM388356Cortical TissueAlzheimer'sC388356M80A80M
323GSM388357Cortical TissueAlzheimer'sC388357M81A81M
324GSM388358Cortical TissueAlzheimer'sC388358F87A87F
325GSM388359Cortical TissueAlzheimer'sC388359M85A85M
326GSM388360Cortical TissueAlzheimer'sC388360F90A90F
327GSM388361Cortical TissueAlzheimer'sC388361M79A79M
328GSM388362Cortical TissueAlzheimer'sC388362F87A87F
329GSM388363Cortical TissueAlzheimer'sC388363M75A75M
330GSM388364Cortical TissueAlzheimer'sC388364F92A92F
331GSM388365Cortical TissueAlzheimer'sC388365F84A84F
332GSM388366Cortical TissueAlzheimer'sC388366M75A75M
333GSM388367Cortical TissueAlzheimer'sC388367F76A76F
334GSM388368Cortical TissueAlzheimer'sC388368F86A86F
335GSM388369Cortical TissueAlzheimer'sC388369M82A82M
336GSM388370Cortical TissueAlzheimer'sC388370M76A76M
337GSM388371Cortical TissueAlzheimer'sC388371F81A81F
338GSM388372Cortical TissueAlzheimer'sC388372F80A80F
339GSM388373Cortical TissueAlzheimer'sC388373M83A83M
340GSM388374Cortical TissueAlzheimer'sC388374F83A83F
341GSM388375Cortical TissueAlzheimer'sC388375F84A84F
342GSM388376Cortical TissueAlzheimer'sC388376M93A93M
343GSM388377Cortical TissueAlzheimer'sC388377F92A92F
344GSM388378Cortical TissueAlzheimer'sC388378M78A78M
345GSM388379Cortical TissueAlzheimer'sC388379M90A90M
346GSM388380Cortical TissueAlzheimer'sC388380M83A83M
347GSM388381Cortical TissueAlzheimer'sC388381M79A79M
348GSM388382Cortical TissueAlzheimer'sC388382M84A84M
349GSM388383Cortical TissueAlzheimer'sC388383F90A90F
350GSM388384Cortical TissueAlzheimer'sC388384F88A88F
351GSM388385Cortical TissueAlzheimer'sC388385M77A77M
352GSM388386Cortical TissueAlzheimer'sC388386F80A80F
353GSM388387Cortical TissueAlzheimer'sC388387M87A87M
354GSM388388Cortical TissueAlzheimer'sC388388M86A86M
355GSM388389Cortical TissueAlzheimer'sC388389M74A74M
356GSM388390Cortical TissueAlzheimer'sC388390F86A86F
357GSM388391Cortical TissueAlzheimer'sC388391F81A81F
358GSM388392Cortical TissueAlzheimer'sC388392F73A73F
359GSM388393Cortical TissueAlzheimer'sC388393M83A83M
360GSM388394Cortical TissueAlzheimer'sC388394M86A86M
361GSM388395Cortical TissueAlzheimer'sC388395F86A86F
362GSM388396Cortical TissueAlzheimer'sC388396M78A78M
363GSM388397Cortical TissueAlzheimer'sC388397M83A83M
+
diff --git a/general/datasets/Gse15222_f_a_ri_0409/contributors.rtf b/general/datasets/Gse15222_f_a_ri_0409/contributors.rtf new file mode 100644 index 0000000..72c2296 --- /dev/null +++ b/general/datasets/Gse15222_f_a_ri_0409/contributors.rtf @@ -0,0 +1 @@ +

Webster J, Gibbs R, Myers A

diff --git a/general/datasets/Gse15222_f_a_ri_0409/experiment-design.rtf b/general/datasets/Gse15222_f_a_ri_0409/experiment-design.rtf new file mode 100644 index 0000000..07d1b52 --- /dev/null +++ b/general/datasets/Gse15222_f_a_ri_0409/experiment-design.rtf @@ -0,0 +1,5 @@ +

Expression profiling by array

+ +

We recently surveyed the relationship between the human brain transcriptome and genome in a series of neuropathologically normal postmortem samples. We now have analyzed additional samples with a confirmed pathologic diagnosis of late onset Alzheimer's disease (LOAD, final n=187 controls, 176 cases). Nine percent of the cortical transcripts we analyzed had expression profiles correlated with their genotypes in the combined cohort and approximately 5% of transcripts had SNP-transcript relationships that could distinguish LOAD samples. Two of these transcripts have been previously implicated in LOAD candidate gene SNP-expression screens. This study shows how the relationship between common inherited genetic variants and brain transcript expression can be used in the study of human brain disorders. We suggest that studying the transcriptome as a quantitative endo-phenotype has greater power to find risk SNPs influencing expression than the use of discrete diagnostic categories such as presence or absence of disease. see DOI:10.1016/j.ajhg.2009.03.011 for further details and complete author list.

+ +

Expression quantitative trait loci study using human brain from 363 cortical samples. Affymetrix 500K chip for genotyping, Illumina Sentrix Human-ref 8 bead array chip for expression. Genotyping data will be available at dbGAP.

diff --git a/general/datasets/Gse15222_f_a_ri_0409/experiment-type.rtf b/general/datasets/Gse15222_f_a_ri_0409/experiment-type.rtf new file mode 100644 index 0000000..0546e04 --- /dev/null +++ b/general/datasets/Gse15222_f_a_ri_0409/experiment-type.rtf @@ -0,0 +1 @@ +Expression profiling by array \ No newline at end of file diff --git a/general/datasets/Gse15222_f_a_ri_0409/notes.rtf b/general/datasets/Gse15222_f_a_ri_0409/notes.rtf new file mode 100644 index 0000000..e7bd85c --- /dev/null +++ b/general/datasets/Gse15222_f_a_ri_0409/notes.rtf @@ -0,0 +1,6 @@ +

Access to the original data from Dr. Myers' laboratory
+or GEO GSE15222
+PMI = Post Mortem Interval
+Cannot find this record in the GEO website: WGACON-120
+
+This data is based on May 2004 (NCBI35/hg17).

diff --git a/general/datasets/Gse15222_f_a_ri_0409/platform.rtf b/general/datasets/Gse15222_f_a_ri_0409/platform.rtf new file mode 100644 index 0000000..5bcda8b --- /dev/null +++ b/general/datasets/Gse15222_f_a_ri_0409/platform.rtf @@ -0,0 +1,5 @@ +

Illumina Human 50 mer probes. Total of 24357 probes according to Myers et al. A total of 24354 probes included in this GeneNetwork file.

+ +

From the Methods section of the paper:

+ +

Genotyping and Expression Profiling DNA was hybridized to the Affymetrix GeneChip Human Mapping 500K Array Set (502,627 SNPs) as previously described.11,12 Genotypes were extracted with the use of both SNiPer-HD13 and BRLMM (Affymetrix, Santa Clara, CA) algorithms. Genotypes that exhibited less than 98% concordance between calls were excluded. SNPs with call rates less than 90% were excluded from the analysis. HardyWeinberg equilibrium (HWE) was assessed with exact tests and the PLINK analysis toolset.14 SNPs with HWE exact-test p values less than 0.05, as well as SNPs with minor-allele frequencies less than 1%, were excluded. Allele calls had a mean of 97% and a range of 90%–99%. cRNA was hybridized to Illumina Human Refseq-8 Expression BeadChip (24,357 transcripts) via standard protocols. Expression profiles were extracted and rank invariant normalized15–17 with the use of the BeadStudio software available from Illumina, with the Illumina custom error model used. Rankinvariant-normalized expression data were log10 transformed, and missing data were encoded as missing, rather than as a zero level of expression.

diff --git a/general/datasets/Gse15222_f_a_ri_0409/summary.rtf b/general/datasets/Gse15222_f_a_ri_0409/summary.rtf new file mode 100644 index 0000000..e99fa9e --- /dev/null +++ b/general/datasets/Gse15222_f_a_ri_0409/summary.rtf @@ -0,0 +1,9 @@ +

Myers and colleagues generated massive neocortical transcriptome data sets for a set of unrelated elderly neurologically and neuropathologically normal humans and from confirmed late onset Alzheimer's disease patients (LOAD, n = 187 normal and 176 LOAD cases, see DOI:10.1016/j.ajhg.2009.03.011 for detail). They used an Illumina Sentrix Bead array (HumanRef-8) that measures expression of approximately 19,730 curated RefSeq sequences (Human Build 34).

+ +

Case identifiers: All case identifiers (IDs) in GeneNetwork begin with a capital C followed by a six digit GEO identifier, followed by the sex and age in years. Non-Alzheimer cases are labeled with the suffix letter N: C225652M85N. Alzheimer cases are labeled with the suffix letter A: C388217F97A.

+ +

Data were initially downloaded from the NCBI GEO archive under the experiment ID GSE15222. All data were generated using the Illumina HumanRef-8 expression BeadChip (GPL2700) v2 Rev0. This data set in GeneNetwork includes data for 24,354 probes. We have realigned the 50-mer sequences by BLAT to the latest version of the human genome (Feb 2009, hg19) and reannotated the array (August 2009). The annotation in GN will differ from that provided in GEO for this platform. We were unable to obtain 50-mer sequences for several thousand probes (e.g., HTT), and these probes have therefore not been realigned to the human genome.

+ +

The GEO data set was processed by Myers and colleagues using Illumina's Rank Invariant transform. We performed a series of QC and renormalization steps to the data to allow more facile comparison to other data sets in GeneNetwork. In brief, data is log2 transformed. We recentered each array to a mean expression of 8 units and a standard deviation of 2 units (2z + 8 transform). The values are therefore modified z scores and each unit represents roughly a two-fold difference in expression. Average expression across all 363 cases range from a low of 6 units (e.g., SYT15) to a high of 19 units for ARSK. APOE has an average expression of 15 units and APP has an average expression of 11.5 units.. The distribution is far from normal with a great excess of measurements of genes with low to moderate expression clustered between 6.5 and 8.5 units.

+ +

A small number of arrays (n = 6, GSM226040, GSM226041, GSM226042, GSM226044, GSM226045, GSM226046) had a different distribution from the great majority of other arrays. This was probably due to a batch processing effect. Members of this minority group belonged to both normal and LOAD cases. This putative batch effect has been eliminated in the GeneNetwork rendition of the Myers data. To eliminate the putative batch effect, we simply computed a mean offset for each probe in the "minority set" relative to the remaining "majority set" and added or subtracted this offset to force the mean of each probe in the minority set to conform to mean of the same probe in the majority set.

diff --git a/general/datasets/Gse15222_f_n_ri_0409/acknowledgment.rtf b/general/datasets/Gse15222_f_n_ri_0409/acknowledgment.rtf new file mode 100644 index 0000000..c203ed9 --- /dev/null +++ b/general/datasets/Gse15222_f_n_ri_0409/acknowledgment.rtf @@ -0,0 +1 @@ +

http://labs.med.miami.edu/myers

diff --git a/general/datasets/Gse15222_f_n_ri_0409/cases.rtf b/general/datasets/Gse15222_f_n_ri_0409/cases.rtf new file mode 100644 index 0000000..6933d14 --- /dev/null +++ b/general/datasets/Gse15222_f_n_ri_0409/cases.rtf @@ -0,0 +1,3290 @@ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexGEO SeriesOrgan RegionTissueCase IDAgeSex
1GSM225652Temporal CortexNormalC225652M85N85M
2GSM225662Temporal CortexNormalC225662M85N85M
3GSM225664Temporal CortexNormalC225664F79N79F
4GSM225665Temporal CortexNormalC225665F85N85F
5GSM225666Temporal CortexNormalC225666F73N73F
6GSM225667Temporal CortexNormalC225667M81N81M
7GSM225668Temporal CortexNormalC225668M79N79M
8GSM225669Temporal CortexNormalC225669M77N77M
9GSM225670Temporal CortexNormalC225670M69N69M
10GSM225671Temporal CortexNormalC225671M86N86M
11GSM225672Temporal CortexNormalC225672F83N83F
12GSM225673Temporal CortexNormalC225673M78N78M
13GSM225674Temporal CortexNormalC225674M94N94M
14GSM225675Temporal CortexNormalC225675F81N81F
15GSM225676Temporal CortexNormalC225676M76N76M
16GSM225677Temporal CortexNormalC225677M83N83M
17GSM225678Temporal CortexNormalC225678M68N68M
18GSM225679Temporal CortexNormalC225679F82N82F
19GSM225680Temporal CortexNormalC225680F70N70F
20GSM225681Temporal CortexNormalC225681M86N86M
21GSM225682Temporal CortexNormalC225682M78N78M
22GSM225683Temporal CortexNormalC225683M82N82M
23GSM225684Temporal CortexNormalC225684F94N94F
24GSM225685Temporal CortexNormalC225685F87N87F
25GSM225686Temporal CortexNormalC225686M74N74M
26GSM225687Temporal CortexNormalC225687M85N85M
27GSM225688Temporal CortexNormalC225688M75N75M
28GSM225689Temporal CortexNormalC225689F86N86F
29GSM225690Temporal CortexNormalC225690M75N75M
30GSM225691Temporal CortexNormalC225691M81N81M
31GSM225692Temporal CortexNormalC225692F72N72F
32GSM225693Temporal CortexNormalC225693F81N81F
33GSM225695Temporal CortexNormalC225695M81N81M
34GSM225696Temporal CortexNormalC225696M81N81M
35GSM225697Temporal CortexNormalC225697M91N91M
36GSM225698Temporal CortexNormalC225698M84N84M
37GSM225699Temporal CortexNormalC225699M96N96M
38GSM225700Temporal CortexNormalC225700F97N97F
39GSM225701Temporal CortexNormalC225701M90N90M
40GSM225702Temporal CortexNormalC225702F67N67F
41GSM225703Temporal CortexNormalC225703F83N83F
42GSM225704Temporal CortexNormalC225704F82N82F
43GSM225705Temporal CortexNormalC225705F66N66F
44GSM225706Temporal CortexNormalC225706F72N72F
45GSM225707Temporal CortexNormalC225707F65N65F
46GSM225708Temporal CortexNormalC225708F75N75F
47GSM225709Temporal CortexNormalC225709F74N74F
48GSM225711Temporal CortexNormalC225711M68N68M
49GSM225713Temporal CortexNormalC225713F80N80F
50GSM225714Temporal CortexNormalC225714M80N80M
51GSM225715Temporal CortexNormalC225715M66N66M
52GSM225717Temporal CortexNormalC225717M88N88M
53GSM225718Temporal CortexNormalC225718F91N91F
54GSM225719Temporal CortexNormalC225719M73N73M
55GSM225720Temporal CortexNormalC225720M76N76M
56GSM225721Temporal CortexNormalC225721M75N75M
57GSM225722Temporal CortexNormalC225722F86N86F
58GSM225723Temporal CortexNormalC225723F72N72F
59GSM225724Temporal CortexNormalC225724M97N97M
60GSM225725Temporal CortexNormalC225725M86N86M
61GSM225726Temporal CortexNormalC225726M82N82M
62GSM225727Temporal CortexNormalC225727F95N95F
63GSM225728Temporal CortexNormalC225728F76N76F
64GSM225729Temporal CortexNormalC225729M76N76M
65GSM225730Temporal CortexNormalC225730M69N69M
66GSM225731Temporal CortexNormalC225731F80N80F
67GSM225732Temporal CortexNormalC225732F99N99F
68GSM225733Temporal CortexNormalC225733M68N68M
69GSM225734Temporal CortexNormalC225734M70N70M
70GSM225735Temporal CortexNormalC225735F87N87F
71GSM225736Temporal CortexNormalC225736F99N99F
72GSM225737Temporal CortexNormalC225737F88N88F
73GSM225739Temporal CortexNormalC225739M65N65M
74GSM225741Temporal CortexNormalC225741M82N82M
75GSM225742Temporal CortexNormalC225742F78N78F
76GSM225743Temporal CortexNormalC225743F85N85F
77GSM225744Temporal CortexNormalC225744F100N100F
78GSM225745Temporal CortexNormalC225745F87N87F
79GSM225746Temporal CortexNormalC225746F85N85F
80GSM225747Temporal CortexNormalC225747F97N97F
81GSM225748Temporal CortexNormalC225748M65N65M
82GSM225749Temporal CortexNormalC225749M65N65M
83GSM225751Temporal CortexNormalC225751F87N87F
84GSM225752Temporal CortexNormalC225752F85N85F
85GSM225753Temporal CortexNormalC225753M68N68M
86GSM225754Temporal CortexNormalC225754M71N71M
87GSM225755Temporal CortexNormalC225755F83N83F
88GSM225756Temporal CortexNormalC225756M76N76M
89GSM225757Temporal CortexNormalC225757M67N67M
90GSM225758Temporal CortexNormalC225758F100N100F
91GSM225759Temporal CortexNormalC225759M79N79M
92GSM225760Temporal CortexNormalC225760M74N74M
93GSM225761Temporal CortexNormalC225761F88N88F
94GSM225762Temporal CortexNormalC225762M70N70M
95GSM225763Temporal CortexNormalC225763F97N97F
96GSM225764Temporal CortexNormalC225764M69N69M
97GSM225915Temporal CortexNormalC225915F99N99F
98GSM225916Temporal CortexNormalC225916M81N81M
99GSM225917Temporal CortexNormalC225917F85N85F
100GSM225918Temporal CortexNormalC225918F82N82F
101GSM225919Temporal CortexNormalC225919M70N70M
102GSM225920Temporal CortexNormalC225920M73N73M
103GSM225921Temporal CortexNormalC225921M83N83M
104GSM225922Temporal CortexNormalC225922M74N74M
105GSM225923Temporal CortexNormalC225923M77N77M
106GSM225924Temporal CortexNormalC225924M81N81M
107GSM225925Temporal CortexNormalC225925M65N65M
108GSM225926Temporal CortexNormalC225926F73N73F
109GSM225927Temporal CortexNormalC225927F85N85F
110GSM225928Temporal CortexNormalC225928M69N69M
111GSM225929Temporal CortexNormalC225929M72N72M
112GSM225930Temporal CortexNormalC225930F76N76F
113GSM225931Temporal CortexNormalC225931M73N73M
114GSM225932Temporal CortexNormalC225932M66N66M
115GSM225933Temporal CortexNormalC225933F85N85F
116GSM225934Temporal CortexNormalC225934M87N87M
117GSM225935Temporal CortexNormalC225935F86N86F
118GSM225936Temporal CortexNormalC225936F73N73F
119GSM225937Temporal CortexNormalC225937M86N86M
120GSM225938Temporal CortexNormalC225938M72N72M
121GSM225939Temporal CortexNormalC225939F69N69F
122GSM225940Temporal CortexNormalC225940F88N88F
123GSM225941Temporal CortexNormalC225941M77N77M
124GSM225942Temporal CortexNormalC225942M96N96M
125GSM225943Temporal CortexNormalC225943F78N78F
126GSM225944Temporal CortexNormalC225944M77N77M
127GSM225945Temporal CortexNormalC225945F99N99F
128GSM225946Temporal CortexNormalC225946M78N78M
129GSM225947Temporal CortexNormalC225947F76N76F
130GSM225948Temporal CortexNormalC225948M78N78M
131GSM225949Temporal CortexNormalC225949F97N97F
132GSM225950Temporal CortexNormalC225950F86N86F
133GSM225951Temporal CortexNormalC225951M77N77M
134GSM225952Temporal CortexNormalC225952M87N87M
135GSM225953Temporal CortexNormalC225953F72N72F
136GSM225954Temporal CortexNormalC225954F91N91F
137GSM225955Temporal CortexNormalC225955F85N85F
138GSM225956Temporal CortexNormalC225956M88N88M
139GSM225957Temporal CortexNormalC225957F86N86F
140GSM225958Temporal CortexNormalC225958F93N93F
141GSM225959Temporal CortexNormalC225959M82N82M
142GSM225961Temporal CortexNormalC225961F72N72F
143GSM225962Temporal CortexNormalC225962F85N85F
144GSM225963Temporal CortexNormalC225963M70N70M
145GSM225964Temporal CortexNormalC225964F67N67F
146GSM225965Temporal CortexNormalC225965F74N74F
147GSM226034Temporal CortexNormalC226034M69N69M
148GSM226035Temporal CortexNormalC226035M85N85M
149GSM226037Temporal CortexNormalC226037M89N89M
150GSM226038Temporal CortexNormalC226038M86N86M
151GSM226039Temporal CortexNormalC226039M90N90M
152GSM226040Temporal CortexNormalC226040F94N94F
153GSM226041Temporal CortexNormalC226041F91N91F
154GSM226042Temporal CortexNormalC226042F91N91F
155GSM226044Temporal CortexNormalC226044F95N95F
156GSM226045Temporal CortexNormalC226045F95N95F
157GSM226046Temporal CortexNormalC226046F91N91F
158GSM226047Temporal CortexNormalC226047M80N80M
159GSM226048Temporal CortexNormalC226048M83N83M
160GSM226049Temporal CortexNormalC226049M67N67M
161GSM226050Temporal CortexNormalC226050M76N76M
162GSM226051Temporal CortexNormalC226051F86N86F
163GSM226052Temporal CortexNormalC226052F86N86F
164GSM226053Temporal CortexNormalC226053M83N83M
165GSM226055Temporal CortexNormalC226055M84N84M
166GSM226056Temporal CortexNormalC226056M80N80M
167GSM226082Temporal CortexNormalC226082M72N72M
168GSM226145Temporal CortexNormalC226145M67N67M
169GSM226146Temporal CortexNormalC226146F96N96F
170GSM226147Temporal CortexNormalC226147F75N75F
171GSM226148Temporal CortexNormalC226148F89N89F
172GSM226149Temporal CortexNormalC226149F86N86F
173GSM226150Temporal CortexNormalC226150M67N67M
174GSM226151Temporal CortexNormalC226151M77N77M
175GSM226154Temporal CortexNormalC226154M65N65M
176GSM226155Temporal CortexNormalC226155M69N69M
177GSM226156Temporal CortexNormalC226156M84N84M
178GSM226157Temporal CortexNormalC226157F85N85F
179GSM226158Temporal CortexNormalC226158M94N94M
180GSM226159Temporal CortexNormalC226159F89N89F
181GSM226160Temporal CortexNormalC226160M87N87M
182GSM226162Temporal CortexNormalC226162M90N90M
183GSM226163Temporal CortexNormalC226163F88N88F
184GSM226164Temporal CortexNormalC226164M94N94M
185GSM226165Temporal CortexNormalC226165F86N86F
186GSM226167Temporal CortexNormalC226167F93N93F
187GSM226168Temporal CortexNormalC226168M91N91M
188GSM388217Cortical TissueAlzheimer'sC388217F97A97F
189GSM388218Cortical TissueAlzheimer'sC388218F101A101F
190GSM388219Cortical TissueAlzheimer'sC388219M84A84M
191GSM388220Cortical TissueAlzheimer'sC388220F95A95F
192GSM388221Cortical TissueAlzheimer'sC388221F97A97F
193GSM388222Cortical TissueAlzheimer'sC388222F102A102F
194GSM388223Cortical TissueAlzheimer'sC388223M87A87M
195GSM388224Cortical TissueAlzheimer'sC388224F77A77F
196GSM388225Cortical TissueAlzheimer'sC388225M87A87M
197GSM388226Cortical TissueAlzheimer'sC388226M84A84M
198GSM388228Cortical TissueAlzheimer'sC388228F92A92F
199GSM388229Cortical TissueAlzheimer'sC388229M93A93M
200GSM388230Cortical TissueAlzheimer'sC388230F93A93F
201GSM388231Cortical TissueAlzheimer'sC388231F87A87F
202GSM388232Cortical TissueAlzheimer'sC388232F90A90F
203GSM388233Cortical TissueAlzheimer'sC388233M75A75M
204GSM388234Cortical TissueAlzheimer'sC388234M92A92M
205GSM388235Cortical TissueAlzheimer'sC388235M83A83M
206GSM388236Cortical TissueAlzheimer'sC388236M88A88M
207GSM388237Cortical TissueAlzheimer'sC388237M89A89M
208GSM388238Cortical TissueAlzheimer'sC388238F74A74F
209GSM388239Cortical TissueAlzheimer'sC388239F79A79F
210GSM388240Cortical TissueAlzheimer'sC388240M80A80M
211GSM388241Cortical TissueAlzheimer'sC388241F97A97F
212GSM388242Cortical TissueAlzheimer'sC388242M87A87M
213GSM388243Cortical TissueAlzheimer'sC388243F89A89F
214GSM388244Cortical TissueAlzheimer'sC388244F90A90F
215GSM388245Cortical TissueAlzheimer'sC388245M90A90M
216GSM388246Cortical TissueAlzheimer'sC388246M78A78M
217GSM388247Cortical TissueAlzheimer'sC388247F80A80F
218GSM388248Cortical TissueAlzheimer'sC388248F79A79F
219GSM388249Cortical TissueAlzheimer'sC388249F87A87F
220GSM388250Cortical TissueAlzheimer'sC388250F88A88F
221GSM388251Cortical TissueAlzheimer'sC388251M86A86M
222GSM388252Cortical TissueAlzheimer'sC388252F74A74F
223GSM388253Cortical TissueAlzheimer'sC388253F72A72F
224GSM388254Cortical TissueAlzheimer'sC388254M81A81M
225GSM388255Cortical TissueAlzheimer'sC388255F68A68F
226GSM388256Cortical TissueAlzheimer'sC388256F81A81F
227GSM388257Cortical TissueAlzheimer'sC388257F82A82F
228GSM388258Cortical TissueAlzheimer'sC388258M78A78M
229GSM388259Cortical TissueAlzheimer'sC388259M74A74M
230GSM388260Cortical TissueAlzheimer'sC388260M88A88M
231GSM388261Cortical TissueAlzheimer'sC388261F78A78F
232GSM388262Cortical TissueAlzheimer'sC388262M83A83M
233GSM388263Cortical TissueAlzheimer'sC388263M83A83M
234GSM388264Cortical TissueAlzheimer'sC388264M80A80M
235GSM388265Cortical TissueAlzheimer'sC388265M84A84M
236GSM388266Cortical TissueAlzheimer'sC388266F79A79F
237GSM388267Cortical TissueAlzheimer'sC388267F86A86F
238GSM388268Cortical TissueAlzheimer'sC388268M92A92M
239GSM388269Cortical TissueAlzheimer'sC388269F81A81F
240GSM388270Cortical TissueAlzheimer'sC388270F79A79F
241GSM388271Cortical TissueAlzheimer'sC388271M74A74M
242GSM388272Cortical TissueAlzheimer'sC388272F73A73F
243GSM388273Cortical TissueAlzheimer'sC388273M87A87M
244GSM388274Cortical TissueAlzheimer'sC388274F86A86F
245GSM388275Cortical TissueAlzheimer'sC388275F86A86F
246GSM388276Cortical TissueAlzheimer'sC388276F87A87F
247GSM388277Cortical TissueAlzheimer'sC388277F92A92F
248GSM388278Cortical TissueAlzheimer'sC388278F78A78F
249GSM388279Cortical TissueAlzheimer'sC388279F94A94F
250GSM388281Cortical TissueAlzheimer'sC388281F94A94F
251GSM388282Cortical TissueAlzheimer'sC388282M76A76M
252GSM388284Cortical TissueAlzheimer'sC388284M91A91M
253GSM388285Cortical TissueAlzheimer'sC388285M86A86M
254GSM388286Cortical TissueAlzheimer'sC388286M77A77M
255GSM388287Cortical TissueAlzheimer'sC388287M82A82M
256GSM388288Cortical TissueAlzheimer'sC388288M78A78M
257GSM388289Cortical TissueAlzheimer'sC388289M79A79M
258GSM388290Cortical TissueAlzheimer'sC388290F84A84F
259GSM388291Cortical TissueAlzheimer'sC388291F87A87F
260GSM388292Cortical TissueAlzheimer'sC388292F86A86F
261GSM388294Cortical TissueAlzheimer'sC388294M83A83M
262GSM388295Cortical TissueAlzheimer'sC388295M83A83M
263GSM388296Cortical TissueAlzheimer'sC388296M81A81M
264GSM388297Cortical TissueAlzheimer'sC388297F93A93F
265GSM388298Cortical TissueAlzheimer'sC388298M71A71M
266GSM388299Cortical TissueAlzheimer'sC388299M78A78M
267GSM388300Cortical TissueAlzheimer'sC388300F75A75F
268GSM388301Cortical TissueAlzheimer'sC388301F84A84F
269GSM388302Cortical TissueAlzheimer'sC388302M73A73M
270GSM388303Cortical TissueAlzheimer'sC388303F89A89F
271GSM388304Cortical TissueAlzheimer'sC388304FNAANAF
272GSM388305Cortical TissueAlzheimer'sC388305M69A69M
273GSM388306Cortical TissueAlzheimer'sC388306M83A83M
274GSM388307Cortical TissueAlzheimer'sC388307M71A71M
275GSM388308Cortical TissueAlzheimer'sC388308F86A86F
276GSM388309Cortical TissueAlzheimer'sC388309M82A82M
277GSM388310Cortical TissueAlzheimer'sC388310FNAANAF
278GSM388311Cortical TissueAlzheimer'sC388311M88A88M
279GSM388312Cortical TissueAlzheimer'sC388312M77A77M
280GSM388313Cortical TissueAlzheimer'sC388313M85A85M
281GSM388314Cortical TissueAlzheimer'sC388314F81A81F
282GSM388315Cortical TissueAlzheimer'sC388315F86A86F
283GSM388316Cortical TissueAlzheimer'sC388316M89A89M
284GSM388317Cortical TissueAlzheimer'sC388317F73A73F
285GSM388318Cortical TissueAlzheimer'sC388318F96A96F
286GSM388319Cortical TissueAlzheimer'sC388319M73A73M
287GSM388320Cortical TissueAlzheimer'sC388320M81A81M
288GSM388321Cortical TissueAlzheimer'sC388321F84A84F
289GSM388322Cortical TissueAlzheimer'sC388322F93A93F
290GSM388323Cortical TissueAlzheimer'sC388323F82A82F
291GSM388324Cortical TissueAlzheimer'sC388324M76A76M
292GSM388325Cortical TissueAlzheimer'sC388325M77A77M
293GSM388326Cortical TissueAlzheimer'sC388326F86A86F
294GSM388327Cortical TissueAlzheimer'sC388327F85A85F
295GSM388328Cortical TissueAlzheimer'sC388328M83A83M
296GSM388329Cortical TissueAlzheimer'sC388329M76A76M
297GSM388330Cortical TissueAlzheimer'sC388330M81A81M
298GSM388331Cortical TissueAlzheimer'sC388331M79A79M
299GSM388332Cortical TissueAlzheimer'sC388332M81A81M
300GSM388333Cortical TissueAlzheimer'sC388333F78A78F
301GSM388334Cortical TissueAlzheimer'sC388334M80A80M
302GSM388335Cortical TissueAlzheimer'sC388335M84A84M
303GSM388336Cortical TissueAlzheimer'sC388336F85A85F
304GSM388337Cortical TissueAlzheimer'sC388337M75A75M
305GSM388338Cortical TissueAlzheimer'sC388338F80A80F
306GSM388339Cortical TissueAlzheimer'sC388339F97A97F
307GSM388340Cortical TissueAlzheimer'sC388340F82A82F
308GSM388341Cortical TissueAlzheimer'sC388341M82A82M
309GSM388342Cortical TissueAlzheimer'sC388342M77A77M
310GSM388343Cortical TissueAlzheimer'sC388343M81A81M
311GSM388345Cortical TissueAlzheimer'sC388345F96A96F
312GSM388346Cortical TissueAlzheimer'sC388346F90A90F
313GSM388347Cortical TissueAlzheimer'sC388347M86A86M
314GSM388348Cortical TissueAlzheimer'sC388348M88A88M
315GSM388349Cortical TissueAlzheimer'sC388349F90A90F
316GSM388350Cortical TissueAlzheimer'sC388350F90A90F
317GSM388351Cortical TissueAlzheimer'sC388351F84A84F
318GSM388352Cortical TissueAlzheimer'sC388352M84A84M
319GSM388353Cortical TissueAlzheimer'sC388353F91A91F
320GSM388354Cortical TissueAlzheimer'sC388354F81A81F
321GSM388355Cortical TissueAlzheimer'sC388355F84A84F
322GSM388356Cortical TissueAlzheimer'sC388356M80A80M
323GSM388357Cortical TissueAlzheimer'sC388357M81A81M
324GSM388358Cortical TissueAlzheimer'sC388358F87A87F
325GSM388359Cortical TissueAlzheimer'sC388359M85A85M
326GSM388360Cortical TissueAlzheimer'sC388360F90A90F
327GSM388361Cortical TissueAlzheimer'sC388361M79A79M
328GSM388362Cortical TissueAlzheimer'sC388362F87A87F
329GSM388363Cortical TissueAlzheimer'sC388363M75A75M
330GSM388364Cortical TissueAlzheimer'sC388364F92A92F
331GSM388365Cortical TissueAlzheimer'sC388365F84A84F
332GSM388366Cortical TissueAlzheimer'sC388366M75A75M
333GSM388367Cortical TissueAlzheimer'sC388367F76A76F
334GSM388368Cortical TissueAlzheimer'sC388368F86A86F
335GSM388369Cortical TissueAlzheimer'sC388369M82A82M
336GSM388370Cortical TissueAlzheimer'sC388370M76A76M
337GSM388371Cortical TissueAlzheimer'sC388371F81A81F
338GSM388372Cortical TissueAlzheimer'sC388372F80A80F
339GSM388373Cortical TissueAlzheimer'sC388373M83A83M
340GSM388374Cortical TissueAlzheimer'sC388374F83A83F
341GSM388375Cortical TissueAlzheimer'sC388375F84A84F
342GSM388376Cortical TissueAlzheimer'sC388376M93A93M
343GSM388377Cortical TissueAlzheimer'sC388377F92A92F
344GSM388378Cortical TissueAlzheimer'sC388378M78A78M
345GSM388379Cortical TissueAlzheimer'sC388379M90A90M
346GSM388380Cortical TissueAlzheimer'sC388380M83A83M
347GSM388381Cortical TissueAlzheimer'sC388381M79A79M
348GSM388382Cortical TissueAlzheimer'sC388382M84A84M
349GSM388383Cortical TissueAlzheimer'sC388383F90A90F
350GSM388384Cortical TissueAlzheimer'sC388384F88A88F
351GSM388385Cortical TissueAlzheimer'sC388385M77A77M
352GSM388386Cortical TissueAlzheimer'sC388386F80A80F
353GSM388387Cortical TissueAlzheimer'sC388387M87A87M
354GSM388388Cortical TissueAlzheimer'sC388388M86A86M
355GSM388389Cortical TissueAlzheimer'sC388389M74A74M
356GSM388390Cortical TissueAlzheimer'sC388390F86A86F
357GSM388391Cortical TissueAlzheimer'sC388391F81A81F
358GSM388392Cortical TissueAlzheimer'sC388392F73A73F
359GSM388393Cortical TissueAlzheimer'sC388393M83A83M
360GSM388394Cortical TissueAlzheimer'sC388394M86A86M
361GSM388395Cortical TissueAlzheimer'sC388395F86A86F
362GSM388396Cortical TissueAlzheimer'sC388396M78A78M
363GSM388397Cortical TissueAlzheimer'sC388397M83A83M
+
diff --git a/general/datasets/Gse15222_f_n_ri_0409/contributors.rtf b/general/datasets/Gse15222_f_n_ri_0409/contributors.rtf new file mode 100644 index 0000000..72c2296 --- /dev/null +++ b/general/datasets/Gse15222_f_n_ri_0409/contributors.rtf @@ -0,0 +1 @@ +

Webster J, Gibbs R, Myers A

diff --git a/general/datasets/Gse15222_f_n_ri_0409/experiment-design.rtf b/general/datasets/Gse15222_f_n_ri_0409/experiment-design.rtf new file mode 100644 index 0000000..07d1b52 --- /dev/null +++ b/general/datasets/Gse15222_f_n_ri_0409/experiment-design.rtf @@ -0,0 +1,5 @@ +

Expression profiling by array

+ +

We recently surveyed the relationship between the human brain transcriptome and genome in a series of neuropathologically normal postmortem samples. We now have analyzed additional samples with a confirmed pathologic diagnosis of late onset Alzheimer's disease (LOAD, final n=187 controls, 176 cases). Nine percent of the cortical transcripts we analyzed had expression profiles correlated with their genotypes in the combined cohort and approximately 5% of transcripts had SNP-transcript relationships that could distinguish LOAD samples. Two of these transcripts have been previously implicated in LOAD candidate gene SNP-expression screens. This study shows how the relationship between common inherited genetic variants and brain transcript expression can be used in the study of human brain disorders. We suggest that studying the transcriptome as a quantitative endo-phenotype has greater power to find risk SNPs influencing expression than the use of discrete diagnostic categories such as presence or absence of disease. see DOI:10.1016/j.ajhg.2009.03.011 for further details and complete author list.

+ +

Expression quantitative trait loci study using human brain from 363 cortical samples. Affymetrix 500K chip for genotyping, Illumina Sentrix Human-ref 8 bead array chip for expression. Genotyping data will be available at dbGAP.

diff --git a/general/datasets/Gse15222_f_n_ri_0409/experiment-type.rtf b/general/datasets/Gse15222_f_n_ri_0409/experiment-type.rtf new file mode 100644 index 0000000..0546e04 --- /dev/null +++ b/general/datasets/Gse15222_f_n_ri_0409/experiment-type.rtf @@ -0,0 +1 @@ +Expression profiling by array \ No newline at end of file diff --git a/general/datasets/Gse15222_f_n_ri_0409/notes.rtf b/general/datasets/Gse15222_f_n_ri_0409/notes.rtf new file mode 100644 index 0000000..e7bd85c --- /dev/null +++ b/general/datasets/Gse15222_f_n_ri_0409/notes.rtf @@ -0,0 +1,6 @@ +

Access to the original data from Dr. Myers' laboratory
+or GEO GSE15222
+PMI = Post Mortem Interval
+Cannot find this record in the GEO website: WGACON-120
+
+This data is based on May 2004 (NCBI35/hg17).

diff --git a/general/datasets/Gse15222_f_n_ri_0409/platform.rtf b/general/datasets/Gse15222_f_n_ri_0409/platform.rtf new file mode 100644 index 0000000..5bcda8b --- /dev/null +++ b/general/datasets/Gse15222_f_n_ri_0409/platform.rtf @@ -0,0 +1,5 @@ +

Illumina Human 50 mer probes. Total of 24357 probes according to Myers et al. A total of 24354 probes included in this GeneNetwork file.

+ +

From the Methods section of the paper:

+ +

Genotyping and Expression Profiling DNA was hybridized to the Affymetrix GeneChip Human Mapping 500K Array Set (502,627 SNPs) as previously described.11,12 Genotypes were extracted with the use of both SNiPer-HD13 and BRLMM (Affymetrix, Santa Clara, CA) algorithms. Genotypes that exhibited less than 98% concordance between calls were excluded. SNPs with call rates less than 90% were excluded from the analysis. HardyWeinberg equilibrium (HWE) was assessed with exact tests and the PLINK analysis toolset.14 SNPs with HWE exact-test p values less than 0.05, as well as SNPs with minor-allele frequencies less than 1%, were excluded. Allele calls had a mean of 97% and a range of 90%–99%. cRNA was hybridized to Illumina Human Refseq-8 Expression BeadChip (24,357 transcripts) via standard protocols. Expression profiles were extracted and rank invariant normalized15–17 with the use of the BeadStudio software available from Illumina, with the Illumina custom error model used. Rankinvariant-normalized expression data were log10 transformed, and missing data were encoded as missing, rather than as a zero level of expression.

diff --git a/general/datasets/Gse15222_f_n_ri_0409/summary.rtf b/general/datasets/Gse15222_f_n_ri_0409/summary.rtf new file mode 100644 index 0000000..e99fa9e --- /dev/null +++ b/general/datasets/Gse15222_f_n_ri_0409/summary.rtf @@ -0,0 +1,9 @@ +

Myers and colleagues generated massive neocortical transcriptome data sets for a set of unrelated elderly neurologically and neuropathologically normal humans and from confirmed late onset Alzheimer's disease patients (LOAD, n = 187 normal and 176 LOAD cases, see DOI:10.1016/j.ajhg.2009.03.011 for detail). They used an Illumina Sentrix Bead array (HumanRef-8) that measures expression of approximately 19,730 curated RefSeq sequences (Human Build 34).

+ +

Case identifiers: All case identifiers (IDs) in GeneNetwork begin with a capital C followed by a six digit GEO identifier, followed by the sex and age in years. Non-Alzheimer cases are labeled with the suffix letter N: C225652M85N. Alzheimer cases are labeled with the suffix letter A: C388217F97A.

+ +

Data were initially downloaded from the NCBI GEO archive under the experiment ID GSE15222. All data were generated using the Illumina HumanRef-8 expression BeadChip (GPL2700) v2 Rev0. This data set in GeneNetwork includes data for 24,354 probes. We have realigned the 50-mer sequences by BLAT to the latest version of the human genome (Feb 2009, hg19) and reannotated the array (August 2009). The annotation in GN will differ from that provided in GEO for this platform. We were unable to obtain 50-mer sequences for several thousand probes (e.g., HTT), and these probes have therefore not been realigned to the human genome.

+ +

The GEO data set was processed by Myers and colleagues using Illumina's Rank Invariant transform. We performed a series of QC and renormalization steps to the data to allow more facile comparison to other data sets in GeneNetwork. In brief, data is log2 transformed. We recentered each array to a mean expression of 8 units and a standard deviation of 2 units (2z + 8 transform). The values are therefore modified z scores and each unit represents roughly a two-fold difference in expression. Average expression across all 363 cases range from a low of 6 units (e.g., SYT15) to a high of 19 units for ARSK. APOE has an average expression of 15 units and APP has an average expression of 11.5 units.. The distribution is far from normal with a great excess of measurements of genes with low to moderate expression clustered between 6.5 and 8.5 units.

+ +

A small number of arrays (n = 6, GSM226040, GSM226041, GSM226042, GSM226044, GSM226045, GSM226046) had a different distribution from the great majority of other arrays. This was probably due to a batch processing effect. Members of this minority group belonged to both normal and LOAD cases. This putative batch effect has been eliminated in the GeneNetwork rendition of the Myers data. To eliminate the putative batch effect, we simply computed a mean offset for each probe in the "minority set" relative to the remaining "majority set" and added or subtracted this offset to force the mean of each probe in the minority set to conform to mean of the same probe in the majority set.

diff --git a/general/datasets/Gse15222_f_ri_0409/acknowledgment.rtf b/general/datasets/Gse15222_f_ri_0409/acknowledgment.rtf new file mode 100644 index 0000000..c203ed9 --- /dev/null +++ b/general/datasets/Gse15222_f_ri_0409/acknowledgment.rtf @@ -0,0 +1 @@ +

http://labs.med.miami.edu/myers

diff --git a/general/datasets/Gse15222_f_ri_0409/cases.rtf b/general/datasets/Gse15222_f_ri_0409/cases.rtf new file mode 100644 index 0000000..6933d14 --- /dev/null +++ b/general/datasets/Gse15222_f_ri_0409/cases.rtf @@ -0,0 +1,3290 @@ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexGEO SeriesOrgan RegionTissueCase IDAgeSex
1GSM225652Temporal CortexNormalC225652M85N85M
2GSM225662Temporal CortexNormalC225662M85N85M
3GSM225664Temporal CortexNormalC225664F79N79F
4GSM225665Temporal CortexNormalC225665F85N85F
5GSM225666Temporal CortexNormalC225666F73N73F
6GSM225667Temporal CortexNormalC225667M81N81M
7GSM225668Temporal CortexNormalC225668M79N79M
8GSM225669Temporal CortexNormalC225669M77N77M
9GSM225670Temporal CortexNormalC225670M69N69M
10GSM225671Temporal CortexNormalC225671M86N86M
11GSM225672Temporal CortexNormalC225672F83N83F
12GSM225673Temporal CortexNormalC225673M78N78M
13GSM225674Temporal CortexNormalC225674M94N94M
14GSM225675Temporal CortexNormalC225675F81N81F
15GSM225676Temporal CortexNormalC225676M76N76M
16GSM225677Temporal CortexNormalC225677M83N83M
17GSM225678Temporal CortexNormalC225678M68N68M
18GSM225679Temporal CortexNormalC225679F82N82F
19GSM225680Temporal CortexNormalC225680F70N70F
20GSM225681Temporal CortexNormalC225681M86N86M
21GSM225682Temporal CortexNormalC225682M78N78M
22GSM225683Temporal CortexNormalC225683M82N82M
23GSM225684Temporal CortexNormalC225684F94N94F
24GSM225685Temporal CortexNormalC225685F87N87F
25GSM225686Temporal CortexNormalC225686M74N74M
26GSM225687Temporal CortexNormalC225687M85N85M
27GSM225688Temporal CortexNormalC225688M75N75M
28GSM225689Temporal CortexNormalC225689F86N86F
29GSM225690Temporal CortexNormalC225690M75N75M
30GSM225691Temporal CortexNormalC225691M81N81M
31GSM225692Temporal CortexNormalC225692F72N72F
32GSM225693Temporal CortexNormalC225693F81N81F
33GSM225695Temporal CortexNormalC225695M81N81M
34GSM225696Temporal CortexNormalC225696M81N81M
35GSM225697Temporal CortexNormalC225697M91N91M
36GSM225698Temporal CortexNormalC225698M84N84M
37GSM225699Temporal CortexNormalC225699M96N96M
38GSM225700Temporal CortexNormalC225700F97N97F
39GSM225701Temporal CortexNormalC225701M90N90M
40GSM225702Temporal CortexNormalC225702F67N67F
41GSM225703Temporal CortexNormalC225703F83N83F
42GSM225704Temporal CortexNormalC225704F82N82F
43GSM225705Temporal CortexNormalC225705F66N66F
44GSM225706Temporal CortexNormalC225706F72N72F
45GSM225707Temporal CortexNormalC225707F65N65F
46GSM225708Temporal CortexNormalC225708F75N75F
47GSM225709Temporal CortexNormalC225709F74N74F
48GSM225711Temporal CortexNormalC225711M68N68M
49GSM225713Temporal CortexNormalC225713F80N80F
50GSM225714Temporal CortexNormalC225714M80N80M
51GSM225715Temporal CortexNormalC225715M66N66M
52GSM225717Temporal CortexNormalC225717M88N88M
53GSM225718Temporal CortexNormalC225718F91N91F
54GSM225719Temporal CortexNormalC225719M73N73M
55GSM225720Temporal CortexNormalC225720M76N76M
56GSM225721Temporal CortexNormalC225721M75N75M
57GSM225722Temporal CortexNormalC225722F86N86F
58GSM225723Temporal CortexNormalC225723F72N72F
59GSM225724Temporal CortexNormalC225724M97N97M
60GSM225725Temporal CortexNormalC225725M86N86M
61GSM225726Temporal CortexNormalC225726M82N82M
62GSM225727Temporal CortexNormalC225727F95N95F
63GSM225728Temporal CortexNormalC225728F76N76F
64GSM225729Temporal CortexNormalC225729M76N76M
65GSM225730Temporal CortexNormalC225730M69N69M
66GSM225731Temporal CortexNormalC225731F80N80F
67GSM225732Temporal CortexNormalC225732F99N99F
68GSM225733Temporal CortexNormalC225733M68N68M
69GSM225734Temporal CortexNormalC225734M70N70M
70GSM225735Temporal CortexNormalC225735F87N87F
71GSM225736Temporal CortexNormalC225736F99N99F
72GSM225737Temporal CortexNormalC225737F88N88F
73GSM225739Temporal CortexNormalC225739M65N65M
74GSM225741Temporal CortexNormalC225741M82N82M
75GSM225742Temporal CortexNormalC225742F78N78F
76GSM225743Temporal CortexNormalC225743F85N85F
77GSM225744Temporal CortexNormalC225744F100N100F
78GSM225745Temporal CortexNormalC225745F87N87F
79GSM225746Temporal CortexNormalC225746F85N85F
80GSM225747Temporal CortexNormalC225747F97N97F
81GSM225748Temporal CortexNormalC225748M65N65M
82GSM225749Temporal CortexNormalC225749M65N65M
83GSM225751Temporal CortexNormalC225751F87N87F
84GSM225752Temporal CortexNormalC225752F85N85F
85GSM225753Temporal CortexNormalC225753M68N68M
86GSM225754Temporal CortexNormalC225754M71N71M
87GSM225755Temporal CortexNormalC225755F83N83F
88GSM225756Temporal CortexNormalC225756M76N76M
89GSM225757Temporal CortexNormalC225757M67N67M
90GSM225758Temporal CortexNormalC225758F100N100F
91GSM225759Temporal CortexNormalC225759M79N79M
92GSM225760Temporal CortexNormalC225760M74N74M
93GSM225761Temporal CortexNormalC225761F88N88F
94GSM225762Temporal CortexNormalC225762M70N70M
95GSM225763Temporal CortexNormalC225763F97N97F
96GSM225764Temporal CortexNormalC225764M69N69M
97GSM225915Temporal CortexNormalC225915F99N99F
98GSM225916Temporal CortexNormalC225916M81N81M
99GSM225917Temporal CortexNormalC225917F85N85F
100GSM225918Temporal CortexNormalC225918F82N82F
101GSM225919Temporal CortexNormalC225919M70N70M
102GSM225920Temporal CortexNormalC225920M73N73M
103GSM225921Temporal CortexNormalC225921M83N83M
104GSM225922Temporal CortexNormalC225922M74N74M
105GSM225923Temporal CortexNormalC225923M77N77M
106GSM225924Temporal CortexNormalC225924M81N81M
107GSM225925Temporal CortexNormalC225925M65N65M
108GSM225926Temporal CortexNormalC225926F73N73F
109GSM225927Temporal CortexNormalC225927F85N85F
110GSM225928Temporal CortexNormalC225928M69N69M
111GSM225929Temporal CortexNormalC225929M72N72M
112GSM225930Temporal CortexNormalC225930F76N76F
113GSM225931Temporal CortexNormalC225931M73N73M
114GSM225932Temporal CortexNormalC225932M66N66M
115GSM225933Temporal CortexNormalC225933F85N85F
116GSM225934Temporal CortexNormalC225934M87N87M
117GSM225935Temporal CortexNormalC225935F86N86F
118GSM225936Temporal CortexNormalC225936F73N73F
119GSM225937Temporal CortexNormalC225937M86N86M
120GSM225938Temporal CortexNormalC225938M72N72M
121GSM225939Temporal CortexNormalC225939F69N69F
122GSM225940Temporal CortexNormalC225940F88N88F
123GSM225941Temporal CortexNormalC225941M77N77M
124GSM225942Temporal CortexNormalC225942M96N96M
125GSM225943Temporal CortexNormalC225943F78N78F
126GSM225944Temporal CortexNormalC225944M77N77M
127GSM225945Temporal CortexNormalC225945F99N99F
128GSM225946Temporal CortexNormalC225946M78N78M
129GSM225947Temporal CortexNormalC225947F76N76F
130GSM225948Temporal CortexNormalC225948M78N78M
131GSM225949Temporal CortexNormalC225949F97N97F
132GSM225950Temporal CortexNormalC225950F86N86F
133GSM225951Temporal CortexNormalC225951M77N77M
134GSM225952Temporal CortexNormalC225952M87N87M
135GSM225953Temporal CortexNormalC225953F72N72F
136GSM225954Temporal CortexNormalC225954F91N91F
137GSM225955Temporal CortexNormalC225955F85N85F
138GSM225956Temporal CortexNormalC225956M88N88M
139GSM225957Temporal CortexNormalC225957F86N86F
140GSM225958Temporal CortexNormalC225958F93N93F
141GSM225959Temporal CortexNormalC225959M82N82M
142GSM225961Temporal CortexNormalC225961F72N72F
143GSM225962Temporal CortexNormalC225962F85N85F
144GSM225963Temporal CortexNormalC225963M70N70M
145GSM225964Temporal CortexNormalC225964F67N67F
146GSM225965Temporal CortexNormalC225965F74N74F
147GSM226034Temporal CortexNormalC226034M69N69M
148GSM226035Temporal CortexNormalC226035M85N85M
149GSM226037Temporal CortexNormalC226037M89N89M
150GSM226038Temporal CortexNormalC226038M86N86M
151GSM226039Temporal CortexNormalC226039M90N90M
152GSM226040Temporal CortexNormalC226040F94N94F
153GSM226041Temporal CortexNormalC226041F91N91F
154GSM226042Temporal CortexNormalC226042F91N91F
155GSM226044Temporal CortexNormalC226044F95N95F
156GSM226045Temporal CortexNormalC226045F95N95F
157GSM226046Temporal CortexNormalC226046F91N91F
158GSM226047Temporal CortexNormalC226047M80N80M
159GSM226048Temporal CortexNormalC226048M83N83M
160GSM226049Temporal CortexNormalC226049M67N67M
161GSM226050Temporal CortexNormalC226050M76N76M
162GSM226051Temporal CortexNormalC226051F86N86F
163GSM226052Temporal CortexNormalC226052F86N86F
164GSM226053Temporal CortexNormalC226053M83N83M
165GSM226055Temporal CortexNormalC226055M84N84M
166GSM226056Temporal CortexNormalC226056M80N80M
167GSM226082Temporal CortexNormalC226082M72N72M
168GSM226145Temporal CortexNormalC226145M67N67M
169GSM226146Temporal CortexNormalC226146F96N96F
170GSM226147Temporal CortexNormalC226147F75N75F
171GSM226148Temporal CortexNormalC226148F89N89F
172GSM226149Temporal CortexNormalC226149F86N86F
173GSM226150Temporal CortexNormalC226150M67N67M
174GSM226151Temporal CortexNormalC226151M77N77M
175GSM226154Temporal CortexNormalC226154M65N65M
176GSM226155Temporal CortexNormalC226155M69N69M
177GSM226156Temporal CortexNormalC226156M84N84M
178GSM226157Temporal CortexNormalC226157F85N85F
179GSM226158Temporal CortexNormalC226158M94N94M
180GSM226159Temporal CortexNormalC226159F89N89F
181GSM226160Temporal CortexNormalC226160M87N87M
182GSM226162Temporal CortexNormalC226162M90N90M
183GSM226163Temporal CortexNormalC226163F88N88F
184GSM226164Temporal CortexNormalC226164M94N94M
185GSM226165Temporal CortexNormalC226165F86N86F
186GSM226167Temporal CortexNormalC226167F93N93F
187GSM226168Temporal CortexNormalC226168M91N91M
188GSM388217Cortical TissueAlzheimer'sC388217F97A97F
189GSM388218Cortical TissueAlzheimer'sC388218F101A101F
190GSM388219Cortical TissueAlzheimer'sC388219M84A84M
191GSM388220Cortical TissueAlzheimer'sC388220F95A95F
192GSM388221Cortical TissueAlzheimer'sC388221F97A97F
193GSM388222Cortical TissueAlzheimer'sC388222F102A102F
194GSM388223Cortical TissueAlzheimer'sC388223M87A87M
195GSM388224Cortical TissueAlzheimer'sC388224F77A77F
196GSM388225Cortical TissueAlzheimer'sC388225M87A87M
197GSM388226Cortical TissueAlzheimer'sC388226M84A84M
198GSM388228Cortical TissueAlzheimer'sC388228F92A92F
199GSM388229Cortical TissueAlzheimer'sC388229M93A93M
200GSM388230Cortical TissueAlzheimer'sC388230F93A93F
201GSM388231Cortical TissueAlzheimer'sC388231F87A87F
202GSM388232Cortical TissueAlzheimer'sC388232F90A90F
203GSM388233Cortical TissueAlzheimer'sC388233M75A75M
204GSM388234Cortical TissueAlzheimer'sC388234M92A92M
205GSM388235Cortical TissueAlzheimer'sC388235M83A83M
206GSM388236Cortical TissueAlzheimer'sC388236M88A88M
207GSM388237Cortical TissueAlzheimer'sC388237M89A89M
208GSM388238Cortical TissueAlzheimer'sC388238F74A74F
209GSM388239Cortical TissueAlzheimer'sC388239F79A79F
210GSM388240Cortical TissueAlzheimer'sC388240M80A80M
211GSM388241Cortical TissueAlzheimer'sC388241F97A97F
212GSM388242Cortical TissueAlzheimer'sC388242M87A87M
213GSM388243Cortical TissueAlzheimer'sC388243F89A89F
214GSM388244Cortical TissueAlzheimer'sC388244F90A90F
215GSM388245Cortical TissueAlzheimer'sC388245M90A90M
216GSM388246Cortical TissueAlzheimer'sC388246M78A78M
217GSM388247Cortical TissueAlzheimer'sC388247F80A80F
218GSM388248Cortical TissueAlzheimer'sC388248F79A79F
219GSM388249Cortical TissueAlzheimer'sC388249F87A87F
220GSM388250Cortical TissueAlzheimer'sC388250F88A88F
221GSM388251Cortical TissueAlzheimer'sC388251M86A86M
222GSM388252Cortical TissueAlzheimer'sC388252F74A74F
223GSM388253Cortical TissueAlzheimer'sC388253F72A72F
224GSM388254Cortical TissueAlzheimer'sC388254M81A81M
225GSM388255Cortical TissueAlzheimer'sC388255F68A68F
226GSM388256Cortical TissueAlzheimer'sC388256F81A81F
227GSM388257Cortical TissueAlzheimer'sC388257F82A82F
228GSM388258Cortical TissueAlzheimer'sC388258M78A78M
229GSM388259Cortical TissueAlzheimer'sC388259M74A74M
230GSM388260Cortical TissueAlzheimer'sC388260M88A88M
231GSM388261Cortical TissueAlzheimer'sC388261F78A78F
232GSM388262Cortical TissueAlzheimer'sC388262M83A83M
233GSM388263Cortical TissueAlzheimer'sC388263M83A83M
234GSM388264Cortical TissueAlzheimer'sC388264M80A80M
235GSM388265Cortical TissueAlzheimer'sC388265M84A84M
236GSM388266Cortical TissueAlzheimer'sC388266F79A79F
237GSM388267Cortical TissueAlzheimer'sC388267F86A86F
238GSM388268Cortical TissueAlzheimer'sC388268M92A92M
239GSM388269Cortical TissueAlzheimer'sC388269F81A81F
240GSM388270Cortical TissueAlzheimer'sC388270F79A79F
241GSM388271Cortical TissueAlzheimer'sC388271M74A74M
242GSM388272Cortical TissueAlzheimer'sC388272F73A73F
243GSM388273Cortical TissueAlzheimer'sC388273M87A87M
244GSM388274Cortical TissueAlzheimer'sC388274F86A86F
245GSM388275Cortical TissueAlzheimer'sC388275F86A86F
246GSM388276Cortical TissueAlzheimer'sC388276F87A87F
247GSM388277Cortical TissueAlzheimer'sC388277F92A92F
248GSM388278Cortical TissueAlzheimer'sC388278F78A78F
249GSM388279Cortical TissueAlzheimer'sC388279F94A94F
250GSM388281Cortical TissueAlzheimer'sC388281F94A94F
251GSM388282Cortical TissueAlzheimer'sC388282M76A76M
252GSM388284Cortical TissueAlzheimer'sC388284M91A91M
253GSM388285Cortical TissueAlzheimer'sC388285M86A86M
254GSM388286Cortical TissueAlzheimer'sC388286M77A77M
255GSM388287Cortical TissueAlzheimer'sC388287M82A82M
256GSM388288Cortical TissueAlzheimer'sC388288M78A78M
257GSM388289Cortical TissueAlzheimer'sC388289M79A79M
258GSM388290Cortical TissueAlzheimer'sC388290F84A84F
259GSM388291Cortical TissueAlzheimer'sC388291F87A87F
260GSM388292Cortical TissueAlzheimer'sC388292F86A86F
261GSM388294Cortical TissueAlzheimer'sC388294M83A83M
262GSM388295Cortical TissueAlzheimer'sC388295M83A83M
263GSM388296Cortical TissueAlzheimer'sC388296M81A81M
264GSM388297Cortical TissueAlzheimer'sC388297F93A93F
265GSM388298Cortical TissueAlzheimer'sC388298M71A71M
266GSM388299Cortical TissueAlzheimer'sC388299M78A78M
267GSM388300Cortical TissueAlzheimer'sC388300F75A75F
268GSM388301Cortical TissueAlzheimer'sC388301F84A84F
269GSM388302Cortical TissueAlzheimer'sC388302M73A73M
270GSM388303Cortical TissueAlzheimer'sC388303F89A89F
271GSM388304Cortical TissueAlzheimer'sC388304FNAANAF
272GSM388305Cortical TissueAlzheimer'sC388305M69A69M
273GSM388306Cortical TissueAlzheimer'sC388306M83A83M
274GSM388307Cortical TissueAlzheimer'sC388307M71A71M
275GSM388308Cortical TissueAlzheimer'sC388308F86A86F
276GSM388309Cortical TissueAlzheimer'sC388309M82A82M
277GSM388310Cortical TissueAlzheimer'sC388310FNAANAF
278GSM388311Cortical TissueAlzheimer'sC388311M88A88M
279GSM388312Cortical TissueAlzheimer'sC388312M77A77M
280GSM388313Cortical TissueAlzheimer'sC388313M85A85M
281GSM388314Cortical TissueAlzheimer'sC388314F81A81F
282GSM388315Cortical TissueAlzheimer'sC388315F86A86F
283GSM388316Cortical TissueAlzheimer'sC388316M89A89M
284GSM388317Cortical TissueAlzheimer'sC388317F73A73F
285GSM388318Cortical TissueAlzheimer'sC388318F96A96F
286GSM388319Cortical TissueAlzheimer'sC388319M73A73M
287GSM388320Cortical TissueAlzheimer'sC388320M81A81M
288GSM388321Cortical TissueAlzheimer'sC388321F84A84F
289GSM388322Cortical TissueAlzheimer'sC388322F93A93F
290GSM388323Cortical TissueAlzheimer'sC388323F82A82F
291GSM388324Cortical TissueAlzheimer'sC388324M76A76M
292GSM388325Cortical TissueAlzheimer'sC388325M77A77M
293GSM388326Cortical TissueAlzheimer'sC388326F86A86F
294GSM388327Cortical TissueAlzheimer'sC388327F85A85F
295GSM388328Cortical TissueAlzheimer'sC388328M83A83M
296GSM388329Cortical TissueAlzheimer'sC388329M76A76M
297GSM388330Cortical TissueAlzheimer'sC388330M81A81M
298GSM388331Cortical TissueAlzheimer'sC388331M79A79M
299GSM388332Cortical TissueAlzheimer'sC388332M81A81M
300GSM388333Cortical TissueAlzheimer'sC388333F78A78F
301GSM388334Cortical TissueAlzheimer'sC388334M80A80M
302GSM388335Cortical TissueAlzheimer'sC388335M84A84M
303GSM388336Cortical TissueAlzheimer'sC388336F85A85F
304GSM388337Cortical TissueAlzheimer'sC388337M75A75M
305GSM388338Cortical TissueAlzheimer'sC388338F80A80F
306GSM388339Cortical TissueAlzheimer'sC388339F97A97F
307GSM388340Cortical TissueAlzheimer'sC388340F82A82F
308GSM388341Cortical TissueAlzheimer'sC388341M82A82M
309GSM388342Cortical TissueAlzheimer'sC388342M77A77M
310GSM388343Cortical TissueAlzheimer'sC388343M81A81M
311GSM388345Cortical TissueAlzheimer'sC388345F96A96F
312GSM388346Cortical TissueAlzheimer'sC388346F90A90F
313GSM388347Cortical TissueAlzheimer'sC388347M86A86M
314GSM388348Cortical TissueAlzheimer'sC388348M88A88M
315GSM388349Cortical TissueAlzheimer'sC388349F90A90F
316GSM388350Cortical TissueAlzheimer'sC388350F90A90F
317GSM388351Cortical TissueAlzheimer'sC388351F84A84F
318GSM388352Cortical TissueAlzheimer'sC388352M84A84M
319GSM388353Cortical TissueAlzheimer'sC388353F91A91F
320GSM388354Cortical TissueAlzheimer'sC388354F81A81F
321GSM388355Cortical TissueAlzheimer'sC388355F84A84F
322GSM388356Cortical TissueAlzheimer'sC388356M80A80M
323GSM388357Cortical TissueAlzheimer'sC388357M81A81M
324GSM388358Cortical TissueAlzheimer'sC388358F87A87F
325GSM388359Cortical TissueAlzheimer'sC388359M85A85M
326GSM388360Cortical TissueAlzheimer'sC388360F90A90F
327GSM388361Cortical TissueAlzheimer'sC388361M79A79M
328GSM388362Cortical TissueAlzheimer'sC388362F87A87F
329GSM388363Cortical TissueAlzheimer'sC388363M75A75M
330GSM388364Cortical TissueAlzheimer'sC388364F92A92F
331GSM388365Cortical TissueAlzheimer'sC388365F84A84F
332GSM388366Cortical TissueAlzheimer'sC388366M75A75M
333GSM388367Cortical TissueAlzheimer'sC388367F76A76F
334GSM388368Cortical TissueAlzheimer'sC388368F86A86F
335GSM388369Cortical TissueAlzheimer'sC388369M82A82M
336GSM388370Cortical TissueAlzheimer'sC388370M76A76M
337GSM388371Cortical TissueAlzheimer'sC388371F81A81F
338GSM388372Cortical TissueAlzheimer'sC388372F80A80F
339GSM388373Cortical TissueAlzheimer'sC388373M83A83M
340GSM388374Cortical TissueAlzheimer'sC388374F83A83F
341GSM388375Cortical TissueAlzheimer'sC388375F84A84F
342GSM388376Cortical TissueAlzheimer'sC388376M93A93M
343GSM388377Cortical TissueAlzheimer'sC388377F92A92F
344GSM388378Cortical TissueAlzheimer'sC388378M78A78M
345GSM388379Cortical TissueAlzheimer'sC388379M90A90M
346GSM388380Cortical TissueAlzheimer'sC388380M83A83M
347GSM388381Cortical TissueAlzheimer'sC388381M79A79M
348GSM388382Cortical TissueAlzheimer'sC388382M84A84M
349GSM388383Cortical TissueAlzheimer'sC388383F90A90F
350GSM388384Cortical TissueAlzheimer'sC388384F88A88F
351GSM388385Cortical TissueAlzheimer'sC388385M77A77M
352GSM388386Cortical TissueAlzheimer'sC388386F80A80F
353GSM388387Cortical TissueAlzheimer'sC388387M87A87M
354GSM388388Cortical TissueAlzheimer'sC388388M86A86M
355GSM388389Cortical TissueAlzheimer'sC388389M74A74M
356GSM388390Cortical TissueAlzheimer'sC388390F86A86F
357GSM388391Cortical TissueAlzheimer'sC388391F81A81F
358GSM388392Cortical TissueAlzheimer'sC388392F73A73F
359GSM388393Cortical TissueAlzheimer'sC388393M83A83M
360GSM388394Cortical TissueAlzheimer'sC388394M86A86M
361GSM388395Cortical TissueAlzheimer'sC388395F86A86F
362GSM388396Cortical TissueAlzheimer'sC388396M78A78M
363GSM388397Cortical TissueAlzheimer'sC388397M83A83M
+
diff --git a/general/datasets/Gse15222_f_ri_0409/contributors.rtf b/general/datasets/Gse15222_f_ri_0409/contributors.rtf new file mode 100644 index 0000000..72c2296 --- /dev/null +++ b/general/datasets/Gse15222_f_ri_0409/contributors.rtf @@ -0,0 +1 @@ +

Webster J, Gibbs R, Myers A

diff --git a/general/datasets/Gse15222_f_ri_0409/experiment-design.rtf b/general/datasets/Gse15222_f_ri_0409/experiment-design.rtf new file mode 100644 index 0000000..07d1b52 --- /dev/null +++ b/general/datasets/Gse15222_f_ri_0409/experiment-design.rtf @@ -0,0 +1,5 @@ +

Expression profiling by array

+ +

We recently surveyed the relationship between the human brain transcriptome and genome in a series of neuropathologically normal postmortem samples. We now have analyzed additional samples with a confirmed pathologic diagnosis of late onset Alzheimer's disease (LOAD, final n=187 controls, 176 cases). Nine percent of the cortical transcripts we analyzed had expression profiles correlated with their genotypes in the combined cohort and approximately 5% of transcripts had SNP-transcript relationships that could distinguish LOAD samples. Two of these transcripts have been previously implicated in LOAD candidate gene SNP-expression screens. This study shows how the relationship between common inherited genetic variants and brain transcript expression can be used in the study of human brain disorders. We suggest that studying the transcriptome as a quantitative endo-phenotype has greater power to find risk SNPs influencing expression than the use of discrete diagnostic categories such as presence or absence of disease. see DOI:10.1016/j.ajhg.2009.03.011 for further details and complete author list.

+ +

Expression quantitative trait loci study using human brain from 363 cortical samples. Affymetrix 500K chip for genotyping, Illumina Sentrix Human-ref 8 bead array chip for expression. Genotyping data will be available at dbGAP.

diff --git a/general/datasets/Gse15222_f_ri_0409/experiment-type.rtf b/general/datasets/Gse15222_f_ri_0409/experiment-type.rtf new file mode 100644 index 0000000..0546e04 --- /dev/null +++ b/general/datasets/Gse15222_f_ri_0409/experiment-type.rtf @@ -0,0 +1 @@ +Expression profiling by array \ No newline at end of file diff --git a/general/datasets/Gse15222_f_ri_0409/notes.rtf b/general/datasets/Gse15222_f_ri_0409/notes.rtf new file mode 100644 index 0000000..e7bd85c --- /dev/null +++ b/general/datasets/Gse15222_f_ri_0409/notes.rtf @@ -0,0 +1,6 @@ +

Access to the original data from Dr. Myers' laboratory
+or GEO GSE15222
+PMI = Post Mortem Interval
+Cannot find this record in the GEO website: WGACON-120
+
+This data is based on May 2004 (NCBI35/hg17).

diff --git a/general/datasets/Gse15222_f_ri_0409/platform.rtf b/general/datasets/Gse15222_f_ri_0409/platform.rtf new file mode 100644 index 0000000..5bcda8b --- /dev/null +++ b/general/datasets/Gse15222_f_ri_0409/platform.rtf @@ -0,0 +1,5 @@ +

Illumina Human 50 mer probes. Total of 24357 probes according to Myers et al. A total of 24354 probes included in this GeneNetwork file.

+ +

From the Methods section of the paper:

+ +

Genotyping and Expression Profiling DNA was hybridized to the Affymetrix GeneChip Human Mapping 500K Array Set (502,627 SNPs) as previously described.11,12 Genotypes were extracted with the use of both SNiPer-HD13 and BRLMM (Affymetrix, Santa Clara, CA) algorithms. Genotypes that exhibited less than 98% concordance between calls were excluded. SNPs with call rates less than 90% were excluded from the analysis. HardyWeinberg equilibrium (HWE) was assessed with exact tests and the PLINK analysis toolset.14 SNPs with HWE exact-test p values less than 0.05, as well as SNPs with minor-allele frequencies less than 1%, were excluded. Allele calls had a mean of 97% and a range of 90%–99%. cRNA was hybridized to Illumina Human Refseq-8 Expression BeadChip (24,357 transcripts) via standard protocols. Expression profiles were extracted and rank invariant normalized15–17 with the use of the BeadStudio software available from Illumina, with the Illumina custom error model used. Rankinvariant-normalized expression data were log10 transformed, and missing data were encoded as missing, rather than as a zero level of expression.

diff --git a/general/datasets/Gse15222_f_ri_0409/summary.rtf b/general/datasets/Gse15222_f_ri_0409/summary.rtf new file mode 100644 index 0000000..e99fa9e --- /dev/null +++ b/general/datasets/Gse15222_f_ri_0409/summary.rtf @@ -0,0 +1,9 @@ +

Myers and colleagues generated massive neocortical transcriptome data sets for a set of unrelated elderly neurologically and neuropathologically normal humans and from confirmed late onset Alzheimer's disease patients (LOAD, n = 187 normal and 176 LOAD cases, see DOI:10.1016/j.ajhg.2009.03.011 for detail). They used an Illumina Sentrix Bead array (HumanRef-8) that measures expression of approximately 19,730 curated RefSeq sequences (Human Build 34).

+ +

Case identifiers: All case identifiers (IDs) in GeneNetwork begin with a capital C followed by a six digit GEO identifier, followed by the sex and age in years. Non-Alzheimer cases are labeled with the suffix letter N: C225652M85N. Alzheimer cases are labeled with the suffix letter A: C388217F97A.

+ +

Data were initially downloaded from the NCBI GEO archive under the experiment ID GSE15222. All data were generated using the Illumina HumanRef-8 expression BeadChip (GPL2700) v2 Rev0. This data set in GeneNetwork includes data for 24,354 probes. We have realigned the 50-mer sequences by BLAT to the latest version of the human genome (Feb 2009, hg19) and reannotated the array (August 2009). The annotation in GN will differ from that provided in GEO for this platform. We were unable to obtain 50-mer sequences for several thousand probes (e.g., HTT), and these probes have therefore not been realigned to the human genome.

+ +

The GEO data set was processed by Myers and colleagues using Illumina's Rank Invariant transform. We performed a series of QC and renormalization steps to the data to allow more facile comparison to other data sets in GeneNetwork. In brief, data is log2 transformed. We recentered each array to a mean expression of 8 units and a standard deviation of 2 units (2z + 8 transform). The values are therefore modified z scores and each unit represents roughly a two-fold difference in expression. Average expression across all 363 cases range from a low of 6 units (e.g., SYT15) to a high of 19 units for ARSK. APOE has an average expression of 15 units and APP has an average expression of 11.5 units.. The distribution is far from normal with a great excess of measurements of genes with low to moderate expression clustered between 6.5 and 8.5 units.

+ +

A small number of arrays (n = 6, GSM226040, GSM226041, GSM226042, GSM226044, GSM226045, GSM226046) had a different distribution from the great majority of other arrays. This was probably due to a batch processing effect. Members of this minority group belonged to both normal and LOAD cases. This putative batch effect has been eliminated in the GeneNetwork rendition of the Myers data. To eliminate the putative batch effect, we simply computed a mean offset for each probe in the "minority set" relative to the remaining "majority set" and added or subtracted this offset to force the mean of each probe in the minority set to conform to mean of the same probe in the majority set.

diff --git a/general/datasets/Gse15745_gpl6104_cer0510/citation.rtf b/general/datasets/Gse15745_gpl6104_cer0510/citation.rtf new file mode 100644 index 0000000..fac14d3 --- /dev/null +++ b/general/datasets/Gse15745_gpl6104_cer0510/citation.rtf @@ -0,0 +1 @@ +

Please review and cite: Gibbs JR, Hernandez DG, Dillman A, Ryten M, Trabzuni D, Traynor BJ, Nalls MA, Arepalli S, Ramasamy A, van der Brug MP, Troncoso J, Johnson R, O'Brien R, Zielke HR, Zonderman A, Ferrucci L, Longo DL, Smith C, Walker R, Weale M, Hardy JA, Cookson MR, Singleton AB. PMID: 22433082.

diff --git a/general/datasets/Gse15745_gpl6104_cer0510/experiment-design.rtf b/general/datasets/Gse15745_gpl6104_cer0510/experiment-design.rtf new file mode 100644 index 0000000..e93df25 --- /dev/null +++ b/general/datasets/Gse15745_gpl6104_cer0510/experiment-design.rtf @@ -0,0 +1 @@ +

North American Brain Expression Consortium and UK Human Brain Expression Database: Gene Expression. Genome-wide association studies have nominated many genetic variants for common human traits, including diseases, but in many cases the underlying biological reason for a trait association is unknown. Subsets of genetic polymorphisms show a statistical association with transcript expression levels, and have therefore been nominated as expression quantitative trait loci (eQTL). However, many tissue and cell types have specific gene expression patterns and so it is not clear how frequently eQTLs found in one tissue type will be replicated in others. In the present study we used two appropriately powered sample series to examine the genetic control of gene expression in blood and brain. We find that while many eQTLs associated with human traits are shared between these two tissues, there are also examples where blood and brain differ, either by restricted gene expression patterns in one tissue or because of differences in how genetic variants are associated with transcript levels. These observations suggest that design of eQTL mapping experiments should consider tissue of interest for the disease or other traits studied. Published by Elsevier Inc.

diff --git a/general/datasets/Gse15745_gpl6104_cer0510/summary.rtf b/general/datasets/Gse15745_gpl6104_cer0510/summary.rtf new file mode 100644 index 0000000..4bc5546 --- /dev/null +++ b/general/datasets/Gse15745_gpl6104_cer0510/summary.rtf @@ -0,0 +1 @@ +

Summary from GEO Series GSE36192 and GSE: GSE36194 "A fundamental challenge in the post-genome era is to understand and annotate the consequences of genetic variation, particularly within the context of human tissues. We describe a set of integrated experiments designed to investigate the effects of common genetic variability on mRNA expression distinct human brain regions. We show that brain tissues may be readily distinguished based on expression profile. We find an abundance of genetic cis regulation mRNA expression. We observe that the largest magnitude effects occur across distinct brain regions. We believe these data, which we have made publicly available, will be useful in understanding the biological effects of genetic variation."

diff --git a/general/datasets/Gse15745_gpl6104_pfc0510/citation.rtf b/general/datasets/Gse15745_gpl6104_pfc0510/citation.rtf new file mode 100644 index 0000000..fac14d3 --- /dev/null +++ b/general/datasets/Gse15745_gpl6104_pfc0510/citation.rtf @@ -0,0 +1 @@ +

Please review and cite: Gibbs JR, Hernandez DG, Dillman A, Ryten M, Trabzuni D, Traynor BJ, Nalls MA, Arepalli S, Ramasamy A, van der Brug MP, Troncoso J, Johnson R, O'Brien R, Zielke HR, Zonderman A, Ferrucci L, Longo DL, Smith C, Walker R, Weale M, Hardy JA, Cookson MR, Singleton AB. PMID: 22433082.

diff --git a/general/datasets/Gse15745_gpl6104_pfc0510/experiment-design.rtf b/general/datasets/Gse15745_gpl6104_pfc0510/experiment-design.rtf new file mode 100644 index 0000000..e93df25 --- /dev/null +++ b/general/datasets/Gse15745_gpl6104_pfc0510/experiment-design.rtf @@ -0,0 +1 @@ +

North American Brain Expression Consortium and UK Human Brain Expression Database: Gene Expression. Genome-wide association studies have nominated many genetic variants for common human traits, including diseases, but in many cases the underlying biological reason for a trait association is unknown. Subsets of genetic polymorphisms show a statistical association with transcript expression levels, and have therefore been nominated as expression quantitative trait loci (eQTL). However, many tissue and cell types have specific gene expression patterns and so it is not clear how frequently eQTLs found in one tissue type will be replicated in others. In the present study we used two appropriately powered sample series to examine the genetic control of gene expression in blood and brain. We find that while many eQTLs associated with human traits are shared between these two tissues, there are also examples where blood and brain differ, either by restricted gene expression patterns in one tissue or because of differences in how genetic variants are associated with transcript levels. These observations suggest that design of eQTL mapping experiments should consider tissue of interest for the disease or other traits studied. Published by Elsevier Inc.

diff --git a/general/datasets/Gse15745_gpl6104_pfc0510/summary.rtf b/general/datasets/Gse15745_gpl6104_pfc0510/summary.rtf new file mode 100644 index 0000000..4bc5546 --- /dev/null +++ b/general/datasets/Gse15745_gpl6104_pfc0510/summary.rtf @@ -0,0 +1 @@ +

Summary from GEO Series GSE36192 and GSE: GSE36194 "A fundamental challenge in the post-genome era is to understand and annotate the consequences of genetic variation, particularly within the context of human tissues. We describe a set of integrated experiments designed to investigate the effects of common genetic variability on mRNA expression distinct human brain regions. We show that brain tissues may be readily distinguished based on expression profile. We find an abundance of genetic cis regulation mRNA expression. We observe that the largest magnitude effects occur across distinct brain regions. We believe these data, which we have made publicly available, will be useful in understanding the biological effects of genetic variation."

diff --git a/general/datasets/Gse15745_gpl6104_po0510/citation.rtf b/general/datasets/Gse15745_gpl6104_po0510/citation.rtf new file mode 100644 index 0000000..fac14d3 --- /dev/null +++ b/general/datasets/Gse15745_gpl6104_po0510/citation.rtf @@ -0,0 +1 @@ +

Please review and cite: Gibbs JR, Hernandez DG, Dillman A, Ryten M, Trabzuni D, Traynor BJ, Nalls MA, Arepalli S, Ramasamy A, van der Brug MP, Troncoso J, Johnson R, O'Brien R, Zielke HR, Zonderman A, Ferrucci L, Longo DL, Smith C, Walker R, Weale M, Hardy JA, Cookson MR, Singleton AB. PMID: 22433082.

diff --git a/general/datasets/Gse15745_gpl6104_po0510/experiment-design.rtf b/general/datasets/Gse15745_gpl6104_po0510/experiment-design.rtf new file mode 100644 index 0000000..e93df25 --- /dev/null +++ b/general/datasets/Gse15745_gpl6104_po0510/experiment-design.rtf @@ -0,0 +1 @@ +

North American Brain Expression Consortium and UK Human Brain Expression Database: Gene Expression. Genome-wide association studies have nominated many genetic variants for common human traits, including diseases, but in many cases the underlying biological reason for a trait association is unknown. Subsets of genetic polymorphisms show a statistical association with transcript expression levels, and have therefore been nominated as expression quantitative trait loci (eQTL). However, many tissue and cell types have specific gene expression patterns and so it is not clear how frequently eQTLs found in one tissue type will be replicated in others. In the present study we used two appropriately powered sample series to examine the genetic control of gene expression in blood and brain. We find that while many eQTLs associated with human traits are shared between these two tissues, there are also examples where blood and brain differ, either by restricted gene expression patterns in one tissue or because of differences in how genetic variants are associated with transcript levels. These observations suggest that design of eQTL mapping experiments should consider tissue of interest for the disease or other traits studied. Published by Elsevier Inc.

diff --git a/general/datasets/Gse15745_gpl6104_po0510/summary.rtf b/general/datasets/Gse15745_gpl6104_po0510/summary.rtf new file mode 100644 index 0000000..4bc5546 --- /dev/null +++ b/general/datasets/Gse15745_gpl6104_po0510/summary.rtf @@ -0,0 +1 @@ +

Summary from GEO Series GSE36192 and GSE: GSE36194 "A fundamental challenge in the post-genome era is to understand and annotate the consequences of genetic variation, particularly within the context of human tissues. We describe a set of integrated experiments designed to investigate the effects of common genetic variability on mRNA expression distinct human brain regions. We show that brain tissues may be readily distinguished based on expression profile. We find an abundance of genetic cis regulation mRNA expression. We observe that the largest magnitude effects occur across distinct brain regions. We believe these data, which we have made publicly available, will be useful in understanding the biological effects of genetic variation."

diff --git a/general/datasets/Gse16780_ucla_ml0911/acknowledgment.rtf b/general/datasets/Gse16780_ucla_ml0911/acknowledgment.rtf new file mode 100644 index 0000000..83eca40 --- /dev/null +++ b/general/datasets/Gse16780_ucla_ml0911/acknowledgment.rtf @@ -0,0 +1 @@ +

Bennett BJ, Ghazalpour A

diff --git a/general/datasets/Gse16780_ucla_ml0911/cases.rtf b/general/datasets/Gse16780_ucla_ml0911/cases.rtf new file mode 100644 index 0000000..6eefb7b --- /dev/null +++ b/general/datasets/Gse16780_ucla_ml0911/cases.rtf @@ -0,0 +1 @@ +

For complete information please refer to Bennett BJ, Farber CR, Orozco L, Kang HM, Ghazalpour A, Siemers N, Neubauer M, Neuhaus I, Yordanova R, Guan B, Truong A, Yang WP, He A, Kayne P, Gargalovic P, Kirchgessner T, Pan C, Castellani LW, Kostem E, Furlotte N, Drake TA, Eskin E, Lusis AJ (2010) A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Research 20:281-90 PMID: 20054062

diff --git a/general/datasets/Gse16780_ucla_ml0911/citation.rtf b/general/datasets/Gse16780_ucla_ml0911/citation.rtf new file mode 100644 index 0000000..20e19dd --- /dev/null +++ b/general/datasets/Gse16780_ucla_ml0911/citation.rtf @@ -0,0 +1 @@ +

Bennett BJ, Farber CR, Orozco L, Kang HM et al. A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Res 2010 Feb;20(2):281-90. PMID: 20054062

diff --git a/general/datasets/Gse16780_ucla_ml0911/contributors.rtf b/general/datasets/Gse16780_ucla_ml0911/contributors.rtf new file mode 100644 index 0000000..6e4d970 --- /dev/null +++ b/general/datasets/Gse16780_ucla_ml0911/contributors.rtf @@ -0,0 +1 @@ +

Bennett BJ, Ghazalpour A

diff --git a/general/datasets/Gse16780_ucla_ml0911/experiment-design.rtf b/general/datasets/Gse16780_ucla_ml0911/experiment-design.rtf new file mode 100644 index 0000000..40c5b94 --- /dev/null +++ b/general/datasets/Gse16780_ucla_ml0911/experiment-design.rtf @@ -0,0 +1,3 @@ +

Expression profiling by array.

+ +

Expression Profiles from 99 strains of inbred and recombinant inbred mice. Most assayed in triplicate. Two of 288 chips were excluded from the final analysis due to low QC scores.

diff --git a/general/datasets/Gse16780_ucla_ml0911/experiment-type.rtf b/general/datasets/Gse16780_ucla_ml0911/experiment-type.rtf new file mode 100644 index 0000000..b8429a3 --- /dev/null +++ b/general/datasets/Gse16780_ucla_ml0911/experiment-type.rtf @@ -0,0 +1 @@ +Expression profiling by array. \ No newline at end of file diff --git a/general/datasets/Gse16780_ucla_ml0911/notes.rtf b/general/datasets/Gse16780_ucla_ml0911/notes.rtf new file mode 100644 index 0000000..51b03e3 --- /dev/null +++ b/general/datasets/Gse16780_ucla_ml0911/notes.rtf @@ -0,0 +1 @@ +

Raw data provided as supplementary file at GEO Series GSE16780

diff --git a/general/datasets/Gse16780_ucla_ml0911/platform.rtf b/general/datasets/Gse16780_ucla_ml0911/platform.rtf new file mode 100644 index 0000000..17c2cc4 --- /dev/null +++ b/general/datasets/Gse16780_ucla_ml0911/platform.rtf @@ -0,0 +1,5 @@ +

Platform GPL8759 [HT_MG-430A] Affymetrix HT Mouse Genome 430A Array

+ +

The probe sets were selected from sequences derived from GenBank®, dbEST and RefSeq. The sequence clusters were created from the UniGene database (Build 107, June 2002) and then refined by analysis and comparison with the publicly available draft assembly of the mouse genome from the Whitehead Institute Center for Genome Research (MSCG, April 2002).

+ +

Oligonucleotide probes complementary to each corresponding sequence are synthesized in situ on the array. Eleven pairs of oligonucleotide probes, including a perfect match and mismatch probe, are used to measure the level of transcription of each sequence represented on the GeneChip® HT Mouse Genome 430 Array Plate Set.

diff --git a/general/datasets/Gse16780_ucla_ml0911/processing.rtf b/general/datasets/Gse16780_ucla_ml0911/processing.rtf new file mode 100644 index 0000000..7617e4f --- /dev/null +++ b/general/datasets/Gse16780_ucla_ml0911/processing.rtf @@ -0,0 +1 @@ +

For complete information please refer to A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Res 2010 Feb;20(2):281-90. PMID: 20054062

diff --git a/general/datasets/Gse16780_ucla_ml0911/summary.rtf b/general/datasets/Gse16780_ucla_ml0911/summary.rtf new file mode 100644 index 0000000..2d0ff54 --- /dev/null +++ b/general/datasets/Gse16780_ucla_ml0911/summary.rtf @@ -0,0 +1 @@ +

Novel, systems-based approach to mouse genetics.

diff --git a/general/datasets/Gse16780_ucla_ml0911/tissue.rtf b/general/datasets/Gse16780_ucla_ml0911/tissue.rtf new file mode 100644 index 0000000..4628b5b --- /dev/null +++ b/general/datasets/Gse16780_ucla_ml0911/tissue.rtf @@ -0,0 +1 @@ +

Hybrid Mouse diversity Panel Liver Expression Profile

diff --git a/general/datasets/Gse16780ab_ucla_ml0911/summary.rtf b/general/datasets/Gse16780ab_ucla_ml0911/summary.rtf new file mode 100644 index 0000000..6ecd595 --- /dev/null +++ b/general/datasets/Gse16780ab_ucla_ml0911/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 150, Name: GSE16780 UCLA Mouse AXB/BXA Liver Affy HT M430A (Sep11) \ No newline at end of file diff --git a/general/datasets/Gse16780bxh_ucla_ml0911/summary.rtf b/general/datasets/Gse16780bxh_ucla_ml0911/summary.rtf new file mode 100644 index 0000000..9abf757 --- /dev/null +++ b/general/datasets/Gse16780bxh_ucla_ml0911/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 151, Name: GSE16780 UCLA Mouse BXH Liver Affy HT M430A (Sep11) \ No newline at end of file diff --git a/general/datasets/Gse16780mdp_ucla_ml0911/summary.rtf b/general/datasets/Gse16780mdp_ucla_ml0911/summary.rtf new file mode 100644 index 0000000..24e1d40 --- /dev/null +++ b/general/datasets/Gse16780mdp_ucla_ml0911/summary.rtf @@ -0,0 +1,11 @@ +

The following is an excerpt from The Hybrid Mouse Diversity Panel: a resource for systems genetics analyses of metabolic and cardiovascular traits

+ + + +

The Hybrid Mouse Diversity Panel (HMDP) is a collection of approximately 100 well-characterized inbred strains of mice that can be used to analyze the genetic and environmental factors underlying complex traits. While not nearly as powerful for mapping genetic loci contributing to the traits as human genome-wide association studies, it has some important advantages. First, environmental factors can be controlled. Second, relevant tissues are accessible for global molecular phenotyping. Finally, because inbred strains are renewable, results from separate studies can be integrated. Thus far, the HMDP has been studied for traits relevant to obesity, diabetes, atherosclerosis, osteoporosis, heart failure, immune regulation, fatty liver disease, and host-gut microbiota interactions. High-throughput technologies have been used to examine the genomes, epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes of the mice under various environmental conditions. All of the published data are available and can be readily used to formulate hypotheses about genes, pathways and interactions.

+ +

The HMDP was developed as a systems genetics resource similar to recombinant inbred (RI) strain sets () or chromosome substitution strains (), but with the added advantage of high-resolution association mapping (). It consists of a set of 30 classic inbred strains chosen for diversity plus 70 or more RI strains derived primarily from strains C57BL/6J and DBA/2J (the BxD RI set) and A/J and C57BL/6J (the AxB and BxA RI sets). The classic strains provide mapping resolution, while the RI strains provide power. All of the chosen strains are commercially available from the Jackson Laboratory (https://www.jax.org) and all have been either sequenced (www.sanger.ac.uk/science/data/mouse-genomes-project) or densely genotyped ().

diff --git a/general/datasets/Gse23546hlt0613/citation.rtf b/general/datasets/Gse23546hlt0613/citation.rtf new file mode 100644 index 0000000..2aafa46 --- /dev/null +++ b/general/datasets/Gse23546hlt0613/citation.rtf @@ -0,0 +1 @@ +

Bossé Y, Postma DS, Sin DD, Lamontagne M et al. Molecular signature of smoking in human lung tissues. Cancer Res 2012 Aug 1;72(15):3753-63. PMID: 22659451

diff --git a/general/datasets/Gse23546hlt0613/contributors.rtf b/general/datasets/Gse23546hlt0613/contributors.rtf new file mode 100644 index 0000000..a22a4a5 --- /dev/null +++ b/general/datasets/Gse23546hlt0613/contributors.rtf @@ -0,0 +1 @@ +

Bossé Y, Laviolette M

diff --git a/general/datasets/Gse23546hlt0613/summary.rtf b/general/datasets/Gse23546hlt0613/summary.rtf new file mode 100644 index 0000000..9cb9538 --- /dev/null +++ b/general/datasets/Gse23546hlt0613/summary.rtf @@ -0,0 +1,15 @@ +

This SuperSeries is composed of the following SubSeries:

+ + + + + + + + + + + + + +
GSE23352 Whole-genome gene expression profiles of non-tumorous human lung tissues: Laval set
GSE23529 Whole-genome gene expression profiles of non-tumorous human lung tissues: UBC set
GSE23545 Whole-genome gene expression profiles of non-tumorous human lung tissues: GRNG set
diff --git a/general/datasets/Gse5281_f_rma0709/acknowledgment.rtf b/general/datasets/Gse5281_f_rma0709/acknowledgment.rtf new file mode 100644 index 0000000..8ce4f5c --- /dev/null +++ b/general/datasets/Gse5281_f_rma0709/acknowledgment.rtf @@ -0,0 +1 @@ +

Please cite: Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, Schneider LE, Mastroeni D, Caselli R, Kukull W, Morris JC, Hulette CM, Schmechel D, Rogers J, Stephan DA (2008) Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci USA 105:4441-4446.

diff --git a/general/datasets/Gse5281_f_rma0709/citation.rtf b/general/datasets/Gse5281_f_rma0709/citation.rtf new file mode 100644 index 0000000..6c255a4 --- /dev/null +++ b/general/datasets/Gse5281_f_rma0709/citation.rtf @@ -0,0 +1,2 @@ +

Liang WS, Dunckley T, Beach TG, Grover A et al. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol Genomics 2007 Feb 12;28(3):311-22. PMID: 17077275
+Liang WS, Reiman EM, Valla J, Dunckley T et al. Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci U S A 2008 Mar 18;105(11):4441-6. PMID: 18332434

diff --git a/general/datasets/Gse5281_f_rma0709/contributors.rtf b/general/datasets/Gse5281_f_rma0709/contributors.rtf new file mode 100644 index 0000000..754b3a7 --- /dev/null +++ b/general/datasets/Gse5281_f_rma0709/contributors.rtf @@ -0,0 +1 @@ +

Stephan DA, Liang WS

diff --git a/general/datasets/Gse5281_f_rma0709/experiment-design.rtf b/general/datasets/Gse5281_f_rma0709/experiment-design.rtf new file mode 100644 index 0000000..bc54b5c --- /dev/null +++ b/general/datasets/Gse5281_f_rma0709/experiment-design.rtf @@ -0,0 +1,13 @@ +

Human brain expression data in patients with Alzheimer's disease and age-matched elderly control subjects. This cortical expression data set is taken from GEO GSE5281 (Liang et al. 2006, Liang et al. 2008). Samples were laser-captured from cortical regions of 16 normal elderly humans (10 males and 4 females) and from 33 AD cases (15 males and 18 females). Mean age of cases and controls was 80 years. All samples were run on the Affymetrix U133 Plus 2.0 array. We renormalized the RMA data to an average expression of 8 units on a log2 scale. Two versions of the data have been entered in GeneNetwork: one consisting of 157 of 161 arrays (full set minus 4 arrays we consider of poor quality); the second consisting of what we regard as the best 102 arrays (those with mean correlations of better than 0.88 with all other arrays). Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex area 17 layer III. GeneNetwork does not yet allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example, expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes.

+ +

NOTE: We detected a minimum of 7.6% case assignment error rate (12 of 158 arrays) in this data set. Twelve cases are assigned to the wrong sex (see XIST probe set 224588_at, the figure below, and table 1). This raises the possibility that some cases are also misassigned by cortical brain region and disease status.

+ +

 

+ +

+ +

Legend: Expression of the sex-specific gene XIST reveals about 10 sex assignment errors in this data set.

+ +

Samples were laser-captured from cortical layer 3 (except the hippocampus) and run on the Affymetrix U133 Plus 2.0 array. We renormalized the data to an average expression of 8 units on a log2 scale. Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex layer III. A total of 16 normal subjects were used (10 M and 4 female). The AD samples. GeneNetwork does not allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes.

+ +

Information about the genes that are preferentially expressed during the course of Alzheimer's disease (AD) could improve our understanding of the molecular mechanisms involved in the pathogenesis of this common cause of cognitive impairment in older persons, provide new opportunities in the diagnosis, early detection, and tracking of this disorder, and provide novel targets for the discovery of interventions to treat and prevent this disorder. Information about the genes that are preferentially expressed in relationship to normal neurological aging could provide new information about the molecular mechanisms that are involved in normal age-related cognitive decline and a host of age-related neurological disorders, and they could provide novel targets for the discovery of interventions to mitigate some of these deleterious effects.

diff --git a/general/datasets/Gse5281_f_rma0709/experiment-type.rtf b/general/datasets/Gse5281_f_rma0709/experiment-type.rtf new file mode 100644 index 0000000..5797da1 --- /dev/null +++ b/general/datasets/Gse5281_f_rma0709/experiment-type.rtf @@ -0,0 +1,9 @@ +

+Human brain expression data in patients with Alzheimer's disease and age-matched elderly control subjects. This cortical expression data set is taken from GEO GSE5281 (Liang et al. 2006, Liang et al. 2008). Samples were laser-captured from cortical regions of 16 normal elderly humans (10 males and 4 females) and from 33 AD cases (15 males and 18 females). Mean age of cases and controls was 80 years. All samples were run on the Affymetrix U133 Plus 2.0 array. We renormalized the RMA data to an average expression of 8 units on a log2 scale. Two versions of the data have been entered in GeneNetwork: one consisting of 157 of 161 arrays (full set minus 4 arrays we consider of poor quality); the second consisting of what we regard as the best 102 arrays (those with mean correlations of better than 0.88 with all other arrays). Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex area 17 layer III. GeneNetwork does not yet allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example, expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes. + +

NOTE: We detected a minimum of 7.6% case assignment error rate (12 of 158 arrays) in this data set. Twelve cases are assigned to the wrong sex (see XIST probe set 224588_at, the figure below, and table 1). This raises the possibility that some cases are also misassigned by cortical brain region and disease status. + +

+

Legend: Expression of the sex-specific gene XIST reveals about 10 sex assignment errors in this data set.

+
+

Samples were laser-captured from cortical layer 3 (except the hippocampus) and run on the Affymetrix U133 Plus 2.0 array. We renormalized the data to an average expression of 8 units on a log2 scale. Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex layer III. A total of 16 normal subjects were used (10 M and 4 female). The AD samples. GeneNetwork does not allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes.

\ No newline at end of file diff --git a/general/datasets/Gse5281_f_rma0709/platform.rtf b/general/datasets/Gse5281_f_rma0709/platform.rtf new file mode 100644 index 0000000..6c2af02 --- /dev/null +++ b/general/datasets/Gse5281_f_rma0709/platform.rtf @@ -0,0 +1,3 @@ +

Affymetrix submissions are typically submitted to GEO using the GEOarchive method described at http://www.ncbi.nlm.nih.gov/projects/geo/info/geo_affy.html Complete coverage of the Human Genome U133 Set plus 6,500 additional genes for analysis of over 47,000 transcripts All probe sets represented on the GeneChip Human Genome U133 Set are identically replicated on the GeneChip Human Genome U133 Plus 2.0 Array. The sequences from which these probe sets were derived were selected from GenBank®, dbEST, and RefSeq. The sequence clusters were created from the UniGene database (Build 133, April 20, 2001) and then refined by analysis and comparison with a number of other publicly available databases, including the Washington University EST trace repository and the University of California, Santa Cruz Golden-Path human genome database (April 2001 release).

+ +

In addition, there are 9,921 new probe sets representing approximately 6,500 new genes. These gene sequences were selected from GenBank, dbEST, and RefSeq. Sequence clusters were created from the UniGene database (Build 159, January 25, 2003) and refined by analysis and comparison with a number of other publicly available databases, including the Washington University EST trace repository and the NCBI human genome assembly (Build 31).

diff --git a/general/datasets/Gse5281_f_rma0709/summary.rtf b/general/datasets/Gse5281_f_rma0709/summary.rtf new file mode 100644 index 0000000..5db3978 --- /dev/null +++ b/general/datasets/Gse5281_f_rma0709/summary.rtf @@ -0,0 +1,1484 @@ +

(Taken verbatim from the GEO record)

+ +

Information about the genes that are preferentially expressed during the course of Alzheimer’s disease (AD) could improve our understanding of the molecular mechanisms involved in the pathogenesis of this common cause of cognitive impairment in older persons, provide new opportunities in the diagnosis, early detection, and tracking of this disorder, and provide novel targets for the discovery of interventions to treat and prevent this disorder. Information about the genes that are preferentially expressed in relationship to normal neurological aging could provide new information about the molecular mechanisms that are involved in normal age-related cognitive decline and a host of age-related neurological disorders, and they could provide novel targets for the discovery of interventions to mitigate some of these deleterious effects.

+ +

Aim 1. Collect brain samples from three Alzheimer’s Disease Centers (ADCs) for subsequent gene expression profiling. Individuals will be stratified with respect to diagnostic groups (using both clinical and neuropathological criteria), age groups, and APOE genotype. 150 individual brains will be sampled from the Arizona ADC, the Duke University ADC, and the Washington University ADC. Miniscule sample sizes (200 um of sectioned tissue) from six brain regions that are histopathologically or metabolically relevant to AD and aging will be collected, ensuring that this proposal does not deplete the national resource. Frozen and fixed samples will be sent to Phoenix, sectioned in a standardized fashion, and then returned. Aim 2. Tissue heterogeneity will be eliminated prior to expression profiling by performing laser capture microscopy on all brain regions. Aim 3. Expression profile LCM-captured cells on the Affymetrix U133 Plus 2.0 array (~55,000 transcripts), and quickly provide these data to the community at large. Aim 4. Identify pathogenic cascades related to each of the clinico-pathologic correlates using unsupervised and supervised analyses coupled with a hypothesis-driven approach. Aim 5. Validation of the expression correlates at the protein and functional levels.

+ +

Scientific progress in the last few years has improved our understanding of AD and raised the hope of identifying treatments to halt the progression and prevent the onset of this disorder. For instance, researchers have begun to characterize the cascade of molecular events which lead to the major histopathological features of the disorder: neuritic plaques, which contain extra-cellular deposits of amyloid beta-peptides (Abeta); neurofibrillary tangles, which contain the hyperphosphorylated form of the intracellular, microtubule-associated protein, tau; and a loss of neurons and synapses. These molecular events provide targets for the development of promising new treatments. For example, A-beta has been postulated to trigger a cascade of events that are involved in the pathogenesis of AD. This proposal hopes to provide new information about the genes that are preferentially expressed in the development of AD histopathology, including the over-expression of APP, amyloid-induced neurotoxicity, and hyperphosphorylation of tau, as well as bring clarity to the metabolic abnormalities that seem to play a role in dementia and AD development and pathology.

+ +

We will perform LCM on 6 brain regions with about 14 biological replicates per brain region. The brain regions are as follows: 1) entorhinal cortex 2) hippocampus 3) medial temporal gyrus 4) posterior cingulate 5) superior frontal gyrus and 6) primary visual cortex. We will collect layer III pyramidal cells from the white matter in each region, isolate total RNA from LCMed cell lysates, and perform double round amplification of each sample for array analysis.

+ +

+ +

Bad arrays excluded: Four samples, highlighted in the table below, are bad arrays. For quality control, they should be excluded.

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexGEO SeriesOrgan RegionTissueCase IDAgeSex
1GSM119615Entorhinal CortexNormalE119615M63N63M
2GSM119616Entorhinal CortexNormalE119616M85N85M
3GSM119617Entorhinal CortexNormalE119617M80N80M
4GSM119618Entorhinal CortexNormalE119618M->F80N80M
5GSM119619Entorhinal CortexNormalE119619F->M102N102F
6GSM119620Entorhinal CortexNormalE119620M79N79M
7GSM119621Entorhinal CortexNormalE119621M76N76M
8GSM119622Entorhinal CortexNormalE119622M83N83M
9GSM119623Entorhinal CortexNormalE119623M79N79M
10GSM119624Entorhinal CortexNormalE119624F88N88F
11GSM119625Entorhinal CortexNormalE119625F82N82F
12GSM119626Entorhinal CortexNormalE119626M69N69M
13GSM119627Entorhinal CortexNormalE119627M78N78M
14GSM238763Entorhinal CortexAlzheimer'sE238763F82A82F
15GSM238790Entorhinal CortexAlzheimer'sE238790F86A86F
16GSM238791Entorhinal CortexAlzheimer'sE238791F93A93F
17GSM238792Entorhinal CortexAlzheimer'sE238792M84A84M
18GSM238793Entorhinal CortexAlzheimer'sE238793F79A79F
19GSM238794Entorhinal CortexAlzheimer'sE238794F78A78F
20GSM238795Entorhinal CortexAlzheimer'sE238795F91A91F
21GSM238796Entorhinal CortexAlzheimer'sE238796M86A86M
22GSM238797Entorhinal CortexAlzheimer'sE238797NA0AN/AN/A
23GSM238798Entorhinal CortexAlzheimer'sE238798M80A80M
24GSM119628HippocampusNormalH119628M85N85M
25GSM119629HippocampusNormalH119629M80N80M
26GSM119630HippocampusNormalH119630M80N80M
27GSM119631HippocampusNormalH119631F102N102F
28GSM119632HippocampusNormalH119632M63N63M
29GSM119633HippocampusNormalH119633M79N79M
30GSM119634HippocampusNormalH119634M76N76M
31GSM119635HippocampusNormalH119635M83N83M
32GSM119636HippocampusNormalH119636M79N79M
33GSM119637HippocampusNormalH119637F88N88F
34GSM119638HippocampusNormalH119638F73N73F
35GSM119639HippocampusNormalH119639M69N69M
36GSM119640HippocampusNormalH119640M78N78M
37GSM238799HippocampusAlzheimer'sH238799F73A73F
38GSM238800HippocampusAlzheimer'sH238800M81A81M
39GSM238801HippocampusAlzheimer'sH238801M78A78M
40GSM238802HippocampusAlzheimer'sH238802M75A75M
41GSM238803HippocampusAlzheimer'sH238803F70A70F
42GSM238804HippocampusAlzheimer'sH238804F85A85F
43GSM238805HippocampusAlzheimer'sH238805F77A77F
44GSM238806HippocampusAlzheimer'sH238806M79A79M
45GSM238807HippocampusAlzheimer'sH238807M88A88M
46GSM238808HippocampusAlzheimer'sH238808M72A72M
47GSM119641Medial Temporal GyrusNormalMT119641M85N85M
48GSM119642Medial Temporal GyrusNormalMT119642M80N80M
49GSM119643Medial Temporal GyrusNormalMT119643F102N102F
50GSM119644Medial Temporal GyrusNormalMT119644M63N63M
51GSM119645Medial Temporal GyrusNormalMT119645M79N79M
52GSM119646Medial Temporal GyrusNormalMT119646M83N83M
53GSM119647Medial Temporal GyrusNormalMT119647M79N79M
54GSM119648Medial Temporal GyrusNormalMT119648F88N88F
55GSM119649Medial Temporal GyrusNormalMT119649F82N82F
56GSM119650Medial Temporal GyrusNormalMT119650F73N73F
57GSM119651Medial Temporal GyrusNormalMT119651M69N69M
58GSM119652Medial Temporal GyrusNormalMT119652M->F78N78M
59GSM238809Medial Temporal GyrusAlzheimer'sMT238809M81A81M
60GSM238810Medial Temporal GyrusAlzheimer'sMT238810M72A72M
61GSM238811Medial Temporal GyrusAlzheimer'sMT238811M75A75M
62GSM238812Medial Temporal GyrusAlzheimer'sMT238812M78A78M
63GSM238813Medial Temporal GyrusAlzheimer'sMT238813M75A75M
64GSM238815Medial Temporal GyrusAlzheimer'sMT238815F95A95F
65GSM238816Medial Temporal GyrusAlzheimer'sMT238816F81A81F
66GSM238817Medial Temporal GyrusAlzheimer'sMT238817F85A85F
67GSM238818Medial Temporal GyrusAlzheimer'sMT238818M79A79M
68GSM238819Medial Temporal GyrusAlzheimer'sMT238819F82A82F
69GSM238820Medial Temporal GyrusAlzheimer'sMT238820M88A88M
70GSM238821Medial Temporal GyrusAlzheimer'sMT238821M72A72M
71GSM238822Medial Temporal GyrusAlzheimer'sMT238822F73A73F
72GSM238823Medial Temporal GyrusAlzheimer'sMT238823M87A87M
73GSM238824Medial Temporal GyrusAlzheimer'sMT238824M68A68M
74GSM238825Medial Temporal GyrusAlzheimer'sMT238825F80A80F
75GSM119653Posterior CingulateNormalPC119653M85N85M
76GSM119654Posterior CingulateNormalPC119654M80N80M
77GSM119655Posterior CingulateNormalPC119655F102N102F
78GSM119656Posterior CingulateNormalPC119656M63N63M
79GSM119657Posterior CingulateNormalPC119657M79N79M
80GSM119658Posterior CingulateNormalPC119658M->F76N76M
81GSM119659Posterior CingulateNormalPC119659M83N83M
82GSM119660Posterior CingulateNormalPC119660M79N79M
83GSM119661Posterior CingulateNormalPC119661F88N88F
84GSM119662Posterior CingulateNormalPC119662F82N82F
85GSM119663Posterior CingulateNormalPC119663F73N73F
86GSM119664Posterior CingulateNormalPC119664M69N69M
87GSM119665Posterior CingulateNormalPC119665M78N78M
88GSM238826Posterior CingulateAlzheimer'sPC238826F73A73F
89GSM238827Posterior CingulateAlzheimer'sPC238827M81A81M
90GSM238834Posterior CingulateAlzheimer'sPC238834M78A78M
91GSM238835Posterior CingulateAlzheimer'sPC238835M75A75M
92GSM238837Posterior CingulateAlzheimer'sPC238837M68A68M
93GSM238838Posterior CingulateAlzheimer'sPC238838F70A70F
94GSM238839Posterior CingulateAlzheimer'sPC238839F85A85F
95GSM238840Posterior CingulateAlzheimer'sPC238840M79A79M
96GSM238841Posterior CingulateAlzheimer'sPC238841M88A88M
97GSM119666Superior Frontal GyrusNormalSF119666M79N79M
98GSM119667Superior Frontal GyrusNormalSF119667F->M88N88F
99GSM119668Superior Frontal GyrusNormalSF119668F->M82N82F
100GSM119669Superior Frontal GyrusNormalSF119669F->M73N73F
101GSM119670Superior Frontal GyrusNormalSF119670F->M102N102F
102GSM119671Superior Frontal GyrusNormalSF119671M63N63M
103GSM119672Superior Frontal GyrusNormalSF119672M->F79N79M
104GSM119673Superior Frontal GyrusNormalSF119673M->F76N76M
105GSM119674Superior Frontal GyrusNormalSF119674M->F83N83M
106GSM119675Superior Frontal GyrusNormalSF119675M69N69M
107GSM119676Superior Frontal GyrusNormalSF119676M78N78M
108GSM238842Superior Frontal GyrusAlzheimer'sSF238842F73A73F
109GSM238843Superior Frontal GyrusAlzheimer'sSF238843M81A81M
110GSM238844Superior Frontal GyrusAlzheimer'sSF238844M72A72M
111GSM238845Superior Frontal GyrusAlzheimer'sSF238845M75A75M
112GSM238846Superior Frontal GyrusAlzheimer'sSF238846M78A78M
113GSM238847Superior Frontal GyrusAlzheimer'sSF238847M75A75M
114GSM238848Superior Frontal GyrusAlzheimer'sSF238848M87A87M
115GSM238851Superior Frontal GyrusAlzheimer'sSF238851F95A95F
116GSM238854Superior Frontal GyrusAlzheimer'sSF238854M68A68M
117GSM238855Superior Frontal GyrusAlzheimer'sSF238855F95A95F
118GSM238856Superior Frontal GyrusAlzheimer'sSF238856F70A70F
119GSM238857Superior Frontal GyrusAlzheimer'sSF238857F85A85F
120GSM238858Superior Frontal GyrusAlzheimer'sSF238858F83A83F
121GSM238860Superior Frontal GyrusAlzheimer'sSF238860F77A77F
122GSM238861Superior Frontal GyrusAlzheimer'sSF238861F83A83F
123GSM238862Superior Frontal GyrusAlzheimer'sSF238862M68A68M
124GSM238863Superior Frontal GyrusAlzheimer'sSF238863M79A79M
125GSM238864Superior Frontal GyrusAlzheimer'sSF238864F82A82F
126GSM238865Superior Frontal GyrusAlzheimer'sSF238865M88A88M
127GSM238867Superior Frontal GyrusAlzheimer'sSF238867F80A80F
128GSM238868Superior Frontal GyrusAlzheimer'sSF238868M74A74M
129GSM238870Superior Frontal GyrusAlzheimer'sSF238870M72A72M
130GSM238871Superior Frontal GyrusAlzheimer'sSF238871M80A80M
131GSM119677Primary Visual CortexNormalV119677M85N85M
132GSM119678Primary Visual CortexNormalV119678M80N80M
133GSM119679Primary Visual CortexNormalV119679M63N63M
134GSM119680Primary Visual CortexNormalV119680M79N79M
135GSM119681Primary Visual CortexNormalV119681M76N76M
136GSM119682Primary Visual CortexNormalV119682M83N83M
137GSM119683Primary Visual CortexNormalV119683M79N79M
138GSM119684Primary Visual CortexNormalV119684F88N88F
139GSM119685Primary Visual CortexNormalV119685F82N82F
140GSM119686Primary Visual CortexNormalV119686F73N73F
141GSM119687Primary Visual CortexNormalV119687M69N69M
142GSM119688Primary Visual CortexNormalV119688M78N78M
143GSM238872Primary Visual CortexAlzheimer'sV238872F73A73F
144GSM238873Primary Visual CortexAlzheimer'sV238873M81A81M
145GSM238874Primary Visual CortexAlzheimer'sV238874M75A75M
146GSM238875Primary Visual CortexAlzheimer'sV238875M78A78M
147GSM238877Primary Visual CortexAlzheimer'sV238877M75A75M
148GSM238941Primary Visual CortexAlzheimer'sV238941M87A87M
149GSM238942Primary Visual CortexAlzheimer'sV238942F95A95F
150GSM238943Primary Visual CortexAlzheimer'sV238943M68A68M
151GSM238944Primary Visual CortexAlzheimer'sV238944F70A70F
152GSM238945Primary Visual CortexAlzheimer'sV238945F81A81F
153GSM238946Primary Visual CortexAlzheimer'sV238946F85A85F
154GSM238947Primary Visual CortexAlzheimer'sV238947M68A68M
155GSM238948Primary Visual CortexAlzheimer'sV238948M79A79M
156GSM238949Primary Visual CortexAlzheimer'sV238949F82A82F
157GSM238951Primary Visual CortexAlzheimer'sV238951M88A88M
158GSM238952Primary Visual CortexAlzheimer'sV238952M74A74M
159GSM238953Primary Visual CortexAlzheimer'sV238953M72A72M
160GSM238955Primary Visual CortexAlzheimer'sV238955M->F68A68M
161GSM238963Primary Visual CortexAlzheimer'sV238963F80A80F
+
diff --git a/general/datasets/Gse5281_f_rma_alzh_0709/acknowledgment.rtf b/general/datasets/Gse5281_f_rma_alzh_0709/acknowledgment.rtf new file mode 100644 index 0000000..8ce4f5c --- /dev/null +++ b/general/datasets/Gse5281_f_rma_alzh_0709/acknowledgment.rtf @@ -0,0 +1 @@ +

Please cite: Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, Schneider LE, Mastroeni D, Caselli R, Kukull W, Morris JC, Hulette CM, Schmechel D, Rogers J, Stephan DA (2008) Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci USA 105:4441-4446.

diff --git a/general/datasets/Gse5281_f_rma_alzh_0709/citation.rtf b/general/datasets/Gse5281_f_rma_alzh_0709/citation.rtf new file mode 100644 index 0000000..6c255a4 --- /dev/null +++ b/general/datasets/Gse5281_f_rma_alzh_0709/citation.rtf @@ -0,0 +1,2 @@ +

Liang WS, Dunckley T, Beach TG, Grover A et al. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol Genomics 2007 Feb 12;28(3):311-22. PMID: 17077275
+Liang WS, Reiman EM, Valla J, Dunckley T et al. Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci U S A 2008 Mar 18;105(11):4441-6. PMID: 18332434

diff --git a/general/datasets/Gse5281_f_rma_alzh_0709/contributors.rtf b/general/datasets/Gse5281_f_rma_alzh_0709/contributors.rtf new file mode 100644 index 0000000..754b3a7 --- /dev/null +++ b/general/datasets/Gse5281_f_rma_alzh_0709/contributors.rtf @@ -0,0 +1 @@ +

Stephan DA, Liang WS

diff --git a/general/datasets/Gse5281_f_rma_alzh_0709/experiment-design.rtf b/general/datasets/Gse5281_f_rma_alzh_0709/experiment-design.rtf new file mode 100644 index 0000000..bc54b5c --- /dev/null +++ b/general/datasets/Gse5281_f_rma_alzh_0709/experiment-design.rtf @@ -0,0 +1,13 @@ +

Human brain expression data in patients with Alzheimer's disease and age-matched elderly control subjects. This cortical expression data set is taken from GEO GSE5281 (Liang et al. 2006, Liang et al. 2008). Samples were laser-captured from cortical regions of 16 normal elderly humans (10 males and 4 females) and from 33 AD cases (15 males and 18 females). Mean age of cases and controls was 80 years. All samples were run on the Affymetrix U133 Plus 2.0 array. We renormalized the RMA data to an average expression of 8 units on a log2 scale. Two versions of the data have been entered in GeneNetwork: one consisting of 157 of 161 arrays (full set minus 4 arrays we consider of poor quality); the second consisting of what we regard as the best 102 arrays (those with mean correlations of better than 0.88 with all other arrays). Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex area 17 layer III. GeneNetwork does not yet allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example, expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes.

+ +

NOTE: We detected a minimum of 7.6% case assignment error rate (12 of 158 arrays) in this data set. Twelve cases are assigned to the wrong sex (see XIST probe set 224588_at, the figure below, and table 1). This raises the possibility that some cases are also misassigned by cortical brain region and disease status.

+ +

 

+ +

+ +

Legend: Expression of the sex-specific gene XIST reveals about 10 sex assignment errors in this data set.

+ +

Samples were laser-captured from cortical layer 3 (except the hippocampus) and run on the Affymetrix U133 Plus 2.0 array. We renormalized the data to an average expression of 8 units on a log2 scale. Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex layer III. A total of 16 normal subjects were used (10 M and 4 female). The AD samples. GeneNetwork does not allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes.

+ +

Information about the genes that are preferentially expressed during the course of Alzheimer's disease (AD) could improve our understanding of the molecular mechanisms involved in the pathogenesis of this common cause of cognitive impairment in older persons, provide new opportunities in the diagnosis, early detection, and tracking of this disorder, and provide novel targets for the discovery of interventions to treat and prevent this disorder. Information about the genes that are preferentially expressed in relationship to normal neurological aging could provide new information about the molecular mechanisms that are involved in normal age-related cognitive decline and a host of age-related neurological disorders, and they could provide novel targets for the discovery of interventions to mitigate some of these deleterious effects.

diff --git a/general/datasets/Gse5281_f_rma_alzh_0709/experiment-type.rtf b/general/datasets/Gse5281_f_rma_alzh_0709/experiment-type.rtf new file mode 100644 index 0000000..5797da1 --- /dev/null +++ b/general/datasets/Gse5281_f_rma_alzh_0709/experiment-type.rtf @@ -0,0 +1,9 @@ +

+Human brain expression data in patients with Alzheimer's disease and age-matched elderly control subjects. This cortical expression data set is taken from GEO GSE5281 (Liang et al. 2006, Liang et al. 2008). Samples were laser-captured from cortical regions of 16 normal elderly humans (10 males and 4 females) and from 33 AD cases (15 males and 18 females). Mean age of cases and controls was 80 years. All samples were run on the Affymetrix U133 Plus 2.0 array. We renormalized the RMA data to an average expression of 8 units on a log2 scale. Two versions of the data have been entered in GeneNetwork: one consisting of 157 of 161 arrays (full set minus 4 arrays we consider of poor quality); the second consisting of what we regard as the best 102 arrays (those with mean correlations of better than 0.88 with all other arrays). Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex area 17 layer III. GeneNetwork does not yet allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example, expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes. + +

NOTE: We detected a minimum of 7.6% case assignment error rate (12 of 158 arrays) in this data set. Twelve cases are assigned to the wrong sex (see XIST probe set 224588_at, the figure below, and table 1). This raises the possibility that some cases are also misassigned by cortical brain region and disease status. + +

+

Legend: Expression of the sex-specific gene XIST reveals about 10 sex assignment errors in this data set.

+
+

Samples were laser-captured from cortical layer 3 (except the hippocampus) and run on the Affymetrix U133 Plus 2.0 array. We renormalized the data to an average expression of 8 units on a log2 scale. Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex layer III. A total of 16 normal subjects were used (10 M and 4 female). The AD samples. GeneNetwork does not allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes.

\ No newline at end of file diff --git a/general/datasets/Gse5281_f_rma_alzh_0709/platform.rtf b/general/datasets/Gse5281_f_rma_alzh_0709/platform.rtf new file mode 100644 index 0000000..6c2af02 --- /dev/null +++ b/general/datasets/Gse5281_f_rma_alzh_0709/platform.rtf @@ -0,0 +1,3 @@ +

Affymetrix submissions are typically submitted to GEO using the GEOarchive method described at http://www.ncbi.nlm.nih.gov/projects/geo/info/geo_affy.html Complete coverage of the Human Genome U133 Set plus 6,500 additional genes for analysis of over 47,000 transcripts All probe sets represented on the GeneChip Human Genome U133 Set are identically replicated on the GeneChip Human Genome U133 Plus 2.0 Array. The sequences from which these probe sets were derived were selected from GenBank®, dbEST, and RefSeq. The sequence clusters were created from the UniGene database (Build 133, April 20, 2001) and then refined by analysis and comparison with a number of other publicly available databases, including the Washington University EST trace repository and the University of California, Santa Cruz Golden-Path human genome database (April 2001 release).

+ +

In addition, there are 9,921 new probe sets representing approximately 6,500 new genes. These gene sequences were selected from GenBank, dbEST, and RefSeq. Sequence clusters were created from the UniGene database (Build 159, January 25, 2003) and refined by analysis and comparison with a number of other publicly available databases, including the Washington University EST trace repository and the NCBI human genome assembly (Build 31).

diff --git a/general/datasets/Gse5281_f_rma_alzh_0709/summary.rtf b/general/datasets/Gse5281_f_rma_alzh_0709/summary.rtf new file mode 100644 index 0000000..5db3978 --- /dev/null +++ b/general/datasets/Gse5281_f_rma_alzh_0709/summary.rtf @@ -0,0 +1,1484 @@ +

(Taken verbatim from the GEO record)

+ +

Information about the genes that are preferentially expressed during the course of Alzheimer’s disease (AD) could improve our understanding of the molecular mechanisms involved in the pathogenesis of this common cause of cognitive impairment in older persons, provide new opportunities in the diagnosis, early detection, and tracking of this disorder, and provide novel targets for the discovery of interventions to treat and prevent this disorder. Information about the genes that are preferentially expressed in relationship to normal neurological aging could provide new information about the molecular mechanisms that are involved in normal age-related cognitive decline and a host of age-related neurological disorders, and they could provide novel targets for the discovery of interventions to mitigate some of these deleterious effects.

+ +

Aim 1. Collect brain samples from three Alzheimer’s Disease Centers (ADCs) for subsequent gene expression profiling. Individuals will be stratified with respect to diagnostic groups (using both clinical and neuropathological criteria), age groups, and APOE genotype. 150 individual brains will be sampled from the Arizona ADC, the Duke University ADC, and the Washington University ADC. Miniscule sample sizes (200 um of sectioned tissue) from six brain regions that are histopathologically or metabolically relevant to AD and aging will be collected, ensuring that this proposal does not deplete the national resource. Frozen and fixed samples will be sent to Phoenix, sectioned in a standardized fashion, and then returned. Aim 2. Tissue heterogeneity will be eliminated prior to expression profiling by performing laser capture microscopy on all brain regions. Aim 3. Expression profile LCM-captured cells on the Affymetrix U133 Plus 2.0 array (~55,000 transcripts), and quickly provide these data to the community at large. Aim 4. Identify pathogenic cascades related to each of the clinico-pathologic correlates using unsupervised and supervised analyses coupled with a hypothesis-driven approach. Aim 5. Validation of the expression correlates at the protein and functional levels.

+ +

Scientific progress in the last few years has improved our understanding of AD and raised the hope of identifying treatments to halt the progression and prevent the onset of this disorder. For instance, researchers have begun to characterize the cascade of molecular events which lead to the major histopathological features of the disorder: neuritic plaques, which contain extra-cellular deposits of amyloid beta-peptides (Abeta); neurofibrillary tangles, which contain the hyperphosphorylated form of the intracellular, microtubule-associated protein, tau; and a loss of neurons and synapses. These molecular events provide targets for the development of promising new treatments. For example, A-beta has been postulated to trigger a cascade of events that are involved in the pathogenesis of AD. This proposal hopes to provide new information about the genes that are preferentially expressed in the development of AD histopathology, including the over-expression of APP, amyloid-induced neurotoxicity, and hyperphosphorylation of tau, as well as bring clarity to the metabolic abnormalities that seem to play a role in dementia and AD development and pathology.

+ +

We will perform LCM on 6 brain regions with about 14 biological replicates per brain region. The brain regions are as follows: 1) entorhinal cortex 2) hippocampus 3) medial temporal gyrus 4) posterior cingulate 5) superior frontal gyrus and 6) primary visual cortex. We will collect layer III pyramidal cells from the white matter in each region, isolate total RNA from LCMed cell lysates, and perform double round amplification of each sample for array analysis.

+ +

+ +

Bad arrays excluded: Four samples, highlighted in the table below, are bad arrays. For quality control, they should be excluded.

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexGEO SeriesOrgan RegionTissueCase IDAgeSex
1GSM119615Entorhinal CortexNormalE119615M63N63M
2GSM119616Entorhinal CortexNormalE119616M85N85M
3GSM119617Entorhinal CortexNormalE119617M80N80M
4GSM119618Entorhinal CortexNormalE119618M->F80N80M
5GSM119619Entorhinal CortexNormalE119619F->M102N102F
6GSM119620Entorhinal CortexNormalE119620M79N79M
7GSM119621Entorhinal CortexNormalE119621M76N76M
8GSM119622Entorhinal CortexNormalE119622M83N83M
9GSM119623Entorhinal CortexNormalE119623M79N79M
10GSM119624Entorhinal CortexNormalE119624F88N88F
11GSM119625Entorhinal CortexNormalE119625F82N82F
12GSM119626Entorhinal CortexNormalE119626M69N69M
13GSM119627Entorhinal CortexNormalE119627M78N78M
14GSM238763Entorhinal CortexAlzheimer'sE238763F82A82F
15GSM238790Entorhinal CortexAlzheimer'sE238790F86A86F
16GSM238791Entorhinal CortexAlzheimer'sE238791F93A93F
17GSM238792Entorhinal CortexAlzheimer'sE238792M84A84M
18GSM238793Entorhinal CortexAlzheimer'sE238793F79A79F
19GSM238794Entorhinal CortexAlzheimer'sE238794F78A78F
20GSM238795Entorhinal CortexAlzheimer'sE238795F91A91F
21GSM238796Entorhinal CortexAlzheimer'sE238796M86A86M
22GSM238797Entorhinal CortexAlzheimer'sE238797NA0AN/AN/A
23GSM238798Entorhinal CortexAlzheimer'sE238798M80A80M
24GSM119628HippocampusNormalH119628M85N85M
25GSM119629HippocampusNormalH119629M80N80M
26GSM119630HippocampusNormalH119630M80N80M
27GSM119631HippocampusNormalH119631F102N102F
28GSM119632HippocampusNormalH119632M63N63M
29GSM119633HippocampusNormalH119633M79N79M
30GSM119634HippocampusNormalH119634M76N76M
31GSM119635HippocampusNormalH119635M83N83M
32GSM119636HippocampusNormalH119636M79N79M
33GSM119637HippocampusNormalH119637F88N88F
34GSM119638HippocampusNormalH119638F73N73F
35GSM119639HippocampusNormalH119639M69N69M
36GSM119640HippocampusNormalH119640M78N78M
37GSM238799HippocampusAlzheimer'sH238799F73A73F
38GSM238800HippocampusAlzheimer'sH238800M81A81M
39GSM238801HippocampusAlzheimer'sH238801M78A78M
40GSM238802HippocampusAlzheimer'sH238802M75A75M
41GSM238803HippocampusAlzheimer'sH238803F70A70F
42GSM238804HippocampusAlzheimer'sH238804F85A85F
43GSM238805HippocampusAlzheimer'sH238805F77A77F
44GSM238806HippocampusAlzheimer'sH238806M79A79M
45GSM238807HippocampusAlzheimer'sH238807M88A88M
46GSM238808HippocampusAlzheimer'sH238808M72A72M
47GSM119641Medial Temporal GyrusNormalMT119641M85N85M
48GSM119642Medial Temporal GyrusNormalMT119642M80N80M
49GSM119643Medial Temporal GyrusNormalMT119643F102N102F
50GSM119644Medial Temporal GyrusNormalMT119644M63N63M
51GSM119645Medial Temporal GyrusNormalMT119645M79N79M
52GSM119646Medial Temporal GyrusNormalMT119646M83N83M
53GSM119647Medial Temporal GyrusNormalMT119647M79N79M
54GSM119648Medial Temporal GyrusNormalMT119648F88N88F
55GSM119649Medial Temporal GyrusNormalMT119649F82N82F
56GSM119650Medial Temporal GyrusNormalMT119650F73N73F
57GSM119651Medial Temporal GyrusNormalMT119651M69N69M
58GSM119652Medial Temporal GyrusNormalMT119652M->F78N78M
59GSM238809Medial Temporal GyrusAlzheimer'sMT238809M81A81M
60GSM238810Medial Temporal GyrusAlzheimer'sMT238810M72A72M
61GSM238811Medial Temporal GyrusAlzheimer'sMT238811M75A75M
62GSM238812Medial Temporal GyrusAlzheimer'sMT238812M78A78M
63GSM238813Medial Temporal GyrusAlzheimer'sMT238813M75A75M
64GSM238815Medial Temporal GyrusAlzheimer'sMT238815F95A95F
65GSM238816Medial Temporal GyrusAlzheimer'sMT238816F81A81F
66GSM238817Medial Temporal GyrusAlzheimer'sMT238817F85A85F
67GSM238818Medial Temporal GyrusAlzheimer'sMT238818M79A79M
68GSM238819Medial Temporal GyrusAlzheimer'sMT238819F82A82F
69GSM238820Medial Temporal GyrusAlzheimer'sMT238820M88A88M
70GSM238821Medial Temporal GyrusAlzheimer'sMT238821M72A72M
71GSM238822Medial Temporal GyrusAlzheimer'sMT238822F73A73F
72GSM238823Medial Temporal GyrusAlzheimer'sMT238823M87A87M
73GSM238824Medial Temporal GyrusAlzheimer'sMT238824M68A68M
74GSM238825Medial Temporal GyrusAlzheimer'sMT238825F80A80F
75GSM119653Posterior CingulateNormalPC119653M85N85M
76GSM119654Posterior CingulateNormalPC119654M80N80M
77GSM119655Posterior CingulateNormalPC119655F102N102F
78GSM119656Posterior CingulateNormalPC119656M63N63M
79GSM119657Posterior CingulateNormalPC119657M79N79M
80GSM119658Posterior CingulateNormalPC119658M->F76N76M
81GSM119659Posterior CingulateNormalPC119659M83N83M
82GSM119660Posterior CingulateNormalPC119660M79N79M
83GSM119661Posterior CingulateNormalPC119661F88N88F
84GSM119662Posterior CingulateNormalPC119662F82N82F
85GSM119663Posterior CingulateNormalPC119663F73N73F
86GSM119664Posterior CingulateNormalPC119664M69N69M
87GSM119665Posterior CingulateNormalPC119665M78N78M
88GSM238826Posterior CingulateAlzheimer'sPC238826F73A73F
89GSM238827Posterior CingulateAlzheimer'sPC238827M81A81M
90GSM238834Posterior CingulateAlzheimer'sPC238834M78A78M
91GSM238835Posterior CingulateAlzheimer'sPC238835M75A75M
92GSM238837Posterior CingulateAlzheimer'sPC238837M68A68M
93GSM238838Posterior CingulateAlzheimer'sPC238838F70A70F
94GSM238839Posterior CingulateAlzheimer'sPC238839F85A85F
95GSM238840Posterior CingulateAlzheimer'sPC238840M79A79M
96GSM238841Posterior CingulateAlzheimer'sPC238841M88A88M
97GSM119666Superior Frontal GyrusNormalSF119666M79N79M
98GSM119667Superior Frontal GyrusNormalSF119667F->M88N88F
99GSM119668Superior Frontal GyrusNormalSF119668F->M82N82F
100GSM119669Superior Frontal GyrusNormalSF119669F->M73N73F
101GSM119670Superior Frontal GyrusNormalSF119670F->M102N102F
102GSM119671Superior Frontal GyrusNormalSF119671M63N63M
103GSM119672Superior Frontal GyrusNormalSF119672M->F79N79M
104GSM119673Superior Frontal GyrusNormalSF119673M->F76N76M
105GSM119674Superior Frontal GyrusNormalSF119674M->F83N83M
106GSM119675Superior Frontal GyrusNormalSF119675M69N69M
107GSM119676Superior Frontal GyrusNormalSF119676M78N78M
108GSM238842Superior Frontal GyrusAlzheimer'sSF238842F73A73F
109GSM238843Superior Frontal GyrusAlzheimer'sSF238843M81A81M
110GSM238844Superior Frontal GyrusAlzheimer'sSF238844M72A72M
111GSM238845Superior Frontal GyrusAlzheimer'sSF238845M75A75M
112GSM238846Superior Frontal GyrusAlzheimer'sSF238846M78A78M
113GSM238847Superior Frontal GyrusAlzheimer'sSF238847M75A75M
114GSM238848Superior Frontal GyrusAlzheimer'sSF238848M87A87M
115GSM238851Superior Frontal GyrusAlzheimer'sSF238851F95A95F
116GSM238854Superior Frontal GyrusAlzheimer'sSF238854M68A68M
117GSM238855Superior Frontal GyrusAlzheimer'sSF238855F95A95F
118GSM238856Superior Frontal GyrusAlzheimer'sSF238856F70A70F
119GSM238857Superior Frontal GyrusAlzheimer'sSF238857F85A85F
120GSM238858Superior Frontal GyrusAlzheimer'sSF238858F83A83F
121GSM238860Superior Frontal GyrusAlzheimer'sSF238860F77A77F
122GSM238861Superior Frontal GyrusAlzheimer'sSF238861F83A83F
123GSM238862Superior Frontal GyrusAlzheimer'sSF238862M68A68M
124GSM238863Superior Frontal GyrusAlzheimer'sSF238863M79A79M
125GSM238864Superior Frontal GyrusAlzheimer'sSF238864F82A82F
126GSM238865Superior Frontal GyrusAlzheimer'sSF238865M88A88M
127GSM238867Superior Frontal GyrusAlzheimer'sSF238867F80A80F
128GSM238868Superior Frontal GyrusAlzheimer'sSF238868M74A74M
129GSM238870Superior Frontal GyrusAlzheimer'sSF238870M72A72M
130GSM238871Superior Frontal GyrusAlzheimer'sSF238871M80A80M
131GSM119677Primary Visual CortexNormalV119677M85N85M
132GSM119678Primary Visual CortexNormalV119678M80N80M
133GSM119679Primary Visual CortexNormalV119679M63N63M
134GSM119680Primary Visual CortexNormalV119680M79N79M
135GSM119681Primary Visual CortexNormalV119681M76N76M
136GSM119682Primary Visual CortexNormalV119682M83N83M
137GSM119683Primary Visual CortexNormalV119683M79N79M
138GSM119684Primary Visual CortexNormalV119684F88N88F
139GSM119685Primary Visual CortexNormalV119685F82N82F
140GSM119686Primary Visual CortexNormalV119686F73N73F
141GSM119687Primary Visual CortexNormalV119687M69N69M
142GSM119688Primary Visual CortexNormalV119688M78N78M
143GSM238872Primary Visual CortexAlzheimer'sV238872F73A73F
144GSM238873Primary Visual CortexAlzheimer'sV238873M81A81M
145GSM238874Primary Visual CortexAlzheimer'sV238874M75A75M
146GSM238875Primary Visual CortexAlzheimer'sV238875M78A78M
147GSM238877Primary Visual CortexAlzheimer'sV238877M75A75M
148GSM238941Primary Visual CortexAlzheimer'sV238941M87A87M
149GSM238942Primary Visual CortexAlzheimer'sV238942F95A95F
150GSM238943Primary Visual CortexAlzheimer'sV238943M68A68M
151GSM238944Primary Visual CortexAlzheimer'sV238944F70A70F
152GSM238945Primary Visual CortexAlzheimer'sV238945F81A81F
153GSM238946Primary Visual CortexAlzheimer'sV238946F85A85F
154GSM238947Primary Visual CortexAlzheimer'sV238947M68A68M
155GSM238948Primary Visual CortexAlzheimer'sV238948M79A79M
156GSM238949Primary Visual CortexAlzheimer'sV238949F82A82F
157GSM238951Primary Visual CortexAlzheimer'sV238951M88A88M
158GSM238952Primary Visual CortexAlzheimer'sV238952M74A74M
159GSM238953Primary Visual CortexAlzheimer'sV238953M72A72M
160GSM238955Primary Visual CortexAlzheimer'sV238955M->F68A68M
161GSM238963Primary Visual CortexAlzheimer'sV238963F80A80F
+
diff --git a/general/datasets/Gse5281_f_rma_n_0709/acknowledgment.rtf b/general/datasets/Gse5281_f_rma_n_0709/acknowledgment.rtf new file mode 100644 index 0000000..8ce4f5c --- /dev/null +++ b/general/datasets/Gse5281_f_rma_n_0709/acknowledgment.rtf @@ -0,0 +1 @@ +

Please cite: Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, Schneider LE, Mastroeni D, Caselli R, Kukull W, Morris JC, Hulette CM, Schmechel D, Rogers J, Stephan DA (2008) Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci USA 105:4441-4446.

diff --git a/general/datasets/Gse5281_f_rma_n_0709/citation.rtf b/general/datasets/Gse5281_f_rma_n_0709/citation.rtf new file mode 100644 index 0000000..6c255a4 --- /dev/null +++ b/general/datasets/Gse5281_f_rma_n_0709/citation.rtf @@ -0,0 +1,2 @@ +

Liang WS, Dunckley T, Beach TG, Grover A et al. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol Genomics 2007 Feb 12;28(3):311-22. PMID: 17077275
+Liang WS, Reiman EM, Valla J, Dunckley T et al. Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci U S A 2008 Mar 18;105(11):4441-6. PMID: 18332434

diff --git a/general/datasets/Gse5281_f_rma_n_0709/contributors.rtf b/general/datasets/Gse5281_f_rma_n_0709/contributors.rtf new file mode 100644 index 0000000..754b3a7 --- /dev/null +++ b/general/datasets/Gse5281_f_rma_n_0709/contributors.rtf @@ -0,0 +1 @@ +

Stephan DA, Liang WS

diff --git a/general/datasets/Gse5281_f_rma_n_0709/experiment-design.rtf b/general/datasets/Gse5281_f_rma_n_0709/experiment-design.rtf new file mode 100644 index 0000000..bc54b5c --- /dev/null +++ b/general/datasets/Gse5281_f_rma_n_0709/experiment-design.rtf @@ -0,0 +1,13 @@ +

Human brain expression data in patients with Alzheimer's disease and age-matched elderly control subjects. This cortical expression data set is taken from GEO GSE5281 (Liang et al. 2006, Liang et al. 2008). Samples were laser-captured from cortical regions of 16 normal elderly humans (10 males and 4 females) and from 33 AD cases (15 males and 18 females). Mean age of cases and controls was 80 years. All samples were run on the Affymetrix U133 Plus 2.0 array. We renormalized the RMA data to an average expression of 8 units on a log2 scale. Two versions of the data have been entered in GeneNetwork: one consisting of 157 of 161 arrays (full set minus 4 arrays we consider of poor quality); the second consisting of what we regard as the best 102 arrays (those with mean correlations of better than 0.88 with all other arrays). Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex area 17 layer III. GeneNetwork does not yet allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example, expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes.

+ +

NOTE: We detected a minimum of 7.6% case assignment error rate (12 of 158 arrays) in this data set. Twelve cases are assigned to the wrong sex (see XIST probe set 224588_at, the figure below, and table 1). This raises the possibility that some cases are also misassigned by cortical brain region and disease status.

+ +

 

+ +

+ +

Legend: Expression of the sex-specific gene XIST reveals about 10 sex assignment errors in this data set.

+ +

Samples were laser-captured from cortical layer 3 (except the hippocampus) and run on the Affymetrix U133 Plus 2.0 array. We renormalized the data to an average expression of 8 units on a log2 scale. Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex layer III. A total of 16 normal subjects were used (10 M and 4 female). The AD samples. GeneNetwork does not allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes.

+ +

Information about the genes that are preferentially expressed during the course of Alzheimer's disease (AD) could improve our understanding of the molecular mechanisms involved in the pathogenesis of this common cause of cognitive impairment in older persons, provide new opportunities in the diagnosis, early detection, and tracking of this disorder, and provide novel targets for the discovery of interventions to treat and prevent this disorder. Information about the genes that are preferentially expressed in relationship to normal neurological aging could provide new information about the molecular mechanisms that are involved in normal age-related cognitive decline and a host of age-related neurological disorders, and they could provide novel targets for the discovery of interventions to mitigate some of these deleterious effects.

diff --git a/general/datasets/Gse5281_f_rma_n_0709/experiment-type.rtf b/general/datasets/Gse5281_f_rma_n_0709/experiment-type.rtf new file mode 100644 index 0000000..5797da1 --- /dev/null +++ b/general/datasets/Gse5281_f_rma_n_0709/experiment-type.rtf @@ -0,0 +1,9 @@ +

+Human brain expression data in patients with Alzheimer's disease and age-matched elderly control subjects. This cortical expression data set is taken from GEO GSE5281 (Liang et al. 2006, Liang et al. 2008). Samples were laser-captured from cortical regions of 16 normal elderly humans (10 males and 4 females) and from 33 AD cases (15 males and 18 females). Mean age of cases and controls was 80 years. All samples were run on the Affymetrix U133 Plus 2.0 array. We renormalized the RMA data to an average expression of 8 units on a log2 scale. Two versions of the data have been entered in GeneNetwork: one consisting of 157 of 161 arrays (full set minus 4 arrays we consider of poor quality); the second consisting of what we regard as the best 102 arrays (those with mean correlations of better than 0.88 with all other arrays). Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex area 17 layer III. GeneNetwork does not yet allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example, expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes. + +

NOTE: We detected a minimum of 7.6% case assignment error rate (12 of 158 arrays) in this data set. Twelve cases are assigned to the wrong sex (see XIST probe set 224588_at, the figure below, and table 1). This raises the possibility that some cases are also misassigned by cortical brain region and disease status. + +

+

Legend: Expression of the sex-specific gene XIST reveals about 10 sex assignment errors in this data set.

+
+

Samples were laser-captured from cortical layer 3 (except the hippocampus) and run on the Affymetrix U133 Plus 2.0 array. We renormalized the data to an average expression of 8 units on a log2 scale. Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex layer III. A total of 16 normal subjects were used (10 M and 4 female). The AD samples. GeneNetwork does not allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes.

\ No newline at end of file diff --git a/general/datasets/Gse5281_f_rma_n_0709/platform.rtf b/general/datasets/Gse5281_f_rma_n_0709/platform.rtf new file mode 100644 index 0000000..6c2af02 --- /dev/null +++ b/general/datasets/Gse5281_f_rma_n_0709/platform.rtf @@ -0,0 +1,3 @@ +

Affymetrix submissions are typically submitted to GEO using the GEOarchive method described at http://www.ncbi.nlm.nih.gov/projects/geo/info/geo_affy.html Complete coverage of the Human Genome U133 Set plus 6,500 additional genes for analysis of over 47,000 transcripts All probe sets represented on the GeneChip Human Genome U133 Set are identically replicated on the GeneChip Human Genome U133 Plus 2.0 Array. The sequences from which these probe sets were derived were selected from GenBank®, dbEST, and RefSeq. The sequence clusters were created from the UniGene database (Build 133, April 20, 2001) and then refined by analysis and comparison with a number of other publicly available databases, including the Washington University EST trace repository and the University of California, Santa Cruz Golden-Path human genome database (April 2001 release).

+ +

In addition, there are 9,921 new probe sets representing approximately 6,500 new genes. These gene sequences were selected from GenBank, dbEST, and RefSeq. Sequence clusters were created from the UniGene database (Build 159, January 25, 2003) and refined by analysis and comparison with a number of other publicly available databases, including the Washington University EST trace repository and the NCBI human genome assembly (Build 31).

diff --git a/general/datasets/Gse5281_f_rma_n_0709/summary.rtf b/general/datasets/Gse5281_f_rma_n_0709/summary.rtf new file mode 100644 index 0000000..5db3978 --- /dev/null +++ b/general/datasets/Gse5281_f_rma_n_0709/summary.rtf @@ -0,0 +1,1484 @@ +

(Taken verbatim from the GEO record)

+ +

Information about the genes that are preferentially expressed during the course of Alzheimer’s disease (AD) could improve our understanding of the molecular mechanisms involved in the pathogenesis of this common cause of cognitive impairment in older persons, provide new opportunities in the diagnosis, early detection, and tracking of this disorder, and provide novel targets for the discovery of interventions to treat and prevent this disorder. Information about the genes that are preferentially expressed in relationship to normal neurological aging could provide new information about the molecular mechanisms that are involved in normal age-related cognitive decline and a host of age-related neurological disorders, and they could provide novel targets for the discovery of interventions to mitigate some of these deleterious effects.

+ +

Aim 1. Collect brain samples from three Alzheimer’s Disease Centers (ADCs) for subsequent gene expression profiling. Individuals will be stratified with respect to diagnostic groups (using both clinical and neuropathological criteria), age groups, and APOE genotype. 150 individual brains will be sampled from the Arizona ADC, the Duke University ADC, and the Washington University ADC. Miniscule sample sizes (200 um of sectioned tissue) from six brain regions that are histopathologically or metabolically relevant to AD and aging will be collected, ensuring that this proposal does not deplete the national resource. Frozen and fixed samples will be sent to Phoenix, sectioned in a standardized fashion, and then returned. Aim 2. Tissue heterogeneity will be eliminated prior to expression profiling by performing laser capture microscopy on all brain regions. Aim 3. Expression profile LCM-captured cells on the Affymetrix U133 Plus 2.0 array (~55,000 transcripts), and quickly provide these data to the community at large. Aim 4. Identify pathogenic cascades related to each of the clinico-pathologic correlates using unsupervised and supervised analyses coupled with a hypothesis-driven approach. Aim 5. Validation of the expression correlates at the protein and functional levels.

+ +

Scientific progress in the last few years has improved our understanding of AD and raised the hope of identifying treatments to halt the progression and prevent the onset of this disorder. For instance, researchers have begun to characterize the cascade of molecular events which lead to the major histopathological features of the disorder: neuritic plaques, which contain extra-cellular deposits of amyloid beta-peptides (Abeta); neurofibrillary tangles, which contain the hyperphosphorylated form of the intracellular, microtubule-associated protein, tau; and a loss of neurons and synapses. These molecular events provide targets for the development of promising new treatments. For example, A-beta has been postulated to trigger a cascade of events that are involved in the pathogenesis of AD. This proposal hopes to provide new information about the genes that are preferentially expressed in the development of AD histopathology, including the over-expression of APP, amyloid-induced neurotoxicity, and hyperphosphorylation of tau, as well as bring clarity to the metabolic abnormalities that seem to play a role in dementia and AD development and pathology.

+ +

We will perform LCM on 6 brain regions with about 14 biological replicates per brain region. The brain regions are as follows: 1) entorhinal cortex 2) hippocampus 3) medial temporal gyrus 4) posterior cingulate 5) superior frontal gyrus and 6) primary visual cortex. We will collect layer III pyramidal cells from the white matter in each region, isolate total RNA from LCMed cell lysates, and perform double round amplification of each sample for array analysis.

+ +

+ +

Bad arrays excluded: Four samples, highlighted in the table below, are bad arrays. For quality control, they should be excluded.

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexGEO SeriesOrgan RegionTissueCase IDAgeSex
1GSM119615Entorhinal CortexNormalE119615M63N63M
2GSM119616Entorhinal CortexNormalE119616M85N85M
3GSM119617Entorhinal CortexNormalE119617M80N80M
4GSM119618Entorhinal CortexNormalE119618M->F80N80M
5GSM119619Entorhinal CortexNormalE119619F->M102N102F
6GSM119620Entorhinal CortexNormalE119620M79N79M
7GSM119621Entorhinal CortexNormalE119621M76N76M
8GSM119622Entorhinal CortexNormalE119622M83N83M
9GSM119623Entorhinal CortexNormalE119623M79N79M
10GSM119624Entorhinal CortexNormalE119624F88N88F
11GSM119625Entorhinal CortexNormalE119625F82N82F
12GSM119626Entorhinal CortexNormalE119626M69N69M
13GSM119627Entorhinal CortexNormalE119627M78N78M
14GSM238763Entorhinal CortexAlzheimer'sE238763F82A82F
15GSM238790Entorhinal CortexAlzheimer'sE238790F86A86F
16GSM238791Entorhinal CortexAlzheimer'sE238791F93A93F
17GSM238792Entorhinal CortexAlzheimer'sE238792M84A84M
18GSM238793Entorhinal CortexAlzheimer'sE238793F79A79F
19GSM238794Entorhinal CortexAlzheimer'sE238794F78A78F
20GSM238795Entorhinal CortexAlzheimer'sE238795F91A91F
21GSM238796Entorhinal CortexAlzheimer'sE238796M86A86M
22GSM238797Entorhinal CortexAlzheimer'sE238797NA0AN/AN/A
23GSM238798Entorhinal CortexAlzheimer'sE238798M80A80M
24GSM119628HippocampusNormalH119628M85N85M
25GSM119629HippocampusNormalH119629M80N80M
26GSM119630HippocampusNormalH119630M80N80M
27GSM119631HippocampusNormalH119631F102N102F
28GSM119632HippocampusNormalH119632M63N63M
29GSM119633HippocampusNormalH119633M79N79M
30GSM119634HippocampusNormalH119634M76N76M
31GSM119635HippocampusNormalH119635M83N83M
32GSM119636HippocampusNormalH119636M79N79M
33GSM119637HippocampusNormalH119637F88N88F
34GSM119638HippocampusNormalH119638F73N73F
35GSM119639HippocampusNormalH119639M69N69M
36GSM119640HippocampusNormalH119640M78N78M
37GSM238799HippocampusAlzheimer'sH238799F73A73F
38GSM238800HippocampusAlzheimer'sH238800M81A81M
39GSM238801HippocampusAlzheimer'sH238801M78A78M
40GSM238802HippocampusAlzheimer'sH238802M75A75M
41GSM238803HippocampusAlzheimer'sH238803F70A70F
42GSM238804HippocampusAlzheimer'sH238804F85A85F
43GSM238805HippocampusAlzheimer'sH238805F77A77F
44GSM238806HippocampusAlzheimer'sH238806M79A79M
45GSM238807HippocampusAlzheimer'sH238807M88A88M
46GSM238808HippocampusAlzheimer'sH238808M72A72M
47GSM119641Medial Temporal GyrusNormalMT119641M85N85M
48GSM119642Medial Temporal GyrusNormalMT119642M80N80M
49GSM119643Medial Temporal GyrusNormalMT119643F102N102F
50GSM119644Medial Temporal GyrusNormalMT119644M63N63M
51GSM119645Medial Temporal GyrusNormalMT119645M79N79M
52GSM119646Medial Temporal GyrusNormalMT119646M83N83M
53GSM119647Medial Temporal GyrusNormalMT119647M79N79M
54GSM119648Medial Temporal GyrusNormalMT119648F88N88F
55GSM119649Medial Temporal GyrusNormalMT119649F82N82F
56GSM119650Medial Temporal GyrusNormalMT119650F73N73F
57GSM119651Medial Temporal GyrusNormalMT119651M69N69M
58GSM119652Medial Temporal GyrusNormalMT119652M->F78N78M
59GSM238809Medial Temporal GyrusAlzheimer'sMT238809M81A81M
60GSM238810Medial Temporal GyrusAlzheimer'sMT238810M72A72M
61GSM238811Medial Temporal GyrusAlzheimer'sMT238811M75A75M
62GSM238812Medial Temporal GyrusAlzheimer'sMT238812M78A78M
63GSM238813Medial Temporal GyrusAlzheimer'sMT238813M75A75M
64GSM238815Medial Temporal GyrusAlzheimer'sMT238815F95A95F
65GSM238816Medial Temporal GyrusAlzheimer'sMT238816F81A81F
66GSM238817Medial Temporal GyrusAlzheimer'sMT238817F85A85F
67GSM238818Medial Temporal GyrusAlzheimer'sMT238818M79A79M
68GSM238819Medial Temporal GyrusAlzheimer'sMT238819F82A82F
69GSM238820Medial Temporal GyrusAlzheimer'sMT238820M88A88M
70GSM238821Medial Temporal GyrusAlzheimer'sMT238821M72A72M
71GSM238822Medial Temporal GyrusAlzheimer'sMT238822F73A73F
72GSM238823Medial Temporal GyrusAlzheimer'sMT238823M87A87M
73GSM238824Medial Temporal GyrusAlzheimer'sMT238824M68A68M
74GSM238825Medial Temporal GyrusAlzheimer'sMT238825F80A80F
75GSM119653Posterior CingulateNormalPC119653M85N85M
76GSM119654Posterior CingulateNormalPC119654M80N80M
77GSM119655Posterior CingulateNormalPC119655F102N102F
78GSM119656Posterior CingulateNormalPC119656M63N63M
79GSM119657Posterior CingulateNormalPC119657M79N79M
80GSM119658Posterior CingulateNormalPC119658M->F76N76M
81GSM119659Posterior CingulateNormalPC119659M83N83M
82GSM119660Posterior CingulateNormalPC119660M79N79M
83GSM119661Posterior CingulateNormalPC119661F88N88F
84GSM119662Posterior CingulateNormalPC119662F82N82F
85GSM119663Posterior CingulateNormalPC119663F73N73F
86GSM119664Posterior CingulateNormalPC119664M69N69M
87GSM119665Posterior CingulateNormalPC119665M78N78M
88GSM238826Posterior CingulateAlzheimer'sPC238826F73A73F
89GSM238827Posterior CingulateAlzheimer'sPC238827M81A81M
90GSM238834Posterior CingulateAlzheimer'sPC238834M78A78M
91GSM238835Posterior CingulateAlzheimer'sPC238835M75A75M
92GSM238837Posterior CingulateAlzheimer'sPC238837M68A68M
93GSM238838Posterior CingulateAlzheimer'sPC238838F70A70F
94GSM238839Posterior CingulateAlzheimer'sPC238839F85A85F
95GSM238840Posterior CingulateAlzheimer'sPC238840M79A79M
96GSM238841Posterior CingulateAlzheimer'sPC238841M88A88M
97GSM119666Superior Frontal GyrusNormalSF119666M79N79M
98GSM119667Superior Frontal GyrusNormalSF119667F->M88N88F
99GSM119668Superior Frontal GyrusNormalSF119668F->M82N82F
100GSM119669Superior Frontal GyrusNormalSF119669F->M73N73F
101GSM119670Superior Frontal GyrusNormalSF119670F->M102N102F
102GSM119671Superior Frontal GyrusNormalSF119671M63N63M
103GSM119672Superior Frontal GyrusNormalSF119672M->F79N79M
104GSM119673Superior Frontal GyrusNormalSF119673M->F76N76M
105GSM119674Superior Frontal GyrusNormalSF119674M->F83N83M
106GSM119675Superior Frontal GyrusNormalSF119675M69N69M
107GSM119676Superior Frontal GyrusNormalSF119676M78N78M
108GSM238842Superior Frontal GyrusAlzheimer'sSF238842F73A73F
109GSM238843Superior Frontal GyrusAlzheimer'sSF238843M81A81M
110GSM238844Superior Frontal GyrusAlzheimer'sSF238844M72A72M
111GSM238845Superior Frontal GyrusAlzheimer'sSF238845M75A75M
112GSM238846Superior Frontal GyrusAlzheimer'sSF238846M78A78M
113GSM238847Superior Frontal GyrusAlzheimer'sSF238847M75A75M
114GSM238848Superior Frontal GyrusAlzheimer'sSF238848M87A87M
115GSM238851Superior Frontal GyrusAlzheimer'sSF238851F95A95F
116GSM238854Superior Frontal GyrusAlzheimer'sSF238854M68A68M
117GSM238855Superior Frontal GyrusAlzheimer'sSF238855F95A95F
118GSM238856Superior Frontal GyrusAlzheimer'sSF238856F70A70F
119GSM238857Superior Frontal GyrusAlzheimer'sSF238857F85A85F
120GSM238858Superior Frontal GyrusAlzheimer'sSF238858F83A83F
121GSM238860Superior Frontal GyrusAlzheimer'sSF238860F77A77F
122GSM238861Superior Frontal GyrusAlzheimer'sSF238861F83A83F
123GSM238862Superior Frontal GyrusAlzheimer'sSF238862M68A68M
124GSM238863Superior Frontal GyrusAlzheimer'sSF238863M79A79M
125GSM238864Superior Frontal GyrusAlzheimer'sSF238864F82A82F
126GSM238865Superior Frontal GyrusAlzheimer'sSF238865M88A88M
127GSM238867Superior Frontal GyrusAlzheimer'sSF238867F80A80F
128GSM238868Superior Frontal GyrusAlzheimer'sSF238868M74A74M
129GSM238870Superior Frontal GyrusAlzheimer'sSF238870M72A72M
130GSM238871Superior Frontal GyrusAlzheimer'sSF238871M80A80M
131GSM119677Primary Visual CortexNormalV119677M85N85M
132GSM119678Primary Visual CortexNormalV119678M80N80M
133GSM119679Primary Visual CortexNormalV119679M63N63M
134GSM119680Primary Visual CortexNormalV119680M79N79M
135GSM119681Primary Visual CortexNormalV119681M76N76M
136GSM119682Primary Visual CortexNormalV119682M83N83M
137GSM119683Primary Visual CortexNormalV119683M79N79M
138GSM119684Primary Visual CortexNormalV119684F88N88F
139GSM119685Primary Visual CortexNormalV119685F82N82F
140GSM119686Primary Visual CortexNormalV119686F73N73F
141GSM119687Primary Visual CortexNormalV119687M69N69M
142GSM119688Primary Visual CortexNormalV119688M78N78M
143GSM238872Primary Visual CortexAlzheimer'sV238872F73A73F
144GSM238873Primary Visual CortexAlzheimer'sV238873M81A81M
145GSM238874Primary Visual CortexAlzheimer'sV238874M75A75M
146GSM238875Primary Visual CortexAlzheimer'sV238875M78A78M
147GSM238877Primary Visual CortexAlzheimer'sV238877M75A75M
148GSM238941Primary Visual CortexAlzheimer'sV238941M87A87M
149GSM238942Primary Visual CortexAlzheimer'sV238942F95A95F
150GSM238943Primary Visual CortexAlzheimer'sV238943M68A68M
151GSM238944Primary Visual CortexAlzheimer'sV238944F70A70F
152GSM238945Primary Visual CortexAlzheimer'sV238945F81A81F
153GSM238946Primary Visual CortexAlzheimer'sV238946F85A85F
154GSM238947Primary Visual CortexAlzheimer'sV238947M68A68M
155GSM238948Primary Visual CortexAlzheimer'sV238948M79A79M
156GSM238949Primary Visual CortexAlzheimer'sV238949F82A82F
157GSM238951Primary Visual CortexAlzheimer'sV238951M88A88M
158GSM238952Primary Visual CortexAlzheimer'sV238952M74A74M
159GSM238953Primary Visual CortexAlzheimer'sV238953M72A72M
160GSM238955Primary Visual CortexAlzheimer'sV238955M->F68A68M
161GSM238963Primary Visual CortexAlzheimer'sV238963F80A80F
+
diff --git a/general/datasets/Gse5281_rma0709/acknowledgment.rtf b/general/datasets/Gse5281_rma0709/acknowledgment.rtf new file mode 100644 index 0000000..8ce4f5c --- /dev/null +++ b/general/datasets/Gse5281_rma0709/acknowledgment.rtf @@ -0,0 +1 @@ +

Please cite: Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, Schneider LE, Mastroeni D, Caselli R, Kukull W, Morris JC, Hulette CM, Schmechel D, Rogers J, Stephan DA (2008) Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci USA 105:4441-4446.

diff --git a/general/datasets/Gse5281_rma0709/citation.rtf b/general/datasets/Gse5281_rma0709/citation.rtf new file mode 100644 index 0000000..6c255a4 --- /dev/null +++ b/general/datasets/Gse5281_rma0709/citation.rtf @@ -0,0 +1,2 @@ +

Liang WS, Dunckley T, Beach TG, Grover A et al. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol Genomics 2007 Feb 12;28(3):311-22. PMID: 17077275
+Liang WS, Reiman EM, Valla J, Dunckley T et al. Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci U S A 2008 Mar 18;105(11):4441-6. PMID: 18332434

diff --git a/general/datasets/Gse5281_rma0709/contributors.rtf b/general/datasets/Gse5281_rma0709/contributors.rtf new file mode 100644 index 0000000..754b3a7 --- /dev/null +++ b/general/datasets/Gse5281_rma0709/contributors.rtf @@ -0,0 +1 @@ +

Stephan DA, Liang WS

diff --git a/general/datasets/Gse5281_rma0709/experiment-design.rtf b/general/datasets/Gse5281_rma0709/experiment-design.rtf new file mode 100644 index 0000000..bc54b5c --- /dev/null +++ b/general/datasets/Gse5281_rma0709/experiment-design.rtf @@ -0,0 +1,13 @@ +

Human brain expression data in patients with Alzheimer's disease and age-matched elderly control subjects. This cortical expression data set is taken from GEO GSE5281 (Liang et al. 2006, Liang et al. 2008). Samples were laser-captured from cortical regions of 16 normal elderly humans (10 males and 4 females) and from 33 AD cases (15 males and 18 females). Mean age of cases and controls was 80 years. All samples were run on the Affymetrix U133 Plus 2.0 array. We renormalized the RMA data to an average expression of 8 units on a log2 scale. Two versions of the data have been entered in GeneNetwork: one consisting of 157 of 161 arrays (full set minus 4 arrays we consider of poor quality); the second consisting of what we regard as the best 102 arrays (those with mean correlations of better than 0.88 with all other arrays). Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex area 17 layer III. GeneNetwork does not yet allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example, expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes.

+ +

NOTE: We detected a minimum of 7.6% case assignment error rate (12 of 158 arrays) in this data set. Twelve cases are assigned to the wrong sex (see XIST probe set 224588_at, the figure below, and table 1). This raises the possibility that some cases are also misassigned by cortical brain region and disease status.

+ +

 

+ +

+ +

Legend: Expression of the sex-specific gene XIST reveals about 10 sex assignment errors in this data set.

+ +

Samples were laser-captured from cortical layer 3 (except the hippocampus) and run on the Affymetrix U133 Plus 2.0 array. We renormalized the data to an average expression of 8 units on a log2 scale. Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex layer III. A total of 16 normal subjects were used (10 M and 4 female). The AD samples. GeneNetwork does not allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes.

+ +

Information about the genes that are preferentially expressed during the course of Alzheimer's disease (AD) could improve our understanding of the molecular mechanisms involved in the pathogenesis of this common cause of cognitive impairment in older persons, provide new opportunities in the diagnosis, early detection, and tracking of this disorder, and provide novel targets for the discovery of interventions to treat and prevent this disorder. Information about the genes that are preferentially expressed in relationship to normal neurological aging could provide new information about the molecular mechanisms that are involved in normal age-related cognitive decline and a host of age-related neurological disorders, and they could provide novel targets for the discovery of interventions to mitigate some of these deleterious effects.

diff --git a/general/datasets/Gse5281_rma0709/experiment-type.rtf b/general/datasets/Gse5281_rma0709/experiment-type.rtf new file mode 100644 index 0000000..5797da1 --- /dev/null +++ b/general/datasets/Gse5281_rma0709/experiment-type.rtf @@ -0,0 +1,9 @@ +

+Human brain expression data in patients with Alzheimer's disease and age-matched elderly control subjects. This cortical expression data set is taken from GEO GSE5281 (Liang et al. 2006, Liang et al. 2008). Samples were laser-captured from cortical regions of 16 normal elderly humans (10 males and 4 females) and from 33 AD cases (15 males and 18 females). Mean age of cases and controls was 80 years. All samples were run on the Affymetrix U133 Plus 2.0 array. We renormalized the RMA data to an average expression of 8 units on a log2 scale. Two versions of the data have been entered in GeneNetwork: one consisting of 157 of 161 arrays (full set minus 4 arrays we consider of poor quality); the second consisting of what we regard as the best 102 arrays (those with mean correlations of better than 0.88 with all other arrays). Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex area 17 layer III. GeneNetwork does not yet allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example, expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes. + +

NOTE: We detected a minimum of 7.6% case assignment error rate (12 of 158 arrays) in this data set. Twelve cases are assigned to the wrong sex (see XIST probe set 224588_at, the figure below, and table 1). This raises the possibility that some cases are also misassigned by cortical brain region and disease status. + +

+

Legend: Expression of the sex-specific gene XIST reveals about 10 sex assignment errors in this data set.

+
+

Samples were laser-captured from cortical layer 3 (except the hippocampus) and run on the Affymetrix U133 Plus 2.0 array. We renormalized the data to an average expression of 8 units on a log2 scale. Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex layer III. A total of 16 normal subjects were used (10 M and 4 female). The AD samples. GeneNetwork does not allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes.

\ No newline at end of file diff --git a/general/datasets/Gse5281_rma0709/platform.rtf b/general/datasets/Gse5281_rma0709/platform.rtf new file mode 100644 index 0000000..6c2af02 --- /dev/null +++ b/general/datasets/Gse5281_rma0709/platform.rtf @@ -0,0 +1,3 @@ +

Affymetrix submissions are typically submitted to GEO using the GEOarchive method described at http://www.ncbi.nlm.nih.gov/projects/geo/info/geo_affy.html Complete coverage of the Human Genome U133 Set plus 6,500 additional genes for analysis of over 47,000 transcripts All probe sets represented on the GeneChip Human Genome U133 Set are identically replicated on the GeneChip Human Genome U133 Plus 2.0 Array. The sequences from which these probe sets were derived were selected from GenBank®, dbEST, and RefSeq. The sequence clusters were created from the UniGene database (Build 133, April 20, 2001) and then refined by analysis and comparison with a number of other publicly available databases, including the Washington University EST trace repository and the University of California, Santa Cruz Golden-Path human genome database (April 2001 release).

+ +

In addition, there are 9,921 new probe sets representing approximately 6,500 new genes. These gene sequences were selected from GenBank, dbEST, and RefSeq. Sequence clusters were created from the UniGene database (Build 159, January 25, 2003) and refined by analysis and comparison with a number of other publicly available databases, including the Washington University EST trace repository and the NCBI human genome assembly (Build 31).

diff --git a/general/datasets/Gse5281_rma0709/summary.rtf b/general/datasets/Gse5281_rma0709/summary.rtf new file mode 100644 index 0000000..5db3978 --- /dev/null +++ b/general/datasets/Gse5281_rma0709/summary.rtf @@ -0,0 +1,1484 @@ +

(Taken verbatim from the GEO record)

+ +

Information about the genes that are preferentially expressed during the course of Alzheimer’s disease (AD) could improve our understanding of the molecular mechanisms involved in the pathogenesis of this common cause of cognitive impairment in older persons, provide new opportunities in the diagnosis, early detection, and tracking of this disorder, and provide novel targets for the discovery of interventions to treat and prevent this disorder. Information about the genes that are preferentially expressed in relationship to normal neurological aging could provide new information about the molecular mechanisms that are involved in normal age-related cognitive decline and a host of age-related neurological disorders, and they could provide novel targets for the discovery of interventions to mitigate some of these deleterious effects.

+ +

Aim 1. Collect brain samples from three Alzheimer’s Disease Centers (ADCs) for subsequent gene expression profiling. Individuals will be stratified with respect to diagnostic groups (using both clinical and neuropathological criteria), age groups, and APOE genotype. 150 individual brains will be sampled from the Arizona ADC, the Duke University ADC, and the Washington University ADC. Miniscule sample sizes (200 um of sectioned tissue) from six brain regions that are histopathologically or metabolically relevant to AD and aging will be collected, ensuring that this proposal does not deplete the national resource. Frozen and fixed samples will be sent to Phoenix, sectioned in a standardized fashion, and then returned. Aim 2. Tissue heterogeneity will be eliminated prior to expression profiling by performing laser capture microscopy on all brain regions. Aim 3. Expression profile LCM-captured cells on the Affymetrix U133 Plus 2.0 array (~55,000 transcripts), and quickly provide these data to the community at large. Aim 4. Identify pathogenic cascades related to each of the clinico-pathologic correlates using unsupervised and supervised analyses coupled with a hypothesis-driven approach. Aim 5. Validation of the expression correlates at the protein and functional levels.

+ +

Scientific progress in the last few years has improved our understanding of AD and raised the hope of identifying treatments to halt the progression and prevent the onset of this disorder. For instance, researchers have begun to characterize the cascade of molecular events which lead to the major histopathological features of the disorder: neuritic plaques, which contain extra-cellular deposits of amyloid beta-peptides (Abeta); neurofibrillary tangles, which contain the hyperphosphorylated form of the intracellular, microtubule-associated protein, tau; and a loss of neurons and synapses. These molecular events provide targets for the development of promising new treatments. For example, A-beta has been postulated to trigger a cascade of events that are involved in the pathogenesis of AD. This proposal hopes to provide new information about the genes that are preferentially expressed in the development of AD histopathology, including the over-expression of APP, amyloid-induced neurotoxicity, and hyperphosphorylation of tau, as well as bring clarity to the metabolic abnormalities that seem to play a role in dementia and AD development and pathology.

+ +

We will perform LCM on 6 brain regions with about 14 biological replicates per brain region. The brain regions are as follows: 1) entorhinal cortex 2) hippocampus 3) medial temporal gyrus 4) posterior cingulate 5) superior frontal gyrus and 6) primary visual cortex. We will collect layer III pyramidal cells from the white matter in each region, isolate total RNA from LCMed cell lysates, and perform double round amplification of each sample for array analysis.

+ +

+ +

Bad arrays excluded: Four samples, highlighted in the table below, are bad arrays. For quality control, they should be excluded.

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IndexGEO SeriesOrgan RegionTissueCase IDAgeSex
1GSM119615Entorhinal CortexNormalE119615M63N63M
2GSM119616Entorhinal CortexNormalE119616M85N85M
3GSM119617Entorhinal CortexNormalE119617M80N80M
4GSM119618Entorhinal CortexNormalE119618M->F80N80M
5GSM119619Entorhinal CortexNormalE119619F->M102N102F
6GSM119620Entorhinal CortexNormalE119620M79N79M
7GSM119621Entorhinal CortexNormalE119621M76N76M
8GSM119622Entorhinal CortexNormalE119622M83N83M
9GSM119623Entorhinal CortexNormalE119623M79N79M
10GSM119624Entorhinal CortexNormalE119624F88N88F
11GSM119625Entorhinal CortexNormalE119625F82N82F
12GSM119626Entorhinal CortexNormalE119626M69N69M
13GSM119627Entorhinal CortexNormalE119627M78N78M
14GSM238763Entorhinal CortexAlzheimer'sE238763F82A82F
15GSM238790Entorhinal CortexAlzheimer'sE238790F86A86F
16GSM238791Entorhinal CortexAlzheimer'sE238791F93A93F
17GSM238792Entorhinal CortexAlzheimer'sE238792M84A84M
18GSM238793Entorhinal CortexAlzheimer'sE238793F79A79F
19GSM238794Entorhinal CortexAlzheimer'sE238794F78A78F
20GSM238795Entorhinal CortexAlzheimer'sE238795F91A91F
21GSM238796Entorhinal CortexAlzheimer'sE238796M86A86M
22GSM238797Entorhinal CortexAlzheimer'sE238797NA0AN/AN/A
23GSM238798Entorhinal CortexAlzheimer'sE238798M80A80M
24GSM119628HippocampusNormalH119628M85N85M
25GSM119629HippocampusNormalH119629M80N80M
26GSM119630HippocampusNormalH119630M80N80M
27GSM119631HippocampusNormalH119631F102N102F
28GSM119632HippocampusNormalH119632M63N63M
29GSM119633HippocampusNormalH119633M79N79M
30GSM119634HippocampusNormalH119634M76N76M
31GSM119635HippocampusNormalH119635M83N83M
32GSM119636HippocampusNormalH119636M79N79M
33GSM119637HippocampusNormalH119637F88N88F
34GSM119638HippocampusNormalH119638F73N73F
35GSM119639HippocampusNormalH119639M69N69M
36GSM119640HippocampusNormalH119640M78N78M
37GSM238799HippocampusAlzheimer'sH238799F73A73F
38GSM238800HippocampusAlzheimer'sH238800M81A81M
39GSM238801HippocampusAlzheimer'sH238801M78A78M
40GSM238802HippocampusAlzheimer'sH238802M75A75M
41GSM238803HippocampusAlzheimer'sH238803F70A70F
42GSM238804HippocampusAlzheimer'sH238804F85A85F
43GSM238805HippocampusAlzheimer'sH238805F77A77F
44GSM238806HippocampusAlzheimer'sH238806M79A79M
45GSM238807HippocampusAlzheimer'sH238807M88A88M
46GSM238808HippocampusAlzheimer'sH238808M72A72M
47GSM119641Medial Temporal GyrusNormalMT119641M85N85M
48GSM119642Medial Temporal GyrusNormalMT119642M80N80M
49GSM119643Medial Temporal GyrusNormalMT119643F102N102F
50GSM119644Medial Temporal GyrusNormalMT119644M63N63M
51GSM119645Medial Temporal GyrusNormalMT119645M79N79M
52GSM119646Medial Temporal GyrusNormalMT119646M83N83M
53GSM119647Medial Temporal GyrusNormalMT119647M79N79M
54GSM119648Medial Temporal GyrusNormalMT119648F88N88F
55GSM119649Medial Temporal GyrusNormalMT119649F82N82F
56GSM119650Medial Temporal GyrusNormalMT119650F73N73F
57GSM119651Medial Temporal GyrusNormalMT119651M69N69M
58GSM119652Medial Temporal GyrusNormalMT119652M->F78N78M
59GSM238809Medial Temporal GyrusAlzheimer'sMT238809M81A81M
60GSM238810Medial Temporal GyrusAlzheimer'sMT238810M72A72M
61GSM238811Medial Temporal GyrusAlzheimer'sMT238811M75A75M
62GSM238812Medial Temporal GyrusAlzheimer'sMT238812M78A78M
63GSM238813Medial Temporal GyrusAlzheimer'sMT238813M75A75M
64GSM238815Medial Temporal GyrusAlzheimer'sMT238815F95A95F
65GSM238816Medial Temporal GyrusAlzheimer'sMT238816F81A81F
66GSM238817Medial Temporal GyrusAlzheimer'sMT238817F85A85F
67GSM238818Medial Temporal GyrusAlzheimer'sMT238818M79A79M
68GSM238819Medial Temporal GyrusAlzheimer'sMT238819F82A82F
69GSM238820Medial Temporal GyrusAlzheimer'sMT238820M88A88M
70GSM238821Medial Temporal GyrusAlzheimer'sMT238821M72A72M
71GSM238822Medial Temporal GyrusAlzheimer'sMT238822F73A73F
72GSM238823Medial Temporal GyrusAlzheimer'sMT238823M87A87M
73GSM238824Medial Temporal GyrusAlzheimer'sMT238824M68A68M
74GSM238825Medial Temporal GyrusAlzheimer'sMT238825F80A80F
75GSM119653Posterior CingulateNormalPC119653M85N85M
76GSM119654Posterior CingulateNormalPC119654M80N80M
77GSM119655Posterior CingulateNormalPC119655F102N102F
78GSM119656Posterior CingulateNormalPC119656M63N63M
79GSM119657Posterior CingulateNormalPC119657M79N79M
80GSM119658Posterior CingulateNormalPC119658M->F76N76M
81GSM119659Posterior CingulateNormalPC119659M83N83M
82GSM119660Posterior CingulateNormalPC119660M79N79M
83GSM119661Posterior CingulateNormalPC119661F88N88F
84GSM119662Posterior CingulateNormalPC119662F82N82F
85GSM119663Posterior CingulateNormalPC119663F73N73F
86GSM119664Posterior CingulateNormalPC119664M69N69M
87GSM119665Posterior CingulateNormalPC119665M78N78M
88GSM238826Posterior CingulateAlzheimer'sPC238826F73A73F
89GSM238827Posterior CingulateAlzheimer'sPC238827M81A81M
90GSM238834Posterior CingulateAlzheimer'sPC238834M78A78M
91GSM238835Posterior CingulateAlzheimer'sPC238835M75A75M
92GSM238837Posterior CingulateAlzheimer'sPC238837M68A68M
93GSM238838Posterior CingulateAlzheimer'sPC238838F70A70F
94GSM238839Posterior CingulateAlzheimer'sPC238839F85A85F
95GSM238840Posterior CingulateAlzheimer'sPC238840M79A79M
96GSM238841Posterior CingulateAlzheimer'sPC238841M88A88M
97GSM119666Superior Frontal GyrusNormalSF119666M79N79M
98GSM119667Superior Frontal GyrusNormalSF119667F->M88N88F
99GSM119668Superior Frontal GyrusNormalSF119668F->M82N82F
100GSM119669Superior Frontal GyrusNormalSF119669F->M73N73F
101GSM119670Superior Frontal GyrusNormalSF119670F->M102N102F
102GSM119671Superior Frontal GyrusNormalSF119671M63N63M
103GSM119672Superior Frontal GyrusNormalSF119672M->F79N79M
104GSM119673Superior Frontal GyrusNormalSF119673M->F76N76M
105GSM119674Superior Frontal GyrusNormalSF119674M->F83N83M
106GSM119675Superior Frontal GyrusNormalSF119675M69N69M
107GSM119676Superior Frontal GyrusNormalSF119676M78N78M
108GSM238842Superior Frontal GyrusAlzheimer'sSF238842F73A73F
109GSM238843Superior Frontal GyrusAlzheimer'sSF238843M81A81M
110GSM238844Superior Frontal GyrusAlzheimer'sSF238844M72A72M
111GSM238845Superior Frontal GyrusAlzheimer'sSF238845M75A75M
112GSM238846Superior Frontal GyrusAlzheimer'sSF238846M78A78M
113GSM238847Superior Frontal GyrusAlzheimer'sSF238847M75A75M
114GSM238848Superior Frontal GyrusAlzheimer'sSF238848M87A87M
115GSM238851Superior Frontal GyrusAlzheimer'sSF238851F95A95F
116GSM238854Superior Frontal GyrusAlzheimer'sSF238854M68A68M
117GSM238855Superior Frontal GyrusAlzheimer'sSF238855F95A95F
118GSM238856Superior Frontal GyrusAlzheimer'sSF238856F70A70F
119GSM238857Superior Frontal GyrusAlzheimer'sSF238857F85A85F
120GSM238858Superior Frontal GyrusAlzheimer'sSF238858F83A83F
121GSM238860Superior Frontal GyrusAlzheimer'sSF238860F77A77F
122GSM238861Superior Frontal GyrusAlzheimer'sSF238861F83A83F
123GSM238862Superior Frontal GyrusAlzheimer'sSF238862M68A68M
124GSM238863Superior Frontal GyrusAlzheimer'sSF238863M79A79M
125GSM238864Superior Frontal GyrusAlzheimer'sSF238864F82A82F
126GSM238865Superior Frontal GyrusAlzheimer'sSF238865M88A88M
127GSM238867Superior Frontal GyrusAlzheimer'sSF238867F80A80F
128GSM238868Superior Frontal GyrusAlzheimer'sSF238868M74A74M
129GSM238870Superior Frontal GyrusAlzheimer'sSF238870M72A72M
130GSM238871Superior Frontal GyrusAlzheimer'sSF238871M80A80M
131GSM119677Primary Visual CortexNormalV119677M85N85M
132GSM119678Primary Visual CortexNormalV119678M80N80M
133GSM119679Primary Visual CortexNormalV119679M63N63M
134GSM119680Primary Visual CortexNormalV119680M79N79M
135GSM119681Primary Visual CortexNormalV119681M76N76M
136GSM119682Primary Visual CortexNormalV119682M83N83M
137GSM119683Primary Visual CortexNormalV119683M79N79M
138GSM119684Primary Visual CortexNormalV119684F88N88F
139GSM119685Primary Visual CortexNormalV119685F82N82F
140GSM119686Primary Visual CortexNormalV119686F73N73F
141GSM119687Primary Visual CortexNormalV119687M69N69M
142GSM119688Primary Visual CortexNormalV119688M78N78M
143GSM238872Primary Visual CortexAlzheimer'sV238872F73A73F
144GSM238873Primary Visual CortexAlzheimer'sV238873M81A81M
145GSM238874Primary Visual CortexAlzheimer'sV238874M75A75M
146GSM238875Primary Visual CortexAlzheimer'sV238875M78A78M
147GSM238877Primary Visual CortexAlzheimer'sV238877M75A75M
148GSM238941Primary Visual CortexAlzheimer'sV238941M87A87M
149GSM238942Primary Visual CortexAlzheimer'sV238942F95A95F
150GSM238943Primary Visual CortexAlzheimer'sV238943M68A68M
151GSM238944Primary Visual CortexAlzheimer'sV238944F70A70F
152GSM238945Primary Visual CortexAlzheimer'sV238945F81A81F
153GSM238946Primary Visual CortexAlzheimer'sV238946F85A85F
154GSM238947Primary Visual CortexAlzheimer'sV238947M68A68M
155GSM238948Primary Visual CortexAlzheimer'sV238948M79A79M
156GSM238949Primary Visual CortexAlzheimer'sV238949F82A82F
157GSM238951Primary Visual CortexAlzheimer'sV238951M88A88M
158GSM238952Primary Visual CortexAlzheimer'sV238952M74A74M
159GSM238953Primary Visual CortexAlzheimer'sV238953M72A72M
160GSM238955Primary Visual CortexAlzheimer'sV238955M->F68A68M
161GSM238963Primary Visual CortexAlzheimer'sV238963F80A80F
+
diff --git a/general/datasets/Gtex_adren_0414/cases.rtf b/general/datasets/Gtex_adren_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_adren_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_adren_0414/contributors.rtf b/general/datasets/Gtex_adren_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_adren_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_adren_0414/experiment-design.rtf b/general/datasets/Gtex_adren_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_adren_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_adren_0414/platform.rtf b/general/datasets/Gtex_adren_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_adren_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_adren_0414/processing.rtf b/general/datasets/Gtex_adren_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_adren_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_adren_0414/summary.rtf b/general/datasets/Gtex_adren_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_adren_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_adren_0414/tissue.rtf b/general/datasets/Gtex_adren_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_adren_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_amy_0314/cases.rtf b/general/datasets/Gtex_amy_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_amy_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_amy_0314/contributors.rtf b/general/datasets/Gtex_amy_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_amy_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_amy_0314/experiment-design.rtf b/general/datasets/Gtex_amy_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_amy_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_amy_0314/platform.rtf b/general/datasets/Gtex_amy_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_amy_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_amy_0314/processing.rtf b/general/datasets/Gtex_amy_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_amy_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_amy_0314/summary.rtf b/general/datasets/Gtex_amy_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_amy_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_amy_0314/tissue.rtf b/general/datasets/Gtex_amy_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_amy_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_anter_0414/cases.rtf b/general/datasets/Gtex_anter_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_anter_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_anter_0414/contributors.rtf b/general/datasets/Gtex_anter_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_anter_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_anter_0414/experiment-design.rtf b/general/datasets/Gtex_anter_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_anter_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_anter_0414/platform.rtf b/general/datasets/Gtex_anter_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_anter_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_anter_0414/processing.rtf b/general/datasets/Gtex_anter_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_anter_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_anter_0414/summary.rtf b/general/datasets/Gtex_anter_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_anter_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_anter_0414/tissue.rtf b/general/datasets/Gtex_anter_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_anter_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_aorta_0414/cases.rtf b/general/datasets/Gtex_aorta_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_aorta_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_aorta_0414/contributors.rtf b/general/datasets/Gtex_aorta_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_aorta_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_aorta_0414/experiment-design.rtf b/general/datasets/Gtex_aorta_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_aorta_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_aorta_0414/platform.rtf b/general/datasets/Gtex_aorta_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_aorta_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_aorta_0414/processing.rtf b/general/datasets/Gtex_aorta_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_aorta_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_aorta_0414/summary.rtf b/general/datasets/Gtex_aorta_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_aorta_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_aorta_0414/tissue.rtf b/general/datasets/Gtex_aorta_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_aorta_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_blood_0414/cases.rtf b/general/datasets/Gtex_blood_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_blood_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_blood_0414/contributors.rtf b/general/datasets/Gtex_blood_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_blood_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_blood_0414/experiment-design.rtf b/general/datasets/Gtex_blood_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_blood_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_blood_0414/platform.rtf b/general/datasets/Gtex_blood_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_blood_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_blood_0414/processing.rtf b/general/datasets/Gtex_blood_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_blood_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_blood_0414/summary.rtf b/general/datasets/Gtex_blood_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_blood_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_blood_0414/tissue.rtf b/general/datasets/Gtex_blood_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_blood_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_breas_0414/cases.rtf b/general/datasets/Gtex_breas_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_breas_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_breas_0414/contributors.rtf b/general/datasets/Gtex_breas_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_breas_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_breas_0414/experiment-design.rtf b/general/datasets/Gtex_breas_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_breas_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_breas_0414/platform.rtf b/general/datasets/Gtex_breas_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_breas_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_breas_0414/processing.rtf b/general/datasets/Gtex_breas_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_breas_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_breas_0414/summary.rtf b/general/datasets/Gtex_breas_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_breas_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_breas_0414/tissue.rtf b/general/datasets/Gtex_breas_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_breas_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_cauda_0414/cases.rtf b/general/datasets/Gtex_cauda_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_cauda_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_cauda_0414/contributors.rtf b/general/datasets/Gtex_cauda_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_cauda_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_cauda_0414/experiment-design.rtf b/general/datasets/Gtex_cauda_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_cauda_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_cauda_0414/platform.rtf b/general/datasets/Gtex_cauda_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_cauda_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_cauda_0414/processing.rtf b/general/datasets/Gtex_cauda_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_cauda_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_cauda_0414/summary.rtf b/general/datasets/Gtex_cauda_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_cauda_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_cauda_0414/tissue.rtf b/general/datasets/Gtex_cauda_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_cauda_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_cellsebv_0414/cases.rtf b/general/datasets/Gtex_cellsebv_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_cellsebv_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_cellsebv_0414/contributors.rtf b/general/datasets/Gtex_cellsebv_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_cellsebv_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_cellsebv_0414/experiment-design.rtf b/general/datasets/Gtex_cellsebv_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_cellsebv_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_cellsebv_0414/platform.rtf b/general/datasets/Gtex_cellsebv_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_cellsebv_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_cellsebv_0414/processing.rtf b/general/datasets/Gtex_cellsebv_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_cellsebv_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_cellsebv_0414/summary.rtf b/general/datasets/Gtex_cellsebv_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_cellsebv_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_cellsebv_0414/tissue.rtf b/general/datasets/Gtex_cellsebv_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_cellsebv_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_cellsle_0414/citation.rtf b/general/datasets/Gtex_cellsle_0414/citation.rtf new file mode 100644 index 0000000..f3ba04a --- /dev/null +++ b/general/datasets/Gtex_cellsle_0414/citation.rtf @@ -0,0 +1 @@ +

Berchtold NC, Cribbs DH, Coleman PD, Rogers J et al. Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc Natl Acad Sci U S A 2008 Oct 7;105(40):15605-10. PMID: 18832152

diff --git a/general/datasets/Gtex_cellsle_0414/contributors.rtf b/general/datasets/Gtex_cellsle_0414/contributors.rtf new file mode 100644 index 0000000..fd462e2 --- /dev/null +++ b/general/datasets/Gtex_cellsle_0414/contributors.rtf @@ -0,0 +1 @@ +

Berchtold NC, Cribbs DH, Coleman PD, Rogers J, Head E, Kim R, Beach T, Miller C, Troncoso J, Trojanowski JQ, Zielke HR, Cotman CW

diff --git a/general/datasets/Gtex_cellsle_0414/experiment-design.rtf b/general/datasets/Gtex_cellsle_0414/experiment-design.rtf new file mode 100644 index 0000000..f6a3038 --- /dev/null +++ b/general/datasets/Gtex_cellsle_0414/experiment-design.rtf @@ -0,0 +1 @@ +

Postmortem brain tissue was collected from ADRC brain banks. Cases were preferentially selected where 3 or more brain regions were available.

diff --git a/general/datasets/Gtex_cellsle_0414/summary.rtf b/general/datasets/Gtex_cellsle_0414/summary.rtf new file mode 100644 index 0000000..fea08e6 --- /dev/null +++ b/general/datasets/Gtex_cellsle_0414/summary.rtf @@ -0,0 +1 @@ +

Gene expression profiles were assessed in the hippocampus (HC), entorhinal cortex (EC), superior frontal gyrus (SG), and postcentral gyrus (PCG) across the lifespan of 63 cognitively intact individuals from 20-99 years old. New perspectives on the global gene changes that are associated with brain aging emerged, revealing two overarching concepts. First, different regions of the forebrain exhibited substantially different gene profile changes with age. For example, comparing equally powered groups, 5,029 probe sets were significantly altered with age (20-59 vs. 60-99) in the superior frontal gyrus, compared with 1,110 in the entorhinal cortex. Prominent change occurred in the 6th-7th decades across cortical regions, suggesting that this period is a critical transition point in brain aging, particularly in males. Second, clear gender differences in brain aging were evident across the lifespan, suggesting that the brain undergoes sexually dimorphic changes in gene expression not only in development but also in later life. Globally across all brain regions, males showed more gene change than females. Further, Gene Ontology analysis revealed that different categories of genes were predominantly affected in males vs. females. Notably, the male brain was characterized by global decreased catabolic and anabolic capacity with aging, with downregulated genes heavily enriched in energy production and protein synthesis/transport categories. Increased immune activation was a prominent feature of aging in both sexes, with more widespread activation in the female brain. These data open new opportunities to explore age-dependent changes in gene expression that set the balance between neurodegeneration and compensatory mechanisms in the brain, and suggest that this balance is set differently in males and females, an intriguing and novel idea. HgU133plus2.0 microarray chips were used to profile gene expression in 4 brain regions of cognitively intact humans, across the adult lifespan (ages 20-99).

diff --git a/general/datasets/Gtex_cellstr_0414/cases.rtf b/general/datasets/Gtex_cellstr_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_cellstr_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_cellstr_0414/contributors.rtf b/general/datasets/Gtex_cellstr_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_cellstr_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_cellstr_0414/experiment-design.rtf b/general/datasets/Gtex_cellstr_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_cellstr_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_cellstr_0414/platform.rtf b/general/datasets/Gtex_cellstr_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_cellstr_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_cellstr_0414/processing.rtf b/general/datasets/Gtex_cellstr_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_cellstr_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_cellstr_0414/summary.rtf b/general/datasets/Gtex_cellstr_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_cellstr_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_cellstr_0414/tissue.rtf b/general/datasets/Gtex_cellstr_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_cellstr_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_cer_0314/cases.rtf b/general/datasets/Gtex_cer_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_cer_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_cer_0314/contributors.rtf b/general/datasets/Gtex_cer_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_cer_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_cer_0314/experiment-design.rtf b/general/datasets/Gtex_cer_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_cer_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_cer_0314/platform.rtf b/general/datasets/Gtex_cer_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_cer_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_cer_0314/processing.rtf b/general/datasets/Gtex_cer_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_cer_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_cer_0314/summary.rtf b/general/datasets/Gtex_cer_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_cer_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_cer_0314/tissue.rtf b/general/datasets/Gtex_cer_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_cer_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_cerebc_0414/cases.rtf b/general/datasets/Gtex_cerebc_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_cerebc_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_cerebc_0414/contributors.rtf b/general/datasets/Gtex_cerebc_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_cerebc_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_cerebc_0414/experiment-design.rtf b/general/datasets/Gtex_cerebc_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_cerebc_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_cerebc_0414/platform.rtf b/general/datasets/Gtex_cerebc_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_cerebc_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_cerebc_0414/processing.rtf b/general/datasets/Gtex_cerebc_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_cerebc_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_cerebc_0414/summary.rtf b/general/datasets/Gtex_cerebc_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_cerebc_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_cerebc_0414/tissue.rtf b/general/datasets/Gtex_cerebc_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_cerebc_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_cerebh_0414/cases.rtf b/general/datasets/Gtex_cerebh_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_cerebh_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_cerebh_0414/contributors.rtf b/general/datasets/Gtex_cerebh_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_cerebh_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_cerebh_0414/experiment-design.rtf b/general/datasets/Gtex_cerebh_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_cerebh_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_cerebh_0414/platform.rtf b/general/datasets/Gtex_cerebh_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_cerebh_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_cerebh_0414/processing.rtf b/general/datasets/Gtex_cerebh_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_cerebh_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_cerebh_0414/summary.rtf b/general/datasets/Gtex_cerebh_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_cerebh_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_cerebh_0414/tissue.rtf b/general/datasets/Gtex_cerebh_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_cerebh_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_colon_0414/cases.rtf b/general/datasets/Gtex_colon_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_colon_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_colon_0414/contributors.rtf b/general/datasets/Gtex_colon_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_colon_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_colon_0414/experiment-design.rtf b/general/datasets/Gtex_colon_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_colon_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_colon_0414/platform.rtf b/general/datasets/Gtex_colon_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_colon_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_colon_0414/processing.rtf b/general/datasets/Gtex_colon_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_colon_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_colon_0414/summary.rtf b/general/datasets/Gtex_colon_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_colon_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_colon_0414/tissue.rtf b/general/datasets/Gtex_colon_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_colon_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_coron_0414/cases.rtf b/general/datasets/Gtex_coron_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_coron_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_coron_0414/contributors.rtf b/general/datasets/Gtex_coron_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_coron_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_coron_0414/experiment-design.rtf b/general/datasets/Gtex_coron_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_coron_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_coron_0414/platform.rtf b/general/datasets/Gtex_coron_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_coron_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_coron_0414/processing.rtf b/general/datasets/Gtex_coron_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_coron_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_coron_0414/summary.rtf b/general/datasets/Gtex_coron_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_coron_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_coron_0414/tissue.rtf b/general/datasets/Gtex_coron_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_coron_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_esophmuc_0414/cases.rtf b/general/datasets/Gtex_esophmuc_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_esophmuc_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_esophmuc_0414/contributors.rtf b/general/datasets/Gtex_esophmuc_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_esophmuc_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_esophmuc_0414/experiment-design.rtf b/general/datasets/Gtex_esophmuc_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_esophmuc_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_esophmuc_0414/platform.rtf b/general/datasets/Gtex_esophmuc_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_esophmuc_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_esophmuc_0414/processing.rtf b/general/datasets/Gtex_esophmuc_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_esophmuc_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_esophmuc_0414/summary.rtf b/general/datasets/Gtex_esophmuc_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_esophmuc_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_esophmuc_0414/tissue.rtf b/general/datasets/Gtex_esophmuc_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_esophmuc_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_esophmus_0414/cases.rtf b/general/datasets/Gtex_esophmus_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_esophmus_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_esophmus_0414/contributors.rtf b/general/datasets/Gtex_esophmus_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_esophmus_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_esophmus_0414/experiment-design.rtf b/general/datasets/Gtex_esophmus_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_esophmus_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_esophmus_0414/platform.rtf b/general/datasets/Gtex_esophmus_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_esophmus_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_esophmus_0414/processing.rtf b/general/datasets/Gtex_esophmus_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_esophmus_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_esophmus_0414/summary.rtf b/general/datasets/Gtex_esophmus_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_esophmus_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_esophmus_0414/tissue.rtf b/general/datasets/Gtex_esophmus_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_esophmus_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_fallo_0414/cases.rtf b/general/datasets/Gtex_fallo_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_fallo_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_fallo_0414/contributors.rtf b/general/datasets/Gtex_fallo_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_fallo_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_fallo_0414/experiment-design.rtf b/general/datasets/Gtex_fallo_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_fallo_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_fallo_0414/platform.rtf b/general/datasets/Gtex_fallo_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_fallo_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_fallo_0414/processing.rtf b/general/datasets/Gtex_fallo_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_fallo_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_fallo_0414/summary.rtf b/general/datasets/Gtex_fallo_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_fallo_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_fallo_0414/tissue.rtf b/general/datasets/Gtex_fallo_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_fallo_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_front_0414/cases.rtf b/general/datasets/Gtex_front_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_front_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_front_0414/contributors.rtf b/general/datasets/Gtex_front_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_front_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_front_0414/experiment-design.rtf b/general/datasets/Gtex_front_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_front_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_front_0414/platform.rtf b/general/datasets/Gtex_front_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_front_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_front_0414/processing.rtf b/general/datasets/Gtex_front_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_front_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_front_0414/summary.rtf b/general/datasets/Gtex_front_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_front_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_front_0414/tissue.rtf b/general/datasets/Gtex_front_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_front_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_heartat_0414/cases.rtf b/general/datasets/Gtex_heartat_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_heartat_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_heartat_0414/contributors.rtf b/general/datasets/Gtex_heartat_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_heartat_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_heartat_0414/experiment-design.rtf b/general/datasets/Gtex_heartat_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_heartat_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_heartat_0414/platform.rtf b/general/datasets/Gtex_heartat_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_heartat_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_heartat_0414/processing.rtf b/general/datasets/Gtex_heartat_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_heartat_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_heartat_0414/summary.rtf b/general/datasets/Gtex_heartat_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_heartat_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_heartat_0414/tissue.rtf b/general/datasets/Gtex_heartat_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_heartat_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_heartlv_0414/cases.rtf b/general/datasets/Gtex_heartlv_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_heartlv_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_heartlv_0414/contributors.rtf b/general/datasets/Gtex_heartlv_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_heartlv_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_heartlv_0414/experiment-design.rtf b/general/datasets/Gtex_heartlv_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_heartlv_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_heartlv_0414/platform.rtf b/general/datasets/Gtex_heartlv_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_heartlv_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_heartlv_0414/processing.rtf b/general/datasets/Gtex_heartlv_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_heartlv_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_heartlv_0414/summary.rtf b/general/datasets/Gtex_heartlv_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_heartlv_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_heartlv_0414/tissue.rtf b/general/datasets/Gtex_heartlv_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_heartlv_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_hip_0314/cases.rtf b/general/datasets/Gtex_hip_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_hip_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_hip_0314/contributors.rtf b/general/datasets/Gtex_hip_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_hip_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_hip_0314/experiment-design.rtf b/general/datasets/Gtex_hip_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_hip_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_hip_0314/platform.rtf b/general/datasets/Gtex_hip_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_hip_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_hip_0314/processing.rtf b/general/datasets/Gtex_hip_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_hip_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_hip_0314/summary.rtf b/general/datasets/Gtex_hip_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_hip_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_hip_0314/tissue.rtf b/general/datasets/Gtex_hip_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_hip_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_hypot_0414/cases.rtf b/general/datasets/Gtex_hypot_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_hypot_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_hypot_0414/contributors.rtf b/general/datasets/Gtex_hypot_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_hypot_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_hypot_0414/experiment-design.rtf b/general/datasets/Gtex_hypot_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_hypot_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_hypot_0414/platform.rtf b/general/datasets/Gtex_hypot_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_hypot_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_hypot_0414/processing.rtf b/general/datasets/Gtex_hypot_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_hypot_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_hypot_0414/summary.rtf b/general/datasets/Gtex_hypot_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_hypot_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_hypot_0414/tissue.rtf b/general/datasets/Gtex_hypot_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_hypot_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_kidne_0414/cases.rtf b/general/datasets/Gtex_kidne_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_kidne_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_kidne_0414/contributors.rtf b/general/datasets/Gtex_kidne_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_kidne_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_kidne_0414/experiment-design.rtf b/general/datasets/Gtex_kidne_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_kidne_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_kidne_0414/platform.rtf b/general/datasets/Gtex_kidne_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_kidne_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_kidne_0414/processing.rtf b/general/datasets/Gtex_kidne_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_kidne_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_kidne_0414/summary.rtf b/general/datasets/Gtex_kidne_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_kidne_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_kidne_0414/tissue.rtf b/general/datasets/Gtex_kidne_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_kidne_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_liver_0414/cases.rtf b/general/datasets/Gtex_liver_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_liver_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_liver_0414/contributors.rtf b/general/datasets/Gtex_liver_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_liver_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_liver_0414/experiment-design.rtf b/general/datasets/Gtex_liver_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_liver_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_liver_0414/platform.rtf b/general/datasets/Gtex_liver_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_liver_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_liver_0414/processing.rtf b/general/datasets/Gtex_liver_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_liver_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_liver_0414/summary.rtf b/general/datasets/Gtex_liver_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_liver_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_liver_0414/tissue.rtf b/general/datasets/Gtex_liver_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_liver_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_adren_0314/cases.rtf b/general/datasets/Gtex_log2_adren_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_adren_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_adren_0314/contributors.rtf b/general/datasets/Gtex_log2_adren_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_adren_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_adren_0314/experiment-design.rtf b/general/datasets/Gtex_log2_adren_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_adren_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_adren_0314/platform.rtf b/general/datasets/Gtex_log2_adren_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_adren_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_adren_0314/processing.rtf b/general/datasets/Gtex_log2_adren_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_adren_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_adren_0314/summary.rtf b/general/datasets/Gtex_log2_adren_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_adren_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_adren_0314/tissue.rtf b/general/datasets/Gtex_log2_adren_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_adren_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_amy_0314/cases.rtf b/general/datasets/Gtex_log2_amy_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_amy_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_amy_0314/contributors.rtf b/general/datasets/Gtex_log2_amy_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_amy_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_amy_0314/experiment-design.rtf b/general/datasets/Gtex_log2_amy_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_amy_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_amy_0314/platform.rtf b/general/datasets/Gtex_log2_amy_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_amy_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_amy_0314/processing.rtf b/general/datasets/Gtex_log2_amy_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_amy_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_amy_0314/summary.rtf b/general/datasets/Gtex_log2_amy_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_amy_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_amy_0314/tissue.rtf b/general/datasets/Gtex_log2_amy_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_amy_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_anter_0314/cases.rtf b/general/datasets/Gtex_log2_anter_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_anter_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_anter_0314/contributors.rtf b/general/datasets/Gtex_log2_anter_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_anter_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_anter_0314/experiment-design.rtf b/general/datasets/Gtex_log2_anter_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_anter_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_anter_0314/platform.rtf b/general/datasets/Gtex_log2_anter_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_anter_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_anter_0314/processing.rtf b/general/datasets/Gtex_log2_anter_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_anter_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_anter_0314/summary.rtf b/general/datasets/Gtex_log2_anter_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_anter_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_anter_0314/tissue.rtf b/general/datasets/Gtex_log2_anter_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_anter_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_aorta_0314/cases.rtf b/general/datasets/Gtex_log2_aorta_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_aorta_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_aorta_0314/contributors.rtf b/general/datasets/Gtex_log2_aorta_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_aorta_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_aorta_0314/experiment-design.rtf b/general/datasets/Gtex_log2_aorta_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_aorta_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_aorta_0314/platform.rtf b/general/datasets/Gtex_log2_aorta_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_aorta_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_aorta_0314/processing.rtf b/general/datasets/Gtex_log2_aorta_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_aorta_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_aorta_0314/summary.rtf b/general/datasets/Gtex_log2_aorta_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_aorta_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_aorta_0314/tissue.rtf b/general/datasets/Gtex_log2_aorta_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_aorta_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_blood_0314/cases.rtf b/general/datasets/Gtex_log2_blood_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_blood_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_blood_0314/contributors.rtf b/general/datasets/Gtex_log2_blood_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_blood_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_blood_0314/experiment-design.rtf b/general/datasets/Gtex_log2_blood_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_blood_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_blood_0314/platform.rtf b/general/datasets/Gtex_log2_blood_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_blood_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_blood_0314/processing.rtf b/general/datasets/Gtex_log2_blood_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_blood_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_blood_0314/summary.rtf b/general/datasets/Gtex_log2_blood_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_blood_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_blood_0314/tissue.rtf b/general/datasets/Gtex_log2_blood_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_blood_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_breas_0314/cases.rtf b/general/datasets/Gtex_log2_breas_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_breas_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_breas_0314/contributors.rtf b/general/datasets/Gtex_log2_breas_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_breas_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_breas_0314/experiment-design.rtf b/general/datasets/Gtex_log2_breas_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_breas_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_breas_0314/platform.rtf b/general/datasets/Gtex_log2_breas_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_breas_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_breas_0314/processing.rtf b/general/datasets/Gtex_log2_breas_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_breas_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_breas_0314/summary.rtf b/general/datasets/Gtex_log2_breas_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_breas_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_breas_0314/tissue.rtf b/general/datasets/Gtex_log2_breas_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_breas_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_cauda_0314/cases.rtf b/general/datasets/Gtex_log2_cauda_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_cauda_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_cauda_0314/contributors.rtf b/general/datasets/Gtex_log2_cauda_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_cauda_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_cauda_0314/experiment-design.rtf b/general/datasets/Gtex_log2_cauda_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_cauda_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_cauda_0314/platform.rtf b/general/datasets/Gtex_log2_cauda_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_cauda_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_cauda_0314/processing.rtf b/general/datasets/Gtex_log2_cauda_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_cauda_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_cauda_0314/summary.rtf b/general/datasets/Gtex_log2_cauda_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_cauda_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_cauda_0314/tissue.rtf b/general/datasets/Gtex_log2_cauda_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_cauda_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_cellsebv_0314/cases.rtf b/general/datasets/Gtex_log2_cellsebv_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_cellsebv_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_cellsebv_0314/contributors.rtf b/general/datasets/Gtex_log2_cellsebv_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_cellsebv_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_cellsebv_0314/experiment-design.rtf b/general/datasets/Gtex_log2_cellsebv_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_cellsebv_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_cellsebv_0314/platform.rtf b/general/datasets/Gtex_log2_cellsebv_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_cellsebv_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_cellsebv_0314/processing.rtf b/general/datasets/Gtex_log2_cellsebv_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_cellsebv_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_cellsebv_0314/summary.rtf b/general/datasets/Gtex_log2_cellsebv_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_cellsebv_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_cellsebv_0314/tissue.rtf b/general/datasets/Gtex_log2_cellsebv_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_cellsebv_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_cellsle_0314/cases.rtf b/general/datasets/Gtex_log2_cellsle_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_cellsle_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_cellsle_0314/contributors.rtf b/general/datasets/Gtex_log2_cellsle_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_cellsle_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_cellsle_0314/experiment-design.rtf b/general/datasets/Gtex_log2_cellsle_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_cellsle_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_cellsle_0314/platform.rtf b/general/datasets/Gtex_log2_cellsle_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_cellsle_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_cellsle_0314/processing.rtf b/general/datasets/Gtex_log2_cellsle_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_cellsle_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_cellsle_0314/summary.rtf b/general/datasets/Gtex_log2_cellsle_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_cellsle_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_cellsle_0314/tissue.rtf b/general/datasets/Gtex_log2_cellsle_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_cellsle_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_cellstr_0314/cases.rtf b/general/datasets/Gtex_log2_cellstr_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_cellstr_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_cellstr_0314/contributors.rtf b/general/datasets/Gtex_log2_cellstr_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_cellstr_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_cellstr_0314/experiment-design.rtf b/general/datasets/Gtex_log2_cellstr_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_cellstr_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_cellstr_0314/platform.rtf b/general/datasets/Gtex_log2_cellstr_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_cellstr_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_cellstr_0314/processing.rtf b/general/datasets/Gtex_log2_cellstr_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_cellstr_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_cellstr_0314/summary.rtf b/general/datasets/Gtex_log2_cellstr_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_cellstr_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_cellstr_0314/tissue.rtf b/general/datasets/Gtex_log2_cellstr_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_cellstr_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_cer_0314/cases.rtf b/general/datasets/Gtex_log2_cer_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_cer_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_cer_0314/contributors.rtf b/general/datasets/Gtex_log2_cer_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_cer_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_cer_0314/experiment-design.rtf b/general/datasets/Gtex_log2_cer_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_cer_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_cer_0314/platform.rtf b/general/datasets/Gtex_log2_cer_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_cer_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_cer_0314/processing.rtf b/general/datasets/Gtex_log2_cer_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_cer_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_cer_0314/summary.rtf b/general/datasets/Gtex_log2_cer_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_cer_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_cer_0314/tissue.rtf b/general/datasets/Gtex_log2_cer_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_cer_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_cerebc_0314/cases.rtf b/general/datasets/Gtex_log2_cerebc_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_cerebc_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_cerebc_0314/contributors.rtf b/general/datasets/Gtex_log2_cerebc_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_cerebc_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_cerebc_0314/experiment-design.rtf b/general/datasets/Gtex_log2_cerebc_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_cerebc_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_cerebc_0314/platform.rtf b/general/datasets/Gtex_log2_cerebc_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_cerebc_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_cerebc_0314/processing.rtf b/general/datasets/Gtex_log2_cerebc_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_cerebc_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_cerebc_0314/summary.rtf b/general/datasets/Gtex_log2_cerebc_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_cerebc_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_cerebc_0314/tissue.rtf b/general/datasets/Gtex_log2_cerebc_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_cerebc_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_cerebh_0314/cases.rtf b/general/datasets/Gtex_log2_cerebh_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_cerebh_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_cerebh_0314/contributors.rtf b/general/datasets/Gtex_log2_cerebh_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_cerebh_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_cerebh_0314/experiment-design.rtf b/general/datasets/Gtex_log2_cerebh_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_cerebh_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_cerebh_0314/platform.rtf b/general/datasets/Gtex_log2_cerebh_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_cerebh_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_cerebh_0314/processing.rtf b/general/datasets/Gtex_log2_cerebh_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_cerebh_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_cerebh_0314/summary.rtf b/general/datasets/Gtex_log2_cerebh_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_cerebh_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_cerebh_0314/tissue.rtf b/general/datasets/Gtex_log2_cerebh_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_cerebh_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_colon_0314/cases.rtf b/general/datasets/Gtex_log2_colon_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_colon_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_colon_0314/contributors.rtf b/general/datasets/Gtex_log2_colon_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_colon_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_colon_0314/experiment-design.rtf b/general/datasets/Gtex_log2_colon_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_colon_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_colon_0314/platform.rtf b/general/datasets/Gtex_log2_colon_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_colon_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_colon_0314/processing.rtf b/general/datasets/Gtex_log2_colon_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_colon_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_colon_0314/summary.rtf b/general/datasets/Gtex_log2_colon_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_colon_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_colon_0314/tissue.rtf b/general/datasets/Gtex_log2_colon_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_colon_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_coron_0314/cases.rtf b/general/datasets/Gtex_log2_coron_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_coron_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_coron_0314/contributors.rtf b/general/datasets/Gtex_log2_coron_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_coron_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_coron_0314/experiment-design.rtf b/general/datasets/Gtex_log2_coron_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_coron_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_coron_0314/platform.rtf b/general/datasets/Gtex_log2_coron_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_coron_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_coron_0314/processing.rtf b/general/datasets/Gtex_log2_coron_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_coron_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_coron_0314/summary.rtf b/general/datasets/Gtex_log2_coron_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_coron_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_coron_0314/tissue.rtf b/general/datasets/Gtex_log2_coron_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_coron_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_esophmuc_0314/cases.rtf b/general/datasets/Gtex_log2_esophmuc_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_esophmuc_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_esophmuc_0314/contributors.rtf b/general/datasets/Gtex_log2_esophmuc_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_esophmuc_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_esophmuc_0314/experiment-design.rtf b/general/datasets/Gtex_log2_esophmuc_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_esophmuc_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_esophmuc_0314/platform.rtf b/general/datasets/Gtex_log2_esophmuc_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_esophmuc_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_esophmuc_0314/processing.rtf b/general/datasets/Gtex_log2_esophmuc_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_esophmuc_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_esophmuc_0314/summary.rtf b/general/datasets/Gtex_log2_esophmuc_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_esophmuc_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_esophmuc_0314/tissue.rtf b/general/datasets/Gtex_log2_esophmuc_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_esophmuc_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_esophmus_0314/cases.rtf b/general/datasets/Gtex_log2_esophmus_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_esophmus_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_esophmus_0314/contributors.rtf b/general/datasets/Gtex_log2_esophmus_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_esophmus_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_esophmus_0314/experiment-design.rtf b/general/datasets/Gtex_log2_esophmus_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_esophmus_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_esophmus_0314/platform.rtf b/general/datasets/Gtex_log2_esophmus_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_esophmus_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_esophmus_0314/processing.rtf b/general/datasets/Gtex_log2_esophmus_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_esophmus_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_esophmus_0314/summary.rtf b/general/datasets/Gtex_log2_esophmus_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_esophmus_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_esophmus_0314/tissue.rtf b/general/datasets/Gtex_log2_esophmus_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_esophmus_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_fallo_0314/cases.rtf b/general/datasets/Gtex_log2_fallo_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_fallo_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_fallo_0314/contributors.rtf b/general/datasets/Gtex_log2_fallo_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_fallo_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_fallo_0314/experiment-design.rtf b/general/datasets/Gtex_log2_fallo_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_fallo_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_fallo_0314/platform.rtf b/general/datasets/Gtex_log2_fallo_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_fallo_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_fallo_0314/processing.rtf b/general/datasets/Gtex_log2_fallo_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_fallo_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_fallo_0314/summary.rtf b/general/datasets/Gtex_log2_fallo_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_fallo_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_fallo_0314/tissue.rtf b/general/datasets/Gtex_log2_fallo_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_fallo_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_front_0314/cases.rtf b/general/datasets/Gtex_log2_front_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_front_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_front_0314/contributors.rtf b/general/datasets/Gtex_log2_front_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_front_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_front_0314/experiment-design.rtf b/general/datasets/Gtex_log2_front_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_front_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_front_0314/platform.rtf b/general/datasets/Gtex_log2_front_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_front_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_front_0314/processing.rtf b/general/datasets/Gtex_log2_front_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_front_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_front_0314/summary.rtf b/general/datasets/Gtex_log2_front_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_front_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_front_0314/tissue.rtf b/general/datasets/Gtex_log2_front_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_front_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_heartat_0314/cases.rtf b/general/datasets/Gtex_log2_heartat_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_heartat_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_heartat_0314/contributors.rtf b/general/datasets/Gtex_log2_heartat_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_heartat_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_heartat_0314/experiment-design.rtf b/general/datasets/Gtex_log2_heartat_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_heartat_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_heartat_0314/platform.rtf b/general/datasets/Gtex_log2_heartat_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_heartat_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_heartat_0314/processing.rtf b/general/datasets/Gtex_log2_heartat_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_heartat_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_heartat_0314/summary.rtf b/general/datasets/Gtex_log2_heartat_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_heartat_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_heartat_0314/tissue.rtf b/general/datasets/Gtex_log2_heartat_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_heartat_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_heartlv_0314/cases.rtf b/general/datasets/Gtex_log2_heartlv_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_heartlv_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_heartlv_0314/contributors.rtf b/general/datasets/Gtex_log2_heartlv_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_heartlv_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_heartlv_0314/experiment-design.rtf b/general/datasets/Gtex_log2_heartlv_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_heartlv_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_heartlv_0314/platform.rtf b/general/datasets/Gtex_log2_heartlv_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_heartlv_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_heartlv_0314/processing.rtf b/general/datasets/Gtex_log2_heartlv_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_heartlv_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_heartlv_0314/summary.rtf b/general/datasets/Gtex_log2_heartlv_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_heartlv_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_heartlv_0314/tissue.rtf b/general/datasets/Gtex_log2_heartlv_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_heartlv_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_hip_0314/cases.rtf b/general/datasets/Gtex_log2_hip_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_hip_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_hip_0314/contributors.rtf b/general/datasets/Gtex_log2_hip_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_hip_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_hip_0314/experiment-design.rtf b/general/datasets/Gtex_log2_hip_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_hip_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_hip_0314/platform.rtf b/general/datasets/Gtex_log2_hip_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_hip_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_hip_0314/processing.rtf b/general/datasets/Gtex_log2_hip_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_hip_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_hip_0314/summary.rtf b/general/datasets/Gtex_log2_hip_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_hip_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_hip_0314/tissue.rtf b/general/datasets/Gtex_log2_hip_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_hip_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_hypot_0314/cases.rtf b/general/datasets/Gtex_log2_hypot_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_hypot_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_hypot_0314/contributors.rtf b/general/datasets/Gtex_log2_hypot_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_hypot_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_hypot_0314/experiment-design.rtf b/general/datasets/Gtex_log2_hypot_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_hypot_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_hypot_0314/platform.rtf b/general/datasets/Gtex_log2_hypot_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_hypot_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_hypot_0314/processing.rtf b/general/datasets/Gtex_log2_hypot_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_hypot_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_hypot_0314/summary.rtf b/general/datasets/Gtex_log2_hypot_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_hypot_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_hypot_0314/tissue.rtf b/general/datasets/Gtex_log2_hypot_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_hypot_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_kidne_0314/cases.rtf b/general/datasets/Gtex_log2_kidne_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_kidne_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_kidne_0314/contributors.rtf b/general/datasets/Gtex_log2_kidne_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_kidne_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_kidne_0314/experiment-design.rtf b/general/datasets/Gtex_log2_kidne_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_kidne_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_kidne_0314/platform.rtf b/general/datasets/Gtex_log2_kidne_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_kidne_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_kidne_0314/processing.rtf b/general/datasets/Gtex_log2_kidne_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_kidne_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_kidne_0314/summary.rtf b/general/datasets/Gtex_log2_kidne_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_kidne_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_kidne_0314/tissue.rtf b/general/datasets/Gtex_log2_kidne_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_kidne_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_liver_0314/cases.rtf b/general/datasets/Gtex_log2_liver_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_liver_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_liver_0314/contributors.rtf b/general/datasets/Gtex_log2_liver_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_liver_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_liver_0314/experiment-design.rtf b/general/datasets/Gtex_log2_liver_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_liver_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_liver_0314/platform.rtf b/general/datasets/Gtex_log2_liver_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_liver_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_liver_0314/processing.rtf b/general/datasets/Gtex_log2_liver_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_liver_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_liver_0314/summary.rtf b/general/datasets/Gtex_log2_liver_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_liver_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_liver_0314/tissue.rtf b/general/datasets/Gtex_log2_liver_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_liver_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_lung_0314/cases.rtf b/general/datasets/Gtex_log2_lung_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_lung_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_lung_0314/contributors.rtf b/general/datasets/Gtex_log2_lung_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_lung_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_lung_0314/experiment-design.rtf b/general/datasets/Gtex_log2_lung_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_lung_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_lung_0314/platform.rtf b/general/datasets/Gtex_log2_lung_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_lung_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_lung_0314/processing.rtf b/general/datasets/Gtex_log2_lung_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_lung_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_lung_0314/summary.rtf b/general/datasets/Gtex_log2_lung_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_lung_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_lung_0314/tissue.rtf b/general/datasets/Gtex_log2_lung_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_lung_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_muscle_0314/cases.rtf b/general/datasets/Gtex_log2_muscle_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_muscle_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_muscle_0314/contributors.rtf b/general/datasets/Gtex_log2_muscle_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_muscle_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_muscle_0314/experiment-design.rtf b/general/datasets/Gtex_log2_muscle_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_muscle_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_muscle_0314/platform.rtf b/general/datasets/Gtex_log2_muscle_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_muscle_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_muscle_0314/processing.rtf b/general/datasets/Gtex_log2_muscle_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_muscle_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_muscle_0314/summary.rtf b/general/datasets/Gtex_log2_muscle_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_muscle_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_muscle_0314/tissue.rtf b/general/datasets/Gtex_log2_muscle_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_muscle_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_nerve_0314/cases.rtf b/general/datasets/Gtex_log2_nerve_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_nerve_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_nerve_0314/contributors.rtf b/general/datasets/Gtex_log2_nerve_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_nerve_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_nerve_0314/experiment-design.rtf b/general/datasets/Gtex_log2_nerve_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_nerve_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_nerve_0314/platform.rtf b/general/datasets/Gtex_log2_nerve_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_nerve_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_nerve_0314/processing.rtf b/general/datasets/Gtex_log2_nerve_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_nerve_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_nerve_0314/summary.rtf b/general/datasets/Gtex_log2_nerve_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_nerve_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_nerve_0314/tissue.rtf b/general/datasets/Gtex_log2_nerve_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_nerve_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_nucle_0314/cases.rtf b/general/datasets/Gtex_log2_nucle_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_nucle_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_nucle_0314/contributors.rtf b/general/datasets/Gtex_log2_nucle_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_nucle_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_nucle_0314/experiment-design.rtf b/general/datasets/Gtex_log2_nucle_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_nucle_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_nucle_0314/platform.rtf b/general/datasets/Gtex_log2_nucle_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_nucle_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_nucle_0314/processing.rtf b/general/datasets/Gtex_log2_nucle_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_nucle_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_nucle_0314/summary.rtf b/general/datasets/Gtex_log2_nucle_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_nucle_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_nucle_0314/tissue.rtf b/general/datasets/Gtex_log2_nucle_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_nucle_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_ovary_0314/cases.rtf b/general/datasets/Gtex_log2_ovary_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_ovary_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_ovary_0314/contributors.rtf b/general/datasets/Gtex_log2_ovary_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_ovary_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_ovary_0314/experiment-design.rtf b/general/datasets/Gtex_log2_ovary_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_ovary_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_ovary_0314/platform.rtf b/general/datasets/Gtex_log2_ovary_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_ovary_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_ovary_0314/processing.rtf b/general/datasets/Gtex_log2_ovary_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_ovary_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_ovary_0314/summary.rtf b/general/datasets/Gtex_log2_ovary_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_ovary_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_ovary_0314/tissue.rtf b/general/datasets/Gtex_log2_ovary_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_ovary_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_pancr_0314/cases.rtf b/general/datasets/Gtex_log2_pancr_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_pancr_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_pancr_0314/contributors.rtf b/general/datasets/Gtex_log2_pancr_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_pancr_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_pancr_0314/experiment-design.rtf b/general/datasets/Gtex_log2_pancr_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_pancr_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_pancr_0314/platform.rtf b/general/datasets/Gtex_log2_pancr_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_pancr_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_pancr_0314/processing.rtf b/general/datasets/Gtex_log2_pancr_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_pancr_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_pancr_0314/summary.rtf b/general/datasets/Gtex_log2_pancr_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_pancr_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_pancr_0314/tissue.rtf b/general/datasets/Gtex_log2_pancr_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_pancr_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_pitui_0314/cases.rtf b/general/datasets/Gtex_log2_pitui_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_pitui_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_pitui_0314/contributors.rtf b/general/datasets/Gtex_log2_pitui_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_pitui_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_pitui_0314/experiment-design.rtf b/general/datasets/Gtex_log2_pitui_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_pitui_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_pitui_0314/platform.rtf b/general/datasets/Gtex_log2_pitui_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_pitui_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_pitui_0314/processing.rtf b/general/datasets/Gtex_log2_pitui_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_pitui_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_pitui_0314/summary.rtf b/general/datasets/Gtex_log2_pitui_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_pitui_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_pitui_0314/tissue.rtf b/general/datasets/Gtex_log2_pitui_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_pitui_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_prost_0314/cases.rtf b/general/datasets/Gtex_log2_prost_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_prost_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_prost_0314/contributors.rtf b/general/datasets/Gtex_log2_prost_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_prost_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_prost_0314/experiment-design.rtf b/general/datasets/Gtex_log2_prost_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_prost_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_prost_0314/platform.rtf b/general/datasets/Gtex_log2_prost_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_prost_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_prost_0314/processing.rtf b/general/datasets/Gtex_log2_prost_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_prost_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_prost_0314/summary.rtf b/general/datasets/Gtex_log2_prost_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_prost_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_prost_0314/tissue.rtf b/general/datasets/Gtex_log2_prost_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_prost_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_putam_0314/cases.rtf b/general/datasets/Gtex_log2_putam_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_putam_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_putam_0314/contributors.rtf b/general/datasets/Gtex_log2_putam_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_putam_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_putam_0314/experiment-design.rtf b/general/datasets/Gtex_log2_putam_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_putam_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_putam_0314/platform.rtf b/general/datasets/Gtex_log2_putam_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_putam_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_putam_0314/processing.rtf b/general/datasets/Gtex_log2_putam_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_putam_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_putam_0314/summary.rtf b/general/datasets/Gtex_log2_putam_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_putam_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_putam_0314/tissue.rtf b/general/datasets/Gtex_log2_putam_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_putam_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_skine_0314/cases.rtf b/general/datasets/Gtex_log2_skine_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_skine_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_skine_0314/contributors.rtf b/general/datasets/Gtex_log2_skine_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_skine_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_skine_0314/experiment-design.rtf b/general/datasets/Gtex_log2_skine_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_skine_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_skine_0314/platform.rtf b/general/datasets/Gtex_log2_skine_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_skine_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_skine_0314/processing.rtf b/general/datasets/Gtex_log2_skine_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_skine_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_skine_0314/summary.rtf b/general/datasets/Gtex_log2_skine_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_skine_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_skine_0314/tissue.rtf b/general/datasets/Gtex_log2_skine_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_skine_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_skinn_0314/cases.rtf b/general/datasets/Gtex_log2_skinn_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_skinn_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_skinn_0314/contributors.rtf b/general/datasets/Gtex_log2_skinn_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_skinn_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_skinn_0314/experiment-design.rtf b/general/datasets/Gtex_log2_skinn_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_skinn_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_skinn_0314/platform.rtf b/general/datasets/Gtex_log2_skinn_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_skinn_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_skinn_0314/processing.rtf b/general/datasets/Gtex_log2_skinn_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_skinn_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_skinn_0314/summary.rtf b/general/datasets/Gtex_log2_skinn_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_skinn_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_skinn_0314/tissue.rtf b/general/datasets/Gtex_log2_skinn_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_skinn_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_spina_0314/cases.rtf b/general/datasets/Gtex_log2_spina_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_spina_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_spina_0314/contributors.rtf b/general/datasets/Gtex_log2_spina_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_spina_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_spina_0314/experiment-design.rtf b/general/datasets/Gtex_log2_spina_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_spina_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_spina_0314/platform.rtf b/general/datasets/Gtex_log2_spina_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_spina_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_spina_0314/processing.rtf b/general/datasets/Gtex_log2_spina_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_spina_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_spina_0314/summary.rtf b/general/datasets/Gtex_log2_spina_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_spina_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_spina_0314/tissue.rtf b/general/datasets/Gtex_log2_spina_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_spina_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_stoma_0314/cases.rtf b/general/datasets/Gtex_log2_stoma_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_stoma_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_stoma_0314/contributors.rtf b/general/datasets/Gtex_log2_stoma_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_stoma_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_stoma_0314/experiment-design.rtf b/general/datasets/Gtex_log2_stoma_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_stoma_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_stoma_0314/platform.rtf b/general/datasets/Gtex_log2_stoma_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_stoma_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_stoma_0314/processing.rtf b/general/datasets/Gtex_log2_stoma_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_stoma_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_stoma_0314/summary.rtf b/general/datasets/Gtex_log2_stoma_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_stoma_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_stoma_0314/tissue.rtf b/general/datasets/Gtex_log2_stoma_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_stoma_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_subcu_0314/cases.rtf b/general/datasets/Gtex_log2_subcu_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_subcu_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_subcu_0314/contributors.rtf b/general/datasets/Gtex_log2_subcu_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_subcu_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_subcu_0314/experiment-design.rtf b/general/datasets/Gtex_log2_subcu_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_subcu_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_subcu_0314/platform.rtf b/general/datasets/Gtex_log2_subcu_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_subcu_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_subcu_0314/processing.rtf b/general/datasets/Gtex_log2_subcu_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_subcu_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_subcu_0314/summary.rtf b/general/datasets/Gtex_log2_subcu_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_subcu_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_subcu_0314/tissue.rtf b/general/datasets/Gtex_log2_subcu_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_subcu_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_subst_0314/cases.rtf b/general/datasets/Gtex_log2_subst_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_subst_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_subst_0314/contributors.rtf b/general/datasets/Gtex_log2_subst_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_subst_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_subst_0314/experiment-design.rtf b/general/datasets/Gtex_log2_subst_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_subst_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_subst_0314/platform.rtf b/general/datasets/Gtex_log2_subst_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_subst_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_subst_0314/processing.rtf b/general/datasets/Gtex_log2_subst_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_subst_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_subst_0314/summary.rtf b/general/datasets/Gtex_log2_subst_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_subst_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_subst_0314/tissue.rtf b/general/datasets/Gtex_log2_subst_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_subst_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_testi_0314/cases.rtf b/general/datasets/Gtex_log2_testi_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_testi_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_testi_0314/contributors.rtf b/general/datasets/Gtex_log2_testi_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_testi_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_testi_0314/experiment-design.rtf b/general/datasets/Gtex_log2_testi_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_testi_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_testi_0314/platform.rtf b/general/datasets/Gtex_log2_testi_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_testi_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_testi_0314/processing.rtf b/general/datasets/Gtex_log2_testi_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_testi_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_testi_0314/summary.rtf b/general/datasets/Gtex_log2_testi_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_testi_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_testi_0314/tissue.rtf b/general/datasets/Gtex_log2_testi_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_testi_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_thyro_0314/cases.rtf b/general/datasets/Gtex_log2_thyro_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_thyro_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_thyro_0314/contributors.rtf b/general/datasets/Gtex_log2_thyro_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_thyro_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_thyro_0314/experiment-design.rtf b/general/datasets/Gtex_log2_thyro_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_thyro_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_thyro_0314/platform.rtf b/general/datasets/Gtex_log2_thyro_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_thyro_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_thyro_0314/processing.rtf b/general/datasets/Gtex_log2_thyro_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_thyro_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_thyro_0314/summary.rtf b/general/datasets/Gtex_log2_thyro_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_thyro_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_thyro_0314/tissue.rtf b/general/datasets/Gtex_log2_thyro_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_thyro_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_tibial_0314/cases.rtf b/general/datasets/Gtex_log2_tibial_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_tibial_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_tibial_0314/contributors.rtf b/general/datasets/Gtex_log2_tibial_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_tibial_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_tibial_0314/experiment-design.rtf b/general/datasets/Gtex_log2_tibial_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_tibial_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_tibial_0314/platform.rtf b/general/datasets/Gtex_log2_tibial_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_tibial_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_tibial_0314/processing.rtf b/general/datasets/Gtex_log2_tibial_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_tibial_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_tibial_0314/summary.rtf b/general/datasets/Gtex_log2_tibial_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_tibial_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_tibial_0314/tissue.rtf b/general/datasets/Gtex_log2_tibial_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_tibial_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_uterus_0314/cases.rtf b/general/datasets/Gtex_log2_uterus_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_uterus_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_uterus_0314/contributors.rtf b/general/datasets/Gtex_log2_uterus_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_uterus_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_uterus_0314/experiment-design.rtf b/general/datasets/Gtex_log2_uterus_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_uterus_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_uterus_0314/platform.rtf b/general/datasets/Gtex_log2_uterus_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_uterus_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_uterus_0314/processing.rtf b/general/datasets/Gtex_log2_uterus_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_uterus_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_uterus_0314/summary.rtf b/general/datasets/Gtex_log2_uterus_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_uterus_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_uterus_0314/tissue.rtf b/general/datasets/Gtex_log2_uterus_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_uterus_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_vagin_0314/cases.rtf b/general/datasets/Gtex_log2_vagin_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_vagin_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_vagin_0314/contributors.rtf b/general/datasets/Gtex_log2_vagin_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_vagin_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_vagin_0314/experiment-design.rtf b/general/datasets/Gtex_log2_vagin_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_vagin_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_vagin_0314/platform.rtf b/general/datasets/Gtex_log2_vagin_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_vagin_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_vagin_0314/processing.rtf b/general/datasets/Gtex_log2_vagin_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_vagin_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_vagin_0314/summary.rtf b/general/datasets/Gtex_log2_vagin_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_vagin_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_vagin_0314/tissue.rtf b/general/datasets/Gtex_log2_vagin_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_vagin_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_visce_0314/cases.rtf b/general/datasets/Gtex_log2_visce_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_visce_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_visce_0314/contributors.rtf b/general/datasets/Gtex_log2_visce_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_visce_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_visce_0314/experiment-design.rtf b/general/datasets/Gtex_log2_visce_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_visce_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_visce_0314/platform.rtf b/general/datasets/Gtex_log2_visce_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_visce_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_visce_0314/processing.rtf b/general/datasets/Gtex_log2_visce_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_visce_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_visce_0314/summary.rtf b/general/datasets/Gtex_log2_visce_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_visce_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_visce_0314/tissue.rtf b/general/datasets/Gtex_log2_visce_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_visce_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_log2_wholeb_0314/cases.rtf b/general/datasets/Gtex_log2_wholeb_0314/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_log2_wholeb_0314/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_log2_wholeb_0314/contributors.rtf b/general/datasets/Gtex_log2_wholeb_0314/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_log2_wholeb_0314/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_log2_wholeb_0314/experiment-design.rtf b/general/datasets/Gtex_log2_wholeb_0314/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_log2_wholeb_0314/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_log2_wholeb_0314/platform.rtf b/general/datasets/Gtex_log2_wholeb_0314/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_log2_wholeb_0314/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_log2_wholeb_0314/processing.rtf b/general/datasets/Gtex_log2_wholeb_0314/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_log2_wholeb_0314/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_log2_wholeb_0314/summary.rtf b/general/datasets/Gtex_log2_wholeb_0314/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_log2_wholeb_0314/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_log2_wholeb_0314/tissue.rtf b/general/datasets/Gtex_log2_wholeb_0314/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_log2_wholeb_0314/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_lung__0414/cases.rtf b/general/datasets/Gtex_lung__0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_lung__0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_lung__0414/contributors.rtf b/general/datasets/Gtex_lung__0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_lung__0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_lung__0414/experiment-design.rtf b/general/datasets/Gtex_lung__0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_lung__0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_lung__0414/platform.rtf b/general/datasets/Gtex_lung__0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_lung__0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_lung__0414/processing.rtf b/general/datasets/Gtex_lung__0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_lung__0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_lung__0414/summary.rtf b/general/datasets/Gtex_lung__0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_lung__0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_lung__0414/tissue.rtf b/general/datasets/Gtex_lung__0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_lung__0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_muscl_0414/cases.rtf b/general/datasets/Gtex_muscl_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_muscl_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_muscl_0414/contributors.rtf b/general/datasets/Gtex_muscl_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_muscl_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_muscl_0414/experiment-design.rtf b/general/datasets/Gtex_muscl_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_muscl_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_muscl_0414/platform.rtf b/general/datasets/Gtex_muscl_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_muscl_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_muscl_0414/processing.rtf b/general/datasets/Gtex_muscl_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_muscl_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_muscl_0414/summary.rtf b/general/datasets/Gtex_muscl_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_muscl_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_muscl_0414/tissue.rtf b/general/datasets/Gtex_muscl_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_muscl_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_nerve_0414/cases.rtf b/general/datasets/Gtex_nerve_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_nerve_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_nerve_0414/contributors.rtf b/general/datasets/Gtex_nerve_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_nerve_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_nerve_0414/experiment-design.rtf b/general/datasets/Gtex_nerve_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_nerve_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_nerve_0414/platform.rtf b/general/datasets/Gtex_nerve_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_nerve_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_nerve_0414/processing.rtf b/general/datasets/Gtex_nerve_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_nerve_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_nerve_0414/summary.rtf b/general/datasets/Gtex_nerve_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_nerve_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_nerve_0414/tissue.rtf b/general/datasets/Gtex_nerve_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_nerve_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_nucle_0414/cases.rtf b/general/datasets/Gtex_nucle_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_nucle_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_nucle_0414/contributors.rtf b/general/datasets/Gtex_nucle_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_nucle_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_nucle_0414/experiment-design.rtf b/general/datasets/Gtex_nucle_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_nucle_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_nucle_0414/platform.rtf b/general/datasets/Gtex_nucle_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_nucle_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_nucle_0414/processing.rtf b/general/datasets/Gtex_nucle_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_nucle_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_nucle_0414/summary.rtf b/general/datasets/Gtex_nucle_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_nucle_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_nucle_0414/tissue.rtf b/general/datasets/Gtex_nucle_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_nucle_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_ovary_0414/cases.rtf b/general/datasets/Gtex_ovary_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_ovary_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_ovary_0414/contributors.rtf b/general/datasets/Gtex_ovary_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_ovary_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_ovary_0414/experiment-design.rtf b/general/datasets/Gtex_ovary_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_ovary_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_ovary_0414/platform.rtf b/general/datasets/Gtex_ovary_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_ovary_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_ovary_0414/processing.rtf b/general/datasets/Gtex_ovary_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_ovary_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_ovary_0414/summary.rtf b/general/datasets/Gtex_ovary_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_ovary_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_ovary_0414/tissue.rtf b/general/datasets/Gtex_ovary_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_ovary_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_pancr_0414/cases.rtf b/general/datasets/Gtex_pancr_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_pancr_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_pancr_0414/contributors.rtf b/general/datasets/Gtex_pancr_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_pancr_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_pancr_0414/experiment-design.rtf b/general/datasets/Gtex_pancr_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_pancr_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_pancr_0414/platform.rtf b/general/datasets/Gtex_pancr_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_pancr_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_pancr_0414/processing.rtf b/general/datasets/Gtex_pancr_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_pancr_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_pancr_0414/summary.rtf b/general/datasets/Gtex_pancr_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_pancr_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_pancr_0414/tissue.rtf b/general/datasets/Gtex_pancr_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_pancr_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_pitui_0414/cases.rtf b/general/datasets/Gtex_pitui_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_pitui_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_pitui_0414/contributors.rtf b/general/datasets/Gtex_pitui_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_pitui_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_pitui_0414/experiment-design.rtf b/general/datasets/Gtex_pitui_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_pitui_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_pitui_0414/platform.rtf b/general/datasets/Gtex_pitui_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_pitui_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_pitui_0414/processing.rtf b/general/datasets/Gtex_pitui_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_pitui_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_pitui_0414/summary.rtf b/general/datasets/Gtex_pitui_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_pitui_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_pitui_0414/tissue.rtf b/general/datasets/Gtex_pitui_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_pitui_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_prost_0414/cases.rtf b/general/datasets/Gtex_prost_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_prost_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_prost_0414/contributors.rtf b/general/datasets/Gtex_prost_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_prost_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_prost_0414/experiment-design.rtf b/general/datasets/Gtex_prost_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_prost_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_prost_0414/platform.rtf b/general/datasets/Gtex_prost_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_prost_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_prost_0414/processing.rtf b/general/datasets/Gtex_prost_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_prost_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_prost_0414/summary.rtf b/general/datasets/Gtex_prost_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_prost_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_prost_0414/tissue.rtf b/general/datasets/Gtex_prost_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_prost_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_putam_0414/cases.rtf b/general/datasets/Gtex_putam_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_putam_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_putam_0414/contributors.rtf b/general/datasets/Gtex_putam_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_putam_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_putam_0414/experiment-design.rtf b/general/datasets/Gtex_putam_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_putam_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_putam_0414/platform.rtf b/general/datasets/Gtex_putam_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_putam_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_putam_0414/processing.rtf b/general/datasets/Gtex_putam_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_putam_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_putam_0414/summary.rtf b/general/datasets/Gtex_putam_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_putam_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_putam_0414/tissue.rtf b/general/datasets/Gtex_putam_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_putam_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_skine_0414/cases.rtf b/general/datasets/Gtex_skine_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_skine_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_skine_0414/contributors.rtf b/general/datasets/Gtex_skine_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_skine_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_skine_0414/experiment-design.rtf b/general/datasets/Gtex_skine_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_skine_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_skine_0414/platform.rtf b/general/datasets/Gtex_skine_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_skine_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_skine_0414/processing.rtf b/general/datasets/Gtex_skine_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_skine_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_skine_0414/summary.rtf b/general/datasets/Gtex_skine_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_skine_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_skine_0414/tissue.rtf b/general/datasets/Gtex_skine_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_skine_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_skinn_0414/cases.rtf b/general/datasets/Gtex_skinn_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_skinn_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_skinn_0414/contributors.rtf b/general/datasets/Gtex_skinn_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_skinn_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_skinn_0414/experiment-design.rtf b/general/datasets/Gtex_skinn_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_skinn_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_skinn_0414/platform.rtf b/general/datasets/Gtex_skinn_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_skinn_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_skinn_0414/processing.rtf b/general/datasets/Gtex_skinn_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_skinn_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_skinn_0414/summary.rtf b/general/datasets/Gtex_skinn_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_skinn_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_skinn_0414/tissue.rtf b/general/datasets/Gtex_skinn_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_skinn_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_spina_0414/cases.rtf b/general/datasets/Gtex_spina_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_spina_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_spina_0414/contributors.rtf b/general/datasets/Gtex_spina_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_spina_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_spina_0414/experiment-design.rtf b/general/datasets/Gtex_spina_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_spina_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_spina_0414/platform.rtf b/general/datasets/Gtex_spina_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_spina_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_spina_0414/processing.rtf b/general/datasets/Gtex_spina_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_spina_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_spina_0414/summary.rtf b/general/datasets/Gtex_spina_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_spina_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_spina_0414/tissue.rtf b/general/datasets/Gtex_spina_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_spina_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_stoma_0414/cases.rtf b/general/datasets/Gtex_stoma_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_stoma_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_stoma_0414/contributors.rtf b/general/datasets/Gtex_stoma_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_stoma_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_stoma_0414/experiment-design.rtf b/general/datasets/Gtex_stoma_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_stoma_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_stoma_0414/platform.rtf b/general/datasets/Gtex_stoma_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_stoma_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_stoma_0414/processing.rtf b/general/datasets/Gtex_stoma_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_stoma_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_stoma_0414/summary.rtf b/general/datasets/Gtex_stoma_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_stoma_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_stoma_0414/tissue.rtf b/general/datasets/Gtex_stoma_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_stoma_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_subcu_0414/cases.rtf b/general/datasets/Gtex_subcu_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_subcu_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_subcu_0414/contributors.rtf b/general/datasets/Gtex_subcu_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_subcu_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_subcu_0414/experiment-design.rtf b/general/datasets/Gtex_subcu_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_subcu_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_subcu_0414/platform.rtf b/general/datasets/Gtex_subcu_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_subcu_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_subcu_0414/processing.rtf b/general/datasets/Gtex_subcu_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_subcu_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_subcu_0414/summary.rtf b/general/datasets/Gtex_subcu_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_subcu_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_subcu_0414/tissue.rtf b/general/datasets/Gtex_subcu_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_subcu_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_subst_0414/cases.rtf b/general/datasets/Gtex_subst_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_subst_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_subst_0414/contributors.rtf b/general/datasets/Gtex_subst_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_subst_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_subst_0414/experiment-design.rtf b/general/datasets/Gtex_subst_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_subst_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_subst_0414/platform.rtf b/general/datasets/Gtex_subst_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_subst_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_subst_0414/processing.rtf b/general/datasets/Gtex_subst_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_subst_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_subst_0414/summary.rtf b/general/datasets/Gtex_subst_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_subst_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_subst_0414/tissue.rtf b/general/datasets/Gtex_subst_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_subst_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_testi_0414/cases.rtf b/general/datasets/Gtex_testi_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_testi_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_testi_0414/contributors.rtf b/general/datasets/Gtex_testi_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_testi_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_testi_0414/experiment-design.rtf b/general/datasets/Gtex_testi_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_testi_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_testi_0414/platform.rtf b/general/datasets/Gtex_testi_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_testi_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_testi_0414/processing.rtf b/general/datasets/Gtex_testi_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_testi_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_testi_0414/summary.rtf b/general/datasets/Gtex_testi_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_testi_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_testi_0414/tissue.rtf b/general/datasets/Gtex_testi_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_testi_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_thyro_0414/cases.rtf b/general/datasets/Gtex_thyro_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_thyro_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_thyro_0414/contributors.rtf b/general/datasets/Gtex_thyro_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_thyro_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_thyro_0414/experiment-design.rtf b/general/datasets/Gtex_thyro_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_thyro_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_thyro_0414/platform.rtf b/general/datasets/Gtex_thyro_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_thyro_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_thyro_0414/processing.rtf b/general/datasets/Gtex_thyro_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_thyro_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_thyro_0414/summary.rtf b/general/datasets/Gtex_thyro_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_thyro_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_thyro_0414/tissue.rtf b/general/datasets/Gtex_thyro_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_thyro_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_tibia_0414/cases.rtf b/general/datasets/Gtex_tibia_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_tibia_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_tibia_0414/contributors.rtf b/general/datasets/Gtex_tibia_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_tibia_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_tibia_0414/experiment-design.rtf b/general/datasets/Gtex_tibia_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_tibia_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_tibia_0414/platform.rtf b/general/datasets/Gtex_tibia_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_tibia_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_tibia_0414/processing.rtf b/general/datasets/Gtex_tibia_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_tibia_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_tibia_0414/summary.rtf b/general/datasets/Gtex_tibia_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_tibia_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_tibia_0414/tissue.rtf b/general/datasets/Gtex_tibia_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_tibia_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_uteru_0414/cases.rtf b/general/datasets/Gtex_uteru_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_uteru_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_uteru_0414/contributors.rtf b/general/datasets/Gtex_uteru_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_uteru_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_uteru_0414/experiment-design.rtf b/general/datasets/Gtex_uteru_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_uteru_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_uteru_0414/platform.rtf b/general/datasets/Gtex_uteru_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_uteru_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_uteru_0414/processing.rtf b/general/datasets/Gtex_uteru_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_uteru_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_uteru_0414/summary.rtf b/general/datasets/Gtex_uteru_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_uteru_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_uteru_0414/tissue.rtf b/general/datasets/Gtex_uteru_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_uteru_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_vagin_0414/cases.rtf b/general/datasets/Gtex_vagin_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_vagin_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_vagin_0414/contributors.rtf b/general/datasets/Gtex_vagin_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_vagin_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_vagin_0414/experiment-design.rtf b/general/datasets/Gtex_vagin_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_vagin_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_vagin_0414/platform.rtf b/general/datasets/Gtex_vagin_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_vagin_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_vagin_0414/processing.rtf b/general/datasets/Gtex_vagin_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_vagin_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_vagin_0414/summary.rtf b/general/datasets/Gtex_vagin_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_vagin_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_vagin_0414/tissue.rtf b/general/datasets/Gtex_vagin_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_vagin_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_visce_0414/cases.rtf b/general/datasets/Gtex_visce_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_visce_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_visce_0414/contributors.rtf b/general/datasets/Gtex_visce_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_visce_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_visce_0414/experiment-design.rtf b/general/datasets/Gtex_visce_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_visce_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_visce_0414/platform.rtf b/general/datasets/Gtex_visce_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_visce_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_visce_0414/processing.rtf b/general/datasets/Gtex_visce_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_visce_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_visce_0414/summary.rtf b/general/datasets/Gtex_visce_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_visce_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_visce_0414/tissue.rtf b/general/datasets/Gtex_visce_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_visce_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtex_whole_0414/cases.rtf b/general/datasets/Gtex_whole_0414/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtex_whole_0414/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtex_whole_0414/contributors.rtf b/general/datasets/Gtex_whole_0414/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtex_whole_0414/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtex_whole_0414/experiment-design.rtf b/general/datasets/Gtex_whole_0414/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtex_whole_0414/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtex_whole_0414/platform.rtf b/general/datasets/Gtex_whole_0414/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtex_whole_0414/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtex_whole_0414/processing.rtf b/general/datasets/Gtex_whole_0414/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtex_whole_0414/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtex_whole_0414/summary.rtf b/general/datasets/Gtex_whole_0414/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtex_whole_0414/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtex_whole_0414/tissue.rtf b/general/datasets/Gtex_whole_0414/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtex_whole_0414/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_adipsub_0915/cases.rtf b/general/datasets/Gtexv5_adipsub_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_adipsub_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_adipsub_0915/contributors.rtf b/general/datasets/Gtexv5_adipsub_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_adipsub_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_adipsub_0915/experiment-design.rtf b/general/datasets/Gtexv5_adipsub_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_adipsub_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_adipsub_0915/platform.rtf b/general/datasets/Gtexv5_adipsub_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_adipsub_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_adipsub_0915/processing.rtf b/general/datasets/Gtexv5_adipsub_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_adipsub_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_adipsub_0915/specifics.rtf b/general/datasets/Gtexv5_adipsub_0915/specifics.rtf new file mode 100644 index 0000000..60a3e92 --- /dev/null +++ b/general/datasets/Gtexv5_adipsub_0915/specifics.rtf @@ -0,0 +1 @@ +Human Adipose Subcutaneous \ No newline at end of file diff --git a/general/datasets/Gtexv5_adipsub_0915/summary.rtf b/general/datasets/Gtexv5_adipsub_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_adipsub_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_adipsub_0915/tissue.rtf b/general/datasets/Gtexv5_adipsub_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_adipsub_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_adivis_0915/cases.rtf b/general/datasets/Gtexv5_adivis_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_adivis_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_adivis_0915/contributors.rtf b/general/datasets/Gtexv5_adivis_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_adivis_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_adivis_0915/experiment-design.rtf b/general/datasets/Gtexv5_adivis_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_adivis_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_adivis_0915/platform.rtf b/general/datasets/Gtexv5_adivis_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_adivis_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_adivis_0915/processing.rtf b/general/datasets/Gtexv5_adivis_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_adivis_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_adivis_0915/specifics.rtf b/general/datasets/Gtexv5_adivis_0915/specifics.rtf new file mode 100644 index 0000000..055221e --- /dev/null +++ b/general/datasets/Gtexv5_adivis_0915/specifics.rtf @@ -0,0 +1 @@ +Human Adipose Visceral Omentum \ No newline at end of file diff --git a/general/datasets/Gtexv5_adivis_0915/summary.rtf b/general/datasets/Gtexv5_adivis_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_adivis_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_adivis_0915/tissue.rtf b/general/datasets/Gtexv5_adivis_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_adivis_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_adrgla_0915/cases.rtf b/general/datasets/Gtexv5_adrgla_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_adrgla_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_adrgla_0915/contributors.rtf b/general/datasets/Gtexv5_adrgla_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_adrgla_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_adrgla_0915/experiment-design.rtf b/general/datasets/Gtexv5_adrgla_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_adrgla_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_adrgla_0915/platform.rtf b/general/datasets/Gtexv5_adrgla_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_adrgla_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_adrgla_0915/processing.rtf b/general/datasets/Gtexv5_adrgla_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_adrgla_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_adrgla_0915/specifics.rtf b/general/datasets/Gtexv5_adrgla_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_adrgla_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_adrgla_0915/summary.rtf b/general/datasets/Gtexv5_adrgla_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_adrgla_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_adrgla_0915/tissue.rtf b/general/datasets/Gtexv5_adrgla_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_adrgla_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_amy_0915/cases.rtf b/general/datasets/Gtexv5_amy_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_amy_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_amy_0915/contributors.rtf b/general/datasets/Gtexv5_amy_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_amy_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_amy_0915/experiment-design.rtf b/general/datasets/Gtexv5_amy_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_amy_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_amy_0915/platform.rtf b/general/datasets/Gtexv5_amy_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_amy_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_amy_0915/processing.rtf b/general/datasets/Gtexv5_amy_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_amy_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_amy_0915/specifics.rtf b/general/datasets/Gtexv5_amy_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_amy_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_amy_0915/summary.rtf b/general/datasets/Gtexv5_amy_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_amy_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_amy_0915/tissue.rtf b/general/datasets/Gtexv5_amy_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_amy_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_antctx_0915/cases.rtf b/general/datasets/Gtexv5_antctx_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_antctx_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_antctx_0915/contributors.rtf b/general/datasets/Gtexv5_antctx_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_antctx_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_antctx_0915/experiment-design.rtf b/general/datasets/Gtexv5_antctx_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_antctx_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_antctx_0915/platform.rtf b/general/datasets/Gtexv5_antctx_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_antctx_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_antctx_0915/processing.rtf b/general/datasets/Gtexv5_antctx_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_antctx_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_antctx_0915/specifics.rtf b/general/datasets/Gtexv5_antctx_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_antctx_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_antctx_0915/summary.rtf b/general/datasets/Gtexv5_antctx_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_antctx_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_antctx_0915/tissue.rtf b/general/datasets/Gtexv5_antctx_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_antctx_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_artaor_0915/cases.rtf b/general/datasets/Gtexv5_artaor_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_artaor_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_artaor_0915/contributors.rtf b/general/datasets/Gtexv5_artaor_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_artaor_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_artaor_0915/experiment-design.rtf b/general/datasets/Gtexv5_artaor_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_artaor_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_artaor_0915/platform.rtf b/general/datasets/Gtexv5_artaor_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_artaor_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_artaor_0915/processing.rtf b/general/datasets/Gtexv5_artaor_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_artaor_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_artaor_0915/specifics.rtf b/general/datasets/Gtexv5_artaor_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_artaor_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_artaor_0915/summary.rtf b/general/datasets/Gtexv5_artaor_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_artaor_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_artaor_0915/tissue.rtf b/general/datasets/Gtexv5_artaor_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_artaor_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_artcor_0915/cases.rtf b/general/datasets/Gtexv5_artcor_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_artcor_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_artcor_0915/contributors.rtf b/general/datasets/Gtexv5_artcor_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_artcor_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_artcor_0915/experiment-design.rtf b/general/datasets/Gtexv5_artcor_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_artcor_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_artcor_0915/platform.rtf b/general/datasets/Gtexv5_artcor_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_artcor_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_artcor_0915/processing.rtf b/general/datasets/Gtexv5_artcor_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_artcor_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_artcor_0915/specifics.rtf b/general/datasets/Gtexv5_artcor_0915/specifics.rtf new file mode 100644 index 0000000..9288089 --- /dev/null +++ b/general/datasets/Gtexv5_artcor_0915/specifics.rtf @@ -0,0 +1 @@ +Human Artery Coronary \ No newline at end of file diff --git a/general/datasets/Gtexv5_artcor_0915/summary.rtf b/general/datasets/Gtexv5_artcor_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_artcor_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_artcor_0915/tissue.rtf b/general/datasets/Gtexv5_artcor_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_artcor_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_bm_0915/cases.rtf b/general/datasets/Gtexv5_bm_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_bm_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_bm_0915/contributors.rtf b/general/datasets/Gtexv5_bm_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_bm_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_bm_0915/experiment-design.rtf b/general/datasets/Gtexv5_bm_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_bm_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_bm_0915/platform.rtf b/general/datasets/Gtexv5_bm_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_bm_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_bm_0915/processing.rtf b/general/datasets/Gtexv5_bm_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_bm_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_bm_0915/specifics.rtf b/general/datasets/Gtexv5_bm_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_bm_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_bm_0915/summary.rtf b/general/datasets/Gtexv5_bm_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_bm_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_bm_0915/tissue.rtf b/general/datasets/Gtexv5_bm_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_bm_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_brce_0915/cases.rtf b/general/datasets/Gtexv5_brce_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_brce_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_brce_0915/contributors.rtf b/general/datasets/Gtexv5_brce_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_brce_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_brce_0915/experiment-design.rtf b/general/datasets/Gtexv5_brce_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_brce_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_brce_0915/platform.rtf b/general/datasets/Gtexv5_brce_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_brce_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_brce_0915/processing.rtf b/general/datasets/Gtexv5_brce_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_brce_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_brce_0915/specifics.rtf b/general/datasets/Gtexv5_brce_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_brce_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_brce_0915/summary.rtf b/general/datasets/Gtexv5_brce_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_brce_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_brce_0915/tissue.rtf b/general/datasets/Gtexv5_brce_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_brce_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_brma_0915/cases.rtf b/general/datasets/Gtexv5_brma_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_brma_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_brma_0915/contributors.rtf b/general/datasets/Gtexv5_brma_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_brma_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_brma_0915/experiment-design.rtf b/general/datasets/Gtexv5_brma_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_brma_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_brma_0915/platform.rtf b/general/datasets/Gtexv5_brma_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_brma_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_brma_0915/processing.rtf b/general/datasets/Gtexv5_brma_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_brma_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_brma_0915/specifics.rtf b/general/datasets/Gtexv5_brma_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_brma_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_brma_0915/summary.rtf b/general/datasets/Gtexv5_brma_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_brma_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_brma_0915/tissue.rtf b/general/datasets/Gtexv5_brma_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_brma_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_colsig_0915/cases.rtf b/general/datasets/Gtexv5_colsig_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_colsig_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_colsig_0915/contributors.rtf b/general/datasets/Gtexv5_colsig_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_colsig_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_colsig_0915/experiment-design.rtf b/general/datasets/Gtexv5_colsig_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_colsig_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_colsig_0915/platform.rtf b/general/datasets/Gtexv5_colsig_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_colsig_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_colsig_0915/processing.rtf b/general/datasets/Gtexv5_colsig_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_colsig_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_colsig_0915/specifics.rtf b/general/datasets/Gtexv5_colsig_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_colsig_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_colsig_0915/summary.rtf b/general/datasets/Gtexv5_colsig_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_colsig_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_colsig_0915/tissue.rtf b/general/datasets/Gtexv5_colsig_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_colsig_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_ctf_0915/cases.rtf b/general/datasets/Gtexv5_ctf_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_ctf_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_ctf_0915/contributors.rtf b/general/datasets/Gtexv5_ctf_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_ctf_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_ctf_0915/experiment-design.rtf b/general/datasets/Gtexv5_ctf_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_ctf_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_ctf_0915/platform.rtf b/general/datasets/Gtexv5_ctf_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_ctf_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_ctf_0915/processing.rtf b/general/datasets/Gtexv5_ctf_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_ctf_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_ctf_0915/specifics.rtf b/general/datasets/Gtexv5_ctf_0915/specifics.rtf new file mode 100644 index 0000000..8515741 --- /dev/null +++ b/general/datasets/Gtexv5_ctf_0915/specifics.rtf @@ -0,0 +1 @@ +Cell Transformed Fibroblasts \ No newline at end of file diff --git a/general/datasets/Gtexv5_ctf_0915/summary.rtf b/general/datasets/Gtexv5_ctf_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_ctf_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_ctf_0915/tissue.rtf b/general/datasets/Gtexv5_ctf_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_ctf_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_gastjun_0915/cases.rtf b/general/datasets/Gtexv5_gastjun_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_gastjun_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_gastjun_0915/contributors.rtf b/general/datasets/Gtexv5_gastjun_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_gastjun_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_gastjun_0915/experiment-design.rtf b/general/datasets/Gtexv5_gastjun_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_gastjun_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_gastjun_0915/platform.rtf b/general/datasets/Gtexv5_gastjun_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_gastjun_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_gastjun_0915/processing.rtf b/general/datasets/Gtexv5_gastjun_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_gastjun_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_gastjun_0915/specifics.rtf b/general/datasets/Gtexv5_gastjun_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_gastjun_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_gastjun_0915/summary.rtf b/general/datasets/Gtexv5_gastjun_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_gastjun_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_gastjun_0915/tissue.rtf b/general/datasets/Gtexv5_gastjun_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_gastjun_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_haa_0915/cases.rtf b/general/datasets/Gtexv5_haa_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_haa_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_haa_0915/contributors.rtf b/general/datasets/Gtexv5_haa_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_haa_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_haa_0915/experiment-design.rtf b/general/datasets/Gtexv5_haa_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_haa_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_haa_0915/platform.rtf b/general/datasets/Gtexv5_haa_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_haa_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_haa_0915/processing.rtf b/general/datasets/Gtexv5_haa_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_haa_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_haa_0915/specifics.rtf b/general/datasets/Gtexv5_haa_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_haa_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_haa_0915/summary.rtf b/general/datasets/Gtexv5_haa_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_haa_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_haa_0915/tissue.rtf b/general/datasets/Gtexv5_haa_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_haa_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_hip_0915/cases.rtf b/general/datasets/Gtexv5_hip_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_hip_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_hip_0915/contributors.rtf b/general/datasets/Gtexv5_hip_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_hip_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_hip_0915/experiment-design.rtf b/general/datasets/Gtexv5_hip_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_hip_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_hip_0915/platform.rtf b/general/datasets/Gtexv5_hip_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_hip_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_hip_0915/processing.rtf b/general/datasets/Gtexv5_hip_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_hip_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_hip_0915/specifics.rtf b/general/datasets/Gtexv5_hip_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_hip_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_hip_0915/summary.rtf b/general/datasets/Gtexv5_hip_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_hip_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_hip_0915/tissue.rtf b/general/datasets/Gtexv5_hip_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_hip_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_hiptha_0915/cases.rtf b/general/datasets/Gtexv5_hiptha_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_hiptha_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_hiptha_0915/contributors.rtf b/general/datasets/Gtexv5_hiptha_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_hiptha_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_hiptha_0915/experiment-design.rtf b/general/datasets/Gtexv5_hiptha_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_hiptha_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_hiptha_0915/platform.rtf b/general/datasets/Gtexv5_hiptha_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_hiptha_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_hiptha_0915/processing.rtf b/general/datasets/Gtexv5_hiptha_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_hiptha_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_hiptha_0915/specifics.rtf b/general/datasets/Gtexv5_hiptha_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_hiptha_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_hiptha_0915/summary.rtf b/general/datasets/Gtexv5_hiptha_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_hiptha_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_hiptha_0915/tissue.rtf b/general/datasets/Gtexv5_hiptha_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_hiptha_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_kidn_0915/cases.rtf b/general/datasets/Gtexv5_kidn_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_kidn_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_kidn_0915/contributors.rtf b/general/datasets/Gtexv5_kidn_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_kidn_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_kidn_0915/experiment-design.rtf b/general/datasets/Gtexv5_kidn_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_kidn_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_kidn_0915/platform.rtf b/general/datasets/Gtexv5_kidn_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_kidn_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_kidn_0915/processing.rtf b/general/datasets/Gtexv5_kidn_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_kidn_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_kidn_0915/specifics.rtf b/general/datasets/Gtexv5_kidn_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_kidn_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_kidn_0915/summary.rtf b/general/datasets/Gtexv5_kidn_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_kidn_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_kidn_0915/tissue.rtf b/general/datasets/Gtexv5_kidn_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_kidn_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_liv_0915/cases.rtf b/general/datasets/Gtexv5_liv_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_liv_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_liv_0915/contributors.rtf b/general/datasets/Gtexv5_liv_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_liv_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_liv_0915/experiment-design.rtf b/general/datasets/Gtexv5_liv_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_liv_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_liv_0915/platform.rtf b/general/datasets/Gtexv5_liv_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_liv_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_liv_0915/processing.rtf b/general/datasets/Gtexv5_liv_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_liv_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_liv_0915/specifics.rtf b/general/datasets/Gtexv5_liv_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_liv_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_liv_0915/summary.rtf b/general/datasets/Gtexv5_liv_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_liv_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_liv_0915/tissue.rtf b/general/datasets/Gtexv5_liv_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_liv_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_musk_0915/cases.rtf b/general/datasets/Gtexv5_musk_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_musk_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_musk_0915/contributors.rtf b/general/datasets/Gtexv5_musk_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_musk_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_musk_0915/experiment-design.rtf b/general/datasets/Gtexv5_musk_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_musk_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_musk_0915/platform.rtf b/general/datasets/Gtexv5_musk_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_musk_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_musk_0915/processing.rtf b/general/datasets/Gtexv5_musk_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_musk_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_musk_0915/specifics.rtf b/general/datasets/Gtexv5_musk_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_musk_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_musk_0915/summary.rtf b/general/datasets/Gtexv5_musk_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_musk_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_musk_0915/tissue.rtf b/general/datasets/Gtexv5_musk_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_musk_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_ov_0915/cases.rtf b/general/datasets/Gtexv5_ov_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_ov_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_ov_0915/contributors.rtf b/general/datasets/Gtexv5_ov_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_ov_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_ov_0915/experiment-design.rtf b/general/datasets/Gtexv5_ov_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_ov_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_ov_0915/platform.rtf b/general/datasets/Gtexv5_ov_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_ov_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_ov_0915/processing.rtf b/general/datasets/Gtexv5_ov_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_ov_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_ov_0915/specifics.rtf b/general/datasets/Gtexv5_ov_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_ov_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_ov_0915/summary.rtf b/general/datasets/Gtexv5_ov_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_ov_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_ov_0915/tissue.rtf b/general/datasets/Gtexv5_ov_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_ov_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_pit_0915/cases.rtf b/general/datasets/Gtexv5_pit_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_pit_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_pit_0915/contributors.rtf b/general/datasets/Gtexv5_pit_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_pit_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_pit_0915/experiment-design.rtf b/general/datasets/Gtexv5_pit_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_pit_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_pit_0915/platform.rtf b/general/datasets/Gtexv5_pit_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_pit_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_pit_0915/processing.rtf b/general/datasets/Gtexv5_pit_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_pit_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_pit_0915/specifics.rtf b/general/datasets/Gtexv5_pit_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_pit_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_pit_0915/summary.rtf b/general/datasets/Gtexv5_pit_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_pit_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_pit_0915/tissue.rtf b/general/datasets/Gtexv5_pit_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_pit_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_prost_0915/cases.rtf b/general/datasets/Gtexv5_prost_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_prost_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_prost_0915/contributors.rtf b/general/datasets/Gtexv5_prost_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_prost_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_prost_0915/experiment-design.rtf b/general/datasets/Gtexv5_prost_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_prost_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_prost_0915/platform.rtf b/general/datasets/Gtexv5_prost_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_prost_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_prost_0915/processing.rtf b/general/datasets/Gtexv5_prost_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_prost_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_prost_0915/specifics.rtf b/general/datasets/Gtexv5_prost_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_prost_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_prost_0915/summary.rtf b/general/datasets/Gtexv5_prost_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_prost_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_prost_0915/tissue.rtf b/general/datasets/Gtexv5_prost_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_prost_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_salgl_0915/cases.rtf b/general/datasets/Gtexv5_salgl_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_salgl_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_salgl_0915/contributors.rtf b/general/datasets/Gtexv5_salgl_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_salgl_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_salgl_0915/experiment-design.rtf b/general/datasets/Gtexv5_salgl_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_salgl_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_salgl_0915/platform.rtf b/general/datasets/Gtexv5_salgl_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_salgl_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_salgl_0915/processing.rtf b/general/datasets/Gtexv5_salgl_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_salgl_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_salgl_0915/specifics.rtf b/general/datasets/Gtexv5_salgl_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_salgl_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_salgl_0915/summary.rtf b/general/datasets/Gtexv5_salgl_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_salgl_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_salgl_0915/tissue.rtf b/general/datasets/Gtexv5_salgl_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_salgl_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_sks_0915/cases.rtf b/general/datasets/Gtexv5_sks_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_sks_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_sks_0915/contributors.rtf b/general/datasets/Gtexv5_sks_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_sks_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_sks_0915/experiment-design.rtf b/general/datasets/Gtexv5_sks_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_sks_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_sks_0915/platform.rtf b/general/datasets/Gtexv5_sks_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_sks_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_sks_0915/processing.rtf b/general/datasets/Gtexv5_sks_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_sks_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_sks_0915/specifics.rtf b/general/datasets/Gtexv5_sks_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_sks_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_sks_0915/summary.rtf b/general/datasets/Gtexv5_sks_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_sks_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_sks_0915/tissue.rtf b/general/datasets/Gtexv5_sks_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_sks_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_sto_0915/cases.rtf b/general/datasets/Gtexv5_sto_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_sto_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_sto_0915/contributors.rtf b/general/datasets/Gtexv5_sto_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_sto_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_sto_0915/experiment-design.rtf b/general/datasets/Gtexv5_sto_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_sto_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_sto_0915/platform.rtf b/general/datasets/Gtexv5_sto_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_sto_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_sto_0915/processing.rtf b/general/datasets/Gtexv5_sto_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_sto_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_sto_0915/specifics.rtf b/general/datasets/Gtexv5_sto_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_sto_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_sto_0915/summary.rtf b/general/datasets/Gtexv5_sto_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_sto_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_sto_0915/tissue.rtf b/general/datasets/Gtexv5_sto_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_sto_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_test_0915/cases.rtf b/general/datasets/Gtexv5_test_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_test_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_test_0915/contributors.rtf b/general/datasets/Gtexv5_test_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_test_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_test_0915/experiment-design.rtf b/general/datasets/Gtexv5_test_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_test_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_test_0915/platform.rtf b/general/datasets/Gtexv5_test_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_test_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_test_0915/processing.rtf b/general/datasets/Gtexv5_test_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_test_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_test_0915/specifics.rtf b/general/datasets/Gtexv5_test_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_test_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_test_0915/summary.rtf b/general/datasets/Gtexv5_test_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_test_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_test_0915/tissue.rtf b/general/datasets/Gtexv5_test_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_test_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_thy_0915/cases.rtf b/general/datasets/Gtexv5_thy_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_thy_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_thy_0915/contributors.rtf b/general/datasets/Gtexv5_thy_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_thy_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_thy_0915/experiment-design.rtf b/general/datasets/Gtexv5_thy_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_thy_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_thy_0915/platform.rtf b/general/datasets/Gtexv5_thy_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_thy_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_thy_0915/processing.rtf b/general/datasets/Gtexv5_thy_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_thy_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_thy_0915/specifics.rtf b/general/datasets/Gtexv5_thy_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_thy_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_thy_0915/summary.rtf b/general/datasets/Gtexv5_thy_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_thy_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_thy_0915/tissue.rtf b/general/datasets/Gtexv5_thy_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_thy_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_ut_0915/cases.rtf b/general/datasets/Gtexv5_ut_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_ut_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_ut_0915/contributors.rtf b/general/datasets/Gtexv5_ut_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_ut_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_ut_0915/experiment-design.rtf b/general/datasets/Gtexv5_ut_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_ut_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_ut_0915/platform.rtf b/general/datasets/Gtexv5_ut_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_ut_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_ut_0915/processing.rtf b/general/datasets/Gtexv5_ut_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_ut_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_ut_0915/specifics.rtf b/general/datasets/Gtexv5_ut_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_ut_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_ut_0915/summary.rtf b/general/datasets/Gtexv5_ut_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_ut_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_ut_0915/tissue.rtf b/general/datasets/Gtexv5_ut_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_ut_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/Gtexv5_wbl_0915/cases.rtf b/general/datasets/Gtexv5_wbl_0915/cases.rtf new file mode 100644 index 0000000..3453126 --- /dev/null +++ b/general/datasets/Gtexv5_wbl_0915/cases.rtf @@ -0,0 +1,5 @@ +

The Genotype-Tissue Expression project (GTEx) aims to create a comprehensive public atlas of gene expression and regulation across multiple human tissues. The resource will provide valuable insights in to the mechanisms of gene regulation, aid in the interpretation of genome wide association studies, and enable studies of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue specificity of gene regulatory mechanisms.

+ +

The GTEx project recently completed an initial pilot phase during which >185 donor DNAs were genotyped using high density SNP and exome arrays. RNA expression was profiled on multiple tissues from these donors (from 9 to 30) by both array-based methods and RNA sequencing, to an average depth of 50 million reads. These pilot phase data have been made available to the public through davailable through the database of Genotype and Phenotype (dbGaP).

+ +

For more information about the GTEx project, please visit the About GTEx page, view the Consortium Members, or read the Publication Policy. Additional GTEx resources such as funding opportunities and information for donors are also available on the NIH Common Fund and NHGRI websites respectively. 

diff --git a/general/datasets/Gtexv5_wbl_0915/contributors.rtf b/general/datasets/Gtexv5_wbl_0915/contributors.rtf new file mode 100644 index 0000000..aae39a0 --- /dev/null +++ b/general/datasets/Gtexv5_wbl_0915/contributors.rtf @@ -0,0 +1 @@ +

Please review and cite: John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura Siminoff, Heather Traino, Maghboeba Mosavel, Laura Barker, Scott Jewell, Dan Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie Sobin, James Robb, Phillip Branton, Greg Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin Ardlie, Wendy Winckler, Gad Getz, David DeLuca, Daniel MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George Grant, Deborah Mash, Yvonne Marcus, Margaret Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J Cox, Dan L Nicolae, Eric R Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan Pritchard, Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, Emmanouil T Dermitzakis, Tuuli Lappalainen, Roderic Guigo, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew Nobel, Fred Wright, Andrey Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M Anderson, Elizabeth L Wilder, Leslie K Derr, Eric D Green, Jeffery P Struewing, Gary Temple, Simona Volpi, Joy T Boyer, Elizabeth J Thomson, Mark S Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R Insel, Susan E Koester, A Roger Little, Patrick K Bender, Thomas Lehner, Yin Yao, Carolyn C Compton, Jimmie B Vaught, Sherilyn Sawyer, Nicole C Lockhart, Joanne Demchok & Helen F Moore. Nature Genetics 45, 580–585 (2013).

diff --git a/general/datasets/Gtexv5_wbl_0915/experiment-design.rtf b/general/datasets/Gtexv5_wbl_0915/experiment-design.rtf new file mode 100644 index 0000000..5e876e0 --- /dev/null +++ b/general/datasets/Gtexv5_wbl_0915/experiment-design.rtf @@ -0,0 +1 @@ +

GTEx samples are collected from deceased donors at low post-mortem intervals and preserved in PAXgene fixative prior to DNA and RNA extraction.

diff --git a/general/datasets/Gtexv5_wbl_0915/platform.rtf b/general/datasets/Gtexv5_wbl_0915/platform.rtf new file mode 100644 index 0000000..f276bf8 --- /dev/null +++ b/general/datasets/Gtexv5_wbl_0915/platform.rtf @@ -0,0 +1,3 @@ +

Expression

+ +

RPKM data are used as produced by RNA-SeQC. Filter on >=10 individuals having >0.1RPKM. Log and quantile normalize the expression values across all samples. Outlier correction: for each gene, rank values across samples then map to a standard normal.

diff --git a/general/datasets/Gtexv5_wbl_0915/processing.rtf b/general/datasets/Gtexv5_wbl_0915/processing.rtf new file mode 100644 index 0000000..6635893 --- /dev/null +++ b/general/datasets/Gtexv5_wbl_0915/processing.rtf @@ -0,0 +1,102 @@ +

Analysis Methods

+ +

Preprocessing

+ +

RNA-seq

+ +

RNA-seq was performed using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ selected library. The sequencing produced 76-bp paired end reads.

+ +

See also:How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

+ +

Alignment to the HG19 human genome was performed using Tophat v1.1.4 assisted by the GENCODE v12 transcriptome definition. In a post processing step, unaligned reads are reintroduced into the bam. The final bam contains aligned and unaligned reads, marked duplicates, quality score recalibration. It should be noted that Tophat produces multiple mappings for some reads, but in post processing one read is flagged as the primary alignment.

+ +

Genotyping

+ +

DNA samples that are sent to the Broad Institute Genetic Analysis Platform for genotyping, are placed on 96-well plates using the Illumina HumanOmni5-4v1_B SNP array. Omni genotypes are called using GenomeStudio v2010.3 with the calling algorithm/genotyping module version 1.8.4 using the default cluster file HumanOmni5-4v1-Multi_B.egt. Called genotypes are run through a standard QC pipeline and only samples passing a call rate threshold of 97%, and passing genetic fingerprint and gender concordance are passed. For the final eQTL analysis, the following filters were applied: call rate (< 90%), low HWE (pValue < 1E-6) or are monormorphic.

+ +

Expression Quantification

+ +

Gene/Transcript Model

+ +

Gencode Version 12
+Contig names modified to match the reference genome used for alignment
+Procedure for collapsing transcript model into gene model

+ +

Primary source: gencode.v12
+List exons as a set of intervals, discarding any labeled as 'retained_intron' and retaining only coding and linc rna.
+Create a separate bin for other types of transcripts and process them independently.
+Merge overlapping intervals.
+Discard intervals associated with multiple genes.
+Map intervals back to gene identifiers and output in GTF format.
+Quantification

+ +

For gene/exon level read count and gene level RPKM values, we filter reads based on the requirements:

+ +

Reads must have be uniquely mapped (for tophat this is mapping quality > 3; == 255).
+Reads must have proper pairs.
+Alignment distance must be <=6.
+Reads must be contained 100% within exon boundaries. Reads overlapping introns are not counted.
+Exon

+ +

For exon read counts, if a read overlaps multiple exons, then then a fractional value equal to the portion of the read contained within that exon is allotted.

+ +

Transcript

+ +

Transcript-level quantification is provided by Flux Capacitor.

+ +

eQTL Analysis

+ +

QC and Sample Exclusion Process

+ +

D statistic outliers are removed.
+Gender-specific expression outliers are removed.
+Samples with less than 10 million mapped reads are removed.
+In the case of replicates, the samples with the greater number of reads are chosen.
+Covariates

+ +

3 Genotyping PCs.
+15 Peer factors:

+ +


+The input to PEER are the post-normalization expression values described below.
+Gender.
+Expression

+ +

RPKM data are used as produced by RNA-SeQC.
+Filter on >=10 individuals having >0.1RPKM.
+Log and quantile normalize the expression values across all samples.
+Outlier correction: for each gene, rank values across samples then map to a standard normal.
+Genotypes

+ +

Imputation-based genotypes:
+Call Rate Threshold 95%.
+Info score Threshold 0.4.
+Minor Allele Frequency >= 5%.
+Sex chromosomes have been excluded excluded.
+Matrix eQTL Parameters

+ +

Produced for radius +-1mb from TSS.
+P value threshold set to 1 to emit all p-values.
+Storey FDR

+ +

The Storey q-value method was applied using the public R package with default values.
+eQTLs were filtered for an FDR <=5%.
+Tissues

+ +

There are 9 Tissues that have sufficient sample numbers (n > 80).

+ +

Adipose_Subcutaneous
+Artery_Tibial
+Heart_Left_Ventricle
+Lung
+Muscle_Skeletal
+Nerve_Tibial
+Skin_Sun_Exposed_Lower_leg
+Thyroid
+Whole_Blood

+ +

Note: RPKM original values that we enter in GeneNetwork have been log2 transformed after added 1, then values lower than 2.0 were transformed to 0 (zero).

+ +

Read Bits of DNA blog: GTEx is throwing away 90% of their data and response to: "GTEx is throwing away 90% of their data. by Manolis Dermitzakis, Gad Getz, Krisitn Ardlie, Roderic Guigo for the GTEx consortium.

+ +

See also: How to Evaluate and Use Human and Mouse mRNA Data Sets (e.g. GTEx)

diff --git a/general/datasets/Gtexv5_wbl_0915/specifics.rtf b/general/datasets/Gtexv5_wbl_0915/specifics.rtf new file mode 100644 index 0000000..80bf41d --- /dev/null +++ b/general/datasets/Gtexv5_wbl_0915/specifics.rtf @@ -0,0 +1,10 @@ +
2015-09-14: The Genotype-Tissue Expression (GTEx) is providing a comprehensive atlas of gene expression and regulation across 53 human tissues. The latest GTEx data release (dbGaP release phs000424.v5.p1) is now available on GeneNetwork. + + + +

Note: Please disregard confusing legend provided in Study tab of the study page which claims that study contains 552 subjects with genotypes - those totals are counts of subjects with all molecular data types, not just molecular genotypes.

+ +

More detailed representation of subject counts in molecular datasets (including genotypes) may be found in 'Molecular Data' tab at Common Fund (CF) Genotype-Tissue Expression Project (GTEx) dbGaP Study Accession: phs000424.v5.p1.

+
diff --git a/general/datasets/Gtexv5_wbl_0915/summary.rtf b/general/datasets/Gtexv5_wbl_0915/summary.rtf new file mode 100644 index 0000000..dff008b --- /dev/null +++ b/general/datasets/Gtexv5_wbl_0915/summary.rtf @@ -0,0 +1,3 @@ +

The Genotype-Tissue Expression (GTEx) project is a collaborative effort that aims to identify correlations between genotype and tissue-specific gene expression levels that will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx is funded through the Common Fund, and managed by the NIH Office of the Director in partnership with the National Human Genome Research Institute, National Institute of Mental Health, the National Cancer Institute, the National Center for Biotechnology Information at the National Library of Medicine, the National Heart, Lung and Blood Institute, the National Institute on Drug Abuse, and the National Institute of Neurological Diseases and Stroke, all part of NIH. This series of 837 samples represents multiple tissues collected from 102 GTEX donors and 1 control cell line. In total, 30 tissue sites are represented including Adipose, Artery, Heart, Lung, Whole Blood, Muscle, Skin, and 11 brain subregions. RNA-seq expression data, robust clinical data, pathological annotations, and genotypes are also available for these samples from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v2.p1) and the GTEx portal (www.broadinstitute.org/gtex). While GTEx is no longer generating Affymetrix expression data, donor enrollment continues and is expected to reach 1,000 by the end of 2015. Updates to the GTEx data in dbGaP and the GTEx Portal will be made periodically. contributor: GTEx Laboratory, Data Analysis, and Coordinating Center (LDACC) contributor: The Broad Institute of MIT and Harvard (LDACC PIs: Kristin Ardlie and Gaddy Getz).

+ +

WU-Minn HCP Consortium Open Access Data Use Terms

diff --git a/general/datasets/Gtexv5_wbl_0915/tissue.rtf b/general/datasets/Gtexv5_wbl_0915/tissue.rtf new file mode 100644 index 0000000..7e60b80 --- /dev/null +++ b/general/datasets/Gtexv5_wbl_0915/tissue.rtf @@ -0,0 +1,3 @@ +

GTEx explore all tissues:

+ +

GTEx explore all tissues

diff --git a/general/datasets/HBTRC-MLC_0611/acknowledgment.rtf b/general/datasets/HBTRC-MLC_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/HBTRC-MLC_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC-MLC_0611/cases.rtf b/general/datasets/HBTRC-MLC_0611/cases.rtf new file mode 100644 index 0000000..e64114d --- /dev/null +++ b/general/datasets/HBTRC-MLC_0611/cases.rtf @@ -0,0 +1,4156 @@ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/HBTRC-MLC_0611/experiment-design.rtf b/general/datasets/HBTRC-MLC_0611/experiment-design.rtf new file mode 100644 index 0000000..3b0c224 --- /dev/null +++ b/general/datasets/HBTRC-MLC_0611/experiment-design.rtf @@ -0,0 +1 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

diff --git a/general/datasets/HBTRC-MLC_0611/notes.rtf b/general/datasets/HBTRC-MLC_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/HBTRC-MLC_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC-MLC_0611/summary.rtf b/general/datasets/HBTRC-MLC_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/HBTRC-MLC_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC-MLC_AD_0611/acknowledgment.rtf b/general/datasets/HBTRC-MLC_AD_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/HBTRC-MLC_AD_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC-MLC_AD_0611/cases.rtf b/general/datasets/HBTRC-MLC_AD_0611/cases.rtf new file mode 100644 index 0000000..e64114d --- /dev/null +++ b/general/datasets/HBTRC-MLC_AD_0611/cases.rtf @@ -0,0 +1,4156 @@ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/HBTRC-MLC_AD_0611/experiment-design.rtf b/general/datasets/HBTRC-MLC_AD_0611/experiment-design.rtf new file mode 100644 index 0000000..3b0c224 --- /dev/null +++ b/general/datasets/HBTRC-MLC_AD_0611/experiment-design.rtf @@ -0,0 +1 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

diff --git a/general/datasets/HBTRC-MLC_AD_0611/notes.rtf b/general/datasets/HBTRC-MLC_AD_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/HBTRC-MLC_AD_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC-MLC_AD_0611/summary.rtf b/general/datasets/HBTRC-MLC_AD_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/HBTRC-MLC_AD_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC-MLC_HD_0611/acknowledgment.rtf b/general/datasets/HBTRC-MLC_HD_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/HBTRC-MLC_HD_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC-MLC_HD_0611/cases.rtf b/general/datasets/HBTRC-MLC_HD_0611/cases.rtf new file mode 100644 index 0000000..e64114d --- /dev/null +++ b/general/datasets/HBTRC-MLC_HD_0611/cases.rtf @@ -0,0 +1,4156 @@ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/HBTRC-MLC_HD_0611/experiment-design.rtf b/general/datasets/HBTRC-MLC_HD_0611/experiment-design.rtf new file mode 100644 index 0000000..3b0c224 --- /dev/null +++ b/general/datasets/HBTRC-MLC_HD_0611/experiment-design.rtf @@ -0,0 +1 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

diff --git a/general/datasets/HBTRC-MLC_HD_0611/notes.rtf b/general/datasets/HBTRC-MLC_HD_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/HBTRC-MLC_HD_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC-MLC_HD_0611/summary.rtf b/general/datasets/HBTRC-MLC_HD_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/HBTRC-MLC_HD_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC-MLC_N_0611/acknowledgment.rtf b/general/datasets/HBTRC-MLC_N_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/HBTRC-MLC_N_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC-MLC_N_0611/cases.rtf b/general/datasets/HBTRC-MLC_N_0611/cases.rtf new file mode 100644 index 0000000..e64114d --- /dev/null +++ b/general/datasets/HBTRC-MLC_N_0611/cases.rtf @@ -0,0 +1,4156 @@ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/HBTRC-MLC_N_0611/experiment-design.rtf b/general/datasets/HBTRC-MLC_N_0611/experiment-design.rtf new file mode 100644 index 0000000..3b0c224 --- /dev/null +++ b/general/datasets/HBTRC-MLC_N_0611/experiment-design.rtf @@ -0,0 +1 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

diff --git a/general/datasets/HBTRC-MLC_N_0611/notes.rtf b/general/datasets/HBTRC-MLC_N_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/HBTRC-MLC_N_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC-MLC_N_0611/summary.rtf b/general/datasets/HBTRC-MLC_N_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/HBTRC-MLC_N_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC-MLPFC_0611/acknowledgment.rtf b/general/datasets/HBTRC-MLPFC_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC-MLPFC_0611/cases.rtf b/general/datasets/HBTRC-MLPFC_0611/cases.rtf new file mode 100644 index 0000000..86ed08e --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_0611/cases.rtf @@ -0,0 +1,4166 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

+ +

 

+ +

 

+ +

 

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/HBTRC-MLPFC_0611/experiment-design.rtf b/general/datasets/HBTRC-MLPFC_0611/experiment-design.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_0611/experiment-design.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/HBTRC-MLPFC_0611/notes.rtf b/general/datasets/HBTRC-MLPFC_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC-MLPFC_0611/platform.rtf b/general/datasets/HBTRC-MLPFC_0611/platform.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_0611/platform.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/HBTRC-MLPFC_0611/processing.rtf b/general/datasets/HBTRC-MLPFC_0611/processing.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_0611/processing.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/HBTRC-MLPFC_0611/summary.rtf b/general/datasets/HBTRC-MLPFC_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC-MLPFC_0611/tissue.rtf b/general/datasets/HBTRC-MLPFC_0611/tissue.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_0611/tissue.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/HBTRC-MLPFC_AD_0611/acknowledgment.rtf b/general/datasets/HBTRC-MLPFC_AD_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_AD_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC-MLPFC_AD_0611/cases.rtf b/general/datasets/HBTRC-MLPFC_AD_0611/cases.rtf new file mode 100644 index 0000000..86ed08e --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_AD_0611/cases.rtf @@ -0,0 +1,4166 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

+ +

 

+ +

 

+ +

 

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/HBTRC-MLPFC_AD_0611/experiment-design.rtf b/general/datasets/HBTRC-MLPFC_AD_0611/experiment-design.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_AD_0611/experiment-design.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/HBTRC-MLPFC_AD_0611/notes.rtf b/general/datasets/HBTRC-MLPFC_AD_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_AD_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC-MLPFC_AD_0611/platform.rtf b/general/datasets/HBTRC-MLPFC_AD_0611/platform.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_AD_0611/platform.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/HBTRC-MLPFC_AD_0611/processing.rtf b/general/datasets/HBTRC-MLPFC_AD_0611/processing.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_AD_0611/processing.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/HBTRC-MLPFC_AD_0611/summary.rtf b/general/datasets/HBTRC-MLPFC_AD_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_AD_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC-MLPFC_AD_0611/tissue.rtf b/general/datasets/HBTRC-MLPFC_AD_0611/tissue.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_AD_0611/tissue.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/HBTRC-MLPFC_HD_0611/acknowledgment.rtf b/general/datasets/HBTRC-MLPFC_HD_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_HD_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC-MLPFC_HD_0611/cases.rtf b/general/datasets/HBTRC-MLPFC_HD_0611/cases.rtf new file mode 100644 index 0000000..86ed08e --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_HD_0611/cases.rtf @@ -0,0 +1,4166 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

+ +

 

+ +

 

+ +

 

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/HBTRC-MLPFC_HD_0611/experiment-design.rtf b/general/datasets/HBTRC-MLPFC_HD_0611/experiment-design.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_HD_0611/experiment-design.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/HBTRC-MLPFC_HD_0611/notes.rtf b/general/datasets/HBTRC-MLPFC_HD_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_HD_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC-MLPFC_HD_0611/platform.rtf b/general/datasets/HBTRC-MLPFC_HD_0611/platform.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_HD_0611/platform.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/HBTRC-MLPFC_HD_0611/processing.rtf b/general/datasets/HBTRC-MLPFC_HD_0611/processing.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_HD_0611/processing.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/HBTRC-MLPFC_HD_0611/summary.rtf b/general/datasets/HBTRC-MLPFC_HD_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_HD_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC-MLPFC_HD_0611/tissue.rtf b/general/datasets/HBTRC-MLPFC_HD_0611/tissue.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_HD_0611/tissue.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/HBTRC-MLPFC_N_0611/acknowledgment.rtf b/general/datasets/HBTRC-MLPFC_N_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_N_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC-MLPFC_N_0611/cases.rtf b/general/datasets/HBTRC-MLPFC_N_0611/cases.rtf new file mode 100644 index 0000000..86ed08e --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_N_0611/cases.rtf @@ -0,0 +1,4166 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

+ +

 

+ +

 

+ +

 

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/HBTRC-MLPFC_N_0611/experiment-design.rtf b/general/datasets/HBTRC-MLPFC_N_0611/experiment-design.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_N_0611/experiment-design.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/HBTRC-MLPFC_N_0611/notes.rtf b/general/datasets/HBTRC-MLPFC_N_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_N_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC-MLPFC_N_0611/platform.rtf b/general/datasets/HBTRC-MLPFC_N_0611/platform.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_N_0611/platform.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/HBTRC-MLPFC_N_0611/processing.rtf b/general/datasets/HBTRC-MLPFC_N_0611/processing.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_N_0611/processing.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/HBTRC-MLPFC_N_0611/summary.rtf b/general/datasets/HBTRC-MLPFC_N_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_N_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC-MLPFC_N_0611/tissue.rtf b/general/datasets/HBTRC-MLPFC_N_0611/tissue.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/HBTRC-MLPFC_N_0611/tissue.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/HBTRC-MLVC_0611/acknowledgment.rtf b/general/datasets/HBTRC-MLVC_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/HBTRC-MLVC_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC-MLVC_0611/cases.rtf b/general/datasets/HBTRC-MLVC_0611/cases.rtf new file mode 100644 index 0000000..86ed08e --- /dev/null +++ b/general/datasets/HBTRC-MLVC_0611/cases.rtf @@ -0,0 +1,4166 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

+ +

 

+ +

 

+ +

 

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/HBTRC-MLVC_0611/notes.rtf b/general/datasets/HBTRC-MLVC_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/HBTRC-MLVC_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC-MLVC_0611/summary.rtf b/general/datasets/HBTRC-MLVC_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/HBTRC-MLVC_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC-MLVC_AD_0611/acknowledgment.rtf b/general/datasets/HBTRC-MLVC_AD_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/HBTRC-MLVC_AD_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC-MLVC_AD_0611/cases.rtf b/general/datasets/HBTRC-MLVC_AD_0611/cases.rtf new file mode 100644 index 0000000..86ed08e --- /dev/null +++ b/general/datasets/HBTRC-MLVC_AD_0611/cases.rtf @@ -0,0 +1,4166 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

+ +

 

+ +

 

+ +

 

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/HBTRC-MLVC_AD_0611/notes.rtf b/general/datasets/HBTRC-MLVC_AD_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/HBTRC-MLVC_AD_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC-MLVC_AD_0611/summary.rtf b/general/datasets/HBTRC-MLVC_AD_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/HBTRC-MLVC_AD_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC-MLVC_HD_0611/acknowledgment.rtf b/general/datasets/HBTRC-MLVC_HD_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/HBTRC-MLVC_HD_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC-MLVC_HD_0611/cases.rtf b/general/datasets/HBTRC-MLVC_HD_0611/cases.rtf new file mode 100644 index 0000000..86ed08e --- /dev/null +++ b/general/datasets/HBTRC-MLVC_HD_0611/cases.rtf @@ -0,0 +1,4166 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

+ +

 

+ +

 

+ +

 

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/HBTRC-MLVC_HD_0611/notes.rtf b/general/datasets/HBTRC-MLVC_HD_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/HBTRC-MLVC_HD_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC-MLVC_HD_0611/summary.rtf b/general/datasets/HBTRC-MLVC_HD_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/HBTRC-MLVC_HD_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC-MLVC_N_0611/acknowledgment.rtf b/general/datasets/HBTRC-MLVC_N_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/HBTRC-MLVC_N_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC-MLVC_N_0611/cases.rtf b/general/datasets/HBTRC-MLVC_N_0611/cases.rtf new file mode 100644 index 0000000..86ed08e --- /dev/null +++ b/general/datasets/HBTRC-MLVC_N_0611/cases.rtf @@ -0,0 +1,4166 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

+ +

 

+ +

 

+ +

 

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/HBTRC-MLVC_N_0611/notes.rtf b/general/datasets/HBTRC-MLVC_N_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/HBTRC-MLVC_N_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC-MLVC_N_0611/summary.rtf b/general/datasets/HBTRC-MLVC_N_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/HBTRC-MLVC_N_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC_MLC_0611/acknowledgment.rtf b/general/datasets/HBTRC_MLC_0611/acknowledgment.rtf deleted file mode 100644 index 208cb6e..0000000 --- a/general/datasets/HBTRC_MLC_0611/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC_MLC_0611/cases.rtf b/general/datasets/HBTRC_MLC_0611/cases.rtf deleted file mode 100644 index e64114d..0000000 --- a/general/datasets/HBTRC_MLC_0611/cases.rtf +++ /dev/null @@ -1,4156 +0,0 @@ - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
-
diff --git a/general/datasets/HBTRC_MLC_0611/experiment-design.rtf b/general/datasets/HBTRC_MLC_0611/experiment-design.rtf deleted file mode 100644 index 3b0c224..0000000 --- a/general/datasets/HBTRC_MLC_0611/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

diff --git a/general/datasets/HBTRC_MLC_0611/notes.rtf b/general/datasets/HBTRC_MLC_0611/notes.rtf deleted file mode 100644 index ff90e34..0000000 --- a/general/datasets/HBTRC_MLC_0611/notes.rtf +++ /dev/null @@ -1,6 +0,0 @@ -

Species: Human
-Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
-Disease: Neurological Disease
-Investigator: Francine Benes/ Eric Schadt
-Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
-Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC_MLC_0611/summary.rtf b/general/datasets/HBTRC_MLC_0611/summary.rtf deleted file mode 100644 index 5cde3bf..0000000 --- a/general/datasets/HBTRC_MLC_0611/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC_MLC_AD_0611/acknowledgment.rtf b/general/datasets/HBTRC_MLC_AD_0611/acknowledgment.rtf deleted file mode 100644 index 208cb6e..0000000 --- a/general/datasets/HBTRC_MLC_AD_0611/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC_MLC_AD_0611/cases.rtf b/general/datasets/HBTRC_MLC_AD_0611/cases.rtf deleted file mode 100644 index e64114d..0000000 --- a/general/datasets/HBTRC_MLC_AD_0611/cases.rtf +++ /dev/null @@ -1,4156 +0,0 @@ - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
-
diff --git a/general/datasets/HBTRC_MLC_AD_0611/experiment-design.rtf b/general/datasets/HBTRC_MLC_AD_0611/experiment-design.rtf deleted file mode 100644 index 3b0c224..0000000 --- a/general/datasets/HBTRC_MLC_AD_0611/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

diff --git a/general/datasets/HBTRC_MLC_AD_0611/notes.rtf b/general/datasets/HBTRC_MLC_AD_0611/notes.rtf deleted file mode 100644 index ff90e34..0000000 --- a/general/datasets/HBTRC_MLC_AD_0611/notes.rtf +++ /dev/null @@ -1,6 +0,0 @@ -

Species: Human
-Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
-Disease: Neurological Disease
-Investigator: Francine Benes/ Eric Schadt
-Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
-Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC_MLC_AD_0611/summary.rtf b/general/datasets/HBTRC_MLC_AD_0611/summary.rtf deleted file mode 100644 index 5cde3bf..0000000 --- a/general/datasets/HBTRC_MLC_AD_0611/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC_MLC_HD_0611/acknowledgment.rtf b/general/datasets/HBTRC_MLC_HD_0611/acknowledgment.rtf deleted file mode 100644 index 208cb6e..0000000 --- a/general/datasets/HBTRC_MLC_HD_0611/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC_MLC_HD_0611/cases.rtf b/general/datasets/HBTRC_MLC_HD_0611/cases.rtf deleted file mode 100644 index e64114d..0000000 --- a/general/datasets/HBTRC_MLC_HD_0611/cases.rtf +++ /dev/null @@ -1,4156 +0,0 @@ - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
-
diff --git a/general/datasets/HBTRC_MLC_HD_0611/experiment-design.rtf b/general/datasets/HBTRC_MLC_HD_0611/experiment-design.rtf deleted file mode 100644 index 3b0c224..0000000 --- a/general/datasets/HBTRC_MLC_HD_0611/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

diff --git a/general/datasets/HBTRC_MLC_HD_0611/notes.rtf b/general/datasets/HBTRC_MLC_HD_0611/notes.rtf deleted file mode 100644 index ff90e34..0000000 --- a/general/datasets/HBTRC_MLC_HD_0611/notes.rtf +++ /dev/null @@ -1,6 +0,0 @@ -

Species: Human
-Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
-Disease: Neurological Disease
-Investigator: Francine Benes/ Eric Schadt
-Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
-Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC_MLC_HD_0611/summary.rtf b/general/datasets/HBTRC_MLC_HD_0611/summary.rtf deleted file mode 100644 index 5cde3bf..0000000 --- a/general/datasets/HBTRC_MLC_HD_0611/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC_MLC_N_0611/acknowledgment.rtf b/general/datasets/HBTRC_MLC_N_0611/acknowledgment.rtf deleted file mode 100644 index 208cb6e..0000000 --- a/general/datasets/HBTRC_MLC_N_0611/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC_MLC_N_0611/cases.rtf b/general/datasets/HBTRC_MLC_N_0611/cases.rtf deleted file mode 100644 index e64114d..0000000 --- a/general/datasets/HBTRC_MLC_N_0611/cases.rtf +++ /dev/null @@ -1,4156 +0,0 @@ - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
-
diff --git a/general/datasets/HBTRC_MLC_N_0611/experiment-design.rtf b/general/datasets/HBTRC_MLC_N_0611/experiment-design.rtf deleted file mode 100644 index 3b0c224..0000000 --- a/general/datasets/HBTRC_MLC_N_0611/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

diff --git a/general/datasets/HBTRC_MLC_N_0611/notes.rtf b/general/datasets/HBTRC_MLC_N_0611/notes.rtf deleted file mode 100644 index ff90e34..0000000 --- a/general/datasets/HBTRC_MLC_N_0611/notes.rtf +++ /dev/null @@ -1,6 +0,0 @@ -

Species: Human
-Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
-Disease: Neurological Disease
-Investigator: Francine Benes/ Eric Schadt
-Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
-Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC_MLC_N_0611/summary.rtf b/general/datasets/HBTRC_MLC_N_0611/summary.rtf deleted file mode 100644 index 5cde3bf..0000000 --- a/general/datasets/HBTRC_MLC_N_0611/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC_MLPFC_0611/acknowledgment.rtf b/general/datasets/HBTRC_MLPFC_0611/acknowledgment.rtf deleted file mode 100644 index 208cb6e..0000000 --- a/general/datasets/HBTRC_MLPFC_0611/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC_MLPFC_0611/cases.rtf b/general/datasets/HBTRC_MLPFC_0611/cases.rtf deleted file mode 100644 index 86ed08e..0000000 --- a/general/datasets/HBTRC_MLPFC_0611/cases.rtf +++ /dev/null @@ -1,4166 +0,0 @@ -

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

- -

 

- -

 

- -

 

- -

 

- - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
-
diff --git a/general/datasets/HBTRC_MLPFC_0611/experiment-design.rtf b/general/datasets/HBTRC_MLPFC_0611/experiment-design.rtf deleted file mode 100644 index 4ee3070..0000000 --- a/general/datasets/HBTRC_MLPFC_0611/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

See PMID: 25080494

diff --git a/general/datasets/HBTRC_MLPFC_0611/notes.rtf b/general/datasets/HBTRC_MLPFC_0611/notes.rtf deleted file mode 100644 index ff90e34..0000000 --- a/general/datasets/HBTRC_MLPFC_0611/notes.rtf +++ /dev/null @@ -1,6 +0,0 @@ -

Species: Human
-Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
-Disease: Neurological Disease
-Investigator: Francine Benes/ Eric Schadt
-Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
-Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC_MLPFC_0611/platform.rtf b/general/datasets/HBTRC_MLPFC_0611/platform.rtf deleted file mode 100644 index 4ee3070..0000000 --- a/general/datasets/HBTRC_MLPFC_0611/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

See PMID: 25080494

diff --git a/general/datasets/HBTRC_MLPFC_0611/processing.rtf b/general/datasets/HBTRC_MLPFC_0611/processing.rtf deleted file mode 100644 index 4ee3070..0000000 --- a/general/datasets/HBTRC_MLPFC_0611/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

See PMID: 25080494

diff --git a/general/datasets/HBTRC_MLPFC_0611/summary.rtf b/general/datasets/HBTRC_MLPFC_0611/summary.rtf deleted file mode 100644 index 5cde3bf..0000000 --- a/general/datasets/HBTRC_MLPFC_0611/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC_MLPFC_0611/tissue.rtf b/general/datasets/HBTRC_MLPFC_0611/tissue.rtf deleted file mode 100644 index 4ee3070..0000000 --- a/general/datasets/HBTRC_MLPFC_0611/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

See PMID: 25080494

diff --git a/general/datasets/HBTRC_MLPFC_AD_0611/acknowledgment.rtf b/general/datasets/HBTRC_MLPFC_AD_0611/acknowledgment.rtf deleted file mode 100644 index 208cb6e..0000000 --- a/general/datasets/HBTRC_MLPFC_AD_0611/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC_MLPFC_AD_0611/cases.rtf b/general/datasets/HBTRC_MLPFC_AD_0611/cases.rtf deleted file mode 100644 index 86ed08e..0000000 --- a/general/datasets/HBTRC_MLPFC_AD_0611/cases.rtf +++ /dev/null @@ -1,4166 +0,0 @@ -

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

- -

 

- -

 

- -

 

- -

 

- - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
-
diff --git a/general/datasets/HBTRC_MLPFC_AD_0611/experiment-design.rtf b/general/datasets/HBTRC_MLPFC_AD_0611/experiment-design.rtf deleted file mode 100644 index 4ee3070..0000000 --- a/general/datasets/HBTRC_MLPFC_AD_0611/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

See PMID: 25080494

diff --git a/general/datasets/HBTRC_MLPFC_AD_0611/notes.rtf b/general/datasets/HBTRC_MLPFC_AD_0611/notes.rtf deleted file mode 100644 index ff90e34..0000000 --- a/general/datasets/HBTRC_MLPFC_AD_0611/notes.rtf +++ /dev/null @@ -1,6 +0,0 @@ -

Species: Human
-Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
-Disease: Neurological Disease
-Investigator: Francine Benes/ Eric Schadt
-Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
-Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC_MLPFC_AD_0611/platform.rtf b/general/datasets/HBTRC_MLPFC_AD_0611/platform.rtf deleted file mode 100644 index 4ee3070..0000000 --- a/general/datasets/HBTRC_MLPFC_AD_0611/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

See PMID: 25080494

diff --git a/general/datasets/HBTRC_MLPFC_AD_0611/processing.rtf b/general/datasets/HBTRC_MLPFC_AD_0611/processing.rtf deleted file mode 100644 index 4ee3070..0000000 --- a/general/datasets/HBTRC_MLPFC_AD_0611/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

See PMID: 25080494

diff --git a/general/datasets/HBTRC_MLPFC_AD_0611/summary.rtf b/general/datasets/HBTRC_MLPFC_AD_0611/summary.rtf deleted file mode 100644 index 5cde3bf..0000000 --- a/general/datasets/HBTRC_MLPFC_AD_0611/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC_MLPFC_AD_0611/tissue.rtf b/general/datasets/HBTRC_MLPFC_AD_0611/tissue.rtf deleted file mode 100644 index 4ee3070..0000000 --- a/general/datasets/HBTRC_MLPFC_AD_0611/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

See PMID: 25080494

diff --git a/general/datasets/HBTRC_MLPFC_HD_0611/acknowledgment.rtf b/general/datasets/HBTRC_MLPFC_HD_0611/acknowledgment.rtf deleted file mode 100644 index 208cb6e..0000000 --- a/general/datasets/HBTRC_MLPFC_HD_0611/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC_MLPFC_HD_0611/cases.rtf b/general/datasets/HBTRC_MLPFC_HD_0611/cases.rtf deleted file mode 100644 index 86ed08e..0000000 --- a/general/datasets/HBTRC_MLPFC_HD_0611/cases.rtf +++ /dev/null @@ -1,4166 +0,0 @@ -

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

- -

 

- -

 

- -

 

- -

 

- - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
-
diff --git a/general/datasets/HBTRC_MLPFC_HD_0611/experiment-design.rtf b/general/datasets/HBTRC_MLPFC_HD_0611/experiment-design.rtf deleted file mode 100644 index 4ee3070..0000000 --- a/general/datasets/HBTRC_MLPFC_HD_0611/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

See PMID: 25080494

diff --git a/general/datasets/HBTRC_MLPFC_HD_0611/notes.rtf b/general/datasets/HBTRC_MLPFC_HD_0611/notes.rtf deleted file mode 100644 index ff90e34..0000000 --- a/general/datasets/HBTRC_MLPFC_HD_0611/notes.rtf +++ /dev/null @@ -1,6 +0,0 @@ -

Species: Human
-Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
-Disease: Neurological Disease
-Investigator: Francine Benes/ Eric Schadt
-Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
-Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC_MLPFC_HD_0611/platform.rtf b/general/datasets/HBTRC_MLPFC_HD_0611/platform.rtf deleted file mode 100644 index 4ee3070..0000000 --- a/general/datasets/HBTRC_MLPFC_HD_0611/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

See PMID: 25080494

diff --git a/general/datasets/HBTRC_MLPFC_HD_0611/processing.rtf b/general/datasets/HBTRC_MLPFC_HD_0611/processing.rtf deleted file mode 100644 index 4ee3070..0000000 --- a/general/datasets/HBTRC_MLPFC_HD_0611/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

See PMID: 25080494

diff --git a/general/datasets/HBTRC_MLPFC_HD_0611/summary.rtf b/general/datasets/HBTRC_MLPFC_HD_0611/summary.rtf deleted file mode 100644 index 5cde3bf..0000000 --- a/general/datasets/HBTRC_MLPFC_HD_0611/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC_MLPFC_HD_0611/tissue.rtf b/general/datasets/HBTRC_MLPFC_HD_0611/tissue.rtf deleted file mode 100644 index 4ee3070..0000000 --- a/general/datasets/HBTRC_MLPFC_HD_0611/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

See PMID: 25080494

diff --git a/general/datasets/HBTRC_MLPFC_N_0611/acknowledgment.rtf b/general/datasets/HBTRC_MLPFC_N_0611/acknowledgment.rtf deleted file mode 100644 index 208cb6e..0000000 --- a/general/datasets/HBTRC_MLPFC_N_0611/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC_MLPFC_N_0611/cases.rtf b/general/datasets/HBTRC_MLPFC_N_0611/cases.rtf deleted file mode 100644 index 86ed08e..0000000 --- a/general/datasets/HBTRC_MLPFC_N_0611/cases.rtf +++ /dev/null @@ -1,4166 +0,0 @@ -

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

- -

 

- -

 

- -

 

- -

 

- - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
-
diff --git a/general/datasets/HBTRC_MLPFC_N_0611/experiment-design.rtf b/general/datasets/HBTRC_MLPFC_N_0611/experiment-design.rtf deleted file mode 100644 index 4ee3070..0000000 --- a/general/datasets/HBTRC_MLPFC_N_0611/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

See PMID: 25080494

diff --git a/general/datasets/HBTRC_MLPFC_N_0611/notes.rtf b/general/datasets/HBTRC_MLPFC_N_0611/notes.rtf deleted file mode 100644 index ff90e34..0000000 --- a/general/datasets/HBTRC_MLPFC_N_0611/notes.rtf +++ /dev/null @@ -1,6 +0,0 @@ -

Species: Human
-Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
-Disease: Neurological Disease
-Investigator: Francine Benes/ Eric Schadt
-Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
-Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC_MLPFC_N_0611/platform.rtf b/general/datasets/HBTRC_MLPFC_N_0611/platform.rtf deleted file mode 100644 index 4ee3070..0000000 --- a/general/datasets/HBTRC_MLPFC_N_0611/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

See PMID: 25080494

diff --git a/general/datasets/HBTRC_MLPFC_N_0611/processing.rtf b/general/datasets/HBTRC_MLPFC_N_0611/processing.rtf deleted file mode 100644 index 4ee3070..0000000 --- a/general/datasets/HBTRC_MLPFC_N_0611/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

See PMID: 25080494

diff --git a/general/datasets/HBTRC_MLPFC_N_0611/summary.rtf b/general/datasets/HBTRC_MLPFC_N_0611/summary.rtf deleted file mode 100644 index 5cde3bf..0000000 --- a/general/datasets/HBTRC_MLPFC_N_0611/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC_MLPFC_N_0611/tissue.rtf b/general/datasets/HBTRC_MLPFC_N_0611/tissue.rtf deleted file mode 100644 index 4ee3070..0000000 --- a/general/datasets/HBTRC_MLPFC_N_0611/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

See PMID: 25080494

diff --git a/general/datasets/HBTRC_MLVC_0611/acknowledgment.rtf b/general/datasets/HBTRC_MLVC_0611/acknowledgment.rtf deleted file mode 100644 index 208cb6e..0000000 --- a/general/datasets/HBTRC_MLVC_0611/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC_MLVC_0611/cases.rtf b/general/datasets/HBTRC_MLVC_0611/cases.rtf deleted file mode 100644 index 86ed08e..0000000 --- a/general/datasets/HBTRC_MLVC_0611/cases.rtf +++ /dev/null @@ -1,4166 +0,0 @@ -

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

- -

 

- -

 

- -

 

- -

 

- - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
-
diff --git a/general/datasets/HBTRC_MLVC_0611/notes.rtf b/general/datasets/HBTRC_MLVC_0611/notes.rtf deleted file mode 100644 index ff90e34..0000000 --- a/general/datasets/HBTRC_MLVC_0611/notes.rtf +++ /dev/null @@ -1,6 +0,0 @@ -

Species: Human
-Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
-Disease: Neurological Disease
-Investigator: Francine Benes/ Eric Schadt
-Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
-Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC_MLVC_0611/summary.rtf b/general/datasets/HBTRC_MLVC_0611/summary.rtf deleted file mode 100644 index 5cde3bf..0000000 --- a/general/datasets/HBTRC_MLVC_0611/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC_MLVC_AD_0611/acknowledgment.rtf b/general/datasets/HBTRC_MLVC_AD_0611/acknowledgment.rtf deleted file mode 100644 index 208cb6e..0000000 --- a/general/datasets/HBTRC_MLVC_AD_0611/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC_MLVC_AD_0611/cases.rtf b/general/datasets/HBTRC_MLVC_AD_0611/cases.rtf deleted file mode 100644 index 86ed08e..0000000 --- a/general/datasets/HBTRC_MLVC_AD_0611/cases.rtf +++ /dev/null @@ -1,4166 +0,0 @@ -

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

- -

 

- -

 

- -

 

- -

 

- - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
-
diff --git a/general/datasets/HBTRC_MLVC_AD_0611/notes.rtf b/general/datasets/HBTRC_MLVC_AD_0611/notes.rtf deleted file mode 100644 index ff90e34..0000000 --- a/general/datasets/HBTRC_MLVC_AD_0611/notes.rtf +++ /dev/null @@ -1,6 +0,0 @@ -

Species: Human
-Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
-Disease: Neurological Disease
-Investigator: Francine Benes/ Eric Schadt
-Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
-Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC_MLVC_AD_0611/summary.rtf b/general/datasets/HBTRC_MLVC_AD_0611/summary.rtf deleted file mode 100644 index 5cde3bf..0000000 --- a/general/datasets/HBTRC_MLVC_AD_0611/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC_MLVC_HD_0611/acknowledgment.rtf b/general/datasets/HBTRC_MLVC_HD_0611/acknowledgment.rtf deleted file mode 100644 index 208cb6e..0000000 --- a/general/datasets/HBTRC_MLVC_HD_0611/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC_MLVC_HD_0611/cases.rtf b/general/datasets/HBTRC_MLVC_HD_0611/cases.rtf deleted file mode 100644 index 86ed08e..0000000 --- a/general/datasets/HBTRC_MLVC_HD_0611/cases.rtf +++ /dev/null @@ -1,4166 +0,0 @@ -

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

- -

 

- -

 

- -

 

- -

 

- - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
-
diff --git a/general/datasets/HBTRC_MLVC_HD_0611/notes.rtf b/general/datasets/HBTRC_MLVC_HD_0611/notes.rtf deleted file mode 100644 index ff90e34..0000000 --- a/general/datasets/HBTRC_MLVC_HD_0611/notes.rtf +++ /dev/null @@ -1,6 +0,0 @@ -

Species: Human
-Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
-Disease: Neurological Disease
-Investigator: Francine Benes/ Eric Schadt
-Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
-Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC_MLVC_HD_0611/summary.rtf b/general/datasets/HBTRC_MLVC_HD_0611/summary.rtf deleted file mode 100644 index 5cde3bf..0000000 --- a/general/datasets/HBTRC_MLVC_HD_0611/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HBTRC_MLVC_N_0611/acknowledgment.rtf b/general/datasets/HBTRC_MLVC_N_0611/acknowledgment.rtf deleted file mode 100644 index 208cb6e..0000000 --- a/general/datasets/HBTRC_MLVC_N_0611/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/HBTRC_MLVC_N_0611/cases.rtf b/general/datasets/HBTRC_MLVC_N_0611/cases.rtf deleted file mode 100644 index 86ed08e..0000000 --- a/general/datasets/HBTRC_MLVC_N_0611/cases.rtf +++ /dev/null @@ -1,4166 +0,0 @@ -

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

- -

 

- -

 

- -

 

- -

 

- - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
-
diff --git a/general/datasets/HBTRC_MLVC_N_0611/notes.rtf b/general/datasets/HBTRC_MLVC_N_0611/notes.rtf deleted file mode 100644 index ff90e34..0000000 --- a/general/datasets/HBTRC_MLVC_N_0611/notes.rtf +++ /dev/null @@ -1,6 +0,0 @@ -

Species: Human
-Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
-Disease: Neurological Disease
-Investigator: Francine Benes/ Eric Schadt
-Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
-Approximate Number Subjects: 803

diff --git a/general/datasets/HBTRC_MLVC_N_0611/summary.rtf b/general/datasets/HBTRC_MLVC_N_0611/summary.rtf deleted file mode 100644 index 5cde3bf..0000000 --- a/general/datasets/HBTRC_MLVC_N_0611/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/HET3_ITPPublish/specifics.rtf b/general/datasets/HET3_ITPPublish/specifics.rtf deleted file mode 100644 index 4c7f4e9..0000000 --- a/general/datasets/HET3_ITPPublish/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Aging Mouse Lifespan Studies (NIA UM-HET3) \ No newline at end of file diff --git a/general/datasets/HET3_ITPPublish/summary.rtf b/general/datasets/HET3_ITPPublish/summary.rtf deleted file mode 100644 index 4a3de8b..0000000 --- a/general/datasets/HET3_ITPPublish/summary.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

http://www-personal.umich.edu/~millerr/ITP.htm

- -

https://www.nia.nih.gov/research/dab/interventions-testing-program-itp/frequently-asked-questions-about-itp

- -

https://www.nia.nih.gov/research/dab/interventions-testing-program-itp/compounds-testing

diff --git a/general/datasets/HMS_mm8_MDP_Spl_CD4_1116/experiment-design.rtf b/general/datasets/HMS_mm8_MDP_Spl_CD4_1116/experiment-design.rtf deleted file mode 100644 index 29bf7fb..0000000 --- a/general/datasets/HMS_mm8_MDP_Spl_CD4_1116/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201955/

diff --git a/general/datasets/HMS_mm8_MDP_Spl_CD4_1116/specifics.rtf b/general/datasets/HMS_mm8_MDP_Spl_CD4_1116/specifics.rtf deleted file mode 100644 index 0b70afe..0000000 --- a/general/datasets/HMS_mm8_MDP_Spl_CD4_1116/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Gene Level \ No newline at end of file diff --git a/general/datasets/HMS_mm8_MDP_Spl_CD4_1116/summary.rtf b/general/datasets/HMS_mm8_MDP_Spl_CD4_1116/summary.rtf deleted file mode 100644 index c81e1bb..0000000 --- a/general/datasets/HMS_mm8_MDP_Spl_CD4_1116/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

To determine the breadth and underpinning of changes in immunocyte gene expression due to genetic variation in mice, we performed, as part of the Immunological Genome Project, gene expression profiling for CD4(+) T cells and neutrophils purified from 39 inbred strains of the Mouse Phenome Database. Considering both cell types, a large number of transcripts showed significant variation across the inbred strains, with 22% of the transcriptome varying by 2-fold or more. These included 119 loci with apparent complete loss of function, where the corresponding transcript was not expressed in some of the strains, representing a useful resource of "natural knockouts." We identified 1222 cis-expression quantitative trait loci (cis-eQTL) that control some of this variation. Most (60%) cis-eQTLs were shared between T cells and neutrophils, but a significant portion uniquely impacted one of the cell types, suggesting cell type-specific regulatory mechanisms. Using a conditional regression algorithm, we predicted regulatory interactions between transcription factors and potential targets, and we demonstrated that these predictions overlap with regulatory interactions inferred from transcriptional changes during immunocyte differentiation. Finally, comparison of these and parallel data from CD4(+) T cells of healthy humans demonstrated intriguing similarities in variability of a gene's expression: the most variable genes tended to be the same in both species, and there was an overlap in genes subject to strong cis-acting genetic variants. We speculate that this "conservation of variation" reflects a differential constraint on intraspecies variation in expression levels of different genes, either through lower pressure for some genes, or by favoring variability for others.

diff --git a/general/datasets/HRDPPublish/specifics.rtf b/general/datasets/HRDPPublish/specifics.rtf deleted file mode 100644 index 6ea3cd9..0000000 --- a/general/datasets/HRDPPublish/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -HRDP Published Phenotypes \ No newline at end of file diff --git a/general/datasets/HRDPPublish/summary.rtf b/general/datasets/HRDPPublish/summary.rtf deleted file mode 100644 index bce5ebd..0000000 --- a/general/datasets/HRDPPublish/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

HRDP Published Phenotypes

diff --git a/general/datasets/HSNIH_PalmerPublish/specifics.rtf b/general/datasets/HSNIH_PalmerPublish/specifics.rtf deleted file mode 100644 index 6bb3581..0000000 --- a/general/datasets/HSNIH_PalmerPublish/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -HSNIH Published Phenotypes \ No newline at end of file diff --git a/general/datasets/HSNIH_PalmerPublish/summary.rtf b/general/datasets/HSNIH_PalmerPublish/summary.rtf deleted file mode 100644 index 2503d26..0000000 --- a/general/datasets/HSNIH_PalmerPublish/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

HSNIH-Palmer Published Phenotypes

diff --git a/general/datasets/HSNIH_Rat_Acbc_RSeq_0818/specifics.rtf b/general/datasets/HSNIH_Rat_Acbc_RSeq_0818/specifics.rtf deleted file mode 100644 index db20c9a..0000000 --- a/general/datasets/HSNIH_Rat_Acbc_RSeq_0818/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Nucleus Accumbens Core \ No newline at end of file diff --git a/general/datasets/HSNIH_Rat_Acbc_RSeq_0818/summary.rtf b/general/datasets/HSNIH_Rat_Acbc_RSeq_0818/summary.rtf deleted file mode 100644 index 2503d26..0000000 --- a/general/datasets/HSNIH_Rat_Acbc_RSeq_0818/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

HSNIH-Palmer Published Phenotypes

diff --git a/general/datasets/HSNIH_Rat_Acbc_RSeqlog2_0818/specifics.rtf b/general/datasets/HSNIH_Rat_Acbc_RSeqlog2_0818/specifics.rtf deleted file mode 100644 index 843d470..0000000 --- a/general/datasets/HSNIH_Rat_Acbc_RSeqlog2_0818/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Log2 \ No newline at end of file diff --git a/general/datasets/HSNIH_Rat_Acbc_RSeqlog2_0818/summary.rtf b/general/datasets/HSNIH_Rat_Acbc_RSeqlog2_0818/summary.rtf deleted file mode 100644 index 2503d26..0000000 --- a/general/datasets/HSNIH_Rat_Acbc_RSeqlog2_0818/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

HSNIH-Palmer Published Phenotypes

diff --git a/general/datasets/HSNIH_Rat_IL_RSeq_0818/specifics.rtf b/general/datasets/HSNIH_Rat_IL_RSeq_0818/specifics.rtf deleted file mode 100644 index 67ff940..0000000 --- a/general/datasets/HSNIH_Rat_IL_RSeq_0818/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Infralimbic Cortex \ No newline at end of file diff --git a/general/datasets/HSNIH_Rat_IL_RSeq_0818/summary.rtf b/general/datasets/HSNIH_Rat_IL_RSeq_0818/summary.rtf deleted file mode 100644 index 2503d26..0000000 --- a/general/datasets/HSNIH_Rat_IL_RSeq_0818/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

HSNIH-Palmer Published Phenotypes

diff --git a/general/datasets/HSNIH_Rat_IL_RSeqlog2_0818/specifics.rtf b/general/datasets/HSNIH_Rat_IL_RSeqlog2_0818/specifics.rtf deleted file mode 100644 index 843d470..0000000 --- a/general/datasets/HSNIH_Rat_IL_RSeqlog2_0818/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Log2 \ No newline at end of file diff --git a/general/datasets/HSNIH_Rat_IL_RSeqlog2_0818/summary.rtf b/general/datasets/HSNIH_Rat_IL_RSeqlog2_0818/summary.rtf deleted file mode 100644 index 2503d26..0000000 --- a/general/datasets/HSNIH_Rat_IL_RSeqlog2_0818/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

HSNIH-Palmer Published Phenotypes

diff --git a/general/datasets/HSNIH_Rat_LHB_RSeq_0818/specifics.rtf b/general/datasets/HSNIH_Rat_LHB_RSeq_0818/specifics.rtf deleted file mode 100644 index e3b7857..0000000 --- a/general/datasets/HSNIH_Rat_LHB_RSeq_0818/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Lateral Habenula \ No newline at end of file diff --git a/general/datasets/HSNIH_Rat_LHB_RSeq_0818/summary.rtf b/general/datasets/HSNIH_Rat_LHB_RSeq_0818/summary.rtf deleted file mode 100644 index 2503d26..0000000 --- a/general/datasets/HSNIH_Rat_LHB_RSeq_0818/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

HSNIH-Palmer Published Phenotypes

diff --git a/general/datasets/HSNIH_Rat_LHB_RSeqlog2_0818/specifics.rtf b/general/datasets/HSNIH_Rat_LHB_RSeqlog2_0818/specifics.rtf deleted file mode 100644 index 843d470..0000000 --- a/general/datasets/HSNIH_Rat_LHB_RSeqlog2_0818/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Log2 \ No newline at end of file diff --git a/general/datasets/HSNIH_Rat_LHB_RSeqlog2_0818/summary.rtf b/general/datasets/HSNIH_Rat_LHB_RSeqlog2_0818/summary.rtf deleted file mode 100644 index 2503d26..0000000 --- a/general/datasets/HSNIH_Rat_LHB_RSeqlog2_0818/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

HSNIH-Palmer Published Phenotypes

diff --git a/general/datasets/HSNIH_Rat_PL_RSeq_0818/specifics.rtf b/general/datasets/HSNIH_Rat_PL_RSeq_0818/specifics.rtf deleted file mode 100644 index 282c9b5..0000000 --- a/general/datasets/HSNIH_Rat_PL_RSeq_0818/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Prelimbic Cortex \ No newline at end of file diff --git a/general/datasets/HSNIH_Rat_PL_RSeq_0818/summary.rtf b/general/datasets/HSNIH_Rat_PL_RSeq_0818/summary.rtf deleted file mode 100644 index 2503d26..0000000 --- a/general/datasets/HSNIH_Rat_PL_RSeq_0818/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

HSNIH-Palmer Published Phenotypes

diff --git a/general/datasets/HSNIH_Rat_PL_RSeqlog2_0818/specifics.rtf b/general/datasets/HSNIH_Rat_PL_RSeqlog2_0818/specifics.rtf deleted file mode 100644 index 843d470..0000000 --- a/general/datasets/HSNIH_Rat_PL_RSeqlog2_0818/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Log2 \ No newline at end of file diff --git a/general/datasets/HSNIH_Rat_PL_RSeqlog2_0818/summary.rtf b/general/datasets/HSNIH_Rat_PL_RSeqlog2_0818/summary.rtf deleted file mode 100644 index 2503d26..0000000 --- a/general/datasets/HSNIH_Rat_PL_RSeqlog2_0818/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

HSNIH-Palmer Published Phenotypes

diff --git a/general/datasets/HSNIH_Rat_VoLo_RSeq_0818/specifics.rtf b/general/datasets/HSNIH_Rat_VoLo_RSeq_0818/specifics.rtf deleted file mode 100644 index 01b8829..0000000 --- a/general/datasets/HSNIH_Rat_VoLo_RSeq_0818/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Orbitofrontal Cortex \ No newline at end of file diff --git a/general/datasets/HSNIH_Rat_VoLo_RSeq_0818/summary.rtf b/general/datasets/HSNIH_Rat_VoLo_RSeq_0818/summary.rtf deleted file mode 100644 index 2503d26..0000000 --- a/general/datasets/HSNIH_Rat_VoLo_RSeq_0818/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

HSNIH-Palmer Published Phenotypes

diff --git a/general/datasets/HSNIH_Rat_VoLo_RSeqlog2_0818/specifics.rtf b/general/datasets/HSNIH_Rat_VoLo_RSeqlog2_0818/specifics.rtf deleted file mode 100644 index 843d470..0000000 --- a/general/datasets/HSNIH_Rat_VoLo_RSeqlog2_0818/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Log2 \ No newline at end of file diff --git a/general/datasets/HSNIH_Rat_VoLo_RSeqlog2_0818/summary.rtf b/general/datasets/HSNIH_Rat_VoLo_RSeqlog2_0818/summary.rtf deleted file mode 100644 index 2503d26..0000000 --- a/general/datasets/HSNIH_Rat_VoLo_RSeqlog2_0818/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

HSNIH-Palmer Published Phenotypes

diff --git a/general/datasets/HZI_LTCF_0313/acknowledgment.rtf b/general/datasets/HZI_LTCF_0313/acknowledgment.rtf deleted file mode 100644 index 5350054..0000000 --- a/general/datasets/HZI_LTCF_0313/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

Primary human bronchial epithelial cells were provided by Scott H. Randell (Marsico Lung Institute, Tissue Procurement and Cell Culture Core, The University of North Carolina at Chapel Hill, USA). The cells were obtained under protocol 03-1396 approved by the University of North Carolina at Chapel Hill Biomedical Institutional Review Board. The RNA-seq was carried out by the Molecular Resource Center at UTHSC.

diff --git a/general/datasets/HZI_LTCF_0313/cases.rtf b/general/datasets/HZI_LTCF_0313/cases.rtf deleted file mode 100644 index 50868a3..0000000 --- a/general/datasets/HZI_LTCF_0313/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

Mice We used females from 41 BXD RI strains and both parental strains—B6 and D2. Mice were between 8 and 12 weeks of age when infected. They were housed and maintained on a 12:12 light/dark cycle, with ad libitum access to food and water. Virus Original stocks of mouse-adapted A/Puerto Rico/8/34 (H1N1, PR8M) virus were obtained from Stefan Ludwig, University of Münster (28). Virus stocks were propagated in the chorioallantoic cavity of 10-day-old pathogen-free embryonated chicken eggs for 48 h at 37°C as described previously (29). Viral titer was determined using a focus-forming unit (FFU) assay as described previously (29). Infection of Mice Animals were anesthetized by intraperitoneal injection of ketamine/xylazine (10 % (v/v) of 100 mg/ml ketamine and 5 % (v/v) of 20 mg/ml xylazine in 0.9 % (w/v) NaCl with a dose adjusted to body weight (200 μl/20 g body weight). Infection was performed by intranasal application of virus solution in 20 μl sterile phosphate-buffered saline (PBS), with a PR8M dosage of 2×103 FFU. Mice were bred and infected at the animal facilities at UTHSC

diff --git a/general/datasets/HZI_LTCF_0313/notes.rtf b/general/datasets/HZI_LTCF_0313/notes.rtf deleted file mode 100644 index e6040a2..0000000 --- a/general/datasets/HZI_LTCF_0313/notes.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2020.07314/full#supplementary-material

diff --git a/general/datasets/HZI_LTCF_0313/processing.rtf b/general/datasets/HZI_LTCF_0313/processing.rtf deleted file mode 100644 index 5502082..0000000 --- a/general/datasets/HZI_LTCF_0313/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

Read Mapping and Gene Expression Quantification RNA-seq reads were quality-trimmed using Trim Galore (31) and mapped to the mm10 reference genome or to the IAV PR8M genome using STAR (32). Counts were summarized at the gene level using the R-package Rsubread (33), normalized and log transformed using the R-package DESeq2 (34), and batchcorrected using the ComBat function of the R-package sva (35, 36). For annotations of genes, ENTREZID from Rsubread were matched to RefSeq annotations using R-package biomart (37).

diff --git a/general/datasets/HZI_LTCF_0313/summary.rtf b/general/datasets/HZI_LTCF_0313/summary.rtf deleted file mode 100644 index 1ad3d9f..0000000 --- a/general/datasets/HZI_LTCF_0313/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Full article available at https://www.frontiersin.org/articles/10.3389/fimmu.2020.607314/full

- -

Acute lung injury (ALI) is an important cause of morbidity and mortality after viral infections, including influenza A virus H1N1, SARS-CoV,MERS-CoV, and SARS-CoV-2. The angiotensin I converting enzyme 2 (ACE2) is a key host membrane-bound protein that modulates ALI induced by viral infection, pulmonary acid aspiration, and sepsis. However, the contributions of ACE2 sequence variants to individual differences in disease risk and severity after viral infection are not understood. In this study, we quantified H1N1 influenza-infected lung transcriptomes across a family of 41 BXD recombinant inbred strains of mice and both parents—C57BL/6J and DBA/2J. In response to infection Ace2 mRNA levels decreased significantly for both parental strains and the expression levels was associated with disease severity (body weight loss) and viral load (expression levels of viral NA segment) across the BXD family members. Pulmonary RNA-seq for 43 lines was analyzed using weighted gene co-expression network analysis (WGCNA) and Bayesian network approaches. Ace2 not only participated in virusinduced ALI by interacting with TNF, MAPK, and NOTCH signaling pathways, but was also linked with high confidence to gene products that have important functions in the pulmonary epithelium, including Rnf128, Muc5b, and Tmprss2. Comparable sets of transcripts were also highlighted in parallel studies of human SARS-CoV-infected primary human airway epithelial cells. Using conventional mapping methods, we determined that weight loss at two and three days after viral infection maps to chromosome X—the location of Ace2. This finding motivated the hierarchical Bayesian network analysis, which defined molecular endophenotypes of lung infection linked to Ace2 expression and to a key disease outcome. Core members of this Bayesian network include Ace2, Atf4, Csf2, Cxcl2, Lif, Maml3, Muc5b, Reg3g, Ripk3, and Traf3. Collectively, these findings define a causally-rooted Ace2 modulatory network relevant to host response to viral infection and identify potential therapeutic targets for virus-induced respiratory diseases, including those caused by influenza and coronaviruses.

diff --git a/general/datasets/HZI_LTCF_0313/tissue.rtf b/general/datasets/HZI_LTCF_0313/tissue.rtf deleted file mode 100644 index 2258f28..0000000 --- a/general/datasets/HZI_LTCF_0313/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

RNA Isolation and Sequencing Mice were sacrificed 3 days post-infection (dpi) and both lungs were extracted and transferred immediately to RNAlater (Qiagen), stored at 4°C for one day, and then stored at −20°C. RNA was isolated using Qiagen Midi kit (30). RNA quality was evaluated on a 2100 Bioanalyzer (Agilent). Five-hundred nanograms of total RNA was used to prepare libraries for sequencing using the Lexogen SENSE RNA-seq library kit for Ion Torrent. Libraries were amplified for 11 cycles as the final step of library preparation. Before sequencing, 1-μl aliquots were pooled and sequenced on an Ion Torrent PGM 314 chip. Barcoded data from the PGM was used to balance the final pool before sequencing. Library pools were sized to ~260 bp on a Pippin Prep instrument using 2% Pippin agarose gel. The sized libraries were evaluated on an Agilent High Sensitivity chip, quantified using real-time PCR, and used to prepare beads using a One-Touch 2 device. Beads were sequenced on an Ion Torrent Proton P1 chip. On average, 67 million reads were obtained per strain.

diff --git a/general/datasets/HZI_LungBXD_RNA_Seq_1116/acknowledgment.rtf b/general/datasets/HZI_LungBXD_RNA_Seq_1116/acknowledgment.rtf deleted file mode 100644 index 5350054..0000000 --- a/general/datasets/HZI_LungBXD_RNA_Seq_1116/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

Primary human bronchial epithelial cells were provided by Scott H. Randell (Marsico Lung Institute, Tissue Procurement and Cell Culture Core, The University of North Carolina at Chapel Hill, USA). The cells were obtained under protocol 03-1396 approved by the University of North Carolina at Chapel Hill Biomedical Institutional Review Board. The RNA-seq was carried out by the Molecular Resource Center at UTHSC.

diff --git a/general/datasets/HZI_LungBXD_RNA_Seq_1116/cases.rtf b/general/datasets/HZI_LungBXD_RNA_Seq_1116/cases.rtf deleted file mode 100644 index 50868a3..0000000 --- a/general/datasets/HZI_LungBXD_RNA_Seq_1116/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

Mice We used females from 41 BXD RI strains and both parental strains—B6 and D2. Mice were between 8 and 12 weeks of age when infected. They were housed and maintained on a 12:12 light/dark cycle, with ad libitum access to food and water. Virus Original stocks of mouse-adapted A/Puerto Rico/8/34 (H1N1, PR8M) virus were obtained from Stefan Ludwig, University of Münster (28). Virus stocks were propagated in the chorioallantoic cavity of 10-day-old pathogen-free embryonated chicken eggs for 48 h at 37°C as described previously (29). Viral titer was determined using a focus-forming unit (FFU) assay as described previously (29). Infection of Mice Animals were anesthetized by intraperitoneal injection of ketamine/xylazine (10 % (v/v) of 100 mg/ml ketamine and 5 % (v/v) of 20 mg/ml xylazine in 0.9 % (w/v) NaCl with a dose adjusted to body weight (200 μl/20 g body weight). Infection was performed by intranasal application of virus solution in 20 μl sterile phosphate-buffered saline (PBS), with a PR8M dosage of 2×103 FFU. Mice were bred and infected at the animal facilities at UTHSC

diff --git a/general/datasets/HZI_LungBXD_RNA_Seq_1116/notes.rtf b/general/datasets/HZI_LungBXD_RNA_Seq_1116/notes.rtf deleted file mode 100644 index e6040a2..0000000 --- a/general/datasets/HZI_LungBXD_RNA_Seq_1116/notes.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2020.07314/full#supplementary-material

diff --git a/general/datasets/HZI_LungBXD_RNA_Seq_1116/platform.rtf b/general/datasets/HZI_LungBXD_RNA_Seq_1116/platform.rtf deleted file mode 100644 index f9bc2e3..0000000 --- a/general/datasets/HZI_LungBXD_RNA_Seq_1116/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

IonTorrent (see above)

diff --git a/general/datasets/HZI_LungBXD_RNA_Seq_1116/processing.rtf b/general/datasets/HZI_LungBXD_RNA_Seq_1116/processing.rtf deleted file mode 100644 index 5502082..0000000 --- a/general/datasets/HZI_LungBXD_RNA_Seq_1116/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

Read Mapping and Gene Expression Quantification RNA-seq reads were quality-trimmed using Trim Galore (31) and mapped to the mm10 reference genome or to the IAV PR8M genome using STAR (32). Counts were summarized at the gene level using the R-package Rsubread (33), normalized and log transformed using the R-package DESeq2 (34), and batchcorrected using the ComBat function of the R-package sva (35, 36). For annotations of genes, ENTREZID from Rsubread were matched to RefSeq annotations using R-package biomart (37).

diff --git a/general/datasets/HZI_LungBXD_RNA_Seq_1116/specifics.rtf b/general/datasets/HZI_LungBXD_RNA_Seq_1116/specifics.rtf deleted file mode 100644 index d75a4b7..0000000 --- a/general/datasets/HZI_LungBXD_RNA_Seq_1116/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -

HZI Lung Flu Infected BXD (Nov16) RNA-Seq

diff --git a/general/datasets/HZI_LungBXD_RNA_Seq_1116/summary.rtf b/general/datasets/HZI_LungBXD_RNA_Seq_1116/summary.rtf deleted file mode 100644 index 1ad3d9f..0000000 --- a/general/datasets/HZI_LungBXD_RNA_Seq_1116/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Full article available at https://www.frontiersin.org/articles/10.3389/fimmu.2020.607314/full

- -

Acute lung injury (ALI) is an important cause of morbidity and mortality after viral infections, including influenza A virus H1N1, SARS-CoV,MERS-CoV, and SARS-CoV-2. The angiotensin I converting enzyme 2 (ACE2) is a key host membrane-bound protein that modulates ALI induced by viral infection, pulmonary acid aspiration, and sepsis. However, the contributions of ACE2 sequence variants to individual differences in disease risk and severity after viral infection are not understood. In this study, we quantified H1N1 influenza-infected lung transcriptomes across a family of 41 BXD recombinant inbred strains of mice and both parents—C57BL/6J and DBA/2J. In response to infection Ace2 mRNA levels decreased significantly for both parental strains and the expression levels was associated with disease severity (body weight loss) and viral load (expression levels of viral NA segment) across the BXD family members. Pulmonary RNA-seq for 43 lines was analyzed using weighted gene co-expression network analysis (WGCNA) and Bayesian network approaches. Ace2 not only participated in virusinduced ALI by interacting with TNF, MAPK, and NOTCH signaling pathways, but was also linked with high confidence to gene products that have important functions in the pulmonary epithelium, including Rnf128, Muc5b, and Tmprss2. Comparable sets of transcripts were also highlighted in parallel studies of human SARS-CoV-infected primary human airway epithelial cells. Using conventional mapping methods, we determined that weight loss at two and three days after viral infection maps to chromosome X—the location of Ace2. This finding motivated the hierarchical Bayesian network analysis, which defined molecular endophenotypes of lung infection linked to Ace2 expression and to a key disease outcome. Core members of this Bayesian network include Ace2, Atf4, Csf2, Cxcl2, Lif, Maml3, Muc5b, Reg3g, Ripk3, and Traf3. Collectively, these findings define a causally-rooted Ace2 modulatory network relevant to host response to viral infection and identify potential therapeutic targets for virus-induced respiratory diseases, including those caused by influenza and coronaviruses.

diff --git a/general/datasets/HZI_LungBXD_RNA_Seq_1116/tissue.rtf b/general/datasets/HZI_LungBXD_RNA_Seq_1116/tissue.rtf deleted file mode 100644 index 2258f28..0000000 --- a/general/datasets/HZI_LungBXD_RNA_Seq_1116/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

RNA Isolation and Sequencing Mice were sacrificed 3 days post-infection (dpi) and both lungs were extracted and transferred immediately to RNAlater (Qiagen), stored at 4°C for one day, and then stored at −20°C. RNA was isolated using Qiagen Midi kit (30). RNA quality was evaluated on a 2100 Bioanalyzer (Agilent). Five-hundred nanograms of total RNA was used to prepare libraries for sequencing using the Lexogen SENSE RNA-seq library kit for Ion Torrent. Libraries were amplified for 11 cycles as the final step of library preparation. Before sequencing, 1-μl aliquots were pooled and sequenced on an Ion Torrent PGM 314 chip. Barcoded data from the PGM was used to balance the final pool before sequencing. Library pools were sized to ~260 bp on a Pippin Prep instrument using 2% Pippin agarose gel. The sized libraries were evaluated on an Agilent High Sensitivity chip, quantified using real-time PCR, and used to prepare beads using a One-Touch 2 device. Beads were sequenced on an Ion Torrent Proton P1 chip. On average, 67 million reads were obtained per strain.

diff --git a/general/datasets/HZI_PR8M_F_1014/processing.rtf b/general/datasets/HZI_PR8M_F_1014/processing.rtf deleted file mode 100644 index 3aca25d..0000000 --- a/general/datasets/HZI_PR8M_F_1014/processing.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

For dataset HZI PR8M-Infected Lungs Females RNAseq (Oct14) RPKM Log2 we took the RPKM values, added 1 and then log2.

- -

For dataset HZI PR8M-Infected Lungs Females RNAseq (Oct14) RPKM Log2 Treatment we took the RPKM values, added 1 and then log2 and threshold values at average of less than 1 = 0

diff --git a/general/datasets/HZI_PR8M_F_1014/summary.rtf b/general/datasets/HZI_PR8M_F_1014/summary.rtf deleted file mode 100644 index 07a4fb8..0000000 --- a/general/datasets/HZI_PR8M_F_1014/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This group of datasets is currently confidential.

diff --git a/general/datasets/HZI_PR8M_F_1113/processing.rtf b/general/datasets/HZI_PR8M_F_1113/processing.rtf deleted file mode 100644 index 3aca25d..0000000 --- a/general/datasets/HZI_PR8M_F_1113/processing.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

For dataset HZI PR8M-Infected Lungs Females RNAseq (Oct14) RPKM Log2 we took the RPKM values, added 1 and then log2.

- -

For dataset HZI PR8M-Infected Lungs Females RNAseq (Oct14) RPKM Log2 Treatment we took the RPKM values, added 1 and then log2 and threshold values at average of less than 1 = 0

diff --git a/general/datasets/HZI_PR8M_F_1113/summary.rtf b/general/datasets/HZI_PR8M_F_1113/summary.rtf deleted file mode 100644 index 07a4fb8..0000000 --- a/general/datasets/HZI_PR8M_F_1113/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This group of datasets is currently confidential.

diff --git a/general/datasets/HZI_PR8M_F_freq1_1014/processing.rtf b/general/datasets/HZI_PR8M_F_freq1_1014/processing.rtf deleted file mode 100644 index 3aca25d..0000000 --- a/general/datasets/HZI_PR8M_F_freq1_1014/processing.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

For dataset HZI PR8M-Infected Lungs Females RNAseq (Oct14) RPKM Log2 we took the RPKM values, added 1 and then log2.

- -

For dataset HZI PR8M-Infected Lungs Females RNAseq (Oct14) RPKM Log2 Treatment we took the RPKM values, added 1 and then log2 and threshold values at average of less than 1 = 0

diff --git a/general/datasets/HZI_PR8M_F_freq1_1014/summary.rtf b/general/datasets/HZI_PR8M_F_freq1_1014/summary.rtf deleted file mode 100644 index 07a4fb8..0000000 --- a/general/datasets/HZI_PR8M_F_freq1_1014/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

This group of datasets is currently confidential.

diff --git a/general/datasets/HZI_PR8M_Q_0612/acknowledgment.rtf b/general/datasets/HZI_PR8M_Q_0612/acknowledgment.rtf deleted file mode 100644 index 5350054..0000000 --- a/general/datasets/HZI_PR8M_Q_0612/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

Primary human bronchial epithelial cells were provided by Scott H. Randell (Marsico Lung Institute, Tissue Procurement and Cell Culture Core, The University of North Carolina at Chapel Hill, USA). The cells were obtained under protocol 03-1396 approved by the University of North Carolina at Chapel Hill Biomedical Institutional Review Board. The RNA-seq was carried out by the Molecular Resource Center at UTHSC.

diff --git a/general/datasets/HZI_PR8M_Q_0612/cases.rtf b/general/datasets/HZI_PR8M_Q_0612/cases.rtf deleted file mode 100644 index 50868a3..0000000 --- a/general/datasets/HZI_PR8M_Q_0612/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

Mice We used females from 41 BXD RI strains and both parental strains—B6 and D2. Mice were between 8 and 12 weeks of age when infected. They were housed and maintained on a 12:12 light/dark cycle, with ad libitum access to food and water. Virus Original stocks of mouse-adapted A/Puerto Rico/8/34 (H1N1, PR8M) virus were obtained from Stefan Ludwig, University of Münster (28). Virus stocks were propagated in the chorioallantoic cavity of 10-day-old pathogen-free embryonated chicken eggs for 48 h at 37°C as described previously (29). Viral titer was determined using a focus-forming unit (FFU) assay as described previously (29). Infection of Mice Animals were anesthetized by intraperitoneal injection of ketamine/xylazine (10 % (v/v) of 100 mg/ml ketamine and 5 % (v/v) of 20 mg/ml xylazine in 0.9 % (w/v) NaCl with a dose adjusted to body weight (200 μl/20 g body weight). Infection was performed by intranasal application of virus solution in 20 μl sterile phosphate-buffered saline (PBS), with a PR8M dosage of 2×103 FFU. Mice were bred and infected at the animal facilities at UTHSC

diff --git a/general/datasets/HZI_PR8M_Q_0612/notes.rtf b/general/datasets/HZI_PR8M_Q_0612/notes.rtf deleted file mode 100644 index e6040a2..0000000 --- a/general/datasets/HZI_PR8M_Q_0612/notes.rtf +++ /dev/null @@ -1 +0,0 @@ -

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2020.07314/full#supplementary-material

diff --git a/general/datasets/HZI_PR8M_Q_0612/processing.rtf b/general/datasets/HZI_PR8M_Q_0612/processing.rtf deleted file mode 100644 index 5502082..0000000 --- a/general/datasets/HZI_PR8M_Q_0612/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

Read Mapping and Gene Expression Quantification RNA-seq reads were quality-trimmed using Trim Galore (31) and mapped to the mm10 reference genome or to the IAV PR8M genome using STAR (32). Counts were summarized at the gene level using the R-package Rsubread (33), normalized and log transformed using the R-package DESeq2 (34), and batchcorrected using the ComBat function of the R-package sva (35, 36). For annotations of genes, ENTREZID from Rsubread were matched to RefSeq annotations using R-package biomart (37).

diff --git a/general/datasets/HZI_PR8M_Q_0612/summary.rtf b/general/datasets/HZI_PR8M_Q_0612/summary.rtf deleted file mode 100644 index 1ad3d9f..0000000 --- a/general/datasets/HZI_PR8M_Q_0612/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

Full article available at https://www.frontiersin.org/articles/10.3389/fimmu.2020.607314/full

- -

Acute lung injury (ALI) is an important cause of morbidity and mortality after viral infections, including influenza A virus H1N1, SARS-CoV,MERS-CoV, and SARS-CoV-2. The angiotensin I converting enzyme 2 (ACE2) is a key host membrane-bound protein that modulates ALI induced by viral infection, pulmonary acid aspiration, and sepsis. However, the contributions of ACE2 sequence variants to individual differences in disease risk and severity after viral infection are not understood. In this study, we quantified H1N1 influenza-infected lung transcriptomes across a family of 41 BXD recombinant inbred strains of mice and both parents—C57BL/6J and DBA/2J. In response to infection Ace2 mRNA levels decreased significantly for both parental strains and the expression levels was associated with disease severity (body weight loss) and viral load (expression levels of viral NA segment) across the BXD family members. Pulmonary RNA-seq for 43 lines was analyzed using weighted gene co-expression network analysis (WGCNA) and Bayesian network approaches. Ace2 not only participated in virusinduced ALI by interacting with TNF, MAPK, and NOTCH signaling pathways, but was also linked with high confidence to gene products that have important functions in the pulmonary epithelium, including Rnf128, Muc5b, and Tmprss2. Comparable sets of transcripts were also highlighted in parallel studies of human SARS-CoV-infected primary human airway epithelial cells. Using conventional mapping methods, we determined that weight loss at two and three days after viral infection maps to chromosome X—the location of Ace2. This finding motivated the hierarchical Bayesian network analysis, which defined molecular endophenotypes of lung infection linked to Ace2 expression and to a key disease outcome. Core members of this Bayesian network include Ace2, Atf4, Csf2, Cxcl2, Lif, Maml3, Muc5b, Reg3g, Ripk3, and Traf3. Collectively, these findings define a causally-rooted Ace2 modulatory network relevant to host response to viral infection and identify potential therapeutic targets for virus-induced respiratory diseases, including those caused by influenza and coronaviruses.

diff --git a/general/datasets/HZI_PR8M_Q_0612/tissue.rtf b/general/datasets/HZI_PR8M_Q_0612/tissue.rtf deleted file mode 100644 index 2258f28..0000000 --- a/general/datasets/HZI_PR8M_Q_0612/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

RNA Isolation and Sequencing Mice were sacrificed 3 days post-infection (dpi) and both lungs were extracted and transferred immediately to RNAlater (Qiagen), stored at 4°C for one day, and then stored at −20°C. RNA was isolated using Qiagen Midi kit (30). RNA quality was evaluated on a 2100 Bioanalyzer (Agilent). Five-hundred nanograms of total RNA was used to prepare libraries for sequencing using the Lexogen SENSE RNA-seq library kit for Ion Torrent. Libraries were amplified for 11 cycles as the final step of library preparation. Before sequencing, 1-μl aliquots were pooled and sequenced on an Ion Torrent PGM 314 chip. Barcoded data from the PGM was used to balance the final pool before sequencing. Library pools were sized to ~260 bp on a Pippin Prep instrument using 2% Pippin agarose gel. The sized libraries were evaluated on an Agilent High Sensitivity chip, quantified using real-time PCR, and used to prepare beads using a One-Touch 2 device. Beads were sequenced on an Ion Torrent Proton P1 chip. On average, 67 million reads were obtained per strain.

diff --git a/general/datasets/Hbtrc_mlc_0611/acknowledgment.rtf b/general/datasets/Hbtrc_mlc_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/Hbtrc_mlc_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/Hbtrc_mlc_0611/cases.rtf b/general/datasets/Hbtrc_mlc_0611/cases.rtf new file mode 100644 index 0000000..e64114d --- /dev/null +++ b/general/datasets/Hbtrc_mlc_0611/cases.rtf @@ -0,0 +1,4156 @@ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/Hbtrc_mlc_0611/experiment-design.rtf b/general/datasets/Hbtrc_mlc_0611/experiment-design.rtf new file mode 100644 index 0000000..3b0c224 --- /dev/null +++ b/general/datasets/Hbtrc_mlc_0611/experiment-design.rtf @@ -0,0 +1 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

diff --git a/general/datasets/Hbtrc_mlc_0611/notes.rtf b/general/datasets/Hbtrc_mlc_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/Hbtrc_mlc_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/Hbtrc_mlc_0611/summary.rtf b/general/datasets/Hbtrc_mlc_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/Hbtrc_mlc_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/Hbtrc_mlc_ad_0611/acknowledgment.rtf b/general/datasets/Hbtrc_mlc_ad_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/Hbtrc_mlc_ad_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/Hbtrc_mlc_ad_0611/cases.rtf b/general/datasets/Hbtrc_mlc_ad_0611/cases.rtf new file mode 100644 index 0000000..e64114d --- /dev/null +++ b/general/datasets/Hbtrc_mlc_ad_0611/cases.rtf @@ -0,0 +1,4156 @@ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/Hbtrc_mlc_ad_0611/experiment-design.rtf b/general/datasets/Hbtrc_mlc_ad_0611/experiment-design.rtf new file mode 100644 index 0000000..3b0c224 --- /dev/null +++ b/general/datasets/Hbtrc_mlc_ad_0611/experiment-design.rtf @@ -0,0 +1 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

diff --git a/general/datasets/Hbtrc_mlc_ad_0611/notes.rtf b/general/datasets/Hbtrc_mlc_ad_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/Hbtrc_mlc_ad_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/Hbtrc_mlc_ad_0611/summary.rtf b/general/datasets/Hbtrc_mlc_ad_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/Hbtrc_mlc_ad_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/Hbtrc_mlc_hd_0611/acknowledgment.rtf b/general/datasets/Hbtrc_mlc_hd_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/Hbtrc_mlc_hd_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/Hbtrc_mlc_hd_0611/cases.rtf b/general/datasets/Hbtrc_mlc_hd_0611/cases.rtf new file mode 100644 index 0000000..e64114d --- /dev/null +++ b/general/datasets/Hbtrc_mlc_hd_0611/cases.rtf @@ -0,0 +1,4156 @@ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/Hbtrc_mlc_hd_0611/experiment-design.rtf b/general/datasets/Hbtrc_mlc_hd_0611/experiment-design.rtf new file mode 100644 index 0000000..3b0c224 --- /dev/null +++ b/general/datasets/Hbtrc_mlc_hd_0611/experiment-design.rtf @@ -0,0 +1 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

diff --git a/general/datasets/Hbtrc_mlc_hd_0611/notes.rtf b/general/datasets/Hbtrc_mlc_hd_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/Hbtrc_mlc_hd_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/Hbtrc_mlc_hd_0611/summary.rtf b/general/datasets/Hbtrc_mlc_hd_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/Hbtrc_mlc_hd_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/Hbtrc_mlc_n_0611/acknowledgment.rtf b/general/datasets/Hbtrc_mlc_n_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/Hbtrc_mlc_n_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/Hbtrc_mlc_n_0611/cases.rtf b/general/datasets/Hbtrc_mlc_n_0611/cases.rtf new file mode 100644 index 0000000..e64114d --- /dev/null +++ b/general/datasets/Hbtrc_mlc_n_0611/cases.rtf @@ -0,0 +1,4156 @@ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/Hbtrc_mlc_n_0611/experiment-design.rtf b/general/datasets/Hbtrc_mlc_n_0611/experiment-design.rtf new file mode 100644 index 0000000..3b0c224 --- /dev/null +++ b/general/datasets/Hbtrc_mlc_n_0611/experiment-design.rtf @@ -0,0 +1 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

diff --git a/general/datasets/Hbtrc_mlc_n_0611/notes.rtf b/general/datasets/Hbtrc_mlc_n_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/Hbtrc_mlc_n_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/Hbtrc_mlc_n_0611/summary.rtf b/general/datasets/Hbtrc_mlc_n_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/Hbtrc_mlc_n_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/Hbtrc_mlpfc_0611/acknowledgment.rtf b/general/datasets/Hbtrc_mlpfc_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/Hbtrc_mlpfc_0611/cases.rtf b/general/datasets/Hbtrc_mlpfc_0611/cases.rtf new file mode 100644 index 0000000..86ed08e --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_0611/cases.rtf @@ -0,0 +1,4166 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

+ +

 

+ +

 

+ +

 

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/Hbtrc_mlpfc_0611/citation.rtf b/general/datasets/Hbtrc_mlpfc_0611/citation.rtf new file mode 100644 index 0000000..fa9245d --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_0611/citation.rtf @@ -0,0 +1,7 @@ +

Narayanan M, Huynh JL, Wang K, Yang X, Yoo S, McElwee J, Zhang B, Zhang C, Lamb JR, Xie T, Suver C, Molony C, Melquist S, Johnson AD, Fan G, Stone DJ, Schadt EE, Casaccia P, Emilsson V, Zhu J

+ +

Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases.

+ +

Mol Syst Biol. 2014 Jul 30;10:743. doi: 10.15252/msb.20145304.

+ +

PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_0611/contributors.rtf b/general/datasets/Hbtrc_mlpfc_0611/contributors.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_0611/contributors.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_0611/experiment-design.rtf b/general/datasets/Hbtrc_mlpfc_0611/experiment-design.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_0611/experiment-design.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_0611/notes.rtf b/general/datasets/Hbtrc_mlpfc_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/Hbtrc_mlpfc_0611/platform.rtf b/general/datasets/Hbtrc_mlpfc_0611/platform.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_0611/platform.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_0611/processing.rtf b/general/datasets/Hbtrc_mlpfc_0611/processing.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_0611/processing.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_0611/summary.rtf b/general/datasets/Hbtrc_mlpfc_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/Hbtrc_mlpfc_0611/tissue.rtf b/general/datasets/Hbtrc_mlpfc_0611/tissue.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_0611/tissue.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_ad_0611/acknowledgment.rtf b/general/datasets/Hbtrc_mlpfc_ad_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_ad_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/Hbtrc_mlpfc_ad_0611/cases.rtf b/general/datasets/Hbtrc_mlpfc_ad_0611/cases.rtf new file mode 100644 index 0000000..86ed08e --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_ad_0611/cases.rtf @@ -0,0 +1,4166 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

+ +

 

+ +

 

+ +

 

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/Hbtrc_mlpfc_ad_0611/citation.rtf b/general/datasets/Hbtrc_mlpfc_ad_0611/citation.rtf new file mode 100644 index 0000000..fa9245d --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_ad_0611/citation.rtf @@ -0,0 +1,7 @@ +

Narayanan M, Huynh JL, Wang K, Yang X, Yoo S, McElwee J, Zhang B, Zhang C, Lamb JR, Xie T, Suver C, Molony C, Melquist S, Johnson AD, Fan G, Stone DJ, Schadt EE, Casaccia P, Emilsson V, Zhu J

+ +

Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases.

+ +

Mol Syst Biol. 2014 Jul 30;10:743. doi: 10.15252/msb.20145304.

+ +

PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_ad_0611/contributors.rtf b/general/datasets/Hbtrc_mlpfc_ad_0611/contributors.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_ad_0611/contributors.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_ad_0611/experiment-design.rtf b/general/datasets/Hbtrc_mlpfc_ad_0611/experiment-design.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_ad_0611/experiment-design.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_ad_0611/notes.rtf b/general/datasets/Hbtrc_mlpfc_ad_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_ad_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/Hbtrc_mlpfc_ad_0611/platform.rtf b/general/datasets/Hbtrc_mlpfc_ad_0611/platform.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_ad_0611/platform.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_ad_0611/processing.rtf b/general/datasets/Hbtrc_mlpfc_ad_0611/processing.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_ad_0611/processing.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_ad_0611/summary.rtf b/general/datasets/Hbtrc_mlpfc_ad_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_ad_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/Hbtrc_mlpfc_ad_0611/tissue.rtf b/general/datasets/Hbtrc_mlpfc_ad_0611/tissue.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_ad_0611/tissue.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_hd_0611/acknowledgment.rtf b/general/datasets/Hbtrc_mlpfc_hd_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_hd_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/Hbtrc_mlpfc_hd_0611/cases.rtf b/general/datasets/Hbtrc_mlpfc_hd_0611/cases.rtf new file mode 100644 index 0000000..86ed08e --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_hd_0611/cases.rtf @@ -0,0 +1,4166 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

+ +

 

+ +

 

+ +

 

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/Hbtrc_mlpfc_hd_0611/citation.rtf b/general/datasets/Hbtrc_mlpfc_hd_0611/citation.rtf new file mode 100644 index 0000000..fa9245d --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_hd_0611/citation.rtf @@ -0,0 +1,7 @@ +

Narayanan M, Huynh JL, Wang K, Yang X, Yoo S, McElwee J, Zhang B, Zhang C, Lamb JR, Xie T, Suver C, Molony C, Melquist S, Johnson AD, Fan G, Stone DJ, Schadt EE, Casaccia P, Emilsson V, Zhu J

+ +

Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases.

+ +

Mol Syst Biol. 2014 Jul 30;10:743. doi: 10.15252/msb.20145304.

+ +

PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_hd_0611/contributors.rtf b/general/datasets/Hbtrc_mlpfc_hd_0611/contributors.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_hd_0611/contributors.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_hd_0611/experiment-design.rtf b/general/datasets/Hbtrc_mlpfc_hd_0611/experiment-design.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_hd_0611/experiment-design.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_hd_0611/notes.rtf b/general/datasets/Hbtrc_mlpfc_hd_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_hd_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/Hbtrc_mlpfc_hd_0611/platform.rtf b/general/datasets/Hbtrc_mlpfc_hd_0611/platform.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_hd_0611/platform.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_hd_0611/processing.rtf b/general/datasets/Hbtrc_mlpfc_hd_0611/processing.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_hd_0611/processing.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_hd_0611/summary.rtf b/general/datasets/Hbtrc_mlpfc_hd_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_hd_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/Hbtrc_mlpfc_hd_0611/tissue.rtf b/general/datasets/Hbtrc_mlpfc_hd_0611/tissue.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_hd_0611/tissue.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_n_0611/acknowledgment.rtf b/general/datasets/Hbtrc_mlpfc_n_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_n_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/Hbtrc_mlpfc_n_0611/cases.rtf b/general/datasets/Hbtrc_mlpfc_n_0611/cases.rtf new file mode 100644 index 0000000..86ed08e --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_n_0611/cases.rtf @@ -0,0 +1,4166 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

+ +

 

+ +

 

+ +

 

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/Hbtrc_mlpfc_n_0611/citation.rtf b/general/datasets/Hbtrc_mlpfc_n_0611/citation.rtf new file mode 100644 index 0000000..fa9245d --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_n_0611/citation.rtf @@ -0,0 +1,7 @@ +

Narayanan M, Huynh JL, Wang K, Yang X, Yoo S, McElwee J, Zhang B, Zhang C, Lamb JR, Xie T, Suver C, Molony C, Melquist S, Johnson AD, Fan G, Stone DJ, Schadt EE, Casaccia P, Emilsson V, Zhu J

+ +

Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases.

+ +

Mol Syst Biol. 2014 Jul 30;10:743. doi: 10.15252/msb.20145304.

+ +

PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_n_0611/contributors.rtf b/general/datasets/Hbtrc_mlpfc_n_0611/contributors.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_n_0611/contributors.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_n_0611/experiment-design.rtf b/general/datasets/Hbtrc_mlpfc_n_0611/experiment-design.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_n_0611/experiment-design.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_n_0611/notes.rtf b/general/datasets/Hbtrc_mlpfc_n_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_n_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/Hbtrc_mlpfc_n_0611/platform.rtf b/general/datasets/Hbtrc_mlpfc_n_0611/platform.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_n_0611/platform.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_n_0611/processing.rtf b/general/datasets/Hbtrc_mlpfc_n_0611/processing.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_n_0611/processing.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlpfc_n_0611/summary.rtf b/general/datasets/Hbtrc_mlpfc_n_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_n_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/Hbtrc_mlpfc_n_0611/tissue.rtf b/general/datasets/Hbtrc_mlpfc_n_0611/tissue.rtf new file mode 100644 index 0000000..4ee3070 --- /dev/null +++ b/general/datasets/Hbtrc_mlpfc_n_0611/tissue.rtf @@ -0,0 +1 @@ +

See PMID: 25080494

diff --git a/general/datasets/Hbtrc_mlvc_0611/acknowledgment.rtf b/general/datasets/Hbtrc_mlvc_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/Hbtrc_mlvc_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/Hbtrc_mlvc_0611/cases.rtf b/general/datasets/Hbtrc_mlvc_0611/cases.rtf new file mode 100644 index 0000000..86ed08e --- /dev/null +++ b/general/datasets/Hbtrc_mlvc_0611/cases.rtf @@ -0,0 +1,4166 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

+ +

 

+ +

 

+ +

 

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/Hbtrc_mlvc_0611/notes.rtf b/general/datasets/Hbtrc_mlvc_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/Hbtrc_mlvc_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/Hbtrc_mlvc_0611/summary.rtf b/general/datasets/Hbtrc_mlvc_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/Hbtrc_mlvc_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/Hbtrc_mlvc_ad_0611/acknowledgment.rtf b/general/datasets/Hbtrc_mlvc_ad_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/Hbtrc_mlvc_ad_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/Hbtrc_mlvc_ad_0611/cases.rtf b/general/datasets/Hbtrc_mlvc_ad_0611/cases.rtf new file mode 100644 index 0000000..86ed08e --- /dev/null +++ b/general/datasets/Hbtrc_mlvc_ad_0611/cases.rtf @@ -0,0 +1,4166 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

+ +

 

+ +

 

+ +

 

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/Hbtrc_mlvc_ad_0611/notes.rtf b/general/datasets/Hbtrc_mlvc_ad_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/Hbtrc_mlvc_ad_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/Hbtrc_mlvc_ad_0611/summary.rtf b/general/datasets/Hbtrc_mlvc_ad_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/Hbtrc_mlvc_ad_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/Hbtrc_mlvc_hd_0611/acknowledgment.rtf b/general/datasets/Hbtrc_mlvc_hd_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/Hbtrc_mlvc_hd_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/Hbtrc_mlvc_hd_0611/cases.rtf b/general/datasets/Hbtrc_mlvc_hd_0611/cases.rtf new file mode 100644 index 0000000..86ed08e --- /dev/null +++ b/general/datasets/Hbtrc_mlvc_hd_0611/cases.rtf @@ -0,0 +1,4166 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

+ +

 

+ +

 

+ +

 

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/Hbtrc_mlvc_hd_0611/notes.rtf b/general/datasets/Hbtrc_mlvc_hd_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/Hbtrc_mlvc_hd_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/Hbtrc_mlvc_hd_0611/summary.rtf b/general/datasets/Hbtrc_mlvc_hd_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/Hbtrc_mlvc_hd_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/Hbtrc_mlvc_n_0611/acknowledgment.rtf b/general/datasets/Hbtrc_mlvc_n_0611/acknowledgment.rtf new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/general/datasets/Hbtrc_mlvc_n_0611/acknowledgment.rtf @@ -0,0 +1 @@ +

The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/).

diff --git a/general/datasets/Hbtrc_mlvc_n_0611/cases.rtf b/general/datasets/Hbtrc_mlvc_n_0611/cases.rtf new file mode 100644 index 0000000..86ed08e --- /dev/null +++ b/general/datasets/Hbtrc_mlvc_n_0611/cases.rtf @@ -0,0 +1,4166 @@ +

This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines.

+ +

 

+ +

 

+ +

 

+ +

 

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SeriesCerebellum in GNConditionGenderBioSample Name
1HB_029_NNNA3405_VC_N_0859
2HB_058_NNNA4021_VC_N_0854
3HB_064_NNNA4338_VC_N_0861
4HB_086_NNNA4729_PF_N_0756
5HB_091_NNNA4741_VC_N_0864
6HB_092_NNNA4744_VC_N_0865
7HB_102_NNNA4810_VC_N_0869
8HB_119_NNNA4872_VC_N_0878
9HB_147_NNNA5021_VC_N_0852
10HB_161_NNNA5077_VC_N_0851
11HB_162_NNNA5081_VC_N_1021
12HB_166_NNNA5095_VC_N_1024
13HB_183_NNNA5162_VC_N_0850
14HB_206_NNNA5245_VC_N_0849
15HB_215_NNNA5270_VC_N_0848
16HB_218_NNNA5276_CR_N_0912
17HB_223_NNNA5287_VC_N_0916
18HB_226_NNNA5294_VC_N_0919
19HB_241_NNNA5326_CR_N_0652
20HB_243_NNNA5333_VC_N_1262
21HB_247_NNNA5341_VC_N_0923
22HB_257_NNNA5368_PF_N_1032
23HB_264_NNNA5384_VC_N_0924
24HB_295_NNNA5452_VC_N_1268
25HB_300_NNNA5463_VC_N_0845
26HB_311_NNNA5489_CR_N_0942
27HB_324_NNNA5531_VC_N_0844
28HB_332_NNNA5547_VC_N_0843
29HB_340_NNNA5568_VC_N_0842
30HB_360_NNNA5619_CR_N_0645
31HB_365_NNNA5632_VC_N_0838
32HB_367_NNNA5637_VC_N_0837
33HB_382_NNNA5684_PF_N_1270
34HB_396_NNNA5718_VC_N_0956
35HB_398_NNNA5722_VC_N_1044
36HB_400_NNNA5726_VC_N_0834_Bis
37HB_403_NNNA5734_VC_N_0833
38HB_414_NNNA5772_VC_N_0832_Bis
39HB_416_NNNA5778_CR_N_0962
40HB_418_NNNA5789_PF_N_1273
41HB_421_NNNA5799_VC_N_1058
42HB_423_NNNA5803_VC_N_0966
43HB_426_NNNA5806_PF_N_1064
44HB_427_NNNA5810_CR_N_0636
45HB_431_NNNA5823_VC_N_0829
46HB_432_NNNA5826_VC_N_0828
47HB_433_NNNA5827_VC_N_0827
48HB_436_NNNA5832_PF_N_1145
49HB_443_NNNA5852_VC_N_0826
50HB_446_NNNA5859_VC_N_0825
51HB_449_NNNA5866_VC_N_0824
52HB_450_NNNA5867_VC_N_1277
53HB_453_NNNA5876_VC_N_0823
54HB_462_NNNA5903_VC_N_0822
55HB_464_NNNA5905_VC_N_0820
56HB_468_NNNA5912_VC_N_1286
57HB_472_NNNA5925_VC_N_1289
58HB_475_NNNA5936_VC_N_0979
59HB_476_NNNA5938_VC_N_0819
60HB_480_NNNA5946_VC_N_0985
61HB_485_NNNA5959_VC_N_0818
62HB_486_NNNA5963_VC_N_0987
63HB_495_NNNA5980_VC_N_0989
64HB_497_NNNA5985_VC_N_0990
65HB_500_NNNA5990_VC_N_0817
66HB_501_NNNA5991_VC_N_0816
67HB_504_NNNA5996_VC_N_0815
68HB_505_NNNA5998_VC_N_0814
69HB_507_NNNA6006_VC_N_0813
70HB_508_NNNA6007_CR_N_0618
71HB_509_NNNA6008_PF_N_1081
72HB_512_NNNA6023_PF_N_1155
73HB_516_NNNA6030_VC_N_0810
74HB_519_NNNA6034_VC_N_0809
75HB_532_NNNA6060_VC_N_1292
76HB_541_NNNA6092_VC_N_1001
77HB_542_NNNA6096_VC_N_0807
78HB_544_NNNA6101_CR_N_1161
79HB_547_NNNA6110_VC_N_1295
80HB_551_NNNA6124_VC_N_0806
81HB_557_NNNA6134_PF_N_1297
82HB_560_NNNA6142_VC_N_0805
83HB_569_NNNA6166_VC_N_0804
84HB_570_NNNA6170_VC_N_0803
85HB_572_NNNA6172_VC_N_1008
86HB_577_NNNA6182_VC_N_1166
87HB_579_NNNA6187_CR_N_0607
88HB_581_NNNA6191_VC_N_1010
89HB_584_NNNA6196_CR_N_0605
90HB_586_NNNA6200_VC_N_0799
91HB_587_NNNA6206_PF_N_1176
92HB_589_NNNA6213_VC_N_0798
93HB_601_NNNA6241_VC_N_0796
94HB_604_NNNA6260_VC_N_0794
95HB_609_NNNA6270_VC_N_0793
96HB_618_NNNA6289_VC_N_0791
97HB_622_NNNA6310_VC_N_0790
98HB_625_NNNA6314_VC_N_0789
99HB_637_NNNA6340_VC_N_0786
100HB_638_NNNA6341_VC_N_0785
101HB_640_NNNA6347_VC_N_0784
102HB_641_NNNA6356_VC_N_0783
103HB_643_NNNA6363_VC_N_0781
104HB_644_NNNA6366_VC_N_0780
105HB_645_NNNA6374_VC_N_0779
106HB_650_NNNA6384_VC_N_0777
107HB_651_NNNA6386_VC_N_0776
108HB_653_NNNA6388_VC_N_0775
109HB_659_NNNA6406_VC_N_1180
110HB_662_NNNA6411_VC_N_0771
111HB_663_NNNA6415_VC_N_0770
112HB_670_NNNA6436_VC_N_0769
113HB_687_NNNA6484_VC_N_0765
114HB_689_NNNA6486_VC_N_0764
115HB_694_NNNA6500_VC_N_0763
116HB_697_NNNA6512_VC_N_0762
117HB_700_NNNA6520_VC_N_0761
118HB_711_NNNA6543_PF_N_1191
119HB_714_NNNA6549_VC_N_1198
120HB_717_NNNA6553_PF_N_2284
121HB_721_NNNA6560_VC_N_2578
122HB_726_NNNA6573_PF_N_2293
123HB_730_NNNA6580_VC_N_2306
124HB_735_NNNA6588_VC_N_1213
125HB_737_NNNA6593_VC_N_1219
126HB_738_NNNA6594_VC_N_1222
127HB_759_NNNA6645_VC_N_1231
128HB_764_NNNA6655_VC_N_1240
129HB_765_NNNA6656_VC_N_1243
130HB_767_NNNA6661_PF_N_2341
131HB_770_NNNA6669_VC_N_1246
132HB_772_NNNA6676_PF_N_1248
133HB_001_HDHDF2028_CR_H_2282
134HB_003_HDHDF2685_PF_H_2212
135HB_004_HDHDM2706_CR_H_2432
136HB_006_HDHDM2737_VC_H_2194
137HB_007_HDHDNA2769_VC_H_2193
138HB_008_HDHDF2790_CR_H_1890
139HB_009_HDHDNA2879_VC_H_2192
140HB_010_HDHDM2960_VC_H_2002
141HB_011_HDHDF3053_VC_H_2001
142HB_012_HDHDF3128_VC_H_1999
143HB_014_HDHDF3149_PF_H_2110
144HB_015_HDHDF3150_VC_H_1996
145HB_016_HDHDF3177_VC_H_2191
146HB_017_HDHDNA3195_VC_H_2190
147HB_018_HDHDM3200_VC_H_2189
148HB_019_HDHDM3209_VC_H_2188
149HB_020_HDHDM3224_VC_H_1994
150HB_022_HDHDF3242_PF_H_2105
151HB_024_HDHDNA3272_VC_H_2186
152HB_027_HDHDM3356_VC_H_2439
153HB_028_HDHDF3394_PF_H_2104
154HB_031_HDHDM3430_VC_H_1990
155HB_032_HDHDNA3444_PF_H_2208
156HB_034_HDHDF3482_VC_H_1987
157HB_036_HDHDM3576_VC_H_1984
158HB_037_HDHDF3579_VC_H_1983
159HB_038_HDHDF3584_VC_H_2183
160HB_039_HDHDNA3635_VC_H_2182
161HB_041_HDHDF3695_CR_H_2267
162HB_042_HDHDM3697_VC_H_1982
163HB_043_HDHDNA3703_VC_H_2180
164HB_044_HDHDNA3723_VC_H_2179
165HB_046_HDHDF3735_VC_H_1981
166HB_050_HDHDM3820_PF_H_2207
167HB_051_HDHDF3849_CR_H_2262
168HB_054_HDHDM3884_VC_H_2175
169HB_056_HDHDNA4012_VC_H_2174
170HB_057_HDHDNA4013_VC_H_2173
171HB_059_HDHDNA4066_VC_H_2172
172HB_060_HDHDNA4094_VC_H_2171
173HB_061_HDHDF4116_VC_H_2170
174HB_062_HDHDNA4121_VC_H_2169
175HB_063_HDHDNA4215_VC_H_2167
176HB_065_HDHDM4340_PF_H_2091
177HB_066_HDHDF4344_VC_H_1977
178HB_067_HDHDM4346_VC_H_2165
179HB_069_HDHDF4356_VC_H_2164
180HB_070_HDHDNA4386_CR_H_2249
181HB_072_HDHDNA4404_VC_H_2161
182HB_073_HDHDF4411_VC_H_1975
183HB_074_HDHDNA4430_VC_H_2465
184HB_075_HDHDM4470_VC_H_1974
185HB_076_HDHDF4497_CR_H_1860
186HB_077_HDHDM4509_CR_H_2244
187HB_079_HDHDM4631_VC_H_1971
188HB_080_HDHDF4653_PF_H_2083
189HB_081_HDHDNA4678_CR_H_2242
190HB_084_HDHDM4718_VC_H_2125
191HB_090_HDHDNA4740_CR_H_2474
192HB_094_HDHDNA4754_CR_H_2476
193HB_098_HDHDNA4780_VC_H_2151
194HB_101_HDHDF4809_VC_H_2148
195HB_105_HDHDNA4819_CR_H_2238
196HB_106_HDHDF4822_VC_H_1969
197HB_108_HDHDM4826_VC_H_1968
198HB_109_HDHDM4828_VC_H_2124
199HB_115_HDHDNA4855_CR_H_2235
200HB_121_HDHDF4902_VC_H_1967
201HB_129_HDHDNA4938_VC_H_1966
202HB_141_HDHDF4996_PF_H_2076
203HB_152_HDHDNA5034_CR_H_2233
204HB_153_HDHDM5043_VC_H_1960
205HB_159_HDHDM5062_VC_H_1959
206HB_172_HDHDF5114_PF_H_2070
207HB_175_HDHDM5127_PF_H_2068
208HB_180_HDHDM5148_VC_H_1944
209HB_185_HDHDF5167_CR_H_2231
210HB_188_HDHDF5172_VC_H_1951
211HB_191_HDHDM5180_VC_H_1949
212HB_196_HDHDNA5199_PF_H_2202
213HB_203_HDHDF5228_PF_H_2059
214HB_207_HDHDNA5248_PF_H_2201
215HB_228_HDHDF5299_CR_H_2228
216HB_233_HDHDM5312_VC_H_1938
217HB_235_HDHDF5316_VC_H_1937
218HB_242_HDHDF5328_PF_H_2048
219HB_266_HDHDM5387_VC_H_1928
220HB_271_HDHDM5394_PF_H_2039
221HB_272_HDHDF5396_VC_H_1925
222HB_279_HDHDF5409_VC_H_1924
223HB_294_HDHDM5448_VC_H_1921
224HB_301_HDHDNA5464_VC_H_1919
225HB_304_HDHDF5471_VC_H_1918
226HB_321_HDHDNA5522_PF_H_2199
227HB_361_HDHDF5622_VC_H_2121
228HB_370_HDHDM5645_VC_H_1904
229HB_371_HDHDF5648_PF_H_2016
230HB_384_HDHDF5688_PF_H_2012
231HB_390_HDHDM5704_PF_H_2009
232HB_393_HDHDF5709_VC_H_1895
233HB_402_HDHDF5732_PF_H_2007
234HB_405_HDHDNA5742_PF_H_2006
235HB_407_HDHDM5745_PF_H_2005
236HB_408_HDHDM5747_VC_H_1891
237HB_415_HDHDNA5777_PF_H_1551
238HB_417_HDHDM5784_PF_H_1554
239HB_424_HDHDM5804_VC_H_1558
240HB_444_HDHDM5856_VC_H_1567
241HB_457_HDHDM5896_VC_H_1570
242HB_466_HDHDM5910_PF_H_1572
243HB_478_HDHDM5941_CR_H_1583
244HB_487_HDHDF5964_VC_H_1597
245HB_511_HDHDM6019_PF_H_2198
246HB_513_HDHDF6024_VC_H_1612
247HB_515_HDHDF6028_CR_H_1613
248HB_518_HDHDM6033_VC_H_1618
249HB_522_HDHDM6037_PF_H_1626
250HB_527_HDHDF6047_VC_H_1639
251HB_528_HDHDM6051_PF_H_1641
252HB_530_HDHDM6054_VC_H_1648
253HB_537_HDHDF6071_PF_H_1653
254HB_549_HDHDM6119_CR_H_1670
255HB_593_HDHDNA6219_CR_H_2567
256HB_610_HDHDNA6275_PF_H_1692
257HB_616_HDHDF6284_CR_H_1694
258HB_626_HDHDM6315_VC_H_1702
259HB_639_HDHDF6344_CR_H_1703
260HB_649_HDHDF6382_CR_H_1709
261HB_661_HDHDM6408_VC_H_1714
262HB_682_HDHDM6467_PF_H_1725
263HB_683_HDHDM6472_VC_H_1729
264HB_691_HDHDF6493_VC_H_1732
265HB_692_HDHDM6495_CR_H_1733
266HB_707_HDHDM6535_PF_H_1737
267HB_709_HDHDF6539_CR_H_1739
268HB_725_HDHDM6572_PF_H_1746
269HB_732_HDHDF6584_VC_H_1750
270HB_734_HDHDF6587_CR_H_1751
271HB_748_HDHDNA6615_VC_H_2315
272HB_750_HDHDNA6628_PF_H_2326
273HB_758_HDHDNA6643_VC_H_2602
274HB_760_HDHDM6646_PF_H_1761
275HB_762_HDHDM6650_VC_H_1765
276HB_766_HDHDM6658_VC_H_1768
277HB_768_HDHDNA6663_VC_H_1771
278HB_769_HDHDM6666_VC_H_1774
279HB_774_HDHDNA6689_PF_H_2344
280HB_778_HDHDNA6696_PF_H_2356
281HB_780_HDHDNA6704_PF_H_2362
282HB_790_HDHDNA6788_PF_H_2389
283HB_800_HDHDNA6807_PF_H_2419
284HB_802_HDHDNA6811_PF_H_2425
285HB_045_ADADNA3734_CR_A_0122
286HB_048_ADADNA3791_CR_A_0128
287HB_053_ADADNA3877_CR_A_0134
288HB_055_ADADNA3893_VC_A_0142
289HB_068_ADADNA4349_VC_A_0148
290HB_082_ADADNA4712_CR_A_0309
291HB_085_ADADNA4726_VC_A_0311
292HB_087_ADADNA4730_CR_A_0315
293HB_089_ADADNA4733_VC_A_0320
294HB_093_ADADNA4749_VC_A_0323
295HB_095_ADADNA4759_CR_A_0327
296HB_097_ADADNA4773_CR_A_0866
297HB_099_ADADNA4785_VC_A_0332
298HB_100_ADADNA4795_VC_A_0335
299HB_103_ADADNA4811_VC_A_0341
300HB_104_ADADNA4813_CR_A_0345
301HB_112_ADADNA4842_VC_A_0870
302HB_113_ADADNA4850_CR_A_0351
303HB_114_ADADNA4852_CR_A_0354
304HB_117_ADADNA4868_VC_A_0874
305HB_122_ADADNA4904_CR_A_1132
306HB_123_ADADNA4905_VC_A_0884
307HB_124_ADADNA4916_VC_A_0886
308HB_125_ADADNA4917_CR_A_0360
309HB_126_ADADNA4921_VC_A_0362
310HB_128_ADADNA4936_CR_A_0369
311HB_130_ADADNA4939_VC_A_0888
312HB_131_ADADNA4944_CR_A_0889
313HB_132_ADADNA4946_CR_A_0372
314HB_134_ADADNA4951_CR_A_0891
315HB_135_ADADNA4953_VC_A_0893
316HB_136_ADADNA4965_VC_A_0160
317HB_137_ADADNA4966_VC_A_0374
318HB_138_ADADNA4969_VC_A_0895
319HB_140_ADADNA4993_CR_A_0896
320HB_146_ADADNA5018_CR_A_0384
321HB_148_ADADNA5022_VC_A_0386
322HB_150_ADADNA5031_VC_A_0392
323HB_151_ADADNA5033_CR_A_0396
324HB_154_ADADNA5048_VC_A_1321
325HB_155_ADADNA5056_VC_A_0398
326HB_156_ADADNA5057_VC_A_0163
327HB_157_ADADNA5059_VC_A_0401
328HB_158_ADADNA5061_PF_A_2612
329HB_160_ADADNA5064_PF_A_2615
330HB_165_ADADNA5092_CR_A_0899
331HB_168_ADADNA5097_VC_A_0407
332HB_170_ADADNA5101_VC_A_0410
333HB_174_ADADNA5124_PF_A_1343
334HB_179_ADADNA5145_VC_A_1351
335HB_181_ADADNA5152_CR_A_0414
336HB_184_ADADNA5166_VC_A_1354
337HB_194_ADADNA5193_VC_A_1360
338HB_197_ADADNA5202_CR_A_1368
339HB_199_ADADNA5205_VC_A_0166
340HB_200_ADADNA5210_VC_A_0905
341HB_205_ADADNA5235_VC_A_0419
342HB_208_ADADNA5249_VC_A_0422
343HB_209_ADADNA5252_VC_A_0907
344HB_211_ADADNA5257_VC_A_0169
345HB_216_ADADNA5272_VC_A_0425
346HB_219_ADADNA5279_CR_A_0147
347HB_221_ADADNA5283_VC_A_0145
348HB_222_ADADNA5285_VC_A_0141
349HB_224_ADADNA5288_VC_A_0428
350HB_230_ADADNA5301_VC_A_0174
351HB_231_ADADNA5305_VC_A_1384
352HB_232_ADADNA5310_CR_A_0176
353HB_234_ADADNA5313_PF_A_2618
354HB_236_ADADNA5317_PF_A_2624
355HB_238_ADADNA5322_CR_A_2632
356HB_240_ADADNA5325_VC_A_0137
357HB_244_ADADNA5337_VC_A_1387
358HB_245_ADADNA5339_VC_A_0181
359HB_250_ADADNA5346_VC_A_1393
360HB_251_ADADNA5350_VC_A_0184
361HB_252_ADADNA5355_VC_A_0133
362HB_253_ADADNA5359_CR_A_1395
363HB_258_ADADNA5370_PF_A_1400
364HB_259_ADADNA5371_PF_A_2636
365HB_260_ADADNA5375_VC_A_0188
366HB_263_ADADNA5381_VC_A_0022
367HB_265_ADADNA5385_VC_A_1402
368HB_267_ADADNA5389_VC_A_0928
369HB_268_ADADNA5390_CR_A_0151
370HB_273_ADADNA5400_PF_A_2645
371HB_274_ADADNA5401_VC_A_0931
372HB_275_ADADNA5404_PF_A_2648
373HB_276_ADADNA5406_VC_A_0933
374HB_277_ADADNA5407_PF_A_2651
375HB_280_ADADNA5412_VC_A_0935
376HB_281_ADADNA5413_PF_A_2657
377HB_283_ADADNA5419_VC_A_0937
378HB_284_ADADNA5420_VC_A_0939
379HB_285_ADADNA5421_CR_A_0432
380HB_286_ADADNA5423_PF_A_2660
381HB_288_ADADNA5425_PF_A_2666
382HB_289_ADADNA5426_VC_A_1405
383HB_290_ADADNA5433_VC_A_0434
384HB_296_ADADNA5456_PF_A_2675
385HB_299_ADADNA5461_VC_A_0192
386HB_302_ADADNA5465_PF_A_2678
387HB_303_ADADNA5469_VC_A_1417
388HB_305_ADADNA5479_PF_A_1421
389HB_306_ADADNA5480_VC_A_0437
390HB_307_ADADNA5482_VC_A_0028
391HB_308_ADADNA5483_VC_A_0941
392HB_309_ADADNA5487_CR_A_0441
393HB_310_ADADNA5488_CR_A_0194
394HB_312_ADADNA5500_VC_A_0198
395HB_313_ADADNA5502_PF_A_2684
396HB_315_ADADNA5513_PF_A_2687
397HB_316_ADADNA5516_PF_A_2690
398HB_317_ADADNA5517_PF_A_2693
399HB_318_ADADNA5518_CR_A_0030
400HB_319_ADADNA5519_CR_A_2695
401HB_320_ADADNA5520_PF_A_2699
402HB_322_ADADNA5527_VC_A_0945
403HB_325_ADADNA5532_PF_A_2702
404HB_328_ADADNA5541_PF_A_2705
405HB_330_ADADNA5544_VC_A_0201
406HB_334_ADADNA5554_VC_A_0452
407HB_335_ADADNA5557_VC_A_0950
408HB_337_ADADNA5560_VC_A_0204
409HB_342_ADADNA5571_PF_A_1430
410HB_345_ADADNA5583_PF_A_2708
411HB_347_ADADNA5589_PF_A_2714
412HB_349_ADADNA5592_PF_A_2717
413HB_352_ADADNA5604_VC_A_0037
414HB_353_ADADNA5607_PF_A_2723
415HB_356_ADADNA5615_VC_A_0041
416HB_357_ADADNA5616_CR_A_0127
417HB_358_ADADNA5617_CR_A_0456
418HB_359_ADADNA5618_CR_A_0044
419HB_362_ADADNA5625_CR_A_2495
420HB_363_ADADNA5626_CR_A_2498
421HB_364_ADADNA5629_CR_A_0390
422HB_369_ADADNA5643_VC_A_1143
423HB_373_ADADNA5654_VC_A_0047
424HB_375_ADADNA5660_CR_A_0462
425HB_376_ADADNA5661_VC_A_0464
426HB_377_ADADNA5667_VC_A_2509
427HB_378_ADADNA5668_VC_A_1438
428HB_383_ADADNA5686_CR_A_2728
429HB_386_ADADNA5695_VC_A_0953
430HB_389_ADADNA5700_VC_A_2514
431HB_391_ADADNA5705_CR_A_0474
432HB_392_ADADNA5706_VC_A_0476
433HB_394_ADADNA5713_VC_A_0479
434HB_397_ADADNA5721_CR_A_0210
435HB_404_ADADNA5735_CR_A_0489
436HB_406_ADADNA5744_CR_A_0960
437HB_409_ADADNA5749_CR_A_0159
438HB_410_ADADNA5751_CR_A_2518
439HB_411_ADADNA5755_CR_A_2731
440HB_413_ADADNA5766_VC_A_0214
441HB_419_ADADNA5790_VC_A_0217
442HB_420_ADADNA5796_CR_A_0964
443HB_428_ADADNA5811_CR_A_2524
444HB_429_ADADNA5819_CR_A_2527
445HB_430_ADADNA5822_CR_A_2530
446HB_434_ADADNA5828_CR_A_2533
447HB_435_ADADNA5831_CR_A_0222
448HB_437_ADADNA5839_CR_A_2539
449HB_438_ADADNA5843_CR_A_0227
450HB_439_ADADNA5845_CR_A_0230
451HB_441_ADADNA5849_CR_A_0233
452HB_442_ADADNA5850_CR_A_0495
453HB_445_ADADNA5858_CR_A_0969
454HB_448_ADADNA5864_CR_A_0974
455HB_451_ADADNA5871_CR_A_2542
456HB_454_ADADNA5879_CR_A_2545
457HB_455_ADADNA5887_CR_A_0976_Bis
458HB_459_ADADNA5898_CR_A_2548
459HB_460_ADADNA5900_VC_A_0237
460HB_461_ADADNA5901_CR_A_0239
461HB_469_ADADNA5914_CR_A_2554
462HB_471_ADADNA5922_VC_A_0246
463HB_473_ADADNA5927_CR_A_2560
464HB_474_ADADNA5933_VC_A_1071
465HB_477_ADADNA5939_CR_A_1151
466HB_479_ADADNA5945_VC_A_0983
467HB_484_ADADNA5956_CR_A_0123
468HB_489_ADADNA5968_VC_A_1075
469HB_491_ADADNA5971_CR_A_0119
470HB_492_ADADNA5972_VC_A_0251
471HB_494_ADADNA5979_CR_A_0115
472HB_498_ADADNA5988_VC_A_0503
473HB_502_ADADNA5994_PF_A_1605
474HB_503_ADADNA5995_CR_A_2563
475HB_510_ADADNA6017_CR_A_0048
476HB_514_ADADNA6025_VC_A_0506
477HB_517_ADADNA6031_VC_A_0258
478HB_520_ADADNA6035_VC_A_1621
479HB_523_ADADNA6038_VC_A_0261
480HB_524_ADADNA6042_VC_A_1156
481HB_525_ADADNA6044_VC_A_0264
482HB_531_ADADNA6056_CR_A_0999
483HB_533_ADADNA6061_PF_A_1650
484HB_534_ADADNA6066_VC_A_0270
485HB_535_ADADNA6067_PF_A_1452
486HB_536_ADADNA6068_VC_A_0273
487HB_545_ADADNA6102_CR_A_1661
488HB_546_ADADNA6107_CR_A_0055
489HB_550_ADADNA6120_VC_A_0058
490HB_552_ADADNA6126_VC_A_1675
491HB_553_ADADNA6129_PF_A_0274
492HB_554_ADADNA6130_VC_A_1678
493HB_555_ADADNA6131_CR_A_0510
494HB_556_ADADNA6132_CR_A_0513
495HB_558_ADADNA6137_VC_A_1681
496HB_564_ADADNA6153_VC_A_1465
497HB_565_ADADNA6154_VC_A_1468
498HB_566_ADADNA6157_VC_A_0062
499HB_568_ADADNA6164_CR_A_1005
500HB_571_ADADNA6171_CR_A_0065
501HB_573_ADADNA6174_VC_A_0068
502HB_576_ADADNA6180_CR_A_0281
503HB_583_ADADNA6194_VC_A_0071
504HB_585_ADADNA6198_VC_A_0073
505HB_590_ADADNA6215_VC_A_0518
506HB_591_ADADNA6216_VC_A_1476
507HB_592_ADADNA6218_CR_A_0522
508HB_594_ADADNA6223_VC_A_0288
509HB_596_ADADNA6226_CR_A_0076
510HB_597_ADADNA6227_VC_A_0080
511HB_598_ADADNA6231_VC_A_1479
512HB_605_ADADNA6261_VC_A_0084
513HB_608_ADADNA6268_CR_A_0525
514HB_611_ADADNA6279_VC_A_0089
515HB_612_ADADNA6280_VC_A_0091
516HB_613_ADADNA6281_CR_A_0528
517HB_621_ADADNA6308_VC_A_1503
518HB_623_ADADNA6311_CR_A_0531
519HB_624_ADADNA6312_CR_A_0534
520HB_630_ADADNA6324_PF_A_1514
521HB_633_ADADNA6332_VC_A_1518
522HB_634_ADADNA6335_VC_A_0536
523HB_635_ADADNA6336_CR_A_0290
524HB_636_ADADNA6338_VC_A_0539
525HB_642_ADADNA6358_VC_A_0545
526HB_652_ADADNA6387_VC_A_0093
527HB_657_ADADNA6394_VC_A_0551
528HB_664_ADADNA6416_VC_A_1095
529HB_666_ADADNA6422_CR_A_0555
530HB_669_ADADNA6431_VC_A_0294
531HB_674_ADADNA6449_VC_A_1183
532HB_680_ADADNA6458_CR_A_2570
533HB_685_ADADNA6481_VC_A_0560
534HB_690_ADADNA6489_CR_A_0100
535HB_696_ADADNA6511_VC_A_1119
536HB_698_ADADNA6515_CR_A_0564
537HB_699_ADADNA6518_VC_A_0103
538HB_703_ADADNA6523_VC_A_0107
539HB_704_ADADNA6530_VC_A_0112
540HB_706_ADADNA6534_VC_A_0306
541HB_712_ADADNA6546_PF_A_1194
542HB_713_ADADNA6548_PF_A_1541
543HB_715_ADADNA6550_VC_A_1201
544HB_718_ADADNA6554_PF_A_1203
545HB_720_ADADNA6559_PF_A_2287
546HB_722_ADADNA6561_CR_A_2582
547HB_723_ADADNA6562_PF_A_2290
548HB_724_ADADNA6564_CR_A_2585
549HB_727_ADADNA6575_CR_A_2298
550HB_728_ADADNA6577_PF_A_2299
551HB_729_ADADNA6578_PF_A_2302
552HB_731_ADADNA6582_VC_A_1207
553HB_733_ADADNA6585_VC_A_1210
554HB_736_ADADNA6590_PF_A_1215
555HB_743_ADADNA6603_PF_A_1448
556HB_745_ADADNA6610_PF_A_1227
557HB_746_ADADNA6612_PF_A_2308
558HB_749_ADADNA6617_VC_A_2587
559HB_751_ADADNA6629_VC_A_2330
560HB_752_ADADNA6630_VC_A_2590
561HB_753_ADADNA6632_PF_A_2332
562HB_754_ADADNA6637_VC_A_2596
563HB_755_ADADNA6638_VC_A_2599
564HB_756_ADADNA6639_VC_A_2336
565HB_757_ADADNA6641_PF_A_2338
566HB_763_ADADNA6654_VC_A_1237
567HB_773_ADADNA6681_VC_A_1252
568HB_775_ADADNA6693_VC_A_2348
569HB_776_ADADNA6694_VC_A_2351
570HB_777_ADADNA6695_PF_A_2353
571HB_779_ADADNA6699_PF_A_2359
572HB_781_ADADNA6708_VC_A_2366
573HB_782_ADADNA6776_PF_A_2607
574HB_783_ADADNA6778_PF_A_2368
575HB_784_ADADNA6779_PF_A_2371
576HB_785_ADADNA6780_PF_A_2374
577HB_786_ADADNA6782_PF_A_2377
578HB_787_ADADNA6784_PF_A_2380
579HB_788_ADADNA6785_CR_A_2385
580HB_789_ADADNA6787_CR_A_2388
581HB_791_ADADNA6790_PF_A_2392
582HB_792_ADADNA6791_PF_A_2395
583HB_793_ADADNA6793_PF_A_2398
584HB_794_ADADNA6794_PF_A_2401
585HB_795_ADADNA6797_PF_A_2404
586HB_796_ADADNA6798_PF_A_2407
587HB_797_ADADNA6799_VC_A_2411
588HB_798_ADADNA6801_VC_A_2414
589HB_799_ADADNA6803_VC_A_2417
590HB_801_ADADNA6809_PF_A_2422
591HB_803_ADADNA6818_CR_A_2430
+
diff --git a/general/datasets/Hbtrc_mlvc_n_0611/notes.rtf b/general/datasets/Hbtrc_mlvc_n_0611/notes.rtf new file mode 100644 index 0000000..ff90e34 --- /dev/null +++ b/general/datasets/Hbtrc_mlvc_n_0611/notes.rtf @@ -0,0 +1,6 @@ +

Species: Human
+Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
+Disease: Neurological Disease
+Investigator: Francine Benes/ Eric Schadt
+Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
+Approximate Number Subjects: 803

diff --git a/general/datasets/Hbtrc_mlvc_n_0611/summary.rtf b/general/datasets/Hbtrc_mlvc_n_0611/summary.rtf new file mode 100644 index 0000000..5cde3bf --- /dev/null +++ b/general/datasets/Hbtrc_mlvc_n_0611/summary.rtf @@ -0,0 +1 @@ +

This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

diff --git a/general/datasets/Hc_m2_0606_m/acknowledgment.rtf b/general/datasets/Hc_m2_0606_m/acknowledgment.rtf new file mode 100644 index 0000000..1481cd1 --- /dev/null +++ b/general/datasets/Hc_m2_0606_m/acknowledgment.rtf @@ -0,0 +1,50 @@ +

Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort:

+ + + +

 

diff --git a/general/datasets/Hc_m2_0606_m/cases.rtf b/general/datasets/Hc_m2_0606_m/cases.rtf new file mode 100644 index 0000000..15e6cda --- /dev/null +++ b/general/datasets/Hc_m2_0606_m/cases.rtf @@ -0,0 +1,56 @@ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 27 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs.

+ +

Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons:

+ + + +

All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants.

+ +
    +
  1. 129S1/SvImJ
    +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list
  2. +
  3. A/J
    +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel
  4. +
  5. AKR/J
    +     Sequenced by NIEHS; Phenome Project B list
  6. +
  7. BALB/cByJ
    +     Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list
  8. +
  9. BALB/cJ
    +     Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list
  10. +
  11. C3H/HeJ
    +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
  12. +
  13. C57BL/6J
    +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
  14. +
  15. C57BL/6ByJ
    +     Paternal substrain of B6 used to generate the CXB panel
  16. +
  17. CAST/Ei
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
  18. +
  19. DBA/2J
    +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
  20. +
  21. KK/HlJ
    +     Sequenced by Perlegen/NIEHS
  22. +
  23. LG/J
    +     Paternal parent of the LGXSM panel
  24. +
  25. NOD/LtJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
  26. +
  27. NZO/HlLtJ
    +     Collaborative Cross strain
  28. +
  29. PWD/PhJ
    +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
  30. +
  31. PWK/PhJ
    +     Collaborative Cross strain; Phenome Project D list
  32. +
  33. WSB/EiJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
  34. +
  35. B6D2F1 and D2B6F1
    + F1 hybrids generated by crossing C57BL/6J with DBA/2J
  36. +
+ +

We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondrial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels.

+ +

These strains are available from The Jackson Laboratory. BXD43 through BXD100 strains are available from Lu Lu and colleagues at UTHSC.

diff --git a/general/datasets/Hc_m2_0606_m/citation.rtf b/general/datasets/Hc_m2_0606_m/citation.rtf new file mode 100644 index 0000000..61a0788 --- /dev/null +++ b/general/datasets/Hc_m2_0606_m/citation.rtf @@ -0,0 +1 @@ +

Please cite: Overall RW, Kempermann G, Peirce J, Lu L, Goldowitz D, Gage FH, Goodwin S, Smit AB, Airey DC, Rosen GD, Schalkwyk LC, Sutter TR, Nowakowski RS, Whatley S, Williams RW (2009) Genetics of the hippocampal transcriptome in mice: a systematic survey and online neurogenomic resource. Front. Neurogen. 1:3 Full Text HTML doi:10.3389/neuro.15.003.2009

diff --git a/general/datasets/Hc_m2_0606_m/contributors.rtf b/general/datasets/Hc_m2_0606_m/contributors.rtf new file mode 100644 index 0000000..4108279 --- /dev/null +++ b/general/datasets/Hc_m2_0606_m/contributors.rtf @@ -0,0 +1,46 @@ + diff --git a/general/datasets/Hc_m2_0606_m/experiment-design.rtf b/general/datasets/Hc_m2_0606_m/experiment-design.rtf new file mode 100644 index 0000000..356f1d2 --- /dev/null +++ b/general/datasets/Hc_m2_0606_m/experiment-design.rtf @@ -0,0 +1 @@ +

Pooled RNA samples (usually one pool of male hippocampii and one pool of female hippocampii) were prepared using standard protocols. Samples were processed using a total of 206 Affymetrix GeneChip Mouse Expression 430 2.0 short oligomer arrays (MOE430 2.0 or M430v2; see GEO platform ID GPL1261), of which 201 passed quality control and error checking. This particular data set was processed using the PDNN protocol. To simplify comparisons among transforms, PDNN values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.

diff --git a/general/datasets/Hc_m2_0606_m/notes.rtf b/general/datasets/Hc_m2_0606_m/notes.rtf new file mode 100644 index 0000000..9c11719 --- /dev/null +++ b/general/datasets/Hc_m2_0606_m/notes.rtf @@ -0,0 +1,12 @@ +

This study includes the following datasets:

+ + diff --git a/general/datasets/Hc_m2_0606_m/platform.rtf b/general/datasets/Hc_m2_0606_m/platform.rtf new file mode 100644 index 0000000..6c99bee --- /dev/null +++ b/general/datasets/Hc_m2_0606_m/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

diff --git a/general/datasets/Hc_m2_0606_m/processing.rtf b/general/datasets/Hc_m2_0606_m/processing.rtf new file mode 100644 index 0000000..3698a7b --- /dev/null +++ b/general/datasets/Hc_m2_0606_m/processing.rtf @@ -0,0 +1,37 @@ +

Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked.

+ +

First pass data quality control: Affymetrix GCOS provides useful array quality control data including:

+ +
    +
  1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter.
  2. +
  3. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control.
  4. +
  5. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion.
  6. +
  7. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios.
  8. +
+ +

The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very sensitive to the transformation method that is used. Using the PDNN transform, the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For example, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one would include the sample if one can verify that there are no problems in sample and data set identification.

+ +

The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets.

+ +

DataDesk was used to examine the statistical quality of the probe level (CEL) data after step 5 below. DataDesk allows the rapid detection of subsets of probes that are particularly sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below.

+ +

Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.

+ +
    +
  1. We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell.
  2. +
  3. We performed a quantile normalization of the log base 2 values for all arrays using the same initial steps used by the RMA transform.
  4. +
  5. We computed the Z scores for each cell value.
  6. +
  7. We multiplied all Z scores by 2.
  8. +
  9. We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level (probe brightness level) corresponds approximately to a 1 unit difference.
  10. +
  11. Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables.
  12. +
+ +

Probe set data from the CHP file: The expression values were generated using PDNN. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

+ +

Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged.

+ +

Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers.

+ +

Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain.

+ +

Sex of the samples was validated using sex-specific probe sets such as Xist and Dby.

diff --git a/general/datasets/Hc_m2_0606_m/summary.rtf b/general/datasets/Hc_m2_0606_m/summary.rtf new file mode 100644 index 0000000..1e86e54 --- /dev/null +++ b/general/datasets/Hc_m2_0606_m/summary.rtf @@ -0,0 +1,3 @@ +

MOST HIGHLY RECOMMENDED DATA SET (Overall et al., 2009): The Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of 99 genetically diverse strains of mice including 67 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a diverse set of common inbred strains, and two reciprocal F1 hybrids.

+ +

The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section.

diff --git a/general/datasets/Hc_m2_0606_m/tissue.rtf b/general/datasets/Hc_m2_0606_m/tissue.rtf new file mode 100644 index 0000000..bcea7b0 --- /dev/null +++ b/general/datasets/Hc_m2_0606_m/tissue.rtf @@ -0,0 +1,3721 @@ +

BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thank Muriel Davisson for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria.

+ +

A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below). All animals were sacrifice between 9 AM and 5 PM during the light phase.

+ +

A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2).

+ +

RNA Extraction: In brief, we used the RNA STAT-60 protocol (TEL-TEST "B" Bulletin No. 1), steps 5.1A (homogenization of tissue), 5.2 (RNA extraction), 5.3 (RNA precipitation), and 5.4 (RNA wash). In Step 5.4 we stopped after adding 75% ethanol (1 ml per 1 ml RNA STAT-60) and stored the mix at -80°C until further use. Before RNA labeling we thawed samples and proceeded with the remainder of Step 5.4; pelleting, drying, and redissolving the pellet in RNase-free water.

+ +

We finally purify RNA by using Na4OAc before running arrays. Here is the detailed method:

+ +

Final RNA purification protocol

+ +
    +
  1. Add 1/10th volume of 3M Na4OAc , pH 5.2. If the sample was eluted with 100 µl nuclease-free water as suggested, this will be 10 µl of 3M Na4OAc.
  2. +
  3. Add 2.5 volumes of 100% ethanol (250 µl if the RNA was eluted in100 µl). Mix well and incubate at –20°C for 2 hrs.
  4. +
  5. Centrifuge at speed of 13,000 rpm for 20 min at 4°C. Carefully remove and discard the supernatant.
  6. +
  7. Wash the pellet with 800 µl 75% cold ethanol, centrifuge at speed of 8,600 rpm for 5 min, and remove the 75% ethanol. Wash again.
  8. +
  9. To remove the last traces of ethanol, quickly respin the tube, and aspirate any residual fluid.
  10. +
  11. Air dry the pellet.
  12. +
  13. Resuspend pellet in nuclease-free water.
  14. +
+ +

 

+ +

5. PROTOCOL: RNA/mRNA isolation by the RNA STAT-60 method includes the following steps:
+1. Homogenization RNA STAT-60TM (1 ml per 50-100 mg tissue, or 5-10 x 10-6 cells)
+2. RNA Extraction 1 vol. of homogenate +0.2 vol. of chloroform
+3. RNA Precipitation 0.5 vol. of isopropanol
+4. RNA Wash 75% ethanol

+ +

Unless stated otherwise the procedure is carried out at room temperature.

+ +

5.1 HOMOGENIZATION

+ +

A. TISSUES: Homogenize tissues samples in the RNA STAT-60(1 ml/50-100mg tissue) in a glass-Teflon or Polytron homogenizer. Sample volume should not exceed 10% of the volume of the RNA STAT-60 used for homogenization.

+ +

B. CELLS: Cells grown in mono layer are lysed directly in a culture dish by adding the RNA STAT-60TM (1 ml/3.5 cm petri dish) and passing the cell lysate several times through a pipette. Cells grown in suspension are sediment then lysed in the RNA STAT-60TM (1 ml per 5-10 x 106 cells) by repetitive pipetting. Washing calls before addition of the RNA STAT-60TM should be avoided as this increases the possibility of mRNA degradation.

+ +

5.2 RNA EXTRACTION: Following homogenization, store the homogenate for 5 min at room temp to permit the complete dissociation of nucleoprotein complexes. Next, add 0.2 ml of chloroform per 1 ml of the RNA STAT-60, cover the sample tightly, shake vigorously for 15 seconds and let it stay at room temperature for 2-3minutes. Centrifuge the homogenate at 12,000g (max) for 15 minutes at 4°C. Following centrifugation, the homogenate separates into two phases: a lower red phenol chloroform phase and the colorless upper aqueous phase. RNA remains exclusively in the aqueous phase whereas DNA and proteins are in the interferes and organic phase. The volume of the aqueous phase is about 60% of the volume of RNA STAT-60 used for homogenization.

+ +

5.3 RNA PRECIPITATION: Transfer the aqueous phase to a fresh tube and mix with isopropanol. Add 0.5 ml of isopropanol per 1 ml of the RNA STAT-60 used for homogenization. Store samples at room temp for 5-10 minutes and centrifuge at 12,000g (max.) for 10 min at 4°C. RNA precipitate (often visible before centrifugation) forms a white pellet at the bottom of the tube.

+ +

5.4 RNA WASH: Remove supernatant and wash the RNA pellet once with 75% ethanol by vortexing and subsequent centrifugation at 7,500g (max.) for 5 min at 4°C. Add at least 1 ml of 75% ethanol per 1 ml of the RNA STAT-60 used for the initial homogenization.

+ +

At the end of the procedure, dry the RNA pellet briefly by air-drying or in a vacuum (5-10 min.). It is important not to let the RNA pellet dry completely as it will greatly decrease its solubility. Do not use the Speed-Vac for drying. Dissolve the RNA pellet in water or in 1 mm EDTA, pH 7, or 0.5% SDS solution. Vortex or pass the pellet a few times through a pipette tip. An incubation for 10-15 minutes at 55-60oC may be required to dissolve RNA samples. Diethylpyrocarbonate (DEPC) treated RNase-free solutions1 should be used for solubilization of RNA.

+ +

Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80°C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols.

+ +

Replication and Sample Balance: Our goal was to obtain a male sample pool and female sample pool from each isogenic group. While almost all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. All but 5 of 99 strains (BXD55, BXD86, BXD94, BALB/cByJ, and CAST/EiJ) are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquots R1291H3 and R1291H4).

+ +

 

+ +

Sex Balance: Based on the expression of Xist, probe set 1427262_at, DBA/2J and KK/HlJ are represented only by female samples, BXD55, and BALB/cByJ are only represented by a single male sample, BXD74 is represented by two male samples, and BXD86, BXD94, and CAST/EiJ are possibly mixed sex samples. One of the BXD9 samples, array R1523, may be a mixed sex sample pool because the expression of Xist is intermediate.

+ +

Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays. Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin.

+ +

All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4°C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four.

+ +

COMPARISON with December 2005 Data Set: Both BXD14 arrays in the Dec05 data set were found to actually be from BXD23 cases. This error of strain identification has been corrected in the present data set. Four arrays in the Dec05 data set have been deleted because we judged them to be of poor quality (strain_sex_sample_firstreaction_group):

+ +
    +
  1. BXD21_F_1_1_G1
  2. +
  3. BXD23_M_1_1_G7
  4. +
  5. BXD36_M_1_1_G2
  6. +
  7. BXD36_F_1_1_G3
  8. +
+ +

In the Dec05 data set there are a total of 1986 transcripts with QTLs that have LRS scores above 50, whereas in the corrected June06 data sets there are a total of 2074 transcripts with QTLs above 50.

+ +

Data Table 1:

+ +

This table lists all arrays by file order (Index), tube/sample ID, age, sex, batch, and numbers of animals in each sample pool (pool size). The next columns (RMA outlier, scale factor, background average, present, absent, marginal, AFFY-b-ActinMur(3'/5'), AFFY-GapdhMur(3'/5')) are all Affymetrix QC data. Finally, source lists the source colony of the animals. (Final version, fully corrected, by Arthur Centeno, October 2008)

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
indextube IDstrainagesexbatch IDpool sizeRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
1R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
2R1291H3B6D2F166M130.013.52448.540.4870.4940.0191.211.52UTM RW
3R1291H4B6D2F166M technical duplicate of above630.083.89146.690.5120.4690.0191.90.89UTM RW
4R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
5R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
6R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
7R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
8R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
9R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
10R1290H2DBA/2J63F720.042.57659.60.5130.4680.0181.30.78JAX
11R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
12R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
13R1542H1BXD159F730.031.79280.560.4920.4890.0181.570.79Glenn
14R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
15R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
16R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
17R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
18R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
19R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
20R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
21R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
22R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
23R1523H3BXD957MF (mixed)730.143.978.360.4350.5470.0181.360.77UTM RW
24R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
25R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
26R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
27R2674H1BXD1259M730.031.92483.440.5190.4640.0181.210.78Glenn
28R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
29R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
30R1304H2BXD1472F730.033.94661.870.4840.4980.0181.220.77UTM RW
31R1278H2BXD1455M730.064.7567.520.4490.5320.0191.10.73UTM RW
32R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
33R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
34R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
35R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
36R2666H1BXD1960F730.022.49876.20.4950.4860.0191.410.77Glenn
37R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
38R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
39R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
40R2668H1BXD2160M740.072.60544.90.5350.4490.0171.540.76Glenn
41R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
42R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
43R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
44R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
45R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
46R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
47R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
48R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
49R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
50R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
51R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
52R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
53R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
54R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
55R1526H2BXD3157F740.17.26789.540.4350.5470.0171.350.78UTM RW
56R2675H1BXD3257F730.032.26878.010.5020.4780.021.220.78Glenn
57R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
58R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
59R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
60R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
61R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
62R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
63R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
64R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
65R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
66R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
67R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
68R1541H2BXD4258F730.076.78452.120.4830.4990.0171.130.66Glenn
69R1540H1BXD4258M740.032.42375.140.4920.4880.021.480.78Glenn
70R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
71R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
72R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
73R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
74R1403H2BXD4563F720.033.14644.50.5240.4570.0181.410.78Glenn
75R1472H1BXD4565M740.041.65173.310.5430.440.0181.630.74UTM RW
76R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
77R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
78R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
79R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
80R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
81R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
82R2680H1BXD5565M730.071.70779.750.5030.480.0171.911.05UTM RW
83R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
84R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
85R2667H1BXD6170F740.033.3659.040.4950.4880.0181.160.76UTM RW
86R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
87R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
88R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
89R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
90R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
91R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
92R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
93R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
94R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
95R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
96R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
97R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
98R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
99R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
100R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
101R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
102R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
103R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
104R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
105R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
106R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
107R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
108R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
109R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
110R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
111R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
112R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
113R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
114R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
115R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
116R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
117R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
118R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
119R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
120R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
121R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
122R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
123R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
124R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
125R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
126R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
127R2669H2BXD8763F730.072.6157.590.5130.470.0181.60.91UTM RW
128R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
129R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
130R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
131R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
132R1600H2BXD9074M740.033.26151.310.5170.4650.0181.160.75Glenn
133R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
134R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
135R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
136R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
137R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
138R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
139R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
140R2648H1BXD9774F740.021.66482.080.5180.4640.0191.40.78UTM RW
141R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
142R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
143R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
144R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
145R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
146R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
147R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
148R2670H1A/J65F730.043.95146.80.4980.4850.0171.320.75UTM RW
149R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
150R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
151R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
152R1675H1BALB/cByJ83M730.033.40548.130.5090.4740.0181.130.78JAX
153R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
154R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
155R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
156R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
157R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
158R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
159R2673H1C57BL/6ByJ55M730.081.84267.690.5140.4690.0171.750.78JAX
160R2619H1CAST/EiJ64F530.144.07751.870.4550.5280.0182.741.2JAX
161R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
162R1687H3KK/HIJ72F530.043.88840.860.4990.4830.0191.860.88JAX
163R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
164R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
165R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
166R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
167R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
168R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
169R2677H1PWD/PhJ65M720.122.76465.490.4620.520.0181.891.16UTM RW
170R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
171R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
172R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
173R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
174R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
175R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
176R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
177R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
178R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
179R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
180R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
181R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
182R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
183R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
184R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
185R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
186R2676H1CXB647F720.052.14662.510.5070.4750.0181.520.78JAX
187R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
188R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
189R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
190R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
191R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
192R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
193R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
194R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
195R2671H1CXB1053M730.092.34871.450.4880.4940.0182.21.14JAX
196R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
197R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
198R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
199R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
200R2672H1CXB1349F730.031.72279.520.5160.4650.0191.640.75JAX
201R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
+
diff --git a/general/datasets/Hc_m2_0606_mdp/summary.rtf b/general/datasets/Hc_m2_0606_mdp/summary.rtf new file mode 100644 index 0000000..c8593c7 --- /dev/null +++ b/general/datasets/Hc_m2_0606_mdp/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 97, Name: Hippocampus Consortium M430v2 (Jun06) \ No newline at end of file diff --git a/general/datasets/Hc_m2_0606_p/acknowledgment.rtf b/general/datasets/Hc_m2_0606_p/acknowledgment.rtf new file mode 100644 index 0000000..1481cd1 --- /dev/null +++ b/general/datasets/Hc_m2_0606_p/acknowledgment.rtf @@ -0,0 +1,50 @@ +

Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort:

+ + + +

 

diff --git a/general/datasets/Hc_m2_0606_p/cases.rtf b/general/datasets/Hc_m2_0606_p/cases.rtf new file mode 100644 index 0000000..15e6cda --- /dev/null +++ b/general/datasets/Hc_m2_0606_p/cases.rtf @@ -0,0 +1,56 @@ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 27 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs.

+ +

Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons:

+ + + +

All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants.

+ +
    +
  1. 129S1/SvImJ
    +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list
  2. +
  3. A/J
    +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel
  4. +
  5. AKR/J
    +     Sequenced by NIEHS; Phenome Project B list
  6. +
  7. BALB/cByJ
    +     Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list
  8. +
  9. BALB/cJ
    +     Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list
  10. +
  11. C3H/HeJ
    +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
  12. +
  13. C57BL/6J
    +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
  14. +
  15. C57BL/6ByJ
    +     Paternal substrain of B6 used to generate the CXB panel
  16. +
  17. CAST/Ei
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
  18. +
  19. DBA/2J
    +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
  20. +
  21. KK/HlJ
    +     Sequenced by Perlegen/NIEHS
  22. +
  23. LG/J
    +     Paternal parent of the LGXSM panel
  24. +
  25. NOD/LtJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
  26. +
  27. NZO/HlLtJ
    +     Collaborative Cross strain
  28. +
  29. PWD/PhJ
    +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
  30. +
  31. PWK/PhJ
    +     Collaborative Cross strain; Phenome Project D list
  32. +
  33. WSB/EiJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
  34. +
  35. B6D2F1 and D2B6F1
    + F1 hybrids generated by crossing C57BL/6J with DBA/2J
  36. +
+ +

We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondrial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels.

+ +

These strains are available from The Jackson Laboratory. BXD43 through BXD100 strains are available from Lu Lu and colleagues at UTHSC.

diff --git a/general/datasets/Hc_m2_0606_p/citation.rtf b/general/datasets/Hc_m2_0606_p/citation.rtf new file mode 100644 index 0000000..61a0788 --- /dev/null +++ b/general/datasets/Hc_m2_0606_p/citation.rtf @@ -0,0 +1 @@ +

Please cite: Overall RW, Kempermann G, Peirce J, Lu L, Goldowitz D, Gage FH, Goodwin S, Smit AB, Airey DC, Rosen GD, Schalkwyk LC, Sutter TR, Nowakowski RS, Whatley S, Williams RW (2009) Genetics of the hippocampal transcriptome in mice: a systematic survey and online neurogenomic resource. Front. Neurogen. 1:3 Full Text HTML doi:10.3389/neuro.15.003.2009

diff --git a/general/datasets/Hc_m2_0606_p/contributors.rtf b/general/datasets/Hc_m2_0606_p/contributors.rtf new file mode 100644 index 0000000..4108279 --- /dev/null +++ b/general/datasets/Hc_m2_0606_p/contributors.rtf @@ -0,0 +1,46 @@ + diff --git a/general/datasets/Hc_m2_0606_p/experiment-design.rtf b/general/datasets/Hc_m2_0606_p/experiment-design.rtf new file mode 100644 index 0000000..356f1d2 --- /dev/null +++ b/general/datasets/Hc_m2_0606_p/experiment-design.rtf @@ -0,0 +1 @@ +

Pooled RNA samples (usually one pool of male hippocampii and one pool of female hippocampii) were prepared using standard protocols. Samples were processed using a total of 206 Affymetrix GeneChip Mouse Expression 430 2.0 short oligomer arrays (MOE430 2.0 or M430v2; see GEO platform ID GPL1261), of which 201 passed quality control and error checking. This particular data set was processed using the PDNN protocol. To simplify comparisons among transforms, PDNN values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.

diff --git a/general/datasets/Hc_m2_0606_p/experiment-type.rtf b/general/datasets/Hc_m2_0606_p/experiment-type.rtf new file mode 100644 index 0000000..f1b8174 --- /dev/null +++ b/general/datasets/Hc_m2_0606_p/experiment-type.rtf @@ -0,0 +1 @@ +

Pooled RNA samples (usually one pool of male hippocampii and one pool of female hippocampii) were prepared using standard protocols. Samples were processed using a total of 206 Affymetrix GeneChip Mouse Expression 430 2.0 short oligomer arrays (MOE430 2.0 or M430v2; see GEO platform ID GPL1261), of which 201 passed quality control and error checking. This particular data set was processed using the PDNN protocol. To simplify comparisons among transforms, PDNN values of each array were adjusted to an average of 8 units and a standard deviation of 2 units. diff --git a/general/datasets/Hc_m2_0606_p/notes.rtf b/general/datasets/Hc_m2_0606_p/notes.rtf new file mode 100644 index 0000000..9c11719 --- /dev/null +++ b/general/datasets/Hc_m2_0606_p/notes.rtf @@ -0,0 +1,12 @@ +

This study includes the following datasets:

+ + diff --git a/general/datasets/Hc_m2_0606_p/platform.rtf b/general/datasets/Hc_m2_0606_p/platform.rtf new file mode 100644 index 0000000..6c99bee --- /dev/null +++ b/general/datasets/Hc_m2_0606_p/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

diff --git a/general/datasets/Hc_m2_0606_p/processing.rtf b/general/datasets/Hc_m2_0606_p/processing.rtf new file mode 100644 index 0000000..3698a7b --- /dev/null +++ b/general/datasets/Hc_m2_0606_p/processing.rtf @@ -0,0 +1,37 @@ +

Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked.

+ +

First pass data quality control: Affymetrix GCOS provides useful array quality control data including:

+ +
    +
  1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter.
  2. +
  3. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control.
  4. +
  5. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion.
  6. +
  7. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios.
  8. +
+ +

The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very sensitive to the transformation method that is used. Using the PDNN transform, the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For example, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one would include the sample if one can verify that there are no problems in sample and data set identification.

+ +

The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets.

+ +

DataDesk was used to examine the statistical quality of the probe level (CEL) data after step 5 below. DataDesk allows the rapid detection of subsets of probes that are particularly sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below.

+ +

Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.

+ +
    +
  1. We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell.
  2. +
  3. We performed a quantile normalization of the log base 2 values for all arrays using the same initial steps used by the RMA transform.
  4. +
  5. We computed the Z scores for each cell value.
  6. +
  7. We multiplied all Z scores by 2.
  8. +
  9. We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level (probe brightness level) corresponds approximately to a 1 unit difference.
  10. +
  11. Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables.
  12. +
+ +

Probe set data from the CHP file: The expression values were generated using PDNN. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

+ +

Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged.

+ +

Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers.

+ +

Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain.

+ +

Sex of the samples was validated using sex-specific probe sets such as Xist and Dby.

diff --git a/general/datasets/Hc_m2_0606_p/summary.rtf b/general/datasets/Hc_m2_0606_p/summary.rtf new file mode 100644 index 0000000..1e86e54 --- /dev/null +++ b/general/datasets/Hc_m2_0606_p/summary.rtf @@ -0,0 +1,3 @@ +

MOST HIGHLY RECOMMENDED DATA SET (Overall et al., 2009): The Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of 99 genetically diverse strains of mice including 67 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a diverse set of common inbred strains, and two reciprocal F1 hybrids.

+ +

The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section.

diff --git a/general/datasets/Hc_m2_0606_p/tissue.rtf b/general/datasets/Hc_m2_0606_p/tissue.rtf new file mode 100644 index 0000000..bcea7b0 --- /dev/null +++ b/general/datasets/Hc_m2_0606_p/tissue.rtf @@ -0,0 +1,3721 @@ +

BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thank Muriel Davisson for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria.

+ +

A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below). All animals were sacrifice between 9 AM and 5 PM during the light phase.

+ +

A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2).

+ +

RNA Extraction: In brief, we used the RNA STAT-60 protocol (TEL-TEST "B" Bulletin No. 1), steps 5.1A (homogenization of tissue), 5.2 (RNA extraction), 5.3 (RNA precipitation), and 5.4 (RNA wash). In Step 5.4 we stopped after adding 75% ethanol (1 ml per 1 ml RNA STAT-60) and stored the mix at -80°C until further use. Before RNA labeling we thawed samples and proceeded with the remainder of Step 5.4; pelleting, drying, and redissolving the pellet in RNase-free water.

+ +

We finally purify RNA by using Na4OAc before running arrays. Here is the detailed method:

+ +

Final RNA purification protocol

+ +
    +
  1. Add 1/10th volume of 3M Na4OAc , pH 5.2. If the sample was eluted with 100 µl nuclease-free water as suggested, this will be 10 µl of 3M Na4OAc.
  2. +
  3. Add 2.5 volumes of 100% ethanol (250 µl if the RNA was eluted in100 µl). Mix well and incubate at –20°C for 2 hrs.
  4. +
  5. Centrifuge at speed of 13,000 rpm for 20 min at 4°C. Carefully remove and discard the supernatant.
  6. +
  7. Wash the pellet with 800 µl 75% cold ethanol, centrifuge at speed of 8,600 rpm for 5 min, and remove the 75% ethanol. Wash again.
  8. +
  9. To remove the last traces of ethanol, quickly respin the tube, and aspirate any residual fluid.
  10. +
  11. Air dry the pellet.
  12. +
  13. Resuspend pellet in nuclease-free water.
  14. +
+ +

 

+ +

5. PROTOCOL: RNA/mRNA isolation by the RNA STAT-60 method includes the following steps:
+1. Homogenization RNA STAT-60TM (1 ml per 50-100 mg tissue, or 5-10 x 10-6 cells)
+2. RNA Extraction 1 vol. of homogenate +0.2 vol. of chloroform
+3. RNA Precipitation 0.5 vol. of isopropanol
+4. RNA Wash 75% ethanol

+ +

Unless stated otherwise the procedure is carried out at room temperature.

+ +

5.1 HOMOGENIZATION

+ +

A. TISSUES: Homogenize tissues samples in the RNA STAT-60(1 ml/50-100mg tissue) in a glass-Teflon or Polytron homogenizer. Sample volume should not exceed 10% of the volume of the RNA STAT-60 used for homogenization.

+ +

B. CELLS: Cells grown in mono layer are lysed directly in a culture dish by adding the RNA STAT-60TM (1 ml/3.5 cm petri dish) and passing the cell lysate several times through a pipette. Cells grown in suspension are sediment then lysed in the RNA STAT-60TM (1 ml per 5-10 x 106 cells) by repetitive pipetting. Washing calls before addition of the RNA STAT-60TM should be avoided as this increases the possibility of mRNA degradation.

+ +

5.2 RNA EXTRACTION: Following homogenization, store the homogenate for 5 min at room temp to permit the complete dissociation of nucleoprotein complexes. Next, add 0.2 ml of chloroform per 1 ml of the RNA STAT-60, cover the sample tightly, shake vigorously for 15 seconds and let it stay at room temperature for 2-3minutes. Centrifuge the homogenate at 12,000g (max) for 15 minutes at 4°C. Following centrifugation, the homogenate separates into two phases: a lower red phenol chloroform phase and the colorless upper aqueous phase. RNA remains exclusively in the aqueous phase whereas DNA and proteins are in the interferes and organic phase. The volume of the aqueous phase is about 60% of the volume of RNA STAT-60 used for homogenization.

+ +

5.3 RNA PRECIPITATION: Transfer the aqueous phase to a fresh tube and mix with isopropanol. Add 0.5 ml of isopropanol per 1 ml of the RNA STAT-60 used for homogenization. Store samples at room temp for 5-10 minutes and centrifuge at 12,000g (max.) for 10 min at 4°C. RNA precipitate (often visible before centrifugation) forms a white pellet at the bottom of the tube.

+ +

5.4 RNA WASH: Remove supernatant and wash the RNA pellet once with 75% ethanol by vortexing and subsequent centrifugation at 7,500g (max.) for 5 min at 4°C. Add at least 1 ml of 75% ethanol per 1 ml of the RNA STAT-60 used for the initial homogenization.

+ +

At the end of the procedure, dry the RNA pellet briefly by air-drying or in a vacuum (5-10 min.). It is important not to let the RNA pellet dry completely as it will greatly decrease its solubility. Do not use the Speed-Vac for drying. Dissolve the RNA pellet in water or in 1 mm EDTA, pH 7, or 0.5% SDS solution. Vortex or pass the pellet a few times through a pipette tip. An incubation for 10-15 minutes at 55-60oC may be required to dissolve RNA samples. Diethylpyrocarbonate (DEPC) treated RNase-free solutions1 should be used for solubilization of RNA.

+ +

Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80°C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols.

+ +

Replication and Sample Balance: Our goal was to obtain a male sample pool and female sample pool from each isogenic group. While almost all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. All but 5 of 99 strains (BXD55, BXD86, BXD94, BALB/cByJ, and CAST/EiJ) are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquots R1291H3 and R1291H4).

+ +

 

+ +

Sex Balance: Based on the expression of Xist, probe set 1427262_at, DBA/2J and KK/HlJ are represented only by female samples, BXD55, and BALB/cByJ are only represented by a single male sample, BXD74 is represented by two male samples, and BXD86, BXD94, and CAST/EiJ are possibly mixed sex samples. One of the BXD9 samples, array R1523, may be a mixed sex sample pool because the expression of Xist is intermediate.

+ +

Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays. Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin.

+ +

All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4°C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four.

+ +

COMPARISON with December 2005 Data Set: Both BXD14 arrays in the Dec05 data set were found to actually be from BXD23 cases. This error of strain identification has been corrected in the present data set. Four arrays in the Dec05 data set have been deleted because we judged them to be of poor quality (strain_sex_sample_firstreaction_group):

+ +
    +
  1. BXD21_F_1_1_G1
  2. +
  3. BXD23_M_1_1_G7
  4. +
  5. BXD36_M_1_1_G2
  6. +
  7. BXD36_F_1_1_G3
  8. +
+ +

In the Dec05 data set there are a total of 1986 transcripts with QTLs that have LRS scores above 50, whereas in the corrected June06 data sets there are a total of 2074 transcripts with QTLs above 50.

+ +

Data Table 1:

+ +

This table lists all arrays by file order (Index), tube/sample ID, age, sex, batch, and numbers of animals in each sample pool (pool size). The next columns (RMA outlier, scale factor, background average, present, absent, marginal, AFFY-b-ActinMur(3'/5'), AFFY-GapdhMur(3'/5')) are all Affymetrix QC data. Finally, source lists the source colony of the animals. (Final version, fully corrected, by Arthur Centeno, October 2008)

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
indextube IDstrainagesexbatch IDpool sizeRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
1R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
2R1291H3B6D2F166M130.013.52448.540.4870.4940.0191.211.52UTM RW
3R1291H4B6D2F166M technical duplicate of above630.083.89146.690.5120.4690.0191.90.89UTM RW
4R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
5R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
6R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
7R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
8R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
9R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
10R1290H2DBA/2J63F720.042.57659.60.5130.4680.0181.30.78JAX
11R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
12R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
13R1542H1BXD159F730.031.79280.560.4920.4890.0181.570.79Glenn
14R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
15R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
16R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
17R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
18R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
19R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
20R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
21R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
22R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
23R1523H3BXD957MF (mixed)730.143.978.360.4350.5470.0181.360.77UTM RW
24R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
25R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
26R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
27R2674H1BXD1259M730.031.92483.440.5190.4640.0181.210.78Glenn
28R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
29R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
30R1304H2BXD1472F730.033.94661.870.4840.4980.0181.220.77UTM RW
31R1278H2BXD1455M730.064.7567.520.4490.5320.0191.10.73UTM RW
32R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
33R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
34R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
35R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
36R2666H1BXD1960F730.022.49876.20.4950.4860.0191.410.77Glenn
37R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
38R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
39R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
40R2668H1BXD2160M740.072.60544.90.5350.4490.0171.540.76Glenn
41R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
42R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
43R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
44R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
45R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
46R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
47R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
48R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
49R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
50R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
51R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
52R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
53R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
54R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
55R1526H2BXD3157F740.17.26789.540.4350.5470.0171.350.78UTM RW
56R2675H1BXD3257F730.032.26878.010.5020.4780.021.220.78Glenn
57R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
58R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
59R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
60R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
61R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
62R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
63R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
64R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
65R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
66R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
67R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
68R1541H2BXD4258F730.076.78452.120.4830.4990.0171.130.66Glenn
69R1540H1BXD4258M740.032.42375.140.4920.4880.021.480.78Glenn
70R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
71R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
72R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
73R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
74R1403H2BXD4563F720.033.14644.50.5240.4570.0181.410.78Glenn
75R1472H1BXD4565M740.041.65173.310.5430.440.0181.630.74UTM RW
76R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
77R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
78R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
79R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
80R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
81R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
82R2680H1BXD5565M730.071.70779.750.5030.480.0171.911.05UTM RW
83R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
84R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
85R2667H1BXD6170F740.033.3659.040.4950.4880.0181.160.76UTM RW
86R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
87R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
88R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
89R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
90R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
91R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
92R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
93R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
94R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
95R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
96R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
97R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
98R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
99R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
100R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
101R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
102R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
103R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
104R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
105R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
106R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
107R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
108R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
109R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
110R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
111R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
112R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
113R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
114R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
115R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
116R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
117R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
118R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
119R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
120R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
121R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
122R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
123R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
124R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
125R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
126R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
127R2669H2BXD8763F730.072.6157.590.5130.470.0181.60.91UTM RW
128R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
129R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
130R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
131R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
132R1600H2BXD9074M740.033.26151.310.5170.4650.0181.160.75Glenn
133R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
134R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
135R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
136R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
137R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
138R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
139R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
140R2648H1BXD9774F740.021.66482.080.5180.4640.0191.40.78UTM RW
141R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
142R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
143R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
144R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
145R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
146R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
147R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
148R2670H1A/J65F730.043.95146.80.4980.4850.0171.320.75UTM RW
149R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
150R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
151R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
152R1675H1BALB/cByJ83M730.033.40548.130.5090.4740.0181.130.78JAX
153R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
154R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
155R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
156R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
157R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
158R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
159R2673H1C57BL/6ByJ55M730.081.84267.690.5140.4690.0171.750.78JAX
160R2619H1CAST/EiJ64F530.144.07751.870.4550.5280.0182.741.2JAX
161R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
162R1687H3KK/HIJ72F530.043.88840.860.4990.4830.0191.860.88JAX
163R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
164R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
165R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
166R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
167R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
168R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
169R2677H1PWD/PhJ65M720.122.76465.490.4620.520.0181.891.16UTM RW
170R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
171R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
172R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
173R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
174R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
175R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
176R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
177R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
178R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
179R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
180R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
181R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
182R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
183R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
184R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
185R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
186R2676H1CXB647F720.052.14662.510.5070.4750.0181.520.78JAX
187R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
188R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
189R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
190R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
191R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
192R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
193R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
194R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
195R2671H1CXB1053M730.092.34871.450.4880.4940.0182.21.14JAX
196R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
197R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
198R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
199R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
200R2672H1CXB1349F730.031.72279.520.5160.4650.0191.640.75JAX
201R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
+
diff --git a/general/datasets/Hc_m2_0606_r/acknowledgment.rtf b/general/datasets/Hc_m2_0606_r/acknowledgment.rtf new file mode 100644 index 0000000..1481cd1 --- /dev/null +++ b/general/datasets/Hc_m2_0606_r/acknowledgment.rtf @@ -0,0 +1,50 @@ +

Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort:

+ + + +

 

diff --git a/general/datasets/Hc_m2_0606_r/cases.rtf b/general/datasets/Hc_m2_0606_r/cases.rtf new file mode 100644 index 0000000..15e6cda --- /dev/null +++ b/general/datasets/Hc_m2_0606_r/cases.rtf @@ -0,0 +1,56 @@ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 27 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs.

+ +

Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons:

+ + + +

All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants.

+ +
    +
  1. 129S1/SvImJ
    +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list
  2. +
  3. A/J
    +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel
  4. +
  5. AKR/J
    +     Sequenced by NIEHS; Phenome Project B list
  6. +
  7. BALB/cByJ
    +     Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list
  8. +
  9. BALB/cJ
    +     Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list
  10. +
  11. C3H/HeJ
    +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
  12. +
  13. C57BL/6J
    +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
  14. +
  15. C57BL/6ByJ
    +     Paternal substrain of B6 used to generate the CXB panel
  16. +
  17. CAST/Ei
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
  18. +
  19. DBA/2J
    +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
  20. +
  21. KK/HlJ
    +     Sequenced by Perlegen/NIEHS
  22. +
  23. LG/J
    +     Paternal parent of the LGXSM panel
  24. +
  25. NOD/LtJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
  26. +
  27. NZO/HlLtJ
    +     Collaborative Cross strain
  28. +
  29. PWD/PhJ
    +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
  30. +
  31. PWK/PhJ
    +     Collaborative Cross strain; Phenome Project D list
  32. +
  33. WSB/EiJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
  34. +
  35. B6D2F1 and D2B6F1
    + F1 hybrids generated by crossing C57BL/6J with DBA/2J
  36. +
+ +

We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondrial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels.

+ +

These strains are available from The Jackson Laboratory. BXD43 through BXD100 strains are available from Lu Lu and colleagues at UTHSC.

diff --git a/general/datasets/Hc_m2_0606_r/citation.rtf b/general/datasets/Hc_m2_0606_r/citation.rtf new file mode 100644 index 0000000..61a0788 --- /dev/null +++ b/general/datasets/Hc_m2_0606_r/citation.rtf @@ -0,0 +1 @@ +

Please cite: Overall RW, Kempermann G, Peirce J, Lu L, Goldowitz D, Gage FH, Goodwin S, Smit AB, Airey DC, Rosen GD, Schalkwyk LC, Sutter TR, Nowakowski RS, Whatley S, Williams RW (2009) Genetics of the hippocampal transcriptome in mice: a systematic survey and online neurogenomic resource. Front. Neurogen. 1:3 Full Text HTML doi:10.3389/neuro.15.003.2009

diff --git a/general/datasets/Hc_m2_0606_r/contributors.rtf b/general/datasets/Hc_m2_0606_r/contributors.rtf new file mode 100644 index 0000000..4108279 --- /dev/null +++ b/general/datasets/Hc_m2_0606_r/contributors.rtf @@ -0,0 +1,46 @@ + diff --git a/general/datasets/Hc_m2_0606_r/experiment-design.rtf b/general/datasets/Hc_m2_0606_r/experiment-design.rtf new file mode 100644 index 0000000..356f1d2 --- /dev/null +++ b/general/datasets/Hc_m2_0606_r/experiment-design.rtf @@ -0,0 +1 @@ +

Pooled RNA samples (usually one pool of male hippocampii and one pool of female hippocampii) were prepared using standard protocols. Samples were processed using a total of 206 Affymetrix GeneChip Mouse Expression 430 2.0 short oligomer arrays (MOE430 2.0 or M430v2; see GEO platform ID GPL1261), of which 201 passed quality control and error checking. This particular data set was processed using the PDNN protocol. To simplify comparisons among transforms, PDNN values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.

diff --git a/general/datasets/Hc_m2_0606_r/notes.rtf b/general/datasets/Hc_m2_0606_r/notes.rtf new file mode 100644 index 0000000..9c11719 --- /dev/null +++ b/general/datasets/Hc_m2_0606_r/notes.rtf @@ -0,0 +1,12 @@ +

This study includes the following datasets:

+ + diff --git a/general/datasets/Hc_m2_0606_r/platform.rtf b/general/datasets/Hc_m2_0606_r/platform.rtf new file mode 100644 index 0000000..6c99bee --- /dev/null +++ b/general/datasets/Hc_m2_0606_r/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

diff --git a/general/datasets/Hc_m2_0606_r/processing.rtf b/general/datasets/Hc_m2_0606_r/processing.rtf new file mode 100644 index 0000000..3698a7b --- /dev/null +++ b/general/datasets/Hc_m2_0606_r/processing.rtf @@ -0,0 +1,37 @@ +

Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked.

+ +

First pass data quality control: Affymetrix GCOS provides useful array quality control data including:

+ +
    +
  1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter.
  2. +
  3. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control.
  4. +
  5. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion.
  6. +
  7. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios.
  8. +
+ +

The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very sensitive to the transformation method that is used. Using the PDNN transform, the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For example, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one would include the sample if one can verify that there are no problems in sample and data set identification.

+ +

The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets.

+ +

DataDesk was used to examine the statistical quality of the probe level (CEL) data after step 5 below. DataDesk allows the rapid detection of subsets of probes that are particularly sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below.

+ +

Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.

+ +
    +
  1. We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell.
  2. +
  3. We performed a quantile normalization of the log base 2 values for all arrays using the same initial steps used by the RMA transform.
  4. +
  5. We computed the Z scores for each cell value.
  6. +
  7. We multiplied all Z scores by 2.
  8. +
  9. We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level (probe brightness level) corresponds approximately to a 1 unit difference.
  10. +
  11. Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables.
  12. +
+ +

Probe set data from the CHP file: The expression values were generated using PDNN. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

+ +

Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged.

+ +

Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers.

+ +

Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain.

+ +

Sex of the samples was validated using sex-specific probe sets such as Xist and Dby.

diff --git a/general/datasets/Hc_m2_0606_r/summary.rtf b/general/datasets/Hc_m2_0606_r/summary.rtf new file mode 100644 index 0000000..1e86e54 --- /dev/null +++ b/general/datasets/Hc_m2_0606_r/summary.rtf @@ -0,0 +1,3 @@ +

MOST HIGHLY RECOMMENDED DATA SET (Overall et al., 2009): The Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of 99 genetically diverse strains of mice including 67 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a diverse set of common inbred strains, and two reciprocal F1 hybrids.

+ +

The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section.

diff --git a/general/datasets/Hc_m2_0606_r/tissue.rtf b/general/datasets/Hc_m2_0606_r/tissue.rtf new file mode 100644 index 0000000..bcea7b0 --- /dev/null +++ b/general/datasets/Hc_m2_0606_r/tissue.rtf @@ -0,0 +1,3721 @@ +

BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thank Muriel Davisson for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria.

+ +

A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below). All animals were sacrifice between 9 AM and 5 PM during the light phase.

+ +

A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2).

+ +

RNA Extraction: In brief, we used the RNA STAT-60 protocol (TEL-TEST "B" Bulletin No. 1), steps 5.1A (homogenization of tissue), 5.2 (RNA extraction), 5.3 (RNA precipitation), and 5.4 (RNA wash). In Step 5.4 we stopped after adding 75% ethanol (1 ml per 1 ml RNA STAT-60) and stored the mix at -80°C until further use. Before RNA labeling we thawed samples and proceeded with the remainder of Step 5.4; pelleting, drying, and redissolving the pellet in RNase-free water.

+ +

We finally purify RNA by using Na4OAc before running arrays. Here is the detailed method:

+ +

Final RNA purification protocol

+ +
    +
  1. Add 1/10th volume of 3M Na4OAc , pH 5.2. If the sample was eluted with 100 µl nuclease-free water as suggested, this will be 10 µl of 3M Na4OAc.
  2. +
  3. Add 2.5 volumes of 100% ethanol (250 µl if the RNA was eluted in100 µl). Mix well and incubate at –20°C for 2 hrs.
  4. +
  5. Centrifuge at speed of 13,000 rpm for 20 min at 4°C. Carefully remove and discard the supernatant.
  6. +
  7. Wash the pellet with 800 µl 75% cold ethanol, centrifuge at speed of 8,600 rpm for 5 min, and remove the 75% ethanol. Wash again.
  8. +
  9. To remove the last traces of ethanol, quickly respin the tube, and aspirate any residual fluid.
  10. +
  11. Air dry the pellet.
  12. +
  13. Resuspend pellet in nuclease-free water.
  14. +
+ +

 

+ +

5. PROTOCOL: RNA/mRNA isolation by the RNA STAT-60 method includes the following steps:
+1. Homogenization RNA STAT-60TM (1 ml per 50-100 mg tissue, or 5-10 x 10-6 cells)
+2. RNA Extraction 1 vol. of homogenate +0.2 vol. of chloroform
+3. RNA Precipitation 0.5 vol. of isopropanol
+4. RNA Wash 75% ethanol

+ +

Unless stated otherwise the procedure is carried out at room temperature.

+ +

5.1 HOMOGENIZATION

+ +

A. TISSUES: Homogenize tissues samples in the RNA STAT-60(1 ml/50-100mg tissue) in a glass-Teflon or Polytron homogenizer. Sample volume should not exceed 10% of the volume of the RNA STAT-60 used for homogenization.

+ +

B. CELLS: Cells grown in mono layer are lysed directly in a culture dish by adding the RNA STAT-60TM (1 ml/3.5 cm petri dish) and passing the cell lysate several times through a pipette. Cells grown in suspension are sediment then lysed in the RNA STAT-60TM (1 ml per 5-10 x 106 cells) by repetitive pipetting. Washing calls before addition of the RNA STAT-60TM should be avoided as this increases the possibility of mRNA degradation.

+ +

5.2 RNA EXTRACTION: Following homogenization, store the homogenate for 5 min at room temp to permit the complete dissociation of nucleoprotein complexes. Next, add 0.2 ml of chloroform per 1 ml of the RNA STAT-60, cover the sample tightly, shake vigorously for 15 seconds and let it stay at room temperature for 2-3minutes. Centrifuge the homogenate at 12,000g (max) for 15 minutes at 4°C. Following centrifugation, the homogenate separates into two phases: a lower red phenol chloroform phase and the colorless upper aqueous phase. RNA remains exclusively in the aqueous phase whereas DNA and proteins are in the interferes and organic phase. The volume of the aqueous phase is about 60% of the volume of RNA STAT-60 used for homogenization.

+ +

5.3 RNA PRECIPITATION: Transfer the aqueous phase to a fresh tube and mix with isopropanol. Add 0.5 ml of isopropanol per 1 ml of the RNA STAT-60 used for homogenization. Store samples at room temp for 5-10 minutes and centrifuge at 12,000g (max.) for 10 min at 4°C. RNA precipitate (often visible before centrifugation) forms a white pellet at the bottom of the tube.

+ +

5.4 RNA WASH: Remove supernatant and wash the RNA pellet once with 75% ethanol by vortexing and subsequent centrifugation at 7,500g (max.) for 5 min at 4°C. Add at least 1 ml of 75% ethanol per 1 ml of the RNA STAT-60 used for the initial homogenization.

+ +

At the end of the procedure, dry the RNA pellet briefly by air-drying or in a vacuum (5-10 min.). It is important not to let the RNA pellet dry completely as it will greatly decrease its solubility. Do not use the Speed-Vac for drying. Dissolve the RNA pellet in water or in 1 mm EDTA, pH 7, or 0.5% SDS solution. Vortex or pass the pellet a few times through a pipette tip. An incubation for 10-15 minutes at 55-60oC may be required to dissolve RNA samples. Diethylpyrocarbonate (DEPC) treated RNase-free solutions1 should be used for solubilization of RNA.

+ +

Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80°C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols.

+ +

Replication and Sample Balance: Our goal was to obtain a male sample pool and female sample pool from each isogenic group. While almost all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. All but 5 of 99 strains (BXD55, BXD86, BXD94, BALB/cByJ, and CAST/EiJ) are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquots R1291H3 and R1291H4).

+ +

 

+ +

Sex Balance: Based on the expression of Xist, probe set 1427262_at, DBA/2J and KK/HlJ are represented only by female samples, BXD55, and BALB/cByJ are only represented by a single male sample, BXD74 is represented by two male samples, and BXD86, BXD94, and CAST/EiJ are possibly mixed sex samples. One of the BXD9 samples, array R1523, may be a mixed sex sample pool because the expression of Xist is intermediate.

+ +

Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays. Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin.

+ +

All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4°C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four.

+ +

COMPARISON with December 2005 Data Set: Both BXD14 arrays in the Dec05 data set were found to actually be from BXD23 cases. This error of strain identification has been corrected in the present data set. Four arrays in the Dec05 data set have been deleted because we judged them to be of poor quality (strain_sex_sample_firstreaction_group):

+ +
    +
  1. BXD21_F_1_1_G1
  2. +
  3. BXD23_M_1_1_G7
  4. +
  5. BXD36_M_1_1_G2
  6. +
  7. BXD36_F_1_1_G3
  8. +
+ +

In the Dec05 data set there are a total of 1986 transcripts with QTLs that have LRS scores above 50, whereas in the corrected June06 data sets there are a total of 2074 transcripts with QTLs above 50.

+ +

Data Table 1:

+ +

This table lists all arrays by file order (Index), tube/sample ID, age, sex, batch, and numbers of animals in each sample pool (pool size). The next columns (RMA outlier, scale factor, background average, present, absent, marginal, AFFY-b-ActinMur(3'/5'), AFFY-GapdhMur(3'/5')) are all Affymetrix QC data. Finally, source lists the source colony of the animals. (Final version, fully corrected, by Arthur Centeno, October 2008)

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
indextube IDstrainagesexbatch IDpool sizeRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
1R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
2R1291H3B6D2F166M130.013.52448.540.4870.4940.0191.211.52UTM RW
3R1291H4B6D2F166M technical duplicate of above630.083.89146.690.5120.4690.0191.90.89UTM RW
4R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
5R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
6R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
7R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
8R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
9R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
10R1290H2DBA/2J63F720.042.57659.60.5130.4680.0181.30.78JAX
11R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
12R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
13R1542H1BXD159F730.031.79280.560.4920.4890.0181.570.79Glenn
14R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
15R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
16R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
17R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
18R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
19R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
20R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
21R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
22R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
23R1523H3BXD957MF (mixed)730.143.978.360.4350.5470.0181.360.77UTM RW
24R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
25R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
26R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
27R2674H1BXD1259M730.031.92483.440.5190.4640.0181.210.78Glenn
28R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
29R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
30R1304H2BXD1472F730.033.94661.870.4840.4980.0181.220.77UTM RW
31R1278H2BXD1455M730.064.7567.520.4490.5320.0191.10.73UTM RW
32R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
33R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
34R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
35R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
36R2666H1BXD1960F730.022.49876.20.4950.4860.0191.410.77Glenn
37R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
38R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
39R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
40R2668H1BXD2160M740.072.60544.90.5350.4490.0171.540.76Glenn
41R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
42R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
43R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
44R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
45R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
46R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
47R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
48R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
49R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
50R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
51R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
52R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
53R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
54R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
55R1526H2BXD3157F740.17.26789.540.4350.5470.0171.350.78UTM RW
56R2675H1BXD3257F730.032.26878.010.5020.4780.021.220.78Glenn
57R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
58R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
59R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
60R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
61R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
62R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
63R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
64R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
65R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
66R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
67R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
68R1541H2BXD4258F730.076.78452.120.4830.4990.0171.130.66Glenn
69R1540H1BXD4258M740.032.42375.140.4920.4880.021.480.78Glenn
70R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
71R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
72R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
73R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
74R1403H2BXD4563F720.033.14644.50.5240.4570.0181.410.78Glenn
75R1472H1BXD4565M740.041.65173.310.5430.440.0181.630.74UTM RW
76R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
77R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
78R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
79R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
80R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
81R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
82R2680H1BXD5565M730.071.70779.750.5030.480.0171.911.05UTM RW
83R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
84R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
85R2667H1BXD6170F740.033.3659.040.4950.4880.0181.160.76UTM RW
86R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
87R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
88R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
89R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
90R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
91R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
92R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
93R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
94R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
95R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
96R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
97R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
98R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
99R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
100R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
101R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
102R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
103R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
104R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
105R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
106R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
107R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
108R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
109R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
110R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
111R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
112R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
113R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
114R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
115R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
116R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
117R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
118R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
119R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
120R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
121R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
122R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
123R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
124R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
125R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
126R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
127R2669H2BXD8763F730.072.6157.590.5130.470.0181.60.91UTM RW
128R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
129R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
130R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
131R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
132R1600H2BXD9074M740.033.26151.310.5170.4650.0181.160.75Glenn
133R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
134R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
135R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
136R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
137R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
138R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
139R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
140R2648H1BXD9774F740.021.66482.080.5180.4640.0191.40.78UTM RW
141R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
142R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
143R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
144R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
145R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
146R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
147R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
148R2670H1A/J65F730.043.95146.80.4980.4850.0171.320.75UTM RW
149R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
150R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
151R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
152R1675H1BALB/cByJ83M730.033.40548.130.5090.4740.0181.130.78JAX
153R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
154R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
155R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
156R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
157R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
158R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
159R2673H1C57BL/6ByJ55M730.081.84267.690.5140.4690.0171.750.78JAX
160R2619H1CAST/EiJ64F530.144.07751.870.4550.5280.0182.741.2JAX
161R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
162R1687H3KK/HIJ72F530.043.88840.860.4990.4830.0191.860.88JAX
163R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
164R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
165R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
166R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
167R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
168R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
169R2677H1PWD/PhJ65M720.122.76465.490.4620.520.0181.891.16UTM RW
170R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
171R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
172R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
173R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
174R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
175R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
176R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
177R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
178R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
179R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
180R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
181R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
182R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
183R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
184R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
185R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
186R2676H1CXB647F720.052.14662.510.5070.4750.0181.520.78JAX
187R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
188R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
189R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
190R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
191R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
192R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
193R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
194R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
195R2671H1CXB1053M730.092.34871.450.4880.4940.0182.21.14JAX
196R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
197R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
198R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
199R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
200R2672H1CXB1349F730.031.72279.520.5160.4650.0191.640.75JAX
201R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
+
diff --git a/general/datasets/Hc_m2_1005_m/acknowledgment.rtf b/general/datasets/Hc_m2_1005_m/acknowledgment.rtf new file mode 100644 index 0000000..08c9160 --- /dev/null +++ b/general/datasets/Hc_m2_1005_m/acknowledgment.rtf @@ -0,0 +1,54 @@ +
+

Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort:

+ + + +

 

+
diff --git a/general/datasets/Hc_m2_1005_m/cases.rtf b/general/datasets/Hc_m2_1005_m/cases.rtf new file mode 100644 index 0000000..3e78bb4 --- /dev/null +++ b/general/datasets/Hc_m2_1005_m/cases.rtf @@ -0,0 +1,60 @@ +

This analysis has used 68 of BXD strains, the complete set of 13 CXB recombinant inbred strain sets, and a mouse diversity panel consisting of 16 inbred strains and a pair of reciprocal F1 hybrids (B6D2F1 and D2B6F1).

+ +

The BXD genetic reference population of recombinant inbred strains consists of approximately 80 strains. Approximately 800 classical phenotypes from sets of 10 to 70 of these strains been integrated in the GeneNetwork. The BXD strains in this data set include 29 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD40). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs.

+ +

The CXB is the first and oldest set of recombinant inbred strains. Over 500 classical phenotypes from these strains been integrated in the GeneNetwork. It is noteworthy that the CXB strains segregate for the hippocampal lamination defect (Hld),characterized by Nowakowski and colleagues (1984). All of the CXBs have been recently genotyped at 13,377 SNPs.

+ +

Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons:

+ + + +

All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants.

+ +
    +
  1. 129S1/SvImJ
    +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list
  2. +
  3. A/J
    +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel
  4. +
  5. AKR/J
    +     Sequenced by NIEHS; Phenome Project B list
  6. +
  7. BALB/cByJ
    +     STILL IN PROGRESS (samples did not pass quality control); Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list
  8. +
  9. BALB/cJ
    +     Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list
  10. +
  11. C3H/HeJ
    +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
  12. +
  13. C57BL/6J
    +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
  14. +
  15. C57BL/6ByJ
    +     Paternal substrain of B6 used to generate the CXB panel
  16. +
  17. CAST/Ei
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
  18. +
  19. DBA/2J
    +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
  20. +
  21. KK/HIJ
    +     Sequenced by Perlegen/NIEHS
  22. +
  23. LG/J
    +     Paternal parent of the LGXSM panel
  24. +
  25. NOD/LtJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
  26. +
  27. NZO/HILtJ
    +     Collaborative Cross strain
  28. +
  29. PWD/PhJ
    +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
  30. +
  31. PWK/PhJ
    +     Collaborative Cross strain; Phenome Project D list
  32. +
  33. WSB/EiJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
  34. +
  35. B6D2F1 and D2B6F1
    + F1 hybrids generated by crossing C57BL/6J with DBA/2J
  36. +
+ +

We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels.

+ +

These strains are available from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC.

diff --git a/general/datasets/Hc_m2_1005_m/experiment-design.rtf b/general/datasets/Hc_m2_1005_m/experiment-design.rtf new file mode 100644 index 0000000..68713a4 --- /dev/null +++ b/general/datasets/Hc_m2_1005_m/experiment-design.rtf @@ -0,0 +1,3252 @@ +
+

Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80 deg. C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols.

+ +

Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. While all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. Seventy-seven of 99 strains are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquotes R1291H3 and R1291H4).

+ +

Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays.Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin.

+ +

All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4 deg C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four.

+
+ +

    Data Table 1:

+ +
+
This table lists all arrays by order of processing (Run), Sample ID, Strain, Sex, Age, number of animals in each sample pool (Pool), F generation number when less than 30 (GenN, and the Source of animals. SampleID is the ID number of the pooled RNA sample with a H1 through H3 suffix to indicate the actual hippocampal RNA aliquot used to prepare cRNA. Grp is the sequential group processing number (1 - 6).
+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
indextube IDstrainagesexbatch IDpool sizelRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
1R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
2R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
3R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
4R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
5R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
6R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
7R1291H3B6D2F166M130.013.52448.540.4870.4940.0191.211.52UTM RW
8R1291H4B6D2F166M630.083.89146.690.5120.4690.0191.90.89UTM RW
9R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
10R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
11R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
12R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
13R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
14R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
15R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
16R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
17R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
18R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
19R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
20R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
21R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
22R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
23R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
24R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
25R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
26R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
27R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
28R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
29R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
30R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
31R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
32R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
33R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
34R1347H2BXD2164F140.012.88161.490.4940.4860.0190.921.22UMemphis
35R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
36R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
37R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
38R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
39R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
40R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
41R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
42R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
43R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
44R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
45R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
46R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
47R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
48R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
49R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
50R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
51R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
52R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
53R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
54R1469H1BXD3683F330.023.47349.90.4940.4860.021.110.76UMemphis
55R1363H1BXD3677M240.012.18448.190.5380.4430.021.280.77UMemphis
56R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
57R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
58R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
59R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
60R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
61R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
62R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
63R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
64R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
65R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
66R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
67R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
68R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
69R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
70R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
71R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
72R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
73R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
74R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
75R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
76R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
77R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
78R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
79R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
80R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
81R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
82R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
83R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
84R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
85R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
86R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
87R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
88R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
89R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
90R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
91R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
92R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
93R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
94R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
95R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
96R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
97R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
98R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
99R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
100R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
101R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
102R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
103R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
104R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
105R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
106R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
107R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
108R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
109R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
110R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
111R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
112R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
113R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
114R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
115R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
116R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
117R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
118R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
119R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
120R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
121R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
122R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
123R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
124R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
125R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
126R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
127R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
128R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
129R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
130R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
131R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
132R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
133R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
134R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
135R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
136R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
137R2619H1CAST/Ei64F530.144.07751.870.4550.5280.0182.741.2JAX
138R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
139R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
140R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
141R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
142R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
143R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
144R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
145R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
146R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
147R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
148R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
149R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
150R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
151R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
152R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
153R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
154R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
155R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
156R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
157R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
158R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
159R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
160R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
161R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
162R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
163R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
164R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
165R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
166R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
167R1687H3KK/HIJ72M530.043.88840.860.4990.4830.0191.860.88JAX
168R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
169R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
170R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
171R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
172R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
173R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
174R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
175R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
176R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
177R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
178R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
+
+
+
diff --git a/general/datasets/Hc_m2_1005_m/notes.rtf b/general/datasets/Hc_m2_1005_m/notes.rtf new file mode 100644 index 0000000..4490ee3 --- /dev/null +++ b/general/datasets/Hc_m2_1005_m/notes.rtf @@ -0,0 +1,15 @@ +

This study includes the following datasets:

+ +
+

Hippocampus Consortium M430v2 (Oct05) MAS5

+ +

Hippocampus Consortium M430v2 (Oct05) RMA

+ +

Hippocampus Consortium M430v2 (Oct05) PDNN

+ +

Hippocampus Consortium M430v2 (Dec05) RMA

+ +

Hippocampus Consortium M430v2 (Dec05) PDNN

+
+ +

This text file originally generated prospectively by RWW on July 30 2005. Updated by RWW July 31, 2005.

diff --git a/general/datasets/Hc_m2_1005_m/platform.rtf b/general/datasets/Hc_m2_1005_m/platform.rtf new file mode 100644 index 0000000..af0948c --- /dev/null +++ b/general/datasets/Hc_m2_1005_m/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

diff --git a/general/datasets/Hc_m2_1005_m/processing.rtf b/general/datasets/Hc_m2_1005_m/processing.rtf new file mode 100644 index 0000000..df5513b --- /dev/null +++ b/general/datasets/Hc_m2_1005_m/processing.rtf @@ -0,0 +1,40 @@ +
Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked. + +

First pass data quality control: Affymetrix GCOS provides useful array quality control data including:

+ +
    +
  1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter.
  2. +
  3. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control.
  4. +
  5. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion.
  6. +
  7. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios.
  8. +
+ +

The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very senstive to the transformation method that is used. Using the PDNN transform the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For examploe, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one whould include the ssample if one can verify that there are no problems in sample and data set identification.

+ +

The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets.

+ +

DataDesk was used to examine the statistical quality of the of the probe level (CEL) data after step 5 below. DataDesk allows a rapid detection of subsets of probes that are particular sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below.

+ +

Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. <0L>

+ + +
+ +
+

Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged.

+ +

Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers.

+
+ +

Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain.

+ +

Sex of the samples was validated using sex-specific probe sets such as Xist and Dby.

diff --git a/general/datasets/Hc_m2_1005_m/summary.rtf b/general/datasets/Hc_m2_1005_m/summary.rtf new file mode 100644 index 0000000..9b7c1d6 --- /dev/null +++ b/general/datasets/Hc_m2_1005_m/summary.rtf @@ -0,0 +1 @@ +
PRELIMINARY: The October 2005 Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of approximately 99 genetically diverse strains of mice including 68 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a set of 16 diverse inbred strains, and 2 reciprocal F1 hybrids. The hippocampus is an important and intriguing part of the forebrain that is crucial for memory formation, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3, and parts of the subiculum) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section. Samples were processed using a total of 206 Affymetrix Mouse Expression 430 2.0 short oligomer microarrays (MOE430 2.0 or M430v2), of which 179 passed stringent quality control and error checking. This particular data set was processed using the MAS5 protocol. To simplify comparisons among transforms, MAS5 values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.
diff --git a/general/datasets/Hc_m2_1005_m/tissue.rtf b/general/datasets/Hc_m2_1005_m/tissue.rtf new file mode 100644 index 0000000..2bb700d --- /dev/null +++ b/general/datasets/Hc_m2_1005_m/tissue.rtf @@ -0,0 +1,7 @@ +
+

BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thanks Muriel Davission for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria.

+ +

A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2).

+ +

A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below).

+
diff --git a/general/datasets/Hc_m2_1005_p/acknowledgment.rtf b/general/datasets/Hc_m2_1005_p/acknowledgment.rtf new file mode 100644 index 0000000..08c9160 --- /dev/null +++ b/general/datasets/Hc_m2_1005_p/acknowledgment.rtf @@ -0,0 +1,54 @@ +
+

Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort:

+ + + +

 

+
diff --git a/general/datasets/Hc_m2_1005_p/cases.rtf b/general/datasets/Hc_m2_1005_p/cases.rtf new file mode 100644 index 0000000..3e78bb4 --- /dev/null +++ b/general/datasets/Hc_m2_1005_p/cases.rtf @@ -0,0 +1,60 @@ +

This analysis has used 68 of BXD strains, the complete set of 13 CXB recombinant inbred strain sets, and a mouse diversity panel consisting of 16 inbred strains and a pair of reciprocal F1 hybrids (B6D2F1 and D2B6F1).

+ +

The BXD genetic reference population of recombinant inbred strains consists of approximately 80 strains. Approximately 800 classical phenotypes from sets of 10 to 70 of these strains been integrated in the GeneNetwork. The BXD strains in this data set include 29 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD40). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs.

+ +

The CXB is the first and oldest set of recombinant inbred strains. Over 500 classical phenotypes from these strains been integrated in the GeneNetwork. It is noteworthy that the CXB strains segregate for the hippocampal lamination defect (Hld),characterized by Nowakowski and colleagues (1984). All of the CXBs have been recently genotyped at 13,377 SNPs.

+ +

Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons:

+ + + +

All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants.

+ +
    +
  1. 129S1/SvImJ
    +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list
  2. +
  3. A/J
    +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel
  4. +
  5. AKR/J
    +     Sequenced by NIEHS; Phenome Project B list
  6. +
  7. BALB/cByJ
    +     STILL IN PROGRESS (samples did not pass quality control); Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list
  8. +
  9. BALB/cJ
    +     Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list
  10. +
  11. C3H/HeJ
    +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
  12. +
  13. C57BL/6J
    +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
  14. +
  15. C57BL/6ByJ
    +     Paternal substrain of B6 used to generate the CXB panel
  16. +
  17. CAST/Ei
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
  18. +
  19. DBA/2J
    +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
  20. +
  21. KK/HIJ
    +     Sequenced by Perlegen/NIEHS
  22. +
  23. LG/J
    +     Paternal parent of the LGXSM panel
  24. +
  25. NOD/LtJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
  26. +
  27. NZO/HILtJ
    +     Collaborative Cross strain
  28. +
  29. PWD/PhJ
    +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
  30. +
  31. PWK/PhJ
    +     Collaborative Cross strain; Phenome Project D list
  32. +
  33. WSB/EiJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
  34. +
  35. B6D2F1 and D2B6F1
    + F1 hybrids generated by crossing C57BL/6J with DBA/2J
  36. +
+ +

We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels.

+ +

These strains are available from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC.

diff --git a/general/datasets/Hc_m2_1005_p/experiment-design.rtf b/general/datasets/Hc_m2_1005_p/experiment-design.rtf new file mode 100644 index 0000000..68713a4 --- /dev/null +++ b/general/datasets/Hc_m2_1005_p/experiment-design.rtf @@ -0,0 +1,3252 @@ +
+

Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80 deg. C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols.

+ +

Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. While all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. Seventy-seven of 99 strains are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquotes R1291H3 and R1291H4).

+ +

Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays.Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin.

+ +

All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4 deg C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four.

+
+ +

    Data Table 1:

+ +
+
This table lists all arrays by order of processing (Run), Sample ID, Strain, Sex, Age, number of animals in each sample pool (Pool), F generation number when less than 30 (GenN, and the Source of animals. SampleID is the ID number of the pooled RNA sample with a H1 through H3 suffix to indicate the actual hippocampal RNA aliquot used to prepare cRNA. Grp is the sequential group processing number (1 - 6).
+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
indextube IDstrainagesexbatch IDpool sizelRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
1R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
2R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
3R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
4R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
5R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
6R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
7R1291H3B6D2F166M130.013.52448.540.4870.4940.0191.211.52UTM RW
8R1291H4B6D2F166M630.083.89146.690.5120.4690.0191.90.89UTM RW
9R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
10R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
11R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
12R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
13R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
14R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
15R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
16R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
17R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
18R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
19R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
20R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
21R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
22R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
23R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
24R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
25R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
26R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
27R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
28R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
29R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
30R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
31R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
32R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
33R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
34R1347H2BXD2164F140.012.88161.490.4940.4860.0190.921.22UMemphis
35R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
36R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
37R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
38R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
39R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
40R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
41R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
42R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
43R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
44R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
45R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
46R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
47R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
48R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
49R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
50R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
51R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
52R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
53R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
54R1469H1BXD3683F330.023.47349.90.4940.4860.021.110.76UMemphis
55R1363H1BXD3677M240.012.18448.190.5380.4430.021.280.77UMemphis
56R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
57R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
58R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
59R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
60R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
61R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
62R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
63R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
64R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
65R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
66R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
67R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
68R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
69R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
70R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
71R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
72R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
73R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
74R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
75R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
76R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
77R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
78R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
79R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
80R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
81R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
82R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
83R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
84R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
85R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
86R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
87R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
88R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
89R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
90R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
91R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
92R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
93R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
94R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
95R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
96R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
97R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
98R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
99R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
100R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
101R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
102R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
103R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
104R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
105R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
106R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
107R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
108R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
109R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
110R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
111R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
112R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
113R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
114R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
115R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
116R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
117R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
118R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
119R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
120R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
121R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
122R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
123R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
124R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
125R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
126R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
127R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
128R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
129R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
130R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
131R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
132R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
133R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
134R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
135R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
136R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
137R2619H1CAST/Ei64F530.144.07751.870.4550.5280.0182.741.2JAX
138R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
139R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
140R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
141R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
142R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
143R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
144R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
145R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
146R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
147R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
148R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
149R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
150R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
151R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
152R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
153R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
154R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
155R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
156R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
157R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
158R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
159R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
160R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
161R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
162R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
163R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
164R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
165R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
166R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
167R1687H3KK/HIJ72M530.043.88840.860.4990.4830.0191.860.88JAX
168R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
169R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
170R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
171R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
172R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
173R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
174R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
175R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
176R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
177R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
178R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
+
+
+
diff --git a/general/datasets/Hc_m2_1005_p/notes.rtf b/general/datasets/Hc_m2_1005_p/notes.rtf new file mode 100644 index 0000000..4490ee3 --- /dev/null +++ b/general/datasets/Hc_m2_1005_p/notes.rtf @@ -0,0 +1,15 @@ +

This study includes the following datasets:

+ +
+

Hippocampus Consortium M430v2 (Oct05) MAS5

+ +

Hippocampus Consortium M430v2 (Oct05) RMA

+ +

Hippocampus Consortium M430v2 (Oct05) PDNN

+ +

Hippocampus Consortium M430v2 (Dec05) RMA

+ +

Hippocampus Consortium M430v2 (Dec05) PDNN

+
+ +

This text file originally generated prospectively by RWW on July 30 2005. Updated by RWW July 31, 2005.

diff --git a/general/datasets/Hc_m2_1005_p/platform.rtf b/general/datasets/Hc_m2_1005_p/platform.rtf new file mode 100644 index 0000000..af0948c --- /dev/null +++ b/general/datasets/Hc_m2_1005_p/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

diff --git a/general/datasets/Hc_m2_1005_p/processing.rtf b/general/datasets/Hc_m2_1005_p/processing.rtf new file mode 100644 index 0000000..df5513b --- /dev/null +++ b/general/datasets/Hc_m2_1005_p/processing.rtf @@ -0,0 +1,40 @@ +
Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked. + +

First pass data quality control: Affymetrix GCOS provides useful array quality control data including:

+ +
    +
  1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter.
  2. +
  3. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control.
  4. +
  5. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion.
  6. +
  7. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios.
  8. +
+ +

The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very senstive to the transformation method that is used. Using the PDNN transform the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For examploe, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one whould include the ssample if one can verify that there are no problems in sample and data set identification.

+ +

The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets.

+ +

DataDesk was used to examine the statistical quality of the of the probe level (CEL) data after step 5 below. DataDesk allows a rapid detection of subsets of probes that are particular sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below.

+ +

Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. <0L>

+ + +
+ +
+

Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged.

+ +

Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers.

+
+ +

Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain.

+ +

Sex of the samples was validated using sex-specific probe sets such as Xist and Dby.

diff --git a/general/datasets/Hc_m2_1005_p/summary.rtf b/general/datasets/Hc_m2_1005_p/summary.rtf new file mode 100644 index 0000000..9b7c1d6 --- /dev/null +++ b/general/datasets/Hc_m2_1005_p/summary.rtf @@ -0,0 +1 @@ +
PRELIMINARY: The October 2005 Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of approximately 99 genetically diverse strains of mice including 68 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a set of 16 diverse inbred strains, and 2 reciprocal F1 hybrids. The hippocampus is an important and intriguing part of the forebrain that is crucial for memory formation, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3, and parts of the subiculum) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section. Samples were processed using a total of 206 Affymetrix Mouse Expression 430 2.0 short oligomer microarrays (MOE430 2.0 or M430v2), of which 179 passed stringent quality control and error checking. This particular data set was processed using the MAS5 protocol. To simplify comparisons among transforms, MAS5 values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.
diff --git a/general/datasets/Hc_m2_1005_p/tissue.rtf b/general/datasets/Hc_m2_1005_p/tissue.rtf new file mode 100644 index 0000000..2bb700d --- /dev/null +++ b/general/datasets/Hc_m2_1005_p/tissue.rtf @@ -0,0 +1,7 @@ +
+

BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thanks Muriel Davission for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria.

+ +

A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2).

+ +

A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below).

+
diff --git a/general/datasets/Hc_m2_1005_r/acknowledgment.rtf b/general/datasets/Hc_m2_1005_r/acknowledgment.rtf new file mode 100644 index 0000000..08c9160 --- /dev/null +++ b/general/datasets/Hc_m2_1005_r/acknowledgment.rtf @@ -0,0 +1,54 @@ +
+

Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort:

+ + + +

 

+
diff --git a/general/datasets/Hc_m2_1005_r/cases.rtf b/general/datasets/Hc_m2_1005_r/cases.rtf new file mode 100644 index 0000000..3e78bb4 --- /dev/null +++ b/general/datasets/Hc_m2_1005_r/cases.rtf @@ -0,0 +1,60 @@ +

This analysis has used 68 of BXD strains, the complete set of 13 CXB recombinant inbred strain sets, and a mouse diversity panel consisting of 16 inbred strains and a pair of reciprocal F1 hybrids (B6D2F1 and D2B6F1).

+ +

The BXD genetic reference population of recombinant inbred strains consists of approximately 80 strains. Approximately 800 classical phenotypes from sets of 10 to 70 of these strains been integrated in the GeneNetwork. The BXD strains in this data set include 29 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD40). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs.

+ +

The CXB is the first and oldest set of recombinant inbred strains. Over 500 classical phenotypes from these strains been integrated in the GeneNetwork. It is noteworthy that the CXB strains segregate for the hippocampal lamination defect (Hld),characterized by Nowakowski and colleagues (1984). All of the CXBs have been recently genotyped at 13,377 SNPs.

+ +

Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons:

+ + + +

All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants.

+ +
    +
  1. 129S1/SvImJ
    +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list
  2. +
  3. A/J
    +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel
  4. +
  5. AKR/J
    +     Sequenced by NIEHS; Phenome Project B list
  6. +
  7. BALB/cByJ
    +     STILL IN PROGRESS (samples did not pass quality control); Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list
  8. +
  9. BALB/cJ
    +     Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list
  10. +
  11. C3H/HeJ
    +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
  12. +
  13. C57BL/6J
    +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
  14. +
  15. C57BL/6ByJ
    +     Paternal substrain of B6 used to generate the CXB panel
  16. +
  17. CAST/Ei
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
  18. +
  19. DBA/2J
    +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
  20. +
  21. KK/HIJ
    +     Sequenced by Perlegen/NIEHS
  22. +
  23. LG/J
    +     Paternal parent of the LGXSM panel
  24. +
  25. NOD/LtJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
  26. +
  27. NZO/HILtJ
    +     Collaborative Cross strain
  28. +
  29. PWD/PhJ
    +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
  30. +
  31. PWK/PhJ
    +     Collaborative Cross strain; Phenome Project D list
  32. +
  33. WSB/EiJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
  34. +
  35. B6D2F1 and D2B6F1
    + F1 hybrids generated by crossing C57BL/6J with DBA/2J
  36. +
+ +

We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels.

+ +

These strains are available from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC.

diff --git a/general/datasets/Hc_m2_1005_r/experiment-design.rtf b/general/datasets/Hc_m2_1005_r/experiment-design.rtf new file mode 100644 index 0000000..68713a4 --- /dev/null +++ b/general/datasets/Hc_m2_1005_r/experiment-design.rtf @@ -0,0 +1,3252 @@ +
+

Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80 deg. C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols.

+ +

Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. While all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. Seventy-seven of 99 strains are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquotes R1291H3 and R1291H4).

+ +

Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays.Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin.

+ +

All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4 deg C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four.

+
+ +

    Data Table 1:

+ +
+
This table lists all arrays by order of processing (Run), Sample ID, Strain, Sex, Age, number of animals in each sample pool (Pool), F generation number when less than 30 (GenN, and the Source of animals. SampleID is the ID number of the pooled RNA sample with a H1 through H3 suffix to indicate the actual hippocampal RNA aliquot used to prepare cRNA. Grp is the sequential group processing number (1 - 6).
+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
indextube IDstrainagesexbatch IDpool sizelRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
1R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
2R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
3R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
4R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
5R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
6R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
7R1291H3B6D2F166M130.013.52448.540.4870.4940.0191.211.52UTM RW
8R1291H4B6D2F166M630.083.89146.690.5120.4690.0191.90.89UTM RW
9R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
10R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
11R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
12R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
13R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
14R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
15R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
16R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
17R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
18R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
19R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
20R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
21R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
22R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
23R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
24R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
25R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
26R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
27R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
28R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
29R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
30R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
31R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
32R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
33R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
34R1347H2BXD2164F140.012.88161.490.4940.4860.0190.921.22UMemphis
35R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
36R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
37R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
38R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
39R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
40R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
41R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
42R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
43R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
44R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
45R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
46R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
47R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
48R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
49R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
50R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
51R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
52R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
53R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
54R1469H1BXD3683F330.023.47349.90.4940.4860.021.110.76UMemphis
55R1363H1BXD3677M240.012.18448.190.5380.4430.021.280.77UMemphis
56R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
57R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
58R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
59R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
60R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
61R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
62R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
63R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
64R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
65R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
66R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
67R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
68R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
69R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
70R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
71R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
72R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
73R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
74R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
75R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
76R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
77R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
78R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
79R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
80R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
81R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
82R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
83R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
84R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
85R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
86R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
87R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
88R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
89R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
90R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
91R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
92R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
93R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
94R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
95R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
96R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
97R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
98R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
99R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
100R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
101R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
102R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
103R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
104R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
105R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
106R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
107R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
108R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
109R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
110R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
111R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
112R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
113R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
114R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
115R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
116R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
117R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
118R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
119R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
120R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
121R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
122R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
123R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
124R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
125R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
126R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
127R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
128R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
129R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
130R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
131R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
132R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
133R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
134R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
135R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
136R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
137R2619H1CAST/Ei64F530.144.07751.870.4550.5280.0182.741.2JAX
138R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
139R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
140R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
141R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
142R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
143R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
144R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
145R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
146R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
147R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
148R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
149R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
150R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
151R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
152R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
153R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
154R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
155R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
156R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
157R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
158R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
159R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
160R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
161R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
162R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
163R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
164R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
165R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
166R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
167R1687H3KK/HIJ72M530.043.88840.860.4990.4830.0191.860.88JAX
168R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
169R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
170R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
171R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
172R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
173R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
174R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
175R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
176R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
177R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
178R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
+
+
+
diff --git a/general/datasets/Hc_m2_1005_r/notes.rtf b/general/datasets/Hc_m2_1005_r/notes.rtf new file mode 100644 index 0000000..4490ee3 --- /dev/null +++ b/general/datasets/Hc_m2_1005_r/notes.rtf @@ -0,0 +1,15 @@ +

This study includes the following datasets:

+ +
+

Hippocampus Consortium M430v2 (Oct05) MAS5

+ +

Hippocampus Consortium M430v2 (Oct05) RMA

+ +

Hippocampus Consortium M430v2 (Oct05) PDNN

+ +

Hippocampus Consortium M430v2 (Dec05) RMA

+ +

Hippocampus Consortium M430v2 (Dec05) PDNN

+
+ +

This text file originally generated prospectively by RWW on July 30 2005. Updated by RWW July 31, 2005.

diff --git a/general/datasets/Hc_m2_1005_r/platform.rtf b/general/datasets/Hc_m2_1005_r/platform.rtf new file mode 100644 index 0000000..af0948c --- /dev/null +++ b/general/datasets/Hc_m2_1005_r/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

diff --git a/general/datasets/Hc_m2_1005_r/processing.rtf b/general/datasets/Hc_m2_1005_r/processing.rtf new file mode 100644 index 0000000..df5513b --- /dev/null +++ b/general/datasets/Hc_m2_1005_r/processing.rtf @@ -0,0 +1,40 @@ +
Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked. + +

First pass data quality control: Affymetrix GCOS provides useful array quality control data including:

+ +
    +
  1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter.
  2. +
  3. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control.
  4. +
  5. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion.
  6. +
  7. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios.
  8. +
+ +

The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very senstive to the transformation method that is used. Using the PDNN transform the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For examploe, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one whould include the ssample if one can verify that there are no problems in sample and data set identification.

+ +

The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets.

+ +

DataDesk was used to examine the statistical quality of the of the probe level (CEL) data after step 5 below. DataDesk allows a rapid detection of subsets of probes that are particular sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below.

+ +

Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. <0L>

+ + +
+ +
+

Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged.

+ +

Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers.

+
+ +

Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain.

+ +

Sex of the samples was validated using sex-specific probe sets such as Xist and Dby.

diff --git a/general/datasets/Hc_m2_1005_r/summary.rtf b/general/datasets/Hc_m2_1005_r/summary.rtf new file mode 100644 index 0000000..9b7c1d6 --- /dev/null +++ b/general/datasets/Hc_m2_1005_r/summary.rtf @@ -0,0 +1 @@ +
PRELIMINARY: The October 2005 Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of approximately 99 genetically diverse strains of mice including 68 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a set of 16 diverse inbred strains, and 2 reciprocal F1 hybrids. The hippocampus is an important and intriguing part of the forebrain that is crucial for memory formation, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3, and parts of the subiculum) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section. Samples were processed using a total of 206 Affymetrix Mouse Expression 430 2.0 short oligomer microarrays (MOE430 2.0 or M430v2), of which 179 passed stringent quality control and error checking. This particular data set was processed using the MAS5 protocol. To simplify comparisons among transforms, MAS5 values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.
diff --git a/general/datasets/Hc_m2_1005_r/tissue.rtf b/general/datasets/Hc_m2_1005_r/tissue.rtf new file mode 100644 index 0000000..2bb700d --- /dev/null +++ b/general/datasets/Hc_m2_1005_r/tissue.rtf @@ -0,0 +1,7 @@ +
+

BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thanks Muriel Davission for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria.

+ +

A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2).

+ +

A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below).

+
diff --git a/general/datasets/Hc_m2_1205_p/acknowledgment.rtf b/general/datasets/Hc_m2_1205_p/acknowledgment.rtf new file mode 100644 index 0000000..08c9160 --- /dev/null +++ b/general/datasets/Hc_m2_1205_p/acknowledgment.rtf @@ -0,0 +1,54 @@ +
+

Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort:

+ + + +

 

+
diff --git a/general/datasets/Hc_m2_1205_p/cases.rtf b/general/datasets/Hc_m2_1205_p/cases.rtf new file mode 100644 index 0000000..3e78bb4 --- /dev/null +++ b/general/datasets/Hc_m2_1205_p/cases.rtf @@ -0,0 +1,60 @@ +

This analysis has used 68 of BXD strains, the complete set of 13 CXB recombinant inbred strain sets, and a mouse diversity panel consisting of 16 inbred strains and a pair of reciprocal F1 hybrids (B6D2F1 and D2B6F1).

+ +

The BXD genetic reference population of recombinant inbred strains consists of approximately 80 strains. Approximately 800 classical phenotypes from sets of 10 to 70 of these strains been integrated in the GeneNetwork. The BXD strains in this data set include 29 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD40). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs.

+ +

The CXB is the first and oldest set of recombinant inbred strains. Over 500 classical phenotypes from these strains been integrated in the GeneNetwork. It is noteworthy that the CXB strains segregate for the hippocampal lamination defect (Hld),characterized by Nowakowski and colleagues (1984). All of the CXBs have been recently genotyped at 13,377 SNPs.

+ +

Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons:

+ + + +

All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants.

+ +
    +
  1. 129S1/SvImJ
    +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list
  2. +
  3. A/J
    +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel
  4. +
  5. AKR/J
    +     Sequenced by NIEHS; Phenome Project B list
  6. +
  7. BALB/cByJ
    +     STILL IN PROGRESS (samples did not pass quality control); Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list
  8. +
  9. BALB/cJ
    +     Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list
  10. +
  11. C3H/HeJ
    +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
  12. +
  13. C57BL/6J
    +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
  14. +
  15. C57BL/6ByJ
    +     Paternal substrain of B6 used to generate the CXB panel
  16. +
  17. CAST/Ei
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
  18. +
  19. DBA/2J
    +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
  20. +
  21. KK/HIJ
    +     Sequenced by Perlegen/NIEHS
  22. +
  23. LG/J
    +     Paternal parent of the LGXSM panel
  24. +
  25. NOD/LtJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
  26. +
  27. NZO/HILtJ
    +     Collaborative Cross strain
  28. +
  29. PWD/PhJ
    +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
  30. +
  31. PWK/PhJ
    +     Collaborative Cross strain; Phenome Project D list
  32. +
  33. WSB/EiJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
  34. +
  35. B6D2F1 and D2B6F1
    + F1 hybrids generated by crossing C57BL/6J with DBA/2J
  36. +
+ +

We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels.

+ +

These strains are available from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC.

diff --git a/general/datasets/Hc_m2_1205_p/experiment-design.rtf b/general/datasets/Hc_m2_1205_p/experiment-design.rtf new file mode 100644 index 0000000..68713a4 --- /dev/null +++ b/general/datasets/Hc_m2_1205_p/experiment-design.rtf @@ -0,0 +1,3252 @@ +
+

Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80 deg. C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols.

+ +

Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. While all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. Seventy-seven of 99 strains are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquotes R1291H3 and R1291H4).

+ +

Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays.Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin.

+ +

All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4 deg C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four.

+
+ +

    Data Table 1:

+ +
+
This table lists all arrays by order of processing (Run), Sample ID, Strain, Sex, Age, number of animals in each sample pool (Pool), F generation number when less than 30 (GenN, and the Source of animals. SampleID is the ID number of the pooled RNA sample with a H1 through H3 suffix to indicate the actual hippocampal RNA aliquot used to prepare cRNA. Grp is the sequential group processing number (1 - 6).
+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
indextube IDstrainagesexbatch IDpool sizelRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
1R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
2R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
3R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
4R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
5R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
6R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
7R1291H3B6D2F166M130.013.52448.540.4870.4940.0191.211.52UTM RW
8R1291H4B6D2F166M630.083.89146.690.5120.4690.0191.90.89UTM RW
9R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
10R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
11R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
12R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
13R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
14R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
15R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
16R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
17R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
18R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
19R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
20R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
21R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
22R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
23R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
24R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
25R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
26R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
27R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
28R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
29R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
30R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
31R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
32R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
33R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
34R1347H2BXD2164F140.012.88161.490.4940.4860.0190.921.22UMemphis
35R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
36R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
37R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
38R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
39R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
40R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
41R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
42R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
43R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
44R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
45R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
46R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
47R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
48R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
49R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
50R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
51R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
52R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
53R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
54R1469H1BXD3683F330.023.47349.90.4940.4860.021.110.76UMemphis
55R1363H1BXD3677M240.012.18448.190.5380.4430.021.280.77UMemphis
56R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
57R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
58R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
59R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
60R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
61R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
62R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
63R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
64R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
65R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
66R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
67R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
68R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
69R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
70R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
71R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
72R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
73R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
74R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
75R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
76R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
77R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
78R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
79R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
80R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
81R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
82R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
83R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
84R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
85R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
86R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
87R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
88R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
89R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
90R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
91R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
92R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
93R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
94R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
95R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
96R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
97R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
98R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
99R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
100R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
101R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
102R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
103R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
104R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
105R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
106R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
107R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
108R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
109R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
110R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
111R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
112R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
113R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
114R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
115R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
116R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
117R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
118R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
119R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
120R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
121R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
122R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
123R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
124R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
125R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
126R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
127R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
128R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
129R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
130R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
131R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
132R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
133R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
134R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
135R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
136R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
137R2619H1CAST/Ei64F530.144.07751.870.4550.5280.0182.741.2JAX
138R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
139R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
140R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
141R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
142R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
143R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
144R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
145R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
146R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
147R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
148R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
149R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
150R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
151R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
152R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
153R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
154R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
155R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
156R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
157R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
158R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
159R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
160R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
161R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
162R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
163R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
164R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
165R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
166R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
167R1687H3KK/HIJ72M530.043.88840.860.4990.4830.0191.860.88JAX
168R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
169R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
170R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
171R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
172R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
173R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
174R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
175R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
176R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
177R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
178R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
+
+
+
diff --git a/general/datasets/Hc_m2_1205_p/notes.rtf b/general/datasets/Hc_m2_1205_p/notes.rtf new file mode 100644 index 0000000..4490ee3 --- /dev/null +++ b/general/datasets/Hc_m2_1205_p/notes.rtf @@ -0,0 +1,15 @@ +

This study includes the following datasets:

+ +
+

Hippocampus Consortium M430v2 (Oct05) MAS5

+ +

Hippocampus Consortium M430v2 (Oct05) RMA

+ +

Hippocampus Consortium M430v2 (Oct05) PDNN

+ +

Hippocampus Consortium M430v2 (Dec05) RMA

+ +

Hippocampus Consortium M430v2 (Dec05) PDNN

+
+ +

This text file originally generated prospectively by RWW on July 30 2005. Updated by RWW July 31, 2005.

diff --git a/general/datasets/Hc_m2_1205_p/platform.rtf b/general/datasets/Hc_m2_1205_p/platform.rtf new file mode 100644 index 0000000..af0948c --- /dev/null +++ b/general/datasets/Hc_m2_1205_p/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

diff --git a/general/datasets/Hc_m2_1205_p/processing.rtf b/general/datasets/Hc_m2_1205_p/processing.rtf new file mode 100644 index 0000000..df5513b --- /dev/null +++ b/general/datasets/Hc_m2_1205_p/processing.rtf @@ -0,0 +1,40 @@ +
Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked. + +

First pass data quality control: Affymetrix GCOS provides useful array quality control data including:

+ +
    +
  1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter.
  2. +
  3. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control.
  4. +
  5. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion.
  6. +
  7. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios.
  8. +
+ +

The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very senstive to the transformation method that is used. Using the PDNN transform the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For examploe, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one whould include the ssample if one can verify that there are no problems in sample and data set identification.

+ +

The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets.

+ +

DataDesk was used to examine the statistical quality of the of the probe level (CEL) data after step 5 below. DataDesk allows a rapid detection of subsets of probes that are particular sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below.

+ +

Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. <0L>

+ + +
+ +
+

Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged.

+ +

Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers.

+
+ +

Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain.

+ +

Sex of the samples was validated using sex-specific probe sets such as Xist and Dby.

diff --git a/general/datasets/Hc_m2_1205_p/summary.rtf b/general/datasets/Hc_m2_1205_p/summary.rtf new file mode 100644 index 0000000..9b7c1d6 --- /dev/null +++ b/general/datasets/Hc_m2_1205_p/summary.rtf @@ -0,0 +1 @@ +
PRELIMINARY: The October 2005 Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of approximately 99 genetically diverse strains of mice including 68 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a set of 16 diverse inbred strains, and 2 reciprocal F1 hybrids. The hippocampus is an important and intriguing part of the forebrain that is crucial for memory formation, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3, and parts of the subiculum) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section. Samples were processed using a total of 206 Affymetrix Mouse Expression 430 2.0 short oligomer microarrays (MOE430 2.0 or M430v2), of which 179 passed stringent quality control and error checking. This particular data set was processed using the MAS5 protocol. To simplify comparisons among transforms, MAS5 values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.
diff --git a/general/datasets/Hc_m2_1205_p/tissue.rtf b/general/datasets/Hc_m2_1205_p/tissue.rtf new file mode 100644 index 0000000..2bb700d --- /dev/null +++ b/general/datasets/Hc_m2_1205_p/tissue.rtf @@ -0,0 +1,7 @@ +
+

BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thanks Muriel Davission for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria.

+ +

A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2).

+ +

A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below).

+
diff --git a/general/datasets/Hc_m2_1205_r/acknowledgment.rtf b/general/datasets/Hc_m2_1205_r/acknowledgment.rtf new file mode 100644 index 0000000..08c9160 --- /dev/null +++ b/general/datasets/Hc_m2_1205_r/acknowledgment.rtf @@ -0,0 +1,54 @@ +
+

Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort:

+ + + +

 

+
diff --git a/general/datasets/Hc_m2_1205_r/cases.rtf b/general/datasets/Hc_m2_1205_r/cases.rtf new file mode 100644 index 0000000..3e78bb4 --- /dev/null +++ b/general/datasets/Hc_m2_1205_r/cases.rtf @@ -0,0 +1,60 @@ +

This analysis has used 68 of BXD strains, the complete set of 13 CXB recombinant inbred strain sets, and a mouse diversity panel consisting of 16 inbred strains and a pair of reciprocal F1 hybrids (B6D2F1 and D2B6F1).

+ +

The BXD genetic reference population of recombinant inbred strains consists of approximately 80 strains. Approximately 800 classical phenotypes from sets of 10 to 70 of these strains been integrated in the GeneNetwork. The BXD strains in this data set include 29 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD40). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs.

+ +

The CXB is the first and oldest set of recombinant inbred strains. Over 500 classical phenotypes from these strains been integrated in the GeneNetwork. It is noteworthy that the CXB strains segregate for the hippocampal lamination defect (Hld),characterized by Nowakowski and colleagues (1984). All of the CXBs have been recently genotyped at 13,377 SNPs.

+ +

Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons:

+ + + +

All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants.

+ +
    +
  1. 129S1/SvImJ
    +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list
  2. +
  3. A/J
    +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel
  4. +
  5. AKR/J
    +     Sequenced by NIEHS; Phenome Project B list
  6. +
  7. BALB/cByJ
    +     STILL IN PROGRESS (samples did not pass quality control); Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list
  8. +
  9. BALB/cJ
    +     Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list
  10. +
  11. C3H/HeJ
    +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
  12. +
  13. C57BL/6J
    +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
  14. +
  15. C57BL/6ByJ
    +     Paternal substrain of B6 used to generate the CXB panel
  16. +
  17. CAST/Ei
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
  18. +
  19. DBA/2J
    +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
  20. +
  21. KK/HIJ
    +     Sequenced by Perlegen/NIEHS
  22. +
  23. LG/J
    +     Paternal parent of the LGXSM panel
  24. +
  25. NOD/LtJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
  26. +
  27. NZO/HILtJ
    +     Collaborative Cross strain
  28. +
  29. PWD/PhJ
    +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
  30. +
  31. PWK/PhJ
    +     Collaborative Cross strain; Phenome Project D list
  32. +
  33. WSB/EiJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
  34. +
  35. B6D2F1 and D2B6F1
    + F1 hybrids generated by crossing C57BL/6J with DBA/2J
  36. +
+ +

We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels.

+ +

These strains are available from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC.

diff --git a/general/datasets/Hc_m2_1205_r/experiment-design.rtf b/general/datasets/Hc_m2_1205_r/experiment-design.rtf new file mode 100644 index 0000000..68713a4 --- /dev/null +++ b/general/datasets/Hc_m2_1205_r/experiment-design.rtf @@ -0,0 +1,3252 @@ +
+

Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80 deg. C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols.

+ +

Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. While all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. Seventy-seven of 99 strains are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquotes R1291H3 and R1291H4).

+ +

Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays.Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin.

+ +

All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4 deg C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four.

+
+ +

    Data Table 1:

+ +
+
This table lists all arrays by order of processing (Run), Sample ID, Strain, Sex, Age, number of animals in each sample pool (Pool), F generation number when less than 30 (GenN, and the Source of animals. SampleID is the ID number of the pooled RNA sample with a H1 through H3 suffix to indicate the actual hippocampal RNA aliquot used to prepare cRNA. Grp is the sequential group processing number (1 - 6).
+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
indextube IDstrainagesexbatch IDpool sizelRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
1R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
2R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
3R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
4R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
5R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
6R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
7R1291H3B6D2F166M130.013.52448.540.4870.4940.0191.211.52UTM RW
8R1291H4B6D2F166M630.083.89146.690.5120.4690.0191.90.89UTM RW
9R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
10R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
11R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
12R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
13R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
14R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
15R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
16R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
17R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
18R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
19R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
20R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
21R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
22R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
23R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
24R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
25R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
26R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
27R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
28R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
29R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
30R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
31R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
32R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
33R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
34R1347H2BXD2164F140.012.88161.490.4940.4860.0190.921.22UMemphis
35R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
36R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
37R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
38R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
39R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
40R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
41R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
42R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
43R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
44R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
45R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
46R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
47R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
48R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
49R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
50R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
51R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
52R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
53R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
54R1469H1BXD3683F330.023.47349.90.4940.4860.021.110.76UMemphis
55R1363H1BXD3677M240.012.18448.190.5380.4430.021.280.77UMemphis
56R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
57R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
58R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
59R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
60R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
61R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
62R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
63R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
64R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
65R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
66R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
67R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
68R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
69R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
70R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
71R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
72R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
73R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
74R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
75R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
76R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
77R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
78R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
79R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
80R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
81R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
82R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
83R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
84R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
85R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
86R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
87R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
88R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
89R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
90R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
91R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
92R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
93R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
94R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
95R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
96R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
97R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
98R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
99R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
100R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
101R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
102R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
103R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
104R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
105R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
106R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
107R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
108R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
109R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
110R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
111R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
112R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
113R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
114R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
115R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
116R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
117R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
118R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
119R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
120R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
121R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
122R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
123R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
124R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
125R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
126R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
127R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
128R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
129R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
130R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
131R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
132R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
133R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
134R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
135R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
136R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
137R2619H1CAST/Ei64F530.144.07751.870.4550.5280.0182.741.2JAX
138R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
139R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
140R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
141R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
142R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
143R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
144R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
145R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
146R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
147R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
148R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
149R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
150R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
151R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
152R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
153R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
154R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
155R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
156R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
157R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
158R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
159R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
160R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
161R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
162R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
163R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
164R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
165R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
166R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
167R1687H3KK/HIJ72M530.043.88840.860.4990.4830.0191.860.88JAX
168R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
169R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
170R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
171R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
172R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
173R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
174R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
175R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
176R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
177R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
178R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
+
+
+
diff --git a/general/datasets/Hc_m2_1205_r/notes.rtf b/general/datasets/Hc_m2_1205_r/notes.rtf new file mode 100644 index 0000000..4490ee3 --- /dev/null +++ b/general/datasets/Hc_m2_1205_r/notes.rtf @@ -0,0 +1,15 @@ +

This study includes the following datasets:

+ +
+

Hippocampus Consortium M430v2 (Oct05) MAS5

+ +

Hippocampus Consortium M430v2 (Oct05) RMA

+ +

Hippocampus Consortium M430v2 (Oct05) PDNN

+ +

Hippocampus Consortium M430v2 (Dec05) RMA

+ +

Hippocampus Consortium M430v2 (Dec05) PDNN

+
+ +

This text file originally generated prospectively by RWW on July 30 2005. Updated by RWW July 31, 2005.

diff --git a/general/datasets/Hc_m2_1205_r/platform.rtf b/general/datasets/Hc_m2_1205_r/platform.rtf new file mode 100644 index 0000000..af0948c --- /dev/null +++ b/general/datasets/Hc_m2_1205_r/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

diff --git a/general/datasets/Hc_m2_1205_r/processing.rtf b/general/datasets/Hc_m2_1205_r/processing.rtf new file mode 100644 index 0000000..df5513b --- /dev/null +++ b/general/datasets/Hc_m2_1205_r/processing.rtf @@ -0,0 +1,40 @@ +
Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked. + +

First pass data quality control: Affymetrix GCOS provides useful array quality control data including:

+ +
    +
  1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter.
  2. +
  3. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control.
  4. +
  5. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion.
  6. +
  7. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios.
  8. +
+ +

The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very senstive to the transformation method that is used. Using the PDNN transform the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For examploe, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one whould include the ssample if one can verify that there are no problems in sample and data set identification.

+ +

The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets.

+ +

DataDesk was used to examine the statistical quality of the of the probe level (CEL) data after step 5 below. DataDesk allows a rapid detection of subsets of probes that are particular sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below.

+ +

Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. <0L>

+ + +
+ +
+

Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged.

+ +

Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers.

+
+ +

Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain.

+ +

Sex of the samples was validated using sex-specific probe sets such as Xist and Dby.

diff --git a/general/datasets/Hc_m2_1205_r/summary.rtf b/general/datasets/Hc_m2_1205_r/summary.rtf new file mode 100644 index 0000000..9b7c1d6 --- /dev/null +++ b/general/datasets/Hc_m2_1205_r/summary.rtf @@ -0,0 +1 @@ +
PRELIMINARY: The October 2005 Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of approximately 99 genetically diverse strains of mice including 68 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a set of 16 diverse inbred strains, and 2 reciprocal F1 hybrids. The hippocampus is an important and intriguing part of the forebrain that is crucial for memory formation, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3, and parts of the subiculum) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section. Samples were processed using a total of 206 Affymetrix Mouse Expression 430 2.0 short oligomer microarrays (MOE430 2.0 or M430v2), of which 179 passed stringent quality control and error checking. This particular data set was processed using the MAS5 protocol. To simplify comparisons among transforms, MAS5 values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.
diff --git a/general/datasets/Hc_m2_1205_r/tissue.rtf b/general/datasets/Hc_m2_1205_r/tissue.rtf new file mode 100644 index 0000000..2bb700d --- /dev/null +++ b/general/datasets/Hc_m2_1205_r/tissue.rtf @@ -0,0 +1,7 @@ +
+

BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thanks Muriel Davission for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria.

+ +

A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2).

+ +

A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below).

+
diff --git a/general/datasets/Hc_m2_1206_r/acknowledgment.rtf b/general/datasets/Hc_m2_1206_r/acknowledgment.rtf new file mode 100644 index 0000000..aa6285a --- /dev/null +++ b/general/datasets/Hc_m2_1206_r/acknowledgment.rtf @@ -0,0 +1,61 @@ +
+

Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort:

+ + +
diff --git a/general/datasets/Hc_m2_1206_r/cases.rtf b/general/datasets/Hc_m2_1206_r/cases.rtf new file mode 100644 index 0000000..28305bf --- /dev/null +++ b/general/datasets/Hc_m2_1206_r/cases.rtf @@ -0,0 +1,3791 @@ +
+

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 27 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs.

+ +
+

Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons:

+ + + +

All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants.

+ +
    +
  1. 129S1/SvImJ
    +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list
  2. +
  3. A/J
    +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel
  4. +
  5. AKR/J
    +     Sequenced by NIEHS; Phenome Project B list
  6. +
  7. BALB/cByJ
    +     Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list
  8. +
  9. BALB/cJ
    +     Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list
  10. +
  11. C3H/HeJ
    +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
  12. +
  13. C57BL/6J
    +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
  14. +
  15. C57BL/6ByJ
    +     Paternal substrain of B6 used to generate the CXB panel
  16. +
  17. CAST/Ei
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
  18. +
  19. DBA/2J
    +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
  20. +
  21. KK/HlJ
    +     Sequenced by Perlegen/NIEHS
  22. +
  23. LG/J
    +     Paternal parent of the LGXSM panel
  24. +
  25. NOD/LtJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
  26. +
  27. NZO/HlLtJ
    +     Collaborative Cross strain
  28. +
  29. PWD/PhJ
    +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
  30. +
  31. PWK/PhJ
    +     Collaborative Cross strain; Phenome Project D list
  32. +
  33. WSB/EiJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
  34. +
  35. B6D2F1 and D2B6F1
    + F1 hybrids generated by crossing C57BL/6J with DBA/2J
  36. +
+ +

We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels.

+ +

These strains are available from The Jackson Laboratory. BXD43 through BXD100 strains are available from Lu Lu and colleagues at UTHSC.

+
+
+ +
This table lists all arrays by order of processing (Run), Sample ID, Strain, Sex, Age, number of animals in each sample pool (Pool), F generation number when less than 30 (GenN, and the Source of animals. SampleID is the ID number of the pooled RNA sample with a H1 through H3 suffix to indicate the actual hippocampal RNA aliquot used to prepare cRNA. Grp is the sequential group processing number (1 - 6).
+ +
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
indextube IDstrainagesexbatch IDpool sizelRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
1R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
2R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
3R2670H1A/J65F730.043.95146.80.4980.4850.0171.320.75UTM RW
4R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
5R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
6R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
7R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
8R1291H3B6D2F166M130.013.52448.540.4870.4940.0191.211.52UTM RW
9R1291H4B6D2F166M630.083.89146.690.5120.4690.0191.90.89UTM RW
10R1675H1BALB/cByJ83M730.033.40548.130.5090.4740.0181.130.78JAX
11R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
12R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
13R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
14R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
15R1542H1BXD159F730.031.79280.560.4920.4890.0181.570.79Glenn
16R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
17R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
18R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
19R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
20R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
21R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
22R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
23R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
24R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
25R1523H3BXD957M730.143.978.360.4350.5470.0181.360.77UTM RW
26R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
27R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
28R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
29R2674H1BXD1259M730.031.92483.440.5190.4640.0181.210.78Glenn
30R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
31R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
32R1304H2BXD1472F730.033.94661.870.4840.4980.0181.220.77UTM RW
33R1278H2BXD1455M730.064.7567.520.4490.5320.0191.10.73UTM RW
34R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
35R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
36R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
37R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
38R2666H1BXD1960F730.022.49876.20.4950.4860.0191.410.77Glenn
39R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
40R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
41R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
42R1347H2BXD2164F140.012.88161.490.4940.4860.0190.921.22UMemphis
43R2668H1BXD2160M740.072.60544.90.5350.4490.0171.540.76Glenn
44R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
45R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
46R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
47R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
48R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
49R1244H2BXD2365M730.051.25781.930.5650.4170.0181.240.74Glenn
50R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
51R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
52R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
53R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
54R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
55R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
56R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
57R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
58R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
59R1526H2BXD3157F740.17.26789.540.4350.5470.0171.350.78UTM RW
60R2675H1BXD3257F730.032.26878.010.5020.4780.021.220.78Glenn
61R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
62R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
63R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
64R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
65R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
66R1469H1BXD3683F330.023.47349.90.4940.4860.021.110.76UMemphis
67R1363H1BXD3677M240.012.18448.190.5380.4430.021.280.77UMemphis
68R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
69R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
70R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
71R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
72R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
73R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
74R1541H2BXD4258F730.076.78452.120.4830.4990.0171.130.66Glenn
75R1540H1BXD4258M740.032.42375.140.4920.4880.021.480.78Glenn
76R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
77R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
78R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
79R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
80R1403H2BXD4563F720.033.14644.50.5240.4570.0181.410.78Glenn
81R1472H1BXD4565M740.041.65173.310.5430.440.0181.630.74UTM RW
82R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
83R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
84R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
85R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
86R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
87R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
88R2680H1BXD5565M730.071.70779.750.5030.480.0171.911.05UTM RW
89R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
90R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
91R2667H1BXD6170F740.033.3659.040.4950.4880.0181.160.76UTM RW
92R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
93R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
94R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
95R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
96R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
97R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
98R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
99R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
100R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
101R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
102R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
103R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
104R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
105R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
106R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
107R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
108R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
109R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
110R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
111R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
112R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
113R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
114R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
115R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
116R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
117R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
118R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
119R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
120R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
121R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
122R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
123R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
124R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
125R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
126R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
127R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
128R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
129R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
130R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
131R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
132R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
133R2669H2BXD8763F730.072.6157.590.5130.470.0181.60.91UTM RW
134R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
135R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
136R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
137R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
138R1600H2BXD9074M740.033.26151.310.5170.4650.0181.160.75Glenn
139R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
140R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
141R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
142R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
143R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
144R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
145R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
146R2648H1BXD9774F740.021.66482.080.5180.4640.0191.40.78UTM RW
147R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
148R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
149R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
150R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
151R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
152R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
153R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
154R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
155R2673H1C57BL/6ByJ55M730.081.84267.690.5140.4690.0171.750.78JAX
156R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
157R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
158R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
159R2619H1CAST/Ei64F530.144.07751.870.4550.5280.0182.741.2JAX
160R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
161R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
162R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
163R2671H1CXB1053M730.092.34871.450.4880.4940.0182.21.14JAX
164R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
165R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
166R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
167R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
168R2672H1CXB1349F730.031.72279.520.5160.4650.0191.640.75JAX
169R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
170R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
171R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
172R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
173R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
174R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
175R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
176R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
177R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
178R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
179R2676H1CXB647F720.052.14662.510.5070.4750.0181.520.78JAX
180R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
181R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
182R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
183R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
184R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
185R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
186R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
187R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
188R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
189R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
190R1290H2DBA/2J63F720.042.57659.60.5130.4680.0181.30.78JAX
191R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
192R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
193R1687H3KK/HIJ72M530.043.88840.860.4990.4830.0191.860.88JAX
194R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
195R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
196R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
197R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
198R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
199R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
200R2677H1PWD/PhJ65F720.122.76465.490.4620.520.0181.891.16UTM RW
201R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
202R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
203R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
204R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
205R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
+
+
+ +

Downloading all data:

+ +
+

All data links (right-most column above) will be made active as sooon as the global analysis of these data by the Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access probelms.

+
diff --git a/general/datasets/Hc_m2_1206_r/contributors.rtf b/general/datasets/Hc_m2_1206_r/contributors.rtf new file mode 100644 index 0000000..ff0385a --- /dev/null +++ b/general/datasets/Hc_m2_1206_r/contributors.rtf @@ -0,0 +1,3 @@ +
+

All data links (right-most column above) will be made active as sooon as the global analysis of these data by the Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access problems.

+
diff --git a/general/datasets/Hc_m2_1206_r/experiment-design.rtf b/general/datasets/Hc_m2_1206_r/experiment-design.rtf new file mode 100644 index 0000000..23a857d --- /dev/null +++ b/general/datasets/Hc_m2_1206_r/experiment-design.rtf @@ -0,0 +1,9 @@ +
+

Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80 deg. C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols.

+ +

Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. While all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. Seventy-seven of 97 strains are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquots R1291H3 and R1291H4).

+ +

Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays. Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin.

+ +

All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4 deg C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four.

+
diff --git a/general/datasets/Hc_m2_1206_r/notes.rtf b/general/datasets/Hc_m2_1206_r/notes.rtf new file mode 100644 index 0000000..f5f115c --- /dev/null +++ b/general/datasets/Hc_m2_1206_r/notes.rtf @@ -0,0 +1 @@ +

This text file originally generated by RWW and Rupert Overall on January 30, 2007.

diff --git a/general/datasets/Hc_m2_1206_r/platform.rtf b/general/datasets/Hc_m2_1206_r/platform.rtf new file mode 100644 index 0000000..4b34d93 --- /dev/null +++ b/general/datasets/Hc_m2_1206_r/platform.rtf @@ -0,0 +1,3 @@ +
+

Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 16,578 NCBI Reference Sequences. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The annotation used in this data set assigns probes to probe sets based on their alignment to Entrez GeneID sequences using the latest Mouse Genome assembly (Build 36, mm8).

+
diff --git a/general/datasets/Hc_m2_1206_r/processing.rtf b/general/datasets/Hc_m2_1206_r/processing.rtf new file mode 100644 index 0000000..bfc45d4 --- /dev/null +++ b/general/datasets/Hc_m2_1206_r/processing.rtf @@ -0,0 +1,41 @@ +
Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked. +

First pass data quality control: Affymetrix GCOS provides useful array quality control data including:

+ +
    +
  1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter.
  2. +
  3. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control.
  4. +
  5. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion.
  6. +
  7. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios.
  8. +
+ +

The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very senstive to the transformation method that is used. Using the PDNN transform the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For examploe, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one whould include the ssample if one can verify that there are no problems in sample and data set identification.

+ +

The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets.

+ +

DataDesk was used to examine the statistical quality of the of the probe level (CEL) data after step 5 below. DataDesk allows a rapid detection of subsets of probes that are particular sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below.

+ +

Probe set data with custom CDF mapping: The original Affymetrix annotation often has multiple probe sets mapping to a single gene. Some of these redundancies represent alternative splicing products, while some reflect our changing knowledge of the mouse genome. This transformation uses an annotation generated by the Microarray Group at the University of Michigan where each probe has been checked against the latest mouse genome build (Build 36, mm8) and then collated into a new probe set based on its placement within a gene sequence in the Entrez Gene database. The following quote from their Brainarray website explains in more detail:

+ +

Affymetrix GeneChips were based on the best UniGene clustering and genomic sequence information available at the time of chip design. Due to the significant increase in EST/cDNA/Genomic sequence information in the last couple of years, some oligonucleotide probes in these old designs can now be assigned to different genes/transcripts based on the current UniGene clustering and genome annotation. While Affymetrix's current annotation system maps each probe set to the latest UniGene build every couple of months, it does not deal with situations where a subset of oligonucleotide probes in a probe set may be assigned to another gene or more than one gene based on the current UniGene clustering and genome annotation. In addition, a significant portion of UniGene clusters can be represented by more than one oligonucleotide probe set on GeneChips but there is no standard approach to deal with signals from different probe sets representing the same gene. It will be highly desirable to have one probe set-one target relationship for the interpretation of the data.

+ +
    +
  1. CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.
  2. +
  3. Probe level data from the CEL files were transformed with the RMA transform using the Mm74Bv2_Mm_ENTREZG_8 (Version 8) CDF mapping. Data transformation was done in Bioconductor using the affy.justRMA() package and the Mm430_Mm_ENTREZG file as contained in the Bioconductor repository. This yields only one unique probeset for each Entrez GeneID.
  4. +
  5. We computed the Z scores for each array.
  6. +
  7. The arithmetic mean of the values for the set of microarrays for each strain was computed. +
      +
    • The Z scores were recomputed for each strain.
    • +
    • We multiplied all Z scores by 2.
    • +
    • We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level (probe brightness level) corresponds approximately to a 1 unit difference.
    • +
    +
  8. +
+ +

Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged.

+ +

Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers.

+ +

Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain.

+ +

Sex of the samples was validated using sex-specific probe sets such as Xist and Dby.

+
diff --git a/general/datasets/Hc_m2_1206_r/summary.rtf b/general/datasets/Hc_m2_1206_r/summary.rtf new file mode 100644 index 0000000..60da981 --- /dev/null +++ b/general/datasets/Hc_m2_1206_r/summary.rtf @@ -0,0 +1,5 @@ +

PRELIMINARY: The June 2006 Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of 99 genetically diverse strains of mice including 67 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a set of diverse inbred strains, and two reciprocal F1 hybrids.

+ +

The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section.

+ +

Samples were processed using a total of 205 Affymetrix GeneChip Mouse Expression 430 2.0 short oligomer arrays (MOE430 2.0 or M430v2; see GEO platform ID GPL1261), of which 179 passed stringent quality control and error checking . This particular data set was processed using the RMA protocol using a custom CDF. To simplify comparisons among transforms, RMA values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.

diff --git a/general/datasets/Hc_m2_1206_r/tissue.rtf b/general/datasets/Hc_m2_1206_r/tissue.rtf new file mode 100644 index 0000000..2bb700d --- /dev/null +++ b/general/datasets/Hc_m2_1206_r/tissue.rtf @@ -0,0 +1,7 @@ +
+

BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thanks Muriel Davission for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria.

+ +

A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2).

+ +

A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below).

+
diff --git a/general/datasets/Hc_m2cb_1005_m/acknowledgment.rtf b/general/datasets/Hc_m2cb_1005_m/acknowledgment.rtf new file mode 100644 index 0000000..1481cd1 --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_m/acknowledgment.rtf @@ -0,0 +1,50 @@ +

Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort:

+ + + +

 

diff --git a/general/datasets/Hc_m2cb_1005_m/cases.rtf b/general/datasets/Hc_m2cb_1005_m/cases.rtf new file mode 100644 index 0000000..15e6cda --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_m/cases.rtf @@ -0,0 +1,56 @@ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 27 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs.

+ +

Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons:

+ + + +

All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants.

+ +
    +
  1. 129S1/SvImJ
    +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list
  2. +
  3. A/J
    +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel
  4. +
  5. AKR/J
    +     Sequenced by NIEHS; Phenome Project B list
  6. +
  7. BALB/cByJ
    +     Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list
  8. +
  9. BALB/cJ
    +     Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list
  10. +
  11. C3H/HeJ
    +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
  12. +
  13. C57BL/6J
    +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
  14. +
  15. C57BL/6ByJ
    +     Paternal substrain of B6 used to generate the CXB panel
  16. +
  17. CAST/Ei
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
  18. +
  19. DBA/2J
    +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
  20. +
  21. KK/HlJ
    +     Sequenced by Perlegen/NIEHS
  22. +
  23. LG/J
    +     Paternal parent of the LGXSM panel
  24. +
  25. NOD/LtJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
  26. +
  27. NZO/HlLtJ
    +     Collaborative Cross strain
  28. +
  29. PWD/PhJ
    +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
  30. +
  31. PWK/PhJ
    +     Collaborative Cross strain; Phenome Project D list
  32. +
  33. WSB/EiJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
  34. +
  35. B6D2F1 and D2B6F1
    + F1 hybrids generated by crossing C57BL/6J with DBA/2J
  36. +
+ +

We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondrial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels.

+ +

These strains are available from The Jackson Laboratory. BXD43 through BXD100 strains are available from Lu Lu and colleagues at UTHSC.

diff --git a/general/datasets/Hc_m2cb_1005_m/citation.rtf b/general/datasets/Hc_m2cb_1005_m/citation.rtf new file mode 100644 index 0000000..61a0788 --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_m/citation.rtf @@ -0,0 +1 @@ +

Please cite: Overall RW, Kempermann G, Peirce J, Lu L, Goldowitz D, Gage FH, Goodwin S, Smit AB, Airey DC, Rosen GD, Schalkwyk LC, Sutter TR, Nowakowski RS, Whatley S, Williams RW (2009) Genetics of the hippocampal transcriptome in mice: a systematic survey and online neurogenomic resource. Front. Neurogen. 1:3 Full Text HTML doi:10.3389/neuro.15.003.2009

diff --git a/general/datasets/Hc_m2cb_1005_m/contributors.rtf b/general/datasets/Hc_m2cb_1005_m/contributors.rtf new file mode 100644 index 0000000..4108279 --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_m/contributors.rtf @@ -0,0 +1,46 @@ + diff --git a/general/datasets/Hc_m2cb_1005_m/experiment-design.rtf b/general/datasets/Hc_m2cb_1005_m/experiment-design.rtf new file mode 100644 index 0000000..356f1d2 --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_m/experiment-design.rtf @@ -0,0 +1 @@ +

Pooled RNA samples (usually one pool of male hippocampii and one pool of female hippocampii) were prepared using standard protocols. Samples were processed using a total of 206 Affymetrix GeneChip Mouse Expression 430 2.0 short oligomer arrays (MOE430 2.0 or M430v2; see GEO platform ID GPL1261), of which 201 passed quality control and error checking. This particular data set was processed using the PDNN protocol. To simplify comparisons among transforms, PDNN values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.

diff --git a/general/datasets/Hc_m2cb_1005_m/notes.rtf b/general/datasets/Hc_m2cb_1005_m/notes.rtf new file mode 100644 index 0000000..9c11719 --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_m/notes.rtf @@ -0,0 +1,12 @@ +

This study includes the following datasets:

+ + diff --git a/general/datasets/Hc_m2cb_1005_m/platform.rtf b/general/datasets/Hc_m2cb_1005_m/platform.rtf new file mode 100644 index 0000000..6c99bee --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_m/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

diff --git a/general/datasets/Hc_m2cb_1005_m/processing.rtf b/general/datasets/Hc_m2cb_1005_m/processing.rtf new file mode 100644 index 0000000..3698a7b --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_m/processing.rtf @@ -0,0 +1,37 @@ +

Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked.

+ +

First pass data quality control: Affymetrix GCOS provides useful array quality control data including:

+ +
    +
  1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter.
  2. +
  3. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control.
  4. +
  5. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion.
  6. +
  7. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios.
  8. +
+ +

The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very sensitive to the transformation method that is used. Using the PDNN transform, the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For example, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one would include the sample if one can verify that there are no problems in sample and data set identification.

+ +

The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets.

+ +

DataDesk was used to examine the statistical quality of the probe level (CEL) data after step 5 below. DataDesk allows the rapid detection of subsets of probes that are particularly sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below.

+ +

Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.

+ +
    +
  1. We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell.
  2. +
  3. We performed a quantile normalization of the log base 2 values for all arrays using the same initial steps used by the RMA transform.
  4. +
  5. We computed the Z scores for each cell value.
  6. +
  7. We multiplied all Z scores by 2.
  8. +
  9. We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level (probe brightness level) corresponds approximately to a 1 unit difference.
  10. +
  11. Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables.
  12. +
+ +

Probe set data from the CHP file: The expression values were generated using PDNN. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

+ +

Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged.

+ +

Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers.

+ +

Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain.

+ +

Sex of the samples was validated using sex-specific probe sets such as Xist and Dby.

diff --git a/general/datasets/Hc_m2cb_1005_m/summary.rtf b/general/datasets/Hc_m2cb_1005_m/summary.rtf new file mode 100644 index 0000000..1e86e54 --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_m/summary.rtf @@ -0,0 +1,3 @@ +

MOST HIGHLY RECOMMENDED DATA SET (Overall et al., 2009): The Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of 99 genetically diverse strains of mice including 67 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a diverse set of common inbred strains, and two reciprocal F1 hybrids.

+ +

The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section.

diff --git a/general/datasets/Hc_m2cb_1005_m/tissue.rtf b/general/datasets/Hc_m2cb_1005_m/tissue.rtf new file mode 100644 index 0000000..bcea7b0 --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_m/tissue.rtf @@ -0,0 +1,3721 @@ +

BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thank Muriel Davisson for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria.

+ +

A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below). All animals were sacrifice between 9 AM and 5 PM during the light phase.

+ +

A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2).

+ +

RNA Extraction: In brief, we used the RNA STAT-60 protocol (TEL-TEST "B" Bulletin No. 1), steps 5.1A (homogenization of tissue), 5.2 (RNA extraction), 5.3 (RNA precipitation), and 5.4 (RNA wash). In Step 5.4 we stopped after adding 75% ethanol (1 ml per 1 ml RNA STAT-60) and stored the mix at -80°C until further use. Before RNA labeling we thawed samples and proceeded with the remainder of Step 5.4; pelleting, drying, and redissolving the pellet in RNase-free water.

+ +

We finally purify RNA by using Na4OAc before running arrays. Here is the detailed method:

+ +

Final RNA purification protocol

+ +
    +
  1. Add 1/10th volume of 3M Na4OAc , pH 5.2. If the sample was eluted with 100 µl nuclease-free water as suggested, this will be 10 µl of 3M Na4OAc.
  2. +
  3. Add 2.5 volumes of 100% ethanol (250 µl if the RNA was eluted in100 µl). Mix well and incubate at –20°C for 2 hrs.
  4. +
  5. Centrifuge at speed of 13,000 rpm for 20 min at 4°C. Carefully remove and discard the supernatant.
  6. +
  7. Wash the pellet with 800 µl 75% cold ethanol, centrifuge at speed of 8,600 rpm for 5 min, and remove the 75% ethanol. Wash again.
  8. +
  9. To remove the last traces of ethanol, quickly respin the tube, and aspirate any residual fluid.
  10. +
  11. Air dry the pellet.
  12. +
  13. Resuspend pellet in nuclease-free water.
  14. +
+ +

 

+ +

5. PROTOCOL: RNA/mRNA isolation by the RNA STAT-60 method includes the following steps:
+1. Homogenization RNA STAT-60TM (1 ml per 50-100 mg tissue, or 5-10 x 10-6 cells)
+2. RNA Extraction 1 vol. of homogenate +0.2 vol. of chloroform
+3. RNA Precipitation 0.5 vol. of isopropanol
+4. RNA Wash 75% ethanol

+ +

Unless stated otherwise the procedure is carried out at room temperature.

+ +

5.1 HOMOGENIZATION

+ +

A. TISSUES: Homogenize tissues samples in the RNA STAT-60(1 ml/50-100mg tissue) in a glass-Teflon or Polytron homogenizer. Sample volume should not exceed 10% of the volume of the RNA STAT-60 used for homogenization.

+ +

B. CELLS: Cells grown in mono layer are lysed directly in a culture dish by adding the RNA STAT-60TM (1 ml/3.5 cm petri dish) and passing the cell lysate several times through a pipette. Cells grown in suspension are sediment then lysed in the RNA STAT-60TM (1 ml per 5-10 x 106 cells) by repetitive pipetting. Washing calls before addition of the RNA STAT-60TM should be avoided as this increases the possibility of mRNA degradation.

+ +

5.2 RNA EXTRACTION: Following homogenization, store the homogenate for 5 min at room temp to permit the complete dissociation of nucleoprotein complexes. Next, add 0.2 ml of chloroform per 1 ml of the RNA STAT-60, cover the sample tightly, shake vigorously for 15 seconds and let it stay at room temperature for 2-3minutes. Centrifuge the homogenate at 12,000g (max) for 15 minutes at 4°C. Following centrifugation, the homogenate separates into two phases: a lower red phenol chloroform phase and the colorless upper aqueous phase. RNA remains exclusively in the aqueous phase whereas DNA and proteins are in the interferes and organic phase. The volume of the aqueous phase is about 60% of the volume of RNA STAT-60 used for homogenization.

+ +

5.3 RNA PRECIPITATION: Transfer the aqueous phase to a fresh tube and mix with isopropanol. Add 0.5 ml of isopropanol per 1 ml of the RNA STAT-60 used for homogenization. Store samples at room temp for 5-10 minutes and centrifuge at 12,000g (max.) for 10 min at 4°C. RNA precipitate (often visible before centrifugation) forms a white pellet at the bottom of the tube.

+ +

5.4 RNA WASH: Remove supernatant and wash the RNA pellet once with 75% ethanol by vortexing and subsequent centrifugation at 7,500g (max.) for 5 min at 4°C. Add at least 1 ml of 75% ethanol per 1 ml of the RNA STAT-60 used for the initial homogenization.

+ +

At the end of the procedure, dry the RNA pellet briefly by air-drying or in a vacuum (5-10 min.). It is important not to let the RNA pellet dry completely as it will greatly decrease its solubility. Do not use the Speed-Vac for drying. Dissolve the RNA pellet in water or in 1 mm EDTA, pH 7, or 0.5% SDS solution. Vortex or pass the pellet a few times through a pipette tip. An incubation for 10-15 minutes at 55-60oC may be required to dissolve RNA samples. Diethylpyrocarbonate (DEPC) treated RNase-free solutions1 should be used for solubilization of RNA.

+ +

Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80°C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols.

+ +

Replication and Sample Balance: Our goal was to obtain a male sample pool and female sample pool from each isogenic group. While almost all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. All but 5 of 99 strains (BXD55, BXD86, BXD94, BALB/cByJ, and CAST/EiJ) are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquots R1291H3 and R1291H4).

+ +

 

+ +

Sex Balance: Based on the expression of Xist, probe set 1427262_at, DBA/2J and KK/HlJ are represented only by female samples, BXD55, and BALB/cByJ are only represented by a single male sample, BXD74 is represented by two male samples, and BXD86, BXD94, and CAST/EiJ are possibly mixed sex samples. One of the BXD9 samples, array R1523, may be a mixed sex sample pool because the expression of Xist is intermediate.

+ +

Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays. Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin.

+ +

All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4°C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four.

+ +

COMPARISON with December 2005 Data Set: Both BXD14 arrays in the Dec05 data set were found to actually be from BXD23 cases. This error of strain identification has been corrected in the present data set. Four arrays in the Dec05 data set have been deleted because we judged them to be of poor quality (strain_sex_sample_firstreaction_group):

+ +
    +
  1. BXD21_F_1_1_G1
  2. +
  3. BXD23_M_1_1_G7
  4. +
  5. BXD36_M_1_1_G2
  6. +
  7. BXD36_F_1_1_G3
  8. +
+ +

In the Dec05 data set there are a total of 1986 transcripts with QTLs that have LRS scores above 50, whereas in the corrected June06 data sets there are a total of 2074 transcripts with QTLs above 50.

+ +

Data Table 1:

+ +

This table lists all arrays by file order (Index), tube/sample ID, age, sex, batch, and numbers of animals in each sample pool (pool size). The next columns (RMA outlier, scale factor, background average, present, absent, marginal, AFFY-b-ActinMur(3'/5'), AFFY-GapdhMur(3'/5')) are all Affymetrix QC data. Finally, source lists the source colony of the animals. (Final version, fully corrected, by Arthur Centeno, October 2008)

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
indextube IDstrainagesexbatch IDpool sizeRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
1R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
2R1291H3B6D2F166M130.013.52448.540.4870.4940.0191.211.52UTM RW
3R1291H4B6D2F166M technical duplicate of above630.083.89146.690.5120.4690.0191.90.89UTM RW
4R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
5R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
6R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
7R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
8R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
9R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
10R1290H2DBA/2J63F720.042.57659.60.5130.4680.0181.30.78JAX
11R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
12R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
13R1542H1BXD159F730.031.79280.560.4920.4890.0181.570.79Glenn
14R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
15R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
16R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
17R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
18R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
19R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
20R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
21R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
22R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
23R1523H3BXD957MF (mixed)730.143.978.360.4350.5470.0181.360.77UTM RW
24R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
25R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
26R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
27R2674H1BXD1259M730.031.92483.440.5190.4640.0181.210.78Glenn
28R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
29R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
30R1304H2BXD1472F730.033.94661.870.4840.4980.0181.220.77UTM RW
31R1278H2BXD1455M730.064.7567.520.4490.5320.0191.10.73UTM RW
32R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
33R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
34R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
35R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
36R2666H1BXD1960F730.022.49876.20.4950.4860.0191.410.77Glenn
37R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
38R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
39R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
40R2668H1BXD2160M740.072.60544.90.5350.4490.0171.540.76Glenn
41R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
42R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
43R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
44R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
45R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
46R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
47R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
48R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
49R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
50R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
51R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
52R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
53R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
54R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
55R1526H2BXD3157F740.17.26789.540.4350.5470.0171.350.78UTM RW
56R2675H1BXD3257F730.032.26878.010.5020.4780.021.220.78Glenn
57R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
58R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
59R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
60R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
61R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
62R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
63R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
64R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
65R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
66R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
67R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
68R1541H2BXD4258F730.076.78452.120.4830.4990.0171.130.66Glenn
69R1540H1BXD4258M740.032.42375.140.4920.4880.021.480.78Glenn
70R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
71R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
72R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
73R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
74R1403H2BXD4563F720.033.14644.50.5240.4570.0181.410.78Glenn
75R1472H1BXD4565M740.041.65173.310.5430.440.0181.630.74UTM RW
76R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
77R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
78R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
79R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
80R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
81R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
82R2680H1BXD5565M730.071.70779.750.5030.480.0171.911.05UTM RW
83R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
84R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
85R2667H1BXD6170F740.033.3659.040.4950.4880.0181.160.76UTM RW
86R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
87R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
88R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
89R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
90R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
91R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
92R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
93R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
94R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
95R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
96R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
97R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
98R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
99R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
100R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
101R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
102R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
103R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
104R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
105R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
106R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
107R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
108R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
109R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
110R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
111R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
112R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
113R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
114R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
115R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
116R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
117R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
118R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
119R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
120R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
121R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
122R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
123R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
124R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
125R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
126R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
127R2669H2BXD8763F730.072.6157.590.5130.470.0181.60.91UTM RW
128R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
129R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
130R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
131R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
132R1600H2BXD9074M740.033.26151.310.5170.4650.0181.160.75Glenn
133R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
134R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
135R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
136R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
137R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
138R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
139R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
140R2648H1BXD9774F740.021.66482.080.5180.4640.0191.40.78UTM RW
141R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
142R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
143R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
144R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
145R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
146R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
147R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
148R2670H1A/J65F730.043.95146.80.4980.4850.0171.320.75UTM RW
149R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
150R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
151R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
152R1675H1BALB/cByJ83M730.033.40548.130.5090.4740.0181.130.78JAX
153R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
154R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
155R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
156R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
157R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
158R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
159R2673H1C57BL/6ByJ55M730.081.84267.690.5140.4690.0171.750.78JAX
160R2619H1CAST/EiJ64F530.144.07751.870.4550.5280.0182.741.2JAX
161R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
162R1687H3KK/HIJ72F530.043.88840.860.4990.4830.0191.860.88JAX
163R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
164R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
165R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
166R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
167R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
168R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
169R2677H1PWD/PhJ65M720.122.76465.490.4620.520.0181.891.16UTM RW
170R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
171R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
172R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
173R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
174R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
175R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
176R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
177R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
178R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
179R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
180R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
181R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
182R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
183R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
184R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
185R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
186R2676H1CXB647F720.052.14662.510.5070.4750.0181.520.78JAX
187R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
188R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
189R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
190R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
191R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
192R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
193R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
194R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
195R2671H1CXB1053M730.092.34871.450.4880.4940.0182.21.14JAX
196R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
197R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
198R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
199R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
200R2672H1CXB1349F730.031.72279.520.5160.4650.0191.640.75JAX
201R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
+
diff --git a/general/datasets/Hc_m2cb_1005_p/acknowledgment.rtf b/general/datasets/Hc_m2cb_1005_p/acknowledgment.rtf new file mode 100644 index 0000000..1481cd1 --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_p/acknowledgment.rtf @@ -0,0 +1,50 @@ +

Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort:

+ + + +

 

diff --git a/general/datasets/Hc_m2cb_1005_p/cases.rtf b/general/datasets/Hc_m2cb_1005_p/cases.rtf new file mode 100644 index 0000000..15e6cda --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_p/cases.rtf @@ -0,0 +1,56 @@ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 27 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs.

+ +

Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons:

+ + + +

All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants.

+ +
    +
  1. 129S1/SvImJ
    +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list
  2. +
  3. A/J
    +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel
  4. +
  5. AKR/J
    +     Sequenced by NIEHS; Phenome Project B list
  6. +
  7. BALB/cByJ
    +     Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list
  8. +
  9. BALB/cJ
    +     Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list
  10. +
  11. C3H/HeJ
    +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
  12. +
  13. C57BL/6J
    +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
  14. +
  15. C57BL/6ByJ
    +     Paternal substrain of B6 used to generate the CXB panel
  16. +
  17. CAST/Ei
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
  18. +
  19. DBA/2J
    +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
  20. +
  21. KK/HlJ
    +     Sequenced by Perlegen/NIEHS
  22. +
  23. LG/J
    +     Paternal parent of the LGXSM panel
  24. +
  25. NOD/LtJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
  26. +
  27. NZO/HlLtJ
    +     Collaborative Cross strain
  28. +
  29. PWD/PhJ
    +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
  30. +
  31. PWK/PhJ
    +     Collaborative Cross strain; Phenome Project D list
  32. +
  33. WSB/EiJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
  34. +
  35. B6D2F1 and D2B6F1
    + F1 hybrids generated by crossing C57BL/6J with DBA/2J
  36. +
+ +

We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondrial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels.

+ +

These strains are available from The Jackson Laboratory. BXD43 through BXD100 strains are available from Lu Lu and colleagues at UTHSC.

diff --git a/general/datasets/Hc_m2cb_1005_p/citation.rtf b/general/datasets/Hc_m2cb_1005_p/citation.rtf new file mode 100644 index 0000000..61a0788 --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_p/citation.rtf @@ -0,0 +1 @@ +

Please cite: Overall RW, Kempermann G, Peirce J, Lu L, Goldowitz D, Gage FH, Goodwin S, Smit AB, Airey DC, Rosen GD, Schalkwyk LC, Sutter TR, Nowakowski RS, Whatley S, Williams RW (2009) Genetics of the hippocampal transcriptome in mice: a systematic survey and online neurogenomic resource. Front. Neurogen. 1:3 Full Text HTML doi:10.3389/neuro.15.003.2009

diff --git a/general/datasets/Hc_m2cb_1005_p/contributors.rtf b/general/datasets/Hc_m2cb_1005_p/contributors.rtf new file mode 100644 index 0000000..4108279 --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_p/contributors.rtf @@ -0,0 +1,46 @@ + diff --git a/general/datasets/Hc_m2cb_1005_p/experiment-design.rtf b/general/datasets/Hc_m2cb_1005_p/experiment-design.rtf new file mode 100644 index 0000000..356f1d2 --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_p/experiment-design.rtf @@ -0,0 +1 @@ +

Pooled RNA samples (usually one pool of male hippocampii and one pool of female hippocampii) were prepared using standard protocols. Samples were processed using a total of 206 Affymetrix GeneChip Mouse Expression 430 2.0 short oligomer arrays (MOE430 2.0 or M430v2; see GEO platform ID GPL1261), of which 201 passed quality control and error checking. This particular data set was processed using the PDNN protocol. To simplify comparisons among transforms, PDNN values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.

diff --git a/general/datasets/Hc_m2cb_1005_p/notes.rtf b/general/datasets/Hc_m2cb_1005_p/notes.rtf new file mode 100644 index 0000000..9c11719 --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_p/notes.rtf @@ -0,0 +1,12 @@ +

This study includes the following datasets:

+ + diff --git a/general/datasets/Hc_m2cb_1005_p/platform.rtf b/general/datasets/Hc_m2cb_1005_p/platform.rtf new file mode 100644 index 0000000..6c99bee --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_p/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

diff --git a/general/datasets/Hc_m2cb_1005_p/processing.rtf b/general/datasets/Hc_m2cb_1005_p/processing.rtf new file mode 100644 index 0000000..3698a7b --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_p/processing.rtf @@ -0,0 +1,37 @@ +

Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked.

+ +

First pass data quality control: Affymetrix GCOS provides useful array quality control data including:

+ +
    +
  1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter.
  2. +
  3. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control.
  4. +
  5. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion.
  6. +
  7. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios.
  8. +
+ +

The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very sensitive to the transformation method that is used. Using the PDNN transform, the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For example, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one would include the sample if one can verify that there are no problems in sample and data set identification.

+ +

The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets.

+ +

DataDesk was used to examine the statistical quality of the probe level (CEL) data after step 5 below. DataDesk allows the rapid detection of subsets of probes that are particularly sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below.

+ +

Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.

+ +
    +
  1. We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell.
  2. +
  3. We performed a quantile normalization of the log base 2 values for all arrays using the same initial steps used by the RMA transform.
  4. +
  5. We computed the Z scores for each cell value.
  6. +
  7. We multiplied all Z scores by 2.
  8. +
  9. We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level (probe brightness level) corresponds approximately to a 1 unit difference.
  10. +
  11. Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables.
  12. +
+ +

Probe set data from the CHP file: The expression values were generated using PDNN. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

+ +

Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged.

+ +

Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers.

+ +

Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain.

+ +

Sex of the samples was validated using sex-specific probe sets such as Xist and Dby.

diff --git a/general/datasets/Hc_m2cb_1005_p/summary.rtf b/general/datasets/Hc_m2cb_1005_p/summary.rtf new file mode 100644 index 0000000..1e86e54 --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_p/summary.rtf @@ -0,0 +1,3 @@ +

MOST HIGHLY RECOMMENDED DATA SET (Overall et al., 2009): The Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of 99 genetically diverse strains of mice including 67 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a diverse set of common inbred strains, and two reciprocal F1 hybrids.

+ +

The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section.

diff --git a/general/datasets/Hc_m2cb_1005_p/tissue.rtf b/general/datasets/Hc_m2cb_1005_p/tissue.rtf new file mode 100644 index 0000000..bcea7b0 --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_p/tissue.rtf @@ -0,0 +1,3721 @@ +

BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thank Muriel Davisson for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria.

+ +

A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below). All animals were sacrifice between 9 AM and 5 PM during the light phase.

+ +

A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2).

+ +

RNA Extraction: In brief, we used the RNA STAT-60 protocol (TEL-TEST "B" Bulletin No. 1), steps 5.1A (homogenization of tissue), 5.2 (RNA extraction), 5.3 (RNA precipitation), and 5.4 (RNA wash). In Step 5.4 we stopped after adding 75% ethanol (1 ml per 1 ml RNA STAT-60) and stored the mix at -80°C until further use. Before RNA labeling we thawed samples and proceeded with the remainder of Step 5.4; pelleting, drying, and redissolving the pellet in RNase-free water.

+ +

We finally purify RNA by using Na4OAc before running arrays. Here is the detailed method:

+ +

Final RNA purification protocol

+ +
    +
  1. Add 1/10th volume of 3M Na4OAc , pH 5.2. If the sample was eluted with 100 µl nuclease-free water as suggested, this will be 10 µl of 3M Na4OAc.
  2. +
  3. Add 2.5 volumes of 100% ethanol (250 µl if the RNA was eluted in100 µl). Mix well and incubate at –20°C for 2 hrs.
  4. +
  5. Centrifuge at speed of 13,000 rpm for 20 min at 4°C. Carefully remove and discard the supernatant.
  6. +
  7. Wash the pellet with 800 µl 75% cold ethanol, centrifuge at speed of 8,600 rpm for 5 min, and remove the 75% ethanol. Wash again.
  8. +
  9. To remove the last traces of ethanol, quickly respin the tube, and aspirate any residual fluid.
  10. +
  11. Air dry the pellet.
  12. +
  13. Resuspend pellet in nuclease-free water.
  14. +
+ +

 

+ +

5. PROTOCOL: RNA/mRNA isolation by the RNA STAT-60 method includes the following steps:
+1. Homogenization RNA STAT-60TM (1 ml per 50-100 mg tissue, or 5-10 x 10-6 cells)
+2. RNA Extraction 1 vol. of homogenate +0.2 vol. of chloroform
+3. RNA Precipitation 0.5 vol. of isopropanol
+4. RNA Wash 75% ethanol

+ +

Unless stated otherwise the procedure is carried out at room temperature.

+ +

5.1 HOMOGENIZATION

+ +

A. TISSUES: Homogenize tissues samples in the RNA STAT-60(1 ml/50-100mg tissue) in a glass-Teflon or Polytron homogenizer. Sample volume should not exceed 10% of the volume of the RNA STAT-60 used for homogenization.

+ +

B. CELLS: Cells grown in mono layer are lysed directly in a culture dish by adding the RNA STAT-60TM (1 ml/3.5 cm petri dish) and passing the cell lysate several times through a pipette. Cells grown in suspension are sediment then lysed in the RNA STAT-60TM (1 ml per 5-10 x 106 cells) by repetitive pipetting. Washing calls before addition of the RNA STAT-60TM should be avoided as this increases the possibility of mRNA degradation.

+ +

5.2 RNA EXTRACTION: Following homogenization, store the homogenate for 5 min at room temp to permit the complete dissociation of nucleoprotein complexes. Next, add 0.2 ml of chloroform per 1 ml of the RNA STAT-60, cover the sample tightly, shake vigorously for 15 seconds and let it stay at room temperature for 2-3minutes. Centrifuge the homogenate at 12,000g (max) for 15 minutes at 4°C. Following centrifugation, the homogenate separates into two phases: a lower red phenol chloroform phase and the colorless upper aqueous phase. RNA remains exclusively in the aqueous phase whereas DNA and proteins are in the interferes and organic phase. The volume of the aqueous phase is about 60% of the volume of RNA STAT-60 used for homogenization.

+ +

5.3 RNA PRECIPITATION: Transfer the aqueous phase to a fresh tube and mix with isopropanol. Add 0.5 ml of isopropanol per 1 ml of the RNA STAT-60 used for homogenization. Store samples at room temp for 5-10 minutes and centrifuge at 12,000g (max.) for 10 min at 4°C. RNA precipitate (often visible before centrifugation) forms a white pellet at the bottom of the tube.

+ +

5.4 RNA WASH: Remove supernatant and wash the RNA pellet once with 75% ethanol by vortexing and subsequent centrifugation at 7,500g (max.) for 5 min at 4°C. Add at least 1 ml of 75% ethanol per 1 ml of the RNA STAT-60 used for the initial homogenization.

+ +

At the end of the procedure, dry the RNA pellet briefly by air-drying or in a vacuum (5-10 min.). It is important not to let the RNA pellet dry completely as it will greatly decrease its solubility. Do not use the Speed-Vac for drying. Dissolve the RNA pellet in water or in 1 mm EDTA, pH 7, or 0.5% SDS solution. Vortex or pass the pellet a few times through a pipette tip. An incubation for 10-15 minutes at 55-60oC may be required to dissolve RNA samples. Diethylpyrocarbonate (DEPC) treated RNase-free solutions1 should be used for solubilization of RNA.

+ +

Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80°C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols.

+ +

Replication and Sample Balance: Our goal was to obtain a male sample pool and female sample pool from each isogenic group. While almost all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. All but 5 of 99 strains (BXD55, BXD86, BXD94, BALB/cByJ, and CAST/EiJ) are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquots R1291H3 and R1291H4).

+ +

 

+ +

Sex Balance: Based on the expression of Xist, probe set 1427262_at, DBA/2J and KK/HlJ are represented only by female samples, BXD55, and BALB/cByJ are only represented by a single male sample, BXD74 is represented by two male samples, and BXD86, BXD94, and CAST/EiJ are possibly mixed sex samples. One of the BXD9 samples, array R1523, may be a mixed sex sample pool because the expression of Xist is intermediate.

+ +

Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays. Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin.

+ +

All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4°C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four.

+ +

COMPARISON with December 2005 Data Set: Both BXD14 arrays in the Dec05 data set were found to actually be from BXD23 cases. This error of strain identification has been corrected in the present data set. Four arrays in the Dec05 data set have been deleted because we judged them to be of poor quality (strain_sex_sample_firstreaction_group):

+ +
    +
  1. BXD21_F_1_1_G1
  2. +
  3. BXD23_M_1_1_G7
  4. +
  5. BXD36_M_1_1_G2
  6. +
  7. BXD36_F_1_1_G3
  8. +
+ +

In the Dec05 data set there are a total of 1986 transcripts with QTLs that have LRS scores above 50, whereas in the corrected June06 data sets there are a total of 2074 transcripts with QTLs above 50.

+ +

Data Table 1:

+ +

This table lists all arrays by file order (Index), tube/sample ID, age, sex, batch, and numbers of animals in each sample pool (pool size). The next columns (RMA outlier, scale factor, background average, present, absent, marginal, AFFY-b-ActinMur(3'/5'), AFFY-GapdhMur(3'/5')) are all Affymetrix QC data. Finally, source lists the source colony of the animals. (Final version, fully corrected, by Arthur Centeno, October 2008)

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
indextube IDstrainagesexbatch IDpool sizeRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
1R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
2R1291H3B6D2F166M130.013.52448.540.4870.4940.0191.211.52UTM RW
3R1291H4B6D2F166M technical duplicate of above630.083.89146.690.5120.4690.0191.90.89UTM RW
4R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
5R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
6R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
7R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
8R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
9R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
10R1290H2DBA/2J63F720.042.57659.60.5130.4680.0181.30.78JAX
11R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
12R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
13R1542H1BXD159F730.031.79280.560.4920.4890.0181.570.79Glenn
14R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
15R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
16R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
17R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
18R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
19R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
20R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
21R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
22R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
23R1523H3BXD957MF (mixed)730.143.978.360.4350.5470.0181.360.77UTM RW
24R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
25R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
26R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
27R2674H1BXD1259M730.031.92483.440.5190.4640.0181.210.78Glenn
28R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
29R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
30R1304H2BXD1472F730.033.94661.870.4840.4980.0181.220.77UTM RW
31R1278H2BXD1455M730.064.7567.520.4490.5320.0191.10.73UTM RW
32R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
33R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
34R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
35R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
36R2666H1BXD1960F730.022.49876.20.4950.4860.0191.410.77Glenn
37R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
38R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
39R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
40R2668H1BXD2160M740.072.60544.90.5350.4490.0171.540.76Glenn
41R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
42R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
43R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
44R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
45R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
46R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
47R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
48R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
49R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
50R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
51R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
52R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
53R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
54R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
55R1526H2BXD3157F740.17.26789.540.4350.5470.0171.350.78UTM RW
56R2675H1BXD3257F730.032.26878.010.5020.4780.021.220.78Glenn
57R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
58R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
59R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
60R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
61R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
62R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
63R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
64R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
65R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
66R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
67R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
68R1541H2BXD4258F730.076.78452.120.4830.4990.0171.130.66Glenn
69R1540H1BXD4258M740.032.42375.140.4920.4880.021.480.78Glenn
70R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
71R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
72R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
73R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
74R1403H2BXD4563F720.033.14644.50.5240.4570.0181.410.78Glenn
75R1472H1BXD4565M740.041.65173.310.5430.440.0181.630.74UTM RW
76R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
77R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
78R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
79R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
80R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
81R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
82R2680H1BXD5565M730.071.70779.750.5030.480.0171.911.05UTM RW
83R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
84R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
85R2667H1BXD6170F740.033.3659.040.4950.4880.0181.160.76UTM RW
86R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
87R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
88R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
89R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
90R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
91R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
92R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
93R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
94R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
95R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
96R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
97R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
98R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
99R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
100R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
101R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
102R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
103R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
104R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
105R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
106R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
107R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
108R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
109R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
110R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
111R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
112R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
113R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
114R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
115R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
116R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
117R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
118R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
119R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
120R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
121R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
122R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
123R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
124R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
125R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
126R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
127R2669H2BXD8763F730.072.6157.590.5130.470.0181.60.91UTM RW
128R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
129R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
130R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
131R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
132R1600H2BXD9074M740.033.26151.310.5170.4650.0181.160.75Glenn
133R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
134R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
135R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
136R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
137R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
138R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
139R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
140R2648H1BXD9774F740.021.66482.080.5180.4640.0191.40.78UTM RW
141R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
142R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
143R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
144R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
145R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
146R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
147R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
148R2670H1A/J65F730.043.95146.80.4980.4850.0171.320.75UTM RW
149R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
150R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
151R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
152R1675H1BALB/cByJ83M730.033.40548.130.5090.4740.0181.130.78JAX
153R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
154R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
155R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
156R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
157R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
158R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
159R2673H1C57BL/6ByJ55M730.081.84267.690.5140.4690.0171.750.78JAX
160R2619H1CAST/EiJ64F530.144.07751.870.4550.5280.0182.741.2JAX
161R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
162R1687H3KK/HIJ72F530.043.88840.860.4990.4830.0191.860.88JAX
163R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
164R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
165R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
166R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
167R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
168R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
169R2677H1PWD/PhJ65M720.122.76465.490.4620.520.0181.891.16UTM RW
170R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
171R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
172R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
173R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
174R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
175R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
176R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
177R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
178R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
179R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
180R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
181R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
182R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
183R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
184R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
185R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
186R2676H1CXB647F720.052.14662.510.5070.4750.0181.520.78JAX
187R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
188R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
189R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
190R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
191R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
192R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
193R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
194R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
195R2671H1CXB1053M730.092.34871.450.4880.4940.0182.21.14JAX
196R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
197R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
198R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
199R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
200R2672H1CXB1349F730.031.72279.520.5160.4650.0191.640.75JAX
201R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
+
diff --git a/general/datasets/Hc_m2cb_1005_r/acknowledgment.rtf b/general/datasets/Hc_m2cb_1005_r/acknowledgment.rtf new file mode 100644 index 0000000..1481cd1 --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_r/acknowledgment.rtf @@ -0,0 +1,50 @@ +

Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort:

+ + + +

 

diff --git a/general/datasets/Hc_m2cb_1005_r/cases.rtf b/general/datasets/Hc_m2cb_1005_r/cases.rtf new file mode 100644 index 0000000..15e6cda --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_r/cases.rtf @@ -0,0 +1,56 @@ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 27 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs.

+ +

Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons:

+ + + +

All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants.

+ +
    +
  1. 129S1/SvImJ
    +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list
  2. +
  3. A/J
    +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel
  4. +
  5. AKR/J
    +     Sequenced by NIEHS; Phenome Project B list
  6. +
  7. BALB/cByJ
    +     Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list
  8. +
  9. BALB/cJ
    +     Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list
  10. +
  11. C3H/HeJ
    +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
  12. +
  13. C57BL/6J
    +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
  14. +
  15. C57BL/6ByJ
    +     Paternal substrain of B6 used to generate the CXB panel
  16. +
  17. CAST/Ei
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
  18. +
  19. DBA/2J
    +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
  20. +
  21. KK/HlJ
    +     Sequenced by Perlegen/NIEHS
  22. +
  23. LG/J
    +     Paternal parent of the LGXSM panel
  24. +
  25. NOD/LtJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
  26. +
  27. NZO/HlLtJ
    +     Collaborative Cross strain
  28. +
  29. PWD/PhJ
    +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
  30. +
  31. PWK/PhJ
    +     Collaborative Cross strain; Phenome Project D list
  32. +
  33. WSB/EiJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
  34. +
  35. B6D2F1 and D2B6F1
    + F1 hybrids generated by crossing C57BL/6J with DBA/2J
  36. +
+ +

We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondrial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels.

+ +

These strains are available from The Jackson Laboratory. BXD43 through BXD100 strains are available from Lu Lu and colleagues at UTHSC.

diff --git a/general/datasets/Hc_m2cb_1005_r/citation.rtf b/general/datasets/Hc_m2cb_1005_r/citation.rtf new file mode 100644 index 0000000..61a0788 --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_r/citation.rtf @@ -0,0 +1 @@ +

Please cite: Overall RW, Kempermann G, Peirce J, Lu L, Goldowitz D, Gage FH, Goodwin S, Smit AB, Airey DC, Rosen GD, Schalkwyk LC, Sutter TR, Nowakowski RS, Whatley S, Williams RW (2009) Genetics of the hippocampal transcriptome in mice: a systematic survey and online neurogenomic resource. Front. Neurogen. 1:3 Full Text HTML doi:10.3389/neuro.15.003.2009

diff --git a/general/datasets/Hc_m2cb_1005_r/contributors.rtf b/general/datasets/Hc_m2cb_1005_r/contributors.rtf new file mode 100644 index 0000000..4108279 --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_r/contributors.rtf @@ -0,0 +1,46 @@ + diff --git a/general/datasets/Hc_m2cb_1005_r/experiment-design.rtf b/general/datasets/Hc_m2cb_1005_r/experiment-design.rtf new file mode 100644 index 0000000..356f1d2 --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_r/experiment-design.rtf @@ -0,0 +1 @@ +

Pooled RNA samples (usually one pool of male hippocampii and one pool of female hippocampii) were prepared using standard protocols. Samples were processed using a total of 206 Affymetrix GeneChip Mouse Expression 430 2.0 short oligomer arrays (MOE430 2.0 or M430v2; see GEO platform ID GPL1261), of which 201 passed quality control and error checking. This particular data set was processed using the PDNN protocol. To simplify comparisons among transforms, PDNN values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.

diff --git a/general/datasets/Hc_m2cb_1005_r/notes.rtf b/general/datasets/Hc_m2cb_1005_r/notes.rtf new file mode 100644 index 0000000..9c11719 --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_r/notes.rtf @@ -0,0 +1,12 @@ +

This study includes the following datasets:

+ + diff --git a/general/datasets/Hc_m2cb_1005_r/platform.rtf b/general/datasets/Hc_m2cb_1005_r/platform.rtf new file mode 100644 index 0000000..6c99bee --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_r/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

diff --git a/general/datasets/Hc_m2cb_1005_r/processing.rtf b/general/datasets/Hc_m2cb_1005_r/processing.rtf new file mode 100644 index 0000000..3698a7b --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_r/processing.rtf @@ -0,0 +1,37 @@ +

Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked.

+ +

First pass data quality control: Affymetrix GCOS provides useful array quality control data including:

+ +
    +
  1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter.
  2. +
  3. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control.
  4. +
  5. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion.
  6. +
  7. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios.
  8. +
+ +

The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very sensitive to the transformation method that is used. Using the PDNN transform, the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For example, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one would include the sample if one can verify that there are no problems in sample and data set identification.

+ +

The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets.

+ +

DataDesk was used to examine the statistical quality of the probe level (CEL) data after step 5 below. DataDesk allows the rapid detection of subsets of probes that are particularly sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below.

+ +

Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.

+ +
    +
  1. We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell.
  2. +
  3. We performed a quantile normalization of the log base 2 values for all arrays using the same initial steps used by the RMA transform.
  4. +
  5. We computed the Z scores for each cell value.
  6. +
  7. We multiplied all Z scores by 2.
  8. +
  9. We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level (probe brightness level) corresponds approximately to a 1 unit difference.
  10. +
  11. Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables.
  12. +
+ +

Probe set data from the CHP file: The expression values were generated using PDNN. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

+ +

Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged.

+ +

Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers.

+ +

Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain.

+ +

Sex of the samples was validated using sex-specific probe sets such as Xist and Dby.

diff --git a/general/datasets/Hc_m2cb_1005_r/summary.rtf b/general/datasets/Hc_m2cb_1005_r/summary.rtf new file mode 100644 index 0000000..1e86e54 --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_r/summary.rtf @@ -0,0 +1,3 @@ +

MOST HIGHLY RECOMMENDED DATA SET (Overall et al., 2009): The Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of 99 genetically diverse strains of mice including 67 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a diverse set of common inbred strains, and two reciprocal F1 hybrids.

+ +

The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section.

diff --git a/general/datasets/Hc_m2cb_1005_r/tissue.rtf b/general/datasets/Hc_m2cb_1005_r/tissue.rtf new file mode 100644 index 0000000..bcea7b0 --- /dev/null +++ b/general/datasets/Hc_m2cb_1005_r/tissue.rtf @@ -0,0 +1,3721 @@ +

BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thank Muriel Davisson for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria.

+ +

A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below). All animals were sacrifice between 9 AM and 5 PM during the light phase.

+ +

A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2).

+ +

RNA Extraction: In brief, we used the RNA STAT-60 protocol (TEL-TEST "B" Bulletin No. 1), steps 5.1A (homogenization of tissue), 5.2 (RNA extraction), 5.3 (RNA precipitation), and 5.4 (RNA wash). In Step 5.4 we stopped after adding 75% ethanol (1 ml per 1 ml RNA STAT-60) and stored the mix at -80°C until further use. Before RNA labeling we thawed samples and proceeded with the remainder of Step 5.4; pelleting, drying, and redissolving the pellet in RNase-free water.

+ +

We finally purify RNA by using Na4OAc before running arrays. Here is the detailed method:

+ +

Final RNA purification protocol

+ +
    +
  1. Add 1/10th volume of 3M Na4OAc , pH 5.2. If the sample was eluted with 100 µl nuclease-free water as suggested, this will be 10 µl of 3M Na4OAc.
  2. +
  3. Add 2.5 volumes of 100% ethanol (250 µl if the RNA was eluted in100 µl). Mix well and incubate at –20°C for 2 hrs.
  4. +
  5. Centrifuge at speed of 13,000 rpm for 20 min at 4°C. Carefully remove and discard the supernatant.
  6. +
  7. Wash the pellet with 800 µl 75% cold ethanol, centrifuge at speed of 8,600 rpm for 5 min, and remove the 75% ethanol. Wash again.
  8. +
  9. To remove the last traces of ethanol, quickly respin the tube, and aspirate any residual fluid.
  10. +
  11. Air dry the pellet.
  12. +
  13. Resuspend pellet in nuclease-free water.
  14. +
+ +

 

+ +

5. PROTOCOL: RNA/mRNA isolation by the RNA STAT-60 method includes the following steps:
+1. Homogenization RNA STAT-60TM (1 ml per 50-100 mg tissue, or 5-10 x 10-6 cells)
+2. RNA Extraction 1 vol. of homogenate +0.2 vol. of chloroform
+3. RNA Precipitation 0.5 vol. of isopropanol
+4. RNA Wash 75% ethanol

+ +

Unless stated otherwise the procedure is carried out at room temperature.

+ +

5.1 HOMOGENIZATION

+ +

A. TISSUES: Homogenize tissues samples in the RNA STAT-60(1 ml/50-100mg tissue) in a glass-Teflon or Polytron homogenizer. Sample volume should not exceed 10% of the volume of the RNA STAT-60 used for homogenization.

+ +

B. CELLS: Cells grown in mono layer are lysed directly in a culture dish by adding the RNA STAT-60TM (1 ml/3.5 cm petri dish) and passing the cell lysate several times through a pipette. Cells grown in suspension are sediment then lysed in the RNA STAT-60TM (1 ml per 5-10 x 106 cells) by repetitive pipetting. Washing calls before addition of the RNA STAT-60TM should be avoided as this increases the possibility of mRNA degradation.

+ +

5.2 RNA EXTRACTION: Following homogenization, store the homogenate for 5 min at room temp to permit the complete dissociation of nucleoprotein complexes. Next, add 0.2 ml of chloroform per 1 ml of the RNA STAT-60, cover the sample tightly, shake vigorously for 15 seconds and let it stay at room temperature for 2-3minutes. Centrifuge the homogenate at 12,000g (max) for 15 minutes at 4°C. Following centrifugation, the homogenate separates into two phases: a lower red phenol chloroform phase and the colorless upper aqueous phase. RNA remains exclusively in the aqueous phase whereas DNA and proteins are in the interferes and organic phase. The volume of the aqueous phase is about 60% of the volume of RNA STAT-60 used for homogenization.

+ +

5.3 RNA PRECIPITATION: Transfer the aqueous phase to a fresh tube and mix with isopropanol. Add 0.5 ml of isopropanol per 1 ml of the RNA STAT-60 used for homogenization. Store samples at room temp for 5-10 minutes and centrifuge at 12,000g (max.) for 10 min at 4°C. RNA precipitate (often visible before centrifugation) forms a white pellet at the bottom of the tube.

+ +

5.4 RNA WASH: Remove supernatant and wash the RNA pellet once with 75% ethanol by vortexing and subsequent centrifugation at 7,500g (max.) for 5 min at 4°C. Add at least 1 ml of 75% ethanol per 1 ml of the RNA STAT-60 used for the initial homogenization.

+ +

At the end of the procedure, dry the RNA pellet briefly by air-drying or in a vacuum (5-10 min.). It is important not to let the RNA pellet dry completely as it will greatly decrease its solubility. Do not use the Speed-Vac for drying. Dissolve the RNA pellet in water or in 1 mm EDTA, pH 7, or 0.5% SDS solution. Vortex or pass the pellet a few times through a pipette tip. An incubation for 10-15 minutes at 55-60oC may be required to dissolve RNA samples. Diethylpyrocarbonate (DEPC) treated RNase-free solutions1 should be used for solubilization of RNA.

+ +

Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80°C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols.

+ +

Replication and Sample Balance: Our goal was to obtain a male sample pool and female sample pool from each isogenic group. While almost all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. All but 5 of 99 strains (BXD55, BXD86, BXD94, BALB/cByJ, and CAST/EiJ) are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquots R1291H3 and R1291H4).

+ +

 

+ +

Sex Balance: Based on the expression of Xist, probe set 1427262_at, DBA/2J and KK/HlJ are represented only by female samples, BXD55, and BALB/cByJ are only represented by a single male sample, BXD74 is represented by two male samples, and BXD86, BXD94, and CAST/EiJ are possibly mixed sex samples. One of the BXD9 samples, array R1523, may be a mixed sex sample pool because the expression of Xist is intermediate.

+ +

Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays. Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin.

+ +

All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4°C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four.

+ +

COMPARISON with December 2005 Data Set: Both BXD14 arrays in the Dec05 data set were found to actually be from BXD23 cases. This error of strain identification has been corrected in the present data set. Four arrays in the Dec05 data set have been deleted because we judged them to be of poor quality (strain_sex_sample_firstreaction_group):

+ +
    +
  1. BXD21_F_1_1_G1
  2. +
  3. BXD23_M_1_1_G7
  4. +
  5. BXD36_M_1_1_G2
  6. +
  7. BXD36_F_1_1_G3
  8. +
+ +

In the Dec05 data set there are a total of 1986 transcripts with QTLs that have LRS scores above 50, whereas in the corrected June06 data sets there are a total of 2074 transcripts with QTLs above 50.

+ +

Data Table 1:

+ +

This table lists all arrays by file order (Index), tube/sample ID, age, sex, batch, and numbers of animals in each sample pool (pool size). The next columns (RMA outlier, scale factor, background average, present, absent, marginal, AFFY-b-ActinMur(3'/5'), AFFY-GapdhMur(3'/5')) are all Affymetrix QC data. Finally, source lists the source colony of the animals. (Final version, fully corrected, by Arthur Centeno, October 2008)

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
indextube IDstrainagesexbatch IDpool sizeRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
1R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
2R1291H3B6D2F166M130.013.52448.540.4870.4940.0191.211.52UTM RW
3R1291H4B6D2F166M technical duplicate of above630.083.89146.690.5120.4690.0191.90.89UTM RW
4R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
5R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
6R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
7R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
8R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
9R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
10R1290H2DBA/2J63F720.042.57659.60.5130.4680.0181.30.78JAX
11R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
12R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
13R1542H1BXD159F730.031.79280.560.4920.4890.0181.570.79Glenn
14R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
15R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
16R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
17R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
18R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
19R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
20R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
21R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
22R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
23R1523H3BXD957MF (mixed)730.143.978.360.4350.5470.0181.360.77UTM RW
24R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
25R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
26R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
27R2674H1BXD1259M730.031.92483.440.5190.4640.0181.210.78Glenn
28R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
29R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
30R1304H2BXD1472F730.033.94661.870.4840.4980.0181.220.77UTM RW
31R1278H2BXD1455M730.064.7567.520.4490.5320.0191.10.73UTM RW
32R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
33R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
34R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
35R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
36R2666H1BXD1960F730.022.49876.20.4950.4860.0191.410.77Glenn
37R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
38R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
39R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
40R2668H1BXD2160M740.072.60544.90.5350.4490.0171.540.76Glenn
41R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
42R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
43R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
44R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
45R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
46R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
47R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
48R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
49R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
50R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
51R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
52R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
53R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
54R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
55R1526H2BXD3157F740.17.26789.540.4350.5470.0171.350.78UTM RW
56R2675H1BXD3257F730.032.26878.010.5020.4780.021.220.78Glenn
57R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
58R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
59R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
60R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
61R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
62R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
63R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
64R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
65R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
66R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
67R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
68R1541H2BXD4258F730.076.78452.120.4830.4990.0171.130.66Glenn
69R1540H1BXD4258M740.032.42375.140.4920.4880.021.480.78Glenn
70R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
71R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
72R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
73R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
74R1403H2BXD4563F720.033.14644.50.5240.4570.0181.410.78Glenn
75R1472H1BXD4565M740.041.65173.310.5430.440.0181.630.74UTM RW
76R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
77R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
78R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
79R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
80R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
81R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
82R2680H1BXD5565M730.071.70779.750.5030.480.0171.911.05UTM RW
83R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
84R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
85R2667H1BXD6170F740.033.3659.040.4950.4880.0181.160.76UTM RW
86R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
87R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
88R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
89R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
90R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
91R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
92R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
93R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
94R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
95R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
96R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
97R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
98R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
99R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
100R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
101R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
102R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
103R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
104R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
105R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
106R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
107R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
108R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
109R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
110R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
111R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
112R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
113R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
114R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
115R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
116R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
117R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
118R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
119R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
120R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
121R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
122R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
123R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
124R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
125R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
126R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
127R2669H2BXD8763F730.072.6157.590.5130.470.0181.60.91UTM RW
128R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
129R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
130R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
131R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
132R1600H2BXD9074M740.033.26151.310.5170.4650.0181.160.75Glenn
133R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
134R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
135R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
136R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
137R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
138R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
139R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
140R2648H1BXD9774F740.021.66482.080.5180.4640.0191.40.78UTM RW
141R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
142R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
143R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
144R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
145R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
146R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
147R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
148R2670H1A/J65F730.043.95146.80.4980.4850.0171.320.75UTM RW
149R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
150R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
151R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
152R1675H1BALB/cByJ83M730.033.40548.130.5090.4740.0181.130.78JAX
153R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
154R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
155R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
156R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
157R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
158R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
159R2673H1C57BL/6ByJ55M730.081.84267.690.5140.4690.0171.750.78JAX
160R2619H1CAST/EiJ64F530.144.07751.870.4550.5280.0182.741.2JAX
161R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
162R1687H3KK/HIJ72F530.043.88840.860.4990.4830.0191.860.88JAX
163R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
164R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
165R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
166R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
167R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
168R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
169R2677H1PWD/PhJ65M720.122.76465.490.4620.520.0181.891.16UTM RW
170R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
171R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
172R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
173R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
174R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
175R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
176R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
177R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
178R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
179R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
180R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
181R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
182R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
183R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
184R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
185R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
186R2676H1CXB647F720.052.14662.510.5070.4750.0181.520.78JAX
187R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
188R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
189R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
190R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
191R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
192R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
193R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
194R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
195R2671H1CXB1053M730.092.34871.450.4880.4940.0182.21.14JAX
196R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
197R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
198R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
199R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
200R2672H1CXB1349F730.031.72279.520.5160.4650.0191.640.75JAX
201R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
+
diff --git a/general/datasets/Hc_m2cb_1205_p/acknowledgment.rtf b/general/datasets/Hc_m2cb_1205_p/acknowledgment.rtf new file mode 100644 index 0000000..1481cd1 --- /dev/null +++ b/general/datasets/Hc_m2cb_1205_p/acknowledgment.rtf @@ -0,0 +1,50 @@ +

Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort:

+ + + +

 

diff --git a/general/datasets/Hc_m2cb_1205_p/cases.rtf b/general/datasets/Hc_m2cb_1205_p/cases.rtf new file mode 100644 index 0000000..15e6cda --- /dev/null +++ b/general/datasets/Hc_m2cb_1205_p/cases.rtf @@ -0,0 +1,56 @@ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 27 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs.

+ +

Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons:

+ + + +

All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants.

+ +
    +
  1. 129S1/SvImJ
    +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list
  2. +
  3. A/J
    +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel
  4. +
  5. AKR/J
    +     Sequenced by NIEHS; Phenome Project B list
  6. +
  7. BALB/cByJ
    +     Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list
  8. +
  9. BALB/cJ
    +     Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list
  10. +
  11. C3H/HeJ
    +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
  12. +
  13. C57BL/6J
    +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
  14. +
  15. C57BL/6ByJ
    +     Paternal substrain of B6 used to generate the CXB panel
  16. +
  17. CAST/Ei
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
  18. +
  19. DBA/2J
    +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
  20. +
  21. KK/HlJ
    +     Sequenced by Perlegen/NIEHS
  22. +
  23. LG/J
    +     Paternal parent of the LGXSM panel
  24. +
  25. NOD/LtJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
  26. +
  27. NZO/HlLtJ
    +     Collaborative Cross strain
  28. +
  29. PWD/PhJ
    +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
  30. +
  31. PWK/PhJ
    +     Collaborative Cross strain; Phenome Project D list
  32. +
  33. WSB/EiJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
  34. +
  35. B6D2F1 and D2B6F1
    + F1 hybrids generated by crossing C57BL/6J with DBA/2J
  36. +
+ +

We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondrial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels.

+ +

These strains are available from The Jackson Laboratory. BXD43 through BXD100 strains are available from Lu Lu and colleagues at UTHSC.

diff --git a/general/datasets/Hc_m2cb_1205_p/citation.rtf b/general/datasets/Hc_m2cb_1205_p/citation.rtf new file mode 100644 index 0000000..61a0788 --- /dev/null +++ b/general/datasets/Hc_m2cb_1205_p/citation.rtf @@ -0,0 +1 @@ +

Please cite: Overall RW, Kempermann G, Peirce J, Lu L, Goldowitz D, Gage FH, Goodwin S, Smit AB, Airey DC, Rosen GD, Schalkwyk LC, Sutter TR, Nowakowski RS, Whatley S, Williams RW (2009) Genetics of the hippocampal transcriptome in mice: a systematic survey and online neurogenomic resource. Front. Neurogen. 1:3 Full Text HTML doi:10.3389/neuro.15.003.2009

diff --git a/general/datasets/Hc_m2cb_1205_p/contributors.rtf b/general/datasets/Hc_m2cb_1205_p/contributors.rtf new file mode 100644 index 0000000..4108279 --- /dev/null +++ b/general/datasets/Hc_m2cb_1205_p/contributors.rtf @@ -0,0 +1,46 @@ + diff --git a/general/datasets/Hc_m2cb_1205_p/experiment-design.rtf b/general/datasets/Hc_m2cb_1205_p/experiment-design.rtf new file mode 100644 index 0000000..356f1d2 --- /dev/null +++ b/general/datasets/Hc_m2cb_1205_p/experiment-design.rtf @@ -0,0 +1 @@ +

Pooled RNA samples (usually one pool of male hippocampii and one pool of female hippocampii) were prepared using standard protocols. Samples were processed using a total of 206 Affymetrix GeneChip Mouse Expression 430 2.0 short oligomer arrays (MOE430 2.0 or M430v2; see GEO platform ID GPL1261), of which 201 passed quality control and error checking. This particular data set was processed using the PDNN protocol. To simplify comparisons among transforms, PDNN values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.

diff --git a/general/datasets/Hc_m2cb_1205_p/notes.rtf b/general/datasets/Hc_m2cb_1205_p/notes.rtf new file mode 100644 index 0000000..9c11719 --- /dev/null +++ b/general/datasets/Hc_m2cb_1205_p/notes.rtf @@ -0,0 +1,12 @@ +

This study includes the following datasets:

+ + diff --git a/general/datasets/Hc_m2cb_1205_p/platform.rtf b/general/datasets/Hc_m2cb_1205_p/platform.rtf new file mode 100644 index 0000000..6c99bee --- /dev/null +++ b/general/datasets/Hc_m2cb_1205_p/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

diff --git a/general/datasets/Hc_m2cb_1205_p/processing.rtf b/general/datasets/Hc_m2cb_1205_p/processing.rtf new file mode 100644 index 0000000..3698a7b --- /dev/null +++ b/general/datasets/Hc_m2cb_1205_p/processing.rtf @@ -0,0 +1,37 @@ +

Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked.

+ +

First pass data quality control: Affymetrix GCOS provides useful array quality control data including:

+ +
    +
  1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter.
  2. +
  3. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control.
  4. +
  5. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion.
  6. +
  7. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios.
  8. +
+ +

The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very sensitive to the transformation method that is used. Using the PDNN transform, the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For example, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one would include the sample if one can verify that there are no problems in sample and data set identification.

+ +

The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets.

+ +

DataDesk was used to examine the statistical quality of the probe level (CEL) data after step 5 below. DataDesk allows the rapid detection of subsets of probes that are particularly sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below.

+ +

Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.

+ +
    +
  1. We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell.
  2. +
  3. We performed a quantile normalization of the log base 2 values for all arrays using the same initial steps used by the RMA transform.
  4. +
  5. We computed the Z scores for each cell value.
  6. +
  7. We multiplied all Z scores by 2.
  8. +
  9. We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level (probe brightness level) corresponds approximately to a 1 unit difference.
  10. +
  11. Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables.
  12. +
+ +

Probe set data from the CHP file: The expression values were generated using PDNN. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

+ +

Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged.

+ +

Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers.

+ +

Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain.

+ +

Sex of the samples was validated using sex-specific probe sets such as Xist and Dby.

diff --git a/general/datasets/Hc_m2cb_1205_p/summary.rtf b/general/datasets/Hc_m2cb_1205_p/summary.rtf new file mode 100644 index 0000000..1e86e54 --- /dev/null +++ b/general/datasets/Hc_m2cb_1205_p/summary.rtf @@ -0,0 +1,3 @@ +

MOST HIGHLY RECOMMENDED DATA SET (Overall et al., 2009): The Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of 99 genetically diverse strains of mice including 67 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a diverse set of common inbred strains, and two reciprocal F1 hybrids.

+ +

The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section.

diff --git a/general/datasets/Hc_m2cb_1205_p/tissue.rtf b/general/datasets/Hc_m2cb_1205_p/tissue.rtf new file mode 100644 index 0000000..bcea7b0 --- /dev/null +++ b/general/datasets/Hc_m2cb_1205_p/tissue.rtf @@ -0,0 +1,3721 @@ +

BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thank Muriel Davisson for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria.

+ +

A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below). All animals were sacrifice between 9 AM and 5 PM during the light phase.

+ +

A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2).

+ +

RNA Extraction: In brief, we used the RNA STAT-60 protocol (TEL-TEST "B" Bulletin No. 1), steps 5.1A (homogenization of tissue), 5.2 (RNA extraction), 5.3 (RNA precipitation), and 5.4 (RNA wash). In Step 5.4 we stopped after adding 75% ethanol (1 ml per 1 ml RNA STAT-60) and stored the mix at -80°C until further use. Before RNA labeling we thawed samples and proceeded with the remainder of Step 5.4; pelleting, drying, and redissolving the pellet in RNase-free water.

+ +

We finally purify RNA by using Na4OAc before running arrays. Here is the detailed method:

+ +

Final RNA purification protocol

+ +
    +
  1. Add 1/10th volume of 3M Na4OAc , pH 5.2. If the sample was eluted with 100 µl nuclease-free water as suggested, this will be 10 µl of 3M Na4OAc.
  2. +
  3. Add 2.5 volumes of 100% ethanol (250 µl if the RNA was eluted in100 µl). Mix well and incubate at –20°C for 2 hrs.
  4. +
  5. Centrifuge at speed of 13,000 rpm for 20 min at 4°C. Carefully remove and discard the supernatant.
  6. +
  7. Wash the pellet with 800 µl 75% cold ethanol, centrifuge at speed of 8,600 rpm for 5 min, and remove the 75% ethanol. Wash again.
  8. +
  9. To remove the last traces of ethanol, quickly respin the tube, and aspirate any residual fluid.
  10. +
  11. Air dry the pellet.
  12. +
  13. Resuspend pellet in nuclease-free water.
  14. +
+ +

 

+ +

5. PROTOCOL: RNA/mRNA isolation by the RNA STAT-60 method includes the following steps:
+1. Homogenization RNA STAT-60TM (1 ml per 50-100 mg tissue, or 5-10 x 10-6 cells)
+2. RNA Extraction 1 vol. of homogenate +0.2 vol. of chloroform
+3. RNA Precipitation 0.5 vol. of isopropanol
+4. RNA Wash 75% ethanol

+ +

Unless stated otherwise the procedure is carried out at room temperature.

+ +

5.1 HOMOGENIZATION

+ +

A. TISSUES: Homogenize tissues samples in the RNA STAT-60(1 ml/50-100mg tissue) in a glass-Teflon or Polytron homogenizer. Sample volume should not exceed 10% of the volume of the RNA STAT-60 used for homogenization.

+ +

B. CELLS: Cells grown in mono layer are lysed directly in a culture dish by adding the RNA STAT-60TM (1 ml/3.5 cm petri dish) and passing the cell lysate several times through a pipette. Cells grown in suspension are sediment then lysed in the RNA STAT-60TM (1 ml per 5-10 x 106 cells) by repetitive pipetting. Washing calls before addition of the RNA STAT-60TM should be avoided as this increases the possibility of mRNA degradation.

+ +

5.2 RNA EXTRACTION: Following homogenization, store the homogenate for 5 min at room temp to permit the complete dissociation of nucleoprotein complexes. Next, add 0.2 ml of chloroform per 1 ml of the RNA STAT-60, cover the sample tightly, shake vigorously for 15 seconds and let it stay at room temperature for 2-3minutes. Centrifuge the homogenate at 12,000g (max) for 15 minutes at 4°C. Following centrifugation, the homogenate separates into two phases: a lower red phenol chloroform phase and the colorless upper aqueous phase. RNA remains exclusively in the aqueous phase whereas DNA and proteins are in the interferes and organic phase. The volume of the aqueous phase is about 60% of the volume of RNA STAT-60 used for homogenization.

+ +

5.3 RNA PRECIPITATION: Transfer the aqueous phase to a fresh tube and mix with isopropanol. Add 0.5 ml of isopropanol per 1 ml of the RNA STAT-60 used for homogenization. Store samples at room temp for 5-10 minutes and centrifuge at 12,000g (max.) for 10 min at 4°C. RNA precipitate (often visible before centrifugation) forms a white pellet at the bottom of the tube.

+ +

5.4 RNA WASH: Remove supernatant and wash the RNA pellet once with 75% ethanol by vortexing and subsequent centrifugation at 7,500g (max.) for 5 min at 4°C. Add at least 1 ml of 75% ethanol per 1 ml of the RNA STAT-60 used for the initial homogenization.

+ +

At the end of the procedure, dry the RNA pellet briefly by air-drying or in a vacuum (5-10 min.). It is important not to let the RNA pellet dry completely as it will greatly decrease its solubility. Do not use the Speed-Vac for drying. Dissolve the RNA pellet in water or in 1 mm EDTA, pH 7, or 0.5% SDS solution. Vortex or pass the pellet a few times through a pipette tip. An incubation for 10-15 minutes at 55-60oC may be required to dissolve RNA samples. Diethylpyrocarbonate (DEPC) treated RNase-free solutions1 should be used for solubilization of RNA.

+ +

Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80°C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols.

+ +

Replication and Sample Balance: Our goal was to obtain a male sample pool and female sample pool from each isogenic group. While almost all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. All but 5 of 99 strains (BXD55, BXD86, BXD94, BALB/cByJ, and CAST/EiJ) are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquots R1291H3 and R1291H4).

+ +

 

+ +

Sex Balance: Based on the expression of Xist, probe set 1427262_at, DBA/2J and KK/HlJ are represented only by female samples, BXD55, and BALB/cByJ are only represented by a single male sample, BXD74 is represented by two male samples, and BXD86, BXD94, and CAST/EiJ are possibly mixed sex samples. One of the BXD9 samples, array R1523, may be a mixed sex sample pool because the expression of Xist is intermediate.

+ +

Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays. Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin.

+ +

All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4°C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four.

+ +

COMPARISON with December 2005 Data Set: Both BXD14 arrays in the Dec05 data set were found to actually be from BXD23 cases. This error of strain identification has been corrected in the present data set. Four arrays in the Dec05 data set have been deleted because we judged them to be of poor quality (strain_sex_sample_firstreaction_group):

+ +
    +
  1. BXD21_F_1_1_G1
  2. +
  3. BXD23_M_1_1_G7
  4. +
  5. BXD36_M_1_1_G2
  6. +
  7. BXD36_F_1_1_G3
  8. +
+ +

In the Dec05 data set there are a total of 1986 transcripts with QTLs that have LRS scores above 50, whereas in the corrected June06 data sets there are a total of 2074 transcripts with QTLs above 50.

+ +

Data Table 1:

+ +

This table lists all arrays by file order (Index), tube/sample ID, age, sex, batch, and numbers of animals in each sample pool (pool size). The next columns (RMA outlier, scale factor, background average, present, absent, marginal, AFFY-b-ActinMur(3'/5'), AFFY-GapdhMur(3'/5')) are all Affymetrix QC data. Finally, source lists the source colony of the animals. (Final version, fully corrected, by Arthur Centeno, October 2008)

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
indextube IDstrainagesexbatch IDpool sizeRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
1R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
2R1291H3B6D2F166M130.013.52448.540.4870.4940.0191.211.52UTM RW
3R1291H4B6D2F166M technical duplicate of above630.083.89146.690.5120.4690.0191.90.89UTM RW
4R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
5R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
6R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
7R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
8R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
9R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
10R1290H2DBA/2J63F720.042.57659.60.5130.4680.0181.30.78JAX
11R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
12R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
13R1542H1BXD159F730.031.79280.560.4920.4890.0181.570.79Glenn
14R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
15R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
16R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
17R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
18R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
19R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
20R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
21R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
22R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
23R1523H3BXD957MF (mixed)730.143.978.360.4350.5470.0181.360.77UTM RW
24R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
25R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
26R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
27R2674H1BXD1259M730.031.92483.440.5190.4640.0181.210.78Glenn
28R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
29R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
30R1304H2BXD1472F730.033.94661.870.4840.4980.0181.220.77UTM RW
31R1278H2BXD1455M730.064.7567.520.4490.5320.0191.10.73UTM RW
32R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
33R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
34R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
35R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
36R2666H1BXD1960F730.022.49876.20.4950.4860.0191.410.77Glenn
37R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
38R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
39R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
40R2668H1BXD2160M740.072.60544.90.5350.4490.0171.540.76Glenn
41R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
42R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
43R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
44R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
45R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
46R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
47R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
48R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
49R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
50R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
51R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
52R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
53R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
54R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
55R1526H2BXD3157F740.17.26789.540.4350.5470.0171.350.78UTM RW
56R2675H1BXD3257F730.032.26878.010.5020.4780.021.220.78Glenn
57R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
58R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
59R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
60R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
61R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
62R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
63R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
64R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
65R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
66R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
67R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
68R1541H2BXD4258F730.076.78452.120.4830.4990.0171.130.66Glenn
69R1540H1BXD4258M740.032.42375.140.4920.4880.021.480.78Glenn
70R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
71R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
72R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
73R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
74R1403H2BXD4563F720.033.14644.50.5240.4570.0181.410.78Glenn
75R1472H1BXD4565M740.041.65173.310.5430.440.0181.630.74UTM RW
76R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
77R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
78R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
79R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
80R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
81R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
82R2680H1BXD5565M730.071.70779.750.5030.480.0171.911.05UTM RW
83R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
84R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
85R2667H1BXD6170F740.033.3659.040.4950.4880.0181.160.76UTM RW
86R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
87R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
88R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
89R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
90R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
91R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
92R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
93R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
94R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
95R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
96R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
97R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
98R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
99R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
100R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
101R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
102R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
103R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
104R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
105R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
106R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
107R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
108R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
109R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
110R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
111R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
112R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
113R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
114R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
115R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
116R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
117R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
118R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
119R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
120R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
121R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
122R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
123R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
124R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
125R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
126R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
127R2669H2BXD8763F730.072.6157.590.5130.470.0181.60.91UTM RW
128R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
129R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
130R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
131R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
132R1600H2BXD9074M740.033.26151.310.5170.4650.0181.160.75Glenn
133R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
134R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
135R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
136R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
137R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
138R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
139R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
140R2648H1BXD9774F740.021.66482.080.5180.4640.0191.40.78UTM RW
141R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
142R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
143R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
144R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
145R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
146R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
147R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
148R2670H1A/J65F730.043.95146.80.4980.4850.0171.320.75UTM RW
149R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
150R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
151R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
152R1675H1BALB/cByJ83M730.033.40548.130.5090.4740.0181.130.78JAX
153R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
154R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
155R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
156R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
157R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
158R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
159R2673H1C57BL/6ByJ55M730.081.84267.690.5140.4690.0171.750.78JAX
160R2619H1CAST/EiJ64F530.144.07751.870.4550.5280.0182.741.2JAX
161R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
162R1687H3KK/HIJ72F530.043.88840.860.4990.4830.0191.860.88JAX
163R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
164R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
165R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
166R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
167R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
168R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
169R2677H1PWD/PhJ65M720.122.76465.490.4620.520.0181.891.16UTM RW
170R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
171R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
172R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
173R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
174R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
175R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
176R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
177R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
178R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
179R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
180R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
181R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
182R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
183R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
184R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
185R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
186R2676H1CXB647F720.052.14662.510.5070.4750.0181.520.78JAX
187R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
188R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
189R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
190R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
191R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
192R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
193R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
194R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
195R2671H1CXB1053M730.092.34871.450.4880.4940.0182.21.14JAX
196R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
197R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
198R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
199R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
200R2672H1CXB1349F730.031.72279.520.5160.4650.0191.640.75JAX
201R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
+
diff --git a/general/datasets/Hc_m2cb_1205_r/acknowledgment.rtf b/general/datasets/Hc_m2cb_1205_r/acknowledgment.rtf new file mode 100644 index 0000000..1481cd1 --- /dev/null +++ b/general/datasets/Hc_m2cb_1205_r/acknowledgment.rtf @@ -0,0 +1,50 @@ +

Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort:

+ + + +

 

diff --git a/general/datasets/Hc_m2cb_1205_r/cases.rtf b/general/datasets/Hc_m2cb_1205_r/cases.rtf new file mode 100644 index 0000000..15e6cda --- /dev/null +++ b/general/datasets/Hc_m2cb_1205_r/cases.rtf @@ -0,0 +1,56 @@ +

The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 27 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs.

+ +

Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons:

+ + + +

All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants.

+ +
    +
  1. 129S1/SvImJ
    +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list
  2. +
  3. A/J
    +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel
  4. +
  5. AKR/J
    +     Sequenced by NIEHS; Phenome Project B list
  6. +
  7. BALB/cByJ
    +     Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list
  8. +
  9. BALB/cJ
    +     Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list
  10. +
  11. C3H/HeJ
    +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
  12. +
  13. C57BL/6J
    +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
  14. +
  15. C57BL/6ByJ
    +     Paternal substrain of B6 used to generate the CXB panel
  16. +
  17. CAST/Ei
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
  18. +
  19. DBA/2J
    +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
  20. +
  21. KK/HlJ
    +     Sequenced by Perlegen/NIEHS
  22. +
  23. LG/J
    +     Paternal parent of the LGXSM panel
  24. +
  25. NOD/LtJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
  26. +
  27. NZO/HlLtJ
    +     Collaborative Cross strain
  28. +
  29. PWD/PhJ
    +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
  30. +
  31. PWK/PhJ
    +     Collaborative Cross strain; Phenome Project D list
  32. +
  33. WSB/EiJ
    +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
  34. +
  35. B6D2F1 and D2B6F1
    + F1 hybrids generated by crossing C57BL/6J with DBA/2J
  36. +
+ +

We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondrial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels.

+ +

These strains are available from The Jackson Laboratory. BXD43 through BXD100 strains are available from Lu Lu and colleagues at UTHSC.

diff --git a/general/datasets/Hc_m2cb_1205_r/citation.rtf b/general/datasets/Hc_m2cb_1205_r/citation.rtf new file mode 100644 index 0000000..61a0788 --- /dev/null +++ b/general/datasets/Hc_m2cb_1205_r/citation.rtf @@ -0,0 +1 @@ +

Please cite: Overall RW, Kempermann G, Peirce J, Lu L, Goldowitz D, Gage FH, Goodwin S, Smit AB, Airey DC, Rosen GD, Schalkwyk LC, Sutter TR, Nowakowski RS, Whatley S, Williams RW (2009) Genetics of the hippocampal transcriptome in mice: a systematic survey and online neurogenomic resource. Front. Neurogen. 1:3 Full Text HTML doi:10.3389/neuro.15.003.2009

diff --git a/general/datasets/Hc_m2cb_1205_r/contributors.rtf b/general/datasets/Hc_m2cb_1205_r/contributors.rtf new file mode 100644 index 0000000..4108279 --- /dev/null +++ b/general/datasets/Hc_m2cb_1205_r/contributors.rtf @@ -0,0 +1,46 @@ + diff --git a/general/datasets/Hc_m2cb_1205_r/experiment-design.rtf b/general/datasets/Hc_m2cb_1205_r/experiment-design.rtf new file mode 100644 index 0000000..356f1d2 --- /dev/null +++ b/general/datasets/Hc_m2cb_1205_r/experiment-design.rtf @@ -0,0 +1 @@ +

Pooled RNA samples (usually one pool of male hippocampii and one pool of female hippocampii) were prepared using standard protocols. Samples were processed using a total of 206 Affymetrix GeneChip Mouse Expression 430 2.0 short oligomer arrays (MOE430 2.0 or M430v2; see GEO platform ID GPL1261), of which 201 passed quality control and error checking. This particular data set was processed using the PDNN protocol. To simplify comparisons among transforms, PDNN values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.

diff --git a/general/datasets/Hc_m2cb_1205_r/notes.rtf b/general/datasets/Hc_m2cb_1205_r/notes.rtf new file mode 100644 index 0000000..9c11719 --- /dev/null +++ b/general/datasets/Hc_m2cb_1205_r/notes.rtf @@ -0,0 +1,12 @@ +

This study includes the following datasets:

+ + diff --git a/general/datasets/Hc_m2cb_1205_r/platform.rtf b/general/datasets/Hc_m2cb_1205_r/platform.rtf new file mode 100644 index 0000000..6c99bee --- /dev/null +++ b/general/datasets/Hc_m2cb_1205_r/platform.rtf @@ -0,0 +1 @@ +

Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

diff --git a/general/datasets/Hc_m2cb_1205_r/processing.rtf b/general/datasets/Hc_m2cb_1205_r/processing.rtf new file mode 100644 index 0000000..3698a7b --- /dev/null +++ b/general/datasets/Hc_m2cb_1205_r/processing.rtf @@ -0,0 +1,37 @@ +

Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked.

+ +

First pass data quality control: Affymetrix GCOS provides useful array quality control data including:

+ +
    +
  1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter.
  2. +
  3. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control.
  4. +
  5. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion.
  6. +
  7. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios.
  8. +
+ +

The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very sensitive to the transformation method that is used. Using the PDNN transform, the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For example, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one would include the sample if one can verify that there are no problems in sample and data set identification.

+ +

The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets.

+ +

DataDesk was used to examine the statistical quality of the probe level (CEL) data after step 5 below. DataDesk allows the rapid detection of subsets of probes that are particularly sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below.

+ +

Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.

+ +
    +
  1. We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell.
  2. +
  3. We performed a quantile normalization of the log base 2 values for all arrays using the same initial steps used by the RMA transform.
  4. +
  5. We computed the Z scores for each cell value.
  6. +
  7. We multiplied all Z scores by 2.
  8. +
  9. We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level (probe brightness level) corresponds approximately to a 1 unit difference.
  10. +
  11. Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables.
  12. +
+ +

Probe set data from the CHP file: The expression values were generated using PDNN. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

+ +

Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged.

+ +

Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers.

+ +

Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain.

+ +

Sex of the samples was validated using sex-specific probe sets such as Xist and Dby.

diff --git a/general/datasets/Hc_m2cb_1205_r/summary.rtf b/general/datasets/Hc_m2cb_1205_r/summary.rtf new file mode 100644 index 0000000..1e86e54 --- /dev/null +++ b/general/datasets/Hc_m2cb_1205_r/summary.rtf @@ -0,0 +1,3 @@ +

MOST HIGHLY RECOMMENDED DATA SET (Overall et al., 2009): The Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of 99 genetically diverse strains of mice including 67 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a diverse set of common inbred strains, and two reciprocal F1 hybrids.

+ +

The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section.

diff --git a/general/datasets/Hc_m2cb_1205_r/tissue.rtf b/general/datasets/Hc_m2cb_1205_r/tissue.rtf new file mode 100644 index 0000000..bcea7b0 --- /dev/null +++ b/general/datasets/Hc_m2cb_1205_r/tissue.rtf @@ -0,0 +1,3721 @@ +

BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thank Muriel Davisson for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria.

+ +

A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below). All animals were sacrifice between 9 AM and 5 PM during the light phase.

+ +

A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2).

+ +

RNA Extraction: In brief, we used the RNA STAT-60 protocol (TEL-TEST "B" Bulletin No. 1), steps 5.1A (homogenization of tissue), 5.2 (RNA extraction), 5.3 (RNA precipitation), and 5.4 (RNA wash). In Step 5.4 we stopped after adding 75% ethanol (1 ml per 1 ml RNA STAT-60) and stored the mix at -80°C until further use. Before RNA labeling we thawed samples and proceeded with the remainder of Step 5.4; pelleting, drying, and redissolving the pellet in RNase-free water.

+ +

We finally purify RNA by using Na4OAc before running arrays. Here is the detailed method:

+ +

Final RNA purification protocol

+ +
    +
  1. Add 1/10th volume of 3M Na4OAc , pH 5.2. If the sample was eluted with 100 µl nuclease-free water as suggested, this will be 10 µl of 3M Na4OAc.
  2. +
  3. Add 2.5 volumes of 100% ethanol (250 µl if the RNA was eluted in100 µl). Mix well and incubate at –20°C for 2 hrs.
  4. +
  5. Centrifuge at speed of 13,000 rpm for 20 min at 4°C. Carefully remove and discard the supernatant.
  6. +
  7. Wash the pellet with 800 µl 75% cold ethanol, centrifuge at speed of 8,600 rpm for 5 min, and remove the 75% ethanol. Wash again.
  8. +
  9. To remove the last traces of ethanol, quickly respin the tube, and aspirate any residual fluid.
  10. +
  11. Air dry the pellet.
  12. +
  13. Resuspend pellet in nuclease-free water.
  14. +
+ +

 

+ +

5. PROTOCOL: RNA/mRNA isolation by the RNA STAT-60 method includes the following steps:
+1. Homogenization RNA STAT-60TM (1 ml per 50-100 mg tissue, or 5-10 x 10-6 cells)
+2. RNA Extraction 1 vol. of homogenate +0.2 vol. of chloroform
+3. RNA Precipitation 0.5 vol. of isopropanol
+4. RNA Wash 75% ethanol

+ +

Unless stated otherwise the procedure is carried out at room temperature.

+ +

5.1 HOMOGENIZATION

+ +

A. TISSUES: Homogenize tissues samples in the RNA STAT-60(1 ml/50-100mg tissue) in a glass-Teflon or Polytron homogenizer. Sample volume should not exceed 10% of the volume of the RNA STAT-60 used for homogenization.

+ +

B. CELLS: Cells grown in mono layer are lysed directly in a culture dish by adding the RNA STAT-60TM (1 ml/3.5 cm petri dish) and passing the cell lysate several times through a pipette. Cells grown in suspension are sediment then lysed in the RNA STAT-60TM (1 ml per 5-10 x 106 cells) by repetitive pipetting. Washing calls before addition of the RNA STAT-60TM should be avoided as this increases the possibility of mRNA degradation.

+ +

5.2 RNA EXTRACTION: Following homogenization, store the homogenate for 5 min at room temp to permit the complete dissociation of nucleoprotein complexes. Next, add 0.2 ml of chloroform per 1 ml of the RNA STAT-60, cover the sample tightly, shake vigorously for 15 seconds and let it stay at room temperature for 2-3minutes. Centrifuge the homogenate at 12,000g (max) for 15 minutes at 4°C. Following centrifugation, the homogenate separates into two phases: a lower red phenol chloroform phase and the colorless upper aqueous phase. RNA remains exclusively in the aqueous phase whereas DNA and proteins are in the interferes and organic phase. The volume of the aqueous phase is about 60% of the volume of RNA STAT-60 used for homogenization.

+ +

5.3 RNA PRECIPITATION: Transfer the aqueous phase to a fresh tube and mix with isopropanol. Add 0.5 ml of isopropanol per 1 ml of the RNA STAT-60 used for homogenization. Store samples at room temp for 5-10 minutes and centrifuge at 12,000g (max.) for 10 min at 4°C. RNA precipitate (often visible before centrifugation) forms a white pellet at the bottom of the tube.

+ +

5.4 RNA WASH: Remove supernatant and wash the RNA pellet once with 75% ethanol by vortexing and subsequent centrifugation at 7,500g (max.) for 5 min at 4°C. Add at least 1 ml of 75% ethanol per 1 ml of the RNA STAT-60 used for the initial homogenization.

+ +

At the end of the procedure, dry the RNA pellet briefly by air-drying or in a vacuum (5-10 min.). It is important not to let the RNA pellet dry completely as it will greatly decrease its solubility. Do not use the Speed-Vac for drying. Dissolve the RNA pellet in water or in 1 mm EDTA, pH 7, or 0.5% SDS solution. Vortex or pass the pellet a few times through a pipette tip. An incubation for 10-15 minutes at 55-60oC may be required to dissolve RNA samples. Diethylpyrocarbonate (DEPC) treated RNase-free solutions1 should be used for solubilization of RNA.

+ +

Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80°C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols.

+ +

Replication and Sample Balance: Our goal was to obtain a male sample pool and female sample pool from each isogenic group. While almost all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. All but 5 of 99 strains (BXD55, BXD86, BXD94, BALB/cByJ, and CAST/EiJ) are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquots R1291H3 and R1291H4).

+ +

 

+ +

Sex Balance: Based on the expression of Xist, probe set 1427262_at, DBA/2J and KK/HlJ are represented only by female samples, BXD55, and BALB/cByJ are only represented by a single male sample, BXD74 is represented by two male samples, and BXD86, BXD94, and CAST/EiJ are possibly mixed sex samples. One of the BXD9 samples, array R1523, may be a mixed sex sample pool because the expression of Xist is intermediate.

+ +

Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays. Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin.

+ +

All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4°C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four.

+ +

COMPARISON with December 2005 Data Set: Both BXD14 arrays in the Dec05 data set were found to actually be from BXD23 cases. This error of strain identification has been corrected in the present data set. Four arrays in the Dec05 data set have been deleted because we judged them to be of poor quality (strain_sex_sample_firstreaction_group):

+ +
    +
  1. BXD21_F_1_1_G1
  2. +
  3. BXD23_M_1_1_G7
  4. +
  5. BXD36_M_1_1_G2
  6. +
  7. BXD36_F_1_1_G3
  8. +
+ +

In the Dec05 data set there are a total of 1986 transcripts with QTLs that have LRS scores above 50, whereas in the corrected June06 data sets there are a total of 2074 transcripts with QTLs above 50.

+ +

Data Table 1:

+ +

This table lists all arrays by file order (Index), tube/sample ID, age, sex, batch, and numbers of animals in each sample pool (pool size). The next columns (RMA outlier, scale factor, background average, present, absent, marginal, AFFY-b-ActinMur(3'/5'), AFFY-GapdhMur(3'/5')) are all Affymetrix QC data. Finally, source lists the source colony of the animals. (Final version, fully corrected, by Arthur Centeno, October 2008)

+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
indextube IDstrainagesexbatch IDpool sizeRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
1R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
2R1291H3B6D2F166M130.013.52448.540.4870.4940.0191.211.52UTM RW
3R1291H4B6D2F166M technical duplicate of above630.083.89146.690.5120.4690.0191.90.89UTM RW
4R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
5R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
6R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
7R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
8R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
9R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
10R1290H2DBA/2J63F720.042.57659.60.5130.4680.0181.30.78JAX
11R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
12R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
13R1542H1BXD159F730.031.79280.560.4920.4890.0181.570.79Glenn
14R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
15R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
16R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
17R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
18R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
19R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
20R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
21R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
22R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
23R1523H3BXD957MF (mixed)730.143.978.360.4350.5470.0181.360.77UTM RW
24R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
25R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
26R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
27R2674H1BXD1259M730.031.92483.440.5190.4640.0181.210.78Glenn
28R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
29R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
30R1304H2BXD1472F730.033.94661.870.4840.4980.0181.220.77UTM RW
31R1278H2BXD1455M730.064.7567.520.4490.5320.0191.10.73UTM RW
32R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
33R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
34R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
35R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
36R2666H1BXD1960F730.022.49876.20.4950.4860.0191.410.77Glenn
37R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
38R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
39R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
40R2668H1BXD2160M740.072.60544.90.5350.4490.0171.540.76Glenn
41R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
42R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
43R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
44R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
45R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
46R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
47R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
48R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
49R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
50R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
51R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
52R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
53R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
54R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
55R1526H2BXD3157F740.17.26789.540.4350.5470.0171.350.78UTM RW
56R2675H1BXD3257F730.032.26878.010.5020.4780.021.220.78Glenn
57R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
58R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
59R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
60R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
61R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
62R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
63R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
64R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
65R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
66R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
67R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
68R1541H2BXD4258F730.076.78452.120.4830.4990.0171.130.66Glenn
69R1540H1BXD4258M740.032.42375.140.4920.4880.021.480.78Glenn
70R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
71R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
72R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
73R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
74R1403H2BXD4563F720.033.14644.50.5240.4570.0181.410.78Glenn
75R1472H1BXD4565M740.041.65173.310.5430.440.0181.630.74UTM RW
76R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
77R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
78R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
79R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
80R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
81R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
82R2680H1BXD5565M730.071.70779.750.5030.480.0171.911.05UTM RW
83R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
84R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
85R2667H1BXD6170F740.033.3659.040.4950.4880.0181.160.76UTM RW
86R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
87R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
88R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
89R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
90R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
91R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
92R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
93R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
94R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
95R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
96R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
97R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
98R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
99R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
100R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
101R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
102R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
103R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
104R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
105R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
106R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
107R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
108R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
109R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
110R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
111R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
112R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
113R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
114R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
115R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
116R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
117R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
118R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
119R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
120R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
121R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
122R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
123R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
124R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
125R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
126R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
127R2669H2BXD8763F730.072.6157.590.5130.470.0181.60.91UTM RW
128R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
129R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
130R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
131R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
132R1600H2BXD9074M740.033.26151.310.5170.4650.0181.160.75Glenn
133R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
134R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
135R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
136R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
137R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
138R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
139R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
140R2648H1BXD9774F740.021.66482.080.5180.4640.0191.40.78UTM RW
141R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
142R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
143R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
144R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
145R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
146R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
147R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
148R2670H1A/J65F730.043.95146.80.4980.4850.0171.320.75UTM RW
149R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
150R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
151R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
152R1675H1BALB/cByJ83M730.033.40548.130.5090.4740.0181.130.78JAX
153R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
154R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
155R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
156R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
157R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
158R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
159R2673H1C57BL/6ByJ55M730.081.84267.690.5140.4690.0171.750.78JAX
160R2619H1CAST/EiJ64F530.144.07751.870.4550.5280.0182.741.2JAX
161R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
162R1687H3KK/HIJ72F530.043.88840.860.4990.4830.0191.860.88JAX
163R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
164R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
165R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
166R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
167R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
168R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
169R2677H1PWD/PhJ65M720.122.76465.490.4620.520.0181.891.16UTM RW
170R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
171R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
172R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
173R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
174R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
175R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
176R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
177R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
178R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
179R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
180R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
181R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
182R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
183R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
184R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
185R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
186R2676H1CXB647F720.052.14662.510.5070.4750.0181.520.78JAX
187R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
188R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
189R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
190R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
191R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
192R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
193R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
194R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
195R2671H1CXB1053M730.092.34871.450.4880.4940.0182.21.14JAX
196R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
197R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
198R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
199R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
200R2672H1CXB1349F730.031.72279.520.5160.4650.0191.640.75JAX
201R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
+
diff --git a/general/datasets/Hc_u_0303_m/acknowledgment.rtf b/general/datasets/Hc_u_0303_m/acknowledgment.rtf new file mode 100644 index 0000000..e520fa9 --- /dev/null +++ b/general/datasets/Hc_u_0303_m/acknowledgment.rtf @@ -0,0 +1,5 @@ +
+

Cell and samples were generated by Leonid V. Bystrykh, Ellen Weersing, Bert Dontje, Gerald de Haan, Department of Stem Cell Biology, University of Groningen, the Netherlands. RNA amplification and array processing were carried out by Michael Cooke, John Hogenesch, Andrew Su, and colleagues at GNF.

+ +

Data normalization and conversion for WebQTL were handled by Robert Williams, Kenneth Manly, Jintao Wang, and Yanhua Qu at UTHSC and Roswell Park Cancer Institute.

+
diff --git a/general/datasets/Hc_u_0303_m/cases.rtf b/general/datasets/Hc_u_0303_m/cases.rtf new file mode 100644 index 0000000..03bd3fe --- /dev/null +++ b/general/datasets/Hc_u_0303_m/cases.rtf @@ -0,0 +1,5 @@ +
+

BXD recombinant inbred mice were purchased from The Jackson Laboratory and upon arrival were housed under clean conventional conditions in the Central Animal Facility of the University of Groningen, Netherlands. We used female mice between 3 and 6 months old.

+ +

Stem cells (described below) were isolated from pooled bone marrow obtained from three BXD animals per strain. Pooled RNA samples were split in two aliquots and each sample was independently amplified and hybridized to the U74Av2 array (3 mice x 2 arrays).

+
diff --git a/general/datasets/Hc_u_0303_m/citation.rtf b/general/datasets/Hc_u_0303_m/citation.rtf new file mode 100644 index 0000000..9f0651d --- /dev/null +++ b/general/datasets/Hc_u_0303_m/citation.rtf @@ -0,0 +1,17 @@ +

References:

+ +
+

Scherer A, Krause A, Walker JR, Sutton SE, Seron D, Raulf F, Cooke MP (2003) Optimized protocol for linear RNA amplification and application to gene expression profiling of human renal biopsies. Biotechniques 34:546-550, 552-554, 556.

+
+ +
+

de Haan G, Bystrykh LV, Weersing E, Dontje B, Geiger H, Ivanova N, Lemischka IR, Vellenga E, Van Zant G (2002) A genetic and genomic analysis identifies a cluster of genes associated with hematopoietic cell turnover Blood 100:2056-2062.

+
+ +
+

Wang J, Williams RW, Manly KF (2003) WebQTL: Web-based complex trait analysis. Neuroinformatics 1: 299-308.

+
+ +
+

Williams RW, Manly KF, Shou S, Chesler E, Hsu HC, Mountz J, Wang J, Threadgill DW, Lu L (2002) Massively parallel complex trait analysis of transcriptional activity in mouse brain. International Mouse Genome Conference 16:46.

+
diff --git a/general/datasets/Hc_u_0303_m/experiment-design.rtf b/general/datasets/Hc_u_0303_m/experiment-design.rtf new file mode 100644 index 0000000..5b0ad70 --- /dev/null +++ b/general/datasets/Hc_u_0303_m/experiment-design.rtf @@ -0,0 +1,7 @@ +

About amplification and hybridization:

+ +

Total RNA was quantified using RiboGreen and split into equal aliquots of approximately 10 ng, representing RNA from approximately 10,000 cells, and labeled using a total of three rounds of RNA amplification, exactly as described previously (Scherer et al. 2003). Labeled cRNA was fractionated and hybridized to the U74Av2 microarray following standard Affymetrix protocols.

+ +

About the chromosome and megabase position values:

+ +
The chromosomal locations of probe sets and gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
diff --git a/general/datasets/Hc_u_0303_m/experiment-type.rtf b/general/datasets/Hc_u_0303_m/experiment-type.rtf new file mode 100644 index 0000000..de208e6 --- /dev/null +++ b/general/datasets/Hc_u_0303_m/experiment-type.rtf @@ -0,0 +1 @@ +Total RNA was quantified using RiboGreen and split into equal aliquots of approximately 10 ng, representing RNA from approximately 10,000 cells, and labeled using a total of three rounds of RNA amplification, exactly as described previously (Scherer et al. 2003). Labeled cRNA was fractionated and hybridized to the U74Av2 microarray following standard Affymetrix protocols. \ No newline at end of file diff --git a/general/datasets/Hc_u_0303_m/notes.rtf b/general/datasets/Hc_u_0303_m/notes.rtf new file mode 100644 index 0000000..c9da172 --- /dev/null +++ b/general/datasets/Hc_u_0303_m/notes.rtf @@ -0,0 +1,5 @@ +

Information about this text file:

+ +
+

This text file originally generated by GdH and RWW, March 2003. Updated by RWW, October 30, 2004.

+
diff --git a/general/datasets/Hc_u_0303_m/processing.rtf b/general/datasets/Hc_u_0303_m/processing.rtf new file mode 100644 index 0000000..6de5cfc --- /dev/null +++ b/general/datasets/Hc_u_0303_m/processing.rtf @@ -0,0 +1,30 @@ +

About data processing:

+ +
Probe (cell) level data from the CEL file: These CEL values produced by MAS 5 are the 75% quantiles from a set of 36 pixel values per cell. + + +Probe set data from the TXT file: These TXT files were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefore represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
+ +

About the array probe set names:

+ +
+

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

+
diff --git a/general/datasets/Hc_u_0303_m/summary.rtf b/general/datasets/Hc_u_0303_m/summary.rtf new file mode 100644 index 0000000..f04a43e --- /dev/null +++ b/general/datasets/Hc_u_0303_m/summary.rtf @@ -0,0 +1 @@ +

This data set is now superceeded by the March 2004 RMA data set. The original March 2003 data freeze provides estimates of mRNA expression in hematopoietic stem cells (HSC) from adult female BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the Genomics Institute of the Norvartis Research Foundations (GNF) and by de Haan and colleagues at the University of Groningen. Samples from 22 strains were hybridized to 44 arrays in a single batch. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between data sets (HSC and other tissues), the MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units.

diff --git a/general/datasets/Hc_u_0303_m/tissue.rtf b/general/datasets/Hc_u_0303_m/tissue.rtf new file mode 100644 index 0000000..cde2ac6 --- /dev/null +++ b/general/datasets/Hc_u_0303_m/tissue.rtf @@ -0,0 +1,3 @@ +
+

Bone marrow cells were flushed from the femurs and tibiae of three mice and pooled. After standard erythrocyte lysis nucleated cells were incubated with normal rat serum for 15 min at 4 degrees Celsius. Subsequently cells were stained with a panel of biotinylated lineage-specific antibodies (murine progenitor enrichment cocktail, containing anti-CD5, anti-CD45R, anti-CD11b, anti-TER119, anti-Gr-1, and anti-7-4, Stem Cell Technologies, Vancouver, Canada), FITC-anti-Sca-1 and APC-anti-c-kit (Pharmingen). Cells were washed twice, and incubated for 30 minutes with streptavidin-PerCP (Pharmingen). After two washes cells were resuspended in PBS with 1% BSA, and purified using a MoFlo flow cytometer. The lineage-depleted bone marrow cell population was defined as the 5% cells showing least PerCP-fluorescence intensity. Stem cell yield across all BXD samples varied from 16,000 to 118,000 Lin-Sca-1+ c-kit+ cells. A small aliquot of each sample of purified cells was functionally tested for stem cell activity by directly depositing single cells in a cobblestone area forming cell assay. The remainder of the cells was immediately collected in RNA lysis buffer. Total RNA was isolated using StrataPrep Total RNA Microprep kit (Stratagene) as described by the manufacturer. RNA pellets were resolved in 500 microliters absolute ethanol, and sent on dry ice by courrier to GNF, La Jolla, CA.

+
diff --git a/general/datasets/Hc_u_0304_r/acknowledgment.rtf b/general/datasets/Hc_u_0304_r/acknowledgment.rtf new file mode 100644 index 0000000..e520fa9 --- /dev/null +++ b/general/datasets/Hc_u_0304_r/acknowledgment.rtf @@ -0,0 +1,5 @@ +
+

Cell and samples were generated by Leonid V. Bystrykh, Ellen Weersing, Bert Dontje, Gerald de Haan, Department of Stem Cell Biology, University of Groningen, the Netherlands. RNA amplification and array processing were carried out by Michael Cooke, John Hogenesch, Andrew Su, and colleagues at GNF.

+ +

Data normalization and conversion for WebQTL were handled by Robert Williams, Kenneth Manly, Jintao Wang, and Yanhua Qu at UTHSC and Roswell Park Cancer Institute.

+
diff --git a/general/datasets/Hc_u_0304_r/cases.rtf b/general/datasets/Hc_u_0304_r/cases.rtf new file mode 100644 index 0000000..03bd3fe --- /dev/null +++ b/general/datasets/Hc_u_0304_r/cases.rtf @@ -0,0 +1,5 @@ +
+

BXD recombinant inbred mice were purchased from The Jackson Laboratory and upon arrival were housed under clean conventional conditions in the Central Animal Facility of the University of Groningen, Netherlands. We used female mice between 3 and 6 months old.

+ +

Stem cells (described below) were isolated from pooled bone marrow obtained from three BXD animals per strain. Pooled RNA samples were split in two aliquots and each sample was independently amplified and hybridized to the U74Av2 array (3 mice x 2 arrays).

+
diff --git a/general/datasets/Hc_u_0304_r/citation.rtf b/general/datasets/Hc_u_0304_r/citation.rtf new file mode 100644 index 0000000..9f0651d --- /dev/null +++ b/general/datasets/Hc_u_0304_r/citation.rtf @@ -0,0 +1,17 @@ +

References:

+ +
+

Scherer A, Krause A, Walker JR, Sutton SE, Seron D, Raulf F, Cooke MP (2003) Optimized protocol for linear RNA amplification and application to gene expression profiling of human renal biopsies. Biotechniques 34:546-550, 552-554, 556.

+
+ +
+

de Haan G, Bystrykh LV, Weersing E, Dontje B, Geiger H, Ivanova N, Lemischka IR, Vellenga E, Van Zant G (2002) A genetic and genomic analysis identifies a cluster of genes associated with hematopoietic cell turnover Blood 100:2056-2062.

+
+ +
+

Wang J, Williams RW, Manly KF (2003) WebQTL: Web-based complex trait analysis. Neuroinformatics 1: 299-308.

+
+ +
+

Williams RW, Manly KF, Shou S, Chesler E, Hsu HC, Mountz J, Wang J, Threadgill DW, Lu L (2002) Massively parallel complex trait analysis of transcriptional activity in mouse brain. International Mouse Genome Conference 16:46.

+
diff --git a/general/datasets/Hc_u_0304_r/experiment-design.rtf b/general/datasets/Hc_u_0304_r/experiment-design.rtf new file mode 100644 index 0000000..5b0ad70 --- /dev/null +++ b/general/datasets/Hc_u_0304_r/experiment-design.rtf @@ -0,0 +1,7 @@ +

About amplification and hybridization:

+ +

Total RNA was quantified using RiboGreen and split into equal aliquots of approximately 10 ng, representing RNA from approximately 10,000 cells, and labeled using a total of three rounds of RNA amplification, exactly as described previously (Scherer et al. 2003). Labeled cRNA was fractionated and hybridized to the U74Av2 microarray following standard Affymetrix protocols.

+ +

About the chromosome and megabase position values:

+ +
The chromosomal locations of probe sets and gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
diff --git a/general/datasets/Hc_u_0304_r/notes.rtf b/general/datasets/Hc_u_0304_r/notes.rtf new file mode 100644 index 0000000..c9da172 --- /dev/null +++ b/general/datasets/Hc_u_0304_r/notes.rtf @@ -0,0 +1,5 @@ +

Information about this text file:

+ +
+

This text file originally generated by GdH and RWW, March 2003. Updated by RWW, October 30, 2004.

+
diff --git a/general/datasets/Hc_u_0304_r/processing.rtf b/general/datasets/Hc_u_0304_r/processing.rtf new file mode 100644 index 0000000..6de5cfc --- /dev/null +++ b/general/datasets/Hc_u_0304_r/processing.rtf @@ -0,0 +1,30 @@ +

About data processing:

+ +
Probe (cell) level data from the CEL file: These CEL values produced by MAS 5 are the 75% quantiles from a set of 36 pixel values per cell. + + +Probe set data from the TXT file: These TXT files were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefore represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
+ +

About the array probe set names:

+ +
+

Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ + + +

Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

+
diff --git a/general/datasets/Hc_u_0304_r/summary.rtf b/general/datasets/Hc_u_0304_r/summary.rtf new file mode 100644 index 0000000..f04a43e --- /dev/null +++ b/general/datasets/Hc_u_0304_r/summary.rtf @@ -0,0 +1 @@ +

This data set is now superceeded by the March 2004 RMA data set. The original March 2003 data freeze provides estimates of mRNA expression in hematopoietic stem cells (HSC) from adult female BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the Genomics Institute of the Norvartis Research Foundations (GNF) and by de Haan and colleagues at the University of Groningen. Samples from 22 strains were hybridized to 44 arrays in a single batch. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between data sets (HSC and other tissues), the MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units.

diff --git a/general/datasets/Hc_u_0304_r/tissue.rtf b/general/datasets/Hc_u_0304_r/tissue.rtf new file mode 100644 index 0000000..cde2ac6 --- /dev/null +++ b/general/datasets/Hc_u_0304_r/tissue.rtf @@ -0,0 +1,3 @@ +
+

Bone marrow cells were flushed from the femurs and tibiae of three mice and pooled. After standard erythrocyte lysis nucleated cells were incubated with normal rat serum for 15 min at 4 degrees Celsius. Subsequently cells were stained with a panel of biotinylated lineage-specific antibodies (murine progenitor enrichment cocktail, containing anti-CD5, anti-CD45R, anti-CD11b, anti-TER119, anti-Gr-1, and anti-7-4, Stem Cell Technologies, Vancouver, Canada), FITC-anti-Sca-1 and APC-anti-c-kit (Pharmingen). Cells were washed twice, and incubated for 30 minutes with streptavidin-PerCP (Pharmingen). After two washes cells were resuspended in PBS with 1% BSA, and purified using a MoFlo flow cytometer. The lineage-depleted bone marrow cell population was defined as the 5% cells showing least PerCP-fluorescence intensity. Stem cell yield across all BXD samples varied from 16,000 to 118,000 Lin-Sca-1+ c-kit+ cells. A small aliquot of each sample of purified cells was functionally tested for stem cell activity by directly depositing single cells in a cobblestone area forming cell assay. The remainder of the cells was immediately collected in RNA lysis buffer. Total RNA was isolated using StrataPrep Total RNA Microprep kit (Stratagene) as described by the manufacturer. RNA pellets were resolved in 500 microliters absolute ethanol, and sent on dry ice by courrier to GNF, La Jolla, CA.

+
diff --git a/general/datasets/Hc_u_0903_m/acknowledgment.rtf b/general/datasets/Hc_u_0903_m/acknowledgment.rtf new file mode 100644 index 0000000..e520fa9 --- /dev/null +++ b/general/datasets/Hc_u_0903_m/acknowledgment.rtf @@ -0,0 +1,5 @@ +
+

Cell and samples were generated by Leonid V. Bystrykh, Ellen Weersing, Bert Dontje, Gerald de Haan, Department of Stem Cell Biology, University of Groningen, the Netherlands. RNA amplification and array processing were carried out by Michael Cooke, John Hogenesch, Andrew Su, and colleagues at GNF.

+ +

Data normalization and conversion for WebQTL were handled by Robert Williams, Kenneth Manly, Jintao Wang, and Yanhua Qu at UTHSC and Roswell Park Cancer Institute.

+
diff --git a/general/datasets/Hc_u_0903_m/cases.rtf b/general/datasets/Hc_u_0903_m/cases.rtf new file mode 100644 index 0000000..03bd3fe --- /dev/null +++ b/general/datasets/Hc_u_0903_m/cases.rtf @@ -0,0 +1,5 @@ +
+

BXD recombinant inbred mice were purchased from The Jackson Laboratory and upon arrival were housed under clean conventional conditions in the Central Animal Facility of the University of Groningen, Netherlands. We used female mice between 3 and 6 months old.

+ +

Stem cells (described below) were isolated from pooled bone marrow obtained from three BXD animals per strain. Pooled RNA samples were split in two aliquots and each sample was independently amplified and hybridized to the U74Av2 array (3 mice x 2 arrays).

+
diff --git a/general/datasets/Hc_u_0903_m/citation.rtf b/general/datasets/Hc_u_0903_m/citation.rtf new file mode 100644 index 0000000..9f0651d --- /dev/null +++ b/general/datasets/Hc_u_0903_m/citation.rtf @@ -0,0 +1,17 @@ +

References:

+ +
+

Scherer A, Krause A, Walker JR, Sutton SE, Seron D, Raulf F, Cooke MP (2003) Optimized protocol for linear RNA amplification and application to gene expression profiling of human renal biopsies. Biotechniques 34:546-550, 552-554, 556.

+
+ +
+

de Haan G, Bystrykh LV, Weersing E, Dontje B, Geiger H, Ivanova N, Lemischka IR, Vellenga E, Van Zant G (2002) A genetic and genomic analysis identifies a cluster of genes associated with hematopoietic cell turnover Blood 100:2056-2062.

+
+ +
+

Wang J, Williams RW, Manly KF (2003) WebQTL: Web-based complex trait analysis. Neuroinformatics 1: 299-308.

+
+ +
+

Williams RW, Manly KF, Shou S, Chesler E, Hsu HC, Mountz J, Wang J, Threadgill DW, Lu L (2002) Massively parallel complex trait analysis of transcriptional activity in mouse brain. International Mouse Genome Conference 16:46.

+
diff --git a/general/datasets/Hc_u_0903_m/experiment-design.rtf b/general/datasets/Hc_u_0903_m/experiment-design.rtf new file mode 100644 index 0000000..5b0ad70 --- /dev/null +++ b/general/datasets/Hc_u_0903_m/experiment-design.rtf @@ -0,0 +1,7 @@ +

About amplification and hybridization:

+ +

Total RNA was quantified using RiboGreen and split into equal aliquots of approximately 10 ng, representing RNA from approximately 10,000 cells, and labeled using a total of three rounds of RNA amplification, exactly as described previously (Scherer et al. 2003). Labeled cRNA was fractionated and hybridized to the U74Av2 microarray following standard Affymetrix protocols.

+ +

About the chromosome and megabase position values:

+ +
The chromosomal locations of probe sets and gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
diff --git a/general/datasets/Hc_u_0903_m/experiment-type.rtf b/general/datasets/Hc_u_0903_m/experiment-type.rtf new file mode 100644 index 0000000..15642e7 --- /dev/null +++ b/general/datasets/Hc_u_0903_m/experiment-type.rtf @@ -0,0 +1,17 @@ +

+Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ +
  • _f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • _s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • _g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • _r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • _i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • _st (sense target): Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    \ No newline at end of file diff --git a/general/datasets/Hc_u_0903_m/notes.rtf b/general/datasets/Hc_u_0903_m/notes.rtf new file mode 100644 index 0000000..c9da172 --- /dev/null +++ b/general/datasets/Hc_u_0903_m/notes.rtf @@ -0,0 +1,5 @@ +

    Information about this text file:

    + +
    +

    This text file originally generated by GdH and RWW, March 2003. Updated by RWW, October 30, 2004.

    +
    diff --git a/general/datasets/Hc_u_0903_m/processing.rtf b/general/datasets/Hc_u_0903_m/processing.rtf new file mode 100644 index 0000000..6de5cfc --- /dev/null +++ b/general/datasets/Hc_u_0903_m/processing.rtf @@ -0,0 +1,30 @@ +

    About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by MAS 5 are the 75% quantiles from a set of 36 pixel values per cell. + + +Probe set data from the TXT file: These TXT files were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefore represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    + +

    About the array probe set names:

    + +
    +

    Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + + + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals.

    +
    diff --git a/general/datasets/Hc_u_0903_m/summary.rtf b/general/datasets/Hc_u_0903_m/summary.rtf new file mode 100644 index 0000000..f04a43e --- /dev/null +++ b/general/datasets/Hc_u_0903_m/summary.rtf @@ -0,0 +1 @@ +

    This data set is now superceeded by the March 2004 RMA data set. The original March 2003 data freeze provides estimates of mRNA expression in hematopoietic stem cells (HSC) from adult female BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the Genomics Institute of the Norvartis Research Foundations (GNF) and by de Haan and colleagues at the University of Groningen. Samples from 22 strains were hybridized to 44 arrays in a single batch. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between data sets (HSC and other tissues), the MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units.

    diff --git a/general/datasets/Hc_u_0903_m/tissue.rtf b/general/datasets/Hc_u_0903_m/tissue.rtf new file mode 100644 index 0000000..cde2ac6 --- /dev/null +++ b/general/datasets/Hc_u_0903_m/tissue.rtf @@ -0,0 +1,3 @@ +
    +

    Bone marrow cells were flushed from the femurs and tibiae of three mice and pooled. After standard erythrocyte lysis nucleated cells were incubated with normal rat serum for 15 min at 4 degrees Celsius. Subsequently cells were stained with a panel of biotinylated lineage-specific antibodies (murine progenitor enrichment cocktail, containing anti-CD5, anti-CD45R, anti-CD11b, anti-TER119, anti-Gr-1, and anti-7-4, Stem Cell Technologies, Vancouver, Canada), FITC-anti-Sca-1 and APC-anti-c-kit (Pharmingen). Cells were washed twice, and incubated for 30 minutes with streptavidin-PerCP (Pharmingen). After two washes cells were resuspended in PBS with 1% BSA, and purified using a MoFlo flow cytometer. The lineage-depleted bone marrow cell population was defined as the 5% cells showing least PerCP-fluorescence intensity. Stem cell yield across all BXD samples varied from 16,000 to 118,000 Lin-Sca-1+ c-kit+ cells. A small aliquot of each sample of purified cells was functionally tested for stem cell activity by directly depositing single cells in a cobblestone area forming cell assay. The remainder of the cells was immediately collected in RNA lysis buffer. Total RNA was isolated using StrataPrep Total RNA Microprep kit (Stratagene) as described by the manufacturer. RNA pellets were resolved in 500 microliters absolute ethanol, and sent on dry ice by courrier to GNF, La Jolla, CA.

    +
    diff --git a/general/datasets/Heioncvscretilm6_0911/acknowledgment.rtf b/general/datasets/Heioncvscretilm6_0911/acknowledgment.rtf new file mode 100644 index 0000000..a41ff76 --- /dev/null +++ b/general/datasets/Heioncvscretilm6_0911/acknowledgment.rtf @@ -0,0 +1,13 @@ +

    The HEI Retinal Database is supported by National Eye Institute Grants:

    + +

     

    + + diff --git a/general/datasets/Heioncvscretilm6_0911/cases.rtf b/general/datasets/Heioncvscretilm6_0911/cases.rtf new file mode 100644 index 0000000..b37d700 --- /dev/null +++ b/general/datasets/Heioncvscretilm6_0911/cases.rtf @@ -0,0 +1,14 @@ +
    +

    Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 48 and maximum age is 118 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J.

    + +
    BXD strains: + + +
    +
    + +

    What Makes the G2 HEI Retina Database different from the HEI Retina Database Examination of Gfap expression across all of the strains in the HEI Retinal Dataset, reveals that some strains express very high levels of Gfap relative to others. For example, BXD24 expresses Gfap at a 9-fold higher level, than BXD22. It has been established that BXD24 acquired a mutation in Cep290 that results in early onset photoreceptor degeneration (Chang et al., 2006). This degeneration results in reactive gliosis throughout the retina. In addition to BXD24, other BXD strains expressed very high levels of Gfap including: BXD32, BXD49, BXD70, BXD83 and BXD89. For the G2 dataset all of these strains with potential reactive gliosis were removed from the dataset.

    diff --git a/general/datasets/Heioncvscretilm6_0911/contributors.rtf b/general/datasets/Heioncvscretilm6_0911/contributors.rtf new file mode 100644 index 0000000..b1f321b --- /dev/null +++ b/general/datasets/Heioncvscretilm6_0911/contributors.rtf @@ -0,0 +1 @@ +

    Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Justin P. Templeton, Robert W. Williams

    diff --git a/general/datasets/Heioncvscretilm6_0911/experiment-design.rtf b/general/datasets/Heioncvscretilm6_0911/experiment-design.rtf new file mode 100644 index 0000000..4fff707 --- /dev/null +++ b/general/datasets/Heioncvscretilm6_0911/experiment-design.rtf @@ -0,0 +1,12 @@ +

    Expression profiling by array

    + +

    We used pooled RNA samples of retinas, usually two independent pools--two male, two female pool--for most lines of mice.

    + +

    All normalization was performed by William E. Orr in the HEI Vision Core Facility

    + +
      +
    1. Computed the log base 2 of each raw signal value
    2. +
    3. Calculated the mean and standard Deviation of each Mouse WG-6 v2.0 array
    4. +
    5. Normalized each array using the formula, 2 (z-score of log2 [intensity]) The result is to produce arrays that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage is that a two-fold difference in expression level corresponds approximately to a 1 unit difference.
    6. +
    7. computed the mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples.
    8. +
    diff --git a/general/datasets/Heioncvscretilm6_0911/experiment-type.rtf b/general/datasets/Heioncvscretilm6_0911/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Heioncvscretilm6_0911/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Heioncvscretilm6_0911/notes.rtf b/general/datasets/Heioncvscretilm6_0911/notes.rtf new file mode 100644 index 0000000..13ff99a --- /dev/null +++ b/general/datasets/Heioncvscretilm6_0911/notes.rtf @@ -0,0 +1 @@ +

    This data set is available as a bulk download in several formats. The data are available as either strain means or the individual arrays. Due to the involved normalization procedures required to correct for batch effects we strongly recommend not using the raw CEL files without special statistical procedures.

    diff --git a/general/datasets/Heioncvscretilm6_0911/platform.rtf b/general/datasets/Heioncvscretilm6_0911/platform.rtf new file mode 100644 index 0000000..2c52707 --- /dev/null +++ b/general/datasets/Heioncvscretilm6_0911/platform.rtf @@ -0,0 +1 @@ +

    Illumina MouseWG-6 v2.0 arrays: The Illumina Sentrix Mouse-6 BeadChip uses 50-nucleotide probes to interrogate approximately 46,000 sequences from the mouse transcriptome. For each array, the RNA was pooled from two retinas.

    diff --git a/general/datasets/Heioncvscretilm6_0911/processing.rtf b/general/datasets/Heioncvscretilm6_0911/processing.rtf new file mode 100644 index 0000000..97cc2be --- /dev/null +++ b/general/datasets/Heioncvscretilm6_0911/processing.rtf @@ -0,0 +1,2654 @@ +

    Values of all 45,281 probe sets in this data set range from a low of 6.25 (Rho GTPase activating protein 11A, Arhgap11a, probe ID ILMN_2747167) to a high of 18.08 (Ubiquitin B, Ubb, probe ID ILMN_2516699). This corresponds to 11.83 units or a 1 to 3641 dynamic range of expression (2^11.83). We normalized raw signal values using Beadstudio’s rank invariant normalization algorithm. BXD62 was the strain used as the control group

    + +

     

    + +

    Sample Processing: Drs. Natalie E. Freeman-Anderson and Justin P. Templeton extracted the retinas from the mice and Dr. Natalie Freeman-Anderson processed all samples in the HEI Vision Core Facility. The tissue was homogenized and extracted according to the RNA-Stat-60 protocol as described by the manufacturer (Tel-Test, Friendswood, TX) listed above. The quality and purity of RNA was assessed using an Agilent Bioanalyzer 2100 system. The RNA from each sample was processed with the Illumina TotalPrep RNA Amplification Kit (Ambion, Austin, TX) to produce labeled cRNA. The cRNA for each sample was then hybridized to an Illumina Sentrix® Mouse-6-V2 BeadChip (Illumina, San Diego, CA)

    + +

     

    + +

     

    + +

    Quality control analysis of the raw image data was performed using the Illumina BeadStudio software. MIAME standards were used for all microarray data. Rank invariant normalization with BeadStudio software was used to calculate the data. Once this data was collected, the data was globally normalized across all samples using the formula 2 (z-score of log2 [intensity]) + 8.

    + +

    Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

    + +

    Table 1: HEI Retina case IDs, including sample tube ID, strain, age, sex, and source of mice

    + +

     

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDStrainAgeSexSource of Animal
    1121608_11-C57BL/6JcFAC57BL/6J69FJAX
    2121608_12-C57BL/6JcFBC57BL/6J69FJAX
    3KA7444-C57BL/6JcMCC57BL/6J97MUTHSC RW
    4KA7444-C57BL/6JcMDC57BL/6J97MUTHSC RW
    531209.05-DBA2JcFADBA2J75FUTHSC RW
    631209.05-DBA2JcFBDBA2J75FUTHSC RW
    7121608_13-DBA/2JcMADBA/2J89MUTHSC RW
    8121608_14-DBA/2JcMBDBA/2J89MUTHSC RW
    9KA7446-B6D2F1cFAB6D2F192FUTHSC RW
    10KA7446-B6D2F1cFBB6D2F192FUTHSC RW
    11KA7446-B6D2F1cMCB6D2F192MUTHSC RW
    12KA7446-B6D2F1cMDB6D2F192MUTHSC RW
    13KA7466-D2B6F1cFAD2B6F170FUTHSC RW
    14KA7466-D2B6F1cFBD2B6F170FUTHSC RW
    15KA7466-D2B6F1cMCD2B6F170MUTHSC RW
    16KA7466-D2B6F1cMDD2B6F170MUTHSC RW
    1782609.13-1cFABXD0162FJAX
    1882609.14-1cFBBXD0162FJAX
    19KA7389-1cFABXD0151FUTHSC RW
    20KA7389-1cFBBXD0151FUTHSC RW
    21KA7389-1cMCBXD0151MUTHSC RW
    22KA7389-1cMDBXD0151MUTHSC RW
    23KA7300-2cFABXD0275FUTHSC RW
    24KA7300-2cFBBXD0275FUTHSC RW
    25100909.01-2cMABXD0265MJAX
    26100909.02-2cMBBXD0265MJAX
    27KA6699-5cFABXD0562FUTHSC RW
    28KA6699-5cFBBXD0562FUTHSC RW
    29KA6699-5cFCBXD0562FUTHSC RW
    30KA6699-5cFDBXD0562FUTHSC RW
    3182609.09-5cMABXD0560MJAX
    3282609.1-5cMBBXD0560MJAX
    33KA6763-6cFABXD0648FUTHSC RW
    34KA6763-6cFBBXD0648FUTHSC RW
    3581209.06-6cMABXD0669MVAMC
    3681209.07-6cMBBXD0669MVAMC
    3782609.07-8cFABXD0868FJAX
    3882609.08-8cFBBXD0868FJAX
    39JAX-8cMABXD0876MJAX
    40JAX-8cMBBXD0876MJAX
    41KA7289-9cFABXD0987FUTHSC RW
    42KA7289-9cFBBXD0987FUTHSC RW
    43KA7289-9cMCBXD0987MUTHSC RW
    44KA7289-9cMDBXD0987MUTHSC RW
    45JAX-11cFABXD1184FJAX
    46JAX-11cFBBXD1184FJAX
    47JAX-11cMCBXD1171MJAX
    48JAX-11cMDBXD1171MJAX
    4940209.07-12cFABXD1265FVAMC
    5040209.08-12cFBBXD1265FVAMC
    51011309.01-12cMABXD1265MUTHSC RW
    52011309.02-12cMBBXD1265MUTHSC RW
    53KA7286-13cFABXD1389FUTHSC RW
    54KA7286-13cFBBXD1389FUTHSC RW
    55KA7286-13cMCBXD1389MUTHSC RW
    56KA7286-13cMDBXD1389MUTHSC RW
    57KA7302-14cFABXD1473FUTHSC RW
    58KA7302-14cFBBXD1473FUTHSC RW
    59100909.05-14cMABXD1466MJAX
    60100909.06-14cMBBXD1466MJAX
    61KA7288-15cFABXD1589FUTHSC RW
    62KA7288-15cFBBXD1589FUTHSC RW
    63KA7288-15cMCBXD1589MUTHSC RW
    64KA7288-15cMDBXD1589MUTHSC RW
    65062509.01-16cFABXD1668FUTHSC RW
    66KA7267-16cMABXD1691MUTHSC RW
    67KA7267-16cMBBXD1691MUTHSC RW
    68KA6686-18cFBBXD1865FUTHSC RW
    69KA6686-18cFCBXD1865FUTHSC RW
    70KA6686-18cMEBXD1865MUTHSC RW
    71KA6686-18cMFBXD1865MUTHSC RW
    72KA6676-19cFBBXD1963FUTHSC RW
    73KA6676-19cFCBXD1963FUTHSC RW
    74KA6676-19cMEBXD1963MUTHSC RW
    75KA6676-19cMFBXD1963MUTHSC RW
    76060409.05-20cFABXD2067FUTHSC RW
    77060409.06-20cFBBXD2067FUTHSC RW
    78021909.03-20cMABXD2064MUTHSC RW
    79021909.04-20cMBBXD2064MUTHSC RW
    8082609.02-21cFCBXD2165FJAX
    8182609.03-21cFDBXD2165FJAX
    82121709.01-21cMABXD2180MJAX
    83121709.02-21cMBBXD2180MJAX
    84121709.03-22cFABXD2262FJAX
    85121709.04-22cFBBXD2262FJAX
    86092308_03-22cMABXD22118MUTHSC RW
    87092308_04-22cMBBXD22118MUTHSC RW
    8880409.01-24AcFABXD24A72FUTHSC RW
    89080409_02_24AcFBBXD24A72FUTHSC RW
    9082609.26-24AcFCBXD24A64FUTHSC RW
    9181209.03-24AcMCBXD24A62MUTHSC RW
    92KA6678-24cFABXD2462FUTHSC RW
    93KA6678-24cFBBXD2462FUTHSC RW
    94KA6678-24cMEBXD2462MUTHSC RW
    95KA6678-24cMFBXD2462MUTHSC RW
    96060409.07-27cFABXD2763FUTHSC RW
    97060409.08-27cFBBXD2763FUTHSC RW
    9880409.03-27cMABXD2774MUTHSC RW
    9980409.04-27cMBBXD2774MUTHSC RW
    100JAX-28cFABXD2867FJAX
    101JAX-28cFBBXD2867FJAX
    102JAX-28cMCBXD2867MJAX
    103JAX-28cMDBXD2867MJAX
    10482609.11-29cFABXD2966FJAX
    10582609.12-29cFBBXD2966FJAX
    10682609.04-29cMABXD2966MJAX
    10782609.05-29cMBBXD2966MJAX
    108JAX-31cMBBXD 3156MJAX
    109JAX-31cFCBXD 3169FJAX
    110JAX-31cFDBXD 3169FJAX
    111011309.03-32cFABXD3262FUTHSC RW
    112011309.04-32cFBBXD3262FUTHSC RW
    113KA7318-32cFCBXD3271FUTHSC RW
    114KA7319-32cMABXD3274MUTHSC RW
    115KA7319-32cMBBXD3274MUTHSC RW
    116100909.07-33cFABXD3365FJAX
    117100909.08-33cFBBXD3365FJAX
    118022609.01-33cMABXD3392MUTHSC RW
    119022609.02-33cMBBXD3392MUTHSC RW
    120KA7416-34cFABXD3497FUTHSC RW
    121KA7416-34cFBBXD3497FUTHSC RW
    122KA6321-34cMABXD3466MUTHSC RW
    123KA6321-34cMBBXD3466MUTHSC RW
    124060409.01-36cFABXD3663FUTHSC RW
    125060409.02-36cFBBXD3663FUTHSC RW
    126060409.03-36cMCBXD3663MUTHSC RW
    127KA6702-38cFABXD3863FUTHSC RW
    128KA6702-38cFBBXD3863FUTHSC RW
    12982609.24-38cFABXD3885FUTHSC RW
    13082609.25-38cFBBXD3885FUTHSC RW
    131100909.03-38cMABXD3861MJAX
    132100909.04-38cMBBXD3861MJAX
    133022609.05-39cFABXD3965FUTHSC RW
    134022609.06-39cFBBXD3965FUTHSC RW
    13531209.01-39cMCBXD3967MUTHSC RW
    13692409.01-40cFABXD4064FUTHSC RW
    13792409.02-40cFBBXD4064FUTHSC RW
    138KA6173-40cMABXD4059MUTHSC RW
    139KA6173-40cMBBXD4059MUTHSC RW
    140KA6173-40cMCBXD4059MUTHSC RW
    141091809.01-42cFABXD4273FUTHSC RW
    142091809.02-42cFBBXD4273FUTHSC RW
    143021909.01-42cFABXD4289FUTHSC RW
    144011309.06-42cMABXD4267MUTHSC RW
    145011309.07-42cMBBXD4267MUTHSC RW
    146110408_02-43cFABXD4361FUTHSC RW
    147110408_03-43cFBBXD4361FUTHSC RW
    148KA6158-43cMABXD4366MUTHSC RW
    149KA6158-43cMBBXD4366MUTHSC RW
    150100308_01-44cFABXD4467FUTHSC RW
    151102208_02-44cMDBXD4464MUTHSC RW
    152103009.03-45cFABXD4568FUTHSC RW
    153103009.04-45cFBBXD4568FUTHSC RW
    154022609.03-45cFABXD4578FUTHSC RW
    155022609.04-45cFBBXD4578FUTHSC RW
    15640309.05-45cMBBXD4565MUTHSC RW
    15740209.05-48cFBBXD4858FVAMC
    15840209.06-48cFCBXD4858FVAMC
    15981209.04-48cMABXD4882MUTHSC RW
    16081209.05-48cMBBXD4882MUTHSC RW
    16181209.08-49cFABXD4970FVAMC
    16281209.09-49cFBBXD4970FVAMC
    16340209.01-49cMABXD4987MVAMC
    16440209.02-49cMBBXD4987MVAMC
    16540209.03-49cMCBXD4987MVAMC
    166KA737850cFABXD5050FUTHSC RW
    167KA737850cFBBXD5050FUTHSC RW
    168121908_01-50cMABXD5049MUTHSC RW
    169121908_02-50cMBBXD5049MUTHSC RW
    170111208_01-51cFABXD5199FUTHSC RW
    171102208_03-51cMABXD5156MUTHSC RW
    172102208_04-51cMBBXD5156MUTHSC RW
    173090208_14-53BcFABXD53B93FUTHSC RW
    174090208_15-53BcFBBXD53B93FUTHSC RW
    175090208_16-53BcMCBXD53B93MUTHSC RW
    176090208_17-53BcMDBXD53B93MUTHSC RW
    177111208_05-55cFBBXD5570FUTHSC RW
    178KA6183-55cMABXD5563MUTHSC RW
    179KA6183-55cMBBXD5563MUTHSC RW
    180KA7362-56cFBBXD 5654FUTHSC RW
    181KA6088-56cMABXD5687MUTHSC RW
    182KA6088-56cMBBXD5687MUTHSC RW
    183KA6088-56cMCBXD5687MUTHSC RW
    18421810.01-60RFABXD 6067FUTHSC RW
    18521810.02-60RFBBXD 6067FUTHSC RW
    18621810.02-60RFCBXD 6067FUTHSC RW
    187SQ7325-60cMABXD6085MUTHSC RW
    188SQ7325-60cMBBXD6085MUTHSC RW
    189092308_10-61cFABXD61110FUTHSC RW
    190092308_11-61cFBBXD61110FUTHSC RW
    19131909.01-61cMABXD6167MUTHSC RW
    19231909.02-61cMBBXD6167MUTHSC RW
    193KA7462-62cFABXD6276FUTHSC RW
    194KA7462-62cFBBXD6276FUTHSC RW
    195KA5996-62cMABXD62113MUTHSC RW
    196KA5996-62cMBBXD62113MUTHSC RW
    197KA5996-62cMCBXD62113MUTHSC RW
    198090309.01-63cFABXD6369FUTHSC RW
    199090309.02-63cFBBXD6369FUTHSC RW
    200110609.01-63cMABXD6366MUTHSC RW
    201110609.02-63cMBBXD6366MUTHSC RW
    202091809.03-65cFABXD6565FUTHSC RW
    203091809.04-65cFBBXD6565FUTHSC RW
    204103009.01-65cMABXD6574MUTHSC RW
    205103009.02-65cMBBXD6574MUTHSC RW
    206110408_05-66cFBBXD6659FUTHSC RW
    207KA7165-66cMABXD6695MUTHSC RW
    208KA7165-66cMBBXD6695MUTHSC RW
    20990809.01-67cMABXD6761MUTHSC RW
    21090809.02-67cMBBXD6761MUTHSC RW
    211110609.03-67cFABXD6768FUTHSC RW
    212110609.04-67cFBBXD6768FUTHSC RW
    213120408_01-68cFABXD6867FUTHSC RW
    214120408_02-68cFBBXD6867FUTHSC RW
    215SQ7205-68cMABXD6887MUTHSC RW
    216SQ7205-68cMBBXD6887MUTHSC RW
    217KA6316-68cMABXD6876MUTHSC RW
    218KA6316-68cMBBXD6876MUTHSC RW
    219KA6316-68cMCBXD6876MUTHSC RW
    220KA76-69cFABXD6948FUTHSC RW
    221KA76-69cFBBXD6948FUTHSC RW
    222KA6074-69cMABXD6990MUTHSC RW
    223KA6074-69cMBBXD6990MUTHSC RW
    224121608_01-70cFABXD7080FUTHSC RW
    225121608_02-70cFBBXD7080FUTHSC RW
    226KA7394-70cMABXD7051MUTHSC RW
    22781209.08-70cMABXD7071MVAMC
    22881209.09-70cMBBXD7071MVAMC
    229052809.01-71cFABXD7170FUTHSC RW
    230060409.09-71cMABXD7162MUTHSC RW
    231060409.10-71cMBBXD7162MUTHSC RW
    23240809.01-73cFABXD7383FUTHSC RW
    23340809.02-73cFBBXD7383FUTHSC RW
    234111708_01-73cFABXD7355FUTHSC RW
    235111708_01-73cFBBXD7355FUTHSC RW
    236KA6164-73cMBBXD7359MUTHSC RW
    237KA6164-73cMCBXD7359MUTHSC RW
    23882609.22-74cFABXD7468FVAMC
    23982609.23-74cFBBXD7468FVAMC
    24082609.20-74cMABXD7468MVAMC
    24182609.21-74cMBBXD7468MVAMC
    242KA733675cFABXD7559FUTHSC RW
    243KA733675cFBBXD7559FUTHSC RW
    244KA38-75cMBBXD7562MUTHSC RW
    245KA38-75cMCBXD7562MUTHSC RW
    24641509.01-77cFABXD7770FUTHSC RW
    24741509.02-77cFBBXD7770FUTHSC RW
    24841509.03-77cMCBXD7770MUTHSC RW
    24941509.04-77cMDBXD7770MUTHSC RW
    250121608_03-80cFABXD8077FUTHSC RW
    251121608_05-80cMCBXD8070MUTHSC RW
    252KA23-80cMCBXD8077MUTHSC RW
    253KA7305-81cFABXD8151FUTHSC RW
    254KA7305-81cFBBXD8151FUTHSC RW
    255KA7305-81cMDBXD8151MUTHSC RW
    256060409.11-83cFABXD8365FUTHSC RW
    257KA24-83cFABXD8378FUTHSC RW
    258121608_07-83cMABXD8378MUTHSC RW
    259121608_08-83cMBBXD8378MUTHSC RW
    260KA24-83cMDBXD8378MUTHSC RW
    261090409.05-84cFABXD8465FVAMC
    262090409.06-84cFBBXD8465FVAMC
    263KA6203-84cMABXD8459MUTHSC RW
    264KA6203-84cMBBXD8459MUTHSC RW
    26540309.02-85cFDBXD8558FUTHSC RW
    26640309.03-85cFEBXD8558FUTHSC RW
    26732609.01-85cMABXD8567MUTHSC RW
    26832609.02-85cMBBXD8567MUTHSC RW
    26941509.05-86cFABXD8673FUTHSC RW
    27041509.06-86cFBBXD8673FUTHSC RW
    271KA6101-86cMABXD8682MUTHSC RW
    272KA6101-86cMCBXD8682MUTHSC RW
    273070909.02-87cFABXD8786FUTHSC RW
    274070909.03-87cFBBXD8786FUTHSC RW
    275KA7407-87cMABXD87113MUTHSC RW
    276KA7407-87cMBBXD87113MUTHSC RW
    277102208_05-89cFABXD8982FUTHSC RW
    278KA5974-89cMABXD89113MUTHSC RW
    279KA5974-89cMBBXD89113MUTHSC RW
    280102208_06-89cMCBXD8982MUTHSC RW
    28172309.01-90cFABXD9067FUTHSC RW
    28272309.02-90cFBBXD9067FUTHSC RW
    283090409.03-90cMABXD9064MVAMC
    284090409.04-90cMBBXD9064MVAMC
    285KA6094-92cMABXD9285MUTHSC RW
    286020609.01-95cFABXD9571FUTHSC RW
    287020609.02-95cFBBXD9571FUTHSC RW
    288KA6181-95cMABXD9561MUTHSC RW
    289KA6181-95cMBBXD9561MUTHSC RW
    29031209.03-96cFABXD9662FUTHSC RW
    29131209.04-96cFBBXD9662FUTHSC RW
    292KA7246-96cMABXD9673MUTHSC RW
    293KA7246-96cMBBXD9673MUTHSC RW
    29481209.10-97cFABXD9783FVAMC
    29581209.11-97cFBBXD9783FVAMC
    29681209.1-97cMABXD9783MVAMC
    29781209.11-97cMBBXD9783MVAMC
    298SQ7520-98cFABXD9859FUTHSC RW
    299SQ7520-98cFBBXD9859FUTHSC RW
    300SQ7520-98cMCBXD9859MUTHSC RW
    301SQ7520-98cMDBXD9859MUTHSC RW
    30282609.17-99cFABXD9964FVAMC
    30382609.18-99cFBBXD9964FVAMC
    30481409.01-99cMABXD9966MUTHSC RW
    30581409.02-99cMBBXD9966MUTHSC RW
    306121608_09-100cFABXD10081FUTHSC RW
    307121608_10-100cFBBXD10081FUTHSC RW
    308KA6001-100cMABXD100111MUTHSC RW
    309KA6001-100cMBBXD100111MUTHSC RW
    31081209.12-101cFABXD10172FVAMC
    31181209.13-101cFBBXD10172FVAMC
    312KA7296-101cMABXD10175MUTHSC RW
    313KA7296-101cMBBXD10175MUTHSC RW
    31492409.03-102cFABXD10271FVAMC
    31592409.04-102cFBBXD10271FVAMC
    316KA7380-102cMABXD102115MUTHSC RW
    31743009.01-103cFABXD10368FUTHSC RW
    31843009.02-103cFBBXD10368FUTHSC RW
    319KA79-103cFABXD10348FUTHSC RW
    320KA79-103cFBBXD10348FUTHSC RW
    321KA79-103cMCBXD10348MUTHSC RW
    32282609.15-103cMABXD10369MVAMC
    32382609.16-103cMBBXD10369MVAMC
    324102909.01-BALBCcFABALB/cByJ78FJAX
    325102909.02-BALBCcFBBALB/cByJ78FJAX
    326102909.03-BALBCcMABALB/cByJ78MJAX
    327102909.04-BALBCcMBBALB/cByJ78MJAX
    +
    diff --git a/general/datasets/Heioncvscretilm6_0911/summary.rtf b/general/datasets/Heioncvscretilm6_0911/summary.rtf new file mode 100644 index 0000000..44e98a7 --- /dev/null +++ b/general/datasets/Heioncvscretilm6_0911/summary.rtf @@ -0,0 +1,50 @@ +
    +

    This is a subtractive dataset. The Normal retina dataset was subtracted from the ONC data set probe by probe to create a data set of the changes occurring following ONC. This data set can be used to define gene changes following ONC. It is not compatible with most of the bioinformatic tools available on GeneNetwork.

    + +

    HEI Retina Illumina V6.2 (April 2010) RankInv was normalized and scaled by William E. Orr and uploaded by Arthur Centeno and Xiaodong Zhou on April 7, 2010. This data set consists of either 69 BXD strains (Normal data set) or 75 BXD strains (Full data set), C57BL/6J, DBA/2J, both reciprocal F1s, and BALB/cByJ. A total of either 74 strains (Normal data set) or 80 strains (Full data set) were quantified.

    + +

    COMMENT on  FULL versus NORMAL data sets: For many general uses there is no significant difference between FULL and NORMAL data sets. However, the FULL data set includes strains with high endogenous Gfap mRNA expression, indicative of reactive gliosis. For that reason, and to compare to OPTIC NERVE CRUSH (ONC), we removed data from six strains to make the NORMAL data set.

    + +

    The NORMAL data set exludes data from BXD24, BXD32, BXD49, BXD70, BXD83, and BXD89. BXD24 has known retinal degeneration and is now known officially as  BXD24/TyJ-Cep290/J, JAX Stock number 000031. BXD32 has mild retinal degeneration. The NORMAL data set does include BXD24a, now also known as BXD24/TyJ (JAX Stock number 005243).

    + +

    The data are now open and available for analysis.

    + +

    Please cite: Freeman NE, Templeton JP, Orr WE, Lu L, Williams RW, Geisert EE (2011) Genetic networks in the mouse retina: Growth Associated Protein 43 and Phosphate Tensin Homology network. Molecular Vision 17:1355-1372. Full Text PDF or HTML

    + +

    This is rank invariant expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 6.25 to 18.08 (11.83 units), a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

    + +

    The lowest level of expression is 6.254 for ILMN_2747167 (Arhgap11a) from HEI Retina Illumina V6.2 (April 2010) RankInv **. Lowest single data about 5.842.

    + +

    The highest level of expression is 18.077 for ILMN_2516699 (Ubb). Highest single value is about 18.934.

    + +

     

    +
    + +

    Other Related Publications

    + +
    +

     

    + +
      +
    1. Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link)
    2. +
    3. Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674
    4. +
    5. Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link)
    6. +
    7. Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.(Link) +

       

      + +

       

      +
    8. +
    +
    + +
    Other Data Sets Users of these mouse retina data may also find the following complementary resources useful: + +
      +
    1. NEIBank collection of ESTs and SAGE data.
    2. +
    3. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases
    4. +
    5. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.
    6. +
    7. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus.
    8. +
    9. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430).
    10. +
    11. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.
    12. +
    +
    diff --git a/general/datasets/Heioncvscretilm6_0911/tissue.rtf b/general/datasets/Heioncvscretilm6_0911/tissue.rtf new file mode 100644 index 0000000..766ab59 --- /dev/null +++ b/general/datasets/Heioncvscretilm6_0911/tissue.rtf @@ -0,0 +1,32 @@ +
    +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RNAlater at room temperature. Two retinas from one mouse were stored in a single tube.

    + +

    Each array was hybridized with a pool of cRNA from 2 retinas (1 mouse). Natalie Freeman-Anderson extracted RNA at UTHSC.

    + +

     

    + +

    Dissecting and preparing eyes for RNA extraction

    + +

     

    + +

    Retinas for RNA extraction were placed in RNA STAT-60 (Tel-Test Inc.) and processed per manufacturer’s instructions (in brief form below). Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we:

    + +

     

    + + +
    diff --git a/general/datasets/Het3_itppublish/citation.rtf b/general/datasets/Het3_itppublish/citation.rtf new file mode 100644 index 0000000..e723d03 --- /dev/null +++ b/general/datasets/Het3_itppublish/citation.rtf @@ -0,0 +1,18 @@ +

    The first use of this strain designation was UM-HET3

    + +
    +

    Miller, R. A., C. Chrisp, and A. Galecki. 1997. CD4 memory T cell levels predict lifespan in genetically heterogeneous mice. FASEB Journal 11:775-783

    +
    + +

    UM-HET3 mice are neither an F1 nor an F2 hybrid. (An F2 hybrid is made by crossing males and females of the same F1 hybrid stock.) The correct designation is a "four-way cross."

    + +

    Publications from the NIA Interventions Testing Program

    + +

    The first ITP paper also referred to these mice as UM-HET3, using this strain designation regardless of the site at which the mice were produced.  +See: 

    + +
    +

    Miller, R. A., D. E. Harrison, C. M. Astle, R. A. Floyd, K. Flurkey, K. L. Hensley, M. A. Javors, C. Leeuwenburgh, J. F. Nelson, E. Ongini, N. L. Nadon, H. R. Warner, R. Strong. 2007. An aging interventions testing program: study design and interim report. Aging Cell 6: 565 - 575. [PMC: 17578509]

    +
    + +

    ITP1: Interventions Testing Program: Effects of various treatments on lifespan and related phenotypes in genetically heterogeneous mice (UM-HET3) (2004-2022)

    diff --git a/general/datasets/Het3_itppublish/specifics.rtf b/general/datasets/Het3_itppublish/specifics.rtf new file mode 100644 index 0000000..4c7f4e9 --- /dev/null +++ b/general/datasets/Het3_itppublish/specifics.rtf @@ -0,0 +1 @@ +Aging Mouse Lifespan Studies (NIA UM-HET3) \ No newline at end of file diff --git a/general/datasets/Het3_itppublish/summary.rtf b/general/datasets/Het3_itppublish/summary.rtf new file mode 100644 index 0000000..4a3de8b --- /dev/null +++ b/general/datasets/Het3_itppublish/summary.rtf @@ -0,0 +1,5 @@ +

    http://www-personal.umich.edu/~millerr/ITP.htm

    + +

    https://www.nia.nih.gov/research/dab/interventions-testing-program-itp/frequently-asked-questions-about-itp

    + +

    https://www.nia.nih.gov/research/dab/interventions-testing-program-itp/compounds-testing

    diff --git a/general/datasets/Hipp_illumina_rank_1006/acknowledgment.rtf b/general/datasets/Hipp_illumina_rank_1006/acknowledgment.rtf new file mode 100644 index 0000000..959532f --- /dev/null +++ b/general/datasets/Hipp_illumina_rank_1006/acknowledgment.rtf @@ -0,0 +1,8 @@ +
    +

    Data were generated with funds to Lu Lu, Beth Bennett, Mike Miles, Melloni Cook from INIA.

    + + +
    diff --git a/general/datasets/Hipp_illumina_rank_1006/cases.rtf b/general/datasets/Hipp_illumina_rank_1006/cases.rtf new file mode 100644 index 0000000..f3302c7 --- /dev/null +++ b/general/datasets/Hipp_illumina_rank_1006/cases.rtf @@ -0,0 +1,5 @@ +
    +

    The LXS genetic reference panel of recombinant inbred strains consists of just over 77 strains. All of these strains have been inbred for more than 23 generations (F23). All strains have been genotyped at 13,377 SNPs. Thanks to the efforts of Dr. Timothy Wiltshire at the Genome Institute of the Novartis Research Foundation, the two parental strains have been genotyped at 156,551 SNPs. These genotypes are incorporated in the GeneNetwork SNP Browser.

    + +

    Strains are currently available from Drs. Beth Bennett and Tom Johnson at the Institute of Behavioral Genetics (IBG) in Boulder Colorado.

    +
    diff --git a/general/datasets/Hipp_illumina_rank_1006/experiment-design.rtf b/general/datasets/Hipp_illumina_rank_1006/experiment-design.rtf new file mode 100644 index 0000000..da9d781 --- /dev/null +++ b/general/datasets/Hipp_illumina_rank_1006/experiment-design.rtf @@ -0,0 +1,2123 @@ +
    +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between July 25 and Dec 20, 2006. All processing steps were performed by Feng Jiao. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on the original Mouse-6 v 1.0 slide. The slides were hybridized and washed following standard Illumina protocols.

    + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each strain. While all strains were orginally represented by matched male and female samples, one strain LXS34 consists of two female samples. Given the expression of Xist, we suspect that strain LXS114 is represented by two male pools (see figure at bottom of page).

    + +

    Experimental Design and Batch Structure: This data set consists arrays processed in 13 groups over a five month period (July 2006 to Dec 2006). Most groups consisted of 12 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Yiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between July 28 and Dec 21, 2006. Details on sample assignment to slides and batches is provide in the table below.

    +
    + +
    This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch.
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexgener-
    + ation
    pool
    + size
    slide
    + ID
    slide
    + position
    batch
    + by slide
    scan
    + batch
    1R2851H2ILS77F>10041523516003B11
    2R0595H2ILS71F>10021523516030B42
    3R2874H2ILS78M>10041523516011B21
    4R0585H2ILS65M>10021523516028A32
    5R3281H1ILSXISSF190FNA31562224029A2813
    6R2857H2ISS75F>10041523516011A21
    7R0589H2ISS73F>10021523516028B32
    8R2955H2ISS53M>10031523516003A11
    9R0578H2ISS67M>10021523516030A42
    10R3282H1ISSXILSF197MNA31562224029B2813
    11R2013H2LXS1084F2721562224049E189
    12R1993H2LXS1078M2721562224036E179
    13R1997H2LXS10070F2521562224049A189
    14R1983H2LXS10077M2521562224047F168
    15R2083H2LXS10185F2821562224050B199
    16R2084H2LXS10185M2821562224050C199
    17R2186H2LXS10273F2921523516001C95
    18R2187H2LXS10273M2921562224053C2010
    19R2809H2LXS10372F2621562224034C2311
    20R2854H1LXS10369M2621523516006D63
    21R2735H2LXS10778F2621523516028D32
    22R2738H2LXS10778M2621562224054C2110
    23R2840H2LXS11067F2521562224037D2411
    24R2157H2LXS11075M2721523516033E84
    25R2172H2LXS11272F2721523516001B95
    26R2841H2LXS11284M2721562224042D2712
    27R2188H2LXS11472F2821562224053D2010
    28R2204H2LXS11472M2821523516001D95
    29R2168H2LXS11580F2721523516001A95
    30R2085H2LXS11571M2721562224050D199
    31R2811H2LXS11772F2821562224034D2311
    32R2212H2LXS11774M2721523516001E95
    33R1992H2LXS12286F2621562224036D179
    34R2219H2LXS12272M2621562224054A2110
    35R2876H2LXS12387F2821562224038C2511
    36R2832H1LXS12377M2721523516011E21
    37R2872H1LXS12483F2821523516006E63
    38R2871H2LXS12485M2821562224042F2712
    39R1909H2LXS1379F2521523516024D137
    40R1901H2LXS1381M2621562224041D2612
    41R2023H2LXS1486F2521562224050A199
    42R1612H2LXS1485M2621523516015A105
    43R1936H2LXS1681F2521523516024E137
    44R1912H2LXS1681M2521523516033B84
    45R1961H2LXS1966F2621523516029F147
    46R1904H2LXS1966M2621523516024B137
    47R1883H2LXS271F2721523516009F126
    48R2753H2LXS274M2821523516030E42
    49R1729H2LXS2272F2721523516032E74
    50R2743H2LXS2279M2721562224054D2110
    51R1966H2LXS2373F2621562224032D158
    52R1971H2LXS2373M2621562224047A168
    53R2795H2LXS2474F2621523516003C11
    54R1755H2LXS2456M2521523516007A116
    55R1986H2LXS2575F2721562224036A179
    56R2006H2LXS2575M2721562224049C189
    57R2014H2LXS2682F2521562224049F189
    58R2009H2LXS2682M2621562224049D189
    59R2824H1LXS2867F2821562224042A2712
    60R1753H1LXS2872M2721562224041F2612
    61R2765H2LXS363F2721523516005B53
    62R1898H2LXS381M2621562224041C2612
    63R2764H2LXS3173F2921562224060C2210
    64R1908H2LXS3180M2821523516024C137
    65R2758H2LXS3270F2621523516030F42
    66R1743H1LXS3267M2521562224041E2612
    67R2794H2LXS3475F2721562224034B2311
    68R2870H2LXS3478F2721562224029C2813
    69R2746H2LXS3580F2221523516030C42
    70R2747H2LXS3581M2221562224060A2210
    71R1968H2LXS3676F2521562224032E158
    72R1640H2LXS3676M2521523516032C74
    73R2835H1LXS3867F2721523516011F21
    74R2842H2LXS3867M2721562224042E2712
    75R2210H2LXS3981F2821562224053E2010
    76R2736H2LXS3975M2721523516028E32
    77R1978H2LXS4178F2621562224047C168
    78R1783H2LXS4156M2621523516007D116
    79R2822H2LXS4266F2721562224034F2311
    80R2769H2LXS4270M2721562224042B2712
    81R1974H2LXS4384F2621562224047B168
    82R1733H2LXS4372M2621523516015C105
    83R1756H2LXS4656F2521523516007B116
    84R1727H2LXS4670M2521523516032D74
    85R1970H2LXS4872F2721562224032F158
    86R1981H2LXS4872M2721562224042C2712
    87R1957H2LXS4972F2521523516029C147
    88R2259H2LXS4972M2521523516028C32
    89R2836H1LXS568F2821523516006A63
    90R2213H2LXS580M2721562224053F2010
    91R2791H2LXS5068F2721562224034A2311
    92R1789H2LXS5057M2621523516033A84
    93R1740H2LXS5168F2721523516032F74
    94R1734H2LXS5168M2621523516015D105
    95R2786H2LXS5261F2721562224060D2210
    96R2768H2LXS5261M2721523516005C53
    97R2154H2LXS5470F2721523516033D84
    98R2155H2LXS5470M2721562224053A2010
    99R1821H2LXS5577F2521523516009C126
    100R1951H2LXS5574M2621523516024F137
    101R2789H2LXS5671F2521523516005F53
    102R2788H2LXS5671M2521562224060F2210
    103R2787H2LXS5966F2921562224060E2210
    104R2785H2LXS5962M2921523516005E53
    105R1791H2LXS6058F2721562224038D2511
    106R1792H2LXS6064M2721523516007E116
    107R1796H2LXS6258F2721523516007F116
    108R1797H2LXS6258M2721562224038E2511
    109R2220H2LXS6471F2821523516001F95
    110R2221H2LXS6471M2821562224054B2110
    111R1989H2LXS6673F2621562224036B179
    112R1843H2LXS6678M2721523516009E126
    113R2820H2LXS6867F2921523516003E11
    114R2819H2LXS6867M2921562224034E2311
    115R1963H2LXS778F2821562224032B158
    116R1964H2LXS778M2821562224032C158
    117R2166H2LXS7072F2721523516033F84
    118R2745H2LXS7071M2821562224054F2110
    119R2848H2LXS7272F2721562224038A2511
    120R1902H2LXS7266M2721523516024A137
    121R2750H2LXS7381F2521523516030D42
    122R1835H2LXS7390M2421523516009D126
    123R1979H2LXS7559F2721562224047D168
    124R2826H2LXS7572M2721523516003F11
    125R2142H2LXS7677F2621562224050E199
    126R1884H2LXS7685M2621562224041A2612
    127R1959H2LXS7869F2621523516029E147
    128R1958H2LXS7869M2621523516029D147
    129R2845H1LXS870F2821523516006C63
    130R2156H2LXS876M2721562224053B2010
    131R1955H2LXS8071F2521523516029A147
    132R1956H2LXS8071M2521523516029B147
    133R2830H1LXS8466F2621523516011D21
    134R2829H2LXS8466M2621562224037A2411
    135R2839H2LXS8668F2721562224037C2411
    136R2838H1LXS8668M2721523516006B63
    137R2882H1LXS8766F2721523516006F63
    138R2744H2LXS8771M2621562224054E2110
    139R2831H2LXS8869F2721562224037B2411
    140R2762H2LXS8871M2721523516005A53
    141R2828H1LXS8975F2621523516011C21
    142R1962H2LXS8973M2521562224032A158
    143R1746H2LXS966F2621523516015F105
    144R2801H2LXS968M2721523516003D11
    145R1812H2LXS9061F2521562224038F2511
    146R1813H2LXS9061M2521523516009A126
    147R1736H2LXS9266F2321523516015E105
    148R1609H2LXS9287M2321523516032A74
    149R1624H2LXS9374F2621523516032B74
    150R1815H2LXS9361M2621523516009B126
    151R1991H2LXS9470F2521562224036C179
    152R2002H2LXS9470M2521562224049B189
    153R1996H2LXS9675F2321562224036F179
    154R1772H2LXS9663M2321523516007C116
    155R2759H2LXS9773F2621562224060B2210
    156R2739H2LXS9779M2621523516028F32
    157R2149H2LXS9878F2621523516033C84
    158R1888H2LXS9876M2621562224041B2612
    159R1644H2LXS9979F2621523516015B105
    160R2145H2LXS9977M2721562224050F199
    +
    +
    diff --git a/general/datasets/Hipp_illumina_rank_1006/notes.rtf b/general/datasets/Hipp_illumina_rank_1006/notes.rtf new file mode 100644 index 0000000..4ae3a03 --- /dev/null +++ b/general/datasets/Hipp_illumina_rank_1006/notes.rtf @@ -0,0 +1 @@ +

    Data uploaded by Hongqiang Li, Oct 30, 2006. This text file originally generated by LL and RWW on November 29, 2006. Updated by LL, Dec 1, 2006. Updated March 25, April 25 by RWW.

    diff --git a/general/datasets/Hipp_illumina_rank_1006/platform.rtf b/general/datasets/Hipp_illumina_rank_1006/platform.rtf new file mode 100644 index 0000000..cb0e31f --- /dev/null +++ b/general/datasets/Hipp_illumina_rank_1006/platform.rtf @@ -0,0 +1,9 @@ +
    +

    Illumina Sentrix Mouse-6 BeadArray Platform: The Mouse6 array consists of 46,116 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology.

    + +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf).

    + +

    ANNOTATION: In spring of 2007, Robert W. Williams and Hongqiang Li reannotated the Illumina Mouse-6 array content. This new annotation is now incorporated into GeneNetwork. For 46166 probes on the Mouse 6 array platform (including control probes) we have identified 35975 NCBI Entrez Gene IDs; 26481 matched human Gene IDs; 23899 matched rat Gene IDs; 26883 NCBI HomoloGene IDs; and 12791 OMIM IDs.

    + +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    +
    diff --git a/general/datasets/Hipp_illumina_rank_1006/processing.rtf b/general/datasets/Hipp_illumina_rank_1006/processing.rtf new file mode 100644 index 0000000..678856e --- /dev/null +++ b/general/datasets/Hipp_illumina_rank_1006/processing.rtf @@ -0,0 +1,13 @@ +
    +

    All data links (right-most column above) will be made active as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    +
    + +
    +

    This data set uses the standard Rank Invariant method developed by Illumina and described in their BeadStation Studio documentation.

    + +

    Sex of the samples was validated using sex-specific probe set: Xist (probe ILM106520068, also known as scl00213742.1_141-S).

    + +

    + +

    Legend: Checking that the sex of samples was labeled correctly in mouse array data sets using Xist expression measured by probe ILM106520068. In this bar chart the expression of Xist is very low in LXS114 and has a low error term. This is because both arrays are male samples rather than 1 male and 1 female sample. In contrast LXS34 has very high expression and no error bar because the sample is from a single female pool.

    +
    diff --git a/general/datasets/Hipp_illumina_rank_1006/summary.rtf b/general/datasets/Hipp_illumina_rank_1006/summary.rtf new file mode 100644 index 0000000..357e642 --- /dev/null +++ b/general/datasets/Hipp_illumina_rank_1006/summary.rtf @@ -0,0 +1,14 @@ +
    ILLUMINA Mouse-6 DATA SET: The LXS Hippocampus Illumina Rank Invariant data set provides estimates of mRNA expression in the hippocampus of 75 LXS recombinant inbred strains, the two parental strains and ILS/Ibg and ISS/Ibg (Inbred Long Sleep and Inbred Short Sleep strains from the Institute of Behavioral Genetics).All samples are from normal adult control animals raised in a standard laboratory environment. Subsequent data sets will provide estimates of mRNA expression following restraint stress, ethanol treatment, and stress followed by ethanol using many of the same strains (Lu Lu and colleagues). + +

    A total of 240 pooled hippocampal samples were processed using 40 Illumina Sentrix Mouse-6 v 1.0 oligomer microarray (GEO GPL6099) BeadArray slides. Twenty-seven Mouse-6 slides and a total of 160 samples passed stringent quality control and error checking. We should note that this is our first experience using the Illumina platform and the initial set of 13 slides were are not included. This particular data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from 6.141 average (very low or no expression) to 19.987 (extremely high).

    + +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this initial data set, 1170 probes have LRS values >46. The maximum LRS achieved in this data set is 358.8 for probe ILM103520706 (Disabled 1; Dab1).

    + +

    + +

    Legend: Bar chart of the expression of Dab1 probe ILM103520706 in the LXS data set. This probe has a Mendelian segregation pattern and is associated with a LOD score of 77.7 (LRS 358.8). The two parental strains are shown to the far left, followed by all of the LXS strains for which we have acquired mRNA expression estimates in the hippocampus.

    +
    + +
    +

    ABOUT THE HIPPOCAMPUS. The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval. This region of the brain is particularly vulnerable to the effects of environmental stressors and is a key upstream modulator of the hypothalamic-pituitary-adrenal axis (the HPA). The hippocampus is also often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators supported by numerous agencies described in the Acknowledgments section.

    +
    diff --git a/general/datasets/Hipp_illumina_rank_1006/tissue.rtf b/general/datasets/Hipp_illumina_rank_1006/tissue.rtf new file mode 100644 index 0000000..04565fc --- /dev/null +++ b/general/datasets/Hipp_illumina_rank_1006/tissue.rtf @@ -0,0 +1,7 @@ +
    +

    All animals were raised at the IBG by Bennett and colleagues in an SPF facility. No cases were MHV positive. Mice were killed by cervical dislocation. Whole brain dissections were performed at the IBG by Bennett and colleagues and shipped in RNAlater to Lu Lu and colleagues at UTHSC. Most hippocampal dissections (all were bilateral) were performed by Zhiping Jia. Cerebella, olfactory bulbs, and brain stems were also dissected and stored at -80 deg C using further use. Hippocampal samples are very close to complete (see Lu et al., 2001 but probably include variable amounts of fimbria and choroid plexus (see expression of transthyretin, Ttr, as a marker of choroid plexus).

    + +

    A pool of dissected tissue from four hippocampi taken from two naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia.

    + +

    All animals used in this study were between 53 and 90 days of age (average of 72 days; see Table 1 below).

    +
    diff --git a/general/datasets/Hipp_illumina_rankinv_0507/acknowledgment.rtf b/general/datasets/Hipp_illumina_rankinv_0507/acknowledgment.rtf new file mode 100644 index 0000000..959532f --- /dev/null +++ b/general/datasets/Hipp_illumina_rankinv_0507/acknowledgment.rtf @@ -0,0 +1,8 @@ +
    +

    Data were generated with funds to Lu Lu, Beth Bennett, Mike Miles, Melloni Cook from INIA.

    + + +
    diff --git a/general/datasets/Hipp_illumina_rankinv_0507/cases.rtf b/general/datasets/Hipp_illumina_rankinv_0507/cases.rtf new file mode 100644 index 0000000..f3302c7 --- /dev/null +++ b/general/datasets/Hipp_illumina_rankinv_0507/cases.rtf @@ -0,0 +1,5 @@ +
    +

    The LXS genetic reference panel of recombinant inbred strains consists of just over 77 strains. All of these strains have been inbred for more than 23 generations (F23). All strains have been genotyped at 13,377 SNPs. Thanks to the efforts of Dr. Timothy Wiltshire at the Genome Institute of the Novartis Research Foundation, the two parental strains have been genotyped at 156,551 SNPs. These genotypes are incorporated in the GeneNetwork SNP Browser.

    + +

    Strains are currently available from Drs. Beth Bennett and Tom Johnson at the Institute of Behavioral Genetics (IBG) in Boulder Colorado.

    +
    diff --git a/general/datasets/Hipp_illumina_rankinv_0507/experiment-design.rtf b/general/datasets/Hipp_illumina_rankinv_0507/experiment-design.rtf new file mode 100644 index 0000000..da9d781 --- /dev/null +++ b/general/datasets/Hipp_illumina_rankinv_0507/experiment-design.rtf @@ -0,0 +1,2123 @@ +
    +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between July 25 and Dec 20, 2006. All processing steps were performed by Feng Jiao. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on the original Mouse-6 v 1.0 slide. The slides were hybridized and washed following standard Illumina protocols.

    + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each strain. While all strains were orginally represented by matched male and female samples, one strain LXS34 consists of two female samples. Given the expression of Xist, we suspect that strain LXS114 is represented by two male pools (see figure at bottom of page).

    + +

    Experimental Design and Batch Structure: This data set consists arrays processed in 13 groups over a five month period (July 2006 to Dec 2006). Most groups consisted of 12 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Yiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between July 28 and Dec 21, 2006. Details on sample assignment to slides and batches is provide in the table below.

    +
    + +
    This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch.
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexgener-
    + ation
    pool
    + size
    slide
    + ID
    slide
    + position
    batch
    + by slide
    scan
    + batch
    1R2851H2ILS77F>10041523516003B11
    2R0595H2ILS71F>10021523516030B42
    3R2874H2ILS78M>10041523516011B21
    4R0585H2ILS65M>10021523516028A32
    5R3281H1ILSXISSF190FNA31562224029A2813
    6R2857H2ISS75F>10041523516011A21
    7R0589H2ISS73F>10021523516028B32
    8R2955H2ISS53M>10031523516003A11
    9R0578H2ISS67M>10021523516030A42
    10R3282H1ISSXILSF197MNA31562224029B2813
    11R2013H2LXS1084F2721562224049E189
    12R1993H2LXS1078M2721562224036E179
    13R1997H2LXS10070F2521562224049A189
    14R1983H2LXS10077M2521562224047F168
    15R2083H2LXS10185F2821562224050B199
    16R2084H2LXS10185M2821562224050C199
    17R2186H2LXS10273F2921523516001C95
    18R2187H2LXS10273M2921562224053C2010
    19R2809H2LXS10372F2621562224034C2311
    20R2854H1LXS10369M2621523516006D63
    21R2735H2LXS10778F2621523516028D32
    22R2738H2LXS10778M2621562224054C2110
    23R2840H2LXS11067F2521562224037D2411
    24R2157H2LXS11075M2721523516033E84
    25R2172H2LXS11272F2721523516001B95
    26R2841H2LXS11284M2721562224042D2712
    27R2188H2LXS11472F2821562224053D2010
    28R2204H2LXS11472M2821523516001D95
    29R2168H2LXS11580F2721523516001A95
    30R2085H2LXS11571M2721562224050D199
    31R2811H2LXS11772F2821562224034D2311
    32R2212H2LXS11774M2721523516001E95
    33R1992H2LXS12286F2621562224036D179
    34R2219H2LXS12272M2621562224054A2110
    35R2876H2LXS12387F2821562224038C2511
    36R2832H1LXS12377M2721523516011E21
    37R2872H1LXS12483F2821523516006E63
    38R2871H2LXS12485M2821562224042F2712
    39R1909H2LXS1379F2521523516024D137
    40R1901H2LXS1381M2621562224041D2612
    41R2023H2LXS1486F2521562224050A199
    42R1612H2LXS1485M2621523516015A105
    43R1936H2LXS1681F2521523516024E137
    44R1912H2LXS1681M2521523516033B84
    45R1961H2LXS1966F2621523516029F147
    46R1904H2LXS1966M2621523516024B137
    47R1883H2LXS271F2721523516009F126
    48R2753H2LXS274M2821523516030E42
    49R1729H2LXS2272F2721523516032E74
    50R2743H2LXS2279M2721562224054D2110
    51R1966H2LXS2373F2621562224032D158
    52R1971H2LXS2373M2621562224047A168
    53R2795H2LXS2474F2621523516003C11
    54R1755H2LXS2456M2521523516007A116
    55R1986H2LXS2575F2721562224036A179
    56R2006H2LXS2575M2721562224049C189
    57R2014H2LXS2682F2521562224049F189
    58R2009H2LXS2682M2621562224049D189
    59R2824H1LXS2867F2821562224042A2712
    60R1753H1LXS2872M2721562224041F2612
    61R2765H2LXS363F2721523516005B53
    62R1898H2LXS381M2621562224041C2612
    63R2764H2LXS3173F2921562224060C2210
    64R1908H2LXS3180M2821523516024C137
    65R2758H2LXS3270F2621523516030F42
    66R1743H1LXS3267M2521562224041E2612
    67R2794H2LXS3475F2721562224034B2311
    68R2870H2LXS3478F2721562224029C2813
    69R2746H2LXS3580F2221523516030C42
    70R2747H2LXS3581M2221562224060A2210
    71R1968H2LXS3676F2521562224032E158
    72R1640H2LXS3676M2521523516032C74
    73R2835H1LXS3867F2721523516011F21
    74R2842H2LXS3867M2721562224042E2712
    75R2210H2LXS3981F2821562224053E2010
    76R2736H2LXS3975M2721523516028E32
    77R1978H2LXS4178F2621562224047C168
    78R1783H2LXS4156M2621523516007D116
    79R2822H2LXS4266F2721562224034F2311
    80R2769H2LXS4270M2721562224042B2712
    81R1974H2LXS4384F2621562224047B168
    82R1733H2LXS4372M2621523516015C105
    83R1756H2LXS4656F2521523516007B116
    84R1727H2LXS4670M2521523516032D74
    85R1970H2LXS4872F2721562224032F158
    86R1981H2LXS4872M2721562224042C2712
    87R1957H2LXS4972F2521523516029C147
    88R2259H2LXS4972M2521523516028C32
    89R2836H1LXS568F2821523516006A63
    90R2213H2LXS580M2721562224053F2010
    91R2791H2LXS5068F2721562224034A2311
    92R1789H2LXS5057M2621523516033A84
    93R1740H2LXS5168F2721523516032F74
    94R1734H2LXS5168M2621523516015D105
    95R2786H2LXS5261F2721562224060D2210
    96R2768H2LXS5261M2721523516005C53
    97R2154H2LXS5470F2721523516033D84
    98R2155H2LXS5470M2721562224053A2010
    99R1821H2LXS5577F2521523516009C126
    100R1951H2LXS5574M2621523516024F137
    101R2789H2LXS5671F2521523516005F53
    102R2788H2LXS5671M2521562224060F2210
    103R2787H2LXS5966F2921562224060E2210
    104R2785H2LXS5962M2921523516005E53
    105R1791H2LXS6058F2721562224038D2511
    106R1792H2LXS6064M2721523516007E116
    107R1796H2LXS6258F2721523516007F116
    108R1797H2LXS6258M2721562224038E2511
    109R2220H2LXS6471F2821523516001F95
    110R2221H2LXS6471M2821562224054B2110
    111R1989H2LXS6673F2621562224036B179
    112R1843H2LXS6678M2721523516009E126
    113R2820H2LXS6867F2921523516003E11
    114R2819H2LXS6867M2921562224034E2311
    115R1963H2LXS778F2821562224032B158
    116R1964H2LXS778M2821562224032C158
    117R2166H2LXS7072F2721523516033F84
    118R2745H2LXS7071M2821562224054F2110
    119R2848H2LXS7272F2721562224038A2511
    120R1902H2LXS7266M2721523516024A137
    121R2750H2LXS7381F2521523516030D42
    122R1835H2LXS7390M2421523516009D126
    123R1979H2LXS7559F2721562224047D168
    124R2826H2LXS7572M2721523516003F11
    125R2142H2LXS7677F2621562224050E199
    126R1884H2LXS7685M2621562224041A2612
    127R1959H2LXS7869F2621523516029E147
    128R1958H2LXS7869M2621523516029D147
    129R2845H1LXS870F2821523516006C63
    130R2156H2LXS876M2721562224053B2010
    131R1955H2LXS8071F2521523516029A147
    132R1956H2LXS8071M2521523516029B147
    133R2830H1LXS8466F2621523516011D21
    134R2829H2LXS8466M2621562224037A2411
    135R2839H2LXS8668F2721562224037C2411
    136R2838H1LXS8668M2721523516006B63
    137R2882H1LXS8766F2721523516006F63
    138R2744H2LXS8771M2621562224054E2110
    139R2831H2LXS8869F2721562224037B2411
    140R2762H2LXS8871M2721523516005A53
    141R2828H1LXS8975F2621523516011C21
    142R1962H2LXS8973M2521562224032A158
    143R1746H2LXS966F2621523516015F105
    144R2801H2LXS968M2721523516003D11
    145R1812H2LXS9061F2521562224038F2511
    146R1813H2LXS9061M2521523516009A126
    147R1736H2LXS9266F2321523516015E105
    148R1609H2LXS9287M2321523516032A74
    149R1624H2LXS9374F2621523516032B74
    150R1815H2LXS9361M2621523516009B126
    151R1991H2LXS9470F2521562224036C179
    152R2002H2LXS9470M2521562224049B189
    153R1996H2LXS9675F2321562224036F179
    154R1772H2LXS9663M2321523516007C116
    155R2759H2LXS9773F2621562224060B2210
    156R2739H2LXS9779M2621523516028F32
    157R2149H2LXS9878F2621523516033C84
    158R1888H2LXS9876M2621562224041B2612
    159R1644H2LXS9979F2621523516015B105
    160R2145H2LXS9977M2721562224050F199
    +
    +
    diff --git a/general/datasets/Hipp_illumina_rankinv_0507/notes.rtf b/general/datasets/Hipp_illumina_rankinv_0507/notes.rtf new file mode 100644 index 0000000..4ae3a03 --- /dev/null +++ b/general/datasets/Hipp_illumina_rankinv_0507/notes.rtf @@ -0,0 +1 @@ +

    Data uploaded by Hongqiang Li, Oct 30, 2006. This text file originally generated by LL and RWW on November 29, 2006. Updated by LL, Dec 1, 2006. Updated March 25, April 25 by RWW.

    diff --git a/general/datasets/Hipp_illumina_rankinv_0507/platform.rtf b/general/datasets/Hipp_illumina_rankinv_0507/platform.rtf new file mode 100644 index 0000000..cb0e31f --- /dev/null +++ b/general/datasets/Hipp_illumina_rankinv_0507/platform.rtf @@ -0,0 +1,9 @@ +
    +

    Illumina Sentrix Mouse-6 BeadArray Platform: The Mouse6 array consists of 46,116 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology.

    + +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf).

    + +

    ANNOTATION: In spring of 2007, Robert W. Williams and Hongqiang Li reannotated the Illumina Mouse-6 array content. This new annotation is now incorporated into GeneNetwork. For 46166 probes on the Mouse 6 array platform (including control probes) we have identified 35975 NCBI Entrez Gene IDs; 26481 matched human Gene IDs; 23899 matched rat Gene IDs; 26883 NCBI HomoloGene IDs; and 12791 OMIM IDs.

    + +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    +
    diff --git a/general/datasets/Hipp_illumina_rankinv_0507/processing.rtf b/general/datasets/Hipp_illumina_rankinv_0507/processing.rtf new file mode 100644 index 0000000..678856e --- /dev/null +++ b/general/datasets/Hipp_illumina_rankinv_0507/processing.rtf @@ -0,0 +1,13 @@ +
    +

    All data links (right-most column above) will be made active as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    +
    + +
    +

    This data set uses the standard Rank Invariant method developed by Illumina and described in their BeadStation Studio documentation.

    + +

    Sex of the samples was validated using sex-specific probe set: Xist (probe ILM106520068, also known as scl00213742.1_141-S).

    + +

    + +

    Legend: Checking that the sex of samples was labeled correctly in mouse array data sets using Xist expression measured by probe ILM106520068. In this bar chart the expression of Xist is very low in LXS114 and has a low error term. This is because both arrays are male samples rather than 1 male and 1 female sample. In contrast LXS34 has very high expression and no error bar because the sample is from a single female pool.

    +
    diff --git a/general/datasets/Hipp_illumina_rankinv_0507/summary.rtf b/general/datasets/Hipp_illumina_rankinv_0507/summary.rtf new file mode 100644 index 0000000..357e642 --- /dev/null +++ b/general/datasets/Hipp_illumina_rankinv_0507/summary.rtf @@ -0,0 +1,14 @@ +
    ILLUMINA Mouse-6 DATA SET: The LXS Hippocampus Illumina Rank Invariant data set provides estimates of mRNA expression in the hippocampus of 75 LXS recombinant inbred strains, the two parental strains and ILS/Ibg and ISS/Ibg (Inbred Long Sleep and Inbred Short Sleep strains from the Institute of Behavioral Genetics).All samples are from normal adult control animals raised in a standard laboratory environment. Subsequent data sets will provide estimates of mRNA expression following restraint stress, ethanol treatment, and stress followed by ethanol using many of the same strains (Lu Lu and colleagues). + +

    A total of 240 pooled hippocampal samples were processed using 40 Illumina Sentrix Mouse-6 v 1.0 oligomer microarray (GEO GPL6099) BeadArray slides. Twenty-seven Mouse-6 slides and a total of 160 samples passed stringent quality control and error checking. We should note that this is our first experience using the Illumina platform and the initial set of 13 slides were are not included. This particular data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from 6.141 average (very low or no expression) to 19.987 (extremely high).

    + +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this initial data set, 1170 probes have LRS values >46. The maximum LRS achieved in this data set is 358.8 for probe ILM103520706 (Disabled 1; Dab1).

    + +

    + +

    Legend: Bar chart of the expression of Dab1 probe ILM103520706 in the LXS data set. This probe has a Mendelian segregation pattern and is associated with a LOD score of 77.7 (LRS 358.8). The two parental strains are shown to the far left, followed by all of the LXS strains for which we have acquired mRNA expression estimates in the hippocampus.

    +
    + +
    +

    ABOUT THE HIPPOCAMPUS. The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval. This region of the brain is particularly vulnerable to the effects of environmental stressors and is a key upstream modulator of the hypothalamic-pituitary-adrenal axis (the HPA). The hippocampus is also often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators supported by numerous agencies described in the Acknowledgments section.

    +
    diff --git a/general/datasets/Hipp_illumina_rankinv_0507/tissue.rtf b/general/datasets/Hipp_illumina_rankinv_0507/tissue.rtf new file mode 100644 index 0000000..04565fc --- /dev/null +++ b/general/datasets/Hipp_illumina_rankinv_0507/tissue.rtf @@ -0,0 +1,7 @@ +
    +

    All animals were raised at the IBG by Bennett and colleagues in an SPF facility. No cases were MHV positive. Mice were killed by cervical dislocation. Whole brain dissections were performed at the IBG by Bennett and colleagues and shipped in RNAlater to Lu Lu and colleagues at UTHSC. Most hippocampal dissections (all were bilateral) were performed by Zhiping Jia. Cerebella, olfactory bulbs, and brain stems were also dissected and stored at -80 deg C using further use. Hippocampal samples are very close to complete (see Lu et al., 2001 but probably include variable amounts of fimbria and choroid plexus (see expression of transthyretin, Ttr, as a marker of choroid plexus).

    + +

    A pool of dissected tissue from four hippocampi taken from two naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia.

    + +

    All animals used in this study were between 53 and 90 days of age (average of 72 days; see Table 1 below).

    +
    diff --git a/general/datasets/Hipp_illumina_rankinv_1006/acknowledgment.rtf b/general/datasets/Hipp_illumina_rankinv_1006/acknowledgment.rtf new file mode 100644 index 0000000..959532f --- /dev/null +++ b/general/datasets/Hipp_illumina_rankinv_1006/acknowledgment.rtf @@ -0,0 +1,8 @@ +
    +

    Data were generated with funds to Lu Lu, Beth Bennett, Mike Miles, Melloni Cook from INIA.

    + + +
    diff --git a/general/datasets/Hipp_illumina_rankinv_1006/cases.rtf b/general/datasets/Hipp_illumina_rankinv_1006/cases.rtf new file mode 100644 index 0000000..f3302c7 --- /dev/null +++ b/general/datasets/Hipp_illumina_rankinv_1006/cases.rtf @@ -0,0 +1,5 @@ +
    +

    The LXS genetic reference panel of recombinant inbred strains consists of just over 77 strains. All of these strains have been inbred for more than 23 generations (F23). All strains have been genotyped at 13,377 SNPs. Thanks to the efforts of Dr. Timothy Wiltshire at the Genome Institute of the Novartis Research Foundation, the two parental strains have been genotyped at 156,551 SNPs. These genotypes are incorporated in the GeneNetwork SNP Browser.

    + +

    Strains are currently available from Drs. Beth Bennett and Tom Johnson at the Institute of Behavioral Genetics (IBG) in Boulder Colorado.

    +
    diff --git a/general/datasets/Hipp_illumina_rankinv_1006/experiment-design.rtf b/general/datasets/Hipp_illumina_rankinv_1006/experiment-design.rtf new file mode 100644 index 0000000..da9d781 --- /dev/null +++ b/general/datasets/Hipp_illumina_rankinv_1006/experiment-design.rtf @@ -0,0 +1,2123 @@ +
    +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between July 25 and Dec 20, 2006. All processing steps were performed by Feng Jiao. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on the original Mouse-6 v 1.0 slide. The slides were hybridized and washed following standard Illumina protocols.

    + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each strain. While all strains were orginally represented by matched male and female samples, one strain LXS34 consists of two female samples. Given the expression of Xist, we suspect that strain LXS114 is represented by two male pools (see figure at bottom of page).

    + +

    Experimental Design and Batch Structure: This data set consists arrays processed in 13 groups over a five month period (July 2006 to Dec 2006). Most groups consisted of 12 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Yiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between July 28 and Dec 21, 2006. Details on sample assignment to slides and batches is provide in the table below.

    +
    + +
    This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch.
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexgener-
    + ation
    pool
    + size
    slide
    + ID
    slide
    + position
    batch
    + by slide
    scan
    + batch
    1R2851H2ILS77F>10041523516003B11
    2R0595H2ILS71F>10021523516030B42
    3R2874H2ILS78M>10041523516011B21
    4R0585H2ILS65M>10021523516028A32
    5R3281H1ILSXISSF190FNA31562224029A2813
    6R2857H2ISS75F>10041523516011A21
    7R0589H2ISS73F>10021523516028B32
    8R2955H2ISS53M>10031523516003A11
    9R0578H2ISS67M>10021523516030A42
    10R3282H1ISSXILSF197MNA31562224029B2813
    11R2013H2LXS1084F2721562224049E189
    12R1993H2LXS1078M2721562224036E179
    13R1997H2LXS10070F2521562224049A189
    14R1983H2LXS10077M2521562224047F168
    15R2083H2LXS10185F2821562224050B199
    16R2084H2LXS10185M2821562224050C199
    17R2186H2LXS10273F2921523516001C95
    18R2187H2LXS10273M2921562224053C2010
    19R2809H2LXS10372F2621562224034C2311
    20R2854H1LXS10369M2621523516006D63
    21R2735H2LXS10778F2621523516028D32
    22R2738H2LXS10778M2621562224054C2110
    23R2840H2LXS11067F2521562224037D2411
    24R2157H2LXS11075M2721523516033E84
    25R2172H2LXS11272F2721523516001B95
    26R2841H2LXS11284M2721562224042D2712
    27R2188H2LXS11472F2821562224053D2010
    28R2204H2LXS11472M2821523516001D95
    29R2168H2LXS11580F2721523516001A95
    30R2085H2LXS11571M2721562224050D199
    31R2811H2LXS11772F2821562224034D2311
    32R2212H2LXS11774M2721523516001E95
    33R1992H2LXS12286F2621562224036D179
    34R2219H2LXS12272M2621562224054A2110
    35R2876H2LXS12387F2821562224038C2511
    36R2832H1LXS12377M2721523516011E21
    37R2872H1LXS12483F2821523516006E63
    38R2871H2LXS12485M2821562224042F2712
    39R1909H2LXS1379F2521523516024D137
    40R1901H2LXS1381M2621562224041D2612
    41R2023H2LXS1486F2521562224050A199
    42R1612H2LXS1485M2621523516015A105
    43R1936H2LXS1681F2521523516024E137
    44R1912H2LXS1681M2521523516033B84
    45R1961H2LXS1966F2621523516029F147
    46R1904H2LXS1966M2621523516024B137
    47R1883H2LXS271F2721523516009F126
    48R2753H2LXS274M2821523516030E42
    49R1729H2LXS2272F2721523516032E74
    50R2743H2LXS2279M2721562224054D2110
    51R1966H2LXS2373F2621562224032D158
    52R1971H2LXS2373M2621562224047A168
    53R2795H2LXS2474F2621523516003C11
    54R1755H2LXS2456M2521523516007A116
    55R1986H2LXS2575F2721562224036A179
    56R2006H2LXS2575M2721562224049C189
    57R2014H2LXS2682F2521562224049F189
    58R2009H2LXS2682M2621562224049D189
    59R2824H1LXS2867F2821562224042A2712
    60R1753H1LXS2872M2721562224041F2612
    61R2765H2LXS363F2721523516005B53
    62R1898H2LXS381M2621562224041C2612
    63R2764H2LXS3173F2921562224060C2210
    64R1908H2LXS3180M2821523516024C137
    65R2758H2LXS3270F2621523516030F42
    66R1743H1LXS3267M2521562224041E2612
    67R2794H2LXS3475F2721562224034B2311
    68R2870H2LXS3478F2721562224029C2813
    69R2746H2LXS3580F2221523516030C42
    70R2747H2LXS3581M2221562224060A2210
    71R1968H2LXS3676F2521562224032E158
    72R1640H2LXS3676M2521523516032C74
    73R2835H1LXS3867F2721523516011F21
    74R2842H2LXS3867M2721562224042E2712
    75R2210H2LXS3981F2821562224053E2010
    76R2736H2LXS3975M2721523516028E32
    77R1978H2LXS4178F2621562224047C168
    78R1783H2LXS4156M2621523516007D116
    79R2822H2LXS4266F2721562224034F2311
    80R2769H2LXS4270M2721562224042B2712
    81R1974H2LXS4384F2621562224047B168
    82R1733H2LXS4372M2621523516015C105
    83R1756H2LXS4656F2521523516007B116
    84R1727H2LXS4670M2521523516032D74
    85R1970H2LXS4872F2721562224032F158
    86R1981H2LXS4872M2721562224042C2712
    87R1957H2LXS4972F2521523516029C147
    88R2259H2LXS4972M2521523516028C32
    89R2836H1LXS568F2821523516006A63
    90R2213H2LXS580M2721562224053F2010
    91R2791H2LXS5068F2721562224034A2311
    92R1789H2LXS5057M2621523516033A84
    93R1740H2LXS5168F2721523516032F74
    94R1734H2LXS5168M2621523516015D105
    95R2786H2LXS5261F2721562224060D2210
    96R2768H2LXS5261M2721523516005C53
    97R2154H2LXS5470F2721523516033D84
    98R2155H2LXS5470M2721562224053A2010
    99R1821H2LXS5577F2521523516009C126
    100R1951H2LXS5574M2621523516024F137
    101R2789H2LXS5671F2521523516005F53
    102R2788H2LXS5671M2521562224060F2210
    103R2787H2LXS5966F2921562224060E2210
    104R2785H2LXS5962M2921523516005E53
    105R1791H2LXS6058F2721562224038D2511
    106R1792H2LXS6064M2721523516007E116
    107R1796H2LXS6258F2721523516007F116
    108R1797H2LXS6258M2721562224038E2511
    109R2220H2LXS6471F2821523516001F95
    110R2221H2LXS6471M2821562224054B2110
    111R1989H2LXS6673F2621562224036B179
    112R1843H2LXS6678M2721523516009E126
    113R2820H2LXS6867F2921523516003E11
    114R2819H2LXS6867M2921562224034E2311
    115R1963H2LXS778F2821562224032B158
    116R1964H2LXS778M2821562224032C158
    117R2166H2LXS7072F2721523516033F84
    118R2745H2LXS7071M2821562224054F2110
    119R2848H2LXS7272F2721562224038A2511
    120R1902H2LXS7266M2721523516024A137
    121R2750H2LXS7381F2521523516030D42
    122R1835H2LXS7390M2421523516009D126
    123R1979H2LXS7559F2721562224047D168
    124R2826H2LXS7572M2721523516003F11
    125R2142H2LXS7677F2621562224050E199
    126R1884H2LXS7685M2621562224041A2612
    127R1959H2LXS7869F2621523516029E147
    128R1958H2LXS7869M2621523516029D147
    129R2845H1LXS870F2821523516006C63
    130R2156H2LXS876M2721562224053B2010
    131R1955H2LXS8071F2521523516029A147
    132R1956H2LXS8071M2521523516029B147
    133R2830H1LXS8466F2621523516011D21
    134R2829H2LXS8466M2621562224037A2411
    135R2839H2LXS8668F2721562224037C2411
    136R2838H1LXS8668M2721523516006B63
    137R2882H1LXS8766F2721523516006F63
    138R2744H2LXS8771M2621562224054E2110
    139R2831H2LXS8869F2721562224037B2411
    140R2762H2LXS8871M2721523516005A53
    141R2828H1LXS8975F2621523516011C21
    142R1962H2LXS8973M2521562224032A158
    143R1746H2LXS966F2621523516015F105
    144R2801H2LXS968M2721523516003D11
    145R1812H2LXS9061F2521562224038F2511
    146R1813H2LXS9061M2521523516009A126
    147R1736H2LXS9266F2321523516015E105
    148R1609H2LXS9287M2321523516032A74
    149R1624H2LXS9374F2621523516032B74
    150R1815H2LXS9361M2621523516009B126
    151R1991H2LXS9470F2521562224036C179
    152R2002H2LXS9470M2521562224049B189
    153R1996H2LXS9675F2321562224036F179
    154R1772H2LXS9663M2321523516007C116
    155R2759H2LXS9773F2621562224060B2210
    156R2739H2LXS9779M2621523516028F32
    157R2149H2LXS9878F2621523516033C84
    158R1888H2LXS9876M2621562224041B2612
    159R1644H2LXS9979F2621523516015B105
    160R2145H2LXS9977M2721562224050F199
    +
    +
    diff --git a/general/datasets/Hipp_illumina_rankinv_1006/notes.rtf b/general/datasets/Hipp_illumina_rankinv_1006/notes.rtf new file mode 100644 index 0000000..4ae3a03 --- /dev/null +++ b/general/datasets/Hipp_illumina_rankinv_1006/notes.rtf @@ -0,0 +1 @@ +

    Data uploaded by Hongqiang Li, Oct 30, 2006. This text file originally generated by LL and RWW on November 29, 2006. Updated by LL, Dec 1, 2006. Updated March 25, April 25 by RWW.

    diff --git a/general/datasets/Hipp_illumina_rankinv_1006/platform.rtf b/general/datasets/Hipp_illumina_rankinv_1006/platform.rtf new file mode 100644 index 0000000..cb0e31f --- /dev/null +++ b/general/datasets/Hipp_illumina_rankinv_1006/platform.rtf @@ -0,0 +1,9 @@ +
    +

    Illumina Sentrix Mouse-6 BeadArray Platform: The Mouse6 array consists of 46,116 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology.

    + +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf).

    + +

    ANNOTATION: In spring of 2007, Robert W. Williams and Hongqiang Li reannotated the Illumina Mouse-6 array content. This new annotation is now incorporated into GeneNetwork. For 46166 probes on the Mouse 6 array platform (including control probes) we have identified 35975 NCBI Entrez Gene IDs; 26481 matched human Gene IDs; 23899 matched rat Gene IDs; 26883 NCBI HomoloGene IDs; and 12791 OMIM IDs.

    + +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    +
    diff --git a/general/datasets/Hipp_illumina_rankinv_1006/processing.rtf b/general/datasets/Hipp_illumina_rankinv_1006/processing.rtf new file mode 100644 index 0000000..678856e --- /dev/null +++ b/general/datasets/Hipp_illumina_rankinv_1006/processing.rtf @@ -0,0 +1,13 @@ +
    +

    All data links (right-most column above) will be made active as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    +
    + +
    +

    This data set uses the standard Rank Invariant method developed by Illumina and described in their BeadStation Studio documentation.

    + +

    Sex of the samples was validated using sex-specific probe set: Xist (probe ILM106520068, also known as scl00213742.1_141-S).

    + +

    + +

    Legend: Checking that the sex of samples was labeled correctly in mouse array data sets using Xist expression measured by probe ILM106520068. In this bar chart the expression of Xist is very low in LXS114 and has a low error term. This is because both arrays are male samples rather than 1 male and 1 female sample. In contrast LXS34 has very high expression and no error bar because the sample is from a single female pool.

    +
    diff --git a/general/datasets/Hipp_illumina_rankinv_1006/summary.rtf b/general/datasets/Hipp_illumina_rankinv_1006/summary.rtf new file mode 100644 index 0000000..357e642 --- /dev/null +++ b/general/datasets/Hipp_illumina_rankinv_1006/summary.rtf @@ -0,0 +1,14 @@ +
    ILLUMINA Mouse-6 DATA SET: The LXS Hippocampus Illumina Rank Invariant data set provides estimates of mRNA expression in the hippocampus of 75 LXS recombinant inbred strains, the two parental strains and ILS/Ibg and ISS/Ibg (Inbred Long Sleep and Inbred Short Sleep strains from the Institute of Behavioral Genetics).All samples are from normal adult control animals raised in a standard laboratory environment. Subsequent data sets will provide estimates of mRNA expression following restraint stress, ethanol treatment, and stress followed by ethanol using many of the same strains (Lu Lu and colleagues). + +

    A total of 240 pooled hippocampal samples were processed using 40 Illumina Sentrix Mouse-6 v 1.0 oligomer microarray (GEO GPL6099) BeadArray slides. Twenty-seven Mouse-6 slides and a total of 160 samples passed stringent quality control and error checking. We should note that this is our first experience using the Illumina platform and the initial set of 13 slides were are not included. This particular data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from 6.141 average (very low or no expression) to 19.987 (extremely high).

    + +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this initial data set, 1170 probes have LRS values >46. The maximum LRS achieved in this data set is 358.8 for probe ILM103520706 (Disabled 1; Dab1).

    + +

    + +

    Legend: Bar chart of the expression of Dab1 probe ILM103520706 in the LXS data set. This probe has a Mendelian segregation pattern and is associated with a LOD score of 77.7 (LRS 358.8). The two parental strains are shown to the far left, followed by all of the LXS strains for which we have acquired mRNA expression estimates in the hippocampus.

    +
    + +
    +

    ABOUT THE HIPPOCAMPUS. The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval. This region of the brain is particularly vulnerable to the effects of environmental stressors and is a key upstream modulator of the hypothalamic-pituitary-adrenal axis (the HPA). The hippocampus is also often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators supported by numerous agencies described in the Acknowledgments section.

    +
    diff --git a/general/datasets/Hipp_illumina_rankinv_1006/tissue.rtf b/general/datasets/Hipp_illumina_rankinv_1006/tissue.rtf new file mode 100644 index 0000000..04565fc --- /dev/null +++ b/general/datasets/Hipp_illumina_rankinv_1006/tissue.rtf @@ -0,0 +1,7 @@ +
    +

    All animals were raised at the IBG by Bennett and colleagues in an SPF facility. No cases were MHV positive. Mice were killed by cervical dislocation. Whole brain dissections were performed at the IBG by Bennett and colleagues and shipped in RNAlater to Lu Lu and colleagues at UTHSC. Most hippocampal dissections (all were bilateral) were performed by Zhiping Jia. Cerebella, olfactory bulbs, and brain stems were also dissected and stored at -80 deg C using further use. Hippocampal samples are very close to complete (see Lu et al., 2001 but probably include variable amounts of fimbria and choroid plexus (see expression of transthyretin, Ttr, as a marker of choroid plexus).

    + +

    A pool of dissected tissue from four hippocampi taken from two naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia.

    + +

    All animals used in this study were between 53 and 90 days of age (average of 72 days; see Table 1 below).

    +
    diff --git a/general/datasets/Hlc_0311/acknowledgment.rtf b/general/datasets/Hlc_0311/acknowledgment.rtf new file mode 100644 index 0000000..119d5f3 --- /dev/null +++ b/general/datasets/Hlc_0311/acknowledgment.rtf @@ -0,0 +1,6 @@ +

    Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biol 6:e107. Full text

    + +

    Yang X, Zhang B, Molony C, Chudin E, Hao K, Zhu J, Gaedigk A, Suver C, Zhong H, Leeder JS, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich RG, Slatter JG, Schadt EE, Kasarskis A, Lum PY (2010) Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Res. 20:1020-36.

    + +

    GEO Series GSE9588
    +Genotype data for 228 individuals who satisfy privacy policy have been submitted to the NCBI dbGaP (http://www.ncbi.nlm.nih.gov/gap/) under accession no. phs000253.v1.p1.]

    diff --git a/general/datasets/Hlc_0311/citation.rtf b/general/datasets/Hlc_0311/citation.rtf new file mode 100644 index 0000000..2cec619 --- /dev/null +++ b/general/datasets/Hlc_0311/citation.rtf @@ -0,0 +1 @@ +

    Schadt EE, Molony C, Chudin E, Hao K et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol 2008 May 6;6(5):e107. PMID: 18462017

    diff --git a/general/datasets/Hlc_0311/contributors.rtf b/general/datasets/Hlc_0311/contributors.rtf new file mode 100644 index 0000000..09251aa --- /dev/null +++ b/general/datasets/Hlc_0311/contributors.rtf @@ -0,0 +1 @@ +

    Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum P, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, Guhathakurta D, Derry J, Storey J, Mehrabian M, Drake TA, Lusis AJ, Smith R, Guengerich P, Strom SC, Schuetz E, Rushmore T, Ulrich R

    diff --git a/general/datasets/Hlc_0311/experiment-design.rtf b/general/datasets/Hlc_0311/experiment-design.rtf new file mode 100644 index 0000000..cae776a --- /dev/null +++ b/general/datasets/Hlc_0311/experiment-design.rtf @@ -0,0 +1 @@ +

    Liver samples (1-2 g) were acquired from Caucasian individuals from three independent liver collections at tissue resource centers at Vanderbilt University, University of Pittsburg, and Merck Research Laboratories. All individuals were compared to a common pool created from equal portions of RNA from 191 (111 from Vanderbilt University and 80 from University of Pittsburg) samples.

    diff --git a/general/datasets/Hlc_0311/experiment-type.rtf b/general/datasets/Hlc_0311/experiment-type.rtf new file mode 100644 index 0000000..0546e04 --- /dev/null +++ b/general/datasets/Hlc_0311/experiment-type.rtf @@ -0,0 +1 @@ +Expression profiling by array \ No newline at end of file diff --git a/general/datasets/Hlc_0311/platform.rtf b/general/datasets/Hlc_0311/platform.rtf new file mode 100644 index 0000000..6687600 --- /dev/null +++ b/general/datasets/Hlc_0311/platform.rtf @@ -0,0 +1 @@ +

    Rosetta/Merck Human 44k 1.1 microarray

    diff --git a/general/datasets/Hlc_0311/summary.rtf b/general/datasets/Hlc_0311/summary.rtf new file mode 100644 index 0000000..d0282cd --- /dev/null +++ b/general/datasets/Hlc_0311/summary.rtf @@ -0,0 +1,5 @@ +

    The Human Liver Cohort (HLC) study aimed to characterize the genetic architecture of gene expression in human liver using genotyping, gene expression profiling, and enzyme activity measurements of Cytochrom P450. The HLC was assembled from a total of 780 liver samples screened. These liver samples were acquired from caucasian individuals from three independant tissue collection centers. DNA samples were genotyped on the Affymetrix 500K SNP and Illumina 650Y SNP genotyping arrays representing a total of 782,476 unique single nucleotide polymorphisms (SNPs). Only the genotype data from those samples which were collected postmortem are accessible in dbGap. These 228 samples represent a subset of the 427 samples included in the Human Liver Cohort Publication (Schadt, Molony et al. 2008). RNA samples were profiled on a custom Agilent 44,000 feature microarray composed of 39,280 oligonucleotide probes targeting transcripts representing 34,266 known and predicted genes, including high-confidence, noncoding RNA sequences. Each of the liver samples was processed into cytosol and microsomes using a standard differential centrifugation method. The activities of nine P450 enzymes (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4) in isolated microsomes from 398 HLC liver samples were measured in the microsome preparations using probe substrate metabolism assays expressed as nmol/min/mg protein. Each was measured with a single substrate except for the CYP3A4 activity that was measured using two substrates, midazolam and testosterone.

    + +

    To uncover the genetic determinants affecting expression in a metabolically active tissue relevant to the study of obesity, diabetes, atherosclerosis, and other common human diseases, we profiled 427 human liver samples on a comprehensive gene expression microarray targeting greater than 40,000 transcripts and genotyped DNA from each of these samples at greater than 1,000,000 SNPs. The relatively large sample size of this study and the large number of SNPs genotyped provided the means to assess the relationship between genetic variants and gene expression and it provided this look for the first time in a non-blood derived, metabolically active tissue. A comprehensive analysis of the liver gene expression traits revealed that thousands of these traits are under the control of well defined genetic loci, with many of the genes having already been implicated in a number of human diseases.

    + +

    Clincal data was requested, but not provided by submitter. Keywords: eQTL

    diff --git a/general/datasets/Hlcf_0311/acknowledgment.rtf b/general/datasets/Hlcf_0311/acknowledgment.rtf new file mode 100644 index 0000000..119d5f3 --- /dev/null +++ b/general/datasets/Hlcf_0311/acknowledgment.rtf @@ -0,0 +1,6 @@ +

    Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biol 6:e107. Full text

    + +

    Yang X, Zhang B, Molony C, Chudin E, Hao K, Zhu J, Gaedigk A, Suver C, Zhong H, Leeder JS, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich RG, Slatter JG, Schadt EE, Kasarskis A, Lum PY (2010) Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Res. 20:1020-36.

    + +

    GEO Series GSE9588
    +Genotype data for 228 individuals who satisfy privacy policy have been submitted to the NCBI dbGaP (http://www.ncbi.nlm.nih.gov/gap/) under accession no. phs000253.v1.p1.]

    diff --git a/general/datasets/Hlcf_0311/citation.rtf b/general/datasets/Hlcf_0311/citation.rtf new file mode 100644 index 0000000..2cec619 --- /dev/null +++ b/general/datasets/Hlcf_0311/citation.rtf @@ -0,0 +1 @@ +

    Schadt EE, Molony C, Chudin E, Hao K et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol 2008 May 6;6(5):e107. PMID: 18462017

    diff --git a/general/datasets/Hlcf_0311/contributors.rtf b/general/datasets/Hlcf_0311/contributors.rtf new file mode 100644 index 0000000..09251aa --- /dev/null +++ b/general/datasets/Hlcf_0311/contributors.rtf @@ -0,0 +1 @@ +

    Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum P, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, Guhathakurta D, Derry J, Storey J, Mehrabian M, Drake TA, Lusis AJ, Smith R, Guengerich P, Strom SC, Schuetz E, Rushmore T, Ulrich R

    diff --git a/general/datasets/Hlcf_0311/experiment-design.rtf b/general/datasets/Hlcf_0311/experiment-design.rtf new file mode 100644 index 0000000..cae776a --- /dev/null +++ b/general/datasets/Hlcf_0311/experiment-design.rtf @@ -0,0 +1 @@ +

    Liver samples (1-2 g) were acquired from Caucasian individuals from three independent liver collections at tissue resource centers at Vanderbilt University, University of Pittsburg, and Merck Research Laboratories. All individuals were compared to a common pool created from equal portions of RNA from 191 (111 from Vanderbilt University and 80 from University of Pittsburg) samples.

    diff --git a/general/datasets/Hlcf_0311/experiment-type.rtf b/general/datasets/Hlcf_0311/experiment-type.rtf new file mode 100644 index 0000000..0546e04 --- /dev/null +++ b/general/datasets/Hlcf_0311/experiment-type.rtf @@ -0,0 +1 @@ +Expression profiling by array \ No newline at end of file diff --git a/general/datasets/Hlcf_0311/platform.rtf b/general/datasets/Hlcf_0311/platform.rtf new file mode 100644 index 0000000..6687600 --- /dev/null +++ b/general/datasets/Hlcf_0311/platform.rtf @@ -0,0 +1 @@ +

    Rosetta/Merck Human 44k 1.1 microarray

    diff --git a/general/datasets/Hlcf_0311/summary.rtf b/general/datasets/Hlcf_0311/summary.rtf new file mode 100644 index 0000000..d0282cd --- /dev/null +++ b/general/datasets/Hlcf_0311/summary.rtf @@ -0,0 +1,5 @@ +

    The Human Liver Cohort (HLC) study aimed to characterize the genetic architecture of gene expression in human liver using genotyping, gene expression profiling, and enzyme activity measurements of Cytochrom P450. The HLC was assembled from a total of 780 liver samples screened. These liver samples were acquired from caucasian individuals from three independant tissue collection centers. DNA samples were genotyped on the Affymetrix 500K SNP and Illumina 650Y SNP genotyping arrays representing a total of 782,476 unique single nucleotide polymorphisms (SNPs). Only the genotype data from those samples which were collected postmortem are accessible in dbGap. These 228 samples represent a subset of the 427 samples included in the Human Liver Cohort Publication (Schadt, Molony et al. 2008). RNA samples were profiled on a custom Agilent 44,000 feature microarray composed of 39,280 oligonucleotide probes targeting transcripts representing 34,266 known and predicted genes, including high-confidence, noncoding RNA sequences. Each of the liver samples was processed into cytosol and microsomes using a standard differential centrifugation method. The activities of nine P450 enzymes (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4) in isolated microsomes from 398 HLC liver samples were measured in the microsome preparations using probe substrate metabolism assays expressed as nmol/min/mg protein. Each was measured with a single substrate except for the CYP3A4 activity that was measured using two substrates, midazolam and testosterone.

    + +

    To uncover the genetic determinants affecting expression in a metabolically active tissue relevant to the study of obesity, diabetes, atherosclerosis, and other common human diseases, we profiled 427 human liver samples on a comprehensive gene expression microarray targeting greater than 40,000 transcripts and genotyped DNA from each of these samples at greater than 1,000,000 SNPs. The relatively large sample size of this study and the large number of SNPs genotyped provided the means to assess the relationship between genetic variants and gene expression and it provided this look for the first time in a non-blood derived, metabolically active tissue. A comprehensive analysis of the liver gene expression traits revealed that thousands of these traits are under the control of well defined genetic loci, with many of the genes having already been implicated in a number of human diseases.

    + +

    Clincal data was requested, but not provided by submitter. Keywords: eQTL

    diff --git a/general/datasets/Hlcm_0311/acknowledgment.rtf b/general/datasets/Hlcm_0311/acknowledgment.rtf new file mode 100644 index 0000000..119d5f3 --- /dev/null +++ b/general/datasets/Hlcm_0311/acknowledgment.rtf @@ -0,0 +1,6 @@ +

    Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biol 6:e107. Full text

    + +

    Yang X, Zhang B, Molony C, Chudin E, Hao K, Zhu J, Gaedigk A, Suver C, Zhong H, Leeder JS, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich RG, Slatter JG, Schadt EE, Kasarskis A, Lum PY (2010) Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Res. 20:1020-36.

    + +

    GEO Series GSE9588
    +Genotype data for 228 individuals who satisfy privacy policy have been submitted to the NCBI dbGaP (http://www.ncbi.nlm.nih.gov/gap/) under accession no. phs000253.v1.p1.]

    diff --git a/general/datasets/Hlcm_0311/citation.rtf b/general/datasets/Hlcm_0311/citation.rtf new file mode 100644 index 0000000..2cec619 --- /dev/null +++ b/general/datasets/Hlcm_0311/citation.rtf @@ -0,0 +1 @@ +

    Schadt EE, Molony C, Chudin E, Hao K et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol 2008 May 6;6(5):e107. PMID: 18462017

    diff --git a/general/datasets/Hlcm_0311/contributors.rtf b/general/datasets/Hlcm_0311/contributors.rtf new file mode 100644 index 0000000..09251aa --- /dev/null +++ b/general/datasets/Hlcm_0311/contributors.rtf @@ -0,0 +1 @@ +

    Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum P, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, Guhathakurta D, Derry J, Storey J, Mehrabian M, Drake TA, Lusis AJ, Smith R, Guengerich P, Strom SC, Schuetz E, Rushmore T, Ulrich R

    diff --git a/general/datasets/Hlcm_0311/experiment-design.rtf b/general/datasets/Hlcm_0311/experiment-design.rtf new file mode 100644 index 0000000..cae776a --- /dev/null +++ b/general/datasets/Hlcm_0311/experiment-design.rtf @@ -0,0 +1 @@ +

    Liver samples (1-2 g) were acquired from Caucasian individuals from three independent liver collections at tissue resource centers at Vanderbilt University, University of Pittsburg, and Merck Research Laboratories. All individuals were compared to a common pool created from equal portions of RNA from 191 (111 from Vanderbilt University and 80 from University of Pittsburg) samples.

    diff --git a/general/datasets/Hlcm_0311/experiment-type.rtf b/general/datasets/Hlcm_0311/experiment-type.rtf new file mode 100644 index 0000000..5fe1af1 --- /dev/null +++ b/general/datasets/Hlcm_0311/experiment-type.rtf @@ -0,0 +1,6 @@ + +

    RNA samples were profiled on a custom Agilent 44,000 feature microarray composed of 39,280 oligonucleotide probes targeting transcripts representing 34,266 known and predicted genes, including high-confidence, noncoding RNA sequences. + + + +

    Each of the liver samples was processed into cytosol and microsomes using a standard differential centrifugation method. The activities of nine P450 enzymes (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4) in isolated microsomes from 398 HLC liver samples were measured in the microsome preparations using probe substrate metabolism assays expressed as nmol/min/mg protein. Each was measured with a single substrate except for the CYP3A4 activity that was measured using two substrates, midazolam and testosterone.

    diff --git a/general/datasets/Hlcm_0311/platform.rtf b/general/datasets/Hlcm_0311/platform.rtf new file mode 100644 index 0000000..6687600 --- /dev/null +++ b/general/datasets/Hlcm_0311/platform.rtf @@ -0,0 +1 @@ +

    Rosetta/Merck Human 44k 1.1 microarray

    diff --git a/general/datasets/Hlcm_0311/summary.rtf b/general/datasets/Hlcm_0311/summary.rtf new file mode 100644 index 0000000..d0282cd --- /dev/null +++ b/general/datasets/Hlcm_0311/summary.rtf @@ -0,0 +1,5 @@ +

    The Human Liver Cohort (HLC) study aimed to characterize the genetic architecture of gene expression in human liver using genotyping, gene expression profiling, and enzyme activity measurements of Cytochrom P450. The HLC was assembled from a total of 780 liver samples screened. These liver samples were acquired from caucasian individuals from three independant tissue collection centers. DNA samples were genotyped on the Affymetrix 500K SNP and Illumina 650Y SNP genotyping arrays representing a total of 782,476 unique single nucleotide polymorphisms (SNPs). Only the genotype data from those samples which were collected postmortem are accessible in dbGap. These 228 samples represent a subset of the 427 samples included in the Human Liver Cohort Publication (Schadt, Molony et al. 2008). RNA samples were profiled on a custom Agilent 44,000 feature microarray composed of 39,280 oligonucleotide probes targeting transcripts representing 34,266 known and predicted genes, including high-confidence, noncoding RNA sequences. Each of the liver samples was processed into cytosol and microsomes using a standard differential centrifugation method. The activities of nine P450 enzymes (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4) in isolated microsomes from 398 HLC liver samples were measured in the microsome preparations using probe substrate metabolism assays expressed as nmol/min/mg protein. Each was measured with a single substrate except for the CYP3A4 activity that was measured using two substrates, midazolam and testosterone.

    + +

    To uncover the genetic determinants affecting expression in a metabolically active tissue relevant to the study of obesity, diabetes, atherosclerosis, and other common human diseases, we profiled 427 human liver samples on a comprehensive gene expression microarray targeting greater than 40,000 transcripts and genotyped DNA from each of these samples at greater than 1,000,000 SNPs. The relatively large sample size of this study and the large number of SNPs genotyped provided the means to assess the relationship between genetic variants and gene expression and it provided this look for the first time in a non-blood derived, metabolically active tissue. A comprehensive analysis of the liver gene expression traits revealed that thousands of these traits are under the control of well defined genetic loci, with many of the genes having already been implicated in a number of human diseases.

    + +

    Clincal data was requested, but not provided by submitter. Keywords: eQTL

    diff --git a/general/datasets/Hms_mm8_mdp_spl_cd4_1116/contributors.rtf b/general/datasets/Hms_mm8_mdp_spl_cd4_1116/contributors.rtf new file mode 100644 index 0000000..3908d41 --- /dev/null +++ b/general/datasets/Hms_mm8_mdp_spl_cd4_1116/contributors.rtf @@ -0,0 +1,8 @@ +

    Blair DADustin MLShinton SAHardy RRShay TRegev ACohen NBrennan PBrenner MKim FRao TNWagers AHeng TEricson JRothamel KOrtiz-Lopez AMathis DBenoist CKreslavsky TFletcher AElpek KBellemare-Pelletier AMalhotra DTurley SMiller JBrown BMerad MGautier ELJakubzick CRandolph GJMonach PBest AJKnell JGoldrath AJojic VKoller DLaidlaw DCollins JGazit RRossi DJMalhotra NSylvia KKang JBezman NASun JCMin-Oo GKim CCLanier LL.

    + + diff --git a/general/datasets/Hms_mm8_mdp_spl_cd4_1116/experiment-design.rtf b/general/datasets/Hms_mm8_mdp_spl_cd4_1116/experiment-design.rtf new file mode 100644 index 0000000..29bf7fb --- /dev/null +++ b/general/datasets/Hms_mm8_mdp_spl_cd4_1116/experiment-design.rtf @@ -0,0 +1 @@ +

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201955/

    diff --git a/general/datasets/Hms_mm8_mdp_spl_cd4_1116/specifics.rtf b/general/datasets/Hms_mm8_mdp_spl_cd4_1116/specifics.rtf new file mode 100644 index 0000000..0b70afe --- /dev/null +++ b/general/datasets/Hms_mm8_mdp_spl_cd4_1116/specifics.rtf @@ -0,0 +1 @@ +Gene Level \ No newline at end of file diff --git a/general/datasets/Hms_mm8_mdp_spl_cd4_1116/summary.rtf b/general/datasets/Hms_mm8_mdp_spl_cd4_1116/summary.rtf new file mode 100644 index 0000000..c81e1bb --- /dev/null +++ b/general/datasets/Hms_mm8_mdp_spl_cd4_1116/summary.rtf @@ -0,0 +1 @@ +

    To determine the breadth and underpinning of changes in immunocyte gene expression due to genetic variation in mice, we performed, as part of the Immunological Genome Project, gene expression profiling for CD4(+) T cells and neutrophils purified from 39 inbred strains of the Mouse Phenome Database. Considering both cell types, a large number of transcripts showed significant variation across the inbred strains, with 22% of the transcriptome varying by 2-fold or more. These included 119 loci with apparent complete loss of function, where the corresponding transcript was not expressed in some of the strains, representing a useful resource of "natural knockouts." We identified 1222 cis-expression quantitative trait loci (cis-eQTL) that control some of this variation. Most (60%) cis-eQTLs were shared between T cells and neutrophils, but a significant portion uniquely impacted one of the cell types, suggesting cell type-specific regulatory mechanisms. Using a conditional regression algorithm, we predicted regulatory interactions between transcription factors and potential targets, and we demonstrated that these predictions overlap with regulatory interactions inferred from transcriptional changes during immunocyte differentiation. Finally, comparison of these and parallel data from CD4(+) T cells of healthy humans demonstrated intriguing similarities in variability of a gene's expression: the most variable genes tended to be the same in both species, and there was an overlap in genes subject to strong cis-acting genetic variants. We speculate that this "conservation of variation" reflects a differential constraint on intraspecies variation in expression levels of different genes, either through lower pressure for some genes, or by favoring variability for others.

    diff --git a/general/datasets/Hqfneoc_0208_rankinv/acknowledgment.rtf b/general/datasets/Hqfneoc_0208_rankinv/acknowledgment.rtf new file mode 100644 index 0000000..3135d79 --- /dev/null +++ b/general/datasets/Hqfneoc_0208_rankinv/acknowledgment.rtf @@ -0,0 +1,6 @@ +

    Data were generated with funds to RW Williams, Glenn D. Rosen, Weikuan Gu, and Lu Lu from the High Q Foundation. Informatics support also provided by NIH NIAAA INIA grants to RWW and LL.

    + + diff --git a/general/datasets/Hqfneoc_0208_rankinv/cases.rtf b/general/datasets/Hqfneoc_0208_rankinv/cases.rtf new file mode 100644 index 0000000..a98a7ff --- /dev/null +++ b/general/datasets/Hqfneoc_0208_rankinv/cases.rtf @@ -0,0 +1,54 @@ +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 27 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 25 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

    + +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 20 inbred strains and an F1 hybrid (B6D2F1). These strains were selected for several reasons:

    + + + +

    All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants.

    + +
      +
    1. 129S1/SvImJ
      +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list
    2. +
    3. A/J
      +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel
    4. +
    5. AKR/J
      +     Sequenced by NIEHS; Phenome Project B list
    6. +
    7. BALB/cByJ
      +     Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list
    8. +
    9. BALB/cJ
      +     Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list
    10. +
    11. C3H/HeJ
      +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
    12. +
    13. C57BL/6J
      +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
    14. +
    15. C57BL/6ByJ
      +     Paternal substrain of B6 used to generate the CXB panel
    16. +
    17. CAST/EiJ
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
    18. +
    19. DBA/2J
      +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
    20. +
    21. KK/HlJ
      +     Sequenced by Perlegen/NIEHS
    22. +
    23. LG/J
      +     Paternal parent of the LGXSM panel
    24. +
    25. NOD/LtJ
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
    26. +
    27. NZO/HlLtJ
      +     Collaborative Cross strain
    28. +
    29. PWD/PhJ
      +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
    30. +
    31. PWK/PhJ
      +     Collaborative Cross strain; Phenome Project D list
    32. +
    33. WSB/EiJ
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
    34. +
    35. B6D2F1
      + This F1 hybrid was generated by crossing C57BL/6J with DBA/2J.
    36. +
    + +

    These strains are available from The Jackson Laboratory. BXD43 through BXD100 strains are available from Lu Lu and colleagues at UTHSC.

    diff --git a/general/datasets/Hqfneoc_0208_rankinv/experiment-design.rtf b/general/datasets/Hqfneoc_0208_rankinv/experiment-design.rtf new file mode 100644 index 0000000..322268a --- /dev/null +++ b/general/datasets/Hqfneoc_0208_rankinv/experiment-design.rtf @@ -0,0 +1,937 @@ +

    This data set consists arrays processed in XX groups over a XX month period (from Month Year to Month Year). Most groups consisted of XX samples. All arrays in this data set were processed using a single protocol by a single operator, NAME HERE. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

    + +

    Error checking

    + + + +

    Data Table 1:

    + +

    This table lists all arrays by order of strain (index) and includes data on strain, sex, slide ID and slide position (A through F).

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexStrainSexSlide IDSlide
    + Position
    1B6D2F1F1848071018D
    2B6D2F1M1957998076B
    3C57BL/6JF1957998083A
    4C57BL/6JM1833451021A
    5DBA/2JF1957998083C
    6DBA/2JM1833451021C
    7BXD1M4051964030B
    8BXD5F1736925307A
    9BXD5M4051964028C
    10BXD6F4051964028F
    11BXD6M1736925307D
    12BXD8F4060001025A
    13BXD8M1957998111E
    14BXD9F4060001025D
    15BXD9M1736925359B
    16BXD11F4051964030D
    17BXD11M1848071017B
    18BXD12F4051964030E
    19BXD12M1848071017C
    20BXD13F4051964030F
    21BXD13M1848071017D
    22BXD14F4051964065A
    23BXD14M1848071017E
    24BXD15F4051964065B
    25BXD15M1848071017F
    26BXD16F1848071024A
    27BXD16M4051964065C
    28BXD18F4051964065D
    29BXD18M1848071024B
    30BXD19F4051964065E
    31BXD19M1848071024C
    32BXD21F1848071024D
    33BXD21M4051964065F
    34BXD23F1848071024E
    35BXD23M4051964022A
    36BXD27F1848071024F
    37BXD27M4051964022B
    38BXD28F1848071025A
    39BXD28M4051964022C
    40BXD31F4051964022D
    41BXD31M1848071025B
    42BXD32F4051964022E
    43BXD32M1848071025C
    44BXD33F4051964022F
    45BXD33M1848071025D
    46BXD34F4051964023A
    47BXD34M1848071025E
    48BXD36F1848071025F
    49BXD36M4051964023B
    50BXD38F4051964023C
    51BXD38M1957998101A
    52BXD39F4051964023D
    53BXD39M1957998101B
    54BXD40F4051964023E
    55BXD40M1957998101C
    56BXD42F4060001026B
    57BXD43F1957998101D
    58BXD43F4051964023F
    59BXD44F1957998101E
    60BXD44M4051964028A
    61BXD45F4051964028B
    62BXD45M1957998101F
    63BXD51F4051964028D
    64BXD51M1736925307B
    65BXD55F1736925307C
    66BXD55M4051964028E
    67BXD60F4060001014A
    68BXD60M1736925307E
    69BXD61F4060001014B
    70BXD61M1736925307F
    71BXD62F4060001014C
    72BXD62M1957998111A
    73BXD65F1957998111B
    74BXD65M4060001014D
    75BXD66M4060001026C
    76BXD68F4060001026D
    77BXD69M1957998111C
    78BXD69M4060001014E
    79BXD70M4060001026E
    80BXD73F1957998111D
    81BXD73M4060001014F
    82BXD75M4060001026F
    83BXD77F4060001027A
    84BXD80M4060001027B
    85BXD84F1957998111F
    86BXD84M4060001025B
    87BXD86M4060001027C
    88BXD87F4060001027F
    89BXD87M4060001025C
    90BXD89M4060001027D
    91BXD90F1736925359C
    92BXD90M4060001025E
    93BXD96F4060001025F
    94BXD96M1736925359D
    95BXD97M4060001027E
    96BXD100F1848071017A
    97BXD100M4051964030C
    98129S1/SvImJF1736925359E
    99129S1/SvImJM1848071018A
    100A/JF1848071018B
    101A/JM1736925359F
    102AKR/JF1848071018C
    103AKR/JM1957998076A
    104BALB/cByJF1957998076C
    105BALB/cByJM1953348019A
    106C3H/HeJF1953348019D
    107C3H/HeJM1957998076F
    108CAST/EiJF1833451021B
    109CAST/EiJM1957998083B
    110KK/HlJF1957998083E
    111KK/HlJM1848071023F
    112BXSB/MpJF1957998076E
    113BXSB/MpJM1953348019C
    114FVB/NJF1833451021D
    115FVB/NJM1957998083D
    116MOLF/EiJF1957998083F
    117MOLF/EiJM1848071001B
    118NOD/LtJF1848071001C
    119NOD/LtJM4060001004A
    120NZB/BlNJF4060001004B
    121NZB/BlNJM1848071001D
    122NZO/HlLtJF4060001004C
    123NZW/LacJF4060001004D
    124PWD/PhJF4060001004E
    125PWK/PhJM4060001004F
    126WSB/EiJF4051964030A
    127BTBRT<+>tf/JF1957998076D
    128BTBRT<+>tf/JM1953348019B
    +
    diff --git a/general/datasets/Hqfneoc_0208_rankinv/experiment-type.rtf b/general/datasets/Hqfneoc_0208_rankinv/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Hqfneoc_0208_rankinv/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Hqfneoc_0208_rankinv/platform.rtf b/general/datasets/Hqfneoc_0208_rankinv/platform.rtf new file mode 100644 index 0000000..f0c5210 --- /dev/null +++ b/general/datasets/Hqfneoc_0208_rankinv/platform.rtf @@ -0,0 +1,7 @@ +

    Illumina Sentrix Mouse-6.1 BeadArray Platform (ILM6v1.1): The Mouse6.1 array consists of 46,643 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology.

    + +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf).

    + +

    ANNOTATION: In summer of 2008, Xusheng Wang and Robert W. Williams reannotated the Illumina Mouse-6.1 array content. This new annotation is now incorporated into GeneNetwork. For 46643 probes on the Mouse 6.1 array platform (including control probes) we have identified XXXXX NCBI Entrez Gene IDs; XXXXX matched human Gene IDs; XXXXX matched rat Gene IDs; XXXXX NCBI HomoloGene IDs; and XXXXX OMIM IDs.

    + +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    diff --git a/general/datasets/Hqfneoc_0208_rankinv/processing.rtf b/general/datasets/Hqfneoc_0208_rankinv/processing.rtf new file mode 100644 index 0000000..895fa91 --- /dev/null +++ b/general/datasets/Hqfneoc_0208_rankinv/processing.rtf @@ -0,0 +1,3 @@ +

    This data set uses the standard Rank Invariant method developed by Illumina and described in their BeadStation Studio documentation.

    + +

    Sex of the samples was validated using sex-specific probe set: Xist probe ILM104280446.

    diff --git a/general/datasets/Hqfneoc_0208_rankinv/summary.rtf b/general/datasets/Hqfneoc_0208_rankinv/summary.rtf new file mode 100644 index 0000000..ca42527 --- /dev/null +++ b/general/datasets/Hqfneoc_0208_rankinv/summary.rtf @@ -0,0 +1,16 @@ +

    The February 2008 High Q Foundation Neocortex data set provides estimates of mRNA expression in the cerebral cortex of 73 lines of mice, including 52 BXD strains, 20 standard inbred strains, and B6D2F1 isogenic hybrids. All samples are from normal adult control animals raised in a standard laboratory environment. All data were generated with funds provided by the High Q Foundation using the Illumina Mouse 6.1 bead array (the second version of the Illumina Mouse-6 platform).

    + +

    While this February data release is still a provisional, we are not aware of any specific errors.

    + +

     

    + +

    A total of 129 pooled neocortex samples were processed using approximately XX Illumina Sentrix Mouse-6.1 oligomer microarray BeadArray slides. XX Mouse-6.1 slides and a total of 128 samples passed stringent quality control and error checking. This data set is a companion to the High Q Foundation Striatum data set and was processed using very closely matched methods and most of the same samples. This is our third large data set generated using the Illumina platform. This particular data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

    + +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Illumina (Feb 08) RankInv data set, 1564 probes have LRS values >46 (LOD >10).

    + +

    Users of these mouse neocortex data may also find the following complementary resources and papers useful:

    + +
      +
    1. Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex.
    2. +
    3. A movie of the dissection of the brain by Dr. Glenn Rosen.
    4. +
    diff --git a/general/datasets/Hqfneoc_0208_rankinv/tissue.rtf b/general/datasets/Hqfneoc_0208_rankinv/tissue.rtf new file mode 100644 index 0000000..48d0a2c --- /dev/null +++ b/general/datasets/Hqfneoc_0208_rankinv/tissue.rtf @@ -0,0 +1,9 @@ +

    All animals were raised at the Jackson Laboratory or at UTHSC in SPF facilities. All mice were killed by cervical dislocation. Whole brain dissections were performed at either Beth Israel Deaconess Medical Center by Glenn Rosen or at UTHSC by Lu Lu and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum.

    + +

    A pool of dissected neocortical tissue from two to three naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia (CHECK LAST STATEMENT WITH LU).

    + +

    All animals used in this study were between XX and XX days of age (average of XX days; see Table 1 below). All animals were sacrifice between 9 AM and 5 PM during the light phase.

    + +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between December 2007 and January 2008. All processing steps were performed by Feng Jiao. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

    + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from as many strains as possible. However, a number of strains are represented by samples from a single sex (see figure at bottom of page).

    diff --git a/general/datasets/Hqfneoc_1210_rankinv/acknowledgment.rtf b/general/datasets/Hqfneoc_1210_rankinv/acknowledgment.rtf new file mode 100644 index 0000000..3135d79 --- /dev/null +++ b/general/datasets/Hqfneoc_1210_rankinv/acknowledgment.rtf @@ -0,0 +1,6 @@ +

    Data were generated with funds to RW Williams, Glenn D. Rosen, Weikuan Gu, and Lu Lu from the High Q Foundation. Informatics support also provided by NIH NIAAA INIA grants to RWW and LL.

    + + diff --git a/general/datasets/Hqfneoc_1210_rankinv/cases.rtf b/general/datasets/Hqfneoc_1210_rankinv/cases.rtf new file mode 100644 index 0000000..a98a7ff --- /dev/null +++ b/general/datasets/Hqfneoc_1210_rankinv/cases.rtf @@ -0,0 +1,54 @@ +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 27 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 25 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

    + +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 20 inbred strains and an F1 hybrid (B6D2F1). These strains were selected for several reasons:

    + + + +

    All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants.

    + +
      +
    1. 129S1/SvImJ
      +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list
    2. +
    3. A/J
      +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel
    4. +
    5. AKR/J
      +     Sequenced by NIEHS; Phenome Project B list
    6. +
    7. BALB/cByJ
      +     Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list
    8. +
    9. BALB/cJ
      +     Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list
    10. +
    11. C3H/HeJ
      +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
    12. +
    13. C57BL/6J
      +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
    14. +
    15. C57BL/6ByJ
      +     Paternal substrain of B6 used to generate the CXB panel
    16. +
    17. CAST/EiJ
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
    18. +
    19. DBA/2J
      +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
    20. +
    21. KK/HlJ
      +     Sequenced by Perlegen/NIEHS
    22. +
    23. LG/J
      +     Paternal parent of the LGXSM panel
    24. +
    25. NOD/LtJ
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
    26. +
    27. NZO/HlLtJ
      +     Collaborative Cross strain
    28. +
    29. PWD/PhJ
      +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
    30. +
    31. PWK/PhJ
      +     Collaborative Cross strain; Phenome Project D list
    32. +
    33. WSB/EiJ
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
    34. +
    35. B6D2F1
      + This F1 hybrid was generated by crossing C57BL/6J with DBA/2J.
    36. +
    + +

    These strains are available from The Jackson Laboratory. BXD43 through BXD100 strains are available from Lu Lu and colleagues at UTHSC.

    diff --git a/general/datasets/Hqfneoc_1210_rankinv/experiment-design.rtf b/general/datasets/Hqfneoc_1210_rankinv/experiment-design.rtf new file mode 100644 index 0000000..322268a --- /dev/null +++ b/general/datasets/Hqfneoc_1210_rankinv/experiment-design.rtf @@ -0,0 +1,937 @@ +

    This data set consists arrays processed in XX groups over a XX month period (from Month Year to Month Year). Most groups consisted of XX samples. All arrays in this data set were processed using a single protocol by a single operator, NAME HERE. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

    + +

    Error checking

    + + + +

    Data Table 1:

    + +

    This table lists all arrays by order of strain (index) and includes data on strain, sex, slide ID and slide position (A through F).

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexStrainSexSlide IDSlide
    + Position
    1B6D2F1F1848071018D
    2B6D2F1M1957998076B
    3C57BL/6JF1957998083A
    4C57BL/6JM1833451021A
    5DBA/2JF1957998083C
    6DBA/2JM1833451021C
    7BXD1M4051964030B
    8BXD5F1736925307A
    9BXD5M4051964028C
    10BXD6F4051964028F
    11BXD6M1736925307D
    12BXD8F4060001025A
    13BXD8M1957998111E
    14BXD9F4060001025D
    15BXD9M1736925359B
    16BXD11F4051964030D
    17BXD11M1848071017B
    18BXD12F4051964030E
    19BXD12M1848071017C
    20BXD13F4051964030F
    21BXD13M1848071017D
    22BXD14F4051964065A
    23BXD14M1848071017E
    24BXD15F4051964065B
    25BXD15M1848071017F
    26BXD16F1848071024A
    27BXD16M4051964065C
    28BXD18F4051964065D
    29BXD18M1848071024B
    30BXD19F4051964065E
    31BXD19M1848071024C
    32BXD21F1848071024D
    33BXD21M4051964065F
    34BXD23F1848071024E
    35BXD23M4051964022A
    36BXD27F1848071024F
    37BXD27M4051964022B
    38BXD28F1848071025A
    39BXD28M4051964022C
    40BXD31F4051964022D
    41BXD31M1848071025B
    42BXD32F4051964022E
    43BXD32M1848071025C
    44BXD33F4051964022F
    45BXD33M1848071025D
    46BXD34F4051964023A
    47BXD34M1848071025E
    48BXD36F1848071025F
    49BXD36M4051964023B
    50BXD38F4051964023C
    51BXD38M1957998101A
    52BXD39F4051964023D
    53BXD39M1957998101B
    54BXD40F4051964023E
    55BXD40M1957998101C
    56BXD42F4060001026B
    57BXD43F1957998101D
    58BXD43F4051964023F
    59BXD44F1957998101E
    60BXD44M4051964028A
    61BXD45F4051964028B
    62BXD45M1957998101F
    63BXD51F4051964028D
    64BXD51M1736925307B
    65BXD55F1736925307C
    66BXD55M4051964028E
    67BXD60F4060001014A
    68BXD60M1736925307E
    69BXD61F4060001014B
    70BXD61M1736925307F
    71BXD62F4060001014C
    72BXD62M1957998111A
    73BXD65F1957998111B
    74BXD65M4060001014D
    75BXD66M4060001026C
    76BXD68F4060001026D
    77BXD69M1957998111C
    78BXD69M4060001014E
    79BXD70M4060001026E
    80BXD73F1957998111D
    81BXD73M4060001014F
    82BXD75M4060001026F
    83BXD77F4060001027A
    84BXD80M4060001027B
    85BXD84F1957998111F
    86BXD84M4060001025B
    87BXD86M4060001027C
    88BXD87F4060001027F
    89BXD87M4060001025C
    90BXD89M4060001027D
    91BXD90F1736925359C
    92BXD90M4060001025E
    93BXD96F4060001025F
    94BXD96M1736925359D
    95BXD97M4060001027E
    96BXD100F1848071017A
    97BXD100M4051964030C
    98129S1/SvImJF1736925359E
    99129S1/SvImJM1848071018A
    100A/JF1848071018B
    101A/JM1736925359F
    102AKR/JF1848071018C
    103AKR/JM1957998076A
    104BALB/cByJF1957998076C
    105BALB/cByJM1953348019A
    106C3H/HeJF1953348019D
    107C3H/HeJM1957998076F
    108CAST/EiJF1833451021B
    109CAST/EiJM1957998083B
    110KK/HlJF1957998083E
    111KK/HlJM1848071023F
    112BXSB/MpJF1957998076E
    113BXSB/MpJM1953348019C
    114FVB/NJF1833451021D
    115FVB/NJM1957998083D
    116MOLF/EiJF1957998083F
    117MOLF/EiJM1848071001B
    118NOD/LtJF1848071001C
    119NOD/LtJM4060001004A
    120NZB/BlNJF4060001004B
    121NZB/BlNJM1848071001D
    122NZO/HlLtJF4060001004C
    123NZW/LacJF4060001004D
    124PWD/PhJF4060001004E
    125PWK/PhJM4060001004F
    126WSB/EiJF4051964030A
    127BTBRT<+>tf/JF1957998076D
    128BTBRT<+>tf/JM1953348019B
    +
    diff --git a/general/datasets/Hqfneoc_1210_rankinv/experiment-type.rtf b/general/datasets/Hqfneoc_1210_rankinv/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Hqfneoc_1210_rankinv/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Hqfneoc_1210_rankinv/platform.rtf b/general/datasets/Hqfneoc_1210_rankinv/platform.rtf new file mode 100644 index 0000000..f0c5210 --- /dev/null +++ b/general/datasets/Hqfneoc_1210_rankinv/platform.rtf @@ -0,0 +1,7 @@ +

    Illumina Sentrix Mouse-6.1 BeadArray Platform (ILM6v1.1): The Mouse6.1 array consists of 46,643 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology.

    + +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf).

    + +

    ANNOTATION: In summer of 2008, Xusheng Wang and Robert W. Williams reannotated the Illumina Mouse-6.1 array content. This new annotation is now incorporated into GeneNetwork. For 46643 probes on the Mouse 6.1 array platform (including control probes) we have identified XXXXX NCBI Entrez Gene IDs; XXXXX matched human Gene IDs; XXXXX matched rat Gene IDs; XXXXX NCBI HomoloGene IDs; and XXXXX OMIM IDs.

    + +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    diff --git a/general/datasets/Hqfneoc_1210_rankinv/processing.rtf b/general/datasets/Hqfneoc_1210_rankinv/processing.rtf new file mode 100644 index 0000000..895fa91 --- /dev/null +++ b/general/datasets/Hqfneoc_1210_rankinv/processing.rtf @@ -0,0 +1,3 @@ +

    This data set uses the standard Rank Invariant method developed by Illumina and described in their BeadStation Studio documentation.

    + +

    Sex of the samples was validated using sex-specific probe set: Xist probe ILM104280446.

    diff --git a/general/datasets/Hqfneoc_1210_rankinv/summary.rtf b/general/datasets/Hqfneoc_1210_rankinv/summary.rtf new file mode 100644 index 0000000..ca42527 --- /dev/null +++ b/general/datasets/Hqfneoc_1210_rankinv/summary.rtf @@ -0,0 +1,16 @@ +

    The February 2008 High Q Foundation Neocortex data set provides estimates of mRNA expression in the cerebral cortex of 73 lines of mice, including 52 BXD strains, 20 standard inbred strains, and B6D2F1 isogenic hybrids. All samples are from normal adult control animals raised in a standard laboratory environment. All data were generated with funds provided by the High Q Foundation using the Illumina Mouse 6.1 bead array (the second version of the Illumina Mouse-6 platform).

    + +

    While this February data release is still a provisional, we are not aware of any specific errors.

    + +

     

    + +

    A total of 129 pooled neocortex samples were processed using approximately XX Illumina Sentrix Mouse-6.1 oligomer microarray BeadArray slides. XX Mouse-6.1 slides and a total of 128 samples passed stringent quality control and error checking. This data set is a companion to the High Q Foundation Striatum data set and was processed using very closely matched methods and most of the same samples. This is our third large data set generated using the Illumina platform. This particular data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

    + +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Illumina (Feb 08) RankInv data set, 1564 probes have LRS values >46 (LOD >10).

    + +

    Users of these mouse neocortex data may also find the following complementary resources and papers useful:

    + +
      +
    1. Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex.
    2. +
    3. A movie of the dissection of the brain by Dr. Glenn Rosen.
    4. +
    diff --git a/general/datasets/Hqfneoc_1210_rankinv/tissue.rtf b/general/datasets/Hqfneoc_1210_rankinv/tissue.rtf new file mode 100644 index 0000000..48d0a2c --- /dev/null +++ b/general/datasets/Hqfneoc_1210_rankinv/tissue.rtf @@ -0,0 +1,9 @@ +

    All animals were raised at the Jackson Laboratory or at UTHSC in SPF facilities. All mice were killed by cervical dislocation. Whole brain dissections were performed at either Beth Israel Deaconess Medical Center by Glenn Rosen or at UTHSC by Lu Lu and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum.

    + +

    A pool of dissected neocortical tissue from two to three naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia (CHECK LAST STATEMENT WITH LU).

    + +

    All animals used in this study were between XX and XX days of age (average of XX days; see Table 1 below). All animals were sacrifice between 9 AM and 5 PM during the light phase.

    + +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between December 2007 and January 2008. All processing steps were performed by Feng Jiao. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

    + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from as many strains as possible. However, a number of strains are represented by samples from a single sex (see figure at bottom of page).

    diff --git a/general/datasets/Hqfneoc_1210v2_rankinv/acknowledgment.rtf b/general/datasets/Hqfneoc_1210v2_rankinv/acknowledgment.rtf new file mode 100644 index 0000000..3135d79 --- /dev/null +++ b/general/datasets/Hqfneoc_1210v2_rankinv/acknowledgment.rtf @@ -0,0 +1,6 @@ +

    Data were generated with funds to RW Williams, Glenn D. Rosen, Weikuan Gu, and Lu Lu from the High Q Foundation. Informatics support also provided by NIH NIAAA INIA grants to RWW and LL.

    + + diff --git a/general/datasets/Hqfneoc_1210v2_rankinv/cases.rtf b/general/datasets/Hqfneoc_1210v2_rankinv/cases.rtf new file mode 100644 index 0000000..a98a7ff --- /dev/null +++ b/general/datasets/Hqfneoc_1210v2_rankinv/cases.rtf @@ -0,0 +1,54 @@ +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 27 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 25 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

    + +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 20 inbred strains and an F1 hybrid (B6D2F1). These strains were selected for several reasons:

    + + + +

    All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants.

    + +
      +
    1. 129S1/SvImJ
      +     Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list
    2. +
    3. A/J
      +     Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel
    4. +
    5. AKR/J
      +     Sequenced by NIEHS; Phenome Project B list
    6. +
    7. BALB/cByJ
      +     Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list
    8. +
    9. BALB/cJ
      +     Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list
    10. +
    11. C3H/HeJ
      +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
    12. +
    13. C57BL/6J
      +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
    14. +
    15. C57BL/6ByJ
      +     Paternal substrain of B6 used to generate the CXB panel
    16. +
    17. CAST/EiJ
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
    18. +
    19. DBA/2J
      +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
    20. +
    21. KK/HlJ
      +     Sequenced by Perlegen/NIEHS
    22. +
    23. LG/J
      +     Paternal parent of the LGXSM panel
    24. +
    25. NOD/LtJ
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
    26. +
    27. NZO/HlLtJ
      +     Collaborative Cross strain
    28. +
    29. PWD/PhJ
      +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
    30. +
    31. PWK/PhJ
      +     Collaborative Cross strain; Phenome Project D list
    32. +
    33. WSB/EiJ
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
    34. +
    35. B6D2F1
      + This F1 hybrid was generated by crossing C57BL/6J with DBA/2J.
    36. +
    + +

    These strains are available from The Jackson Laboratory. BXD43 through BXD100 strains are available from Lu Lu and colleagues at UTHSC.

    diff --git a/general/datasets/Hqfneoc_1210v2_rankinv/experiment-design.rtf b/general/datasets/Hqfneoc_1210v2_rankinv/experiment-design.rtf new file mode 100644 index 0000000..322268a --- /dev/null +++ b/general/datasets/Hqfneoc_1210v2_rankinv/experiment-design.rtf @@ -0,0 +1,937 @@ +

    This data set consists arrays processed in XX groups over a XX month period (from Month Year to Month Year). Most groups consisted of XX samples. All arrays in this data set were processed using a single protocol by a single operator, NAME HERE. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

    + +

    Error checking

    + + + +

    Data Table 1:

    + +

    This table lists all arrays by order of strain (index) and includes data on strain, sex, slide ID and slide position (A through F).

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexStrainSexSlide IDSlide
    + Position
    1B6D2F1F1848071018D
    2B6D2F1M1957998076B
    3C57BL/6JF1957998083A
    4C57BL/6JM1833451021A
    5DBA/2JF1957998083C
    6DBA/2JM1833451021C
    7BXD1M4051964030B
    8BXD5F1736925307A
    9BXD5M4051964028C
    10BXD6F4051964028F
    11BXD6M1736925307D
    12BXD8F4060001025A
    13BXD8M1957998111E
    14BXD9F4060001025D
    15BXD9M1736925359B
    16BXD11F4051964030D
    17BXD11M1848071017B
    18BXD12F4051964030E
    19BXD12M1848071017C
    20BXD13F4051964030F
    21BXD13M1848071017D
    22BXD14F4051964065A
    23BXD14M1848071017E
    24BXD15F4051964065B
    25BXD15M1848071017F
    26BXD16F1848071024A
    27BXD16M4051964065C
    28BXD18F4051964065D
    29BXD18M1848071024B
    30BXD19F4051964065E
    31BXD19M1848071024C
    32BXD21F1848071024D
    33BXD21M4051964065F
    34BXD23F1848071024E
    35BXD23M4051964022A
    36BXD27F1848071024F
    37BXD27M4051964022B
    38BXD28F1848071025A
    39BXD28M4051964022C
    40BXD31F4051964022D
    41BXD31M1848071025B
    42BXD32F4051964022E
    43BXD32M1848071025C
    44BXD33F4051964022F
    45BXD33M1848071025D
    46BXD34F4051964023A
    47BXD34M1848071025E
    48BXD36F1848071025F
    49BXD36M4051964023B
    50BXD38F4051964023C
    51BXD38M1957998101A
    52BXD39F4051964023D
    53BXD39M1957998101B
    54BXD40F4051964023E
    55BXD40M1957998101C
    56BXD42F4060001026B
    57BXD43F1957998101D
    58BXD43F4051964023F
    59BXD44F1957998101E
    60BXD44M4051964028A
    61BXD45F4051964028B
    62BXD45M1957998101F
    63BXD51F4051964028D
    64BXD51M1736925307B
    65BXD55F1736925307C
    66BXD55M4051964028E
    67BXD60F4060001014A
    68BXD60M1736925307E
    69BXD61F4060001014B
    70BXD61M1736925307F
    71BXD62F4060001014C
    72BXD62M1957998111A
    73BXD65F1957998111B
    74BXD65M4060001014D
    75BXD66M4060001026C
    76BXD68F4060001026D
    77BXD69M1957998111C
    78BXD69M4060001014E
    79BXD70M4060001026E
    80BXD73F1957998111D
    81BXD73M4060001014F
    82BXD75M4060001026F
    83BXD77F4060001027A
    84BXD80M4060001027B
    85BXD84F1957998111F
    86BXD84M4060001025B
    87BXD86M4060001027C
    88BXD87F4060001027F
    89BXD87M4060001025C
    90BXD89M4060001027D
    91BXD90F1736925359C
    92BXD90M4060001025E
    93BXD96F4060001025F
    94BXD96M1736925359D
    95BXD97M4060001027E
    96BXD100F1848071017A
    97BXD100M4051964030C
    98129S1/SvImJF1736925359E
    99129S1/SvImJM1848071018A
    100A/JF1848071018B
    101A/JM1736925359F
    102AKR/JF1848071018C
    103AKR/JM1957998076A
    104BALB/cByJF1957998076C
    105BALB/cByJM1953348019A
    106C3H/HeJF1953348019D
    107C3H/HeJM1957998076F
    108CAST/EiJF1833451021B
    109CAST/EiJM1957998083B
    110KK/HlJF1957998083E
    111KK/HlJM1848071023F
    112BXSB/MpJF1957998076E
    113BXSB/MpJM1953348019C
    114FVB/NJF1833451021D
    115FVB/NJM1957998083D
    116MOLF/EiJF1957998083F
    117MOLF/EiJM1848071001B
    118NOD/LtJF1848071001C
    119NOD/LtJM4060001004A
    120NZB/BlNJF4060001004B
    121NZB/BlNJM1848071001D
    122NZO/HlLtJF4060001004C
    123NZW/LacJF4060001004D
    124PWD/PhJF4060001004E
    125PWK/PhJM4060001004F
    126WSB/EiJF4051964030A
    127BTBRT<+>tf/JF1957998076D
    128BTBRT<+>tf/JM1953348019B
    +
    diff --git a/general/datasets/Hqfneoc_1210v2_rankinv/experiment-type.rtf b/general/datasets/Hqfneoc_1210v2_rankinv/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Hqfneoc_1210v2_rankinv/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Hqfneoc_1210v2_rankinv/platform.rtf b/general/datasets/Hqfneoc_1210v2_rankinv/platform.rtf new file mode 100644 index 0000000..f0c5210 --- /dev/null +++ b/general/datasets/Hqfneoc_1210v2_rankinv/platform.rtf @@ -0,0 +1,7 @@ +

    Illumina Sentrix Mouse-6.1 BeadArray Platform (ILM6v1.1): The Mouse6.1 array consists of 46,643 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology.

    + +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf).

    + +

    ANNOTATION: In summer of 2008, Xusheng Wang and Robert W. Williams reannotated the Illumina Mouse-6.1 array content. This new annotation is now incorporated into GeneNetwork. For 46643 probes on the Mouse 6.1 array platform (including control probes) we have identified XXXXX NCBI Entrez Gene IDs; XXXXX matched human Gene IDs; XXXXX matched rat Gene IDs; XXXXX NCBI HomoloGene IDs; and XXXXX OMIM IDs.

    + +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    diff --git a/general/datasets/Hqfneoc_1210v2_rankinv/processing.rtf b/general/datasets/Hqfneoc_1210v2_rankinv/processing.rtf new file mode 100644 index 0000000..895fa91 --- /dev/null +++ b/general/datasets/Hqfneoc_1210v2_rankinv/processing.rtf @@ -0,0 +1,3 @@ +

    This data set uses the standard Rank Invariant method developed by Illumina and described in their BeadStation Studio documentation.

    + +

    Sex of the samples was validated using sex-specific probe set: Xist probe ILM104280446.

    diff --git a/general/datasets/Hqfneoc_1210v2_rankinv/summary.rtf b/general/datasets/Hqfneoc_1210v2_rankinv/summary.rtf new file mode 100644 index 0000000..ca42527 --- /dev/null +++ b/general/datasets/Hqfneoc_1210v2_rankinv/summary.rtf @@ -0,0 +1,16 @@ +

    The February 2008 High Q Foundation Neocortex data set provides estimates of mRNA expression in the cerebral cortex of 73 lines of mice, including 52 BXD strains, 20 standard inbred strains, and B6D2F1 isogenic hybrids. All samples are from normal adult control animals raised in a standard laboratory environment. All data were generated with funds provided by the High Q Foundation using the Illumina Mouse 6.1 bead array (the second version of the Illumina Mouse-6 platform).

    + +

    While this February data release is still a provisional, we are not aware of any specific errors.

    + +

     

    + +

    A total of 129 pooled neocortex samples were processed using approximately XX Illumina Sentrix Mouse-6.1 oligomer microarray BeadArray slides. XX Mouse-6.1 slides and a total of 128 samples passed stringent quality control and error checking. This data set is a companion to the High Q Foundation Striatum data set and was processed using very closely matched methods and most of the same samples. This is our third large data set generated using the Illumina platform. This particular data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high).

    + +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Illumina (Feb 08) RankInv data set, 1564 probes have LRS values >46 (LOD >10).

    + +

    Users of these mouse neocortex data may also find the following complementary resources and papers useful:

    + +
      +
    1. Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex.
    2. +
    3. A movie of the dissection of the brain by Dr. Glenn Rosen.
    4. +
    diff --git a/general/datasets/Hqfneoc_1210v2_rankinv/tissue.rtf b/general/datasets/Hqfneoc_1210v2_rankinv/tissue.rtf new file mode 100644 index 0000000..48d0a2c --- /dev/null +++ b/general/datasets/Hqfneoc_1210v2_rankinv/tissue.rtf @@ -0,0 +1,9 @@ +

    All animals were raised at the Jackson Laboratory or at UTHSC in SPF facilities. All mice were killed by cervical dislocation. Whole brain dissections were performed at either Beth Israel Deaconess Medical Center by Glenn Rosen or at UTHSC by Lu Lu and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum.

    + +

    A pool of dissected neocortical tissue from two to three naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia (CHECK LAST STATEMENT WITH LU).

    + +

    All animals used in this study were between XX and XX days of age (average of XX days; see Table 1 below). All animals were sacrifice between 9 AM and 5 PM during the light phase.

    + +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between December 2007 and January 2008. All processing steps were performed by Feng Jiao. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

    + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from as many strains as possible. However, a number of strains are represented by samples from a single sex (see figure at bottom of page).

    diff --git a/general/datasets/Hrdppublish/specifics.rtf b/general/datasets/Hrdppublish/specifics.rtf new file mode 100644 index 0000000..6ea3cd9 --- /dev/null +++ b/general/datasets/Hrdppublish/specifics.rtf @@ -0,0 +1 @@ +HRDP Published Phenotypes \ No newline at end of file diff --git a/general/datasets/Hrdppublish/summary.rtf b/general/datasets/Hrdppublish/summary.rtf new file mode 100644 index 0000000..bce5ebd --- /dev/null +++ b/general/datasets/Hrdppublish/summary.rtf @@ -0,0 +1 @@ +

    HRDP Published Phenotypes

    diff --git a/general/datasets/Hsnih_palmerpublish/specifics.rtf b/general/datasets/Hsnih_palmerpublish/specifics.rtf new file mode 100644 index 0000000..6bb3581 --- /dev/null +++ b/general/datasets/Hsnih_palmerpublish/specifics.rtf @@ -0,0 +1 @@ +HSNIH Published Phenotypes \ No newline at end of file diff --git a/general/datasets/Hsnih_palmerpublish/summary.rtf b/general/datasets/Hsnih_palmerpublish/summary.rtf new file mode 100644 index 0000000..2503d26 --- /dev/null +++ b/general/datasets/Hsnih_palmerpublish/summary.rtf @@ -0,0 +1 @@ +

    HSNIH-Palmer Published Phenotypes

    diff --git a/general/datasets/Hsnih_rat_acbc_rseq_0818/specifics.rtf b/general/datasets/Hsnih_rat_acbc_rseq_0818/specifics.rtf new file mode 100644 index 0000000..db20c9a --- /dev/null +++ b/general/datasets/Hsnih_rat_acbc_rseq_0818/specifics.rtf @@ -0,0 +1 @@ +Nucleus Accumbens Core \ No newline at end of file diff --git a/general/datasets/Hsnih_rat_acbc_rseq_0818/summary.rtf b/general/datasets/Hsnih_rat_acbc_rseq_0818/summary.rtf new file mode 100644 index 0000000..2503d26 --- /dev/null +++ b/general/datasets/Hsnih_rat_acbc_rseq_0818/summary.rtf @@ -0,0 +1 @@ +

    HSNIH-Palmer Published Phenotypes

    diff --git a/general/datasets/Hsnih_rat_acbc_rseqlog2_0818/specifics.rtf b/general/datasets/Hsnih_rat_acbc_rseqlog2_0818/specifics.rtf new file mode 100644 index 0000000..843d470 --- /dev/null +++ b/general/datasets/Hsnih_rat_acbc_rseqlog2_0818/specifics.rtf @@ -0,0 +1 @@ +Log2 \ No newline at end of file diff --git a/general/datasets/Hsnih_rat_acbc_rseqlog2_0818/summary.rtf b/general/datasets/Hsnih_rat_acbc_rseqlog2_0818/summary.rtf new file mode 100644 index 0000000..2503d26 --- /dev/null +++ b/general/datasets/Hsnih_rat_acbc_rseqlog2_0818/summary.rtf @@ -0,0 +1 @@ +

    HSNIH-Palmer Published Phenotypes

    diff --git a/general/datasets/Hsnih_rat_il_rseq_0818/specifics.rtf b/general/datasets/Hsnih_rat_il_rseq_0818/specifics.rtf new file mode 100644 index 0000000..67ff940 --- /dev/null +++ b/general/datasets/Hsnih_rat_il_rseq_0818/specifics.rtf @@ -0,0 +1 @@ +Infralimbic Cortex \ No newline at end of file diff --git a/general/datasets/Hsnih_rat_il_rseq_0818/summary.rtf b/general/datasets/Hsnih_rat_il_rseq_0818/summary.rtf new file mode 100644 index 0000000..2503d26 --- /dev/null +++ b/general/datasets/Hsnih_rat_il_rseq_0818/summary.rtf @@ -0,0 +1 @@ +

    HSNIH-Palmer Published Phenotypes

    diff --git a/general/datasets/Hsnih_rat_il_rseqlog2_0818/specifics.rtf b/general/datasets/Hsnih_rat_il_rseqlog2_0818/specifics.rtf new file mode 100644 index 0000000..843d470 --- /dev/null +++ b/general/datasets/Hsnih_rat_il_rseqlog2_0818/specifics.rtf @@ -0,0 +1 @@ +Log2 \ No newline at end of file diff --git a/general/datasets/Hsnih_rat_il_rseqlog2_0818/summary.rtf b/general/datasets/Hsnih_rat_il_rseqlog2_0818/summary.rtf new file mode 100644 index 0000000..2503d26 --- /dev/null +++ b/general/datasets/Hsnih_rat_il_rseqlog2_0818/summary.rtf @@ -0,0 +1 @@ +

    HSNIH-Palmer Published Phenotypes

    diff --git a/general/datasets/Hsnih_rat_lhb_rseq_0818/specifics.rtf b/general/datasets/Hsnih_rat_lhb_rseq_0818/specifics.rtf new file mode 100644 index 0000000..e3b7857 --- /dev/null +++ b/general/datasets/Hsnih_rat_lhb_rseq_0818/specifics.rtf @@ -0,0 +1 @@ +Lateral Habenula \ No newline at end of file diff --git a/general/datasets/Hsnih_rat_lhb_rseq_0818/summary.rtf b/general/datasets/Hsnih_rat_lhb_rseq_0818/summary.rtf new file mode 100644 index 0000000..2503d26 --- /dev/null +++ b/general/datasets/Hsnih_rat_lhb_rseq_0818/summary.rtf @@ -0,0 +1 @@ +

    HSNIH-Palmer Published Phenotypes

    diff --git a/general/datasets/Hsnih_rat_lhb_rseqlog2_0818/specifics.rtf b/general/datasets/Hsnih_rat_lhb_rseqlog2_0818/specifics.rtf new file mode 100644 index 0000000..843d470 --- /dev/null +++ b/general/datasets/Hsnih_rat_lhb_rseqlog2_0818/specifics.rtf @@ -0,0 +1 @@ +Log2 \ No newline at end of file diff --git a/general/datasets/Hsnih_rat_lhb_rseqlog2_0818/summary.rtf b/general/datasets/Hsnih_rat_lhb_rseqlog2_0818/summary.rtf new file mode 100644 index 0000000..2503d26 --- /dev/null +++ b/general/datasets/Hsnih_rat_lhb_rseqlog2_0818/summary.rtf @@ -0,0 +1 @@ +

    HSNIH-Palmer Published Phenotypes

    diff --git a/general/datasets/Hsnih_rat_pl_rseq_0818/specifics.rtf b/general/datasets/Hsnih_rat_pl_rseq_0818/specifics.rtf new file mode 100644 index 0000000..282c9b5 --- /dev/null +++ b/general/datasets/Hsnih_rat_pl_rseq_0818/specifics.rtf @@ -0,0 +1 @@ +Prelimbic Cortex \ No newline at end of file diff --git a/general/datasets/Hsnih_rat_pl_rseq_0818/summary.rtf b/general/datasets/Hsnih_rat_pl_rseq_0818/summary.rtf new file mode 100644 index 0000000..2503d26 --- /dev/null +++ b/general/datasets/Hsnih_rat_pl_rseq_0818/summary.rtf @@ -0,0 +1 @@ +

    HSNIH-Palmer Published Phenotypes

    diff --git a/general/datasets/Hsnih_rat_pl_rseqlog2_0818/specifics.rtf b/general/datasets/Hsnih_rat_pl_rseqlog2_0818/specifics.rtf new file mode 100644 index 0000000..843d470 --- /dev/null +++ b/general/datasets/Hsnih_rat_pl_rseqlog2_0818/specifics.rtf @@ -0,0 +1 @@ +Log2 \ No newline at end of file diff --git a/general/datasets/Hsnih_rat_pl_rseqlog2_0818/summary.rtf b/general/datasets/Hsnih_rat_pl_rseqlog2_0818/summary.rtf new file mode 100644 index 0000000..2503d26 --- /dev/null +++ b/general/datasets/Hsnih_rat_pl_rseqlog2_0818/summary.rtf @@ -0,0 +1 @@ +

    HSNIH-Palmer Published Phenotypes

    diff --git a/general/datasets/Hsnih_rat_volo_rseq_0818/specifics.rtf b/general/datasets/Hsnih_rat_volo_rseq_0818/specifics.rtf new file mode 100644 index 0000000..01b8829 --- /dev/null +++ b/general/datasets/Hsnih_rat_volo_rseq_0818/specifics.rtf @@ -0,0 +1 @@ +Orbitofrontal Cortex \ No newline at end of file diff --git a/general/datasets/Hsnih_rat_volo_rseq_0818/summary.rtf b/general/datasets/Hsnih_rat_volo_rseq_0818/summary.rtf new file mode 100644 index 0000000..2503d26 --- /dev/null +++ b/general/datasets/Hsnih_rat_volo_rseq_0818/summary.rtf @@ -0,0 +1 @@ +

    HSNIH-Palmer Published Phenotypes

    diff --git a/general/datasets/Hsnih_rat_volo_rseqlog2_0818/specifics.rtf b/general/datasets/Hsnih_rat_volo_rseqlog2_0818/specifics.rtf new file mode 100644 index 0000000..843d470 --- /dev/null +++ b/general/datasets/Hsnih_rat_volo_rseqlog2_0818/specifics.rtf @@ -0,0 +1 @@ +Log2 \ No newline at end of file diff --git a/general/datasets/Hsnih_rat_volo_rseqlog2_0818/summary.rtf b/general/datasets/Hsnih_rat_volo_rseqlog2_0818/summary.rtf new file mode 100644 index 0000000..2503d26 --- /dev/null +++ b/general/datasets/Hsnih_rat_volo_rseqlog2_0818/summary.rtf @@ -0,0 +1 @@ +

    HSNIH-Palmer Published Phenotypes

    diff --git a/general/datasets/Human_1008/citation.rtf b/general/datasets/Human_1008/citation.rtf new file mode 100644 index 0000000..62879f7 --- /dev/null +++ b/general/datasets/Human_1008/citation.rtf @@ -0,0 +1 @@ +

    Monks SA, Leonardson A, Zhu H, Cundiff P et al. Genetic inheritance of gene expression in human cell lines. Am J Hum Genet 2004 Dec;75(6):1094-105. PMID: 15514893

    diff --git a/general/datasets/Human_1008/contributors.rtf b/general/datasets/Human_1008/contributors.rtf new file mode 100644 index 0000000..fe578df --- /dev/null +++ b/general/datasets/Human_1008/contributors.rtf @@ -0,0 +1,3 @@ +

    Monks SA1Leonardson AZhu HCundiff PPietrusiak PEdwards SPhillips JWSachs ASchadt EE.

    + +

    1Department of Statistics, Oklahoma State University, Stillwater, OK 74078-1056, USA. stephanie.monks@okstate.edu

    diff --git a/general/datasets/Hxb_adrenal_1208/acknowledgment.rtf b/general/datasets/Hxb_adrenal_1208/acknowledgment.rtf new file mode 100644 index 0000000..d0e4106 --- /dev/null +++ b/general/datasets/Hxb_adrenal_1208/acknowledgment.rtf @@ -0,0 +1 @@ +

    This work was supported with funds to TJA by the MRC Clinical Sciences Centre, the British Heart Foundation, and the Wellcome Trust Cardiovascular Functional Genomics Initiative; to NH from the German Ministry for Science and Education (National Genome Research Network); to MP and Vladimir Kren from the Grant Agency of the Czech Republic; to MP and TJA from the Wellcome Trust Collaborative Research Initiative grant, to Theodore W Kurtz from the NIH, to TWK and MP from a Fogarty International Research Collaboration Award. Microarrays were a generous donation of Affymetrix Inc. Michal Pravenec thanks the Howard Hughes Medical Institute for its support to him as an international research scholar.

    diff --git a/general/datasets/Hxb_adrenal_1208/cases.rtf b/general/datasets/Hxb_adrenal_1208/cases.rtf new file mode 100644 index 0000000..f105019 --- /dev/null +++ b/general/datasets/Hxb_adrenal_1208/cases.rtf @@ -0,0 +1,7 @@ +

    Data were generated using the HXB/BXH recombinant inbred strains of rats generated over the past 20 years in Prague. The parental strains from which all HXB lines are derived are SHR (SHR/OlaIpcv, abbreviated SHR or HSR = H) and Brown Norway (BN-Lx/Cub= B). These strains have been used extensively to study cardiovascular system physiology and genetics.

    + +

     

    + +

    The HXB strains were bred by Michal Pravenec at the Institute of Physiology, Czech Academy of Sciences. The BXH strains were bred by Vladimir Kren (see Pravenec et al. 1989, 2004) at a similar animal facility at the Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University. These strains are at approximately the 6oth generation of continuous inbreeding (F60).

    + +

    Animals used in the transcriptome analyses of multiple tissues (Hübner and colleagues, 2005) were weaned at 4 weeks. Those born at the Charles University were transferred to the Institute of Physiology. Animals were reared on a commerical rat chow (ST-1 from VELAZ, Czech Republic). Four males were house per cage. Cages were made of polystyrene and have a floor size of 22 x 38 cm and height of 23 cm. The bedding was changed twice a week. Light cycle was 12:12 on-off. Vivarium rooms were maintained at 23 deg. C. Rats were sexually naive. All males used in the initial transcriptome studies (Hübner et al., 2005) were born between May and August 2002. They were sacrificed unfastged by rapid cervical dislocation between 9 and 10 AM, following an approved animal protocol (Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague; Animal Protectiion Law of the Czech Republic (311/1997).

    diff --git a/general/datasets/Hxb_adrenal_1208/citation.rtf b/general/datasets/Hxb_adrenal_1208/citation.rtf new file mode 100644 index 0000000..a8b8cc0 --- /dev/null +++ b/general/datasets/Hxb_adrenal_1208/citation.rtf @@ -0,0 +1 @@ +

    PLoS One. 2008;3(12):e4033. doi: 10.1371/journal.pone.0004033. Epub 2008 Dec 29.

    diff --git a/general/datasets/Hxb_adrenal_1208/contributors.rtf b/general/datasets/Hxb_adrenal_1208/contributors.rtf new file mode 100644 index 0000000..0afa863 --- /dev/null +++ b/general/datasets/Hxb_adrenal_1208/contributors.rtf @@ -0,0 +1 @@ +

    Grieve IC1, Dickens NJ, Pravenec M, Kren V, Hubner N, Cook SA, Aitman TJ, Petretto E, Mangion J. Author information 1MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital, London, United Kingdom.

    diff --git a/general/datasets/Hxb_adrenal_1208/experiment-design.rtf b/general/datasets/Hxb_adrenal_1208/experiment-design.rtf new file mode 100644 index 0000000..e7386b3 --- /dev/null +++ b/general/datasets/Hxb_adrenal_1208/experiment-design.rtf @@ -0,0 +1 @@ +

    RNA processing:RNA was extracted using Trizol reagent (Invitrogen) and purified using an RNeasy Mini kit from Qiagen. Double-stranded cDNA was generated without pooling. The Ambion MEGAscript T7 kit from Ambion was used to generate biotinylated cRNA for kidney. See Hübner et al. 2005 for additional detail. One-hundred and twenty eight samples passed RNA quality control steps.

    diff --git a/general/datasets/Hxb_adrenal_1208/notes.rtf b/general/datasets/Hxb_adrenal_1208/notes.rtf new file mode 100644 index 0000000..e4b510d --- /dev/null +++ b/general/datasets/Hxb_adrenal_1208/notes.rtf @@ -0,0 +1,9 @@ +

    Entered by Arthur Centeno, Dec 18, 2008. Data from Herbert Schulz. CEL files processed by AC. Data normalized by AC and RWW (2z+8).

    + +

    Access to this data set is currently limited to the three teams of researchers who generated the data: Norbert Hübner (MDC, Berlin), Timothy Aitman (UC London), and Michal Pravenec (CAS, Prague). For access to data please contact N. Hübner by email.

    + +

    The text below was copied from the INFO file for the older (2005) kidney gene expression data set by RWW (Dec 20, 2008). It contains errors and will need to be corrected with the guidance of the data generators and owners.

    + +
    +

    This text file originally copied from the old kidney INFO file that was generated by Robert Williams, Norbert Hübner, Michal Pravnec, Timothy Aitman. This version entered into the adrenal INFO file, December 19, 2008, by RWW, Kathrin Saar Dec 23.

    +
    diff --git a/general/datasets/Hxb_adrenal_1208/platform.rtf b/general/datasets/Hxb_adrenal_1208/platform.rtf new file mode 100644 index 0000000..372ab1c --- /dev/null +++ b/general/datasets/Hxb_adrenal_1208/platform.rtf @@ -0,0 +1 @@ +

    Affymetrix 230A GeneChip: Expression data were generated using the Affymetrix 230A array. The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Rat Genome Sequencing Consortium assembly.

    diff --git a/general/datasets/Hxb_adrenal_1208/processing.rtf b/general/datasets/Hxb_adrenal_1208/processing.rtf new file mode 100644 index 0000000..584e49b --- /dev/null +++ b/general/datasets/Hxb_adrenal_1208/processing.rtf @@ -0,0 +1,3 @@ +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of pixel measured in each cell. +

    Probe set data: The original CEL values were processed using RMA and log2 transformed using our standard 2z +8 transform. This recenters each array to a mean of 8 units and a SD of 2 units. Probe set values are typically the averages of four biological replicates within strain.

    +
    diff --git a/general/datasets/Hxb_adrenal_1208/summary.rtf b/general/datasets/Hxb_adrenal_1208/summary.rtf new file mode 100644 index 0000000..6c7a859 --- /dev/null +++ b/general/datasets/Hxb_adrenal_1208/summary.rtf @@ -0,0 +1,19 @@ +

    This December 2008 data set provides estimates of mRNA expression in normal adrenal glands of 31 strains of rats including the hypertensive SHR strain (aka HSR), the normotensive BN strain, and 29 HXB/BXH recombinant inbred strains. Most strains were sampled in quadruplicate (6-week-old males). Animals and tissues were generated by Michal Pravenec and colleagues at the Czech Academy of Sciences (CAS). RNA samples were processed at the Max-Delbrück-Center (MDC), Berlin Buch by Norbert Hübner and colleagues. Transcriptome mapping was carried out by Timothy Aitman and colleagues at the Imperial College, London (ICL). Samples were hybridized individually to a total of approximately 124 Affymetrix RAE230A array processed using the RMA protocol. The expression values of each array have been logged and adjusted to a mean of 8 and a standard deviation of 2 (mean and variance stabilized). This data set complements the kidney and fat data set exploited by Hübner and colleagues 2005.

    + +

    These data may also be viewed using the eQTL Explorer Java application by John Mangion, Tim Aitman, and colleagues (Mueller et al. 2006).

    + +

    Genome-wide co-expression analysis in multiple tissues.

    + +

    And see closely associate set of papers:

    + +
      +
    1. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease.
    2. +
    3. Heritability and tissue specificity of expression quantitative trait loci.
    4. +
    5. Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass.
    6. +
    7. New insights into the genetic control of gene expression using a Bayesian multi-tissue approach.
    8. +
    9. The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance.
    10. +
    11. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk.
    12. +
    13. Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat.
    14. +
    15. Systems-level approaches reveal conservation of trans-regulated genes in the rat and genetic determinants of blood pressure in humans.
    16. +
    diff --git a/general/datasets/Hxb_adrenal_1208/tissue.rtf b/general/datasets/Hxb_adrenal_1208/tissue.rtf new file mode 100644 index 0000000..d0d0236 --- /dev/null +++ b/general/datasets/Hxb_adrenal_1208/tissue.rtf @@ -0,0 +1,530 @@ +
    All tissues were collected at the age of 6 weeks. Adrenal glands and other organs were rapidly dissected and cleaned of fat, inserted into a vial, and immersed in liquid nitrogen for storage until RNA extraction. THIS IS AN OLD TABLE FOR THE KIDNEY DATA IN THIS INFO FILE ONLY AS A PLACEHOLDER. The table below lists the arrays by strain and sample identifier. Each array was hybridized with mRNA from a single young male rat.
    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSampleID
    HSRHSR1
    HSRHSR2
    HSRHSR3
    HSRHSR4
    BNBN1
    BNBN2
    BNBN3
    BNBN4
    BNBN5
    HXB1RI 01-1
    HXB1RI 01-2
    HXB1RI 01-3
    HXB1RI 01-4
    HXB2RI 02-1
    HXB2RI 02-2
    HXB2RI 02-3
    HXB2RI 02-4
    HXB3RI 03-1
    HXB3RI 03-2
    HXB3RI 03-3
    HXB3RI 03-4
    HXB4RI 04-1
    HXB4RI 04-2
    HXB4RI 04-3
    HXB4RI 04-4
    HXB5RI 05-1
    HXB5RI 05-2
    HXB5RI 05-3
    HXB5*RI 05-4
    HXB7RI 07-1
    HXB7RI 07-2
    HXB7RI 07-3
    HXB7RI 07-4
    HXB10RI 10-1
    HXB10RI 10-2
    HXB10RI 10-3
    HXB10RI 10-4
    HXB15RI 15-1
    HXB15RI 15-2
    HXB15RI 15-3
    HXB15RI 15-4
    HXB17RI 17-1
    HXB17RI 17-2
    HXB17RI 17-3
    HXB17RI 17-4
    HXB18RI 18-1
    HXB18RI 18-2
    HXB18RI 18-3
    HXB18RI 18-4
    HXB20RI 20-1
    HXB20RI 20-2
    HXB20RI 20-3
    HXB20RI 20-4
    HXB21RI 21-1
    HXB21RI 21-2
    HXB21RI 21-3
    HXB21RI 21-4
    HXB22RI 22-1
    HXB22RI 22-2
    HXB22RI 22-3
    HXB22RI 22-4
    HXB23RI 23-1
    HXB23RI 23-2
    HXB23RI 23-3
    HXB23RI 23-4
    HXB24RI 24-1
    HXB24RI 24-2
    HXB24RI 24-3
    HXB24RI 24-4
    HXB25RI 25-1
    HXB25RI 25-2
    HXB25RI 25-3
    HXB25*RI 25-4
    HXB26RI 26-1
    HXB26RI 26-2
    HXB26RI 26-3
    HXB26RI 26-4
    HXB27RI 27-1
    HXB27RI 27-2
    HXB27RI 27-3
    HXB27RI 27-4
    HXB29RI 29-1
    HXB29RI 29-2
    HXB29RI 29-3
    HXB29RI 29-4
    HXB31RI 31-1
    HXB31RI 31-2
    HXB31RI 31-3
    HXB31RI 31-4
    BXH2RI 02c-1
    BXH2RI 02c-2
    BXH2RI 02c-3
    BXH2RI 02c-4
    BXH3RI 03c-1
    BXH3RI 03c-2
    BXH3RI 03c-3
    BXH3RI 03c-4
    BXH5RI 05c-1
    BXH5RI 05c-2
    BXH5RI 05c-3
    BXH5RI 05c-4
    BXH6RI 06c-1
    BXH6RI 06c-2
    BXH6RI 06c-3
    BXH6RI 06c-4
    BXH8RI 08c-1
    BXH8RI 08c-2
    BXH8RI 08c-3
    BXH8RI 08c-4
    BXH9RI 09c-1
    BXH9RI 09c-2
    BXH9RI 09c-3
    BXH9RI 09c-4
    BXH10RI 10c-1
    BXH10RI 10c-2
    BXH10RI 10c-3
    BXH11RI 11c-1
    BXH11RI 11c-2
    BXH11RI 11c-3
    BXH11RI 11c-4
    BXH12RI 12c-1
    BXH12RI 12c-2
    BXH12RI 12c-3
    BXH12RI 12c-4
    BXH13RI 13c-1
    BXH13RI 13c-2
    BXH13RI 13c-3
    BXH13RI 13c-4
    +
    diff --git a/general/datasets/Hxb_heart_1208/acknowledgment.rtf b/general/datasets/Hxb_heart_1208/acknowledgment.rtf new file mode 100644 index 0000000..ea86842 --- /dev/null +++ b/general/datasets/Hxb_heart_1208/acknowledgment.rtf @@ -0,0 +1 @@ +
    This work was supported with funds to TJA by the MRC Clinical Sciences Centre, the British Heart Foundation, and the Wellcome Trust Cardiovascular Functional Genomics Initiative; to NH from the German Ministry for Science and Education (National Genome Research Network); to MP and Vladimir Kren from the Grant Agency of the Czech Republic; to MP and TJA from the Wellcome Trust Collaborative Research Initiative grant, to Theodore W Kurtz from the NIH, to TWK and MP from a Fogarty International Research Collaboration Award. Microarrays were a generous donation of Affymetrix Inc. Michal Pravenec thanks the Howard Hughes Medical Institute for its support to him as an international research scholar.
    diff --git a/general/datasets/Hxb_heart_1208/cases.rtf b/general/datasets/Hxb_heart_1208/cases.rtf new file mode 100644 index 0000000..34c7d7a --- /dev/null +++ b/general/datasets/Hxb_heart_1208/cases.rtf @@ -0,0 +1,7 @@ +
    Data were generated using the HXB/BXH recombinant inbred strains of rats generated over the past 20 years in Prague. The parental strains from which all HXB lines are derived are SHR (SHR/OlaIpcv, abbreviated SHR or HSR = H) and Brown Norway (BN-Lx/Cub= B). These strains have been used extensively to study cardiovascular system physiology and genetics. +

     

    + +

    The HXB strains were bred by Michal Pravenec at the Institute of Physiology, Czech Academy of Sciences. The BXH strains were bred by Vladimir Kren (see Pravenec et al. 1989, 2004) at a similar animal facility at the Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University. These strains are at approximately the 6oth generation of continuous inbreeding (F60).

    + +

    Animals used in the transcriptome analyses of multiple tissues (Hübner and colleagues, 2005) were weaned at 4 weeks. Those born at the Charles University were transferred to the Institute of Physiology. Animals were reared on a commerical rat chow (ST-1 from VELAZ, Czech Republic). Four males were house per cage. Cages were made of polystyrene and have a floor size of 22 x 38 cm and height of 23 cm. The bedding was changed twice a week. Light cycle was 12:12 on-off. Vivarium rooms were maintained at 23 deg. C. Rats were sexually naive. All males used in the initial transcriptome studies (Hübner et al., 2005) were born between May and August 2002. They were sacrificed unfastged by rapid cervical dislocation between 9 and 10 AM, following an approved animal protocol (Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague; Animal Protectiion Law of the Czech Republic (311/1997).

    +
    diff --git a/general/datasets/Hxb_heart_1208/citation.rtf b/general/datasets/Hxb_heart_1208/citation.rtf new file mode 100644 index 0000000..a8b8cc0 --- /dev/null +++ b/general/datasets/Hxb_heart_1208/citation.rtf @@ -0,0 +1 @@ +

    PLoS One. 2008;3(12):e4033. doi: 10.1371/journal.pone.0004033. Epub 2008 Dec 29.

    diff --git a/general/datasets/Hxb_heart_1208/contributors.rtf b/general/datasets/Hxb_heart_1208/contributors.rtf new file mode 100644 index 0000000..0afa863 --- /dev/null +++ b/general/datasets/Hxb_heart_1208/contributors.rtf @@ -0,0 +1 @@ +

    Grieve IC1, Dickens NJ, Pravenec M, Kren V, Hubner N, Cook SA, Aitman TJ, Petretto E, Mangion J. Author information 1MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital, London, United Kingdom.

    diff --git a/general/datasets/Hxb_heart_1208/experiment-design.rtf b/general/datasets/Hxb_heart_1208/experiment-design.rtf new file mode 100644 index 0000000..984be42 --- /dev/null +++ b/general/datasets/Hxb_heart_1208/experiment-design.rtf @@ -0,0 +1,3 @@ +
    +

    RNA processing:RNA was extracted using Trizol reagent (Invitrogen) and purified using an RNeasy Mini kit from Qiagen. Double-stranded cDNA was generated without pooling. The Ambion MEGAscript T7 kit from Ambion was used to generate biotinylated cRNA for kidney. See Hübner et al. 2005 for additional detail. One-hundred and twenty eight samples passed RNA quality control steps.

    +
    diff --git a/general/datasets/Hxb_heart_1208/notes.rtf b/general/datasets/Hxb_heart_1208/notes.rtf new file mode 100644 index 0000000..91c8b67 --- /dev/null +++ b/general/datasets/Hxb_heart_1208/notes.rtf @@ -0,0 +1,21 @@ +
    +

    Heart Left Ventricle

    + +

    http://www.expressionanalysis.com/pdf/Affymetrix/GXRat230v2.pdf

    + +

    GEO platform id http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GPL1355

    + +

    Data entered by Evan Williams and Rob Williams, Jan 2, 2009.

    + +

    Mapping of probes http://compbio.dcs.gla.ac.uk/sf/index.html#230map

    + +

    Entered by Arthur Centeno, Dec 18, 2008. Data from Herbert Schulz. CEL files processed by AC. Data normalized by AC and RWW (2z+8).

    + +

    Access to this data set is currently limited to the three teams of researchers who generated the data: Norbert Hübner (MDC, Berlin), Timothy Aitman (UC London), and Michal Pravenec (CAS, Prague). For access to data please contact N. Hübner by email.

    + +

    The text below was copied from the INFO file for the older (2005) kidney gene expression data set by RWW (Dec 20, 2008). It contains errors and will need to be corrected with the guidance of the data generators and owners.

    +
    + +
    +

    This text file originally copied from the old kidney INFO file that was generated by Robert Williams, Norbert Hübner, Michal Pravnec, Timothy Aitman. This version entered into the adrenal INFO file, December 19, 2008, by RWW, Kathrin Saar Dec 23.

    +
    diff --git a/general/datasets/Hxb_heart_1208/platform.rtf b/general/datasets/Hxb_heart_1208/platform.rtf new file mode 100644 index 0000000..b6eb818 --- /dev/null +++ b/general/datasets/Hxb_heart_1208/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix 230Av2 GeneChip: Expression data were generated using the Affymetrix 230Av2 array (GEO_GPL341). The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Rat Genome Sequencing Consortium assembly.

    +
    diff --git a/general/datasets/Hxb_heart_1208/processing.rtf b/general/datasets/Hxb_heart_1208/processing.rtf new file mode 100644 index 0000000..9bb9584 --- /dev/null +++ b/general/datasets/Hxb_heart_1208/processing.rtf @@ -0,0 +1,4 @@ +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of pixel measured in each cell. + +

    Probe set data: The original CEL values were processed using RMA and log2 transformed using our standard 2z +8 transform. This recenters each array to a mean of 8 units and a SD of 2 units. Probe set values are typically the averages of four biological replicates within strain.

    +
    diff --git a/general/datasets/Hxb_heart_1208/summary.rtf b/general/datasets/Hxb_heart_1208/summary.rtf new file mode 100644 index 0000000..88bf1b8 --- /dev/null +++ b/general/datasets/Hxb_heart_1208/summary.rtf @@ -0,0 +1,19 @@ +

    This December 2008 data set provides estimates of mRNA expression in normal hearts of 31 strains of rats including the hypertensive SHR strain (aka HSR), the normotensive BN strain, and 29 HXB/BXH recombinant inbred strains. Most strains were sampled in quadruplicate (6-week-old males). Animals and tissues were generated by Michal Pravenec and colleagues at the Czech Academy of Sciences (CAS). RNA samples were processed at the Max-Delbrück-Center (MDC), Berlin Buch by Norbert Hübner and colleagues. Transcriptome mapping was carried out by Timothy Aitman and colleagues at the Imperial College, London (ICL). Samples were hybridized individually to a total of approximately XXX Affymetrix RAE230A array processed using the RMA protocol. The expression values of each array have been logged and adjusted to a mean of 8 and a standard deviation of 2 (mean and variance stabilized). This data set complements the kidney and fat data set exploited by Hübner and colleagues 2005.

    + +

    These data may also be viewed using the eQTL Explorer Java application by John Mangion, Tim Aitman, and colleagues (Mueller et al. 2006).

    + +

    Genome-wide co-expression analysis in multiple tissues.

    + +

    And see closely associate set of papers:

    + +
      +
    1. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease.
    2. +
    3. Heritability and tissue specificity of expression quantitative trait loci.
    4. +
    5. Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass.
    6. +
    7. New insights into the genetic control of gene expression using a Bayesian multi-tissue approach.
    8. +
    9. The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance.
    10. +
    11. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk.
    12. +
    13. Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat.
    14. +
    15. Systems-level approaches reveal conservation of trans-regulated genes in the rat and genetic determinants of blood pressure in humans.
    16. +
    diff --git a/general/datasets/Hxb_heart_1208/tissue.rtf b/general/datasets/Hxb_heart_1208/tissue.rtf new file mode 100644 index 0000000..485694f --- /dev/null +++ b/general/datasets/Hxb_heart_1208/tissue.rtf @@ -0,0 +1,530 @@ +
    All tissues were collected at the age of 6 weeks. Hearts and other organs were rapidly dissected and cleaned of fat, inserted into a vial, and immersed in liquid nitrogen for storage until RNA extraction. THIS IS AN OLD TABLE FOR THE KIDNEY DATA IN THIS INFO FILE ONLY AS A PLACEHOLDER. The table below lists the arrays by strain and sample identifier. Each array was hybridized with mRNA from a single young male rat.
    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSampleID
    HSRHSR1
    HSRHSR2
    HSRHSR3
    HSRHSR4
    BNBN1
    BNBN2
    BNBN3
    BNBN4
    BNBN5
    HXB1RI 01-1
    HXB1RI 01-2
    HXB1RI 01-3
    HXB1RI 01-4
    HXB2RI 02-1
    HXB2RI 02-2
    HXB2RI 02-3
    HXB2RI 02-4
    HXB3RI 03-1
    HXB3RI 03-2
    HXB3RI 03-3
    HXB3RI 03-4
    HXB4RI 04-1
    HXB4RI 04-2
    HXB4RI 04-3
    HXB4RI 04-4
    HXB5RI 05-1
    HXB5RI 05-2
    HXB5RI 05-3
    HXB5*RI 05-4
    HXB7RI 07-1
    HXB7RI 07-2
    HXB7RI 07-3
    HXB7RI 07-4
    HXB10RI 10-1
    HXB10RI 10-2
    HXB10RI 10-3
    HXB10RI 10-4
    HXB15RI 15-1
    HXB15RI 15-2
    HXB15RI 15-3
    HXB15RI 15-4
    HXB17RI 17-1
    HXB17RI 17-2
    HXB17RI 17-3
    HXB17RI 17-4
    HXB18RI 18-1
    HXB18RI 18-2
    HXB18RI 18-3
    HXB18RI 18-4
    HXB20RI 20-1
    HXB20RI 20-2
    HXB20RI 20-3
    HXB20RI 20-4
    HXB21RI 21-1
    HXB21RI 21-2
    HXB21RI 21-3
    HXB21RI 21-4
    HXB22RI 22-1
    HXB22RI 22-2
    HXB22RI 22-3
    HXB22RI 22-4
    HXB23RI 23-1
    HXB23RI 23-2
    HXB23RI 23-3
    HXB23RI 23-4
    HXB24RI 24-1
    HXB24RI 24-2
    HXB24RI 24-3
    HXB24RI 24-4
    HXB25RI 25-1
    HXB25RI 25-2
    HXB25RI 25-3
    HXB25*RI 25-4
    HXB26RI 26-1
    HXB26RI 26-2
    HXB26RI 26-3
    HXB26RI 26-4
    HXB27RI 27-1
    HXB27RI 27-2
    HXB27RI 27-3
    HXB27RI 27-4
    HXB29RI 29-1
    HXB29RI 29-2
    HXB29RI 29-3
    HXB29RI 29-4
    HXB31RI 31-1
    HXB31RI 31-2
    HXB31RI 31-3
    HXB31RI 31-4
    BXH2RI 02c-1
    BXH2RI 02c-2
    BXH2RI 02c-3
    BXH2RI 02c-4
    BXH3RI 03c-1
    BXH3RI 03c-2
    BXH3RI 03c-3
    BXH3RI 03c-4
    BXH5RI 05c-1
    BXH5RI 05c-2
    BXH5RI 05c-3
    BXH5RI 05c-4
    BXH6RI 06c-1
    BXH6RI 06c-2
    BXH6RI 06c-3
    BXH6RI 06c-4
    BXH8RI 08c-1
    BXH8RI 08c-2
    BXH8RI 08c-3
    BXH8RI 08c-4
    BXH9RI 09c-1
    BXH9RI 09c-2
    BXH9RI 09c-3
    BXH9RI 09c-4
    BXH10RI 10c-1
    BXH10RI 10c-2
    BXH10RI 10c-3
    BXH11RI 11c-1
    BXH11RI 11c-2
    BXH11RI 11c-3
    BXH11RI 11c-4
    BXH12RI 12c-1
    BXH12RI 12c-2
    BXH12RI 12c-3
    BXH12RI 12c-4
    BXH13RI 13c-1
    BXH13RI 13c-2
    BXH13RI 13c-3
    BXH13RI 13c-4
    +
    diff --git a/general/datasets/Hxb_liver_1208/acknowledgment.rtf b/general/datasets/Hxb_liver_1208/acknowledgment.rtf new file mode 100644 index 0000000..ea86842 --- /dev/null +++ b/general/datasets/Hxb_liver_1208/acknowledgment.rtf @@ -0,0 +1 @@ +
    This work was supported with funds to TJA by the MRC Clinical Sciences Centre, the British Heart Foundation, and the Wellcome Trust Cardiovascular Functional Genomics Initiative; to NH from the German Ministry for Science and Education (National Genome Research Network); to MP and Vladimir Kren from the Grant Agency of the Czech Republic; to MP and TJA from the Wellcome Trust Collaborative Research Initiative grant, to Theodore W Kurtz from the NIH, to TWK and MP from a Fogarty International Research Collaboration Award. Microarrays were a generous donation of Affymetrix Inc. Michal Pravenec thanks the Howard Hughes Medical Institute for its support to him as an international research scholar.
    diff --git a/general/datasets/Hxb_liver_1208/citation.rtf b/general/datasets/Hxb_liver_1208/citation.rtf new file mode 100644 index 0000000..a8b8cc0 --- /dev/null +++ b/general/datasets/Hxb_liver_1208/citation.rtf @@ -0,0 +1 @@ +

    PLoS One. 2008;3(12):e4033. doi: 10.1371/journal.pone.0004033. Epub 2008 Dec 29.

    diff --git a/general/datasets/Hxb_liver_1208/contributors.rtf b/general/datasets/Hxb_liver_1208/contributors.rtf new file mode 100644 index 0000000..0afa863 --- /dev/null +++ b/general/datasets/Hxb_liver_1208/contributors.rtf @@ -0,0 +1 @@ +

    Grieve IC1, Dickens NJ, Pravenec M, Kren V, Hubner N, Cook SA, Aitman TJ, Petretto E, Mangion J. Author information 1MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital, London, United Kingdom.

    diff --git a/general/datasets/Hxb_liver_1208/platform.rtf b/general/datasets/Hxb_liver_1208/platform.rtf new file mode 100644 index 0000000..b6eb818 --- /dev/null +++ b/general/datasets/Hxb_liver_1208/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix 230Av2 GeneChip: Expression data were generated using the Affymetrix 230Av2 array (GEO_GPL341). The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Rat Genome Sequencing Consortium assembly.

    +
    diff --git a/general/datasets/Hxb_liver_1208/summary.rtf b/general/datasets/Hxb_liver_1208/summary.rtf new file mode 100644 index 0000000..d524ef3 --- /dev/null +++ b/general/datasets/Hxb_liver_1208/summary.rtf @@ -0,0 +1,14 @@ +

    Genome-wide co-expression analysis in multiple tissues.

    + +

    And see closely associate set of papers:

    + +
      +
    1. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease.
    2. +
    3. Heritability and tissue specificity of expression quantitative trait loci.
    4. +
    5. Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass.
    6. +
    7. New insights into the genetic control of gene expression using a Bayesian multi-tissue approach.
    8. +
    9. The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance.
    10. +
    11. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk.
    12. +
    13. Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat.
    14. +
    15. Systems-level approaches reveal conservation of trans-regulated genes in the rat and genetic determinants of blood pressure in humans.
    16. +
    diff --git a/general/datasets/Hxbbxhgeno/citation.rtf b/general/datasets/Hxbbxhgeno/citation.rtf new file mode 100644 index 0000000..372e9b9 --- /dev/null +++ b/general/datasets/Hxbbxhgeno/citation.rtf @@ -0,0 +1 @@ +

    http://genome.ucsc.edu/cgi-bin/hgGateway?db=rn6

    diff --git a/general/datasets/Hxbbxhgeno/summary.rtf b/general/datasets/Hxbbxhgeno/summary.rtf new file mode 100644 index 0000000..098796a --- /dev/null +++ b/general/datasets/Hxbbxhgeno/summary.rtf @@ -0,0 +1,7 @@ +

    UCSC Genome Browser assembly ID: rn6
    +Sequencing/Assembly provider ID: RGSC Rnor_6.0
    +Assembly date: Jul. 2014
    +Accession ID: GCA_000001895.4
    +NCBI Genome ID: 73 (Rattus norvegicus)
    +NCBI Assembly ID: 191871 (Rnor_6.0)
    +NCBI BioProject ID: 10629

    diff --git a/general/datasets/Hzi_0408_m/cases.rtf b/general/datasets/Hzi_0408_m/cases.rtf new file mode 100644 index 0000000..83b146d --- /dev/null +++ b/general/datasets/Hzi_0408_m/cases.rtf @@ -0,0 +1,784 @@ +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArraySampleStrainSexAgeColorPool SizeSource
    1R4435LU.CELR4435LUBXD100F64black2UTM RW
    2R4436LU.CELR4436LUBXD14F85black2UTM RW
    3R4437LU.CELR4437LUBXD34F58black5UTM RW
    4R4438LU.CELR4438LUBXD39F63gray3UTM RW
    5R4439LU.CELR4439LUBXD40F54gray3ORNL
    6R4440LU.CELR4440LUBXD45F60dilute brown DBA4UTM RW
    7R4441LU.CELR4441LUBXD50F64dilute brown DBA4ORNL
    8R4442LU.CELR4442LUBXD1F88dilute brown DBA3UTM RW
    9R4443LU.CELR4443LUBXD16F79gray3ORNL
    10R4444LU.CELR4444LUBXD12F61gray5UTM RW
    11R4445LU.CELR4445LUBXD21F50dilute brown DBA3ORNL
    12R4446LU.CELR4446LUBXD19F49gray3ORNL
    13R4447LU.CELR4447LUBXD27F85brown3UTM RW
    14R4448LU.CELR4448LUBXD31F81black3UTM RW
    15R4449LU.CELR4449LUBXD32F68black5ORNL
    16R4450LU.CELR4450LUBXD33F61gray2ORNL
    17R4451LU.CELR4451LUBXD42F65black2UTM RW
    18R4452LU.CELR4452LUBXD43F79black2UTM RW
    19R4453LU.CELR4453LUBXD45F60dilute brown DBA4UTM RW
    20R4454LU.CELR4454LUBXD55M80brown3UTM RW
    21R4455LU.CELR4455LUBXD56M91black3UTM RW
    22R4456LU.CELR4456LUBXD66F80brown3UTM RW
    23R4457LU.CELR4457LUBXD68F65brown4UTM RW
    24R4459LU-re.CELR4459LUBXD89F79dilute brown DBA2UTM RW
    25R4460LU.CELR4460LUBXD51M81black2UTM RW
    26R4461LU.CELR4461LUBXD97FN/AN/AN/AN/A
    27R4462LU.CELR4462LUBXD48F61black3ORNL
    28R4463LU.CELR4463LUBXD60M93brown2UTM RW
    29R4464LU.CELR4464LUBXD62M80brown2UTM RW
    30R4465LU.CELR4465LUBXD69M63dilute brown DBA5UTM RW
    31R4466LU.CELR4466LUBXD70M75dilute brown DBA3UTM RW
    32R4467LU.CELR4467LUBXD71M64dilute brown DBA4UTM RW
    33R4468LU.CELR4468LUBXD73M59dilute brown DBA3UTM RW
    34R4469L.CELR4469LUBXD75M51dilute brown DBA4UTM RW
    35R4470L.CELR4470LUBXD2M84black3UTM RW
    36R4471H-re.CELR4471LUBXD83M75dilute brown DBA2UTM RW
    37R4472L.CELR4472LUBXD84M78dilute brown DBA2UTM RW
    38R4473LU.CELR4473LUBXD86M77black3UTM RW
    39R4474LU.CELR4474LUBXD87M67black3UTM RW
    40R4475LU.CELR4475LUBXD9M78dilute brown DBA3UTM RW
    41R4476LU.CELR4476LUBXD90M63dilute brown DBA3UTM RW
    42R4477LU.CELR4477LUBXD65M59brown3ORNL
    43R4478LU.CELR4478LUBXD6M92gray3UTM RW
    44R4479LU.CELR4479LUBXD96M71black3UTM RW
    45R4480LU.CELR4480LUBXD97M80brown3UTM RW
    46R4481LU.CELR4481LUBXD98M80dilute brown DBA2UTM RW
    47R4482LU.CELR4482LUBXD99M72dilute brown DBA2UTM RW
    48R4483LU.CELR4483LUBXD22M66gray2UTM RW
    49R4484LU.CELR4484LUBXD25M54brown3UTM RW
    50R4485LU.CELR4485LUB6D2F1M62black5UTM RW
    51R4486LU.CELR4486LUB6D2F1F70black2UTM RW
    52R4487LU.CELR4487LUBALB/cByJF91white3UTM RW
    53R4488LU.CELR4488LUBALB/cByJM91white2UTM RW
    54R4489LU.CELR4489LUD2B6F1F61black2UTM RW
    55R4490LU.CELR4490LUD2B6F1M61black3UTM RW
    56R4491LU.CELR4491LUFVB/NJF62white5UTM RW
    57R4492LU.CELR4492LUFVB/NJM73white3UTM RW
    58R4493LU.CELR4493LUWSB/EiJF76agouti3UTM RW
    59R4494LU.CELR4494LUWSB/EiJM76agouti3UTM RW
    60R4495LU.CELR4495LUC57BL/6JF65black3UTM RW
    61R4496LU.CELR4496LUC57BL/6JM65black2UTM RW
    62R4497LU.CELR4497LU129X1/SvJF65white4JAX
    63R4498LU.CELR4498LU129X1/SvJM66white4JAX
    64R4499LU.CELR4499LUDBA/2JF65dilute brown DBA3ORNL
    65R4500LU.CELR4500LUDBA/2JM59dilute brown DBA2JAX
    66R4501LU.CELR4501LULP/JF65agouti4JAX
    67R4502LU.CELR4502LULP/JM65agouti4JAX
    68R4503LU.CELR4503LUSJL/JF63white4JAX
    69R4504LU.CELR4504LUSJL/JM65white4JAX
    +
    +
    diff --git a/general/datasets/Hzi_0408_m/summary.rtf b/general/datasets/Hzi_0408_m/summary.rtf new file mode 100644 index 0000000..5d3c1a7 --- /dev/null +++ b/general/datasets/Hzi_0408_m/summary.rtf @@ -0,0 +1,37 @@ +

    Phase I of BXD lung transcriptome mapping project. Project organized by Drs. Robert Williams, Klaus Schughart, Lu Lu. Started November 29, 2008. There are total 70 samples in phase I including 50 BXD strains and 10 paired inbred strains.

    + +

     2011 May 2;12:61. doi: 10.1186/1465-9921-12-61.

    + +

    Genome-wide analysis of the mouse lung transcriptome reveals novel molecular gene interaction networks and cell-specific expression signatures.

    + +

    Alberts R1, Lu LWilliams RWSchughart K.

    + +

    + +

    Erratum in

    + + + +

    Abstract

    + +

    BACKGROUND: 

    + +

    The lung is critical in surveillance and initial defense against pathogens. In humans, as in mice, individual genetic differences strongly modulate pulmonary responses to infectious agents, severity of lung disease, and potential allergic reactions. In a first step towards understanding genetic predisposition and pulmonary molecular networks that underlie individual differences in disease vulnerability, we performed a global analysis of normative lung gene expression levels in inbred mouse strains and a large family of BXD strains that are widely used for systems genetics. Our goal is to provide a key community resource on the genetics of the normative lungtranscriptome that can serve as a foundation for experimental analysis and allow predicting genetic predisposition and response to pathogens, allergens, and xenobiotics.

    + +

    METHODS: 

    + +

    Steady-state polyA+ mRNA levels were assayed across a diverse and fully genotyped panel of 57 isogenic strains using the Affymetrix M430 2.0 array. Correlations of expression levels between genes were determined. Global expression QTL (eQTL) analysis and network covariance analysis was performed using tools and resources in GeneNetwork http://www.genenetwork.org.

    + +

    RESULTS: 

    + +

    Expression values were highly variable across strains and in many cases exhibited a high heritability factor. Several genes which showed a restricted expression to lung tissue were identified. Using correlations between gene expression values across all strains, we defined and extended memberships of several important molecular networks in the lung. Furthermore, we were able to extract signatures of immune cell subpopulations and characterize co-variation and shared genetic modulation. Known QTL regions for respiratory infection susceptibility were investigated and several cis-eQTL genes were identified. Numerous cis- and trans-regulated transcripts and chromosomal intervals with strong regulatory activity were mapped. The Cyp1a1 P450 transcript had a strong trans-acting eQTL (LOD 11.8) on Chr 12 at 36 ± 1 Mb. This interval contains the transcription factor Ahr that has a critical mis-sense allele in the DBA/2J haplotype and evidently modulates transcriptional activation by AhR.

    + +

    CONCLUSIONS: 

    + +

    Large-scale gene expression analyses in genetic reference populations revealed lung-specific and immune-cell gene expression profiles and suggested specific gene regulatory interactions.

    + +
    +
    PMID:21535883 PMCID:PMC3105947 DOI:10.1186/1465-9921-12-61
    +
    diff --git a/general/datasets/Hzi_0408_r/cases.rtf b/general/datasets/Hzi_0408_r/cases.rtf new file mode 100644 index 0000000..83b146d --- /dev/null +++ b/general/datasets/Hzi_0408_r/cases.rtf @@ -0,0 +1,784 @@ +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArraySampleStrainSexAgeColorPool SizeSource
    1R4435LU.CELR4435LUBXD100F64black2UTM RW
    2R4436LU.CELR4436LUBXD14F85black2UTM RW
    3R4437LU.CELR4437LUBXD34F58black5UTM RW
    4R4438LU.CELR4438LUBXD39F63gray3UTM RW
    5R4439LU.CELR4439LUBXD40F54gray3ORNL
    6R4440LU.CELR4440LUBXD45F60dilute brown DBA4UTM RW
    7R4441LU.CELR4441LUBXD50F64dilute brown DBA4ORNL
    8R4442LU.CELR4442LUBXD1F88dilute brown DBA3UTM RW
    9R4443LU.CELR4443LUBXD16F79gray3ORNL
    10R4444LU.CELR4444LUBXD12F61gray5UTM RW
    11R4445LU.CELR4445LUBXD21F50dilute brown DBA3ORNL
    12R4446LU.CELR4446LUBXD19F49gray3ORNL
    13R4447LU.CELR4447LUBXD27F85brown3UTM RW
    14R4448LU.CELR4448LUBXD31F81black3UTM RW
    15R4449LU.CELR4449LUBXD32F68black5ORNL
    16R4450LU.CELR4450LUBXD33F61gray2ORNL
    17R4451LU.CELR4451LUBXD42F65black2UTM RW
    18R4452LU.CELR4452LUBXD43F79black2UTM RW
    19R4453LU.CELR4453LUBXD45F60dilute brown DBA4UTM RW
    20R4454LU.CELR4454LUBXD55M80brown3UTM RW
    21R4455LU.CELR4455LUBXD56M91black3UTM RW
    22R4456LU.CELR4456LUBXD66F80brown3UTM RW
    23R4457LU.CELR4457LUBXD68F65brown4UTM RW
    24R4459LU-re.CELR4459LUBXD89F79dilute brown DBA2UTM RW
    25R4460LU.CELR4460LUBXD51M81black2UTM RW
    26R4461LU.CELR4461LUBXD97FN/AN/AN/AN/A
    27R4462LU.CELR4462LUBXD48F61black3ORNL
    28R4463LU.CELR4463LUBXD60M93brown2UTM RW
    29R4464LU.CELR4464LUBXD62M80brown2UTM RW
    30R4465LU.CELR4465LUBXD69M63dilute brown DBA5UTM RW
    31R4466LU.CELR4466LUBXD70M75dilute brown DBA3UTM RW
    32R4467LU.CELR4467LUBXD71M64dilute brown DBA4UTM RW
    33R4468LU.CELR4468LUBXD73M59dilute brown DBA3UTM RW
    34R4469L.CELR4469LUBXD75M51dilute brown DBA4UTM RW
    35R4470L.CELR4470LUBXD2M84black3UTM RW
    36R4471H-re.CELR4471LUBXD83M75dilute brown DBA2UTM RW
    37R4472L.CELR4472LUBXD84M78dilute brown DBA2UTM RW
    38R4473LU.CELR4473LUBXD86M77black3UTM RW
    39R4474LU.CELR4474LUBXD87M67black3UTM RW
    40R4475LU.CELR4475LUBXD9M78dilute brown DBA3UTM RW
    41R4476LU.CELR4476LUBXD90M63dilute brown DBA3UTM RW
    42R4477LU.CELR4477LUBXD65M59brown3ORNL
    43R4478LU.CELR4478LUBXD6M92gray3UTM RW
    44R4479LU.CELR4479LUBXD96M71black3UTM RW
    45R4480LU.CELR4480LUBXD97M80brown3UTM RW
    46R4481LU.CELR4481LUBXD98M80dilute brown DBA2UTM RW
    47R4482LU.CELR4482LUBXD99M72dilute brown DBA2UTM RW
    48R4483LU.CELR4483LUBXD22M66gray2UTM RW
    49R4484LU.CELR4484LUBXD25M54brown3UTM RW
    50R4485LU.CELR4485LUB6D2F1M62black5UTM RW
    51R4486LU.CELR4486LUB6D2F1F70black2UTM RW
    52R4487LU.CELR4487LUBALB/cByJF91white3UTM RW
    53R4488LU.CELR4488LUBALB/cByJM91white2UTM RW
    54R4489LU.CELR4489LUD2B6F1F61black2UTM RW
    55R4490LU.CELR4490LUD2B6F1M61black3UTM RW
    56R4491LU.CELR4491LUFVB/NJF62white5UTM RW
    57R4492LU.CELR4492LUFVB/NJM73white3UTM RW
    58R4493LU.CELR4493LUWSB/EiJF76agouti3UTM RW
    59R4494LU.CELR4494LUWSB/EiJM76agouti3UTM RW
    60R4495LU.CELR4495LUC57BL/6JF65black3UTM RW
    61R4496LU.CELR4496LUC57BL/6JM65black2UTM RW
    62R4497LU.CELR4497LU129X1/SvJF65white4JAX
    63R4498LU.CELR4498LU129X1/SvJM66white4JAX
    64R4499LU.CELR4499LUDBA/2JF65dilute brown DBA3ORNL
    65R4500LU.CELR4500LUDBA/2JM59dilute brown DBA2JAX
    66R4501LU.CELR4501LULP/JF65agouti4JAX
    67R4502LU.CELR4502LULP/JM65agouti4JAX
    68R4503LU.CELR4503LUSJL/JF63white4JAX
    69R4504LU.CELR4504LUSJL/JM65white4JAX
    +
    +
    diff --git a/general/datasets/Hzi_0408_r/summary.rtf b/general/datasets/Hzi_0408_r/summary.rtf new file mode 100644 index 0000000..5d3c1a7 --- /dev/null +++ b/general/datasets/Hzi_0408_r/summary.rtf @@ -0,0 +1,37 @@ +

    Phase I of BXD lung transcriptome mapping project. Project organized by Drs. Robert Williams, Klaus Schughart, Lu Lu. Started November 29, 2008. There are total 70 samples in phase I including 50 BXD strains and 10 paired inbred strains.

    + +

     2011 May 2;12:61. doi: 10.1186/1465-9921-12-61.

    + +

    Genome-wide analysis of the mouse lung transcriptome reveals novel molecular gene interaction networks and cell-specific expression signatures.

    + +

    Alberts R1, Lu LWilliams RWSchughart K.

    + +

    + +

    Erratum in

    + + + +

    Abstract

    + +

    BACKGROUND: 

    + +

    The lung is critical in surveillance and initial defense against pathogens. In humans, as in mice, individual genetic differences strongly modulate pulmonary responses to infectious agents, severity of lung disease, and potential allergic reactions. In a first step towards understanding genetic predisposition and pulmonary molecular networks that underlie individual differences in disease vulnerability, we performed a global analysis of normative lung gene expression levels in inbred mouse strains and a large family of BXD strains that are widely used for systems genetics. Our goal is to provide a key community resource on the genetics of the normative lungtranscriptome that can serve as a foundation for experimental analysis and allow predicting genetic predisposition and response to pathogens, allergens, and xenobiotics.

    + +

    METHODS: 

    + +

    Steady-state polyA+ mRNA levels were assayed across a diverse and fully genotyped panel of 57 isogenic strains using the Affymetrix M430 2.0 array. Correlations of expression levels between genes were determined. Global expression QTL (eQTL) analysis and network covariance analysis was performed using tools and resources in GeneNetwork http://www.genenetwork.org.

    + +

    RESULTS: 

    + +

    Expression values were highly variable across strains and in many cases exhibited a high heritability factor. Several genes which showed a restricted expression to lung tissue were identified. Using correlations between gene expression values across all strains, we defined and extended memberships of several important molecular networks in the lung. Furthermore, we were able to extract signatures of immune cell subpopulations and characterize co-variation and shared genetic modulation. Known QTL regions for respiratory infection susceptibility were investigated and several cis-eQTL genes were identified. Numerous cis- and trans-regulated transcripts and chromosomal intervals with strong regulatory activity were mapped. The Cyp1a1 P450 transcript had a strong trans-acting eQTL (LOD 11.8) on Chr 12 at 36 ± 1 Mb. This interval contains the transcription factor Ahr that has a critical mis-sense allele in the DBA/2J haplotype and evidently modulates transcriptional activation by AhR.

    + +

    CONCLUSIONS: 

    + +

    Large-scale gene expression analyses in genetic reference populations revealed lung-specific and immune-cell gene expression profiles and suggested specific gene regulatory interactions.

    + +
    +
    PMID:21535883 PMCID:PMC3105947 DOI:10.1186/1465-9921-12-61
    +
    diff --git a/general/datasets/Hzi_ltcf_0313/acknowledgment.rtf b/general/datasets/Hzi_ltcf_0313/acknowledgment.rtf new file mode 100644 index 0000000..5350054 --- /dev/null +++ b/general/datasets/Hzi_ltcf_0313/acknowledgment.rtf @@ -0,0 +1 @@ +

    Primary human bronchial epithelial cells were provided by Scott H. Randell (Marsico Lung Institute, Tissue Procurement and Cell Culture Core, The University of North Carolina at Chapel Hill, USA). The cells were obtained under protocol 03-1396 approved by the University of North Carolina at Chapel Hill Biomedical Institutional Review Board. The RNA-seq was carried out by the Molecular Resource Center at UTHSC.

    diff --git a/general/datasets/Hzi_ltcf_0313/cases.rtf b/general/datasets/Hzi_ltcf_0313/cases.rtf new file mode 100644 index 0000000..50868a3 --- /dev/null +++ b/general/datasets/Hzi_ltcf_0313/cases.rtf @@ -0,0 +1 @@ +

    Mice We used females from 41 BXD RI strains and both parental strains—B6 and D2. Mice were between 8 and 12 weeks of age when infected. They were housed and maintained on a 12:12 light/dark cycle, with ad libitum access to food and water. Virus Original stocks of mouse-adapted A/Puerto Rico/8/34 (H1N1, PR8M) virus were obtained from Stefan Ludwig, University of Münster (28). Virus stocks were propagated in the chorioallantoic cavity of 10-day-old pathogen-free embryonated chicken eggs for 48 h at 37°C as described previously (29). Viral titer was determined using a focus-forming unit (FFU) assay as described previously (29). Infection of Mice Animals were anesthetized by intraperitoneal injection of ketamine/xylazine (10 % (v/v) of 100 mg/ml ketamine and 5 % (v/v) of 20 mg/ml xylazine in 0.9 % (w/v) NaCl with a dose adjusted to body weight (200 μl/20 g body weight). Infection was performed by intranasal application of virus solution in 20 μl sterile phosphate-buffered saline (PBS), with a PR8M dosage of 2×103 FFU. Mice were bred and infected at the animal facilities at UTHSC

    diff --git a/general/datasets/Hzi_ltcf_0313/citation.rtf b/general/datasets/Hzi_ltcf_0313/citation.rtf new file mode 100644 index 0000000..bad40b4 --- /dev/null +++ b/general/datasets/Hzi_ltcf_0313/citation.rtf @@ -0,0 +1 @@ +

    Xu F, Gao J, Bergmann S, Sims AC, Ashbrook DG, Baric RS, Cui Y, Jonsson CB, Li K, Williams RW, Schughart K and Lu L (2021) Genetic Dissection of the Regulatory Mechanisms of Ace2 in the Infected Mouse Lung. Front. Immunol. 11:607314. doi: 10.3389/fimmu.2020.607314

    diff --git a/general/datasets/Hzi_ltcf_0313/contributors.rtf b/general/datasets/Hzi_ltcf_0313/contributors.rtf new file mode 100644 index 0000000..0b5cb98 --- /dev/null +++ b/general/datasets/Hzi_ltcf_0313/contributors.rtf @@ -0,0 +1 @@ +

    LL, KS, RW, and RB conceived the study. SB and AS conducted the experiments. FX, KS, YC, and RW performed data analysis. LL, FX, KS, RW, and JG wrote the manuscript. FX, KS, and JG prepared the figures and tables. RW, KL, DA, and CJ edited the manuscript. All authors contributed to the article and approved the submitted version.

    diff --git a/general/datasets/Hzi_ltcf_0313/notes.rtf b/general/datasets/Hzi_ltcf_0313/notes.rtf new file mode 100644 index 0000000..e6040a2 --- /dev/null +++ b/general/datasets/Hzi_ltcf_0313/notes.rtf @@ -0,0 +1 @@ +

    The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2020.07314/full#supplementary-material

    diff --git a/general/datasets/Hzi_ltcf_0313/processing.rtf b/general/datasets/Hzi_ltcf_0313/processing.rtf new file mode 100644 index 0000000..5502082 --- /dev/null +++ b/general/datasets/Hzi_ltcf_0313/processing.rtf @@ -0,0 +1 @@ +

    Read Mapping and Gene Expression Quantification RNA-seq reads were quality-trimmed using Trim Galore (31) and mapped to the mm10 reference genome or to the IAV PR8M genome using STAR (32). Counts were summarized at the gene level using the R-package Rsubread (33), normalized and log transformed using the R-package DESeq2 (34), and batchcorrected using the ComBat function of the R-package sva (35, 36). For annotations of genes, ENTREZID from Rsubread were matched to RefSeq annotations using R-package biomart (37).

    diff --git a/general/datasets/Hzi_ltcf_0313/summary.rtf b/general/datasets/Hzi_ltcf_0313/summary.rtf new file mode 100644 index 0000000..1ad3d9f --- /dev/null +++ b/general/datasets/Hzi_ltcf_0313/summary.rtf @@ -0,0 +1,3 @@ +

    Full article available at https://www.frontiersin.org/articles/10.3389/fimmu.2020.607314/full

    + +

    Acute lung injury (ALI) is an important cause of morbidity and mortality after viral infections, including influenza A virus H1N1, SARS-CoV,MERS-CoV, and SARS-CoV-2. The angiotensin I converting enzyme 2 (ACE2) is a key host membrane-bound protein that modulates ALI induced by viral infection, pulmonary acid aspiration, and sepsis. However, the contributions of ACE2 sequence variants to individual differences in disease risk and severity after viral infection are not understood. In this study, we quantified H1N1 influenza-infected lung transcriptomes across a family of 41 BXD recombinant inbred strains of mice and both parents—C57BL/6J and DBA/2J. In response to infection Ace2 mRNA levels decreased significantly for both parental strains and the expression levels was associated with disease severity (body weight loss) and viral load (expression levels of viral NA segment) across the BXD family members. Pulmonary RNA-seq for 43 lines was analyzed using weighted gene co-expression network analysis (WGCNA) and Bayesian network approaches. Ace2 not only participated in virusinduced ALI by interacting with TNF, MAPK, and NOTCH signaling pathways, but was also linked with high confidence to gene products that have important functions in the pulmonary epithelium, including Rnf128, Muc5b, and Tmprss2. Comparable sets of transcripts were also highlighted in parallel studies of human SARS-CoV-infected primary human airway epithelial cells. Using conventional mapping methods, we determined that weight loss at two and three days after viral infection maps to chromosome X—the location of Ace2. This finding motivated the hierarchical Bayesian network analysis, which defined molecular endophenotypes of lung infection linked to Ace2 expression and to a key disease outcome. Core members of this Bayesian network include Ace2, Atf4, Csf2, Cxcl2, Lif, Maml3, Muc5b, Reg3g, Ripk3, and Traf3. Collectively, these findings define a causally-rooted Ace2 modulatory network relevant to host response to viral infection and identify potential therapeutic targets for virus-induced respiratory diseases, including those caused by influenza and coronaviruses.

    diff --git a/general/datasets/Hzi_ltcf_0313/tissue.rtf b/general/datasets/Hzi_ltcf_0313/tissue.rtf new file mode 100644 index 0000000..2258f28 --- /dev/null +++ b/general/datasets/Hzi_ltcf_0313/tissue.rtf @@ -0,0 +1 @@ +

    RNA Isolation and Sequencing Mice were sacrificed 3 days post-infection (dpi) and both lungs were extracted and transferred immediately to RNAlater (Qiagen), stored at 4°C for one day, and then stored at −20°C. RNA was isolated using Qiagen Midi kit (30). RNA quality was evaluated on a 2100 Bioanalyzer (Agilent). Five-hundred nanograms of total RNA was used to prepare libraries for sequencing using the Lexogen SENSE RNA-seq library kit for Ion Torrent. Libraries were amplified for 11 cycles as the final step of library preparation. Before sequencing, 1-μl aliquots were pooled and sequenced on an Ion Torrent PGM 314 chip. Barcoded data from the PGM was used to balance the final pool before sequencing. Library pools were sized to ~260 bp on a Pippin Prep instrument using 2% Pippin agarose gel. The sized libraries were evaluated on an Agilent High Sensitivity chip, quantified using real-time PCR, and used to prepare beads using a One-Touch 2 device. Beads were sequenced on an Ion Torrent Proton P1 chip. On average, 67 million reads were obtained per strain.

    diff --git a/general/datasets/Hzi_lungbxd_rna_seq_1116/acknowledgment.rtf b/general/datasets/Hzi_lungbxd_rna_seq_1116/acknowledgment.rtf new file mode 100644 index 0000000..5350054 --- /dev/null +++ b/general/datasets/Hzi_lungbxd_rna_seq_1116/acknowledgment.rtf @@ -0,0 +1 @@ +

    Primary human bronchial epithelial cells were provided by Scott H. Randell (Marsico Lung Institute, Tissue Procurement and Cell Culture Core, The University of North Carolina at Chapel Hill, USA). The cells were obtained under protocol 03-1396 approved by the University of North Carolina at Chapel Hill Biomedical Institutional Review Board. The RNA-seq was carried out by the Molecular Resource Center at UTHSC.

    diff --git a/general/datasets/Hzi_lungbxd_rna_seq_1116/cases.rtf b/general/datasets/Hzi_lungbxd_rna_seq_1116/cases.rtf new file mode 100644 index 0000000..50868a3 --- /dev/null +++ b/general/datasets/Hzi_lungbxd_rna_seq_1116/cases.rtf @@ -0,0 +1 @@ +

    Mice We used females from 41 BXD RI strains and both parental strains—B6 and D2. Mice were between 8 and 12 weeks of age when infected. They were housed and maintained on a 12:12 light/dark cycle, with ad libitum access to food and water. Virus Original stocks of mouse-adapted A/Puerto Rico/8/34 (H1N1, PR8M) virus were obtained from Stefan Ludwig, University of Münster (28). Virus stocks were propagated in the chorioallantoic cavity of 10-day-old pathogen-free embryonated chicken eggs for 48 h at 37°C as described previously (29). Viral titer was determined using a focus-forming unit (FFU) assay as described previously (29). Infection of Mice Animals were anesthetized by intraperitoneal injection of ketamine/xylazine (10 % (v/v) of 100 mg/ml ketamine and 5 % (v/v) of 20 mg/ml xylazine in 0.9 % (w/v) NaCl with a dose adjusted to body weight (200 μl/20 g body weight). Infection was performed by intranasal application of virus solution in 20 μl sterile phosphate-buffered saline (PBS), with a PR8M dosage of 2×103 FFU. Mice were bred and infected at the animal facilities at UTHSC

    diff --git a/general/datasets/Hzi_lungbxd_rna_seq_1116/citation.rtf b/general/datasets/Hzi_lungbxd_rna_seq_1116/citation.rtf new file mode 100644 index 0000000..3bd25af --- /dev/null +++ b/general/datasets/Hzi_lungbxd_rna_seq_1116/citation.rtf @@ -0,0 +1,3 @@ +

    1. Xu F, Gao J, Bergman S, Sims AC, Baric RS, Cui Y, Jonsson C, Kui L, Williams RW, Schughart K, Lu L (2020) Genetic dissection of the modulatory mechanisms of Ace2 in the infected mouse lung. In submission.

    + +

    2. Nedelko TKollmus HKlawonn FSpijker SLu LHeßman MAlberts RWilliams RWSchughart K (2012) Distinct gene loci control the host response to influenza H1N1 virus infection in a time-dependent manner.  2012 Aug 20;13:411. doi: 10.1186/1471-2164-13-411.

    diff --git a/general/datasets/Hzi_lungbxd_rna_seq_1116/contributors.rtf b/general/datasets/Hzi_lungbxd_rna_seq_1116/contributors.rtf new file mode 100644 index 0000000..0b5cb98 --- /dev/null +++ b/general/datasets/Hzi_lungbxd_rna_seq_1116/contributors.rtf @@ -0,0 +1 @@ +

    LL, KS, RW, and RB conceived the study. SB and AS conducted the experiments. FX, KS, YC, and RW performed data analysis. LL, FX, KS, RW, and JG wrote the manuscript. FX, KS, and JG prepared the figures and tables. RW, KL, DA, and CJ edited the manuscript. All authors contributed to the article and approved the submitted version.

    diff --git a/general/datasets/Hzi_lungbxd_rna_seq_1116/notes.rtf b/general/datasets/Hzi_lungbxd_rna_seq_1116/notes.rtf new file mode 100644 index 0000000..e6040a2 --- /dev/null +++ b/general/datasets/Hzi_lungbxd_rna_seq_1116/notes.rtf @@ -0,0 +1 @@ +

    The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2020.07314/full#supplementary-material

    diff --git a/general/datasets/Hzi_lungbxd_rna_seq_1116/platform.rtf b/general/datasets/Hzi_lungbxd_rna_seq_1116/platform.rtf new file mode 100644 index 0000000..f9bc2e3 --- /dev/null +++ b/general/datasets/Hzi_lungbxd_rna_seq_1116/platform.rtf @@ -0,0 +1 @@ +

    IonTorrent (see above)

    diff --git a/general/datasets/Hzi_lungbxd_rna_seq_1116/processing.rtf b/general/datasets/Hzi_lungbxd_rna_seq_1116/processing.rtf new file mode 100644 index 0000000..5502082 --- /dev/null +++ b/general/datasets/Hzi_lungbxd_rna_seq_1116/processing.rtf @@ -0,0 +1 @@ +

    Read Mapping and Gene Expression Quantification RNA-seq reads were quality-trimmed using Trim Galore (31) and mapped to the mm10 reference genome or to the IAV PR8M genome using STAR (32). Counts were summarized at the gene level using the R-package Rsubread (33), normalized and log transformed using the R-package DESeq2 (34), and batchcorrected using the ComBat function of the R-package sva (35, 36). For annotations of genes, ENTREZID from Rsubread were matched to RefSeq annotations using R-package biomart (37).

    diff --git a/general/datasets/Hzi_lungbxd_rna_seq_1116/specifics.rtf b/general/datasets/Hzi_lungbxd_rna_seq_1116/specifics.rtf new file mode 100644 index 0000000..d75a4b7 --- /dev/null +++ b/general/datasets/Hzi_lungbxd_rna_seq_1116/specifics.rtf @@ -0,0 +1 @@ +

    HZI Lung Flu Infected BXD (Nov16) RNA-Seq

    diff --git a/general/datasets/Hzi_lungbxd_rna_seq_1116/summary.rtf b/general/datasets/Hzi_lungbxd_rna_seq_1116/summary.rtf new file mode 100644 index 0000000..1ad3d9f --- /dev/null +++ b/general/datasets/Hzi_lungbxd_rna_seq_1116/summary.rtf @@ -0,0 +1,3 @@ +

    Full article available at https://www.frontiersin.org/articles/10.3389/fimmu.2020.607314/full

    + +

    Acute lung injury (ALI) is an important cause of morbidity and mortality after viral infections, including influenza A virus H1N1, SARS-CoV,MERS-CoV, and SARS-CoV-2. The angiotensin I converting enzyme 2 (ACE2) is a key host membrane-bound protein that modulates ALI induced by viral infection, pulmonary acid aspiration, and sepsis. However, the contributions of ACE2 sequence variants to individual differences in disease risk and severity after viral infection are not understood. In this study, we quantified H1N1 influenza-infected lung transcriptomes across a family of 41 BXD recombinant inbred strains of mice and both parents—C57BL/6J and DBA/2J. In response to infection Ace2 mRNA levels decreased significantly for both parental strains and the expression levels was associated with disease severity (body weight loss) and viral load (expression levels of viral NA segment) across the BXD family members. Pulmonary RNA-seq for 43 lines was analyzed using weighted gene co-expression network analysis (WGCNA) and Bayesian network approaches. Ace2 not only participated in virusinduced ALI by interacting with TNF, MAPK, and NOTCH signaling pathways, but was also linked with high confidence to gene products that have important functions in the pulmonary epithelium, including Rnf128, Muc5b, and Tmprss2. Comparable sets of transcripts were also highlighted in parallel studies of human SARS-CoV-infected primary human airway epithelial cells. Using conventional mapping methods, we determined that weight loss at two and three days after viral infection maps to chromosome X—the location of Ace2. This finding motivated the hierarchical Bayesian network analysis, which defined molecular endophenotypes of lung infection linked to Ace2 expression and to a key disease outcome. Core members of this Bayesian network include Ace2, Atf4, Csf2, Cxcl2, Lif, Maml3, Muc5b, Reg3g, Ripk3, and Traf3. Collectively, these findings define a causally-rooted Ace2 modulatory network relevant to host response to viral infection and identify potential therapeutic targets for virus-induced respiratory diseases, including those caused by influenza and coronaviruses.

    diff --git a/general/datasets/Hzi_lungbxd_rna_seq_1116/tissue.rtf b/general/datasets/Hzi_lungbxd_rna_seq_1116/tissue.rtf new file mode 100644 index 0000000..2258f28 --- /dev/null +++ b/general/datasets/Hzi_lungbxd_rna_seq_1116/tissue.rtf @@ -0,0 +1 @@ +

    RNA Isolation and Sequencing Mice were sacrificed 3 days post-infection (dpi) and both lungs were extracted and transferred immediately to RNAlater (Qiagen), stored at 4°C for one day, and then stored at −20°C. RNA was isolated using Qiagen Midi kit (30). RNA quality was evaluated on a 2100 Bioanalyzer (Agilent). Five-hundred nanograms of total RNA was used to prepare libraries for sequencing using the Lexogen SENSE RNA-seq library kit for Ion Torrent. Libraries were amplified for 11 cycles as the final step of library preparation. Before sequencing, 1-μl aliquots were pooled and sequenced on an Ion Torrent PGM 314 chip. Barcoded data from the PGM was used to balance the final pool before sequencing. Library pools were sized to ~260 bp on a Pippin Prep instrument using 2% Pippin agarose gel. The sized libraries were evaluated on an Agilent High Sensitivity chip, quantified using real-time PCR, and used to prepare beads using a One-Touch 2 device. Beads were sequenced on an Ion Torrent Proton P1 chip. On average, 67 million reads were obtained per strain.

    diff --git a/general/datasets/Hzi_pr8m_f_1014/processing.rtf b/general/datasets/Hzi_pr8m_f_1014/processing.rtf new file mode 100644 index 0000000..3aca25d --- /dev/null +++ b/general/datasets/Hzi_pr8m_f_1014/processing.rtf @@ -0,0 +1,3 @@ +

    For dataset HZI PR8M-Infected Lungs Females RNAseq (Oct14) RPKM Log2 we took the RPKM values, added 1 and then log2.

    + +

    For dataset HZI PR8M-Infected Lungs Females RNAseq (Oct14) RPKM Log2 Treatment we took the RPKM values, added 1 and then log2 and threshold values at average of less than 1 = 0

    diff --git a/general/datasets/Hzi_pr8m_f_1014/summary.rtf b/general/datasets/Hzi_pr8m_f_1014/summary.rtf new file mode 100644 index 0000000..07a4fb8 --- /dev/null +++ b/general/datasets/Hzi_pr8m_f_1014/summary.rtf @@ -0,0 +1 @@ +

    This group of datasets is currently confidential.

    diff --git a/general/datasets/Hzi_pr8m_f_1113/processing.rtf b/general/datasets/Hzi_pr8m_f_1113/processing.rtf new file mode 100644 index 0000000..3aca25d --- /dev/null +++ b/general/datasets/Hzi_pr8m_f_1113/processing.rtf @@ -0,0 +1,3 @@ +

    For dataset HZI PR8M-Infected Lungs Females RNAseq (Oct14) RPKM Log2 we took the RPKM values, added 1 and then log2.

    + +

    For dataset HZI PR8M-Infected Lungs Females RNAseq (Oct14) RPKM Log2 Treatment we took the RPKM values, added 1 and then log2 and threshold values at average of less than 1 = 0

    diff --git a/general/datasets/Hzi_pr8m_f_1113/summary.rtf b/general/datasets/Hzi_pr8m_f_1113/summary.rtf new file mode 100644 index 0000000..07a4fb8 --- /dev/null +++ b/general/datasets/Hzi_pr8m_f_1113/summary.rtf @@ -0,0 +1 @@ +

    This group of datasets is currently confidential.

    diff --git a/general/datasets/Hzi_pr8m_f_freq1_1014/processing.rtf b/general/datasets/Hzi_pr8m_f_freq1_1014/processing.rtf new file mode 100644 index 0000000..3aca25d --- /dev/null +++ b/general/datasets/Hzi_pr8m_f_freq1_1014/processing.rtf @@ -0,0 +1,3 @@ +

    For dataset HZI PR8M-Infected Lungs Females RNAseq (Oct14) RPKM Log2 we took the RPKM values, added 1 and then log2.

    + +

    For dataset HZI PR8M-Infected Lungs Females RNAseq (Oct14) RPKM Log2 Treatment we took the RPKM values, added 1 and then log2 and threshold values at average of less than 1 = 0

    diff --git a/general/datasets/Hzi_pr8m_f_freq1_1014/summary.rtf b/general/datasets/Hzi_pr8m_f_freq1_1014/summary.rtf new file mode 100644 index 0000000..07a4fb8 --- /dev/null +++ b/general/datasets/Hzi_pr8m_f_freq1_1014/summary.rtf @@ -0,0 +1 @@ +

    This group of datasets is currently confidential.

    diff --git a/general/datasets/Hzi_pr8m_q_0612/acknowledgment.rtf b/general/datasets/Hzi_pr8m_q_0612/acknowledgment.rtf new file mode 100644 index 0000000..5350054 --- /dev/null +++ b/general/datasets/Hzi_pr8m_q_0612/acknowledgment.rtf @@ -0,0 +1 @@ +

    Primary human bronchial epithelial cells were provided by Scott H. Randell (Marsico Lung Institute, Tissue Procurement and Cell Culture Core, The University of North Carolina at Chapel Hill, USA). The cells were obtained under protocol 03-1396 approved by the University of North Carolina at Chapel Hill Biomedical Institutional Review Board. The RNA-seq was carried out by the Molecular Resource Center at UTHSC.

    diff --git a/general/datasets/Hzi_pr8m_q_0612/cases.rtf b/general/datasets/Hzi_pr8m_q_0612/cases.rtf new file mode 100644 index 0000000..50868a3 --- /dev/null +++ b/general/datasets/Hzi_pr8m_q_0612/cases.rtf @@ -0,0 +1 @@ +

    Mice We used females from 41 BXD RI strains and both parental strains—B6 and D2. Mice were between 8 and 12 weeks of age when infected. They were housed and maintained on a 12:12 light/dark cycle, with ad libitum access to food and water. Virus Original stocks of mouse-adapted A/Puerto Rico/8/34 (H1N1, PR8M) virus were obtained from Stefan Ludwig, University of Münster (28). Virus stocks were propagated in the chorioallantoic cavity of 10-day-old pathogen-free embryonated chicken eggs for 48 h at 37°C as described previously (29). Viral titer was determined using a focus-forming unit (FFU) assay as described previously (29). Infection of Mice Animals were anesthetized by intraperitoneal injection of ketamine/xylazine (10 % (v/v) of 100 mg/ml ketamine and 5 % (v/v) of 20 mg/ml xylazine in 0.9 % (w/v) NaCl with a dose adjusted to body weight (200 μl/20 g body weight). Infection was performed by intranasal application of virus solution in 20 μl sterile phosphate-buffered saline (PBS), with a PR8M dosage of 2×103 FFU. Mice were bred and infected at the animal facilities at UTHSC

    diff --git a/general/datasets/Hzi_pr8m_q_0612/citation.rtf b/general/datasets/Hzi_pr8m_q_0612/citation.rtf new file mode 100644 index 0000000..bad40b4 --- /dev/null +++ b/general/datasets/Hzi_pr8m_q_0612/citation.rtf @@ -0,0 +1 @@ +

    Xu F, Gao J, Bergmann S, Sims AC, Ashbrook DG, Baric RS, Cui Y, Jonsson CB, Li K, Williams RW, Schughart K and Lu L (2021) Genetic Dissection of the Regulatory Mechanisms of Ace2 in the Infected Mouse Lung. Front. Immunol. 11:607314. doi: 10.3389/fimmu.2020.607314

    diff --git a/general/datasets/Hzi_pr8m_q_0612/contributors.rtf b/general/datasets/Hzi_pr8m_q_0612/contributors.rtf new file mode 100644 index 0000000..0b5cb98 --- /dev/null +++ b/general/datasets/Hzi_pr8m_q_0612/contributors.rtf @@ -0,0 +1 @@ +

    LL, KS, RW, and RB conceived the study. SB and AS conducted the experiments. FX, KS, YC, and RW performed data analysis. LL, FX, KS, RW, and JG wrote the manuscript. FX, KS, and JG prepared the figures and tables. RW, KL, DA, and CJ edited the manuscript. All authors contributed to the article and approved the submitted version.

    diff --git a/general/datasets/Hzi_pr8m_q_0612/experiment-type.rtf b/general/datasets/Hzi_pr8m_q_0612/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Hzi_pr8m_q_0612/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Hzi_pr8m_q_0612/notes.rtf b/general/datasets/Hzi_pr8m_q_0612/notes.rtf new file mode 100644 index 0000000..e6040a2 --- /dev/null +++ b/general/datasets/Hzi_pr8m_q_0612/notes.rtf @@ -0,0 +1 @@ +

    The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2020.07314/full#supplementary-material

    diff --git a/general/datasets/Hzi_pr8m_q_0612/processing.rtf b/general/datasets/Hzi_pr8m_q_0612/processing.rtf new file mode 100644 index 0000000..5502082 --- /dev/null +++ b/general/datasets/Hzi_pr8m_q_0612/processing.rtf @@ -0,0 +1 @@ +

    Read Mapping and Gene Expression Quantification RNA-seq reads were quality-trimmed using Trim Galore (31) and mapped to the mm10 reference genome or to the IAV PR8M genome using STAR (32). Counts were summarized at the gene level using the R-package Rsubread (33), normalized and log transformed using the R-package DESeq2 (34), and batchcorrected using the ComBat function of the R-package sva (35, 36). For annotations of genes, ENTREZID from Rsubread were matched to RefSeq annotations using R-package biomart (37).

    diff --git a/general/datasets/Hzi_pr8m_q_0612/summary.rtf b/general/datasets/Hzi_pr8m_q_0612/summary.rtf new file mode 100644 index 0000000..1ad3d9f --- /dev/null +++ b/general/datasets/Hzi_pr8m_q_0612/summary.rtf @@ -0,0 +1,3 @@ +

    Full article available at https://www.frontiersin.org/articles/10.3389/fimmu.2020.607314/full

    + +

    Acute lung injury (ALI) is an important cause of morbidity and mortality after viral infections, including influenza A virus H1N1, SARS-CoV,MERS-CoV, and SARS-CoV-2. The angiotensin I converting enzyme 2 (ACE2) is a key host membrane-bound protein that modulates ALI induced by viral infection, pulmonary acid aspiration, and sepsis. However, the contributions of ACE2 sequence variants to individual differences in disease risk and severity after viral infection are not understood. In this study, we quantified H1N1 influenza-infected lung transcriptomes across a family of 41 BXD recombinant inbred strains of mice and both parents—C57BL/6J and DBA/2J. In response to infection Ace2 mRNA levels decreased significantly for both parental strains and the expression levels was associated with disease severity (body weight loss) and viral load (expression levels of viral NA segment) across the BXD family members. Pulmonary RNA-seq for 43 lines was analyzed using weighted gene co-expression network analysis (WGCNA) and Bayesian network approaches. Ace2 not only participated in virusinduced ALI by interacting with TNF, MAPK, and NOTCH signaling pathways, but was also linked with high confidence to gene products that have important functions in the pulmonary epithelium, including Rnf128, Muc5b, and Tmprss2. Comparable sets of transcripts were also highlighted in parallel studies of human SARS-CoV-infected primary human airway epithelial cells. Using conventional mapping methods, we determined that weight loss at two and three days after viral infection maps to chromosome X—the location of Ace2. This finding motivated the hierarchical Bayesian network analysis, which defined molecular endophenotypes of lung infection linked to Ace2 expression and to a key disease outcome. Core members of this Bayesian network include Ace2, Atf4, Csf2, Cxcl2, Lif, Maml3, Muc5b, Reg3g, Ripk3, and Traf3. Collectively, these findings define a causally-rooted Ace2 modulatory network relevant to host response to viral infection and identify potential therapeutic targets for virus-induced respiratory diseases, including those caused by influenza and coronaviruses.

    diff --git a/general/datasets/Hzi_pr8m_q_0612/tissue.rtf b/general/datasets/Hzi_pr8m_q_0612/tissue.rtf new file mode 100644 index 0000000..2258f28 --- /dev/null +++ b/general/datasets/Hzi_pr8m_q_0612/tissue.rtf @@ -0,0 +1 @@ +

    RNA Isolation and Sequencing Mice were sacrificed 3 days post-infection (dpi) and both lungs were extracted and transferred immediately to RNAlater (Qiagen), stored at 4°C for one day, and then stored at −20°C. RNA was isolated using Qiagen Midi kit (30). RNA quality was evaluated on a 2100 Bioanalyzer (Agilent). Five-hundred nanograms of total RNA was used to prepare libraries for sequencing using the Lexogen SENSE RNA-seq library kit for Ion Torrent. Libraries were amplified for 11 cycles as the final step of library preparation. Before sequencing, 1-μl aliquots were pooled and sequenced on an Ion Torrent PGM 314 chip. Barcoded data from the PGM was used to balance the final pool before sequencing. Library pools were sized to ~260 bp on a Pippin Prep instrument using 2% Pippin agarose gel. The sized libraries were evaluated on an Agilent High Sensitivity chip, quantified using real-time PCR, and used to prepare beads using a One-Touch 2 device. Beads were sequenced on an Ion Torrent Proton P1 chip. On average, 67 million reads were obtained per strain.

    diff --git a/general/datasets/INIA_Adrenal_RMA_0612/cases.rtf b/general/datasets/INIA_Adrenal_RMA_0612/cases.rtf deleted file mode 100644 index f0b204b..0000000 --- a/general/datasets/INIA_Adrenal_RMA_0612/cases.rtf +++ /dev/null @@ -1,771 +0,0 @@ -

    Young adult mice raised in specific pathogen-free vivarium at UTHSC.
    -Table 1. Final strain correction by Khyobeni Mozhui on Mar 28, 2013.

    - - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexSample IDStrainTissueSex
    1R6947ABXD48AdrenalM
    2R6948ABXD90AdrenalM
    3R6949ABXD97AdrenalM
    4R6950ABXD87AdrenalM
    5R6952ABXD83AdrenalF
    6R6953ABXD67AdrenalM
    7R6954ABXD56AdrenalM
    8R6955ABXD48AdrenalF
    9R6956ABXD90AdrenalF
    10R6957ABXD89AdrenalM
    11R6958ABXD65AdrenalM
    12R6959ABXD65AdrenalF
    13R6960ABXD63AdrenalF
    14R6961ABXD63AdrenalM
    15R6963ABXD31AdrenalM
    16R6964ABXD31AdrenalF
    17R6965ABXD1AdrenalF
    18R6966ABXD1AdrenalF
    19R6967ABXD24AdrenalF
    20R6968ABXD34AdrenalM
    21R6969ABXD1AdrenalM
    22R6971ABXD27AdrenalF
    23R6972ABXD29AdrenalM
    24R6973ABXD12AdrenalF
    25R6974ABXD14AdrenalF
    26R6975ABXD99AdrenalF
    27R6976ABXD32AdrenalF
    28R6977ABXD97AdrenalF
    29R6978ABXD84AdrenalM
    30R6979ABXD39AdrenalM
    31R6980ABXD24AdrenalM
    32R6981ABXD50AdrenalF
    33R6982ABXD75AdrenalM
    34R6983ABXD42AdrenalM
    35R6984ABXD39AdrenalF
    36R6985ABXD34AdrenalF
    37R6986ABXD87AdrenalF
    38R6987ABXD50AdrenalM
    39R6989ABXD62AdrenalM
    40R6990ABXD70AdrenalM
    41R6991ABXD64AdrenalF
    42R6992ABXD84AdrenalF
    43R6993ABXD100AdrenalF
    44R6994ABXD62AdrenalF
    45R6996ABXD95AdrenalM
    46R6998ABXD32AdrenalM
    47R6999ABXD101AdrenalF
    48R7000ABXD49AdrenalM
    49R7002ABXD11AdrenalM
    50R7003ABXD100AdrenalM
    51R7004ABXD43AdrenalF
    52R7005ABXD103AdrenalM
    53R7006ABXD73AdrenalF
    54R7008ABXD43AdrenalM
    55R7009ABXD102AdrenalF
    56R7010ABXD69AdrenalF
    57R7011ABXD60AdrenalM
    58R7012ABXD45AdrenalF
    59R7013ABXD79AdrenalM
    60R7014ABXD40AdrenalM
    61R7015ABXD79AdrenalF
    62R7016ABXD40AdrenalF
    63R7017ABXD68AdrenalF
    64R7018ABXD85AdrenalF
    65R7019ABXD44AdrenalF
    66R7020ABXD70AdrenalF
    67R7021ABXD68AdrenalM
    68R7023ABXD44AdrenalM
    69R7024ABXD95AdrenalF
    70R7025ABXD56AdrenalF
    71R7032ABXD103AdrenalF
    72R7034ABXD24AdrenalF
    73R7035ABXD101AdrenalM
    74R7036ABXD29AdrenalF
    75R7037ABXD60AdrenalF
    76R7038ABXD69AdrenalM
    77R7039ABXD73AdrenalM
    78R7040ABXD80AdrenalM
    79R7041ABXD11AdrenalF
    80R7042ABXD74AdrenalF
    81R7043ABXD67AdrenalF
    82R7044ABXD67AdrenalM
    83R7046AC57BL/6JAdrenalF
    84R7047AD2B6F1AdrenalF
    85R7048AB6D2F1AdrenalM
    86R7051ABXD80AdrenalF
    87R7053ABXD102AdrenalM
    88R7054ABXD49AdrenalF
    89R7055ABXD77AdrenalF
    90R7056ABXD77AdrenalM
    91R7057ABXD66AdrenalM
    92R7058ABXD66AdrenalF
    93R7059ABXD45AdrenalF
    94R7145ABXD67AdrenalM
    95R7147ABXD85AdrenalM
    96R7148ADBA/2JAdrenalF
    97R7149AD2B6F1AdrenalM
    98R7150AD2B6F1AdrenalF
    99R7151ABXD27AdrenalM
    100R7152AB6D2F1AdrenalM
    101R7153ADBA/2JAdrenalM
    102R7159AC57BL/6JAdrenalF
    103R7161AC57BL/6JAdrenalM
    104R7164AB6D2F1AdrenalF
    105R7166AB6D2F1AdrenalM
    106R7167ADBA/2JAdrenalF
    107R7168ADBA/2JAdrenalM
    -
    diff --git a/general/datasets/INIA_Adrenal_RMA_0612/experiment-design.rtf b/general/datasets/INIA_Adrenal_RMA_0612/experiment-design.rtf deleted file mode 100644 index b069873..0000000 --- a/general/datasets/INIA_Adrenal_RMA_0612/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Normative expression in the adrenals (whole organ) of young adult mice. In general, a sex-balanced samples (one array from male cases, one array from female cases) for BXD and parental strains.

    - -

    Part of a systematic genetic analysis of the hypothalamus-pituitary-adrenal axis in the BXD family of strains.

    diff --git a/general/datasets/INIA_Adrenal_RMA_0612/platform.rtf b/general/datasets/INIA_Adrenal_RMA_0612/platform.rtf deleted file mode 100644 index 7057d48..0000000 --- a/general/datasets/INIA_Adrenal_RMA_0612/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The GeneChip® Mouse Gene 1.0 ST Array is the latest product in the family of Affymetrix expression arrays offering whole-transcript coverage. Each of the 28,853 genes is represented on the array by approximately 27 probes spread across the full length of the gene, providing a more complete and more accurate picture of gene expression than 3'-based expression array designs. The small format of the array makes it a cost-effective expression profiling solution for new microarray users. Sense DNA targets are generated from as little as 100ng of total RNA. The Gene 1.0 ST Array is part of a complete solution for gene expression analysis that includes Whole Transcript (WT) Sense Target Labeling and Control Reagents, fluidics and scanning instrumentation and basic analysis software. The array contains the most up-to-date content of well-annotated genes, and data is analyzed using a simple workflow. The Gene 1.0 ST Array uses a subset of probes from the Mouse Exon 1.0 ST Array and covers only well-annotated content. Like the Exon 1.0 ST Array, "gene-level" analysis of multiple probes on different exons is summarized into an expression value representing all transcripts from the same gene.

    diff --git a/general/datasets/INIA_Adrenal_RMA_0612/processing.rtf b/general/datasets/INIA_Adrenal_RMA_0612/processing.rtf deleted file mode 100644 index 55aad2e..0000000 --- a/general/datasets/INIA_Adrenal_RMA_0612/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Conventional Affymetrix gene level probe summarization (RMA) followed by log2 transformation and standard GeneNetwork variance stabilization (2z +8). The z scores are multiplied by 2 and we then add a value of 8 to all values. This eliminates negative values and results in a scale of expression for which 1 unit is roughly equivalent to a two fold absolute difference in mRNA concentration.

    diff --git a/general/datasets/INIA_Adrenal_RMA_0612/summary.rtf b/general/datasets/INIA_Adrenal_RMA_0612/summary.rtf deleted file mode 100644 index 9858a55..0000000 --- a/general/datasets/INIA_Adrenal_RMA_0612/summary.rtf +++ /dev/null @@ -1,17 +0,0 @@ -

    Preliminary data WITH ERRORS of strain assignment as of July 20, 2012.

    - -

    Original Assignment had 253 probe sets with LRS >46.

    - -

    Corrections on Adrenal Data on July 25, 2012:
    -R6963A(BXD31).....it should be BXD34
    -R7018A(BXD85).....it should be BXD95
    -R7152A(C57BL/6J)...it should be B6D2F1
    -R7020A(BXD70).......it should be BXD65

    - -

    229 probe sets with LRS >46 after the corrections above from S. Roy of July 25, July 26 AM.

    - -

    More corrections from S. Roy (5 PM July 26)
    -R6965A(BXD42).........should be BXD2
    -R6973A(BXD12).........should be BXD8
    -R6985A(BXD34).........should be BXD8
    -R7151A(BXD99)..........should be BXD42

    diff --git a/general/datasets/INIA_Adrenal_RMA_0612/tissue.rtf b/general/datasets/INIA_Adrenal_RMA_0612/tissue.rtf deleted file mode 100644 index 54000a9..0000000 --- a/general/datasets/INIA_Adrenal_RMA_0612/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Whole adrenal gland. Dissections by Khyobeni Mozhui, Jesse Ingels, and Adrienne Adler at UTHSC.

    diff --git a/general/datasets/INIA_Adrenal_RMA_Ex_0612/cases.rtf b/general/datasets/INIA_Adrenal_RMA_Ex_0612/cases.rtf deleted file mode 100644 index f0b204b..0000000 --- a/general/datasets/INIA_Adrenal_RMA_Ex_0612/cases.rtf +++ /dev/null @@ -1,771 +0,0 @@ -

    Young adult mice raised in specific pathogen-free vivarium at UTHSC.
    -Table 1. Final strain correction by Khyobeni Mozhui on Mar 28, 2013.

    - - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexSample IDStrainTissueSex
    1R6947ABXD48AdrenalM
    2R6948ABXD90AdrenalM
    3R6949ABXD97AdrenalM
    4R6950ABXD87AdrenalM
    5R6952ABXD83AdrenalF
    6R6953ABXD67AdrenalM
    7R6954ABXD56AdrenalM
    8R6955ABXD48AdrenalF
    9R6956ABXD90AdrenalF
    10R6957ABXD89AdrenalM
    11R6958ABXD65AdrenalM
    12R6959ABXD65AdrenalF
    13R6960ABXD63AdrenalF
    14R6961ABXD63AdrenalM
    15R6963ABXD31AdrenalM
    16R6964ABXD31AdrenalF
    17R6965ABXD1AdrenalF
    18R6966ABXD1AdrenalF
    19R6967ABXD24AdrenalF
    20R6968ABXD34AdrenalM
    21R6969ABXD1AdrenalM
    22R6971ABXD27AdrenalF
    23R6972ABXD29AdrenalM
    24R6973ABXD12AdrenalF
    25R6974ABXD14AdrenalF
    26R6975ABXD99AdrenalF
    27R6976ABXD32AdrenalF
    28R6977ABXD97AdrenalF
    29R6978ABXD84AdrenalM
    30R6979ABXD39AdrenalM
    31R6980ABXD24AdrenalM
    32R6981ABXD50AdrenalF
    33R6982ABXD75AdrenalM
    34R6983ABXD42AdrenalM
    35R6984ABXD39AdrenalF
    36R6985ABXD34AdrenalF
    37R6986ABXD87AdrenalF
    38R6987ABXD50AdrenalM
    39R6989ABXD62AdrenalM
    40R6990ABXD70AdrenalM
    41R6991ABXD64AdrenalF
    42R6992ABXD84AdrenalF
    43R6993ABXD100AdrenalF
    44R6994ABXD62AdrenalF
    45R6996ABXD95AdrenalM
    46R6998ABXD32AdrenalM
    47R6999ABXD101AdrenalF
    48R7000ABXD49AdrenalM
    49R7002ABXD11AdrenalM
    50R7003ABXD100AdrenalM
    51R7004ABXD43AdrenalF
    52R7005ABXD103AdrenalM
    53R7006ABXD73AdrenalF
    54R7008ABXD43AdrenalM
    55R7009ABXD102AdrenalF
    56R7010ABXD69AdrenalF
    57R7011ABXD60AdrenalM
    58R7012ABXD45AdrenalF
    59R7013ABXD79AdrenalM
    60R7014ABXD40AdrenalM
    61R7015ABXD79AdrenalF
    62R7016ABXD40AdrenalF
    63R7017ABXD68AdrenalF
    64R7018ABXD85AdrenalF
    65R7019ABXD44AdrenalF
    66R7020ABXD70AdrenalF
    67R7021ABXD68AdrenalM
    68R7023ABXD44AdrenalM
    69R7024ABXD95AdrenalF
    70R7025ABXD56AdrenalF
    71R7032ABXD103AdrenalF
    72R7034ABXD24AdrenalF
    73R7035ABXD101AdrenalM
    74R7036ABXD29AdrenalF
    75R7037ABXD60AdrenalF
    76R7038ABXD69AdrenalM
    77R7039ABXD73AdrenalM
    78R7040ABXD80AdrenalM
    79R7041ABXD11AdrenalF
    80R7042ABXD74AdrenalF
    81R7043ABXD67AdrenalF
    82R7044ABXD67AdrenalM
    83R7046AC57BL/6JAdrenalF
    84R7047AD2B6F1AdrenalF
    85R7048AB6D2F1AdrenalM
    86R7051ABXD80AdrenalF
    87R7053ABXD102AdrenalM
    88R7054ABXD49AdrenalF
    89R7055ABXD77AdrenalF
    90R7056ABXD77AdrenalM
    91R7057ABXD66AdrenalM
    92R7058ABXD66AdrenalF
    93R7059ABXD45AdrenalF
    94R7145ABXD67AdrenalM
    95R7147ABXD85AdrenalM
    96R7148ADBA/2JAdrenalF
    97R7149AD2B6F1AdrenalM
    98R7150AD2B6F1AdrenalF
    99R7151ABXD27AdrenalM
    100R7152AB6D2F1AdrenalM
    101R7153ADBA/2JAdrenalM
    102R7159AC57BL/6JAdrenalF
    103R7161AC57BL/6JAdrenalM
    104R7164AB6D2F1AdrenalF
    105R7166AB6D2F1AdrenalM
    106R7167ADBA/2JAdrenalF
    107R7168ADBA/2JAdrenalM
    -
    diff --git a/general/datasets/INIA_Adrenal_RMA_Ex_0612/experiment-design.rtf b/general/datasets/INIA_Adrenal_RMA_Ex_0612/experiment-design.rtf deleted file mode 100644 index b069873..0000000 --- a/general/datasets/INIA_Adrenal_RMA_Ex_0612/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Normative expression in the adrenals (whole organ) of young adult mice. In general, a sex-balanced samples (one array from male cases, one array from female cases) for BXD and parental strains.

    - -

    Part of a systematic genetic analysis of the hypothalamus-pituitary-adrenal axis in the BXD family of strains.

    diff --git a/general/datasets/INIA_Adrenal_RMA_Ex_0612/platform.rtf b/general/datasets/INIA_Adrenal_RMA_Ex_0612/platform.rtf deleted file mode 100644 index 7057d48..0000000 --- a/general/datasets/INIA_Adrenal_RMA_Ex_0612/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The GeneChip® Mouse Gene 1.0 ST Array is the latest product in the family of Affymetrix expression arrays offering whole-transcript coverage. Each of the 28,853 genes is represented on the array by approximately 27 probes spread across the full length of the gene, providing a more complete and more accurate picture of gene expression than 3'-based expression array designs. The small format of the array makes it a cost-effective expression profiling solution for new microarray users. Sense DNA targets are generated from as little as 100ng of total RNA. The Gene 1.0 ST Array is part of a complete solution for gene expression analysis that includes Whole Transcript (WT) Sense Target Labeling and Control Reagents, fluidics and scanning instrumentation and basic analysis software. The array contains the most up-to-date content of well-annotated genes, and data is analyzed using a simple workflow. The Gene 1.0 ST Array uses a subset of probes from the Mouse Exon 1.0 ST Array and covers only well-annotated content. Like the Exon 1.0 ST Array, "gene-level" analysis of multiple probes on different exons is summarized into an expression value representing all transcripts from the same gene.

    diff --git a/general/datasets/INIA_Adrenal_RMA_Ex_0612/processing.rtf b/general/datasets/INIA_Adrenal_RMA_Ex_0612/processing.rtf deleted file mode 100644 index 55aad2e..0000000 --- a/general/datasets/INIA_Adrenal_RMA_Ex_0612/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Conventional Affymetrix gene level probe summarization (RMA) followed by log2 transformation and standard GeneNetwork variance stabilization (2z +8). The z scores are multiplied by 2 and we then add a value of 8 to all values. This eliminates negative values and results in a scale of expression for which 1 unit is roughly equivalent to a two fold absolute difference in mRNA concentration.

    diff --git a/general/datasets/INIA_Adrenal_RMA_Ex_0612/summary.rtf b/general/datasets/INIA_Adrenal_RMA_Ex_0612/summary.rtf deleted file mode 100644 index 9858a55..0000000 --- a/general/datasets/INIA_Adrenal_RMA_Ex_0612/summary.rtf +++ /dev/null @@ -1,17 +0,0 @@ -

    Preliminary data WITH ERRORS of strain assignment as of July 20, 2012.

    - -

    Original Assignment had 253 probe sets with LRS >46.

    - -

    Corrections on Adrenal Data on July 25, 2012:
    -R6963A(BXD31).....it should be BXD34
    -R7018A(BXD85).....it should be BXD95
    -R7152A(C57BL/6J)...it should be B6D2F1
    -R7020A(BXD70).......it should be BXD65

    - -

    229 probe sets with LRS >46 after the corrections above from S. Roy of July 25, July 26 AM.

    - -

    More corrections from S. Roy (5 PM July 26)
    -R6965A(BXD42).........should be BXD2
    -R6973A(BXD12).........should be BXD8
    -R6985A(BXD34).........should be BXD8
    -R7151A(BXD99)..........should be BXD42

    diff --git a/general/datasets/INIA_Adrenal_RMA_Ex_0612/tissue.rtf b/general/datasets/INIA_Adrenal_RMA_Ex_0612/tissue.rtf deleted file mode 100644 index 54000a9..0000000 --- a/general/datasets/INIA_Adrenal_RMA_Ex_0612/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Whole adrenal gland. Dissections by Khyobeni Mozhui, Jesse Ingels, and Adrienne Adler at UTHSC.

    diff --git a/general/datasets/INIA_Adrenal_RMA_F_0612/cases.rtf b/general/datasets/INIA_Adrenal_RMA_F_0612/cases.rtf deleted file mode 100644 index f0b204b..0000000 --- a/general/datasets/INIA_Adrenal_RMA_F_0612/cases.rtf +++ /dev/null @@ -1,771 +0,0 @@ -

    Young adult mice raised in specific pathogen-free vivarium at UTHSC.
    -Table 1. Final strain correction by Khyobeni Mozhui on Mar 28, 2013.

    - - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexSample IDStrainTissueSex
    1R6947ABXD48AdrenalM
    2R6948ABXD90AdrenalM
    3R6949ABXD97AdrenalM
    4R6950ABXD87AdrenalM
    5R6952ABXD83AdrenalF
    6R6953ABXD67AdrenalM
    7R6954ABXD56AdrenalM
    8R6955ABXD48AdrenalF
    9R6956ABXD90AdrenalF
    10R6957ABXD89AdrenalM
    11R6958ABXD65AdrenalM
    12R6959ABXD65AdrenalF
    13R6960ABXD63AdrenalF
    14R6961ABXD63AdrenalM
    15R6963ABXD31AdrenalM
    16R6964ABXD31AdrenalF
    17R6965ABXD1AdrenalF
    18R6966ABXD1AdrenalF
    19R6967ABXD24AdrenalF
    20R6968ABXD34AdrenalM
    21R6969ABXD1AdrenalM
    22R6971ABXD27AdrenalF
    23R6972ABXD29AdrenalM
    24R6973ABXD12AdrenalF
    25R6974ABXD14AdrenalF
    26R6975ABXD99AdrenalF
    27R6976ABXD32AdrenalF
    28R6977ABXD97AdrenalF
    29R6978ABXD84AdrenalM
    30R6979ABXD39AdrenalM
    31R6980ABXD24AdrenalM
    32R6981ABXD50AdrenalF
    33R6982ABXD75AdrenalM
    34R6983ABXD42AdrenalM
    35R6984ABXD39AdrenalF
    36R6985ABXD34AdrenalF
    37R6986ABXD87AdrenalF
    38R6987ABXD50AdrenalM
    39R6989ABXD62AdrenalM
    40R6990ABXD70AdrenalM
    41R6991ABXD64AdrenalF
    42R6992ABXD84AdrenalF
    43R6993ABXD100AdrenalF
    44R6994ABXD62AdrenalF
    45R6996ABXD95AdrenalM
    46R6998ABXD32AdrenalM
    47R6999ABXD101AdrenalF
    48R7000ABXD49AdrenalM
    49R7002ABXD11AdrenalM
    50R7003ABXD100AdrenalM
    51R7004ABXD43AdrenalF
    52R7005ABXD103AdrenalM
    53R7006ABXD73AdrenalF
    54R7008ABXD43AdrenalM
    55R7009ABXD102AdrenalF
    56R7010ABXD69AdrenalF
    57R7011ABXD60AdrenalM
    58R7012ABXD45AdrenalF
    59R7013ABXD79AdrenalM
    60R7014ABXD40AdrenalM
    61R7015ABXD79AdrenalF
    62R7016ABXD40AdrenalF
    63R7017ABXD68AdrenalF
    64R7018ABXD85AdrenalF
    65R7019ABXD44AdrenalF
    66R7020ABXD70AdrenalF
    67R7021ABXD68AdrenalM
    68R7023ABXD44AdrenalM
    69R7024ABXD95AdrenalF
    70R7025ABXD56AdrenalF
    71R7032ABXD103AdrenalF
    72R7034ABXD24AdrenalF
    73R7035ABXD101AdrenalM
    74R7036ABXD29AdrenalF
    75R7037ABXD60AdrenalF
    76R7038ABXD69AdrenalM
    77R7039ABXD73AdrenalM
    78R7040ABXD80AdrenalM
    79R7041ABXD11AdrenalF
    80R7042ABXD74AdrenalF
    81R7043ABXD67AdrenalF
    82R7044ABXD67AdrenalM
    83R7046AC57BL/6JAdrenalF
    84R7047AD2B6F1AdrenalF
    85R7048AB6D2F1AdrenalM
    86R7051ABXD80AdrenalF
    87R7053ABXD102AdrenalM
    88R7054ABXD49AdrenalF
    89R7055ABXD77AdrenalF
    90R7056ABXD77AdrenalM
    91R7057ABXD66AdrenalM
    92R7058ABXD66AdrenalF
    93R7059ABXD45AdrenalF
    94R7145ABXD67AdrenalM
    95R7147ABXD85AdrenalM
    96R7148ADBA/2JAdrenalF
    97R7149AD2B6F1AdrenalM
    98R7150AD2B6F1AdrenalF
    99R7151ABXD27AdrenalM
    100R7152AB6D2F1AdrenalM
    101R7153ADBA/2JAdrenalM
    102R7159AC57BL/6JAdrenalF
    103R7161AC57BL/6JAdrenalM
    104R7164AB6D2F1AdrenalF
    105R7166AB6D2F1AdrenalM
    106R7167ADBA/2JAdrenalF
    107R7168ADBA/2JAdrenalM
    -
    diff --git a/general/datasets/INIA_Adrenal_RMA_F_0612/experiment-design.rtf b/general/datasets/INIA_Adrenal_RMA_F_0612/experiment-design.rtf deleted file mode 100644 index b069873..0000000 --- a/general/datasets/INIA_Adrenal_RMA_F_0612/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Normative expression in the adrenals (whole organ) of young adult mice. In general, a sex-balanced samples (one array from male cases, one array from female cases) for BXD and parental strains.

    - -

    Part of a systematic genetic analysis of the hypothalamus-pituitary-adrenal axis in the BXD family of strains.

    diff --git a/general/datasets/INIA_Adrenal_RMA_F_0612/platform.rtf b/general/datasets/INIA_Adrenal_RMA_F_0612/platform.rtf deleted file mode 100644 index 7057d48..0000000 --- a/general/datasets/INIA_Adrenal_RMA_F_0612/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The GeneChip® Mouse Gene 1.0 ST Array is the latest product in the family of Affymetrix expression arrays offering whole-transcript coverage. Each of the 28,853 genes is represented on the array by approximately 27 probes spread across the full length of the gene, providing a more complete and more accurate picture of gene expression than 3'-based expression array designs. The small format of the array makes it a cost-effective expression profiling solution for new microarray users. Sense DNA targets are generated from as little as 100ng of total RNA. The Gene 1.0 ST Array is part of a complete solution for gene expression analysis that includes Whole Transcript (WT) Sense Target Labeling and Control Reagents, fluidics and scanning instrumentation and basic analysis software. The array contains the most up-to-date content of well-annotated genes, and data is analyzed using a simple workflow. The Gene 1.0 ST Array uses a subset of probes from the Mouse Exon 1.0 ST Array and covers only well-annotated content. Like the Exon 1.0 ST Array, "gene-level" analysis of multiple probes on different exons is summarized into an expression value representing all transcripts from the same gene.

    diff --git a/general/datasets/INIA_Adrenal_RMA_F_0612/processing.rtf b/general/datasets/INIA_Adrenal_RMA_F_0612/processing.rtf deleted file mode 100644 index 55aad2e..0000000 --- a/general/datasets/INIA_Adrenal_RMA_F_0612/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Conventional Affymetrix gene level probe summarization (RMA) followed by log2 transformation and standard GeneNetwork variance stabilization (2z +8). The z scores are multiplied by 2 and we then add a value of 8 to all values. This eliminates negative values and results in a scale of expression for which 1 unit is roughly equivalent to a two fold absolute difference in mRNA concentration.

    diff --git a/general/datasets/INIA_Adrenal_RMA_F_0612/summary.rtf b/general/datasets/INIA_Adrenal_RMA_F_0612/summary.rtf deleted file mode 100644 index 9858a55..0000000 --- a/general/datasets/INIA_Adrenal_RMA_F_0612/summary.rtf +++ /dev/null @@ -1,17 +0,0 @@ -

    Preliminary data WITH ERRORS of strain assignment as of July 20, 2012.

    - -

    Original Assignment had 253 probe sets with LRS >46.

    - -

    Corrections on Adrenal Data on July 25, 2012:
    -R6963A(BXD31).....it should be BXD34
    -R7018A(BXD85).....it should be BXD95
    -R7152A(C57BL/6J)...it should be B6D2F1
    -R7020A(BXD70).......it should be BXD65

    - -

    229 probe sets with LRS >46 after the corrections above from S. Roy of July 25, July 26 AM.

    - -

    More corrections from S. Roy (5 PM July 26)
    -R6965A(BXD42).........should be BXD2
    -R6973A(BXD12).........should be BXD8
    -R6985A(BXD34).........should be BXD8
    -R7151A(BXD99)..........should be BXD42

    diff --git a/general/datasets/INIA_Adrenal_RMA_F_0612/tissue.rtf b/general/datasets/INIA_Adrenal_RMA_F_0612/tissue.rtf deleted file mode 100644 index 54000a9..0000000 --- a/general/datasets/INIA_Adrenal_RMA_F_0612/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Whole adrenal gland. Dissections by Khyobeni Mozhui, Jesse Ingels, and Adrienne Adler at UTHSC.

    diff --git a/general/datasets/INIA_Adrenal_RMA_M_0612/cases.rtf b/general/datasets/INIA_Adrenal_RMA_M_0612/cases.rtf deleted file mode 100644 index f0b204b..0000000 --- a/general/datasets/INIA_Adrenal_RMA_M_0612/cases.rtf +++ /dev/null @@ -1,771 +0,0 @@ -

    Young adult mice raised in specific pathogen-free vivarium at UTHSC.
    -Table 1. Final strain correction by Khyobeni Mozhui on Mar 28, 2013.

    - - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexSample IDStrainTissueSex
    1R6947ABXD48AdrenalM
    2R6948ABXD90AdrenalM
    3R6949ABXD97AdrenalM
    4R6950ABXD87AdrenalM
    5R6952ABXD83AdrenalF
    6R6953ABXD67AdrenalM
    7R6954ABXD56AdrenalM
    8R6955ABXD48AdrenalF
    9R6956ABXD90AdrenalF
    10R6957ABXD89AdrenalM
    11R6958ABXD65AdrenalM
    12R6959ABXD65AdrenalF
    13R6960ABXD63AdrenalF
    14R6961ABXD63AdrenalM
    15R6963ABXD31AdrenalM
    16R6964ABXD31AdrenalF
    17R6965ABXD1AdrenalF
    18R6966ABXD1AdrenalF
    19R6967ABXD24AdrenalF
    20R6968ABXD34AdrenalM
    21R6969ABXD1AdrenalM
    22R6971ABXD27AdrenalF
    23R6972ABXD29AdrenalM
    24R6973ABXD12AdrenalF
    25R6974ABXD14AdrenalF
    26R6975ABXD99AdrenalF
    27R6976ABXD32AdrenalF
    28R6977ABXD97AdrenalF
    29R6978ABXD84AdrenalM
    30R6979ABXD39AdrenalM
    31R6980ABXD24AdrenalM
    32R6981ABXD50AdrenalF
    33R6982ABXD75AdrenalM
    34R6983ABXD42AdrenalM
    35R6984ABXD39AdrenalF
    36R6985ABXD34AdrenalF
    37R6986ABXD87AdrenalF
    38R6987ABXD50AdrenalM
    39R6989ABXD62AdrenalM
    40R6990ABXD70AdrenalM
    41R6991ABXD64AdrenalF
    42R6992ABXD84AdrenalF
    43R6993ABXD100AdrenalF
    44R6994ABXD62AdrenalF
    45R6996ABXD95AdrenalM
    46R6998ABXD32AdrenalM
    47R6999ABXD101AdrenalF
    48R7000ABXD49AdrenalM
    49R7002ABXD11AdrenalM
    50R7003ABXD100AdrenalM
    51R7004ABXD43AdrenalF
    52R7005ABXD103AdrenalM
    53R7006ABXD73AdrenalF
    54R7008ABXD43AdrenalM
    55R7009ABXD102AdrenalF
    56R7010ABXD69AdrenalF
    57R7011ABXD60AdrenalM
    58R7012ABXD45AdrenalF
    59R7013ABXD79AdrenalM
    60R7014ABXD40AdrenalM
    61R7015ABXD79AdrenalF
    62R7016ABXD40AdrenalF
    63R7017ABXD68AdrenalF
    64R7018ABXD85AdrenalF
    65R7019ABXD44AdrenalF
    66R7020ABXD70AdrenalF
    67R7021ABXD68AdrenalM
    68R7023ABXD44AdrenalM
    69R7024ABXD95AdrenalF
    70R7025ABXD56AdrenalF
    71R7032ABXD103AdrenalF
    72R7034ABXD24AdrenalF
    73R7035ABXD101AdrenalM
    74R7036ABXD29AdrenalF
    75R7037ABXD60AdrenalF
    76R7038ABXD69AdrenalM
    77R7039ABXD73AdrenalM
    78R7040ABXD80AdrenalM
    79R7041ABXD11AdrenalF
    80R7042ABXD74AdrenalF
    81R7043ABXD67AdrenalF
    82R7044ABXD67AdrenalM
    83R7046AC57BL/6JAdrenalF
    84R7047AD2B6F1AdrenalF
    85R7048AB6D2F1AdrenalM
    86R7051ABXD80AdrenalF
    87R7053ABXD102AdrenalM
    88R7054ABXD49AdrenalF
    89R7055ABXD77AdrenalF
    90R7056ABXD77AdrenalM
    91R7057ABXD66AdrenalM
    92R7058ABXD66AdrenalF
    93R7059ABXD45AdrenalF
    94R7145ABXD67AdrenalM
    95R7147ABXD85AdrenalM
    96R7148ADBA/2JAdrenalF
    97R7149AD2B6F1AdrenalM
    98R7150AD2B6F1AdrenalF
    99R7151ABXD27AdrenalM
    100R7152AB6D2F1AdrenalM
    101R7153ADBA/2JAdrenalM
    102R7159AC57BL/6JAdrenalF
    103R7161AC57BL/6JAdrenalM
    104R7164AB6D2F1AdrenalF
    105R7166AB6D2F1AdrenalM
    106R7167ADBA/2JAdrenalF
    107R7168ADBA/2JAdrenalM
    -
    diff --git a/general/datasets/INIA_Adrenal_RMA_M_0612/experiment-design.rtf b/general/datasets/INIA_Adrenal_RMA_M_0612/experiment-design.rtf deleted file mode 100644 index b069873..0000000 --- a/general/datasets/INIA_Adrenal_RMA_M_0612/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Normative expression in the adrenals (whole organ) of young adult mice. In general, a sex-balanced samples (one array from male cases, one array from female cases) for BXD and parental strains.

    - -

    Part of a systematic genetic analysis of the hypothalamus-pituitary-adrenal axis in the BXD family of strains.

    diff --git a/general/datasets/INIA_Adrenal_RMA_M_0612/platform.rtf b/general/datasets/INIA_Adrenal_RMA_M_0612/platform.rtf deleted file mode 100644 index 7057d48..0000000 --- a/general/datasets/INIA_Adrenal_RMA_M_0612/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The GeneChip® Mouse Gene 1.0 ST Array is the latest product in the family of Affymetrix expression arrays offering whole-transcript coverage. Each of the 28,853 genes is represented on the array by approximately 27 probes spread across the full length of the gene, providing a more complete and more accurate picture of gene expression than 3'-based expression array designs. The small format of the array makes it a cost-effective expression profiling solution for new microarray users. Sense DNA targets are generated from as little as 100ng of total RNA. The Gene 1.0 ST Array is part of a complete solution for gene expression analysis that includes Whole Transcript (WT) Sense Target Labeling and Control Reagents, fluidics and scanning instrumentation and basic analysis software. The array contains the most up-to-date content of well-annotated genes, and data is analyzed using a simple workflow. The Gene 1.0 ST Array uses a subset of probes from the Mouse Exon 1.0 ST Array and covers only well-annotated content. Like the Exon 1.0 ST Array, "gene-level" analysis of multiple probes on different exons is summarized into an expression value representing all transcripts from the same gene.

    diff --git a/general/datasets/INIA_Adrenal_RMA_M_0612/processing.rtf b/general/datasets/INIA_Adrenal_RMA_M_0612/processing.rtf deleted file mode 100644 index 55aad2e..0000000 --- a/general/datasets/INIA_Adrenal_RMA_M_0612/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Conventional Affymetrix gene level probe summarization (RMA) followed by log2 transformation and standard GeneNetwork variance stabilization (2z +8). The z scores are multiplied by 2 and we then add a value of 8 to all values. This eliminates negative values and results in a scale of expression for which 1 unit is roughly equivalent to a two fold absolute difference in mRNA concentration.

    diff --git a/general/datasets/INIA_Adrenal_RMA_M_0612/summary.rtf b/general/datasets/INIA_Adrenal_RMA_M_0612/summary.rtf deleted file mode 100644 index 9858a55..0000000 --- a/general/datasets/INIA_Adrenal_RMA_M_0612/summary.rtf +++ /dev/null @@ -1,17 +0,0 @@ -

    Preliminary data WITH ERRORS of strain assignment as of July 20, 2012.

    - -

    Original Assignment had 253 probe sets with LRS >46.

    - -

    Corrections on Adrenal Data on July 25, 2012:
    -R6963A(BXD31).....it should be BXD34
    -R7018A(BXD85).....it should be BXD95
    -R7152A(C57BL/6J)...it should be B6D2F1
    -R7020A(BXD70).......it should be BXD65

    - -

    229 probe sets with LRS >46 after the corrections above from S. Roy of July 25, July 26 AM.

    - -

    More corrections from S. Roy (5 PM July 26)
    -R6965A(BXD42).........should be BXD2
    -R6973A(BXD12).........should be BXD8
    -R6985A(BXD34).........should be BXD8
    -R7151A(BXD99)..........should be BXD42

    diff --git a/general/datasets/INIA_Adrenal_RMA_M_0612/tissue.rtf b/general/datasets/INIA_Adrenal_RMA_M_0612/tissue.rtf deleted file mode 100644 index 54000a9..0000000 --- a/general/datasets/INIA_Adrenal_RMA_M_0612/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Whole adrenal gland. Dissections by Khyobeni Mozhui, Jesse Ingels, and Adrienne Adler at UTHSC.

    diff --git a/general/datasets/INIA_Amg_BLA_Ex-RMA_1110/cases.rtf b/general/datasets/INIA_Amg_BLA_Ex-RMA_1110/cases.rtf new file mode 100644 index 0000000..b02b19a --- /dev/null +++ b/general/datasets/INIA_Amg_BLA_Ex-RMA_1110/cases.rtf @@ -0,0 +1,3 @@ +

    Cases. A total of 58 strains, including 54 BXD strains, both parental strains (C57BL/6J and DBA/2J) and both reciprocal F1 hybrids (B6D2F1 and D2B6F1) were analyzed. In most cases, two arrays were processed per strain--one for males and one for females. All tissue and RNA was extracted by K. Mozhui. Samples were pooled by sex and usually include at least two cases per sex and strain.

    + +

    Sex Balance. Fifty strains have matched male and female samples. Five strains have male only samples (BXD5, 13, 16, 100 and 103). Three strains have only female samples (BXD44, 70, and 87.) Please review the expression data for Xist probe set 10606178. This non-coding RNA is expressed highly only in females and can be used to check the sex of a sample or pool of tissue. Ddx3y probe set 10608138 can also be used. This is a Y chromosome gene that is expressed abundantly in male samples and at background levels in female samples.

    diff --git a/general/datasets/INIA_Amg_BLA_Ex-RMA_1110/experiment-design.rtf b/general/datasets/INIA_Amg_BLA_Ex-RMA_1110/experiment-design.rtf new file mode 100644 index 0000000..126d431 --- /dev/null +++ b/general/datasets/INIA_Amg_BLA_Ex-RMA_1110/experiment-design.rtf @@ -0,0 +1,1152 @@ +

    Data Evaluation Summary

    + +
      +
    1. eQLTs with LOD >10 (LRS>46.1): n = 525
    2. +
    3. eQTL with high LOD and LRS: Trait ID 10513604 (Hdhd3) LOD = 39.8, LRS = 183.5
    4. +
    5. Lowest mean value: Trait ID 10344361, mean = 3.998
    6. +
    7. Highest mean value: Trait ID 10598025, mean = 14.475 (MT-ND1)
    8. +
    9. Greatest sex difference: Trait ID: 10606178 (Xist)
    10. +
    11. Great variation within and among strains: Trait ID 10454192 (Ttr +
      +
      + + + + + + +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
      1R6853BLBLAC57BL/6J77F8/18/108:45AM to 12:30 PM
      2R6861BLBLAC57BL/6J77M8/18/108:45AM to 12:30 PM
      3R6851BLBLAD2B6F177F8/18/108:45AM to 12:30 PM
      4R6859BLBLAD2B6F177M8/18/108:45AM to 12:30 PM
      5R6863BLBLADBA/2J77F8/18/108:45AM to 12:30 PM
      6R6865BLBLADBA/2J68M8/18/108:45AM to 12:30 PM
      7R6857BLBLAB6D2F169F8/18/108:45AM to 12:30 PM
      8R6855BLBLAB6D2F169M8/18/108:45AM to 12:30 PM
      9R6799BLBLABXD171F8/17/101:15 PM to 5 PM
      10R6795BLBLABXD185M8/17/101:15 PM to 5 PM
      11R6787BLBLABXD1187F8/17/101:15 PM to 5 PM
      12R6785BLBLABXD1176M8/17/101:15 PM to 5 PM
      13R6819BLBLABXD1278F8/18/108:45AM to 12:30 PM
      14R6789BLBLABXD1273M8/17/101:15 PM to 5 PM
      15R6805BLBLABXD1277M8/17/101:15 PM to 5 PM
      16R6291BLBLABXD13N/AM6/11/09N/A
      17R6811BLBLABXD1481F8/18/108:45AM to 12:30 PM
      18R6825BLBLABXD1481M8/18/108:45AM to 12:30 PM
      19R6657BLBLABXD16N/AM1/8/08N/A
      20R6054BLBLABXD19N/AF2/26/08N/A
      21R6052BLBLABXD19N/AM2/26/08N/A
      22R6803BLBLABXD2485F8/17/101:15 PM to 5 PM
      23R6817BLBLABXD2486M8/18/108:45AM to 12:30 PM
      24R6063BLBLABXD25N/AF3/12/08N/A
      25R6062BLBLABXD25N/AM3/12/08N/A
      26R6659BLBLABXD27N/AF1/8/08N/A
      27R6791BLBLABXD2775F8/17/101:15 PM to 5 PM
      28R6797BLBLABXD2971F8/17/101:15 PM to 5 PM
      29R6793BLBLABXD2971M8/17/101:15 PM to 5 PM
      30R6815BLBLABXD3174F8/18/108:45AM to 12:30 PM
      31R6801BLBLABXD3173M8/17/101:15 PM to 5 PM
      32R6915BLBLABXD3281F8/18/101 PM to 6:45 PM
      33R6845BLBLABXD3281M8/18/108:45AM to 12:30 PM
      34R6821BLBLABXD3477F8/18/108:45AM to 12:30 PM
      35R6807BLBLABXD3477M8/18/108:45AM to 12:30 PM
      36R6057BLBLABXD38N/AF2/26/08N/A
      37R6056BLBLABXD38N/AM2/26/08N/A
      38R6827BLBLABXD3979F8/18/108:45AM to 12:30 PM
      39R6813BLBLABXD3979M8/18/108:45AM to 12:30 PM
      40R6847BLBLABXD4085F8/18/108:45AM to 12:30 PM
      41R6849BLBLABXD4085M8/18/108:45AM to 12:30 PM
      42R6809BLBLABXD4287F8/18/108:45AM to 12:30 PM
      43R6823BLBLABXD4287M8/18/108:45AM to 12:30 PM
      44R6759BLBLABXD4381F8/17/109:30 AM to 12:30AM
      45R6757BLBLABXD4381M8/17/109:30 AM to 12:30AM
      46R6745BLBLABXD4483F8/17/109:30 AM to 12:30AM
      47R6763BLBLABXD4577F8/17/109:30 AM to 12:30AM
      48R6761BLBLABXD4577M8/17/109:30 AM to 12:30AM
      49R6879BLBLABXD4876F8/18/101 PM to 6:45 PM
      50R6881BLBLABXD4876M8/18/101 PM to 6:45 PM
      51R6751BLBLABXD4984F8/17/109:30 AM to 12:30AM
      52R6747BLBLABXD4984M8/17/109:30 AM to 12:30AM
      53R6104BLBLABXD5N/Af10/23/09N/A
      54R6103BLBLABXD5N/AM10/23/09N/A
      55R6889BLBLABXD5077F8/18/101 PM to 6:45 PM
      56R6891BLBLABXD5077M8/18/101 PM to 6:45 PM
      57R6074BLBLABXD51N/AF3/12/08N/A
      58R6699BLBLABXD51N/AM4/30/09N/A
      59R6917BLBLABXD5684F8/18/101 PM to 6:45 PM
      60R6893BLBLABXD5677M8/18/101 PM to 6:45 PM
      61R6769BLBLABXD6070F8/17/109:30 AM to 12:30AM
      62R6771BLBLABXD6070M8/17/101:15 PM to 5 PM
      63R6655BLBLABXD61N/AF1/29/08N/A
      64R6653BLBLABXD61N/AM1/29/08N/A
      65R6835BLBLABXD6283F8/18/108:45AM to 12:30 PM
      66R6843BLBLABXD6283M8/18/108:45AM to 12:30 PM
      67R6887BLBLABXD6377F8/18/101 PM to 6:45 PM
      68R6885BLBLABXD6377M8/18/101 PM to 6:45 PM
      69R6877BLBLABXD6584F8/18/101 PM to 6:45 PM
      70R6873BLBLABXD6584M8/18/101 PM to 6:45 PM
      71R6929BLBLABXD6876F8/18/101 PM to 6:45 PM
      72R6931BLBLABXD6876M8/18/101 PM to 6:45 PM
      73R6775BLBLABXD6969F8/17/101:15 PM to 5 PM
      74R6773BLBLABXD6980M8/17/101:15 PM to 5 PM
      75R6925BLBLABXD7076F8/18/101 PM to 6:45 PM
      76R6921BLBLABXD7076M8/17/061 PM to 6:45 PM
      77R6869BLBLABXD7176F8/18/101 PM to 6:45 PM
      78R6871BLBLABXD7176M8/18/101 PM to 6:45 PM
      79R6777BLBLABXD7383F8/17/101:15 PM to 5 PM
      80R6779BLBLABXD7383M8/17/101:15 PM to 5 PM
      81R6837BLBLABXD7576F8/18/108:45AM to 12:30 PM
      82R6829BLBLABXD7576M8/18/108:45AM to 12:30 PM
      83R6933BLBLABXD7987F8/18/101 PM to 6:45 PM
      84R6935BLBLABXD7987M8/18/101 PM to 6:45 PM
      85R6781BLBLABXD8073F8/17/101:15 PM to 5 PM
      86R6783BLBLABXD8073M8/17/101:15 PM to 5 PM
      87R6913BLBLABXD8381F8/18/101 PM to 6:45 PM
      88R6911BLBLABXD8381M8/18/101 PM to 6:45 PM
      89R6841BLBLABXD8476F8/18/108:45AM to 12:30 PM
      90R6833BLBLABXD8476M8/18/108:45AM to 12:30 PM
      91R6937BLBLABXD8574F8/18/101 PM to 6:45 PM
      92R6939BLBLABXD8574M8/18/101 PM to 6:45 PM
      93R6909BLBLABXD8783F8/18/101 PM to 6:45 PM
      94R6895BLBLABXD8982F8/18/101 PM to 6:45 PM
      95R6897BLBLABXD8982M8/18/101 PM to 6:45 PM
      96R6903BLBLABXD9082F8/18/101 PM to 6:45 PM
      97R6905BLBLABXD9082M8/18/101 PM to 6:45 PM
      98R6923BLBLABXD9286F8/18/101 PM to 6:45 PM
      99R6927BLBLABXD9289M8/18/101 PM to 6:45 PM
      100R6919BLBLABXD9576F8/18/101 PM to 6:45 PM
      101R6867BLBLABXD9576M8/18/108:45AM to 12:30 PM
      102R6899BLBLABXD9771F8/18/101 PM to 6:45 PM
      103R6901BLBLABXD9771M8/18/101 PM to 6:45 PM
      104R6875BLBLABXD9977F8/18/101 PM to 6:45 PM
      105R6883BLBLABXD9977M8/18/101 PM to 6:45 PM
      106R6831BLBLABXD10083M8/18/108:45AM to 12:30 PM
      107R6943BLBLABXD10189F8/18/101 PM to 6:45 PM
      108R6941BLBLABXD10189M8/18/101 PM to 6:45 PM
      109R6753BLBLABXD10288F8/17/109:30 AM to 12:30AM
      110R6755BLBLABXD10288M8/17/109:30 AM to 12:30AM
      111R6765BLBLABXD10378M8/17/109:30 AM to 12:30AM
      +
      + +

       

      +
      +
      + +
        +
      +
    12. +
    diff --git a/general/datasets/INIA_Amg_BLA_Ex-RMA_1110/platform.rtf b/general/datasets/INIA_Amg_BLA_Ex-RMA_1110/platform.rtf new file mode 100644 index 0000000..aba2206 --- /dev/null +++ b/general/datasets/INIA_Amg_BLA_Ex-RMA_1110/platform.rtf @@ -0,0 +1 @@ +

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version] (GPL6246)

    diff --git a/general/datasets/INIA_Amg_BLA_Ex-RMA_1110/processing.rtf b/general/datasets/INIA_Amg_BLA_Ex-RMA_1110/processing.rtf new file mode 100644 index 0000000..a2a6c30 --- /dev/null +++ b/general/datasets/INIA_Amg_BLA_Ex-RMA_1110/processing.rtf @@ -0,0 +1,16 @@ +

    Data Processing. Array data sets were generated by the vendors GCOS system. Expression values were logged and then were further normalized and rescaled so that the mean value for each array data set is 8 units with a standard deviation of 2 units. Data were processed by Arthur Centeno.

    + +

    Batch Effects. This data set required no initial correction for batch effects and the data in this initial release do not incorporate any additional corrections. However, there are several confounder-like factors that should be considered:

    + +
      +
    1. Sex imbalance in the sample: use probe sets for Xist as correction in partial correlation
    2. +
    3. Dissection variation: examine and use probe sets for Ttr as a correction for the inclusion of choroid plexus and non-parenchmymal tissue in samples. Transthyretin is only expressed in the choroid plexus (PMID 16698124
    4. +
    5. Background noise factors: examine and use probe sets with very low expression using the search "mean=(3.900 4.135)". This will extract the 54 probe sets with the lowest expression. (Note that the number 54 is less than the total number of cases (58) in this data set; important in computing principal components.) Add these probe sets to your collection window and then compute the correlation matrix. Use the first few principal components as surrogates for nuisance factors in partial correlation analysis. The first principal component of the lowest 54 probe sets in this amygdala data set accounts of 42% of the the variance. Mapping of this noise trait can be used to evaluate the effects of shared noise on QTL results. The first principal component in the amygdala data set can be map as a trait. It is not associated with any QLTs that are even suggestive, and the highest LRS is about 10 on chromosomes 18 and 19. The second principal component trait, which accounts for only 5% of the "noise" variance, has a suggestive QTL (LRS of 12, high B allele) on chromosome 4 at about 90 Mb. We therefore do not think that there is significant risk of major false trans eQTL bands in this data set.
    6. +
    + +

    Data Release. This data set was first uploaded into GeneNetwork November 25, 2010 and made accessible without a password to all users on December 1, 2010. The data set was orginally entered with two strain identification errors that were fixed Dec 10, 2010 by KM Mozhui and A Centeno (array R6659BL was originally listed as BXD16 but is BXD27; R6789BL was original listed as BXD27 is BXD12). The current data release has no known errors of sex or strain assignment.

    + +

    Data Status and Use. The data set is open for exploration and use for focused analysis of single genes. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data regarding the best citation.
    +This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please see the GeneNetwork data sharing policy for more background on data use.

    + +

    Contact. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data.

    diff --git a/general/datasets/INIA_Amg_BLA_Ex-RMA_1110/specifics.rtf b/general/datasets/INIA_Amg_BLA_Ex-RMA_1110/specifics.rtf new file mode 100644 index 0000000..2400c03 --- /dev/null +++ b/general/datasets/INIA_Amg_BLA_Ex-RMA_1110/specifics.rtf @@ -0,0 +1 @@ +

    Exon Level

    diff --git a/general/datasets/INIA_Amg_BLA_Ex-RMA_1110/summary.rtf b/general/datasets/INIA_Amg_BLA_Ex-RMA_1110/summary.rtf new file mode 100644 index 0000000..41311b7 --- /dev/null +++ b/general/datasets/INIA_Amg_BLA_Ex-RMA_1110/summary.rtf @@ -0,0 +1 @@ +

    This is a final error-checked release of an amygdala gene expression data set generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from the NIH NIAAA. The basolateral complex of the amygdala of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna").

    diff --git a/general/datasets/INIA_Amg_BLA_Ex-RMA_1110/tissue.rtf b/general/datasets/INIA_Amg_BLA_Ex-RMA_1110/tissue.rtf new file mode 100644 index 0000000..ea556c7 --- /dev/null +++ b/general/datasets/INIA_Amg_BLA_Ex-RMA_1110/tissue.rtf @@ -0,0 +1,12 @@ +

    Dissection Protocol

    + +
      +
    1. Animals were sacrificed by cervical dislocation and brains were immediately dissected from the head and stored in RNAlater (www.ambion.com) for 2 to 3 days at 4 deg C in a refrigerator.
    2. +
    3. Brains were placed with ventral side up on a cutting surface and a partial coronal cut was made with a surgical blade at a level that corresponds approximately to the -2.5 mm behind the stereotaxic Bregma point (this cut is just a little rostral from the pontine fibres when viewed from the ventral side).
    4. +
    5. Brains were placed in a coronal matrix (egg-style slicer) and a 2-mm thick coronal slab was taken just rostral to the initial cut.
    6. +
    7. The 2-mm thick slab was placed on a clean glass slide and the hypothalamus was cut out and placed in a tube on dry ice.
    8. +
    9. To dissect the BLA, the temporal lobes were detached by placing a scalpel in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then cut out and placed in a tube on dry ice.
    10. +
    11. Tissue from two mice (right and left sides) and from the same strain and sex (an usually the same litter) were pooled. The only exceptions are BLA samples from strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue was obtained from only one animal per array).
    12. +
    + +

     

    diff --git a/general/datasets/INIA_Amg_BLA_Ex_RMA_1110/cases.rtf b/general/datasets/INIA_Amg_BLA_Ex_RMA_1110/cases.rtf deleted file mode 100644 index b02b19a..0000000 --- a/general/datasets/INIA_Amg_BLA_Ex_RMA_1110/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Cases. A total of 58 strains, including 54 BXD strains, both parental strains (C57BL/6J and DBA/2J) and both reciprocal F1 hybrids (B6D2F1 and D2B6F1) were analyzed. In most cases, two arrays were processed per strain--one for males and one for females. All tissue and RNA was extracted by K. Mozhui. Samples were pooled by sex and usually include at least two cases per sex and strain.

    - -

    Sex Balance. Fifty strains have matched male and female samples. Five strains have male only samples (BXD5, 13, 16, 100 and 103). Three strains have only female samples (BXD44, 70, and 87.) Please review the expression data for Xist probe set 10606178. This non-coding RNA is expressed highly only in females and can be used to check the sex of a sample or pool of tissue. Ddx3y probe set 10608138 can also be used. This is a Y chromosome gene that is expressed abundantly in male samples and at background levels in female samples.

    diff --git a/general/datasets/INIA_Amg_BLA_Ex_RMA_1110/experiment-design.rtf b/general/datasets/INIA_Amg_BLA_Ex_RMA_1110/experiment-design.rtf deleted file mode 100644 index 126d431..0000000 --- a/general/datasets/INIA_Amg_BLA_Ex_RMA_1110/experiment-design.rtf +++ /dev/null @@ -1,1152 +0,0 @@ -

    Data Evaluation Summary

    - -
      -
    1. eQLTs with LOD >10 (LRS>46.1): n = 525
    2. -
    3. eQTL with high LOD and LRS: Trait ID 10513604 (Hdhd3) LOD = 39.8, LRS = 183.5
    4. -
    5. Lowest mean value: Trait ID 10344361, mean = 3.998
    6. -
    7. Highest mean value: Trait ID 10598025, mean = 14.475 (MT-ND1)
    8. -
    9. Greatest sex difference: Trait ID: 10606178 (Xist)
    10. -
    11. Great variation within and among strains: Trait ID 10454192 (Ttr -
      -
      - - - - - - -
      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
      1R6853BLBLAC57BL/6J77F8/18/108:45AM to 12:30 PM
      2R6861BLBLAC57BL/6J77M8/18/108:45AM to 12:30 PM
      3R6851BLBLAD2B6F177F8/18/108:45AM to 12:30 PM
      4R6859BLBLAD2B6F177M8/18/108:45AM to 12:30 PM
      5R6863BLBLADBA/2J77F8/18/108:45AM to 12:30 PM
      6R6865BLBLADBA/2J68M8/18/108:45AM to 12:30 PM
      7R6857BLBLAB6D2F169F8/18/108:45AM to 12:30 PM
      8R6855BLBLAB6D2F169M8/18/108:45AM to 12:30 PM
      9R6799BLBLABXD171F8/17/101:15 PM to 5 PM
      10R6795BLBLABXD185M8/17/101:15 PM to 5 PM
      11R6787BLBLABXD1187F8/17/101:15 PM to 5 PM
      12R6785BLBLABXD1176M8/17/101:15 PM to 5 PM
      13R6819BLBLABXD1278F8/18/108:45AM to 12:30 PM
      14R6789BLBLABXD1273M8/17/101:15 PM to 5 PM
      15R6805BLBLABXD1277M8/17/101:15 PM to 5 PM
      16R6291BLBLABXD13N/AM6/11/09N/A
      17R6811BLBLABXD1481F8/18/108:45AM to 12:30 PM
      18R6825BLBLABXD1481M8/18/108:45AM to 12:30 PM
      19R6657BLBLABXD16N/AM1/8/08N/A
      20R6054BLBLABXD19N/AF2/26/08N/A
      21R6052BLBLABXD19N/AM2/26/08N/A
      22R6803BLBLABXD2485F8/17/101:15 PM to 5 PM
      23R6817BLBLABXD2486M8/18/108:45AM to 12:30 PM
      24R6063BLBLABXD25N/AF3/12/08N/A
      25R6062BLBLABXD25N/AM3/12/08N/A
      26R6659BLBLABXD27N/AF1/8/08N/A
      27R6791BLBLABXD2775F8/17/101:15 PM to 5 PM
      28R6797BLBLABXD2971F8/17/101:15 PM to 5 PM
      29R6793BLBLABXD2971M8/17/101:15 PM to 5 PM
      30R6815BLBLABXD3174F8/18/108:45AM to 12:30 PM
      31R6801BLBLABXD3173M8/17/101:15 PM to 5 PM
      32R6915BLBLABXD3281F8/18/101 PM to 6:45 PM
      33R6845BLBLABXD3281M8/18/108:45AM to 12:30 PM
      34R6821BLBLABXD3477F8/18/108:45AM to 12:30 PM
      35R6807BLBLABXD3477M8/18/108:45AM to 12:30 PM
      36R6057BLBLABXD38N/AF2/26/08N/A
      37R6056BLBLABXD38N/AM2/26/08N/A
      38R6827BLBLABXD3979F8/18/108:45AM to 12:30 PM
      39R6813BLBLABXD3979M8/18/108:45AM to 12:30 PM
      40R6847BLBLABXD4085F8/18/108:45AM to 12:30 PM
      41R6849BLBLABXD4085M8/18/108:45AM to 12:30 PM
      42R6809BLBLABXD4287F8/18/108:45AM to 12:30 PM
      43R6823BLBLABXD4287M8/18/108:45AM to 12:30 PM
      44R6759BLBLABXD4381F8/17/109:30 AM to 12:30AM
      45R6757BLBLABXD4381M8/17/109:30 AM to 12:30AM
      46R6745BLBLABXD4483F8/17/109:30 AM to 12:30AM
      47R6763BLBLABXD4577F8/17/109:30 AM to 12:30AM
      48R6761BLBLABXD4577M8/17/109:30 AM to 12:30AM
      49R6879BLBLABXD4876F8/18/101 PM to 6:45 PM
      50R6881BLBLABXD4876M8/18/101 PM to 6:45 PM
      51R6751BLBLABXD4984F8/17/109:30 AM to 12:30AM
      52R6747BLBLABXD4984M8/17/109:30 AM to 12:30AM
      53R6104BLBLABXD5N/Af10/23/09N/A
      54R6103BLBLABXD5N/AM10/23/09N/A
      55R6889BLBLABXD5077F8/18/101 PM to 6:45 PM
      56R6891BLBLABXD5077M8/18/101 PM to 6:45 PM
      57R6074BLBLABXD51N/AF3/12/08N/A
      58R6699BLBLABXD51N/AM4/30/09N/A
      59R6917BLBLABXD5684F8/18/101 PM to 6:45 PM
      60R6893BLBLABXD5677M8/18/101 PM to 6:45 PM
      61R6769BLBLABXD6070F8/17/109:30 AM to 12:30AM
      62R6771BLBLABXD6070M8/17/101:15 PM to 5 PM
      63R6655BLBLABXD61N/AF1/29/08N/A
      64R6653BLBLABXD61N/AM1/29/08N/A
      65R6835BLBLABXD6283F8/18/108:45AM to 12:30 PM
      66R6843BLBLABXD6283M8/18/108:45AM to 12:30 PM
      67R6887BLBLABXD6377F8/18/101 PM to 6:45 PM
      68R6885BLBLABXD6377M8/18/101 PM to 6:45 PM
      69R6877BLBLABXD6584F8/18/101 PM to 6:45 PM
      70R6873BLBLABXD6584M8/18/101 PM to 6:45 PM
      71R6929BLBLABXD6876F8/18/101 PM to 6:45 PM
      72R6931BLBLABXD6876M8/18/101 PM to 6:45 PM
      73R6775BLBLABXD6969F8/17/101:15 PM to 5 PM
      74R6773BLBLABXD6980M8/17/101:15 PM to 5 PM
      75R6925BLBLABXD7076F8/18/101 PM to 6:45 PM
      76R6921BLBLABXD7076M8/17/061 PM to 6:45 PM
      77R6869BLBLABXD7176F8/18/101 PM to 6:45 PM
      78R6871BLBLABXD7176M8/18/101 PM to 6:45 PM
      79R6777BLBLABXD7383F8/17/101:15 PM to 5 PM
      80R6779BLBLABXD7383M8/17/101:15 PM to 5 PM
      81R6837BLBLABXD7576F8/18/108:45AM to 12:30 PM
      82R6829BLBLABXD7576M8/18/108:45AM to 12:30 PM
      83R6933BLBLABXD7987F8/18/101 PM to 6:45 PM
      84R6935BLBLABXD7987M8/18/101 PM to 6:45 PM
      85R6781BLBLABXD8073F8/17/101:15 PM to 5 PM
      86R6783BLBLABXD8073M8/17/101:15 PM to 5 PM
      87R6913BLBLABXD8381F8/18/101 PM to 6:45 PM
      88R6911BLBLABXD8381M8/18/101 PM to 6:45 PM
      89R6841BLBLABXD8476F8/18/108:45AM to 12:30 PM
      90R6833BLBLABXD8476M8/18/108:45AM to 12:30 PM
      91R6937BLBLABXD8574F8/18/101 PM to 6:45 PM
      92R6939BLBLABXD8574M8/18/101 PM to 6:45 PM
      93R6909BLBLABXD8783F8/18/101 PM to 6:45 PM
      94R6895BLBLABXD8982F8/18/101 PM to 6:45 PM
      95R6897BLBLABXD8982M8/18/101 PM to 6:45 PM
      96R6903BLBLABXD9082F8/18/101 PM to 6:45 PM
      97R6905BLBLABXD9082M8/18/101 PM to 6:45 PM
      98R6923BLBLABXD9286F8/18/101 PM to 6:45 PM
      99R6927BLBLABXD9289M8/18/101 PM to 6:45 PM
      100R6919BLBLABXD9576F8/18/101 PM to 6:45 PM
      101R6867BLBLABXD9576M8/18/108:45AM to 12:30 PM
      102R6899BLBLABXD9771F8/18/101 PM to 6:45 PM
      103R6901BLBLABXD9771M8/18/101 PM to 6:45 PM
      104R6875BLBLABXD9977F8/18/101 PM to 6:45 PM
      105R6883BLBLABXD9977M8/18/101 PM to 6:45 PM
      106R6831BLBLABXD10083M8/18/108:45AM to 12:30 PM
      107R6943BLBLABXD10189F8/18/101 PM to 6:45 PM
      108R6941BLBLABXD10189M8/18/101 PM to 6:45 PM
      109R6753BLBLABXD10288F8/17/109:30 AM to 12:30AM
      110R6755BLBLABXD10288M8/17/109:30 AM to 12:30AM
      111R6765BLBLABXD10378M8/17/109:30 AM to 12:30AM
      -
      - -

       

      -
      -
      - -
        -
      -
    12. -
    diff --git a/general/datasets/INIA_Amg_BLA_Ex_RMA_1110/platform.rtf b/general/datasets/INIA_Amg_BLA_Ex_RMA_1110/platform.rtf deleted file mode 100644 index aba2206..0000000 --- a/general/datasets/INIA_Amg_BLA_Ex_RMA_1110/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version] (GPL6246)

    diff --git a/general/datasets/INIA_Amg_BLA_Ex_RMA_1110/processing.rtf b/general/datasets/INIA_Amg_BLA_Ex_RMA_1110/processing.rtf deleted file mode 100644 index a2a6c30..0000000 --- a/general/datasets/INIA_Amg_BLA_Ex_RMA_1110/processing.rtf +++ /dev/null @@ -1,16 +0,0 @@ -

    Data Processing. Array data sets were generated by the vendors GCOS system. Expression values were logged and then were further normalized and rescaled so that the mean value for each array data set is 8 units with a standard deviation of 2 units. Data were processed by Arthur Centeno.

    - -

    Batch Effects. This data set required no initial correction for batch effects and the data in this initial release do not incorporate any additional corrections. However, there are several confounder-like factors that should be considered:

    - -
      -
    1. Sex imbalance in the sample: use probe sets for Xist as correction in partial correlation
    2. -
    3. Dissection variation: examine and use probe sets for Ttr as a correction for the inclusion of choroid plexus and non-parenchmymal tissue in samples. Transthyretin is only expressed in the choroid plexus (PMID 16698124
    4. -
    5. Background noise factors: examine and use probe sets with very low expression using the search "mean=(3.900 4.135)". This will extract the 54 probe sets with the lowest expression. (Note that the number 54 is less than the total number of cases (58) in this data set; important in computing principal components.) Add these probe sets to your collection window and then compute the correlation matrix. Use the first few principal components as surrogates for nuisance factors in partial correlation analysis. The first principal component of the lowest 54 probe sets in this amygdala data set accounts of 42% of the the variance. Mapping of this noise trait can be used to evaluate the effects of shared noise on QTL results. The first principal component in the amygdala data set can be map as a trait. It is not associated with any QLTs that are even suggestive, and the highest LRS is about 10 on chromosomes 18 and 19. The second principal component trait, which accounts for only 5% of the "noise" variance, has a suggestive QTL (LRS of 12, high B allele) on chromosome 4 at about 90 Mb. We therefore do not think that there is significant risk of major false trans eQTL bands in this data set.
    6. -
    - -

    Data Release. This data set was first uploaded into GeneNetwork November 25, 2010 and made accessible without a password to all users on December 1, 2010. The data set was orginally entered with two strain identification errors that were fixed Dec 10, 2010 by KM Mozhui and A Centeno (array R6659BL was originally listed as BXD16 but is BXD27; R6789BL was original listed as BXD27 is BXD12). The current data release has no known errors of sex or strain assignment.

    - -

    Data Status and Use. The data set is open for exploration and use for focused analysis of single genes. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data regarding the best citation.
    -This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please see the GeneNetwork data sharing policy for more background on data use.

    - -

    Contact. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data.

    diff --git a/general/datasets/INIA_Amg_BLA_Ex_RMA_1110/specifics.rtf b/general/datasets/INIA_Amg_BLA_Ex_RMA_1110/specifics.rtf deleted file mode 100644 index 2400c03..0000000 --- a/general/datasets/INIA_Amg_BLA_Ex_RMA_1110/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Exon Level

    diff --git a/general/datasets/INIA_Amg_BLA_Ex_RMA_1110/summary.rtf b/general/datasets/INIA_Amg_BLA_Ex_RMA_1110/summary.rtf deleted file mode 100644 index 41311b7..0000000 --- a/general/datasets/INIA_Amg_BLA_Ex_RMA_1110/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This is a final error-checked release of an amygdala gene expression data set generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from the NIH NIAAA. The basolateral complex of the amygdala of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna").

    diff --git a/general/datasets/INIA_Amg_BLA_Ex_RMA_1110/tissue.rtf b/general/datasets/INIA_Amg_BLA_Ex_RMA_1110/tissue.rtf deleted file mode 100644 index ea556c7..0000000 --- a/general/datasets/INIA_Amg_BLA_Ex_RMA_1110/tissue.rtf +++ /dev/null @@ -1,12 +0,0 @@ -

    Dissection Protocol

    - -
      -
    1. Animals were sacrificed by cervical dislocation and brains were immediately dissected from the head and stored in RNAlater (www.ambion.com) for 2 to 3 days at 4 deg C in a refrigerator.
    2. -
    3. Brains were placed with ventral side up on a cutting surface and a partial coronal cut was made with a surgical blade at a level that corresponds approximately to the -2.5 mm behind the stereotaxic Bregma point (this cut is just a little rostral from the pontine fibres when viewed from the ventral side).
    4. -
    5. Brains were placed in a coronal matrix (egg-style slicer) and a 2-mm thick coronal slab was taken just rostral to the initial cut.
    6. -
    7. The 2-mm thick slab was placed on a clean glass slide and the hypothalamus was cut out and placed in a tube on dry ice.
    8. -
    9. To dissect the BLA, the temporal lobes were detached by placing a scalpel in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then cut out and placed in a tube on dry ice.
    10. -
    11. Tissue from two mice (right and left sides) and from the same strain and sex (an usually the same litter) were pooled. The only exceptions are BLA samples from strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue was obtained from only one animal per array).
    12. -
    - -

     

    diff --git a/general/datasets/INIA_BXD_LivDNAm_1119/experiment-design.rtf b/general/datasets/INIA_BXD_LivDNAm_1119/experiment-design.rtf deleted file mode 100644 index 5c63e07..0000000 --- a/general/datasets/INIA_BXD_LivDNAm_1119/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Aging

    diff --git a/general/datasets/INIA_BXD_LivDNAm_1119/platform.rtf b/general/datasets/INIA_BXD_LivDNAm_1119/platform.rtf deleted file mode 100644 index 01ea9ea..0000000 --- a/general/datasets/INIA_BXD_LivDNAm_1119/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Pan-Mammalian DNAm Infinium array; this is a custom array

    diff --git a/general/datasets/INIA_BXD_LivDNAm_1119/processing.rtf b/general/datasets/INIA_BXD_LivDNAm_1119/processing.rtf deleted file mode 100644 index 5dc0f7f..0000000 --- a/general/datasets/INIA_BXD_LivDNAm_1119/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Beta-values after normalization

    diff --git a/general/datasets/INIA_BXD_LivDNAm_1119/specifics.rtf b/general/datasets/INIA_BXD_LivDNAm_1119/specifics.rtf deleted file mode 100644 index 925cbbe..0000000 --- a/general/datasets/INIA_BXD_LivDNAm_1119/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Normalization Sesame \ No newline at end of file diff --git a/general/datasets/INIA_BXD_LivDNAm_1119/summary.rtf b/general/datasets/INIA_BXD_LivDNAm_1119/summary.rtf deleted file mode 100644 index 0961144..0000000 --- a/general/datasets/INIA_BXD_LivDNAm_1119/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    DNA from liver tissue profiled on the Illumina Pan-Mammalian Infinium microarray. This array was designed and developed by Steve Horvath at UCLA. Array hybridization, initial data QC, and normalization done at UCLA. 

    diff --git a/general/datasets/INIA_BXD_LivDNAminfi_1020/experiment-design.rtf b/general/datasets/INIA_BXD_LivDNAminfi_1020/experiment-design.rtf deleted file mode 100644 index 5c63e07..0000000 --- a/general/datasets/INIA_BXD_LivDNAminfi_1020/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Aging

    diff --git a/general/datasets/INIA_BXD_LivDNAminfi_1020/platform.rtf b/general/datasets/INIA_BXD_LivDNAminfi_1020/platform.rtf deleted file mode 100644 index 01ea9ea..0000000 --- a/general/datasets/INIA_BXD_LivDNAminfi_1020/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Pan-Mammalian DNAm Infinium array; this is a custom array

    diff --git a/general/datasets/INIA_BXD_LivDNAminfi_1020/processing.rtf b/general/datasets/INIA_BXD_LivDNAminfi_1020/processing.rtf deleted file mode 100644 index 5dc0f7f..0000000 --- a/general/datasets/INIA_BXD_LivDNAminfi_1020/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Beta-values after normalization

    diff --git a/general/datasets/INIA_BXD_LivDNAminfi_1020/specifics.rtf b/general/datasets/INIA_BXD_LivDNAminfi_1020/specifics.rtf deleted file mode 100644 index 717d006..0000000 --- a/general/datasets/INIA_BXD_LivDNAminfi_1020/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Normalization minfi \ No newline at end of file diff --git a/general/datasets/INIA_BXD_LivDNAminfi_1020/summary.rtf b/general/datasets/INIA_BXD_LivDNAminfi_1020/summary.rtf deleted file mode 100644 index 0961144..0000000 --- a/general/datasets/INIA_BXD_LivDNAminfi_1020/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    DNA from liver tissue profiled on the Illumina Pan-Mammalian Infinium microarray. This array was designed and developed by Steve Horvath at UCLA. Array hybridization, initial data QC, and normalization done at UCLA. 

    diff --git a/general/datasets/INIA_Hyp_PCA_0813/acknowledgment.rtf b/general/datasets/INIA_Hyp_PCA_0813/acknowledgment.rtf deleted file mode 100644 index 2c3f2bd..0000000 --- a/general/datasets/INIA_Hyp_PCA_0813/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This work was supported by Integrative Neuroscience Initiative on Alcoholism grants U01AA13499, U01AA017590, U01AA0016662. The authors are also grateful to Arthur Centeno and Lorne Rose, and the Molecular Resource Center at UTHSC.

    diff --git a/general/datasets/INIA_Hyp_PCA_0813/cases.rtf b/general/datasets/INIA_Hyp_PCA_0813/cases.rtf deleted file mode 100644 index f19e9c8..0000000 --- a/general/datasets/INIA_Hyp_PCA_0813/cases.rtf +++ /dev/null @@ -1,916 +0,0 @@ -

    The BXD recombinant inbred strains are derived from crossing the C57BL/6J (B6) and DBA/2J (D2) parental strains and inbreeding for over 20 generations (Taylor et al., 1999; Peirce et al., 2004). All mice used in this study were born and housed at the University of Tennessee Health Science Center. Mice were kept at an average of 3–4 per cage in a temperature-controlled vivarium (22 deg C) and maintained at a 12 h light/dark cycle. All animal protocols were approved by the Animal Care and Use Committee. We studied a total of 50 BXD strains, but only acquired matched male–female data pairs for 39 strains (35 BXD strains, parental B6 and D2, and two reciprocal F1 hybrids, B6D2F1 and D2B6F1). The average age of mice was 78 days. We provide more detail on the experimen-tal design and precise age and time of sacrifice of all cases at stored in 4 deg C for 2–3 days. To dissect the hypothalamus, the brain was placed with the ventral side facing up in a coronal "brain cutting" matrix. Using the medial mammillary body as landmark, a vertical cut was made right along the posterior boundary of the hypothala-mus. A second vertical cut was made 2 mm from the first cut. This edge lies slightly caudal to the optic chiasm and cuts through the retrochiasmatic nucleus. The hypothalamus was then sliced out from this 2 mm thick section. Each of the 39 mouse strains is represented by male and female samples (total of 78 microarray samples). Each individual sample consisted of tissue pooled from two mice of the same strain and sex that are usually littermates. The total number of mice used was 78 females and 78 males. RNA was purified using the RNAeasy micro kit on the QIAcube system (Qiagen)2. RNA purity and concen-tration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    - - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
    1R6854HYPHypC57BL/6J77F8/18/108:45AM to 12:30 PM
    2R6862HYPHypC57BL/6J77M8/18/108:45AM to 12:30 PM
    3R6852HYPHypD2B6F177F8/18/108:45AM to 12:30 PM
    4R6860HYPHypD2B6F177M8/18/108:45AM to 12:30 PM
    5R6864HYPHypDBA/2J77F8/18/108:45AM to 12:30 PM
    6R6866HYPHypDBA/2J68M8/18/108:45AM to 12:30 PM
    7R6858HYPHypB6D2F169F8/18/108:45AM to 12:30 PM
    8R6856HYPHypB6D2F169M8/18/108:45AM to 12:30 PM
    9R6800HYPHypBXD171F8/17/101:15 PM to 5 PM
    10R6796HYPHypBXD185M8/17/101:15 PM to 5 PM
    11R6788HYPHypBXD1187F8/17/101:15 PM to 5 PM
    12R6786HYPHypBXD1176M8/17/101:15 PM to 5 PM
    13R6806HYPHypBXD1277M8/17/101:15 PM to 5 PM
    14R6812HYPHypBXD1481F8/18/108:45AM to 12:30 PM
    15R6804HYPHypBXD2485F8/17/101:15 PM to 5 PM
    16R6792HYPHypBXD2775F8/17/101:15 PM to 5 PM
    17R6790HYPHypBXD2773M8/17/101:15 PM to 5 PM
    18R6798HYPHypBXD2971F8/17/101:15 PM to 5 PM
    19R6794HYPHypBXD2971M8/17/101:15 PM to 5 PM
    20R6816HYPHypBXD3174F8/18/108:45AM to 12:30 PM
    21R6802HYPHypBXD3173M8/17/101:15 PM to 5 PM
    22R6916HYPHypBXD3281F8/18/101 PM to 6:45 PM
    23R6846HYPHypBXD3281M8/18/108:45AM to 12:30 PM
    24R6822HYPHypBXD3477F8/18/108:45AM to 12:30 PM
    25R6808HYPHypBXD3477M8/18/108:45AM to 12:30 PM
    26R6814HYPHypBXD3979M8/18/108:45AM to 12:30 PM
    27R6848HYPHypBXD4085F8/18/108:45AM to 12:30 PM
    28R6850HYPHypBXD4085M8/18/108:45AM to 12:30 PM
    29R6810HYPHypBXD4287F8/18/108:45AM to 12:30 PM
    30R6758HYPHypBXD4381M8/17/109:30 AM to 12:30AM
    31R6746HYPHypBXD4483F8/17/109:30 AM to 12:30AM
    32R6750HYPHypBXD4483M8/17/109:30 AM to 12:30AM
    33R6764HYPHypBXD4577F8/17/109:30 AM to 12:30AM
    34R6762HYPHypBXD4577M8/17/109:30 AM to 12:30AM
    35R6880HYPHypBXD4876F8/18/101 PM to 6:45 PM
    36R6882HYPHypBXD4876M8/18/101 PM to 6:45 PM
    37R6748HYPHypBXD4984M8/17/109:30 AM to 12:30AM
    38R6890HYPHypBXD5077F8/18/101 PM to 6:45 PM
    39R6892HYPHypBXD5077M8/18/101 PM to 6:45 PM
    40R6918HYPHypBXD5684F8/18/101 PM to 6:45 PM
    41R6894HYPHypBXD5677M8/18/101 PM to 6:45 PM
    42R6770HYPHypBXD6070F8/17/109:30 AM to 12:30AM
    43R6772HYPHypBXD6070M8/17/101:15 PM to 5 PM
    44R6836HYPHypBXD6283F8/18/108:45AM to 12:30 PM
    45R6844HYPHypBXD6283M8/18/108:45AM to 12:30 PM
    46R6888HYPHypBXD6377F8/18/101 PM to 6:45 PM
    47R6878HYPHypBXD6584F8/18/101 PM to 6:45 PM
    48R6874HYPHypBXD6584M8/18/101 PM to 6:45 PM
    49R6930HYPHypBXD6876F8/18/101 PM to 6:45 PM
    50R6932HYPHypBXD6876M8/18/101 PM to 6:45 PM
    51R6776HYPHypBXD6969F8/17/101:15 PM to 5 PM
    52R6774HYPHypBXD6980M8/17/101:15 PM to 5 PM
    53R6926HYPHypBXD7076F8/18/101 PM to 6:45 PM
    54R6922HYPHypBXD7076M8/18/101 PM to 6:45 PM
    55R6870HYPHypBXD7176F8/18/101 PM to 6:45 PM
    56R6872HYPHypBXD7176M8/18/101 PM to 6:45 PM
    57R6778HYPHypBXD7383F8/17/101:15 PM to 5 PM
    58R6780HYPHypBXD7383M8/17/101:15 PM to 5 PM
    59R6838HYPHypBXD7576F8/18/108:45AM to 12:30 PM
    60R6830HYPHypBXD7576M8/18/108:45AM to 12:30 PM
    61R6934HYPHypBXD7987F8/18/101 PM to 6:45 PM
    62R6782HYPHypBXD8073F8/17/101:15 PM to 5 PM
    63R6784HYPHypBXD8073M8/17/101:15 PM to 5 PM
    64R6914HYPHypBXD8381F8/18/101 PM to 6:45 PM
    65R6912HYPHypBXD8381M8/18/101 PM to 6:45 PM
    66R6834HYPHypBXD8476M8/18/108:45AM to 12:30 PM
    67R6938HYPHypBXD8574F8/18/101 PM to 6:45 PM
    68R6940HYPHypBXD8574M8/18/101 PM to 6:45 PM
    69R6910HYPHypBXD8783F8/18/101 PM to 6:45 PM
    70R6908HYPHypBXD8783M8/18/101 PM to 6:45 PM
    71R6896HYPHypBXD8982F8/18/101 PM to 6:45 PM
    72R6898HYPHypBXD8982M8/18/101 PM to 6:45 PM
    73R6904HYPHypBXD9082F8/18/101 PM to 6:45 PM
    74R6906HYPHypBXD9082M8/18/101 PM to 6:45 PM
    75R6924HYPHypBXD9286F8/18/101 PM to 6:45 PM
    76R6928HYPHypBXD9289M8/18/101 PM to 6:45 PM
    77R6920HYPHypBXD9576F8/18/101 PM to 6:45 PM
    78R6868HYPHypBXD9576M8/18/108:45AM to 12:30 PM
    79R6900HYPHypBXD9771F8/18/101 PM to 6:45 PM
    80R6902HYPHypBXD9771M8/18/101 PM to 6:45 PM
    81R6876HYPHypBXD9977F8/18/101 PM to 6:45 PM
    82R6884HYPHypBXD9977M8/18/101 PM to 6:45 PM
    83R6840HYPHypBXD10083F8/18/108:45AM to 12:30 PM
    84R6832HYPHypBXD10083M8/18/108:45AM to 12:30 PM
    85R6944HYPHypBXD10189F8/18/101 PM to 6:45 PM
    86R6942HYPHypBXD10189M8/18/101 PM to 6:45 PM
    87R6756HYPHypBXD10288M8/17/109:30 AM to 12:30AM
    88R6768HYPHypBXD10378F8/17/109:30 AM to 12:30AM
    89R6766HYPHypBXD10378M8/17/109:30 AM to 12:30AM
    -
    - -

     

    diff --git a/general/datasets/INIA_Hyp_PCA_0813/experiment-design.rtf b/general/datasets/INIA_Hyp_PCA_0813/experiment-design.rtf deleted file mode 100644 index 443af4a..0000000 --- a/general/datasets/INIA_Hyp_PCA_0813/experiment-design.rtf +++ /dev/null @@ -1,6 +0,0 @@ -

    Hypothalamus was dissected from adult male and female mice and process for expression analysis.

    - -

    RNA isolation
    -Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    - -

    This preliminary data set is associated with 430 eQTLs with LOD scores above 10. Peak LRS is 146 for Trait ID 10513604 (Hdhd3).

    diff --git a/general/datasets/INIA_Hyp_PCA_0813/platform.rtf b/general/datasets/INIA_Hyp_PCA_0813/platform.rtf deleted file mode 100644 index aba2206..0000000 --- a/general/datasets/INIA_Hyp_PCA_0813/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version] (GPL6246)

    diff --git a/general/datasets/INIA_Hyp_PCA_0813/processing.rtf b/general/datasets/INIA_Hyp_PCA_0813/processing.rtf deleted file mode 100644 index b3e8689..0000000 --- a/general/datasets/INIA_Hyp_PCA_0813/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Total RNA was processed using standard protocols and hybridized to the Affymetrix Mouse Gene 1.0 ST arrays4. This array contains 34,700 probe sets that target ∼29,000 well-defined transcripts (RefSeq mRNA isoforms). A single probe set is a collection of about 27 probes that target known exons within a single gene. The multiple probes design provides a more comprehensive cov-erage of transcripts from a single gene. Male and female samples were interleaved and processed together to avoid batch confounds. Details on the strain, age, and sex of each sample can be obtained from the information available for the INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) data set on www.genenetwork.org. Probe set level intensity values were extracted from the CEL files using the Affymetrix GeneChip Operating Software. Data nor-malization was performed using the R package “Affy” available from www.Bioconductor.org. The Robust Multichip Averaging protocol was used to process the expression values. The array data was then log transformed and rescaled using a z-scoring procedure to set the mean of each sample at eight expression units with a SD of 2 units. The entire data set can be down-loaded from www.genenetwork.org using the accession number GN281 (http://www.genenetwork.org/webqtl/main.py?FormID = sharinginfo&GN_AccessionId = 281) and also from the NIH Gene Expression Omnibus5 using the GEO accession number GSE36674. For this study we used a subset of cases that were repre-sented by both male and female samples – 78 sex-balanced arrays. Statistical power provided by this sample size (N = 39 strains) was estimated using the R function power.t.test6 with the SD set at 0.17, which is the average value. Only transcripts with above aver-age expression (minimum expression value above 8.5 on a log2 scale) were included for further analysis (17,192 probe sets). We used a two-tailed paired t -test to identify transcripts with signifi-cant expression difference between males and females. We applied the Benjamini and Hochberg false discovery rate (FDR) method and selected differentially expressed transcripts using a 10% FDR criterion.

    diff --git a/general/datasets/INIA_Hyp_PCA_0813/summary.rtf b/general/datasets/INIA_Hyp_PCA_0813/summary.rtf deleted file mode 100644 index 02671d5..0000000 --- a/general/datasets/INIA_Hyp_PCA_0813/summary.rtf +++ /dev/null @@ -1,16 +0,0 @@ -

    These hypothalamic gene expression data were generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from NIAAA. The data set includes samples from 50 strains, including 46 BXDs, both parental strains, and reciprocal F1 hybrids. Expression data were generated using the Affymetrix Mouse Gene 1.0 ST exon-style microarray (multiple probes in all known exons) by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. Hypothalamic tissue was dissected by K. Mozhui (description to follow) with special attention to time of day (every sample has time stamp). RNA was extracted by K. Mozhui. All other processing steps by the UTHSC MRC by L. Rose. Data were processed by Arthur Centeno.

    - -

    Data released initially Nov 25, 2010, updated March 7, 2011 by A. Centeno and K. Mozhui to add two additional arrays. Data appear to be error-free in terms of sex and strain assignments shown in the table below.

    - -

    Dissection protocol:

    - -
      -
    1. Animals were sacrificed by quick cervical dislocation and brains were removed and stored in RNAlater (www.ambion.com) for 2 to 3 days
    2. -
    3. Brain was placed with ventral side up and a partial cut was made with a blade at -2.5 from Bregma (just a little rostral from the pontine fibres when viewed from the ventral side)
    4. -
    5. The brain was then place in a coronal matrix and a 2 mm section was made rostral to the first cut
    6. -
    7. The 2mm Section was placed on a clean glass slide and hypothalamus was sliced out and placed in a tube on dry ice.
    8. -
    9. To dissect out the BLA, the temporal lobes were detached by placing a scalple in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then sliced out and placed in a tube on dry ice.
    10. -
    11. Tissues from two mice of the same strain and sex were pooled. The only exceptions to this are the BLA samples for strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue from only one animal).
    12. -
    - -

    The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a).Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estro-gen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromo-some paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

    diff --git a/general/datasets/INIA_Hyp_PCA_0813_v2/acknowledgment.rtf b/general/datasets/INIA_Hyp_PCA_0813_v2/acknowledgment.rtf deleted file mode 100644 index 2c3f2bd..0000000 --- a/general/datasets/INIA_Hyp_PCA_0813_v2/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This work was supported by Integrative Neuroscience Initiative on Alcoholism grants U01AA13499, U01AA017590, U01AA0016662. The authors are also grateful to Arthur Centeno and Lorne Rose, and the Molecular Resource Center at UTHSC.

    diff --git a/general/datasets/INIA_Hyp_PCA_0813_v2/cases.rtf b/general/datasets/INIA_Hyp_PCA_0813_v2/cases.rtf deleted file mode 100644 index f19e9c8..0000000 --- a/general/datasets/INIA_Hyp_PCA_0813_v2/cases.rtf +++ /dev/null @@ -1,916 +0,0 @@ -

    The BXD recombinant inbred strains are derived from crossing the C57BL/6J (B6) and DBA/2J (D2) parental strains and inbreeding for over 20 generations (Taylor et al., 1999; Peirce et al., 2004). All mice used in this study were born and housed at the University of Tennessee Health Science Center. Mice were kept at an average of 3–4 per cage in a temperature-controlled vivarium (22 deg C) and maintained at a 12 h light/dark cycle. All animal protocols were approved by the Animal Care and Use Committee. We studied a total of 50 BXD strains, but only acquired matched male–female data pairs for 39 strains (35 BXD strains, parental B6 and D2, and two reciprocal F1 hybrids, B6D2F1 and D2B6F1). The average age of mice was 78 days. We provide more detail on the experimen-tal design and precise age and time of sacrifice of all cases at stored in 4 deg C for 2–3 days. To dissect the hypothalamus, the brain was placed with the ventral side facing up in a coronal "brain cutting" matrix. Using the medial mammillary body as landmark, a vertical cut was made right along the posterior boundary of the hypothala-mus. A second vertical cut was made 2 mm from the first cut. This edge lies slightly caudal to the optic chiasm and cuts through the retrochiasmatic nucleus. The hypothalamus was then sliced out from this 2 mm thick section. Each of the 39 mouse strains is represented by male and female samples (total of 78 microarray samples). Each individual sample consisted of tissue pooled from two mice of the same strain and sex that are usually littermates. The total number of mice used was 78 females and 78 males. RNA was purified using the RNAeasy micro kit on the QIAcube system (Qiagen)2. RNA purity and concen-tration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    - - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
    1R6854HYPHypC57BL/6J77F8/18/108:45AM to 12:30 PM
    2R6862HYPHypC57BL/6J77M8/18/108:45AM to 12:30 PM
    3R6852HYPHypD2B6F177F8/18/108:45AM to 12:30 PM
    4R6860HYPHypD2B6F177M8/18/108:45AM to 12:30 PM
    5R6864HYPHypDBA/2J77F8/18/108:45AM to 12:30 PM
    6R6866HYPHypDBA/2J68M8/18/108:45AM to 12:30 PM
    7R6858HYPHypB6D2F169F8/18/108:45AM to 12:30 PM
    8R6856HYPHypB6D2F169M8/18/108:45AM to 12:30 PM
    9R6800HYPHypBXD171F8/17/101:15 PM to 5 PM
    10R6796HYPHypBXD185M8/17/101:15 PM to 5 PM
    11R6788HYPHypBXD1187F8/17/101:15 PM to 5 PM
    12R6786HYPHypBXD1176M8/17/101:15 PM to 5 PM
    13R6806HYPHypBXD1277M8/17/101:15 PM to 5 PM
    14R6812HYPHypBXD1481F8/18/108:45AM to 12:30 PM
    15R6804HYPHypBXD2485F8/17/101:15 PM to 5 PM
    16R6792HYPHypBXD2775F8/17/101:15 PM to 5 PM
    17R6790HYPHypBXD2773M8/17/101:15 PM to 5 PM
    18R6798HYPHypBXD2971F8/17/101:15 PM to 5 PM
    19R6794HYPHypBXD2971M8/17/101:15 PM to 5 PM
    20R6816HYPHypBXD3174F8/18/108:45AM to 12:30 PM
    21R6802HYPHypBXD3173M8/17/101:15 PM to 5 PM
    22R6916HYPHypBXD3281F8/18/101 PM to 6:45 PM
    23R6846HYPHypBXD3281M8/18/108:45AM to 12:30 PM
    24R6822HYPHypBXD3477F8/18/108:45AM to 12:30 PM
    25R6808HYPHypBXD3477M8/18/108:45AM to 12:30 PM
    26R6814HYPHypBXD3979M8/18/108:45AM to 12:30 PM
    27R6848HYPHypBXD4085F8/18/108:45AM to 12:30 PM
    28R6850HYPHypBXD4085M8/18/108:45AM to 12:30 PM
    29R6810HYPHypBXD4287F8/18/108:45AM to 12:30 PM
    30R6758HYPHypBXD4381M8/17/109:30 AM to 12:30AM
    31R6746HYPHypBXD4483F8/17/109:30 AM to 12:30AM
    32R6750HYPHypBXD4483M8/17/109:30 AM to 12:30AM
    33R6764HYPHypBXD4577F8/17/109:30 AM to 12:30AM
    34R6762HYPHypBXD4577M8/17/109:30 AM to 12:30AM
    35R6880HYPHypBXD4876F8/18/101 PM to 6:45 PM
    36R6882HYPHypBXD4876M8/18/101 PM to 6:45 PM
    37R6748HYPHypBXD4984M8/17/109:30 AM to 12:30AM
    38R6890HYPHypBXD5077F8/18/101 PM to 6:45 PM
    39R6892HYPHypBXD5077M8/18/101 PM to 6:45 PM
    40R6918HYPHypBXD5684F8/18/101 PM to 6:45 PM
    41R6894HYPHypBXD5677M8/18/101 PM to 6:45 PM
    42R6770HYPHypBXD6070F8/17/109:30 AM to 12:30AM
    43R6772HYPHypBXD6070M8/17/101:15 PM to 5 PM
    44R6836HYPHypBXD6283F8/18/108:45AM to 12:30 PM
    45R6844HYPHypBXD6283M8/18/108:45AM to 12:30 PM
    46R6888HYPHypBXD6377F8/18/101 PM to 6:45 PM
    47R6878HYPHypBXD6584F8/18/101 PM to 6:45 PM
    48R6874HYPHypBXD6584M8/18/101 PM to 6:45 PM
    49R6930HYPHypBXD6876F8/18/101 PM to 6:45 PM
    50R6932HYPHypBXD6876M8/18/101 PM to 6:45 PM
    51R6776HYPHypBXD6969F8/17/101:15 PM to 5 PM
    52R6774HYPHypBXD6980M8/17/101:15 PM to 5 PM
    53R6926HYPHypBXD7076F8/18/101 PM to 6:45 PM
    54R6922HYPHypBXD7076M8/18/101 PM to 6:45 PM
    55R6870HYPHypBXD7176F8/18/101 PM to 6:45 PM
    56R6872HYPHypBXD7176M8/18/101 PM to 6:45 PM
    57R6778HYPHypBXD7383F8/17/101:15 PM to 5 PM
    58R6780HYPHypBXD7383M8/17/101:15 PM to 5 PM
    59R6838HYPHypBXD7576F8/18/108:45AM to 12:30 PM
    60R6830HYPHypBXD7576M8/18/108:45AM to 12:30 PM
    61R6934HYPHypBXD7987F8/18/101 PM to 6:45 PM
    62R6782HYPHypBXD8073F8/17/101:15 PM to 5 PM
    63R6784HYPHypBXD8073M8/17/101:15 PM to 5 PM
    64R6914HYPHypBXD8381F8/18/101 PM to 6:45 PM
    65R6912HYPHypBXD8381M8/18/101 PM to 6:45 PM
    66R6834HYPHypBXD8476M8/18/108:45AM to 12:30 PM
    67R6938HYPHypBXD8574F8/18/101 PM to 6:45 PM
    68R6940HYPHypBXD8574M8/18/101 PM to 6:45 PM
    69R6910HYPHypBXD8783F8/18/101 PM to 6:45 PM
    70R6908HYPHypBXD8783M8/18/101 PM to 6:45 PM
    71R6896HYPHypBXD8982F8/18/101 PM to 6:45 PM
    72R6898HYPHypBXD8982M8/18/101 PM to 6:45 PM
    73R6904HYPHypBXD9082F8/18/101 PM to 6:45 PM
    74R6906HYPHypBXD9082M8/18/101 PM to 6:45 PM
    75R6924HYPHypBXD9286F8/18/101 PM to 6:45 PM
    76R6928HYPHypBXD9289M8/18/101 PM to 6:45 PM
    77R6920HYPHypBXD9576F8/18/101 PM to 6:45 PM
    78R6868HYPHypBXD9576M8/18/108:45AM to 12:30 PM
    79R6900HYPHypBXD9771F8/18/101 PM to 6:45 PM
    80R6902HYPHypBXD9771M8/18/101 PM to 6:45 PM
    81R6876HYPHypBXD9977F8/18/101 PM to 6:45 PM
    82R6884HYPHypBXD9977M8/18/101 PM to 6:45 PM
    83R6840HYPHypBXD10083F8/18/108:45AM to 12:30 PM
    84R6832HYPHypBXD10083M8/18/108:45AM to 12:30 PM
    85R6944HYPHypBXD10189F8/18/101 PM to 6:45 PM
    86R6942HYPHypBXD10189M8/18/101 PM to 6:45 PM
    87R6756HYPHypBXD10288M8/17/109:30 AM to 12:30AM
    88R6768HYPHypBXD10378F8/17/109:30 AM to 12:30AM
    89R6766HYPHypBXD10378M8/17/109:30 AM to 12:30AM
    -
    - -

     

    diff --git a/general/datasets/INIA_Hyp_PCA_0813_v2/experiment-design.rtf b/general/datasets/INIA_Hyp_PCA_0813_v2/experiment-design.rtf deleted file mode 100644 index 443af4a..0000000 --- a/general/datasets/INIA_Hyp_PCA_0813_v2/experiment-design.rtf +++ /dev/null @@ -1,6 +0,0 @@ -

    Hypothalamus was dissected from adult male and female mice and process for expression analysis.

    - -

    RNA isolation
    -Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    - -

    This preliminary data set is associated with 430 eQTLs with LOD scores above 10. Peak LRS is 146 for Trait ID 10513604 (Hdhd3).

    diff --git a/general/datasets/INIA_Hyp_PCA_0813_v2/platform.rtf b/general/datasets/INIA_Hyp_PCA_0813_v2/platform.rtf deleted file mode 100644 index aba2206..0000000 --- a/general/datasets/INIA_Hyp_PCA_0813_v2/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version] (GPL6246)

    diff --git a/general/datasets/INIA_Hyp_PCA_0813_v2/processing.rtf b/general/datasets/INIA_Hyp_PCA_0813_v2/processing.rtf deleted file mode 100644 index b3e8689..0000000 --- a/general/datasets/INIA_Hyp_PCA_0813_v2/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Total RNA was processed using standard protocols and hybridized to the Affymetrix Mouse Gene 1.0 ST arrays4. This array contains 34,700 probe sets that target ∼29,000 well-defined transcripts (RefSeq mRNA isoforms). A single probe set is a collection of about 27 probes that target known exons within a single gene. The multiple probes design provides a more comprehensive cov-erage of transcripts from a single gene. Male and female samples were interleaved and processed together to avoid batch confounds. Details on the strain, age, and sex of each sample can be obtained from the information available for the INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) data set on www.genenetwork.org. Probe set level intensity values were extracted from the CEL files using the Affymetrix GeneChip Operating Software. Data nor-malization was performed using the R package “Affy” available from www.Bioconductor.org. The Robust Multichip Averaging protocol was used to process the expression values. The array data was then log transformed and rescaled using a z-scoring procedure to set the mean of each sample at eight expression units with a SD of 2 units. The entire data set can be down-loaded from www.genenetwork.org using the accession number GN281 (http://www.genenetwork.org/webqtl/main.py?FormID = sharinginfo&GN_AccessionId = 281) and also from the NIH Gene Expression Omnibus5 using the GEO accession number GSE36674. For this study we used a subset of cases that were repre-sented by both male and female samples – 78 sex-balanced arrays. Statistical power provided by this sample size (N = 39 strains) was estimated using the R function power.t.test6 with the SD set at 0.17, which is the average value. Only transcripts with above aver-age expression (minimum expression value above 8.5 on a log2 scale) were included for further analysis (17,192 probe sets). We used a two-tailed paired t -test to identify transcripts with signifi-cant expression difference between males and females. We applied the Benjamini and Hochberg false discovery rate (FDR) method and selected differentially expressed transcripts using a 10% FDR criterion.

    diff --git a/general/datasets/INIA_Hyp_PCA_0813_v2/summary.rtf b/general/datasets/INIA_Hyp_PCA_0813_v2/summary.rtf deleted file mode 100644 index 02671d5..0000000 --- a/general/datasets/INIA_Hyp_PCA_0813_v2/summary.rtf +++ /dev/null @@ -1,16 +0,0 @@ -

    These hypothalamic gene expression data were generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from NIAAA. The data set includes samples from 50 strains, including 46 BXDs, both parental strains, and reciprocal F1 hybrids. Expression data were generated using the Affymetrix Mouse Gene 1.0 ST exon-style microarray (multiple probes in all known exons) by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. Hypothalamic tissue was dissected by K. Mozhui (description to follow) with special attention to time of day (every sample has time stamp). RNA was extracted by K. Mozhui. All other processing steps by the UTHSC MRC by L. Rose. Data were processed by Arthur Centeno.

    - -

    Data released initially Nov 25, 2010, updated March 7, 2011 by A. Centeno and K. Mozhui to add two additional arrays. Data appear to be error-free in terms of sex and strain assignments shown in the table below.

    - -

    Dissection protocol:

    - -
      -
    1. Animals were sacrificed by quick cervical dislocation and brains were removed and stored in RNAlater (www.ambion.com) for 2 to 3 days
    2. -
    3. Brain was placed with ventral side up and a partial cut was made with a blade at -2.5 from Bregma (just a little rostral from the pontine fibres when viewed from the ventral side)
    4. -
    5. The brain was then place in a coronal matrix and a 2 mm section was made rostral to the first cut
    6. -
    7. The 2mm Section was placed on a clean glass slide and hypothalamus was sliced out and placed in a tube on dry ice.
    8. -
    9. To dissect out the BLA, the temporal lobes were detached by placing a scalple in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then sliced out and placed in a tube on dry ice.
    10. -
    11. Tissues from two mice of the same strain and sex were pooled. The only exceptions to this are the BLA samples for strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue from only one animal).
    12. -
    - -

    The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a).Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estro-gen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromo-some paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

    diff --git a/general/datasets/INIA_Hyp_PCA_0813_v3/acknowledgment.rtf b/general/datasets/INIA_Hyp_PCA_0813_v3/acknowledgment.rtf deleted file mode 100644 index 2c3f2bd..0000000 --- a/general/datasets/INIA_Hyp_PCA_0813_v3/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This work was supported by Integrative Neuroscience Initiative on Alcoholism grants U01AA13499, U01AA017590, U01AA0016662. The authors are also grateful to Arthur Centeno and Lorne Rose, and the Molecular Resource Center at UTHSC.

    diff --git a/general/datasets/INIA_Hyp_PCA_0813_v3/cases.rtf b/general/datasets/INIA_Hyp_PCA_0813_v3/cases.rtf deleted file mode 100644 index f19e9c8..0000000 --- a/general/datasets/INIA_Hyp_PCA_0813_v3/cases.rtf +++ /dev/null @@ -1,916 +0,0 @@ -

    The BXD recombinant inbred strains are derived from crossing the C57BL/6J (B6) and DBA/2J (D2) parental strains and inbreeding for over 20 generations (Taylor et al., 1999; Peirce et al., 2004). All mice used in this study were born and housed at the University of Tennessee Health Science Center. Mice were kept at an average of 3–4 per cage in a temperature-controlled vivarium (22 deg C) and maintained at a 12 h light/dark cycle. All animal protocols were approved by the Animal Care and Use Committee. We studied a total of 50 BXD strains, but only acquired matched male–female data pairs for 39 strains (35 BXD strains, parental B6 and D2, and two reciprocal F1 hybrids, B6D2F1 and D2B6F1). The average age of mice was 78 days. We provide more detail on the experimen-tal design and precise age and time of sacrifice of all cases at stored in 4 deg C for 2–3 days. To dissect the hypothalamus, the brain was placed with the ventral side facing up in a coronal "brain cutting" matrix. Using the medial mammillary body as landmark, a vertical cut was made right along the posterior boundary of the hypothala-mus. A second vertical cut was made 2 mm from the first cut. This edge lies slightly caudal to the optic chiasm and cuts through the retrochiasmatic nucleus. The hypothalamus was then sliced out from this 2 mm thick section. Each of the 39 mouse strains is represented by male and female samples (total of 78 microarray samples). Each individual sample consisted of tissue pooled from two mice of the same strain and sex that are usually littermates. The total number of mice used was 78 females and 78 males. RNA was purified using the RNAeasy micro kit on the QIAcube system (Qiagen)2. RNA purity and concen-tration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    - - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
    1R6854HYPHypC57BL/6J77F8/18/108:45AM to 12:30 PM
    2R6862HYPHypC57BL/6J77M8/18/108:45AM to 12:30 PM
    3R6852HYPHypD2B6F177F8/18/108:45AM to 12:30 PM
    4R6860HYPHypD2B6F177M8/18/108:45AM to 12:30 PM
    5R6864HYPHypDBA/2J77F8/18/108:45AM to 12:30 PM
    6R6866HYPHypDBA/2J68M8/18/108:45AM to 12:30 PM
    7R6858HYPHypB6D2F169F8/18/108:45AM to 12:30 PM
    8R6856HYPHypB6D2F169M8/18/108:45AM to 12:30 PM
    9R6800HYPHypBXD171F8/17/101:15 PM to 5 PM
    10R6796HYPHypBXD185M8/17/101:15 PM to 5 PM
    11R6788HYPHypBXD1187F8/17/101:15 PM to 5 PM
    12R6786HYPHypBXD1176M8/17/101:15 PM to 5 PM
    13R6806HYPHypBXD1277M8/17/101:15 PM to 5 PM
    14R6812HYPHypBXD1481F8/18/108:45AM to 12:30 PM
    15R6804HYPHypBXD2485F8/17/101:15 PM to 5 PM
    16R6792HYPHypBXD2775F8/17/101:15 PM to 5 PM
    17R6790HYPHypBXD2773M8/17/101:15 PM to 5 PM
    18R6798HYPHypBXD2971F8/17/101:15 PM to 5 PM
    19R6794HYPHypBXD2971M8/17/101:15 PM to 5 PM
    20R6816HYPHypBXD3174F8/18/108:45AM to 12:30 PM
    21R6802HYPHypBXD3173M8/17/101:15 PM to 5 PM
    22R6916HYPHypBXD3281F8/18/101 PM to 6:45 PM
    23R6846HYPHypBXD3281M8/18/108:45AM to 12:30 PM
    24R6822HYPHypBXD3477F8/18/108:45AM to 12:30 PM
    25R6808HYPHypBXD3477M8/18/108:45AM to 12:30 PM
    26R6814HYPHypBXD3979M8/18/108:45AM to 12:30 PM
    27R6848HYPHypBXD4085F8/18/108:45AM to 12:30 PM
    28R6850HYPHypBXD4085M8/18/108:45AM to 12:30 PM
    29R6810HYPHypBXD4287F8/18/108:45AM to 12:30 PM
    30R6758HYPHypBXD4381M8/17/109:30 AM to 12:30AM
    31R6746HYPHypBXD4483F8/17/109:30 AM to 12:30AM
    32R6750HYPHypBXD4483M8/17/109:30 AM to 12:30AM
    33R6764HYPHypBXD4577F8/17/109:30 AM to 12:30AM
    34R6762HYPHypBXD4577M8/17/109:30 AM to 12:30AM
    35R6880HYPHypBXD4876F8/18/101 PM to 6:45 PM
    36R6882HYPHypBXD4876M8/18/101 PM to 6:45 PM
    37R6748HYPHypBXD4984M8/17/109:30 AM to 12:30AM
    38R6890HYPHypBXD5077F8/18/101 PM to 6:45 PM
    39R6892HYPHypBXD5077M8/18/101 PM to 6:45 PM
    40R6918HYPHypBXD5684F8/18/101 PM to 6:45 PM
    41R6894HYPHypBXD5677M8/18/101 PM to 6:45 PM
    42R6770HYPHypBXD6070F8/17/109:30 AM to 12:30AM
    43R6772HYPHypBXD6070M8/17/101:15 PM to 5 PM
    44R6836HYPHypBXD6283F8/18/108:45AM to 12:30 PM
    45R6844HYPHypBXD6283M8/18/108:45AM to 12:30 PM
    46R6888HYPHypBXD6377F8/18/101 PM to 6:45 PM
    47R6878HYPHypBXD6584F8/18/101 PM to 6:45 PM
    48R6874HYPHypBXD6584M8/18/101 PM to 6:45 PM
    49R6930HYPHypBXD6876F8/18/101 PM to 6:45 PM
    50R6932HYPHypBXD6876M8/18/101 PM to 6:45 PM
    51R6776HYPHypBXD6969F8/17/101:15 PM to 5 PM
    52R6774HYPHypBXD6980M8/17/101:15 PM to 5 PM
    53R6926HYPHypBXD7076F8/18/101 PM to 6:45 PM
    54R6922HYPHypBXD7076M8/18/101 PM to 6:45 PM
    55R6870HYPHypBXD7176F8/18/101 PM to 6:45 PM
    56R6872HYPHypBXD7176M8/18/101 PM to 6:45 PM
    57R6778HYPHypBXD7383F8/17/101:15 PM to 5 PM
    58R6780HYPHypBXD7383M8/17/101:15 PM to 5 PM
    59R6838HYPHypBXD7576F8/18/108:45AM to 12:30 PM
    60R6830HYPHypBXD7576M8/18/108:45AM to 12:30 PM
    61R6934HYPHypBXD7987F8/18/101 PM to 6:45 PM
    62R6782HYPHypBXD8073F8/17/101:15 PM to 5 PM
    63R6784HYPHypBXD8073M8/17/101:15 PM to 5 PM
    64R6914HYPHypBXD8381F8/18/101 PM to 6:45 PM
    65R6912HYPHypBXD8381M8/18/101 PM to 6:45 PM
    66R6834HYPHypBXD8476M8/18/108:45AM to 12:30 PM
    67R6938HYPHypBXD8574F8/18/101 PM to 6:45 PM
    68R6940HYPHypBXD8574M8/18/101 PM to 6:45 PM
    69R6910HYPHypBXD8783F8/18/101 PM to 6:45 PM
    70R6908HYPHypBXD8783M8/18/101 PM to 6:45 PM
    71R6896HYPHypBXD8982F8/18/101 PM to 6:45 PM
    72R6898HYPHypBXD8982M8/18/101 PM to 6:45 PM
    73R6904HYPHypBXD9082F8/18/101 PM to 6:45 PM
    74R6906HYPHypBXD9082M8/18/101 PM to 6:45 PM
    75R6924HYPHypBXD9286F8/18/101 PM to 6:45 PM
    76R6928HYPHypBXD9289M8/18/101 PM to 6:45 PM
    77R6920HYPHypBXD9576F8/18/101 PM to 6:45 PM
    78R6868HYPHypBXD9576M8/18/108:45AM to 12:30 PM
    79R6900HYPHypBXD9771F8/18/101 PM to 6:45 PM
    80R6902HYPHypBXD9771M8/18/101 PM to 6:45 PM
    81R6876HYPHypBXD9977F8/18/101 PM to 6:45 PM
    82R6884HYPHypBXD9977M8/18/101 PM to 6:45 PM
    83R6840HYPHypBXD10083F8/18/108:45AM to 12:30 PM
    84R6832HYPHypBXD10083M8/18/108:45AM to 12:30 PM
    85R6944HYPHypBXD10189F8/18/101 PM to 6:45 PM
    86R6942HYPHypBXD10189M8/18/101 PM to 6:45 PM
    87R6756HYPHypBXD10288M8/17/109:30 AM to 12:30AM
    88R6768HYPHypBXD10378F8/17/109:30 AM to 12:30AM
    89R6766HYPHypBXD10378M8/17/109:30 AM to 12:30AM
    -
    - -

     

    diff --git a/general/datasets/INIA_Hyp_PCA_0813_v3/experiment-design.rtf b/general/datasets/INIA_Hyp_PCA_0813_v3/experiment-design.rtf deleted file mode 100644 index 443af4a..0000000 --- a/general/datasets/INIA_Hyp_PCA_0813_v3/experiment-design.rtf +++ /dev/null @@ -1,6 +0,0 @@ -

    Hypothalamus was dissected from adult male and female mice and process for expression analysis.

    - -

    RNA isolation
    -Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    - -

    This preliminary data set is associated with 430 eQTLs with LOD scores above 10. Peak LRS is 146 for Trait ID 10513604 (Hdhd3).

    diff --git a/general/datasets/INIA_Hyp_PCA_0813_v3/platform.rtf b/general/datasets/INIA_Hyp_PCA_0813_v3/platform.rtf deleted file mode 100644 index aba2206..0000000 --- a/general/datasets/INIA_Hyp_PCA_0813_v3/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version] (GPL6246)

    diff --git a/general/datasets/INIA_Hyp_PCA_0813_v3/processing.rtf b/general/datasets/INIA_Hyp_PCA_0813_v3/processing.rtf deleted file mode 100644 index b3e8689..0000000 --- a/general/datasets/INIA_Hyp_PCA_0813_v3/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Total RNA was processed using standard protocols and hybridized to the Affymetrix Mouse Gene 1.0 ST arrays4. This array contains 34,700 probe sets that target ∼29,000 well-defined transcripts (RefSeq mRNA isoforms). A single probe set is a collection of about 27 probes that target known exons within a single gene. The multiple probes design provides a more comprehensive cov-erage of transcripts from a single gene. Male and female samples were interleaved and processed together to avoid batch confounds. Details on the strain, age, and sex of each sample can be obtained from the information available for the INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) data set on www.genenetwork.org. Probe set level intensity values were extracted from the CEL files using the Affymetrix GeneChip Operating Software. Data nor-malization was performed using the R package “Affy” available from www.Bioconductor.org. The Robust Multichip Averaging protocol was used to process the expression values. The array data was then log transformed and rescaled using a z-scoring procedure to set the mean of each sample at eight expression units with a SD of 2 units. The entire data set can be down-loaded from www.genenetwork.org using the accession number GN281 (http://www.genenetwork.org/webqtl/main.py?FormID = sharinginfo&GN_AccessionId = 281) and also from the NIH Gene Expression Omnibus5 using the GEO accession number GSE36674. For this study we used a subset of cases that were repre-sented by both male and female samples – 78 sex-balanced arrays. Statistical power provided by this sample size (N = 39 strains) was estimated using the R function power.t.test6 with the SD set at 0.17, which is the average value. Only transcripts with above aver-age expression (minimum expression value above 8.5 on a log2 scale) were included for further analysis (17,192 probe sets). We used a two-tailed paired t -test to identify transcripts with signifi-cant expression difference between males and females. We applied the Benjamini and Hochberg false discovery rate (FDR) method and selected differentially expressed transcripts using a 10% FDR criterion.

    diff --git a/general/datasets/INIA_Hyp_PCA_0813_v3/summary.rtf b/general/datasets/INIA_Hyp_PCA_0813_v3/summary.rtf deleted file mode 100644 index 02671d5..0000000 --- a/general/datasets/INIA_Hyp_PCA_0813_v3/summary.rtf +++ /dev/null @@ -1,16 +0,0 @@ -

    These hypothalamic gene expression data were generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from NIAAA. The data set includes samples from 50 strains, including 46 BXDs, both parental strains, and reciprocal F1 hybrids. Expression data were generated using the Affymetrix Mouse Gene 1.0 ST exon-style microarray (multiple probes in all known exons) by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. Hypothalamic tissue was dissected by K. Mozhui (description to follow) with special attention to time of day (every sample has time stamp). RNA was extracted by K. Mozhui. All other processing steps by the UTHSC MRC by L. Rose. Data were processed by Arthur Centeno.

    - -

    Data released initially Nov 25, 2010, updated March 7, 2011 by A. Centeno and K. Mozhui to add two additional arrays. Data appear to be error-free in terms of sex and strain assignments shown in the table below.

    - -

    Dissection protocol:

    - -
      -
    1. Animals were sacrificed by quick cervical dislocation and brains were removed and stored in RNAlater (www.ambion.com) for 2 to 3 days
    2. -
    3. Brain was placed with ventral side up and a partial cut was made with a blade at -2.5 from Bregma (just a little rostral from the pontine fibres when viewed from the ventral side)
    4. -
    5. The brain was then place in a coronal matrix and a 2 mm section was made rostral to the first cut
    6. -
    7. The 2mm Section was placed on a clean glass slide and hypothalamus was sliced out and placed in a tube on dry ice.
    8. -
    9. To dissect out the BLA, the temporal lobes were detached by placing a scalple in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then sliced out and placed in a tube on dry ice.
    10. -
    11. Tissues from two mice of the same strain and sex were pooled. The only exceptions to this are the BLA samples for strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue from only one animal).
    12. -
    - -

    The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a).Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estro-gen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromo-some paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

    diff --git a/general/datasets/INIA_Hyp_RMA_Ex-1110/acknowledgment.rtf b/general/datasets/INIA_Hyp_RMA_Ex-1110/acknowledgment.rtf new file mode 100644 index 0000000..2c3f2bd --- /dev/null +++ b/general/datasets/INIA_Hyp_RMA_Ex-1110/acknowledgment.rtf @@ -0,0 +1 @@ +

    This work was supported by Integrative Neuroscience Initiative on Alcoholism grants U01AA13499, U01AA017590, U01AA0016662. The authors are also grateful to Arthur Centeno and Lorne Rose, and the Molecular Resource Center at UTHSC.

    diff --git a/general/datasets/INIA_Hyp_RMA_Ex-1110/cases.rtf b/general/datasets/INIA_Hyp_RMA_Ex-1110/cases.rtf new file mode 100644 index 0000000..f19e9c8 --- /dev/null +++ b/general/datasets/INIA_Hyp_RMA_Ex-1110/cases.rtf @@ -0,0 +1,916 @@ +

    The BXD recombinant inbred strains are derived from crossing the C57BL/6J (B6) and DBA/2J (D2) parental strains and inbreeding for over 20 generations (Taylor et al., 1999; Peirce et al., 2004). All mice used in this study were born and housed at the University of Tennessee Health Science Center. Mice were kept at an average of 3–4 per cage in a temperature-controlled vivarium (22 deg C) and maintained at a 12 h light/dark cycle. All animal protocols were approved by the Animal Care and Use Committee. We studied a total of 50 BXD strains, but only acquired matched male–female data pairs for 39 strains (35 BXD strains, parental B6 and D2, and two reciprocal F1 hybrids, B6D2F1 and D2B6F1). The average age of mice was 78 days. We provide more detail on the experimen-tal design and precise age and time of sacrifice of all cases at stored in 4 deg C for 2–3 days. To dissect the hypothalamus, the brain was placed with the ventral side facing up in a coronal "brain cutting" matrix. Using the medial mammillary body as landmark, a vertical cut was made right along the posterior boundary of the hypothala-mus. A second vertical cut was made 2 mm from the first cut. This edge lies slightly caudal to the optic chiasm and cuts through the retrochiasmatic nucleus. The hypothalamus was then sliced out from this 2 mm thick section. Each of the 39 mouse strains is represented by male and female samples (total of 78 microarray samples). Each individual sample consisted of tissue pooled from two mice of the same strain and sex that are usually littermates. The total number of mice used was 78 females and 78 males. RNA was purified using the RNAeasy micro kit on the QIAcube system (Qiagen)2. RNA purity and concen-tration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
    1R6854HYPHypC57BL/6J77F8/18/108:45AM to 12:30 PM
    2R6862HYPHypC57BL/6J77M8/18/108:45AM to 12:30 PM
    3R6852HYPHypD2B6F177F8/18/108:45AM to 12:30 PM
    4R6860HYPHypD2B6F177M8/18/108:45AM to 12:30 PM
    5R6864HYPHypDBA/2J77F8/18/108:45AM to 12:30 PM
    6R6866HYPHypDBA/2J68M8/18/108:45AM to 12:30 PM
    7R6858HYPHypB6D2F169F8/18/108:45AM to 12:30 PM
    8R6856HYPHypB6D2F169M8/18/108:45AM to 12:30 PM
    9R6800HYPHypBXD171F8/17/101:15 PM to 5 PM
    10R6796HYPHypBXD185M8/17/101:15 PM to 5 PM
    11R6788HYPHypBXD1187F8/17/101:15 PM to 5 PM
    12R6786HYPHypBXD1176M8/17/101:15 PM to 5 PM
    13R6806HYPHypBXD1277M8/17/101:15 PM to 5 PM
    14R6812HYPHypBXD1481F8/18/108:45AM to 12:30 PM
    15R6804HYPHypBXD2485F8/17/101:15 PM to 5 PM
    16R6792HYPHypBXD2775F8/17/101:15 PM to 5 PM
    17R6790HYPHypBXD2773M8/17/101:15 PM to 5 PM
    18R6798HYPHypBXD2971F8/17/101:15 PM to 5 PM
    19R6794HYPHypBXD2971M8/17/101:15 PM to 5 PM
    20R6816HYPHypBXD3174F8/18/108:45AM to 12:30 PM
    21R6802HYPHypBXD3173M8/17/101:15 PM to 5 PM
    22R6916HYPHypBXD3281F8/18/101 PM to 6:45 PM
    23R6846HYPHypBXD3281M8/18/108:45AM to 12:30 PM
    24R6822HYPHypBXD3477F8/18/108:45AM to 12:30 PM
    25R6808HYPHypBXD3477M8/18/108:45AM to 12:30 PM
    26R6814HYPHypBXD3979M8/18/108:45AM to 12:30 PM
    27R6848HYPHypBXD4085F8/18/108:45AM to 12:30 PM
    28R6850HYPHypBXD4085M8/18/108:45AM to 12:30 PM
    29R6810HYPHypBXD4287F8/18/108:45AM to 12:30 PM
    30R6758HYPHypBXD4381M8/17/109:30 AM to 12:30AM
    31R6746HYPHypBXD4483F8/17/109:30 AM to 12:30AM
    32R6750HYPHypBXD4483M8/17/109:30 AM to 12:30AM
    33R6764HYPHypBXD4577F8/17/109:30 AM to 12:30AM
    34R6762HYPHypBXD4577M8/17/109:30 AM to 12:30AM
    35R6880HYPHypBXD4876F8/18/101 PM to 6:45 PM
    36R6882HYPHypBXD4876M8/18/101 PM to 6:45 PM
    37R6748HYPHypBXD4984M8/17/109:30 AM to 12:30AM
    38R6890HYPHypBXD5077F8/18/101 PM to 6:45 PM
    39R6892HYPHypBXD5077M8/18/101 PM to 6:45 PM
    40R6918HYPHypBXD5684F8/18/101 PM to 6:45 PM
    41R6894HYPHypBXD5677M8/18/101 PM to 6:45 PM
    42R6770HYPHypBXD6070F8/17/109:30 AM to 12:30AM
    43R6772HYPHypBXD6070M8/17/101:15 PM to 5 PM
    44R6836HYPHypBXD6283F8/18/108:45AM to 12:30 PM
    45R6844HYPHypBXD6283M8/18/108:45AM to 12:30 PM
    46R6888HYPHypBXD6377F8/18/101 PM to 6:45 PM
    47R6878HYPHypBXD6584F8/18/101 PM to 6:45 PM
    48R6874HYPHypBXD6584M8/18/101 PM to 6:45 PM
    49R6930HYPHypBXD6876F8/18/101 PM to 6:45 PM
    50R6932HYPHypBXD6876M8/18/101 PM to 6:45 PM
    51R6776HYPHypBXD6969F8/17/101:15 PM to 5 PM
    52R6774HYPHypBXD6980M8/17/101:15 PM to 5 PM
    53R6926HYPHypBXD7076F8/18/101 PM to 6:45 PM
    54R6922HYPHypBXD7076M8/18/101 PM to 6:45 PM
    55R6870HYPHypBXD7176F8/18/101 PM to 6:45 PM
    56R6872HYPHypBXD7176M8/18/101 PM to 6:45 PM
    57R6778HYPHypBXD7383F8/17/101:15 PM to 5 PM
    58R6780HYPHypBXD7383M8/17/101:15 PM to 5 PM
    59R6838HYPHypBXD7576F8/18/108:45AM to 12:30 PM
    60R6830HYPHypBXD7576M8/18/108:45AM to 12:30 PM
    61R6934HYPHypBXD7987F8/18/101 PM to 6:45 PM
    62R6782HYPHypBXD8073F8/17/101:15 PM to 5 PM
    63R6784HYPHypBXD8073M8/17/101:15 PM to 5 PM
    64R6914HYPHypBXD8381F8/18/101 PM to 6:45 PM
    65R6912HYPHypBXD8381M8/18/101 PM to 6:45 PM
    66R6834HYPHypBXD8476M8/18/108:45AM to 12:30 PM
    67R6938HYPHypBXD8574F8/18/101 PM to 6:45 PM
    68R6940HYPHypBXD8574M8/18/101 PM to 6:45 PM
    69R6910HYPHypBXD8783F8/18/101 PM to 6:45 PM
    70R6908HYPHypBXD8783M8/18/101 PM to 6:45 PM
    71R6896HYPHypBXD8982F8/18/101 PM to 6:45 PM
    72R6898HYPHypBXD8982M8/18/101 PM to 6:45 PM
    73R6904HYPHypBXD9082F8/18/101 PM to 6:45 PM
    74R6906HYPHypBXD9082M8/18/101 PM to 6:45 PM
    75R6924HYPHypBXD9286F8/18/101 PM to 6:45 PM
    76R6928HYPHypBXD9289M8/18/101 PM to 6:45 PM
    77R6920HYPHypBXD9576F8/18/101 PM to 6:45 PM
    78R6868HYPHypBXD9576M8/18/108:45AM to 12:30 PM
    79R6900HYPHypBXD9771F8/18/101 PM to 6:45 PM
    80R6902HYPHypBXD9771M8/18/101 PM to 6:45 PM
    81R6876HYPHypBXD9977F8/18/101 PM to 6:45 PM
    82R6884HYPHypBXD9977M8/18/101 PM to 6:45 PM
    83R6840HYPHypBXD10083F8/18/108:45AM to 12:30 PM
    84R6832HYPHypBXD10083M8/18/108:45AM to 12:30 PM
    85R6944HYPHypBXD10189F8/18/101 PM to 6:45 PM
    86R6942HYPHypBXD10189M8/18/101 PM to 6:45 PM
    87R6756HYPHypBXD10288M8/17/109:30 AM to 12:30AM
    88R6768HYPHypBXD10378F8/17/109:30 AM to 12:30AM
    89R6766HYPHypBXD10378M8/17/109:30 AM to 12:30AM
    +
    + +

     

    diff --git a/general/datasets/INIA_Hyp_RMA_Ex-1110/experiment-design.rtf b/general/datasets/INIA_Hyp_RMA_Ex-1110/experiment-design.rtf new file mode 100644 index 0000000..443af4a --- /dev/null +++ b/general/datasets/INIA_Hyp_RMA_Ex-1110/experiment-design.rtf @@ -0,0 +1,6 @@ +

    Hypothalamus was dissected from adult male and female mice and process for expression analysis.

    + +

    RNA isolation
    +Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + +

    This preliminary data set is associated with 430 eQTLs with LOD scores above 10. Peak LRS is 146 for Trait ID 10513604 (Hdhd3).

    diff --git a/general/datasets/INIA_Hyp_RMA_Ex-1110/platform.rtf b/general/datasets/INIA_Hyp_RMA_Ex-1110/platform.rtf new file mode 100644 index 0000000..aba2206 --- /dev/null +++ b/general/datasets/INIA_Hyp_RMA_Ex-1110/platform.rtf @@ -0,0 +1 @@ +

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version] (GPL6246)

    diff --git a/general/datasets/INIA_Hyp_RMA_Ex-1110/processing.rtf b/general/datasets/INIA_Hyp_RMA_Ex-1110/processing.rtf new file mode 100644 index 0000000..b3e8689 --- /dev/null +++ b/general/datasets/INIA_Hyp_RMA_Ex-1110/processing.rtf @@ -0,0 +1 @@ +

    Total RNA was processed using standard protocols and hybridized to the Affymetrix Mouse Gene 1.0 ST arrays4. This array contains 34,700 probe sets that target ∼29,000 well-defined transcripts (RefSeq mRNA isoforms). A single probe set is a collection of about 27 probes that target known exons within a single gene. The multiple probes design provides a more comprehensive cov-erage of transcripts from a single gene. Male and female samples were interleaved and processed together to avoid batch confounds. Details on the strain, age, and sex of each sample can be obtained from the information available for the INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) data set on www.genenetwork.org. Probe set level intensity values were extracted from the CEL files using the Affymetrix GeneChip Operating Software. Data nor-malization was performed using the R package “Affy” available from www.Bioconductor.org. The Robust Multichip Averaging protocol was used to process the expression values. The array data was then log transformed and rescaled using a z-scoring procedure to set the mean of each sample at eight expression units with a SD of 2 units. The entire data set can be down-loaded from www.genenetwork.org using the accession number GN281 (http://www.genenetwork.org/webqtl/main.py?FormID = sharinginfo&GN_AccessionId = 281) and also from the NIH Gene Expression Omnibus5 using the GEO accession number GSE36674. For this study we used a subset of cases that were repre-sented by both male and female samples – 78 sex-balanced arrays. Statistical power provided by this sample size (N = 39 strains) was estimated using the R function power.t.test6 with the SD set at 0.17, which is the average value. Only transcripts with above aver-age expression (minimum expression value above 8.5 on a log2 scale) were included for further analysis (17,192 probe sets). We used a two-tailed paired t -test to identify transcripts with signifi-cant expression difference between males and females. We applied the Benjamini and Hochberg false discovery rate (FDR) method and selected differentially expressed transcripts using a 10% FDR criterion.

    diff --git a/general/datasets/INIA_Hyp_RMA_Ex-1110/summary.rtf b/general/datasets/INIA_Hyp_RMA_Ex-1110/summary.rtf new file mode 100644 index 0000000..02671d5 --- /dev/null +++ b/general/datasets/INIA_Hyp_RMA_Ex-1110/summary.rtf @@ -0,0 +1,16 @@ +

    These hypothalamic gene expression data were generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from NIAAA. The data set includes samples from 50 strains, including 46 BXDs, both parental strains, and reciprocal F1 hybrids. Expression data were generated using the Affymetrix Mouse Gene 1.0 ST exon-style microarray (multiple probes in all known exons) by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. Hypothalamic tissue was dissected by K. Mozhui (description to follow) with special attention to time of day (every sample has time stamp). RNA was extracted by K. Mozhui. All other processing steps by the UTHSC MRC by L. Rose. Data were processed by Arthur Centeno.

    + +

    Data released initially Nov 25, 2010, updated March 7, 2011 by A. Centeno and K. Mozhui to add two additional arrays. Data appear to be error-free in terms of sex and strain assignments shown in the table below.

    + +

    Dissection protocol:

    + +
      +
    1. Animals were sacrificed by quick cervical dislocation and brains were removed and stored in RNAlater (www.ambion.com) for 2 to 3 days
    2. +
    3. Brain was placed with ventral side up and a partial cut was made with a blade at -2.5 from Bregma (just a little rostral from the pontine fibres when viewed from the ventral side)
    4. +
    5. The brain was then place in a coronal matrix and a 2 mm section was made rostral to the first cut
    6. +
    7. The 2mm Section was placed on a clean glass slide and hypothalamus was sliced out and placed in a tube on dry ice.
    8. +
    9. To dissect out the BLA, the temporal lobes were detached by placing a scalple in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then sliced out and placed in a tube on dry ice.
    10. +
    11. Tissues from two mice of the same strain and sex were pooled. The only exceptions to this are the BLA samples for strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue from only one animal).
    12. +
    + +

    The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a).Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estro-gen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromo-some paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

    diff --git a/general/datasets/INIA_Hyp_RMA_Ex_1110/acknowledgment.rtf b/general/datasets/INIA_Hyp_RMA_Ex_1110/acknowledgment.rtf deleted file mode 100644 index 2c3f2bd..0000000 --- a/general/datasets/INIA_Hyp_RMA_Ex_1110/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This work was supported by Integrative Neuroscience Initiative on Alcoholism grants U01AA13499, U01AA017590, U01AA0016662. The authors are also grateful to Arthur Centeno and Lorne Rose, and the Molecular Resource Center at UTHSC.

    diff --git a/general/datasets/INIA_Hyp_RMA_Ex_1110/cases.rtf b/general/datasets/INIA_Hyp_RMA_Ex_1110/cases.rtf deleted file mode 100644 index f19e9c8..0000000 --- a/general/datasets/INIA_Hyp_RMA_Ex_1110/cases.rtf +++ /dev/null @@ -1,916 +0,0 @@ -

    The BXD recombinant inbred strains are derived from crossing the C57BL/6J (B6) and DBA/2J (D2) parental strains and inbreeding for over 20 generations (Taylor et al., 1999; Peirce et al., 2004). All mice used in this study were born and housed at the University of Tennessee Health Science Center. Mice were kept at an average of 3–4 per cage in a temperature-controlled vivarium (22 deg C) and maintained at a 12 h light/dark cycle. All animal protocols were approved by the Animal Care and Use Committee. We studied a total of 50 BXD strains, but only acquired matched male–female data pairs for 39 strains (35 BXD strains, parental B6 and D2, and two reciprocal F1 hybrids, B6D2F1 and D2B6F1). The average age of mice was 78 days. We provide more detail on the experimen-tal design and precise age and time of sacrifice of all cases at stored in 4 deg C for 2–3 days. To dissect the hypothalamus, the brain was placed with the ventral side facing up in a coronal "brain cutting" matrix. Using the medial mammillary body as landmark, a vertical cut was made right along the posterior boundary of the hypothala-mus. A second vertical cut was made 2 mm from the first cut. This edge lies slightly caudal to the optic chiasm and cuts through the retrochiasmatic nucleus. The hypothalamus was then sliced out from this 2 mm thick section. Each of the 39 mouse strains is represented by male and female samples (total of 78 microarray samples). Each individual sample consisted of tissue pooled from two mice of the same strain and sex that are usually littermates. The total number of mice used was 78 females and 78 males. RNA was purified using the RNAeasy micro kit on the QIAcube system (Qiagen)2. RNA purity and concen-tration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    - - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
    1R6854HYPHypC57BL/6J77F8/18/108:45AM to 12:30 PM
    2R6862HYPHypC57BL/6J77M8/18/108:45AM to 12:30 PM
    3R6852HYPHypD2B6F177F8/18/108:45AM to 12:30 PM
    4R6860HYPHypD2B6F177M8/18/108:45AM to 12:30 PM
    5R6864HYPHypDBA/2J77F8/18/108:45AM to 12:30 PM
    6R6866HYPHypDBA/2J68M8/18/108:45AM to 12:30 PM
    7R6858HYPHypB6D2F169F8/18/108:45AM to 12:30 PM
    8R6856HYPHypB6D2F169M8/18/108:45AM to 12:30 PM
    9R6800HYPHypBXD171F8/17/101:15 PM to 5 PM
    10R6796HYPHypBXD185M8/17/101:15 PM to 5 PM
    11R6788HYPHypBXD1187F8/17/101:15 PM to 5 PM
    12R6786HYPHypBXD1176M8/17/101:15 PM to 5 PM
    13R6806HYPHypBXD1277M8/17/101:15 PM to 5 PM
    14R6812HYPHypBXD1481F8/18/108:45AM to 12:30 PM
    15R6804HYPHypBXD2485F8/17/101:15 PM to 5 PM
    16R6792HYPHypBXD2775F8/17/101:15 PM to 5 PM
    17R6790HYPHypBXD2773M8/17/101:15 PM to 5 PM
    18R6798HYPHypBXD2971F8/17/101:15 PM to 5 PM
    19R6794HYPHypBXD2971M8/17/101:15 PM to 5 PM
    20R6816HYPHypBXD3174F8/18/108:45AM to 12:30 PM
    21R6802HYPHypBXD3173M8/17/101:15 PM to 5 PM
    22R6916HYPHypBXD3281F8/18/101 PM to 6:45 PM
    23R6846HYPHypBXD3281M8/18/108:45AM to 12:30 PM
    24R6822HYPHypBXD3477F8/18/108:45AM to 12:30 PM
    25R6808HYPHypBXD3477M8/18/108:45AM to 12:30 PM
    26R6814HYPHypBXD3979M8/18/108:45AM to 12:30 PM
    27R6848HYPHypBXD4085F8/18/108:45AM to 12:30 PM
    28R6850HYPHypBXD4085M8/18/108:45AM to 12:30 PM
    29R6810HYPHypBXD4287F8/18/108:45AM to 12:30 PM
    30R6758HYPHypBXD4381M8/17/109:30 AM to 12:30AM
    31R6746HYPHypBXD4483F8/17/109:30 AM to 12:30AM
    32R6750HYPHypBXD4483M8/17/109:30 AM to 12:30AM
    33R6764HYPHypBXD4577F8/17/109:30 AM to 12:30AM
    34R6762HYPHypBXD4577M8/17/109:30 AM to 12:30AM
    35R6880HYPHypBXD4876F8/18/101 PM to 6:45 PM
    36R6882HYPHypBXD4876M8/18/101 PM to 6:45 PM
    37R6748HYPHypBXD4984M8/17/109:30 AM to 12:30AM
    38R6890HYPHypBXD5077F8/18/101 PM to 6:45 PM
    39R6892HYPHypBXD5077M8/18/101 PM to 6:45 PM
    40R6918HYPHypBXD5684F8/18/101 PM to 6:45 PM
    41R6894HYPHypBXD5677M8/18/101 PM to 6:45 PM
    42R6770HYPHypBXD6070F8/17/109:30 AM to 12:30AM
    43R6772HYPHypBXD6070M8/17/101:15 PM to 5 PM
    44R6836HYPHypBXD6283F8/18/108:45AM to 12:30 PM
    45R6844HYPHypBXD6283M8/18/108:45AM to 12:30 PM
    46R6888HYPHypBXD6377F8/18/101 PM to 6:45 PM
    47R6878HYPHypBXD6584F8/18/101 PM to 6:45 PM
    48R6874HYPHypBXD6584M8/18/101 PM to 6:45 PM
    49R6930HYPHypBXD6876F8/18/101 PM to 6:45 PM
    50R6932HYPHypBXD6876M8/18/101 PM to 6:45 PM
    51R6776HYPHypBXD6969F8/17/101:15 PM to 5 PM
    52R6774HYPHypBXD6980M8/17/101:15 PM to 5 PM
    53R6926HYPHypBXD7076F8/18/101 PM to 6:45 PM
    54R6922HYPHypBXD7076M8/18/101 PM to 6:45 PM
    55R6870HYPHypBXD7176F8/18/101 PM to 6:45 PM
    56R6872HYPHypBXD7176M8/18/101 PM to 6:45 PM
    57R6778HYPHypBXD7383F8/17/101:15 PM to 5 PM
    58R6780HYPHypBXD7383M8/17/101:15 PM to 5 PM
    59R6838HYPHypBXD7576F8/18/108:45AM to 12:30 PM
    60R6830HYPHypBXD7576M8/18/108:45AM to 12:30 PM
    61R6934HYPHypBXD7987F8/18/101 PM to 6:45 PM
    62R6782HYPHypBXD8073F8/17/101:15 PM to 5 PM
    63R6784HYPHypBXD8073M8/17/101:15 PM to 5 PM
    64R6914HYPHypBXD8381F8/18/101 PM to 6:45 PM
    65R6912HYPHypBXD8381M8/18/101 PM to 6:45 PM
    66R6834HYPHypBXD8476M8/18/108:45AM to 12:30 PM
    67R6938HYPHypBXD8574F8/18/101 PM to 6:45 PM
    68R6940HYPHypBXD8574M8/18/101 PM to 6:45 PM
    69R6910HYPHypBXD8783F8/18/101 PM to 6:45 PM
    70R6908HYPHypBXD8783M8/18/101 PM to 6:45 PM
    71R6896HYPHypBXD8982F8/18/101 PM to 6:45 PM
    72R6898HYPHypBXD8982M8/18/101 PM to 6:45 PM
    73R6904HYPHypBXD9082F8/18/101 PM to 6:45 PM
    74R6906HYPHypBXD9082M8/18/101 PM to 6:45 PM
    75R6924HYPHypBXD9286F8/18/101 PM to 6:45 PM
    76R6928HYPHypBXD9289M8/18/101 PM to 6:45 PM
    77R6920HYPHypBXD9576F8/18/101 PM to 6:45 PM
    78R6868HYPHypBXD9576M8/18/108:45AM to 12:30 PM
    79R6900HYPHypBXD9771F8/18/101 PM to 6:45 PM
    80R6902HYPHypBXD9771M8/18/101 PM to 6:45 PM
    81R6876HYPHypBXD9977F8/18/101 PM to 6:45 PM
    82R6884HYPHypBXD9977M8/18/101 PM to 6:45 PM
    83R6840HYPHypBXD10083F8/18/108:45AM to 12:30 PM
    84R6832HYPHypBXD10083M8/18/108:45AM to 12:30 PM
    85R6944HYPHypBXD10189F8/18/101 PM to 6:45 PM
    86R6942HYPHypBXD10189M8/18/101 PM to 6:45 PM
    87R6756HYPHypBXD10288M8/17/109:30 AM to 12:30AM
    88R6768HYPHypBXD10378F8/17/109:30 AM to 12:30AM
    89R6766HYPHypBXD10378M8/17/109:30 AM to 12:30AM
    -
    - -

     

    diff --git a/general/datasets/INIA_Hyp_RMA_Ex_1110/experiment-design.rtf b/general/datasets/INIA_Hyp_RMA_Ex_1110/experiment-design.rtf deleted file mode 100644 index 443af4a..0000000 --- a/general/datasets/INIA_Hyp_RMA_Ex_1110/experiment-design.rtf +++ /dev/null @@ -1,6 +0,0 @@ -

    Hypothalamus was dissected from adult male and female mice and process for expression analysis.

    - -

    RNA isolation
    -Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    - -

    This preliminary data set is associated with 430 eQTLs with LOD scores above 10. Peak LRS is 146 for Trait ID 10513604 (Hdhd3).

    diff --git a/general/datasets/INIA_Hyp_RMA_Ex_1110/platform.rtf b/general/datasets/INIA_Hyp_RMA_Ex_1110/platform.rtf deleted file mode 100644 index aba2206..0000000 --- a/general/datasets/INIA_Hyp_RMA_Ex_1110/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version] (GPL6246)

    diff --git a/general/datasets/INIA_Hyp_RMA_Ex_1110/processing.rtf b/general/datasets/INIA_Hyp_RMA_Ex_1110/processing.rtf deleted file mode 100644 index b3e8689..0000000 --- a/general/datasets/INIA_Hyp_RMA_Ex_1110/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Total RNA was processed using standard protocols and hybridized to the Affymetrix Mouse Gene 1.0 ST arrays4. This array contains 34,700 probe sets that target ∼29,000 well-defined transcripts (RefSeq mRNA isoforms). A single probe set is a collection of about 27 probes that target known exons within a single gene. The multiple probes design provides a more comprehensive cov-erage of transcripts from a single gene. Male and female samples were interleaved and processed together to avoid batch confounds. Details on the strain, age, and sex of each sample can be obtained from the information available for the INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) data set on www.genenetwork.org. Probe set level intensity values were extracted from the CEL files using the Affymetrix GeneChip Operating Software. Data nor-malization was performed using the R package “Affy” available from www.Bioconductor.org. The Robust Multichip Averaging protocol was used to process the expression values. The array data was then log transformed and rescaled using a z-scoring procedure to set the mean of each sample at eight expression units with a SD of 2 units. The entire data set can be down-loaded from www.genenetwork.org using the accession number GN281 (http://www.genenetwork.org/webqtl/main.py?FormID = sharinginfo&GN_AccessionId = 281) and also from the NIH Gene Expression Omnibus5 using the GEO accession number GSE36674. For this study we used a subset of cases that were repre-sented by both male and female samples – 78 sex-balanced arrays. Statistical power provided by this sample size (N = 39 strains) was estimated using the R function power.t.test6 with the SD set at 0.17, which is the average value. Only transcripts with above aver-age expression (minimum expression value above 8.5 on a log2 scale) were included for further analysis (17,192 probe sets). We used a two-tailed paired t -test to identify transcripts with signifi-cant expression difference between males and females. We applied the Benjamini and Hochberg false discovery rate (FDR) method and selected differentially expressed transcripts using a 10% FDR criterion.

    diff --git a/general/datasets/INIA_Hyp_RMA_Ex_1110/summary.rtf b/general/datasets/INIA_Hyp_RMA_Ex_1110/summary.rtf deleted file mode 100644 index 02671d5..0000000 --- a/general/datasets/INIA_Hyp_RMA_Ex_1110/summary.rtf +++ /dev/null @@ -1,16 +0,0 @@ -

    These hypothalamic gene expression data were generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from NIAAA. The data set includes samples from 50 strains, including 46 BXDs, both parental strains, and reciprocal F1 hybrids. Expression data were generated using the Affymetrix Mouse Gene 1.0 ST exon-style microarray (multiple probes in all known exons) by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. Hypothalamic tissue was dissected by K. Mozhui (description to follow) with special attention to time of day (every sample has time stamp). RNA was extracted by K. Mozhui. All other processing steps by the UTHSC MRC by L. Rose. Data were processed by Arthur Centeno.

    - -

    Data released initially Nov 25, 2010, updated March 7, 2011 by A. Centeno and K. Mozhui to add two additional arrays. Data appear to be error-free in terms of sex and strain assignments shown in the table below.

    - -

    Dissection protocol:

    - -
      -
    1. Animals were sacrificed by quick cervical dislocation and brains were removed and stored in RNAlater (www.ambion.com) for 2 to 3 days
    2. -
    3. Brain was placed with ventral side up and a partial cut was made with a blade at -2.5 from Bregma (just a little rostral from the pontine fibres when viewed from the ventral side)
    4. -
    5. The brain was then place in a coronal matrix and a 2 mm section was made rostral to the first cut
    6. -
    7. The 2mm Section was placed on a clean glass slide and hypothalamus was sliced out and placed in a tube on dry ice.
    8. -
    9. To dissect out the BLA, the temporal lobes were detached by placing a scalple in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then sliced out and placed in a tube on dry ice.
    10. -
    11. Tissues from two mice of the same strain and sex were pooled. The only exceptions to this are the BLA samples for strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue from only one animal).
    12. -
    - -

    The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a).Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estro-gen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromo-some paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

    diff --git a/general/datasets/INIA_LCMB_1215/acknowledgment.rtf b/general/datasets/INIA_LCMB_1215/acknowledgment.rtf deleted file mode 100644 index 8b7d4ad..0000000 --- a/general/datasets/INIA_LCMB_1215/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Thanks to NIH NIAAA and funding support was provided by INIA grants U01AA013499 and U01AA06662.

    diff --git a/general/datasets/INIA_LCMB_1215/cases.rtf b/general/datasets/INIA_LCMB_1215/cases.rtf deleted file mode 100644 index 4d95e2a..0000000 --- a/general/datasets/INIA_LCMB_1215/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Male C57BL/6J and DBA/2J mice (10 weeks old upon arrival) were purchased from the Jackson Laboratory and assigned to either baseline untreated control (BAS), the air control (AIR), or CIE group. Mice were individually housed with free access to food (Harland Teklad, Madison, WI) and water throughout all phases of the experiments. Body weights were recorded weekly during ethanol-drinking weeks or daily during chronic intermittent ethanol (CIE) or air exposure (detailed below). Mice were housed in a temperature- and humidity-controlled an- imal facility under a reversed 12-h light/dark cycle (lights on at 0200 h). Mice were not food- or water-deprived at any time during the study. All procedures were approved by the Institutional Ani- mal Care and Use Committee at the Medical University of South Carolina (MUSC). Brain tissue was removed at MUSC and shipped to UTHSC for laser capture microdissection (LCM).

    diff --git a/general/datasets/INIA_LCMB_1215/platform.rtf b/general/datasets/INIA_LCMB_1215/platform.rtf deleted file mode 100644 index 25cb790..0000000 --- a/general/datasets/INIA_LCMB_1215/platform.rtf +++ /dev/null @@ -1,11 +0,0 @@ -

     

    - -

     

    - -

    (Updated Dec 9, 2015 by AC and RW)

    - -

    Annotation data for transcripts and genes were downloaded from ENSEMBL by Arthur Centeno, December 2015. We downloaded the entire transcript database at http://useast.ensembl.org/Mus_musculus/Info/Index.

    - -

    The positions of transcripts and genes on the mouse assembly are version GRCm38.p4 (mm10 equivalent). However, we converted all chromosome coordinates to the mm9 assembly to be consistent with all other GN1 data sets. However, for some sequences, mostly on Chr Y and the mitochondrial genome, the values are mm10 equivalent (we had no corresponding mm9 values).

    - -

    We also extracted sequence data corresponding to the transcripts whenever these data were available. However in some cases we do not have sequence data at all.

    diff --git a/general/datasets/INIA_LCMB_1215/processing.rtf b/general/datasets/INIA_LCMB_1215/processing.rtf deleted file mode 100644 index f04ab87..0000000 --- a/general/datasets/INIA_LCMB_1215/processing.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    RNA from tissue trapped in the CapSure LCM caps was extracted using the PicoPure RNA isolation kit (Life Technologies) according to the manufacturer's instructions (RNA was eluted from provided capture columns in 13.5-mL nuclease-free water). RNA quality was analyzed using a Bioanalyzer (Model 100, Agilent, Foster City, CA). Samples with an associated RNA integrity number (RIN) greater than 6 were subsequently used for RNA sequencing.

    - -

     

    - -

    Poly-A enriched mRNA was sequenced on two platforms, ABI SOLID 550XL Wildfire (65 samples) and Ion Proton (39 samples). Read length was 50 nt for the SOLID system and the average read length for the Proton system was ~180 nt. Reads generated on the SOLID system were aligned to the mm10 reference genome using the LifeScope aligner, and BAM files were subsequently generated using custom scripts for third-party downstream analysis. For the Proton system, reads were also aligned to the mm10 (Ensemble GRCm38) reference genome using TopHat2. Settings for TopHat2 are as follows: “-p 15 -N 4 –read-gap-length 6 –read-edit-dist 8 –max-insertion-length 6 –max-deletion-length 6 –max-intron-length 300000 –b2-very-sensitive”. Alignments on both platforms were splice-aware. RSeQC-2.6.1 (RPKM_count.py) was used to generate count data based on mm10 GENECODE Basic transcript annotation (43,320 transcripts detected). We selected this annotation for greater reproducibility with existing microarray data sets and to simplify downstream analysis by limiting the number of transcript models for each gene. On average, 2.5 million and 7.8 million reads uniquely aligned to transcript models on the SOLID and Proton platforms, respectively. Data were further filtered to remove tran- scripts that had less than 1 count in 90% or more samples. After filtering, 24,597 transcripts representing 12,011 unique genes remained (Supplemental Table 1). The variance stabilizing trans- form (R package DESeq2, FitType 1⁄4 local) was applied to the count data, and transformed data were corrected by dividing by transcript length to generate log2 reads per kilobase gene model (RPK) values. The use of two different sequencing platforms was corrected using batch correction (ComBat, Supplemental Fig. 3). All data filtering, transformations, and batch correction were performed using custom R scripts. Batch-corrected and transformed log2 RPK and log2 count values are available in Supplemental Tables 2 and 3, and log2 RPK data are also available at GeneNetwork [http://www. genenetwork.org/webqtl/main.py?FormID1⁄4sharinginfo&GN_ AccessionId1⁄4772; Group 1⁄4 Chronic Intermittent Ethanol, Type 1⁄4 LCM Brain Regions mRNA, Data set 1⁄4 INIA LCM (11 Regions) CIE/AIR RNA-seq Transcript Level (Dec15)].

    diff --git a/general/datasets/INIA_LCMB_1215/summary.rtf b/general/datasets/INIA_LCMB_1215/summary.rtf deleted file mode 100644 index 45d122d..0000000 --- a/general/datasets/INIA_LCMB_1215/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This dataset is open. Please contact Dr. Megan K. Mulligan (mmulliga@uthsc.edu) or Dr. Robert W. Williams (rwilliams@uthsc.edu) if you need more information or low-level data access.

    diff --git a/general/datasets/INIA_LCMB_1215/tissue.rtf b/general/datasets/INIA_LCMB_1215/tissue.rtf deleted file mode 100644 index 6a51951..0000000 --- a/general/datasets/INIA_LCMB_1215/tissue.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    Whole brain tissue was sectioned at 10 mm using a Leica cryostat and mounted in series with 6e8 sections per slide onto uncharged and uncoated glass slides. Mounted sections were dehydrated in 100% methanol (90 s), 70% ethanol (1 min), 95% ethanol (1 min), 100% ethanol (1 min  2), xylene (5 min). Slides were then allowed to air dry for 10 min under a fume hood.

    - -

    Series were created from distinct coronal sections (bregma po- sitions based on a C57BL/6J reference brain atlas) and individual regions were matched across section and harvested by LCM (Supplemental Fig. 2). Prelimbic (PrL) and infralimbic (ILC) cortex included a series spanning from bregma 1.98 to 1.54 mm. The accumbens core (NAc) and shell (NAs) series were collected from bregma 1.54 to 0.98 mm, and dorsolateral (DLS) and dorsomedial (DMS) striatum and bed nucleus stria terminalis (BST) were collected from bregma 0.38 to 0.10 mm. Basolateral (BLA) and central nucleus (CeA) of the amygdala series were collected from bregma 0.58 to 1.22 mm and hippocampus (CA1 and CA3) was collected from bregma 1.46 to 2.46 mm. Finally, the ventral tegmental area (VTA) and primary visual cortex (VCX) series were collected from bregma 3.28 to 3.80 mm.

    - -

    Arcturus XT (Life Technologies) was used to capture 13 brain areas. The infrared laser was then used to capture the tissue onto CapSure LCM caps (Life Technologies, laser spot power set to 70 mV with a duration of 25 msec).

    diff --git a/general/datasets/INIA_LCM_1215/acknowledgment.rtf b/general/datasets/INIA_LCM_1215/acknowledgment.rtf deleted file mode 100644 index 8b7d4ad..0000000 --- a/general/datasets/INIA_LCM_1215/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Thanks to NIH NIAAA and funding support was provided by INIA grants U01AA013499 and U01AA06662.

    diff --git a/general/datasets/INIA_LCM_1215/cases.rtf b/general/datasets/INIA_LCM_1215/cases.rtf deleted file mode 100644 index 4d95e2a..0000000 --- a/general/datasets/INIA_LCM_1215/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Male C57BL/6J and DBA/2J mice (10 weeks old upon arrival) were purchased from the Jackson Laboratory and assigned to either baseline untreated control (BAS), the air control (AIR), or CIE group. Mice were individually housed with free access to food (Harland Teklad, Madison, WI) and water throughout all phases of the experiments. Body weights were recorded weekly during ethanol-drinking weeks or daily during chronic intermittent ethanol (CIE) or air exposure (detailed below). Mice were housed in a temperature- and humidity-controlled an- imal facility under a reversed 12-h light/dark cycle (lights on at 0200 h). Mice were not food- or water-deprived at any time during the study. All procedures were approved by the Institutional Ani- mal Care and Use Committee at the Medical University of South Carolina (MUSC). Brain tissue was removed at MUSC and shipped to UTHSC for laser capture microdissection (LCM).

    diff --git a/general/datasets/INIA_LCM_1215/platform.rtf b/general/datasets/INIA_LCM_1215/platform.rtf deleted file mode 100644 index 25cb790..0000000 --- a/general/datasets/INIA_LCM_1215/platform.rtf +++ /dev/null @@ -1,11 +0,0 @@ -

     

    - -

     

    - -

    (Updated Dec 9, 2015 by AC and RW)

    - -

    Annotation data for transcripts and genes were downloaded from ENSEMBL by Arthur Centeno, December 2015. We downloaded the entire transcript database at http://useast.ensembl.org/Mus_musculus/Info/Index.

    - -

    The positions of transcripts and genes on the mouse assembly are version GRCm38.p4 (mm10 equivalent). However, we converted all chromosome coordinates to the mm9 assembly to be consistent with all other GN1 data sets. However, for some sequences, mostly on Chr Y and the mitochondrial genome, the values are mm10 equivalent (we had no corresponding mm9 values).

    - -

    We also extracted sequence data corresponding to the transcripts whenever these data were available. However in some cases we do not have sequence data at all.

    diff --git a/general/datasets/INIA_LCM_1215/processing.rtf b/general/datasets/INIA_LCM_1215/processing.rtf deleted file mode 100644 index f04ab87..0000000 --- a/general/datasets/INIA_LCM_1215/processing.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    RNA from tissue trapped in the CapSure LCM caps was extracted using the PicoPure RNA isolation kit (Life Technologies) according to the manufacturer's instructions (RNA was eluted from provided capture columns in 13.5-mL nuclease-free water). RNA quality was analyzed using a Bioanalyzer (Model 100, Agilent, Foster City, CA). Samples with an associated RNA integrity number (RIN) greater than 6 were subsequently used for RNA sequencing.

    - -

     

    - -

    Poly-A enriched mRNA was sequenced on two platforms, ABI SOLID 550XL Wildfire (65 samples) and Ion Proton (39 samples). Read length was 50 nt for the SOLID system and the average read length for the Proton system was ~180 nt. Reads generated on the SOLID system were aligned to the mm10 reference genome using the LifeScope aligner, and BAM files were subsequently generated using custom scripts for third-party downstream analysis. For the Proton system, reads were also aligned to the mm10 (Ensemble GRCm38) reference genome using TopHat2. Settings for TopHat2 are as follows: “-p 15 -N 4 –read-gap-length 6 –read-edit-dist 8 –max-insertion-length 6 –max-deletion-length 6 –max-intron-length 300000 –b2-very-sensitive”. Alignments on both platforms were splice-aware. RSeQC-2.6.1 (RPKM_count.py) was used to generate count data based on mm10 GENECODE Basic transcript annotation (43,320 transcripts detected). We selected this annotation for greater reproducibility with existing microarray data sets and to simplify downstream analysis by limiting the number of transcript models for each gene. On average, 2.5 million and 7.8 million reads uniquely aligned to transcript models on the SOLID and Proton platforms, respectively. Data were further filtered to remove tran- scripts that had less than 1 count in 90% or more samples. After filtering, 24,597 transcripts representing 12,011 unique genes remained (Supplemental Table 1). The variance stabilizing trans- form (R package DESeq2, FitType 1⁄4 local) was applied to the count data, and transformed data were corrected by dividing by transcript length to generate log2 reads per kilobase gene model (RPK) values. The use of two different sequencing platforms was corrected using batch correction (ComBat, Supplemental Fig. 3). All data filtering, transformations, and batch correction were performed using custom R scripts. Batch-corrected and transformed log2 RPK and log2 count values are available in Supplemental Tables 2 and 3, and log2 RPK data are also available at GeneNetwork [http://www. genenetwork.org/webqtl/main.py?FormID1⁄4sharinginfo&GN_ AccessionId1⁄4772; Group 1⁄4 Chronic Intermittent Ethanol, Type 1⁄4 LCM Brain Regions mRNA, Data set 1⁄4 INIA LCM (11 Regions) CIE/AIR RNA-seq Transcript Level (Dec15)].

    diff --git a/general/datasets/INIA_LCM_1215/summary.rtf b/general/datasets/INIA_LCM_1215/summary.rtf deleted file mode 100644 index 45d122d..0000000 --- a/general/datasets/INIA_LCM_1215/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This dataset is open. Please contact Dr. Megan K. Mulligan (mmulliga@uthsc.edu) or Dr. Robert W. Williams (rwilliams@uthsc.edu) if you need more information or low-level data access.

    diff --git a/general/datasets/INIA_LCM_1215/tissue.rtf b/general/datasets/INIA_LCM_1215/tissue.rtf deleted file mode 100644 index 6a51951..0000000 --- a/general/datasets/INIA_LCM_1215/tissue.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    Whole brain tissue was sectioned at 10 mm using a Leica cryostat and mounted in series with 6e8 sections per slide onto uncharged and uncoated glass slides. Mounted sections were dehydrated in 100% methanol (90 s), 70% ethanol (1 min), 95% ethanol (1 min), 100% ethanol (1 min  2), xylene (5 min). Slides were then allowed to air dry for 10 min under a fume hood.

    - -

    Series were created from distinct coronal sections (bregma po- sitions based on a C57BL/6J reference brain atlas) and individual regions were matched across section and harvested by LCM (Supplemental Fig. 2). Prelimbic (PrL) and infralimbic (ILC) cortex included a series spanning from bregma 1.98 to 1.54 mm. The accumbens core (NAc) and shell (NAs) series were collected from bregma 1.54 to 0.98 mm, and dorsolateral (DLS) and dorsomedial (DMS) striatum and bed nucleus stria terminalis (BST) were collected from bregma 0.38 to 0.10 mm. Basolateral (BLA) and central nucleus (CeA) of the amygdala series were collected from bregma 0.58 to 1.22 mm and hippocampus (CA1 and CA3) was collected from bregma 1.46 to 2.46 mm. Finally, the ventral tegmental area (VTA) and primary visual cortex (VCX) series were collected from bregma 3.28 to 3.80 mm.

    - -

    Arcturus XT (Life Technologies) was used to capture 13 brain areas. The infrared laser was then used to capture the tissue onto CapSure LCM caps (Life Technologies, laser spot power set to 70 mV with a duration of 25 msec).

    diff --git a/general/datasets/INIA_LCM_CAB_1215/acknowledgment.rtf b/general/datasets/INIA_LCM_CAB_1215/acknowledgment.rtf deleted file mode 100644 index 8b7d4ad..0000000 --- a/general/datasets/INIA_LCM_CAB_1215/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Thanks to NIH NIAAA and funding support was provided by INIA grants U01AA013499 and U01AA06662.

    diff --git a/general/datasets/INIA_LCM_CAB_1215/cases.rtf b/general/datasets/INIA_LCM_CAB_1215/cases.rtf deleted file mode 100644 index 4d95e2a..0000000 --- a/general/datasets/INIA_LCM_CAB_1215/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Male C57BL/6J and DBA/2J mice (10 weeks old upon arrival) were purchased from the Jackson Laboratory and assigned to either baseline untreated control (BAS), the air control (AIR), or CIE group. Mice were individually housed with free access to food (Harland Teklad, Madison, WI) and water throughout all phases of the experiments. Body weights were recorded weekly during ethanol-drinking weeks or daily during chronic intermittent ethanol (CIE) or air exposure (detailed below). Mice were housed in a temperature- and humidity-controlled an- imal facility under a reversed 12-h light/dark cycle (lights on at 0200 h). Mice were not food- or water-deprived at any time during the study. All procedures were approved by the Institutional Ani- mal Care and Use Committee at the Medical University of South Carolina (MUSC). Brain tissue was removed at MUSC and shipped to UTHSC for laser capture microdissection (LCM).

    diff --git a/general/datasets/INIA_LCM_CAB_1215/platform.rtf b/general/datasets/INIA_LCM_CAB_1215/platform.rtf deleted file mode 100644 index 25cb790..0000000 --- a/general/datasets/INIA_LCM_CAB_1215/platform.rtf +++ /dev/null @@ -1,11 +0,0 @@ -

     

    - -

     

    - -

    (Updated Dec 9, 2015 by AC and RW)

    - -

    Annotation data for transcripts and genes were downloaded from ENSEMBL by Arthur Centeno, December 2015. We downloaded the entire transcript database at http://useast.ensembl.org/Mus_musculus/Info/Index.

    - -

    The positions of transcripts and genes on the mouse assembly are version GRCm38.p4 (mm10 equivalent). However, we converted all chromosome coordinates to the mm9 assembly to be consistent with all other GN1 data sets. However, for some sequences, mostly on Chr Y and the mitochondrial genome, the values are mm10 equivalent (we had no corresponding mm9 values).

    - -

    We also extracted sequence data corresponding to the transcripts whenever these data were available. However in some cases we do not have sequence data at all.

    diff --git a/general/datasets/INIA_LCM_CAB_1215/processing.rtf b/general/datasets/INIA_LCM_CAB_1215/processing.rtf deleted file mode 100644 index f04ab87..0000000 --- a/general/datasets/INIA_LCM_CAB_1215/processing.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    RNA from tissue trapped in the CapSure LCM caps was extracted using the PicoPure RNA isolation kit (Life Technologies) according to the manufacturer's instructions (RNA was eluted from provided capture columns in 13.5-mL nuclease-free water). RNA quality was analyzed using a Bioanalyzer (Model 100, Agilent, Foster City, CA). Samples with an associated RNA integrity number (RIN) greater than 6 were subsequently used for RNA sequencing.

    - -

     

    - -

    Poly-A enriched mRNA was sequenced on two platforms, ABI SOLID 550XL Wildfire (65 samples) and Ion Proton (39 samples). Read length was 50 nt for the SOLID system and the average read length for the Proton system was ~180 nt. Reads generated on the SOLID system were aligned to the mm10 reference genome using the LifeScope aligner, and BAM files were subsequently generated using custom scripts for third-party downstream analysis. For the Proton system, reads were also aligned to the mm10 (Ensemble GRCm38) reference genome using TopHat2. Settings for TopHat2 are as follows: “-p 15 -N 4 –read-gap-length 6 –read-edit-dist 8 –max-insertion-length 6 –max-deletion-length 6 –max-intron-length 300000 –b2-very-sensitive”. Alignments on both platforms were splice-aware. RSeQC-2.6.1 (RPKM_count.py) was used to generate count data based on mm10 GENECODE Basic transcript annotation (43,320 transcripts detected). We selected this annotation for greater reproducibility with existing microarray data sets and to simplify downstream analysis by limiting the number of transcript models for each gene. On average, 2.5 million and 7.8 million reads uniquely aligned to transcript models on the SOLID and Proton platforms, respectively. Data were further filtered to remove tran- scripts that had less than 1 count in 90% or more samples. After filtering, 24,597 transcripts representing 12,011 unique genes remained (Supplemental Table 1). The variance stabilizing trans- form (R package DESeq2, FitType 1⁄4 local) was applied to the count data, and transformed data were corrected by dividing by transcript length to generate log2 reads per kilobase gene model (RPK) values. The use of two different sequencing platforms was corrected using batch correction (ComBat, Supplemental Fig. 3). All data filtering, transformations, and batch correction were performed using custom R scripts. Batch-corrected and transformed log2 RPK and log2 count values are available in Supplemental Tables 2 and 3, and log2 RPK data are also available at GeneNetwork [http://www. genenetwork.org/webqtl/main.py?FormID1⁄4sharinginfo&GN_ AccessionId1⁄4772; Group 1⁄4 Chronic Intermittent Ethanol, Type 1⁄4 LCM Brain Regions mRNA, Data set 1⁄4 INIA LCM (11 Regions) CIE/AIR RNA-seq Transcript Level (Dec15)].

    diff --git a/general/datasets/INIA_LCM_CAB_1215/specifics.rtf b/general/datasets/INIA_LCM_CAB_1215/specifics.rtf deleted file mode 100644 index 61a050f..0000000 --- a/general/datasets/INIA_LCM_CAB_1215/specifics.rtf +++ /dev/null @@ -1,17 +0,0 @@ -

    Published in Alcohol 2017:

    - -

     

    - -

     2017 Feb;58:61-72. doi: 10.1016/j.alcohol.2016.09.001. Epub 2016 Oct 15.

    - -

    Genetic divergence in the transcriptional engram of chronic alcohol abuse: A laser-capture RNA-seq study of the mouse mesocorticolimbic system.

    - -

    Mulligan MK1, Mozhui K2, Pandey AK2, Smith ML3, Gong S2, Ingels J2, Miles MF3, Lopez MF4, Lu L2, Williams RW2.

    - -

    - -

    Abstract

    - -

    Genetic factors that influence the transition from initial drinking to dependence remain enigmatic. Recent studies have leveraged chronic intermittent ethanol (CIE) paradigms to measure changes in brain gene expression in a single strain at 0, 8, 72 h, and even 7 days following CIE. We extend these findings using LCM RNA-seq to profile expression in 11 brain regions in two inbred strains - C57BL/6J (B6) and DBA/2J (D2) - 72 h following multiple cycles of ethanol self-administration and CIE. Linear models identified differential expression based on treatment, region, strain, or interactions with treatment. Nearly 40% of genes showed a robust effect (FDR < 0.01) of region, and hippocampus CA1, cortex, bed nucleus stria terminalis, and nucleus accumbens core had the highest number of differentially expressed genes after treatment. Another 8% of differentially expressed genes demonstrated a robust effect of strain. As expected, based on similar studies in B6, treatment had a much smaller impact on expression; only 72 genes (p < 0.01) are modulated by treatment (independent of region or strain). Strikingly, many more genes (415) show a strain-specific and largely opposite response to treatment and are enriched in processes related to RNA metabolism, transcription factor activity, and mitochondrial function. Over 3 times as many changes in gene expression were detected in D2 compared to B6, and weighted gene co-expression network analysis (WGCNA) module comparison identified more modules enriched for treatment effects in D2. Substantial strain differences exist in the temporal pattern of transcriptional neuroadaptation to CIE, and these may drive individual differences in risk of addiction following excessive alcohol consumption.

    - -

    PMID:27894806;  PMCID:PMC5450909; DOI:10.1016/j.alcohol.2016.09.001

    diff --git a/general/datasets/INIA_LCM_CAB_1215/summary.rtf b/general/datasets/INIA_LCM_CAB_1215/summary.rtf deleted file mode 100644 index 45d122d..0000000 --- a/general/datasets/INIA_LCM_CAB_1215/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This dataset is open. Please contact Dr. Megan K. Mulligan (mmulliga@uthsc.edu) or Dr. Robert W. Williams (rwilliams@uthsc.edu) if you need more information or low-level data access.

    diff --git a/general/datasets/INIA_LCM_CAB_1215/tissue.rtf b/general/datasets/INIA_LCM_CAB_1215/tissue.rtf deleted file mode 100644 index 6a51951..0000000 --- a/general/datasets/INIA_LCM_CAB_1215/tissue.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    Whole brain tissue was sectioned at 10 mm using a Leica cryostat and mounted in series with 6e8 sections per slide onto uncharged and uncoated glass slides. Mounted sections were dehydrated in 100% methanol (90 s), 70% ethanol (1 min), 95% ethanol (1 min), 100% ethanol (1 min  2), xylene (5 min). Slides were then allowed to air dry for 10 min under a fume hood.

    - -

    Series were created from distinct coronal sections (bregma po- sitions based on a C57BL/6J reference brain atlas) and individual regions were matched across section and harvested by LCM (Supplemental Fig. 2). Prelimbic (PrL) and infralimbic (ILC) cortex included a series spanning from bregma 1.98 to 1.54 mm. The accumbens core (NAc) and shell (NAs) series were collected from bregma 1.54 to 0.98 mm, and dorsolateral (DLS) and dorsomedial (DMS) striatum and bed nucleus stria terminalis (BST) were collected from bregma 0.38 to 0.10 mm. Basolateral (BLA) and central nucleus (CeA) of the amygdala series were collected from bregma 0.58 to 1.22 mm and hippocampus (CA1 and CA3) was collected from bregma 1.46 to 2.46 mm. Finally, the ventral tegmental area (VTA) and primary visual cortex (VCX) series were collected from bregma 3.28 to 3.80 mm.

    - -

    Arcturus XT (Life Technologies) was used to capture 13 brain areas. The infrared laser was then used to capture the tissue onto CapSure LCM caps (Life Technologies, laser spot power set to 70 mV with a duration of 25 msec).

    diff --git a/general/datasets/INIA_PG_RMA_0612/acknowledgment.rtf b/general/datasets/INIA_PG_RMA_0612/acknowledgment.rtf deleted file mode 100644 index f8bf764..0000000 --- a/general/datasets/INIA_PG_RMA_0612/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    NIAAA U01 support to RWW.

    diff --git a/general/datasets/INIA_PG_RMA_0612/cases.rtf b/general/datasets/INIA_PG_RMA_0612/cases.rtf deleted file mode 100644 index faf8ab0..0000000 --- a/general/datasets/INIA_PG_RMA_0612/cases.rtf +++ /dev/null @@ -1,840 +0,0 @@ -

    Young adult mice raised in specific pathogen-free vivarium at UTHSC.

    - -

    ERROR CHECKING by Mozhui, Centeno and Roy: The changes have been applied in GeneNetwork (GN389 - Pituitary) as follow:

    - -

    SampleId - New Strain Assignment
    -R7087P (was BXD101) = BXD100
    -R7138P_RW170 (was BXD85) = BXD95
    -R7156P (was C57BL/6J) = B6D2F1
    -R7141P = BXD65

    - -

     

    - - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexSample IDStrainTissueAgeSex
    1R7128PB6D2F1Pituitary69F
    2R7156PB6D2F1Pituitary92M
    3R7129PB6D2F1Pituitary69M
    4R7134PD2B6F1Pituitary77F
    5R7133PD2B6F1Pituitary77M
    6R7160PC57BL/6JPituitary92F
    7R7127PC57BL/6JPituitary77M
    8R7126PDBA/2JPituitary77F
    9R7157PDBA/2JPituitary75F
    10R7125PDBA/2JPituitary68M
    11R7155PDBA/2JPituitary75M
    12R7058PBXD1Pituitary72F
    13R7063PBXD1Pituitary86M
    14R7079PBXD11Pituitary87F
    15R7069PBXD11Pituitary76M
    16R7051PBXD12Pituitary78F
    17R7061PBXD12Pituitary78M
    18R7064PBXD14Pituitary81F
    19R7066PBXD14Pituitary81M
    20R7052PBXD24Pituitary86M
    21R7076PBXD27Pituitary76F
    22R7071PBXD27Pituitary73M
    23R7059PBXD29Pituitary72F
    24R7060PBXD29Pituitary72M
    25R7055PBXD31Pituitary74F
    26R7062PBXD31Pituitary74M
    27R7143PBXD32Pituitary81F
    28R7135PBXD32Pituitary81M
    29R7119PBXD34Pituitary77F
    30R7054PBXD34Pituitary77M
    31R7049PBXD39Pituitary79F
    32R7065PBXD39Pituitary79M
    33R7130PBXD40Pituitary85F
    34R7132PBXD40Pituitary85M
    35R7056PBXD42Pituitary87F
    36R7044PBXD42Pituitary87M
    37R7043PBXD43Pituitary81F
    38R7047PBXD43Pituitary81M
    39R7091PBXD44Pituitary83F
    40R7050PBXD44Pituitary83M
    41R7077PBXD45Pituitary77F
    42R7078PBXD45Pituitary77F
    43R7042PBXD45Pituitary77F
    44R7092PBXD48Pituitary76F
    45R7093PBXD48Pituitary76M
    46R7045PBXD49Pituitary84F
    47R7094PBXD49Pituitary84M
    48R7095PBXD50Pituitary77F
    49R7096PBXD50Pituitary77M
    50R7142PBXD56Pituitary84F
    51R7097PBXD56Pituitary77M
    52R7080PBXD60Pituitary70F
    53R7141P_RW204BXD60Pituitary76M
    54R7075PBXD62Pituitary83F
    55R7083PBXD62Pituitary83M
    56R7084PBXD62Pituitary83M
    57R7098PBXD63Pituitary77F
    58R7100PBXD65Pituitary84M
    59R7120PBXD66Pituitary257M
    60R7140PBXD68Pituitary76F
    61R7101PBXD68Pituitary76M
    62R7074PBXD69Pituitary69F
    63R7139PBXD69Pituitary81M
    64R7141PBXD65Pituitary76F
    65R7137P_RW112BXD70Pituitary76M
    66R7124PBXD71Pituitary76F
    67R7123PBXD71Pituitary76M
    68R7068PBXD73Pituitary83M
    69R7118PBXD74Pituitary69F
    70R7117PBXD74Pituitary69M
    71R7082PBXD75Pituitary76F
    72R7048PBXD75Pituitary76M
    73R7122PBXD77Pituitary223M
    74R7103PBXD79Pituitary86F
    75R7104PBXD79Pituitary86M
    76R7073PBXD80Pituitary73F
    77R7070PBXD80Pituitary73M
    78R7139P_RW138BXD83Pituitary81F
    79R7137PBXD83Pituitary76M
    80R7085PBXD84Pituitary76F
    81R7081PBXD84Pituitary76M
    82R7105PBXD85Pituitary73M
    83R7144PBXD87Pituitary83F
    84R7136P_RW196BXD87Pituitary83M
    85R7106PBXD89Pituitary82F
    86R7107PBXD89Pituitary82M
    87R7108PBXD90Pituitary82F
    88R7109PBXD90Pituitary82M
    89R7138P_RW170BXD95Pituitary73F
    90R7111PBXD97Pituitary71F
    91R7112PBXD97Pituitary71M
    92R7113PBXD99Pituitary77F
    93R7114PBXD99Pituitary77M
    94R7072PBXD100Pituitary83F
    95R7087PBXD100Pituitary88F
    96R7086PBXD100Pituitary83M
    97R7088PBXD101Pituitary88M
    98R7053PBXD102Pituitary88F
    99R7046PBXD102Pituitary88M
    100R7090PBXD103Pituitary78F
    101R7067PBXD103Pituitary78M
    -
    diff --git a/general/datasets/INIA_PG_RMA_0612/experiment-design.rtf b/general/datasets/INIA_PG_RMA_0612/experiment-design.rtf deleted file mode 100644 index 13175b5..0000000 --- a/general/datasets/INIA_PG_RMA_0612/experiment-design.rtf +++ /dev/null @@ -1,10 +0,0 @@ -

    Normative expression in the whole pituitary of young adult mice. In general, a sex-balanced samples (one array from male cases, one array from female cases) for BXD and parental strains.

    - -

    QUALITY CONTROL DATA

    - -
      -
    1. 737 probe sets with LRS of 46 or higher (LOD>10)
    2. -
    3. Highest LRS = 165.7
    4. -
    5. Review of top Mendelian transcripts consist with correct strain assignment
    6. -
    7. Final sex assignment is correct
    8. -
    diff --git a/general/datasets/INIA_PG_RMA_0612/platform.rtf b/general/datasets/INIA_PG_RMA_0612/platform.rtf deleted file mode 100644 index 7057d48..0000000 --- a/general/datasets/INIA_PG_RMA_0612/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The GeneChip® Mouse Gene 1.0 ST Array is the latest product in the family of Affymetrix expression arrays offering whole-transcript coverage. Each of the 28,853 genes is represented on the array by approximately 27 probes spread across the full length of the gene, providing a more complete and more accurate picture of gene expression than 3'-based expression array designs. The small format of the array makes it a cost-effective expression profiling solution for new microarray users. Sense DNA targets are generated from as little as 100ng of total RNA. The Gene 1.0 ST Array is part of a complete solution for gene expression analysis that includes Whole Transcript (WT) Sense Target Labeling and Control Reagents, fluidics and scanning instrumentation and basic analysis software. The array contains the most up-to-date content of well-annotated genes, and data is analyzed using a simple workflow. The Gene 1.0 ST Array uses a subset of probes from the Mouse Exon 1.0 ST Array and covers only well-annotated content. Like the Exon 1.0 ST Array, "gene-level" analysis of multiple probes on different exons is summarized into an expression value representing all transcripts from the same gene.

    diff --git a/general/datasets/INIA_PG_RMA_0612/processing.rtf b/general/datasets/INIA_PG_RMA_0612/processing.rtf deleted file mode 100644 index 55aad2e..0000000 --- a/general/datasets/INIA_PG_RMA_0612/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Conventional Affymetrix gene level probe summarization (RMA) followed by log2 transformation and standard GeneNetwork variance stabilization (2z +8). The z scores are multiplied by 2 and we then add a value of 8 to all values. This eliminates negative values and results in a scale of expression for which 1 unit is roughly equivalent to a two fold absolute difference in mRNA concentration.

    diff --git a/general/datasets/INIA_PG_RMA_0612/summary.rtf b/general/datasets/INIA_PG_RMA_0612/summary.rtf deleted file mode 100644 index 14a715d..0000000 --- a/general/datasets/INIA_PG_RMA_0612/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Gene expression data for the whole pituitary across 52 strains of mice. Sex Balance: Sex of samples has been double-checked. As of July 2012, for 42 strains we have separate data for both males and females (usually one array each). Three strains (BXD45, 63, and 95) are only represented by female samples and two strains (BXD65 and BXD77) are only represented by male samples. Five other strains (BXD24, 66, 73, 85, 101) are may represent combined male and female samples. These unpublished data are apparently error-free based on a review and analysis of transcripts with Mendelian segregation patterns (as of July 20, 2012). The data set contains 751 eQTLs with LOD scores above 10 (LRS>46). Peak LRS of 165.9 for Record ID 10513604. Data for BXD70 are somewhat problematic (see 10444135 and 10467784), perhaps due to a bad array, strain assignment error, or residual heterozygozity. S Roy double-checked (July 22) and thinks that Sample R7141P is more likely to be BXD65.

    - -

    Part of a systematic genetic analysis of the hypothalamus-pituitary-adrenal axis in the BXD family of strains.

    diff --git a/general/datasets/INIA_PG_RMA_0612/tissue.rtf b/general/datasets/INIA_PG_RMA_0612/tissue.rtf deleted file mode 100644 index 3977f1e..0000000 --- a/general/datasets/INIA_PG_RMA_0612/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Whole pituitary gland dissected by hand. Dissections by Khyobeni Mozhui, Jesse Ingels, and Adrienne Adler at UTHSC.

    diff --git a/general/datasets/INIA_PG_RMA_Ex_0612/acknowledgment.rtf b/general/datasets/INIA_PG_RMA_Ex_0612/acknowledgment.rtf deleted file mode 100644 index f8bf764..0000000 --- a/general/datasets/INIA_PG_RMA_Ex_0612/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    NIAAA U01 support to RWW.

    diff --git a/general/datasets/INIA_PG_RMA_Ex_0612/cases.rtf b/general/datasets/INIA_PG_RMA_Ex_0612/cases.rtf deleted file mode 100644 index faf8ab0..0000000 --- a/general/datasets/INIA_PG_RMA_Ex_0612/cases.rtf +++ /dev/null @@ -1,840 +0,0 @@ -

    Young adult mice raised in specific pathogen-free vivarium at UTHSC.

    - -

    ERROR CHECKING by Mozhui, Centeno and Roy: The changes have been applied in GeneNetwork (GN389 - Pituitary) as follow:

    - -

    SampleId - New Strain Assignment
    -R7087P (was BXD101) = BXD100
    -R7138P_RW170 (was BXD85) = BXD95
    -R7156P (was C57BL/6J) = B6D2F1
    -R7141P = BXD65

    - -

     

    - - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexSample IDStrainTissueAgeSex
    1R7128PB6D2F1Pituitary69F
    2R7156PB6D2F1Pituitary92M
    3R7129PB6D2F1Pituitary69M
    4R7134PD2B6F1Pituitary77F
    5R7133PD2B6F1Pituitary77M
    6R7160PC57BL/6JPituitary92F
    7R7127PC57BL/6JPituitary77M
    8R7126PDBA/2JPituitary77F
    9R7157PDBA/2JPituitary75F
    10R7125PDBA/2JPituitary68M
    11R7155PDBA/2JPituitary75M
    12R7058PBXD1Pituitary72F
    13R7063PBXD1Pituitary86M
    14R7079PBXD11Pituitary87F
    15R7069PBXD11Pituitary76M
    16R7051PBXD12Pituitary78F
    17R7061PBXD12Pituitary78M
    18R7064PBXD14Pituitary81F
    19R7066PBXD14Pituitary81M
    20R7052PBXD24Pituitary86M
    21R7076PBXD27Pituitary76F
    22R7071PBXD27Pituitary73M
    23R7059PBXD29Pituitary72F
    24R7060PBXD29Pituitary72M
    25R7055PBXD31Pituitary74F
    26R7062PBXD31Pituitary74M
    27R7143PBXD32Pituitary81F
    28R7135PBXD32Pituitary81M
    29R7119PBXD34Pituitary77F
    30R7054PBXD34Pituitary77M
    31R7049PBXD39Pituitary79F
    32R7065PBXD39Pituitary79M
    33R7130PBXD40Pituitary85F
    34R7132PBXD40Pituitary85M
    35R7056PBXD42Pituitary87F
    36R7044PBXD42Pituitary87M
    37R7043PBXD43Pituitary81F
    38R7047PBXD43Pituitary81M
    39R7091PBXD44Pituitary83F
    40R7050PBXD44Pituitary83M
    41R7077PBXD45Pituitary77F
    42R7078PBXD45Pituitary77F
    43R7042PBXD45Pituitary77F
    44R7092PBXD48Pituitary76F
    45R7093PBXD48Pituitary76M
    46R7045PBXD49Pituitary84F
    47R7094PBXD49Pituitary84M
    48R7095PBXD50Pituitary77F
    49R7096PBXD50Pituitary77M
    50R7142PBXD56Pituitary84F
    51R7097PBXD56Pituitary77M
    52R7080PBXD60Pituitary70F
    53R7141P_RW204BXD60Pituitary76M
    54R7075PBXD62Pituitary83F
    55R7083PBXD62Pituitary83M
    56R7084PBXD62Pituitary83M
    57R7098PBXD63Pituitary77F
    58R7100PBXD65Pituitary84M
    59R7120PBXD66Pituitary257M
    60R7140PBXD68Pituitary76F
    61R7101PBXD68Pituitary76M
    62R7074PBXD69Pituitary69F
    63R7139PBXD69Pituitary81M
    64R7141PBXD65Pituitary76F
    65R7137P_RW112BXD70Pituitary76M
    66R7124PBXD71Pituitary76F
    67R7123PBXD71Pituitary76M
    68R7068PBXD73Pituitary83M
    69R7118PBXD74Pituitary69F
    70R7117PBXD74Pituitary69M
    71R7082PBXD75Pituitary76F
    72R7048PBXD75Pituitary76M
    73R7122PBXD77Pituitary223M
    74R7103PBXD79Pituitary86F
    75R7104PBXD79Pituitary86M
    76R7073PBXD80Pituitary73F
    77R7070PBXD80Pituitary73M
    78R7139P_RW138BXD83Pituitary81F
    79R7137PBXD83Pituitary76M
    80R7085PBXD84Pituitary76F
    81R7081PBXD84Pituitary76M
    82R7105PBXD85Pituitary73M
    83R7144PBXD87Pituitary83F
    84R7136P_RW196BXD87Pituitary83M
    85R7106PBXD89Pituitary82F
    86R7107PBXD89Pituitary82M
    87R7108PBXD90Pituitary82F
    88R7109PBXD90Pituitary82M
    89R7138P_RW170BXD95Pituitary73F
    90R7111PBXD97Pituitary71F
    91R7112PBXD97Pituitary71M
    92R7113PBXD99Pituitary77F
    93R7114PBXD99Pituitary77M
    94R7072PBXD100Pituitary83F
    95R7087PBXD100Pituitary88F
    96R7086PBXD100Pituitary83M
    97R7088PBXD101Pituitary88M
    98R7053PBXD102Pituitary88F
    99R7046PBXD102Pituitary88M
    100R7090PBXD103Pituitary78F
    101R7067PBXD103Pituitary78M
    -
    diff --git a/general/datasets/INIA_PG_RMA_Ex_0612/experiment-design.rtf b/general/datasets/INIA_PG_RMA_Ex_0612/experiment-design.rtf deleted file mode 100644 index 13175b5..0000000 --- a/general/datasets/INIA_PG_RMA_Ex_0612/experiment-design.rtf +++ /dev/null @@ -1,10 +0,0 @@ -

    Normative expression in the whole pituitary of young adult mice. In general, a sex-balanced samples (one array from male cases, one array from female cases) for BXD and parental strains.

    - -

    QUALITY CONTROL DATA

    - -
      -
    1. 737 probe sets with LRS of 46 or higher (LOD>10)
    2. -
    3. Highest LRS = 165.7
    4. -
    5. Review of top Mendelian transcripts consist with correct strain assignment
    6. -
    7. Final sex assignment is correct
    8. -
    diff --git a/general/datasets/INIA_PG_RMA_Ex_0612/platform.rtf b/general/datasets/INIA_PG_RMA_Ex_0612/platform.rtf deleted file mode 100644 index 7057d48..0000000 --- a/general/datasets/INIA_PG_RMA_Ex_0612/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The GeneChip® Mouse Gene 1.0 ST Array is the latest product in the family of Affymetrix expression arrays offering whole-transcript coverage. Each of the 28,853 genes is represented on the array by approximately 27 probes spread across the full length of the gene, providing a more complete and more accurate picture of gene expression than 3'-based expression array designs. The small format of the array makes it a cost-effective expression profiling solution for new microarray users. Sense DNA targets are generated from as little as 100ng of total RNA. The Gene 1.0 ST Array is part of a complete solution for gene expression analysis that includes Whole Transcript (WT) Sense Target Labeling and Control Reagents, fluidics and scanning instrumentation and basic analysis software. The array contains the most up-to-date content of well-annotated genes, and data is analyzed using a simple workflow. The Gene 1.0 ST Array uses a subset of probes from the Mouse Exon 1.0 ST Array and covers only well-annotated content. Like the Exon 1.0 ST Array, "gene-level" analysis of multiple probes on different exons is summarized into an expression value representing all transcripts from the same gene.

    diff --git a/general/datasets/INIA_PG_RMA_Ex_0612/processing.rtf b/general/datasets/INIA_PG_RMA_Ex_0612/processing.rtf deleted file mode 100644 index 55aad2e..0000000 --- a/general/datasets/INIA_PG_RMA_Ex_0612/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Conventional Affymetrix gene level probe summarization (RMA) followed by log2 transformation and standard GeneNetwork variance stabilization (2z +8). The z scores are multiplied by 2 and we then add a value of 8 to all values. This eliminates negative values and results in a scale of expression for which 1 unit is roughly equivalent to a two fold absolute difference in mRNA concentration.

    diff --git a/general/datasets/INIA_PG_RMA_Ex_0612/summary.rtf b/general/datasets/INIA_PG_RMA_Ex_0612/summary.rtf deleted file mode 100644 index 14a715d..0000000 --- a/general/datasets/INIA_PG_RMA_Ex_0612/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Gene expression data for the whole pituitary across 52 strains of mice. Sex Balance: Sex of samples has been double-checked. As of July 2012, for 42 strains we have separate data for both males and females (usually one array each). Three strains (BXD45, 63, and 95) are only represented by female samples and two strains (BXD65 and BXD77) are only represented by male samples. Five other strains (BXD24, 66, 73, 85, 101) are may represent combined male and female samples. These unpublished data are apparently error-free based on a review and analysis of transcripts with Mendelian segregation patterns (as of July 20, 2012). The data set contains 751 eQTLs with LOD scores above 10 (LRS>46). Peak LRS of 165.9 for Record ID 10513604. Data for BXD70 are somewhat problematic (see 10444135 and 10467784), perhaps due to a bad array, strain assignment error, or residual heterozygozity. S Roy double-checked (July 22) and thinks that Sample R7141P is more likely to be BXD65.

    - -

    Part of a systematic genetic analysis of the hypothalamus-pituitary-adrenal axis in the BXD family of strains.

    diff --git a/general/datasets/INIA_PG_RMA_Ex_0612/tissue.rtf b/general/datasets/INIA_PG_RMA_Ex_0612/tissue.rtf deleted file mode 100644 index 3977f1e..0000000 --- a/general/datasets/INIA_PG_RMA_Ex_0612/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Whole pituitary gland dissected by hand. Dissections by Khyobeni Mozhui, Jesse Ingels, and Adrienne Adler at UTHSC.

    diff --git a/general/datasets/INIA_Pituitary_RMA_F_0612/acknowledgment.rtf b/general/datasets/INIA_Pituitary_RMA_F_0612/acknowledgment.rtf deleted file mode 100644 index f8bf764..0000000 --- a/general/datasets/INIA_Pituitary_RMA_F_0612/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    NIAAA U01 support to RWW.

    diff --git a/general/datasets/INIA_Pituitary_RMA_F_0612/cases.rtf b/general/datasets/INIA_Pituitary_RMA_F_0612/cases.rtf deleted file mode 100644 index faf8ab0..0000000 --- a/general/datasets/INIA_Pituitary_RMA_F_0612/cases.rtf +++ /dev/null @@ -1,840 +0,0 @@ -

    Young adult mice raised in specific pathogen-free vivarium at UTHSC.

    - -

    ERROR CHECKING by Mozhui, Centeno and Roy: The changes have been applied in GeneNetwork (GN389 - Pituitary) as follow:

    - -

    SampleId - New Strain Assignment
    -R7087P (was BXD101) = BXD100
    -R7138P_RW170 (was BXD85) = BXD95
    -R7156P (was C57BL/6J) = B6D2F1
    -R7141P = BXD65

    - -

     

    - - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexSample IDStrainTissueAgeSex
    1R7128PB6D2F1Pituitary69F
    2R7156PB6D2F1Pituitary92M
    3R7129PB6D2F1Pituitary69M
    4R7134PD2B6F1Pituitary77F
    5R7133PD2B6F1Pituitary77M
    6R7160PC57BL/6JPituitary92F
    7R7127PC57BL/6JPituitary77M
    8R7126PDBA/2JPituitary77F
    9R7157PDBA/2JPituitary75F
    10R7125PDBA/2JPituitary68M
    11R7155PDBA/2JPituitary75M
    12R7058PBXD1Pituitary72F
    13R7063PBXD1Pituitary86M
    14R7079PBXD11Pituitary87F
    15R7069PBXD11Pituitary76M
    16R7051PBXD12Pituitary78F
    17R7061PBXD12Pituitary78M
    18R7064PBXD14Pituitary81F
    19R7066PBXD14Pituitary81M
    20R7052PBXD24Pituitary86M
    21R7076PBXD27Pituitary76F
    22R7071PBXD27Pituitary73M
    23R7059PBXD29Pituitary72F
    24R7060PBXD29Pituitary72M
    25R7055PBXD31Pituitary74F
    26R7062PBXD31Pituitary74M
    27R7143PBXD32Pituitary81F
    28R7135PBXD32Pituitary81M
    29R7119PBXD34Pituitary77F
    30R7054PBXD34Pituitary77M
    31R7049PBXD39Pituitary79F
    32R7065PBXD39Pituitary79M
    33R7130PBXD40Pituitary85F
    34R7132PBXD40Pituitary85M
    35R7056PBXD42Pituitary87F
    36R7044PBXD42Pituitary87M
    37R7043PBXD43Pituitary81F
    38R7047PBXD43Pituitary81M
    39R7091PBXD44Pituitary83F
    40R7050PBXD44Pituitary83M
    41R7077PBXD45Pituitary77F
    42R7078PBXD45Pituitary77F
    43R7042PBXD45Pituitary77F
    44R7092PBXD48Pituitary76F
    45R7093PBXD48Pituitary76M
    46R7045PBXD49Pituitary84F
    47R7094PBXD49Pituitary84M
    48R7095PBXD50Pituitary77F
    49R7096PBXD50Pituitary77M
    50R7142PBXD56Pituitary84F
    51R7097PBXD56Pituitary77M
    52R7080PBXD60Pituitary70F
    53R7141P_RW204BXD60Pituitary76M
    54R7075PBXD62Pituitary83F
    55R7083PBXD62Pituitary83M
    56R7084PBXD62Pituitary83M
    57R7098PBXD63Pituitary77F
    58R7100PBXD65Pituitary84M
    59R7120PBXD66Pituitary257M
    60R7140PBXD68Pituitary76F
    61R7101PBXD68Pituitary76M
    62R7074PBXD69Pituitary69F
    63R7139PBXD69Pituitary81M
    64R7141PBXD65Pituitary76F
    65R7137P_RW112BXD70Pituitary76M
    66R7124PBXD71Pituitary76F
    67R7123PBXD71Pituitary76M
    68R7068PBXD73Pituitary83M
    69R7118PBXD74Pituitary69F
    70R7117PBXD74Pituitary69M
    71R7082PBXD75Pituitary76F
    72R7048PBXD75Pituitary76M
    73R7122PBXD77Pituitary223M
    74R7103PBXD79Pituitary86F
    75R7104PBXD79Pituitary86M
    76R7073PBXD80Pituitary73F
    77R7070PBXD80Pituitary73M
    78R7139P_RW138BXD83Pituitary81F
    79R7137PBXD83Pituitary76M
    80R7085PBXD84Pituitary76F
    81R7081PBXD84Pituitary76M
    82R7105PBXD85Pituitary73M
    83R7144PBXD87Pituitary83F
    84R7136P_RW196BXD87Pituitary83M
    85R7106PBXD89Pituitary82F
    86R7107PBXD89Pituitary82M
    87R7108PBXD90Pituitary82F
    88R7109PBXD90Pituitary82M
    89R7138P_RW170BXD95Pituitary73F
    90R7111PBXD97Pituitary71F
    91R7112PBXD97Pituitary71M
    92R7113PBXD99Pituitary77F
    93R7114PBXD99Pituitary77M
    94R7072PBXD100Pituitary83F
    95R7087PBXD100Pituitary88F
    96R7086PBXD100Pituitary83M
    97R7088PBXD101Pituitary88M
    98R7053PBXD102Pituitary88F
    99R7046PBXD102Pituitary88M
    100R7090PBXD103Pituitary78F
    101R7067PBXD103Pituitary78M
    -
    diff --git a/general/datasets/INIA_Pituitary_RMA_F_0612/experiment-design.rtf b/general/datasets/INIA_Pituitary_RMA_F_0612/experiment-design.rtf deleted file mode 100644 index 13175b5..0000000 --- a/general/datasets/INIA_Pituitary_RMA_F_0612/experiment-design.rtf +++ /dev/null @@ -1,10 +0,0 @@ -

    Normative expression in the whole pituitary of young adult mice. In general, a sex-balanced samples (one array from male cases, one array from female cases) for BXD and parental strains.

    - -

    QUALITY CONTROL DATA

    - -
      -
    1. 737 probe sets with LRS of 46 or higher (LOD>10)
    2. -
    3. Highest LRS = 165.7
    4. -
    5. Review of top Mendelian transcripts consist with correct strain assignment
    6. -
    7. Final sex assignment is correct
    8. -
    diff --git a/general/datasets/INIA_Pituitary_RMA_F_0612/platform.rtf b/general/datasets/INIA_Pituitary_RMA_F_0612/platform.rtf deleted file mode 100644 index 7057d48..0000000 --- a/general/datasets/INIA_Pituitary_RMA_F_0612/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The GeneChip® Mouse Gene 1.0 ST Array is the latest product in the family of Affymetrix expression arrays offering whole-transcript coverage. Each of the 28,853 genes is represented on the array by approximately 27 probes spread across the full length of the gene, providing a more complete and more accurate picture of gene expression than 3'-based expression array designs. The small format of the array makes it a cost-effective expression profiling solution for new microarray users. Sense DNA targets are generated from as little as 100ng of total RNA. The Gene 1.0 ST Array is part of a complete solution for gene expression analysis that includes Whole Transcript (WT) Sense Target Labeling and Control Reagents, fluidics and scanning instrumentation and basic analysis software. The array contains the most up-to-date content of well-annotated genes, and data is analyzed using a simple workflow. The Gene 1.0 ST Array uses a subset of probes from the Mouse Exon 1.0 ST Array and covers only well-annotated content. Like the Exon 1.0 ST Array, "gene-level" analysis of multiple probes on different exons is summarized into an expression value representing all transcripts from the same gene.

    diff --git a/general/datasets/INIA_Pituitary_RMA_F_0612/processing.rtf b/general/datasets/INIA_Pituitary_RMA_F_0612/processing.rtf deleted file mode 100644 index 55aad2e..0000000 --- a/general/datasets/INIA_Pituitary_RMA_F_0612/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Conventional Affymetrix gene level probe summarization (RMA) followed by log2 transformation and standard GeneNetwork variance stabilization (2z +8). The z scores are multiplied by 2 and we then add a value of 8 to all values. This eliminates negative values and results in a scale of expression for which 1 unit is roughly equivalent to a two fold absolute difference in mRNA concentration.

    diff --git a/general/datasets/INIA_Pituitary_RMA_F_0612/summary.rtf b/general/datasets/INIA_Pituitary_RMA_F_0612/summary.rtf deleted file mode 100644 index 14a715d..0000000 --- a/general/datasets/INIA_Pituitary_RMA_F_0612/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Gene expression data for the whole pituitary across 52 strains of mice. Sex Balance: Sex of samples has been double-checked. As of July 2012, for 42 strains we have separate data for both males and females (usually one array each). Three strains (BXD45, 63, and 95) are only represented by female samples and two strains (BXD65 and BXD77) are only represented by male samples. Five other strains (BXD24, 66, 73, 85, 101) are may represent combined male and female samples. These unpublished data are apparently error-free based on a review and analysis of transcripts with Mendelian segregation patterns (as of July 20, 2012). The data set contains 751 eQTLs with LOD scores above 10 (LRS>46). Peak LRS of 165.9 for Record ID 10513604. Data for BXD70 are somewhat problematic (see 10444135 and 10467784), perhaps due to a bad array, strain assignment error, or residual heterozygozity. S Roy double-checked (July 22) and thinks that Sample R7141P is more likely to be BXD65.

    - -

    Part of a systematic genetic analysis of the hypothalamus-pituitary-adrenal axis in the BXD family of strains.

    diff --git a/general/datasets/INIA_Pituitary_RMA_F_0612/tissue.rtf b/general/datasets/INIA_Pituitary_RMA_F_0612/tissue.rtf deleted file mode 100644 index 3977f1e..0000000 --- a/general/datasets/INIA_Pituitary_RMA_F_0612/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Whole pituitary gland dissected by hand. Dissections by Khyobeni Mozhui, Jesse Ingels, and Adrienne Adler at UTHSC.

    diff --git a/general/datasets/INIA_Pituitary_RMA_M_0612/acknowledgment.rtf b/general/datasets/INIA_Pituitary_RMA_M_0612/acknowledgment.rtf deleted file mode 100644 index f8bf764..0000000 --- a/general/datasets/INIA_Pituitary_RMA_M_0612/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    NIAAA U01 support to RWW.

    diff --git a/general/datasets/INIA_Pituitary_RMA_M_0612/cases.rtf b/general/datasets/INIA_Pituitary_RMA_M_0612/cases.rtf deleted file mode 100644 index faf8ab0..0000000 --- a/general/datasets/INIA_Pituitary_RMA_M_0612/cases.rtf +++ /dev/null @@ -1,840 +0,0 @@ -

    Young adult mice raised in specific pathogen-free vivarium at UTHSC.

    - -

    ERROR CHECKING by Mozhui, Centeno and Roy: The changes have been applied in GeneNetwork (GN389 - Pituitary) as follow:

    - -

    SampleId - New Strain Assignment
    -R7087P (was BXD101) = BXD100
    -R7138P_RW170 (was BXD85) = BXD95
    -R7156P (was C57BL/6J) = B6D2F1
    -R7141P = BXD65

    - -

     

    - - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexSample IDStrainTissueAgeSex
    1R7128PB6D2F1Pituitary69F
    2R7156PB6D2F1Pituitary92M
    3R7129PB6D2F1Pituitary69M
    4R7134PD2B6F1Pituitary77F
    5R7133PD2B6F1Pituitary77M
    6R7160PC57BL/6JPituitary92F
    7R7127PC57BL/6JPituitary77M
    8R7126PDBA/2JPituitary77F
    9R7157PDBA/2JPituitary75F
    10R7125PDBA/2JPituitary68M
    11R7155PDBA/2JPituitary75M
    12R7058PBXD1Pituitary72F
    13R7063PBXD1Pituitary86M
    14R7079PBXD11Pituitary87F
    15R7069PBXD11Pituitary76M
    16R7051PBXD12Pituitary78F
    17R7061PBXD12Pituitary78M
    18R7064PBXD14Pituitary81F
    19R7066PBXD14Pituitary81M
    20R7052PBXD24Pituitary86M
    21R7076PBXD27Pituitary76F
    22R7071PBXD27Pituitary73M
    23R7059PBXD29Pituitary72F
    24R7060PBXD29Pituitary72M
    25R7055PBXD31Pituitary74F
    26R7062PBXD31Pituitary74M
    27R7143PBXD32Pituitary81F
    28R7135PBXD32Pituitary81M
    29R7119PBXD34Pituitary77F
    30R7054PBXD34Pituitary77M
    31R7049PBXD39Pituitary79F
    32R7065PBXD39Pituitary79M
    33R7130PBXD40Pituitary85F
    34R7132PBXD40Pituitary85M
    35R7056PBXD42Pituitary87F
    36R7044PBXD42Pituitary87M
    37R7043PBXD43Pituitary81F
    38R7047PBXD43Pituitary81M
    39R7091PBXD44Pituitary83F
    40R7050PBXD44Pituitary83M
    41R7077PBXD45Pituitary77F
    42R7078PBXD45Pituitary77F
    43R7042PBXD45Pituitary77F
    44R7092PBXD48Pituitary76F
    45R7093PBXD48Pituitary76M
    46R7045PBXD49Pituitary84F
    47R7094PBXD49Pituitary84M
    48R7095PBXD50Pituitary77F
    49R7096PBXD50Pituitary77M
    50R7142PBXD56Pituitary84F
    51R7097PBXD56Pituitary77M
    52R7080PBXD60Pituitary70F
    53R7141P_RW204BXD60Pituitary76M
    54R7075PBXD62Pituitary83F
    55R7083PBXD62Pituitary83M
    56R7084PBXD62Pituitary83M
    57R7098PBXD63Pituitary77F
    58R7100PBXD65Pituitary84M
    59R7120PBXD66Pituitary257M
    60R7140PBXD68Pituitary76F
    61R7101PBXD68Pituitary76M
    62R7074PBXD69Pituitary69F
    63R7139PBXD69Pituitary81M
    64R7141PBXD65Pituitary76F
    65R7137P_RW112BXD70Pituitary76M
    66R7124PBXD71Pituitary76F
    67R7123PBXD71Pituitary76M
    68R7068PBXD73Pituitary83M
    69R7118PBXD74Pituitary69F
    70R7117PBXD74Pituitary69M
    71R7082PBXD75Pituitary76F
    72R7048PBXD75Pituitary76M
    73R7122PBXD77Pituitary223M
    74R7103PBXD79Pituitary86F
    75R7104PBXD79Pituitary86M
    76R7073PBXD80Pituitary73F
    77R7070PBXD80Pituitary73M
    78R7139P_RW138BXD83Pituitary81F
    79R7137PBXD83Pituitary76M
    80R7085PBXD84Pituitary76F
    81R7081PBXD84Pituitary76M
    82R7105PBXD85Pituitary73M
    83R7144PBXD87Pituitary83F
    84R7136P_RW196BXD87Pituitary83M
    85R7106PBXD89Pituitary82F
    86R7107PBXD89Pituitary82M
    87R7108PBXD90Pituitary82F
    88R7109PBXD90Pituitary82M
    89R7138P_RW170BXD95Pituitary73F
    90R7111PBXD97Pituitary71F
    91R7112PBXD97Pituitary71M
    92R7113PBXD99Pituitary77F
    93R7114PBXD99Pituitary77M
    94R7072PBXD100Pituitary83F
    95R7087PBXD100Pituitary88F
    96R7086PBXD100Pituitary83M
    97R7088PBXD101Pituitary88M
    98R7053PBXD102Pituitary88F
    99R7046PBXD102Pituitary88M
    100R7090PBXD103Pituitary78F
    101R7067PBXD103Pituitary78M
    -
    diff --git a/general/datasets/INIA_Pituitary_RMA_M_0612/experiment-design.rtf b/general/datasets/INIA_Pituitary_RMA_M_0612/experiment-design.rtf deleted file mode 100644 index 13175b5..0000000 --- a/general/datasets/INIA_Pituitary_RMA_M_0612/experiment-design.rtf +++ /dev/null @@ -1,10 +0,0 @@ -

    Normative expression in the whole pituitary of young adult mice. In general, a sex-balanced samples (one array from male cases, one array from female cases) for BXD and parental strains.

    - -

    QUALITY CONTROL DATA

    - -
      -
    1. 737 probe sets with LRS of 46 or higher (LOD>10)
    2. -
    3. Highest LRS = 165.7
    4. -
    5. Review of top Mendelian transcripts consist with correct strain assignment
    6. -
    7. Final sex assignment is correct
    8. -
    diff --git a/general/datasets/INIA_Pituitary_RMA_M_0612/platform.rtf b/general/datasets/INIA_Pituitary_RMA_M_0612/platform.rtf deleted file mode 100644 index 7057d48..0000000 --- a/general/datasets/INIA_Pituitary_RMA_M_0612/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The GeneChip® Mouse Gene 1.0 ST Array is the latest product in the family of Affymetrix expression arrays offering whole-transcript coverage. Each of the 28,853 genes is represented on the array by approximately 27 probes spread across the full length of the gene, providing a more complete and more accurate picture of gene expression than 3'-based expression array designs. The small format of the array makes it a cost-effective expression profiling solution for new microarray users. Sense DNA targets are generated from as little as 100ng of total RNA. The Gene 1.0 ST Array is part of a complete solution for gene expression analysis that includes Whole Transcript (WT) Sense Target Labeling and Control Reagents, fluidics and scanning instrumentation and basic analysis software. The array contains the most up-to-date content of well-annotated genes, and data is analyzed using a simple workflow. The Gene 1.0 ST Array uses a subset of probes from the Mouse Exon 1.0 ST Array and covers only well-annotated content. Like the Exon 1.0 ST Array, "gene-level" analysis of multiple probes on different exons is summarized into an expression value representing all transcripts from the same gene.

    diff --git a/general/datasets/INIA_Pituitary_RMA_M_0612/processing.rtf b/general/datasets/INIA_Pituitary_RMA_M_0612/processing.rtf deleted file mode 100644 index 55aad2e..0000000 --- a/general/datasets/INIA_Pituitary_RMA_M_0612/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Conventional Affymetrix gene level probe summarization (RMA) followed by log2 transformation and standard GeneNetwork variance stabilization (2z +8). The z scores are multiplied by 2 and we then add a value of 8 to all values. This eliminates negative values and results in a scale of expression for which 1 unit is roughly equivalent to a two fold absolute difference in mRNA concentration.

    diff --git a/general/datasets/INIA_Pituitary_RMA_M_0612/summary.rtf b/general/datasets/INIA_Pituitary_RMA_M_0612/summary.rtf deleted file mode 100644 index 14a715d..0000000 --- a/general/datasets/INIA_Pituitary_RMA_M_0612/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Gene expression data for the whole pituitary across 52 strains of mice. Sex Balance: Sex of samples has been double-checked. As of July 2012, for 42 strains we have separate data for both males and females (usually one array each). Three strains (BXD45, 63, and 95) are only represented by female samples and two strains (BXD65 and BXD77) are only represented by male samples. Five other strains (BXD24, 66, 73, 85, 101) are may represent combined male and female samples. These unpublished data are apparently error-free based on a review and analysis of transcripts with Mendelian segregation patterns (as of July 20, 2012). The data set contains 751 eQTLs with LOD scores above 10 (LRS>46). Peak LRS of 165.9 for Record ID 10513604. Data for BXD70 are somewhat problematic (see 10444135 and 10467784), perhaps due to a bad array, strain assignment error, or residual heterozygozity. S Roy double-checked (July 22) and thinks that Sample R7141P is more likely to be BXD65.

    - -

    Part of a systematic genetic analysis of the hypothalamus-pituitary-adrenal axis in the BXD family of strains.

    diff --git a/general/datasets/INIA_Pituitary_RMA_M_0612/tissue.rtf b/general/datasets/INIA_Pituitary_RMA_M_0612/tissue.rtf deleted file mode 100644 index 3977f1e..0000000 --- a/general/datasets/INIA_Pituitary_RMA_M_0612/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Whole pituitary gland dissected by hand. Dissections by Khyobeni Mozhui, Jesse Ingels, and Adrienne Adler at UTHSC.

    diff --git a/general/datasets/INIA_UTHSC_Hip_AffyMTA1_May17/summary.rtf b/general/datasets/INIA_UTHSC_Hip_AffyMTA1_May17/summary.rtf deleted file mode 100644 index 153d98d..0000000 --- a/general/datasets/INIA_UTHSC_Hip_AffyMTA1_May17/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    In working progress...

    diff --git a/general/datasets/INIA_UTHSC_Mid_AffyMTA1_Apr17/cases.rtf b/general/datasets/INIA_UTHSC_Mid_AffyMTA1_Apr17/cases.rtf deleted file mode 100644 index 976f0ab..0000000 --- a/general/datasets/INIA_UTHSC_Mid_AffyMTA1_Apr17/cases.rtf +++ /dev/null @@ -1,857 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    MicroarrayIDMouse.IDStrainPyrazoleTimePointTreatmentPCA BatchDissectionBatchExtractionBatchConcentrationRIN
    MB112C57BL/6JPZ8hCIEBA1224.611  9.0
    MB250DBA/2JNO3dAIRBA1195.150   9.2
    MB32C57BL/6JPZ14dAIRBA1299.415  9.5
    MB460DBA/2JPZ7dAIRBA1300.033  7.6
    MB54C57BL/6JPZ14dCIEAA1249.226  7.2
    MB669DBA/2JPZ7dAIRAA1161.526  7.3
    MB78C57BL/6JPZ3dCIEBA1326.862  9.5
    MB841DBA/2JPZ8hAIRBA1352.559  7.9
    MB975DBA/2JPZ14dAIRBB1354.218  8.8
    MB1023C57BL/6JPZ3dAIRBB1280.396  9.6
    MB1149DBA/2JPZ3dAIRAB1180.312  7.2
    MB1258DBA/2JPZ3dCIEBB1225.072  NA
    MB1321C57BL/6JPZ14dCIEBC1299.623  7.4
    MB1463DBA/2JPZ3dCIEBC170.977  7.5
    MB1546DBA/2JPZ8hAIRBC1284.115  7.9
    MB1645DBA/2JPZ8hAIRBC1338.791  7.7
    MB1728C57BL/6JNO3dAIRBC1449.851  7.8
    MB1878DBA/2JPZ14dAIRBC1320.081  7.9
    MB1977DBA/2JPZ14dCIEBC1234.795  7.8
    MB2071DBA/2JPZ7dCIEBC1468.728  7.8
    MB2168DBA/2JPZ7dAIRBC1296.386  7.9
    MB2229C57BL/6JPZ8hCIEBC1398.481  8.0
    MB2367DBA/2JPZ7dCIEBA2275.813  7.8
    MB241C57BL/6JPZ8hAIRAA2132.589  6.8
    MB2514C57BL/6JNO3dCIEAA2189.666  7.9
    MB2642DBA/2JPZ8hCIEBA2310.878  9.4
    MB2755DBA/2JPZ3dCIEBA2211.576  9.0
    MB2873DBA/2JPZ7dCIEBA2287.696  7.6
    MB2948DBA/2JPZ3dAIRBA2317.532  7.8
    MB3061DBA/2JPZ7dAIRBB2294.808  7.8
    MB3120C57BL/6JPZ8hCIEBB2209.301  9.0
    MB3276DBA/2JPZ14dCIEAB2120.953  8.2
    MB335C57BL/6JPZ14dAIRBB2271.808  8.8
    MB3437C57BL/6JPZ7dCIEBB2289.261  8.0
    MB3519C57BL/6JPZ3dCIEBC2306.294  9.1
    MB3656DBA/2JPZ3dAIRBC2265.964  7.8
    MB3765DBA/2JNO3dCIEBC2259.741  9.2
    MB3880DBA/2JPZ14dAIRBC2371.000  8.0
    MB3931C57BL/6JPZ14dCIEBC2349.451  7.7
    MB4039C57BL/6JPZ7dAIRCC2403.083  8.9
    MB4162DBA/2JPZ3dCIECC2505.547  8.9
    MB4252DBA/2JPZ8hCIECC2441.549  8.8
    MB4351DBA/2JPZ3dAIRCC2519.427  8.8
    MB4435C57BL/6JNO3dAIRCA3772.361  8.8
    MB4572DBA/2JPZ14dAIRCA3598.185  8.9
    MB4632C57BL/6JPZ7dCIECA3824.974  8.7
    MB4774DBA/2JPZ14dCIECA3495.046  9.4
    MB4854DBA/2JPZ8hCIECA3667.036  9.4
    MB4924C57BL/6JPZ7dAIRCA3760.367  9.2
    MB509C57BL/6JPZ3dAIRCA3701.152  9.2
    MB5166DBA/2JNO3dCIECB3579.22  8.3
    MB5244DBA/2JPZ8hCIECB3636.091  9.4
    MB5334C57BL/6JPZ7dAIRCB3739.127  9.5
    MB547C57BL/6JPZ8hAIRCB3667.933  9.2
    MB5536C57BL/6JNO3dCIECC3605.937  9.2
    MB5643DBA/2JPZ8hAIRCC3639.161  9.5
    MB5770DBA/2JPZ7dCIECC3630.735  9.4
    MB5859DBA/2JNO3dAIRCC3548.647  9.5
    MB5915C57BL/6JPZ14dAIRCC3689.793  9.4
    MB6027C57BL/6JPZ8hAIRCC3580.462  9.4
    MB6130C57BL/6JPZ3dAIRCC3577.826  8.2
    MB6257DBA/2JPZ3dAIRCC3581.164  9.0
    MB6338C57BL/6JPZ3dCIECC3748.421  8.6
    MB6447DBA/2JPZ8hAIRCC3747.345  8.5
    diff --git a/general/datasets/INIA_UTHSC_Mid_AffyMTA1_Apr17/specifics.rtf b/general/datasets/INIA_UTHSC_Mid_AffyMTA1_Apr17/specifics.rtf deleted file mode 100644 index 729d375..0000000 --- a/general/datasets/INIA_UTHSC_Mid_AffyMTA1_Apr17/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -

    SST-RMA Gene Level

    diff --git a/general/datasets/INIA_UTHSC_Mid_AffyMTA1_Apr17/summary.rtf b/general/datasets/INIA_UTHSC_Mid_AffyMTA1_Apr17/summary.rtf deleted file mode 100644 index 9baa040..0000000 --- a/general/datasets/INIA_UTHSC_Mid_AffyMTA1_Apr17/summary.rtf +++ /dev/null @@ -1,31 +0,0 @@ -

    Overview:

    - -

    1. Treated and whole brains dissected at Medical University of South Carolina (Marcelo F. Lopez laboratory)

    - -

    2. Frozen brains sub-dissected at UTHSC (Megan K. Mulligan laboratory)

    - -

    3. RNA extraction (Qiagen RNeasy kit) at UTHSC (Mulligan and Williams laboratories)

    - -

    4. Hybridized to Affymetrix Clariom D (aka Affymetrix MTA 1.0 ST) array at UTHSC MRC (Lorne Rose, UTHSC Molecular Resource Center)

    - -

    5. Initial QC and normalization (COMBAT) at UTHSC (Megan K. Mulligan laboratory)

    - -

    6. Transcriptome entry and phenotype entry (Arthur Centeno, Megan K. Mulligan, and Robert W. Williams)

    - -

     

    - -

    Chronic ethanol exposure:

    - -

    Mice were allowed to self-administer alcohol (15% v/v vs. water) for 2 h a day (5 days a week) 6 weeks prior to treatment in order to establish baseline consumption. Access to 15% alcohol versus water started 30 min prior to the start of the dark cycle. Following establishment of baseline drinking, male mice representative of each strain were separated into groups to be exposed to either weekly cycles of CIE exposure (CIE group) or air control (AIR group) exposure. 

    - -

     

    - -

    Mice assigned to the CIE treatment group were exposed to alcohol vapor for 16 h a day followed by 8 h of withdrawal for 4 days per week. Following the fourth vapor exposure, mice were given a 72-h abstinence/withdrawal period before resuming ethanol intake in the home cage for 5 days. Mice in the AIR control treatment group were similarly treated but exposed only to air in the inhalation chambers. This pattern of CIE or air control exposure followed by 5 days of ethanol self-administration was repeated for four cycles. A fifth cycle of CIE (or air) exposure followed the fourth ethanol intake evaluation period, and brain tissue was collected at multiple time points (8h, 3d, 7d, 14d) after the last cycle ended. Pyrazole (1 mmol/kg) was used to stabilize blood ethanol levels (BEC) and was administered to both CIE and AIR groups. A subset of mice received no pyrazole. 

    - -

     

    - -

    Analysis:

    - -

    1. Normalization on Affymetrix Expression Console (SST-RMA Gene Level).

    - -

    2. Batch effect detected (RNA concentration dependent) and corrected in ComBat

    diff --git a/general/datasets/INIA_UTHSC_Mid_AffyMTA1_Ex_May17/cases.rtf b/general/datasets/INIA_UTHSC_Mid_AffyMTA1_Ex_May17/cases.rtf deleted file mode 100644 index 976f0ab..0000000 --- a/general/datasets/INIA_UTHSC_Mid_AffyMTA1_Ex_May17/cases.rtf +++ /dev/null @@ -1,857 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    MicroarrayIDMouse.IDStrainPyrazoleTimePointTreatmentPCA BatchDissectionBatchExtractionBatchConcentrationRIN
    MB112C57BL/6JPZ8hCIEBA1224.611  9.0
    MB250DBA/2JNO3dAIRBA1195.150   9.2
    MB32C57BL/6JPZ14dAIRBA1299.415  9.5
    MB460DBA/2JPZ7dAIRBA1300.033  7.6
    MB54C57BL/6JPZ14dCIEAA1249.226  7.2
    MB669DBA/2JPZ7dAIRAA1161.526  7.3
    MB78C57BL/6JPZ3dCIEBA1326.862  9.5
    MB841DBA/2JPZ8hAIRBA1352.559  7.9
    MB975DBA/2JPZ14dAIRBB1354.218  8.8
    MB1023C57BL/6JPZ3dAIRBB1280.396  9.6
    MB1149DBA/2JPZ3dAIRAB1180.312  7.2
    MB1258DBA/2JPZ3dCIEBB1225.072  NA
    MB1321C57BL/6JPZ14dCIEBC1299.623  7.4
    MB1463DBA/2JPZ3dCIEBC170.977  7.5
    MB1546DBA/2JPZ8hAIRBC1284.115  7.9
    MB1645DBA/2JPZ8hAIRBC1338.791  7.7
    MB1728C57BL/6JNO3dAIRBC1449.851  7.8
    MB1878DBA/2JPZ14dAIRBC1320.081  7.9
    MB1977DBA/2JPZ14dCIEBC1234.795  7.8
    MB2071DBA/2JPZ7dCIEBC1468.728  7.8
    MB2168DBA/2JPZ7dAIRBC1296.386  7.9
    MB2229C57BL/6JPZ8hCIEBC1398.481  8.0
    MB2367DBA/2JPZ7dCIEBA2275.813  7.8
    MB241C57BL/6JPZ8hAIRAA2132.589  6.8
    MB2514C57BL/6JNO3dCIEAA2189.666  7.9
    MB2642DBA/2JPZ8hCIEBA2310.878  9.4
    MB2755DBA/2JPZ3dCIEBA2211.576  9.0
    MB2873DBA/2JPZ7dCIEBA2287.696  7.6
    MB2948DBA/2JPZ3dAIRBA2317.532  7.8
    MB3061DBA/2JPZ7dAIRBB2294.808  7.8
    MB3120C57BL/6JPZ8hCIEBB2209.301  9.0
    MB3276DBA/2JPZ14dCIEAB2120.953  8.2
    MB335C57BL/6JPZ14dAIRBB2271.808  8.8
    MB3437C57BL/6JPZ7dCIEBB2289.261  8.0
    MB3519C57BL/6JPZ3dCIEBC2306.294  9.1
    MB3656DBA/2JPZ3dAIRBC2265.964  7.8
    MB3765DBA/2JNO3dCIEBC2259.741  9.2
    MB3880DBA/2JPZ14dAIRBC2371.000  8.0
    MB3931C57BL/6JPZ14dCIEBC2349.451  7.7
    MB4039C57BL/6JPZ7dAIRCC2403.083  8.9
    MB4162DBA/2JPZ3dCIECC2505.547  8.9
    MB4252DBA/2JPZ8hCIECC2441.549  8.8
    MB4351DBA/2JPZ3dAIRCC2519.427  8.8
    MB4435C57BL/6JNO3dAIRCA3772.361  8.8
    MB4572DBA/2JPZ14dAIRCA3598.185  8.9
    MB4632C57BL/6JPZ7dCIECA3824.974  8.7
    MB4774DBA/2JPZ14dCIECA3495.046  9.4
    MB4854DBA/2JPZ8hCIECA3667.036  9.4
    MB4924C57BL/6JPZ7dAIRCA3760.367  9.2
    MB509C57BL/6JPZ3dAIRCA3701.152  9.2
    MB5166DBA/2JNO3dCIECB3579.22  8.3
    MB5244DBA/2JPZ8hCIECB3636.091  9.4
    MB5334C57BL/6JPZ7dAIRCB3739.127  9.5
    MB547C57BL/6JPZ8hAIRCB3667.933  9.2
    MB5536C57BL/6JNO3dCIECC3605.937  9.2
    MB5643DBA/2JPZ8hAIRCC3639.161  9.5
    MB5770DBA/2JPZ7dCIECC3630.735  9.4
    MB5859DBA/2JNO3dAIRCC3548.647  9.5
    MB5915C57BL/6JPZ14dAIRCC3689.793  9.4
    MB6027C57BL/6JPZ8hAIRCC3580.462  9.4
    MB6130C57BL/6JPZ3dAIRCC3577.826  8.2
    MB6257DBA/2JPZ3dAIRCC3581.164  9.0
    MB6338C57BL/6JPZ3dCIECC3748.421  8.6
    MB6447DBA/2JPZ8hAIRCC3747.345  8.5
    diff --git a/general/datasets/INIA_UTHSC_Mid_AffyMTA1_Ex_May17/specifics.rtf b/general/datasets/INIA_UTHSC_Mid_AffyMTA1_Ex_May17/specifics.rtf deleted file mode 100644 index 7c1a914..0000000 --- a/general/datasets/INIA_UTHSC_Mid_AffyMTA1_Ex_May17/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Exon Level \ No newline at end of file diff --git a/general/datasets/INIA_UTHSC_Mid_AffyMTA1_Ex_May17/summary.rtf b/general/datasets/INIA_UTHSC_Mid_AffyMTA1_Ex_May17/summary.rtf deleted file mode 100644 index 9baa040..0000000 --- a/general/datasets/INIA_UTHSC_Mid_AffyMTA1_Ex_May17/summary.rtf +++ /dev/null @@ -1,31 +0,0 @@ -

    Overview:

    - -

    1. Treated and whole brains dissected at Medical University of South Carolina (Marcelo F. Lopez laboratory)

    - -

    2. Frozen brains sub-dissected at UTHSC (Megan K. Mulligan laboratory)

    - -

    3. RNA extraction (Qiagen RNeasy kit) at UTHSC (Mulligan and Williams laboratories)

    - -

    4. Hybridized to Affymetrix Clariom D (aka Affymetrix MTA 1.0 ST) array at UTHSC MRC (Lorne Rose, UTHSC Molecular Resource Center)

    - -

    5. Initial QC and normalization (COMBAT) at UTHSC (Megan K. Mulligan laboratory)

    - -

    6. Transcriptome entry and phenotype entry (Arthur Centeno, Megan K. Mulligan, and Robert W. Williams)

    - -

     

    - -

    Chronic ethanol exposure:

    - -

    Mice were allowed to self-administer alcohol (15% v/v vs. water) for 2 h a day (5 days a week) 6 weeks prior to treatment in order to establish baseline consumption. Access to 15% alcohol versus water started 30 min prior to the start of the dark cycle. Following establishment of baseline drinking, male mice representative of each strain were separated into groups to be exposed to either weekly cycles of CIE exposure (CIE group) or air control (AIR group) exposure. 

    - -

     

    - -

    Mice assigned to the CIE treatment group were exposed to alcohol vapor for 16 h a day followed by 8 h of withdrawal for 4 days per week. Following the fourth vapor exposure, mice were given a 72-h abstinence/withdrawal period before resuming ethanol intake in the home cage for 5 days. Mice in the AIR control treatment group were similarly treated but exposed only to air in the inhalation chambers. This pattern of CIE or air control exposure followed by 5 days of ethanol self-administration was repeated for four cycles. A fifth cycle of CIE (or air) exposure followed the fourth ethanol intake evaluation period, and brain tissue was collected at multiple time points (8h, 3d, 7d, 14d) after the last cycle ended. Pyrazole (1 mmol/kg) was used to stabilize blood ethanol levels (BEC) and was administered to both CIE and AIR groups. A subset of mice received no pyrazole. 

    - -

     

    - -

    Analysis:

    - -

    1. Normalization on Affymetrix Expression Console (SST-RMA Gene Level).

    - -

    2. Batch effect detected (RNA concentration dependent) and corrected in ComBat

    diff --git a/general/datasets/INIA_UTHSC_PFC_AffyMTA1_May17/summary.rtf b/general/datasets/INIA_UTHSC_PFC_AffyMTA1_May17/summary.rtf deleted file mode 100644 index 153d98d..0000000 --- a/general/datasets/INIA_UTHSC_PFC_AffyMTA1_May17/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    In working progress...

    diff --git a/general/datasets/INIA_UTHSC_Str_AffyMTA1_May17/summary.rtf b/general/datasets/INIA_UTHSC_Str_AffyMTA1_May17/summary.rtf deleted file mode 100644 index 153d98d..0000000 --- a/general/datasets/INIA_UTHSC_Str_AffyMTA1_May17/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    In working progress...

    diff --git a/general/datasets/IRCM_AXBXA_HRI0213/summary.rtf b/general/datasets/IRCM_AXBXA_HRI0213/summary.rtf deleted file mode 100644 index ce6cd68..0000000 --- a/general/datasets/IRCM_AXBXA_HRI0213/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Expression data from hearts from 24 different AxB/BxA. Also the data are normalized and log2 transformed. All mice are males and 12 weeks.

    diff --git a/general/datasets/Ibr_m_0106_p/acknowledgment.rtf b/general/datasets/Ibr_m_0106_p/acknowledgment.rtf new file mode 100644 index 0000000..a1563a6 --- /dev/null +++ b/general/datasets/Ibr_m_0106_p/acknowledgment.rtf @@ -0,0 +1 @@ +
    Support for acquisition of microarray data were generously provided by the NIAAA and its INIA grant program to RWW, Thomas Sutter, and Daniel Goldowitz (U01AA013515, U01AA013499-03S1, U01AA013488, U01AA013503-03S1). Support for the continued development of the GeneNetwork and WebQTL was provided by a NIMH Human Brain Project grant (P20MH062009). All arrays were processed at the University of Memphis by Thomas Sutter and colleagues with support of the INIA Bioanalytical Core.
    diff --git a/general/datasets/Ibr_m_0106_p/cases.rtf b/general/datasets/Ibr_m_0106_p/cases.rtf new file mode 100644 index 0000000..8794b88 --- /dev/null +++ b/general/datasets/Ibr_m_0106_p/cases.rtf @@ -0,0 +1,5 @@ +
    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues +

     

    + +

    All stock was obtained originally from The Jackson Laboratory between 1999 and 2003. Most BXD animals were born and housed at the University of Tennessee Health Science Center. Some cases were bred at the University of Memphis (Douglas Matthews) or the University of Alabama (John Mountz and Hui-Chen Hsu).

    +
    diff --git a/general/datasets/Ibr_m_0106_p/notes.rtf b/general/datasets/Ibr_m_0106_p/notes.rtf new file mode 100644 index 0000000..72bad83 --- /dev/null +++ b/general/datasets/Ibr_m_0106_p/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by RWW, YHQ, and EJC, Oct 2004. Updated by RWW, Nov 5, 2004; April 7, 2005; RNA/tissue preparation protocol updatedby JLP, Sept 2, 2005; Sept 26, 2005.

    +
    diff --git a/general/datasets/Ibr_m_0106_p/platform.rtf b/general/datasets/Ibr_m_0106_p/platform.rtf new file mode 100644 index 0000000..028fe23 --- /dev/null +++ b/general/datasets/Ibr_m_0106_p/platform.rtf @@ -0,0 +1,3 @@ +

     

    + +

    Affymetrix Mouse Genome 430A and B array pairs: The 430A and B array pairs consist of 992936 25-nucleotide probes that collectively estimate the expression of approximately 39,000 transcripts. The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequences as the 430 2.0 series. However, we have found that roughy 75000 probes differ from those on A and B arrays and those on the 430 2.0

    diff --git a/general/datasets/Ibr_m_0106_p/processing.rtf b/general/datasets/Ibr_m_0106_p/processing.rtf new file mode 100644 index 0000000..243e5c0 --- /dev/null +++ b/general/datasets/Ibr_m_0106_p/processing.rtf @@ -0,0 +1,20 @@ +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). The original CEL files were read into the R environment (Ihaka and Gentleman 1996). Data were processed using the Robust Multichip Average (RMA) method (Irrizary et al. 2003). Values were log2 transformed. Probe set values listed in WebQTL are the averages of biological replicates within strain. A few technical replicates were averaged and treated as single samples. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. + +

    This data set include further normalization to produce final estimates of expression that can be compared directly to the other transforms (average of 8 units and stabilized standard deviation of 2 units within each array). Please seee Bolstad and colleagues (2003) for a helpful comparison of RMA and two other common methods of processing Affymetrix array data sets.

    +
    + +

    About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets included on the microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium May 2004 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    diff --git a/general/datasets/Ibr_m_0106_p/summary.rtf b/general/datasets/Ibr_m_0106_p/summary.rtf new file mode 100644 index 0000000..6fe94b1 --- /dev/null +++ b/general/datasets/Ibr_m_0106_p/summary.rtf @@ -0,0 +1,3 @@ +
    +

    This April 2005 data freeze provides estimates of mRNA expression in adult forebrain and midbrain from 45 lines of mice including C57BL/6J, DBA/2J, their F1 hybrids, and 42 BXD recombinant inbred strains. Data were generated at UTHSC and the University of Memphis with support from grants from the NIAAA Integrative Neuroscience Initiative on Alcoholism (INIA). Samples were hybridized in small pools (n = 3) to a total of 105 Affymetrix M430A and B array pairs. This particular data set was processed using the RMA protocol. To simplify comparisons among transforms, RMA values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.

    +
    diff --git a/general/datasets/Ibr_m_0106_p/tissue.rtf b/general/datasets/Ibr_m_0106_p/tissue.rtf new file mode 100644 index 0000000..841d879 --- /dev/null +++ b/general/datasets/Ibr_m_0106_p/tissue.rtf @@ -0,0 +1,977 @@ +
    The INIA M430 brain Database (April05) consists of 105 Affymetrix 430A and 430B microarray pairs. Each pair was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai. All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter, Shirlean Goodwin, and colleagues at the University of Memphis. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. We have not yet achieved this goal. Ten of 45 strains are still represented by single sex samples: BXD2 (F), BXD8 (F), BXD15 (F), BXD18 (F), BXD25 (F), BXD29 (F), BXD33 (M), BXD45 (F), BXD77 (M), and BXD90 (M). Eleven strains are represented by three independent samples with the following breakdown by sex: C57BL/6J (1F 2M), DBA/2J (2F 2M), B6D2F1 (2F 2M) + D2B6F1 (1F 1M), BXD6 (2F 1M), BXD13 (2F 1M), BXD14 (1F 2M), BXD28 (2F 1M), BXD34 (1F 2M), BXD36 (1F 2M), BXD38 (1F 2M), BXD42 (1F 2M).

    + +

    Batch Structure: Before running the first batch of 30 pairs of array (dated Jan04), we ran four test samples (Nov03). The main batch of 30 includes the four test samples (four technical replicates). The Nov03 data was combined with the Jan04 data and was treated as a single batch that consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. The second large batch was run February 2005 (Feb05) and consists of 71 pairs of arrays. Batch effects were corrected at the individual probe level as described below.

    + +

    The table below summarizes information on strain, sex, age, sample name, batch result date, and source of mice.

    +
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexAgeSample_nameResult dateSource
    1C57BL/6JF65R0903F1Nov03UTM RW
    2C57BL/6JF65R0903F1Jan04UTM RW
    3C57BL/6JM66R0906F1Nov03UTM RW
    4C57BL/6JM66R0906F1Jan04UTM RW
    5C57BL/6JM66R0906F1Feb05UTM RW
    6C57BL/6JM76R0997F1Feb05UTM RW
    7D2B6F1F57R1066F1Feb05UTM RW
    8D2B6F1M59R1381F1Feb05UTM RW
    9DBA/2JF60R0917F1Nov03UTM RW
    10DBA/2JF60R0917F1Feb05UTM RW
    11DBA/2JF60R0917F2Jan04UTM RW
    12DBA/2JF64R1123F1Feb05UTM RW
    13DBA/2JM60R0918F1Nov03UTM RW
    14DBA/2JM60R0918F1Jan04UTM RW
    15DBA/2JM73R1009F1Feb05UTM RW
    16B6D2F1F127R0919F1Jan04UTM JB
    17B6D2F1F127R0919F2Jan04UTM JB
    18B6D2F1F64R1053F1Feb05UTM RW
    19B6D2F1F64R1053F1Feb05UTM RW
    20B6D2F1M127R0920F1Jan04UTM JB
    21B6D2F1M127R0920F2Jan04UTM JB
    22B6D2F1M66R1057F1Feb05UTM RW
    23BXD1M181R0956F1Feb05UTM JB
    24BXD1F95R0895F1Jan04UMemphis
    25BXD2F142R0907F1Feb05UAB
    26BXD5F56R0744F1Feb05UMemphis
    27BXD5M71R0728F1Jan04UMemphis
    28BXD6F57R1711F1Feb05JAX
    29BXD6F92R0901F1Feb05UMemphis
    30BXD6M92R0902F1Jan04UMemphis
    31BXD8F72R0167F1Jan04UAB
    32BXD9F86R0908F1Feb05UMemphis
    33BXD9M86R0909F1Jan04UMemphis
    34BXD11F97R0745F1Feb05UAB
    35BXD11M92R0666F1Feb05UMemphis
    36BXD12F64R0896F1Feb05UMemphis
    37BXD12M64R0897F1Jan04UMemphis
    38BXD13F86R0730F1Feb05UMemphis
    39BXD13F86R0748F1Jan04UMemphis
    40BXD13M76R0929F1Feb05UMemphis
    41BXD14M91R0912F1Jan04UMemphis
    42BXD14M68R1051F1Feb05UTM RW
    43BXD15F80R0928F1Feb05UMemphis
    44BXD18F108R0771F1Jan04UAB
    45BXD19M157R1229F1Feb05UTM JB
    46BXD19F56R0236F1Jan04UAB
    47BXD21F67R0740F1Jan04UAB
    48BXD21F67R0740F1Feb05UAB
    49BXD23F66R1035F1Feb05UTM RW
    50BXD23M66R1037F1Feb05UTM RW
    51BXD23F88R0815F1Jan04UAB
    52BXD23F88R0815F1Feb05UAB
    53BXD24F71R0914F1Feb05UMemphis
    54BXD24M71R0913F1Jan04UMemphis
    55BXD25F74R0373F1Jan04UTM RW
    56BXD28F79R0910F1Jan04UMemphis
    57BXD28M79R0911F1Feb05UMemphis
    58BXD28F113R0892F1Feb05UTM RW
    59BXD29F76R0693F1Jan04UMemphis
    60BXD31F61R1199F1Feb05UTM RW
    61BXD31M61R1141F1Feb05UTM RW
    62BXD32F93R0898F1Jan04UAB
    63BXD32F76R1214F1Feb05UMemphis
    64BXD32M65R1478F1Feb05UMemphis
    65BXD33M77R0915F1Jan04UMemphis
    66BXD34F92R0900F1Feb05UMemphis
    67BXD34M56R0617F1Feb05UMemphis
    68BXD34M72R0916F1Jan04UMemphis
    69BXD36F61R1145F1Feb05UTM RW
    70BXD36M77R0926F1Jan04UMemphis
    71BXD36M61R1211F1Feb05UMemphis
    72BXD38M83R1208F1Feb05UMemphis
    73BXD38F69R0729F1Feb05UMemphis
    74BXD38M69R0731F1Jan04UMemphis
    75BXD39F76R1712F1Feb05JAX
    76BXD39M71R0602F1Feb05UAB
    77BXD40F184R0741F1Feb05UAB
    78BXD40M56R0894F1Feb05UMemphis
    79BXD42F100R0742F1Feb05UAB
    80BXD42M97R0936F1Jan04UMemphis
    81BXD42M105R0937F1Feb05UMemphis
    82BXD43M63R1047F1Feb05UTM RW
    83BXD44F57R1069F1Feb05UTM RW
    84BXD44M58R1072F1Feb05UTM RW
    85BXD45F58R1398F1Feb05UTM RW
    86BXD48F59R0946F1Feb05UTM RW
    87BXD48M64R0970F1Feb05UTM RW
    88BXD51F63R1430F1Feb05UTM RW
    89BXD51M65R1001F1Feb05UTM RW
    90BXD60F64R0976F1Feb05UTM RW
    91BXD60M59R1075F1Feb05UTM RW
    92BXD62F59R1033F1Feb05UTM RW
    93BXD62M58R1027F1Feb05UTM RW
    94BXD69F60R1438F1Feb05UTM RW
    95BXD69M64R1193F1Feb05UTM RW
    96BXD73F60R1275F1Feb05UTM RW
    97BXD73M76R1442F1Feb05UTM RW
    98BXD77M61R1426F1Feb05UTM RW
    99BXD86F77R1414F1Feb05UTM RW
    100BXD86M77R1418F1Feb05UTM RW
    101BXD87F89R1713F1Feb05UTM RW
    102BXD87M84R1709F1Feb05UTM RW
    103BXD90M61R1452FFeb05UTM RW
    104BXD92F58R1299F1Feb05UTM RW
    105BXD92M59R1307F1Feb05UTM RW
    +
    +
    diff --git a/general/datasets/Ibr_m_0106_r/acknowledgment.rtf b/general/datasets/Ibr_m_0106_r/acknowledgment.rtf new file mode 100644 index 0000000..a1563a6 --- /dev/null +++ b/general/datasets/Ibr_m_0106_r/acknowledgment.rtf @@ -0,0 +1 @@ +
    Support for acquisition of microarray data were generously provided by the NIAAA and its INIA grant program to RWW, Thomas Sutter, and Daniel Goldowitz (U01AA013515, U01AA013499-03S1, U01AA013488, U01AA013503-03S1). Support for the continued development of the GeneNetwork and WebQTL was provided by a NIMH Human Brain Project grant (P20MH062009). All arrays were processed at the University of Memphis by Thomas Sutter and colleagues with support of the INIA Bioanalytical Core.
    diff --git a/general/datasets/Ibr_m_0106_r/cases.rtf b/general/datasets/Ibr_m_0106_r/cases.rtf new file mode 100644 index 0000000..8794b88 --- /dev/null +++ b/general/datasets/Ibr_m_0106_r/cases.rtf @@ -0,0 +1,5 @@ +
    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues +

     

    + +

    All stock was obtained originally from The Jackson Laboratory between 1999 and 2003. Most BXD animals were born and housed at the University of Tennessee Health Science Center. Some cases were bred at the University of Memphis (Douglas Matthews) or the University of Alabama (John Mountz and Hui-Chen Hsu).

    +
    diff --git a/general/datasets/Ibr_m_0106_r/notes.rtf b/general/datasets/Ibr_m_0106_r/notes.rtf new file mode 100644 index 0000000..72bad83 --- /dev/null +++ b/general/datasets/Ibr_m_0106_r/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by RWW, YHQ, and EJC, Oct 2004. Updated by RWW, Nov 5, 2004; April 7, 2005; RNA/tissue preparation protocol updatedby JLP, Sept 2, 2005; Sept 26, 2005.

    +
    diff --git a/general/datasets/Ibr_m_0106_r/platform.rtf b/general/datasets/Ibr_m_0106_r/platform.rtf new file mode 100644 index 0000000..028fe23 --- /dev/null +++ b/general/datasets/Ibr_m_0106_r/platform.rtf @@ -0,0 +1,3 @@ +

     

    + +

    Affymetrix Mouse Genome 430A and B array pairs: The 430A and B array pairs consist of 992936 25-nucleotide probes that collectively estimate the expression of approximately 39,000 transcripts. The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequences as the 430 2.0 series. However, we have found that roughy 75000 probes differ from those on A and B arrays and those on the 430 2.0

    diff --git a/general/datasets/Ibr_m_0106_r/processing.rtf b/general/datasets/Ibr_m_0106_r/processing.rtf new file mode 100644 index 0000000..243e5c0 --- /dev/null +++ b/general/datasets/Ibr_m_0106_r/processing.rtf @@ -0,0 +1,20 @@ +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). The original CEL files were read into the R environment (Ihaka and Gentleman 1996). Data were processed using the Robust Multichip Average (RMA) method (Irrizary et al. 2003). Values were log2 transformed. Probe set values listed in WebQTL are the averages of biological replicates within strain. A few technical replicates were averaged and treated as single samples. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. + +

    This data set include further normalization to produce final estimates of expression that can be compared directly to the other transforms (average of 8 units and stabilized standard deviation of 2 units within each array). Please seee Bolstad and colleagues (2003) for a helpful comparison of RMA and two other common methods of processing Affymetrix array data sets.

    +
    + +

    About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets included on the microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium May 2004 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    diff --git a/general/datasets/Ibr_m_0106_r/summary.rtf b/general/datasets/Ibr_m_0106_r/summary.rtf new file mode 100644 index 0000000..6fe94b1 --- /dev/null +++ b/general/datasets/Ibr_m_0106_r/summary.rtf @@ -0,0 +1,3 @@ +
    +

    This April 2005 data freeze provides estimates of mRNA expression in adult forebrain and midbrain from 45 lines of mice including C57BL/6J, DBA/2J, their F1 hybrids, and 42 BXD recombinant inbred strains. Data were generated at UTHSC and the University of Memphis with support from grants from the NIAAA Integrative Neuroscience Initiative on Alcoholism (INIA). Samples were hybridized in small pools (n = 3) to a total of 105 Affymetrix M430A and B array pairs. This particular data set was processed using the RMA protocol. To simplify comparisons among transforms, RMA values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.

    +
    diff --git a/general/datasets/Ibr_m_0106_r/tissue.rtf b/general/datasets/Ibr_m_0106_r/tissue.rtf new file mode 100644 index 0000000..841d879 --- /dev/null +++ b/general/datasets/Ibr_m_0106_r/tissue.rtf @@ -0,0 +1,977 @@ +
    The INIA M430 brain Database (April05) consists of 105 Affymetrix 430A and 430B microarray pairs. Each pair was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai. All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter, Shirlean Goodwin, and colleagues at the University of Memphis. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. We have not yet achieved this goal. Ten of 45 strains are still represented by single sex samples: BXD2 (F), BXD8 (F), BXD15 (F), BXD18 (F), BXD25 (F), BXD29 (F), BXD33 (M), BXD45 (F), BXD77 (M), and BXD90 (M). Eleven strains are represented by three independent samples with the following breakdown by sex: C57BL/6J (1F 2M), DBA/2J (2F 2M), B6D2F1 (2F 2M) + D2B6F1 (1F 1M), BXD6 (2F 1M), BXD13 (2F 1M), BXD14 (1F 2M), BXD28 (2F 1M), BXD34 (1F 2M), BXD36 (1F 2M), BXD38 (1F 2M), BXD42 (1F 2M).

    + +

    Batch Structure: Before running the first batch of 30 pairs of array (dated Jan04), we ran four test samples (Nov03). The main batch of 30 includes the four test samples (four technical replicates). The Nov03 data was combined with the Jan04 data and was treated as a single batch that consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. The second large batch was run February 2005 (Feb05) and consists of 71 pairs of arrays. Batch effects were corrected at the individual probe level as described below.

    + +

    The table below summarizes information on strain, sex, age, sample name, batch result date, and source of mice.

    +
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexAgeSample_nameResult dateSource
    1C57BL/6JF65R0903F1Nov03UTM RW
    2C57BL/6JF65R0903F1Jan04UTM RW
    3C57BL/6JM66R0906F1Nov03UTM RW
    4C57BL/6JM66R0906F1Jan04UTM RW
    5C57BL/6JM66R0906F1Feb05UTM RW
    6C57BL/6JM76R0997F1Feb05UTM RW
    7D2B6F1F57R1066F1Feb05UTM RW
    8D2B6F1M59R1381F1Feb05UTM RW
    9DBA/2JF60R0917F1Nov03UTM RW
    10DBA/2JF60R0917F1Feb05UTM RW
    11DBA/2JF60R0917F2Jan04UTM RW
    12DBA/2JF64R1123F1Feb05UTM RW
    13DBA/2JM60R0918F1Nov03UTM RW
    14DBA/2JM60R0918F1Jan04UTM RW
    15DBA/2JM73R1009F1Feb05UTM RW
    16B6D2F1F127R0919F1Jan04UTM JB
    17B6D2F1F127R0919F2Jan04UTM JB
    18B6D2F1F64R1053F1Feb05UTM RW
    19B6D2F1F64R1053F1Feb05UTM RW
    20B6D2F1M127R0920F1Jan04UTM JB
    21B6D2F1M127R0920F2Jan04UTM JB
    22B6D2F1M66R1057F1Feb05UTM RW
    23BXD1M181R0956F1Feb05UTM JB
    24BXD1F95R0895F1Jan04UMemphis
    25BXD2F142R0907F1Feb05UAB
    26BXD5F56R0744F1Feb05UMemphis
    27BXD5M71R0728F1Jan04UMemphis
    28BXD6F57R1711F1Feb05JAX
    29BXD6F92R0901F1Feb05UMemphis
    30BXD6M92R0902F1Jan04UMemphis
    31BXD8F72R0167F1Jan04UAB
    32BXD9F86R0908F1Feb05UMemphis
    33BXD9M86R0909F1Jan04UMemphis
    34BXD11F97R0745F1Feb05UAB
    35BXD11M92R0666F1Feb05UMemphis
    36BXD12F64R0896F1Feb05UMemphis
    37BXD12M64R0897F1Jan04UMemphis
    38BXD13F86R0730F1Feb05UMemphis
    39BXD13F86R0748F1Jan04UMemphis
    40BXD13M76R0929F1Feb05UMemphis
    41BXD14M91R0912F1Jan04UMemphis
    42BXD14M68R1051F1Feb05UTM RW
    43BXD15F80R0928F1Feb05UMemphis
    44BXD18F108R0771F1Jan04UAB
    45BXD19M157R1229F1Feb05UTM JB
    46BXD19F56R0236F1Jan04UAB
    47BXD21F67R0740F1Jan04UAB
    48BXD21F67R0740F1Feb05UAB
    49BXD23F66R1035F1Feb05UTM RW
    50BXD23M66R1037F1Feb05UTM RW
    51BXD23F88R0815F1Jan04UAB
    52BXD23F88R0815F1Feb05UAB
    53BXD24F71R0914F1Feb05UMemphis
    54BXD24M71R0913F1Jan04UMemphis
    55BXD25F74R0373F1Jan04UTM RW
    56BXD28F79R0910F1Jan04UMemphis
    57BXD28M79R0911F1Feb05UMemphis
    58BXD28F113R0892F1Feb05UTM RW
    59BXD29F76R0693F1Jan04UMemphis
    60BXD31F61R1199F1Feb05UTM RW
    61BXD31M61R1141F1Feb05UTM RW
    62BXD32F93R0898F1Jan04UAB
    63BXD32F76R1214F1Feb05UMemphis
    64BXD32M65R1478F1Feb05UMemphis
    65BXD33M77R0915F1Jan04UMemphis
    66BXD34F92R0900F1Feb05UMemphis
    67BXD34M56R0617F1Feb05UMemphis
    68BXD34M72R0916F1Jan04UMemphis
    69BXD36F61R1145F1Feb05UTM RW
    70BXD36M77R0926F1Jan04UMemphis
    71BXD36M61R1211F1Feb05UMemphis
    72BXD38M83R1208F1Feb05UMemphis
    73BXD38F69R0729F1Feb05UMemphis
    74BXD38M69R0731F1Jan04UMemphis
    75BXD39F76R1712F1Feb05JAX
    76BXD39M71R0602F1Feb05UAB
    77BXD40F184R0741F1Feb05UAB
    78BXD40M56R0894F1Feb05UMemphis
    79BXD42F100R0742F1Feb05UAB
    80BXD42M97R0936F1Jan04UMemphis
    81BXD42M105R0937F1Feb05UMemphis
    82BXD43M63R1047F1Feb05UTM RW
    83BXD44F57R1069F1Feb05UTM RW
    84BXD44M58R1072F1Feb05UTM RW
    85BXD45F58R1398F1Feb05UTM RW
    86BXD48F59R0946F1Feb05UTM RW
    87BXD48M64R0970F1Feb05UTM RW
    88BXD51F63R1430F1Feb05UTM RW
    89BXD51M65R1001F1Feb05UTM RW
    90BXD60F64R0976F1Feb05UTM RW
    91BXD60M59R1075F1Feb05UTM RW
    92BXD62F59R1033F1Feb05UTM RW
    93BXD62M58R1027F1Feb05UTM RW
    94BXD69F60R1438F1Feb05UTM RW
    95BXD69M64R1193F1Feb05UTM RW
    96BXD73F60R1275F1Feb05UTM RW
    97BXD73M76R1442F1Feb05UTM RW
    98BXD77M61R1426F1Feb05UTM RW
    99BXD86F77R1414F1Feb05UTM RW
    100BXD86M77R1418F1Feb05UTM RW
    101BXD87F89R1713F1Feb05UTM RW
    102BXD87M84R1709F1Feb05UTM RW
    103BXD90M61R1452FFeb05UTM RW
    104BXD92F58R1299F1Feb05UTM RW
    105BXD92M59R1307F1Feb05UTM RW
    +
    +
    diff --git a/general/datasets/Ibr_m_0204_m/acknowledgment.rtf b/general/datasets/Ibr_m_0204_m/acknowledgment.rtf new file mode 100644 index 0000000..7b62a11 --- /dev/null +++ b/general/datasets/Ibr_m_0204_m/acknowledgment.rtf @@ -0,0 +1 @@ +
    Data for the microarrays were generously provided by support from NIAAA INIA grants to RWW and Thomas Sutter. Support for sample acquistion and WebQTL have been provided by NIMH Human Brain Project, and the Dunavant Chair of Excellence, University of Tennessee Health Science Center. All arrays were processed at the University of Memphis by Dr. Thomas Sutter and colleagues with support of the INIA Bioanalytical Core.
    diff --git a/general/datasets/Ibr_m_0204_m/cases.rtf b/general/datasets/Ibr_m_0204_m/cases.rtf new file mode 100644 index 0000000..9dc5cbe --- /dev/null +++ b/general/datasets/Ibr_m_0204_m/cases.rtf @@ -0,0 +1,3 @@ +

    We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B) and DBA/2J (D). Both B and D strains have been almost fully sequence (8x coverage for B by a public consortium and approximately 1.5x coverage for D by Celera).

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine.

    diff --git a/general/datasets/Ibr_m_0204_m/notes.rtf b/general/datasets/Ibr_m_0204_m/notes.rtf new file mode 100644 index 0000000..f3ea488 --- /dev/null +++ b/general/datasets/Ibr_m_0204_m/notes.rtf @@ -0,0 +1 @@ +

    This text file originally generated by RWW, YHQ, and EJC, Oct 2004. Updated by RWW, Nov 5, 2004.

    diff --git a/general/datasets/Ibr_m_0204_m/platform.rtf b/general/datasets/Ibr_m_0204_m/platform.rtf new file mode 100644 index 0000000..51cbff2 --- /dev/null +++ b/general/datasets/Ibr_m_0204_m/platform.rtf @@ -0,0 +1 @@ +

    Affymetrix 430A and 430B GeneChip Set: Expression data were generated using 430AB array pairs. The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on either the Verify UCSC and Verify Ensembl links in the Trait Data and Editing Form (right side of the Location line).

    diff --git a/general/datasets/Ibr_m_0204_m/processing.rtf b/general/datasets/Ibr_m_0204_m/processing.rtf new file mode 100644 index 0000000..4663b88 --- /dev/null +++ b/general/datasets/Ibr_m_0204_m/processing.rtf @@ -0,0 +1,29 @@ +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.
    + +
    + +
    + +
    +

    Probe set data: The original expression values in the Affymetrix CEL files were read into PerfectMatch to generate the normalized PDNN data set.

    + +

    PDNN values of each array were subsequently normalized to a achieve a mean value of 8 units and a variance of 2 units.

    + +

    When necessary, we computed the arithmetic mean for technical replicates and treated these as single samples. We then computed the arithmetic mean for the set of 2 to 5 biological replicates for each strain.

    +
    + +

    About the array probe sets names:

    + +
    +

    Most probe sets on the mouse 430A and 430B arrays consist of a total of 22 probes, divided into 11 perfect match(PM) probes and 11 mismatch (MM) controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, several suffix characters that highlight design features, a a final A or B character to specify the array pair member. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene.

    +
    diff --git a/general/datasets/Ibr_m_0204_m/summary.rtf b/general/datasets/Ibr_m_0204_m/summary.rtf new file mode 100644 index 0000000..c32676a --- /dev/null +++ b/general/datasets/Ibr_m_0204_m/summary.rtf @@ -0,0 +1 @@ +

    This October 2004 data freeze provides initial estimates of mRNA expression in brains of adult BXD recombinant inbred mice measured using Affymetrix M430AB microarrays. In contast to the U74Av2 array, this new data set provides broader coverage (~45,000 transcripts) but does not include replicates or as many strains (25 vs 35). Data were generated at UTHSC and the University of Memphis with support from grants from the NIAAA Integrative Neuroscience Initiative on Alcoholism (INIA). Data were processed using the PDNN method of Zhang. To simplify comparison among transforms, PDNN values of each array were adjusted to an average of 8 units and a variance of 2 units.

    diff --git a/general/datasets/Ibr_m_0204_m/tissue.rtf b/general/datasets/Ibr_m_0204_m/tissue.rtf new file mode 100644 index 0000000..cac878a --- /dev/null +++ b/general/datasets/Ibr_m_0204_m/tissue.rtf @@ -0,0 +1,261 @@ +

    The data set consists of a single batch of Affymetrix mouse expression 430A and 430B GeneChip array pairs. Each AB pair was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai. All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter and colleagues at the University of Memphis. Before running the main batch of 30 pairs of array, we ran four "test" samples (one male and one female pool from each of the two parental strains, C57BL/6J and DBA/2J). The main set of 30 array pairs includes the same four samples (in other words we have four technical replicates), two F1 hybrid sample (each run two times for a within-batch technical replication), and 22 BXD strains. The data set therefore consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. We should note that the four technical replicates between batches were eventually combined with a correction for a highly significant batch effect. This was done at both the probe and probe set levels to "align" the test batch values with the two main batches. (The ratio of the probe average in the four test arrays to the average of the same probe in the four corresponding main batch arrays was used as a correction factor.) The F1 within-batch technical replicates were simply averaged. In the next batch we will reverse the sex of the BXD samples to achieve a balance with at least 22 BXD strains with one male and one female sample each.

    + +

    The table below lists the arrays by strain, sex, age, sample identifier, and data results were obtained from the Bioanalytical Core at the University of Memphis. Each array was hybridized to a pool of mRNA from three mice.

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSexAgeSampleIDDate
    B6D2F1F127919-F1Jan04
    B6D2F1F127919-F2Jan04
    B6D2F1M127920-F1Jan04
    B6D2F1M127920-F2Jan04
    C57BL/6JF65903-F1Nov03
    C57BL/6JF65903-F2Jan03
    C57BL/6JM66906-F1Nov03
    C57BL/6JM66906-F2Jan04
    DBA/2JF60917-F1Nov03
    DBA/2JF60917-F2Jan04
    DBA/2JM60918-F1Nov03
    DBA/2JM60918-F2Jan04
    BXD1F95895-F1Jan04
    BXD5M71728-F1Jan04
    BXD6M92902-F1Jan04
    BXD8F72S167-F1Jan04
    BXD9M86909-F1Jan04
    BXD12M64897-F1Jan04
    BXD13F86748-F1Jan04
    BXD14M91912-F1Jan04
    BXD18F108771-F1Jan04
    BXD19F56S236-F1Jan04
    BXD21F67740-F1Jan04
    BXD23F88815-F1Jan04
    BXD24M71913-F1Jan04
    BXD25F74S373-F1Jan04
    BXD28F79910-F1Jan04
    BXD29F76693-F1Jan04
    BXD32F93898-F1Jan04
    BXD33M77915-F1Jan04
    BXD34M72916-F1Jan04
    BXD36M77926-F1Jan04
    BXD38M69731-F1Jan04
    BXD42M97936-F1Jan04
    +
    diff --git a/general/datasets/Ibr_m_0405_m/acknowledgment.rtf b/general/datasets/Ibr_m_0405_m/acknowledgment.rtf new file mode 100644 index 0000000..a1563a6 --- /dev/null +++ b/general/datasets/Ibr_m_0405_m/acknowledgment.rtf @@ -0,0 +1 @@ +
    Support for acquisition of microarray data were generously provided by the NIAAA and its INIA grant program to RWW, Thomas Sutter, and Daniel Goldowitz (U01AA013515, U01AA013499-03S1, U01AA013488, U01AA013503-03S1). Support for the continued development of the GeneNetwork and WebQTL was provided by a NIMH Human Brain Project grant (P20MH062009). All arrays were processed at the University of Memphis by Thomas Sutter and colleagues with support of the INIA Bioanalytical Core.
    diff --git a/general/datasets/Ibr_m_0405_m/cases.rtf b/general/datasets/Ibr_m_0405_m/cases.rtf new file mode 100644 index 0000000..8794b88 --- /dev/null +++ b/general/datasets/Ibr_m_0405_m/cases.rtf @@ -0,0 +1,5 @@ +
    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues +

     

    + +

    All stock was obtained originally from The Jackson Laboratory between 1999 and 2003. Most BXD animals were born and housed at the University of Tennessee Health Science Center. Some cases were bred at the University of Memphis (Douglas Matthews) or the University of Alabama (John Mountz and Hui-Chen Hsu).

    +
    diff --git a/general/datasets/Ibr_m_0405_m/notes.rtf b/general/datasets/Ibr_m_0405_m/notes.rtf new file mode 100644 index 0000000..72bad83 --- /dev/null +++ b/general/datasets/Ibr_m_0405_m/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by RWW, YHQ, and EJC, Oct 2004. Updated by RWW, Nov 5, 2004; April 7, 2005; RNA/tissue preparation protocol updatedby JLP, Sept 2, 2005; Sept 26, 2005.

    +
    diff --git a/general/datasets/Ibr_m_0405_m/platform.rtf b/general/datasets/Ibr_m_0405_m/platform.rtf new file mode 100644 index 0000000..028fe23 --- /dev/null +++ b/general/datasets/Ibr_m_0405_m/platform.rtf @@ -0,0 +1,3 @@ +

     

    + +

    Affymetrix Mouse Genome 430A and B array pairs: The 430A and B array pairs consist of 992936 25-nucleotide probes that collectively estimate the expression of approximately 39,000 transcripts. The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequences as the 430 2.0 series. However, we have found that roughy 75000 probes differ from those on A and B arrays and those on the 430 2.0

    diff --git a/general/datasets/Ibr_m_0405_m/processing.rtf b/general/datasets/Ibr_m_0405_m/processing.rtf new file mode 100644 index 0000000..243e5c0 --- /dev/null +++ b/general/datasets/Ibr_m_0405_m/processing.rtf @@ -0,0 +1,20 @@ +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). The original CEL files were read into the R environment (Ihaka and Gentleman 1996). Data were processed using the Robust Multichip Average (RMA) method (Irrizary et al. 2003). Values were log2 transformed. Probe set values listed in WebQTL are the averages of biological replicates within strain. A few technical replicates were averaged and treated as single samples. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. + +

    This data set include further normalization to produce final estimates of expression that can be compared directly to the other transforms (average of 8 units and stabilized standard deviation of 2 units within each array). Please seee Bolstad and colleagues (2003) for a helpful comparison of RMA and two other common methods of processing Affymetrix array data sets.

    +
    + +

    About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets included on the microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium May 2004 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    diff --git a/general/datasets/Ibr_m_0405_m/summary.rtf b/general/datasets/Ibr_m_0405_m/summary.rtf new file mode 100644 index 0000000..6fe94b1 --- /dev/null +++ b/general/datasets/Ibr_m_0405_m/summary.rtf @@ -0,0 +1,3 @@ +
    +

    This April 2005 data freeze provides estimates of mRNA expression in adult forebrain and midbrain from 45 lines of mice including C57BL/6J, DBA/2J, their F1 hybrids, and 42 BXD recombinant inbred strains. Data were generated at UTHSC and the University of Memphis with support from grants from the NIAAA Integrative Neuroscience Initiative on Alcoholism (INIA). Samples were hybridized in small pools (n = 3) to a total of 105 Affymetrix M430A and B array pairs. This particular data set was processed using the RMA protocol. To simplify comparisons among transforms, RMA values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.

    +
    diff --git a/general/datasets/Ibr_m_0405_m/tissue.rtf b/general/datasets/Ibr_m_0405_m/tissue.rtf new file mode 100644 index 0000000..841d879 --- /dev/null +++ b/general/datasets/Ibr_m_0405_m/tissue.rtf @@ -0,0 +1,977 @@ +
    The INIA M430 brain Database (April05) consists of 105 Affymetrix 430A and 430B microarray pairs. Each pair was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai. All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter, Shirlean Goodwin, and colleagues at the University of Memphis. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. We have not yet achieved this goal. Ten of 45 strains are still represented by single sex samples: BXD2 (F), BXD8 (F), BXD15 (F), BXD18 (F), BXD25 (F), BXD29 (F), BXD33 (M), BXD45 (F), BXD77 (M), and BXD90 (M). Eleven strains are represented by three independent samples with the following breakdown by sex: C57BL/6J (1F 2M), DBA/2J (2F 2M), B6D2F1 (2F 2M) + D2B6F1 (1F 1M), BXD6 (2F 1M), BXD13 (2F 1M), BXD14 (1F 2M), BXD28 (2F 1M), BXD34 (1F 2M), BXD36 (1F 2M), BXD38 (1F 2M), BXD42 (1F 2M).

    + +

    Batch Structure: Before running the first batch of 30 pairs of array (dated Jan04), we ran four test samples (Nov03). The main batch of 30 includes the four test samples (four technical replicates). The Nov03 data was combined with the Jan04 data and was treated as a single batch that consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. The second large batch was run February 2005 (Feb05) and consists of 71 pairs of arrays. Batch effects were corrected at the individual probe level as described below.

    + +

    The table below summarizes information on strain, sex, age, sample name, batch result date, and source of mice.

    +
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexAgeSample_nameResult dateSource
    1C57BL/6JF65R0903F1Nov03UTM RW
    2C57BL/6JF65R0903F1Jan04UTM RW
    3C57BL/6JM66R0906F1Nov03UTM RW
    4C57BL/6JM66R0906F1Jan04UTM RW
    5C57BL/6JM66R0906F1Feb05UTM RW
    6C57BL/6JM76R0997F1Feb05UTM RW
    7D2B6F1F57R1066F1Feb05UTM RW
    8D2B6F1M59R1381F1Feb05UTM RW
    9DBA/2JF60R0917F1Nov03UTM RW
    10DBA/2JF60R0917F1Feb05UTM RW
    11DBA/2JF60R0917F2Jan04UTM RW
    12DBA/2JF64R1123F1Feb05UTM RW
    13DBA/2JM60R0918F1Nov03UTM RW
    14DBA/2JM60R0918F1Jan04UTM RW
    15DBA/2JM73R1009F1Feb05UTM RW
    16B6D2F1F127R0919F1Jan04UTM JB
    17B6D2F1F127R0919F2Jan04UTM JB
    18B6D2F1F64R1053F1Feb05UTM RW
    19B6D2F1F64R1053F1Feb05UTM RW
    20B6D2F1M127R0920F1Jan04UTM JB
    21B6D2F1M127R0920F2Jan04UTM JB
    22B6D2F1M66R1057F1Feb05UTM RW
    23BXD1M181R0956F1Feb05UTM JB
    24BXD1F95R0895F1Jan04UMemphis
    25BXD2F142R0907F1Feb05UAB
    26BXD5F56R0744F1Feb05UMemphis
    27BXD5M71R0728F1Jan04UMemphis
    28BXD6F57R1711F1Feb05JAX
    29BXD6F92R0901F1Feb05UMemphis
    30BXD6M92R0902F1Jan04UMemphis
    31BXD8F72R0167F1Jan04UAB
    32BXD9F86R0908F1Feb05UMemphis
    33BXD9M86R0909F1Jan04UMemphis
    34BXD11F97R0745F1Feb05UAB
    35BXD11M92R0666F1Feb05UMemphis
    36BXD12F64R0896F1Feb05UMemphis
    37BXD12M64R0897F1Jan04UMemphis
    38BXD13F86R0730F1Feb05UMemphis
    39BXD13F86R0748F1Jan04UMemphis
    40BXD13M76R0929F1Feb05UMemphis
    41BXD14M91R0912F1Jan04UMemphis
    42BXD14M68R1051F1Feb05UTM RW
    43BXD15F80R0928F1Feb05UMemphis
    44BXD18F108R0771F1Jan04UAB
    45BXD19M157R1229F1Feb05UTM JB
    46BXD19F56R0236F1Jan04UAB
    47BXD21F67R0740F1Jan04UAB
    48BXD21F67R0740F1Feb05UAB
    49BXD23F66R1035F1Feb05UTM RW
    50BXD23M66R1037F1Feb05UTM RW
    51BXD23F88R0815F1Jan04UAB
    52BXD23F88R0815F1Feb05UAB
    53BXD24F71R0914F1Feb05UMemphis
    54BXD24M71R0913F1Jan04UMemphis
    55BXD25F74R0373F1Jan04UTM RW
    56BXD28F79R0910F1Jan04UMemphis
    57BXD28M79R0911F1Feb05UMemphis
    58BXD28F113R0892F1Feb05UTM RW
    59BXD29F76R0693F1Jan04UMemphis
    60BXD31F61R1199F1Feb05UTM RW
    61BXD31M61R1141F1Feb05UTM RW
    62BXD32F93R0898F1Jan04UAB
    63BXD32F76R1214F1Feb05UMemphis
    64BXD32M65R1478F1Feb05UMemphis
    65BXD33M77R0915F1Jan04UMemphis
    66BXD34F92R0900F1Feb05UMemphis
    67BXD34M56R0617F1Feb05UMemphis
    68BXD34M72R0916F1Jan04UMemphis
    69BXD36F61R1145F1Feb05UTM RW
    70BXD36M77R0926F1Jan04UMemphis
    71BXD36M61R1211F1Feb05UMemphis
    72BXD38M83R1208F1Feb05UMemphis
    73BXD38F69R0729F1Feb05UMemphis
    74BXD38M69R0731F1Jan04UMemphis
    75BXD39F76R1712F1Feb05JAX
    76BXD39M71R0602F1Feb05UAB
    77BXD40F184R0741F1Feb05UAB
    78BXD40M56R0894F1Feb05UMemphis
    79BXD42F100R0742F1Feb05UAB
    80BXD42M97R0936F1Jan04UMemphis
    81BXD42M105R0937F1Feb05UMemphis
    82BXD43M63R1047F1Feb05UTM RW
    83BXD44F57R1069F1Feb05UTM RW
    84BXD44M58R1072F1Feb05UTM RW
    85BXD45F58R1398F1Feb05UTM RW
    86BXD48F59R0946F1Feb05UTM RW
    87BXD48M64R0970F1Feb05UTM RW
    88BXD51F63R1430F1Feb05UTM RW
    89BXD51M65R1001F1Feb05UTM RW
    90BXD60F64R0976F1Feb05UTM RW
    91BXD60M59R1075F1Feb05UTM RW
    92BXD62F59R1033F1Feb05UTM RW
    93BXD62M58R1027F1Feb05UTM RW
    94BXD69F60R1438F1Feb05UTM RW
    95BXD69M64R1193F1Feb05UTM RW
    96BXD73F60R1275F1Feb05UTM RW
    97BXD73M76R1442F1Feb05UTM RW
    98BXD77M61R1426F1Feb05UTM RW
    99BXD86F77R1414F1Feb05UTM RW
    100BXD86M77R1418F1Feb05UTM RW
    101BXD87F89R1713F1Feb05UTM RW
    102BXD87M84R1709F1Feb05UTM RW
    103BXD90M61R1452FFeb05UTM RW
    104BXD92F58R1299F1Feb05UTM RW
    105BXD92M59R1307F1Feb05UTM RW
    +
    +
    diff --git a/general/datasets/Ibr_m_0405_p/acknowledgment.rtf b/general/datasets/Ibr_m_0405_p/acknowledgment.rtf new file mode 100644 index 0000000..a1563a6 --- /dev/null +++ b/general/datasets/Ibr_m_0405_p/acknowledgment.rtf @@ -0,0 +1 @@ +
    Support for acquisition of microarray data were generously provided by the NIAAA and its INIA grant program to RWW, Thomas Sutter, and Daniel Goldowitz (U01AA013515, U01AA013499-03S1, U01AA013488, U01AA013503-03S1). Support for the continued development of the GeneNetwork and WebQTL was provided by a NIMH Human Brain Project grant (P20MH062009). All arrays were processed at the University of Memphis by Thomas Sutter and colleagues with support of the INIA Bioanalytical Core.
    diff --git a/general/datasets/Ibr_m_0405_p/cases.rtf b/general/datasets/Ibr_m_0405_p/cases.rtf new file mode 100644 index 0000000..8794b88 --- /dev/null +++ b/general/datasets/Ibr_m_0405_p/cases.rtf @@ -0,0 +1,5 @@ +
    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues +

     

    + +

    All stock was obtained originally from The Jackson Laboratory between 1999 and 2003. Most BXD animals were born and housed at the University of Tennessee Health Science Center. Some cases were bred at the University of Memphis (Douglas Matthews) or the University of Alabama (John Mountz and Hui-Chen Hsu).

    +
    diff --git a/general/datasets/Ibr_m_0405_p/notes.rtf b/general/datasets/Ibr_m_0405_p/notes.rtf new file mode 100644 index 0000000..72bad83 --- /dev/null +++ b/general/datasets/Ibr_m_0405_p/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by RWW, YHQ, and EJC, Oct 2004. Updated by RWW, Nov 5, 2004; April 7, 2005; RNA/tissue preparation protocol updatedby JLP, Sept 2, 2005; Sept 26, 2005.

    +
    diff --git a/general/datasets/Ibr_m_0405_p/platform.rtf b/general/datasets/Ibr_m_0405_p/platform.rtf new file mode 100644 index 0000000..028fe23 --- /dev/null +++ b/general/datasets/Ibr_m_0405_p/platform.rtf @@ -0,0 +1,3 @@ +

     

    + +

    Affymetrix Mouse Genome 430A and B array pairs: The 430A and B array pairs consist of 992936 25-nucleotide probes that collectively estimate the expression of approximately 39,000 transcripts. The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequences as the 430 2.0 series. However, we have found that roughy 75000 probes differ from those on A and B arrays and those on the 430 2.0

    diff --git a/general/datasets/Ibr_m_0405_p/processing.rtf b/general/datasets/Ibr_m_0405_p/processing.rtf new file mode 100644 index 0000000..243e5c0 --- /dev/null +++ b/general/datasets/Ibr_m_0405_p/processing.rtf @@ -0,0 +1,20 @@ +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). The original CEL files were read into the R environment (Ihaka and Gentleman 1996). Data were processed using the Robust Multichip Average (RMA) method (Irrizary et al. 2003). Values were log2 transformed. Probe set values listed in WebQTL are the averages of biological replicates within strain. A few technical replicates were averaged and treated as single samples. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. + +

    This data set include further normalization to produce final estimates of expression that can be compared directly to the other transforms (average of 8 units and stabilized standard deviation of 2 units within each array). Please seee Bolstad and colleagues (2003) for a helpful comparison of RMA and two other common methods of processing Affymetrix array data sets.

    +
    + +

    About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets included on the microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium May 2004 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    diff --git a/general/datasets/Ibr_m_0405_p/summary.rtf b/general/datasets/Ibr_m_0405_p/summary.rtf new file mode 100644 index 0000000..6fe94b1 --- /dev/null +++ b/general/datasets/Ibr_m_0405_p/summary.rtf @@ -0,0 +1,3 @@ +
    +

    This April 2005 data freeze provides estimates of mRNA expression in adult forebrain and midbrain from 45 lines of mice including C57BL/6J, DBA/2J, their F1 hybrids, and 42 BXD recombinant inbred strains. Data were generated at UTHSC and the University of Memphis with support from grants from the NIAAA Integrative Neuroscience Initiative on Alcoholism (INIA). Samples were hybridized in small pools (n = 3) to a total of 105 Affymetrix M430A and B array pairs. This particular data set was processed using the RMA protocol. To simplify comparisons among transforms, RMA values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.

    +
    diff --git a/general/datasets/Ibr_m_0405_p/tissue.rtf b/general/datasets/Ibr_m_0405_p/tissue.rtf new file mode 100644 index 0000000..841d879 --- /dev/null +++ b/general/datasets/Ibr_m_0405_p/tissue.rtf @@ -0,0 +1,977 @@ +
    The INIA M430 brain Database (April05) consists of 105 Affymetrix 430A and 430B microarray pairs. Each pair was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai. All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter, Shirlean Goodwin, and colleagues at the University of Memphis. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. We have not yet achieved this goal. Ten of 45 strains are still represented by single sex samples: BXD2 (F), BXD8 (F), BXD15 (F), BXD18 (F), BXD25 (F), BXD29 (F), BXD33 (M), BXD45 (F), BXD77 (M), and BXD90 (M). Eleven strains are represented by three independent samples with the following breakdown by sex: C57BL/6J (1F 2M), DBA/2J (2F 2M), B6D2F1 (2F 2M) + D2B6F1 (1F 1M), BXD6 (2F 1M), BXD13 (2F 1M), BXD14 (1F 2M), BXD28 (2F 1M), BXD34 (1F 2M), BXD36 (1F 2M), BXD38 (1F 2M), BXD42 (1F 2M).

    + +

    Batch Structure: Before running the first batch of 30 pairs of array (dated Jan04), we ran four test samples (Nov03). The main batch of 30 includes the four test samples (four technical replicates). The Nov03 data was combined with the Jan04 data and was treated as a single batch that consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. The second large batch was run February 2005 (Feb05) and consists of 71 pairs of arrays. Batch effects were corrected at the individual probe level as described below.

    + +

    The table below summarizes information on strain, sex, age, sample name, batch result date, and source of mice.

    +
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexAgeSample_nameResult dateSource
    1C57BL/6JF65R0903F1Nov03UTM RW
    2C57BL/6JF65R0903F1Jan04UTM RW
    3C57BL/6JM66R0906F1Nov03UTM RW
    4C57BL/6JM66R0906F1Jan04UTM RW
    5C57BL/6JM66R0906F1Feb05UTM RW
    6C57BL/6JM76R0997F1Feb05UTM RW
    7D2B6F1F57R1066F1Feb05UTM RW
    8D2B6F1M59R1381F1Feb05UTM RW
    9DBA/2JF60R0917F1Nov03UTM RW
    10DBA/2JF60R0917F1Feb05UTM RW
    11DBA/2JF60R0917F2Jan04UTM RW
    12DBA/2JF64R1123F1Feb05UTM RW
    13DBA/2JM60R0918F1Nov03UTM RW
    14DBA/2JM60R0918F1Jan04UTM RW
    15DBA/2JM73R1009F1Feb05UTM RW
    16B6D2F1F127R0919F1Jan04UTM JB
    17B6D2F1F127R0919F2Jan04UTM JB
    18B6D2F1F64R1053F1Feb05UTM RW
    19B6D2F1F64R1053F1Feb05UTM RW
    20B6D2F1M127R0920F1Jan04UTM JB
    21B6D2F1M127R0920F2Jan04UTM JB
    22B6D2F1M66R1057F1Feb05UTM RW
    23BXD1M181R0956F1Feb05UTM JB
    24BXD1F95R0895F1Jan04UMemphis
    25BXD2F142R0907F1Feb05UAB
    26BXD5F56R0744F1Feb05UMemphis
    27BXD5M71R0728F1Jan04UMemphis
    28BXD6F57R1711F1Feb05JAX
    29BXD6F92R0901F1Feb05UMemphis
    30BXD6M92R0902F1Jan04UMemphis
    31BXD8F72R0167F1Jan04UAB
    32BXD9F86R0908F1Feb05UMemphis
    33BXD9M86R0909F1Jan04UMemphis
    34BXD11F97R0745F1Feb05UAB
    35BXD11M92R0666F1Feb05UMemphis
    36BXD12F64R0896F1Feb05UMemphis
    37BXD12M64R0897F1Jan04UMemphis
    38BXD13F86R0730F1Feb05UMemphis
    39BXD13F86R0748F1Jan04UMemphis
    40BXD13M76R0929F1Feb05UMemphis
    41BXD14M91R0912F1Jan04UMemphis
    42BXD14M68R1051F1Feb05UTM RW
    43BXD15F80R0928F1Feb05UMemphis
    44BXD18F108R0771F1Jan04UAB
    45BXD19M157R1229F1Feb05UTM JB
    46BXD19F56R0236F1Jan04UAB
    47BXD21F67R0740F1Jan04UAB
    48BXD21F67R0740F1Feb05UAB
    49BXD23F66R1035F1Feb05UTM RW
    50BXD23M66R1037F1Feb05UTM RW
    51BXD23F88R0815F1Jan04UAB
    52BXD23F88R0815F1Feb05UAB
    53BXD24F71R0914F1Feb05UMemphis
    54BXD24M71R0913F1Jan04UMemphis
    55BXD25F74R0373F1Jan04UTM RW
    56BXD28F79R0910F1Jan04UMemphis
    57BXD28M79R0911F1Feb05UMemphis
    58BXD28F113R0892F1Feb05UTM RW
    59BXD29F76R0693F1Jan04UMemphis
    60BXD31F61R1199F1Feb05UTM RW
    61BXD31M61R1141F1Feb05UTM RW
    62BXD32F93R0898F1Jan04UAB
    63BXD32F76R1214F1Feb05UMemphis
    64BXD32M65R1478F1Feb05UMemphis
    65BXD33M77R0915F1Jan04UMemphis
    66BXD34F92R0900F1Feb05UMemphis
    67BXD34M56R0617F1Feb05UMemphis
    68BXD34M72R0916F1Jan04UMemphis
    69BXD36F61R1145F1Feb05UTM RW
    70BXD36M77R0926F1Jan04UMemphis
    71BXD36M61R1211F1Feb05UMemphis
    72BXD38M83R1208F1Feb05UMemphis
    73BXD38F69R0729F1Feb05UMemphis
    74BXD38M69R0731F1Jan04UMemphis
    75BXD39F76R1712F1Feb05JAX
    76BXD39M71R0602F1Feb05UAB
    77BXD40F184R0741F1Feb05UAB
    78BXD40M56R0894F1Feb05UMemphis
    79BXD42F100R0742F1Feb05UAB
    80BXD42M97R0936F1Jan04UMemphis
    81BXD42M105R0937F1Feb05UMemphis
    82BXD43M63R1047F1Feb05UTM RW
    83BXD44F57R1069F1Feb05UTM RW
    84BXD44M58R1072F1Feb05UTM RW
    85BXD45F58R1398F1Feb05UTM RW
    86BXD48F59R0946F1Feb05UTM RW
    87BXD48M64R0970F1Feb05UTM RW
    88BXD51F63R1430F1Feb05UTM RW
    89BXD51M65R1001F1Feb05UTM RW
    90BXD60F64R0976F1Feb05UTM RW
    91BXD60M59R1075F1Feb05UTM RW
    92BXD62F59R1033F1Feb05UTM RW
    93BXD62M58R1027F1Feb05UTM RW
    94BXD69F60R1438F1Feb05UTM RW
    95BXD69M64R1193F1Feb05UTM RW
    96BXD73F60R1275F1Feb05UTM RW
    97BXD73M76R1442F1Feb05UTM RW
    98BXD77M61R1426F1Feb05UTM RW
    99BXD86F77R1414F1Feb05UTM RW
    100BXD86M77R1418F1Feb05UTM RW
    101BXD87F89R1713F1Feb05UTM RW
    102BXD87M84R1709F1Feb05UTM RW
    103BXD90M61R1452FFeb05UTM RW
    104BXD92F58R1299F1Feb05UTM RW
    105BXD92M59R1307F1Feb05UTM RW
    +
    +
    diff --git a/general/datasets/Ibr_m_0405_r/acknowledgment.rtf b/general/datasets/Ibr_m_0405_r/acknowledgment.rtf new file mode 100644 index 0000000..a1563a6 --- /dev/null +++ b/general/datasets/Ibr_m_0405_r/acknowledgment.rtf @@ -0,0 +1 @@ +
    Support for acquisition of microarray data were generously provided by the NIAAA and its INIA grant program to RWW, Thomas Sutter, and Daniel Goldowitz (U01AA013515, U01AA013499-03S1, U01AA013488, U01AA013503-03S1). Support for the continued development of the GeneNetwork and WebQTL was provided by a NIMH Human Brain Project grant (P20MH062009). All arrays were processed at the University of Memphis by Thomas Sutter and colleagues with support of the INIA Bioanalytical Core.
    diff --git a/general/datasets/Ibr_m_0405_r/cases.rtf b/general/datasets/Ibr_m_0405_r/cases.rtf new file mode 100644 index 0000000..8794b88 --- /dev/null +++ b/general/datasets/Ibr_m_0405_r/cases.rtf @@ -0,0 +1,5 @@ +
    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues +

     

    + +

    All stock was obtained originally from The Jackson Laboratory between 1999 and 2003. Most BXD animals were born and housed at the University of Tennessee Health Science Center. Some cases were bred at the University of Memphis (Douglas Matthews) or the University of Alabama (John Mountz and Hui-Chen Hsu).

    +
    diff --git a/general/datasets/Ibr_m_0405_r/notes.rtf b/general/datasets/Ibr_m_0405_r/notes.rtf new file mode 100644 index 0000000..72bad83 --- /dev/null +++ b/general/datasets/Ibr_m_0405_r/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by RWW, YHQ, and EJC, Oct 2004. Updated by RWW, Nov 5, 2004; April 7, 2005; RNA/tissue preparation protocol updatedby JLP, Sept 2, 2005; Sept 26, 2005.

    +
    diff --git a/general/datasets/Ibr_m_0405_r/platform.rtf b/general/datasets/Ibr_m_0405_r/platform.rtf new file mode 100644 index 0000000..028fe23 --- /dev/null +++ b/general/datasets/Ibr_m_0405_r/platform.rtf @@ -0,0 +1,3 @@ +

     

    + +

    Affymetrix Mouse Genome 430A and B array pairs: The 430A and B array pairs consist of 992936 25-nucleotide probes that collectively estimate the expression of approximately 39,000 transcripts. The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequences as the 430 2.0 series. However, we have found that roughy 75000 probes differ from those on A and B arrays and those on the 430 2.0

    diff --git a/general/datasets/Ibr_m_0405_r/processing.rtf b/general/datasets/Ibr_m_0405_r/processing.rtf new file mode 100644 index 0000000..243e5c0 --- /dev/null +++ b/general/datasets/Ibr_m_0405_r/processing.rtf @@ -0,0 +1,20 @@ +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). The original CEL files were read into the R environment (Ihaka and Gentleman 1996). Data were processed using the Robust Multichip Average (RMA) method (Irrizary et al. 2003). Values were log2 transformed. Probe set values listed in WebQTL are the averages of biological replicates within strain. A few technical replicates were averaged and treated as single samples. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. + +

    This data set include further normalization to produce final estimates of expression that can be compared directly to the other transforms (average of 8 units and stabilized standard deviation of 2 units within each array). Please seee Bolstad and colleagues (2003) for a helpful comparison of RMA and two other common methods of processing Affymetrix array data sets.

    +
    + +

    About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets included on the microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium May 2004 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    diff --git a/general/datasets/Ibr_m_0405_r/summary.rtf b/general/datasets/Ibr_m_0405_r/summary.rtf new file mode 100644 index 0000000..6fe94b1 --- /dev/null +++ b/general/datasets/Ibr_m_0405_r/summary.rtf @@ -0,0 +1,3 @@ +
    +

    This April 2005 data freeze provides estimates of mRNA expression in adult forebrain and midbrain from 45 lines of mice including C57BL/6J, DBA/2J, their F1 hybrids, and 42 BXD recombinant inbred strains. Data were generated at UTHSC and the University of Memphis with support from grants from the NIAAA Integrative Neuroscience Initiative on Alcoholism (INIA). Samples were hybridized in small pools (n = 3) to a total of 105 Affymetrix M430A and B array pairs. This particular data set was processed using the RMA protocol. To simplify comparisons among transforms, RMA values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.

    +
    diff --git a/general/datasets/Ibr_m_0405_r/tissue.rtf b/general/datasets/Ibr_m_0405_r/tissue.rtf new file mode 100644 index 0000000..841d879 --- /dev/null +++ b/general/datasets/Ibr_m_0405_r/tissue.rtf @@ -0,0 +1,977 @@ +
    The INIA M430 brain Database (April05) consists of 105 Affymetrix 430A and 430B microarray pairs. Each pair was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai. All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter, Shirlean Goodwin, and colleagues at the University of Memphis. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. We have not yet achieved this goal. Ten of 45 strains are still represented by single sex samples: BXD2 (F), BXD8 (F), BXD15 (F), BXD18 (F), BXD25 (F), BXD29 (F), BXD33 (M), BXD45 (F), BXD77 (M), and BXD90 (M). Eleven strains are represented by three independent samples with the following breakdown by sex: C57BL/6J (1F 2M), DBA/2J (2F 2M), B6D2F1 (2F 2M) + D2B6F1 (1F 1M), BXD6 (2F 1M), BXD13 (2F 1M), BXD14 (1F 2M), BXD28 (2F 1M), BXD34 (1F 2M), BXD36 (1F 2M), BXD38 (1F 2M), BXD42 (1F 2M).

    + +

    Batch Structure: Before running the first batch of 30 pairs of array (dated Jan04), we ran four test samples (Nov03). The main batch of 30 includes the four test samples (four technical replicates). The Nov03 data was combined with the Jan04 data and was treated as a single batch that consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. The second large batch was run February 2005 (Feb05) and consists of 71 pairs of arrays. Batch effects were corrected at the individual probe level as described below.

    + +

    The table below summarizes information on strain, sex, age, sample name, batch result date, and source of mice.

    +
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexAgeSample_nameResult dateSource
    1C57BL/6JF65R0903F1Nov03UTM RW
    2C57BL/6JF65R0903F1Jan04UTM RW
    3C57BL/6JM66R0906F1Nov03UTM RW
    4C57BL/6JM66R0906F1Jan04UTM RW
    5C57BL/6JM66R0906F1Feb05UTM RW
    6C57BL/6JM76R0997F1Feb05UTM RW
    7D2B6F1F57R1066F1Feb05UTM RW
    8D2B6F1M59R1381F1Feb05UTM RW
    9DBA/2JF60R0917F1Nov03UTM RW
    10DBA/2JF60R0917F1Feb05UTM RW
    11DBA/2JF60R0917F2Jan04UTM RW
    12DBA/2JF64R1123F1Feb05UTM RW
    13DBA/2JM60R0918F1Nov03UTM RW
    14DBA/2JM60R0918F1Jan04UTM RW
    15DBA/2JM73R1009F1Feb05UTM RW
    16B6D2F1F127R0919F1Jan04UTM JB
    17B6D2F1F127R0919F2Jan04UTM JB
    18B6D2F1F64R1053F1Feb05UTM RW
    19B6D2F1F64R1053F1Feb05UTM RW
    20B6D2F1M127R0920F1Jan04UTM JB
    21B6D2F1M127R0920F2Jan04UTM JB
    22B6D2F1M66R1057F1Feb05UTM RW
    23BXD1M181R0956F1Feb05UTM JB
    24BXD1F95R0895F1Jan04UMemphis
    25BXD2F142R0907F1Feb05UAB
    26BXD5F56R0744F1Feb05UMemphis
    27BXD5M71R0728F1Jan04UMemphis
    28BXD6F57R1711F1Feb05JAX
    29BXD6F92R0901F1Feb05UMemphis
    30BXD6M92R0902F1Jan04UMemphis
    31BXD8F72R0167F1Jan04UAB
    32BXD9F86R0908F1Feb05UMemphis
    33BXD9M86R0909F1Jan04UMemphis
    34BXD11F97R0745F1Feb05UAB
    35BXD11M92R0666F1Feb05UMemphis
    36BXD12F64R0896F1Feb05UMemphis
    37BXD12M64R0897F1Jan04UMemphis
    38BXD13F86R0730F1Feb05UMemphis
    39BXD13F86R0748F1Jan04UMemphis
    40BXD13M76R0929F1Feb05UMemphis
    41BXD14M91R0912F1Jan04UMemphis
    42BXD14M68R1051F1Feb05UTM RW
    43BXD15F80R0928F1Feb05UMemphis
    44BXD18F108R0771F1Jan04UAB
    45BXD19M157R1229F1Feb05UTM JB
    46BXD19F56R0236F1Jan04UAB
    47BXD21F67R0740F1Jan04UAB
    48BXD21F67R0740F1Feb05UAB
    49BXD23F66R1035F1Feb05UTM RW
    50BXD23M66R1037F1Feb05UTM RW
    51BXD23F88R0815F1Jan04UAB
    52BXD23F88R0815F1Feb05UAB
    53BXD24F71R0914F1Feb05UMemphis
    54BXD24M71R0913F1Jan04UMemphis
    55BXD25F74R0373F1Jan04UTM RW
    56BXD28F79R0910F1Jan04UMemphis
    57BXD28M79R0911F1Feb05UMemphis
    58BXD28F113R0892F1Feb05UTM RW
    59BXD29F76R0693F1Jan04UMemphis
    60BXD31F61R1199F1Feb05UTM RW
    61BXD31M61R1141F1Feb05UTM RW
    62BXD32F93R0898F1Jan04UAB
    63BXD32F76R1214F1Feb05UMemphis
    64BXD32M65R1478F1Feb05UMemphis
    65BXD33M77R0915F1Jan04UMemphis
    66BXD34F92R0900F1Feb05UMemphis
    67BXD34M56R0617F1Feb05UMemphis
    68BXD34M72R0916F1Jan04UMemphis
    69BXD36F61R1145F1Feb05UTM RW
    70BXD36M77R0926F1Jan04UMemphis
    71BXD36M61R1211F1Feb05UMemphis
    72BXD38M83R1208F1Feb05UMemphis
    73BXD38F69R0729F1Feb05UMemphis
    74BXD38M69R0731F1Jan04UMemphis
    75BXD39F76R1712F1Feb05JAX
    76BXD39M71R0602F1Feb05UAB
    77BXD40F184R0741F1Feb05UAB
    78BXD40M56R0894F1Feb05UMemphis
    79BXD42F100R0742F1Feb05UAB
    80BXD42M97R0936F1Jan04UMemphis
    81BXD42M105R0937F1Feb05UMemphis
    82BXD43M63R1047F1Feb05UTM RW
    83BXD44F57R1069F1Feb05UTM RW
    84BXD44M58R1072F1Feb05UTM RW
    85BXD45F58R1398F1Feb05UTM RW
    86BXD48F59R0946F1Feb05UTM RW
    87BXD48M64R0970F1Feb05UTM RW
    88BXD51F63R1430F1Feb05UTM RW
    89BXD51M65R1001F1Feb05UTM RW
    90BXD60F64R0976F1Feb05UTM RW
    91BXD60M59R1075F1Feb05UTM RW
    92BXD62F59R1033F1Feb05UTM RW
    93BXD62M58R1027F1Feb05UTM RW
    94BXD69F60R1438F1Feb05UTM RW
    95BXD69M64R1193F1Feb05UTM RW
    96BXD73F60R1275F1Feb05UTM RW
    97BXD73M76R1442F1Feb05UTM RW
    98BXD77M61R1426F1Feb05UTM RW
    99BXD86F77R1414F1Feb05UTM RW
    100BXD86M77R1418F1Feb05UTM RW
    101BXD87F89R1713F1Feb05UTM RW
    102BXD87M84R1709F1Feb05UTM RW
    103BXD90M61R1452FFeb05UTM RW
    104BXD92F58R1299F1Feb05UTM RW
    105BXD92M59R1307F1Feb05UTM RW
    +
    +
    diff --git a/general/datasets/Ibr_m_0606_r/acknowledgment.rtf b/general/datasets/Ibr_m_0606_r/acknowledgment.rtf new file mode 100644 index 0000000..a1563a6 --- /dev/null +++ b/general/datasets/Ibr_m_0606_r/acknowledgment.rtf @@ -0,0 +1 @@ +
    Support for acquisition of microarray data were generously provided by the NIAAA and its INIA grant program to RWW, Thomas Sutter, and Daniel Goldowitz (U01AA013515, U01AA013499-03S1, U01AA013488, U01AA013503-03S1). Support for the continued development of the GeneNetwork and WebQTL was provided by a NIMH Human Brain Project grant (P20MH062009). All arrays were processed at the University of Memphis by Thomas Sutter and colleagues with support of the INIA Bioanalytical Core.
    diff --git a/general/datasets/Ibr_m_0606_r/cases.rtf b/general/datasets/Ibr_m_0606_r/cases.rtf new file mode 100644 index 0000000..8794b88 --- /dev/null +++ b/general/datasets/Ibr_m_0606_r/cases.rtf @@ -0,0 +1,5 @@ +
    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues +

     

    + +

    All stock was obtained originally from The Jackson Laboratory between 1999 and 2003. Most BXD animals were born and housed at the University of Tennessee Health Science Center. Some cases were bred at the University of Memphis (Douglas Matthews) or the University of Alabama (John Mountz and Hui-Chen Hsu).

    +
    diff --git a/general/datasets/Ibr_m_0606_r/notes.rtf b/general/datasets/Ibr_m_0606_r/notes.rtf new file mode 100644 index 0000000..72bad83 --- /dev/null +++ b/general/datasets/Ibr_m_0606_r/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by RWW, YHQ, and EJC, Oct 2004. Updated by RWW, Nov 5, 2004; April 7, 2005; RNA/tissue preparation protocol updatedby JLP, Sept 2, 2005; Sept 26, 2005.

    +
    diff --git a/general/datasets/Ibr_m_0606_r/platform.rtf b/general/datasets/Ibr_m_0606_r/platform.rtf new file mode 100644 index 0000000..028fe23 --- /dev/null +++ b/general/datasets/Ibr_m_0606_r/platform.rtf @@ -0,0 +1,3 @@ +

     

    + +

    Affymetrix Mouse Genome 430A and B array pairs: The 430A and B array pairs consist of 992936 25-nucleotide probes that collectively estimate the expression of approximately 39,000 transcripts. The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequences as the 430 2.0 series. However, we have found that roughy 75000 probes differ from those on A and B arrays and those on the 430 2.0

    diff --git a/general/datasets/Ibr_m_0606_r/processing.rtf b/general/datasets/Ibr_m_0606_r/processing.rtf new file mode 100644 index 0000000..243e5c0 --- /dev/null +++ b/general/datasets/Ibr_m_0606_r/processing.rtf @@ -0,0 +1,20 @@ +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). The original CEL files were read into the R environment (Ihaka and Gentleman 1996). Data were processed using the Robust Multichip Average (RMA) method (Irrizary et al. 2003). Values were log2 transformed. Probe set values listed in WebQTL are the averages of biological replicates within strain. A few technical replicates were averaged and treated as single samples. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. + +

    This data set include further normalization to produce final estimates of expression that can be compared directly to the other transforms (average of 8 units and stabilized standard deviation of 2 units within each array). Please seee Bolstad and colleagues (2003) for a helpful comparison of RMA and two other common methods of processing Affymetrix array data sets.

    +
    + +

    About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets included on the microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium May 2004 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    diff --git a/general/datasets/Ibr_m_0606_r/summary.rtf b/general/datasets/Ibr_m_0606_r/summary.rtf new file mode 100644 index 0000000..6fe94b1 --- /dev/null +++ b/general/datasets/Ibr_m_0606_r/summary.rtf @@ -0,0 +1,3 @@ +
    +

    This April 2005 data freeze provides estimates of mRNA expression in adult forebrain and midbrain from 45 lines of mice including C57BL/6J, DBA/2J, their F1 hybrids, and 42 BXD recombinant inbred strains. Data were generated at UTHSC and the University of Memphis with support from grants from the NIAAA Integrative Neuroscience Initiative on Alcoholism (INIA). Samples were hybridized in small pools (n = 3) to a total of 105 Affymetrix M430A and B array pairs. This particular data set was processed using the RMA protocol. To simplify comparisons among transforms, RMA values of each array were adjusted to an average of 8 units and a standard deviation of 2 units.

    +
    diff --git a/general/datasets/Ibr_m_0606_r/tissue.rtf b/general/datasets/Ibr_m_0606_r/tissue.rtf new file mode 100644 index 0000000..841d879 --- /dev/null +++ b/general/datasets/Ibr_m_0606_r/tissue.rtf @@ -0,0 +1,977 @@ +
    The INIA M430 brain Database (April05) consists of 105 Affymetrix 430A and 430B microarray pairs. Each pair was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai. All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter, Shirlean Goodwin, and colleagues at the University of Memphis. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. We have not yet achieved this goal. Ten of 45 strains are still represented by single sex samples: BXD2 (F), BXD8 (F), BXD15 (F), BXD18 (F), BXD25 (F), BXD29 (F), BXD33 (M), BXD45 (F), BXD77 (M), and BXD90 (M). Eleven strains are represented by three independent samples with the following breakdown by sex: C57BL/6J (1F 2M), DBA/2J (2F 2M), B6D2F1 (2F 2M) + D2B6F1 (1F 1M), BXD6 (2F 1M), BXD13 (2F 1M), BXD14 (1F 2M), BXD28 (2F 1M), BXD34 (1F 2M), BXD36 (1F 2M), BXD38 (1F 2M), BXD42 (1F 2M).

    + +

    Batch Structure: Before running the first batch of 30 pairs of array (dated Jan04), we ran four test samples (Nov03). The main batch of 30 includes the four test samples (four technical replicates). The Nov03 data was combined with the Jan04 data and was treated as a single batch that consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. The second large batch was run February 2005 (Feb05) and consists of 71 pairs of arrays. Batch effects were corrected at the individual probe level as described below.

    + +

    The table below summarizes information on strain, sex, age, sample name, batch result date, and source of mice.

    +
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexAgeSample_nameResult dateSource
    1C57BL/6JF65R0903F1Nov03UTM RW
    2C57BL/6JF65R0903F1Jan04UTM RW
    3C57BL/6JM66R0906F1Nov03UTM RW
    4C57BL/6JM66R0906F1Jan04UTM RW
    5C57BL/6JM66R0906F1Feb05UTM RW
    6C57BL/6JM76R0997F1Feb05UTM RW
    7D2B6F1F57R1066F1Feb05UTM RW
    8D2B6F1M59R1381F1Feb05UTM RW
    9DBA/2JF60R0917F1Nov03UTM RW
    10DBA/2JF60R0917F1Feb05UTM RW
    11DBA/2JF60R0917F2Jan04UTM RW
    12DBA/2JF64R1123F1Feb05UTM RW
    13DBA/2JM60R0918F1Nov03UTM RW
    14DBA/2JM60R0918F1Jan04UTM RW
    15DBA/2JM73R1009F1Feb05UTM RW
    16B6D2F1F127R0919F1Jan04UTM JB
    17B6D2F1F127R0919F2Jan04UTM JB
    18B6D2F1F64R1053F1Feb05UTM RW
    19B6D2F1F64R1053F1Feb05UTM RW
    20B6D2F1M127R0920F1Jan04UTM JB
    21B6D2F1M127R0920F2Jan04UTM JB
    22B6D2F1M66R1057F1Feb05UTM RW
    23BXD1M181R0956F1Feb05UTM JB
    24BXD1F95R0895F1Jan04UMemphis
    25BXD2F142R0907F1Feb05UAB
    26BXD5F56R0744F1Feb05UMemphis
    27BXD5M71R0728F1Jan04UMemphis
    28BXD6F57R1711F1Feb05JAX
    29BXD6F92R0901F1Feb05UMemphis
    30BXD6M92R0902F1Jan04UMemphis
    31BXD8F72R0167F1Jan04UAB
    32BXD9F86R0908F1Feb05UMemphis
    33BXD9M86R0909F1Jan04UMemphis
    34BXD11F97R0745F1Feb05UAB
    35BXD11M92R0666F1Feb05UMemphis
    36BXD12F64R0896F1Feb05UMemphis
    37BXD12M64R0897F1Jan04UMemphis
    38BXD13F86R0730F1Feb05UMemphis
    39BXD13F86R0748F1Jan04UMemphis
    40BXD13M76R0929F1Feb05UMemphis
    41BXD14M91R0912F1Jan04UMemphis
    42BXD14M68R1051F1Feb05UTM RW
    43BXD15F80R0928F1Feb05UMemphis
    44BXD18F108R0771F1Jan04UAB
    45BXD19M157R1229F1Feb05UTM JB
    46BXD19F56R0236F1Jan04UAB
    47BXD21F67R0740F1Jan04UAB
    48BXD21F67R0740F1Feb05UAB
    49BXD23F66R1035F1Feb05UTM RW
    50BXD23M66R1037F1Feb05UTM RW
    51BXD23F88R0815F1Jan04UAB
    52BXD23F88R0815F1Feb05UAB
    53BXD24F71R0914F1Feb05UMemphis
    54BXD24M71R0913F1Jan04UMemphis
    55BXD25F74R0373F1Jan04UTM RW
    56BXD28F79R0910F1Jan04UMemphis
    57BXD28M79R0911F1Feb05UMemphis
    58BXD28F113R0892F1Feb05UTM RW
    59BXD29F76R0693F1Jan04UMemphis
    60BXD31F61R1199F1Feb05UTM RW
    61BXD31M61R1141F1Feb05UTM RW
    62BXD32F93R0898F1Jan04UAB
    63BXD32F76R1214F1Feb05UMemphis
    64BXD32M65R1478F1Feb05UMemphis
    65BXD33M77R0915F1Jan04UMemphis
    66BXD34F92R0900F1Feb05UMemphis
    67BXD34M56R0617F1Feb05UMemphis
    68BXD34M72R0916F1Jan04UMemphis
    69BXD36F61R1145F1Feb05UTM RW
    70BXD36M77R0926F1Jan04UMemphis
    71BXD36M61R1211F1Feb05UMemphis
    72BXD38M83R1208F1Feb05UMemphis
    73BXD38F69R0729F1Feb05UMemphis
    74BXD38M69R0731F1Jan04UMemphis
    75BXD39F76R1712F1Feb05JAX
    76BXD39M71R0602F1Feb05UAB
    77BXD40F184R0741F1Feb05UAB
    78BXD40M56R0894F1Feb05UMemphis
    79BXD42F100R0742F1Feb05UAB
    80BXD42M97R0936F1Jan04UMemphis
    81BXD42M105R0937F1Feb05UMemphis
    82BXD43M63R1047F1Feb05UTM RW
    83BXD44F57R1069F1Feb05UTM RW
    84BXD44M58R1072F1Feb05UTM RW
    85BXD45F58R1398F1Feb05UTM RW
    86BXD48F59R0946F1Feb05UTM RW
    87BXD48M64R0970F1Feb05UTM RW
    88BXD51F63R1430F1Feb05UTM RW
    89BXD51M65R1001F1Feb05UTM RW
    90BXD60F64R0976F1Feb05UTM RW
    91BXD60M59R1075F1Feb05UTM RW
    92BXD62F59R1033F1Feb05UTM RW
    93BXD62M58R1027F1Feb05UTM RW
    94BXD69F60R1438F1Feb05UTM RW
    95BXD69M64R1193F1Feb05UTM RW
    96BXD73F60R1275F1Feb05UTM RW
    97BXD73M76R1442F1Feb05UTM RW
    98BXD77M61R1426F1Feb05UTM RW
    99BXD86F77R1414F1Feb05UTM RW
    100BXD86M77R1418F1Feb05UTM RW
    101BXD87F89R1713F1Feb05UTM RW
    102BXD87M84R1709F1Feb05UTM RW
    103BXD90M61R1452FFeb05UTM RW
    104BXD92F58R1299F1Feb05UTM RW
    105BXD92M59R1307F1Feb05UTM RW
    +
    +
    diff --git a/general/datasets/Ibr_m_1004_m/acknowledgment.rtf b/general/datasets/Ibr_m_1004_m/acknowledgment.rtf new file mode 100644 index 0000000..7b62a11 --- /dev/null +++ b/general/datasets/Ibr_m_1004_m/acknowledgment.rtf @@ -0,0 +1 @@ +
    Data for the microarrays were generously provided by support from NIAAA INIA grants to RWW and Thomas Sutter. Support for sample acquistion and WebQTL have been provided by NIMH Human Brain Project, and the Dunavant Chair of Excellence, University of Tennessee Health Science Center. All arrays were processed at the University of Memphis by Dr. Thomas Sutter and colleagues with support of the INIA Bioanalytical Core.
    diff --git a/general/datasets/Ibr_m_1004_m/cases.rtf b/general/datasets/Ibr_m_1004_m/cases.rtf new file mode 100644 index 0000000..9dc5cbe --- /dev/null +++ b/general/datasets/Ibr_m_1004_m/cases.rtf @@ -0,0 +1,3 @@ +

    We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B) and DBA/2J (D). Both B and D strains have been almost fully sequence (8x coverage for B by a public consortium and approximately 1.5x coverage for D by Celera).

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine.

    diff --git a/general/datasets/Ibr_m_1004_m/notes.rtf b/general/datasets/Ibr_m_1004_m/notes.rtf new file mode 100644 index 0000000..f3ea488 --- /dev/null +++ b/general/datasets/Ibr_m_1004_m/notes.rtf @@ -0,0 +1 @@ +

    This text file originally generated by RWW, YHQ, and EJC, Oct 2004. Updated by RWW, Nov 5, 2004.

    diff --git a/general/datasets/Ibr_m_1004_m/platform.rtf b/general/datasets/Ibr_m_1004_m/platform.rtf new file mode 100644 index 0000000..51cbff2 --- /dev/null +++ b/general/datasets/Ibr_m_1004_m/platform.rtf @@ -0,0 +1 @@ +

    Affymetrix 430A and 430B GeneChip Set: Expression data were generated using 430AB array pairs. The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on either the Verify UCSC and Verify Ensembl links in the Trait Data and Editing Form (right side of the Location line).

    diff --git a/general/datasets/Ibr_m_1004_m/processing.rtf b/general/datasets/Ibr_m_1004_m/processing.rtf new file mode 100644 index 0000000..4663b88 --- /dev/null +++ b/general/datasets/Ibr_m_1004_m/processing.rtf @@ -0,0 +1,29 @@ +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.
    + +
    + +
    + +
    +

    Probe set data: The original expression values in the Affymetrix CEL files were read into PerfectMatch to generate the normalized PDNN data set.

    + +

    PDNN values of each array were subsequently normalized to a achieve a mean value of 8 units and a variance of 2 units.

    + +

    When necessary, we computed the arithmetic mean for technical replicates and treated these as single samples. We then computed the arithmetic mean for the set of 2 to 5 biological replicates for each strain.

    +
    + +

    About the array probe sets names:

    + +
    +

    Most probe sets on the mouse 430A and 430B arrays consist of a total of 22 probes, divided into 11 perfect match(PM) probes and 11 mismatch (MM) controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, several suffix characters that highlight design features, a a final A or B character to specify the array pair member. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene.

    +
    diff --git a/general/datasets/Ibr_m_1004_m/summary.rtf b/general/datasets/Ibr_m_1004_m/summary.rtf new file mode 100644 index 0000000..c32676a --- /dev/null +++ b/general/datasets/Ibr_m_1004_m/summary.rtf @@ -0,0 +1 @@ +

    This October 2004 data freeze provides initial estimates of mRNA expression in brains of adult BXD recombinant inbred mice measured using Affymetrix M430AB microarrays. In contast to the U74Av2 array, this new data set provides broader coverage (~45,000 transcripts) but does not include replicates or as many strains (25 vs 35). Data were generated at UTHSC and the University of Memphis with support from grants from the NIAAA Integrative Neuroscience Initiative on Alcoholism (INIA). Data were processed using the PDNN method of Zhang. To simplify comparison among transforms, PDNN values of each array were adjusted to an average of 8 units and a variance of 2 units.

    diff --git a/general/datasets/Ibr_m_1004_m/tissue.rtf b/general/datasets/Ibr_m_1004_m/tissue.rtf new file mode 100644 index 0000000..cac878a --- /dev/null +++ b/general/datasets/Ibr_m_1004_m/tissue.rtf @@ -0,0 +1,261 @@ +

    The data set consists of a single batch of Affymetrix mouse expression 430A and 430B GeneChip array pairs. Each AB pair was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai. All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter and colleagues at the University of Memphis. Before running the main batch of 30 pairs of array, we ran four "test" samples (one male and one female pool from each of the two parental strains, C57BL/6J and DBA/2J). The main set of 30 array pairs includes the same four samples (in other words we have four technical replicates), two F1 hybrid sample (each run two times for a within-batch technical replication), and 22 BXD strains. The data set therefore consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. We should note that the four technical replicates between batches were eventually combined with a correction for a highly significant batch effect. This was done at both the probe and probe set levels to "align" the test batch values with the two main batches. (The ratio of the probe average in the four test arrays to the average of the same probe in the four corresponding main batch arrays was used as a correction factor.) The F1 within-batch technical replicates were simply averaged. In the next batch we will reverse the sex of the BXD samples to achieve a balance with at least 22 BXD strains with one male and one female sample each.

    + +

    The table below lists the arrays by strain, sex, age, sample identifier, and data results were obtained from the Bioanalytical Core at the University of Memphis. Each array was hybridized to a pool of mRNA from three mice.

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSexAgeSampleIDDate
    B6D2F1F127919-F1Jan04
    B6D2F1F127919-F2Jan04
    B6D2F1M127920-F1Jan04
    B6D2F1M127920-F2Jan04
    C57BL/6JF65903-F1Nov03
    C57BL/6JF65903-F2Jan03
    C57BL/6JM66906-F1Nov03
    C57BL/6JM66906-F2Jan04
    DBA/2JF60917-F1Nov03
    DBA/2JF60917-F2Jan04
    DBA/2JM60918-F1Nov03
    DBA/2JM60918-F2Jan04
    BXD1F95895-F1Jan04
    BXD5M71728-F1Jan04
    BXD6M92902-F1Jan04
    BXD8F72S167-F1Jan04
    BXD9M86909-F1Jan04
    BXD12M64897-F1Jan04
    BXD13F86748-F1Jan04
    BXD14M91912-F1Jan04
    BXD18F108771-F1Jan04
    BXD19F56S236-F1Jan04
    BXD21F67740-F1Jan04
    BXD23F88815-F1Jan04
    BXD24M71913-F1Jan04
    BXD25F74S373-F1Jan04
    BXD28F79910-F1Jan04
    BXD29F76693-F1Jan04
    BXD32F93898-F1Jan04
    BXD33M77915-F1Jan04
    BXD34M72916-F1Jan04
    BXD36M77926-F1Jan04
    BXD38M69731-F1Jan04
    BXD42M97936-F1Jan04
    +
    diff --git a/general/datasets/Ibr_m_1004_p/acknowledgment.rtf b/general/datasets/Ibr_m_1004_p/acknowledgment.rtf new file mode 100644 index 0000000..7b62a11 --- /dev/null +++ b/general/datasets/Ibr_m_1004_p/acknowledgment.rtf @@ -0,0 +1 @@ +
    Data for the microarrays were generously provided by support from NIAAA INIA grants to RWW and Thomas Sutter. Support for sample acquistion and WebQTL have been provided by NIMH Human Brain Project, and the Dunavant Chair of Excellence, University of Tennessee Health Science Center. All arrays were processed at the University of Memphis by Dr. Thomas Sutter and colleagues with support of the INIA Bioanalytical Core.
    diff --git a/general/datasets/Ibr_m_1004_p/cases.rtf b/general/datasets/Ibr_m_1004_p/cases.rtf new file mode 100644 index 0000000..9dc5cbe --- /dev/null +++ b/general/datasets/Ibr_m_1004_p/cases.rtf @@ -0,0 +1,3 @@ +

    We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B) and DBA/2J (D). Both B and D strains have been almost fully sequence (8x coverage for B by a public consortium and approximately 1.5x coverage for D by Celera).

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine.

    diff --git a/general/datasets/Ibr_m_1004_p/notes.rtf b/general/datasets/Ibr_m_1004_p/notes.rtf new file mode 100644 index 0000000..f3ea488 --- /dev/null +++ b/general/datasets/Ibr_m_1004_p/notes.rtf @@ -0,0 +1 @@ +

    This text file originally generated by RWW, YHQ, and EJC, Oct 2004. Updated by RWW, Nov 5, 2004.

    diff --git a/general/datasets/Ibr_m_1004_p/platform.rtf b/general/datasets/Ibr_m_1004_p/platform.rtf new file mode 100644 index 0000000..51cbff2 --- /dev/null +++ b/general/datasets/Ibr_m_1004_p/platform.rtf @@ -0,0 +1 @@ +

    Affymetrix 430A and 430B GeneChip Set: Expression data were generated using 430AB array pairs. The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on either the Verify UCSC and Verify Ensembl links in the Trait Data and Editing Form (right side of the Location line).

    diff --git a/general/datasets/Ibr_m_1004_p/processing.rtf b/general/datasets/Ibr_m_1004_p/processing.rtf new file mode 100644 index 0000000..4663b88 --- /dev/null +++ b/general/datasets/Ibr_m_1004_p/processing.rtf @@ -0,0 +1,29 @@ +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.
    + +
    + +
    + +
    +

    Probe set data: The original expression values in the Affymetrix CEL files were read into PerfectMatch to generate the normalized PDNN data set.

    + +

    PDNN values of each array were subsequently normalized to a achieve a mean value of 8 units and a variance of 2 units.

    + +

    When necessary, we computed the arithmetic mean for technical replicates and treated these as single samples. We then computed the arithmetic mean for the set of 2 to 5 biological replicates for each strain.

    +
    + +

    About the array probe sets names:

    + +
    +

    Most probe sets on the mouse 430A and 430B arrays consist of a total of 22 probes, divided into 11 perfect match(PM) probes and 11 mismatch (MM) controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, several suffix characters that highlight design features, a a final A or B character to specify the array pair member. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene.

    +
    diff --git a/general/datasets/Ibr_m_1004_p/summary.rtf b/general/datasets/Ibr_m_1004_p/summary.rtf new file mode 100644 index 0000000..c32676a --- /dev/null +++ b/general/datasets/Ibr_m_1004_p/summary.rtf @@ -0,0 +1 @@ +

    This October 2004 data freeze provides initial estimates of mRNA expression in brains of adult BXD recombinant inbred mice measured using Affymetrix M430AB microarrays. In contast to the U74Av2 array, this new data set provides broader coverage (~45,000 transcripts) but does not include replicates or as many strains (25 vs 35). Data were generated at UTHSC and the University of Memphis with support from grants from the NIAAA Integrative Neuroscience Initiative on Alcoholism (INIA). Data were processed using the PDNN method of Zhang. To simplify comparison among transforms, PDNN values of each array were adjusted to an average of 8 units and a variance of 2 units.

    diff --git a/general/datasets/Ibr_m_1004_p/tissue.rtf b/general/datasets/Ibr_m_1004_p/tissue.rtf new file mode 100644 index 0000000..cac878a --- /dev/null +++ b/general/datasets/Ibr_m_1004_p/tissue.rtf @@ -0,0 +1,261 @@ +

    The data set consists of a single batch of Affymetrix mouse expression 430A and 430B GeneChip array pairs. Each AB pair was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai. All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter and colleagues at the University of Memphis. Before running the main batch of 30 pairs of array, we ran four "test" samples (one male and one female pool from each of the two parental strains, C57BL/6J and DBA/2J). The main set of 30 array pairs includes the same four samples (in other words we have four technical replicates), two F1 hybrid sample (each run two times for a within-batch technical replication), and 22 BXD strains. The data set therefore consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. We should note that the four technical replicates between batches were eventually combined with a correction for a highly significant batch effect. This was done at both the probe and probe set levels to "align" the test batch values with the two main batches. (The ratio of the probe average in the four test arrays to the average of the same probe in the four corresponding main batch arrays was used as a correction factor.) The F1 within-batch technical replicates were simply averaged. In the next batch we will reverse the sex of the BXD samples to achieve a balance with at least 22 BXD strains with one male and one female sample each.

    + +

    The table below lists the arrays by strain, sex, age, sample identifier, and data results were obtained from the Bioanalytical Core at the University of Memphis. Each array was hybridized to a pool of mRNA from three mice.

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSexAgeSampleIDDate
    B6D2F1F127919-F1Jan04
    B6D2F1F127919-F2Jan04
    B6D2F1M127920-F1Jan04
    B6D2F1M127920-F2Jan04
    C57BL/6JF65903-F1Nov03
    C57BL/6JF65903-F2Jan03
    C57BL/6JM66906-F1Nov03
    C57BL/6JM66906-F2Jan04
    DBA/2JF60917-F1Nov03
    DBA/2JF60917-F2Jan04
    DBA/2JM60918-F1Nov03
    DBA/2JM60918-F2Jan04
    BXD1F95895-F1Jan04
    BXD5M71728-F1Jan04
    BXD6M92902-F1Jan04
    BXD8F72S167-F1Jan04
    BXD9M86909-F1Jan04
    BXD12M64897-F1Jan04
    BXD13F86748-F1Jan04
    BXD14M91912-F1Jan04
    BXD18F108771-F1Jan04
    BXD19F56S236-F1Jan04
    BXD21F67740-F1Jan04
    BXD23F88815-F1Jan04
    BXD24M71913-F1Jan04
    BXD25F74S373-F1Jan04
    BXD28F79910-F1Jan04
    BXD29F76693-F1Jan04
    BXD32F93898-F1Jan04
    BXD33M77915-F1Jan04
    BXD34M72916-F1Jan04
    BXD36M77926-F1Jan04
    BXD38M69731-F1Jan04
    BXD42M97936-F1Jan04
    +
    diff --git a/general/datasets/Ibr_m_1004_r/acknowledgment.rtf b/general/datasets/Ibr_m_1004_r/acknowledgment.rtf new file mode 100644 index 0000000..7b62a11 --- /dev/null +++ b/general/datasets/Ibr_m_1004_r/acknowledgment.rtf @@ -0,0 +1 @@ +
    Data for the microarrays were generously provided by support from NIAAA INIA grants to RWW and Thomas Sutter. Support for sample acquistion and WebQTL have been provided by NIMH Human Brain Project, and the Dunavant Chair of Excellence, University of Tennessee Health Science Center. All arrays were processed at the University of Memphis by Dr. Thomas Sutter and colleagues with support of the INIA Bioanalytical Core.
    diff --git a/general/datasets/Ibr_m_1004_r/cases.rtf b/general/datasets/Ibr_m_1004_r/cases.rtf new file mode 100644 index 0000000..9dc5cbe --- /dev/null +++ b/general/datasets/Ibr_m_1004_r/cases.rtf @@ -0,0 +1,3 @@ +

    We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B) and DBA/2J (D). Both B and D strains have been almost fully sequence (8x coverage for B by a public consortium and approximately 1.5x coverage for D by Celera).

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine.

    diff --git a/general/datasets/Ibr_m_1004_r/notes.rtf b/general/datasets/Ibr_m_1004_r/notes.rtf new file mode 100644 index 0000000..f3ea488 --- /dev/null +++ b/general/datasets/Ibr_m_1004_r/notes.rtf @@ -0,0 +1 @@ +

    This text file originally generated by RWW, YHQ, and EJC, Oct 2004. Updated by RWW, Nov 5, 2004.

    diff --git a/general/datasets/Ibr_m_1004_r/platform.rtf b/general/datasets/Ibr_m_1004_r/platform.rtf new file mode 100644 index 0000000..51cbff2 --- /dev/null +++ b/general/datasets/Ibr_m_1004_r/platform.rtf @@ -0,0 +1 @@ +

    Affymetrix 430A and 430B GeneChip Set: Expression data were generated using 430AB array pairs. The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on either the Verify UCSC and Verify Ensembl links in the Trait Data and Editing Form (right side of the Location line).

    diff --git a/general/datasets/Ibr_m_1004_r/processing.rtf b/general/datasets/Ibr_m_1004_r/processing.rtf new file mode 100644 index 0000000..4663b88 --- /dev/null +++ b/general/datasets/Ibr_m_1004_r/processing.rtf @@ -0,0 +1,29 @@ +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.
    + +
    + +
    + +
    +

    Probe set data: The original expression values in the Affymetrix CEL files were read into PerfectMatch to generate the normalized PDNN data set.

    + +

    PDNN values of each array were subsequently normalized to a achieve a mean value of 8 units and a variance of 2 units.

    + +

    When necessary, we computed the arithmetic mean for technical replicates and treated these as single samples. We then computed the arithmetic mean for the set of 2 to 5 biological replicates for each strain.

    +
    + +

    About the array probe sets names:

    + +
    +

    Most probe sets on the mouse 430A and 430B arrays consist of a total of 22 probes, divided into 11 perfect match(PM) probes and 11 mismatch (MM) controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, several suffix characters that highlight design features, a a final A or B character to specify the array pair member. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene.

    +
    diff --git a/general/datasets/Ibr_m_1004_r/summary.rtf b/general/datasets/Ibr_m_1004_r/summary.rtf new file mode 100644 index 0000000..c32676a --- /dev/null +++ b/general/datasets/Ibr_m_1004_r/summary.rtf @@ -0,0 +1 @@ +

    This October 2004 data freeze provides initial estimates of mRNA expression in brains of adult BXD recombinant inbred mice measured using Affymetrix M430AB microarrays. In contast to the U74Av2 array, this new data set provides broader coverage (~45,000 transcripts) but does not include replicates or as many strains (25 vs 35). Data were generated at UTHSC and the University of Memphis with support from grants from the NIAAA Integrative Neuroscience Initiative on Alcoholism (INIA). Data were processed using the PDNN method of Zhang. To simplify comparison among transforms, PDNN values of each array were adjusted to an average of 8 units and a variance of 2 units.

    diff --git a/general/datasets/Ibr_m_1004_r/tissue.rtf b/general/datasets/Ibr_m_1004_r/tissue.rtf new file mode 100644 index 0000000..cac878a --- /dev/null +++ b/general/datasets/Ibr_m_1004_r/tissue.rtf @@ -0,0 +1,261 @@ +

    The data set consists of a single batch of Affymetrix mouse expression 430A and 430B GeneChip array pairs. Each AB pair was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai. All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter and colleagues at the University of Memphis. Before running the main batch of 30 pairs of array, we ran four "test" samples (one male and one female pool from each of the two parental strains, C57BL/6J and DBA/2J). The main set of 30 array pairs includes the same four samples (in other words we have four technical replicates), two F1 hybrid sample (each run two times for a within-batch technical replication), and 22 BXD strains. The data set therefore consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. We should note that the four technical replicates between batches were eventually combined with a correction for a highly significant batch effect. This was done at both the probe and probe set levels to "align" the test batch values with the two main batches. (The ratio of the probe average in the four test arrays to the average of the same probe in the four corresponding main batch arrays was used as a correction factor.) The F1 within-batch technical replicates were simply averaged. In the next batch we will reverse the sex of the BXD samples to achieve a balance with at least 22 BXD strains with one male and one female sample each.

    + +

    The table below lists the arrays by strain, sex, age, sample identifier, and data results were obtained from the Bioanalytical Core at the University of Memphis. Each array was hybridized to a pool of mRNA from three mice.

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSexAgeSampleIDDate
    B6D2F1F127919-F1Jan04
    B6D2F1F127919-F2Jan04
    B6D2F1M127920-F1Jan04
    B6D2F1M127920-F2Jan04
    C57BL/6JF65903-F1Nov03
    C57BL/6JF65903-F2Jan03
    C57BL/6JM66906-F1Nov03
    C57BL/6JM66906-F2Jan04
    DBA/2JF60917-F1Nov03
    DBA/2JF60917-F2Jan04
    DBA/2JM60918-F1Nov03
    DBA/2JM60918-F2Jan04
    BXD1F95895-F1Jan04
    BXD5M71728-F1Jan04
    BXD6M92902-F1Jan04
    BXD8F72S167-F1Jan04
    BXD9M86909-F1Jan04
    BXD12M64897-F1Jan04
    BXD13F86748-F1Jan04
    BXD14M91912-F1Jan04
    BXD18F108771-F1Jan04
    BXD19F56S236-F1Jan04
    BXD21F67740-F1Jan04
    BXD23F88815-F1Jan04
    BXD24M71913-F1Jan04
    BXD25F74S373-F1Jan04
    BXD28F79910-F1Jan04
    BXD29F76693-F1Jan04
    BXD32F93898-F1Jan04
    BXD33M77915-F1Jan04
    BXD34M72916-F1Jan04
    BXD36M77926-F1Jan04
    BXD38M69731-F1Jan04
    BXD42M97936-F1Jan04
    +
    diff --git a/general/datasets/Illum_bxd_pbl_1108/summary.rtf b/general/datasets/Illum_bxd_pbl_1108/summary.rtf new file mode 100644 index 0000000..172b4ee --- /dev/null +++ b/general/datasets/Illum_bxd_pbl_1108/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 67, Name: UWA Illumina PBL (Nov08) RSN ** \ No newline at end of file diff --git a/general/datasets/Illum_bxd_spl_1108/summary.rtf b/general/datasets/Illum_bxd_spl_1108/summary.rtf new file mode 100644 index 0000000..7b131b7 --- /dev/null +++ b/general/datasets/Illum_bxd_spl_1108/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 65, Name: UWA Illumina Spleen (Nov08) RSN ** \ No newline at end of file diff --git a/general/datasets/Illum_bxd_thy_1108/summary.rtf b/general/datasets/Illum_bxd_thy_1108/summary.rtf new file mode 100644 index 0000000..f075479 --- /dev/null +++ b/general/datasets/Illum_bxd_thy_1108/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 66, Name: UWA Illumina Thymus (Nov08) RSN ** \ No newline at end of file diff --git a/general/datasets/Illum_lxs_hipp_loess0807/acknowledgment.rtf b/general/datasets/Illum_lxs_hipp_loess0807/acknowledgment.rtf new file mode 100644 index 0000000..d8f3e9a --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_loess0807/acknowledgment.rtf @@ -0,0 +1,3 @@ +

    Data source acknowledgment:

    + +

    Data were generated with funds to Lu Lu, Beth Bennett, Mike Miles, Melloni Cook from INIA. · Lu Lu, M.D. Grant Support: NIH U01AA13499, U24AA13513 (Lu Lu, PI)

    diff --git a/general/datasets/Illum_lxs_hipp_loess0807/cases.rtf b/general/datasets/Illum_lxs_hipp_loess0807/cases.rtf new file mode 100644 index 0000000..efa4371 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_loess0807/cases.rtf @@ -0,0 +1,2140 @@ +

    Quality Control on Sex Labels: Sex of the samples was validated using sex-specific probe set.

    + + + + + + + + + + +
    +

    Legend: We evaluated whether or not the sex of samples were labeled correctly by measuring the expression of Xist using probe ILM106520068. In this bar chart the expression of Xist is very low in LXS114 and has a low error term. This is because both arrays are male samples rather than 1 male and 1 female sample.

    + +

     

    + +

    Data Table 1:

    + +
    +
    This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch.
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexgener-
    + ation
    pool
    + size
    slide
    + ID
    slide
    + position
    batch
    + by slide
    scan
    + batch
    1R2851H2ILS77F>10041523516003B11
    2R0595H2ILS71F>10021523516030B42
    3R2874H2ILS78M>10041523516011B21
    4R0585H2ILS65M>10021523516028A32
    5R3281H1ILSXISSF190FNA31562224029A2813
    6R2857H2ISS75F>10041523516011A21
    7R0589H2ISS73F>10021523516028B32
    8R2955H2ISS53M>10031523516003A11
    9R0578H2ISS67M>10021523516030A42
    10R3282H1ISSXILSF197MNA31562224029B2813
    11R2013H2LXS1084F2721562224049E189
    12R1993H2LXS1078M2721562224036E179
    13R1997H2LXS10070F2521562224049A189
    14R1983H2LXS10077M2521562224047F168
    15R2083H2LXS10185F2821562224050B199
    16R2084H2LXS10185M2821562224050C199
    17R2186H2LXS10273F2921523516001C95
    18R2187H2LXS10273M2921562224053C2010
    19R2809H2LXS10372F2621562224034C2311
    20R2854H1LXS10369M2621523516006D63
    21R2735H2LXS10778F2621523516028D32
    22R2738H2LXS10778M2621562224054C2110
    23R2840H2LXS11067F2521562224037D2411
    24R2157H2LXS11075M2721523516033E84
    25R2172H2LXS11272F2721523516001B95
    26R2841H2LXS11284M2721562224042D2712
    27R2188H2LXS11472F2821562224053D2010
    28R2204H2LXS11472M2821523516001D95
    29R2168H2LXS11580F2721523516001A95
    30R2085H2LXS11571M2721562224050D199
    31R2811H2LXS11772F2821562224034D2311
    32R2212H2LXS11774M2721523516001E95
    33R1992H2LXS12286F2621562224036D179
    34R2219H2LXS12272M2621562224054A2110
    35R2876H2LXS12387F2821562224038C2511
    36R2832H1LXS12377M2721523516011E21
    37R2872H1LXS12483F2821523516006E63
    38R2871H2LXS12485M2821562224042F2712
    39R1909H2LXS1379F2521523516024D137
    40R1901H2LXS1381M2621562224041D2612
    41R2023H2LXS1486F2521562224050A199
    42R1612H2LXS1485M2621523516015A105
    43R1936H2LXS1681F2521523516024E137
    44R1912H2LXS1681M2521523516033B84
    45R1961H2LXS1966F2621523516029F147
    46R1904H2LXS1966M2621523516024B137
    47R1883H2LXS271F2721523516009F126
    48R2753H2LXS274M2821523516030E42
    49R1729H2LXS2272F2721523516032E74
    50R2743H2LXS2279M2721562224054D2110
    51R1966H2LXS2373F2621562224032D158
    52R1971H2LXS2373M2621562224047A168
    53R2795H2LXS2474F2621523516003C11
    54R1755H2LXS2456M2521523516007A116
    55R1986H2LXS2575F2721562224036A179
    56R2006H2LXS2575M2721562224049C189
    57R2014H2LXS2682F2521562224049F189
    58R2009H2LXS2682M2621562224049D189
    59R2824H1LXS2867F2821562224042A2712
    60R1753H1LXS2872M2721562224041F2612
    61R2765H2LXS363F2721523516005B53
    62R1898H2LXS381M2621562224041C2612
    63R2764H2LXS3173F2921562224060C2210
    64R1908H2LXS3180M2821523516024C137
    65R2758H2LXS3270F2621523516030F42
    66R1743H1LXS3267M2521562224041E2612
    67R2794H2LXS3475F2721562224034B2311
    68R2870H2LXS3478F2721562224029C2813
    69R2746H2LXS3580F2221523516030C42
    70R2747H2LXS3581M2221562224060A2210
    71R1968H2LXS3676F2521562224032E158
    72R1640H2LXS3676M2521523516032C74
    73R2835H1LXS3867F2721523516011F21
    74R2842H2LXS3867M2721562224042E2712
    75R2210H2LXS3981F2821562224053E2010
    76R2736H2LXS3975M2721523516028E32
    77R1978H2LXS4178F2621562224047C168
    78R1783H2LXS4156M2621523516007D116
    79R2822H2LXS4266F2721562224034F2311
    80R2769H2LXS4270M2721562224042B2712
    81R1974H2LXS4384F2621562224047B168
    82R1733H2LXS4372M2621523516015C105
    83R1756H2LXS4656F2521523516007B116
    84R1727H2LXS4670M2521523516032D74
    85R1970H2LXS4872F2721562224032F158
    86R1981H2LXS4872M2721562224042C2712
    87R1957H2LXS4972F2521523516029C147
    88R2259H2LXS4972M2521523516028C32
    89R2836H1LXS568F2821523516006A63
    90R2213H2LXS580M2721562224053F2010
    91R2791H2LXS5068F2721562224034A2311
    92R1789H2LXS5057M2621523516033A84
    93R1740H2LXS5168F2721523516032F74
    94R1734H2LXS5168M2621523516015D105
    95R2786H2LXS5261F2721562224060D2210
    96R2768H2LXS5261M2721523516005C53
    97R2154H2LXS5470F2721523516033D84
    98R2155H2LXS5470M2721562224053A2010
    99R1821H2LXS5577F2521523516009C126
    100R1951H2LXS5574M2621523516024F137
    101R2789H2LXS5671F2521523516005F53
    102R2788H2LXS5671M2521562224060F2210
    103R2787H2LXS5966F2921562224060E2210
    104R2785H2LXS5962M2921523516005E53
    105R1791H2LXS6058F2721562224038D2511
    106R1792H2LXS6064M2721523516007E116
    107R1796H2LXS6258F2721523516007F116
    108R1797H2LXS6258M2721562224038E2511
    109R2220H2LXS6471F2821523516001F95
    110R2221H2LXS6471M2821562224054B2110
    111R1989H2LXS6673F2621562224036B179
    112R1843H2LXS6678M2721523516009E126
    113R2820H2LXS6867F2921523516003E11
    114R2819H2LXS6867M2921562224034E2311
    115R1963H2LXS778F2821562224032B158
    116R1964H2LXS778M2821562224032C158
    117R2166H2LXS7072F2721523516033F84
    118R2745H2LXS7071M2821562224054F2110
    119R2848H2LXS7272F2721562224038A2511
    120R1902H2LXS7266M2721523516024A137
    121R2750H2LXS7381F2521523516030D42
    122R1835H2LXS7390M2421523516009D126
    123R1979H2LXS7559F2721562224047D168
    124R2826H2LXS7572M2721523516003F11
    125R2142H2LXS7677F2621562224050E199
    126R1884H2LXS7685M2621562224041A2612
    127R1959H2LXS7869F2621523516029E147
    128R1958H2LXS7869M2621523516029D147
    129R2845H1LXS870F2821523516006C63
    130R2156H2LXS876M2721562224053B2010
    131R1955H2LXS8071F2521523516029A147
    132R1956H2LXS8071M2521523516029B147
    133R2830H1LXS8466F2621523516011D21
    134R2829H2LXS8466M2621562224037A2411
    135R2839H2LXS8668F2721562224037C2411
    136R2838H1LXS8668M2721523516006B63
    137R2882H1LXS8766F2721523516006F63
    138R2744H2LXS8771M2621562224054E2110
    139R2831H2LXS8869F2721562224037B2411
    140R2762H2LXS8871M2721523516005A53
    141R2828H1LXS8975F2621523516011C21
    142R1962H2LXS8973M2521562224032A158
    143R1746H2LXS966F2621523516015F105
    144R2801H2LXS968M2721523516003D11
    145R1812H2LXS9061F2521562224038F2511
    146R1813H2LXS9061M2521523516009A126
    147R1736H2LXS9266F2321523516015E105
    148R1609H2LXS9287M2321523516032A74
    149R1624H2LXS9374F2621523516032B74
    150R1815H2LXS9361M2621523516009B126
    151R1991H2LXS9470F2521562224036C179
    152R2002H2LXS9470M2521562224049B189
    153R1996H2LXS9675F2321562224036F179
    154R1772H2LXS9663M2321523516007C116
    155R2759H2LXS9773F2621562224060B2210
    156R2739H2LXS9779M2621523516028F32
    157R2149H2LXS9878F2621523516033C84
    158R1888H2LXS9876M2621562224041B2612
    159R1644H2LXS9979F2621523516015B105
    160R2145H2LXS9977M2721562224050F199
    +
    +
    +
    +
    +

    Downloading all data:

    + +

    All data links (right-most column above) will be available as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    +
    diff --git a/general/datasets/Illum_lxs_hipp_loess0807/citation.rtf b/general/datasets/Illum_lxs_hipp_loess0807/citation.rtf new file mode 100644 index 0000000..29fd952 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_loess0807/citation.rtf @@ -0,0 +1,3 @@ +

    Downloading all data:

    + +

    All data links (right-most column above) will be available as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    diff --git a/general/datasets/Illum_lxs_hipp_loess0807/contributors.rtf b/general/datasets/Illum_lxs_hipp_loess0807/contributors.rtf new file mode 100644 index 0000000..775c0ee --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_loess0807/contributors.rtf @@ -0,0 +1,5 @@ +

    About this text file:

    + +

    INFO file prepared by Xusheng Wang, Oct 24, 2007.

    + +

    Data set uploaded by Arthur Centeno, Aug 30, 2007.

    diff --git a/general/datasets/Illum_lxs_hipp_loess0807/experiment-design.rtf b/general/datasets/Illum_lxs_hipp_loess0807/experiment-design.rtf new file mode 100644 index 0000000..f477cb7 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_loess0807/experiment-design.rtf @@ -0,0 +1 @@ +

    Experimental Design and Batch Structure: This data set consists arrays processed in 13 groups over a five month period (July 2006 to Dec 2006). Most groups consisted of 12 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Yiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between July 28 and Dec 21, 2006. Details on sample assignment to slides and batches is provide in the table below.

    diff --git a/general/datasets/Illum_lxs_hipp_loess0807/notes.rtf b/general/datasets/Illum_lxs_hipp_loess0807/notes.rtf new file mode 100644 index 0000000..938409b --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_loess0807/notes.rtf @@ -0,0 +1,3 @@ +

    ANNOTATION: In spring of 2007, Robert W. Williams and Hongqiang Li reannotated the Illumina Mouse-6 array content. This new annotation is now incorporated into GeneNetwork. For 46166 probes on the Mouse 6 array platform (including control probes) we have identified 35975 NCBI Entrez Gene IDs; 26481 matched human Gene IDs; 23899 matched rat Gene IDs; 26883 NCBI HomoloGene IDs; and 12791 OMIM IDs.

    + +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    diff --git a/general/datasets/Illum_lxs_hipp_loess0807/platform.rtf b/general/datasets/Illum_lxs_hipp_loess0807/platform.rtf new file mode 100644 index 0000000..2ac899d --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_loess0807/platform.rtf @@ -0,0 +1,5 @@ +

    About the array platform:

    + +

    Illumina Sentrix Mouse-6 BeadArray Platform: The Mouse6 array consists of 46,116 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology.

    + +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf).

    diff --git a/general/datasets/Illum_lxs_hipp_loess0807/processing.rtf b/general/datasets/Illum_lxs_hipp_loess0807/processing.rtf new file mode 100644 index 0000000..c3d0555 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_loess0807/processing.rtf @@ -0,0 +1,3 @@ +

    About data processing:

    + +

    This data set uses the LOESS with Variance Stabilizing Transform (VST) and Background correction from the lumi package downloaded from Bioconductor (http://www.bioconductor.org/). For the more detailed information, please see the lumi package documentation.

    diff --git a/general/datasets/Illum_lxs_hipp_loess0807/summary.rtf b/general/datasets/Illum_lxs_hipp_loess0807/summary.rtf new file mode 100644 index 0000000..ebfc03f --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_loess0807/summary.rtf @@ -0,0 +1,33 @@ +

    August 07 ILLUMINA Mouse-6 DATA SET RSN: The LXS Hippocampus Illumina Robust Spline Normalization with No Background correction data set provides estimates of mRNA expression in the hippocampus of 75 LXS recombinant inbred strains, the two parental strains, ILS/Ibg and ISS/Ibg (Inbred Long Sleep and Inbred Short Sleep strains from the Institute of Behavioral Genetics), and the two reciprocal F1 strains (ILSXISSF1, ISSXILSF1). All samples are from normal adult control animals raised in a standard laboratory environment. Subsequent data sets will provide estimates of mRNA expression following restraint stress, ethanol treatment, and stress followed by ethanol using many of the same strains (Lu Lu and colleagues).

    + +

    A total of 240 pooled hippocampal samples were processed using 40 Illumina Sentrix Mouse-6 v 1.0 oligomer microarray BeadArray slides. Twenty-seven Mouse-6 slides and a total of 160 samples passed stringent quality control and error checking. We should note that this is our first experience using the Illumina platform and the initial set of 13 slides were not included. This particular data set was processed using the Illumina "Robust Spline Normalization with No Background Correction" protocol. Values were log2 transformed and the current data range from 6.481 average (very low or no expression) to 24.852 (extremely high).

    + +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Hippocampus Illumina (Aug 07) RSN data set, ### probes have LRS values >46.

    + +

    In comparison, here are the yields of QTLs with LOD>10 for other closely related data sets:

    + +
      +
    1. 1050 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 1162 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 1129 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 1176 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. NO DATA for Hippocampus Illumina (Aug07) RSN
    10. +
    11. NO DATA for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 1183 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 1167 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 1170 for Hippocampus Illumina (Oct06) RankInv
    18. +
    + +

    The LRS achieved in the different version of the LXS Hippocampus data for probe ILM103520706 (Disabled 1; Dab1) are as follow

    + +
      +
    1. 338.4 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 339.8 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 370.2 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 363.5 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. 374.8 for Hippocampus Illumina (Aug07) RSN
    10. +
    11. 363.0 for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 360.3 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 358.1 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 358.8 for Hippocampus Illumina (Oct06) RankInv
    18. +
    diff --git a/general/datasets/Illum_lxs_hipp_loess0807/tissue.rtf b/general/datasets/Illum_lxs_hipp_loess0807/tissue.rtf new file mode 100644 index 0000000..febccce --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_loess0807/tissue.rtf @@ -0,0 +1,9 @@ +

    About the animals and tissue used to generate this set of data:

    + +

    All animals were raised at the IBG by Bennett and colleagues in an SPF facility. No cases were MHV positive. Mice were killed by cervical dislocation. Whole brain dissections were performed at the IBG by Bennett and colleagues and shipped in RNAlater to Lu Lu and colleagues at UTHSC. Most hippocampal dissections (all were bilateral) were performed by Zhiping Jia. Cerebella, olfactory bulbs, and brain stems were also dissected and stored at -80 deg C using further use. Hippocampal samples are very close to complete (see Lu et al., 2001 but probably include variable amounts of fimbria and choroid plexus (see expression of transthyretin, Ttr, as a marker of choroid plexus).

    + +

    A pool of dissected tissue from four hippocampi taken from two naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia.

    + +

    All animals used in this study were between 53 and 90 days of age (average of 72 days; see Table 1 below).

    + +

     

    diff --git a/general/datasets/Illum_lxs_hipp_loess_nb0807/acknowledgment.rtf b/general/datasets/Illum_lxs_hipp_loess_nb0807/acknowledgment.rtf new file mode 100644 index 0000000..d8f3e9a --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_loess_nb0807/acknowledgment.rtf @@ -0,0 +1,3 @@ +

    Data source acknowledgment:

    + +

    Data were generated with funds to Lu Lu, Beth Bennett, Mike Miles, Melloni Cook from INIA. · Lu Lu, M.D. Grant Support: NIH U01AA13499, U24AA13513 (Lu Lu, PI)

    diff --git a/general/datasets/Illum_lxs_hipp_loess_nb0807/cases.rtf b/general/datasets/Illum_lxs_hipp_loess_nb0807/cases.rtf new file mode 100644 index 0000000..efa4371 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_loess_nb0807/cases.rtf @@ -0,0 +1,2140 @@ +

    Quality Control on Sex Labels: Sex of the samples was validated using sex-specific probe set.

    + + + + + + + + + + +
    +

    Legend: We evaluated whether or not the sex of samples were labeled correctly by measuring the expression of Xist using probe ILM106520068. In this bar chart the expression of Xist is very low in LXS114 and has a low error term. This is because both arrays are male samples rather than 1 male and 1 female sample.

    + +

     

    + +

    Data Table 1:

    + +
    +
    This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch.
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexgener-
    + ation
    pool
    + size
    slide
    + ID
    slide
    + position
    batch
    + by slide
    scan
    + batch
    1R2851H2ILS77F>10041523516003B11
    2R0595H2ILS71F>10021523516030B42
    3R2874H2ILS78M>10041523516011B21
    4R0585H2ILS65M>10021523516028A32
    5R3281H1ILSXISSF190FNA31562224029A2813
    6R2857H2ISS75F>10041523516011A21
    7R0589H2ISS73F>10021523516028B32
    8R2955H2ISS53M>10031523516003A11
    9R0578H2ISS67M>10021523516030A42
    10R3282H1ISSXILSF197MNA31562224029B2813
    11R2013H2LXS1084F2721562224049E189
    12R1993H2LXS1078M2721562224036E179
    13R1997H2LXS10070F2521562224049A189
    14R1983H2LXS10077M2521562224047F168
    15R2083H2LXS10185F2821562224050B199
    16R2084H2LXS10185M2821562224050C199
    17R2186H2LXS10273F2921523516001C95
    18R2187H2LXS10273M2921562224053C2010
    19R2809H2LXS10372F2621562224034C2311
    20R2854H1LXS10369M2621523516006D63
    21R2735H2LXS10778F2621523516028D32
    22R2738H2LXS10778M2621562224054C2110
    23R2840H2LXS11067F2521562224037D2411
    24R2157H2LXS11075M2721523516033E84
    25R2172H2LXS11272F2721523516001B95
    26R2841H2LXS11284M2721562224042D2712
    27R2188H2LXS11472F2821562224053D2010
    28R2204H2LXS11472M2821523516001D95
    29R2168H2LXS11580F2721523516001A95
    30R2085H2LXS11571M2721562224050D199
    31R2811H2LXS11772F2821562224034D2311
    32R2212H2LXS11774M2721523516001E95
    33R1992H2LXS12286F2621562224036D179
    34R2219H2LXS12272M2621562224054A2110
    35R2876H2LXS12387F2821562224038C2511
    36R2832H1LXS12377M2721523516011E21
    37R2872H1LXS12483F2821523516006E63
    38R2871H2LXS12485M2821562224042F2712
    39R1909H2LXS1379F2521523516024D137
    40R1901H2LXS1381M2621562224041D2612
    41R2023H2LXS1486F2521562224050A199
    42R1612H2LXS1485M2621523516015A105
    43R1936H2LXS1681F2521523516024E137
    44R1912H2LXS1681M2521523516033B84
    45R1961H2LXS1966F2621523516029F147
    46R1904H2LXS1966M2621523516024B137
    47R1883H2LXS271F2721523516009F126
    48R2753H2LXS274M2821523516030E42
    49R1729H2LXS2272F2721523516032E74
    50R2743H2LXS2279M2721562224054D2110
    51R1966H2LXS2373F2621562224032D158
    52R1971H2LXS2373M2621562224047A168
    53R2795H2LXS2474F2621523516003C11
    54R1755H2LXS2456M2521523516007A116
    55R1986H2LXS2575F2721562224036A179
    56R2006H2LXS2575M2721562224049C189
    57R2014H2LXS2682F2521562224049F189
    58R2009H2LXS2682M2621562224049D189
    59R2824H1LXS2867F2821562224042A2712
    60R1753H1LXS2872M2721562224041F2612
    61R2765H2LXS363F2721523516005B53
    62R1898H2LXS381M2621562224041C2612
    63R2764H2LXS3173F2921562224060C2210
    64R1908H2LXS3180M2821523516024C137
    65R2758H2LXS3270F2621523516030F42
    66R1743H1LXS3267M2521562224041E2612
    67R2794H2LXS3475F2721562224034B2311
    68R2870H2LXS3478F2721562224029C2813
    69R2746H2LXS3580F2221523516030C42
    70R2747H2LXS3581M2221562224060A2210
    71R1968H2LXS3676F2521562224032E158
    72R1640H2LXS3676M2521523516032C74
    73R2835H1LXS3867F2721523516011F21
    74R2842H2LXS3867M2721562224042E2712
    75R2210H2LXS3981F2821562224053E2010
    76R2736H2LXS3975M2721523516028E32
    77R1978H2LXS4178F2621562224047C168
    78R1783H2LXS4156M2621523516007D116
    79R2822H2LXS4266F2721562224034F2311
    80R2769H2LXS4270M2721562224042B2712
    81R1974H2LXS4384F2621562224047B168
    82R1733H2LXS4372M2621523516015C105
    83R1756H2LXS4656F2521523516007B116
    84R1727H2LXS4670M2521523516032D74
    85R1970H2LXS4872F2721562224032F158
    86R1981H2LXS4872M2721562224042C2712
    87R1957H2LXS4972F2521523516029C147
    88R2259H2LXS4972M2521523516028C32
    89R2836H1LXS568F2821523516006A63
    90R2213H2LXS580M2721562224053F2010
    91R2791H2LXS5068F2721562224034A2311
    92R1789H2LXS5057M2621523516033A84
    93R1740H2LXS5168F2721523516032F74
    94R1734H2LXS5168M2621523516015D105
    95R2786H2LXS5261F2721562224060D2210
    96R2768H2LXS5261M2721523516005C53
    97R2154H2LXS5470F2721523516033D84
    98R2155H2LXS5470M2721562224053A2010
    99R1821H2LXS5577F2521523516009C126
    100R1951H2LXS5574M2621523516024F137
    101R2789H2LXS5671F2521523516005F53
    102R2788H2LXS5671M2521562224060F2210
    103R2787H2LXS5966F2921562224060E2210
    104R2785H2LXS5962M2921523516005E53
    105R1791H2LXS6058F2721562224038D2511
    106R1792H2LXS6064M2721523516007E116
    107R1796H2LXS6258F2721523516007F116
    108R1797H2LXS6258M2721562224038E2511
    109R2220H2LXS6471F2821523516001F95
    110R2221H2LXS6471M2821562224054B2110
    111R1989H2LXS6673F2621562224036B179
    112R1843H2LXS6678M2721523516009E126
    113R2820H2LXS6867F2921523516003E11
    114R2819H2LXS6867M2921562224034E2311
    115R1963H2LXS778F2821562224032B158
    116R1964H2LXS778M2821562224032C158
    117R2166H2LXS7072F2721523516033F84
    118R2745H2LXS7071M2821562224054F2110
    119R2848H2LXS7272F2721562224038A2511
    120R1902H2LXS7266M2721523516024A137
    121R2750H2LXS7381F2521523516030D42
    122R1835H2LXS7390M2421523516009D126
    123R1979H2LXS7559F2721562224047D168
    124R2826H2LXS7572M2721523516003F11
    125R2142H2LXS7677F2621562224050E199
    126R1884H2LXS7685M2621562224041A2612
    127R1959H2LXS7869F2621523516029E147
    128R1958H2LXS7869M2621523516029D147
    129R2845H1LXS870F2821523516006C63
    130R2156H2LXS876M2721562224053B2010
    131R1955H2LXS8071F2521523516029A147
    132R1956H2LXS8071M2521523516029B147
    133R2830H1LXS8466F2621523516011D21
    134R2829H2LXS8466M2621562224037A2411
    135R2839H2LXS8668F2721562224037C2411
    136R2838H1LXS8668M2721523516006B63
    137R2882H1LXS8766F2721523516006F63
    138R2744H2LXS8771M2621562224054E2110
    139R2831H2LXS8869F2721562224037B2411
    140R2762H2LXS8871M2721523516005A53
    141R2828H1LXS8975F2621523516011C21
    142R1962H2LXS8973M2521562224032A158
    143R1746H2LXS966F2621523516015F105
    144R2801H2LXS968M2721523516003D11
    145R1812H2LXS9061F2521562224038F2511
    146R1813H2LXS9061M2521523516009A126
    147R1736H2LXS9266F2321523516015E105
    148R1609H2LXS9287M2321523516032A74
    149R1624H2LXS9374F2621523516032B74
    150R1815H2LXS9361M2621523516009B126
    151R1991H2LXS9470F2521562224036C179
    152R2002H2LXS9470M2521562224049B189
    153R1996H2LXS9675F2321562224036F179
    154R1772H2LXS9663M2321523516007C116
    155R2759H2LXS9773F2621562224060B2210
    156R2739H2LXS9779M2621523516028F32
    157R2149H2LXS9878F2621523516033C84
    158R1888H2LXS9876M2621562224041B2612
    159R1644H2LXS9979F2621523516015B105
    160R2145H2LXS9977M2721562224050F199
    +
    +
    +
    +
    +

    Downloading all data:

    + +

    All data links (right-most column above) will be available as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    +
    diff --git a/general/datasets/Illum_lxs_hipp_loess_nb0807/citation.rtf b/general/datasets/Illum_lxs_hipp_loess_nb0807/citation.rtf new file mode 100644 index 0000000..29fd952 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_loess_nb0807/citation.rtf @@ -0,0 +1,3 @@ +

    Downloading all data:

    + +

    All data links (right-most column above) will be available as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    diff --git a/general/datasets/Illum_lxs_hipp_loess_nb0807/contributors.rtf b/general/datasets/Illum_lxs_hipp_loess_nb0807/contributors.rtf new file mode 100644 index 0000000..775c0ee --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_loess_nb0807/contributors.rtf @@ -0,0 +1,5 @@ +

    About this text file:

    + +

    INFO file prepared by Xusheng Wang, Oct 24, 2007.

    + +

    Data set uploaded by Arthur Centeno, Aug 30, 2007.

    diff --git a/general/datasets/Illum_lxs_hipp_loess_nb0807/experiment-design.rtf b/general/datasets/Illum_lxs_hipp_loess_nb0807/experiment-design.rtf new file mode 100644 index 0000000..f477cb7 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_loess_nb0807/experiment-design.rtf @@ -0,0 +1 @@ +

    Experimental Design and Batch Structure: This data set consists arrays processed in 13 groups over a five month period (July 2006 to Dec 2006). Most groups consisted of 12 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Yiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between July 28 and Dec 21, 2006. Details on sample assignment to slides and batches is provide in the table below.

    diff --git a/general/datasets/Illum_lxs_hipp_loess_nb0807/notes.rtf b/general/datasets/Illum_lxs_hipp_loess_nb0807/notes.rtf new file mode 100644 index 0000000..938409b --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_loess_nb0807/notes.rtf @@ -0,0 +1,3 @@ +

    ANNOTATION: In spring of 2007, Robert W. Williams and Hongqiang Li reannotated the Illumina Mouse-6 array content. This new annotation is now incorporated into GeneNetwork. For 46166 probes on the Mouse 6 array platform (including control probes) we have identified 35975 NCBI Entrez Gene IDs; 26481 matched human Gene IDs; 23899 matched rat Gene IDs; 26883 NCBI HomoloGene IDs; and 12791 OMIM IDs.

    + +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    diff --git a/general/datasets/Illum_lxs_hipp_loess_nb0807/platform.rtf b/general/datasets/Illum_lxs_hipp_loess_nb0807/platform.rtf new file mode 100644 index 0000000..2ac899d --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_loess_nb0807/platform.rtf @@ -0,0 +1,5 @@ +

    About the array platform:

    + +

    Illumina Sentrix Mouse-6 BeadArray Platform: The Mouse6 array consists of 46,116 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology.

    + +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf).

    diff --git a/general/datasets/Illum_lxs_hipp_loess_nb0807/processing.rtf b/general/datasets/Illum_lxs_hipp_loess_nb0807/processing.rtf new file mode 100644 index 0000000..c3d0555 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_loess_nb0807/processing.rtf @@ -0,0 +1,3 @@ +

    About data processing:

    + +

    This data set uses the LOESS with Variance Stabilizing Transform (VST) and Background correction from the lumi package downloaded from Bioconductor (http://www.bioconductor.org/). For the more detailed information, please see the lumi package documentation.

    diff --git a/general/datasets/Illum_lxs_hipp_loess_nb0807/summary.rtf b/general/datasets/Illum_lxs_hipp_loess_nb0807/summary.rtf new file mode 100644 index 0000000..ebfc03f --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_loess_nb0807/summary.rtf @@ -0,0 +1,33 @@ +

    August 07 ILLUMINA Mouse-6 DATA SET RSN: The LXS Hippocampus Illumina Robust Spline Normalization with No Background correction data set provides estimates of mRNA expression in the hippocampus of 75 LXS recombinant inbred strains, the two parental strains, ILS/Ibg and ISS/Ibg (Inbred Long Sleep and Inbred Short Sleep strains from the Institute of Behavioral Genetics), and the two reciprocal F1 strains (ILSXISSF1, ISSXILSF1). All samples are from normal adult control animals raised in a standard laboratory environment. Subsequent data sets will provide estimates of mRNA expression following restraint stress, ethanol treatment, and stress followed by ethanol using many of the same strains (Lu Lu and colleagues).

    + +

    A total of 240 pooled hippocampal samples were processed using 40 Illumina Sentrix Mouse-6 v 1.0 oligomer microarray BeadArray slides. Twenty-seven Mouse-6 slides and a total of 160 samples passed stringent quality control and error checking. We should note that this is our first experience using the Illumina platform and the initial set of 13 slides were not included. This particular data set was processed using the Illumina "Robust Spline Normalization with No Background Correction" protocol. Values were log2 transformed and the current data range from 6.481 average (very low or no expression) to 24.852 (extremely high).

    + +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Hippocampus Illumina (Aug 07) RSN data set, ### probes have LRS values >46.

    + +

    In comparison, here are the yields of QTLs with LOD>10 for other closely related data sets:

    + +
      +
    1. 1050 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 1162 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 1129 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 1176 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. NO DATA for Hippocampus Illumina (Aug07) RSN
    10. +
    11. NO DATA for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 1183 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 1167 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 1170 for Hippocampus Illumina (Oct06) RankInv
    18. +
    + +

    The LRS achieved in the different version of the LXS Hippocampus data for probe ILM103520706 (Disabled 1; Dab1) are as follow

    + +
      +
    1. 338.4 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 339.8 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 370.2 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 363.5 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. 374.8 for Hippocampus Illumina (Aug07) RSN
    10. +
    11. 363.0 for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 360.3 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 358.1 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 358.8 for Hippocampus Illumina (Oct06) RankInv
    18. +
    diff --git a/general/datasets/Illum_lxs_hipp_loess_nb0807/tissue.rtf b/general/datasets/Illum_lxs_hipp_loess_nb0807/tissue.rtf new file mode 100644 index 0000000..febccce --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_loess_nb0807/tissue.rtf @@ -0,0 +1,9 @@ +

    About the animals and tissue used to generate this set of data:

    + +

    All animals were raised at the IBG by Bennett and colleagues in an SPF facility. No cases were MHV positive. Mice were killed by cervical dislocation. Whole brain dissections were performed at the IBG by Bennett and colleagues and shipped in RNAlater to Lu Lu and colleagues at UTHSC. Most hippocampal dissections (all were bilateral) were performed by Zhiping Jia. Cerebella, olfactory bulbs, and brain stems were also dissected and stored at -80 deg C using further use. Hippocampal samples are very close to complete (see Lu et al., 2001 but probably include variable amounts of fimbria and choroid plexus (see expression of transthyretin, Ttr, as a marker of choroid plexus).

    + +

    A pool of dissected tissue from four hippocampi taken from two naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia.

    + +

    All animals used in this study were between 53 and 90 days of age (average of 72 days; see Table 1 below).

    + +

     

    diff --git a/general/datasets/Illum_lxs_hipp_noe_1008/summary.rtf b/general/datasets/Illum_lxs_hipp_noe_1008/summary.rtf new file mode 100644 index 0000000..f49829f --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_noe_1008/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 63, Name: Hippocampus Illumina NOS (Oct08) RankInv beta \ No newline at end of file diff --git a/general/datasets/Illum_lxs_hipp_non_1008/summary.rtf b/general/datasets/Illum_lxs_hipp_non_1008/summary.rtf new file mode 100644 index 0000000..f49829f --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_non_1008/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 63, Name: Hippocampus Illumina NOS (Oct08) RankInv beta \ No newline at end of file diff --git a/general/datasets/Illum_lxs_hipp_nos_1008/summary.rtf b/general/datasets/Illum_lxs_hipp_nos_1008/summary.rtf new file mode 100644 index 0000000..f49829f --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_nos_1008/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 63, Name: Hippocampus Illumina NOS (Oct08) RankInv beta \ No newline at end of file diff --git a/general/datasets/Illum_lxs_hipp_quant0807/acknowledgment.rtf b/general/datasets/Illum_lxs_hipp_quant0807/acknowledgment.rtf new file mode 100644 index 0000000..d8f3e9a --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_quant0807/acknowledgment.rtf @@ -0,0 +1,3 @@ +

    Data source acknowledgment:

    + +

    Data were generated with funds to Lu Lu, Beth Bennett, Mike Miles, Melloni Cook from INIA. · Lu Lu, M.D. Grant Support: NIH U01AA13499, U24AA13513 (Lu Lu, PI)

    diff --git a/general/datasets/Illum_lxs_hipp_quant0807/cases.rtf b/general/datasets/Illum_lxs_hipp_quant0807/cases.rtf new file mode 100644 index 0000000..efa4371 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_quant0807/cases.rtf @@ -0,0 +1,2140 @@ +

    Quality Control on Sex Labels: Sex of the samples was validated using sex-specific probe set.

    + + + + + + + + + + +
    +

    Legend: We evaluated whether or not the sex of samples were labeled correctly by measuring the expression of Xist using probe ILM106520068. In this bar chart the expression of Xist is very low in LXS114 and has a low error term. This is because both arrays are male samples rather than 1 male and 1 female sample.

    + +

     

    + +

    Data Table 1:

    + +
    +
    This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch.
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexgener-
    + ation
    pool
    + size
    slide
    + ID
    slide
    + position
    batch
    + by slide
    scan
    + batch
    1R2851H2ILS77F>10041523516003B11
    2R0595H2ILS71F>10021523516030B42
    3R2874H2ILS78M>10041523516011B21
    4R0585H2ILS65M>10021523516028A32
    5R3281H1ILSXISSF190FNA31562224029A2813
    6R2857H2ISS75F>10041523516011A21
    7R0589H2ISS73F>10021523516028B32
    8R2955H2ISS53M>10031523516003A11
    9R0578H2ISS67M>10021523516030A42
    10R3282H1ISSXILSF197MNA31562224029B2813
    11R2013H2LXS1084F2721562224049E189
    12R1993H2LXS1078M2721562224036E179
    13R1997H2LXS10070F2521562224049A189
    14R1983H2LXS10077M2521562224047F168
    15R2083H2LXS10185F2821562224050B199
    16R2084H2LXS10185M2821562224050C199
    17R2186H2LXS10273F2921523516001C95
    18R2187H2LXS10273M2921562224053C2010
    19R2809H2LXS10372F2621562224034C2311
    20R2854H1LXS10369M2621523516006D63
    21R2735H2LXS10778F2621523516028D32
    22R2738H2LXS10778M2621562224054C2110
    23R2840H2LXS11067F2521562224037D2411
    24R2157H2LXS11075M2721523516033E84
    25R2172H2LXS11272F2721523516001B95
    26R2841H2LXS11284M2721562224042D2712
    27R2188H2LXS11472F2821562224053D2010
    28R2204H2LXS11472M2821523516001D95
    29R2168H2LXS11580F2721523516001A95
    30R2085H2LXS11571M2721562224050D199
    31R2811H2LXS11772F2821562224034D2311
    32R2212H2LXS11774M2721523516001E95
    33R1992H2LXS12286F2621562224036D179
    34R2219H2LXS12272M2621562224054A2110
    35R2876H2LXS12387F2821562224038C2511
    36R2832H1LXS12377M2721523516011E21
    37R2872H1LXS12483F2821523516006E63
    38R2871H2LXS12485M2821562224042F2712
    39R1909H2LXS1379F2521523516024D137
    40R1901H2LXS1381M2621562224041D2612
    41R2023H2LXS1486F2521562224050A199
    42R1612H2LXS1485M2621523516015A105
    43R1936H2LXS1681F2521523516024E137
    44R1912H2LXS1681M2521523516033B84
    45R1961H2LXS1966F2621523516029F147
    46R1904H2LXS1966M2621523516024B137
    47R1883H2LXS271F2721523516009F126
    48R2753H2LXS274M2821523516030E42
    49R1729H2LXS2272F2721523516032E74
    50R2743H2LXS2279M2721562224054D2110
    51R1966H2LXS2373F2621562224032D158
    52R1971H2LXS2373M2621562224047A168
    53R2795H2LXS2474F2621523516003C11
    54R1755H2LXS2456M2521523516007A116
    55R1986H2LXS2575F2721562224036A179
    56R2006H2LXS2575M2721562224049C189
    57R2014H2LXS2682F2521562224049F189
    58R2009H2LXS2682M2621562224049D189
    59R2824H1LXS2867F2821562224042A2712
    60R1753H1LXS2872M2721562224041F2612
    61R2765H2LXS363F2721523516005B53
    62R1898H2LXS381M2621562224041C2612
    63R2764H2LXS3173F2921562224060C2210
    64R1908H2LXS3180M2821523516024C137
    65R2758H2LXS3270F2621523516030F42
    66R1743H1LXS3267M2521562224041E2612
    67R2794H2LXS3475F2721562224034B2311
    68R2870H2LXS3478F2721562224029C2813
    69R2746H2LXS3580F2221523516030C42
    70R2747H2LXS3581M2221562224060A2210
    71R1968H2LXS3676F2521562224032E158
    72R1640H2LXS3676M2521523516032C74
    73R2835H1LXS3867F2721523516011F21
    74R2842H2LXS3867M2721562224042E2712
    75R2210H2LXS3981F2821562224053E2010
    76R2736H2LXS3975M2721523516028E32
    77R1978H2LXS4178F2621562224047C168
    78R1783H2LXS4156M2621523516007D116
    79R2822H2LXS4266F2721562224034F2311
    80R2769H2LXS4270M2721562224042B2712
    81R1974H2LXS4384F2621562224047B168
    82R1733H2LXS4372M2621523516015C105
    83R1756H2LXS4656F2521523516007B116
    84R1727H2LXS4670M2521523516032D74
    85R1970H2LXS4872F2721562224032F158
    86R1981H2LXS4872M2721562224042C2712
    87R1957H2LXS4972F2521523516029C147
    88R2259H2LXS4972M2521523516028C32
    89R2836H1LXS568F2821523516006A63
    90R2213H2LXS580M2721562224053F2010
    91R2791H2LXS5068F2721562224034A2311
    92R1789H2LXS5057M2621523516033A84
    93R1740H2LXS5168F2721523516032F74
    94R1734H2LXS5168M2621523516015D105
    95R2786H2LXS5261F2721562224060D2210
    96R2768H2LXS5261M2721523516005C53
    97R2154H2LXS5470F2721523516033D84
    98R2155H2LXS5470M2721562224053A2010
    99R1821H2LXS5577F2521523516009C126
    100R1951H2LXS5574M2621523516024F137
    101R2789H2LXS5671F2521523516005F53
    102R2788H2LXS5671M2521562224060F2210
    103R2787H2LXS5966F2921562224060E2210
    104R2785H2LXS5962M2921523516005E53
    105R1791H2LXS6058F2721562224038D2511
    106R1792H2LXS6064M2721523516007E116
    107R1796H2LXS6258F2721523516007F116
    108R1797H2LXS6258M2721562224038E2511
    109R2220H2LXS6471F2821523516001F95
    110R2221H2LXS6471M2821562224054B2110
    111R1989H2LXS6673F2621562224036B179
    112R1843H2LXS6678M2721523516009E126
    113R2820H2LXS6867F2921523516003E11
    114R2819H2LXS6867M2921562224034E2311
    115R1963H2LXS778F2821562224032B158
    116R1964H2LXS778M2821562224032C158
    117R2166H2LXS7072F2721523516033F84
    118R2745H2LXS7071M2821562224054F2110
    119R2848H2LXS7272F2721562224038A2511
    120R1902H2LXS7266M2721523516024A137
    121R2750H2LXS7381F2521523516030D42
    122R1835H2LXS7390M2421523516009D126
    123R1979H2LXS7559F2721562224047D168
    124R2826H2LXS7572M2721523516003F11
    125R2142H2LXS7677F2621562224050E199
    126R1884H2LXS7685M2621562224041A2612
    127R1959H2LXS7869F2621523516029E147
    128R1958H2LXS7869M2621523516029D147
    129R2845H1LXS870F2821523516006C63
    130R2156H2LXS876M2721562224053B2010
    131R1955H2LXS8071F2521523516029A147
    132R1956H2LXS8071M2521523516029B147
    133R2830H1LXS8466F2621523516011D21
    134R2829H2LXS8466M2621562224037A2411
    135R2839H2LXS8668F2721562224037C2411
    136R2838H1LXS8668M2721523516006B63
    137R2882H1LXS8766F2721523516006F63
    138R2744H2LXS8771M2621562224054E2110
    139R2831H2LXS8869F2721562224037B2411
    140R2762H2LXS8871M2721523516005A53
    141R2828H1LXS8975F2621523516011C21
    142R1962H2LXS8973M2521562224032A158
    143R1746H2LXS966F2621523516015F105
    144R2801H2LXS968M2721523516003D11
    145R1812H2LXS9061F2521562224038F2511
    146R1813H2LXS9061M2521523516009A126
    147R1736H2LXS9266F2321523516015E105
    148R1609H2LXS9287M2321523516032A74
    149R1624H2LXS9374F2621523516032B74
    150R1815H2LXS9361M2621523516009B126
    151R1991H2LXS9470F2521562224036C179
    152R2002H2LXS9470M2521562224049B189
    153R1996H2LXS9675F2321562224036F179
    154R1772H2LXS9663M2321523516007C116
    155R2759H2LXS9773F2621562224060B2210
    156R2739H2LXS9779M2621523516028F32
    157R2149H2LXS9878F2621523516033C84
    158R1888H2LXS9876M2621562224041B2612
    159R1644H2LXS9979F2621523516015B105
    160R2145H2LXS9977M2721562224050F199
    +
    +
    +
    +
    +

    Downloading all data:

    + +

    All data links (right-most column above) will be available as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    +
    diff --git a/general/datasets/Illum_lxs_hipp_quant0807/citation.rtf b/general/datasets/Illum_lxs_hipp_quant0807/citation.rtf new file mode 100644 index 0000000..29fd952 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_quant0807/citation.rtf @@ -0,0 +1,3 @@ +

    Downloading all data:

    + +

    All data links (right-most column above) will be available as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    diff --git a/general/datasets/Illum_lxs_hipp_quant0807/contributors.rtf b/general/datasets/Illum_lxs_hipp_quant0807/contributors.rtf new file mode 100644 index 0000000..775c0ee --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_quant0807/contributors.rtf @@ -0,0 +1,5 @@ +

    About this text file:

    + +

    INFO file prepared by Xusheng Wang, Oct 24, 2007.

    + +

    Data set uploaded by Arthur Centeno, Aug 30, 2007.

    diff --git a/general/datasets/Illum_lxs_hipp_quant0807/experiment-design.rtf b/general/datasets/Illum_lxs_hipp_quant0807/experiment-design.rtf new file mode 100644 index 0000000..f477cb7 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_quant0807/experiment-design.rtf @@ -0,0 +1 @@ +

    Experimental Design and Batch Structure: This data set consists arrays processed in 13 groups over a five month period (July 2006 to Dec 2006). Most groups consisted of 12 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Yiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between July 28 and Dec 21, 2006. Details on sample assignment to slides and batches is provide in the table below.

    diff --git a/general/datasets/Illum_lxs_hipp_quant0807/notes.rtf b/general/datasets/Illum_lxs_hipp_quant0807/notes.rtf new file mode 100644 index 0000000..938409b --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_quant0807/notes.rtf @@ -0,0 +1,3 @@ +

    ANNOTATION: In spring of 2007, Robert W. Williams and Hongqiang Li reannotated the Illumina Mouse-6 array content. This new annotation is now incorporated into GeneNetwork. For 46166 probes on the Mouse 6 array platform (including control probes) we have identified 35975 NCBI Entrez Gene IDs; 26481 matched human Gene IDs; 23899 matched rat Gene IDs; 26883 NCBI HomoloGene IDs; and 12791 OMIM IDs.

    + +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    diff --git a/general/datasets/Illum_lxs_hipp_quant0807/platform.rtf b/general/datasets/Illum_lxs_hipp_quant0807/platform.rtf new file mode 100644 index 0000000..2ac899d --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_quant0807/platform.rtf @@ -0,0 +1,5 @@ +

    About the array platform:

    + +

    Illumina Sentrix Mouse-6 BeadArray Platform: The Mouse6 array consists of 46,116 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology.

    + +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf).

    diff --git a/general/datasets/Illum_lxs_hipp_quant0807/processing.rtf b/general/datasets/Illum_lxs_hipp_quant0807/processing.rtf new file mode 100644 index 0000000..c3d0555 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_quant0807/processing.rtf @@ -0,0 +1,3 @@ +

    About data processing:

    + +

    This data set uses the LOESS with Variance Stabilizing Transform (VST) and Background correction from the lumi package downloaded from Bioconductor (http://www.bioconductor.org/). For the more detailed information, please see the lumi package documentation.

    diff --git a/general/datasets/Illum_lxs_hipp_quant0807/summary.rtf b/general/datasets/Illum_lxs_hipp_quant0807/summary.rtf new file mode 100644 index 0000000..ebfc03f --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_quant0807/summary.rtf @@ -0,0 +1,33 @@ +

    August 07 ILLUMINA Mouse-6 DATA SET RSN: The LXS Hippocampus Illumina Robust Spline Normalization with No Background correction data set provides estimates of mRNA expression in the hippocampus of 75 LXS recombinant inbred strains, the two parental strains, ILS/Ibg and ISS/Ibg (Inbred Long Sleep and Inbred Short Sleep strains from the Institute of Behavioral Genetics), and the two reciprocal F1 strains (ILSXISSF1, ISSXILSF1). All samples are from normal adult control animals raised in a standard laboratory environment. Subsequent data sets will provide estimates of mRNA expression following restraint stress, ethanol treatment, and stress followed by ethanol using many of the same strains (Lu Lu and colleagues).

    + +

    A total of 240 pooled hippocampal samples were processed using 40 Illumina Sentrix Mouse-6 v 1.0 oligomer microarray BeadArray slides. Twenty-seven Mouse-6 slides and a total of 160 samples passed stringent quality control and error checking. We should note that this is our first experience using the Illumina platform and the initial set of 13 slides were not included. This particular data set was processed using the Illumina "Robust Spline Normalization with No Background Correction" protocol. Values were log2 transformed and the current data range from 6.481 average (very low or no expression) to 24.852 (extremely high).

    + +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Hippocampus Illumina (Aug 07) RSN data set, ### probes have LRS values >46.

    + +

    In comparison, here are the yields of QTLs with LOD>10 for other closely related data sets:

    + +
      +
    1. 1050 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 1162 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 1129 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 1176 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. NO DATA for Hippocampus Illumina (Aug07) RSN
    10. +
    11. NO DATA for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 1183 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 1167 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 1170 for Hippocampus Illumina (Oct06) RankInv
    18. +
    + +

    The LRS achieved in the different version of the LXS Hippocampus data for probe ILM103520706 (Disabled 1; Dab1) are as follow

    + +
      +
    1. 338.4 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 339.8 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 370.2 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 363.5 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. 374.8 for Hippocampus Illumina (Aug07) RSN
    10. +
    11. 363.0 for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 360.3 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 358.1 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 358.8 for Hippocampus Illumina (Oct06) RankInv
    18. +
    diff --git a/general/datasets/Illum_lxs_hipp_quant0807/tissue.rtf b/general/datasets/Illum_lxs_hipp_quant0807/tissue.rtf new file mode 100644 index 0000000..febccce --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_quant0807/tissue.rtf @@ -0,0 +1,9 @@ +

    About the animals and tissue used to generate this set of data:

    + +

    All animals were raised at the IBG by Bennett and colleagues in an SPF facility. No cases were MHV positive. Mice were killed by cervical dislocation. Whole brain dissections were performed at the IBG by Bennett and colleagues and shipped in RNAlater to Lu Lu and colleagues at UTHSC. Most hippocampal dissections (all were bilateral) were performed by Zhiping Jia. Cerebella, olfactory bulbs, and brain stems were also dissected and stored at -80 deg C using further use. Hippocampal samples are very close to complete (see Lu et al., 2001 but probably include variable amounts of fimbria and choroid plexus (see expression of transthyretin, Ttr, as a marker of choroid plexus).

    + +

    A pool of dissected tissue from four hippocampi taken from two naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia.

    + +

    All animals used in this study were between 53 and 90 days of age (average of 72 days; see Table 1 below).

    + +

     

    diff --git a/general/datasets/Illum_lxs_hipp_quant_nb0807/acknowledgment.rtf b/general/datasets/Illum_lxs_hipp_quant_nb0807/acknowledgment.rtf new file mode 100644 index 0000000..d8f3e9a --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_quant_nb0807/acknowledgment.rtf @@ -0,0 +1,3 @@ +

    Data source acknowledgment:

    + +

    Data were generated with funds to Lu Lu, Beth Bennett, Mike Miles, Melloni Cook from INIA. · Lu Lu, M.D. Grant Support: NIH U01AA13499, U24AA13513 (Lu Lu, PI)

    diff --git a/general/datasets/Illum_lxs_hipp_quant_nb0807/cases.rtf b/general/datasets/Illum_lxs_hipp_quant_nb0807/cases.rtf new file mode 100644 index 0000000..efa4371 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_quant_nb0807/cases.rtf @@ -0,0 +1,2140 @@ +

    Quality Control on Sex Labels: Sex of the samples was validated using sex-specific probe set.

    + + + + + + + + + + +
    +

    Legend: We evaluated whether or not the sex of samples were labeled correctly by measuring the expression of Xist using probe ILM106520068. In this bar chart the expression of Xist is very low in LXS114 and has a low error term. This is because both arrays are male samples rather than 1 male and 1 female sample.

    + +

     

    + +

    Data Table 1:

    + +
    +
    This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch.
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexgener-
    + ation
    pool
    + size
    slide
    + ID
    slide
    + position
    batch
    + by slide
    scan
    + batch
    1R2851H2ILS77F>10041523516003B11
    2R0595H2ILS71F>10021523516030B42
    3R2874H2ILS78M>10041523516011B21
    4R0585H2ILS65M>10021523516028A32
    5R3281H1ILSXISSF190FNA31562224029A2813
    6R2857H2ISS75F>10041523516011A21
    7R0589H2ISS73F>10021523516028B32
    8R2955H2ISS53M>10031523516003A11
    9R0578H2ISS67M>10021523516030A42
    10R3282H1ISSXILSF197MNA31562224029B2813
    11R2013H2LXS1084F2721562224049E189
    12R1993H2LXS1078M2721562224036E179
    13R1997H2LXS10070F2521562224049A189
    14R1983H2LXS10077M2521562224047F168
    15R2083H2LXS10185F2821562224050B199
    16R2084H2LXS10185M2821562224050C199
    17R2186H2LXS10273F2921523516001C95
    18R2187H2LXS10273M2921562224053C2010
    19R2809H2LXS10372F2621562224034C2311
    20R2854H1LXS10369M2621523516006D63
    21R2735H2LXS10778F2621523516028D32
    22R2738H2LXS10778M2621562224054C2110
    23R2840H2LXS11067F2521562224037D2411
    24R2157H2LXS11075M2721523516033E84
    25R2172H2LXS11272F2721523516001B95
    26R2841H2LXS11284M2721562224042D2712
    27R2188H2LXS11472F2821562224053D2010
    28R2204H2LXS11472M2821523516001D95
    29R2168H2LXS11580F2721523516001A95
    30R2085H2LXS11571M2721562224050D199
    31R2811H2LXS11772F2821562224034D2311
    32R2212H2LXS11774M2721523516001E95
    33R1992H2LXS12286F2621562224036D179
    34R2219H2LXS12272M2621562224054A2110
    35R2876H2LXS12387F2821562224038C2511
    36R2832H1LXS12377M2721523516011E21
    37R2872H1LXS12483F2821523516006E63
    38R2871H2LXS12485M2821562224042F2712
    39R1909H2LXS1379F2521523516024D137
    40R1901H2LXS1381M2621562224041D2612
    41R2023H2LXS1486F2521562224050A199
    42R1612H2LXS1485M2621523516015A105
    43R1936H2LXS1681F2521523516024E137
    44R1912H2LXS1681M2521523516033B84
    45R1961H2LXS1966F2621523516029F147
    46R1904H2LXS1966M2621523516024B137
    47R1883H2LXS271F2721523516009F126
    48R2753H2LXS274M2821523516030E42
    49R1729H2LXS2272F2721523516032E74
    50R2743H2LXS2279M2721562224054D2110
    51R1966H2LXS2373F2621562224032D158
    52R1971H2LXS2373M2621562224047A168
    53R2795H2LXS2474F2621523516003C11
    54R1755H2LXS2456M2521523516007A116
    55R1986H2LXS2575F2721562224036A179
    56R2006H2LXS2575M2721562224049C189
    57R2014H2LXS2682F2521562224049F189
    58R2009H2LXS2682M2621562224049D189
    59R2824H1LXS2867F2821562224042A2712
    60R1753H1LXS2872M2721562224041F2612
    61R2765H2LXS363F2721523516005B53
    62R1898H2LXS381M2621562224041C2612
    63R2764H2LXS3173F2921562224060C2210
    64R1908H2LXS3180M2821523516024C137
    65R2758H2LXS3270F2621523516030F42
    66R1743H1LXS3267M2521562224041E2612
    67R2794H2LXS3475F2721562224034B2311
    68R2870H2LXS3478F2721562224029C2813
    69R2746H2LXS3580F2221523516030C42
    70R2747H2LXS3581M2221562224060A2210
    71R1968H2LXS3676F2521562224032E158
    72R1640H2LXS3676M2521523516032C74
    73R2835H1LXS3867F2721523516011F21
    74R2842H2LXS3867M2721562224042E2712
    75R2210H2LXS3981F2821562224053E2010
    76R2736H2LXS3975M2721523516028E32
    77R1978H2LXS4178F2621562224047C168
    78R1783H2LXS4156M2621523516007D116
    79R2822H2LXS4266F2721562224034F2311
    80R2769H2LXS4270M2721562224042B2712
    81R1974H2LXS4384F2621562224047B168
    82R1733H2LXS4372M2621523516015C105
    83R1756H2LXS4656F2521523516007B116
    84R1727H2LXS4670M2521523516032D74
    85R1970H2LXS4872F2721562224032F158
    86R1981H2LXS4872M2721562224042C2712
    87R1957H2LXS4972F2521523516029C147
    88R2259H2LXS4972M2521523516028C32
    89R2836H1LXS568F2821523516006A63
    90R2213H2LXS580M2721562224053F2010
    91R2791H2LXS5068F2721562224034A2311
    92R1789H2LXS5057M2621523516033A84
    93R1740H2LXS5168F2721523516032F74
    94R1734H2LXS5168M2621523516015D105
    95R2786H2LXS5261F2721562224060D2210
    96R2768H2LXS5261M2721523516005C53
    97R2154H2LXS5470F2721523516033D84
    98R2155H2LXS5470M2721562224053A2010
    99R1821H2LXS5577F2521523516009C126
    100R1951H2LXS5574M2621523516024F137
    101R2789H2LXS5671F2521523516005F53
    102R2788H2LXS5671M2521562224060F2210
    103R2787H2LXS5966F2921562224060E2210
    104R2785H2LXS5962M2921523516005E53
    105R1791H2LXS6058F2721562224038D2511
    106R1792H2LXS6064M2721523516007E116
    107R1796H2LXS6258F2721523516007F116
    108R1797H2LXS6258M2721562224038E2511
    109R2220H2LXS6471F2821523516001F95
    110R2221H2LXS6471M2821562224054B2110
    111R1989H2LXS6673F2621562224036B179
    112R1843H2LXS6678M2721523516009E126
    113R2820H2LXS6867F2921523516003E11
    114R2819H2LXS6867M2921562224034E2311
    115R1963H2LXS778F2821562224032B158
    116R1964H2LXS778M2821562224032C158
    117R2166H2LXS7072F2721523516033F84
    118R2745H2LXS7071M2821562224054F2110
    119R2848H2LXS7272F2721562224038A2511
    120R1902H2LXS7266M2721523516024A137
    121R2750H2LXS7381F2521523516030D42
    122R1835H2LXS7390M2421523516009D126
    123R1979H2LXS7559F2721562224047D168
    124R2826H2LXS7572M2721523516003F11
    125R2142H2LXS7677F2621562224050E199
    126R1884H2LXS7685M2621562224041A2612
    127R1959H2LXS7869F2621523516029E147
    128R1958H2LXS7869M2621523516029D147
    129R2845H1LXS870F2821523516006C63
    130R2156H2LXS876M2721562224053B2010
    131R1955H2LXS8071F2521523516029A147
    132R1956H2LXS8071M2521523516029B147
    133R2830H1LXS8466F2621523516011D21
    134R2829H2LXS8466M2621562224037A2411
    135R2839H2LXS8668F2721562224037C2411
    136R2838H1LXS8668M2721523516006B63
    137R2882H1LXS8766F2721523516006F63
    138R2744H2LXS8771M2621562224054E2110
    139R2831H2LXS8869F2721562224037B2411
    140R2762H2LXS8871M2721523516005A53
    141R2828H1LXS8975F2621523516011C21
    142R1962H2LXS8973M2521562224032A158
    143R1746H2LXS966F2621523516015F105
    144R2801H2LXS968M2721523516003D11
    145R1812H2LXS9061F2521562224038F2511
    146R1813H2LXS9061M2521523516009A126
    147R1736H2LXS9266F2321523516015E105
    148R1609H2LXS9287M2321523516032A74
    149R1624H2LXS9374F2621523516032B74
    150R1815H2LXS9361M2621523516009B126
    151R1991H2LXS9470F2521562224036C179
    152R2002H2LXS9470M2521562224049B189
    153R1996H2LXS9675F2321562224036F179
    154R1772H2LXS9663M2321523516007C116
    155R2759H2LXS9773F2621562224060B2210
    156R2739H2LXS9779M2621523516028F32
    157R2149H2LXS9878F2621523516033C84
    158R1888H2LXS9876M2621562224041B2612
    159R1644H2LXS9979F2621523516015B105
    160R2145H2LXS9977M2721562224050F199
    +
    +
    +
    +
    +

    Downloading all data:

    + +

    All data links (right-most column above) will be available as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    +
    diff --git a/general/datasets/Illum_lxs_hipp_quant_nb0807/citation.rtf b/general/datasets/Illum_lxs_hipp_quant_nb0807/citation.rtf new file mode 100644 index 0000000..29fd952 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_quant_nb0807/citation.rtf @@ -0,0 +1,3 @@ +

    Downloading all data:

    + +

    All data links (right-most column above) will be available as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    diff --git a/general/datasets/Illum_lxs_hipp_quant_nb0807/contributors.rtf b/general/datasets/Illum_lxs_hipp_quant_nb0807/contributors.rtf new file mode 100644 index 0000000..775c0ee --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_quant_nb0807/contributors.rtf @@ -0,0 +1,5 @@ +

    About this text file:

    + +

    INFO file prepared by Xusheng Wang, Oct 24, 2007.

    + +

    Data set uploaded by Arthur Centeno, Aug 30, 2007.

    diff --git a/general/datasets/Illum_lxs_hipp_quant_nb0807/experiment-design.rtf b/general/datasets/Illum_lxs_hipp_quant_nb0807/experiment-design.rtf new file mode 100644 index 0000000..f477cb7 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_quant_nb0807/experiment-design.rtf @@ -0,0 +1 @@ +

    Experimental Design and Batch Structure: This data set consists arrays processed in 13 groups over a five month period (July 2006 to Dec 2006). Most groups consisted of 12 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Yiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between July 28 and Dec 21, 2006. Details on sample assignment to slides and batches is provide in the table below.

    diff --git a/general/datasets/Illum_lxs_hipp_quant_nb0807/notes.rtf b/general/datasets/Illum_lxs_hipp_quant_nb0807/notes.rtf new file mode 100644 index 0000000..938409b --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_quant_nb0807/notes.rtf @@ -0,0 +1,3 @@ +

    ANNOTATION: In spring of 2007, Robert W. Williams and Hongqiang Li reannotated the Illumina Mouse-6 array content. This new annotation is now incorporated into GeneNetwork. For 46166 probes on the Mouse 6 array platform (including control probes) we have identified 35975 NCBI Entrez Gene IDs; 26481 matched human Gene IDs; 23899 matched rat Gene IDs; 26883 NCBI HomoloGene IDs; and 12791 OMIM IDs.

    + +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    diff --git a/general/datasets/Illum_lxs_hipp_quant_nb0807/platform.rtf b/general/datasets/Illum_lxs_hipp_quant_nb0807/platform.rtf new file mode 100644 index 0000000..2ac899d --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_quant_nb0807/platform.rtf @@ -0,0 +1,5 @@ +

    About the array platform:

    + +

    Illumina Sentrix Mouse-6 BeadArray Platform: The Mouse6 array consists of 46,116 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology.

    + +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf).

    diff --git a/general/datasets/Illum_lxs_hipp_quant_nb0807/processing.rtf b/general/datasets/Illum_lxs_hipp_quant_nb0807/processing.rtf new file mode 100644 index 0000000..c3d0555 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_quant_nb0807/processing.rtf @@ -0,0 +1,3 @@ +

    About data processing:

    + +

    This data set uses the LOESS with Variance Stabilizing Transform (VST) and Background correction from the lumi package downloaded from Bioconductor (http://www.bioconductor.org/). For the more detailed information, please see the lumi package documentation.

    diff --git a/general/datasets/Illum_lxs_hipp_quant_nb0807/summary.rtf b/general/datasets/Illum_lxs_hipp_quant_nb0807/summary.rtf new file mode 100644 index 0000000..ebfc03f --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_quant_nb0807/summary.rtf @@ -0,0 +1,33 @@ +

    August 07 ILLUMINA Mouse-6 DATA SET RSN: The LXS Hippocampus Illumina Robust Spline Normalization with No Background correction data set provides estimates of mRNA expression in the hippocampus of 75 LXS recombinant inbred strains, the two parental strains, ILS/Ibg and ISS/Ibg (Inbred Long Sleep and Inbred Short Sleep strains from the Institute of Behavioral Genetics), and the two reciprocal F1 strains (ILSXISSF1, ISSXILSF1). All samples are from normal adult control animals raised in a standard laboratory environment. Subsequent data sets will provide estimates of mRNA expression following restraint stress, ethanol treatment, and stress followed by ethanol using many of the same strains (Lu Lu and colleagues).

    + +

    A total of 240 pooled hippocampal samples were processed using 40 Illumina Sentrix Mouse-6 v 1.0 oligomer microarray BeadArray slides. Twenty-seven Mouse-6 slides and a total of 160 samples passed stringent quality control and error checking. We should note that this is our first experience using the Illumina platform and the initial set of 13 slides were not included. This particular data set was processed using the Illumina "Robust Spline Normalization with No Background Correction" protocol. Values were log2 transformed and the current data range from 6.481 average (very low or no expression) to 24.852 (extremely high).

    + +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Hippocampus Illumina (Aug 07) RSN data set, ### probes have LRS values >46.

    + +

    In comparison, here are the yields of QTLs with LOD>10 for other closely related data sets:

    + +
      +
    1. 1050 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 1162 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 1129 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 1176 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. NO DATA for Hippocampus Illumina (Aug07) RSN
    10. +
    11. NO DATA for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 1183 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 1167 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 1170 for Hippocampus Illumina (Oct06) RankInv
    18. +
    + +

    The LRS achieved in the different version of the LXS Hippocampus data for probe ILM103520706 (Disabled 1; Dab1) are as follow

    + +
      +
    1. 338.4 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 339.8 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 370.2 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 363.5 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. 374.8 for Hippocampus Illumina (Aug07) RSN
    10. +
    11. 363.0 for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 360.3 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 358.1 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 358.8 for Hippocampus Illumina (Oct06) RankInv
    18. +
    diff --git a/general/datasets/Illum_lxs_hipp_quant_nb0807/tissue.rtf b/general/datasets/Illum_lxs_hipp_quant_nb0807/tissue.rtf new file mode 100644 index 0000000..febccce --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_quant_nb0807/tissue.rtf @@ -0,0 +1,9 @@ +

    About the animals and tissue used to generate this set of data:

    + +

    All animals were raised at the IBG by Bennett and colleagues in an SPF facility. No cases were MHV positive. Mice were killed by cervical dislocation. Whole brain dissections were performed at the IBG by Bennett and colleagues and shipped in RNAlater to Lu Lu and colleagues at UTHSC. Most hippocampal dissections (all were bilateral) were performed by Zhiping Jia. Cerebella, olfactory bulbs, and brain stems were also dissected and stored at -80 deg C using further use. Hippocampal samples are very close to complete (see Lu et al., 2001 but probably include variable amounts of fimbria and choroid plexus (see expression of transthyretin, Ttr, as a marker of choroid plexus).

    + +

    A pool of dissected tissue from four hippocampi taken from two naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia.

    + +

    All animals used in this study were between 53 and 90 days of age (average of 72 days; see Table 1 below).

    + +

     

    diff --git a/general/datasets/Illum_lxs_hipp_rse_1008/summary.rtf b/general/datasets/Illum_lxs_hipp_rse_1008/summary.rtf new file mode 100644 index 0000000..f49829f --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rse_1008/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 63, Name: Hippocampus Illumina NOS (Oct08) RankInv beta \ No newline at end of file diff --git a/general/datasets/Illum_lxs_hipp_rsn0807/acknowledgment.rtf b/general/datasets/Illum_lxs_hipp_rsn0807/acknowledgment.rtf new file mode 100644 index 0000000..d8f3e9a --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rsn0807/acknowledgment.rtf @@ -0,0 +1,3 @@ +

    Data source acknowledgment:

    + +

    Data were generated with funds to Lu Lu, Beth Bennett, Mike Miles, Melloni Cook from INIA. · Lu Lu, M.D. Grant Support: NIH U01AA13499, U24AA13513 (Lu Lu, PI)

    diff --git a/general/datasets/Illum_lxs_hipp_rsn0807/cases.rtf b/general/datasets/Illum_lxs_hipp_rsn0807/cases.rtf new file mode 100644 index 0000000..efa4371 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rsn0807/cases.rtf @@ -0,0 +1,2140 @@ +

    Quality Control on Sex Labels: Sex of the samples was validated using sex-specific probe set.

    + + + + + + + + + + +
    +

    Legend: We evaluated whether or not the sex of samples were labeled correctly by measuring the expression of Xist using probe ILM106520068. In this bar chart the expression of Xist is very low in LXS114 and has a low error term. This is because both arrays are male samples rather than 1 male and 1 female sample.

    + +

     

    + +

    Data Table 1:

    + +
    +
    This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch.
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexgener-
    + ation
    pool
    + size
    slide
    + ID
    slide
    + position
    batch
    + by slide
    scan
    + batch
    1R2851H2ILS77F>10041523516003B11
    2R0595H2ILS71F>10021523516030B42
    3R2874H2ILS78M>10041523516011B21
    4R0585H2ILS65M>10021523516028A32
    5R3281H1ILSXISSF190FNA31562224029A2813
    6R2857H2ISS75F>10041523516011A21
    7R0589H2ISS73F>10021523516028B32
    8R2955H2ISS53M>10031523516003A11
    9R0578H2ISS67M>10021523516030A42
    10R3282H1ISSXILSF197MNA31562224029B2813
    11R2013H2LXS1084F2721562224049E189
    12R1993H2LXS1078M2721562224036E179
    13R1997H2LXS10070F2521562224049A189
    14R1983H2LXS10077M2521562224047F168
    15R2083H2LXS10185F2821562224050B199
    16R2084H2LXS10185M2821562224050C199
    17R2186H2LXS10273F2921523516001C95
    18R2187H2LXS10273M2921562224053C2010
    19R2809H2LXS10372F2621562224034C2311
    20R2854H1LXS10369M2621523516006D63
    21R2735H2LXS10778F2621523516028D32
    22R2738H2LXS10778M2621562224054C2110
    23R2840H2LXS11067F2521562224037D2411
    24R2157H2LXS11075M2721523516033E84
    25R2172H2LXS11272F2721523516001B95
    26R2841H2LXS11284M2721562224042D2712
    27R2188H2LXS11472F2821562224053D2010
    28R2204H2LXS11472M2821523516001D95
    29R2168H2LXS11580F2721523516001A95
    30R2085H2LXS11571M2721562224050D199
    31R2811H2LXS11772F2821562224034D2311
    32R2212H2LXS11774M2721523516001E95
    33R1992H2LXS12286F2621562224036D179
    34R2219H2LXS12272M2621562224054A2110
    35R2876H2LXS12387F2821562224038C2511
    36R2832H1LXS12377M2721523516011E21
    37R2872H1LXS12483F2821523516006E63
    38R2871H2LXS12485M2821562224042F2712
    39R1909H2LXS1379F2521523516024D137
    40R1901H2LXS1381M2621562224041D2612
    41R2023H2LXS1486F2521562224050A199
    42R1612H2LXS1485M2621523516015A105
    43R1936H2LXS1681F2521523516024E137
    44R1912H2LXS1681M2521523516033B84
    45R1961H2LXS1966F2621523516029F147
    46R1904H2LXS1966M2621523516024B137
    47R1883H2LXS271F2721523516009F126
    48R2753H2LXS274M2821523516030E42
    49R1729H2LXS2272F2721523516032E74
    50R2743H2LXS2279M2721562224054D2110
    51R1966H2LXS2373F2621562224032D158
    52R1971H2LXS2373M2621562224047A168
    53R2795H2LXS2474F2621523516003C11
    54R1755H2LXS2456M2521523516007A116
    55R1986H2LXS2575F2721562224036A179
    56R2006H2LXS2575M2721562224049C189
    57R2014H2LXS2682F2521562224049F189
    58R2009H2LXS2682M2621562224049D189
    59R2824H1LXS2867F2821562224042A2712
    60R1753H1LXS2872M2721562224041F2612
    61R2765H2LXS363F2721523516005B53
    62R1898H2LXS381M2621562224041C2612
    63R2764H2LXS3173F2921562224060C2210
    64R1908H2LXS3180M2821523516024C137
    65R2758H2LXS3270F2621523516030F42
    66R1743H1LXS3267M2521562224041E2612
    67R2794H2LXS3475F2721562224034B2311
    68R2870H2LXS3478F2721562224029C2813
    69R2746H2LXS3580F2221523516030C42
    70R2747H2LXS3581M2221562224060A2210
    71R1968H2LXS3676F2521562224032E158
    72R1640H2LXS3676M2521523516032C74
    73R2835H1LXS3867F2721523516011F21
    74R2842H2LXS3867M2721562224042E2712
    75R2210H2LXS3981F2821562224053E2010
    76R2736H2LXS3975M2721523516028E32
    77R1978H2LXS4178F2621562224047C168
    78R1783H2LXS4156M2621523516007D116
    79R2822H2LXS4266F2721562224034F2311
    80R2769H2LXS4270M2721562224042B2712
    81R1974H2LXS4384F2621562224047B168
    82R1733H2LXS4372M2621523516015C105
    83R1756H2LXS4656F2521523516007B116
    84R1727H2LXS4670M2521523516032D74
    85R1970H2LXS4872F2721562224032F158
    86R1981H2LXS4872M2721562224042C2712
    87R1957H2LXS4972F2521523516029C147
    88R2259H2LXS4972M2521523516028C32
    89R2836H1LXS568F2821523516006A63
    90R2213H2LXS580M2721562224053F2010
    91R2791H2LXS5068F2721562224034A2311
    92R1789H2LXS5057M2621523516033A84
    93R1740H2LXS5168F2721523516032F74
    94R1734H2LXS5168M2621523516015D105
    95R2786H2LXS5261F2721562224060D2210
    96R2768H2LXS5261M2721523516005C53
    97R2154H2LXS5470F2721523516033D84
    98R2155H2LXS5470M2721562224053A2010
    99R1821H2LXS5577F2521523516009C126
    100R1951H2LXS5574M2621523516024F137
    101R2789H2LXS5671F2521523516005F53
    102R2788H2LXS5671M2521562224060F2210
    103R2787H2LXS5966F2921562224060E2210
    104R2785H2LXS5962M2921523516005E53
    105R1791H2LXS6058F2721562224038D2511
    106R1792H2LXS6064M2721523516007E116
    107R1796H2LXS6258F2721523516007F116
    108R1797H2LXS6258M2721562224038E2511
    109R2220H2LXS6471F2821523516001F95
    110R2221H2LXS6471M2821562224054B2110
    111R1989H2LXS6673F2621562224036B179
    112R1843H2LXS6678M2721523516009E126
    113R2820H2LXS6867F2921523516003E11
    114R2819H2LXS6867M2921562224034E2311
    115R1963H2LXS778F2821562224032B158
    116R1964H2LXS778M2821562224032C158
    117R2166H2LXS7072F2721523516033F84
    118R2745H2LXS7071M2821562224054F2110
    119R2848H2LXS7272F2721562224038A2511
    120R1902H2LXS7266M2721523516024A137
    121R2750H2LXS7381F2521523516030D42
    122R1835H2LXS7390M2421523516009D126
    123R1979H2LXS7559F2721562224047D168
    124R2826H2LXS7572M2721523516003F11
    125R2142H2LXS7677F2621562224050E199
    126R1884H2LXS7685M2621562224041A2612
    127R1959H2LXS7869F2621523516029E147
    128R1958H2LXS7869M2621523516029D147
    129R2845H1LXS870F2821523516006C63
    130R2156H2LXS876M2721562224053B2010
    131R1955H2LXS8071F2521523516029A147
    132R1956H2LXS8071M2521523516029B147
    133R2830H1LXS8466F2621523516011D21
    134R2829H2LXS8466M2621562224037A2411
    135R2839H2LXS8668F2721562224037C2411
    136R2838H1LXS8668M2721523516006B63
    137R2882H1LXS8766F2721523516006F63
    138R2744H2LXS8771M2621562224054E2110
    139R2831H2LXS8869F2721562224037B2411
    140R2762H2LXS8871M2721523516005A53
    141R2828H1LXS8975F2621523516011C21
    142R1962H2LXS8973M2521562224032A158
    143R1746H2LXS966F2621523516015F105
    144R2801H2LXS968M2721523516003D11
    145R1812H2LXS9061F2521562224038F2511
    146R1813H2LXS9061M2521523516009A126
    147R1736H2LXS9266F2321523516015E105
    148R1609H2LXS9287M2321523516032A74
    149R1624H2LXS9374F2621523516032B74
    150R1815H2LXS9361M2621523516009B126
    151R1991H2LXS9470F2521562224036C179
    152R2002H2LXS9470M2521562224049B189
    153R1996H2LXS9675F2321562224036F179
    154R1772H2LXS9663M2321523516007C116
    155R2759H2LXS9773F2621562224060B2210
    156R2739H2LXS9779M2621523516028F32
    157R2149H2LXS9878F2621523516033C84
    158R1888H2LXS9876M2621562224041B2612
    159R1644H2LXS9979F2621523516015B105
    160R2145H2LXS9977M2721562224050F199
    +
    +
    +
    +
    +

    Downloading all data:

    + +

    All data links (right-most column above) will be available as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    +
    diff --git a/general/datasets/Illum_lxs_hipp_rsn0807/citation.rtf b/general/datasets/Illum_lxs_hipp_rsn0807/citation.rtf new file mode 100644 index 0000000..29fd952 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rsn0807/citation.rtf @@ -0,0 +1,3 @@ +

    Downloading all data:

    + +

    All data links (right-most column above) will be available as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    diff --git a/general/datasets/Illum_lxs_hipp_rsn0807/contributors.rtf b/general/datasets/Illum_lxs_hipp_rsn0807/contributors.rtf new file mode 100644 index 0000000..775c0ee --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rsn0807/contributors.rtf @@ -0,0 +1,5 @@ +

    About this text file:

    + +

    INFO file prepared by Xusheng Wang, Oct 24, 2007.

    + +

    Data set uploaded by Arthur Centeno, Aug 30, 2007.

    diff --git a/general/datasets/Illum_lxs_hipp_rsn0807/experiment-design.rtf b/general/datasets/Illum_lxs_hipp_rsn0807/experiment-design.rtf new file mode 100644 index 0000000..f477cb7 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rsn0807/experiment-design.rtf @@ -0,0 +1 @@ +

    Experimental Design and Batch Structure: This data set consists arrays processed in 13 groups over a five month period (July 2006 to Dec 2006). Most groups consisted of 12 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Yiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between July 28 and Dec 21, 2006. Details on sample assignment to slides and batches is provide in the table below.

    diff --git a/general/datasets/Illum_lxs_hipp_rsn0807/notes.rtf b/general/datasets/Illum_lxs_hipp_rsn0807/notes.rtf new file mode 100644 index 0000000..938409b --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rsn0807/notes.rtf @@ -0,0 +1,3 @@ +

    ANNOTATION: In spring of 2007, Robert W. Williams and Hongqiang Li reannotated the Illumina Mouse-6 array content. This new annotation is now incorporated into GeneNetwork. For 46166 probes on the Mouse 6 array platform (including control probes) we have identified 35975 NCBI Entrez Gene IDs; 26481 matched human Gene IDs; 23899 matched rat Gene IDs; 26883 NCBI HomoloGene IDs; and 12791 OMIM IDs.

    + +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    diff --git a/general/datasets/Illum_lxs_hipp_rsn0807/platform.rtf b/general/datasets/Illum_lxs_hipp_rsn0807/platform.rtf new file mode 100644 index 0000000..2ac899d --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rsn0807/platform.rtf @@ -0,0 +1,5 @@ +

    About the array platform:

    + +

    Illumina Sentrix Mouse-6 BeadArray Platform: The Mouse6 array consists of 46,116 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology.

    + +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf).

    diff --git a/general/datasets/Illum_lxs_hipp_rsn0807/processing.rtf b/general/datasets/Illum_lxs_hipp_rsn0807/processing.rtf new file mode 100644 index 0000000..c3d0555 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rsn0807/processing.rtf @@ -0,0 +1,3 @@ +

    About data processing:

    + +

    This data set uses the LOESS with Variance Stabilizing Transform (VST) and Background correction from the lumi package downloaded from Bioconductor (http://www.bioconductor.org/). For the more detailed information, please see the lumi package documentation.

    diff --git a/general/datasets/Illum_lxs_hipp_rsn0807/summary.rtf b/general/datasets/Illum_lxs_hipp_rsn0807/summary.rtf new file mode 100644 index 0000000..ebfc03f --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rsn0807/summary.rtf @@ -0,0 +1,33 @@ +

    August 07 ILLUMINA Mouse-6 DATA SET RSN: The LXS Hippocampus Illumina Robust Spline Normalization with No Background correction data set provides estimates of mRNA expression in the hippocampus of 75 LXS recombinant inbred strains, the two parental strains, ILS/Ibg and ISS/Ibg (Inbred Long Sleep and Inbred Short Sleep strains from the Institute of Behavioral Genetics), and the two reciprocal F1 strains (ILSXISSF1, ISSXILSF1). All samples are from normal adult control animals raised in a standard laboratory environment. Subsequent data sets will provide estimates of mRNA expression following restraint stress, ethanol treatment, and stress followed by ethanol using many of the same strains (Lu Lu and colleagues).

    + +

    A total of 240 pooled hippocampal samples were processed using 40 Illumina Sentrix Mouse-6 v 1.0 oligomer microarray BeadArray slides. Twenty-seven Mouse-6 slides and a total of 160 samples passed stringent quality control and error checking. We should note that this is our first experience using the Illumina platform and the initial set of 13 slides were not included. This particular data set was processed using the Illumina "Robust Spline Normalization with No Background Correction" protocol. Values were log2 transformed and the current data range from 6.481 average (very low or no expression) to 24.852 (extremely high).

    + +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Hippocampus Illumina (Aug 07) RSN data set, ### probes have LRS values >46.

    + +

    In comparison, here are the yields of QTLs with LOD>10 for other closely related data sets:

    + +
      +
    1. 1050 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 1162 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 1129 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 1176 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. NO DATA for Hippocampus Illumina (Aug07) RSN
    10. +
    11. NO DATA for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 1183 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 1167 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 1170 for Hippocampus Illumina (Oct06) RankInv
    18. +
    + +

    The LRS achieved in the different version of the LXS Hippocampus data for probe ILM103520706 (Disabled 1; Dab1) are as follow

    + +
      +
    1. 338.4 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 339.8 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 370.2 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 363.5 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. 374.8 for Hippocampus Illumina (Aug07) RSN
    10. +
    11. 363.0 for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 360.3 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 358.1 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 358.8 for Hippocampus Illumina (Oct06) RankInv
    18. +
    diff --git a/general/datasets/Illum_lxs_hipp_rsn0807/tissue.rtf b/general/datasets/Illum_lxs_hipp_rsn0807/tissue.rtf new file mode 100644 index 0000000..febccce --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rsn0807/tissue.rtf @@ -0,0 +1,9 @@ +

    About the animals and tissue used to generate this set of data:

    + +

    All animals were raised at the IBG by Bennett and colleagues in an SPF facility. No cases were MHV positive. Mice were killed by cervical dislocation. Whole brain dissections were performed at the IBG by Bennett and colleagues and shipped in RNAlater to Lu Lu and colleagues at UTHSC. Most hippocampal dissections (all were bilateral) were performed by Zhiping Jia. Cerebella, olfactory bulbs, and brain stems were also dissected and stored at -80 deg C using further use. Hippocampal samples are very close to complete (see Lu et al., 2001 but probably include variable amounts of fimbria and choroid plexus (see expression of transthyretin, Ttr, as a marker of choroid plexus).

    + +

    A pool of dissected tissue from four hippocampi taken from two naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia.

    + +

    All animals used in this study were between 53 and 90 days of age (average of 72 days; see Table 1 below).

    + +

     

    diff --git a/general/datasets/Illum_lxs_hipp_rsn_nb0807/acknowledgment.rtf b/general/datasets/Illum_lxs_hipp_rsn_nb0807/acknowledgment.rtf new file mode 100644 index 0000000..d8f3e9a --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rsn_nb0807/acknowledgment.rtf @@ -0,0 +1,3 @@ +

    Data source acknowledgment:

    + +

    Data were generated with funds to Lu Lu, Beth Bennett, Mike Miles, Melloni Cook from INIA. · Lu Lu, M.D. Grant Support: NIH U01AA13499, U24AA13513 (Lu Lu, PI)

    diff --git a/general/datasets/Illum_lxs_hipp_rsn_nb0807/cases.rtf b/general/datasets/Illum_lxs_hipp_rsn_nb0807/cases.rtf new file mode 100644 index 0000000..efa4371 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rsn_nb0807/cases.rtf @@ -0,0 +1,2140 @@ +

    Quality Control on Sex Labels: Sex of the samples was validated using sex-specific probe set.

    + + + + + + + + + + +
    +

    Legend: We evaluated whether or not the sex of samples were labeled correctly by measuring the expression of Xist using probe ILM106520068. In this bar chart the expression of Xist is very low in LXS114 and has a low error term. This is because both arrays are male samples rather than 1 male and 1 female sample.

    + +

     

    + +

    Data Table 1:

    + +
    +
    This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch.
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexgener-
    + ation
    pool
    + size
    slide
    + ID
    slide
    + position
    batch
    + by slide
    scan
    + batch
    1R2851H2ILS77F>10041523516003B11
    2R0595H2ILS71F>10021523516030B42
    3R2874H2ILS78M>10041523516011B21
    4R0585H2ILS65M>10021523516028A32
    5R3281H1ILSXISSF190FNA31562224029A2813
    6R2857H2ISS75F>10041523516011A21
    7R0589H2ISS73F>10021523516028B32
    8R2955H2ISS53M>10031523516003A11
    9R0578H2ISS67M>10021523516030A42
    10R3282H1ISSXILSF197MNA31562224029B2813
    11R2013H2LXS1084F2721562224049E189
    12R1993H2LXS1078M2721562224036E179
    13R1997H2LXS10070F2521562224049A189
    14R1983H2LXS10077M2521562224047F168
    15R2083H2LXS10185F2821562224050B199
    16R2084H2LXS10185M2821562224050C199
    17R2186H2LXS10273F2921523516001C95
    18R2187H2LXS10273M2921562224053C2010
    19R2809H2LXS10372F2621562224034C2311
    20R2854H1LXS10369M2621523516006D63
    21R2735H2LXS10778F2621523516028D32
    22R2738H2LXS10778M2621562224054C2110
    23R2840H2LXS11067F2521562224037D2411
    24R2157H2LXS11075M2721523516033E84
    25R2172H2LXS11272F2721523516001B95
    26R2841H2LXS11284M2721562224042D2712
    27R2188H2LXS11472F2821562224053D2010
    28R2204H2LXS11472M2821523516001D95
    29R2168H2LXS11580F2721523516001A95
    30R2085H2LXS11571M2721562224050D199
    31R2811H2LXS11772F2821562224034D2311
    32R2212H2LXS11774M2721523516001E95
    33R1992H2LXS12286F2621562224036D179
    34R2219H2LXS12272M2621562224054A2110
    35R2876H2LXS12387F2821562224038C2511
    36R2832H1LXS12377M2721523516011E21
    37R2872H1LXS12483F2821523516006E63
    38R2871H2LXS12485M2821562224042F2712
    39R1909H2LXS1379F2521523516024D137
    40R1901H2LXS1381M2621562224041D2612
    41R2023H2LXS1486F2521562224050A199
    42R1612H2LXS1485M2621523516015A105
    43R1936H2LXS1681F2521523516024E137
    44R1912H2LXS1681M2521523516033B84
    45R1961H2LXS1966F2621523516029F147
    46R1904H2LXS1966M2621523516024B137
    47R1883H2LXS271F2721523516009F126
    48R2753H2LXS274M2821523516030E42
    49R1729H2LXS2272F2721523516032E74
    50R2743H2LXS2279M2721562224054D2110
    51R1966H2LXS2373F2621562224032D158
    52R1971H2LXS2373M2621562224047A168
    53R2795H2LXS2474F2621523516003C11
    54R1755H2LXS2456M2521523516007A116
    55R1986H2LXS2575F2721562224036A179
    56R2006H2LXS2575M2721562224049C189
    57R2014H2LXS2682F2521562224049F189
    58R2009H2LXS2682M2621562224049D189
    59R2824H1LXS2867F2821562224042A2712
    60R1753H1LXS2872M2721562224041F2612
    61R2765H2LXS363F2721523516005B53
    62R1898H2LXS381M2621562224041C2612
    63R2764H2LXS3173F2921562224060C2210
    64R1908H2LXS3180M2821523516024C137
    65R2758H2LXS3270F2621523516030F42
    66R1743H1LXS3267M2521562224041E2612
    67R2794H2LXS3475F2721562224034B2311
    68R2870H2LXS3478F2721562224029C2813
    69R2746H2LXS3580F2221523516030C42
    70R2747H2LXS3581M2221562224060A2210
    71R1968H2LXS3676F2521562224032E158
    72R1640H2LXS3676M2521523516032C74
    73R2835H1LXS3867F2721523516011F21
    74R2842H2LXS3867M2721562224042E2712
    75R2210H2LXS3981F2821562224053E2010
    76R2736H2LXS3975M2721523516028E32
    77R1978H2LXS4178F2621562224047C168
    78R1783H2LXS4156M2621523516007D116
    79R2822H2LXS4266F2721562224034F2311
    80R2769H2LXS4270M2721562224042B2712
    81R1974H2LXS4384F2621562224047B168
    82R1733H2LXS4372M2621523516015C105
    83R1756H2LXS4656F2521523516007B116
    84R1727H2LXS4670M2521523516032D74
    85R1970H2LXS4872F2721562224032F158
    86R1981H2LXS4872M2721562224042C2712
    87R1957H2LXS4972F2521523516029C147
    88R2259H2LXS4972M2521523516028C32
    89R2836H1LXS568F2821523516006A63
    90R2213H2LXS580M2721562224053F2010
    91R2791H2LXS5068F2721562224034A2311
    92R1789H2LXS5057M2621523516033A84
    93R1740H2LXS5168F2721523516032F74
    94R1734H2LXS5168M2621523516015D105
    95R2786H2LXS5261F2721562224060D2210
    96R2768H2LXS5261M2721523516005C53
    97R2154H2LXS5470F2721523516033D84
    98R2155H2LXS5470M2721562224053A2010
    99R1821H2LXS5577F2521523516009C126
    100R1951H2LXS5574M2621523516024F137
    101R2789H2LXS5671F2521523516005F53
    102R2788H2LXS5671M2521562224060F2210
    103R2787H2LXS5966F2921562224060E2210
    104R2785H2LXS5962M2921523516005E53
    105R1791H2LXS6058F2721562224038D2511
    106R1792H2LXS6064M2721523516007E116
    107R1796H2LXS6258F2721523516007F116
    108R1797H2LXS6258M2721562224038E2511
    109R2220H2LXS6471F2821523516001F95
    110R2221H2LXS6471M2821562224054B2110
    111R1989H2LXS6673F2621562224036B179
    112R1843H2LXS6678M2721523516009E126
    113R2820H2LXS6867F2921523516003E11
    114R2819H2LXS6867M2921562224034E2311
    115R1963H2LXS778F2821562224032B158
    116R1964H2LXS778M2821562224032C158
    117R2166H2LXS7072F2721523516033F84
    118R2745H2LXS7071M2821562224054F2110
    119R2848H2LXS7272F2721562224038A2511
    120R1902H2LXS7266M2721523516024A137
    121R2750H2LXS7381F2521523516030D42
    122R1835H2LXS7390M2421523516009D126
    123R1979H2LXS7559F2721562224047D168
    124R2826H2LXS7572M2721523516003F11
    125R2142H2LXS7677F2621562224050E199
    126R1884H2LXS7685M2621562224041A2612
    127R1959H2LXS7869F2621523516029E147
    128R1958H2LXS7869M2621523516029D147
    129R2845H1LXS870F2821523516006C63
    130R2156H2LXS876M2721562224053B2010
    131R1955H2LXS8071F2521523516029A147
    132R1956H2LXS8071M2521523516029B147
    133R2830H1LXS8466F2621523516011D21
    134R2829H2LXS8466M2621562224037A2411
    135R2839H2LXS8668F2721562224037C2411
    136R2838H1LXS8668M2721523516006B63
    137R2882H1LXS8766F2721523516006F63
    138R2744H2LXS8771M2621562224054E2110
    139R2831H2LXS8869F2721562224037B2411
    140R2762H2LXS8871M2721523516005A53
    141R2828H1LXS8975F2621523516011C21
    142R1962H2LXS8973M2521562224032A158
    143R1746H2LXS966F2621523516015F105
    144R2801H2LXS968M2721523516003D11
    145R1812H2LXS9061F2521562224038F2511
    146R1813H2LXS9061M2521523516009A126
    147R1736H2LXS9266F2321523516015E105
    148R1609H2LXS9287M2321523516032A74
    149R1624H2LXS9374F2621523516032B74
    150R1815H2LXS9361M2621523516009B126
    151R1991H2LXS9470F2521562224036C179
    152R2002H2LXS9470M2521562224049B189
    153R1996H2LXS9675F2321562224036F179
    154R1772H2LXS9663M2321523516007C116
    155R2759H2LXS9773F2621562224060B2210
    156R2739H2LXS9779M2621523516028F32
    157R2149H2LXS9878F2621523516033C84
    158R1888H2LXS9876M2621562224041B2612
    159R1644H2LXS9979F2621523516015B105
    160R2145H2LXS9977M2721562224050F199
    +
    +
    +
    +
    +

    Downloading all data:

    + +

    All data links (right-most column above) will be available as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    +
    diff --git a/general/datasets/Illum_lxs_hipp_rsn_nb0807/citation.rtf b/general/datasets/Illum_lxs_hipp_rsn_nb0807/citation.rtf new file mode 100644 index 0000000..29fd952 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rsn_nb0807/citation.rtf @@ -0,0 +1,3 @@ +

    Downloading all data:

    + +

    All data links (right-most column above) will be available as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    diff --git a/general/datasets/Illum_lxs_hipp_rsn_nb0807/contributors.rtf b/general/datasets/Illum_lxs_hipp_rsn_nb0807/contributors.rtf new file mode 100644 index 0000000..775c0ee --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rsn_nb0807/contributors.rtf @@ -0,0 +1,5 @@ +

    About this text file:

    + +

    INFO file prepared by Xusheng Wang, Oct 24, 2007.

    + +

    Data set uploaded by Arthur Centeno, Aug 30, 2007.

    diff --git a/general/datasets/Illum_lxs_hipp_rsn_nb0807/experiment-design.rtf b/general/datasets/Illum_lxs_hipp_rsn_nb0807/experiment-design.rtf new file mode 100644 index 0000000..f477cb7 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rsn_nb0807/experiment-design.rtf @@ -0,0 +1 @@ +

    Experimental Design and Batch Structure: This data set consists arrays processed in 13 groups over a five month period (July 2006 to Dec 2006). Most groups consisted of 12 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Yiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between July 28 and Dec 21, 2006. Details on sample assignment to slides and batches is provide in the table below.

    diff --git a/general/datasets/Illum_lxs_hipp_rsn_nb0807/notes.rtf b/general/datasets/Illum_lxs_hipp_rsn_nb0807/notes.rtf new file mode 100644 index 0000000..938409b --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rsn_nb0807/notes.rtf @@ -0,0 +1,3 @@ +

    ANNOTATION: In spring of 2007, Robert W. Williams and Hongqiang Li reannotated the Illumina Mouse-6 array content. This new annotation is now incorporated into GeneNetwork. For 46166 probes on the Mouse 6 array platform (including control probes) we have identified 35975 NCBI Entrez Gene IDs; 26481 matched human Gene IDs; 23899 matched rat Gene IDs; 26883 NCBI HomoloGene IDs; and 12791 OMIM IDs.

    + +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    diff --git a/general/datasets/Illum_lxs_hipp_rsn_nb0807/platform.rtf b/general/datasets/Illum_lxs_hipp_rsn_nb0807/platform.rtf new file mode 100644 index 0000000..2ac899d --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rsn_nb0807/platform.rtf @@ -0,0 +1,5 @@ +

    About the array platform:

    + +

    Illumina Sentrix Mouse-6 BeadArray Platform: The Mouse6 array consists of 46,116 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology.

    + +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf).

    diff --git a/general/datasets/Illum_lxs_hipp_rsn_nb0807/processing.rtf b/general/datasets/Illum_lxs_hipp_rsn_nb0807/processing.rtf new file mode 100644 index 0000000..c3d0555 --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rsn_nb0807/processing.rtf @@ -0,0 +1,3 @@ +

    About data processing:

    + +

    This data set uses the LOESS with Variance Stabilizing Transform (VST) and Background correction from the lumi package downloaded from Bioconductor (http://www.bioconductor.org/). For the more detailed information, please see the lumi package documentation.

    diff --git a/general/datasets/Illum_lxs_hipp_rsn_nb0807/summary.rtf b/general/datasets/Illum_lxs_hipp_rsn_nb0807/summary.rtf new file mode 100644 index 0000000..ebfc03f --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rsn_nb0807/summary.rtf @@ -0,0 +1,33 @@ +

    August 07 ILLUMINA Mouse-6 DATA SET RSN: The LXS Hippocampus Illumina Robust Spline Normalization with No Background correction data set provides estimates of mRNA expression in the hippocampus of 75 LXS recombinant inbred strains, the two parental strains, ILS/Ibg and ISS/Ibg (Inbred Long Sleep and Inbred Short Sleep strains from the Institute of Behavioral Genetics), and the two reciprocal F1 strains (ILSXISSF1, ISSXILSF1). All samples are from normal adult control animals raised in a standard laboratory environment. Subsequent data sets will provide estimates of mRNA expression following restraint stress, ethanol treatment, and stress followed by ethanol using many of the same strains (Lu Lu and colleagues).

    + +

    A total of 240 pooled hippocampal samples were processed using 40 Illumina Sentrix Mouse-6 v 1.0 oligomer microarray BeadArray slides. Twenty-seven Mouse-6 slides and a total of 160 samples passed stringent quality control and error checking. We should note that this is our first experience using the Illumina platform and the initial set of 13 slides were not included. This particular data set was processed using the Illumina "Robust Spline Normalization with No Background Correction" protocol. Values were log2 transformed and the current data range from 6.481 average (very low or no expression) to 24.852 (extremely high).

    + +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Hippocampus Illumina (Aug 07) RSN data set, ### probes have LRS values >46.

    + +

    In comparison, here are the yields of QTLs with LOD>10 for other closely related data sets:

    + +
      +
    1. 1050 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 1162 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 1129 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 1176 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. NO DATA for Hippocampus Illumina (Aug07) RSN
    10. +
    11. NO DATA for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 1183 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 1167 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 1170 for Hippocampus Illumina (Oct06) RankInv
    18. +
    + +

    The LRS achieved in the different version of the LXS Hippocampus data for probe ILM103520706 (Disabled 1; Dab1) are as follow

    + +
      +
    1. 338.4 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 339.8 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 370.2 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 363.5 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. 374.8 for Hippocampus Illumina (Aug07) RSN
    10. +
    11. 363.0 for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 360.3 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 358.1 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 358.8 for Hippocampus Illumina (Oct06) RankInv
    18. +
    diff --git a/general/datasets/Illum_lxs_hipp_rsn_nb0807/tissue.rtf b/general/datasets/Illum_lxs_hipp_rsn_nb0807/tissue.rtf new file mode 100644 index 0000000..febccce --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rsn_nb0807/tissue.rtf @@ -0,0 +1,9 @@ +

    About the animals and tissue used to generate this set of data:

    + +

    All animals were raised at the IBG by Bennett and colleagues in an SPF facility. No cases were MHV positive. Mice were killed by cervical dislocation. Whole brain dissections were performed at the IBG by Bennett and colleagues and shipped in RNAlater to Lu Lu and colleagues at UTHSC. Most hippocampal dissections (all were bilateral) were performed by Zhiping Jia. Cerebella, olfactory bulbs, and brain stems were also dissected and stored at -80 deg C using further use. Hippocampal samples are very close to complete (see Lu et al., 2001 but probably include variable amounts of fimbria and choroid plexus (see expression of transthyretin, Ttr, as a marker of choroid plexus).

    + +

    A pool of dissected tissue from four hippocampi taken from two naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia.

    + +

    All animals used in this study were between 53 and 90 days of age (average of 72 days; see Table 1 below).

    + +

     

    diff --git a/general/datasets/Illum_lxs_hipp_rss_1008/summary.rtf b/general/datasets/Illum_lxs_hipp_rss_1008/summary.rtf new file mode 100644 index 0000000..f49829f --- /dev/null +++ b/general/datasets/Illum_lxs_hipp_rss_1008/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 63, Name: Hippocampus Illumina NOS (Oct08) RankInv beta \ No newline at end of file diff --git a/general/datasets/Illum_retina_bxd_rankinv0410/acknowledgment.rtf b/general/datasets/Illum_retina_bxd_rankinv0410/acknowledgment.rtf new file mode 100644 index 0000000..a41ff76 --- /dev/null +++ b/general/datasets/Illum_retina_bxd_rankinv0410/acknowledgment.rtf @@ -0,0 +1,13 @@ +

    The HEI Retinal Database is supported by National Eye Institute Grants:

    + +

     

    + + diff --git a/general/datasets/Illum_retina_bxd_rankinv0410/cases.rtf b/general/datasets/Illum_retina_bxd_rankinv0410/cases.rtf new file mode 100644 index 0000000..b37d700 --- /dev/null +++ b/general/datasets/Illum_retina_bxd_rankinv0410/cases.rtf @@ -0,0 +1,14 @@ +
    +

    Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 48 and maximum age is 118 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J.

    + +
    BXD strains: + + +
    +
    + +

    What Makes the G2 HEI Retina Database different from the HEI Retina Database Examination of Gfap expression across all of the strains in the HEI Retinal Dataset, reveals that some strains express very high levels of Gfap relative to others. For example, BXD24 expresses Gfap at a 9-fold higher level, than BXD22. It has been established that BXD24 acquired a mutation in Cep290 that results in early onset photoreceptor degeneration (Chang et al., 2006). This degeneration results in reactive gliosis throughout the retina. In addition to BXD24, other BXD strains expressed very high levels of Gfap including: BXD32, BXD49, BXD70, BXD83 and BXD89. For the G2 dataset all of these strains with potential reactive gliosis were removed from the dataset.

    diff --git a/general/datasets/Illum_retina_bxd_rankinv0410/contributors.rtf b/general/datasets/Illum_retina_bxd_rankinv0410/contributors.rtf new file mode 100644 index 0000000..b1f321b --- /dev/null +++ b/general/datasets/Illum_retina_bxd_rankinv0410/contributors.rtf @@ -0,0 +1 @@ +

    Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Justin P. Templeton, Robert W. Williams

    diff --git a/general/datasets/Illum_retina_bxd_rankinv0410/experiment-design.rtf b/general/datasets/Illum_retina_bxd_rankinv0410/experiment-design.rtf new file mode 100644 index 0000000..4fff707 --- /dev/null +++ b/general/datasets/Illum_retina_bxd_rankinv0410/experiment-design.rtf @@ -0,0 +1,12 @@ +

    Expression profiling by array

    + +

    We used pooled RNA samples of retinas, usually two independent pools--two male, two female pool--for most lines of mice.

    + +

    All normalization was performed by William E. Orr in the HEI Vision Core Facility

    + +
      +
    1. Computed the log base 2 of each raw signal value
    2. +
    3. Calculated the mean and standard Deviation of each Mouse WG-6 v2.0 array
    4. +
    5. Normalized each array using the formula, 2 (z-score of log2 [intensity]) The result is to produce arrays that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage is that a two-fold difference in expression level corresponds approximately to a 1 unit difference.
    6. +
    7. computed the mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples.
    8. +
    diff --git a/general/datasets/Illum_retina_bxd_rankinv0410/experiment-type.rtf b/general/datasets/Illum_retina_bxd_rankinv0410/experiment-type.rtf new file mode 100644 index 0000000..0546e04 --- /dev/null +++ b/general/datasets/Illum_retina_bxd_rankinv0410/experiment-type.rtf @@ -0,0 +1 @@ +Expression profiling by array \ No newline at end of file diff --git a/general/datasets/Illum_retina_bxd_rankinv0410/notes.rtf b/general/datasets/Illum_retina_bxd_rankinv0410/notes.rtf new file mode 100644 index 0000000..13ff99a --- /dev/null +++ b/general/datasets/Illum_retina_bxd_rankinv0410/notes.rtf @@ -0,0 +1 @@ +

    This data set is available as a bulk download in several formats. The data are available as either strain means or the individual arrays. Due to the involved normalization procedures required to correct for batch effects we strongly recommend not using the raw CEL files without special statistical procedures.

    diff --git a/general/datasets/Illum_retina_bxd_rankinv0410/platform.rtf b/general/datasets/Illum_retina_bxd_rankinv0410/platform.rtf new file mode 100644 index 0000000..2c52707 --- /dev/null +++ b/general/datasets/Illum_retina_bxd_rankinv0410/platform.rtf @@ -0,0 +1 @@ +

    Illumina MouseWG-6 v2.0 arrays: The Illumina Sentrix Mouse-6 BeadChip uses 50-nucleotide probes to interrogate approximately 46,000 sequences from the mouse transcriptome. For each array, the RNA was pooled from two retinas.

    diff --git a/general/datasets/Illum_retina_bxd_rankinv0410/processing.rtf b/general/datasets/Illum_retina_bxd_rankinv0410/processing.rtf new file mode 100644 index 0000000..97cc2be --- /dev/null +++ b/general/datasets/Illum_retina_bxd_rankinv0410/processing.rtf @@ -0,0 +1,2654 @@ +

    Values of all 45,281 probe sets in this data set range from a low of 6.25 (Rho GTPase activating protein 11A, Arhgap11a, probe ID ILMN_2747167) to a high of 18.08 (Ubiquitin B, Ubb, probe ID ILMN_2516699). This corresponds to 11.83 units or a 1 to 3641 dynamic range of expression (2^11.83). We normalized raw signal values using Beadstudio’s rank invariant normalization algorithm. BXD62 was the strain used as the control group

    + +

     

    + +

    Sample Processing: Drs. Natalie E. Freeman-Anderson and Justin P. Templeton extracted the retinas from the mice and Dr. Natalie Freeman-Anderson processed all samples in the HEI Vision Core Facility. The tissue was homogenized and extracted according to the RNA-Stat-60 protocol as described by the manufacturer (Tel-Test, Friendswood, TX) listed above. The quality and purity of RNA was assessed using an Agilent Bioanalyzer 2100 system. The RNA from each sample was processed with the Illumina TotalPrep RNA Amplification Kit (Ambion, Austin, TX) to produce labeled cRNA. The cRNA for each sample was then hybridized to an Illumina Sentrix® Mouse-6-V2 BeadChip (Illumina, San Diego, CA)

    + +

     

    + +

     

    + +

    Quality control analysis of the raw image data was performed using the Illumina BeadStudio software. MIAME standards were used for all microarray data. Rank invariant normalization with BeadStudio software was used to calculate the data. Once this data was collected, the data was globally normalized across all samples using the formula 2 (z-score of log2 [intensity]) + 8.

    + +

    Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

    + +

    Table 1: HEI Retina case IDs, including sample tube ID, strain, age, sex, and source of mice

    + +

     

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDStrainAgeSexSource of Animal
    1121608_11-C57BL/6JcFAC57BL/6J69FJAX
    2121608_12-C57BL/6JcFBC57BL/6J69FJAX
    3KA7444-C57BL/6JcMCC57BL/6J97MUTHSC RW
    4KA7444-C57BL/6JcMDC57BL/6J97MUTHSC RW
    531209.05-DBA2JcFADBA2J75FUTHSC RW
    631209.05-DBA2JcFBDBA2J75FUTHSC RW
    7121608_13-DBA/2JcMADBA/2J89MUTHSC RW
    8121608_14-DBA/2JcMBDBA/2J89MUTHSC RW
    9KA7446-B6D2F1cFAB6D2F192FUTHSC RW
    10KA7446-B6D2F1cFBB6D2F192FUTHSC RW
    11KA7446-B6D2F1cMCB6D2F192MUTHSC RW
    12KA7446-B6D2F1cMDB6D2F192MUTHSC RW
    13KA7466-D2B6F1cFAD2B6F170FUTHSC RW
    14KA7466-D2B6F1cFBD2B6F170FUTHSC RW
    15KA7466-D2B6F1cMCD2B6F170MUTHSC RW
    16KA7466-D2B6F1cMDD2B6F170MUTHSC RW
    1782609.13-1cFABXD0162FJAX
    1882609.14-1cFBBXD0162FJAX
    19KA7389-1cFABXD0151FUTHSC RW
    20KA7389-1cFBBXD0151FUTHSC RW
    21KA7389-1cMCBXD0151MUTHSC RW
    22KA7389-1cMDBXD0151MUTHSC RW
    23KA7300-2cFABXD0275FUTHSC RW
    24KA7300-2cFBBXD0275FUTHSC RW
    25100909.01-2cMABXD0265MJAX
    26100909.02-2cMBBXD0265MJAX
    27KA6699-5cFABXD0562FUTHSC RW
    28KA6699-5cFBBXD0562FUTHSC RW
    29KA6699-5cFCBXD0562FUTHSC RW
    30KA6699-5cFDBXD0562FUTHSC RW
    3182609.09-5cMABXD0560MJAX
    3282609.1-5cMBBXD0560MJAX
    33KA6763-6cFABXD0648FUTHSC RW
    34KA6763-6cFBBXD0648FUTHSC RW
    3581209.06-6cMABXD0669MVAMC
    3681209.07-6cMBBXD0669MVAMC
    3782609.07-8cFABXD0868FJAX
    3882609.08-8cFBBXD0868FJAX
    39JAX-8cMABXD0876MJAX
    40JAX-8cMBBXD0876MJAX
    41KA7289-9cFABXD0987FUTHSC RW
    42KA7289-9cFBBXD0987FUTHSC RW
    43KA7289-9cMCBXD0987MUTHSC RW
    44KA7289-9cMDBXD0987MUTHSC RW
    45JAX-11cFABXD1184FJAX
    46JAX-11cFBBXD1184FJAX
    47JAX-11cMCBXD1171MJAX
    48JAX-11cMDBXD1171MJAX
    4940209.07-12cFABXD1265FVAMC
    5040209.08-12cFBBXD1265FVAMC
    51011309.01-12cMABXD1265MUTHSC RW
    52011309.02-12cMBBXD1265MUTHSC RW
    53KA7286-13cFABXD1389FUTHSC RW
    54KA7286-13cFBBXD1389FUTHSC RW
    55KA7286-13cMCBXD1389MUTHSC RW
    56KA7286-13cMDBXD1389MUTHSC RW
    57KA7302-14cFABXD1473FUTHSC RW
    58KA7302-14cFBBXD1473FUTHSC RW
    59100909.05-14cMABXD1466MJAX
    60100909.06-14cMBBXD1466MJAX
    61KA7288-15cFABXD1589FUTHSC RW
    62KA7288-15cFBBXD1589FUTHSC RW
    63KA7288-15cMCBXD1589MUTHSC RW
    64KA7288-15cMDBXD1589MUTHSC RW
    65062509.01-16cFABXD1668FUTHSC RW
    66KA7267-16cMABXD1691MUTHSC RW
    67KA7267-16cMBBXD1691MUTHSC RW
    68KA6686-18cFBBXD1865FUTHSC RW
    69KA6686-18cFCBXD1865FUTHSC RW
    70KA6686-18cMEBXD1865MUTHSC RW
    71KA6686-18cMFBXD1865MUTHSC RW
    72KA6676-19cFBBXD1963FUTHSC RW
    73KA6676-19cFCBXD1963FUTHSC RW
    74KA6676-19cMEBXD1963MUTHSC RW
    75KA6676-19cMFBXD1963MUTHSC RW
    76060409.05-20cFABXD2067FUTHSC RW
    77060409.06-20cFBBXD2067FUTHSC RW
    78021909.03-20cMABXD2064MUTHSC RW
    79021909.04-20cMBBXD2064MUTHSC RW
    8082609.02-21cFCBXD2165FJAX
    8182609.03-21cFDBXD2165FJAX
    82121709.01-21cMABXD2180MJAX
    83121709.02-21cMBBXD2180MJAX
    84121709.03-22cFABXD2262FJAX
    85121709.04-22cFBBXD2262FJAX
    86092308_03-22cMABXD22118MUTHSC RW
    87092308_04-22cMBBXD22118MUTHSC RW
    8880409.01-24AcFABXD24A72FUTHSC RW
    89080409_02_24AcFBBXD24A72FUTHSC RW
    9082609.26-24AcFCBXD24A64FUTHSC RW
    9181209.03-24AcMCBXD24A62MUTHSC RW
    92KA6678-24cFABXD2462FUTHSC RW
    93KA6678-24cFBBXD2462FUTHSC RW
    94KA6678-24cMEBXD2462MUTHSC RW
    95KA6678-24cMFBXD2462MUTHSC RW
    96060409.07-27cFABXD2763FUTHSC RW
    97060409.08-27cFBBXD2763FUTHSC RW
    9880409.03-27cMABXD2774MUTHSC RW
    9980409.04-27cMBBXD2774MUTHSC RW
    100JAX-28cFABXD2867FJAX
    101JAX-28cFBBXD2867FJAX
    102JAX-28cMCBXD2867MJAX
    103JAX-28cMDBXD2867MJAX
    10482609.11-29cFABXD2966FJAX
    10582609.12-29cFBBXD2966FJAX
    10682609.04-29cMABXD2966MJAX
    10782609.05-29cMBBXD2966MJAX
    108JAX-31cMBBXD 3156MJAX
    109JAX-31cFCBXD 3169FJAX
    110JAX-31cFDBXD 3169FJAX
    111011309.03-32cFABXD3262FUTHSC RW
    112011309.04-32cFBBXD3262FUTHSC RW
    113KA7318-32cFCBXD3271FUTHSC RW
    114KA7319-32cMABXD3274MUTHSC RW
    115KA7319-32cMBBXD3274MUTHSC RW
    116100909.07-33cFABXD3365FJAX
    117100909.08-33cFBBXD3365FJAX
    118022609.01-33cMABXD3392MUTHSC RW
    119022609.02-33cMBBXD3392MUTHSC RW
    120KA7416-34cFABXD3497FUTHSC RW
    121KA7416-34cFBBXD3497FUTHSC RW
    122KA6321-34cMABXD3466MUTHSC RW
    123KA6321-34cMBBXD3466MUTHSC RW
    124060409.01-36cFABXD3663FUTHSC RW
    125060409.02-36cFBBXD3663FUTHSC RW
    126060409.03-36cMCBXD3663MUTHSC RW
    127KA6702-38cFABXD3863FUTHSC RW
    128KA6702-38cFBBXD3863FUTHSC RW
    12982609.24-38cFABXD3885FUTHSC RW
    13082609.25-38cFBBXD3885FUTHSC RW
    131100909.03-38cMABXD3861MJAX
    132100909.04-38cMBBXD3861MJAX
    133022609.05-39cFABXD3965FUTHSC RW
    134022609.06-39cFBBXD3965FUTHSC RW
    13531209.01-39cMCBXD3967MUTHSC RW
    13692409.01-40cFABXD4064FUTHSC RW
    13792409.02-40cFBBXD4064FUTHSC RW
    138KA6173-40cMABXD4059MUTHSC RW
    139KA6173-40cMBBXD4059MUTHSC RW
    140KA6173-40cMCBXD4059MUTHSC RW
    141091809.01-42cFABXD4273FUTHSC RW
    142091809.02-42cFBBXD4273FUTHSC RW
    143021909.01-42cFABXD4289FUTHSC RW
    144011309.06-42cMABXD4267MUTHSC RW
    145011309.07-42cMBBXD4267MUTHSC RW
    146110408_02-43cFABXD4361FUTHSC RW
    147110408_03-43cFBBXD4361FUTHSC RW
    148KA6158-43cMABXD4366MUTHSC RW
    149KA6158-43cMBBXD4366MUTHSC RW
    150100308_01-44cFABXD4467FUTHSC RW
    151102208_02-44cMDBXD4464MUTHSC RW
    152103009.03-45cFABXD4568FUTHSC RW
    153103009.04-45cFBBXD4568FUTHSC RW
    154022609.03-45cFABXD4578FUTHSC RW
    155022609.04-45cFBBXD4578FUTHSC RW
    15640309.05-45cMBBXD4565MUTHSC RW
    15740209.05-48cFBBXD4858FVAMC
    15840209.06-48cFCBXD4858FVAMC
    15981209.04-48cMABXD4882MUTHSC RW
    16081209.05-48cMBBXD4882MUTHSC RW
    16181209.08-49cFABXD4970FVAMC
    16281209.09-49cFBBXD4970FVAMC
    16340209.01-49cMABXD4987MVAMC
    16440209.02-49cMBBXD4987MVAMC
    16540209.03-49cMCBXD4987MVAMC
    166KA737850cFABXD5050FUTHSC RW
    167KA737850cFBBXD5050FUTHSC RW
    168121908_01-50cMABXD5049MUTHSC RW
    169121908_02-50cMBBXD5049MUTHSC RW
    170111208_01-51cFABXD5199FUTHSC RW
    171102208_03-51cMABXD5156MUTHSC RW
    172102208_04-51cMBBXD5156MUTHSC RW
    173090208_14-53BcFABXD53B93FUTHSC RW
    174090208_15-53BcFBBXD53B93FUTHSC RW
    175090208_16-53BcMCBXD53B93MUTHSC RW
    176090208_17-53BcMDBXD53B93MUTHSC RW
    177111208_05-55cFBBXD5570FUTHSC RW
    178KA6183-55cMABXD5563MUTHSC RW
    179KA6183-55cMBBXD5563MUTHSC RW
    180KA7362-56cFBBXD 5654FUTHSC RW
    181KA6088-56cMABXD5687MUTHSC RW
    182KA6088-56cMBBXD5687MUTHSC RW
    183KA6088-56cMCBXD5687MUTHSC RW
    18421810.01-60RFABXD 6067FUTHSC RW
    18521810.02-60RFBBXD 6067FUTHSC RW
    18621810.02-60RFCBXD 6067FUTHSC RW
    187SQ7325-60cMABXD6085MUTHSC RW
    188SQ7325-60cMBBXD6085MUTHSC RW
    189092308_10-61cFABXD61110FUTHSC RW
    190092308_11-61cFBBXD61110FUTHSC RW
    19131909.01-61cMABXD6167MUTHSC RW
    19231909.02-61cMBBXD6167MUTHSC RW
    193KA7462-62cFABXD6276FUTHSC RW
    194KA7462-62cFBBXD6276FUTHSC RW
    195KA5996-62cMABXD62113MUTHSC RW
    196KA5996-62cMBBXD62113MUTHSC RW
    197KA5996-62cMCBXD62113MUTHSC RW
    198090309.01-63cFABXD6369FUTHSC RW
    199090309.02-63cFBBXD6369FUTHSC RW
    200110609.01-63cMABXD6366MUTHSC RW
    201110609.02-63cMBBXD6366MUTHSC RW
    202091809.03-65cFABXD6565FUTHSC RW
    203091809.04-65cFBBXD6565FUTHSC RW
    204103009.01-65cMABXD6574MUTHSC RW
    205103009.02-65cMBBXD6574MUTHSC RW
    206110408_05-66cFBBXD6659FUTHSC RW
    207KA7165-66cMABXD6695MUTHSC RW
    208KA7165-66cMBBXD6695MUTHSC RW
    20990809.01-67cMABXD6761MUTHSC RW
    21090809.02-67cMBBXD6761MUTHSC RW
    211110609.03-67cFABXD6768FUTHSC RW
    212110609.04-67cFBBXD6768FUTHSC RW
    213120408_01-68cFABXD6867FUTHSC RW
    214120408_02-68cFBBXD6867FUTHSC RW
    215SQ7205-68cMABXD6887MUTHSC RW
    216SQ7205-68cMBBXD6887MUTHSC RW
    217KA6316-68cMABXD6876MUTHSC RW
    218KA6316-68cMBBXD6876MUTHSC RW
    219KA6316-68cMCBXD6876MUTHSC RW
    220KA76-69cFABXD6948FUTHSC RW
    221KA76-69cFBBXD6948FUTHSC RW
    222KA6074-69cMABXD6990MUTHSC RW
    223KA6074-69cMBBXD6990MUTHSC RW
    224121608_01-70cFABXD7080FUTHSC RW
    225121608_02-70cFBBXD7080FUTHSC RW
    226KA7394-70cMABXD7051MUTHSC RW
    22781209.08-70cMABXD7071MVAMC
    22881209.09-70cMBBXD7071MVAMC
    229052809.01-71cFABXD7170FUTHSC RW
    230060409.09-71cMABXD7162MUTHSC RW
    231060409.10-71cMBBXD7162MUTHSC RW
    23240809.01-73cFABXD7383FUTHSC RW
    23340809.02-73cFBBXD7383FUTHSC RW
    234111708_01-73cFABXD7355FUTHSC RW
    235111708_01-73cFBBXD7355FUTHSC RW
    236KA6164-73cMBBXD7359MUTHSC RW
    237KA6164-73cMCBXD7359MUTHSC RW
    23882609.22-74cFABXD7468FVAMC
    23982609.23-74cFBBXD7468FVAMC
    24082609.20-74cMABXD7468MVAMC
    24182609.21-74cMBBXD7468MVAMC
    242KA733675cFABXD7559FUTHSC RW
    243KA733675cFBBXD7559FUTHSC RW
    244KA38-75cMBBXD7562MUTHSC RW
    245KA38-75cMCBXD7562MUTHSC RW
    24641509.01-77cFABXD7770FUTHSC RW
    24741509.02-77cFBBXD7770FUTHSC RW
    24841509.03-77cMCBXD7770MUTHSC RW
    24941509.04-77cMDBXD7770MUTHSC RW
    250121608_03-80cFABXD8077FUTHSC RW
    251121608_05-80cMCBXD8070MUTHSC RW
    252KA23-80cMCBXD8077MUTHSC RW
    253KA7305-81cFABXD8151FUTHSC RW
    254KA7305-81cFBBXD8151FUTHSC RW
    255KA7305-81cMDBXD8151MUTHSC RW
    256060409.11-83cFABXD8365FUTHSC RW
    257KA24-83cFABXD8378FUTHSC RW
    258121608_07-83cMABXD8378MUTHSC RW
    259121608_08-83cMBBXD8378MUTHSC RW
    260KA24-83cMDBXD8378MUTHSC RW
    261090409.05-84cFABXD8465FVAMC
    262090409.06-84cFBBXD8465FVAMC
    263KA6203-84cMABXD8459MUTHSC RW
    264KA6203-84cMBBXD8459MUTHSC RW
    26540309.02-85cFDBXD8558FUTHSC RW
    26640309.03-85cFEBXD8558FUTHSC RW
    26732609.01-85cMABXD8567MUTHSC RW
    26832609.02-85cMBBXD8567MUTHSC RW
    26941509.05-86cFABXD8673FUTHSC RW
    27041509.06-86cFBBXD8673FUTHSC RW
    271KA6101-86cMABXD8682MUTHSC RW
    272KA6101-86cMCBXD8682MUTHSC RW
    273070909.02-87cFABXD8786FUTHSC RW
    274070909.03-87cFBBXD8786FUTHSC RW
    275KA7407-87cMABXD87113MUTHSC RW
    276KA7407-87cMBBXD87113MUTHSC RW
    277102208_05-89cFABXD8982FUTHSC RW
    278KA5974-89cMABXD89113MUTHSC RW
    279KA5974-89cMBBXD89113MUTHSC RW
    280102208_06-89cMCBXD8982MUTHSC RW
    28172309.01-90cFABXD9067FUTHSC RW
    28272309.02-90cFBBXD9067FUTHSC RW
    283090409.03-90cMABXD9064MVAMC
    284090409.04-90cMBBXD9064MVAMC
    285KA6094-92cMABXD9285MUTHSC RW
    286020609.01-95cFABXD9571FUTHSC RW
    287020609.02-95cFBBXD9571FUTHSC RW
    288KA6181-95cMABXD9561MUTHSC RW
    289KA6181-95cMBBXD9561MUTHSC RW
    29031209.03-96cFABXD9662FUTHSC RW
    29131209.04-96cFBBXD9662FUTHSC RW
    292KA7246-96cMABXD9673MUTHSC RW
    293KA7246-96cMBBXD9673MUTHSC RW
    29481209.10-97cFABXD9783FVAMC
    29581209.11-97cFBBXD9783FVAMC
    29681209.1-97cMABXD9783MVAMC
    29781209.11-97cMBBXD9783MVAMC
    298SQ7520-98cFABXD9859FUTHSC RW
    299SQ7520-98cFBBXD9859FUTHSC RW
    300SQ7520-98cMCBXD9859MUTHSC RW
    301SQ7520-98cMDBXD9859MUTHSC RW
    30282609.17-99cFABXD9964FVAMC
    30382609.18-99cFBBXD9964FVAMC
    30481409.01-99cMABXD9966MUTHSC RW
    30581409.02-99cMBBXD9966MUTHSC RW
    306121608_09-100cFABXD10081FUTHSC RW
    307121608_10-100cFBBXD10081FUTHSC RW
    308KA6001-100cMABXD100111MUTHSC RW
    309KA6001-100cMBBXD100111MUTHSC RW
    31081209.12-101cFABXD10172FVAMC
    31181209.13-101cFBBXD10172FVAMC
    312KA7296-101cMABXD10175MUTHSC RW
    313KA7296-101cMBBXD10175MUTHSC RW
    31492409.03-102cFABXD10271FVAMC
    31592409.04-102cFBBXD10271FVAMC
    316KA7380-102cMABXD102115MUTHSC RW
    31743009.01-103cFABXD10368FUTHSC RW
    31843009.02-103cFBBXD10368FUTHSC RW
    319KA79-103cFABXD10348FUTHSC RW
    320KA79-103cFBBXD10348FUTHSC RW
    321KA79-103cMCBXD10348MUTHSC RW
    32282609.15-103cMABXD10369MVAMC
    32382609.16-103cMBBXD10369MVAMC
    324102909.01-BALBCcFABALB/cByJ78FJAX
    325102909.02-BALBCcFBBALB/cByJ78FJAX
    326102909.03-BALBCcMABALB/cByJ78MJAX
    327102909.04-BALBCcMBBALB/cByJ78MJAX
    +
    diff --git a/general/datasets/Illum_retina_bxd_rankinv0410/summary.rtf b/general/datasets/Illum_retina_bxd_rankinv0410/summary.rtf new file mode 100644 index 0000000..44e98a7 --- /dev/null +++ b/general/datasets/Illum_retina_bxd_rankinv0410/summary.rtf @@ -0,0 +1,50 @@ +
    +

    This is a subtractive dataset. The Normal retina dataset was subtracted from the ONC data set probe by probe to create a data set of the changes occurring following ONC. This data set can be used to define gene changes following ONC. It is not compatible with most of the bioinformatic tools available on GeneNetwork.

    + +

    HEI Retina Illumina V6.2 (April 2010) RankInv was normalized and scaled by William E. Orr and uploaded by Arthur Centeno and Xiaodong Zhou on April 7, 2010. This data set consists of either 69 BXD strains (Normal data set) or 75 BXD strains (Full data set), C57BL/6J, DBA/2J, both reciprocal F1s, and BALB/cByJ. A total of either 74 strains (Normal data set) or 80 strains (Full data set) were quantified.

    + +

    COMMENT on  FULL versus NORMAL data sets: For many general uses there is no significant difference between FULL and NORMAL data sets. However, the FULL data set includes strains with high endogenous Gfap mRNA expression, indicative of reactive gliosis. For that reason, and to compare to OPTIC NERVE CRUSH (ONC), we removed data from six strains to make the NORMAL data set.

    + +

    The NORMAL data set exludes data from BXD24, BXD32, BXD49, BXD70, BXD83, and BXD89. BXD24 has known retinal degeneration and is now known officially as  BXD24/TyJ-Cep290/J, JAX Stock number 000031. BXD32 has mild retinal degeneration. The NORMAL data set does include BXD24a, now also known as BXD24/TyJ (JAX Stock number 005243).

    + +

    The data are now open and available for analysis.

    + +

    Please cite: Freeman NE, Templeton JP, Orr WE, Lu L, Williams RW, Geisert EE (2011) Genetic networks in the mouse retina: Growth Associated Protein 43 and Phosphate Tensin Homology network. Molecular Vision 17:1355-1372. Full Text PDF or HTML

    + +

    This is rank invariant expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 6.25 to 18.08 (11.83 units), a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

    + +

    The lowest level of expression is 6.254 for ILMN_2747167 (Arhgap11a) from HEI Retina Illumina V6.2 (April 2010) RankInv **. Lowest single data about 5.842.

    + +

    The highest level of expression is 18.077 for ILMN_2516699 (Ubb). Highest single value is about 18.934.

    + +

     

    +
    + +

    Other Related Publications

    + +
    +

     

    + +
      +
    1. Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link)
    2. +
    3. Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674
    4. +
    5. Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link)
    6. +
    7. Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.(Link) +

       

      + +

       

      +
    8. +
    +
    + +
    Other Data Sets Users of these mouse retina data may also find the following complementary resources useful: + +
      +
    1. NEIBank collection of ESTs and SAGE data.
    2. +
    3. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases
    4. +
    5. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.
    6. +
    7. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus.
    8. +
    9. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430).
    10. +
    11. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.
    12. +
    +
    diff --git a/general/datasets/Illum_retina_bxd_rankinv0410/tissue.rtf b/general/datasets/Illum_retina_bxd_rankinv0410/tissue.rtf new file mode 100644 index 0000000..766ab59 --- /dev/null +++ b/general/datasets/Illum_retina_bxd_rankinv0410/tissue.rtf @@ -0,0 +1,32 @@ +
    +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RNAlater at room temperature. Two retinas from one mouse were stored in a single tube.

    + +

    Each array was hybridized with a pool of cRNA from 2 retinas (1 mouse). Natalie Freeman-Anderson extracted RNA at UTHSC.

    + +

     

    + +

    Dissecting and preparing eyes for RNA extraction

    + +

     

    + +

    Retinas for RNA extraction were placed in RNA STAT-60 (Tel-Test Inc.) and processed per manufacturer’s instructions (in brief form below). Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we:

    + +

     

    + + +
    diff --git a/general/datasets/Inia_adrenal_rma_0612/cases.rtf b/general/datasets/Inia_adrenal_rma_0612/cases.rtf new file mode 100644 index 0000000..f0b204b --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_0612/cases.rtf @@ -0,0 +1,771 @@ +

    Young adult mice raised in specific pathogen-free vivarium at UTHSC.
    +Table 1. Final strain correction by Khyobeni Mozhui on Mar 28, 2013.

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDStrainTissueSex
    1R6947ABXD48AdrenalM
    2R6948ABXD90AdrenalM
    3R6949ABXD97AdrenalM
    4R6950ABXD87AdrenalM
    5R6952ABXD83AdrenalF
    6R6953ABXD67AdrenalM
    7R6954ABXD56AdrenalM
    8R6955ABXD48AdrenalF
    9R6956ABXD90AdrenalF
    10R6957ABXD89AdrenalM
    11R6958ABXD65AdrenalM
    12R6959ABXD65AdrenalF
    13R6960ABXD63AdrenalF
    14R6961ABXD63AdrenalM
    15R6963ABXD31AdrenalM
    16R6964ABXD31AdrenalF
    17R6965ABXD1AdrenalF
    18R6966ABXD1AdrenalF
    19R6967ABXD24AdrenalF
    20R6968ABXD34AdrenalM
    21R6969ABXD1AdrenalM
    22R6971ABXD27AdrenalF
    23R6972ABXD29AdrenalM
    24R6973ABXD12AdrenalF
    25R6974ABXD14AdrenalF
    26R6975ABXD99AdrenalF
    27R6976ABXD32AdrenalF
    28R6977ABXD97AdrenalF
    29R6978ABXD84AdrenalM
    30R6979ABXD39AdrenalM
    31R6980ABXD24AdrenalM
    32R6981ABXD50AdrenalF
    33R6982ABXD75AdrenalM
    34R6983ABXD42AdrenalM
    35R6984ABXD39AdrenalF
    36R6985ABXD34AdrenalF
    37R6986ABXD87AdrenalF
    38R6987ABXD50AdrenalM
    39R6989ABXD62AdrenalM
    40R6990ABXD70AdrenalM
    41R6991ABXD64AdrenalF
    42R6992ABXD84AdrenalF
    43R6993ABXD100AdrenalF
    44R6994ABXD62AdrenalF
    45R6996ABXD95AdrenalM
    46R6998ABXD32AdrenalM
    47R6999ABXD101AdrenalF
    48R7000ABXD49AdrenalM
    49R7002ABXD11AdrenalM
    50R7003ABXD100AdrenalM
    51R7004ABXD43AdrenalF
    52R7005ABXD103AdrenalM
    53R7006ABXD73AdrenalF
    54R7008ABXD43AdrenalM
    55R7009ABXD102AdrenalF
    56R7010ABXD69AdrenalF
    57R7011ABXD60AdrenalM
    58R7012ABXD45AdrenalF
    59R7013ABXD79AdrenalM
    60R7014ABXD40AdrenalM
    61R7015ABXD79AdrenalF
    62R7016ABXD40AdrenalF
    63R7017ABXD68AdrenalF
    64R7018ABXD85AdrenalF
    65R7019ABXD44AdrenalF
    66R7020ABXD70AdrenalF
    67R7021ABXD68AdrenalM
    68R7023ABXD44AdrenalM
    69R7024ABXD95AdrenalF
    70R7025ABXD56AdrenalF
    71R7032ABXD103AdrenalF
    72R7034ABXD24AdrenalF
    73R7035ABXD101AdrenalM
    74R7036ABXD29AdrenalF
    75R7037ABXD60AdrenalF
    76R7038ABXD69AdrenalM
    77R7039ABXD73AdrenalM
    78R7040ABXD80AdrenalM
    79R7041ABXD11AdrenalF
    80R7042ABXD74AdrenalF
    81R7043ABXD67AdrenalF
    82R7044ABXD67AdrenalM
    83R7046AC57BL/6JAdrenalF
    84R7047AD2B6F1AdrenalF
    85R7048AB6D2F1AdrenalM
    86R7051ABXD80AdrenalF
    87R7053ABXD102AdrenalM
    88R7054ABXD49AdrenalF
    89R7055ABXD77AdrenalF
    90R7056ABXD77AdrenalM
    91R7057ABXD66AdrenalM
    92R7058ABXD66AdrenalF
    93R7059ABXD45AdrenalF
    94R7145ABXD67AdrenalM
    95R7147ABXD85AdrenalM
    96R7148ADBA/2JAdrenalF
    97R7149AD2B6F1AdrenalM
    98R7150AD2B6F1AdrenalF
    99R7151ABXD27AdrenalM
    100R7152AB6D2F1AdrenalM
    101R7153ADBA/2JAdrenalM
    102R7159AC57BL/6JAdrenalF
    103R7161AC57BL/6JAdrenalM
    104R7164AB6D2F1AdrenalF
    105R7166AB6D2F1AdrenalM
    106R7167ADBA/2JAdrenalF
    107R7168ADBA/2JAdrenalM
    +
    diff --git a/general/datasets/Inia_adrenal_rma_0612/experiment-design.rtf b/general/datasets/Inia_adrenal_rma_0612/experiment-design.rtf new file mode 100644 index 0000000..b069873 --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_0612/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Normative expression in the adrenals (whole organ) of young adult mice. In general, a sex-balanced samples (one array from male cases, one array from female cases) for BXD and parental strains.

    + +

    Part of a systematic genetic analysis of the hypothalamus-pituitary-adrenal axis in the BXD family of strains.

    diff --git a/general/datasets/Inia_adrenal_rma_0612/experiment-type.rtf b/general/datasets/Inia_adrenal_rma_0612/experiment-type.rtf new file mode 100644 index 0000000..addb95f --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_0612/experiment-type.rtf @@ -0,0 +1 @@ +Normative expression in the adrenals (whole organ) of young adult mice. In general, a sex-balanced samples (one array from male cases, one array from female cases) for BXD and parental strains. \ No newline at end of file diff --git a/general/datasets/Inia_adrenal_rma_0612/platform.rtf b/general/datasets/Inia_adrenal_rma_0612/platform.rtf new file mode 100644 index 0000000..7057d48 --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_0612/platform.rtf @@ -0,0 +1 @@ +

    The GeneChip® Mouse Gene 1.0 ST Array is the latest product in the family of Affymetrix expression arrays offering whole-transcript coverage. Each of the 28,853 genes is represented on the array by approximately 27 probes spread across the full length of the gene, providing a more complete and more accurate picture of gene expression than 3'-based expression array designs. The small format of the array makes it a cost-effective expression profiling solution for new microarray users. Sense DNA targets are generated from as little as 100ng of total RNA. The Gene 1.0 ST Array is part of a complete solution for gene expression analysis that includes Whole Transcript (WT) Sense Target Labeling and Control Reagents, fluidics and scanning instrumentation and basic analysis software. The array contains the most up-to-date content of well-annotated genes, and data is analyzed using a simple workflow. The Gene 1.0 ST Array uses a subset of probes from the Mouse Exon 1.0 ST Array and covers only well-annotated content. Like the Exon 1.0 ST Array, "gene-level" analysis of multiple probes on different exons is summarized into an expression value representing all transcripts from the same gene.

    diff --git a/general/datasets/Inia_adrenal_rma_0612/processing.rtf b/general/datasets/Inia_adrenal_rma_0612/processing.rtf new file mode 100644 index 0000000..55aad2e --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_0612/processing.rtf @@ -0,0 +1 @@ +

    Conventional Affymetrix gene level probe summarization (RMA) followed by log2 transformation and standard GeneNetwork variance stabilization (2z +8). The z scores are multiplied by 2 and we then add a value of 8 to all values. This eliminates negative values and results in a scale of expression for which 1 unit is roughly equivalent to a two fold absolute difference in mRNA concentration.

    diff --git a/general/datasets/Inia_adrenal_rma_0612/summary.rtf b/general/datasets/Inia_adrenal_rma_0612/summary.rtf new file mode 100644 index 0000000..9858a55 --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_0612/summary.rtf @@ -0,0 +1,17 @@ +

    Preliminary data WITH ERRORS of strain assignment as of July 20, 2012.

    + +

    Original Assignment had 253 probe sets with LRS >46.

    + +

    Corrections on Adrenal Data on July 25, 2012:
    +R6963A(BXD31).....it should be BXD34
    +R7018A(BXD85).....it should be BXD95
    +R7152A(C57BL/6J)...it should be B6D2F1
    +R7020A(BXD70).......it should be BXD65

    + +

    229 probe sets with LRS >46 after the corrections above from S. Roy of July 25, July 26 AM.

    + +

    More corrections from S. Roy (5 PM July 26)
    +R6965A(BXD42).........should be BXD2
    +R6973A(BXD12).........should be BXD8
    +R6985A(BXD34).........should be BXD8
    +R7151A(BXD99)..........should be BXD42

    diff --git a/general/datasets/Inia_adrenal_rma_0612/tissue.rtf b/general/datasets/Inia_adrenal_rma_0612/tissue.rtf new file mode 100644 index 0000000..54000a9 --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_0612/tissue.rtf @@ -0,0 +1 @@ +

    Whole adrenal gland. Dissections by Khyobeni Mozhui, Jesse Ingels, and Adrienne Adler at UTHSC.

    diff --git a/general/datasets/Inia_adrenal_rma_ex_0612/cases.rtf b/general/datasets/Inia_adrenal_rma_ex_0612/cases.rtf new file mode 100644 index 0000000..f0b204b --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_ex_0612/cases.rtf @@ -0,0 +1,771 @@ +

    Young adult mice raised in specific pathogen-free vivarium at UTHSC.
    +Table 1. Final strain correction by Khyobeni Mozhui on Mar 28, 2013.

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDStrainTissueSex
    1R6947ABXD48AdrenalM
    2R6948ABXD90AdrenalM
    3R6949ABXD97AdrenalM
    4R6950ABXD87AdrenalM
    5R6952ABXD83AdrenalF
    6R6953ABXD67AdrenalM
    7R6954ABXD56AdrenalM
    8R6955ABXD48AdrenalF
    9R6956ABXD90AdrenalF
    10R6957ABXD89AdrenalM
    11R6958ABXD65AdrenalM
    12R6959ABXD65AdrenalF
    13R6960ABXD63AdrenalF
    14R6961ABXD63AdrenalM
    15R6963ABXD31AdrenalM
    16R6964ABXD31AdrenalF
    17R6965ABXD1AdrenalF
    18R6966ABXD1AdrenalF
    19R6967ABXD24AdrenalF
    20R6968ABXD34AdrenalM
    21R6969ABXD1AdrenalM
    22R6971ABXD27AdrenalF
    23R6972ABXD29AdrenalM
    24R6973ABXD12AdrenalF
    25R6974ABXD14AdrenalF
    26R6975ABXD99AdrenalF
    27R6976ABXD32AdrenalF
    28R6977ABXD97AdrenalF
    29R6978ABXD84AdrenalM
    30R6979ABXD39AdrenalM
    31R6980ABXD24AdrenalM
    32R6981ABXD50AdrenalF
    33R6982ABXD75AdrenalM
    34R6983ABXD42AdrenalM
    35R6984ABXD39AdrenalF
    36R6985ABXD34AdrenalF
    37R6986ABXD87AdrenalF
    38R6987ABXD50AdrenalM
    39R6989ABXD62AdrenalM
    40R6990ABXD70AdrenalM
    41R6991ABXD64AdrenalF
    42R6992ABXD84AdrenalF
    43R6993ABXD100AdrenalF
    44R6994ABXD62AdrenalF
    45R6996ABXD95AdrenalM
    46R6998ABXD32AdrenalM
    47R6999ABXD101AdrenalF
    48R7000ABXD49AdrenalM
    49R7002ABXD11AdrenalM
    50R7003ABXD100AdrenalM
    51R7004ABXD43AdrenalF
    52R7005ABXD103AdrenalM
    53R7006ABXD73AdrenalF
    54R7008ABXD43AdrenalM
    55R7009ABXD102AdrenalF
    56R7010ABXD69AdrenalF
    57R7011ABXD60AdrenalM
    58R7012ABXD45AdrenalF
    59R7013ABXD79AdrenalM
    60R7014ABXD40AdrenalM
    61R7015ABXD79AdrenalF
    62R7016ABXD40AdrenalF
    63R7017ABXD68AdrenalF
    64R7018ABXD85AdrenalF
    65R7019ABXD44AdrenalF
    66R7020ABXD70AdrenalF
    67R7021ABXD68AdrenalM
    68R7023ABXD44AdrenalM
    69R7024ABXD95AdrenalF
    70R7025ABXD56AdrenalF
    71R7032ABXD103AdrenalF
    72R7034ABXD24AdrenalF
    73R7035ABXD101AdrenalM
    74R7036ABXD29AdrenalF
    75R7037ABXD60AdrenalF
    76R7038ABXD69AdrenalM
    77R7039ABXD73AdrenalM
    78R7040ABXD80AdrenalM
    79R7041ABXD11AdrenalF
    80R7042ABXD74AdrenalF
    81R7043ABXD67AdrenalF
    82R7044ABXD67AdrenalM
    83R7046AC57BL/6JAdrenalF
    84R7047AD2B6F1AdrenalF
    85R7048AB6D2F1AdrenalM
    86R7051ABXD80AdrenalF
    87R7053ABXD102AdrenalM
    88R7054ABXD49AdrenalF
    89R7055ABXD77AdrenalF
    90R7056ABXD77AdrenalM
    91R7057ABXD66AdrenalM
    92R7058ABXD66AdrenalF
    93R7059ABXD45AdrenalF
    94R7145ABXD67AdrenalM
    95R7147ABXD85AdrenalM
    96R7148ADBA/2JAdrenalF
    97R7149AD2B6F1AdrenalM
    98R7150AD2B6F1AdrenalF
    99R7151ABXD27AdrenalM
    100R7152AB6D2F1AdrenalM
    101R7153ADBA/2JAdrenalM
    102R7159AC57BL/6JAdrenalF
    103R7161AC57BL/6JAdrenalM
    104R7164AB6D2F1AdrenalF
    105R7166AB6D2F1AdrenalM
    106R7167ADBA/2JAdrenalF
    107R7168ADBA/2JAdrenalM
    +
    diff --git a/general/datasets/Inia_adrenal_rma_ex_0612/experiment-design.rtf b/general/datasets/Inia_adrenal_rma_ex_0612/experiment-design.rtf new file mode 100644 index 0000000..b069873 --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_ex_0612/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Normative expression in the adrenals (whole organ) of young adult mice. In general, a sex-balanced samples (one array from male cases, one array from female cases) for BXD and parental strains.

    + +

    Part of a systematic genetic analysis of the hypothalamus-pituitary-adrenal axis in the BXD family of strains.

    diff --git a/general/datasets/Inia_adrenal_rma_ex_0612/platform.rtf b/general/datasets/Inia_adrenal_rma_ex_0612/platform.rtf new file mode 100644 index 0000000..7057d48 --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_ex_0612/platform.rtf @@ -0,0 +1 @@ +

    The GeneChip® Mouse Gene 1.0 ST Array is the latest product in the family of Affymetrix expression arrays offering whole-transcript coverage. Each of the 28,853 genes is represented on the array by approximately 27 probes spread across the full length of the gene, providing a more complete and more accurate picture of gene expression than 3'-based expression array designs. The small format of the array makes it a cost-effective expression profiling solution for new microarray users. Sense DNA targets are generated from as little as 100ng of total RNA. The Gene 1.0 ST Array is part of a complete solution for gene expression analysis that includes Whole Transcript (WT) Sense Target Labeling and Control Reagents, fluidics and scanning instrumentation and basic analysis software. The array contains the most up-to-date content of well-annotated genes, and data is analyzed using a simple workflow. The Gene 1.0 ST Array uses a subset of probes from the Mouse Exon 1.0 ST Array and covers only well-annotated content. Like the Exon 1.0 ST Array, "gene-level" analysis of multiple probes on different exons is summarized into an expression value representing all transcripts from the same gene.

    diff --git a/general/datasets/Inia_adrenal_rma_ex_0612/processing.rtf b/general/datasets/Inia_adrenal_rma_ex_0612/processing.rtf new file mode 100644 index 0000000..55aad2e --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_ex_0612/processing.rtf @@ -0,0 +1 @@ +

    Conventional Affymetrix gene level probe summarization (RMA) followed by log2 transformation and standard GeneNetwork variance stabilization (2z +8). The z scores are multiplied by 2 and we then add a value of 8 to all values. This eliminates negative values and results in a scale of expression for which 1 unit is roughly equivalent to a two fold absolute difference in mRNA concentration.

    diff --git a/general/datasets/Inia_adrenal_rma_ex_0612/summary.rtf b/general/datasets/Inia_adrenal_rma_ex_0612/summary.rtf new file mode 100644 index 0000000..9858a55 --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_ex_0612/summary.rtf @@ -0,0 +1,17 @@ +

    Preliminary data WITH ERRORS of strain assignment as of July 20, 2012.

    + +

    Original Assignment had 253 probe sets with LRS >46.

    + +

    Corrections on Adrenal Data on July 25, 2012:
    +R6963A(BXD31).....it should be BXD34
    +R7018A(BXD85).....it should be BXD95
    +R7152A(C57BL/6J)...it should be B6D2F1
    +R7020A(BXD70).......it should be BXD65

    + +

    229 probe sets with LRS >46 after the corrections above from S. Roy of July 25, July 26 AM.

    + +

    More corrections from S. Roy (5 PM July 26)
    +R6965A(BXD42).........should be BXD2
    +R6973A(BXD12).........should be BXD8
    +R6985A(BXD34).........should be BXD8
    +R7151A(BXD99)..........should be BXD42

    diff --git a/general/datasets/Inia_adrenal_rma_ex_0612/tissue.rtf b/general/datasets/Inia_adrenal_rma_ex_0612/tissue.rtf new file mode 100644 index 0000000..54000a9 --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_ex_0612/tissue.rtf @@ -0,0 +1 @@ +

    Whole adrenal gland. Dissections by Khyobeni Mozhui, Jesse Ingels, and Adrienne Adler at UTHSC.

    diff --git a/general/datasets/Inia_adrenal_rma_f_0612/cases.rtf b/general/datasets/Inia_adrenal_rma_f_0612/cases.rtf new file mode 100644 index 0000000..f0b204b --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_f_0612/cases.rtf @@ -0,0 +1,771 @@ +

    Young adult mice raised in specific pathogen-free vivarium at UTHSC.
    +Table 1. Final strain correction by Khyobeni Mozhui on Mar 28, 2013.

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDStrainTissueSex
    1R6947ABXD48AdrenalM
    2R6948ABXD90AdrenalM
    3R6949ABXD97AdrenalM
    4R6950ABXD87AdrenalM
    5R6952ABXD83AdrenalF
    6R6953ABXD67AdrenalM
    7R6954ABXD56AdrenalM
    8R6955ABXD48AdrenalF
    9R6956ABXD90AdrenalF
    10R6957ABXD89AdrenalM
    11R6958ABXD65AdrenalM
    12R6959ABXD65AdrenalF
    13R6960ABXD63AdrenalF
    14R6961ABXD63AdrenalM
    15R6963ABXD31AdrenalM
    16R6964ABXD31AdrenalF
    17R6965ABXD1AdrenalF
    18R6966ABXD1AdrenalF
    19R6967ABXD24AdrenalF
    20R6968ABXD34AdrenalM
    21R6969ABXD1AdrenalM
    22R6971ABXD27AdrenalF
    23R6972ABXD29AdrenalM
    24R6973ABXD12AdrenalF
    25R6974ABXD14AdrenalF
    26R6975ABXD99AdrenalF
    27R6976ABXD32AdrenalF
    28R6977ABXD97AdrenalF
    29R6978ABXD84AdrenalM
    30R6979ABXD39AdrenalM
    31R6980ABXD24AdrenalM
    32R6981ABXD50AdrenalF
    33R6982ABXD75AdrenalM
    34R6983ABXD42AdrenalM
    35R6984ABXD39AdrenalF
    36R6985ABXD34AdrenalF
    37R6986ABXD87AdrenalF
    38R6987ABXD50AdrenalM
    39R6989ABXD62AdrenalM
    40R6990ABXD70AdrenalM
    41R6991ABXD64AdrenalF
    42R6992ABXD84AdrenalF
    43R6993ABXD100AdrenalF
    44R6994ABXD62AdrenalF
    45R6996ABXD95AdrenalM
    46R6998ABXD32AdrenalM
    47R6999ABXD101AdrenalF
    48R7000ABXD49AdrenalM
    49R7002ABXD11AdrenalM
    50R7003ABXD100AdrenalM
    51R7004ABXD43AdrenalF
    52R7005ABXD103AdrenalM
    53R7006ABXD73AdrenalF
    54R7008ABXD43AdrenalM
    55R7009ABXD102AdrenalF
    56R7010ABXD69AdrenalF
    57R7011ABXD60AdrenalM
    58R7012ABXD45AdrenalF
    59R7013ABXD79AdrenalM
    60R7014ABXD40AdrenalM
    61R7015ABXD79AdrenalF
    62R7016ABXD40AdrenalF
    63R7017ABXD68AdrenalF
    64R7018ABXD85AdrenalF
    65R7019ABXD44AdrenalF
    66R7020ABXD70AdrenalF
    67R7021ABXD68AdrenalM
    68R7023ABXD44AdrenalM
    69R7024ABXD95AdrenalF
    70R7025ABXD56AdrenalF
    71R7032ABXD103AdrenalF
    72R7034ABXD24AdrenalF
    73R7035ABXD101AdrenalM
    74R7036ABXD29AdrenalF
    75R7037ABXD60AdrenalF
    76R7038ABXD69AdrenalM
    77R7039ABXD73AdrenalM
    78R7040ABXD80AdrenalM
    79R7041ABXD11AdrenalF
    80R7042ABXD74AdrenalF
    81R7043ABXD67AdrenalF
    82R7044ABXD67AdrenalM
    83R7046AC57BL/6JAdrenalF
    84R7047AD2B6F1AdrenalF
    85R7048AB6D2F1AdrenalM
    86R7051ABXD80AdrenalF
    87R7053ABXD102AdrenalM
    88R7054ABXD49AdrenalF
    89R7055ABXD77AdrenalF
    90R7056ABXD77AdrenalM
    91R7057ABXD66AdrenalM
    92R7058ABXD66AdrenalF
    93R7059ABXD45AdrenalF
    94R7145ABXD67AdrenalM
    95R7147ABXD85AdrenalM
    96R7148ADBA/2JAdrenalF
    97R7149AD2B6F1AdrenalM
    98R7150AD2B6F1AdrenalF
    99R7151ABXD27AdrenalM
    100R7152AB6D2F1AdrenalM
    101R7153ADBA/2JAdrenalM
    102R7159AC57BL/6JAdrenalF
    103R7161AC57BL/6JAdrenalM
    104R7164AB6D2F1AdrenalF
    105R7166AB6D2F1AdrenalM
    106R7167ADBA/2JAdrenalF
    107R7168ADBA/2JAdrenalM
    +
    diff --git a/general/datasets/Inia_adrenal_rma_f_0612/experiment-design.rtf b/general/datasets/Inia_adrenal_rma_f_0612/experiment-design.rtf new file mode 100644 index 0000000..b069873 --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_f_0612/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Normative expression in the adrenals (whole organ) of young adult mice. In general, a sex-balanced samples (one array from male cases, one array from female cases) for BXD and parental strains.

    + +

    Part of a systematic genetic analysis of the hypothalamus-pituitary-adrenal axis in the BXD family of strains.

    diff --git a/general/datasets/Inia_adrenal_rma_f_0612/platform.rtf b/general/datasets/Inia_adrenal_rma_f_0612/platform.rtf new file mode 100644 index 0000000..7057d48 --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_f_0612/platform.rtf @@ -0,0 +1 @@ +

    The GeneChip® Mouse Gene 1.0 ST Array is the latest product in the family of Affymetrix expression arrays offering whole-transcript coverage. Each of the 28,853 genes is represented on the array by approximately 27 probes spread across the full length of the gene, providing a more complete and more accurate picture of gene expression than 3'-based expression array designs. The small format of the array makes it a cost-effective expression profiling solution for new microarray users. Sense DNA targets are generated from as little as 100ng of total RNA. The Gene 1.0 ST Array is part of a complete solution for gene expression analysis that includes Whole Transcript (WT) Sense Target Labeling and Control Reagents, fluidics and scanning instrumentation and basic analysis software. The array contains the most up-to-date content of well-annotated genes, and data is analyzed using a simple workflow. The Gene 1.0 ST Array uses a subset of probes from the Mouse Exon 1.0 ST Array and covers only well-annotated content. Like the Exon 1.0 ST Array, "gene-level" analysis of multiple probes on different exons is summarized into an expression value representing all transcripts from the same gene.

    diff --git a/general/datasets/Inia_adrenal_rma_f_0612/processing.rtf b/general/datasets/Inia_adrenal_rma_f_0612/processing.rtf new file mode 100644 index 0000000..55aad2e --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_f_0612/processing.rtf @@ -0,0 +1 @@ +

    Conventional Affymetrix gene level probe summarization (RMA) followed by log2 transformation and standard GeneNetwork variance stabilization (2z +8). The z scores are multiplied by 2 and we then add a value of 8 to all values. This eliminates negative values and results in a scale of expression for which 1 unit is roughly equivalent to a two fold absolute difference in mRNA concentration.

    diff --git a/general/datasets/Inia_adrenal_rma_f_0612/summary.rtf b/general/datasets/Inia_adrenal_rma_f_0612/summary.rtf new file mode 100644 index 0000000..9858a55 --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_f_0612/summary.rtf @@ -0,0 +1,17 @@ +

    Preliminary data WITH ERRORS of strain assignment as of July 20, 2012.

    + +

    Original Assignment had 253 probe sets with LRS >46.

    + +

    Corrections on Adrenal Data on July 25, 2012:
    +R6963A(BXD31).....it should be BXD34
    +R7018A(BXD85).....it should be BXD95
    +R7152A(C57BL/6J)...it should be B6D2F1
    +R7020A(BXD70).......it should be BXD65

    + +

    229 probe sets with LRS >46 after the corrections above from S. Roy of July 25, July 26 AM.

    + +

    More corrections from S. Roy (5 PM July 26)
    +R6965A(BXD42).........should be BXD2
    +R6973A(BXD12).........should be BXD8
    +R6985A(BXD34).........should be BXD8
    +R7151A(BXD99)..........should be BXD42

    diff --git a/general/datasets/Inia_adrenal_rma_f_0612/tissue.rtf b/general/datasets/Inia_adrenal_rma_f_0612/tissue.rtf new file mode 100644 index 0000000..54000a9 --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_f_0612/tissue.rtf @@ -0,0 +1 @@ +

    Whole adrenal gland. Dissections by Khyobeni Mozhui, Jesse Ingels, and Adrienne Adler at UTHSC.

    diff --git a/general/datasets/Inia_adrenal_rma_m_0612/cases.rtf b/general/datasets/Inia_adrenal_rma_m_0612/cases.rtf new file mode 100644 index 0000000..f0b204b --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_m_0612/cases.rtf @@ -0,0 +1,771 @@ +

    Young adult mice raised in specific pathogen-free vivarium at UTHSC.
    +Table 1. Final strain correction by Khyobeni Mozhui on Mar 28, 2013.

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDStrainTissueSex
    1R6947ABXD48AdrenalM
    2R6948ABXD90AdrenalM
    3R6949ABXD97AdrenalM
    4R6950ABXD87AdrenalM
    5R6952ABXD83AdrenalF
    6R6953ABXD67AdrenalM
    7R6954ABXD56AdrenalM
    8R6955ABXD48AdrenalF
    9R6956ABXD90AdrenalF
    10R6957ABXD89AdrenalM
    11R6958ABXD65AdrenalM
    12R6959ABXD65AdrenalF
    13R6960ABXD63AdrenalF
    14R6961ABXD63AdrenalM
    15R6963ABXD31AdrenalM
    16R6964ABXD31AdrenalF
    17R6965ABXD1AdrenalF
    18R6966ABXD1AdrenalF
    19R6967ABXD24AdrenalF
    20R6968ABXD34AdrenalM
    21R6969ABXD1AdrenalM
    22R6971ABXD27AdrenalF
    23R6972ABXD29AdrenalM
    24R6973ABXD12AdrenalF
    25R6974ABXD14AdrenalF
    26R6975ABXD99AdrenalF
    27R6976ABXD32AdrenalF
    28R6977ABXD97AdrenalF
    29R6978ABXD84AdrenalM
    30R6979ABXD39AdrenalM
    31R6980ABXD24AdrenalM
    32R6981ABXD50AdrenalF
    33R6982ABXD75AdrenalM
    34R6983ABXD42AdrenalM
    35R6984ABXD39AdrenalF
    36R6985ABXD34AdrenalF
    37R6986ABXD87AdrenalF
    38R6987ABXD50AdrenalM
    39R6989ABXD62AdrenalM
    40R6990ABXD70AdrenalM
    41R6991ABXD64AdrenalF
    42R6992ABXD84AdrenalF
    43R6993ABXD100AdrenalF
    44R6994ABXD62AdrenalF
    45R6996ABXD95AdrenalM
    46R6998ABXD32AdrenalM
    47R6999ABXD101AdrenalF
    48R7000ABXD49AdrenalM
    49R7002ABXD11AdrenalM
    50R7003ABXD100AdrenalM
    51R7004ABXD43AdrenalF
    52R7005ABXD103AdrenalM
    53R7006ABXD73AdrenalF
    54R7008ABXD43AdrenalM
    55R7009ABXD102AdrenalF
    56R7010ABXD69AdrenalF
    57R7011ABXD60AdrenalM
    58R7012ABXD45AdrenalF
    59R7013ABXD79AdrenalM
    60R7014ABXD40AdrenalM
    61R7015ABXD79AdrenalF
    62R7016ABXD40AdrenalF
    63R7017ABXD68AdrenalF
    64R7018ABXD85AdrenalF
    65R7019ABXD44AdrenalF
    66R7020ABXD70AdrenalF
    67R7021ABXD68AdrenalM
    68R7023ABXD44AdrenalM
    69R7024ABXD95AdrenalF
    70R7025ABXD56AdrenalF
    71R7032ABXD103AdrenalF
    72R7034ABXD24AdrenalF
    73R7035ABXD101AdrenalM
    74R7036ABXD29AdrenalF
    75R7037ABXD60AdrenalF
    76R7038ABXD69AdrenalM
    77R7039ABXD73AdrenalM
    78R7040ABXD80AdrenalM
    79R7041ABXD11AdrenalF
    80R7042ABXD74AdrenalF
    81R7043ABXD67AdrenalF
    82R7044ABXD67AdrenalM
    83R7046AC57BL/6JAdrenalF
    84R7047AD2B6F1AdrenalF
    85R7048AB6D2F1AdrenalM
    86R7051ABXD80AdrenalF
    87R7053ABXD102AdrenalM
    88R7054ABXD49AdrenalF
    89R7055ABXD77AdrenalF
    90R7056ABXD77AdrenalM
    91R7057ABXD66AdrenalM
    92R7058ABXD66AdrenalF
    93R7059ABXD45AdrenalF
    94R7145ABXD67AdrenalM
    95R7147ABXD85AdrenalM
    96R7148ADBA/2JAdrenalF
    97R7149AD2B6F1AdrenalM
    98R7150AD2B6F1AdrenalF
    99R7151ABXD27AdrenalM
    100R7152AB6D2F1AdrenalM
    101R7153ADBA/2JAdrenalM
    102R7159AC57BL/6JAdrenalF
    103R7161AC57BL/6JAdrenalM
    104R7164AB6D2F1AdrenalF
    105R7166AB6D2F1AdrenalM
    106R7167ADBA/2JAdrenalF
    107R7168ADBA/2JAdrenalM
    +
    diff --git a/general/datasets/Inia_adrenal_rma_m_0612/experiment-design.rtf b/general/datasets/Inia_adrenal_rma_m_0612/experiment-design.rtf new file mode 100644 index 0000000..b069873 --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_m_0612/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Normative expression in the adrenals (whole organ) of young adult mice. In general, a sex-balanced samples (one array from male cases, one array from female cases) for BXD and parental strains.

    + +

    Part of a systematic genetic analysis of the hypothalamus-pituitary-adrenal axis in the BXD family of strains.

    diff --git a/general/datasets/Inia_adrenal_rma_m_0612/platform.rtf b/general/datasets/Inia_adrenal_rma_m_0612/platform.rtf new file mode 100644 index 0000000..7057d48 --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_m_0612/platform.rtf @@ -0,0 +1 @@ +

    The GeneChip® Mouse Gene 1.0 ST Array is the latest product in the family of Affymetrix expression arrays offering whole-transcript coverage. Each of the 28,853 genes is represented on the array by approximately 27 probes spread across the full length of the gene, providing a more complete and more accurate picture of gene expression than 3'-based expression array designs. The small format of the array makes it a cost-effective expression profiling solution for new microarray users. Sense DNA targets are generated from as little as 100ng of total RNA. The Gene 1.0 ST Array is part of a complete solution for gene expression analysis that includes Whole Transcript (WT) Sense Target Labeling and Control Reagents, fluidics and scanning instrumentation and basic analysis software. The array contains the most up-to-date content of well-annotated genes, and data is analyzed using a simple workflow. The Gene 1.0 ST Array uses a subset of probes from the Mouse Exon 1.0 ST Array and covers only well-annotated content. Like the Exon 1.0 ST Array, "gene-level" analysis of multiple probes on different exons is summarized into an expression value representing all transcripts from the same gene.

    diff --git a/general/datasets/Inia_adrenal_rma_m_0612/processing.rtf b/general/datasets/Inia_adrenal_rma_m_0612/processing.rtf new file mode 100644 index 0000000..55aad2e --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_m_0612/processing.rtf @@ -0,0 +1 @@ +

    Conventional Affymetrix gene level probe summarization (RMA) followed by log2 transformation and standard GeneNetwork variance stabilization (2z +8). The z scores are multiplied by 2 and we then add a value of 8 to all values. This eliminates negative values and results in a scale of expression for which 1 unit is roughly equivalent to a two fold absolute difference in mRNA concentration.

    diff --git a/general/datasets/Inia_adrenal_rma_m_0612/summary.rtf b/general/datasets/Inia_adrenal_rma_m_0612/summary.rtf new file mode 100644 index 0000000..9858a55 --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_m_0612/summary.rtf @@ -0,0 +1,17 @@ +

    Preliminary data WITH ERRORS of strain assignment as of July 20, 2012.

    + +

    Original Assignment had 253 probe sets with LRS >46.

    + +

    Corrections on Adrenal Data on July 25, 2012:
    +R6963A(BXD31).....it should be BXD34
    +R7018A(BXD85).....it should be BXD95
    +R7152A(C57BL/6J)...it should be B6D2F1
    +R7020A(BXD70).......it should be BXD65

    + +

    229 probe sets with LRS >46 after the corrections above from S. Roy of July 25, July 26 AM.

    + +

    More corrections from S. Roy (5 PM July 26)
    +R6965A(BXD42).........should be BXD2
    +R6973A(BXD12).........should be BXD8
    +R6985A(BXD34).........should be BXD8
    +R7151A(BXD99)..........should be BXD42

    diff --git a/general/datasets/Inia_adrenal_rma_m_0612/tissue.rtf b/general/datasets/Inia_adrenal_rma_m_0612/tissue.rtf new file mode 100644 index 0000000..54000a9 --- /dev/null +++ b/general/datasets/Inia_adrenal_rma_m_0612/tissue.rtf @@ -0,0 +1 @@ +

    Whole adrenal gland. Dissections by Khyobeni Mozhui, Jesse Ingels, and Adrienne Adler at UTHSC.

    diff --git a/general/datasets/Inia_amg_bla_ex_rma_1110/cases.rtf b/general/datasets/Inia_amg_bla_ex_rma_1110/cases.rtf new file mode 100644 index 0000000..b02b19a --- /dev/null +++ b/general/datasets/Inia_amg_bla_ex_rma_1110/cases.rtf @@ -0,0 +1,3 @@ +

    Cases. A total of 58 strains, including 54 BXD strains, both parental strains (C57BL/6J and DBA/2J) and both reciprocal F1 hybrids (B6D2F1 and D2B6F1) were analyzed. In most cases, two arrays were processed per strain--one for males and one for females. All tissue and RNA was extracted by K. Mozhui. Samples were pooled by sex and usually include at least two cases per sex and strain.

    + +

    Sex Balance. Fifty strains have matched male and female samples. Five strains have male only samples (BXD5, 13, 16, 100 and 103). Three strains have only female samples (BXD44, 70, and 87.) Please review the expression data for Xist probe set 10606178. This non-coding RNA is expressed highly only in females and can be used to check the sex of a sample or pool of tissue. Ddx3y probe set 10608138 can also be used. This is a Y chromosome gene that is expressed abundantly in male samples and at background levels in female samples.

    diff --git a/general/datasets/Inia_amg_bla_ex_rma_1110/contributors.rtf b/general/datasets/Inia_amg_bla_ex_rma_1110/contributors.rtf new file mode 100644 index 0000000..f69a44f --- /dev/null +++ b/general/datasets/Inia_amg_bla_ex_rma_1110/contributors.rtf @@ -0,0 +1 @@ +

    Mozhui K, Williams RW

    diff --git a/general/datasets/Inia_amg_bla_ex_rma_1110/experiment-design.rtf b/general/datasets/Inia_amg_bla_ex_rma_1110/experiment-design.rtf new file mode 100644 index 0000000..126d431 --- /dev/null +++ b/general/datasets/Inia_amg_bla_ex_rma_1110/experiment-design.rtf @@ -0,0 +1,1152 @@ +

    Data Evaluation Summary

    + +
      +
    1. eQLTs with LOD >10 (LRS>46.1): n = 525
    2. +
    3. eQTL with high LOD and LRS: Trait ID 10513604 (Hdhd3) LOD = 39.8, LRS = 183.5
    4. +
    5. Lowest mean value: Trait ID 10344361, mean = 3.998
    6. +
    7. Highest mean value: Trait ID 10598025, mean = 14.475 (MT-ND1)
    8. +
    9. Greatest sex difference: Trait ID: 10606178 (Xist)
    10. +
    11. Great variation within and among strains: Trait ID 10454192 (Ttr +
      +
      + + + + + + +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
      1R6853BLBLAC57BL/6J77F8/18/108:45AM to 12:30 PM
      2R6861BLBLAC57BL/6J77M8/18/108:45AM to 12:30 PM
      3R6851BLBLAD2B6F177F8/18/108:45AM to 12:30 PM
      4R6859BLBLAD2B6F177M8/18/108:45AM to 12:30 PM
      5R6863BLBLADBA/2J77F8/18/108:45AM to 12:30 PM
      6R6865BLBLADBA/2J68M8/18/108:45AM to 12:30 PM
      7R6857BLBLAB6D2F169F8/18/108:45AM to 12:30 PM
      8R6855BLBLAB6D2F169M8/18/108:45AM to 12:30 PM
      9R6799BLBLABXD171F8/17/101:15 PM to 5 PM
      10R6795BLBLABXD185M8/17/101:15 PM to 5 PM
      11R6787BLBLABXD1187F8/17/101:15 PM to 5 PM
      12R6785BLBLABXD1176M8/17/101:15 PM to 5 PM
      13R6819BLBLABXD1278F8/18/108:45AM to 12:30 PM
      14R6789BLBLABXD1273M8/17/101:15 PM to 5 PM
      15R6805BLBLABXD1277M8/17/101:15 PM to 5 PM
      16R6291BLBLABXD13N/AM6/11/09N/A
      17R6811BLBLABXD1481F8/18/108:45AM to 12:30 PM
      18R6825BLBLABXD1481M8/18/108:45AM to 12:30 PM
      19R6657BLBLABXD16N/AM1/8/08N/A
      20R6054BLBLABXD19N/AF2/26/08N/A
      21R6052BLBLABXD19N/AM2/26/08N/A
      22R6803BLBLABXD2485F8/17/101:15 PM to 5 PM
      23R6817BLBLABXD2486M8/18/108:45AM to 12:30 PM
      24R6063BLBLABXD25N/AF3/12/08N/A
      25R6062BLBLABXD25N/AM3/12/08N/A
      26R6659BLBLABXD27N/AF1/8/08N/A
      27R6791BLBLABXD2775F8/17/101:15 PM to 5 PM
      28R6797BLBLABXD2971F8/17/101:15 PM to 5 PM
      29R6793BLBLABXD2971M8/17/101:15 PM to 5 PM
      30R6815BLBLABXD3174F8/18/108:45AM to 12:30 PM
      31R6801BLBLABXD3173M8/17/101:15 PM to 5 PM
      32R6915BLBLABXD3281F8/18/101 PM to 6:45 PM
      33R6845BLBLABXD3281M8/18/108:45AM to 12:30 PM
      34R6821BLBLABXD3477F8/18/108:45AM to 12:30 PM
      35R6807BLBLABXD3477M8/18/108:45AM to 12:30 PM
      36R6057BLBLABXD38N/AF2/26/08N/A
      37R6056BLBLABXD38N/AM2/26/08N/A
      38R6827BLBLABXD3979F8/18/108:45AM to 12:30 PM
      39R6813BLBLABXD3979M8/18/108:45AM to 12:30 PM
      40R6847BLBLABXD4085F8/18/108:45AM to 12:30 PM
      41R6849BLBLABXD4085M8/18/108:45AM to 12:30 PM
      42R6809BLBLABXD4287F8/18/108:45AM to 12:30 PM
      43R6823BLBLABXD4287M8/18/108:45AM to 12:30 PM
      44R6759BLBLABXD4381F8/17/109:30 AM to 12:30AM
      45R6757BLBLABXD4381M8/17/109:30 AM to 12:30AM
      46R6745BLBLABXD4483F8/17/109:30 AM to 12:30AM
      47R6763BLBLABXD4577F8/17/109:30 AM to 12:30AM
      48R6761BLBLABXD4577M8/17/109:30 AM to 12:30AM
      49R6879BLBLABXD4876F8/18/101 PM to 6:45 PM
      50R6881BLBLABXD4876M8/18/101 PM to 6:45 PM
      51R6751BLBLABXD4984F8/17/109:30 AM to 12:30AM
      52R6747BLBLABXD4984M8/17/109:30 AM to 12:30AM
      53R6104BLBLABXD5N/Af10/23/09N/A
      54R6103BLBLABXD5N/AM10/23/09N/A
      55R6889BLBLABXD5077F8/18/101 PM to 6:45 PM
      56R6891BLBLABXD5077M8/18/101 PM to 6:45 PM
      57R6074BLBLABXD51N/AF3/12/08N/A
      58R6699BLBLABXD51N/AM4/30/09N/A
      59R6917BLBLABXD5684F8/18/101 PM to 6:45 PM
      60R6893BLBLABXD5677M8/18/101 PM to 6:45 PM
      61R6769BLBLABXD6070F8/17/109:30 AM to 12:30AM
      62R6771BLBLABXD6070M8/17/101:15 PM to 5 PM
      63R6655BLBLABXD61N/AF1/29/08N/A
      64R6653BLBLABXD61N/AM1/29/08N/A
      65R6835BLBLABXD6283F8/18/108:45AM to 12:30 PM
      66R6843BLBLABXD6283M8/18/108:45AM to 12:30 PM
      67R6887BLBLABXD6377F8/18/101 PM to 6:45 PM
      68R6885BLBLABXD6377M8/18/101 PM to 6:45 PM
      69R6877BLBLABXD6584F8/18/101 PM to 6:45 PM
      70R6873BLBLABXD6584M8/18/101 PM to 6:45 PM
      71R6929BLBLABXD6876F8/18/101 PM to 6:45 PM
      72R6931BLBLABXD6876M8/18/101 PM to 6:45 PM
      73R6775BLBLABXD6969F8/17/101:15 PM to 5 PM
      74R6773BLBLABXD6980M8/17/101:15 PM to 5 PM
      75R6925BLBLABXD7076F8/18/101 PM to 6:45 PM
      76R6921BLBLABXD7076M8/17/061 PM to 6:45 PM
      77R6869BLBLABXD7176F8/18/101 PM to 6:45 PM
      78R6871BLBLABXD7176M8/18/101 PM to 6:45 PM
      79R6777BLBLABXD7383F8/17/101:15 PM to 5 PM
      80R6779BLBLABXD7383M8/17/101:15 PM to 5 PM
      81R6837BLBLABXD7576F8/18/108:45AM to 12:30 PM
      82R6829BLBLABXD7576M8/18/108:45AM to 12:30 PM
      83R6933BLBLABXD7987F8/18/101 PM to 6:45 PM
      84R6935BLBLABXD7987M8/18/101 PM to 6:45 PM
      85R6781BLBLABXD8073F8/17/101:15 PM to 5 PM
      86R6783BLBLABXD8073M8/17/101:15 PM to 5 PM
      87R6913BLBLABXD8381F8/18/101 PM to 6:45 PM
      88R6911BLBLABXD8381M8/18/101 PM to 6:45 PM
      89R6841BLBLABXD8476F8/18/108:45AM to 12:30 PM
      90R6833BLBLABXD8476M8/18/108:45AM to 12:30 PM
      91R6937BLBLABXD8574F8/18/101 PM to 6:45 PM
      92R6939BLBLABXD8574M8/18/101 PM to 6:45 PM
      93R6909BLBLABXD8783F8/18/101 PM to 6:45 PM
      94R6895BLBLABXD8982F8/18/101 PM to 6:45 PM
      95R6897BLBLABXD8982M8/18/101 PM to 6:45 PM
      96R6903BLBLABXD9082F8/18/101 PM to 6:45 PM
      97R6905BLBLABXD9082M8/18/101 PM to 6:45 PM
      98R6923BLBLABXD9286F8/18/101 PM to 6:45 PM
      99R6927BLBLABXD9289M8/18/101 PM to 6:45 PM
      100R6919BLBLABXD9576F8/18/101 PM to 6:45 PM
      101R6867BLBLABXD9576M8/18/108:45AM to 12:30 PM
      102R6899BLBLABXD9771F8/18/101 PM to 6:45 PM
      103R6901BLBLABXD9771M8/18/101 PM to 6:45 PM
      104R6875BLBLABXD9977F8/18/101 PM to 6:45 PM
      105R6883BLBLABXD9977M8/18/101 PM to 6:45 PM
      106R6831BLBLABXD10083M8/18/108:45AM to 12:30 PM
      107R6943BLBLABXD10189F8/18/101 PM to 6:45 PM
      108R6941BLBLABXD10189M8/18/101 PM to 6:45 PM
      109R6753BLBLABXD10288F8/17/109:30 AM to 12:30AM
      110R6755BLBLABXD10288M8/17/109:30 AM to 12:30AM
      111R6765BLBLABXD10378M8/17/109:30 AM to 12:30AM
      +
      + +

       

      +
      +
      + +
        +
      +
    12. +
    diff --git a/general/datasets/Inia_amg_bla_ex_rma_1110/platform.rtf b/general/datasets/Inia_amg_bla_ex_rma_1110/platform.rtf new file mode 100644 index 0000000..aba2206 --- /dev/null +++ b/general/datasets/Inia_amg_bla_ex_rma_1110/platform.rtf @@ -0,0 +1 @@ +

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version] (GPL6246)

    diff --git a/general/datasets/Inia_amg_bla_ex_rma_1110/processing.rtf b/general/datasets/Inia_amg_bla_ex_rma_1110/processing.rtf new file mode 100644 index 0000000..a2a6c30 --- /dev/null +++ b/general/datasets/Inia_amg_bla_ex_rma_1110/processing.rtf @@ -0,0 +1,16 @@ +

    Data Processing. Array data sets were generated by the vendors GCOS system. Expression values were logged and then were further normalized and rescaled so that the mean value for each array data set is 8 units with a standard deviation of 2 units. Data were processed by Arthur Centeno.

    + +

    Batch Effects. This data set required no initial correction for batch effects and the data in this initial release do not incorporate any additional corrections. However, there are several confounder-like factors that should be considered:

    + +
      +
    1. Sex imbalance in the sample: use probe sets for Xist as correction in partial correlation
    2. +
    3. Dissection variation: examine and use probe sets for Ttr as a correction for the inclusion of choroid plexus and non-parenchmymal tissue in samples. Transthyretin is only expressed in the choroid plexus (PMID 16698124
    4. +
    5. Background noise factors: examine and use probe sets with very low expression using the search "mean=(3.900 4.135)". This will extract the 54 probe sets with the lowest expression. (Note that the number 54 is less than the total number of cases (58) in this data set; important in computing principal components.) Add these probe sets to your collection window and then compute the correlation matrix. Use the first few principal components as surrogates for nuisance factors in partial correlation analysis. The first principal component of the lowest 54 probe sets in this amygdala data set accounts of 42% of the the variance. Mapping of this noise trait can be used to evaluate the effects of shared noise on QTL results. The first principal component in the amygdala data set can be map as a trait. It is not associated with any QLTs that are even suggestive, and the highest LRS is about 10 on chromosomes 18 and 19. The second principal component trait, which accounts for only 5% of the "noise" variance, has a suggestive QTL (LRS of 12, high B allele) on chromosome 4 at about 90 Mb. We therefore do not think that there is significant risk of major false trans eQTL bands in this data set.
    6. +
    + +

    Data Release. This data set was first uploaded into GeneNetwork November 25, 2010 and made accessible without a password to all users on December 1, 2010. The data set was orginally entered with two strain identification errors that were fixed Dec 10, 2010 by KM Mozhui and A Centeno (array R6659BL was originally listed as BXD16 but is BXD27; R6789BL was original listed as BXD27 is BXD12). The current data release has no known errors of sex or strain assignment.

    + +

    Data Status and Use. The data set is open for exploration and use for focused analysis of single genes. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data regarding the best citation.
    +This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please see the GeneNetwork data sharing policy for more background on data use.

    + +

    Contact. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data.

    diff --git a/general/datasets/Inia_amg_bla_ex_rma_1110/specifics.rtf b/general/datasets/Inia_amg_bla_ex_rma_1110/specifics.rtf new file mode 100644 index 0000000..2400c03 --- /dev/null +++ b/general/datasets/Inia_amg_bla_ex_rma_1110/specifics.rtf @@ -0,0 +1 @@ +

    Exon Level

    diff --git a/general/datasets/Inia_amg_bla_ex_rma_1110/summary.rtf b/general/datasets/Inia_amg_bla_ex_rma_1110/summary.rtf new file mode 100644 index 0000000..41311b7 --- /dev/null +++ b/general/datasets/Inia_amg_bla_ex_rma_1110/summary.rtf @@ -0,0 +1 @@ +

    This is a final error-checked release of an amygdala gene expression data set generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from the NIH NIAAA. The basolateral complex of the amygdala of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna").

    diff --git a/general/datasets/Inia_amg_bla_ex_rma_1110/tissue.rtf b/general/datasets/Inia_amg_bla_ex_rma_1110/tissue.rtf new file mode 100644 index 0000000..ea556c7 --- /dev/null +++ b/general/datasets/Inia_amg_bla_ex_rma_1110/tissue.rtf @@ -0,0 +1,12 @@ +

    Dissection Protocol

    + +
      +
    1. Animals were sacrificed by cervical dislocation and brains were immediately dissected from the head and stored in RNAlater (www.ambion.com) for 2 to 3 days at 4 deg C in a refrigerator.
    2. +
    3. Brains were placed with ventral side up on a cutting surface and a partial coronal cut was made with a surgical blade at a level that corresponds approximately to the -2.5 mm behind the stereotaxic Bregma point (this cut is just a little rostral from the pontine fibres when viewed from the ventral side).
    4. +
    5. Brains were placed in a coronal matrix (egg-style slicer) and a 2-mm thick coronal slab was taken just rostral to the initial cut.
    6. +
    7. The 2-mm thick slab was placed on a clean glass slide and the hypothalamus was cut out and placed in a tube on dry ice.
    8. +
    9. To dissect the BLA, the temporal lobes were detached by placing a scalpel in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then cut out and placed in a tube on dry ice.
    10. +
    11. Tissue from two mice (right and left sides) and from the same strain and sex (an usually the same litter) were pooled. The only exceptions are BLA samples from strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue was obtained from only one animal per array).
    12. +
    + +

     

    diff --git a/general/datasets/Inia_amg_bla_rma_1110/cases.rtf b/general/datasets/Inia_amg_bla_rma_1110/cases.rtf new file mode 100644 index 0000000..b02b19a --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_1110/cases.rtf @@ -0,0 +1,3 @@ +

    Cases. A total of 58 strains, including 54 BXD strains, both parental strains (C57BL/6J and DBA/2J) and both reciprocal F1 hybrids (B6D2F1 and D2B6F1) were analyzed. In most cases, two arrays were processed per strain--one for males and one for females. All tissue and RNA was extracted by K. Mozhui. Samples were pooled by sex and usually include at least two cases per sex and strain.

    + +

    Sex Balance. Fifty strains have matched male and female samples. Five strains have male only samples (BXD5, 13, 16, 100 and 103). Three strains have only female samples (BXD44, 70, and 87.) Please review the expression data for Xist probe set 10606178. This non-coding RNA is expressed highly only in females and can be used to check the sex of a sample or pool of tissue. Ddx3y probe set 10608138 can also be used. This is a Y chromosome gene that is expressed abundantly in male samples and at background levels in female samples.

    diff --git a/general/datasets/Inia_amg_bla_rma_1110/contributors.rtf b/general/datasets/Inia_amg_bla_rma_1110/contributors.rtf new file mode 100644 index 0000000..f69a44f --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_1110/contributors.rtf @@ -0,0 +1 @@ +

    Mozhui K, Williams RW

    diff --git a/general/datasets/Inia_amg_bla_rma_1110/experiment-design.rtf b/general/datasets/Inia_amg_bla_rma_1110/experiment-design.rtf new file mode 100644 index 0000000..126d431 --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_1110/experiment-design.rtf @@ -0,0 +1,1152 @@ +

    Data Evaluation Summary

    + +
      +
    1. eQLTs with LOD >10 (LRS>46.1): n = 525
    2. +
    3. eQTL with high LOD and LRS: Trait ID 10513604 (Hdhd3) LOD = 39.8, LRS = 183.5
    4. +
    5. Lowest mean value: Trait ID 10344361, mean = 3.998
    6. +
    7. Highest mean value: Trait ID 10598025, mean = 14.475 (MT-ND1)
    8. +
    9. Greatest sex difference: Trait ID: 10606178 (Xist)
    10. +
    11. Great variation within and among strains: Trait ID 10454192 (Ttr +
      +
      + + + + + + +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
      1R6853BLBLAC57BL/6J77F8/18/108:45AM to 12:30 PM
      2R6861BLBLAC57BL/6J77M8/18/108:45AM to 12:30 PM
      3R6851BLBLAD2B6F177F8/18/108:45AM to 12:30 PM
      4R6859BLBLAD2B6F177M8/18/108:45AM to 12:30 PM
      5R6863BLBLADBA/2J77F8/18/108:45AM to 12:30 PM
      6R6865BLBLADBA/2J68M8/18/108:45AM to 12:30 PM
      7R6857BLBLAB6D2F169F8/18/108:45AM to 12:30 PM
      8R6855BLBLAB6D2F169M8/18/108:45AM to 12:30 PM
      9R6799BLBLABXD171F8/17/101:15 PM to 5 PM
      10R6795BLBLABXD185M8/17/101:15 PM to 5 PM
      11R6787BLBLABXD1187F8/17/101:15 PM to 5 PM
      12R6785BLBLABXD1176M8/17/101:15 PM to 5 PM
      13R6819BLBLABXD1278F8/18/108:45AM to 12:30 PM
      14R6789BLBLABXD1273M8/17/101:15 PM to 5 PM
      15R6805BLBLABXD1277M8/17/101:15 PM to 5 PM
      16R6291BLBLABXD13N/AM6/11/09N/A
      17R6811BLBLABXD1481F8/18/108:45AM to 12:30 PM
      18R6825BLBLABXD1481M8/18/108:45AM to 12:30 PM
      19R6657BLBLABXD16N/AM1/8/08N/A
      20R6054BLBLABXD19N/AF2/26/08N/A
      21R6052BLBLABXD19N/AM2/26/08N/A
      22R6803BLBLABXD2485F8/17/101:15 PM to 5 PM
      23R6817BLBLABXD2486M8/18/108:45AM to 12:30 PM
      24R6063BLBLABXD25N/AF3/12/08N/A
      25R6062BLBLABXD25N/AM3/12/08N/A
      26R6659BLBLABXD27N/AF1/8/08N/A
      27R6791BLBLABXD2775F8/17/101:15 PM to 5 PM
      28R6797BLBLABXD2971F8/17/101:15 PM to 5 PM
      29R6793BLBLABXD2971M8/17/101:15 PM to 5 PM
      30R6815BLBLABXD3174F8/18/108:45AM to 12:30 PM
      31R6801BLBLABXD3173M8/17/101:15 PM to 5 PM
      32R6915BLBLABXD3281F8/18/101 PM to 6:45 PM
      33R6845BLBLABXD3281M8/18/108:45AM to 12:30 PM
      34R6821BLBLABXD3477F8/18/108:45AM to 12:30 PM
      35R6807BLBLABXD3477M8/18/108:45AM to 12:30 PM
      36R6057BLBLABXD38N/AF2/26/08N/A
      37R6056BLBLABXD38N/AM2/26/08N/A
      38R6827BLBLABXD3979F8/18/108:45AM to 12:30 PM
      39R6813BLBLABXD3979M8/18/108:45AM to 12:30 PM
      40R6847BLBLABXD4085F8/18/108:45AM to 12:30 PM
      41R6849BLBLABXD4085M8/18/108:45AM to 12:30 PM
      42R6809BLBLABXD4287F8/18/108:45AM to 12:30 PM
      43R6823BLBLABXD4287M8/18/108:45AM to 12:30 PM
      44R6759BLBLABXD4381F8/17/109:30 AM to 12:30AM
      45R6757BLBLABXD4381M8/17/109:30 AM to 12:30AM
      46R6745BLBLABXD4483F8/17/109:30 AM to 12:30AM
      47R6763BLBLABXD4577F8/17/109:30 AM to 12:30AM
      48R6761BLBLABXD4577M8/17/109:30 AM to 12:30AM
      49R6879BLBLABXD4876F8/18/101 PM to 6:45 PM
      50R6881BLBLABXD4876M8/18/101 PM to 6:45 PM
      51R6751BLBLABXD4984F8/17/109:30 AM to 12:30AM
      52R6747BLBLABXD4984M8/17/109:30 AM to 12:30AM
      53R6104BLBLABXD5N/Af10/23/09N/A
      54R6103BLBLABXD5N/AM10/23/09N/A
      55R6889BLBLABXD5077F8/18/101 PM to 6:45 PM
      56R6891BLBLABXD5077M8/18/101 PM to 6:45 PM
      57R6074BLBLABXD51N/AF3/12/08N/A
      58R6699BLBLABXD51N/AM4/30/09N/A
      59R6917BLBLABXD5684F8/18/101 PM to 6:45 PM
      60R6893BLBLABXD5677M8/18/101 PM to 6:45 PM
      61R6769BLBLABXD6070F8/17/109:30 AM to 12:30AM
      62R6771BLBLABXD6070M8/17/101:15 PM to 5 PM
      63R6655BLBLABXD61N/AF1/29/08N/A
      64R6653BLBLABXD61N/AM1/29/08N/A
      65R6835BLBLABXD6283F8/18/108:45AM to 12:30 PM
      66R6843BLBLABXD6283M8/18/108:45AM to 12:30 PM
      67R6887BLBLABXD6377F8/18/101 PM to 6:45 PM
      68R6885BLBLABXD6377M8/18/101 PM to 6:45 PM
      69R6877BLBLABXD6584F8/18/101 PM to 6:45 PM
      70R6873BLBLABXD6584M8/18/101 PM to 6:45 PM
      71R6929BLBLABXD6876F8/18/101 PM to 6:45 PM
      72R6931BLBLABXD6876M8/18/101 PM to 6:45 PM
      73R6775BLBLABXD6969F8/17/101:15 PM to 5 PM
      74R6773BLBLABXD6980M8/17/101:15 PM to 5 PM
      75R6925BLBLABXD7076F8/18/101 PM to 6:45 PM
      76R6921BLBLABXD7076M8/17/061 PM to 6:45 PM
      77R6869BLBLABXD7176F8/18/101 PM to 6:45 PM
      78R6871BLBLABXD7176M8/18/101 PM to 6:45 PM
      79R6777BLBLABXD7383F8/17/101:15 PM to 5 PM
      80R6779BLBLABXD7383M8/17/101:15 PM to 5 PM
      81R6837BLBLABXD7576F8/18/108:45AM to 12:30 PM
      82R6829BLBLABXD7576M8/18/108:45AM to 12:30 PM
      83R6933BLBLABXD7987F8/18/101 PM to 6:45 PM
      84R6935BLBLABXD7987M8/18/101 PM to 6:45 PM
      85R6781BLBLABXD8073F8/17/101:15 PM to 5 PM
      86R6783BLBLABXD8073M8/17/101:15 PM to 5 PM
      87R6913BLBLABXD8381F8/18/101 PM to 6:45 PM
      88R6911BLBLABXD8381M8/18/101 PM to 6:45 PM
      89R6841BLBLABXD8476F8/18/108:45AM to 12:30 PM
      90R6833BLBLABXD8476M8/18/108:45AM to 12:30 PM
      91R6937BLBLABXD8574F8/18/101 PM to 6:45 PM
      92R6939BLBLABXD8574M8/18/101 PM to 6:45 PM
      93R6909BLBLABXD8783F8/18/101 PM to 6:45 PM
      94R6895BLBLABXD8982F8/18/101 PM to 6:45 PM
      95R6897BLBLABXD8982M8/18/101 PM to 6:45 PM
      96R6903BLBLABXD9082F8/18/101 PM to 6:45 PM
      97R6905BLBLABXD9082M8/18/101 PM to 6:45 PM
      98R6923BLBLABXD9286F8/18/101 PM to 6:45 PM
      99R6927BLBLABXD9289M8/18/101 PM to 6:45 PM
      100R6919BLBLABXD9576F8/18/101 PM to 6:45 PM
      101R6867BLBLABXD9576M8/18/108:45AM to 12:30 PM
      102R6899BLBLABXD9771F8/18/101 PM to 6:45 PM
      103R6901BLBLABXD9771M8/18/101 PM to 6:45 PM
      104R6875BLBLABXD9977F8/18/101 PM to 6:45 PM
      105R6883BLBLABXD9977M8/18/101 PM to 6:45 PM
      106R6831BLBLABXD10083M8/18/108:45AM to 12:30 PM
      107R6943BLBLABXD10189F8/18/101 PM to 6:45 PM
      108R6941BLBLABXD10189M8/18/101 PM to 6:45 PM
      109R6753BLBLABXD10288F8/17/109:30 AM to 12:30AM
      110R6755BLBLABXD10288M8/17/109:30 AM to 12:30AM
      111R6765BLBLABXD10378M8/17/109:30 AM to 12:30AM
      +
      + +

       

      +
      +
      + +
        +
      +
    12. +
    diff --git a/general/datasets/Inia_amg_bla_rma_1110/platform.rtf b/general/datasets/Inia_amg_bla_rma_1110/platform.rtf new file mode 100644 index 0000000..aba2206 --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_1110/platform.rtf @@ -0,0 +1 @@ +

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version] (GPL6246)

    diff --git a/general/datasets/Inia_amg_bla_rma_1110/processing.rtf b/general/datasets/Inia_amg_bla_rma_1110/processing.rtf new file mode 100644 index 0000000..a2a6c30 --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_1110/processing.rtf @@ -0,0 +1,16 @@ +

    Data Processing. Array data sets were generated by the vendors GCOS system. Expression values were logged and then were further normalized and rescaled so that the mean value for each array data set is 8 units with a standard deviation of 2 units. Data were processed by Arthur Centeno.

    + +

    Batch Effects. This data set required no initial correction for batch effects and the data in this initial release do not incorporate any additional corrections. However, there are several confounder-like factors that should be considered:

    + +
      +
    1. Sex imbalance in the sample: use probe sets for Xist as correction in partial correlation
    2. +
    3. Dissection variation: examine and use probe sets for Ttr as a correction for the inclusion of choroid plexus and non-parenchmymal tissue in samples. Transthyretin is only expressed in the choroid plexus (PMID 16698124
    4. +
    5. Background noise factors: examine and use probe sets with very low expression using the search "mean=(3.900 4.135)". This will extract the 54 probe sets with the lowest expression. (Note that the number 54 is less than the total number of cases (58) in this data set; important in computing principal components.) Add these probe sets to your collection window and then compute the correlation matrix. Use the first few principal components as surrogates for nuisance factors in partial correlation analysis. The first principal component of the lowest 54 probe sets in this amygdala data set accounts of 42% of the the variance. Mapping of this noise trait can be used to evaluate the effects of shared noise on QTL results. The first principal component in the amygdala data set can be map as a trait. It is not associated with any QLTs that are even suggestive, and the highest LRS is about 10 on chromosomes 18 and 19. The second principal component trait, which accounts for only 5% of the "noise" variance, has a suggestive QTL (LRS of 12, high B allele) on chromosome 4 at about 90 Mb. We therefore do not think that there is significant risk of major false trans eQTL bands in this data set.
    6. +
    + +

    Data Release. This data set was first uploaded into GeneNetwork November 25, 2010 and made accessible without a password to all users on December 1, 2010. The data set was orginally entered with two strain identification errors that were fixed Dec 10, 2010 by KM Mozhui and A Centeno (array R6659BL was originally listed as BXD16 but is BXD27; R6789BL was original listed as BXD27 is BXD12). The current data release has no known errors of sex or strain assignment.

    + +

    Data Status and Use. The data set is open for exploration and use for focused analysis of single genes. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data regarding the best citation.
    +This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please see the GeneNetwork data sharing policy for more background on data use.

    + +

    Contact. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data.

    diff --git a/general/datasets/Inia_amg_bla_rma_1110/specifics.rtf b/general/datasets/Inia_amg_bla_rma_1110/specifics.rtf new file mode 100644 index 0000000..d877bcf --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_1110/specifics.rtf @@ -0,0 +1 @@ +

    Gene Level

    diff --git a/general/datasets/Inia_amg_bla_rma_1110/summary.rtf b/general/datasets/Inia_amg_bla_rma_1110/summary.rtf new file mode 100644 index 0000000..41311b7 --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_1110/summary.rtf @@ -0,0 +1 @@ +

    This is a final error-checked release of an amygdala gene expression data set generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from the NIH NIAAA. The basolateral complex of the amygdala of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna").

    diff --git a/general/datasets/Inia_amg_bla_rma_1110/tissue.rtf b/general/datasets/Inia_amg_bla_rma_1110/tissue.rtf new file mode 100644 index 0000000..ea556c7 --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_1110/tissue.rtf @@ -0,0 +1,12 @@ +

    Dissection Protocol

    + +
      +
    1. Animals were sacrificed by cervical dislocation and brains were immediately dissected from the head and stored in RNAlater (www.ambion.com) for 2 to 3 days at 4 deg C in a refrigerator.
    2. +
    3. Brains were placed with ventral side up on a cutting surface and a partial coronal cut was made with a surgical blade at a level that corresponds approximately to the -2.5 mm behind the stereotaxic Bregma point (this cut is just a little rostral from the pontine fibres when viewed from the ventral side).
    4. +
    5. Brains were placed in a coronal matrix (egg-style slicer) and a 2-mm thick coronal slab was taken just rostral to the initial cut.
    6. +
    7. The 2-mm thick slab was placed on a clean glass slide and the hypothalamus was cut out and placed in a tube on dry ice.
    8. +
    9. To dissect the BLA, the temporal lobes were detached by placing a scalpel in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then cut out and placed in a tube on dry ice.
    10. +
    11. Tissue from two mice (right and left sides) and from the same strain and sex (an usually the same litter) were pooled. The only exceptions are BLA samples from strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue was obtained from only one animal per array).
    12. +
    + +

     

    diff --git a/general/datasets/Inia_amg_bla_rma_f_1110/cases.rtf b/general/datasets/Inia_amg_bla_rma_f_1110/cases.rtf new file mode 100644 index 0000000..b02b19a --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_f_1110/cases.rtf @@ -0,0 +1,3 @@ +

    Cases. A total of 58 strains, including 54 BXD strains, both parental strains (C57BL/6J and DBA/2J) and both reciprocal F1 hybrids (B6D2F1 and D2B6F1) were analyzed. In most cases, two arrays were processed per strain--one for males and one for females. All tissue and RNA was extracted by K. Mozhui. Samples were pooled by sex and usually include at least two cases per sex and strain.

    + +

    Sex Balance. Fifty strains have matched male and female samples. Five strains have male only samples (BXD5, 13, 16, 100 and 103). Three strains have only female samples (BXD44, 70, and 87.) Please review the expression data for Xist probe set 10606178. This non-coding RNA is expressed highly only in females and can be used to check the sex of a sample or pool of tissue. Ddx3y probe set 10608138 can also be used. This is a Y chromosome gene that is expressed abundantly in male samples and at background levels in female samples.

    diff --git a/general/datasets/Inia_amg_bla_rma_f_1110/contributors.rtf b/general/datasets/Inia_amg_bla_rma_f_1110/contributors.rtf new file mode 100644 index 0000000..f69a44f --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_f_1110/contributors.rtf @@ -0,0 +1 @@ +

    Mozhui K, Williams RW

    diff --git a/general/datasets/Inia_amg_bla_rma_f_1110/experiment-design.rtf b/general/datasets/Inia_amg_bla_rma_f_1110/experiment-design.rtf new file mode 100644 index 0000000..126d431 --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_f_1110/experiment-design.rtf @@ -0,0 +1,1152 @@ +

    Data Evaluation Summary

    + +
      +
    1. eQLTs with LOD >10 (LRS>46.1): n = 525
    2. +
    3. eQTL with high LOD and LRS: Trait ID 10513604 (Hdhd3) LOD = 39.8, LRS = 183.5
    4. +
    5. Lowest mean value: Trait ID 10344361, mean = 3.998
    6. +
    7. Highest mean value: Trait ID 10598025, mean = 14.475 (MT-ND1)
    8. +
    9. Greatest sex difference: Trait ID: 10606178 (Xist)
    10. +
    11. Great variation within and among strains: Trait ID 10454192 (Ttr +
      +
      + + + + + + +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
      1R6853BLBLAC57BL/6J77F8/18/108:45AM to 12:30 PM
      2R6861BLBLAC57BL/6J77M8/18/108:45AM to 12:30 PM
      3R6851BLBLAD2B6F177F8/18/108:45AM to 12:30 PM
      4R6859BLBLAD2B6F177M8/18/108:45AM to 12:30 PM
      5R6863BLBLADBA/2J77F8/18/108:45AM to 12:30 PM
      6R6865BLBLADBA/2J68M8/18/108:45AM to 12:30 PM
      7R6857BLBLAB6D2F169F8/18/108:45AM to 12:30 PM
      8R6855BLBLAB6D2F169M8/18/108:45AM to 12:30 PM
      9R6799BLBLABXD171F8/17/101:15 PM to 5 PM
      10R6795BLBLABXD185M8/17/101:15 PM to 5 PM
      11R6787BLBLABXD1187F8/17/101:15 PM to 5 PM
      12R6785BLBLABXD1176M8/17/101:15 PM to 5 PM
      13R6819BLBLABXD1278F8/18/108:45AM to 12:30 PM
      14R6789BLBLABXD1273M8/17/101:15 PM to 5 PM
      15R6805BLBLABXD1277M8/17/101:15 PM to 5 PM
      16R6291BLBLABXD13N/AM6/11/09N/A
      17R6811BLBLABXD1481F8/18/108:45AM to 12:30 PM
      18R6825BLBLABXD1481M8/18/108:45AM to 12:30 PM
      19R6657BLBLABXD16N/AM1/8/08N/A
      20R6054BLBLABXD19N/AF2/26/08N/A
      21R6052BLBLABXD19N/AM2/26/08N/A
      22R6803BLBLABXD2485F8/17/101:15 PM to 5 PM
      23R6817BLBLABXD2486M8/18/108:45AM to 12:30 PM
      24R6063BLBLABXD25N/AF3/12/08N/A
      25R6062BLBLABXD25N/AM3/12/08N/A
      26R6659BLBLABXD27N/AF1/8/08N/A
      27R6791BLBLABXD2775F8/17/101:15 PM to 5 PM
      28R6797BLBLABXD2971F8/17/101:15 PM to 5 PM
      29R6793BLBLABXD2971M8/17/101:15 PM to 5 PM
      30R6815BLBLABXD3174F8/18/108:45AM to 12:30 PM
      31R6801BLBLABXD3173M8/17/101:15 PM to 5 PM
      32R6915BLBLABXD3281F8/18/101 PM to 6:45 PM
      33R6845BLBLABXD3281M8/18/108:45AM to 12:30 PM
      34R6821BLBLABXD3477F8/18/108:45AM to 12:30 PM
      35R6807BLBLABXD3477M8/18/108:45AM to 12:30 PM
      36R6057BLBLABXD38N/AF2/26/08N/A
      37R6056BLBLABXD38N/AM2/26/08N/A
      38R6827BLBLABXD3979F8/18/108:45AM to 12:30 PM
      39R6813BLBLABXD3979M8/18/108:45AM to 12:30 PM
      40R6847BLBLABXD4085F8/18/108:45AM to 12:30 PM
      41R6849BLBLABXD4085M8/18/108:45AM to 12:30 PM
      42R6809BLBLABXD4287F8/18/108:45AM to 12:30 PM
      43R6823BLBLABXD4287M8/18/108:45AM to 12:30 PM
      44R6759BLBLABXD4381F8/17/109:30 AM to 12:30AM
      45R6757BLBLABXD4381M8/17/109:30 AM to 12:30AM
      46R6745BLBLABXD4483F8/17/109:30 AM to 12:30AM
      47R6763BLBLABXD4577F8/17/109:30 AM to 12:30AM
      48R6761BLBLABXD4577M8/17/109:30 AM to 12:30AM
      49R6879BLBLABXD4876F8/18/101 PM to 6:45 PM
      50R6881BLBLABXD4876M8/18/101 PM to 6:45 PM
      51R6751BLBLABXD4984F8/17/109:30 AM to 12:30AM
      52R6747BLBLABXD4984M8/17/109:30 AM to 12:30AM
      53R6104BLBLABXD5N/Af10/23/09N/A
      54R6103BLBLABXD5N/AM10/23/09N/A
      55R6889BLBLABXD5077F8/18/101 PM to 6:45 PM
      56R6891BLBLABXD5077M8/18/101 PM to 6:45 PM
      57R6074BLBLABXD51N/AF3/12/08N/A
      58R6699BLBLABXD51N/AM4/30/09N/A
      59R6917BLBLABXD5684F8/18/101 PM to 6:45 PM
      60R6893BLBLABXD5677M8/18/101 PM to 6:45 PM
      61R6769BLBLABXD6070F8/17/109:30 AM to 12:30AM
      62R6771BLBLABXD6070M8/17/101:15 PM to 5 PM
      63R6655BLBLABXD61N/AF1/29/08N/A
      64R6653BLBLABXD61N/AM1/29/08N/A
      65R6835BLBLABXD6283F8/18/108:45AM to 12:30 PM
      66R6843BLBLABXD6283M8/18/108:45AM to 12:30 PM
      67R6887BLBLABXD6377F8/18/101 PM to 6:45 PM
      68R6885BLBLABXD6377M8/18/101 PM to 6:45 PM
      69R6877BLBLABXD6584F8/18/101 PM to 6:45 PM
      70R6873BLBLABXD6584M8/18/101 PM to 6:45 PM
      71R6929BLBLABXD6876F8/18/101 PM to 6:45 PM
      72R6931BLBLABXD6876M8/18/101 PM to 6:45 PM
      73R6775BLBLABXD6969F8/17/101:15 PM to 5 PM
      74R6773BLBLABXD6980M8/17/101:15 PM to 5 PM
      75R6925BLBLABXD7076F8/18/101 PM to 6:45 PM
      76R6921BLBLABXD7076M8/17/061 PM to 6:45 PM
      77R6869BLBLABXD7176F8/18/101 PM to 6:45 PM
      78R6871BLBLABXD7176M8/18/101 PM to 6:45 PM
      79R6777BLBLABXD7383F8/17/101:15 PM to 5 PM
      80R6779BLBLABXD7383M8/17/101:15 PM to 5 PM
      81R6837BLBLABXD7576F8/18/108:45AM to 12:30 PM
      82R6829BLBLABXD7576M8/18/108:45AM to 12:30 PM
      83R6933BLBLABXD7987F8/18/101 PM to 6:45 PM
      84R6935BLBLABXD7987M8/18/101 PM to 6:45 PM
      85R6781BLBLABXD8073F8/17/101:15 PM to 5 PM
      86R6783BLBLABXD8073M8/17/101:15 PM to 5 PM
      87R6913BLBLABXD8381F8/18/101 PM to 6:45 PM
      88R6911BLBLABXD8381M8/18/101 PM to 6:45 PM
      89R6841BLBLABXD8476F8/18/108:45AM to 12:30 PM
      90R6833BLBLABXD8476M8/18/108:45AM to 12:30 PM
      91R6937BLBLABXD8574F8/18/101 PM to 6:45 PM
      92R6939BLBLABXD8574M8/18/101 PM to 6:45 PM
      93R6909BLBLABXD8783F8/18/101 PM to 6:45 PM
      94R6895BLBLABXD8982F8/18/101 PM to 6:45 PM
      95R6897BLBLABXD8982M8/18/101 PM to 6:45 PM
      96R6903BLBLABXD9082F8/18/101 PM to 6:45 PM
      97R6905BLBLABXD9082M8/18/101 PM to 6:45 PM
      98R6923BLBLABXD9286F8/18/101 PM to 6:45 PM
      99R6927BLBLABXD9289M8/18/101 PM to 6:45 PM
      100R6919BLBLABXD9576F8/18/101 PM to 6:45 PM
      101R6867BLBLABXD9576M8/18/108:45AM to 12:30 PM
      102R6899BLBLABXD9771F8/18/101 PM to 6:45 PM
      103R6901BLBLABXD9771M8/18/101 PM to 6:45 PM
      104R6875BLBLABXD9977F8/18/101 PM to 6:45 PM
      105R6883BLBLABXD9977M8/18/101 PM to 6:45 PM
      106R6831BLBLABXD10083M8/18/108:45AM to 12:30 PM
      107R6943BLBLABXD10189F8/18/101 PM to 6:45 PM
      108R6941BLBLABXD10189M8/18/101 PM to 6:45 PM
      109R6753BLBLABXD10288F8/17/109:30 AM to 12:30AM
      110R6755BLBLABXD10288M8/17/109:30 AM to 12:30AM
      111R6765BLBLABXD10378M8/17/109:30 AM to 12:30AM
      +
      + +

       

      +
      +
      + +
        +
      +
    12. +
    diff --git a/general/datasets/Inia_amg_bla_rma_f_1110/platform.rtf b/general/datasets/Inia_amg_bla_rma_f_1110/platform.rtf new file mode 100644 index 0000000..aba2206 --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_f_1110/platform.rtf @@ -0,0 +1 @@ +

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version] (GPL6246)

    diff --git a/general/datasets/Inia_amg_bla_rma_f_1110/processing.rtf b/general/datasets/Inia_amg_bla_rma_f_1110/processing.rtf new file mode 100644 index 0000000..a2a6c30 --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_f_1110/processing.rtf @@ -0,0 +1,16 @@ +

    Data Processing. Array data sets were generated by the vendors GCOS system. Expression values were logged and then were further normalized and rescaled so that the mean value for each array data set is 8 units with a standard deviation of 2 units. Data were processed by Arthur Centeno.

    + +

    Batch Effects. This data set required no initial correction for batch effects and the data in this initial release do not incorporate any additional corrections. However, there are several confounder-like factors that should be considered:

    + +
      +
    1. Sex imbalance in the sample: use probe sets for Xist as correction in partial correlation
    2. +
    3. Dissection variation: examine and use probe sets for Ttr as a correction for the inclusion of choroid plexus and non-parenchmymal tissue in samples. Transthyretin is only expressed in the choroid plexus (PMID 16698124
    4. +
    5. Background noise factors: examine and use probe sets with very low expression using the search "mean=(3.900 4.135)". This will extract the 54 probe sets with the lowest expression. (Note that the number 54 is less than the total number of cases (58) in this data set; important in computing principal components.) Add these probe sets to your collection window and then compute the correlation matrix. Use the first few principal components as surrogates for nuisance factors in partial correlation analysis. The first principal component of the lowest 54 probe sets in this amygdala data set accounts of 42% of the the variance. Mapping of this noise trait can be used to evaluate the effects of shared noise on QTL results. The first principal component in the amygdala data set can be map as a trait. It is not associated with any QLTs that are even suggestive, and the highest LRS is about 10 on chromosomes 18 and 19. The second principal component trait, which accounts for only 5% of the "noise" variance, has a suggestive QTL (LRS of 12, high B allele) on chromosome 4 at about 90 Mb. We therefore do not think that there is significant risk of major false trans eQTL bands in this data set.
    6. +
    + +

    Data Release. This data set was first uploaded into GeneNetwork November 25, 2010 and made accessible without a password to all users on December 1, 2010. The data set was orginally entered with two strain identification errors that were fixed Dec 10, 2010 by KM Mozhui and A Centeno (array R6659BL was originally listed as BXD16 but is BXD27; R6789BL was original listed as BXD27 is BXD12). The current data release has no known errors of sex or strain assignment.

    + +

    Data Status and Use. The data set is open for exploration and use for focused analysis of single genes. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data regarding the best citation.
    +This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please see the GeneNetwork data sharing policy for more background on data use.

    + +

    Contact. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data.

    diff --git a/general/datasets/Inia_amg_bla_rma_f_1110/summary.rtf b/general/datasets/Inia_amg_bla_rma_f_1110/summary.rtf new file mode 100644 index 0000000..41311b7 --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_f_1110/summary.rtf @@ -0,0 +1 @@ +

    This is a final error-checked release of an amygdala gene expression data set generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from the NIH NIAAA. The basolateral complex of the amygdala of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna").

    diff --git a/general/datasets/Inia_amg_bla_rma_f_1110/tissue.rtf b/general/datasets/Inia_amg_bla_rma_f_1110/tissue.rtf new file mode 100644 index 0000000..ea556c7 --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_f_1110/tissue.rtf @@ -0,0 +1,12 @@ +

    Dissection Protocol

    + +
      +
    1. Animals were sacrificed by cervical dislocation and brains were immediately dissected from the head and stored in RNAlater (www.ambion.com) for 2 to 3 days at 4 deg C in a refrigerator.
    2. +
    3. Brains were placed with ventral side up on a cutting surface and a partial coronal cut was made with a surgical blade at a level that corresponds approximately to the -2.5 mm behind the stereotaxic Bregma point (this cut is just a little rostral from the pontine fibres when viewed from the ventral side).
    4. +
    5. Brains were placed in a coronal matrix (egg-style slicer) and a 2-mm thick coronal slab was taken just rostral to the initial cut.
    6. +
    7. The 2-mm thick slab was placed on a clean glass slide and the hypothalamus was cut out and placed in a tube on dry ice.
    8. +
    9. To dissect the BLA, the temporal lobes were detached by placing a scalpel in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then cut out and placed in a tube on dry ice.
    10. +
    11. Tissue from two mice (right and left sides) and from the same strain and sex (an usually the same litter) were pooled. The only exceptions are BLA samples from strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue was obtained from only one animal per array).
    12. +
    + +

     

    diff --git a/general/datasets/Inia_amg_bla_rma_m_1110/cases.rtf b/general/datasets/Inia_amg_bla_rma_m_1110/cases.rtf new file mode 100644 index 0000000..b02b19a --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_m_1110/cases.rtf @@ -0,0 +1,3 @@ +

    Cases. A total of 58 strains, including 54 BXD strains, both parental strains (C57BL/6J and DBA/2J) and both reciprocal F1 hybrids (B6D2F1 and D2B6F1) were analyzed. In most cases, two arrays were processed per strain--one for males and one for females. All tissue and RNA was extracted by K. Mozhui. Samples were pooled by sex and usually include at least two cases per sex and strain.

    + +

    Sex Balance. Fifty strains have matched male and female samples. Five strains have male only samples (BXD5, 13, 16, 100 and 103). Three strains have only female samples (BXD44, 70, and 87.) Please review the expression data for Xist probe set 10606178. This non-coding RNA is expressed highly only in females and can be used to check the sex of a sample or pool of tissue. Ddx3y probe set 10608138 can also be used. This is a Y chromosome gene that is expressed abundantly in male samples and at background levels in female samples.

    diff --git a/general/datasets/Inia_amg_bla_rma_m_1110/contributors.rtf b/general/datasets/Inia_amg_bla_rma_m_1110/contributors.rtf new file mode 100644 index 0000000..f69a44f --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_m_1110/contributors.rtf @@ -0,0 +1 @@ +

    Mozhui K, Williams RW

    diff --git a/general/datasets/Inia_amg_bla_rma_m_1110/experiment-design.rtf b/general/datasets/Inia_amg_bla_rma_m_1110/experiment-design.rtf new file mode 100644 index 0000000..126d431 --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_m_1110/experiment-design.rtf @@ -0,0 +1,1152 @@ +

    Data Evaluation Summary

    + +
      +
    1. eQLTs with LOD >10 (LRS>46.1): n = 525
    2. +
    3. eQTL with high LOD and LRS: Trait ID 10513604 (Hdhd3) LOD = 39.8, LRS = 183.5
    4. +
    5. Lowest mean value: Trait ID 10344361, mean = 3.998
    6. +
    7. Highest mean value: Trait ID 10598025, mean = 14.475 (MT-ND1)
    8. +
    9. Greatest sex difference: Trait ID: 10606178 (Xist)
    10. +
    11. Great variation within and among strains: Trait ID 10454192 (Ttr +
      +
      + + + + + + +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
      1R6853BLBLAC57BL/6J77F8/18/108:45AM to 12:30 PM
      2R6861BLBLAC57BL/6J77M8/18/108:45AM to 12:30 PM
      3R6851BLBLAD2B6F177F8/18/108:45AM to 12:30 PM
      4R6859BLBLAD2B6F177M8/18/108:45AM to 12:30 PM
      5R6863BLBLADBA/2J77F8/18/108:45AM to 12:30 PM
      6R6865BLBLADBA/2J68M8/18/108:45AM to 12:30 PM
      7R6857BLBLAB6D2F169F8/18/108:45AM to 12:30 PM
      8R6855BLBLAB6D2F169M8/18/108:45AM to 12:30 PM
      9R6799BLBLABXD171F8/17/101:15 PM to 5 PM
      10R6795BLBLABXD185M8/17/101:15 PM to 5 PM
      11R6787BLBLABXD1187F8/17/101:15 PM to 5 PM
      12R6785BLBLABXD1176M8/17/101:15 PM to 5 PM
      13R6819BLBLABXD1278F8/18/108:45AM to 12:30 PM
      14R6789BLBLABXD1273M8/17/101:15 PM to 5 PM
      15R6805BLBLABXD1277M8/17/101:15 PM to 5 PM
      16R6291BLBLABXD13N/AM6/11/09N/A
      17R6811BLBLABXD1481F8/18/108:45AM to 12:30 PM
      18R6825BLBLABXD1481M8/18/108:45AM to 12:30 PM
      19R6657BLBLABXD16N/AM1/8/08N/A
      20R6054BLBLABXD19N/AF2/26/08N/A
      21R6052BLBLABXD19N/AM2/26/08N/A
      22R6803BLBLABXD2485F8/17/101:15 PM to 5 PM
      23R6817BLBLABXD2486M8/18/108:45AM to 12:30 PM
      24R6063BLBLABXD25N/AF3/12/08N/A
      25R6062BLBLABXD25N/AM3/12/08N/A
      26R6659BLBLABXD27N/AF1/8/08N/A
      27R6791BLBLABXD2775F8/17/101:15 PM to 5 PM
      28R6797BLBLABXD2971F8/17/101:15 PM to 5 PM
      29R6793BLBLABXD2971M8/17/101:15 PM to 5 PM
      30R6815BLBLABXD3174F8/18/108:45AM to 12:30 PM
      31R6801BLBLABXD3173M8/17/101:15 PM to 5 PM
      32R6915BLBLABXD3281F8/18/101 PM to 6:45 PM
      33R6845BLBLABXD3281M8/18/108:45AM to 12:30 PM
      34R6821BLBLABXD3477F8/18/108:45AM to 12:30 PM
      35R6807BLBLABXD3477M8/18/108:45AM to 12:30 PM
      36R6057BLBLABXD38N/AF2/26/08N/A
      37R6056BLBLABXD38N/AM2/26/08N/A
      38R6827BLBLABXD3979F8/18/108:45AM to 12:30 PM
      39R6813BLBLABXD3979M8/18/108:45AM to 12:30 PM
      40R6847BLBLABXD4085F8/18/108:45AM to 12:30 PM
      41R6849BLBLABXD4085M8/18/108:45AM to 12:30 PM
      42R6809BLBLABXD4287F8/18/108:45AM to 12:30 PM
      43R6823BLBLABXD4287M8/18/108:45AM to 12:30 PM
      44R6759BLBLABXD4381F8/17/109:30 AM to 12:30AM
      45R6757BLBLABXD4381M8/17/109:30 AM to 12:30AM
      46R6745BLBLABXD4483F8/17/109:30 AM to 12:30AM
      47R6763BLBLABXD4577F8/17/109:30 AM to 12:30AM
      48R6761BLBLABXD4577M8/17/109:30 AM to 12:30AM
      49R6879BLBLABXD4876F8/18/101 PM to 6:45 PM
      50R6881BLBLABXD4876M8/18/101 PM to 6:45 PM
      51R6751BLBLABXD4984F8/17/109:30 AM to 12:30AM
      52R6747BLBLABXD4984M8/17/109:30 AM to 12:30AM
      53R6104BLBLABXD5N/Af10/23/09N/A
      54R6103BLBLABXD5N/AM10/23/09N/A
      55R6889BLBLABXD5077F8/18/101 PM to 6:45 PM
      56R6891BLBLABXD5077M8/18/101 PM to 6:45 PM
      57R6074BLBLABXD51N/AF3/12/08N/A
      58R6699BLBLABXD51N/AM4/30/09N/A
      59R6917BLBLABXD5684F8/18/101 PM to 6:45 PM
      60R6893BLBLABXD5677M8/18/101 PM to 6:45 PM
      61R6769BLBLABXD6070F8/17/109:30 AM to 12:30AM
      62R6771BLBLABXD6070M8/17/101:15 PM to 5 PM
      63R6655BLBLABXD61N/AF1/29/08N/A
      64R6653BLBLABXD61N/AM1/29/08N/A
      65R6835BLBLABXD6283F8/18/108:45AM to 12:30 PM
      66R6843BLBLABXD6283M8/18/108:45AM to 12:30 PM
      67R6887BLBLABXD6377F8/18/101 PM to 6:45 PM
      68R6885BLBLABXD6377M8/18/101 PM to 6:45 PM
      69R6877BLBLABXD6584F8/18/101 PM to 6:45 PM
      70R6873BLBLABXD6584M8/18/101 PM to 6:45 PM
      71R6929BLBLABXD6876F8/18/101 PM to 6:45 PM
      72R6931BLBLABXD6876M8/18/101 PM to 6:45 PM
      73R6775BLBLABXD6969F8/17/101:15 PM to 5 PM
      74R6773BLBLABXD6980M8/17/101:15 PM to 5 PM
      75R6925BLBLABXD7076F8/18/101 PM to 6:45 PM
      76R6921BLBLABXD7076M8/17/061 PM to 6:45 PM
      77R6869BLBLABXD7176F8/18/101 PM to 6:45 PM
      78R6871BLBLABXD7176M8/18/101 PM to 6:45 PM
      79R6777BLBLABXD7383F8/17/101:15 PM to 5 PM
      80R6779BLBLABXD7383M8/17/101:15 PM to 5 PM
      81R6837BLBLABXD7576F8/18/108:45AM to 12:30 PM
      82R6829BLBLABXD7576M8/18/108:45AM to 12:30 PM
      83R6933BLBLABXD7987F8/18/101 PM to 6:45 PM
      84R6935BLBLABXD7987M8/18/101 PM to 6:45 PM
      85R6781BLBLABXD8073F8/17/101:15 PM to 5 PM
      86R6783BLBLABXD8073M8/17/101:15 PM to 5 PM
      87R6913BLBLABXD8381F8/18/101 PM to 6:45 PM
      88R6911BLBLABXD8381M8/18/101 PM to 6:45 PM
      89R6841BLBLABXD8476F8/18/108:45AM to 12:30 PM
      90R6833BLBLABXD8476M8/18/108:45AM to 12:30 PM
      91R6937BLBLABXD8574F8/18/101 PM to 6:45 PM
      92R6939BLBLABXD8574M8/18/101 PM to 6:45 PM
      93R6909BLBLABXD8783F8/18/101 PM to 6:45 PM
      94R6895BLBLABXD8982F8/18/101 PM to 6:45 PM
      95R6897BLBLABXD8982M8/18/101 PM to 6:45 PM
      96R6903BLBLABXD9082F8/18/101 PM to 6:45 PM
      97R6905BLBLABXD9082M8/18/101 PM to 6:45 PM
      98R6923BLBLABXD9286F8/18/101 PM to 6:45 PM
      99R6927BLBLABXD9289M8/18/101 PM to 6:45 PM
      100R6919BLBLABXD9576F8/18/101 PM to 6:45 PM
      101R6867BLBLABXD9576M8/18/108:45AM to 12:30 PM
      102R6899BLBLABXD9771F8/18/101 PM to 6:45 PM
      103R6901BLBLABXD9771M8/18/101 PM to 6:45 PM
      104R6875BLBLABXD9977F8/18/101 PM to 6:45 PM
      105R6883BLBLABXD9977M8/18/101 PM to 6:45 PM
      106R6831BLBLABXD10083M8/18/108:45AM to 12:30 PM
      107R6943BLBLABXD10189F8/18/101 PM to 6:45 PM
      108R6941BLBLABXD10189M8/18/101 PM to 6:45 PM
      109R6753BLBLABXD10288F8/17/109:30 AM to 12:30AM
      110R6755BLBLABXD10288M8/17/109:30 AM to 12:30AM
      111R6765BLBLABXD10378M8/17/109:30 AM to 12:30AM
      +
      + +

       

      +
      +
      + +
        +
      +
    12. +
    diff --git a/general/datasets/Inia_amg_bla_rma_m_1110/platform.rtf b/general/datasets/Inia_amg_bla_rma_m_1110/platform.rtf new file mode 100644 index 0000000..aba2206 --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_m_1110/platform.rtf @@ -0,0 +1 @@ +

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version] (GPL6246)

    diff --git a/general/datasets/Inia_amg_bla_rma_m_1110/processing.rtf b/general/datasets/Inia_amg_bla_rma_m_1110/processing.rtf new file mode 100644 index 0000000..a2a6c30 --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_m_1110/processing.rtf @@ -0,0 +1,16 @@ +

    Data Processing. Array data sets were generated by the vendors GCOS system. Expression values were logged and then were further normalized and rescaled so that the mean value for each array data set is 8 units with a standard deviation of 2 units. Data were processed by Arthur Centeno.

    + +

    Batch Effects. This data set required no initial correction for batch effects and the data in this initial release do not incorporate any additional corrections. However, there are several confounder-like factors that should be considered:

    + +
      +
    1. Sex imbalance in the sample: use probe sets for Xist as correction in partial correlation
    2. +
    3. Dissection variation: examine and use probe sets for Ttr as a correction for the inclusion of choroid plexus and non-parenchmymal tissue in samples. Transthyretin is only expressed in the choroid plexus (PMID 16698124
    4. +
    5. Background noise factors: examine and use probe sets with very low expression using the search "mean=(3.900 4.135)". This will extract the 54 probe sets with the lowest expression. (Note that the number 54 is less than the total number of cases (58) in this data set; important in computing principal components.) Add these probe sets to your collection window and then compute the correlation matrix. Use the first few principal components as surrogates for nuisance factors in partial correlation analysis. The first principal component of the lowest 54 probe sets in this amygdala data set accounts of 42% of the the variance. Mapping of this noise trait can be used to evaluate the effects of shared noise on QTL results. The first principal component in the amygdala data set can be map as a trait. It is not associated with any QLTs that are even suggestive, and the highest LRS is about 10 on chromosomes 18 and 19. The second principal component trait, which accounts for only 5% of the "noise" variance, has a suggestive QTL (LRS of 12, high B allele) on chromosome 4 at about 90 Mb. We therefore do not think that there is significant risk of major false trans eQTL bands in this data set.
    6. +
    + +

    Data Release. This data set was first uploaded into GeneNetwork November 25, 2010 and made accessible without a password to all users on December 1, 2010. The data set was orginally entered with two strain identification errors that were fixed Dec 10, 2010 by KM Mozhui and A Centeno (array R6659BL was originally listed as BXD16 but is BXD27; R6789BL was original listed as BXD27 is BXD12). The current data release has no known errors of sex or strain assignment.

    + +

    Data Status and Use. The data set is open for exploration and use for focused analysis of single genes. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data regarding the best citation.
    +This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please see the GeneNetwork data sharing policy for more background on data use.

    + +

    Contact. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data.

    diff --git a/general/datasets/Inia_amg_bla_rma_m_1110/specifics.rtf b/general/datasets/Inia_amg_bla_rma_m_1110/specifics.rtf new file mode 100644 index 0000000..8c3a60b --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_m_1110/specifics.rtf @@ -0,0 +1 @@ +

    Male samples only

    diff --git a/general/datasets/Inia_amg_bla_rma_m_1110/summary.rtf b/general/datasets/Inia_amg_bla_rma_m_1110/summary.rtf new file mode 100644 index 0000000..41311b7 --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_m_1110/summary.rtf @@ -0,0 +1 @@ +

    This is a final error-checked release of an amygdala gene expression data set generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from the NIH NIAAA. The basolateral complex of the amygdala of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna").

    diff --git a/general/datasets/Inia_amg_bla_rma_m_1110/tissue.rtf b/general/datasets/Inia_amg_bla_rma_m_1110/tissue.rtf new file mode 100644 index 0000000..ea556c7 --- /dev/null +++ b/general/datasets/Inia_amg_bla_rma_m_1110/tissue.rtf @@ -0,0 +1,12 @@ +

    Dissection Protocol

    + +
      +
    1. Animals were sacrificed by cervical dislocation and brains were immediately dissected from the head and stored in RNAlater (www.ambion.com) for 2 to 3 days at 4 deg C in a refrigerator.
    2. +
    3. Brains were placed with ventral side up on a cutting surface and a partial coronal cut was made with a surgical blade at a level that corresponds approximately to the -2.5 mm behind the stereotaxic Bregma point (this cut is just a little rostral from the pontine fibres when viewed from the ventral side).
    4. +
    5. Brains were placed in a coronal matrix (egg-style slicer) and a 2-mm thick coronal slab was taken just rostral to the initial cut.
    6. +
    7. The 2-mm thick slab was placed on a clean glass slide and the hypothalamus was cut out and placed in a tube on dry ice.
    8. +
    9. To dissect the BLA, the temporal lobes were detached by placing a scalpel in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then cut out and placed in a tube on dry ice.
    10. +
    11. Tissue from two mice (right and left sides) and from the same strain and sex (an usually the same litter) were pooled. The only exceptions are BLA samples from strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue was obtained from only one animal per array).
    12. +
    + +

     

    diff --git a/general/datasets/Inia_amgcoh_0311/cases.rtf b/general/datasets/Inia_amgcoh_0311/cases.rtf new file mode 100644 index 0000000..b02b19a --- /dev/null +++ b/general/datasets/Inia_amgcoh_0311/cases.rtf @@ -0,0 +1,3 @@ +

    Cases. A total of 58 strains, including 54 BXD strains, both parental strains (C57BL/6J and DBA/2J) and both reciprocal F1 hybrids (B6D2F1 and D2B6F1) were analyzed. In most cases, two arrays were processed per strain--one for males and one for females. All tissue and RNA was extracted by K. Mozhui. Samples were pooled by sex and usually include at least two cases per sex and strain.

    + +

    Sex Balance. Fifty strains have matched male and female samples. Five strains have male only samples (BXD5, 13, 16, 100 and 103). Three strains have only female samples (BXD44, 70, and 87.) Please review the expression data for Xist probe set 10606178. This non-coding RNA is expressed highly only in females and can be used to check the sex of a sample or pool of tissue. Ddx3y probe set 10608138 can also be used. This is a Y chromosome gene that is expressed abundantly in male samples and at background levels in female samples.

    diff --git a/general/datasets/Inia_amgcoh_0311/contributors.rtf b/general/datasets/Inia_amgcoh_0311/contributors.rtf new file mode 100644 index 0000000..f69a44f --- /dev/null +++ b/general/datasets/Inia_amgcoh_0311/contributors.rtf @@ -0,0 +1 @@ +

    Mozhui K, Williams RW

    diff --git a/general/datasets/Inia_amgcoh_0311/experiment-design.rtf b/general/datasets/Inia_amgcoh_0311/experiment-design.rtf new file mode 100644 index 0000000..126d431 --- /dev/null +++ b/general/datasets/Inia_amgcoh_0311/experiment-design.rtf @@ -0,0 +1,1152 @@ +

    Data Evaluation Summary

    + +
      +
    1. eQLTs with LOD >10 (LRS>46.1): n = 525
    2. +
    3. eQTL with high LOD and LRS: Trait ID 10513604 (Hdhd3) LOD = 39.8, LRS = 183.5
    4. +
    5. Lowest mean value: Trait ID 10344361, mean = 3.998
    6. +
    7. Highest mean value: Trait ID 10598025, mean = 14.475 (MT-ND1)
    8. +
    9. Greatest sex difference: Trait ID: 10606178 (Xist)
    10. +
    11. Great variation within and among strains: Trait ID 10454192 (Ttr +
      +
      + + + + + + +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
      1R6853BLBLAC57BL/6J77F8/18/108:45AM to 12:30 PM
      2R6861BLBLAC57BL/6J77M8/18/108:45AM to 12:30 PM
      3R6851BLBLAD2B6F177F8/18/108:45AM to 12:30 PM
      4R6859BLBLAD2B6F177M8/18/108:45AM to 12:30 PM
      5R6863BLBLADBA/2J77F8/18/108:45AM to 12:30 PM
      6R6865BLBLADBA/2J68M8/18/108:45AM to 12:30 PM
      7R6857BLBLAB6D2F169F8/18/108:45AM to 12:30 PM
      8R6855BLBLAB6D2F169M8/18/108:45AM to 12:30 PM
      9R6799BLBLABXD171F8/17/101:15 PM to 5 PM
      10R6795BLBLABXD185M8/17/101:15 PM to 5 PM
      11R6787BLBLABXD1187F8/17/101:15 PM to 5 PM
      12R6785BLBLABXD1176M8/17/101:15 PM to 5 PM
      13R6819BLBLABXD1278F8/18/108:45AM to 12:30 PM
      14R6789BLBLABXD1273M8/17/101:15 PM to 5 PM
      15R6805BLBLABXD1277M8/17/101:15 PM to 5 PM
      16R6291BLBLABXD13N/AM6/11/09N/A
      17R6811BLBLABXD1481F8/18/108:45AM to 12:30 PM
      18R6825BLBLABXD1481M8/18/108:45AM to 12:30 PM
      19R6657BLBLABXD16N/AM1/8/08N/A
      20R6054BLBLABXD19N/AF2/26/08N/A
      21R6052BLBLABXD19N/AM2/26/08N/A
      22R6803BLBLABXD2485F8/17/101:15 PM to 5 PM
      23R6817BLBLABXD2486M8/18/108:45AM to 12:30 PM
      24R6063BLBLABXD25N/AF3/12/08N/A
      25R6062BLBLABXD25N/AM3/12/08N/A
      26R6659BLBLABXD27N/AF1/8/08N/A
      27R6791BLBLABXD2775F8/17/101:15 PM to 5 PM
      28R6797BLBLABXD2971F8/17/101:15 PM to 5 PM
      29R6793BLBLABXD2971M8/17/101:15 PM to 5 PM
      30R6815BLBLABXD3174F8/18/108:45AM to 12:30 PM
      31R6801BLBLABXD3173M8/17/101:15 PM to 5 PM
      32R6915BLBLABXD3281F8/18/101 PM to 6:45 PM
      33R6845BLBLABXD3281M8/18/108:45AM to 12:30 PM
      34R6821BLBLABXD3477F8/18/108:45AM to 12:30 PM
      35R6807BLBLABXD3477M8/18/108:45AM to 12:30 PM
      36R6057BLBLABXD38N/AF2/26/08N/A
      37R6056BLBLABXD38N/AM2/26/08N/A
      38R6827BLBLABXD3979F8/18/108:45AM to 12:30 PM
      39R6813BLBLABXD3979M8/18/108:45AM to 12:30 PM
      40R6847BLBLABXD4085F8/18/108:45AM to 12:30 PM
      41R6849BLBLABXD4085M8/18/108:45AM to 12:30 PM
      42R6809BLBLABXD4287F8/18/108:45AM to 12:30 PM
      43R6823BLBLABXD4287M8/18/108:45AM to 12:30 PM
      44R6759BLBLABXD4381F8/17/109:30 AM to 12:30AM
      45R6757BLBLABXD4381M8/17/109:30 AM to 12:30AM
      46R6745BLBLABXD4483F8/17/109:30 AM to 12:30AM
      47R6763BLBLABXD4577F8/17/109:30 AM to 12:30AM
      48R6761BLBLABXD4577M8/17/109:30 AM to 12:30AM
      49R6879BLBLABXD4876F8/18/101 PM to 6:45 PM
      50R6881BLBLABXD4876M8/18/101 PM to 6:45 PM
      51R6751BLBLABXD4984F8/17/109:30 AM to 12:30AM
      52R6747BLBLABXD4984M8/17/109:30 AM to 12:30AM
      53R6104BLBLABXD5N/Af10/23/09N/A
      54R6103BLBLABXD5N/AM10/23/09N/A
      55R6889BLBLABXD5077F8/18/101 PM to 6:45 PM
      56R6891BLBLABXD5077M8/18/101 PM to 6:45 PM
      57R6074BLBLABXD51N/AF3/12/08N/A
      58R6699BLBLABXD51N/AM4/30/09N/A
      59R6917BLBLABXD5684F8/18/101 PM to 6:45 PM
      60R6893BLBLABXD5677M8/18/101 PM to 6:45 PM
      61R6769BLBLABXD6070F8/17/109:30 AM to 12:30AM
      62R6771BLBLABXD6070M8/17/101:15 PM to 5 PM
      63R6655BLBLABXD61N/AF1/29/08N/A
      64R6653BLBLABXD61N/AM1/29/08N/A
      65R6835BLBLABXD6283F8/18/108:45AM to 12:30 PM
      66R6843BLBLABXD6283M8/18/108:45AM to 12:30 PM
      67R6887BLBLABXD6377F8/18/101 PM to 6:45 PM
      68R6885BLBLABXD6377M8/18/101 PM to 6:45 PM
      69R6877BLBLABXD6584F8/18/101 PM to 6:45 PM
      70R6873BLBLABXD6584M8/18/101 PM to 6:45 PM
      71R6929BLBLABXD6876F8/18/101 PM to 6:45 PM
      72R6931BLBLABXD6876M8/18/101 PM to 6:45 PM
      73R6775BLBLABXD6969F8/17/101:15 PM to 5 PM
      74R6773BLBLABXD6980M8/17/101:15 PM to 5 PM
      75R6925BLBLABXD7076F8/18/101 PM to 6:45 PM
      76R6921BLBLABXD7076M8/17/061 PM to 6:45 PM
      77R6869BLBLABXD7176F8/18/101 PM to 6:45 PM
      78R6871BLBLABXD7176M8/18/101 PM to 6:45 PM
      79R6777BLBLABXD7383F8/17/101:15 PM to 5 PM
      80R6779BLBLABXD7383M8/17/101:15 PM to 5 PM
      81R6837BLBLABXD7576F8/18/108:45AM to 12:30 PM
      82R6829BLBLABXD7576M8/18/108:45AM to 12:30 PM
      83R6933BLBLABXD7987F8/18/101 PM to 6:45 PM
      84R6935BLBLABXD7987M8/18/101 PM to 6:45 PM
      85R6781BLBLABXD8073F8/17/101:15 PM to 5 PM
      86R6783BLBLABXD8073M8/17/101:15 PM to 5 PM
      87R6913BLBLABXD8381F8/18/101 PM to 6:45 PM
      88R6911BLBLABXD8381M8/18/101 PM to 6:45 PM
      89R6841BLBLABXD8476F8/18/108:45AM to 12:30 PM
      90R6833BLBLABXD8476M8/18/108:45AM to 12:30 PM
      91R6937BLBLABXD8574F8/18/101 PM to 6:45 PM
      92R6939BLBLABXD8574M8/18/101 PM to 6:45 PM
      93R6909BLBLABXD8783F8/18/101 PM to 6:45 PM
      94R6895BLBLABXD8982F8/18/101 PM to 6:45 PM
      95R6897BLBLABXD8982M8/18/101 PM to 6:45 PM
      96R6903BLBLABXD9082F8/18/101 PM to 6:45 PM
      97R6905BLBLABXD9082M8/18/101 PM to 6:45 PM
      98R6923BLBLABXD9286F8/18/101 PM to 6:45 PM
      99R6927BLBLABXD9289M8/18/101 PM to 6:45 PM
      100R6919BLBLABXD9576F8/18/101 PM to 6:45 PM
      101R6867BLBLABXD9576M8/18/108:45AM to 12:30 PM
      102R6899BLBLABXD9771F8/18/101 PM to 6:45 PM
      103R6901BLBLABXD9771M8/18/101 PM to 6:45 PM
      104R6875BLBLABXD9977F8/18/101 PM to 6:45 PM
      105R6883BLBLABXD9977M8/18/101 PM to 6:45 PM
      106R6831BLBLABXD10083M8/18/108:45AM to 12:30 PM
      107R6943BLBLABXD10189F8/18/101 PM to 6:45 PM
      108R6941BLBLABXD10189M8/18/101 PM to 6:45 PM
      109R6753BLBLABXD10288F8/17/109:30 AM to 12:30AM
      110R6755BLBLABXD10288M8/17/109:30 AM to 12:30AM
      111R6765BLBLABXD10378M8/17/109:30 AM to 12:30AM
      +
      + +

       

      +
      +
      + +
        +
      +
    12. +
    diff --git a/general/datasets/Inia_amgcoh_0311/platform.rtf b/general/datasets/Inia_amgcoh_0311/platform.rtf new file mode 100644 index 0000000..aba2206 --- /dev/null +++ b/general/datasets/Inia_amgcoh_0311/platform.rtf @@ -0,0 +1 @@ +

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version] (GPL6246)

    diff --git a/general/datasets/Inia_amgcoh_0311/processing.rtf b/general/datasets/Inia_amgcoh_0311/processing.rtf new file mode 100644 index 0000000..a2a6c30 --- /dev/null +++ b/general/datasets/Inia_amgcoh_0311/processing.rtf @@ -0,0 +1,16 @@ +

    Data Processing. Array data sets were generated by the vendors GCOS system. Expression values were logged and then were further normalized and rescaled so that the mean value for each array data set is 8 units with a standard deviation of 2 units. Data were processed by Arthur Centeno.

    + +

    Batch Effects. This data set required no initial correction for batch effects and the data in this initial release do not incorporate any additional corrections. However, there are several confounder-like factors that should be considered:

    + +
      +
    1. Sex imbalance in the sample: use probe sets for Xist as correction in partial correlation
    2. +
    3. Dissection variation: examine and use probe sets for Ttr as a correction for the inclusion of choroid plexus and non-parenchmymal tissue in samples. Transthyretin is only expressed in the choroid plexus (PMID 16698124
    4. +
    5. Background noise factors: examine and use probe sets with very low expression using the search "mean=(3.900 4.135)". This will extract the 54 probe sets with the lowest expression. (Note that the number 54 is less than the total number of cases (58) in this data set; important in computing principal components.) Add these probe sets to your collection window and then compute the correlation matrix. Use the first few principal components as surrogates for nuisance factors in partial correlation analysis. The first principal component of the lowest 54 probe sets in this amygdala data set accounts of 42% of the the variance. Mapping of this noise trait can be used to evaluate the effects of shared noise on QTL results. The first principal component in the amygdala data set can be map as a trait. It is not associated with any QLTs that are even suggestive, and the highest LRS is about 10 on chromosomes 18 and 19. The second principal component trait, which accounts for only 5% of the "noise" variance, has a suggestive QTL (LRS of 12, high B allele) on chromosome 4 at about 90 Mb. We therefore do not think that there is significant risk of major false trans eQTL bands in this data set.
    6. +
    + +

    Data Release. This data set was first uploaded into GeneNetwork November 25, 2010 and made accessible without a password to all users on December 1, 2010. The data set was orginally entered with two strain identification errors that were fixed Dec 10, 2010 by KM Mozhui and A Centeno (array R6659BL was originally listed as BXD16 but is BXD27; R6789BL was original listed as BXD27 is BXD12). The current data release has no known errors of sex or strain assignment.

    + +

    Data Status and Use. The data set is open for exploration and use for focused analysis of single genes. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data regarding the best citation.
    +This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please see the GeneNetwork data sharing policy for more background on data use.

    + +

    Contact. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data.

    diff --git a/general/datasets/Inia_amgcoh_0311/summary.rtf b/general/datasets/Inia_amgcoh_0311/summary.rtf new file mode 100644 index 0000000..41311b7 --- /dev/null +++ b/general/datasets/Inia_amgcoh_0311/summary.rtf @@ -0,0 +1 @@ +

    This is a final error-checked release of an amygdala gene expression data set generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from the NIH NIAAA. The basolateral complex of the amygdala of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna").

    diff --git a/general/datasets/Inia_amgcoh_0311/tissue.rtf b/general/datasets/Inia_amgcoh_0311/tissue.rtf new file mode 100644 index 0000000..ea556c7 --- /dev/null +++ b/general/datasets/Inia_amgcoh_0311/tissue.rtf @@ -0,0 +1,12 @@ +

    Dissection Protocol

    + +
      +
    1. Animals were sacrificed by cervical dislocation and brains were immediately dissected from the head and stored in RNAlater (www.ambion.com) for 2 to 3 days at 4 deg C in a refrigerator.
    2. +
    3. Brains were placed with ventral side up on a cutting surface and a partial coronal cut was made with a surgical blade at a level that corresponds approximately to the -2.5 mm behind the stereotaxic Bregma point (this cut is just a little rostral from the pontine fibres when viewed from the ventral side).
    4. +
    5. Brains were placed in a coronal matrix (egg-style slicer) and a 2-mm thick coronal slab was taken just rostral to the initial cut.
    6. +
    7. The 2-mm thick slab was placed on a clean glass slide and the hypothalamus was cut out and placed in a tube on dry ice.
    8. +
    9. To dissect the BLA, the temporal lobes were detached by placing a scalpel in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then cut out and placed in a tube on dry ice.
    10. +
    11. Tissue from two mice (right and left sides) and from the same strain and sex (an usually the same litter) were pooled. The only exceptions are BLA samples from strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue was obtained from only one animal per array).
    12. +
    + +

     

    diff --git a/general/datasets/Inia_bxd_livdnam_1119/experiment-design.rtf b/general/datasets/Inia_bxd_livdnam_1119/experiment-design.rtf new file mode 100644 index 0000000..5c63e07 --- /dev/null +++ b/general/datasets/Inia_bxd_livdnam_1119/experiment-design.rtf @@ -0,0 +1 @@ +

    Aging

    diff --git a/general/datasets/Inia_bxd_livdnam_1119/platform.rtf b/general/datasets/Inia_bxd_livdnam_1119/platform.rtf new file mode 100644 index 0000000..01ea9ea --- /dev/null +++ b/general/datasets/Inia_bxd_livdnam_1119/platform.rtf @@ -0,0 +1 @@ +

    Pan-Mammalian DNAm Infinium array; this is a custom array

    diff --git a/general/datasets/Inia_bxd_livdnam_1119/processing.rtf b/general/datasets/Inia_bxd_livdnam_1119/processing.rtf new file mode 100644 index 0000000..5dc0f7f --- /dev/null +++ b/general/datasets/Inia_bxd_livdnam_1119/processing.rtf @@ -0,0 +1 @@ +

    Beta-values after normalization

    diff --git a/general/datasets/Inia_bxd_livdnam_1119/specifics.rtf b/general/datasets/Inia_bxd_livdnam_1119/specifics.rtf new file mode 100644 index 0000000..925cbbe --- /dev/null +++ b/general/datasets/Inia_bxd_livdnam_1119/specifics.rtf @@ -0,0 +1 @@ +Normalization Sesame \ No newline at end of file diff --git a/general/datasets/Inia_bxd_livdnam_1119/summary.rtf b/general/datasets/Inia_bxd_livdnam_1119/summary.rtf new file mode 100644 index 0000000..0961144 --- /dev/null +++ b/general/datasets/Inia_bxd_livdnam_1119/summary.rtf @@ -0,0 +1 @@ +

    DNA from liver tissue profiled on the Illumina Pan-Mammalian Infinium microarray. This array was designed and developed by Steve Horvath at UCLA. Array hybridization, initial data QC, and normalization done at UCLA. 

    diff --git a/general/datasets/Inia_bxd_livdnaminfi_1020/experiment-design.rtf b/general/datasets/Inia_bxd_livdnaminfi_1020/experiment-design.rtf new file mode 100644 index 0000000..5c63e07 --- /dev/null +++ b/general/datasets/Inia_bxd_livdnaminfi_1020/experiment-design.rtf @@ -0,0 +1 @@ +

    Aging

    diff --git a/general/datasets/Inia_bxd_livdnaminfi_1020/platform.rtf b/general/datasets/Inia_bxd_livdnaminfi_1020/platform.rtf new file mode 100644 index 0000000..01ea9ea --- /dev/null +++ b/general/datasets/Inia_bxd_livdnaminfi_1020/platform.rtf @@ -0,0 +1 @@ +

    Pan-Mammalian DNAm Infinium array; this is a custom array

    diff --git a/general/datasets/Inia_bxd_livdnaminfi_1020/processing.rtf b/general/datasets/Inia_bxd_livdnaminfi_1020/processing.rtf new file mode 100644 index 0000000..5dc0f7f --- /dev/null +++ b/general/datasets/Inia_bxd_livdnaminfi_1020/processing.rtf @@ -0,0 +1 @@ +

    Beta-values after normalization

    diff --git a/general/datasets/Inia_bxd_livdnaminfi_1020/specifics.rtf b/general/datasets/Inia_bxd_livdnaminfi_1020/specifics.rtf new file mode 100644 index 0000000..717d006 --- /dev/null +++ b/general/datasets/Inia_bxd_livdnaminfi_1020/specifics.rtf @@ -0,0 +1 @@ +Normalization minfi \ No newline at end of file diff --git a/general/datasets/Inia_bxd_livdnaminfi_1020/summary.rtf b/general/datasets/Inia_bxd_livdnaminfi_1020/summary.rtf new file mode 100644 index 0000000..0961144 --- /dev/null +++ b/general/datasets/Inia_bxd_livdnaminfi_1020/summary.rtf @@ -0,0 +1 @@ +

    DNA from liver tissue profiled on the Illumina Pan-Mammalian Infinium microarray. This array was designed and developed by Steve Horvath at UCLA. Array hybridization, initial data QC, and normalization done at UCLA. 

    diff --git a/general/datasets/Inia_hyp_f_rma_1110/acknowledgment.rtf b/general/datasets/Inia_hyp_f_rma_1110/acknowledgment.rtf new file mode 100644 index 0000000..2c3f2bd --- /dev/null +++ b/general/datasets/Inia_hyp_f_rma_1110/acknowledgment.rtf @@ -0,0 +1 @@ +

    This work was supported by Integrative Neuroscience Initiative on Alcoholism grants U01AA13499, U01AA017590, U01AA0016662. The authors are also grateful to Arthur Centeno and Lorne Rose, and the Molecular Resource Center at UTHSC.

    diff --git a/general/datasets/Inia_hyp_f_rma_1110/cases.rtf b/general/datasets/Inia_hyp_f_rma_1110/cases.rtf new file mode 100644 index 0000000..f19e9c8 --- /dev/null +++ b/general/datasets/Inia_hyp_f_rma_1110/cases.rtf @@ -0,0 +1,916 @@ +

    The BXD recombinant inbred strains are derived from crossing the C57BL/6J (B6) and DBA/2J (D2) parental strains and inbreeding for over 20 generations (Taylor et al., 1999; Peirce et al., 2004). All mice used in this study were born and housed at the University of Tennessee Health Science Center. Mice were kept at an average of 3–4 per cage in a temperature-controlled vivarium (22 deg C) and maintained at a 12 h light/dark cycle. All animal protocols were approved by the Animal Care and Use Committee. We studied a total of 50 BXD strains, but only acquired matched male–female data pairs for 39 strains (35 BXD strains, parental B6 and D2, and two reciprocal F1 hybrids, B6D2F1 and D2B6F1). The average age of mice was 78 days. We provide more detail on the experimen-tal design and precise age and time of sacrifice of all cases at stored in 4 deg C for 2–3 days. To dissect the hypothalamus, the brain was placed with the ventral side facing up in a coronal "brain cutting" matrix. Using the medial mammillary body as landmark, a vertical cut was made right along the posterior boundary of the hypothala-mus. A second vertical cut was made 2 mm from the first cut. This edge lies slightly caudal to the optic chiasm and cuts through the retrochiasmatic nucleus. The hypothalamus was then sliced out from this 2 mm thick section. Each of the 39 mouse strains is represented by male and female samples (total of 78 microarray samples). Each individual sample consisted of tissue pooled from two mice of the same strain and sex that are usually littermates. The total number of mice used was 78 females and 78 males. RNA was purified using the RNAeasy micro kit on the QIAcube system (Qiagen)2. RNA purity and concen-tration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
    1R6854HYPHypC57BL/6J77F8/18/108:45AM to 12:30 PM
    2R6862HYPHypC57BL/6J77M8/18/108:45AM to 12:30 PM
    3R6852HYPHypD2B6F177F8/18/108:45AM to 12:30 PM
    4R6860HYPHypD2B6F177M8/18/108:45AM to 12:30 PM
    5R6864HYPHypDBA/2J77F8/18/108:45AM to 12:30 PM
    6R6866HYPHypDBA/2J68M8/18/108:45AM to 12:30 PM
    7R6858HYPHypB6D2F169F8/18/108:45AM to 12:30 PM
    8R6856HYPHypB6D2F169M8/18/108:45AM to 12:30 PM
    9R6800HYPHypBXD171F8/17/101:15 PM to 5 PM
    10R6796HYPHypBXD185M8/17/101:15 PM to 5 PM
    11R6788HYPHypBXD1187F8/17/101:15 PM to 5 PM
    12R6786HYPHypBXD1176M8/17/101:15 PM to 5 PM
    13R6806HYPHypBXD1277M8/17/101:15 PM to 5 PM
    14R6812HYPHypBXD1481F8/18/108:45AM to 12:30 PM
    15R6804HYPHypBXD2485F8/17/101:15 PM to 5 PM
    16R6792HYPHypBXD2775F8/17/101:15 PM to 5 PM
    17R6790HYPHypBXD2773M8/17/101:15 PM to 5 PM
    18R6798HYPHypBXD2971F8/17/101:15 PM to 5 PM
    19R6794HYPHypBXD2971M8/17/101:15 PM to 5 PM
    20R6816HYPHypBXD3174F8/18/108:45AM to 12:30 PM
    21R6802HYPHypBXD3173M8/17/101:15 PM to 5 PM
    22R6916HYPHypBXD3281F8/18/101 PM to 6:45 PM
    23R6846HYPHypBXD3281M8/18/108:45AM to 12:30 PM
    24R6822HYPHypBXD3477F8/18/108:45AM to 12:30 PM
    25R6808HYPHypBXD3477M8/18/108:45AM to 12:30 PM
    26R6814HYPHypBXD3979M8/18/108:45AM to 12:30 PM
    27R6848HYPHypBXD4085F8/18/108:45AM to 12:30 PM
    28R6850HYPHypBXD4085M8/18/108:45AM to 12:30 PM
    29R6810HYPHypBXD4287F8/18/108:45AM to 12:30 PM
    30R6758HYPHypBXD4381M8/17/109:30 AM to 12:30AM
    31R6746HYPHypBXD4483F8/17/109:30 AM to 12:30AM
    32R6750HYPHypBXD4483M8/17/109:30 AM to 12:30AM
    33R6764HYPHypBXD4577F8/17/109:30 AM to 12:30AM
    34R6762HYPHypBXD4577M8/17/109:30 AM to 12:30AM
    35R6880HYPHypBXD4876F8/18/101 PM to 6:45 PM
    36R6882HYPHypBXD4876M8/18/101 PM to 6:45 PM
    37R6748HYPHypBXD4984M8/17/109:30 AM to 12:30AM
    38R6890HYPHypBXD5077F8/18/101 PM to 6:45 PM
    39R6892HYPHypBXD5077M8/18/101 PM to 6:45 PM
    40R6918HYPHypBXD5684F8/18/101 PM to 6:45 PM
    41R6894HYPHypBXD5677M8/18/101 PM to 6:45 PM
    42R6770HYPHypBXD6070F8/17/109:30 AM to 12:30AM
    43R6772HYPHypBXD6070M8/17/101:15 PM to 5 PM
    44R6836HYPHypBXD6283F8/18/108:45AM to 12:30 PM
    45R6844HYPHypBXD6283M8/18/108:45AM to 12:30 PM
    46R6888HYPHypBXD6377F8/18/101 PM to 6:45 PM
    47R6878HYPHypBXD6584F8/18/101 PM to 6:45 PM
    48R6874HYPHypBXD6584M8/18/101 PM to 6:45 PM
    49R6930HYPHypBXD6876F8/18/101 PM to 6:45 PM
    50R6932HYPHypBXD6876M8/18/101 PM to 6:45 PM
    51R6776HYPHypBXD6969F8/17/101:15 PM to 5 PM
    52R6774HYPHypBXD6980M8/17/101:15 PM to 5 PM
    53R6926HYPHypBXD7076F8/18/101 PM to 6:45 PM
    54R6922HYPHypBXD7076M8/18/101 PM to 6:45 PM
    55R6870HYPHypBXD7176F8/18/101 PM to 6:45 PM
    56R6872HYPHypBXD7176M8/18/101 PM to 6:45 PM
    57R6778HYPHypBXD7383F8/17/101:15 PM to 5 PM
    58R6780HYPHypBXD7383M8/17/101:15 PM to 5 PM
    59R6838HYPHypBXD7576F8/18/108:45AM to 12:30 PM
    60R6830HYPHypBXD7576M8/18/108:45AM to 12:30 PM
    61R6934HYPHypBXD7987F8/18/101 PM to 6:45 PM
    62R6782HYPHypBXD8073F8/17/101:15 PM to 5 PM
    63R6784HYPHypBXD8073M8/17/101:15 PM to 5 PM
    64R6914HYPHypBXD8381F8/18/101 PM to 6:45 PM
    65R6912HYPHypBXD8381M8/18/101 PM to 6:45 PM
    66R6834HYPHypBXD8476M8/18/108:45AM to 12:30 PM
    67R6938HYPHypBXD8574F8/18/101 PM to 6:45 PM
    68R6940HYPHypBXD8574M8/18/101 PM to 6:45 PM
    69R6910HYPHypBXD8783F8/18/101 PM to 6:45 PM
    70R6908HYPHypBXD8783M8/18/101 PM to 6:45 PM
    71R6896HYPHypBXD8982F8/18/101 PM to 6:45 PM
    72R6898HYPHypBXD8982M8/18/101 PM to 6:45 PM
    73R6904HYPHypBXD9082F8/18/101 PM to 6:45 PM
    74R6906HYPHypBXD9082M8/18/101 PM to 6:45 PM
    75R6924HYPHypBXD9286F8/18/101 PM to 6:45 PM
    76R6928HYPHypBXD9289M8/18/101 PM to 6:45 PM
    77R6920HYPHypBXD9576F8/18/101 PM to 6:45 PM
    78R6868HYPHypBXD9576M8/18/108:45AM to 12:30 PM
    79R6900HYPHypBXD9771F8/18/101 PM to 6:45 PM
    80R6902HYPHypBXD9771M8/18/101 PM to 6:45 PM
    81R6876HYPHypBXD9977F8/18/101 PM to 6:45 PM
    82R6884HYPHypBXD9977M8/18/101 PM to 6:45 PM
    83R6840HYPHypBXD10083F8/18/108:45AM to 12:30 PM
    84R6832HYPHypBXD10083M8/18/108:45AM to 12:30 PM
    85R6944HYPHypBXD10189F8/18/101 PM to 6:45 PM
    86R6942HYPHypBXD10189M8/18/101 PM to 6:45 PM
    87R6756HYPHypBXD10288M8/17/109:30 AM to 12:30AM
    88R6768HYPHypBXD10378F8/17/109:30 AM to 12:30AM
    89R6766HYPHypBXD10378M8/17/109:30 AM to 12:30AM
    +
    + +

     

    diff --git a/general/datasets/Inia_hyp_f_rma_1110/citation.rtf b/general/datasets/Inia_hyp_f_rma_1110/citation.rtf new file mode 100644 index 0000000..17f95be --- /dev/null +++ b/general/datasets/Inia_hyp_f_rma_1110/citation.rtf @@ -0,0 +1 @@ +

    Mozhui K, Lu L, Armstrong WE, Williams RW. Sex-specific modulation of gene expression networks in murine hypothalamus. Front Neurosci 2012;6:63. PMID:22593731

    diff --git a/general/datasets/Inia_hyp_f_rma_1110/contributors.rtf b/general/datasets/Inia_hyp_f_rma_1110/contributors.rtf new file mode 100644 index 0000000..aad2c8a --- /dev/null +++ b/general/datasets/Inia_hyp_f_rma_1110/contributors.rtf @@ -0,0 +1,15 @@ +

     

    + +

    Mozhui KLu LArmstrong WEWilliams RW (2012) Sex-specific modulation of gene expression networks in murine hypothalamus.  2012 May 11;6:63. doi: 10.3389/fnins.2012.00063. eCollection 2012.

    + +

    Abstract

    + +

    The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a). Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estrogen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromosome paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

    + +

    eQTL; hypothalamus; sex-specificity; weighted gene coexpression networks

    + +
    +
    PMID: 22593731  PMCID: PMC3350311  DOI: 10.3389/fnins.2012.00063
    +
    + +

     

    diff --git a/general/datasets/Inia_hyp_f_rma_1110/experiment-design.rtf b/general/datasets/Inia_hyp_f_rma_1110/experiment-design.rtf new file mode 100644 index 0000000..443af4a --- /dev/null +++ b/general/datasets/Inia_hyp_f_rma_1110/experiment-design.rtf @@ -0,0 +1,6 @@ +

    Hypothalamus was dissected from adult male and female mice and process for expression analysis.

    + +

    RNA isolation
    +Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + +

    This preliminary data set is associated with 430 eQTLs with LOD scores above 10. Peak LRS is 146 for Trait ID 10513604 (Hdhd3).

    diff --git a/general/datasets/Inia_hyp_f_rma_1110/platform.rtf b/general/datasets/Inia_hyp_f_rma_1110/platform.rtf new file mode 100644 index 0000000..aba2206 --- /dev/null +++ b/general/datasets/Inia_hyp_f_rma_1110/platform.rtf @@ -0,0 +1 @@ +

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version] (GPL6246)

    diff --git a/general/datasets/Inia_hyp_f_rma_1110/processing.rtf b/general/datasets/Inia_hyp_f_rma_1110/processing.rtf new file mode 100644 index 0000000..b3e8689 --- /dev/null +++ b/general/datasets/Inia_hyp_f_rma_1110/processing.rtf @@ -0,0 +1 @@ +

    Total RNA was processed using standard protocols and hybridized to the Affymetrix Mouse Gene 1.0 ST arrays4. This array contains 34,700 probe sets that target ∼29,000 well-defined transcripts (RefSeq mRNA isoforms). A single probe set is a collection of about 27 probes that target known exons within a single gene. The multiple probes design provides a more comprehensive cov-erage of transcripts from a single gene. Male and female samples were interleaved and processed together to avoid batch confounds. Details on the strain, age, and sex of each sample can be obtained from the information available for the INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) data set on www.genenetwork.org. Probe set level intensity values were extracted from the CEL files using the Affymetrix GeneChip Operating Software. Data nor-malization was performed using the R package “Affy” available from www.Bioconductor.org. The Robust Multichip Averaging protocol was used to process the expression values. The array data was then log transformed and rescaled using a z-scoring procedure to set the mean of each sample at eight expression units with a SD of 2 units. The entire data set can be down-loaded from www.genenetwork.org using the accession number GN281 (http://www.genenetwork.org/webqtl/main.py?FormID = sharinginfo&GN_AccessionId = 281) and also from the NIH Gene Expression Omnibus5 using the GEO accession number GSE36674. For this study we used a subset of cases that were repre-sented by both male and female samples – 78 sex-balanced arrays. Statistical power provided by this sample size (N = 39 strains) was estimated using the R function power.t.test6 with the SD set at 0.17, which is the average value. Only transcripts with above aver-age expression (minimum expression value above 8.5 on a log2 scale) were included for further analysis (17,192 probe sets). We used a two-tailed paired t -test to identify transcripts with signifi-cant expression difference between males and females. We applied the Benjamini and Hochberg false discovery rate (FDR) method and selected differentially expressed transcripts using a 10% FDR criterion.

    diff --git a/general/datasets/Inia_hyp_f_rma_1110/summary.rtf b/general/datasets/Inia_hyp_f_rma_1110/summary.rtf new file mode 100644 index 0000000..02671d5 --- /dev/null +++ b/general/datasets/Inia_hyp_f_rma_1110/summary.rtf @@ -0,0 +1,16 @@ +

    These hypothalamic gene expression data were generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from NIAAA. The data set includes samples from 50 strains, including 46 BXDs, both parental strains, and reciprocal F1 hybrids. Expression data were generated using the Affymetrix Mouse Gene 1.0 ST exon-style microarray (multiple probes in all known exons) by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. Hypothalamic tissue was dissected by K. Mozhui (description to follow) with special attention to time of day (every sample has time stamp). RNA was extracted by K. Mozhui. All other processing steps by the UTHSC MRC by L. Rose. Data were processed by Arthur Centeno.

    + +

    Data released initially Nov 25, 2010, updated March 7, 2011 by A. Centeno and K. Mozhui to add two additional arrays. Data appear to be error-free in terms of sex and strain assignments shown in the table below.

    + +

    Dissection protocol:

    + +
      +
    1. Animals were sacrificed by quick cervical dislocation and brains were removed and stored in RNAlater (www.ambion.com) for 2 to 3 days
    2. +
    3. Brain was placed with ventral side up and a partial cut was made with a blade at -2.5 from Bregma (just a little rostral from the pontine fibres when viewed from the ventral side)
    4. +
    5. The brain was then place in a coronal matrix and a 2 mm section was made rostral to the first cut
    6. +
    7. The 2mm Section was placed on a clean glass slide and hypothalamus was sliced out and placed in a tube on dry ice.
    8. +
    9. To dissect out the BLA, the temporal lobes were detached by placing a scalple in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then sliced out and placed in a tube on dry ice.
    10. +
    11. Tissues from two mice of the same strain and sex were pooled. The only exceptions to this are the BLA samples for strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue from only one animal).
    12. +
    + +

    The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a).Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estro-gen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromo-some paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

    diff --git a/general/datasets/Inia_hyp_m_rma_1110/acknowledgment.rtf b/general/datasets/Inia_hyp_m_rma_1110/acknowledgment.rtf new file mode 100644 index 0000000..2c3f2bd --- /dev/null +++ b/general/datasets/Inia_hyp_m_rma_1110/acknowledgment.rtf @@ -0,0 +1 @@ +

    This work was supported by Integrative Neuroscience Initiative on Alcoholism grants U01AA13499, U01AA017590, U01AA0016662. The authors are also grateful to Arthur Centeno and Lorne Rose, and the Molecular Resource Center at UTHSC.

    diff --git a/general/datasets/Inia_hyp_m_rma_1110/cases.rtf b/general/datasets/Inia_hyp_m_rma_1110/cases.rtf new file mode 100644 index 0000000..f19e9c8 --- /dev/null +++ b/general/datasets/Inia_hyp_m_rma_1110/cases.rtf @@ -0,0 +1,916 @@ +

    The BXD recombinant inbred strains are derived from crossing the C57BL/6J (B6) and DBA/2J (D2) parental strains and inbreeding for over 20 generations (Taylor et al., 1999; Peirce et al., 2004). All mice used in this study were born and housed at the University of Tennessee Health Science Center. Mice were kept at an average of 3–4 per cage in a temperature-controlled vivarium (22 deg C) and maintained at a 12 h light/dark cycle. All animal protocols were approved by the Animal Care and Use Committee. We studied a total of 50 BXD strains, but only acquired matched male–female data pairs for 39 strains (35 BXD strains, parental B6 and D2, and two reciprocal F1 hybrids, B6D2F1 and D2B6F1). The average age of mice was 78 days. We provide more detail on the experimen-tal design and precise age and time of sacrifice of all cases at stored in 4 deg C for 2–3 days. To dissect the hypothalamus, the brain was placed with the ventral side facing up in a coronal "brain cutting" matrix. Using the medial mammillary body as landmark, a vertical cut was made right along the posterior boundary of the hypothala-mus. A second vertical cut was made 2 mm from the first cut. This edge lies slightly caudal to the optic chiasm and cuts through the retrochiasmatic nucleus. The hypothalamus was then sliced out from this 2 mm thick section. Each of the 39 mouse strains is represented by male and female samples (total of 78 microarray samples). Each individual sample consisted of tissue pooled from two mice of the same strain and sex that are usually littermates. The total number of mice used was 78 females and 78 males. RNA was purified using the RNAeasy micro kit on the QIAcube system (Qiagen)2. RNA purity and concen-tration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
    1R6854HYPHypC57BL/6J77F8/18/108:45AM to 12:30 PM
    2R6862HYPHypC57BL/6J77M8/18/108:45AM to 12:30 PM
    3R6852HYPHypD2B6F177F8/18/108:45AM to 12:30 PM
    4R6860HYPHypD2B6F177M8/18/108:45AM to 12:30 PM
    5R6864HYPHypDBA/2J77F8/18/108:45AM to 12:30 PM
    6R6866HYPHypDBA/2J68M8/18/108:45AM to 12:30 PM
    7R6858HYPHypB6D2F169F8/18/108:45AM to 12:30 PM
    8R6856HYPHypB6D2F169M8/18/108:45AM to 12:30 PM
    9R6800HYPHypBXD171F8/17/101:15 PM to 5 PM
    10R6796HYPHypBXD185M8/17/101:15 PM to 5 PM
    11R6788HYPHypBXD1187F8/17/101:15 PM to 5 PM
    12R6786HYPHypBXD1176M8/17/101:15 PM to 5 PM
    13R6806HYPHypBXD1277M8/17/101:15 PM to 5 PM
    14R6812HYPHypBXD1481F8/18/108:45AM to 12:30 PM
    15R6804HYPHypBXD2485F8/17/101:15 PM to 5 PM
    16R6792HYPHypBXD2775F8/17/101:15 PM to 5 PM
    17R6790HYPHypBXD2773M8/17/101:15 PM to 5 PM
    18R6798HYPHypBXD2971F8/17/101:15 PM to 5 PM
    19R6794HYPHypBXD2971M8/17/101:15 PM to 5 PM
    20R6816HYPHypBXD3174F8/18/108:45AM to 12:30 PM
    21R6802HYPHypBXD3173M8/17/101:15 PM to 5 PM
    22R6916HYPHypBXD3281F8/18/101 PM to 6:45 PM
    23R6846HYPHypBXD3281M8/18/108:45AM to 12:30 PM
    24R6822HYPHypBXD3477F8/18/108:45AM to 12:30 PM
    25R6808HYPHypBXD3477M8/18/108:45AM to 12:30 PM
    26R6814HYPHypBXD3979M8/18/108:45AM to 12:30 PM
    27R6848HYPHypBXD4085F8/18/108:45AM to 12:30 PM
    28R6850HYPHypBXD4085M8/18/108:45AM to 12:30 PM
    29R6810HYPHypBXD4287F8/18/108:45AM to 12:30 PM
    30R6758HYPHypBXD4381M8/17/109:30 AM to 12:30AM
    31R6746HYPHypBXD4483F8/17/109:30 AM to 12:30AM
    32R6750HYPHypBXD4483M8/17/109:30 AM to 12:30AM
    33R6764HYPHypBXD4577F8/17/109:30 AM to 12:30AM
    34R6762HYPHypBXD4577M8/17/109:30 AM to 12:30AM
    35R6880HYPHypBXD4876F8/18/101 PM to 6:45 PM
    36R6882HYPHypBXD4876M8/18/101 PM to 6:45 PM
    37R6748HYPHypBXD4984M8/17/109:30 AM to 12:30AM
    38R6890HYPHypBXD5077F8/18/101 PM to 6:45 PM
    39R6892HYPHypBXD5077M8/18/101 PM to 6:45 PM
    40R6918HYPHypBXD5684F8/18/101 PM to 6:45 PM
    41R6894HYPHypBXD5677M8/18/101 PM to 6:45 PM
    42R6770HYPHypBXD6070F8/17/109:30 AM to 12:30AM
    43R6772HYPHypBXD6070M8/17/101:15 PM to 5 PM
    44R6836HYPHypBXD6283F8/18/108:45AM to 12:30 PM
    45R6844HYPHypBXD6283M8/18/108:45AM to 12:30 PM
    46R6888HYPHypBXD6377F8/18/101 PM to 6:45 PM
    47R6878HYPHypBXD6584F8/18/101 PM to 6:45 PM
    48R6874HYPHypBXD6584M8/18/101 PM to 6:45 PM
    49R6930HYPHypBXD6876F8/18/101 PM to 6:45 PM
    50R6932HYPHypBXD6876M8/18/101 PM to 6:45 PM
    51R6776HYPHypBXD6969F8/17/101:15 PM to 5 PM
    52R6774HYPHypBXD6980M8/17/101:15 PM to 5 PM
    53R6926HYPHypBXD7076F8/18/101 PM to 6:45 PM
    54R6922HYPHypBXD7076M8/18/101 PM to 6:45 PM
    55R6870HYPHypBXD7176F8/18/101 PM to 6:45 PM
    56R6872HYPHypBXD7176M8/18/101 PM to 6:45 PM
    57R6778HYPHypBXD7383F8/17/101:15 PM to 5 PM
    58R6780HYPHypBXD7383M8/17/101:15 PM to 5 PM
    59R6838HYPHypBXD7576F8/18/108:45AM to 12:30 PM
    60R6830HYPHypBXD7576M8/18/108:45AM to 12:30 PM
    61R6934HYPHypBXD7987F8/18/101 PM to 6:45 PM
    62R6782HYPHypBXD8073F8/17/101:15 PM to 5 PM
    63R6784HYPHypBXD8073M8/17/101:15 PM to 5 PM
    64R6914HYPHypBXD8381F8/18/101 PM to 6:45 PM
    65R6912HYPHypBXD8381M8/18/101 PM to 6:45 PM
    66R6834HYPHypBXD8476M8/18/108:45AM to 12:30 PM
    67R6938HYPHypBXD8574F8/18/101 PM to 6:45 PM
    68R6940HYPHypBXD8574M8/18/101 PM to 6:45 PM
    69R6910HYPHypBXD8783F8/18/101 PM to 6:45 PM
    70R6908HYPHypBXD8783M8/18/101 PM to 6:45 PM
    71R6896HYPHypBXD8982F8/18/101 PM to 6:45 PM
    72R6898HYPHypBXD8982M8/18/101 PM to 6:45 PM
    73R6904HYPHypBXD9082F8/18/101 PM to 6:45 PM
    74R6906HYPHypBXD9082M8/18/101 PM to 6:45 PM
    75R6924HYPHypBXD9286F8/18/101 PM to 6:45 PM
    76R6928HYPHypBXD9289M8/18/101 PM to 6:45 PM
    77R6920HYPHypBXD9576F8/18/101 PM to 6:45 PM
    78R6868HYPHypBXD9576M8/18/108:45AM to 12:30 PM
    79R6900HYPHypBXD9771F8/18/101 PM to 6:45 PM
    80R6902HYPHypBXD9771M8/18/101 PM to 6:45 PM
    81R6876HYPHypBXD9977F8/18/101 PM to 6:45 PM
    82R6884HYPHypBXD9977M8/18/101 PM to 6:45 PM
    83R6840HYPHypBXD10083F8/18/108:45AM to 12:30 PM
    84R6832HYPHypBXD10083M8/18/108:45AM to 12:30 PM
    85R6944HYPHypBXD10189F8/18/101 PM to 6:45 PM
    86R6942HYPHypBXD10189M8/18/101 PM to 6:45 PM
    87R6756HYPHypBXD10288M8/17/109:30 AM to 12:30AM
    88R6768HYPHypBXD10378F8/17/109:30 AM to 12:30AM
    89R6766HYPHypBXD10378M8/17/109:30 AM to 12:30AM
    +
    + +

     

    diff --git a/general/datasets/Inia_hyp_m_rma_1110/citation.rtf b/general/datasets/Inia_hyp_m_rma_1110/citation.rtf new file mode 100644 index 0000000..17f95be --- /dev/null +++ b/general/datasets/Inia_hyp_m_rma_1110/citation.rtf @@ -0,0 +1 @@ +

    Mozhui K, Lu L, Armstrong WE, Williams RW. Sex-specific modulation of gene expression networks in murine hypothalamus. Front Neurosci 2012;6:63. PMID:22593731

    diff --git a/general/datasets/Inia_hyp_m_rma_1110/contributors.rtf b/general/datasets/Inia_hyp_m_rma_1110/contributors.rtf new file mode 100644 index 0000000..aad2c8a --- /dev/null +++ b/general/datasets/Inia_hyp_m_rma_1110/contributors.rtf @@ -0,0 +1,15 @@ +

     

    + +

    Mozhui KLu LArmstrong WEWilliams RW (2012) Sex-specific modulation of gene expression networks in murine hypothalamus.  2012 May 11;6:63. doi: 10.3389/fnins.2012.00063. eCollection 2012.

    + +

    Abstract

    + +

    The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a). Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estrogen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromosome paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

    + +

    eQTL; hypothalamus; sex-specificity; weighted gene coexpression networks

    + +
    +
    PMID: 22593731  PMCID: PMC3350311  DOI: 10.3389/fnins.2012.00063
    +
    + +

     

    diff --git a/general/datasets/Inia_hyp_m_rma_1110/experiment-design.rtf b/general/datasets/Inia_hyp_m_rma_1110/experiment-design.rtf new file mode 100644 index 0000000..443af4a --- /dev/null +++ b/general/datasets/Inia_hyp_m_rma_1110/experiment-design.rtf @@ -0,0 +1,6 @@ +

    Hypothalamus was dissected from adult male and female mice and process for expression analysis.

    + +

    RNA isolation
    +Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + +

    This preliminary data set is associated with 430 eQTLs with LOD scores above 10. Peak LRS is 146 for Trait ID 10513604 (Hdhd3).

    diff --git a/general/datasets/Inia_hyp_m_rma_1110/platform.rtf b/general/datasets/Inia_hyp_m_rma_1110/platform.rtf new file mode 100644 index 0000000..aba2206 --- /dev/null +++ b/general/datasets/Inia_hyp_m_rma_1110/platform.rtf @@ -0,0 +1 @@ +

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version] (GPL6246)

    diff --git a/general/datasets/Inia_hyp_m_rma_1110/processing.rtf b/general/datasets/Inia_hyp_m_rma_1110/processing.rtf new file mode 100644 index 0000000..b3e8689 --- /dev/null +++ b/general/datasets/Inia_hyp_m_rma_1110/processing.rtf @@ -0,0 +1 @@ +

    Total RNA was processed using standard protocols and hybridized to the Affymetrix Mouse Gene 1.0 ST arrays4. This array contains 34,700 probe sets that target ∼29,000 well-defined transcripts (RefSeq mRNA isoforms). A single probe set is a collection of about 27 probes that target known exons within a single gene. The multiple probes design provides a more comprehensive cov-erage of transcripts from a single gene. Male and female samples were interleaved and processed together to avoid batch confounds. Details on the strain, age, and sex of each sample can be obtained from the information available for the INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) data set on www.genenetwork.org. Probe set level intensity values were extracted from the CEL files using the Affymetrix GeneChip Operating Software. Data nor-malization was performed using the R package “Affy” available from www.Bioconductor.org. The Robust Multichip Averaging protocol was used to process the expression values. The array data was then log transformed and rescaled using a z-scoring procedure to set the mean of each sample at eight expression units with a SD of 2 units. The entire data set can be down-loaded from www.genenetwork.org using the accession number GN281 (http://www.genenetwork.org/webqtl/main.py?FormID = sharinginfo&GN_AccessionId = 281) and also from the NIH Gene Expression Omnibus5 using the GEO accession number GSE36674. For this study we used a subset of cases that were repre-sented by both male and female samples – 78 sex-balanced arrays. Statistical power provided by this sample size (N = 39 strains) was estimated using the R function power.t.test6 with the SD set at 0.17, which is the average value. Only transcripts with above aver-age expression (minimum expression value above 8.5 on a log2 scale) were included for further analysis (17,192 probe sets). We used a two-tailed paired t -test to identify transcripts with signifi-cant expression difference between males and females. We applied the Benjamini and Hochberg false discovery rate (FDR) method and selected differentially expressed transcripts using a 10% FDR criterion.

    diff --git a/general/datasets/Inia_hyp_m_rma_1110/summary.rtf b/general/datasets/Inia_hyp_m_rma_1110/summary.rtf new file mode 100644 index 0000000..02671d5 --- /dev/null +++ b/general/datasets/Inia_hyp_m_rma_1110/summary.rtf @@ -0,0 +1,16 @@ +

    These hypothalamic gene expression data were generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from NIAAA. The data set includes samples from 50 strains, including 46 BXDs, both parental strains, and reciprocal F1 hybrids. Expression data were generated using the Affymetrix Mouse Gene 1.0 ST exon-style microarray (multiple probes in all known exons) by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. Hypothalamic tissue was dissected by K. Mozhui (description to follow) with special attention to time of day (every sample has time stamp). RNA was extracted by K. Mozhui. All other processing steps by the UTHSC MRC by L. Rose. Data were processed by Arthur Centeno.

    + +

    Data released initially Nov 25, 2010, updated March 7, 2011 by A. Centeno and K. Mozhui to add two additional arrays. Data appear to be error-free in terms of sex and strain assignments shown in the table below.

    + +

    Dissection protocol:

    + +
      +
    1. Animals were sacrificed by quick cervical dislocation and brains were removed and stored in RNAlater (www.ambion.com) for 2 to 3 days
    2. +
    3. Brain was placed with ventral side up and a partial cut was made with a blade at -2.5 from Bregma (just a little rostral from the pontine fibres when viewed from the ventral side)
    4. +
    5. The brain was then place in a coronal matrix and a 2 mm section was made rostral to the first cut
    6. +
    7. The 2mm Section was placed on a clean glass slide and hypothalamus was sliced out and placed in a tube on dry ice.
    8. +
    9. To dissect out the BLA, the temporal lobes were detached by placing a scalple in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then sliced out and placed in a tube on dry ice.
    10. +
    11. Tissues from two mice of the same strain and sex were pooled. The only exceptions to this are the BLA samples for strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue from only one animal).
    12. +
    + +

    The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a).Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estro-gen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromo-some paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

    diff --git a/general/datasets/Inia_hyp_pca_0813/acknowledgment.rtf b/general/datasets/Inia_hyp_pca_0813/acknowledgment.rtf new file mode 100644 index 0000000..2c3f2bd --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813/acknowledgment.rtf @@ -0,0 +1 @@ +

    This work was supported by Integrative Neuroscience Initiative on Alcoholism grants U01AA13499, U01AA017590, U01AA0016662. The authors are also grateful to Arthur Centeno and Lorne Rose, and the Molecular Resource Center at UTHSC.

    diff --git a/general/datasets/Inia_hyp_pca_0813/cases.rtf b/general/datasets/Inia_hyp_pca_0813/cases.rtf new file mode 100644 index 0000000..f19e9c8 --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813/cases.rtf @@ -0,0 +1,916 @@ +

    The BXD recombinant inbred strains are derived from crossing the C57BL/6J (B6) and DBA/2J (D2) parental strains and inbreeding for over 20 generations (Taylor et al., 1999; Peirce et al., 2004). All mice used in this study were born and housed at the University of Tennessee Health Science Center. Mice were kept at an average of 3–4 per cage in a temperature-controlled vivarium (22 deg C) and maintained at a 12 h light/dark cycle. All animal protocols were approved by the Animal Care and Use Committee. We studied a total of 50 BXD strains, but only acquired matched male–female data pairs for 39 strains (35 BXD strains, parental B6 and D2, and two reciprocal F1 hybrids, B6D2F1 and D2B6F1). The average age of mice was 78 days. We provide more detail on the experimen-tal design and precise age and time of sacrifice of all cases at stored in 4 deg C for 2–3 days. To dissect the hypothalamus, the brain was placed with the ventral side facing up in a coronal "brain cutting" matrix. Using the medial mammillary body as landmark, a vertical cut was made right along the posterior boundary of the hypothala-mus. A second vertical cut was made 2 mm from the first cut. This edge lies slightly caudal to the optic chiasm and cuts through the retrochiasmatic nucleus. The hypothalamus was then sliced out from this 2 mm thick section. Each of the 39 mouse strains is represented by male and female samples (total of 78 microarray samples). Each individual sample consisted of tissue pooled from two mice of the same strain and sex that are usually littermates. The total number of mice used was 78 females and 78 males. RNA was purified using the RNAeasy micro kit on the QIAcube system (Qiagen)2. RNA purity and concen-tration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
    1R6854HYPHypC57BL/6J77F8/18/108:45AM to 12:30 PM
    2R6862HYPHypC57BL/6J77M8/18/108:45AM to 12:30 PM
    3R6852HYPHypD2B6F177F8/18/108:45AM to 12:30 PM
    4R6860HYPHypD2B6F177M8/18/108:45AM to 12:30 PM
    5R6864HYPHypDBA/2J77F8/18/108:45AM to 12:30 PM
    6R6866HYPHypDBA/2J68M8/18/108:45AM to 12:30 PM
    7R6858HYPHypB6D2F169F8/18/108:45AM to 12:30 PM
    8R6856HYPHypB6D2F169M8/18/108:45AM to 12:30 PM
    9R6800HYPHypBXD171F8/17/101:15 PM to 5 PM
    10R6796HYPHypBXD185M8/17/101:15 PM to 5 PM
    11R6788HYPHypBXD1187F8/17/101:15 PM to 5 PM
    12R6786HYPHypBXD1176M8/17/101:15 PM to 5 PM
    13R6806HYPHypBXD1277M8/17/101:15 PM to 5 PM
    14R6812HYPHypBXD1481F8/18/108:45AM to 12:30 PM
    15R6804HYPHypBXD2485F8/17/101:15 PM to 5 PM
    16R6792HYPHypBXD2775F8/17/101:15 PM to 5 PM
    17R6790HYPHypBXD2773M8/17/101:15 PM to 5 PM
    18R6798HYPHypBXD2971F8/17/101:15 PM to 5 PM
    19R6794HYPHypBXD2971M8/17/101:15 PM to 5 PM
    20R6816HYPHypBXD3174F8/18/108:45AM to 12:30 PM
    21R6802HYPHypBXD3173M8/17/101:15 PM to 5 PM
    22R6916HYPHypBXD3281F8/18/101 PM to 6:45 PM
    23R6846HYPHypBXD3281M8/18/108:45AM to 12:30 PM
    24R6822HYPHypBXD3477F8/18/108:45AM to 12:30 PM
    25R6808HYPHypBXD3477M8/18/108:45AM to 12:30 PM
    26R6814HYPHypBXD3979M8/18/108:45AM to 12:30 PM
    27R6848HYPHypBXD4085F8/18/108:45AM to 12:30 PM
    28R6850HYPHypBXD4085M8/18/108:45AM to 12:30 PM
    29R6810HYPHypBXD4287F8/18/108:45AM to 12:30 PM
    30R6758HYPHypBXD4381M8/17/109:30 AM to 12:30AM
    31R6746HYPHypBXD4483F8/17/109:30 AM to 12:30AM
    32R6750HYPHypBXD4483M8/17/109:30 AM to 12:30AM
    33R6764HYPHypBXD4577F8/17/109:30 AM to 12:30AM
    34R6762HYPHypBXD4577M8/17/109:30 AM to 12:30AM
    35R6880HYPHypBXD4876F8/18/101 PM to 6:45 PM
    36R6882HYPHypBXD4876M8/18/101 PM to 6:45 PM
    37R6748HYPHypBXD4984M8/17/109:30 AM to 12:30AM
    38R6890HYPHypBXD5077F8/18/101 PM to 6:45 PM
    39R6892HYPHypBXD5077M8/18/101 PM to 6:45 PM
    40R6918HYPHypBXD5684F8/18/101 PM to 6:45 PM
    41R6894HYPHypBXD5677M8/18/101 PM to 6:45 PM
    42R6770HYPHypBXD6070F8/17/109:30 AM to 12:30AM
    43R6772HYPHypBXD6070M8/17/101:15 PM to 5 PM
    44R6836HYPHypBXD6283F8/18/108:45AM to 12:30 PM
    45R6844HYPHypBXD6283M8/18/108:45AM to 12:30 PM
    46R6888HYPHypBXD6377F8/18/101 PM to 6:45 PM
    47R6878HYPHypBXD6584F8/18/101 PM to 6:45 PM
    48R6874HYPHypBXD6584M8/18/101 PM to 6:45 PM
    49R6930HYPHypBXD6876F8/18/101 PM to 6:45 PM
    50R6932HYPHypBXD6876M8/18/101 PM to 6:45 PM
    51R6776HYPHypBXD6969F8/17/101:15 PM to 5 PM
    52R6774HYPHypBXD6980M8/17/101:15 PM to 5 PM
    53R6926HYPHypBXD7076F8/18/101 PM to 6:45 PM
    54R6922HYPHypBXD7076M8/18/101 PM to 6:45 PM
    55R6870HYPHypBXD7176F8/18/101 PM to 6:45 PM
    56R6872HYPHypBXD7176M8/18/101 PM to 6:45 PM
    57R6778HYPHypBXD7383F8/17/101:15 PM to 5 PM
    58R6780HYPHypBXD7383M8/17/101:15 PM to 5 PM
    59R6838HYPHypBXD7576F8/18/108:45AM to 12:30 PM
    60R6830HYPHypBXD7576M8/18/108:45AM to 12:30 PM
    61R6934HYPHypBXD7987F8/18/101 PM to 6:45 PM
    62R6782HYPHypBXD8073F8/17/101:15 PM to 5 PM
    63R6784HYPHypBXD8073M8/17/101:15 PM to 5 PM
    64R6914HYPHypBXD8381F8/18/101 PM to 6:45 PM
    65R6912HYPHypBXD8381M8/18/101 PM to 6:45 PM
    66R6834HYPHypBXD8476M8/18/108:45AM to 12:30 PM
    67R6938HYPHypBXD8574F8/18/101 PM to 6:45 PM
    68R6940HYPHypBXD8574M8/18/101 PM to 6:45 PM
    69R6910HYPHypBXD8783F8/18/101 PM to 6:45 PM
    70R6908HYPHypBXD8783M8/18/101 PM to 6:45 PM
    71R6896HYPHypBXD8982F8/18/101 PM to 6:45 PM
    72R6898HYPHypBXD8982M8/18/101 PM to 6:45 PM
    73R6904HYPHypBXD9082F8/18/101 PM to 6:45 PM
    74R6906HYPHypBXD9082M8/18/101 PM to 6:45 PM
    75R6924HYPHypBXD9286F8/18/101 PM to 6:45 PM
    76R6928HYPHypBXD9289M8/18/101 PM to 6:45 PM
    77R6920HYPHypBXD9576F8/18/101 PM to 6:45 PM
    78R6868HYPHypBXD9576M8/18/108:45AM to 12:30 PM
    79R6900HYPHypBXD9771F8/18/101 PM to 6:45 PM
    80R6902HYPHypBXD9771M8/18/101 PM to 6:45 PM
    81R6876HYPHypBXD9977F8/18/101 PM to 6:45 PM
    82R6884HYPHypBXD9977M8/18/101 PM to 6:45 PM
    83R6840HYPHypBXD10083F8/18/108:45AM to 12:30 PM
    84R6832HYPHypBXD10083M8/18/108:45AM to 12:30 PM
    85R6944HYPHypBXD10189F8/18/101 PM to 6:45 PM
    86R6942HYPHypBXD10189M8/18/101 PM to 6:45 PM
    87R6756HYPHypBXD10288M8/17/109:30 AM to 12:30AM
    88R6768HYPHypBXD10378F8/17/109:30 AM to 12:30AM
    89R6766HYPHypBXD10378M8/17/109:30 AM to 12:30AM
    +
    + +

     

    diff --git a/general/datasets/Inia_hyp_pca_0813/citation.rtf b/general/datasets/Inia_hyp_pca_0813/citation.rtf new file mode 100644 index 0000000..17f95be --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813/citation.rtf @@ -0,0 +1 @@ +

    Mozhui K, Lu L, Armstrong WE, Williams RW. Sex-specific modulation of gene expression networks in murine hypothalamus. Front Neurosci 2012;6:63. PMID:22593731

    diff --git a/general/datasets/Inia_hyp_pca_0813/contributors.rtf b/general/datasets/Inia_hyp_pca_0813/contributors.rtf new file mode 100644 index 0000000..aad2c8a --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813/contributors.rtf @@ -0,0 +1,15 @@ +

     

    + +

    Mozhui KLu LArmstrong WEWilliams RW (2012) Sex-specific modulation of gene expression networks in murine hypothalamus.  2012 May 11;6:63. doi: 10.3389/fnins.2012.00063. eCollection 2012.

    + +

    Abstract

    + +

    The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a). Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estrogen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromosome paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

    + +

    eQTL; hypothalamus; sex-specificity; weighted gene coexpression networks

    + +
    +
    PMID: 22593731  PMCID: PMC3350311  DOI: 10.3389/fnins.2012.00063
    +
    + +

     

    diff --git a/general/datasets/Inia_hyp_pca_0813/experiment-design.rtf b/general/datasets/Inia_hyp_pca_0813/experiment-design.rtf new file mode 100644 index 0000000..443af4a --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813/experiment-design.rtf @@ -0,0 +1,6 @@ +

    Hypothalamus was dissected from adult male and female mice and process for expression analysis.

    + +

    RNA isolation
    +Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + +

    This preliminary data set is associated with 430 eQTLs with LOD scores above 10. Peak LRS is 146 for Trait ID 10513604 (Hdhd3).

    diff --git a/general/datasets/Inia_hyp_pca_0813/platform.rtf b/general/datasets/Inia_hyp_pca_0813/platform.rtf new file mode 100644 index 0000000..aba2206 --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813/platform.rtf @@ -0,0 +1 @@ +

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version] (GPL6246)

    diff --git a/general/datasets/Inia_hyp_pca_0813/processing.rtf b/general/datasets/Inia_hyp_pca_0813/processing.rtf new file mode 100644 index 0000000..b3e8689 --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813/processing.rtf @@ -0,0 +1 @@ +

    Total RNA was processed using standard protocols and hybridized to the Affymetrix Mouse Gene 1.0 ST arrays4. This array contains 34,700 probe sets that target ∼29,000 well-defined transcripts (RefSeq mRNA isoforms). A single probe set is a collection of about 27 probes that target known exons within a single gene. The multiple probes design provides a more comprehensive cov-erage of transcripts from a single gene. Male and female samples were interleaved and processed together to avoid batch confounds. Details on the strain, age, and sex of each sample can be obtained from the information available for the INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) data set on www.genenetwork.org. Probe set level intensity values were extracted from the CEL files using the Affymetrix GeneChip Operating Software. Data nor-malization was performed using the R package “Affy” available from www.Bioconductor.org. The Robust Multichip Averaging protocol was used to process the expression values. The array data was then log transformed and rescaled using a z-scoring procedure to set the mean of each sample at eight expression units with a SD of 2 units. The entire data set can be down-loaded from www.genenetwork.org using the accession number GN281 (http://www.genenetwork.org/webqtl/main.py?FormID = sharinginfo&GN_AccessionId = 281) and also from the NIH Gene Expression Omnibus5 using the GEO accession number GSE36674. For this study we used a subset of cases that were repre-sented by both male and female samples – 78 sex-balanced arrays. Statistical power provided by this sample size (N = 39 strains) was estimated using the R function power.t.test6 with the SD set at 0.17, which is the average value. Only transcripts with above aver-age expression (minimum expression value above 8.5 on a log2 scale) were included for further analysis (17,192 probe sets). We used a two-tailed paired t -test to identify transcripts with signifi-cant expression difference between males and females. We applied the Benjamini and Hochberg false discovery rate (FDR) method and selected differentially expressed transcripts using a 10% FDR criterion.

    diff --git a/general/datasets/Inia_hyp_pca_0813/summary.rtf b/general/datasets/Inia_hyp_pca_0813/summary.rtf new file mode 100644 index 0000000..02671d5 --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813/summary.rtf @@ -0,0 +1,16 @@ +

    These hypothalamic gene expression data were generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from NIAAA. The data set includes samples from 50 strains, including 46 BXDs, both parental strains, and reciprocal F1 hybrids. Expression data were generated using the Affymetrix Mouse Gene 1.0 ST exon-style microarray (multiple probes in all known exons) by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. Hypothalamic tissue was dissected by K. Mozhui (description to follow) with special attention to time of day (every sample has time stamp). RNA was extracted by K. Mozhui. All other processing steps by the UTHSC MRC by L. Rose. Data were processed by Arthur Centeno.

    + +

    Data released initially Nov 25, 2010, updated March 7, 2011 by A. Centeno and K. Mozhui to add two additional arrays. Data appear to be error-free in terms of sex and strain assignments shown in the table below.

    + +

    Dissection protocol:

    + +
      +
    1. Animals were sacrificed by quick cervical dislocation and brains were removed and stored in RNAlater (www.ambion.com) for 2 to 3 days
    2. +
    3. Brain was placed with ventral side up and a partial cut was made with a blade at -2.5 from Bregma (just a little rostral from the pontine fibres when viewed from the ventral side)
    4. +
    5. The brain was then place in a coronal matrix and a 2 mm section was made rostral to the first cut
    6. +
    7. The 2mm Section was placed on a clean glass slide and hypothalamus was sliced out and placed in a tube on dry ice.
    8. +
    9. To dissect out the BLA, the temporal lobes were detached by placing a scalple in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then sliced out and placed in a tube on dry ice.
    10. +
    11. Tissues from two mice of the same strain and sex were pooled. The only exceptions to this are the BLA samples for strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue from only one animal).
    12. +
    + +

    The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a).Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estro-gen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromo-some paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

    diff --git a/general/datasets/Inia_hyp_pca_0813_v2/acknowledgment.rtf b/general/datasets/Inia_hyp_pca_0813_v2/acknowledgment.rtf new file mode 100644 index 0000000..2c3f2bd --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v2/acknowledgment.rtf @@ -0,0 +1 @@ +

    This work was supported by Integrative Neuroscience Initiative on Alcoholism grants U01AA13499, U01AA017590, U01AA0016662. The authors are also grateful to Arthur Centeno and Lorne Rose, and the Molecular Resource Center at UTHSC.

    diff --git a/general/datasets/Inia_hyp_pca_0813_v2/cases.rtf b/general/datasets/Inia_hyp_pca_0813_v2/cases.rtf new file mode 100644 index 0000000..f19e9c8 --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v2/cases.rtf @@ -0,0 +1,916 @@ +

    The BXD recombinant inbred strains are derived from crossing the C57BL/6J (B6) and DBA/2J (D2) parental strains and inbreeding for over 20 generations (Taylor et al., 1999; Peirce et al., 2004). All mice used in this study were born and housed at the University of Tennessee Health Science Center. Mice were kept at an average of 3–4 per cage in a temperature-controlled vivarium (22 deg C) and maintained at a 12 h light/dark cycle. All animal protocols were approved by the Animal Care and Use Committee. We studied a total of 50 BXD strains, but only acquired matched male–female data pairs for 39 strains (35 BXD strains, parental B6 and D2, and two reciprocal F1 hybrids, B6D2F1 and D2B6F1). The average age of mice was 78 days. We provide more detail on the experimen-tal design and precise age and time of sacrifice of all cases at stored in 4 deg C for 2–3 days. To dissect the hypothalamus, the brain was placed with the ventral side facing up in a coronal "brain cutting" matrix. Using the medial mammillary body as landmark, a vertical cut was made right along the posterior boundary of the hypothala-mus. A second vertical cut was made 2 mm from the first cut. This edge lies slightly caudal to the optic chiasm and cuts through the retrochiasmatic nucleus. The hypothalamus was then sliced out from this 2 mm thick section. Each of the 39 mouse strains is represented by male and female samples (total of 78 microarray samples). Each individual sample consisted of tissue pooled from two mice of the same strain and sex that are usually littermates. The total number of mice used was 78 females and 78 males. RNA was purified using the RNAeasy micro kit on the QIAcube system (Qiagen)2. RNA purity and concen-tration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
    1R6854HYPHypC57BL/6J77F8/18/108:45AM to 12:30 PM
    2R6862HYPHypC57BL/6J77M8/18/108:45AM to 12:30 PM
    3R6852HYPHypD2B6F177F8/18/108:45AM to 12:30 PM
    4R6860HYPHypD2B6F177M8/18/108:45AM to 12:30 PM
    5R6864HYPHypDBA/2J77F8/18/108:45AM to 12:30 PM
    6R6866HYPHypDBA/2J68M8/18/108:45AM to 12:30 PM
    7R6858HYPHypB6D2F169F8/18/108:45AM to 12:30 PM
    8R6856HYPHypB6D2F169M8/18/108:45AM to 12:30 PM
    9R6800HYPHypBXD171F8/17/101:15 PM to 5 PM
    10R6796HYPHypBXD185M8/17/101:15 PM to 5 PM
    11R6788HYPHypBXD1187F8/17/101:15 PM to 5 PM
    12R6786HYPHypBXD1176M8/17/101:15 PM to 5 PM
    13R6806HYPHypBXD1277M8/17/101:15 PM to 5 PM
    14R6812HYPHypBXD1481F8/18/108:45AM to 12:30 PM
    15R6804HYPHypBXD2485F8/17/101:15 PM to 5 PM
    16R6792HYPHypBXD2775F8/17/101:15 PM to 5 PM
    17R6790HYPHypBXD2773M8/17/101:15 PM to 5 PM
    18R6798HYPHypBXD2971F8/17/101:15 PM to 5 PM
    19R6794HYPHypBXD2971M8/17/101:15 PM to 5 PM
    20R6816HYPHypBXD3174F8/18/108:45AM to 12:30 PM
    21R6802HYPHypBXD3173M8/17/101:15 PM to 5 PM
    22R6916HYPHypBXD3281F8/18/101 PM to 6:45 PM
    23R6846HYPHypBXD3281M8/18/108:45AM to 12:30 PM
    24R6822HYPHypBXD3477F8/18/108:45AM to 12:30 PM
    25R6808HYPHypBXD3477M8/18/108:45AM to 12:30 PM
    26R6814HYPHypBXD3979M8/18/108:45AM to 12:30 PM
    27R6848HYPHypBXD4085F8/18/108:45AM to 12:30 PM
    28R6850HYPHypBXD4085M8/18/108:45AM to 12:30 PM
    29R6810HYPHypBXD4287F8/18/108:45AM to 12:30 PM
    30R6758HYPHypBXD4381M8/17/109:30 AM to 12:30AM
    31R6746HYPHypBXD4483F8/17/109:30 AM to 12:30AM
    32R6750HYPHypBXD4483M8/17/109:30 AM to 12:30AM
    33R6764HYPHypBXD4577F8/17/109:30 AM to 12:30AM
    34R6762HYPHypBXD4577M8/17/109:30 AM to 12:30AM
    35R6880HYPHypBXD4876F8/18/101 PM to 6:45 PM
    36R6882HYPHypBXD4876M8/18/101 PM to 6:45 PM
    37R6748HYPHypBXD4984M8/17/109:30 AM to 12:30AM
    38R6890HYPHypBXD5077F8/18/101 PM to 6:45 PM
    39R6892HYPHypBXD5077M8/18/101 PM to 6:45 PM
    40R6918HYPHypBXD5684F8/18/101 PM to 6:45 PM
    41R6894HYPHypBXD5677M8/18/101 PM to 6:45 PM
    42R6770HYPHypBXD6070F8/17/109:30 AM to 12:30AM
    43R6772HYPHypBXD6070M8/17/101:15 PM to 5 PM
    44R6836HYPHypBXD6283F8/18/108:45AM to 12:30 PM
    45R6844HYPHypBXD6283M8/18/108:45AM to 12:30 PM
    46R6888HYPHypBXD6377F8/18/101 PM to 6:45 PM
    47R6878HYPHypBXD6584F8/18/101 PM to 6:45 PM
    48R6874HYPHypBXD6584M8/18/101 PM to 6:45 PM
    49R6930HYPHypBXD6876F8/18/101 PM to 6:45 PM
    50R6932HYPHypBXD6876M8/18/101 PM to 6:45 PM
    51R6776HYPHypBXD6969F8/17/101:15 PM to 5 PM
    52R6774HYPHypBXD6980M8/17/101:15 PM to 5 PM
    53R6926HYPHypBXD7076F8/18/101 PM to 6:45 PM
    54R6922HYPHypBXD7076M8/18/101 PM to 6:45 PM
    55R6870HYPHypBXD7176F8/18/101 PM to 6:45 PM
    56R6872HYPHypBXD7176M8/18/101 PM to 6:45 PM
    57R6778HYPHypBXD7383F8/17/101:15 PM to 5 PM
    58R6780HYPHypBXD7383M8/17/101:15 PM to 5 PM
    59R6838HYPHypBXD7576F8/18/108:45AM to 12:30 PM
    60R6830HYPHypBXD7576M8/18/108:45AM to 12:30 PM
    61R6934HYPHypBXD7987F8/18/101 PM to 6:45 PM
    62R6782HYPHypBXD8073F8/17/101:15 PM to 5 PM
    63R6784HYPHypBXD8073M8/17/101:15 PM to 5 PM
    64R6914HYPHypBXD8381F8/18/101 PM to 6:45 PM
    65R6912HYPHypBXD8381M8/18/101 PM to 6:45 PM
    66R6834HYPHypBXD8476M8/18/108:45AM to 12:30 PM
    67R6938HYPHypBXD8574F8/18/101 PM to 6:45 PM
    68R6940HYPHypBXD8574M8/18/101 PM to 6:45 PM
    69R6910HYPHypBXD8783F8/18/101 PM to 6:45 PM
    70R6908HYPHypBXD8783M8/18/101 PM to 6:45 PM
    71R6896HYPHypBXD8982F8/18/101 PM to 6:45 PM
    72R6898HYPHypBXD8982M8/18/101 PM to 6:45 PM
    73R6904HYPHypBXD9082F8/18/101 PM to 6:45 PM
    74R6906HYPHypBXD9082M8/18/101 PM to 6:45 PM
    75R6924HYPHypBXD9286F8/18/101 PM to 6:45 PM
    76R6928HYPHypBXD9289M8/18/101 PM to 6:45 PM
    77R6920HYPHypBXD9576F8/18/101 PM to 6:45 PM
    78R6868HYPHypBXD9576M8/18/108:45AM to 12:30 PM
    79R6900HYPHypBXD9771F8/18/101 PM to 6:45 PM
    80R6902HYPHypBXD9771M8/18/101 PM to 6:45 PM
    81R6876HYPHypBXD9977F8/18/101 PM to 6:45 PM
    82R6884HYPHypBXD9977M8/18/101 PM to 6:45 PM
    83R6840HYPHypBXD10083F8/18/108:45AM to 12:30 PM
    84R6832HYPHypBXD10083M8/18/108:45AM to 12:30 PM
    85R6944HYPHypBXD10189F8/18/101 PM to 6:45 PM
    86R6942HYPHypBXD10189M8/18/101 PM to 6:45 PM
    87R6756HYPHypBXD10288M8/17/109:30 AM to 12:30AM
    88R6768HYPHypBXD10378F8/17/109:30 AM to 12:30AM
    89R6766HYPHypBXD10378M8/17/109:30 AM to 12:30AM
    +
    + +

     

    diff --git a/general/datasets/Inia_hyp_pca_0813_v2/citation.rtf b/general/datasets/Inia_hyp_pca_0813_v2/citation.rtf new file mode 100644 index 0000000..17f95be --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v2/citation.rtf @@ -0,0 +1 @@ +

    Mozhui K, Lu L, Armstrong WE, Williams RW. Sex-specific modulation of gene expression networks in murine hypothalamus. Front Neurosci 2012;6:63. PMID:22593731

    diff --git a/general/datasets/Inia_hyp_pca_0813_v2/contributors.rtf b/general/datasets/Inia_hyp_pca_0813_v2/contributors.rtf new file mode 100644 index 0000000..aad2c8a --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v2/contributors.rtf @@ -0,0 +1,15 @@ +

     

    + +

    Mozhui KLu LArmstrong WEWilliams RW (2012) Sex-specific modulation of gene expression networks in murine hypothalamus.  2012 May 11;6:63. doi: 10.3389/fnins.2012.00063. eCollection 2012.

    + +

    Abstract

    + +

    The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a). Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estrogen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromosome paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

    + +

    eQTL; hypothalamus; sex-specificity; weighted gene coexpression networks

    + +
    +
    PMID: 22593731  PMCID: PMC3350311  DOI: 10.3389/fnins.2012.00063
    +
    + +

     

    diff --git a/general/datasets/Inia_hyp_pca_0813_v2/experiment-design.rtf b/general/datasets/Inia_hyp_pca_0813_v2/experiment-design.rtf new file mode 100644 index 0000000..443af4a --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v2/experiment-design.rtf @@ -0,0 +1,6 @@ +

    Hypothalamus was dissected from adult male and female mice and process for expression analysis.

    + +

    RNA isolation
    +Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + +

    This preliminary data set is associated with 430 eQTLs with LOD scores above 10. Peak LRS is 146 for Trait ID 10513604 (Hdhd3).

    diff --git a/general/datasets/Inia_hyp_pca_0813_v2/platform.rtf b/general/datasets/Inia_hyp_pca_0813_v2/platform.rtf new file mode 100644 index 0000000..aba2206 --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v2/platform.rtf @@ -0,0 +1 @@ +

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version] (GPL6246)

    diff --git a/general/datasets/Inia_hyp_pca_0813_v2/processing.rtf b/general/datasets/Inia_hyp_pca_0813_v2/processing.rtf new file mode 100644 index 0000000..b3e8689 --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v2/processing.rtf @@ -0,0 +1 @@ +

    Total RNA was processed using standard protocols and hybridized to the Affymetrix Mouse Gene 1.0 ST arrays4. This array contains 34,700 probe sets that target ∼29,000 well-defined transcripts (RefSeq mRNA isoforms). A single probe set is a collection of about 27 probes that target known exons within a single gene. The multiple probes design provides a more comprehensive cov-erage of transcripts from a single gene. Male and female samples were interleaved and processed together to avoid batch confounds. Details on the strain, age, and sex of each sample can be obtained from the information available for the INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) data set on www.genenetwork.org. Probe set level intensity values were extracted from the CEL files using the Affymetrix GeneChip Operating Software. Data nor-malization was performed using the R package “Affy” available from www.Bioconductor.org. The Robust Multichip Averaging protocol was used to process the expression values. The array data was then log transformed and rescaled using a z-scoring procedure to set the mean of each sample at eight expression units with a SD of 2 units. The entire data set can be down-loaded from www.genenetwork.org using the accession number GN281 (http://www.genenetwork.org/webqtl/main.py?FormID = sharinginfo&GN_AccessionId = 281) and also from the NIH Gene Expression Omnibus5 using the GEO accession number GSE36674. For this study we used a subset of cases that were repre-sented by both male and female samples – 78 sex-balanced arrays. Statistical power provided by this sample size (N = 39 strains) was estimated using the R function power.t.test6 with the SD set at 0.17, which is the average value. Only transcripts with above aver-age expression (minimum expression value above 8.5 on a log2 scale) were included for further analysis (17,192 probe sets). We used a two-tailed paired t -test to identify transcripts with signifi-cant expression difference between males and females. We applied the Benjamini and Hochberg false discovery rate (FDR) method and selected differentially expressed transcripts using a 10% FDR criterion.

    diff --git a/general/datasets/Inia_hyp_pca_0813_v2/summary.rtf b/general/datasets/Inia_hyp_pca_0813_v2/summary.rtf new file mode 100644 index 0000000..02671d5 --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v2/summary.rtf @@ -0,0 +1,16 @@ +

    These hypothalamic gene expression data were generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from NIAAA. The data set includes samples from 50 strains, including 46 BXDs, both parental strains, and reciprocal F1 hybrids. Expression data were generated using the Affymetrix Mouse Gene 1.0 ST exon-style microarray (multiple probes in all known exons) by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. Hypothalamic tissue was dissected by K. Mozhui (description to follow) with special attention to time of day (every sample has time stamp). RNA was extracted by K. Mozhui. All other processing steps by the UTHSC MRC by L. Rose. Data were processed by Arthur Centeno.

    + +

    Data released initially Nov 25, 2010, updated March 7, 2011 by A. Centeno and K. Mozhui to add two additional arrays. Data appear to be error-free in terms of sex and strain assignments shown in the table below.

    + +

    Dissection protocol:

    + +
      +
    1. Animals were sacrificed by quick cervical dislocation and brains were removed and stored in RNAlater (www.ambion.com) for 2 to 3 days
    2. +
    3. Brain was placed with ventral side up and a partial cut was made with a blade at -2.5 from Bregma (just a little rostral from the pontine fibres when viewed from the ventral side)
    4. +
    5. The brain was then place in a coronal matrix and a 2 mm section was made rostral to the first cut
    6. +
    7. The 2mm Section was placed on a clean glass slide and hypothalamus was sliced out and placed in a tube on dry ice.
    8. +
    9. To dissect out the BLA, the temporal lobes were detached by placing a scalple in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then sliced out and placed in a tube on dry ice.
    10. +
    11. Tissues from two mice of the same strain and sex were pooled. The only exceptions to this are the BLA samples for strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue from only one animal).
    12. +
    + +

    The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a).Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estro-gen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromo-some paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

    diff --git a/general/datasets/Inia_hyp_pca_0813_v3/acknowledgment.rtf b/general/datasets/Inia_hyp_pca_0813_v3/acknowledgment.rtf new file mode 100644 index 0000000..2c3f2bd --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v3/acknowledgment.rtf @@ -0,0 +1 @@ +

    This work was supported by Integrative Neuroscience Initiative on Alcoholism grants U01AA13499, U01AA017590, U01AA0016662. The authors are also grateful to Arthur Centeno and Lorne Rose, and the Molecular Resource Center at UTHSC.

    diff --git a/general/datasets/Inia_hyp_pca_0813_v3/cases.rtf b/general/datasets/Inia_hyp_pca_0813_v3/cases.rtf new file mode 100644 index 0000000..f19e9c8 --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v3/cases.rtf @@ -0,0 +1,916 @@ +

    The BXD recombinant inbred strains are derived from crossing the C57BL/6J (B6) and DBA/2J (D2) parental strains and inbreeding for over 20 generations (Taylor et al., 1999; Peirce et al., 2004). All mice used in this study were born and housed at the University of Tennessee Health Science Center. Mice were kept at an average of 3–4 per cage in a temperature-controlled vivarium (22 deg C) and maintained at a 12 h light/dark cycle. All animal protocols were approved by the Animal Care and Use Committee. We studied a total of 50 BXD strains, but only acquired matched male–female data pairs for 39 strains (35 BXD strains, parental B6 and D2, and two reciprocal F1 hybrids, B6D2F1 and D2B6F1). The average age of mice was 78 days. We provide more detail on the experimen-tal design and precise age and time of sacrifice of all cases at stored in 4 deg C for 2–3 days. To dissect the hypothalamus, the brain was placed with the ventral side facing up in a coronal "brain cutting" matrix. Using the medial mammillary body as landmark, a vertical cut was made right along the posterior boundary of the hypothala-mus. A second vertical cut was made 2 mm from the first cut. This edge lies slightly caudal to the optic chiasm and cuts through the retrochiasmatic nucleus. The hypothalamus was then sliced out from this 2 mm thick section. Each of the 39 mouse strains is represented by male and female samples (total of 78 microarray samples). Each individual sample consisted of tissue pooled from two mice of the same strain and sex that are usually littermates. The total number of mice used was 78 females and 78 males. RNA was purified using the RNAeasy micro kit on the QIAcube system (Qiagen)2. RNA purity and concen-tration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
    1R6854HYPHypC57BL/6J77F8/18/108:45AM to 12:30 PM
    2R6862HYPHypC57BL/6J77M8/18/108:45AM to 12:30 PM
    3R6852HYPHypD2B6F177F8/18/108:45AM to 12:30 PM
    4R6860HYPHypD2B6F177M8/18/108:45AM to 12:30 PM
    5R6864HYPHypDBA/2J77F8/18/108:45AM to 12:30 PM
    6R6866HYPHypDBA/2J68M8/18/108:45AM to 12:30 PM
    7R6858HYPHypB6D2F169F8/18/108:45AM to 12:30 PM
    8R6856HYPHypB6D2F169M8/18/108:45AM to 12:30 PM
    9R6800HYPHypBXD171F8/17/101:15 PM to 5 PM
    10R6796HYPHypBXD185M8/17/101:15 PM to 5 PM
    11R6788HYPHypBXD1187F8/17/101:15 PM to 5 PM
    12R6786HYPHypBXD1176M8/17/101:15 PM to 5 PM
    13R6806HYPHypBXD1277M8/17/101:15 PM to 5 PM
    14R6812HYPHypBXD1481F8/18/108:45AM to 12:30 PM
    15R6804HYPHypBXD2485F8/17/101:15 PM to 5 PM
    16R6792HYPHypBXD2775F8/17/101:15 PM to 5 PM
    17R6790HYPHypBXD2773M8/17/101:15 PM to 5 PM
    18R6798HYPHypBXD2971F8/17/101:15 PM to 5 PM
    19R6794HYPHypBXD2971M8/17/101:15 PM to 5 PM
    20R6816HYPHypBXD3174F8/18/108:45AM to 12:30 PM
    21R6802HYPHypBXD3173M8/17/101:15 PM to 5 PM
    22R6916HYPHypBXD3281F8/18/101 PM to 6:45 PM
    23R6846HYPHypBXD3281M8/18/108:45AM to 12:30 PM
    24R6822HYPHypBXD3477F8/18/108:45AM to 12:30 PM
    25R6808HYPHypBXD3477M8/18/108:45AM to 12:30 PM
    26R6814HYPHypBXD3979M8/18/108:45AM to 12:30 PM
    27R6848HYPHypBXD4085F8/18/108:45AM to 12:30 PM
    28R6850HYPHypBXD4085M8/18/108:45AM to 12:30 PM
    29R6810HYPHypBXD4287F8/18/108:45AM to 12:30 PM
    30R6758HYPHypBXD4381M8/17/109:30 AM to 12:30AM
    31R6746HYPHypBXD4483F8/17/109:30 AM to 12:30AM
    32R6750HYPHypBXD4483M8/17/109:30 AM to 12:30AM
    33R6764HYPHypBXD4577F8/17/109:30 AM to 12:30AM
    34R6762HYPHypBXD4577M8/17/109:30 AM to 12:30AM
    35R6880HYPHypBXD4876F8/18/101 PM to 6:45 PM
    36R6882HYPHypBXD4876M8/18/101 PM to 6:45 PM
    37R6748HYPHypBXD4984M8/17/109:30 AM to 12:30AM
    38R6890HYPHypBXD5077F8/18/101 PM to 6:45 PM
    39R6892HYPHypBXD5077M8/18/101 PM to 6:45 PM
    40R6918HYPHypBXD5684F8/18/101 PM to 6:45 PM
    41R6894HYPHypBXD5677M8/18/101 PM to 6:45 PM
    42R6770HYPHypBXD6070F8/17/109:30 AM to 12:30AM
    43R6772HYPHypBXD6070M8/17/101:15 PM to 5 PM
    44R6836HYPHypBXD6283F8/18/108:45AM to 12:30 PM
    45R6844HYPHypBXD6283M8/18/108:45AM to 12:30 PM
    46R6888HYPHypBXD6377F8/18/101 PM to 6:45 PM
    47R6878HYPHypBXD6584F8/18/101 PM to 6:45 PM
    48R6874HYPHypBXD6584M8/18/101 PM to 6:45 PM
    49R6930HYPHypBXD6876F8/18/101 PM to 6:45 PM
    50R6932HYPHypBXD6876M8/18/101 PM to 6:45 PM
    51R6776HYPHypBXD6969F8/17/101:15 PM to 5 PM
    52R6774HYPHypBXD6980M8/17/101:15 PM to 5 PM
    53R6926HYPHypBXD7076F8/18/101 PM to 6:45 PM
    54R6922HYPHypBXD7076M8/18/101 PM to 6:45 PM
    55R6870HYPHypBXD7176F8/18/101 PM to 6:45 PM
    56R6872HYPHypBXD7176M8/18/101 PM to 6:45 PM
    57R6778HYPHypBXD7383F8/17/101:15 PM to 5 PM
    58R6780HYPHypBXD7383M8/17/101:15 PM to 5 PM
    59R6838HYPHypBXD7576F8/18/108:45AM to 12:30 PM
    60R6830HYPHypBXD7576M8/18/108:45AM to 12:30 PM
    61R6934HYPHypBXD7987F8/18/101 PM to 6:45 PM
    62R6782HYPHypBXD8073F8/17/101:15 PM to 5 PM
    63R6784HYPHypBXD8073M8/17/101:15 PM to 5 PM
    64R6914HYPHypBXD8381F8/18/101 PM to 6:45 PM
    65R6912HYPHypBXD8381M8/18/101 PM to 6:45 PM
    66R6834HYPHypBXD8476M8/18/108:45AM to 12:30 PM
    67R6938HYPHypBXD8574F8/18/101 PM to 6:45 PM
    68R6940HYPHypBXD8574M8/18/101 PM to 6:45 PM
    69R6910HYPHypBXD8783F8/18/101 PM to 6:45 PM
    70R6908HYPHypBXD8783M8/18/101 PM to 6:45 PM
    71R6896HYPHypBXD8982F8/18/101 PM to 6:45 PM
    72R6898HYPHypBXD8982M8/18/101 PM to 6:45 PM
    73R6904HYPHypBXD9082F8/18/101 PM to 6:45 PM
    74R6906HYPHypBXD9082M8/18/101 PM to 6:45 PM
    75R6924HYPHypBXD9286F8/18/101 PM to 6:45 PM
    76R6928HYPHypBXD9289M8/18/101 PM to 6:45 PM
    77R6920HYPHypBXD9576F8/18/101 PM to 6:45 PM
    78R6868HYPHypBXD9576M8/18/108:45AM to 12:30 PM
    79R6900HYPHypBXD9771F8/18/101 PM to 6:45 PM
    80R6902HYPHypBXD9771M8/18/101 PM to 6:45 PM
    81R6876HYPHypBXD9977F8/18/101 PM to 6:45 PM
    82R6884HYPHypBXD9977M8/18/101 PM to 6:45 PM
    83R6840HYPHypBXD10083F8/18/108:45AM to 12:30 PM
    84R6832HYPHypBXD10083M8/18/108:45AM to 12:30 PM
    85R6944HYPHypBXD10189F8/18/101 PM to 6:45 PM
    86R6942HYPHypBXD10189M8/18/101 PM to 6:45 PM
    87R6756HYPHypBXD10288M8/17/109:30 AM to 12:30AM
    88R6768HYPHypBXD10378F8/17/109:30 AM to 12:30AM
    89R6766HYPHypBXD10378M8/17/109:30 AM to 12:30AM
    +
    + +

     

    diff --git a/general/datasets/Inia_hyp_pca_0813_v3/citation.rtf b/general/datasets/Inia_hyp_pca_0813_v3/citation.rtf new file mode 100644 index 0000000..17f95be --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v3/citation.rtf @@ -0,0 +1 @@ +

    Mozhui K, Lu L, Armstrong WE, Williams RW. Sex-specific modulation of gene expression networks in murine hypothalamus. Front Neurosci 2012;6:63. PMID:22593731

    diff --git a/general/datasets/Inia_hyp_pca_0813_v3/contributors.rtf b/general/datasets/Inia_hyp_pca_0813_v3/contributors.rtf new file mode 100644 index 0000000..aad2c8a --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v3/contributors.rtf @@ -0,0 +1,15 @@ +

     

    + +

    Mozhui KLu LArmstrong WEWilliams RW (2012) Sex-specific modulation of gene expression networks in murine hypothalamus.  2012 May 11;6:63. doi: 10.3389/fnins.2012.00063. eCollection 2012.

    + +

    Abstract

    + +

    The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a). Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estrogen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromosome paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

    + +

    eQTL; hypothalamus; sex-specificity; weighted gene coexpression networks

    + +
    +
    PMID: 22593731  PMCID: PMC3350311  DOI: 10.3389/fnins.2012.00063
    +
    + +

     

    diff --git a/general/datasets/Inia_hyp_pca_0813_v3/experiment-design.rtf b/general/datasets/Inia_hyp_pca_0813_v3/experiment-design.rtf new file mode 100644 index 0000000..443af4a --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v3/experiment-design.rtf @@ -0,0 +1,6 @@ +

    Hypothalamus was dissected from adult male and female mice and process for expression analysis.

    + +

    RNA isolation
    +Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + +

    This preliminary data set is associated with 430 eQTLs with LOD scores above 10. Peak LRS is 146 for Trait ID 10513604 (Hdhd3).

    diff --git a/general/datasets/Inia_hyp_pca_0813_v3/platform.rtf b/general/datasets/Inia_hyp_pca_0813_v3/platform.rtf new file mode 100644 index 0000000..aba2206 --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v3/platform.rtf @@ -0,0 +1 @@ +

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version] (GPL6246)

    diff --git a/general/datasets/Inia_hyp_pca_0813_v3/processing.rtf b/general/datasets/Inia_hyp_pca_0813_v3/processing.rtf new file mode 100644 index 0000000..b3e8689 --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v3/processing.rtf @@ -0,0 +1 @@ +

    Total RNA was processed using standard protocols and hybridized to the Affymetrix Mouse Gene 1.0 ST arrays4. This array contains 34,700 probe sets that target ∼29,000 well-defined transcripts (RefSeq mRNA isoforms). A single probe set is a collection of about 27 probes that target known exons within a single gene. The multiple probes design provides a more comprehensive cov-erage of transcripts from a single gene. Male and female samples were interleaved and processed together to avoid batch confounds. Details on the strain, age, and sex of each sample can be obtained from the information available for the INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) data set on www.genenetwork.org. Probe set level intensity values were extracted from the CEL files using the Affymetrix GeneChip Operating Software. Data nor-malization was performed using the R package “Affy” available from www.Bioconductor.org. The Robust Multichip Averaging protocol was used to process the expression values. The array data was then log transformed and rescaled using a z-scoring procedure to set the mean of each sample at eight expression units with a SD of 2 units. The entire data set can be down-loaded from www.genenetwork.org using the accession number GN281 (http://www.genenetwork.org/webqtl/main.py?FormID = sharinginfo&GN_AccessionId = 281) and also from the NIH Gene Expression Omnibus5 using the GEO accession number GSE36674. For this study we used a subset of cases that were repre-sented by both male and female samples – 78 sex-balanced arrays. Statistical power provided by this sample size (N = 39 strains) was estimated using the R function power.t.test6 with the SD set at 0.17, which is the average value. Only transcripts with above aver-age expression (minimum expression value above 8.5 on a log2 scale) were included for further analysis (17,192 probe sets). We used a two-tailed paired t -test to identify transcripts with signifi-cant expression difference between males and females. We applied the Benjamini and Hochberg false discovery rate (FDR) method and selected differentially expressed transcripts using a 10% FDR criterion.

    diff --git a/general/datasets/Inia_hyp_pca_0813_v3/summary.rtf b/general/datasets/Inia_hyp_pca_0813_v3/summary.rtf new file mode 100644 index 0000000..02671d5 --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v3/summary.rtf @@ -0,0 +1,16 @@ +

    These hypothalamic gene expression data were generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from NIAAA. The data set includes samples from 50 strains, including 46 BXDs, both parental strains, and reciprocal F1 hybrids. Expression data were generated using the Affymetrix Mouse Gene 1.0 ST exon-style microarray (multiple probes in all known exons) by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. Hypothalamic tissue was dissected by K. Mozhui (description to follow) with special attention to time of day (every sample has time stamp). RNA was extracted by K. Mozhui. All other processing steps by the UTHSC MRC by L. Rose. Data were processed by Arthur Centeno.

    + +

    Data released initially Nov 25, 2010, updated March 7, 2011 by A. Centeno and K. Mozhui to add two additional arrays. Data appear to be error-free in terms of sex and strain assignments shown in the table below.

    + +

    Dissection protocol:

    + +
      +
    1. Animals were sacrificed by quick cervical dislocation and brains were removed and stored in RNAlater (www.ambion.com) for 2 to 3 days
    2. +
    3. Brain was placed with ventral side up and a partial cut was made with a blade at -2.5 from Bregma (just a little rostral from the pontine fibres when viewed from the ventral side)
    4. +
    5. The brain was then place in a coronal matrix and a 2 mm section was made rostral to the first cut
    6. +
    7. The 2mm Section was placed on a clean glass slide and hypothalamus was sliced out and placed in a tube on dry ice.
    8. +
    9. To dissect out the BLA, the temporal lobes were detached by placing a scalple in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then sliced out and placed in a tube on dry ice.
    10. +
    11. Tissues from two mice of the same strain and sex were pooled. The only exceptions to this are the BLA samples for strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue from only one animal).
    12. +
    + +

    The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a).Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estro-gen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromo-some paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

    diff --git a/general/datasets/Inia_hyp_pca_0813_v4/acknowledgment.rtf b/general/datasets/Inia_hyp_pca_0813_v4/acknowledgment.rtf new file mode 100644 index 0000000..2c3f2bd --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v4/acknowledgment.rtf @@ -0,0 +1 @@ +

    This work was supported by Integrative Neuroscience Initiative on Alcoholism grants U01AA13499, U01AA017590, U01AA0016662. The authors are also grateful to Arthur Centeno and Lorne Rose, and the Molecular Resource Center at UTHSC.

    diff --git a/general/datasets/Inia_hyp_pca_0813_v4/cases.rtf b/general/datasets/Inia_hyp_pca_0813_v4/cases.rtf new file mode 100644 index 0000000..f19e9c8 --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v4/cases.rtf @@ -0,0 +1,916 @@ +

    The BXD recombinant inbred strains are derived from crossing the C57BL/6J (B6) and DBA/2J (D2) parental strains and inbreeding for over 20 generations (Taylor et al., 1999; Peirce et al., 2004). All mice used in this study were born and housed at the University of Tennessee Health Science Center. Mice were kept at an average of 3–4 per cage in a temperature-controlled vivarium (22 deg C) and maintained at a 12 h light/dark cycle. All animal protocols were approved by the Animal Care and Use Committee. We studied a total of 50 BXD strains, but only acquired matched male–female data pairs for 39 strains (35 BXD strains, parental B6 and D2, and two reciprocal F1 hybrids, B6D2F1 and D2B6F1). The average age of mice was 78 days. We provide more detail on the experimen-tal design and precise age and time of sacrifice of all cases at stored in 4 deg C for 2–3 days. To dissect the hypothalamus, the brain was placed with the ventral side facing up in a coronal "brain cutting" matrix. Using the medial mammillary body as landmark, a vertical cut was made right along the posterior boundary of the hypothala-mus. A second vertical cut was made 2 mm from the first cut. This edge lies slightly caudal to the optic chiasm and cuts through the retrochiasmatic nucleus. The hypothalamus was then sliced out from this 2 mm thick section. Each of the 39 mouse strains is represented by male and female samples (total of 78 microarray samples). Each individual sample consisted of tissue pooled from two mice of the same strain and sex that are usually littermates. The total number of mice used was 78 females and 78 males. RNA was purified using the RNAeasy micro kit on the QIAcube system (Qiagen)2. RNA purity and concen-tration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
    1R6854HYPHypC57BL/6J77F8/18/108:45AM to 12:30 PM
    2R6862HYPHypC57BL/6J77M8/18/108:45AM to 12:30 PM
    3R6852HYPHypD2B6F177F8/18/108:45AM to 12:30 PM
    4R6860HYPHypD2B6F177M8/18/108:45AM to 12:30 PM
    5R6864HYPHypDBA/2J77F8/18/108:45AM to 12:30 PM
    6R6866HYPHypDBA/2J68M8/18/108:45AM to 12:30 PM
    7R6858HYPHypB6D2F169F8/18/108:45AM to 12:30 PM
    8R6856HYPHypB6D2F169M8/18/108:45AM to 12:30 PM
    9R6800HYPHypBXD171F8/17/101:15 PM to 5 PM
    10R6796HYPHypBXD185M8/17/101:15 PM to 5 PM
    11R6788HYPHypBXD1187F8/17/101:15 PM to 5 PM
    12R6786HYPHypBXD1176M8/17/101:15 PM to 5 PM
    13R6806HYPHypBXD1277M8/17/101:15 PM to 5 PM
    14R6812HYPHypBXD1481F8/18/108:45AM to 12:30 PM
    15R6804HYPHypBXD2485F8/17/101:15 PM to 5 PM
    16R6792HYPHypBXD2775F8/17/101:15 PM to 5 PM
    17R6790HYPHypBXD2773M8/17/101:15 PM to 5 PM
    18R6798HYPHypBXD2971F8/17/101:15 PM to 5 PM
    19R6794HYPHypBXD2971M8/17/101:15 PM to 5 PM
    20R6816HYPHypBXD3174F8/18/108:45AM to 12:30 PM
    21R6802HYPHypBXD3173M8/17/101:15 PM to 5 PM
    22R6916HYPHypBXD3281F8/18/101 PM to 6:45 PM
    23R6846HYPHypBXD3281M8/18/108:45AM to 12:30 PM
    24R6822HYPHypBXD3477F8/18/108:45AM to 12:30 PM
    25R6808HYPHypBXD3477M8/18/108:45AM to 12:30 PM
    26R6814HYPHypBXD3979M8/18/108:45AM to 12:30 PM
    27R6848HYPHypBXD4085F8/18/108:45AM to 12:30 PM
    28R6850HYPHypBXD4085M8/18/108:45AM to 12:30 PM
    29R6810HYPHypBXD4287F8/18/108:45AM to 12:30 PM
    30R6758HYPHypBXD4381M8/17/109:30 AM to 12:30AM
    31R6746HYPHypBXD4483F8/17/109:30 AM to 12:30AM
    32R6750HYPHypBXD4483M8/17/109:30 AM to 12:30AM
    33R6764HYPHypBXD4577F8/17/109:30 AM to 12:30AM
    34R6762HYPHypBXD4577M8/17/109:30 AM to 12:30AM
    35R6880HYPHypBXD4876F8/18/101 PM to 6:45 PM
    36R6882HYPHypBXD4876M8/18/101 PM to 6:45 PM
    37R6748HYPHypBXD4984M8/17/109:30 AM to 12:30AM
    38R6890HYPHypBXD5077F8/18/101 PM to 6:45 PM
    39R6892HYPHypBXD5077M8/18/101 PM to 6:45 PM
    40R6918HYPHypBXD5684F8/18/101 PM to 6:45 PM
    41R6894HYPHypBXD5677M8/18/101 PM to 6:45 PM
    42R6770HYPHypBXD6070F8/17/109:30 AM to 12:30AM
    43R6772HYPHypBXD6070M8/17/101:15 PM to 5 PM
    44R6836HYPHypBXD6283F8/18/108:45AM to 12:30 PM
    45R6844HYPHypBXD6283M8/18/108:45AM to 12:30 PM
    46R6888HYPHypBXD6377F8/18/101 PM to 6:45 PM
    47R6878HYPHypBXD6584F8/18/101 PM to 6:45 PM
    48R6874HYPHypBXD6584M8/18/101 PM to 6:45 PM
    49R6930HYPHypBXD6876F8/18/101 PM to 6:45 PM
    50R6932HYPHypBXD6876M8/18/101 PM to 6:45 PM
    51R6776HYPHypBXD6969F8/17/101:15 PM to 5 PM
    52R6774HYPHypBXD6980M8/17/101:15 PM to 5 PM
    53R6926HYPHypBXD7076F8/18/101 PM to 6:45 PM
    54R6922HYPHypBXD7076M8/18/101 PM to 6:45 PM
    55R6870HYPHypBXD7176F8/18/101 PM to 6:45 PM
    56R6872HYPHypBXD7176M8/18/101 PM to 6:45 PM
    57R6778HYPHypBXD7383F8/17/101:15 PM to 5 PM
    58R6780HYPHypBXD7383M8/17/101:15 PM to 5 PM
    59R6838HYPHypBXD7576F8/18/108:45AM to 12:30 PM
    60R6830HYPHypBXD7576M8/18/108:45AM to 12:30 PM
    61R6934HYPHypBXD7987F8/18/101 PM to 6:45 PM
    62R6782HYPHypBXD8073F8/17/101:15 PM to 5 PM
    63R6784HYPHypBXD8073M8/17/101:15 PM to 5 PM
    64R6914HYPHypBXD8381F8/18/101 PM to 6:45 PM
    65R6912HYPHypBXD8381M8/18/101 PM to 6:45 PM
    66R6834HYPHypBXD8476M8/18/108:45AM to 12:30 PM
    67R6938HYPHypBXD8574F8/18/101 PM to 6:45 PM
    68R6940HYPHypBXD8574M8/18/101 PM to 6:45 PM
    69R6910HYPHypBXD8783F8/18/101 PM to 6:45 PM
    70R6908HYPHypBXD8783M8/18/101 PM to 6:45 PM
    71R6896HYPHypBXD8982F8/18/101 PM to 6:45 PM
    72R6898HYPHypBXD8982M8/18/101 PM to 6:45 PM
    73R6904HYPHypBXD9082F8/18/101 PM to 6:45 PM
    74R6906HYPHypBXD9082M8/18/101 PM to 6:45 PM
    75R6924HYPHypBXD9286F8/18/101 PM to 6:45 PM
    76R6928HYPHypBXD9289M8/18/101 PM to 6:45 PM
    77R6920HYPHypBXD9576F8/18/101 PM to 6:45 PM
    78R6868HYPHypBXD9576M8/18/108:45AM to 12:30 PM
    79R6900HYPHypBXD9771F8/18/101 PM to 6:45 PM
    80R6902HYPHypBXD9771M8/18/101 PM to 6:45 PM
    81R6876HYPHypBXD9977F8/18/101 PM to 6:45 PM
    82R6884HYPHypBXD9977M8/18/101 PM to 6:45 PM
    83R6840HYPHypBXD10083F8/18/108:45AM to 12:30 PM
    84R6832HYPHypBXD10083M8/18/108:45AM to 12:30 PM
    85R6944HYPHypBXD10189F8/18/101 PM to 6:45 PM
    86R6942HYPHypBXD10189M8/18/101 PM to 6:45 PM
    87R6756HYPHypBXD10288M8/17/109:30 AM to 12:30AM
    88R6768HYPHypBXD10378F8/17/109:30 AM to 12:30AM
    89R6766HYPHypBXD10378M8/17/109:30 AM to 12:30AM
    +
    + +

     

    diff --git a/general/datasets/Inia_hyp_pca_0813_v4/citation.rtf b/general/datasets/Inia_hyp_pca_0813_v4/citation.rtf new file mode 100644 index 0000000..17f95be --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v4/citation.rtf @@ -0,0 +1 @@ +

    Mozhui K, Lu L, Armstrong WE, Williams RW. Sex-specific modulation of gene expression networks in murine hypothalamus. Front Neurosci 2012;6:63. PMID:22593731

    diff --git a/general/datasets/Inia_hyp_pca_0813_v4/contributors.rtf b/general/datasets/Inia_hyp_pca_0813_v4/contributors.rtf new file mode 100644 index 0000000..aad2c8a --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v4/contributors.rtf @@ -0,0 +1,15 @@ +

     

    + +

    Mozhui KLu LArmstrong WEWilliams RW (2012) Sex-specific modulation of gene expression networks in murine hypothalamus.  2012 May 11;6:63. doi: 10.3389/fnins.2012.00063. eCollection 2012.

    + +

    Abstract

    + +

    The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a). Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estrogen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromosome paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

    + +

    eQTL; hypothalamus; sex-specificity; weighted gene coexpression networks

    + +
    +
    PMID: 22593731  PMCID: PMC3350311  DOI: 10.3389/fnins.2012.00063
    +
    + +

     

    diff --git a/general/datasets/Inia_hyp_pca_0813_v4/experiment-design.rtf b/general/datasets/Inia_hyp_pca_0813_v4/experiment-design.rtf new file mode 100644 index 0000000..443af4a --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v4/experiment-design.rtf @@ -0,0 +1,6 @@ +

    Hypothalamus was dissected from adult male and female mice and process for expression analysis.

    + +

    RNA isolation
    +Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + +

    This preliminary data set is associated with 430 eQTLs with LOD scores above 10. Peak LRS is 146 for Trait ID 10513604 (Hdhd3).

    diff --git a/general/datasets/Inia_hyp_pca_0813_v4/platform.rtf b/general/datasets/Inia_hyp_pca_0813_v4/platform.rtf new file mode 100644 index 0000000..aba2206 --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v4/platform.rtf @@ -0,0 +1 @@ +

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version] (GPL6246)

    diff --git a/general/datasets/Inia_hyp_pca_0813_v4/processing.rtf b/general/datasets/Inia_hyp_pca_0813_v4/processing.rtf new file mode 100644 index 0000000..b3e8689 --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v4/processing.rtf @@ -0,0 +1 @@ +

    Total RNA was processed using standard protocols and hybridized to the Affymetrix Mouse Gene 1.0 ST arrays4. This array contains 34,700 probe sets that target ∼29,000 well-defined transcripts (RefSeq mRNA isoforms). A single probe set is a collection of about 27 probes that target known exons within a single gene. The multiple probes design provides a more comprehensive cov-erage of transcripts from a single gene. Male and female samples were interleaved and processed together to avoid batch confounds. Details on the strain, age, and sex of each sample can be obtained from the information available for the INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) data set on www.genenetwork.org. Probe set level intensity values were extracted from the CEL files using the Affymetrix GeneChip Operating Software. Data nor-malization was performed using the R package “Affy” available from www.Bioconductor.org. The Robust Multichip Averaging protocol was used to process the expression values. The array data was then log transformed and rescaled using a z-scoring procedure to set the mean of each sample at eight expression units with a SD of 2 units. The entire data set can be down-loaded from www.genenetwork.org using the accession number GN281 (http://www.genenetwork.org/webqtl/main.py?FormID = sharinginfo&GN_AccessionId = 281) and also from the NIH Gene Expression Omnibus5 using the GEO accession number GSE36674. For this study we used a subset of cases that were repre-sented by both male and female samples – 78 sex-balanced arrays. Statistical power provided by this sample size (N = 39 strains) was estimated using the R function power.t.test6 with the SD set at 0.17, which is the average value. Only transcripts with above aver-age expression (minimum expression value above 8.5 on a log2 scale) were included for further analysis (17,192 probe sets). We used a two-tailed paired t -test to identify transcripts with signifi-cant expression difference between males and females. We applied the Benjamini and Hochberg false discovery rate (FDR) method and selected differentially expressed transcripts using a 10% FDR criterion.

    diff --git a/general/datasets/Inia_hyp_pca_0813_v4/summary.rtf b/general/datasets/Inia_hyp_pca_0813_v4/summary.rtf new file mode 100644 index 0000000..02671d5 --- /dev/null +++ b/general/datasets/Inia_hyp_pca_0813_v4/summary.rtf @@ -0,0 +1,16 @@ +

    These hypothalamic gene expression data were generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from NIAAA. The data set includes samples from 50 strains, including 46 BXDs, both parental strains, and reciprocal F1 hybrids. Expression data were generated using the Affymetrix Mouse Gene 1.0 ST exon-style microarray (multiple probes in all known exons) by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. Hypothalamic tissue was dissected by K. Mozhui (description to follow) with special attention to time of day (every sample has time stamp). RNA was extracted by K. Mozhui. All other processing steps by the UTHSC MRC by L. Rose. Data were processed by Arthur Centeno.

    + +

    Data released initially Nov 25, 2010, updated March 7, 2011 by A. Centeno and K. Mozhui to add two additional arrays. Data appear to be error-free in terms of sex and strain assignments shown in the table below.

    + +

    Dissection protocol:

    + +
      +
    1. Animals were sacrificed by quick cervical dislocation and brains were removed and stored in RNAlater (www.ambion.com) for 2 to 3 days
    2. +
    3. Brain was placed with ventral side up and a partial cut was made with a blade at -2.5 from Bregma (just a little rostral from the pontine fibres when viewed from the ventral side)
    4. +
    5. The brain was then place in a coronal matrix and a 2 mm section was made rostral to the first cut
    6. +
    7. The 2mm Section was placed on a clean glass slide and hypothalamus was sliced out and placed in a tube on dry ice.
    8. +
    9. To dissect out the BLA, the temporal lobes were detached by placing a scalple in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then sliced out and placed in a tube on dry ice.
    10. +
    11. Tissues from two mice of the same strain and sex were pooled. The only exceptions to this are the BLA samples for strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue from only one animal).
    12. +
    + +

    The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a).Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estro-gen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromo-some paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

    diff --git a/general/datasets/Inia_hyp_rma_1110/acknowledgment.rtf b/general/datasets/Inia_hyp_rma_1110/acknowledgment.rtf new file mode 100644 index 0000000..2c3f2bd --- /dev/null +++ b/general/datasets/Inia_hyp_rma_1110/acknowledgment.rtf @@ -0,0 +1 @@ +

    This work was supported by Integrative Neuroscience Initiative on Alcoholism grants U01AA13499, U01AA017590, U01AA0016662. The authors are also grateful to Arthur Centeno and Lorne Rose, and the Molecular Resource Center at UTHSC.

    diff --git a/general/datasets/Inia_hyp_rma_1110/cases.rtf b/general/datasets/Inia_hyp_rma_1110/cases.rtf new file mode 100644 index 0000000..f19e9c8 --- /dev/null +++ b/general/datasets/Inia_hyp_rma_1110/cases.rtf @@ -0,0 +1,916 @@ +

    The BXD recombinant inbred strains are derived from crossing the C57BL/6J (B6) and DBA/2J (D2) parental strains and inbreeding for over 20 generations (Taylor et al., 1999; Peirce et al., 2004). All mice used in this study were born and housed at the University of Tennessee Health Science Center. Mice were kept at an average of 3–4 per cage in a temperature-controlled vivarium (22 deg C) and maintained at a 12 h light/dark cycle. All animal protocols were approved by the Animal Care and Use Committee. We studied a total of 50 BXD strains, but only acquired matched male–female data pairs for 39 strains (35 BXD strains, parental B6 and D2, and two reciprocal F1 hybrids, B6D2F1 and D2B6F1). The average age of mice was 78 days. We provide more detail on the experimen-tal design and precise age and time of sacrifice of all cases at stored in 4 deg C for 2–3 days. To dissect the hypothalamus, the brain was placed with the ventral side facing up in a coronal "brain cutting" matrix. Using the medial mammillary body as landmark, a vertical cut was made right along the posterior boundary of the hypothala-mus. A second vertical cut was made 2 mm from the first cut. This edge lies slightly caudal to the optic chiasm and cuts through the retrochiasmatic nucleus. The hypothalamus was then sliced out from this 2 mm thick section. Each of the 39 mouse strains is represented by male and female samples (total of 78 microarray samples). Each individual sample consisted of tissue pooled from two mice of the same strain and sex that are usually littermates. The total number of mice used was 78 females and 78 males. RNA was purified using the RNAeasy micro kit on the QIAcube system (Qiagen)2. RNA purity and concen-tration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
    1R6854HYPHypC57BL/6J77F8/18/108:45AM to 12:30 PM
    2R6862HYPHypC57BL/6J77M8/18/108:45AM to 12:30 PM
    3R6852HYPHypD2B6F177F8/18/108:45AM to 12:30 PM
    4R6860HYPHypD2B6F177M8/18/108:45AM to 12:30 PM
    5R6864HYPHypDBA/2J77F8/18/108:45AM to 12:30 PM
    6R6866HYPHypDBA/2J68M8/18/108:45AM to 12:30 PM
    7R6858HYPHypB6D2F169F8/18/108:45AM to 12:30 PM
    8R6856HYPHypB6D2F169M8/18/108:45AM to 12:30 PM
    9R6800HYPHypBXD171F8/17/101:15 PM to 5 PM
    10R6796HYPHypBXD185M8/17/101:15 PM to 5 PM
    11R6788HYPHypBXD1187F8/17/101:15 PM to 5 PM
    12R6786HYPHypBXD1176M8/17/101:15 PM to 5 PM
    13R6806HYPHypBXD1277M8/17/101:15 PM to 5 PM
    14R6812HYPHypBXD1481F8/18/108:45AM to 12:30 PM
    15R6804HYPHypBXD2485F8/17/101:15 PM to 5 PM
    16R6792HYPHypBXD2775F8/17/101:15 PM to 5 PM
    17R6790HYPHypBXD2773M8/17/101:15 PM to 5 PM
    18R6798HYPHypBXD2971F8/17/101:15 PM to 5 PM
    19R6794HYPHypBXD2971M8/17/101:15 PM to 5 PM
    20R6816HYPHypBXD3174F8/18/108:45AM to 12:30 PM
    21R6802HYPHypBXD3173M8/17/101:15 PM to 5 PM
    22R6916HYPHypBXD3281F8/18/101 PM to 6:45 PM
    23R6846HYPHypBXD3281M8/18/108:45AM to 12:30 PM
    24R6822HYPHypBXD3477F8/18/108:45AM to 12:30 PM
    25R6808HYPHypBXD3477M8/18/108:45AM to 12:30 PM
    26R6814HYPHypBXD3979M8/18/108:45AM to 12:30 PM
    27R6848HYPHypBXD4085F8/18/108:45AM to 12:30 PM
    28R6850HYPHypBXD4085M8/18/108:45AM to 12:30 PM
    29R6810HYPHypBXD4287F8/18/108:45AM to 12:30 PM
    30R6758HYPHypBXD4381M8/17/109:30 AM to 12:30AM
    31R6746HYPHypBXD4483F8/17/109:30 AM to 12:30AM
    32R6750HYPHypBXD4483M8/17/109:30 AM to 12:30AM
    33R6764HYPHypBXD4577F8/17/109:30 AM to 12:30AM
    34R6762HYPHypBXD4577M8/17/109:30 AM to 12:30AM
    35R6880HYPHypBXD4876F8/18/101 PM to 6:45 PM
    36R6882HYPHypBXD4876M8/18/101 PM to 6:45 PM
    37R6748HYPHypBXD4984M8/17/109:30 AM to 12:30AM
    38R6890HYPHypBXD5077F8/18/101 PM to 6:45 PM
    39R6892HYPHypBXD5077M8/18/101 PM to 6:45 PM
    40R6918HYPHypBXD5684F8/18/101 PM to 6:45 PM
    41R6894HYPHypBXD5677M8/18/101 PM to 6:45 PM
    42R6770HYPHypBXD6070F8/17/109:30 AM to 12:30AM
    43R6772HYPHypBXD6070M8/17/101:15 PM to 5 PM
    44R6836HYPHypBXD6283F8/18/108:45AM to 12:30 PM
    45R6844HYPHypBXD6283M8/18/108:45AM to 12:30 PM
    46R6888HYPHypBXD6377F8/18/101 PM to 6:45 PM
    47R6878HYPHypBXD6584F8/18/101 PM to 6:45 PM
    48R6874HYPHypBXD6584M8/18/101 PM to 6:45 PM
    49R6930HYPHypBXD6876F8/18/101 PM to 6:45 PM
    50R6932HYPHypBXD6876M8/18/101 PM to 6:45 PM
    51R6776HYPHypBXD6969F8/17/101:15 PM to 5 PM
    52R6774HYPHypBXD6980M8/17/101:15 PM to 5 PM
    53R6926HYPHypBXD7076F8/18/101 PM to 6:45 PM
    54R6922HYPHypBXD7076M8/18/101 PM to 6:45 PM
    55R6870HYPHypBXD7176F8/18/101 PM to 6:45 PM
    56R6872HYPHypBXD7176M8/18/101 PM to 6:45 PM
    57R6778HYPHypBXD7383F8/17/101:15 PM to 5 PM
    58R6780HYPHypBXD7383M8/17/101:15 PM to 5 PM
    59R6838HYPHypBXD7576F8/18/108:45AM to 12:30 PM
    60R6830HYPHypBXD7576M8/18/108:45AM to 12:30 PM
    61R6934HYPHypBXD7987F8/18/101 PM to 6:45 PM
    62R6782HYPHypBXD8073F8/17/101:15 PM to 5 PM
    63R6784HYPHypBXD8073M8/17/101:15 PM to 5 PM
    64R6914HYPHypBXD8381F8/18/101 PM to 6:45 PM
    65R6912HYPHypBXD8381M8/18/101 PM to 6:45 PM
    66R6834HYPHypBXD8476M8/18/108:45AM to 12:30 PM
    67R6938HYPHypBXD8574F8/18/101 PM to 6:45 PM
    68R6940HYPHypBXD8574M8/18/101 PM to 6:45 PM
    69R6910HYPHypBXD8783F8/18/101 PM to 6:45 PM
    70R6908HYPHypBXD8783M8/18/101 PM to 6:45 PM
    71R6896HYPHypBXD8982F8/18/101 PM to 6:45 PM
    72R6898HYPHypBXD8982M8/18/101 PM to 6:45 PM
    73R6904HYPHypBXD9082F8/18/101 PM to 6:45 PM
    74R6906HYPHypBXD9082M8/18/101 PM to 6:45 PM
    75R6924HYPHypBXD9286F8/18/101 PM to 6:45 PM
    76R6928HYPHypBXD9289M8/18/101 PM to 6:45 PM
    77R6920HYPHypBXD9576F8/18/101 PM to 6:45 PM
    78R6868HYPHypBXD9576M8/18/108:45AM to 12:30 PM
    79R6900HYPHypBXD9771F8/18/101 PM to 6:45 PM
    80R6902HYPHypBXD9771M8/18/101 PM to 6:45 PM
    81R6876HYPHypBXD9977F8/18/101 PM to 6:45 PM
    82R6884HYPHypBXD9977M8/18/101 PM to 6:45 PM
    83R6840HYPHypBXD10083F8/18/108:45AM to 12:30 PM
    84R6832HYPHypBXD10083M8/18/108:45AM to 12:30 PM
    85R6944HYPHypBXD10189F8/18/101 PM to 6:45 PM
    86R6942HYPHypBXD10189M8/18/101 PM to 6:45 PM
    87R6756HYPHypBXD10288M8/17/109:30 AM to 12:30AM
    88R6768HYPHypBXD10378F8/17/109:30 AM to 12:30AM
    89R6766HYPHypBXD10378M8/17/109:30 AM to 12:30AM
    +
    + +

     

    diff --git a/general/datasets/Inia_hyp_rma_1110/citation.rtf b/general/datasets/Inia_hyp_rma_1110/citation.rtf new file mode 100644 index 0000000..17f95be --- /dev/null +++ b/general/datasets/Inia_hyp_rma_1110/citation.rtf @@ -0,0 +1 @@ +

    Mozhui K, Lu L, Armstrong WE, Williams RW. Sex-specific modulation of gene expression networks in murine hypothalamus. Front Neurosci 2012;6:63. PMID:22593731

    diff --git a/general/datasets/Inia_hyp_rma_1110/contributors.rtf b/general/datasets/Inia_hyp_rma_1110/contributors.rtf new file mode 100644 index 0000000..aad2c8a --- /dev/null +++ b/general/datasets/Inia_hyp_rma_1110/contributors.rtf @@ -0,0 +1,15 @@ +

     

    + +

    Mozhui KLu LArmstrong WEWilliams RW (2012) Sex-specific modulation of gene expression networks in murine hypothalamus.  2012 May 11;6:63. doi: 10.3389/fnins.2012.00063. eCollection 2012.

    + +

    Abstract

    + +

    The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a). Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estrogen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromosome paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

    + +

    eQTL; hypothalamus; sex-specificity; weighted gene coexpression networks

    + +
    +
    PMID: 22593731  PMCID: PMC3350311  DOI: 10.3389/fnins.2012.00063
    +
    + +

     

    diff --git a/general/datasets/Inia_hyp_rma_1110/experiment-design.rtf b/general/datasets/Inia_hyp_rma_1110/experiment-design.rtf new file mode 100644 index 0000000..443af4a --- /dev/null +++ b/general/datasets/Inia_hyp_rma_1110/experiment-design.rtf @@ -0,0 +1,6 @@ +

    Hypothalamus was dissected from adult male and female mice and process for expression analysis.

    + +

    RNA isolation
    +Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + +

    This preliminary data set is associated with 430 eQTLs with LOD scores above 10. Peak LRS is 146 for Trait ID 10513604 (Hdhd3).

    diff --git a/general/datasets/Inia_hyp_rma_1110/platform.rtf b/general/datasets/Inia_hyp_rma_1110/platform.rtf new file mode 100644 index 0000000..aba2206 --- /dev/null +++ b/general/datasets/Inia_hyp_rma_1110/platform.rtf @@ -0,0 +1 @@ +

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version] (GPL6246)

    diff --git a/general/datasets/Inia_hyp_rma_1110/processing.rtf b/general/datasets/Inia_hyp_rma_1110/processing.rtf new file mode 100644 index 0000000..b3e8689 --- /dev/null +++ b/general/datasets/Inia_hyp_rma_1110/processing.rtf @@ -0,0 +1 @@ +

    Total RNA was processed using standard protocols and hybridized to the Affymetrix Mouse Gene 1.0 ST arrays4. This array contains 34,700 probe sets that target ∼29,000 well-defined transcripts (RefSeq mRNA isoforms). A single probe set is a collection of about 27 probes that target known exons within a single gene. The multiple probes design provides a more comprehensive cov-erage of transcripts from a single gene. Male and female samples were interleaved and processed together to avoid batch confounds. Details on the strain, age, and sex of each sample can be obtained from the information available for the INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) data set on www.genenetwork.org. Probe set level intensity values were extracted from the CEL files using the Affymetrix GeneChip Operating Software. Data nor-malization was performed using the R package “Affy” available from www.Bioconductor.org. The Robust Multichip Averaging protocol was used to process the expression values. The array data was then log transformed and rescaled using a z-scoring procedure to set the mean of each sample at eight expression units with a SD of 2 units. The entire data set can be down-loaded from www.genenetwork.org using the accession number GN281 (http://www.genenetwork.org/webqtl/main.py?FormID = sharinginfo&GN_AccessionId = 281) and also from the NIH Gene Expression Omnibus5 using the GEO accession number GSE36674. For this study we used a subset of cases that were repre-sented by both male and female samples – 78 sex-balanced arrays. Statistical power provided by this sample size (N = 39 strains) was estimated using the R function power.t.test6 with the SD set at 0.17, which is the average value. Only transcripts with above aver-age expression (minimum expression value above 8.5 on a log2 scale) were included for further analysis (17,192 probe sets). We used a two-tailed paired t -test to identify transcripts with signifi-cant expression difference between males and females. We applied the Benjamini and Hochberg false discovery rate (FDR) method and selected differentially expressed transcripts using a 10% FDR criterion.

    diff --git a/general/datasets/Inia_hyp_rma_1110/summary.rtf b/general/datasets/Inia_hyp_rma_1110/summary.rtf new file mode 100644 index 0000000..02671d5 --- /dev/null +++ b/general/datasets/Inia_hyp_rma_1110/summary.rtf @@ -0,0 +1,16 @@ +

    These hypothalamic gene expression data were generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from NIAAA. The data set includes samples from 50 strains, including 46 BXDs, both parental strains, and reciprocal F1 hybrids. Expression data were generated using the Affymetrix Mouse Gene 1.0 ST exon-style microarray (multiple probes in all known exons) by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. Hypothalamic tissue was dissected by K. Mozhui (description to follow) with special attention to time of day (every sample has time stamp). RNA was extracted by K. Mozhui. All other processing steps by the UTHSC MRC by L. Rose. Data were processed by Arthur Centeno.

    + +

    Data released initially Nov 25, 2010, updated March 7, 2011 by A. Centeno and K. Mozhui to add two additional arrays. Data appear to be error-free in terms of sex and strain assignments shown in the table below.

    + +

    Dissection protocol:

    + +
      +
    1. Animals were sacrificed by quick cervical dislocation and brains were removed and stored in RNAlater (www.ambion.com) for 2 to 3 days
    2. +
    3. Brain was placed with ventral side up and a partial cut was made with a blade at -2.5 from Bregma (just a little rostral from the pontine fibres when viewed from the ventral side)
    4. +
    5. The brain was then place in a coronal matrix and a 2 mm section was made rostral to the first cut
    6. +
    7. The 2mm Section was placed on a clean glass slide and hypothalamus was sliced out and placed in a tube on dry ice.
    8. +
    9. To dissect out the BLA, the temporal lobes were detached by placing a scalple in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then sliced out and placed in a tube on dry ice.
    10. +
    11. Tissues from two mice of the same strain and sex were pooled. The only exceptions to this are the BLA samples for strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue from only one animal).
    12. +
    + +

    The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a).Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estro-gen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromo-some paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

    diff --git a/general/datasets/Inia_hyp_rma_ex_1110/acknowledgment.rtf b/general/datasets/Inia_hyp_rma_ex_1110/acknowledgment.rtf new file mode 100644 index 0000000..2c3f2bd --- /dev/null +++ b/general/datasets/Inia_hyp_rma_ex_1110/acknowledgment.rtf @@ -0,0 +1 @@ +

    This work was supported by Integrative Neuroscience Initiative on Alcoholism grants U01AA13499, U01AA017590, U01AA0016662. The authors are also grateful to Arthur Centeno and Lorne Rose, and the Molecular Resource Center at UTHSC.

    diff --git a/general/datasets/Inia_hyp_rma_ex_1110/cases.rtf b/general/datasets/Inia_hyp_rma_ex_1110/cases.rtf new file mode 100644 index 0000000..f19e9c8 --- /dev/null +++ b/general/datasets/Inia_hyp_rma_ex_1110/cases.rtf @@ -0,0 +1,916 @@ +

    The BXD recombinant inbred strains are derived from crossing the C57BL/6J (B6) and DBA/2J (D2) parental strains and inbreeding for over 20 generations (Taylor et al., 1999; Peirce et al., 2004). All mice used in this study were born and housed at the University of Tennessee Health Science Center. Mice were kept at an average of 3–4 per cage in a temperature-controlled vivarium (22 deg C) and maintained at a 12 h light/dark cycle. All animal protocols were approved by the Animal Care and Use Committee. We studied a total of 50 BXD strains, but only acquired matched male–female data pairs for 39 strains (35 BXD strains, parental B6 and D2, and two reciprocal F1 hybrids, B6D2F1 and D2B6F1). The average age of mice was 78 days. We provide more detail on the experimen-tal design and precise age and time of sacrifice of all cases at stored in 4 deg C for 2–3 days. To dissect the hypothalamus, the brain was placed with the ventral side facing up in a coronal "brain cutting" matrix. Using the medial mammillary body as landmark, a vertical cut was made right along the posterior boundary of the hypothala-mus. A second vertical cut was made 2 mm from the first cut. This edge lies slightly caudal to the optic chiasm and cuts through the retrochiasmatic nucleus. The hypothalamus was then sliced out from this 2 mm thick section. Each of the 39 mouse strains is represented by male and female samples (total of 78 microarray samples). Each individual sample consisted of tissue pooled from two mice of the same strain and sex that are usually littermates. The total number of mice used was 78 females and 78 males. RNA was purified using the RNAeasy micro kit on the QIAcube system (Qiagen)2. RNA purity and concen-tration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
    1R6854HYPHypC57BL/6J77F8/18/108:45AM to 12:30 PM
    2R6862HYPHypC57BL/6J77M8/18/108:45AM to 12:30 PM
    3R6852HYPHypD2B6F177F8/18/108:45AM to 12:30 PM
    4R6860HYPHypD2B6F177M8/18/108:45AM to 12:30 PM
    5R6864HYPHypDBA/2J77F8/18/108:45AM to 12:30 PM
    6R6866HYPHypDBA/2J68M8/18/108:45AM to 12:30 PM
    7R6858HYPHypB6D2F169F8/18/108:45AM to 12:30 PM
    8R6856HYPHypB6D2F169M8/18/108:45AM to 12:30 PM
    9R6800HYPHypBXD171F8/17/101:15 PM to 5 PM
    10R6796HYPHypBXD185M8/17/101:15 PM to 5 PM
    11R6788HYPHypBXD1187F8/17/101:15 PM to 5 PM
    12R6786HYPHypBXD1176M8/17/101:15 PM to 5 PM
    13R6806HYPHypBXD1277M8/17/101:15 PM to 5 PM
    14R6812HYPHypBXD1481F8/18/108:45AM to 12:30 PM
    15R6804HYPHypBXD2485F8/17/101:15 PM to 5 PM
    16R6792HYPHypBXD2775F8/17/101:15 PM to 5 PM
    17R6790HYPHypBXD2773M8/17/101:15 PM to 5 PM
    18R6798HYPHypBXD2971F8/17/101:15 PM to 5 PM
    19R6794HYPHypBXD2971M8/17/101:15 PM to 5 PM
    20R6816HYPHypBXD3174F8/18/108:45AM to 12:30 PM
    21R6802HYPHypBXD3173M8/17/101:15 PM to 5 PM
    22R6916HYPHypBXD3281F8/18/101 PM to 6:45 PM
    23R6846HYPHypBXD3281M8/18/108:45AM to 12:30 PM
    24R6822HYPHypBXD3477F8/18/108:45AM to 12:30 PM
    25R6808HYPHypBXD3477M8/18/108:45AM to 12:30 PM
    26R6814HYPHypBXD3979M8/18/108:45AM to 12:30 PM
    27R6848HYPHypBXD4085F8/18/108:45AM to 12:30 PM
    28R6850HYPHypBXD4085M8/18/108:45AM to 12:30 PM
    29R6810HYPHypBXD4287F8/18/108:45AM to 12:30 PM
    30R6758HYPHypBXD4381M8/17/109:30 AM to 12:30AM
    31R6746HYPHypBXD4483F8/17/109:30 AM to 12:30AM
    32R6750HYPHypBXD4483M8/17/109:30 AM to 12:30AM
    33R6764HYPHypBXD4577F8/17/109:30 AM to 12:30AM
    34R6762HYPHypBXD4577M8/17/109:30 AM to 12:30AM
    35R6880HYPHypBXD4876F8/18/101 PM to 6:45 PM
    36R6882HYPHypBXD4876M8/18/101 PM to 6:45 PM
    37R6748HYPHypBXD4984M8/17/109:30 AM to 12:30AM
    38R6890HYPHypBXD5077F8/18/101 PM to 6:45 PM
    39R6892HYPHypBXD5077M8/18/101 PM to 6:45 PM
    40R6918HYPHypBXD5684F8/18/101 PM to 6:45 PM
    41R6894HYPHypBXD5677M8/18/101 PM to 6:45 PM
    42R6770HYPHypBXD6070F8/17/109:30 AM to 12:30AM
    43R6772HYPHypBXD6070M8/17/101:15 PM to 5 PM
    44R6836HYPHypBXD6283F8/18/108:45AM to 12:30 PM
    45R6844HYPHypBXD6283M8/18/108:45AM to 12:30 PM
    46R6888HYPHypBXD6377F8/18/101 PM to 6:45 PM
    47R6878HYPHypBXD6584F8/18/101 PM to 6:45 PM
    48R6874HYPHypBXD6584M8/18/101 PM to 6:45 PM
    49R6930HYPHypBXD6876F8/18/101 PM to 6:45 PM
    50R6932HYPHypBXD6876M8/18/101 PM to 6:45 PM
    51R6776HYPHypBXD6969F8/17/101:15 PM to 5 PM
    52R6774HYPHypBXD6980M8/17/101:15 PM to 5 PM
    53R6926HYPHypBXD7076F8/18/101 PM to 6:45 PM
    54R6922HYPHypBXD7076M8/18/101 PM to 6:45 PM
    55R6870HYPHypBXD7176F8/18/101 PM to 6:45 PM
    56R6872HYPHypBXD7176M8/18/101 PM to 6:45 PM
    57R6778HYPHypBXD7383F8/17/101:15 PM to 5 PM
    58R6780HYPHypBXD7383M8/17/101:15 PM to 5 PM
    59R6838HYPHypBXD7576F8/18/108:45AM to 12:30 PM
    60R6830HYPHypBXD7576M8/18/108:45AM to 12:30 PM
    61R6934HYPHypBXD7987F8/18/101 PM to 6:45 PM
    62R6782HYPHypBXD8073F8/17/101:15 PM to 5 PM
    63R6784HYPHypBXD8073M8/17/101:15 PM to 5 PM
    64R6914HYPHypBXD8381F8/18/101 PM to 6:45 PM
    65R6912HYPHypBXD8381M8/18/101 PM to 6:45 PM
    66R6834HYPHypBXD8476M8/18/108:45AM to 12:30 PM
    67R6938HYPHypBXD8574F8/18/101 PM to 6:45 PM
    68R6940HYPHypBXD8574M8/18/101 PM to 6:45 PM
    69R6910HYPHypBXD8783F8/18/101 PM to 6:45 PM
    70R6908HYPHypBXD8783M8/18/101 PM to 6:45 PM
    71R6896HYPHypBXD8982F8/18/101 PM to 6:45 PM
    72R6898HYPHypBXD8982M8/18/101 PM to 6:45 PM
    73R6904HYPHypBXD9082F8/18/101 PM to 6:45 PM
    74R6906HYPHypBXD9082M8/18/101 PM to 6:45 PM
    75R6924HYPHypBXD9286F8/18/101 PM to 6:45 PM
    76R6928HYPHypBXD9289M8/18/101 PM to 6:45 PM
    77R6920HYPHypBXD9576F8/18/101 PM to 6:45 PM
    78R6868HYPHypBXD9576M8/18/108:45AM to 12:30 PM
    79R6900HYPHypBXD9771F8/18/101 PM to 6:45 PM
    80R6902HYPHypBXD9771M8/18/101 PM to 6:45 PM
    81R6876HYPHypBXD9977F8/18/101 PM to 6:45 PM
    82R6884HYPHypBXD9977M8/18/101 PM to 6:45 PM
    83R6840HYPHypBXD10083F8/18/108:45AM to 12:30 PM
    84R6832HYPHypBXD10083M8/18/108:45AM to 12:30 PM
    85R6944HYPHypBXD10189F8/18/101 PM to 6:45 PM
    86R6942HYPHypBXD10189M8/18/101 PM to 6:45 PM
    87R6756HYPHypBXD10288M8/17/109:30 AM to 12:30AM
    88R6768HYPHypBXD10378F8/17/109:30 AM to 12:30AM
    89R6766HYPHypBXD10378M8/17/109:30 AM to 12:30AM
    +
    + +

     

    diff --git a/general/datasets/Inia_hyp_rma_ex_1110/citation.rtf b/general/datasets/Inia_hyp_rma_ex_1110/citation.rtf new file mode 100644 index 0000000..17f95be --- /dev/null +++ b/general/datasets/Inia_hyp_rma_ex_1110/citation.rtf @@ -0,0 +1 @@ +

    Mozhui K, Lu L, Armstrong WE, Williams RW. Sex-specific modulation of gene expression networks in murine hypothalamus. Front Neurosci 2012;6:63. PMID:22593731

    diff --git a/general/datasets/Inia_hyp_rma_ex_1110/contributors.rtf b/general/datasets/Inia_hyp_rma_ex_1110/contributors.rtf new file mode 100644 index 0000000..aad2c8a --- /dev/null +++ b/general/datasets/Inia_hyp_rma_ex_1110/contributors.rtf @@ -0,0 +1,15 @@ +

     

    + +

    Mozhui KLu LArmstrong WEWilliams RW (2012) Sex-specific modulation of gene expression networks in murine hypothalamus.  2012 May 11;6:63. doi: 10.3389/fnins.2012.00063. eCollection 2012.

    + +

    Abstract

    + +

    The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a). Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estrogen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromosome paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

    + +

    eQTL; hypothalamus; sex-specificity; weighted gene coexpression networks

    + +
    +
    PMID: 22593731  PMCID: PMC3350311  DOI: 10.3389/fnins.2012.00063
    +
    + +

     

    diff --git a/general/datasets/Inia_hyp_rma_ex_1110/experiment-design.rtf b/general/datasets/Inia_hyp_rma_ex_1110/experiment-design.rtf new file mode 100644 index 0000000..443af4a --- /dev/null +++ b/general/datasets/Inia_hyp_rma_ex_1110/experiment-design.rtf @@ -0,0 +1,6 @@ +

    Hypothalamus was dissected from adult male and female mice and process for expression analysis.

    + +

    RNA isolation
    +Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + +

    This preliminary data set is associated with 430 eQTLs with LOD scores above 10. Peak LRS is 146 for Trait ID 10513604 (Hdhd3).

    diff --git a/general/datasets/Inia_hyp_rma_ex_1110/platform.rtf b/general/datasets/Inia_hyp_rma_ex_1110/platform.rtf new file mode 100644 index 0000000..aba2206 --- /dev/null +++ b/general/datasets/Inia_hyp_rma_ex_1110/platform.rtf @@ -0,0 +1 @@ +

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version] (GPL6246)

    diff --git a/general/datasets/Inia_hyp_rma_ex_1110/processing.rtf b/general/datasets/Inia_hyp_rma_ex_1110/processing.rtf new file mode 100644 index 0000000..b3e8689 --- /dev/null +++ b/general/datasets/Inia_hyp_rma_ex_1110/processing.rtf @@ -0,0 +1 @@ +

    Total RNA was processed using standard protocols and hybridized to the Affymetrix Mouse Gene 1.0 ST arrays4. This array contains 34,700 probe sets that target ∼29,000 well-defined transcripts (RefSeq mRNA isoforms). A single probe set is a collection of about 27 probes that target known exons within a single gene. The multiple probes design provides a more comprehensive cov-erage of transcripts from a single gene. Male and female samples were interleaved and processed together to avoid batch confounds. Details on the strain, age, and sex of each sample can be obtained from the information available for the INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) data set on www.genenetwork.org. Probe set level intensity values were extracted from the CEL files using the Affymetrix GeneChip Operating Software. Data nor-malization was performed using the R package “Affy” available from www.Bioconductor.org. The Robust Multichip Averaging protocol was used to process the expression values. The array data was then log transformed and rescaled using a z-scoring procedure to set the mean of each sample at eight expression units with a SD of 2 units. The entire data set can be down-loaded from www.genenetwork.org using the accession number GN281 (http://www.genenetwork.org/webqtl/main.py?FormID = sharinginfo&GN_AccessionId = 281) and also from the NIH Gene Expression Omnibus5 using the GEO accession number GSE36674. For this study we used a subset of cases that were repre-sented by both male and female samples – 78 sex-balanced arrays. Statistical power provided by this sample size (N = 39 strains) was estimated using the R function power.t.test6 with the SD set at 0.17, which is the average value. Only transcripts with above aver-age expression (minimum expression value above 8.5 on a log2 scale) were included for further analysis (17,192 probe sets). We used a two-tailed paired t -test to identify transcripts with signifi-cant expression difference between males and females. We applied the Benjamini and Hochberg false discovery rate (FDR) method and selected differentially expressed transcripts using a 10% FDR criterion.

    diff --git a/general/datasets/Inia_hyp_rma_ex_1110/summary.rtf b/general/datasets/Inia_hyp_rma_ex_1110/summary.rtf new file mode 100644 index 0000000..02671d5 --- /dev/null +++ b/general/datasets/Inia_hyp_rma_ex_1110/summary.rtf @@ -0,0 +1,16 @@ +

    These hypothalamic gene expression data were generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from NIAAA. The data set includes samples from 50 strains, including 46 BXDs, both parental strains, and reciprocal F1 hybrids. Expression data were generated using the Affymetrix Mouse Gene 1.0 ST exon-style microarray (multiple probes in all known exons) by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. Hypothalamic tissue was dissected by K. Mozhui (description to follow) with special attention to time of day (every sample has time stamp). RNA was extracted by K. Mozhui. All other processing steps by the UTHSC MRC by L. Rose. Data were processed by Arthur Centeno.

    + +

    Data released initially Nov 25, 2010, updated March 7, 2011 by A. Centeno and K. Mozhui to add two additional arrays. Data appear to be error-free in terms of sex and strain assignments shown in the table below.

    + +

    Dissection protocol:

    + +
      +
    1. Animals were sacrificed by quick cervical dislocation and brains were removed and stored in RNAlater (www.ambion.com) for 2 to 3 days
    2. +
    3. Brain was placed with ventral side up and a partial cut was made with a blade at -2.5 from Bregma (just a little rostral from the pontine fibres when viewed from the ventral side)
    4. +
    5. The brain was then place in a coronal matrix and a 2 mm section was made rostral to the first cut
    6. +
    7. The 2mm Section was placed on a clean glass slide and hypothalamus was sliced out and placed in a tube on dry ice.
    8. +
    9. To dissect out the BLA, the temporal lobes were detached by placing a scalple in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then sliced out and placed in a tube on dry ice.
    10. +
    11. Tissues from two mice of the same strain and sex were pooled. The only exceptions to this are the BLA samples for strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue from only one animal).
    12. +
    + +

    The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a).Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estro-gen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromo-some paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

    diff --git a/general/datasets/Inia_lcm_1215/acknowledgment.rtf b/general/datasets/Inia_lcm_1215/acknowledgment.rtf new file mode 100644 index 0000000..8b7d4ad --- /dev/null +++ b/general/datasets/Inia_lcm_1215/acknowledgment.rtf @@ -0,0 +1 @@ +

    Thanks to NIH NIAAA and funding support was provided by INIA grants U01AA013499 and U01AA06662.

    diff --git a/general/datasets/Inia_lcm_1215/cases.rtf b/general/datasets/Inia_lcm_1215/cases.rtf new file mode 100644 index 0000000..4d95e2a --- /dev/null +++ b/general/datasets/Inia_lcm_1215/cases.rtf @@ -0,0 +1 @@ +

    Male C57BL/6J and DBA/2J mice (10 weeks old upon arrival) were purchased from the Jackson Laboratory and assigned to either baseline untreated control (BAS), the air control (AIR), or CIE group. Mice were individually housed with free access to food (Harland Teklad, Madison, WI) and water throughout all phases of the experiments. Body weights were recorded weekly during ethanol-drinking weeks or daily during chronic intermittent ethanol (CIE) or air exposure (detailed below). Mice were housed in a temperature- and humidity-controlled an- imal facility under a reversed 12-h light/dark cycle (lights on at 0200 h). Mice were not food- or water-deprived at any time during the study. All procedures were approved by the Institutional Ani- mal Care and Use Committee at the Medical University of South Carolina (MUSC). Brain tissue was removed at MUSC and shipped to UTHSC for laser capture microdissection (LCM).

    diff --git a/general/datasets/Inia_lcm_1215/contributors.rtf b/general/datasets/Inia_lcm_1215/contributors.rtf new file mode 100644 index 0000000..edf124f --- /dev/null +++ b/general/datasets/Inia_lcm_1215/contributors.rtf @@ -0,0 +1,5 @@ +

    Megan K. Mulligan, Khyobeni Mozhui, Ashutosh K. Pandey, Maren L. Smith, Suzhen Gong, Jesse Ingels, Michael F. Miles, Marcelo F. Lopez, Lu Lu, Robert W. Williams

    + +

     

    + +

    Supplementary data related to this article can be found at http:// dx.doi.org/10.1016/j.alcohol.2016.09.001.

    diff --git a/general/datasets/Inia_lcm_1215/platform.rtf b/general/datasets/Inia_lcm_1215/platform.rtf new file mode 100644 index 0000000..25cb790 --- /dev/null +++ b/general/datasets/Inia_lcm_1215/platform.rtf @@ -0,0 +1,11 @@ +

     

    + +

     

    + +

    (Updated Dec 9, 2015 by AC and RW)

    + +

    Annotation data for transcripts and genes were downloaded from ENSEMBL by Arthur Centeno, December 2015. We downloaded the entire transcript database at http://useast.ensembl.org/Mus_musculus/Info/Index.

    + +

    The positions of transcripts and genes on the mouse assembly are version GRCm38.p4 (mm10 equivalent). However, we converted all chromosome coordinates to the mm9 assembly to be consistent with all other GN1 data sets. However, for some sequences, mostly on Chr Y and the mitochondrial genome, the values are mm10 equivalent (we had no corresponding mm9 values).

    + +

    We also extracted sequence data corresponding to the transcripts whenever these data were available. However in some cases we do not have sequence data at all.

    diff --git a/general/datasets/Inia_lcm_1215/processing.rtf b/general/datasets/Inia_lcm_1215/processing.rtf new file mode 100644 index 0000000..f04ab87 --- /dev/null +++ b/general/datasets/Inia_lcm_1215/processing.rtf @@ -0,0 +1,5 @@ +

    RNA from tissue trapped in the CapSure LCM caps was extracted using the PicoPure RNA isolation kit (Life Technologies) according to the manufacturer's instructions (RNA was eluted from provided capture columns in 13.5-mL nuclease-free water). RNA quality was analyzed using a Bioanalyzer (Model 100, Agilent, Foster City, CA). Samples with an associated RNA integrity number (RIN) greater than 6 were subsequently used for RNA sequencing.

    + +

     

    + +

    Poly-A enriched mRNA was sequenced on two platforms, ABI SOLID 550XL Wildfire (65 samples) and Ion Proton (39 samples). Read length was 50 nt for the SOLID system and the average read length for the Proton system was ~180 nt. Reads generated on the SOLID system were aligned to the mm10 reference genome using the LifeScope aligner, and BAM files were subsequently generated using custom scripts for third-party downstream analysis. For the Proton system, reads were also aligned to the mm10 (Ensemble GRCm38) reference genome using TopHat2. Settings for TopHat2 are as follows: “-p 15 -N 4 –read-gap-length 6 –read-edit-dist 8 –max-insertion-length 6 –max-deletion-length 6 –max-intron-length 300000 –b2-very-sensitive”. Alignments on both platforms were splice-aware. RSeQC-2.6.1 (RPKM_count.py) was used to generate count data based on mm10 GENECODE Basic transcript annotation (43,320 transcripts detected). We selected this annotation for greater reproducibility with existing microarray data sets and to simplify downstream analysis by limiting the number of transcript models for each gene. On average, 2.5 million and 7.8 million reads uniquely aligned to transcript models on the SOLID and Proton platforms, respectively. Data were further filtered to remove tran- scripts that had less than 1 count in 90% or more samples. After filtering, 24,597 transcripts representing 12,011 unique genes remained (Supplemental Table 1). The variance stabilizing trans- form (R package DESeq2, FitType 1⁄4 local) was applied to the count data, and transformed data were corrected by dividing by transcript length to generate log2 reads per kilobase gene model (RPK) values. The use of two different sequencing platforms was corrected using batch correction (ComBat, Supplemental Fig. 3). All data filtering, transformations, and batch correction were performed using custom R scripts. Batch-corrected and transformed log2 RPK and log2 count values are available in Supplemental Tables 2 and 3, and log2 RPK data are also available at GeneNetwork [http://www. genenetwork.org/webqtl/main.py?FormID1⁄4sharinginfo&GN_ AccessionId1⁄4772; Group 1⁄4 Chronic Intermittent Ethanol, Type 1⁄4 LCM Brain Regions mRNA, Data set 1⁄4 INIA LCM (11 Regions) CIE/AIR RNA-seq Transcript Level (Dec15)].

    diff --git a/general/datasets/Inia_lcm_1215/summary.rtf b/general/datasets/Inia_lcm_1215/summary.rtf new file mode 100644 index 0000000..45d122d --- /dev/null +++ b/general/datasets/Inia_lcm_1215/summary.rtf @@ -0,0 +1 @@ +

    This dataset is open. Please contact Dr. Megan K. Mulligan (mmulliga@uthsc.edu) or Dr. Robert W. Williams (rwilliams@uthsc.edu) if you need more information or low-level data access.

    diff --git a/general/datasets/Inia_lcm_1215/tissue.rtf b/general/datasets/Inia_lcm_1215/tissue.rtf new file mode 100644 index 0000000..6a51951 --- /dev/null +++ b/general/datasets/Inia_lcm_1215/tissue.rtf @@ -0,0 +1,5 @@ +

    Whole brain tissue was sectioned at 10 mm using a Leica cryostat and mounted in series with 6e8 sections per slide onto uncharged and uncoated glass slides. Mounted sections were dehydrated in 100% methanol (90 s), 70% ethanol (1 min), 95% ethanol (1 min), 100% ethanol (1 min  2), xylene (5 min). Slides were then allowed to air dry for 10 min under a fume hood.

    + +

    Series were created from distinct coronal sections (bregma po- sitions based on a C57BL/6J reference brain atlas) and individual regions were matched across section and harvested by LCM (Supplemental Fig. 2). Prelimbic (PrL) and infralimbic (ILC) cortex included a series spanning from bregma 1.98 to 1.54 mm. The accumbens core (NAc) and shell (NAs) series were collected from bregma 1.54 to 0.98 mm, and dorsolateral (DLS) and dorsomedial (DMS) striatum and bed nucleus stria terminalis (BST) were collected from bregma 0.38 to 0.10 mm. Basolateral (BLA) and central nucleus (CeA) of the amygdala series were collected from bregma 0.58 to 1.22 mm and hippocampus (CA1 and CA3) was collected from bregma 1.46 to 2.46 mm. Finally, the ventral tegmental area (VTA) and primary visual cortex (VCX) series were collected from bregma 3.28 to 3.80 mm.

    + +

    Arcturus XT (Life Technologies) was used to capture 13 brain areas. The infrared laser was then used to capture the tissue onto CapSure LCM caps (Life Technologies, laser spot power set to 70 mV with a duration of 25 msec).

    diff --git a/general/datasets/Inia_lcm_cab_1215/acknowledgment.rtf b/general/datasets/Inia_lcm_cab_1215/acknowledgment.rtf new file mode 100644 index 0000000..8b7d4ad --- /dev/null +++ b/general/datasets/Inia_lcm_cab_1215/acknowledgment.rtf @@ -0,0 +1 @@ +

    Thanks to NIH NIAAA and funding support was provided by INIA grants U01AA013499 and U01AA06662.

    diff --git a/general/datasets/Inia_lcm_cab_1215/cases.rtf b/general/datasets/Inia_lcm_cab_1215/cases.rtf new file mode 100644 index 0000000..4d95e2a --- /dev/null +++ b/general/datasets/Inia_lcm_cab_1215/cases.rtf @@ -0,0 +1 @@ +

    Male C57BL/6J and DBA/2J mice (10 weeks old upon arrival) were purchased from the Jackson Laboratory and assigned to either baseline untreated control (BAS), the air control (AIR), or CIE group. Mice were individually housed with free access to food (Harland Teklad, Madison, WI) and water throughout all phases of the experiments. Body weights were recorded weekly during ethanol-drinking weeks or daily during chronic intermittent ethanol (CIE) or air exposure (detailed below). Mice were housed in a temperature- and humidity-controlled an- imal facility under a reversed 12-h light/dark cycle (lights on at 0200 h). Mice were not food- or water-deprived at any time during the study. All procedures were approved by the Institutional Ani- mal Care and Use Committee at the Medical University of South Carolina (MUSC). Brain tissue was removed at MUSC and shipped to UTHSC for laser capture microdissection (LCM).

    diff --git a/general/datasets/Inia_lcm_cab_1215/contributors.rtf b/general/datasets/Inia_lcm_cab_1215/contributors.rtf new file mode 100644 index 0000000..edf124f --- /dev/null +++ b/general/datasets/Inia_lcm_cab_1215/contributors.rtf @@ -0,0 +1,5 @@ +

    Megan K. Mulligan, Khyobeni Mozhui, Ashutosh K. Pandey, Maren L. Smith, Suzhen Gong, Jesse Ingels, Michael F. Miles, Marcelo F. Lopez, Lu Lu, Robert W. Williams

    + +

     

    + +

    Supplementary data related to this article can be found at http:// dx.doi.org/10.1016/j.alcohol.2016.09.001.

    diff --git a/general/datasets/Inia_lcm_cab_1215/platform.rtf b/general/datasets/Inia_lcm_cab_1215/platform.rtf new file mode 100644 index 0000000..25cb790 --- /dev/null +++ b/general/datasets/Inia_lcm_cab_1215/platform.rtf @@ -0,0 +1,11 @@ +

     

    + +

     

    + +

    (Updated Dec 9, 2015 by AC and RW)

    + +

    Annotation data for transcripts and genes were downloaded from ENSEMBL by Arthur Centeno, December 2015. We downloaded the entire transcript database at http://useast.ensembl.org/Mus_musculus/Info/Index.

    + +

    The positions of transcripts and genes on the mouse assembly are version GRCm38.p4 (mm10 equivalent). However, we converted all chromosome coordinates to the mm9 assembly to be consistent with all other GN1 data sets. However, for some sequences, mostly on Chr Y and the mitochondrial genome, the values are mm10 equivalent (we had no corresponding mm9 values).

    + +

    We also extracted sequence data corresponding to the transcripts whenever these data were available. However in some cases we do not have sequence data at all.

    diff --git a/general/datasets/Inia_lcm_cab_1215/processing.rtf b/general/datasets/Inia_lcm_cab_1215/processing.rtf new file mode 100644 index 0000000..f04ab87 --- /dev/null +++ b/general/datasets/Inia_lcm_cab_1215/processing.rtf @@ -0,0 +1,5 @@ +

    RNA from tissue trapped in the CapSure LCM caps was extracted using the PicoPure RNA isolation kit (Life Technologies) according to the manufacturer's instructions (RNA was eluted from provided capture columns in 13.5-mL nuclease-free water). RNA quality was analyzed using a Bioanalyzer (Model 100, Agilent, Foster City, CA). Samples with an associated RNA integrity number (RIN) greater than 6 were subsequently used for RNA sequencing.

    + +

     

    + +

    Poly-A enriched mRNA was sequenced on two platforms, ABI SOLID 550XL Wildfire (65 samples) and Ion Proton (39 samples). Read length was 50 nt for the SOLID system and the average read length for the Proton system was ~180 nt. Reads generated on the SOLID system were aligned to the mm10 reference genome using the LifeScope aligner, and BAM files were subsequently generated using custom scripts for third-party downstream analysis. For the Proton system, reads were also aligned to the mm10 (Ensemble GRCm38) reference genome using TopHat2. Settings for TopHat2 are as follows: “-p 15 -N 4 –read-gap-length 6 –read-edit-dist 8 –max-insertion-length 6 –max-deletion-length 6 –max-intron-length 300000 –b2-very-sensitive”. Alignments on both platforms were splice-aware. RSeQC-2.6.1 (RPKM_count.py) was used to generate count data based on mm10 GENECODE Basic transcript annotation (43,320 transcripts detected). We selected this annotation for greater reproducibility with existing microarray data sets and to simplify downstream analysis by limiting the number of transcript models for each gene. On average, 2.5 million and 7.8 million reads uniquely aligned to transcript models on the SOLID and Proton platforms, respectively. Data were further filtered to remove tran- scripts that had less than 1 count in 90% or more samples. After filtering, 24,597 transcripts representing 12,011 unique genes remained (Supplemental Table 1). The variance stabilizing trans- form (R package DESeq2, FitType 1⁄4 local) was applied to the count data, and transformed data were corrected by dividing by transcript length to generate log2 reads per kilobase gene model (RPK) values. The use of two different sequencing platforms was corrected using batch correction (ComBat, Supplemental Fig. 3). All data filtering, transformations, and batch correction were performed using custom R scripts. Batch-corrected and transformed log2 RPK and log2 count values are available in Supplemental Tables 2 and 3, and log2 RPK data are also available at GeneNetwork [http://www. genenetwork.org/webqtl/main.py?FormID1⁄4sharinginfo&GN_ AccessionId1⁄4772; Group 1⁄4 Chronic Intermittent Ethanol, Type 1⁄4 LCM Brain Regions mRNA, Data set 1⁄4 INIA LCM (11 Regions) CIE/AIR RNA-seq Transcript Level (Dec15)].

    diff --git a/general/datasets/Inia_lcm_cab_1215/specifics.rtf b/general/datasets/Inia_lcm_cab_1215/specifics.rtf new file mode 100644 index 0000000..61a050f --- /dev/null +++ b/general/datasets/Inia_lcm_cab_1215/specifics.rtf @@ -0,0 +1,17 @@ +

    Published in Alcohol 2017:

    + +

     

    + +

     2017 Feb;58:61-72. doi: 10.1016/j.alcohol.2016.09.001. Epub 2016 Oct 15.

    + +

    Genetic divergence in the transcriptional engram of chronic alcohol abuse: A laser-capture RNA-seq study of the mouse mesocorticolimbic system.

    + +

    Mulligan MK1, Mozhui K2, Pandey AK2, Smith ML3, Gong S2, Ingels J2, Miles MF3, Lopez MF4, Lu L2, Williams RW2.

    + +

    + +

    Abstract

    + +

    Genetic factors that influence the transition from initial drinking to dependence remain enigmatic. Recent studies have leveraged chronic intermittent ethanol (CIE) paradigms to measure changes in brain gene expression in a single strain at 0, 8, 72 h, and even 7 days following CIE. We extend these findings using LCM RNA-seq to profile expression in 11 brain regions in two inbred strains - C57BL/6J (B6) and DBA/2J (D2) - 72 h following multiple cycles of ethanol self-administration and CIE. Linear models identified differential expression based on treatment, region, strain, or interactions with treatment. Nearly 40% of genes showed a robust effect (FDR < 0.01) of region, and hippocampus CA1, cortex, bed nucleus stria terminalis, and nucleus accumbens core had the highest number of differentially expressed genes after treatment. Another 8% of differentially expressed genes demonstrated a robust effect of strain. As expected, based on similar studies in B6, treatment had a much smaller impact on expression; only 72 genes (p < 0.01) are modulated by treatment (independent of region or strain). Strikingly, many more genes (415) show a strain-specific and largely opposite response to treatment and are enriched in processes related to RNA metabolism, transcription factor activity, and mitochondrial function. Over 3 times as many changes in gene expression were detected in D2 compared to B6, and weighted gene co-expression network analysis (WGCNA) module comparison identified more modules enriched for treatment effects in D2. Substantial strain differences exist in the temporal pattern of transcriptional neuroadaptation to CIE, and these may drive individual differences in risk of addiction following excessive alcohol consumption.

    + +

    PMID:27894806;  PMCID:PMC5450909; DOI:10.1016/j.alcohol.2016.09.001

    diff --git a/general/datasets/Inia_lcm_cab_1215/summary.rtf b/general/datasets/Inia_lcm_cab_1215/summary.rtf new file mode 100644 index 0000000..45d122d --- /dev/null +++ b/general/datasets/Inia_lcm_cab_1215/summary.rtf @@ -0,0 +1 @@ +

    This dataset is open. Please contact Dr. Megan K. Mulligan (mmulliga@uthsc.edu) or Dr. Robert W. Williams (rwilliams@uthsc.edu) if you need more information or low-level data access.

    diff --git a/general/datasets/Inia_lcm_cab_1215/tissue.rtf b/general/datasets/Inia_lcm_cab_1215/tissue.rtf new file mode 100644 index 0000000..6a51951 --- /dev/null +++ b/general/datasets/Inia_lcm_cab_1215/tissue.rtf @@ -0,0 +1,5 @@ +

    Whole brain tissue was sectioned at 10 mm using a Leica cryostat and mounted in series with 6e8 sections per slide onto uncharged and uncoated glass slides. Mounted sections were dehydrated in 100% methanol (90 s), 70% ethanol (1 min), 95% ethanol (1 min), 100% ethanol (1 min  2), xylene (5 min). Slides were then allowed to air dry for 10 min under a fume hood.

    + +

    Series were created from distinct coronal sections (bregma po- sitions based on a C57BL/6J reference brain atlas) and individual regions were matched across section and harvested by LCM (Supplemental Fig. 2). Prelimbic (PrL) and infralimbic (ILC) cortex included a series spanning from bregma 1.98 to 1.54 mm. The accumbens core (NAc) and shell (NAs) series were collected from bregma 1.54 to 0.98 mm, and dorsolateral (DLS) and dorsomedial (DMS) striatum and bed nucleus stria terminalis (BST) were collected from bregma 0.38 to 0.10 mm. Basolateral (BLA) and central nucleus (CeA) of the amygdala series were collected from bregma 0.58 to 1.22 mm and hippocampus (CA1 and CA3) was collected from bregma 1.46 to 2.46 mm. Finally, the ventral tegmental area (VTA) and primary visual cortex (VCX) series were collected from bregma 3.28 to 3.80 mm.

    + +

    Arcturus XT (Life Technologies) was used to capture 13 brain areas. The infrared laser was then used to capture the tissue onto CapSure LCM caps (Life Technologies, laser spot power set to 70 mV with a duration of 25 msec).

    diff --git a/general/datasets/Inia_lcmb_1215/acknowledgment.rtf b/general/datasets/Inia_lcmb_1215/acknowledgment.rtf new file mode 100644 index 0000000..8b7d4ad --- /dev/null +++ b/general/datasets/Inia_lcmb_1215/acknowledgment.rtf @@ -0,0 +1 @@ +

    Thanks to NIH NIAAA and funding support was provided by INIA grants U01AA013499 and U01AA06662.

    diff --git a/general/datasets/Inia_lcmb_1215/cases.rtf b/general/datasets/Inia_lcmb_1215/cases.rtf new file mode 100644 index 0000000..4d95e2a --- /dev/null +++ b/general/datasets/Inia_lcmb_1215/cases.rtf @@ -0,0 +1 @@ +

    Male C57BL/6J and DBA/2J mice (10 weeks old upon arrival) were purchased from the Jackson Laboratory and assigned to either baseline untreated control (BAS), the air control (AIR), or CIE group. Mice were individually housed with free access to food (Harland Teklad, Madison, WI) and water throughout all phases of the experiments. Body weights were recorded weekly during ethanol-drinking weeks or daily during chronic intermittent ethanol (CIE) or air exposure (detailed below). Mice were housed in a temperature- and humidity-controlled an- imal facility under a reversed 12-h light/dark cycle (lights on at 0200 h). Mice were not food- or water-deprived at any time during the study. All procedures were approved by the Institutional Ani- mal Care and Use Committee at the Medical University of South Carolina (MUSC). Brain tissue was removed at MUSC and shipped to UTHSC for laser capture microdissection (LCM).

    diff --git a/general/datasets/Inia_lcmb_1215/contributors.rtf b/general/datasets/Inia_lcmb_1215/contributors.rtf new file mode 100644 index 0000000..edf124f --- /dev/null +++ b/general/datasets/Inia_lcmb_1215/contributors.rtf @@ -0,0 +1,5 @@ +

    Megan K. Mulligan, Khyobeni Mozhui, Ashutosh K. Pandey, Maren L. Smith, Suzhen Gong, Jesse Ingels, Michael F. Miles, Marcelo F. Lopez, Lu Lu, Robert W. Williams

    + +

     

    + +

    Supplementary data related to this article can be found at http:// dx.doi.org/10.1016/j.alcohol.2016.09.001.

    diff --git a/general/datasets/Inia_lcmb_1215/platform.rtf b/general/datasets/Inia_lcmb_1215/platform.rtf new file mode 100644 index 0000000..25cb790 --- /dev/null +++ b/general/datasets/Inia_lcmb_1215/platform.rtf @@ -0,0 +1,11 @@ +

     

    + +

     

    + +

    (Updated Dec 9, 2015 by AC and RW)

    + +

    Annotation data for transcripts and genes were downloaded from ENSEMBL by Arthur Centeno, December 2015. We downloaded the entire transcript database at http://useast.ensembl.org/Mus_musculus/Info/Index.

    + +

    The positions of transcripts and genes on the mouse assembly are version GRCm38.p4 (mm10 equivalent). However, we converted all chromosome coordinates to the mm9 assembly to be consistent with all other GN1 data sets. However, for some sequences, mostly on Chr Y and the mitochondrial genome, the values are mm10 equivalent (we had no corresponding mm9 values).

    + +

    We also extracted sequence data corresponding to the transcripts whenever these data were available. However in some cases we do not have sequence data at all.

    diff --git a/general/datasets/Inia_lcmb_1215/processing.rtf b/general/datasets/Inia_lcmb_1215/processing.rtf new file mode 100644 index 0000000..f04ab87 --- /dev/null +++ b/general/datasets/Inia_lcmb_1215/processing.rtf @@ -0,0 +1,5 @@ +

    RNA from tissue trapped in the CapSure LCM caps was extracted using the PicoPure RNA isolation kit (Life Technologies) according to the manufacturer's instructions (RNA was eluted from provided capture columns in 13.5-mL nuclease-free water). RNA quality was analyzed using a Bioanalyzer (Model 100, Agilent, Foster City, CA). Samples with an associated RNA integrity number (RIN) greater than 6 were subsequently used for RNA sequencing.

    + +

     

    + +

    Poly-A enriched mRNA was sequenced on two platforms, ABI SOLID 550XL Wildfire (65 samples) and Ion Proton (39 samples). Read length was 50 nt for the SOLID system and the average read length for the Proton system was ~180 nt. Reads generated on the SOLID system were aligned to the mm10 reference genome using the LifeScope aligner, and BAM files were subsequently generated using custom scripts for third-party downstream analysis. For the Proton system, reads were also aligned to the mm10 (Ensemble GRCm38) reference genome using TopHat2. Settings for TopHat2 are as follows: “-p 15 -N 4 –read-gap-length 6 –read-edit-dist 8 –max-insertion-length 6 –max-deletion-length 6 –max-intron-length 300000 –b2-very-sensitive”. Alignments on both platforms were splice-aware. RSeQC-2.6.1 (RPKM_count.py) was used to generate count data based on mm10 GENECODE Basic transcript annotation (43,320 transcripts detected). We selected this annotation for greater reproducibility with existing microarray data sets and to simplify downstream analysis by limiting the number of transcript models for each gene. On average, 2.5 million and 7.8 million reads uniquely aligned to transcript models on the SOLID and Proton platforms, respectively. Data were further filtered to remove tran- scripts that had less than 1 count in 90% or more samples. After filtering, 24,597 transcripts representing 12,011 unique genes remained (Supplemental Table 1). The variance stabilizing trans- form (R package DESeq2, FitType 1⁄4 local) was applied to the count data, and transformed data were corrected by dividing by transcript length to generate log2 reads per kilobase gene model (RPK) values. The use of two different sequencing platforms was corrected using batch correction (ComBat, Supplemental Fig. 3). All data filtering, transformations, and batch correction were performed using custom R scripts. Batch-corrected and transformed log2 RPK and log2 count values are available in Supplemental Tables 2 and 3, and log2 RPK data are also available at GeneNetwork [http://www. genenetwork.org/webqtl/main.py?FormID1⁄4sharinginfo&GN_ AccessionId1⁄4772; Group 1⁄4 Chronic Intermittent Ethanol, Type 1⁄4 LCM Brain Regions mRNA, Data set 1⁄4 INIA LCM (11 Regions) CIE/AIR RNA-seq Transcript Level (Dec15)].

    diff --git a/general/datasets/Inia_lcmb_1215/summary.rtf b/general/datasets/Inia_lcmb_1215/summary.rtf new file mode 100644 index 0000000..45d122d --- /dev/null +++ b/general/datasets/Inia_lcmb_1215/summary.rtf @@ -0,0 +1 @@ +

    This dataset is open. Please contact Dr. Megan K. Mulligan (mmulliga@uthsc.edu) or Dr. Robert W. Williams (rwilliams@uthsc.edu) if you need more information or low-level data access.

    diff --git a/general/datasets/Inia_lcmb_1215/tissue.rtf b/general/datasets/Inia_lcmb_1215/tissue.rtf new file mode 100644 index 0000000..6a51951 --- /dev/null +++ b/general/datasets/Inia_lcmb_1215/tissue.rtf @@ -0,0 +1,5 @@ +

    Whole brain tissue was sectioned at 10 mm using a Leica cryostat and mounted in series with 6e8 sections per slide onto uncharged and uncoated glass slides. Mounted sections were dehydrated in 100% methanol (90 s), 70% ethanol (1 min), 95% ethanol (1 min), 100% ethanol (1 min  2), xylene (5 min). Slides were then allowed to air dry for 10 min under a fume hood.

    + +

    Series were created from distinct coronal sections (bregma po- sitions based on a C57BL/6J reference brain atlas) and individual regions were matched across section and harvested by LCM (Supplemental Fig. 2). Prelimbic (PrL) and infralimbic (ILC) cortex included a series spanning from bregma 1.98 to 1.54 mm. The accumbens core (NAc) and shell (NAs) series were collected from bregma 1.54 to 0.98 mm, and dorsolateral (DLS) and dorsomedial (DMS) striatum and bed nucleus stria terminalis (BST) were collected from bregma 0.38 to 0.10 mm. Basolateral (BLA) and central nucleus (CeA) of the amygdala series were collected from bregma 0.58 to 1.22 mm and hippocampus (CA1 and CA3) was collected from bregma 1.46 to 2.46 mm. Finally, the ventral tegmental area (VTA) and primary visual cortex (VCX) series were collected from bregma 3.28 to 3.80 mm.

    + +

    Arcturus XT (Life Technologies) was used to capture 13 brain areas. The infrared laser was then used to capture the tissue onto CapSure LCM caps (Life Technologies, laser spot power set to 70 mV with a duration of 25 msec).

    diff --git a/general/datasets/Inia_macfas_ac_rma_0110/experiment-type.rtf b/general/datasets/Inia_macfas_ac_rma_0110/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Inia_macfas_ac_rma_0110/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Inia_macfas_ac_rma_0110/summary.rtf b/general/datasets/Inia_macfas_ac_rma_0110/summary.rtf new file mode 100644 index 0000000..cbfec8d --- /dev/null +++ b/general/datasets/Inia_macfas_ac_rma_0110/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 88, Name: INIA Macaca fasicularis Nucleus Accumbens (Jan10) \ No newline at end of file diff --git a/general/datasets/Inia_macfas_amg_rma_0110/experiment-type.rtf b/general/datasets/Inia_macfas_amg_rma_0110/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Inia_macfas_amg_rma_0110/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Inia_macfas_amg_rma_0110/summary.rtf b/general/datasets/Inia_macfas_amg_rma_0110/summary.rtf new file mode 100644 index 0000000..42959fa --- /dev/null +++ b/general/datasets/Inia_macfas_amg_rma_0110/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 90, Name: INIA Macaca fasicularis Amygdala (Jan10) \ No newline at end of file diff --git a/general/datasets/Inia_macfas_brain_rma_0110/experiment-type.rtf b/general/datasets/Inia_macfas_brain_rma_0110/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Inia_macfas_brain_rma_0110/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Inia_macfas_brain_rma_0110/notes.rtf b/general/datasets/Inia_macfas_brain_rma_0110/notes.rtf new file mode 100644 index 0000000..958acba --- /dev/null +++ b/general/datasets/Inia_macfas_brain_rma_0110/notes.rtf @@ -0,0 +1,5 @@ +

    Dr. Miles Note:

    + +

    The initial 16 animals from INIA cohort 3 are the samples that are in GeneNetwork -- and there we had 4 brain regions x 16 animals -- prefrontal cortex (Brodmann areas 24, 25 and 32 pooled together), nucleus acumen, hippocampus and amygdala.

    + +

    INIA cohort 3 includes 12 ethanol drinking female cynomolgous Indochinese monkeys and 4 control Indonesian monkeys.

    diff --git a/general/datasets/Inia_macfas_brain_rma_0110/summary.rtf b/general/datasets/Inia_macfas_brain_rma_0110/summary.rtf new file mode 100644 index 0000000..103b4c3 --- /dev/null +++ b/general/datasets/Inia_macfas_brain_rma_0110/summary.rtf @@ -0,0 +1 @@ +

    Summary of DatasetId 86, Name: INIA Macaca fasicularis Brain (Jan10)

    diff --git a/general/datasets/Inia_macfas_hc_rma_0110/experiment-type.rtf b/general/datasets/Inia_macfas_hc_rma_0110/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Inia_macfas_hc_rma_0110/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Inia_macfas_hc_rma_0110/summary.rtf b/general/datasets/Inia_macfas_hc_rma_0110/summary.rtf new file mode 100644 index 0000000..f305a05 --- /dev/null +++ b/general/datasets/Inia_macfas_hc_rma_0110/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 89, Name: INIA Macaca fasicularis Hippocampus (Jan10) \ No newline at end of file diff --git a/general/datasets/Inia_macfas_pf_rma_0110/experiment-type.rtf b/general/datasets/Inia_macfas_pf_rma_0110/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Inia_macfas_pf_rma_0110/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Inia_macfas_pf_rma_0110/summary.rtf b/general/datasets/Inia_macfas_pf_rma_0110/summary.rtf new file mode 100644 index 0000000..06ec6f0 --- /dev/null +++ b/general/datasets/Inia_macfas_pf_rma_0110/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 87, Name: INIA Macaca fasicularis Prefrontal Cortex (Jan10) \ No newline at end of file diff --git a/general/datasets/Inia_pg_rma_0612/acknowledgment.rtf b/general/datasets/Inia_pg_rma_0612/acknowledgment.rtf new file mode 100644 index 0000000..f8bf764 --- /dev/null +++ b/general/datasets/Inia_pg_rma_0612/acknowledgment.rtf @@ -0,0 +1 @@ +

    NIAAA U01 support to RWW.

    diff --git a/general/datasets/Inia_pg_rma_0612/cases.rtf b/general/datasets/Inia_pg_rma_0612/cases.rtf new file mode 100644 index 0000000..faf8ab0 --- /dev/null +++ b/general/datasets/Inia_pg_rma_0612/cases.rtf @@ -0,0 +1,840 @@ +

    Young adult mice raised in specific pathogen-free vivarium at UTHSC.

    + +

    ERROR CHECKING by Mozhui, Centeno and Roy: The changes have been applied in GeneNetwork (GN389 - Pituitary) as follow:

    + +

    SampleId - New Strain Assignment
    +R7087P (was BXD101) = BXD100
    +R7138P_RW170 (was BXD85) = BXD95
    +R7156P (was C57BL/6J) = B6D2F1
    +R7141P = BXD65

    + +

     

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDStrainTissueAgeSex
    1R7128PB6D2F1Pituitary69F
    2R7156PB6D2F1Pituitary92M
    3R7129PB6D2F1Pituitary69M
    4R7134PD2B6F1Pituitary77F
    5R7133PD2B6F1Pituitary77M
    6R7160PC57BL/6JPituitary92F
    7R7127PC57BL/6JPituitary77M
    8R7126PDBA/2JPituitary77F
    9R7157PDBA/2JPituitary75F
    10R7125PDBA/2JPituitary68M
    11R7155PDBA/2JPituitary75M
    12R7058PBXD1Pituitary72F
    13R7063PBXD1Pituitary86M
    14R7079PBXD11Pituitary87F
    15R7069PBXD11Pituitary76M
    16R7051PBXD12Pituitary78F
    17R7061PBXD12Pituitary78M
    18R7064PBXD14Pituitary81F
    19R7066PBXD14Pituitary81M
    20R7052PBXD24Pituitary86M
    21R7076PBXD27Pituitary76F
    22R7071PBXD27Pituitary73M
    23R7059PBXD29Pituitary72F
    24R7060PBXD29Pituitary72M
    25R7055PBXD31Pituitary74F
    26R7062PBXD31Pituitary74M
    27R7143PBXD32Pituitary81F
    28R7135PBXD32Pituitary81M
    29R7119PBXD34Pituitary77F
    30R7054PBXD34Pituitary77M
    31R7049PBXD39Pituitary79F
    32R7065PBXD39Pituitary79M
    33R7130PBXD40Pituitary85F
    34R7132PBXD40Pituitary85M
    35R7056PBXD42Pituitary87F
    36R7044PBXD42Pituitary87M
    37R7043PBXD43Pituitary81F
    38R7047PBXD43Pituitary81M
    39R7091PBXD44Pituitary83F
    40R7050PBXD44Pituitary83M
    41R7077PBXD45Pituitary77F
    42R7078PBXD45Pituitary77F
    43R7042PBXD45Pituitary77F
    44R7092PBXD48Pituitary76F
    45R7093PBXD48Pituitary76M
    46R7045PBXD49Pituitary84F
    47R7094PBXD49Pituitary84M
    48R7095PBXD50Pituitary77F
    49R7096PBXD50Pituitary77M
    50R7142PBXD56Pituitary84F
    51R7097PBXD56Pituitary77M
    52R7080PBXD60Pituitary70F
    53R7141P_RW204BXD60Pituitary76M
    54R7075PBXD62Pituitary83F
    55R7083PBXD62Pituitary83M
    56R7084PBXD62Pituitary83M
    57R7098PBXD63Pituitary77F
    58R7100PBXD65Pituitary84M
    59R7120PBXD66Pituitary257M
    60R7140PBXD68Pituitary76F
    61R7101PBXD68Pituitary76M
    62R7074PBXD69Pituitary69F
    63R7139PBXD69Pituitary81M
    64R7141PBXD65Pituitary76F
    65R7137P_RW112BXD70Pituitary76M
    66R7124PBXD71Pituitary76F
    67R7123PBXD71Pituitary76M
    68R7068PBXD73Pituitary83M
    69R7118PBXD74Pituitary69F
    70R7117PBXD74Pituitary69M
    71R7082PBXD75Pituitary76F
    72R7048PBXD75Pituitary76M
    73R7122PBXD77Pituitary223M
    74R7103PBXD79Pituitary86F
    75R7104PBXD79Pituitary86M
    76R7073PBXD80Pituitary73F
    77R7070PBXD80Pituitary73M
    78R7139P_RW138BXD83Pituitary81F
    79R7137PBXD83Pituitary76M
    80R7085PBXD84Pituitary76F
    81R7081PBXD84Pituitary76M
    82R7105PBXD85Pituitary73M
    83R7144PBXD87Pituitary83F
    84R7136P_RW196BXD87Pituitary83M
    85R7106PBXD89Pituitary82F
    86R7107PBXD89Pituitary82M
    87R7108PBXD90Pituitary82F
    88R7109PBXD90Pituitary82M
    89R7138P_RW170BXD95Pituitary73F
    90R7111PBXD97Pituitary71F
    91R7112PBXD97Pituitary71M
    92R7113PBXD99Pituitary77F
    93R7114PBXD99Pituitary77M
    94R7072PBXD100Pituitary83F
    95R7087PBXD100Pituitary88F
    96R7086PBXD100Pituitary83M
    97R7088PBXD101Pituitary88M
    98R7053PBXD102Pituitary88F
    99R7046PBXD102Pituitary88M
    100R7090PBXD103Pituitary78F
    101R7067PBXD103Pituitary78M
    +
    diff --git a/general/datasets/Inia_pg_rma_0612/citation.rtf b/general/datasets/Inia_pg_rma_0612/citation.rtf new file mode 100644 index 0000000..1ef65cb --- /dev/null +++ b/general/datasets/Inia_pg_rma_0612/citation.rtf @@ -0,0 +1 @@ +

    Contact RW Williams

    diff --git a/general/datasets/Inia_pg_rma_0612/contributors.rtf b/general/datasets/Inia_pg_rma_0612/contributors.rtf new file mode 100644 index 0000000..5178980 --- /dev/null +++ b/general/datasets/Inia_pg_rma_0612/contributors.rtf @@ -0,0 +1 @@ +

    Mozhui K, Lu L, Adler A, Ingels J, Williams RW

    diff --git a/general/datasets/Inia_pg_rma_0612/experiment-design.rtf b/general/datasets/Inia_pg_rma_0612/experiment-design.rtf new file mode 100644 index 0000000..13175b5 --- /dev/null +++ b/general/datasets/Inia_pg_rma_0612/experiment-design.rtf @@ -0,0 +1,10 @@ +

    Normative expression in the whole pituitary of young adult mice. In general, a sex-balanced samples (one array from male cases, one array from female cases) for BXD and parental strains.

    + +

    QUALITY CONTROL DATA

    + +
      +
    1. 737 probe sets with LRS of 46 or higher (LOD>10)
    2. +
    3. Highest LRS = 165.7
    4. +
    5. Review of top Mendelian transcripts consist with correct strain assignment
    6. +
    7. Final sex assignment is correct
    8. +
    diff --git a/general/datasets/Inia_pg_rma_0612/experiment-type.rtf b/general/datasets/Inia_pg_rma_0612/experiment-type.rtf new file mode 100644 index 0000000..82d9546 --- /dev/null +++ b/general/datasets/Inia_pg_rma_0612/experiment-type.rtf @@ -0,0 +1,10 @@ +Normative expression in the whole pituitary of young adult mice. In general, a sex-balanced samples (one array from male cases, one array from female cases) for BXD and parental strains. + +

    +QUALITY CONTROL DATA +

      +
    1. 737 probe sets with LRS of 46 or higher (LOD>10) +
    2. Highest LRS = 165.7 +
    3. Review of top Mendelian transcripts consist with correct strain assignment +
    4. Final sex assignment is correct +
    \ No newline at end of file diff --git a/general/datasets/Inia_pg_rma_0612/platform.rtf b/general/datasets/Inia_pg_rma_0612/platform.rtf new file mode 100644 index 0000000..7057d48 --- /dev/null +++ b/general/datasets/Inia_pg_rma_0612/platform.rtf @@ -0,0 +1 @@ +

    The GeneChip® Mouse Gene 1.0 ST Array is the latest product in the family of Affymetrix expression arrays offering whole-transcript coverage. Each of the 28,853 genes is represented on the array by approximately 27 probes spread across the full length of the gene, providing a more complete and more accurate picture of gene expression than 3'-based expression array designs. The small format of the array makes it a cost-effective expression profiling solution for new microarray users. Sense DNA targets are generated from as little as 100ng of total RNA. The Gene 1.0 ST Array is part of a complete solution for gene expression analysis that includes Whole Transcript (WT) Sense Target Labeling and Control Reagents, fluidics and scanning instrumentation and basic analysis software. The array contains the most up-to-date content of well-annotated genes, and data is analyzed using a simple workflow. The Gene 1.0 ST Array uses a subset of probes from the Mouse Exon 1.0 ST Array and covers only well-annotated content. Like the Exon 1.0 ST Array, "gene-level" analysis of multiple probes on different exons is summarized into an expression value representing all transcripts from the same gene.

    diff --git a/general/datasets/Inia_pg_rma_0612/processing.rtf b/general/datasets/Inia_pg_rma_0612/processing.rtf new file mode 100644 index 0000000..55aad2e --- /dev/null +++ b/general/datasets/Inia_pg_rma_0612/processing.rtf @@ -0,0 +1 @@ +

    Conventional Affymetrix gene level probe summarization (RMA) followed by log2 transformation and standard GeneNetwork variance stabilization (2z +8). The z scores are multiplied by 2 and we then add a value of 8 to all values. This eliminates negative values and results in a scale of expression for which 1 unit is roughly equivalent to a two fold absolute difference in mRNA concentration.

    diff --git a/general/datasets/Inia_pg_rma_0612/summary.rtf b/general/datasets/Inia_pg_rma_0612/summary.rtf new file mode 100644 index 0000000..14a715d --- /dev/null +++ b/general/datasets/Inia_pg_rma_0612/summary.rtf @@ -0,0 +1,3 @@ +

    Gene expression data for the whole pituitary across 52 strains of mice. Sex Balance: Sex of samples has been double-checked. As of July 2012, for 42 strains we have separate data for both males and females (usually one array each). Three strains (BXD45, 63, and 95) are only represented by female samples and two strains (BXD65 and BXD77) are only represented by male samples. Five other strains (BXD24, 66, 73, 85, 101) are may represent combined male and female samples. These unpublished data are apparently error-free based on a review and analysis of transcripts with Mendelian segregation patterns (as of July 20, 2012). The data set contains 751 eQTLs with LOD scores above 10 (LRS>46). Peak LRS of 165.9 for Record ID 10513604. Data for BXD70 are somewhat problematic (see 10444135 and 10467784), perhaps due to a bad array, strain assignment error, or residual heterozygozity. S Roy double-checked (July 22) and thinks that Sample R7141P is more likely to be BXD65.

    + +

    Part of a systematic genetic analysis of the hypothalamus-pituitary-adrenal axis in the BXD family of strains.

    diff --git a/general/datasets/Inia_pg_rma_0612/tissue.rtf b/general/datasets/Inia_pg_rma_0612/tissue.rtf new file mode 100644 index 0000000..3977f1e --- /dev/null +++ b/general/datasets/Inia_pg_rma_0612/tissue.rtf @@ -0,0 +1 @@ +

    Whole pituitary gland dissected by hand. Dissections by Khyobeni Mozhui, Jesse Ingels, and Adrienne Adler at UTHSC.

    diff --git a/general/datasets/Inia_pg_rma_ex_0612/acknowledgment.rtf b/general/datasets/Inia_pg_rma_ex_0612/acknowledgment.rtf new file mode 100644 index 0000000..f8bf764 --- /dev/null +++ b/general/datasets/Inia_pg_rma_ex_0612/acknowledgment.rtf @@ -0,0 +1 @@ +

    NIAAA U01 support to RWW.

    diff --git a/general/datasets/Inia_pg_rma_ex_0612/cases.rtf b/general/datasets/Inia_pg_rma_ex_0612/cases.rtf new file mode 100644 index 0000000..faf8ab0 --- /dev/null +++ b/general/datasets/Inia_pg_rma_ex_0612/cases.rtf @@ -0,0 +1,840 @@ +

    Young adult mice raised in specific pathogen-free vivarium at UTHSC.

    + +

    ERROR CHECKING by Mozhui, Centeno and Roy: The changes have been applied in GeneNetwork (GN389 - Pituitary) as follow:

    + +

    SampleId - New Strain Assignment
    +R7087P (was BXD101) = BXD100
    +R7138P_RW170 (was BXD85) = BXD95
    +R7156P (was C57BL/6J) = B6D2F1
    +R7141P = BXD65

    + +

     

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDStrainTissueAgeSex
    1R7128PB6D2F1Pituitary69F
    2R7156PB6D2F1Pituitary92M
    3R7129PB6D2F1Pituitary69M
    4R7134PD2B6F1Pituitary77F
    5R7133PD2B6F1Pituitary77M
    6R7160PC57BL/6JPituitary92F
    7R7127PC57BL/6JPituitary77M
    8R7126PDBA/2JPituitary77F
    9R7157PDBA/2JPituitary75F
    10R7125PDBA/2JPituitary68M
    11R7155PDBA/2JPituitary75M
    12R7058PBXD1Pituitary72F
    13R7063PBXD1Pituitary86M
    14R7079PBXD11Pituitary87F
    15R7069PBXD11Pituitary76M
    16R7051PBXD12Pituitary78F
    17R7061PBXD12Pituitary78M
    18R7064PBXD14Pituitary81F
    19R7066PBXD14Pituitary81M
    20R7052PBXD24Pituitary86M
    21R7076PBXD27Pituitary76F
    22R7071PBXD27Pituitary73M
    23R7059PBXD29Pituitary72F
    24R7060PBXD29Pituitary72M
    25R7055PBXD31Pituitary74F
    26R7062PBXD31Pituitary74M
    27R7143PBXD32Pituitary81F
    28R7135PBXD32Pituitary81M
    29R7119PBXD34Pituitary77F
    30R7054PBXD34Pituitary77M
    31R7049PBXD39Pituitary79F
    32R7065PBXD39Pituitary79M
    33R7130PBXD40Pituitary85F
    34R7132PBXD40Pituitary85M
    35R7056PBXD42Pituitary87F
    36R7044PBXD42Pituitary87M
    37R7043PBXD43Pituitary81F
    38R7047PBXD43Pituitary81M
    39R7091PBXD44Pituitary83F
    40R7050PBXD44Pituitary83M
    41R7077PBXD45Pituitary77F
    42R7078PBXD45Pituitary77F
    43R7042PBXD45Pituitary77F
    44R7092PBXD48Pituitary76F
    45R7093PBXD48Pituitary76M
    46R7045PBXD49Pituitary84F
    47R7094PBXD49Pituitary84M
    48R7095PBXD50Pituitary77F
    49R7096PBXD50Pituitary77M
    50R7142PBXD56Pituitary84F
    51R7097PBXD56Pituitary77M
    52R7080PBXD60Pituitary70F
    53R7141P_RW204BXD60Pituitary76M
    54R7075PBXD62Pituitary83F
    55R7083PBXD62Pituitary83M
    56R7084PBXD62Pituitary83M
    57R7098PBXD63Pituitary77F
    58R7100PBXD65Pituitary84M
    59R7120PBXD66Pituitary257M
    60R7140PBXD68Pituitary76F
    61R7101PBXD68Pituitary76M
    62R7074PBXD69Pituitary69F
    63R7139PBXD69Pituitary81M
    64R7141PBXD65Pituitary76F
    65R7137P_RW112BXD70Pituitary76M
    66R7124PBXD71Pituitary76F
    67R7123PBXD71Pituitary76M
    68R7068PBXD73Pituitary83M
    69R7118PBXD74Pituitary69F
    70R7117PBXD74Pituitary69M
    71R7082PBXD75Pituitary76F
    72R7048PBXD75Pituitary76M
    73R7122PBXD77Pituitary223M
    74R7103PBXD79Pituitary86F
    75R7104PBXD79Pituitary86M
    76R7073PBXD80Pituitary73F
    77R7070PBXD80Pituitary73M
    78R7139P_RW138BXD83Pituitary81F
    79R7137PBXD83Pituitary76M
    80R7085PBXD84Pituitary76F
    81R7081PBXD84Pituitary76M
    82R7105PBXD85Pituitary73M
    83R7144PBXD87Pituitary83F
    84R7136P_RW196BXD87Pituitary83M
    85R7106PBXD89Pituitary82F
    86R7107PBXD89Pituitary82M
    87R7108PBXD90Pituitary82F
    88R7109PBXD90Pituitary82M
    89R7138P_RW170BXD95Pituitary73F
    90R7111PBXD97Pituitary71F
    91R7112PBXD97Pituitary71M
    92R7113PBXD99Pituitary77F
    93R7114PBXD99Pituitary77M
    94R7072PBXD100Pituitary83F
    95R7087PBXD100Pituitary88F
    96R7086PBXD100Pituitary83M
    97R7088PBXD101Pituitary88M
    98R7053PBXD102Pituitary88F
    99R7046PBXD102Pituitary88M
    100R7090PBXD103Pituitary78F
    101R7067PBXD103Pituitary78M
    +
    diff --git a/general/datasets/Inia_pg_rma_ex_0612/citation.rtf b/general/datasets/Inia_pg_rma_ex_0612/citation.rtf new file mode 100644 index 0000000..1ef65cb --- /dev/null +++ b/general/datasets/Inia_pg_rma_ex_0612/citation.rtf @@ -0,0 +1 @@ +

    Contact RW Williams

    diff --git a/general/datasets/Inia_pg_rma_ex_0612/contributors.rtf b/general/datasets/Inia_pg_rma_ex_0612/contributors.rtf new file mode 100644 index 0000000..5178980 --- /dev/null +++ b/general/datasets/Inia_pg_rma_ex_0612/contributors.rtf @@ -0,0 +1 @@ +

    Mozhui K, Lu L, Adler A, Ingels J, Williams RW

    diff --git a/general/datasets/Inia_pg_rma_ex_0612/experiment-design.rtf b/general/datasets/Inia_pg_rma_ex_0612/experiment-design.rtf new file mode 100644 index 0000000..13175b5 --- /dev/null +++ b/general/datasets/Inia_pg_rma_ex_0612/experiment-design.rtf @@ -0,0 +1,10 @@ +

    Normative expression in the whole pituitary of young adult mice. In general, a sex-balanced samples (one array from male cases, one array from female cases) for BXD and parental strains.

    + +

    QUALITY CONTROL DATA

    + +
      +
    1. 737 probe sets with LRS of 46 or higher (LOD>10)
    2. +
    3. Highest LRS = 165.7
    4. +
    5. Review of top Mendelian transcripts consist with correct strain assignment
    6. +
    7. Final sex assignment is correct
    8. +
    diff --git a/general/datasets/Inia_pg_rma_ex_0612/platform.rtf b/general/datasets/Inia_pg_rma_ex_0612/platform.rtf new file mode 100644 index 0000000..7057d48 --- /dev/null +++ b/general/datasets/Inia_pg_rma_ex_0612/platform.rtf @@ -0,0 +1 @@ +

    The GeneChip® Mouse Gene 1.0 ST Array is the latest product in the family of Affymetrix expression arrays offering whole-transcript coverage. Each of the 28,853 genes is represented on the array by approximately 27 probes spread across the full length of the gene, providing a more complete and more accurate picture of gene expression than 3'-based expression array designs. The small format of the array makes it a cost-effective expression profiling solution for new microarray users. Sense DNA targets are generated from as little as 100ng of total RNA. The Gene 1.0 ST Array is part of a complete solution for gene expression analysis that includes Whole Transcript (WT) Sense Target Labeling and Control Reagents, fluidics and scanning instrumentation and basic analysis software. The array contains the most up-to-date content of well-annotated genes, and data is analyzed using a simple workflow. The Gene 1.0 ST Array uses a subset of probes from the Mouse Exon 1.0 ST Array and covers only well-annotated content. Like the Exon 1.0 ST Array, "gene-level" analysis of multiple probes on different exons is summarized into an expression value representing all transcripts from the same gene.

    diff --git a/general/datasets/Inia_pg_rma_ex_0612/processing.rtf b/general/datasets/Inia_pg_rma_ex_0612/processing.rtf new file mode 100644 index 0000000..55aad2e --- /dev/null +++ b/general/datasets/Inia_pg_rma_ex_0612/processing.rtf @@ -0,0 +1 @@ +

    Conventional Affymetrix gene level probe summarization (RMA) followed by log2 transformation and standard GeneNetwork variance stabilization (2z +8). The z scores are multiplied by 2 and we then add a value of 8 to all values. This eliminates negative values and results in a scale of expression for which 1 unit is roughly equivalent to a two fold absolute difference in mRNA concentration.

    diff --git a/general/datasets/Inia_pg_rma_ex_0612/summary.rtf b/general/datasets/Inia_pg_rma_ex_0612/summary.rtf new file mode 100644 index 0000000..14a715d --- /dev/null +++ b/general/datasets/Inia_pg_rma_ex_0612/summary.rtf @@ -0,0 +1,3 @@ +

    Gene expression data for the whole pituitary across 52 strains of mice. Sex Balance: Sex of samples has been double-checked. As of July 2012, for 42 strains we have separate data for both males and females (usually one array each). Three strains (BXD45, 63, and 95) are only represented by female samples and two strains (BXD65 and BXD77) are only represented by male samples. Five other strains (BXD24, 66, 73, 85, 101) are may represent combined male and female samples. These unpublished data are apparently error-free based on a review and analysis of transcripts with Mendelian segregation patterns (as of July 20, 2012). The data set contains 751 eQTLs with LOD scores above 10 (LRS>46). Peak LRS of 165.9 for Record ID 10513604. Data for BXD70 are somewhat problematic (see 10444135 and 10467784), perhaps due to a bad array, strain assignment error, or residual heterozygozity. S Roy double-checked (July 22) and thinks that Sample R7141P is more likely to be BXD65.

    + +

    Part of a systematic genetic analysis of the hypothalamus-pituitary-adrenal axis in the BXD family of strains.

    diff --git a/general/datasets/Inia_pg_rma_ex_0612/tissue.rtf b/general/datasets/Inia_pg_rma_ex_0612/tissue.rtf new file mode 100644 index 0000000..3977f1e --- /dev/null +++ b/general/datasets/Inia_pg_rma_ex_0612/tissue.rtf @@ -0,0 +1 @@ +

    Whole pituitary gland dissected by hand. Dissections by Khyobeni Mozhui, Jesse Ingels, and Adrienne Adler at UTHSC.

    diff --git a/general/datasets/Inia_pituitary_rma_f_0612/acknowledgment.rtf b/general/datasets/Inia_pituitary_rma_f_0612/acknowledgment.rtf new file mode 100644 index 0000000..f8bf764 --- /dev/null +++ b/general/datasets/Inia_pituitary_rma_f_0612/acknowledgment.rtf @@ -0,0 +1 @@ +

    NIAAA U01 support to RWW.

    diff --git a/general/datasets/Inia_pituitary_rma_f_0612/cases.rtf b/general/datasets/Inia_pituitary_rma_f_0612/cases.rtf new file mode 100644 index 0000000..faf8ab0 --- /dev/null +++ b/general/datasets/Inia_pituitary_rma_f_0612/cases.rtf @@ -0,0 +1,840 @@ +

    Young adult mice raised in specific pathogen-free vivarium at UTHSC.

    + +

    ERROR CHECKING by Mozhui, Centeno and Roy: The changes have been applied in GeneNetwork (GN389 - Pituitary) as follow:

    + +

    SampleId - New Strain Assignment
    +R7087P (was BXD101) = BXD100
    +R7138P_RW170 (was BXD85) = BXD95
    +R7156P (was C57BL/6J) = B6D2F1
    +R7141P = BXD65

    + +

     

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDStrainTissueAgeSex
    1R7128PB6D2F1Pituitary69F
    2R7156PB6D2F1Pituitary92M
    3R7129PB6D2F1Pituitary69M
    4R7134PD2B6F1Pituitary77F
    5R7133PD2B6F1Pituitary77M
    6R7160PC57BL/6JPituitary92F
    7R7127PC57BL/6JPituitary77M
    8R7126PDBA/2JPituitary77F
    9R7157PDBA/2JPituitary75F
    10R7125PDBA/2JPituitary68M
    11R7155PDBA/2JPituitary75M
    12R7058PBXD1Pituitary72F
    13R7063PBXD1Pituitary86M
    14R7079PBXD11Pituitary87F
    15R7069PBXD11Pituitary76M
    16R7051PBXD12Pituitary78F
    17R7061PBXD12Pituitary78M
    18R7064PBXD14Pituitary81F
    19R7066PBXD14Pituitary81M
    20R7052PBXD24Pituitary86M
    21R7076PBXD27Pituitary76F
    22R7071PBXD27Pituitary73M
    23R7059PBXD29Pituitary72F
    24R7060PBXD29Pituitary72M
    25R7055PBXD31Pituitary74F
    26R7062PBXD31Pituitary74M
    27R7143PBXD32Pituitary81F
    28R7135PBXD32Pituitary81M
    29R7119PBXD34Pituitary77F
    30R7054PBXD34Pituitary77M
    31R7049PBXD39Pituitary79F
    32R7065PBXD39Pituitary79M
    33R7130PBXD40Pituitary85F
    34R7132PBXD40Pituitary85M
    35R7056PBXD42Pituitary87F
    36R7044PBXD42Pituitary87M
    37R7043PBXD43Pituitary81F
    38R7047PBXD43Pituitary81M
    39R7091PBXD44Pituitary83F
    40R7050PBXD44Pituitary83M
    41R7077PBXD45Pituitary77F
    42R7078PBXD45Pituitary77F
    43R7042PBXD45Pituitary77F
    44R7092PBXD48Pituitary76F
    45R7093PBXD48Pituitary76M
    46R7045PBXD49Pituitary84F
    47R7094PBXD49Pituitary84M
    48R7095PBXD50Pituitary77F
    49R7096PBXD50Pituitary77M
    50R7142PBXD56Pituitary84F
    51R7097PBXD56Pituitary77M
    52R7080PBXD60Pituitary70F
    53R7141P_RW204BXD60Pituitary76M
    54R7075PBXD62Pituitary83F
    55R7083PBXD62Pituitary83M
    56R7084PBXD62Pituitary83M
    57R7098PBXD63Pituitary77F
    58R7100PBXD65Pituitary84M
    59R7120PBXD66Pituitary257M
    60R7140PBXD68Pituitary76F
    61R7101PBXD68Pituitary76M
    62R7074PBXD69Pituitary69F
    63R7139PBXD69Pituitary81M
    64R7141PBXD65Pituitary76F
    65R7137P_RW112BXD70Pituitary76M
    66R7124PBXD71Pituitary76F
    67R7123PBXD71Pituitary76M
    68R7068PBXD73Pituitary83M
    69R7118PBXD74Pituitary69F
    70R7117PBXD74Pituitary69M
    71R7082PBXD75Pituitary76F
    72R7048PBXD75Pituitary76M
    73R7122PBXD77Pituitary223M
    74R7103PBXD79Pituitary86F
    75R7104PBXD79Pituitary86M
    76R7073PBXD80Pituitary73F
    77R7070PBXD80Pituitary73M
    78R7139P_RW138BXD83Pituitary81F
    79R7137PBXD83Pituitary76M
    80R7085PBXD84Pituitary76F
    81R7081PBXD84Pituitary76M
    82R7105PBXD85Pituitary73M
    83R7144PBXD87Pituitary83F
    84R7136P_RW196BXD87Pituitary83M
    85R7106PBXD89Pituitary82F
    86R7107PBXD89Pituitary82M
    87R7108PBXD90Pituitary82F
    88R7109PBXD90Pituitary82M
    89R7138P_RW170BXD95Pituitary73F
    90R7111PBXD97Pituitary71F
    91R7112PBXD97Pituitary71M
    92R7113PBXD99Pituitary77F
    93R7114PBXD99Pituitary77M
    94R7072PBXD100Pituitary83F
    95R7087PBXD100Pituitary88F
    96R7086PBXD100Pituitary83M
    97R7088PBXD101Pituitary88M
    98R7053PBXD102Pituitary88F
    99R7046PBXD102Pituitary88M
    100R7090PBXD103Pituitary78F
    101R7067PBXD103Pituitary78M
    +
    diff --git a/general/datasets/Inia_pituitary_rma_f_0612/citation.rtf b/general/datasets/Inia_pituitary_rma_f_0612/citation.rtf new file mode 100644 index 0000000..1ef65cb --- /dev/null +++ b/general/datasets/Inia_pituitary_rma_f_0612/citation.rtf @@ -0,0 +1 @@ +

    Contact RW Williams

    diff --git a/general/datasets/Inia_pituitary_rma_f_0612/contributors.rtf b/general/datasets/Inia_pituitary_rma_f_0612/contributors.rtf new file mode 100644 index 0000000..5178980 --- /dev/null +++ b/general/datasets/Inia_pituitary_rma_f_0612/contributors.rtf @@ -0,0 +1 @@ +

    Mozhui K, Lu L, Adler A, Ingels J, Williams RW

    diff --git a/general/datasets/Inia_pituitary_rma_f_0612/experiment-design.rtf b/general/datasets/Inia_pituitary_rma_f_0612/experiment-design.rtf new file mode 100644 index 0000000..13175b5 --- /dev/null +++ b/general/datasets/Inia_pituitary_rma_f_0612/experiment-design.rtf @@ -0,0 +1,10 @@ +

    Normative expression in the whole pituitary of young adult mice. In general, a sex-balanced samples (one array from male cases, one array from female cases) for BXD and parental strains.

    + +

    QUALITY CONTROL DATA

    + +
      +
    1. 737 probe sets with LRS of 46 or higher (LOD>10)
    2. +
    3. Highest LRS = 165.7
    4. +
    5. Review of top Mendelian transcripts consist with correct strain assignment
    6. +
    7. Final sex assignment is correct
    8. +
    diff --git a/general/datasets/Inia_pituitary_rma_f_0612/platform.rtf b/general/datasets/Inia_pituitary_rma_f_0612/platform.rtf new file mode 100644 index 0000000..7057d48 --- /dev/null +++ b/general/datasets/Inia_pituitary_rma_f_0612/platform.rtf @@ -0,0 +1 @@ +

    The GeneChip® Mouse Gene 1.0 ST Array is the latest product in the family of Affymetrix expression arrays offering whole-transcript coverage. Each of the 28,853 genes is represented on the array by approximately 27 probes spread across the full length of the gene, providing a more complete and more accurate picture of gene expression than 3'-based expression array designs. The small format of the array makes it a cost-effective expression profiling solution for new microarray users. Sense DNA targets are generated from as little as 100ng of total RNA. The Gene 1.0 ST Array is part of a complete solution for gene expression analysis that includes Whole Transcript (WT) Sense Target Labeling and Control Reagents, fluidics and scanning instrumentation and basic analysis software. The array contains the most up-to-date content of well-annotated genes, and data is analyzed using a simple workflow. The Gene 1.0 ST Array uses a subset of probes from the Mouse Exon 1.0 ST Array and covers only well-annotated content. Like the Exon 1.0 ST Array, "gene-level" analysis of multiple probes on different exons is summarized into an expression value representing all transcripts from the same gene.

    diff --git a/general/datasets/Inia_pituitary_rma_f_0612/processing.rtf b/general/datasets/Inia_pituitary_rma_f_0612/processing.rtf new file mode 100644 index 0000000..55aad2e --- /dev/null +++ b/general/datasets/Inia_pituitary_rma_f_0612/processing.rtf @@ -0,0 +1 @@ +

    Conventional Affymetrix gene level probe summarization (RMA) followed by log2 transformation and standard GeneNetwork variance stabilization (2z +8). The z scores are multiplied by 2 and we then add a value of 8 to all values. This eliminates negative values and results in a scale of expression for which 1 unit is roughly equivalent to a two fold absolute difference in mRNA concentration.

    diff --git a/general/datasets/Inia_pituitary_rma_f_0612/summary.rtf b/general/datasets/Inia_pituitary_rma_f_0612/summary.rtf new file mode 100644 index 0000000..14a715d --- /dev/null +++ b/general/datasets/Inia_pituitary_rma_f_0612/summary.rtf @@ -0,0 +1,3 @@ +

    Gene expression data for the whole pituitary across 52 strains of mice. Sex Balance: Sex of samples has been double-checked. As of July 2012, for 42 strains we have separate data for both males and females (usually one array each). Three strains (BXD45, 63, and 95) are only represented by female samples and two strains (BXD65 and BXD77) are only represented by male samples. Five other strains (BXD24, 66, 73, 85, 101) are may represent combined male and female samples. These unpublished data are apparently error-free based on a review and analysis of transcripts with Mendelian segregation patterns (as of July 20, 2012). The data set contains 751 eQTLs with LOD scores above 10 (LRS>46). Peak LRS of 165.9 for Record ID 10513604. Data for BXD70 are somewhat problematic (see 10444135 and 10467784), perhaps due to a bad array, strain assignment error, or residual heterozygozity. S Roy double-checked (July 22) and thinks that Sample R7141P is more likely to be BXD65.

    + +

    Part of a systematic genetic analysis of the hypothalamus-pituitary-adrenal axis in the BXD family of strains.

    diff --git a/general/datasets/Inia_pituitary_rma_f_0612/tissue.rtf b/general/datasets/Inia_pituitary_rma_f_0612/tissue.rtf new file mode 100644 index 0000000..3977f1e --- /dev/null +++ b/general/datasets/Inia_pituitary_rma_f_0612/tissue.rtf @@ -0,0 +1 @@ +

    Whole pituitary gland dissected by hand. Dissections by Khyobeni Mozhui, Jesse Ingels, and Adrienne Adler at UTHSC.

    diff --git a/general/datasets/Inia_pituitary_rma_m_0612/acknowledgment.rtf b/general/datasets/Inia_pituitary_rma_m_0612/acknowledgment.rtf new file mode 100644 index 0000000..f8bf764 --- /dev/null +++ b/general/datasets/Inia_pituitary_rma_m_0612/acknowledgment.rtf @@ -0,0 +1 @@ +

    NIAAA U01 support to RWW.

    diff --git a/general/datasets/Inia_pituitary_rma_m_0612/cases.rtf b/general/datasets/Inia_pituitary_rma_m_0612/cases.rtf new file mode 100644 index 0000000..faf8ab0 --- /dev/null +++ b/general/datasets/Inia_pituitary_rma_m_0612/cases.rtf @@ -0,0 +1,840 @@ +

    Young adult mice raised in specific pathogen-free vivarium at UTHSC.

    + +

    ERROR CHECKING by Mozhui, Centeno and Roy: The changes have been applied in GeneNetwork (GN389 - Pituitary) as follow:

    + +

    SampleId - New Strain Assignment
    +R7087P (was BXD101) = BXD100
    +R7138P_RW170 (was BXD85) = BXD95
    +R7156P (was C57BL/6J) = B6D2F1
    +R7141P = BXD65

    + +

     

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDStrainTissueAgeSex
    1R7128PB6D2F1Pituitary69F
    2R7156PB6D2F1Pituitary92M
    3R7129PB6D2F1Pituitary69M
    4R7134PD2B6F1Pituitary77F
    5R7133PD2B6F1Pituitary77M
    6R7160PC57BL/6JPituitary92F
    7R7127PC57BL/6JPituitary77M
    8R7126PDBA/2JPituitary77F
    9R7157PDBA/2JPituitary75F
    10R7125PDBA/2JPituitary68M
    11R7155PDBA/2JPituitary75M
    12R7058PBXD1Pituitary72F
    13R7063PBXD1Pituitary86M
    14R7079PBXD11Pituitary87F
    15R7069PBXD11Pituitary76M
    16R7051PBXD12Pituitary78F
    17R7061PBXD12Pituitary78M
    18R7064PBXD14Pituitary81F
    19R7066PBXD14Pituitary81M
    20R7052PBXD24Pituitary86M
    21R7076PBXD27Pituitary76F
    22R7071PBXD27Pituitary73M
    23R7059PBXD29Pituitary72F
    24R7060PBXD29Pituitary72M
    25R7055PBXD31Pituitary74F
    26R7062PBXD31Pituitary74M
    27R7143PBXD32Pituitary81F
    28R7135PBXD32Pituitary81M
    29R7119PBXD34Pituitary77F
    30R7054PBXD34Pituitary77M
    31R7049PBXD39Pituitary79F
    32R7065PBXD39Pituitary79M
    33R7130PBXD40Pituitary85F
    34R7132PBXD40Pituitary85M
    35R7056PBXD42Pituitary87F
    36R7044PBXD42Pituitary87M
    37R7043PBXD43Pituitary81F
    38R7047PBXD43Pituitary81M
    39R7091PBXD44Pituitary83F
    40R7050PBXD44Pituitary83M
    41R7077PBXD45Pituitary77F
    42R7078PBXD45Pituitary77F
    43R7042PBXD45Pituitary77F
    44R7092PBXD48Pituitary76F
    45R7093PBXD48Pituitary76M
    46R7045PBXD49Pituitary84F
    47R7094PBXD49Pituitary84M
    48R7095PBXD50Pituitary77F
    49R7096PBXD50Pituitary77M
    50R7142PBXD56Pituitary84F
    51R7097PBXD56Pituitary77M
    52R7080PBXD60Pituitary70F
    53R7141P_RW204BXD60Pituitary76M
    54R7075PBXD62Pituitary83F
    55R7083PBXD62Pituitary83M
    56R7084PBXD62Pituitary83M
    57R7098PBXD63Pituitary77F
    58R7100PBXD65Pituitary84M
    59R7120PBXD66Pituitary257M
    60R7140PBXD68Pituitary76F
    61R7101PBXD68Pituitary76M
    62R7074PBXD69Pituitary69F
    63R7139PBXD69Pituitary81M
    64R7141PBXD65Pituitary76F
    65R7137P_RW112BXD70Pituitary76M
    66R7124PBXD71Pituitary76F
    67R7123PBXD71Pituitary76M
    68R7068PBXD73Pituitary83M
    69R7118PBXD74Pituitary69F
    70R7117PBXD74Pituitary69M
    71R7082PBXD75Pituitary76F
    72R7048PBXD75Pituitary76M
    73R7122PBXD77Pituitary223M
    74R7103PBXD79Pituitary86F
    75R7104PBXD79Pituitary86M
    76R7073PBXD80Pituitary73F
    77R7070PBXD80Pituitary73M
    78R7139P_RW138BXD83Pituitary81F
    79R7137PBXD83Pituitary76M
    80R7085PBXD84Pituitary76F
    81R7081PBXD84Pituitary76M
    82R7105PBXD85Pituitary73M
    83R7144PBXD87Pituitary83F
    84R7136P_RW196BXD87Pituitary83M
    85R7106PBXD89Pituitary82F
    86R7107PBXD89Pituitary82M
    87R7108PBXD90Pituitary82F
    88R7109PBXD90Pituitary82M
    89R7138P_RW170BXD95Pituitary73F
    90R7111PBXD97Pituitary71F
    91R7112PBXD97Pituitary71M
    92R7113PBXD99Pituitary77F
    93R7114PBXD99Pituitary77M
    94R7072PBXD100Pituitary83F
    95R7087PBXD100Pituitary88F
    96R7086PBXD100Pituitary83M
    97R7088PBXD101Pituitary88M
    98R7053PBXD102Pituitary88F
    99R7046PBXD102Pituitary88M
    100R7090PBXD103Pituitary78F
    101R7067PBXD103Pituitary78M
    +
    diff --git a/general/datasets/Inia_pituitary_rma_m_0612/citation.rtf b/general/datasets/Inia_pituitary_rma_m_0612/citation.rtf new file mode 100644 index 0000000..1ef65cb --- /dev/null +++ b/general/datasets/Inia_pituitary_rma_m_0612/citation.rtf @@ -0,0 +1 @@ +

    Contact RW Williams

    diff --git a/general/datasets/Inia_pituitary_rma_m_0612/contributors.rtf b/general/datasets/Inia_pituitary_rma_m_0612/contributors.rtf new file mode 100644 index 0000000..5178980 --- /dev/null +++ b/general/datasets/Inia_pituitary_rma_m_0612/contributors.rtf @@ -0,0 +1 @@ +

    Mozhui K, Lu L, Adler A, Ingels J, Williams RW

    diff --git a/general/datasets/Inia_pituitary_rma_m_0612/experiment-design.rtf b/general/datasets/Inia_pituitary_rma_m_0612/experiment-design.rtf new file mode 100644 index 0000000..13175b5 --- /dev/null +++ b/general/datasets/Inia_pituitary_rma_m_0612/experiment-design.rtf @@ -0,0 +1,10 @@ +

    Normative expression in the whole pituitary of young adult mice. In general, a sex-balanced samples (one array from male cases, one array from female cases) for BXD and parental strains.

    + +

    QUALITY CONTROL DATA

    + +
      +
    1. 737 probe sets with LRS of 46 or higher (LOD>10)
    2. +
    3. Highest LRS = 165.7
    4. +
    5. Review of top Mendelian transcripts consist with correct strain assignment
    6. +
    7. Final sex assignment is correct
    8. +
    diff --git a/general/datasets/Inia_pituitary_rma_m_0612/platform.rtf b/general/datasets/Inia_pituitary_rma_m_0612/platform.rtf new file mode 100644 index 0000000..7057d48 --- /dev/null +++ b/general/datasets/Inia_pituitary_rma_m_0612/platform.rtf @@ -0,0 +1 @@ +

    The GeneChip® Mouse Gene 1.0 ST Array is the latest product in the family of Affymetrix expression arrays offering whole-transcript coverage. Each of the 28,853 genes is represented on the array by approximately 27 probes spread across the full length of the gene, providing a more complete and more accurate picture of gene expression than 3'-based expression array designs. The small format of the array makes it a cost-effective expression profiling solution for new microarray users. Sense DNA targets are generated from as little as 100ng of total RNA. The Gene 1.0 ST Array is part of a complete solution for gene expression analysis that includes Whole Transcript (WT) Sense Target Labeling and Control Reagents, fluidics and scanning instrumentation and basic analysis software. The array contains the most up-to-date content of well-annotated genes, and data is analyzed using a simple workflow. The Gene 1.0 ST Array uses a subset of probes from the Mouse Exon 1.0 ST Array and covers only well-annotated content. Like the Exon 1.0 ST Array, "gene-level" analysis of multiple probes on different exons is summarized into an expression value representing all transcripts from the same gene.

    diff --git a/general/datasets/Inia_pituitary_rma_m_0612/processing.rtf b/general/datasets/Inia_pituitary_rma_m_0612/processing.rtf new file mode 100644 index 0000000..55aad2e --- /dev/null +++ b/general/datasets/Inia_pituitary_rma_m_0612/processing.rtf @@ -0,0 +1 @@ +

    Conventional Affymetrix gene level probe summarization (RMA) followed by log2 transformation and standard GeneNetwork variance stabilization (2z +8). The z scores are multiplied by 2 and we then add a value of 8 to all values. This eliminates negative values and results in a scale of expression for which 1 unit is roughly equivalent to a two fold absolute difference in mRNA concentration.

    diff --git a/general/datasets/Inia_pituitary_rma_m_0612/summary.rtf b/general/datasets/Inia_pituitary_rma_m_0612/summary.rtf new file mode 100644 index 0000000..14a715d --- /dev/null +++ b/general/datasets/Inia_pituitary_rma_m_0612/summary.rtf @@ -0,0 +1,3 @@ +

    Gene expression data for the whole pituitary across 52 strains of mice. Sex Balance: Sex of samples has been double-checked. As of July 2012, for 42 strains we have separate data for both males and females (usually one array each). Three strains (BXD45, 63, and 95) are only represented by female samples and two strains (BXD65 and BXD77) are only represented by male samples. Five other strains (BXD24, 66, 73, 85, 101) are may represent combined male and female samples. These unpublished data are apparently error-free based on a review and analysis of transcripts with Mendelian segregation patterns (as of July 20, 2012). The data set contains 751 eQTLs with LOD scores above 10 (LRS>46). Peak LRS of 165.9 for Record ID 10513604. Data for BXD70 are somewhat problematic (see 10444135 and 10467784), perhaps due to a bad array, strain assignment error, or residual heterozygozity. S Roy double-checked (July 22) and thinks that Sample R7141P is more likely to be BXD65.

    + +

    Part of a systematic genetic analysis of the hypothalamus-pituitary-adrenal axis in the BXD family of strains.

    diff --git a/general/datasets/Inia_pituitary_rma_m_0612/tissue.rtf b/general/datasets/Inia_pituitary_rma_m_0612/tissue.rtf new file mode 100644 index 0000000..3977f1e --- /dev/null +++ b/general/datasets/Inia_pituitary_rma_m_0612/tissue.rtf @@ -0,0 +1 @@ +

    Whole pituitary gland dissected by hand. Dissections by Khyobeni Mozhui, Jesse Ingels, and Adrienne Adler at UTHSC.

    diff --git a/general/datasets/Inia_uthsc_hip_affymta1_may17/summary.rtf b/general/datasets/Inia_uthsc_hip_affymta1_may17/summary.rtf new file mode 100644 index 0000000..153d98d --- /dev/null +++ b/general/datasets/Inia_uthsc_hip_affymta1_may17/summary.rtf @@ -0,0 +1 @@ +

    In working progress...

    diff --git a/general/datasets/Inia_uthsc_mid_affymta1_apr17/cases.rtf b/general/datasets/Inia_uthsc_mid_affymta1_apr17/cases.rtf new file mode 100644 index 0000000..976f0ab --- /dev/null +++ b/general/datasets/Inia_uthsc_mid_affymta1_apr17/cases.rtf @@ -0,0 +1,857 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    MicroarrayIDMouse.IDStrainPyrazoleTimePointTreatmentPCA BatchDissectionBatchExtractionBatchConcentrationRIN
    MB112C57BL/6JPZ8hCIEBA1224.611  9.0
    MB250DBA/2JNO3dAIRBA1195.150   9.2
    MB32C57BL/6JPZ14dAIRBA1299.415  9.5
    MB460DBA/2JPZ7dAIRBA1300.033  7.6
    MB54C57BL/6JPZ14dCIEAA1249.226  7.2
    MB669DBA/2JPZ7dAIRAA1161.526  7.3
    MB78C57BL/6JPZ3dCIEBA1326.862  9.5
    MB841DBA/2JPZ8hAIRBA1352.559  7.9
    MB975DBA/2JPZ14dAIRBB1354.218  8.8
    MB1023C57BL/6JPZ3dAIRBB1280.396  9.6
    MB1149DBA/2JPZ3dAIRAB1180.312  7.2
    MB1258DBA/2JPZ3dCIEBB1225.072  NA
    MB1321C57BL/6JPZ14dCIEBC1299.623  7.4
    MB1463DBA/2JPZ3dCIEBC170.977  7.5
    MB1546DBA/2JPZ8hAIRBC1284.115  7.9
    MB1645DBA/2JPZ8hAIRBC1338.791  7.7
    MB1728C57BL/6JNO3dAIRBC1449.851  7.8
    MB1878DBA/2JPZ14dAIRBC1320.081  7.9
    MB1977DBA/2JPZ14dCIEBC1234.795  7.8
    MB2071DBA/2JPZ7dCIEBC1468.728  7.8
    MB2168DBA/2JPZ7dAIRBC1296.386  7.9
    MB2229C57BL/6JPZ8hCIEBC1398.481  8.0
    MB2367DBA/2JPZ7dCIEBA2275.813  7.8
    MB241C57BL/6JPZ8hAIRAA2132.589  6.8
    MB2514C57BL/6JNO3dCIEAA2189.666  7.9
    MB2642DBA/2JPZ8hCIEBA2310.878  9.4
    MB2755DBA/2JPZ3dCIEBA2211.576  9.0
    MB2873DBA/2JPZ7dCIEBA2287.696  7.6
    MB2948DBA/2JPZ3dAIRBA2317.532  7.8
    MB3061DBA/2JPZ7dAIRBB2294.808  7.8
    MB3120C57BL/6JPZ8hCIEBB2209.301  9.0
    MB3276DBA/2JPZ14dCIEAB2120.953  8.2
    MB335C57BL/6JPZ14dAIRBB2271.808  8.8
    MB3437C57BL/6JPZ7dCIEBB2289.261  8.0
    MB3519C57BL/6JPZ3dCIEBC2306.294  9.1
    MB3656DBA/2JPZ3dAIRBC2265.964  7.8
    MB3765DBA/2JNO3dCIEBC2259.741  9.2
    MB3880DBA/2JPZ14dAIRBC2371.000  8.0
    MB3931C57BL/6JPZ14dCIEBC2349.451  7.7
    MB4039C57BL/6JPZ7dAIRCC2403.083  8.9
    MB4162DBA/2JPZ3dCIECC2505.547  8.9
    MB4252DBA/2JPZ8hCIECC2441.549  8.8
    MB4351DBA/2JPZ3dAIRCC2519.427  8.8
    MB4435C57BL/6JNO3dAIRCA3772.361  8.8
    MB4572DBA/2JPZ14dAIRCA3598.185  8.9
    MB4632C57BL/6JPZ7dCIECA3824.974  8.7
    MB4774DBA/2JPZ14dCIECA3495.046  9.4
    MB4854DBA/2JPZ8hCIECA3667.036  9.4
    MB4924C57BL/6JPZ7dAIRCA3760.367  9.2
    MB509C57BL/6JPZ3dAIRCA3701.152  9.2
    MB5166DBA/2JNO3dCIECB3579.22  8.3
    MB5244DBA/2JPZ8hCIECB3636.091  9.4
    MB5334C57BL/6JPZ7dAIRCB3739.127  9.5
    MB547C57BL/6JPZ8hAIRCB3667.933  9.2
    MB5536C57BL/6JNO3dCIECC3605.937  9.2
    MB5643DBA/2JPZ8hAIRCC3639.161  9.5
    MB5770DBA/2JPZ7dCIECC3630.735  9.4
    MB5859DBA/2JNO3dAIRCC3548.647  9.5
    MB5915C57BL/6JPZ14dAIRCC3689.793  9.4
    MB6027C57BL/6JPZ8hAIRCC3580.462  9.4
    MB6130C57BL/6JPZ3dAIRCC3577.826  8.2
    MB6257DBA/2JPZ3dAIRCC3581.164  9.0
    MB6338C57BL/6JPZ3dCIECC3748.421  8.6
    MB6447DBA/2JPZ8hAIRCC3747.345  8.5
    diff --git a/general/datasets/Inia_uthsc_mid_affymta1_apr17/specifics.rtf b/general/datasets/Inia_uthsc_mid_affymta1_apr17/specifics.rtf new file mode 100644 index 0000000..729d375 --- /dev/null +++ b/general/datasets/Inia_uthsc_mid_affymta1_apr17/specifics.rtf @@ -0,0 +1 @@ +

    SST-RMA Gene Level

    diff --git a/general/datasets/Inia_uthsc_mid_affymta1_apr17/summary.rtf b/general/datasets/Inia_uthsc_mid_affymta1_apr17/summary.rtf new file mode 100644 index 0000000..9baa040 --- /dev/null +++ b/general/datasets/Inia_uthsc_mid_affymta1_apr17/summary.rtf @@ -0,0 +1,31 @@ +

    Overview:

    + +

    1. Treated and whole brains dissected at Medical University of South Carolina (Marcelo F. Lopez laboratory)

    + +

    2. Frozen brains sub-dissected at UTHSC (Megan K. Mulligan laboratory)

    + +

    3. RNA extraction (Qiagen RNeasy kit) at UTHSC (Mulligan and Williams laboratories)

    + +

    4. Hybridized to Affymetrix Clariom D (aka Affymetrix MTA 1.0 ST) array at UTHSC MRC (Lorne Rose, UTHSC Molecular Resource Center)

    + +

    5. Initial QC and normalization (COMBAT) at UTHSC (Megan K. Mulligan laboratory)

    + +

    6. Transcriptome entry and phenotype entry (Arthur Centeno, Megan K. Mulligan, and Robert W. Williams)

    + +

     

    + +

    Chronic ethanol exposure:

    + +

    Mice were allowed to self-administer alcohol (15% v/v vs. water) for 2 h a day (5 days a week) 6 weeks prior to treatment in order to establish baseline consumption. Access to 15% alcohol versus water started 30 min prior to the start of the dark cycle. Following establishment of baseline drinking, male mice representative of each strain were separated into groups to be exposed to either weekly cycles of CIE exposure (CIE group) or air control (AIR group) exposure. 

    + +

     

    + +

    Mice assigned to the CIE treatment group were exposed to alcohol vapor for 16 h a day followed by 8 h of withdrawal for 4 days per week. Following the fourth vapor exposure, mice were given a 72-h abstinence/withdrawal period before resuming ethanol intake in the home cage for 5 days. Mice in the AIR control treatment group were similarly treated but exposed only to air in the inhalation chambers. This pattern of CIE or air control exposure followed by 5 days of ethanol self-administration was repeated for four cycles. A fifth cycle of CIE (or air) exposure followed the fourth ethanol intake evaluation period, and brain tissue was collected at multiple time points (8h, 3d, 7d, 14d) after the last cycle ended. Pyrazole (1 mmol/kg) was used to stabilize blood ethanol levels (BEC) and was administered to both CIE and AIR groups. A subset of mice received no pyrazole. 

    + +

     

    + +

    Analysis:

    + +

    1. Normalization on Affymetrix Expression Console (SST-RMA Gene Level).

    + +

    2. Batch effect detected (RNA concentration dependent) and corrected in ComBat

    diff --git a/general/datasets/Inia_uthsc_mid_affymta1_ex_may17/cases.rtf b/general/datasets/Inia_uthsc_mid_affymta1_ex_may17/cases.rtf new file mode 100644 index 0000000..976f0ab --- /dev/null +++ b/general/datasets/Inia_uthsc_mid_affymta1_ex_may17/cases.rtf @@ -0,0 +1,857 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    MicroarrayIDMouse.IDStrainPyrazoleTimePointTreatmentPCA BatchDissectionBatchExtractionBatchConcentrationRIN
    MB112C57BL/6JPZ8hCIEBA1224.611  9.0
    MB250DBA/2JNO3dAIRBA1195.150   9.2
    MB32C57BL/6JPZ14dAIRBA1299.415  9.5
    MB460DBA/2JPZ7dAIRBA1300.033  7.6
    MB54C57BL/6JPZ14dCIEAA1249.226  7.2
    MB669DBA/2JPZ7dAIRAA1161.526  7.3
    MB78C57BL/6JPZ3dCIEBA1326.862  9.5
    MB841DBA/2JPZ8hAIRBA1352.559  7.9
    MB975DBA/2JPZ14dAIRBB1354.218  8.8
    MB1023C57BL/6JPZ3dAIRBB1280.396  9.6
    MB1149DBA/2JPZ3dAIRAB1180.312  7.2
    MB1258DBA/2JPZ3dCIEBB1225.072  NA
    MB1321C57BL/6JPZ14dCIEBC1299.623  7.4
    MB1463DBA/2JPZ3dCIEBC170.977  7.5
    MB1546DBA/2JPZ8hAIRBC1284.115  7.9
    MB1645DBA/2JPZ8hAIRBC1338.791  7.7
    MB1728C57BL/6JNO3dAIRBC1449.851  7.8
    MB1878DBA/2JPZ14dAIRBC1320.081  7.9
    MB1977DBA/2JPZ14dCIEBC1234.795  7.8
    MB2071DBA/2JPZ7dCIEBC1468.728  7.8
    MB2168DBA/2JPZ7dAIRBC1296.386  7.9
    MB2229C57BL/6JPZ8hCIEBC1398.481  8.0
    MB2367DBA/2JPZ7dCIEBA2275.813  7.8
    MB241C57BL/6JPZ8hAIRAA2132.589  6.8
    MB2514C57BL/6JNO3dCIEAA2189.666  7.9
    MB2642DBA/2JPZ8hCIEBA2310.878  9.4
    MB2755DBA/2JPZ3dCIEBA2211.576  9.0
    MB2873DBA/2JPZ7dCIEBA2287.696  7.6
    MB2948DBA/2JPZ3dAIRBA2317.532  7.8
    MB3061DBA/2JPZ7dAIRBB2294.808  7.8
    MB3120C57BL/6JPZ8hCIEBB2209.301  9.0
    MB3276DBA/2JPZ14dCIEAB2120.953  8.2
    MB335C57BL/6JPZ14dAIRBB2271.808  8.8
    MB3437C57BL/6JPZ7dCIEBB2289.261  8.0
    MB3519C57BL/6JPZ3dCIEBC2306.294  9.1
    MB3656DBA/2JPZ3dAIRBC2265.964  7.8
    MB3765DBA/2JNO3dCIEBC2259.741  9.2
    MB3880DBA/2JPZ14dAIRBC2371.000  8.0
    MB3931C57BL/6JPZ14dCIEBC2349.451  7.7
    MB4039C57BL/6JPZ7dAIRCC2403.083  8.9
    MB4162DBA/2JPZ3dCIECC2505.547  8.9
    MB4252DBA/2JPZ8hCIECC2441.549  8.8
    MB4351DBA/2JPZ3dAIRCC2519.427  8.8
    MB4435C57BL/6JNO3dAIRCA3772.361  8.8
    MB4572DBA/2JPZ14dAIRCA3598.185  8.9
    MB4632C57BL/6JPZ7dCIECA3824.974  8.7
    MB4774DBA/2JPZ14dCIECA3495.046  9.4
    MB4854DBA/2JPZ8hCIECA3667.036  9.4
    MB4924C57BL/6JPZ7dAIRCA3760.367  9.2
    MB509C57BL/6JPZ3dAIRCA3701.152  9.2
    MB5166DBA/2JNO3dCIECB3579.22  8.3
    MB5244DBA/2JPZ8hCIECB3636.091  9.4
    MB5334C57BL/6JPZ7dAIRCB3739.127  9.5
    MB547C57BL/6JPZ8hAIRCB3667.933  9.2
    MB5536C57BL/6JNO3dCIECC3605.937  9.2
    MB5643DBA/2JPZ8hAIRCC3639.161  9.5
    MB5770DBA/2JPZ7dCIECC3630.735  9.4
    MB5859DBA/2JNO3dAIRCC3548.647  9.5
    MB5915C57BL/6JPZ14dAIRCC3689.793  9.4
    MB6027C57BL/6JPZ8hAIRCC3580.462  9.4
    MB6130C57BL/6JPZ3dAIRCC3577.826  8.2
    MB6257DBA/2JPZ3dAIRCC3581.164  9.0
    MB6338C57BL/6JPZ3dCIECC3748.421  8.6
    MB6447DBA/2JPZ8hAIRCC3747.345  8.5
    diff --git a/general/datasets/Inia_uthsc_mid_affymta1_ex_may17/specifics.rtf b/general/datasets/Inia_uthsc_mid_affymta1_ex_may17/specifics.rtf new file mode 100644 index 0000000..7c1a914 --- /dev/null +++ b/general/datasets/Inia_uthsc_mid_affymta1_ex_may17/specifics.rtf @@ -0,0 +1 @@ +Exon Level \ No newline at end of file diff --git a/general/datasets/Inia_uthsc_mid_affymta1_ex_may17/summary.rtf b/general/datasets/Inia_uthsc_mid_affymta1_ex_may17/summary.rtf new file mode 100644 index 0000000..9baa040 --- /dev/null +++ b/general/datasets/Inia_uthsc_mid_affymta1_ex_may17/summary.rtf @@ -0,0 +1,31 @@ +

    Overview:

    + +

    1. Treated and whole brains dissected at Medical University of South Carolina (Marcelo F. Lopez laboratory)

    + +

    2. Frozen brains sub-dissected at UTHSC (Megan K. Mulligan laboratory)

    + +

    3. RNA extraction (Qiagen RNeasy kit) at UTHSC (Mulligan and Williams laboratories)

    + +

    4. Hybridized to Affymetrix Clariom D (aka Affymetrix MTA 1.0 ST) array at UTHSC MRC (Lorne Rose, UTHSC Molecular Resource Center)

    + +

    5. Initial QC and normalization (COMBAT) at UTHSC (Megan K. Mulligan laboratory)

    + +

    6. Transcriptome entry and phenotype entry (Arthur Centeno, Megan K. Mulligan, and Robert W. Williams)

    + +

     

    + +

    Chronic ethanol exposure:

    + +

    Mice were allowed to self-administer alcohol (15% v/v vs. water) for 2 h a day (5 days a week) 6 weeks prior to treatment in order to establish baseline consumption. Access to 15% alcohol versus water started 30 min prior to the start of the dark cycle. Following establishment of baseline drinking, male mice representative of each strain were separated into groups to be exposed to either weekly cycles of CIE exposure (CIE group) or air control (AIR group) exposure. 

    + +

     

    + +

    Mice assigned to the CIE treatment group were exposed to alcohol vapor for 16 h a day followed by 8 h of withdrawal for 4 days per week. Following the fourth vapor exposure, mice were given a 72-h abstinence/withdrawal period before resuming ethanol intake in the home cage for 5 days. Mice in the AIR control treatment group were similarly treated but exposed only to air in the inhalation chambers. This pattern of CIE or air control exposure followed by 5 days of ethanol self-administration was repeated for four cycles. A fifth cycle of CIE (or air) exposure followed the fourth ethanol intake evaluation period, and brain tissue was collected at multiple time points (8h, 3d, 7d, 14d) after the last cycle ended. Pyrazole (1 mmol/kg) was used to stabilize blood ethanol levels (BEC) and was administered to both CIE and AIR groups. A subset of mice received no pyrazole. 

    + +

     

    + +

    Analysis:

    + +

    1. Normalization on Affymetrix Expression Console (SST-RMA Gene Level).

    + +

    2. Batch effect detected (RNA concentration dependent) and corrected in ComBat

    diff --git a/general/datasets/Inia_uthsc_pfc_affymta1_may17/summary.rtf b/general/datasets/Inia_uthsc_pfc_affymta1_may17/summary.rtf new file mode 100644 index 0000000..153d98d --- /dev/null +++ b/general/datasets/Inia_uthsc_pfc_affymta1_may17/summary.rtf @@ -0,0 +1 @@ +

    In working progress...

    diff --git a/general/datasets/Inia_uthsc_str_affymta1_may17/summary.rtf b/general/datasets/Inia_uthsc_str_affymta1_may17/summary.rtf new file mode 100644 index 0000000..153d98d --- /dev/null +++ b/general/datasets/Inia_uthsc_str_affymta1_may17/summary.rtf @@ -0,0 +1 @@ +

    In working progress...

    diff --git a/general/datasets/Iop_spl_rma_0509/notes.rtf b/general/datasets/Iop_spl_rma_0509/notes.rtf new file mode 100644 index 0000000..b75c94f --- /dev/null +++ b/general/datasets/Iop_spl_rma_0509/notes.rtf @@ -0,0 +1 @@ +

    Spleen mRNA expression levels are measured for 77 individual BXD RI mice from 24 different strains. The expressed gene set were characterised using the Affymetrix Mouse430_2.0 GeneChip which encompass over 34,000 known genes.

    diff --git a/general/datasets/Iop_spl_rma_0509/summary.rtf b/general/datasets/Iop_spl_rma_0509/summary.rtf new file mode 100644 index 0000000..53231ef --- /dev/null +++ b/general/datasets/Iop_spl_rma_0509/summary.rtf @@ -0,0 +1 @@ +

    Summary of DatasetId 74, Name: IoP Affy MOE 430v2 Spleen (May09)

    diff --git a/general/datasets/Ircm_axbxa_hri0213/summary.rtf b/general/datasets/Ircm_axbxa_hri0213/summary.rtf new file mode 100644 index 0000000..ce6cd68 --- /dev/null +++ b/general/datasets/Ircm_axbxa_hri0213/summary.rtf @@ -0,0 +1 @@ +

    Expression data from hearts from 24 different AxB/BxA. Also the data are normalized and log2 transformed. All mice are males and 12 weeks.

    diff --git a/general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/acknowledgment.rtf b/general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/acknowledgment.rtf deleted file mode 100644 index 5ab8fd8..0000000 --- a/general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This manuscript is dedicated to the memory of Pavlina Petkova, a wonderful scientist, colleague, and wonderful friend. We thank members of the Baker, Paigen, Petkov, and Carter laboratories for their discussion of the data and manuscript. This work was assisted by The Jackson Laboratory scientific services, which are supported through National Institutes of Health Cancer Core grant CA34196. BXD ESC lines were kindly provided by Anne Czechanski and Laura Reinholdt, funded by the Special Mouse Strain Resource OD011102-18. Funding for the work was provided by NIGMS F32-GM101736 and The Jackson Laboratory start-up funds supporting C.L.B., and P01-GM099640 to K.P. and G.W.C.

    diff --git a/general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/cases.rtf b/general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/cases.rtf deleted file mode 100644 index 5922df0..0000000 --- a/general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

    C57BL/6J (stock number 000664), DBA/2J (stock number 000671), B6D2 F1/J hybrid (stock number 100006), and all BXD RI mice were obtained from The Jackson Laboratory (Bar Harbor, ME). All animal experiments were approved by the Animal Care and Use Committee of The Jackson Laboratory (summary #04008 and #16043).

    diff --git a/general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/processing.rtf b/general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/processing.rtf deleted file mode 100644 index d359653..0000000 --- a/general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/processing.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    All sequenced B6, D2, F1, and BXD H3K4me3 ChIP libraries, as well as all control input DNA samples were aligned utilizing bwa version 0.7.9a (). B6 parental samples were aligned to the Genome Reference Consortium Mouse Build 38 (mm10) and D2 parental samples were aligned to the de novo REL-1509 assembly, including all unplaced scaffolds, from the Mouse Genomes Project ().

    - -

    To ensure that H3K4me3 peaks were properly quantified across divergent genomes, we began by building a comprehensive “peakome” representing all potential H3K4me3 peaks found in the two parents. H3K4me3 peaks for B6 and D2 were called independently, utilizing alignment data from three replicate samples and one DNA input sample. Reads were filtered for a mapq alignment metric of 60 and an alignment sequence having no indels present across the entire length of the sequencing read, typically 100 bp H3K4me3 peaks were called utilizing MACS version 1.4.2 () and peaks having a false discovery rate (FDR) of <1% found in two out of three replicates were accepted. Final genomic intervals for each H3K4me3 peak for each strain were derived by merging the peaks from the corresponding replicate samples using bedtools (). To link syntenic regions between B6 and D2 assemblies, which each have their own coordinate system, sequences from these genomic intervals were aligned to their alternative genome using reciprocal BLAST. In some cases, a sequence interval comprising an H3K4me3 peak in one strain aligned to multiple adjacent intervals in the alternative genome. If the sequences of these peaks in the alternate strain all fell within the boundaries of the single peak, they were merged. The boundaries of these merged peaks included the incorporated sequences from both strains. Because there are also H3K4me3 peaks that are strain specific, these peaks were accepted if, and only if, the mapped interval had a unique sequence that was found in the proper syntentic order within the alternative genome lacking that H3K4me3 peak. The final combined peakome between B6 and D2 mice was created by selecting only peaks appropriately linked across each strain, assuring that each H3K4me3 peak reciprocally aligned to only one peak in the alternative genome after merging, and that all peaks were in the same order along the chromosomes in both genomes (Supplemental Material, Table S2). Using the H3K4me3 peaks locations derived from the parental strains, final read counts for B6, D2, F1 hybrids, and BXDs were obtained by counting reads within the coordinate boundaries of the peakome intervals.

    - -

    To improve mapping accuracy and utilize known sequence variation between strains, all BXDs and F1hybrid samples were aligned separately to both the mm10 reference and the de novo D2 assembly. To reduce error in quantification of H3K4me3 levels due to genomic regions containing repetitive sequences, we removed reads with multiple alignments and retained reads with alignment metric of 60 that lacked small indels, which can often indicate misalignment. Subsequently, for each genomic interval in the peakome, final reads counts were summed for those that mapped uniquely to one of the assemblies along with those that mapped equally well to both B6 and D2 genome assemblies.

    diff --git a/general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/specifics.rtf b/general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/specifics.rtf deleted file mode 100644 index 7c4621d..0000000 --- a/general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This data has all of the normalization steps already applied. Normalized read counts. Essentially we used a method out of the R package edgeR to normalize for both read depth and composition, followed by log2 transformation, and then subtraction of PCA1.

    diff --git a/general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/summary.rtf b/general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/summary.rtf deleted file mode 100644 index 97965d8..0000000 --- a/general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404261/

    - -

    The epigenetic landscape varies greatly among cell types. Although a variety of writers, readers, and erasers of epigenetic features are known, we have little information about the underlying regulatory systems controlling the establishment and maintenance of these features. Here, we have explored how natural genetic variation affects the epigenome in mice. Studying levels of H3K4me3, a histone modification at sites such as promoters, enhancers, and recombination hotspots, we found tissue-specific trans-regulation of H3K4me3 levels in four highly diverse cell types: male germ cells, embryonic stem cells, hepatocytes, and cardiomyocytes. To identify the genetic loci involved, we measured H3K4me3 levels in male germ cells in a mapping population of 59 BXD recombinant inbred lines. We found extensive trans-regulation of H3K4me3 peaks, including six major histone quantitative trait loci (QTL). These chromatin regulatory loci act dominantly to suppress H3K4me3, which at hotspots reduces the likelihood of subsequent DNA double-strand breaks. QTL locations do not correspond with genes encoding enzymes known to metabolize chromatin features. Instead their locations match clusters of zinc finger genes, making these possible candidates that explain the dominant suppression of H3K4me3. Collectively, these data describe an extensive, set of chromatin regulatory loci that control the epigenetic landscape.

    diff --git a/general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/tissue.rtf b/general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/tissue.rtf deleted file mode 100644 index 65281a9..0000000 --- a/general/datasets/JAX_BXD_Germ_Cells_edgeR_0820/tissue.rtf +++ /dev/null @@ -1,7 +0,0 @@ -

    Testicular germ cell enrichment was performed on 14-day postpartum male mice as previously reported (). This cell preparation removes somatic Sertoli and Leydig cells and results in >90% enrichment of germ cells, of which nearly 50% are spermatogonia ().

    - -

    Individual low-passage mouse ESCs were derived using protocols outlined in . Briefly, 6- to 8-week-old females are mated to stud males and checked each morning for plugs. Pregnant females are euthanized on embryonic day 3.5 and the uterine horn is flushed to remove embryos. Embryos are visualized under a dissecting microscope and blastocysts are transferred to 2i (2i:CHIR99021 and PD0325901) () serum-free media for outgrowth of the inner cell mass. Blastocysts are allowed to hatch and attach to a mouse embryonic fibroblast (MEF) feeder layer, and the resulting outgrowth is monitored daily and fed for 8–11 days. The emergent ESCs are disaggregated and passaged onto new MEF feeders. Cultures during this time are closely monitored for unusually rapid growth (potentially indicating karyotypic instability), signs of deterioration including vacuolated cytoplasm, detachment of cells from colonies and debris, and possible signs of contamination. Successful ESC cultures were maintained on MEF feeders in serum containing 2i media supplemented with Leukemia inhibiting factor (2i/LIF) () to maintain high levels of NANOG expression, which indicates ground-state pluripotency (). Prior to preparing for chromatin isolation, mouse ESCs were enzymatically disassociated using trypsin and MEFs were removed by serial plating on gelatin-coated plates to which MEFs adsorb preferentially; for this, ESCs and MEFs are incubated in 2i/LIF media on fresh plates for 15 min to allow the larger MEFs to quickly attach to the plates. ESCs are aspirated and the plating procedure repeated once to further remove MEFs. ESCs were collected by centrifugation, resuspended in PBS, and cross-linked using formaldehyde.

    - -

    For hepatocyte isolation and purification, livers from 8-week-old female mice were perfused using a modified EGTA–collagenase perfusion protocol (). All perfusions and hepatocyte purifications were done at the same time of the day to avoid possible circadian effects on any studied parameter. EGTA buffer was used to flush the blood out of the liver and start to digest the desmosomes connecting the liver cells. After 35 ml of the 1× EGTA solution was passed through the liver, it was replaced with 7–10 ml of 1× Leffert’s buffer to flush out the EGTA, which otherwise chelates the calcium ions necessary for collagenase activity in the next step when the liver is digested by perfusion with 25–50 ml of Liberase solution (∼4.3 Wünsch units). After perfusion, the liver was removed from the abdominal cavity and passed through Nitex 80-μm nylon mesh, using extra ice-cold Leffert’s buffer with 0.02% CaCl2and a rubber policeman. Hepatocytes were purified from the remaining cells by two consecutive centrifugations for 4 min, 50 × g each, leaving the other, smaller cell types in suspension. After each spin, the solution was decanted as waste, and the enriched cell pellet of hepatocytes was resuspended in 30 ml ice-cold Leffert’s buffer with 0.02% CaCl2. After the second centrifugation, the cell pellet contained >98.6% hepatocytes.

    - -

    For cardiomyocyte isolation 8-week-old female mice were euthanized and the chest opened to expose the heart. The descending aorta and inferior vena cava were cut and an EDTA buffer was injected into the apex of the right ventricle to flush the heart. The ascending aorta was clamped and the heart transferred to a petri dish and fixed by perfusion of EDTA buffer containing 4% formaldehyde via the left ventricle. The formaldehyde was quenched by perfusing the heart with 125 mM glycine, and digested by perfusion with collagenase buffer. The ventricles were rent into smaller pieces, and triturated to complete cellular dissociation into a single-cell suspension. Cells were then filtered through a 100-μm strainer to remove tissue fragments and centrifuged at a very low speed to obtain a highly enriched fraction of fixed cardiomyocytes.

    diff --git a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/acknowledgment.rtf b/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/acknowledgment.rtf deleted file mode 100644 index 5ab8fd8..0000000 --- a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This manuscript is dedicated to the memory of Pavlina Petkova, a wonderful scientist, colleague, and wonderful friend. We thank members of the Baker, Paigen, Petkov, and Carter laboratories for their discussion of the data and manuscript. This work was assisted by The Jackson Laboratory scientific services, which are supported through National Institutes of Health Cancer Core grant CA34196. BXD ESC lines were kindly provided by Anne Czechanski and Laura Reinholdt, funded by the Special Mouse Strain Resource OD011102-18. Funding for the work was provided by NIGMS F32-GM101736 and The Jackson Laboratory start-up funds supporting C.L.B., and P01-GM099640 to K.P. and G.W.C.

    diff --git a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/cases.rtf b/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/cases.rtf deleted file mode 100644 index 5922df0..0000000 --- a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

    C57BL/6J (stock number 000664), DBA/2J (stock number 000671), B6D2 F1/J hybrid (stock number 100006), and all BXD RI mice were obtained from The Jackson Laboratory (Bar Harbor, ME). All animal experiments were approved by the Animal Care and Use Committee of The Jackson Laboratory (summary #04008 and #16043).

    diff --git a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/processing.rtf b/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/processing.rtf deleted file mode 100644 index d359653..0000000 --- a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/processing.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    All sequenced B6, D2, F1, and BXD H3K4me3 ChIP libraries, as well as all control input DNA samples were aligned utilizing bwa version 0.7.9a (). B6 parental samples were aligned to the Genome Reference Consortium Mouse Build 38 (mm10) and D2 parental samples were aligned to the de novo REL-1509 assembly, including all unplaced scaffolds, from the Mouse Genomes Project ().

    - -

    To ensure that H3K4me3 peaks were properly quantified across divergent genomes, we began by building a comprehensive “peakome” representing all potential H3K4me3 peaks found in the two parents. H3K4me3 peaks for B6 and D2 were called independently, utilizing alignment data from three replicate samples and one DNA input sample. Reads were filtered for a mapq alignment metric of 60 and an alignment sequence having no indels present across the entire length of the sequencing read, typically 100 bp H3K4me3 peaks were called utilizing MACS version 1.4.2 () and peaks having a false discovery rate (FDR) of <1% found in two out of three replicates were accepted. Final genomic intervals for each H3K4me3 peak for each strain were derived by merging the peaks from the corresponding replicate samples using bedtools (). To link syntenic regions between B6 and D2 assemblies, which each have their own coordinate system, sequences from these genomic intervals were aligned to their alternative genome using reciprocal BLAST. In some cases, a sequence interval comprising an H3K4me3 peak in one strain aligned to multiple adjacent intervals in the alternative genome. If the sequences of these peaks in the alternate strain all fell within the boundaries of the single peak, they were merged. The boundaries of these merged peaks included the incorporated sequences from both strains. Because there are also H3K4me3 peaks that are strain specific, these peaks were accepted if, and only if, the mapped interval had a unique sequence that was found in the proper syntentic order within the alternative genome lacking that H3K4me3 peak. The final combined peakome between B6 and D2 mice was created by selecting only peaks appropriately linked across each strain, assuring that each H3K4me3 peak reciprocally aligned to only one peak in the alternative genome after merging, and that all peaks were in the same order along the chromosomes in both genomes (Supplemental Material, Table S2). Using the H3K4me3 peaks locations derived from the parental strains, final read counts for B6, D2, F1 hybrids, and BXDs were obtained by counting reads within the coordinate boundaries of the peakome intervals.

    - -

    To improve mapping accuracy and utilize known sequence variation between strains, all BXDs and F1hybrid samples were aligned separately to both the mm10 reference and the de novo D2 assembly. To reduce error in quantification of H3K4me3 levels due to genomic regions containing repetitive sequences, we removed reads with multiple alignments and retained reads with alignment metric of 60 that lacked small indels, which can often indicate misalignment. Subsequently, for each genomic interval in the peakome, final reads counts were summed for those that mapped uniquely to one of the assemblies along with those that mapped equally well to both B6 and D2 genome assemblies.

    diff --git a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/specifics.rtf b/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/specifics.rtf deleted file mode 100644 index bbaabc0..0000000 --- a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -log2 transformed \ No newline at end of file diff --git a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/summary.rtf b/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/summary.rtf deleted file mode 100644 index 97965d8..0000000 --- a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404261/

    - -

    The epigenetic landscape varies greatly among cell types. Although a variety of writers, readers, and erasers of epigenetic features are known, we have little information about the underlying regulatory systems controlling the establishment and maintenance of these features. Here, we have explored how natural genetic variation affects the epigenome in mice. Studying levels of H3K4me3, a histone modification at sites such as promoters, enhancers, and recombination hotspots, we found tissue-specific trans-regulation of H3K4me3 levels in four highly diverse cell types: male germ cells, embryonic stem cells, hepatocytes, and cardiomyocytes. To identify the genetic loci involved, we measured H3K4me3 levels in male germ cells in a mapping population of 59 BXD recombinant inbred lines. We found extensive trans-regulation of H3K4me3 peaks, including six major histone quantitative trait loci (QTL). These chromatin regulatory loci act dominantly to suppress H3K4me3, which at hotspots reduces the likelihood of subsequent DNA double-strand breaks. QTL locations do not correspond with genes encoding enzymes known to metabolize chromatin features. Instead their locations match clusters of zinc finger genes, making these possible candidates that explain the dominant suppression of H3K4me3. Collectively, these data describe an extensive, set of chromatin regulatory loci that control the epigenetic landscape.

    diff --git a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/tissue.rtf b/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/tissue.rtf deleted file mode 100644 index 65281a9..0000000 --- a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2_0820/tissue.rtf +++ /dev/null @@ -1,7 +0,0 @@ -

    Testicular germ cell enrichment was performed on 14-day postpartum male mice as previously reported (). This cell preparation removes somatic Sertoli and Leydig cells and results in >90% enrichment of germ cells, of which nearly 50% are spermatogonia ().

    - -

    Individual low-passage mouse ESCs were derived using protocols outlined in . Briefly, 6- to 8-week-old females are mated to stud males and checked each morning for plugs. Pregnant females are euthanized on embryonic day 3.5 and the uterine horn is flushed to remove embryos. Embryos are visualized under a dissecting microscope and blastocysts are transferred to 2i (2i:CHIR99021 and PD0325901) () serum-free media for outgrowth of the inner cell mass. Blastocysts are allowed to hatch and attach to a mouse embryonic fibroblast (MEF) feeder layer, and the resulting outgrowth is monitored daily and fed for 8–11 days. The emergent ESCs are disaggregated and passaged onto new MEF feeders. Cultures during this time are closely monitored for unusually rapid growth (potentially indicating karyotypic instability), signs of deterioration including vacuolated cytoplasm, detachment of cells from colonies and debris, and possible signs of contamination. Successful ESC cultures were maintained on MEF feeders in serum containing 2i media supplemented with Leukemia inhibiting factor (2i/LIF) () to maintain high levels of NANOG expression, which indicates ground-state pluripotency (). Prior to preparing for chromatin isolation, mouse ESCs were enzymatically disassociated using trypsin and MEFs were removed by serial plating on gelatin-coated plates to which MEFs adsorb preferentially; for this, ESCs and MEFs are incubated in 2i/LIF media on fresh plates for 15 min to allow the larger MEFs to quickly attach to the plates. ESCs are aspirated and the plating procedure repeated once to further remove MEFs. ESCs were collected by centrifugation, resuspended in PBS, and cross-linked using formaldehyde.

    - -

    For hepatocyte isolation and purification, livers from 8-week-old female mice were perfused using a modified EGTA–collagenase perfusion protocol (). All perfusions and hepatocyte purifications were done at the same time of the day to avoid possible circadian effects on any studied parameter. EGTA buffer was used to flush the blood out of the liver and start to digest the desmosomes connecting the liver cells. After 35 ml of the 1× EGTA solution was passed through the liver, it was replaced with 7–10 ml of 1× Leffert’s buffer to flush out the EGTA, which otherwise chelates the calcium ions necessary for collagenase activity in the next step when the liver is digested by perfusion with 25–50 ml of Liberase solution (∼4.3 Wünsch units). After perfusion, the liver was removed from the abdominal cavity and passed through Nitex 80-μm nylon mesh, using extra ice-cold Leffert’s buffer with 0.02% CaCl2and a rubber policeman. Hepatocytes were purified from the remaining cells by two consecutive centrifugations for 4 min, 50 × g each, leaving the other, smaller cell types in suspension. After each spin, the solution was decanted as waste, and the enriched cell pellet of hepatocytes was resuspended in 30 ml ice-cold Leffert’s buffer with 0.02% CaCl2. After the second centrifugation, the cell pellet contained >98.6% hepatocytes.

    - -

    For cardiomyocyte isolation 8-week-old female mice were euthanized and the chest opened to expose the heart. The descending aorta and inferior vena cava were cut and an EDTA buffer was injected into the apex of the right ventricle to flush the heart. The ascending aorta was clamped and the heart transferred to a petri dish and fixed by perfusion of EDTA buffer containing 4% formaldehyde via the left ventricle. The formaldehyde was quenched by perfusing the heart with 125 mM glycine, and digested by perfusion with collagenase buffer. The ventricles were rent into smaller pieces, and triturated to complete cellular dissociation into a single-cell suspension. Cells were then filtered through a 100-μm strainer to remove tissue fragments and centrifuged at a very low speed to obtain a highly enriched fraction of fixed cardiomyocytes.

    diff --git a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/acknowledgment.rtf b/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/acknowledgment.rtf deleted file mode 100644 index 5ab8fd8..0000000 --- a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This manuscript is dedicated to the memory of Pavlina Petkova, a wonderful scientist, colleague, and wonderful friend. We thank members of the Baker, Paigen, Petkov, and Carter laboratories for their discussion of the data and manuscript. This work was assisted by The Jackson Laboratory scientific services, which are supported through National Institutes of Health Cancer Core grant CA34196. BXD ESC lines were kindly provided by Anne Czechanski and Laura Reinholdt, funded by the Special Mouse Strain Resource OD011102-18. Funding for the work was provided by NIGMS F32-GM101736 and The Jackson Laboratory start-up funds supporting C.L.B., and P01-GM099640 to K.P. and G.W.C.

    diff --git a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/cases.rtf b/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/cases.rtf deleted file mode 100644 index 5922df0..0000000 --- a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

    C57BL/6J (stock number 000664), DBA/2J (stock number 000671), B6D2 F1/J hybrid (stock number 100006), and all BXD RI mice were obtained from The Jackson Laboratory (Bar Harbor, ME). All animal experiments were approved by the Animal Care and Use Committee of The Jackson Laboratory (summary #04008 and #16043).

    diff --git a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/processing.rtf b/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/processing.rtf deleted file mode 100644 index d359653..0000000 --- a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/processing.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    All sequenced B6, D2, F1, and BXD H3K4me3 ChIP libraries, as well as all control input DNA samples were aligned utilizing bwa version 0.7.9a (). B6 parental samples were aligned to the Genome Reference Consortium Mouse Build 38 (mm10) and D2 parental samples were aligned to the de novo REL-1509 assembly, including all unplaced scaffolds, from the Mouse Genomes Project ().

    - -

    To ensure that H3K4me3 peaks were properly quantified across divergent genomes, we began by building a comprehensive “peakome” representing all potential H3K4me3 peaks found in the two parents. H3K4me3 peaks for B6 and D2 were called independently, utilizing alignment data from three replicate samples and one DNA input sample. Reads were filtered for a mapq alignment metric of 60 and an alignment sequence having no indels present across the entire length of the sequencing read, typically 100 bp H3K4me3 peaks were called utilizing MACS version 1.4.2 () and peaks having a false discovery rate (FDR) of <1% found in two out of three replicates were accepted. Final genomic intervals for each H3K4me3 peak for each strain were derived by merging the peaks from the corresponding replicate samples using bedtools (). To link syntenic regions between B6 and D2 assemblies, which each have their own coordinate system, sequences from these genomic intervals were aligned to their alternative genome using reciprocal BLAST. In some cases, a sequence interval comprising an H3K4me3 peak in one strain aligned to multiple adjacent intervals in the alternative genome. If the sequences of these peaks in the alternate strain all fell within the boundaries of the single peak, they were merged. The boundaries of these merged peaks included the incorporated sequences from both strains. Because there are also H3K4me3 peaks that are strain specific, these peaks were accepted if, and only if, the mapped interval had a unique sequence that was found in the proper syntentic order within the alternative genome lacking that H3K4me3 peak. The final combined peakome between B6 and D2 mice was created by selecting only peaks appropriately linked across each strain, assuring that each H3K4me3 peak reciprocally aligned to only one peak in the alternative genome after merging, and that all peaks were in the same order along the chromosomes in both genomes (Supplemental Material, Table S2). Using the H3K4me3 peaks locations derived from the parental strains, final read counts for B6, D2, F1 hybrids, and BXDs were obtained by counting reads within the coordinate boundaries of the peakome intervals.

    - -

    To improve mapping accuracy and utilize known sequence variation between strains, all BXDs and F1hybrid samples were aligned separately to both the mm10 reference and the de novo D2 assembly. To reduce error in quantification of H3K4me3 levels due to genomic regions containing repetitive sequences, we removed reads with multiple alignments and retained reads with alignment metric of 60 that lacked small indels, which can often indicate misalignment. Subsequently, for each genomic interval in the peakome, final reads counts were summed for those that mapped uniquely to one of the assemblies along with those that mapped equally well to both B6 and D2 genome assemblies.

    diff --git a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/specifics.rtf b/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/specifics.rtf deleted file mode 100644 index ca16969..0000000 --- a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -log2 z-score transformed \ No newline at end of file diff --git a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/summary.rtf b/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/summary.rtf deleted file mode 100644 index 97965d8..0000000 --- a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404261/

    - -

    The epigenetic landscape varies greatly among cell types. Although a variety of writers, readers, and erasers of epigenetic features are known, we have little information about the underlying regulatory systems controlling the establishment and maintenance of these features. Here, we have explored how natural genetic variation affects the epigenome in mice. Studying levels of H3K4me3, a histone modification at sites such as promoters, enhancers, and recombination hotspots, we found tissue-specific trans-regulation of H3K4me3 levels in four highly diverse cell types: male germ cells, embryonic stem cells, hepatocytes, and cardiomyocytes. To identify the genetic loci involved, we measured H3K4me3 levels in male germ cells in a mapping population of 59 BXD recombinant inbred lines. We found extensive trans-regulation of H3K4me3 peaks, including six major histone quantitative trait loci (QTL). These chromatin regulatory loci act dominantly to suppress H3K4me3, which at hotspots reduces the likelihood of subsequent DNA double-strand breaks. QTL locations do not correspond with genes encoding enzymes known to metabolize chromatin features. Instead their locations match clusters of zinc finger genes, making these possible candidates that explain the dominant suppression of H3K4me3. Collectively, these data describe an extensive, set of chromatin regulatory loci that control the epigenetic landscape.

    diff --git a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/tissue.rtf b/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/tissue.rtf deleted file mode 100644 index 65281a9..0000000 --- a/general/datasets/JAX_BXD_Germ_Cells_edgeR_log2z_0820/tissue.rtf +++ /dev/null @@ -1,7 +0,0 @@ -

    Testicular germ cell enrichment was performed on 14-day postpartum male mice as previously reported (). This cell preparation removes somatic Sertoli and Leydig cells and results in >90% enrichment of germ cells, of which nearly 50% are spermatogonia ().

    - -

    Individual low-passage mouse ESCs were derived using protocols outlined in . Briefly, 6- to 8-week-old females are mated to stud males and checked each morning for plugs. Pregnant females are euthanized on embryonic day 3.5 and the uterine horn is flushed to remove embryos. Embryos are visualized under a dissecting microscope and blastocysts are transferred to 2i (2i:CHIR99021 and PD0325901) () serum-free media for outgrowth of the inner cell mass. Blastocysts are allowed to hatch and attach to a mouse embryonic fibroblast (MEF) feeder layer, and the resulting outgrowth is monitored daily and fed for 8–11 days. The emergent ESCs are disaggregated and passaged onto new MEF feeders. Cultures during this time are closely monitored for unusually rapid growth (potentially indicating karyotypic instability), signs of deterioration including vacuolated cytoplasm, detachment of cells from colonies and debris, and possible signs of contamination. Successful ESC cultures were maintained on MEF feeders in serum containing 2i media supplemented with Leukemia inhibiting factor (2i/LIF) () to maintain high levels of NANOG expression, which indicates ground-state pluripotency (). Prior to preparing for chromatin isolation, mouse ESCs were enzymatically disassociated using trypsin and MEFs were removed by serial plating on gelatin-coated plates to which MEFs adsorb preferentially; for this, ESCs and MEFs are incubated in 2i/LIF media on fresh plates for 15 min to allow the larger MEFs to quickly attach to the plates. ESCs are aspirated and the plating procedure repeated once to further remove MEFs. ESCs were collected by centrifugation, resuspended in PBS, and cross-linked using formaldehyde.

    - -

    For hepatocyte isolation and purification, livers from 8-week-old female mice were perfused using a modified EGTA–collagenase perfusion protocol (). All perfusions and hepatocyte purifications were done at the same time of the day to avoid possible circadian effects on any studied parameter. EGTA buffer was used to flush the blood out of the liver and start to digest the desmosomes connecting the liver cells. After 35 ml of the 1× EGTA solution was passed through the liver, it was replaced with 7–10 ml of 1× Leffert’s buffer to flush out the EGTA, which otherwise chelates the calcium ions necessary for collagenase activity in the next step when the liver is digested by perfusion with 25–50 ml of Liberase solution (∼4.3 Wünsch units). After perfusion, the liver was removed from the abdominal cavity and passed through Nitex 80-μm nylon mesh, using extra ice-cold Leffert’s buffer with 0.02% CaCl2and a rubber policeman. Hepatocytes were purified from the remaining cells by two consecutive centrifugations for 4 min, 50 × g each, leaving the other, smaller cell types in suspension. After each spin, the solution was decanted as waste, and the enriched cell pellet of hepatocytes was resuspended in 30 ml ice-cold Leffert’s buffer with 0.02% CaCl2. After the second centrifugation, the cell pellet contained >98.6% hepatocytes.

    - -

    For cardiomyocyte isolation 8-week-old female mice were euthanized and the chest opened to expose the heart. The descending aorta and inferior vena cava were cut and an EDTA buffer was injected into the apex of the right ventricle to flush the heart. The ascending aorta was clamped and the heart transferred to a petri dish and fixed by perfusion of EDTA buffer containing 4% formaldehyde via the left ventricle. The formaldehyde was quenched by perfusing the heart with 125 mM glycine, and digested by perfusion with collagenase buffer. The ventricles were rent into smaller pieces, and triturated to complete cellular dissociation into a single-cell suspension. Cells were then filtered through a 100-μm strainer to remove tissue fragments and centrifuged at a very low speed to obtain a highly enriched fraction of fixed cardiomyocytes.

    diff --git a/general/datasets/JAX_BXD_Hip_Pro_0219/specifics.rtf b/general/datasets/JAX_BXD_Hip_Pro_0219/specifics.rtf deleted file mode 100644 index 57e3686..0000000 --- a/general/datasets/JAX_BXD_Hip_Pro_0219/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -BXD Hippocampal Proteome \ No newline at end of file diff --git a/general/datasets/JAX_BXD_Hip_Pro_0219/summary.rtf b/general/datasets/JAX_BXD_Hip_Pro_0219/summary.rtf deleted file mode 100644 index c85fe16..0000000 --- a/general/datasets/JAX_BXD_Hip_Pro_0219/summary.rtf +++ /dev/null @@ -1,7 +0,0 @@ -

    Detail information about this dataset is in working progress.

    - -

    Database Name: JAX_BXD_Hippocampal_Proteome_Feb19
    -GeneNetwork Accession Number: GN873
    -For more information regarding this data set please visit: http://www.genenetwork.org/webqtl/main.py?FormID=sharinginfo&GN_AccessionId=873

    - -

    Data files available at https://files.genenetwork.org/current/GN873/

    diff --git a/general/datasets/JAX_D2GM_RSeq_log2Z_0418/experiment-design.rtf b/general/datasets/JAX_D2GM_RSeq_log2Z_0418/experiment-design.rtf deleted file mode 100644 index 5b2f4c9..0000000 --- a/general/datasets/JAX_D2GM_RSeq_log2Z_0418/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Retinal ganglion cell mRNA from 4 month (young) and 9 month (pre-glaucomatous) DBA/2J mice and age and sex-matched D2-Gpnmb+ controls

    diff --git a/general/datasets/JAX_D2GM_RSeq_log2Z_0418/platform.rtf b/general/datasets/JAX_D2GM_RSeq_log2Z_0418/platform.rtf deleted file mode 100644 index c967d36..0000000 --- a/general/datasets/JAX_D2GM_RSeq_log2Z_0418/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    GPL17021Illumina HiSeq 2500 (Mus musculus)

    diff --git a/general/datasets/JAX_D2GM_RSeq_log2Z_0418/specifics.rtf b/general/datasets/JAX_D2GM_RSeq_log2Z_0418/specifics.rtf deleted file mode 100644 index f57a155..0000000 --- a/general/datasets/JAX_D2GM_RSeq_log2Z_0418/specifics.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    RNA-Seq log2 Z-Score

    - -

    In general, the array data that we put in GeneNetwork has been logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data).  This removes negative values from the tables.

    diff --git a/general/datasets/JAX_D2GM_RSeq_log2Z_0418/summary.rtf b/general/datasets/JAX_D2GM_RSeq_log2Z_0418/summary.rtf deleted file mode 100644 index 1cf2292..0000000 --- a/general/datasets/JAX_D2GM_RSeq_log2Z_0418/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    RNA-seq analysis from young and pre-glaucomatous DBA/2J retinal ganglion cells and control (age and sex-matched, D2-Gpnmb+) retinal ganglion cells

    diff --git a/general/datasets/JAX_D2_Mono1vPBMC_Ret_RNA_Seq_0619/acknowledgment.rtf b/general/datasets/JAX_D2_Mono1vPBMC_Ret_RNA_Seq_0619/acknowledgment.rtf deleted file mode 100644 index 3201334..0000000 --- a/general/datasets/JAX_D2_Mono1vPBMC_Ret_RNA_Seq_0619/acknowledgment.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    The Authors would like to thank Electron Microscopy, Flow Cytometry, Histology, and Gene Expression Services at The Jackson Laboratory, Rick Libby for careful reading of the manuscript and discussion, Mimi de Vries for assistance with organizing and mouse colonies, Brynn Cardozo and Trip Freeburg for colony maintenance, Jocelyn Thomas for blood collections, Philipp Tauber for assistance with immunofluorescence, and Amy Bell for intraocular pressure measurements.

    - -

    EY011721 (SWMJ), EY021525 (GRH). Pete Williams is supported by the Karolinska Institutet in the form of a Board of Research Faculty Funded Career Position. Simon John is an Investigator of HHMI.

    diff --git a/general/datasets/JAX_D2_Mono1vPBMC_Ret_RNA_Seq_0619/experiment-design.rtf b/general/datasets/JAX_D2_Mono1vPBMC_Ret_RNA_Seq_0619/experiment-design.rtf deleted file mode 100644 index 1c50734..0000000 --- a/general/datasets/JAX_D2_Mono1vPBMC_Ret_RNA_Seq_0619/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    To understand the function of these infiltrating monocyte-like cells, we used RNA-sequencing to profile their transcriptomes. Based on their pro-inflammatory molecular signatures, we hypothesized and confirmed that monocyte-platelet interactions occur in glaucomatous tissue. Furthermore, to test monocyte function we used two approaches to inhibit their entry into the optic nerve head: (1) treatment with DS-SILY, a peptidoglycan that acts as a barrier to platelet adhesion to the vessel wall and to monocytes, and (2) genetic targeting of Itgam (CD11b, an immune cell receptor that enables immune cell extravasation).

    diff --git a/general/datasets/JAX_D2_Mono1vPBMC_Ret_RNA_Seq_0619/processing.rtf b/general/datasets/JAX_D2_Mono1vPBMC_Ret_RNA_Seq_0619/processing.rtf deleted file mode 100644 index acc1087..0000000 --- a/general/datasets/JAX_D2_Mono1vPBMC_Ret_RNA_Seq_0619/processing.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    RNA-sequencing and analysis

    - -

    Monocytes from single optic nerve heads or from peripheral blood (restrained cheek bleed) were FAC sorted into 100 μl buffer RLT + 1% βME and frozen at − 80 °C until further processing. Samples were defrosted on ice and homogenized by syringe in RLT Buffer (total volume 300 μl). Total RNA was isolated using RNeasy micro kits as according to manufacturer’s protocols (Qiagen) including the optional DNase treatment step, and quality was assessed using an Agilent 2100 Bioanalyzer. The concentration was determined using a Ribogreen Assay from Invitrogen. Amplified dscDNA libraries were created using a Nugen Ovation RNA-seq System V2 and a primer titration was performed to remove primer dimers from the sample to allow sample inputs as low as 50 pg RNA. The SPIA dscDNA was sheared to 300 bp in length using a Diogenode Disruptor. Quality control was performed using an Agilent 2100 Bioanalyzer and a DNA 1000 chip assay. Library size produced was analysed using qPCR using the Library Quantitation kit/Illumina GA /ABI Prism (Kapa Biosystems). Libraries were barcoded, pooled, and sequenced 6 samples per lane on a HiSeq 2000 sequencer (Illumina) giving a depth of 30–35 million reads per sample.

    - -

    Following RNA-sequencing samples were subjected to quality control analysis by a custom quality control python script. Reads with 70% of their bases having a base quality score ≥ 30 were retained for further analysis. Read alignment was performed using TopHat v 2.0.7 [34] and expression estimation was performed using HTSeq [35] with supplied annotations and default parameters against the DBA/2 J mouse genome (build-mm10). Bamtools v 1.0.2 [36] were used to calculate the mapping statistics. Differential gene expression analysis between groups was performed using edgeR v 3.10.5 [37] following, batch correction using RUVSeq, the removal of outlier samples and lowly expressed genes by removing genes with less than five reads in more than two samples. Normalization was performed using the trimmed mean of M values (TMM). Unsupervised HC was performed in R (1-cor, Spearman’s rho). Following preliminary analysis, 1 sample was removed as an outlier. Adjustment for multiple testing was performed using false discovery rate (FDR). Genes were considered to be significantly differentially expression at a false discovery rate (FDR; q) of q < 0.05. Pathway analysis was performed in R, IPA (Ingenuity Pathway Analysis, Qiagen), and using publically available tools (see Results).

    diff --git a/general/datasets/JAX_D2_Mono1vPBMC_Ret_RNA_Seq_0619/specifics.rtf b/general/datasets/JAX_D2_Mono1vPBMC_Ret_RNA_Seq_0619/specifics.rtf deleted file mode 100644 index 954c19f..0000000 --- a/general/datasets/JAX_D2_Mono1vPBMC_Ret_RNA_Seq_0619/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -JAX DBA/2J Monocyte 1 vs PBMC RNA-Seq (Jun19) \ No newline at end of file diff --git a/general/datasets/JAX_D2_Mono1vPBMC_Ret_RNA_Seq_0619/summary.rtf b/general/datasets/JAX_D2_Mono1vPBMC_Ret_RNA_Seq_0619/summary.rtf deleted file mode 100644 index b5e090d..0000000 --- a/general/datasets/JAX_D2_Mono1vPBMC_Ret_RNA_Seq_0619/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. Recent work in animal models suggests that a critical neuroinflammatory event damages retinal ganglion cell axons in the optic nerve head during ocular hypertensive injury. We previously demonstrated that monocyte-like cells enter the optic nerve head in an ocular hypertensive mouse model of glaucoma (DBA/2 J), but their roles, if any, in mediating axon damage remain unclear.

    - -

    https://molecularneurodegeneration.biomedcentral.com/articles/10.1186/s13024-018-0303-3

    diff --git a/general/datasets/JAX_D2_Mono2vPBMC_Ret_RNA_Seq_0619/acknowledgment.rtf b/general/datasets/JAX_D2_Mono2vPBMC_Ret_RNA_Seq_0619/acknowledgment.rtf deleted file mode 100644 index 3201334..0000000 --- a/general/datasets/JAX_D2_Mono2vPBMC_Ret_RNA_Seq_0619/acknowledgment.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    The Authors would like to thank Electron Microscopy, Flow Cytometry, Histology, and Gene Expression Services at The Jackson Laboratory, Rick Libby for careful reading of the manuscript and discussion, Mimi de Vries for assistance with organizing and mouse colonies, Brynn Cardozo and Trip Freeburg for colony maintenance, Jocelyn Thomas for blood collections, Philipp Tauber for assistance with immunofluorescence, and Amy Bell for intraocular pressure measurements.

    - -

    EY011721 (SWMJ), EY021525 (GRH). Pete Williams is supported by the Karolinska Institutet in the form of a Board of Research Faculty Funded Career Position. Simon John is an Investigator of HHMI.

    diff --git a/general/datasets/JAX_D2_Mono2vPBMC_Ret_RNA_Seq_0619/experiment-design.rtf b/general/datasets/JAX_D2_Mono2vPBMC_Ret_RNA_Seq_0619/experiment-design.rtf deleted file mode 100644 index 1c50734..0000000 --- a/general/datasets/JAX_D2_Mono2vPBMC_Ret_RNA_Seq_0619/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    To understand the function of these infiltrating monocyte-like cells, we used RNA-sequencing to profile their transcriptomes. Based on their pro-inflammatory molecular signatures, we hypothesized and confirmed that monocyte-platelet interactions occur in glaucomatous tissue. Furthermore, to test monocyte function we used two approaches to inhibit their entry into the optic nerve head: (1) treatment with DS-SILY, a peptidoglycan that acts as a barrier to platelet adhesion to the vessel wall and to monocytes, and (2) genetic targeting of Itgam (CD11b, an immune cell receptor that enables immune cell extravasation).

    diff --git a/general/datasets/JAX_D2_Mono2vPBMC_Ret_RNA_Seq_0619/processing.rtf b/general/datasets/JAX_D2_Mono2vPBMC_Ret_RNA_Seq_0619/processing.rtf deleted file mode 100644 index acc1087..0000000 --- a/general/datasets/JAX_D2_Mono2vPBMC_Ret_RNA_Seq_0619/processing.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    RNA-sequencing and analysis

    - -

    Monocytes from single optic nerve heads or from peripheral blood (restrained cheek bleed) were FAC sorted into 100 μl buffer RLT + 1% βME and frozen at − 80 °C until further processing. Samples were defrosted on ice and homogenized by syringe in RLT Buffer (total volume 300 μl). Total RNA was isolated using RNeasy micro kits as according to manufacturer’s protocols (Qiagen) including the optional DNase treatment step, and quality was assessed using an Agilent 2100 Bioanalyzer. The concentration was determined using a Ribogreen Assay from Invitrogen. Amplified dscDNA libraries were created using a Nugen Ovation RNA-seq System V2 and a primer titration was performed to remove primer dimers from the sample to allow sample inputs as low as 50 pg RNA. The SPIA dscDNA was sheared to 300 bp in length using a Diogenode Disruptor. Quality control was performed using an Agilent 2100 Bioanalyzer and a DNA 1000 chip assay. Library size produced was analysed using qPCR using the Library Quantitation kit/Illumina GA /ABI Prism (Kapa Biosystems). Libraries were barcoded, pooled, and sequenced 6 samples per lane on a HiSeq 2000 sequencer (Illumina) giving a depth of 30–35 million reads per sample.

    - -

    Following RNA-sequencing samples were subjected to quality control analysis by a custom quality control python script. Reads with 70% of their bases having a base quality score ≥ 30 were retained for further analysis. Read alignment was performed using TopHat v 2.0.7 [34] and expression estimation was performed using HTSeq [35] with supplied annotations and default parameters against the DBA/2 J mouse genome (build-mm10). Bamtools v 1.0.2 [36] were used to calculate the mapping statistics. Differential gene expression analysis between groups was performed using edgeR v 3.10.5 [37] following, batch correction using RUVSeq, the removal of outlier samples and lowly expressed genes by removing genes with less than five reads in more than two samples. Normalization was performed using the trimmed mean of M values (TMM). Unsupervised HC was performed in R (1-cor, Spearman’s rho). Following preliminary analysis, 1 sample was removed as an outlier. Adjustment for multiple testing was performed using false discovery rate (FDR). Genes were considered to be significantly differentially expression at a false discovery rate (FDR; q) of q < 0.05. Pathway analysis was performed in R, IPA (Ingenuity Pathway Analysis, Qiagen), and using publically available tools (see Results).

    diff --git a/general/datasets/JAX_D2_Mono2vPBMC_Ret_RNA_Seq_0619/specifics.rtf b/general/datasets/JAX_D2_Mono2vPBMC_Ret_RNA_Seq_0619/specifics.rtf deleted file mode 100644 index ba732fb..0000000 --- a/general/datasets/JAX_D2_Mono2vPBMC_Ret_RNA_Seq_0619/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -JAX DBA/2J Monocyte 2 vs PBMC RNA-Seq (Jun19) \ No newline at end of file diff --git a/general/datasets/JAX_D2_Mono2vPBMC_Ret_RNA_Seq_0619/summary.rtf b/general/datasets/JAX_D2_Mono2vPBMC_Ret_RNA_Seq_0619/summary.rtf deleted file mode 100644 index b5e090d..0000000 --- a/general/datasets/JAX_D2_Mono2vPBMC_Ret_RNA_Seq_0619/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. Recent work in animal models suggests that a critical neuroinflammatory event damages retinal ganglion cell axons in the optic nerve head during ocular hypertensive injury. We previously demonstrated that monocyte-like cells enter the optic nerve head in an ocular hypertensive mouse model of glaucoma (DBA/2 J), but their roles, if any, in mediating axon damage remain unclear.

    - -

    https://molecularneurodegeneration.biomedcentral.com/articles/10.1186/s13024-018-0303-3

    diff --git a/general/datasets/JAX_liver_agil_MDP-0113/summary.rtf b/general/datasets/JAX_liver_agil_MDP-0113/summary.rtf new file mode 100644 index 0000000..f6be413 --- /dev/null +++ b/general/datasets/JAX_liver_agil_MDP-0113/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 160, Name: Harrill-Rusyn MDP Liver Acetaminophen Tox Study (G4121A, 2009) \ No newline at end of file diff --git a/general/datasets/JAX_liver_agil_MDP_0113/summary.rtf b/general/datasets/JAX_liver_agil_MDP_0113/summary.rtf deleted file mode 100644 index f6be413..0000000 --- a/general/datasets/JAX_liver_agil_MDP_0113/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -Summary of DatasetId 160, Name: Harrill-Rusyn MDP Liver Acetaminophen Tox Study (G4121A, 2009) \ No newline at end of file diff --git a/general/datasets/Jax_bxd_germ_cells_edger_0820/acknowledgment.rtf b/general/datasets/Jax_bxd_germ_cells_edger_0820/acknowledgment.rtf new file mode 100644 index 0000000..5ab8fd8 --- /dev/null +++ b/general/datasets/Jax_bxd_germ_cells_edger_0820/acknowledgment.rtf @@ -0,0 +1 @@ +

    This manuscript is dedicated to the memory of Pavlina Petkova, a wonderful scientist, colleague, and wonderful friend. We thank members of the Baker, Paigen, Petkov, and Carter laboratories for their discussion of the data and manuscript. This work was assisted by The Jackson Laboratory scientific services, which are supported through National Institutes of Health Cancer Core grant CA34196. BXD ESC lines were kindly provided by Anne Czechanski and Laura Reinholdt, funded by the Special Mouse Strain Resource OD011102-18. Funding for the work was provided by NIGMS F32-GM101736 and The Jackson Laboratory start-up funds supporting C.L.B., and P01-GM099640 to K.P. and G.W.C.

    diff --git a/general/datasets/Jax_bxd_germ_cells_edger_0820/cases.rtf b/general/datasets/Jax_bxd_germ_cells_edger_0820/cases.rtf new file mode 100644 index 0000000..5922df0 --- /dev/null +++ b/general/datasets/Jax_bxd_germ_cells_edger_0820/cases.rtf @@ -0,0 +1 @@ +

    C57BL/6J (stock number 000664), DBA/2J (stock number 000671), B6D2 F1/J hybrid (stock number 100006), and all BXD RI mice were obtained from The Jackson Laboratory (Bar Harbor, ME). All animal experiments were approved by the Animal Care and Use Committee of The Jackson Laboratory (summary #04008 and #16043).

    diff --git a/general/datasets/Jax_bxd_germ_cells_edger_0820/processing.rtf b/general/datasets/Jax_bxd_germ_cells_edger_0820/processing.rtf new file mode 100644 index 0000000..d359653 --- /dev/null +++ b/general/datasets/Jax_bxd_germ_cells_edger_0820/processing.rtf @@ -0,0 +1,5 @@ +

    All sequenced B6, D2, F1, and BXD H3K4me3 ChIP libraries, as well as all control input DNA samples were aligned utilizing bwa version 0.7.9a (). B6 parental samples were aligned to the Genome Reference Consortium Mouse Build 38 (mm10) and D2 parental samples were aligned to the de novo REL-1509 assembly, including all unplaced scaffolds, from the Mouse Genomes Project ().

    + +

    To ensure that H3K4me3 peaks were properly quantified across divergent genomes, we began by building a comprehensive “peakome” representing all potential H3K4me3 peaks found in the two parents. H3K4me3 peaks for B6 and D2 were called independently, utilizing alignment data from three replicate samples and one DNA input sample. Reads were filtered for a mapq alignment metric of 60 and an alignment sequence having no indels present across the entire length of the sequencing read, typically 100 bp H3K4me3 peaks were called utilizing MACS version 1.4.2 () and peaks having a false discovery rate (FDR) of <1% found in two out of three replicates were accepted. Final genomic intervals for each H3K4me3 peak for each strain were derived by merging the peaks from the corresponding replicate samples using bedtools (). To link syntenic regions between B6 and D2 assemblies, which each have their own coordinate system, sequences from these genomic intervals were aligned to their alternative genome using reciprocal BLAST. In some cases, a sequence interval comprising an H3K4me3 peak in one strain aligned to multiple adjacent intervals in the alternative genome. If the sequences of these peaks in the alternate strain all fell within the boundaries of the single peak, they were merged. The boundaries of these merged peaks included the incorporated sequences from both strains. Because there are also H3K4me3 peaks that are strain specific, these peaks were accepted if, and only if, the mapped interval had a unique sequence that was found in the proper syntentic order within the alternative genome lacking that H3K4me3 peak. The final combined peakome between B6 and D2 mice was created by selecting only peaks appropriately linked across each strain, assuring that each H3K4me3 peak reciprocally aligned to only one peak in the alternative genome after merging, and that all peaks were in the same order along the chromosomes in both genomes (Supplemental Material, Table S2). Using the H3K4me3 peaks locations derived from the parental strains, final read counts for B6, D2, F1 hybrids, and BXDs were obtained by counting reads within the coordinate boundaries of the peakome intervals.

    + +

    To improve mapping accuracy and utilize known sequence variation between strains, all BXDs and F1hybrid samples were aligned separately to both the mm10 reference and the de novo D2 assembly. To reduce error in quantification of H3K4me3 levels due to genomic regions containing repetitive sequences, we removed reads with multiple alignments and retained reads with alignment metric of 60 that lacked small indels, which can often indicate misalignment. Subsequently, for each genomic interval in the peakome, final reads counts were summed for those that mapped uniquely to one of the assemblies along with those that mapped equally well to both B6 and D2 genome assemblies.

    diff --git a/general/datasets/Jax_bxd_germ_cells_edger_0820/specifics.rtf b/general/datasets/Jax_bxd_germ_cells_edger_0820/specifics.rtf new file mode 100644 index 0000000..7c4621d --- /dev/null +++ b/general/datasets/Jax_bxd_germ_cells_edger_0820/specifics.rtf @@ -0,0 +1 @@ +

    This data has all of the normalization steps already applied. Normalized read counts. Essentially we used a method out of the R package edgeR to normalize for both read depth and composition, followed by log2 transformation, and then subtraction of PCA1.

    diff --git a/general/datasets/Jax_bxd_germ_cells_edger_0820/summary.rtf b/general/datasets/Jax_bxd_germ_cells_edger_0820/summary.rtf new file mode 100644 index 0000000..97965d8 --- /dev/null +++ b/general/datasets/Jax_bxd_germ_cells_edger_0820/summary.rtf @@ -0,0 +1,3 @@ +

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404261/

    + +

    The epigenetic landscape varies greatly among cell types. Although a variety of writers, readers, and erasers of epigenetic features are known, we have little information about the underlying regulatory systems controlling the establishment and maintenance of these features. Here, we have explored how natural genetic variation affects the epigenome in mice. Studying levels of H3K4me3, a histone modification at sites such as promoters, enhancers, and recombination hotspots, we found tissue-specific trans-regulation of H3K4me3 levels in four highly diverse cell types: male germ cells, embryonic stem cells, hepatocytes, and cardiomyocytes. To identify the genetic loci involved, we measured H3K4me3 levels in male germ cells in a mapping population of 59 BXD recombinant inbred lines. We found extensive trans-regulation of H3K4me3 peaks, including six major histone quantitative trait loci (QTL). These chromatin regulatory loci act dominantly to suppress H3K4me3, which at hotspots reduces the likelihood of subsequent DNA double-strand breaks. QTL locations do not correspond with genes encoding enzymes known to metabolize chromatin features. Instead their locations match clusters of zinc finger genes, making these possible candidates that explain the dominant suppression of H3K4me3. Collectively, these data describe an extensive, set of chromatin regulatory loci that control the epigenetic landscape.

    diff --git a/general/datasets/Jax_bxd_germ_cells_edger_0820/tissue.rtf b/general/datasets/Jax_bxd_germ_cells_edger_0820/tissue.rtf new file mode 100644 index 0000000..65281a9 --- /dev/null +++ b/general/datasets/Jax_bxd_germ_cells_edger_0820/tissue.rtf @@ -0,0 +1,7 @@ +

    Testicular germ cell enrichment was performed on 14-day postpartum male mice as previously reported (). This cell preparation removes somatic Sertoli and Leydig cells and results in >90% enrichment of germ cells, of which nearly 50% are spermatogonia ().

    + +

    Individual low-passage mouse ESCs were derived using protocols outlined in . Briefly, 6- to 8-week-old females are mated to stud males and checked each morning for plugs. Pregnant females are euthanized on embryonic day 3.5 and the uterine horn is flushed to remove embryos. Embryos are visualized under a dissecting microscope and blastocysts are transferred to 2i (2i:CHIR99021 and PD0325901) () serum-free media for outgrowth of the inner cell mass. Blastocysts are allowed to hatch and attach to a mouse embryonic fibroblast (MEF) feeder layer, and the resulting outgrowth is monitored daily and fed for 8–11 days. The emergent ESCs are disaggregated and passaged onto new MEF feeders. Cultures during this time are closely monitored for unusually rapid growth (potentially indicating karyotypic instability), signs of deterioration including vacuolated cytoplasm, detachment of cells from colonies and debris, and possible signs of contamination. Successful ESC cultures were maintained on MEF feeders in serum containing 2i media supplemented with Leukemia inhibiting factor (2i/LIF) () to maintain high levels of NANOG expression, which indicates ground-state pluripotency (). Prior to preparing for chromatin isolation, mouse ESCs were enzymatically disassociated using trypsin and MEFs were removed by serial plating on gelatin-coated plates to which MEFs adsorb preferentially; for this, ESCs and MEFs are incubated in 2i/LIF media on fresh plates for 15 min to allow the larger MEFs to quickly attach to the plates. ESCs are aspirated and the plating procedure repeated once to further remove MEFs. ESCs were collected by centrifugation, resuspended in PBS, and cross-linked using formaldehyde.

    + +

    For hepatocyte isolation and purification, livers from 8-week-old female mice were perfused using a modified EGTA–collagenase perfusion protocol (). All perfusions and hepatocyte purifications were done at the same time of the day to avoid possible circadian effects on any studied parameter. EGTA buffer was used to flush the blood out of the liver and start to digest the desmosomes connecting the liver cells. After 35 ml of the 1× EGTA solution was passed through the liver, it was replaced with 7–10 ml of 1× Leffert’s buffer to flush out the EGTA, which otherwise chelates the calcium ions necessary for collagenase activity in the next step when the liver is digested by perfusion with 25–50 ml of Liberase solution (∼4.3 Wünsch units). After perfusion, the liver was removed from the abdominal cavity and passed through Nitex 80-μm nylon mesh, using extra ice-cold Leffert’s buffer with 0.02% CaCl2and a rubber policeman. Hepatocytes were purified from the remaining cells by two consecutive centrifugations for 4 min, 50 × g each, leaving the other, smaller cell types in suspension. After each spin, the solution was decanted as waste, and the enriched cell pellet of hepatocytes was resuspended in 30 ml ice-cold Leffert’s buffer with 0.02% CaCl2. After the second centrifugation, the cell pellet contained >98.6% hepatocytes.

    + +

    For cardiomyocyte isolation 8-week-old female mice were euthanized and the chest opened to expose the heart. The descending aorta and inferior vena cava were cut and an EDTA buffer was injected into the apex of the right ventricle to flush the heart. The ascending aorta was clamped and the heart transferred to a petri dish and fixed by perfusion of EDTA buffer containing 4% formaldehyde via the left ventricle. The formaldehyde was quenched by perfusing the heart with 125 mM glycine, and digested by perfusion with collagenase buffer. The ventricles were rent into smaller pieces, and triturated to complete cellular dissociation into a single-cell suspension. Cells were then filtered through a 100-μm strainer to remove tissue fragments and centrifuged at a very low speed to obtain a highly enriched fraction of fixed cardiomyocytes.

    diff --git a/general/datasets/Jax_bxd_germ_cells_edger_log2_0820/acknowledgment.rtf b/general/datasets/Jax_bxd_germ_cells_edger_log2_0820/acknowledgment.rtf new file mode 100644 index 0000000..5ab8fd8 --- /dev/null +++ b/general/datasets/Jax_bxd_germ_cells_edger_log2_0820/acknowledgment.rtf @@ -0,0 +1 @@ +

    This manuscript is dedicated to the memory of Pavlina Petkova, a wonderful scientist, colleague, and wonderful friend. We thank members of the Baker, Paigen, Petkov, and Carter laboratories for their discussion of the data and manuscript. This work was assisted by The Jackson Laboratory scientific services, which are supported through National Institutes of Health Cancer Core grant CA34196. BXD ESC lines were kindly provided by Anne Czechanski and Laura Reinholdt, funded by the Special Mouse Strain Resource OD011102-18. Funding for the work was provided by NIGMS F32-GM101736 and The Jackson Laboratory start-up funds supporting C.L.B., and P01-GM099640 to K.P. and G.W.C.

    diff --git a/general/datasets/Jax_bxd_germ_cells_edger_log2_0820/cases.rtf b/general/datasets/Jax_bxd_germ_cells_edger_log2_0820/cases.rtf new file mode 100644 index 0000000..5922df0 --- /dev/null +++ b/general/datasets/Jax_bxd_germ_cells_edger_log2_0820/cases.rtf @@ -0,0 +1 @@ +

    C57BL/6J (stock number 000664), DBA/2J (stock number 000671), B6D2 F1/J hybrid (stock number 100006), and all BXD RI mice were obtained from The Jackson Laboratory (Bar Harbor, ME). All animal experiments were approved by the Animal Care and Use Committee of The Jackson Laboratory (summary #04008 and #16043).

    diff --git a/general/datasets/Jax_bxd_germ_cells_edger_log2_0820/processing.rtf b/general/datasets/Jax_bxd_germ_cells_edger_log2_0820/processing.rtf new file mode 100644 index 0000000..d359653 --- /dev/null +++ b/general/datasets/Jax_bxd_germ_cells_edger_log2_0820/processing.rtf @@ -0,0 +1,5 @@ +

    All sequenced B6, D2, F1, and BXD H3K4me3 ChIP libraries, as well as all control input DNA samples were aligned utilizing bwa version 0.7.9a (). B6 parental samples were aligned to the Genome Reference Consortium Mouse Build 38 (mm10) and D2 parental samples were aligned to the de novo REL-1509 assembly, including all unplaced scaffolds, from the Mouse Genomes Project ().

    + +

    To ensure that H3K4me3 peaks were properly quantified across divergent genomes, we began by building a comprehensive “peakome” representing all potential H3K4me3 peaks found in the two parents. H3K4me3 peaks for B6 and D2 were called independently, utilizing alignment data from three replicate samples and one DNA input sample. Reads were filtered for a mapq alignment metric of 60 and an alignment sequence having no indels present across the entire length of the sequencing read, typically 100 bp H3K4me3 peaks were called utilizing MACS version 1.4.2 () and peaks having a false discovery rate (FDR) of <1% found in two out of three replicates were accepted. Final genomic intervals for each H3K4me3 peak for each strain were derived by merging the peaks from the corresponding replicate samples using bedtools (). To link syntenic regions between B6 and D2 assemblies, which each have their own coordinate system, sequences from these genomic intervals were aligned to their alternative genome using reciprocal BLAST. In some cases, a sequence interval comprising an H3K4me3 peak in one strain aligned to multiple adjacent intervals in the alternative genome. If the sequences of these peaks in the alternate strain all fell within the boundaries of the single peak, they were merged. The boundaries of these merged peaks included the incorporated sequences from both strains. Because there are also H3K4me3 peaks that are strain specific, these peaks were accepted if, and only if, the mapped interval had a unique sequence that was found in the proper syntentic order within the alternative genome lacking that H3K4me3 peak. The final combined peakome between B6 and D2 mice was created by selecting only peaks appropriately linked across each strain, assuring that each H3K4me3 peak reciprocally aligned to only one peak in the alternative genome after merging, and that all peaks were in the same order along the chromosomes in both genomes (Supplemental Material, Table S2). Using the H3K4me3 peaks locations derived from the parental strains, final read counts for B6, D2, F1 hybrids, and BXDs were obtained by counting reads within the coordinate boundaries of the peakome intervals.

    + +

    To improve mapping accuracy and utilize known sequence variation between strains, all BXDs and F1hybrid samples were aligned separately to both the mm10 reference and the de novo D2 assembly. To reduce error in quantification of H3K4me3 levels due to genomic regions containing repetitive sequences, we removed reads with multiple alignments and retained reads with alignment metric of 60 that lacked small indels, which can often indicate misalignment. Subsequently, for each genomic interval in the peakome, final reads counts were summed for those that mapped uniquely to one of the assemblies along with those that mapped equally well to both B6 and D2 genome assemblies.

    diff --git a/general/datasets/Jax_bxd_germ_cells_edger_log2_0820/specifics.rtf b/general/datasets/Jax_bxd_germ_cells_edger_log2_0820/specifics.rtf new file mode 100644 index 0000000..bbaabc0 --- /dev/null +++ b/general/datasets/Jax_bxd_germ_cells_edger_log2_0820/specifics.rtf @@ -0,0 +1 @@ +log2 transformed \ No newline at end of file diff --git a/general/datasets/Jax_bxd_germ_cells_edger_log2_0820/summary.rtf b/general/datasets/Jax_bxd_germ_cells_edger_log2_0820/summary.rtf new file mode 100644 index 0000000..97965d8 --- /dev/null +++ b/general/datasets/Jax_bxd_germ_cells_edger_log2_0820/summary.rtf @@ -0,0 +1,3 @@ +

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404261/

    + +

    The epigenetic landscape varies greatly among cell types. Although a variety of writers, readers, and erasers of epigenetic features are known, we have little information about the underlying regulatory systems controlling the establishment and maintenance of these features. Here, we have explored how natural genetic variation affects the epigenome in mice. Studying levels of H3K4me3, a histone modification at sites such as promoters, enhancers, and recombination hotspots, we found tissue-specific trans-regulation of H3K4me3 levels in four highly diverse cell types: male germ cells, embryonic stem cells, hepatocytes, and cardiomyocytes. To identify the genetic loci involved, we measured H3K4me3 levels in male germ cells in a mapping population of 59 BXD recombinant inbred lines. We found extensive trans-regulation of H3K4me3 peaks, including six major histone quantitative trait loci (QTL). These chromatin regulatory loci act dominantly to suppress H3K4me3, which at hotspots reduces the likelihood of subsequent DNA double-strand breaks. QTL locations do not correspond with genes encoding enzymes known to metabolize chromatin features. Instead their locations match clusters of zinc finger genes, making these possible candidates that explain the dominant suppression of H3K4me3. Collectively, these data describe an extensive, set of chromatin regulatory loci that control the epigenetic landscape.

    diff --git a/general/datasets/Jax_bxd_germ_cells_edger_log2_0820/tissue.rtf b/general/datasets/Jax_bxd_germ_cells_edger_log2_0820/tissue.rtf new file mode 100644 index 0000000..65281a9 --- /dev/null +++ b/general/datasets/Jax_bxd_germ_cells_edger_log2_0820/tissue.rtf @@ -0,0 +1,7 @@ +

    Testicular germ cell enrichment was performed on 14-day postpartum male mice as previously reported (). This cell preparation removes somatic Sertoli and Leydig cells and results in >90% enrichment of germ cells, of which nearly 50% are spermatogonia ().

    + +

    Individual low-passage mouse ESCs were derived using protocols outlined in . Briefly, 6- to 8-week-old females are mated to stud males and checked each morning for plugs. Pregnant females are euthanized on embryonic day 3.5 and the uterine horn is flushed to remove embryos. Embryos are visualized under a dissecting microscope and blastocysts are transferred to 2i (2i:CHIR99021 and PD0325901) () serum-free media for outgrowth of the inner cell mass. Blastocysts are allowed to hatch and attach to a mouse embryonic fibroblast (MEF) feeder layer, and the resulting outgrowth is monitored daily and fed for 8–11 days. The emergent ESCs are disaggregated and passaged onto new MEF feeders. Cultures during this time are closely monitored for unusually rapid growth (potentially indicating karyotypic instability), signs of deterioration including vacuolated cytoplasm, detachment of cells from colonies and debris, and possible signs of contamination. Successful ESC cultures were maintained on MEF feeders in serum containing 2i media supplemented with Leukemia inhibiting factor (2i/LIF) () to maintain high levels of NANOG expression, which indicates ground-state pluripotency (). Prior to preparing for chromatin isolation, mouse ESCs were enzymatically disassociated using trypsin and MEFs were removed by serial plating on gelatin-coated plates to which MEFs adsorb preferentially; for this, ESCs and MEFs are incubated in 2i/LIF media on fresh plates for 15 min to allow the larger MEFs to quickly attach to the plates. ESCs are aspirated and the plating procedure repeated once to further remove MEFs. ESCs were collected by centrifugation, resuspended in PBS, and cross-linked using formaldehyde.

    + +

    For hepatocyte isolation and purification, livers from 8-week-old female mice were perfused using a modified EGTA–collagenase perfusion protocol (). All perfusions and hepatocyte purifications were done at the same time of the day to avoid possible circadian effects on any studied parameter. EGTA buffer was used to flush the blood out of the liver and start to digest the desmosomes connecting the liver cells. After 35 ml of the 1× EGTA solution was passed through the liver, it was replaced with 7–10 ml of 1× Leffert’s buffer to flush out the EGTA, which otherwise chelates the calcium ions necessary for collagenase activity in the next step when the liver is digested by perfusion with 25–50 ml of Liberase solution (∼4.3 Wünsch units). After perfusion, the liver was removed from the abdominal cavity and passed through Nitex 80-μm nylon mesh, using extra ice-cold Leffert’s buffer with 0.02% CaCl2and a rubber policeman. Hepatocytes were purified from the remaining cells by two consecutive centrifugations for 4 min, 50 × g each, leaving the other, smaller cell types in suspension. After each spin, the solution was decanted as waste, and the enriched cell pellet of hepatocytes was resuspended in 30 ml ice-cold Leffert’s buffer with 0.02% CaCl2. After the second centrifugation, the cell pellet contained >98.6% hepatocytes.

    + +

    For cardiomyocyte isolation 8-week-old female mice were euthanized and the chest opened to expose the heart. The descending aorta and inferior vena cava were cut and an EDTA buffer was injected into the apex of the right ventricle to flush the heart. The ascending aorta was clamped and the heart transferred to a petri dish and fixed by perfusion of EDTA buffer containing 4% formaldehyde via the left ventricle. The formaldehyde was quenched by perfusing the heart with 125 mM glycine, and digested by perfusion with collagenase buffer. The ventricles were rent into smaller pieces, and triturated to complete cellular dissociation into a single-cell suspension. Cells were then filtered through a 100-μm strainer to remove tissue fragments and centrifuged at a very low speed to obtain a highly enriched fraction of fixed cardiomyocytes.

    diff --git a/general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/acknowledgment.rtf b/general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/acknowledgment.rtf new file mode 100644 index 0000000..5ab8fd8 --- /dev/null +++ b/general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/acknowledgment.rtf @@ -0,0 +1 @@ +

    This manuscript is dedicated to the memory of Pavlina Petkova, a wonderful scientist, colleague, and wonderful friend. We thank members of the Baker, Paigen, Petkov, and Carter laboratories for their discussion of the data and manuscript. This work was assisted by The Jackson Laboratory scientific services, which are supported through National Institutes of Health Cancer Core grant CA34196. BXD ESC lines were kindly provided by Anne Czechanski and Laura Reinholdt, funded by the Special Mouse Strain Resource OD011102-18. Funding for the work was provided by NIGMS F32-GM101736 and The Jackson Laboratory start-up funds supporting C.L.B., and P01-GM099640 to K.P. and G.W.C.

    diff --git a/general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/cases.rtf b/general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/cases.rtf new file mode 100644 index 0000000..5922df0 --- /dev/null +++ b/general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/cases.rtf @@ -0,0 +1 @@ +

    C57BL/6J (stock number 000664), DBA/2J (stock number 000671), B6D2 F1/J hybrid (stock number 100006), and all BXD RI mice were obtained from The Jackson Laboratory (Bar Harbor, ME). All animal experiments were approved by the Animal Care and Use Committee of The Jackson Laboratory (summary #04008 and #16043).

    diff --git a/general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/processing.rtf b/general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/processing.rtf new file mode 100644 index 0000000..d359653 --- /dev/null +++ b/general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/processing.rtf @@ -0,0 +1,5 @@ +

    All sequenced B6, D2, F1, and BXD H3K4me3 ChIP libraries, as well as all control input DNA samples were aligned utilizing bwa version 0.7.9a (). B6 parental samples were aligned to the Genome Reference Consortium Mouse Build 38 (mm10) and D2 parental samples were aligned to the de novo REL-1509 assembly, including all unplaced scaffolds, from the Mouse Genomes Project ().

    + +

    To ensure that H3K4me3 peaks were properly quantified across divergent genomes, we began by building a comprehensive “peakome” representing all potential H3K4me3 peaks found in the two parents. H3K4me3 peaks for B6 and D2 were called independently, utilizing alignment data from three replicate samples and one DNA input sample. Reads were filtered for a mapq alignment metric of 60 and an alignment sequence having no indels present across the entire length of the sequencing read, typically 100 bp H3K4me3 peaks were called utilizing MACS version 1.4.2 () and peaks having a false discovery rate (FDR) of <1% found in two out of three replicates were accepted. Final genomic intervals for each H3K4me3 peak for each strain were derived by merging the peaks from the corresponding replicate samples using bedtools (). To link syntenic regions between B6 and D2 assemblies, which each have their own coordinate system, sequences from these genomic intervals were aligned to their alternative genome using reciprocal BLAST. In some cases, a sequence interval comprising an H3K4me3 peak in one strain aligned to multiple adjacent intervals in the alternative genome. If the sequences of these peaks in the alternate strain all fell within the boundaries of the single peak, they were merged. The boundaries of these merged peaks included the incorporated sequences from both strains. Because there are also H3K4me3 peaks that are strain specific, these peaks were accepted if, and only if, the mapped interval had a unique sequence that was found in the proper syntentic order within the alternative genome lacking that H3K4me3 peak. The final combined peakome between B6 and D2 mice was created by selecting only peaks appropriately linked across each strain, assuring that each H3K4me3 peak reciprocally aligned to only one peak in the alternative genome after merging, and that all peaks were in the same order along the chromosomes in both genomes (Supplemental Material, Table S2). Using the H3K4me3 peaks locations derived from the parental strains, final read counts for B6, D2, F1 hybrids, and BXDs were obtained by counting reads within the coordinate boundaries of the peakome intervals.

    + +

    To improve mapping accuracy and utilize known sequence variation between strains, all BXDs and F1hybrid samples were aligned separately to both the mm10 reference and the de novo D2 assembly. To reduce error in quantification of H3K4me3 levels due to genomic regions containing repetitive sequences, we removed reads with multiple alignments and retained reads with alignment metric of 60 that lacked small indels, which can often indicate misalignment. Subsequently, for each genomic interval in the peakome, final reads counts were summed for those that mapped uniquely to one of the assemblies along with those that mapped equally well to both B6 and D2 genome assemblies.

    diff --git a/general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/specifics.rtf b/general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/specifics.rtf new file mode 100644 index 0000000..ca16969 --- /dev/null +++ b/general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/specifics.rtf @@ -0,0 +1 @@ +log2 z-score transformed \ No newline at end of file diff --git a/general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/summary.rtf b/general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/summary.rtf new file mode 100644 index 0000000..97965d8 --- /dev/null +++ b/general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/summary.rtf @@ -0,0 +1,3 @@ +

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404261/

    + +

    The epigenetic landscape varies greatly among cell types. Although a variety of writers, readers, and erasers of epigenetic features are known, we have little information about the underlying regulatory systems controlling the establishment and maintenance of these features. Here, we have explored how natural genetic variation affects the epigenome in mice. Studying levels of H3K4me3, a histone modification at sites such as promoters, enhancers, and recombination hotspots, we found tissue-specific trans-regulation of H3K4me3 levels in four highly diverse cell types: male germ cells, embryonic stem cells, hepatocytes, and cardiomyocytes. To identify the genetic loci involved, we measured H3K4me3 levels in male germ cells in a mapping population of 59 BXD recombinant inbred lines. We found extensive trans-regulation of H3K4me3 peaks, including six major histone quantitative trait loci (QTL). These chromatin regulatory loci act dominantly to suppress H3K4me3, which at hotspots reduces the likelihood of subsequent DNA double-strand breaks. QTL locations do not correspond with genes encoding enzymes known to metabolize chromatin features. Instead their locations match clusters of zinc finger genes, making these possible candidates that explain the dominant suppression of H3K4me3. Collectively, these data describe an extensive, set of chromatin regulatory loci that control the epigenetic landscape.

    diff --git a/general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/tissue.rtf b/general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/tissue.rtf new file mode 100644 index 0000000..65281a9 --- /dev/null +++ b/general/datasets/Jax_bxd_germ_cells_edger_log2z_0820/tissue.rtf @@ -0,0 +1,7 @@ +

    Testicular germ cell enrichment was performed on 14-day postpartum male mice as previously reported (). This cell preparation removes somatic Sertoli and Leydig cells and results in >90% enrichment of germ cells, of which nearly 50% are spermatogonia ().

    + +

    Individual low-passage mouse ESCs were derived using protocols outlined in . Briefly, 6- to 8-week-old females are mated to stud males and checked each morning for plugs. Pregnant females are euthanized on embryonic day 3.5 and the uterine horn is flushed to remove embryos. Embryos are visualized under a dissecting microscope and blastocysts are transferred to 2i (2i:CHIR99021 and PD0325901) () serum-free media for outgrowth of the inner cell mass. Blastocysts are allowed to hatch and attach to a mouse embryonic fibroblast (MEF) feeder layer, and the resulting outgrowth is monitored daily and fed for 8–11 days. The emergent ESCs are disaggregated and passaged onto new MEF feeders. Cultures during this time are closely monitored for unusually rapid growth (potentially indicating karyotypic instability), signs of deterioration including vacuolated cytoplasm, detachment of cells from colonies and debris, and possible signs of contamination. Successful ESC cultures were maintained on MEF feeders in serum containing 2i media supplemented with Leukemia inhibiting factor (2i/LIF) () to maintain high levels of NANOG expression, which indicates ground-state pluripotency (). Prior to preparing for chromatin isolation, mouse ESCs were enzymatically disassociated using trypsin and MEFs were removed by serial plating on gelatin-coated plates to which MEFs adsorb preferentially; for this, ESCs and MEFs are incubated in 2i/LIF media on fresh plates for 15 min to allow the larger MEFs to quickly attach to the plates. ESCs are aspirated and the plating procedure repeated once to further remove MEFs. ESCs were collected by centrifugation, resuspended in PBS, and cross-linked using formaldehyde.

    + +

    For hepatocyte isolation and purification, livers from 8-week-old female mice were perfused using a modified EGTA–collagenase perfusion protocol (). All perfusions and hepatocyte purifications were done at the same time of the day to avoid possible circadian effects on any studied parameter. EGTA buffer was used to flush the blood out of the liver and start to digest the desmosomes connecting the liver cells. After 35 ml of the 1× EGTA solution was passed through the liver, it was replaced with 7–10 ml of 1× Leffert’s buffer to flush out the EGTA, which otherwise chelates the calcium ions necessary for collagenase activity in the next step when the liver is digested by perfusion with 25–50 ml of Liberase solution (∼4.3 Wünsch units). After perfusion, the liver was removed from the abdominal cavity and passed through Nitex 80-μm nylon mesh, using extra ice-cold Leffert’s buffer with 0.02% CaCl2and a rubber policeman. Hepatocytes were purified from the remaining cells by two consecutive centrifugations for 4 min, 50 × g each, leaving the other, smaller cell types in suspension. After each spin, the solution was decanted as waste, and the enriched cell pellet of hepatocytes was resuspended in 30 ml ice-cold Leffert’s buffer with 0.02% CaCl2. After the second centrifugation, the cell pellet contained >98.6% hepatocytes.

    + +

    For cardiomyocyte isolation 8-week-old female mice were euthanized and the chest opened to expose the heart. The descending aorta and inferior vena cava were cut and an EDTA buffer was injected into the apex of the right ventricle to flush the heart. The ascending aorta was clamped and the heart transferred to a petri dish and fixed by perfusion of EDTA buffer containing 4% formaldehyde via the left ventricle. The formaldehyde was quenched by perfusing the heart with 125 mM glycine, and digested by perfusion with collagenase buffer. The ventricles were rent into smaller pieces, and triturated to complete cellular dissociation into a single-cell suspension. Cells were then filtered through a 100-μm strainer to remove tissue fragments and centrifuged at a very low speed to obtain a highly enriched fraction of fixed cardiomyocytes.

    diff --git a/general/datasets/Jax_bxd_hip_pro_0219/specifics.rtf b/general/datasets/Jax_bxd_hip_pro_0219/specifics.rtf new file mode 100644 index 0000000..57e3686 --- /dev/null +++ b/general/datasets/Jax_bxd_hip_pro_0219/specifics.rtf @@ -0,0 +1 @@ +BXD Hippocampal Proteome \ No newline at end of file diff --git a/general/datasets/Jax_bxd_hip_pro_0219/summary.rtf b/general/datasets/Jax_bxd_hip_pro_0219/summary.rtf new file mode 100644 index 0000000..c85fe16 --- /dev/null +++ b/general/datasets/Jax_bxd_hip_pro_0219/summary.rtf @@ -0,0 +1,7 @@ +

    Detail information about this dataset is in working progress.

    + +

    Database Name: JAX_BXD_Hippocampal_Proteome_Feb19
    +GeneNetwork Accession Number: GN873
    +For more information regarding this data set please visit: http://www.genenetwork.org/webqtl/main.py?FormID=sharinginfo&GN_AccessionId=873

    + +

    Data files available at https://files.genenetwork.org/current/GN873/

    diff --git a/general/datasets/Jax_csb_l_0711/acknowledgment.rtf b/general/datasets/Jax_csb_l_0711/acknowledgment.rtf new file mode 100644 index 0000000..04d1867 --- /dev/null +++ b/general/datasets/Jax_csb_l_0711/acknowledgment.rtf @@ -0,0 +1 @@ +

    Churchill GA, Paigen B, Shockley KR, Witmer D

    diff --git a/general/datasets/Jax_csb_l_0711/cases.rtf b/general/datasets/Jax_csb_l_0711/cases.rtf new file mode 100644 index 0000000..4c44710 --- /dev/null +++ b/general/datasets/Jax_csb_l_0711/cases.rtf @@ -0,0 +1,1030 @@ +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDStrain IDHF=high-fat (30% fat)
    + 6C=low-fat (6% fat)
    Replicate Animal
    1GSM264767129S1/SvImJ6CRep1
    2GSM264768129S1/SvImJ6CRep2
    3GSM264769129S1/SvImJ6CRep3
    4GSM264770129S1/SvImJHFRep1
    5GSM264771129S1/SvImJHFRep2
    6GSM264772129S1/SvImJHFRep3
    7GSM264773129S1/SvImJ6CRep1
    8GSM264774129S1/SvImJ6CRep2
    9GSM264775129S1/SvImJ6CRep3
    10GSM264776129S1/SvImJHFRep1
    11GSM264777129S1/SvImJHFRep2
    12GSM264778129S1/SvImJHFRep3
    13GSM264779A/J6CRep1
    14GSM264780A/J6CRep2
    15GSM264781A/J6CRep3
    16GSM264782A/JHFRep1
    17GSM264783A/JHFRep2
    18GSM264784A/JHFRep3
    19GSM264785A/J6CRep1
    20GSM264786A/J6CRep2
    21GSM264787A/J6CRep3
    22GSM264788A/JHFRep1
    23GSM264789A/JHFRep2
    24GSM264790A/JHFRep3
    25GSM264791C57BL/6J6CRep1
    26GSM264792C57BL/6J6CRep2
    27GSM264793C57BL/6J6CRep3
    28GSM264794C57BL/6JHFRep1
    29GSM264795C57BL/6JHFRep2
    30GSM264796C57BL/6JHFRep3
    31GSM264797C57BL/6J6CRep1
    32GSM264798C57BL/6J6CRep2
    33GSM264799C57BL/6J6CRep3
    34GSM264800C57BL/6JHFRep1
    35GSM264801C57BL/6JHFRep2
    36GSM264802C57BL/6JHFRep3
    37GSM264803BALB/cJ6CRep1
    38GSM264804BALB/cJ6CRep2
    39GSM264805BALB/cJ6CRep3
    40GSM264806BALB/cJHFRep1
    41GSM264807BALB/cJHFRep2
    42GSM264808BALB/cJHFRep3
    43GSM264809BALB/cJ6CRep1
    44GSM264810BALB/cJ6CRep2
    45GSM264811BALB/cJ6CRep3
    46GSM264813BALB/cJHFRep1
    47GSM264814BALB/cJHFRep2
    48GSM264815BALB/cJHFRep3
    49GSM264845C3H/HeJ6CRep1
    50GSM264846C3H/HeJ6CRep2
    51GSM264847C3H/HeJ6CRep3
    52GSM264848C3H/HeJHFRep1
    53GSM264849C3H/HeJHFRep2
    54GSM264850C3H/HeJHFRep3
    55GSM264852C3H/HeJ6CRep1
    56GSM264853C3H/HeJ6CRep2
    57GSM264855C3H/HeJ6CRep3
    58GSM264856C3H/HeJHFRep1
    59GSM264857C3H/HeJHFRep2
    60GSM264858C3H/HeJHFRep3
    61GSM264859CAST/EiJ6CRep1
    62GSM264861CAST/EiJ6CRep2
    63GSM264862CAST/EiJ6CRep3
    64GSM264863CAST/EiJHFRep1
    65GSM264864CAST/EiJHFRep2
    66GSM264865CAST/EiJHFRep3
    67GSM264866CAST/EiJ6CRep1
    68GSM264867CAST/EiJ6CRep2
    69GSM264868CAST/EiJ6CRep3
    70GSM264869CAST/EiJHFRep1
    71GSM264870CAST/EiJHFRep2
    72GSM264871CAST/EiJHFRep3
    73GSM264872DBA/2J6CRep1
    74GSM264873DBA/2J6CRep2
    75GSM264874DBA/2J6CRep3
    76GSM264875DBA/2JHFRep1
    77GSM264876DBA/2JHFRep2
    78GSM264877DBA/2JHFRep3
    79GSM264890DBA/2J6CRep1
    80GSM264891DBA/2J6CRep2
    81GSM264892DBA/2J6CRep3
    82GSM264893DBA/2JHFRep1
    83GSM264894DBA/2JHFRep2
    84GSM264895DBA/2JHFRep3
    85GSM264896I/LnJ6CRep1
    86GSM264897I/LnJ6CRep2
    87GSM264898I/LnJ6CRep3
    88GSM264899I/LnJHFRep1
    89GSM264900I/LnJHFRep2
    90GSM264901I/LnJHFRep3
    91GSM264902I/LnJ6CRep1
    92GSM264903I/LnJ6CRep2
    93GSM264904I/LnJ6CRep3
    94GSM264905I/LnJHFRep1
    95GSM264906I/LnJHFRep2
    96GSM264907I/LnJHFRep3
    97GSM264908MRL/MpJ-Fas/J6CRep1
    98GSM264909MRL/MpJ-Fas/J6CRep2
    99GSM264910MRL/MpJ-Fas/J6CRep3
    100GSM264912MRL/MpJ-Fas/JHFRep1
    101GSM264913MRL/MpJ-Fas/JHFRep2
    102GSM264914MRL/MpJ-Fas/JHFRep3
    103GSM264915MRL/MpJ-Fas/J6CRep1
    104GSM264916MRL/MpJ-Fas/J6CRep2
    105GSM264917MRL/MpJ-Fas/J6CRep3
    106GSM264918MRL/MpJ-Fas/JHFRep1
    107GSM264920MRL/MpJ-Fas/JHFRep2
    108GSM264921MRL/MpJ-Fas/JHFRep3
    109GSM264922NZB/BlNJ6CRep1
    110GSM264924NZB/BlNJ6CRep2
    111GSM264925NZB/BlNJ6CRep3
    112GSM264926NZB/BlNJHFRep1
    113GSM264928NZB/BlNJHFRep2
    114GSM264929NZB/BlNJHFRep3
    115GSM264930NZB/BlNJ6CRep1
    116GSM264931NZB/BlNJ6CRep2
    117GSM264932NZB/BlNJ6CRep3
    118GSM264933NZB/BlNJHFRep1
    119GSM264935NZB/BlNJHFRep2
    120GSM264936NZB/BlNJHFRep3
    121GSM265061PERA/EiJ6CRep1
    122GSM265062PERA/EiJ6CRep2
    123GSM265063PERA/EiJ6CRep3
    124GSM265064PERA/EiJHFRep1
    125GSM265065PERA/EiJHFRep2
    126GSM265066PERA/EiJHFRep3
    127GSM265067PERA/EiJ6CRep1
    128GSM265068PERA/EiJ6CRep2
    129GSM265069PERA/EiJ6CRep3
    130GSM265070PERA/EiJHFRep1
    131GSM265071PERA/EiJHFRep2
    132GSM265072PERA/EiJHFRep3
    133GSM265074SM/J6CRep1
    134GSM265075SM/J6CRep2
    135GSM265105SM/J6CRep3
    136GSM265217SM/JHFRep1
    137GSM265248SM/JHFRep2
    138GSM265275SM/JHFRep3
    139GSM265324SM/J6CRep1
    140GSM265331SM/J6CRep2
    141GSM265357SM/J6CRep3
    142GSM265358SM/JHFRep1
    143GSM265359SM/JHFRep2
    144GSM265360SM/JHFRep3
    +
    +
    diff --git a/general/datasets/Jax_csb_l_0711/citation.rtf b/general/datasets/Jax_csb_l_0711/citation.rtf new file mode 100644 index 0000000..92dd7b6 --- /dev/null +++ b/general/datasets/Jax_csb_l_0711/citation.rtf @@ -0,0 +1 @@ +

    Burgess-Herbert SL, Cox A, Tsaih SW, Paigen B. Practical applications of the bioinformatics toolbox for narrowing quantitative trait loci. Genetics 2008 Dec;180(4):2227-35. PMID: 18845850 Shockley KR, Witmer D, Burgess-Herbert SL, Paigen B et al. Effects of atherogenic diet on hepatic gene expression across mouse strains. Physiol Genomics 2009 Nov 6;39(3):172-82. PMID: 19671657

    diff --git a/general/datasets/Jax_csb_l_0711/contributors.rtf b/general/datasets/Jax_csb_l_0711/contributors.rtf new file mode 100644 index 0000000..04d1867 --- /dev/null +++ b/general/datasets/Jax_csb_l_0711/contributors.rtf @@ -0,0 +1 @@ +

    Churchill GA, Paigen B, Shockley KR, Witmer D

    diff --git a/general/datasets/Jax_csb_l_0711/experiment-design.rtf b/general/datasets/Jax_csb_l_0711/experiment-design.rtf new file mode 100644 index 0000000..dc5fef5 --- /dev/null +++ b/general/datasets/Jax_csb_l_0711/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Expression profiling by array.

    + +

    One group of mice was fed an atherogenic high-fat (30% fat) diet containing cholic acid to increase fat uptake and another was fed a low-fat (6% fat) regular chow diet. Males and females from both diets were studied for mouse strains 129S1/SvImJ, A/J, BALB/cJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, I/LnJ, MRL/MpJ-Tnfrsf6lpr/J, NZB/BINJ, PERA/Ei, and SM/J. All strains were sacrificed between 11- and 13 weeks of age except for CAST and PERA, which were harvested after 50 weeks of age. CAST and PERA were subsequently removed from our analysis based on discrepant harvest age, but can be found in our database (see below). Three replicate animals were used for each combination of diet, strain, and sex, resulting in a total of 120 mice surveyed for gene expression.

    diff --git a/general/datasets/Jax_csb_l_0711/experiment-type.rtf b/general/datasets/Jax_csb_l_0711/experiment-type.rtf new file mode 100644 index 0000000..b8429a3 --- /dev/null +++ b/general/datasets/Jax_csb_l_0711/experiment-type.rtf @@ -0,0 +1 @@ +Expression profiling by array. \ No newline at end of file diff --git a/general/datasets/Jax_csb_l_0711/platform.rtf b/general/datasets/Jax_csb_l_0711/platform.rtf new file mode 100644 index 0000000..459d486 --- /dev/null +++ b/general/datasets/Jax_csb_l_0711/platform.rtf @@ -0,0 +1 @@ +

    [Mouse430_2] Affymetrix Mouse Genome 430 2.0 Array. Affymetrix submissions are typically submitted to GEO using the GEOarchive method described at http://www.ncbi.nlm.nih.gov/projects/geo/info/geo_affy.html All probe sets represented on the GeneChip Mouse Expression Set 430 are included on the GeneChip Mouse Genome 430 2.0 Array. The sequences from which these probe sets were derived were selected from GenBank«, dbEST, and RefSeq. The sequence clusters were created from the UniGene database (Build 107, June 2002) and then refined by analysis and comparison with the publicly available draft assembly of the mouse genome from the Whitehead Institute for Genome Research (MGSC, April 2002).

    diff --git a/general/datasets/Jax_csb_l_0711/summary.rtf b/general/datasets/Jax_csb_l_0711/summary.rtf new file mode 100644 index 0000000..a06430b --- /dev/null +++ b/general/datasets/Jax_csb_l_0711/summary.rtf @@ -0,0 +1 @@ +

    High-fat diets are associated with increased obesity and metabolic disease in mice and humans. Here we used analysis of variance (ANOVA) to scrutinize a microarray data set consisting of 10 inbred strains of mice from both sexes fed atherogenic high-fat and control chow diets. An overall F-test was applied to the 40 unique groups of strain-diet-sex to identify 15,288 genes with altered transcription. Bootstrapping k-means clustering separated these changes into four strain-dependent expression patterns, including two sex-related profiles and two diet-related profiles. Sex-induced effects correspond to secretion (males) or fat and energy metabolism (females), whereas diet-induced changes relate to neurological processes (chow) or immune response (high-fat). The full set of pairwise contrasts for differences between strains within sex (90 different statistical tests) uncovered 32,379 total changes. These differences were unevenly distributed across strains and between sexes, indicating that strain-specific responses to high-fat diet differ between sexes. Correlations between expression levels and 8 obesity-related traits identified 5,274 associations between transcript abundance and measured phenotypic endpoints. From this number, 2,678 genes are positively correlated with total cholesterol levels and associate with immune-related categories while 2,596 genes are negatively correlated with cholesterol and connect to cholesterol synthesis. Keywords: gene expression analysis, strain comparision, effect of dietary fat, sex-specific effects

    diff --git a/general/datasets/Jax_csb_l_0711/tissue.rtf b/general/datasets/Jax_csb_l_0711/tissue.rtf new file mode 100644 index 0000000..778c4a2 --- /dev/null +++ b/general/datasets/Jax_csb_l_0711/tissue.rtf @@ -0,0 +1 @@ +

    Liver

    diff --git a/general/datasets/Jax_csb_l_6c_0711/acknowledgment.rtf b/general/datasets/Jax_csb_l_6c_0711/acknowledgment.rtf new file mode 100644 index 0000000..04d1867 --- /dev/null +++ b/general/datasets/Jax_csb_l_6c_0711/acknowledgment.rtf @@ -0,0 +1 @@ +

    Churchill GA, Paigen B, Shockley KR, Witmer D

    diff --git a/general/datasets/Jax_csb_l_6c_0711/cases.rtf b/general/datasets/Jax_csb_l_6c_0711/cases.rtf new file mode 100644 index 0000000..4c44710 --- /dev/null +++ b/general/datasets/Jax_csb_l_6c_0711/cases.rtf @@ -0,0 +1,1030 @@ +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDStrain IDHF=high-fat (30% fat)
    + 6C=low-fat (6% fat)
    Replicate Animal
    1GSM264767129S1/SvImJ6CRep1
    2GSM264768129S1/SvImJ6CRep2
    3GSM264769129S1/SvImJ6CRep3
    4GSM264770129S1/SvImJHFRep1
    5GSM264771129S1/SvImJHFRep2
    6GSM264772129S1/SvImJHFRep3
    7GSM264773129S1/SvImJ6CRep1
    8GSM264774129S1/SvImJ6CRep2
    9GSM264775129S1/SvImJ6CRep3
    10GSM264776129S1/SvImJHFRep1
    11GSM264777129S1/SvImJHFRep2
    12GSM264778129S1/SvImJHFRep3
    13GSM264779A/J6CRep1
    14GSM264780A/J6CRep2
    15GSM264781A/J6CRep3
    16GSM264782A/JHFRep1
    17GSM264783A/JHFRep2
    18GSM264784A/JHFRep3
    19GSM264785A/J6CRep1
    20GSM264786A/J6CRep2
    21GSM264787A/J6CRep3
    22GSM264788A/JHFRep1
    23GSM264789A/JHFRep2
    24GSM264790A/JHFRep3
    25GSM264791C57BL/6J6CRep1
    26GSM264792C57BL/6J6CRep2
    27GSM264793C57BL/6J6CRep3
    28GSM264794C57BL/6JHFRep1
    29GSM264795C57BL/6JHFRep2
    30GSM264796C57BL/6JHFRep3
    31GSM264797C57BL/6J6CRep1
    32GSM264798C57BL/6J6CRep2
    33GSM264799C57BL/6J6CRep3
    34GSM264800C57BL/6JHFRep1
    35GSM264801C57BL/6JHFRep2
    36GSM264802C57BL/6JHFRep3
    37GSM264803BALB/cJ6CRep1
    38GSM264804BALB/cJ6CRep2
    39GSM264805BALB/cJ6CRep3
    40GSM264806BALB/cJHFRep1
    41GSM264807BALB/cJHFRep2
    42GSM264808BALB/cJHFRep3
    43GSM264809BALB/cJ6CRep1
    44GSM264810BALB/cJ6CRep2
    45GSM264811BALB/cJ6CRep3
    46GSM264813BALB/cJHFRep1
    47GSM264814BALB/cJHFRep2
    48GSM264815BALB/cJHFRep3
    49GSM264845C3H/HeJ6CRep1
    50GSM264846C3H/HeJ6CRep2
    51GSM264847C3H/HeJ6CRep3
    52GSM264848C3H/HeJHFRep1
    53GSM264849C3H/HeJHFRep2
    54GSM264850C3H/HeJHFRep3
    55GSM264852C3H/HeJ6CRep1
    56GSM264853C3H/HeJ6CRep2
    57GSM264855C3H/HeJ6CRep3
    58GSM264856C3H/HeJHFRep1
    59GSM264857C3H/HeJHFRep2
    60GSM264858C3H/HeJHFRep3
    61GSM264859CAST/EiJ6CRep1
    62GSM264861CAST/EiJ6CRep2
    63GSM264862CAST/EiJ6CRep3
    64GSM264863CAST/EiJHFRep1
    65GSM264864CAST/EiJHFRep2
    66GSM264865CAST/EiJHFRep3
    67GSM264866CAST/EiJ6CRep1
    68GSM264867CAST/EiJ6CRep2
    69GSM264868CAST/EiJ6CRep3
    70GSM264869CAST/EiJHFRep1
    71GSM264870CAST/EiJHFRep2
    72GSM264871CAST/EiJHFRep3
    73GSM264872DBA/2J6CRep1
    74GSM264873DBA/2J6CRep2
    75GSM264874DBA/2J6CRep3
    76GSM264875DBA/2JHFRep1
    77GSM264876DBA/2JHFRep2
    78GSM264877DBA/2JHFRep3
    79GSM264890DBA/2J6CRep1
    80GSM264891DBA/2J6CRep2
    81GSM264892DBA/2J6CRep3
    82GSM264893DBA/2JHFRep1
    83GSM264894DBA/2JHFRep2
    84GSM264895DBA/2JHFRep3
    85GSM264896I/LnJ6CRep1
    86GSM264897I/LnJ6CRep2
    87GSM264898I/LnJ6CRep3
    88GSM264899I/LnJHFRep1
    89GSM264900I/LnJHFRep2
    90GSM264901I/LnJHFRep3
    91GSM264902I/LnJ6CRep1
    92GSM264903I/LnJ6CRep2
    93GSM264904I/LnJ6CRep3
    94GSM264905I/LnJHFRep1
    95GSM264906I/LnJHFRep2
    96GSM264907I/LnJHFRep3
    97GSM264908MRL/MpJ-Fas/J6CRep1
    98GSM264909MRL/MpJ-Fas/J6CRep2
    99GSM264910MRL/MpJ-Fas/J6CRep3
    100GSM264912MRL/MpJ-Fas/JHFRep1
    101GSM264913MRL/MpJ-Fas/JHFRep2
    102GSM264914MRL/MpJ-Fas/JHFRep3
    103GSM264915MRL/MpJ-Fas/J6CRep1
    104GSM264916MRL/MpJ-Fas/J6CRep2
    105GSM264917MRL/MpJ-Fas/J6CRep3
    106GSM264918MRL/MpJ-Fas/JHFRep1
    107GSM264920MRL/MpJ-Fas/JHFRep2
    108GSM264921MRL/MpJ-Fas/JHFRep3
    109GSM264922NZB/BlNJ6CRep1
    110GSM264924NZB/BlNJ6CRep2
    111GSM264925NZB/BlNJ6CRep3
    112GSM264926NZB/BlNJHFRep1
    113GSM264928NZB/BlNJHFRep2
    114GSM264929NZB/BlNJHFRep3
    115GSM264930NZB/BlNJ6CRep1
    116GSM264931NZB/BlNJ6CRep2
    117GSM264932NZB/BlNJ6CRep3
    118GSM264933NZB/BlNJHFRep1
    119GSM264935NZB/BlNJHFRep2
    120GSM264936NZB/BlNJHFRep3
    121GSM265061PERA/EiJ6CRep1
    122GSM265062PERA/EiJ6CRep2
    123GSM265063PERA/EiJ6CRep3
    124GSM265064PERA/EiJHFRep1
    125GSM265065PERA/EiJHFRep2
    126GSM265066PERA/EiJHFRep3
    127GSM265067PERA/EiJ6CRep1
    128GSM265068PERA/EiJ6CRep2
    129GSM265069PERA/EiJ6CRep3
    130GSM265070PERA/EiJHFRep1
    131GSM265071PERA/EiJHFRep2
    132GSM265072PERA/EiJHFRep3
    133GSM265074SM/J6CRep1
    134GSM265075SM/J6CRep2
    135GSM265105SM/J6CRep3
    136GSM265217SM/JHFRep1
    137GSM265248SM/JHFRep2
    138GSM265275SM/JHFRep3
    139GSM265324SM/J6CRep1
    140GSM265331SM/J6CRep2
    141GSM265357SM/J6CRep3
    142GSM265358SM/JHFRep1
    143GSM265359SM/JHFRep2
    144GSM265360SM/JHFRep3
    +
    +
    diff --git a/general/datasets/Jax_csb_l_6c_0711/citation.rtf b/general/datasets/Jax_csb_l_6c_0711/citation.rtf new file mode 100644 index 0000000..92dd7b6 --- /dev/null +++ b/general/datasets/Jax_csb_l_6c_0711/citation.rtf @@ -0,0 +1 @@ +

    Burgess-Herbert SL, Cox A, Tsaih SW, Paigen B. Practical applications of the bioinformatics toolbox for narrowing quantitative trait loci. Genetics 2008 Dec;180(4):2227-35. PMID: 18845850 Shockley KR, Witmer D, Burgess-Herbert SL, Paigen B et al. Effects of atherogenic diet on hepatic gene expression across mouse strains. Physiol Genomics 2009 Nov 6;39(3):172-82. PMID: 19671657

    diff --git a/general/datasets/Jax_csb_l_6c_0711/contributors.rtf b/general/datasets/Jax_csb_l_6c_0711/contributors.rtf new file mode 100644 index 0000000..04d1867 --- /dev/null +++ b/general/datasets/Jax_csb_l_6c_0711/contributors.rtf @@ -0,0 +1 @@ +

    Churchill GA, Paigen B, Shockley KR, Witmer D

    diff --git a/general/datasets/Jax_csb_l_6c_0711/experiment-design.rtf b/general/datasets/Jax_csb_l_6c_0711/experiment-design.rtf new file mode 100644 index 0000000..dc5fef5 --- /dev/null +++ b/general/datasets/Jax_csb_l_6c_0711/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Expression profiling by array.

    + +

    One group of mice was fed an atherogenic high-fat (30% fat) diet containing cholic acid to increase fat uptake and another was fed a low-fat (6% fat) regular chow diet. Males and females from both diets were studied for mouse strains 129S1/SvImJ, A/J, BALB/cJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, I/LnJ, MRL/MpJ-Tnfrsf6lpr/J, NZB/BINJ, PERA/Ei, and SM/J. All strains were sacrificed between 11- and 13 weeks of age except for CAST and PERA, which were harvested after 50 weeks of age. CAST and PERA were subsequently removed from our analysis based on discrepant harvest age, but can be found in our database (see below). Three replicate animals were used for each combination of diet, strain, and sex, resulting in a total of 120 mice surveyed for gene expression.

    diff --git a/general/datasets/Jax_csb_l_6c_0711/experiment-type.rtf b/general/datasets/Jax_csb_l_6c_0711/experiment-type.rtf new file mode 100644 index 0000000..b8429a3 --- /dev/null +++ b/general/datasets/Jax_csb_l_6c_0711/experiment-type.rtf @@ -0,0 +1 @@ +Expression profiling by array. \ No newline at end of file diff --git a/general/datasets/Jax_csb_l_6c_0711/platform.rtf b/general/datasets/Jax_csb_l_6c_0711/platform.rtf new file mode 100644 index 0000000..459d486 --- /dev/null +++ b/general/datasets/Jax_csb_l_6c_0711/platform.rtf @@ -0,0 +1 @@ +

    [Mouse430_2] Affymetrix Mouse Genome 430 2.0 Array. Affymetrix submissions are typically submitted to GEO using the GEOarchive method described at http://www.ncbi.nlm.nih.gov/projects/geo/info/geo_affy.html All probe sets represented on the GeneChip Mouse Expression Set 430 are included on the GeneChip Mouse Genome 430 2.0 Array. The sequences from which these probe sets were derived were selected from GenBank«, dbEST, and RefSeq. The sequence clusters were created from the UniGene database (Build 107, June 2002) and then refined by analysis and comparison with the publicly available draft assembly of the mouse genome from the Whitehead Institute for Genome Research (MGSC, April 2002).

    diff --git a/general/datasets/Jax_csb_l_6c_0711/summary.rtf b/general/datasets/Jax_csb_l_6c_0711/summary.rtf new file mode 100644 index 0000000..a06430b --- /dev/null +++ b/general/datasets/Jax_csb_l_6c_0711/summary.rtf @@ -0,0 +1 @@ +

    High-fat diets are associated with increased obesity and metabolic disease in mice and humans. Here we used analysis of variance (ANOVA) to scrutinize a microarray data set consisting of 10 inbred strains of mice from both sexes fed atherogenic high-fat and control chow diets. An overall F-test was applied to the 40 unique groups of strain-diet-sex to identify 15,288 genes with altered transcription. Bootstrapping k-means clustering separated these changes into four strain-dependent expression patterns, including two sex-related profiles and two diet-related profiles. Sex-induced effects correspond to secretion (males) or fat and energy metabolism (females), whereas diet-induced changes relate to neurological processes (chow) or immune response (high-fat). The full set of pairwise contrasts for differences between strains within sex (90 different statistical tests) uncovered 32,379 total changes. These differences were unevenly distributed across strains and between sexes, indicating that strain-specific responses to high-fat diet differ between sexes. Correlations between expression levels and 8 obesity-related traits identified 5,274 associations between transcript abundance and measured phenotypic endpoints. From this number, 2,678 genes are positively correlated with total cholesterol levels and associate with immune-related categories while 2,596 genes are negatively correlated with cholesterol and connect to cholesterol synthesis. Keywords: gene expression analysis, strain comparision, effect of dietary fat, sex-specific effects

    diff --git a/general/datasets/Jax_csb_l_6c_0711/tissue.rtf b/general/datasets/Jax_csb_l_6c_0711/tissue.rtf new file mode 100644 index 0000000..778c4a2 --- /dev/null +++ b/general/datasets/Jax_csb_l_6c_0711/tissue.rtf @@ -0,0 +1 @@ +

    Liver

    diff --git a/general/datasets/Jax_csb_l_hf_0711/acknowledgment.rtf b/general/datasets/Jax_csb_l_hf_0711/acknowledgment.rtf new file mode 100644 index 0000000..04d1867 --- /dev/null +++ b/general/datasets/Jax_csb_l_hf_0711/acknowledgment.rtf @@ -0,0 +1 @@ +

    Churchill GA, Paigen B, Shockley KR, Witmer D

    diff --git a/general/datasets/Jax_csb_l_hf_0711/cases.rtf b/general/datasets/Jax_csb_l_hf_0711/cases.rtf new file mode 100644 index 0000000..4c44710 --- /dev/null +++ b/general/datasets/Jax_csb_l_hf_0711/cases.rtf @@ -0,0 +1,1030 @@ +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDStrain IDHF=high-fat (30% fat)
    + 6C=low-fat (6% fat)
    Replicate Animal
    1GSM264767129S1/SvImJ6CRep1
    2GSM264768129S1/SvImJ6CRep2
    3GSM264769129S1/SvImJ6CRep3
    4GSM264770129S1/SvImJHFRep1
    5GSM264771129S1/SvImJHFRep2
    6GSM264772129S1/SvImJHFRep3
    7GSM264773129S1/SvImJ6CRep1
    8GSM264774129S1/SvImJ6CRep2
    9GSM264775129S1/SvImJ6CRep3
    10GSM264776129S1/SvImJHFRep1
    11GSM264777129S1/SvImJHFRep2
    12GSM264778129S1/SvImJHFRep3
    13GSM264779A/J6CRep1
    14GSM264780A/J6CRep2
    15GSM264781A/J6CRep3
    16GSM264782A/JHFRep1
    17GSM264783A/JHFRep2
    18GSM264784A/JHFRep3
    19GSM264785A/J6CRep1
    20GSM264786A/J6CRep2
    21GSM264787A/J6CRep3
    22GSM264788A/JHFRep1
    23GSM264789A/JHFRep2
    24GSM264790A/JHFRep3
    25GSM264791C57BL/6J6CRep1
    26GSM264792C57BL/6J6CRep2
    27GSM264793C57BL/6J6CRep3
    28GSM264794C57BL/6JHFRep1
    29GSM264795C57BL/6JHFRep2
    30GSM264796C57BL/6JHFRep3
    31GSM264797C57BL/6J6CRep1
    32GSM264798C57BL/6J6CRep2
    33GSM264799C57BL/6J6CRep3
    34GSM264800C57BL/6JHFRep1
    35GSM264801C57BL/6JHFRep2
    36GSM264802C57BL/6JHFRep3
    37GSM264803BALB/cJ6CRep1
    38GSM264804BALB/cJ6CRep2
    39GSM264805BALB/cJ6CRep3
    40GSM264806BALB/cJHFRep1
    41GSM264807BALB/cJHFRep2
    42GSM264808BALB/cJHFRep3
    43GSM264809BALB/cJ6CRep1
    44GSM264810BALB/cJ6CRep2
    45GSM264811BALB/cJ6CRep3
    46GSM264813BALB/cJHFRep1
    47GSM264814BALB/cJHFRep2
    48GSM264815BALB/cJHFRep3
    49GSM264845C3H/HeJ6CRep1
    50GSM264846C3H/HeJ6CRep2
    51GSM264847C3H/HeJ6CRep3
    52GSM264848C3H/HeJHFRep1
    53GSM264849C3H/HeJHFRep2
    54GSM264850C3H/HeJHFRep3
    55GSM264852C3H/HeJ6CRep1
    56GSM264853C3H/HeJ6CRep2
    57GSM264855C3H/HeJ6CRep3
    58GSM264856C3H/HeJHFRep1
    59GSM264857C3H/HeJHFRep2
    60GSM264858C3H/HeJHFRep3
    61GSM264859CAST/EiJ6CRep1
    62GSM264861CAST/EiJ6CRep2
    63GSM264862CAST/EiJ6CRep3
    64GSM264863CAST/EiJHFRep1
    65GSM264864CAST/EiJHFRep2
    66GSM264865CAST/EiJHFRep3
    67GSM264866CAST/EiJ6CRep1
    68GSM264867CAST/EiJ6CRep2
    69GSM264868CAST/EiJ6CRep3
    70GSM264869CAST/EiJHFRep1
    71GSM264870CAST/EiJHFRep2
    72GSM264871CAST/EiJHFRep3
    73GSM264872DBA/2J6CRep1
    74GSM264873DBA/2J6CRep2
    75GSM264874DBA/2J6CRep3
    76GSM264875DBA/2JHFRep1
    77GSM264876DBA/2JHFRep2
    78GSM264877DBA/2JHFRep3
    79GSM264890DBA/2J6CRep1
    80GSM264891DBA/2J6CRep2
    81GSM264892DBA/2J6CRep3
    82GSM264893DBA/2JHFRep1
    83GSM264894DBA/2JHFRep2
    84GSM264895DBA/2JHFRep3
    85GSM264896I/LnJ6CRep1
    86GSM264897I/LnJ6CRep2
    87GSM264898I/LnJ6CRep3
    88GSM264899I/LnJHFRep1
    89GSM264900I/LnJHFRep2
    90GSM264901I/LnJHFRep3
    91GSM264902I/LnJ6CRep1
    92GSM264903I/LnJ6CRep2
    93GSM264904I/LnJ6CRep3
    94GSM264905I/LnJHFRep1
    95GSM264906I/LnJHFRep2
    96GSM264907I/LnJHFRep3
    97GSM264908MRL/MpJ-Fas/J6CRep1
    98GSM264909MRL/MpJ-Fas/J6CRep2
    99GSM264910MRL/MpJ-Fas/J6CRep3
    100GSM264912MRL/MpJ-Fas/JHFRep1
    101GSM264913MRL/MpJ-Fas/JHFRep2
    102GSM264914MRL/MpJ-Fas/JHFRep3
    103GSM264915MRL/MpJ-Fas/J6CRep1
    104GSM264916MRL/MpJ-Fas/J6CRep2
    105GSM264917MRL/MpJ-Fas/J6CRep3
    106GSM264918MRL/MpJ-Fas/JHFRep1
    107GSM264920MRL/MpJ-Fas/JHFRep2
    108GSM264921MRL/MpJ-Fas/JHFRep3
    109GSM264922NZB/BlNJ6CRep1
    110GSM264924NZB/BlNJ6CRep2
    111GSM264925NZB/BlNJ6CRep3
    112GSM264926NZB/BlNJHFRep1
    113GSM264928NZB/BlNJHFRep2
    114GSM264929NZB/BlNJHFRep3
    115GSM264930NZB/BlNJ6CRep1
    116GSM264931NZB/BlNJ6CRep2
    117GSM264932NZB/BlNJ6CRep3
    118GSM264933NZB/BlNJHFRep1
    119GSM264935NZB/BlNJHFRep2
    120GSM264936NZB/BlNJHFRep3
    121GSM265061PERA/EiJ6CRep1
    122GSM265062PERA/EiJ6CRep2
    123GSM265063PERA/EiJ6CRep3
    124GSM265064PERA/EiJHFRep1
    125GSM265065PERA/EiJHFRep2
    126GSM265066PERA/EiJHFRep3
    127GSM265067PERA/EiJ6CRep1
    128GSM265068PERA/EiJ6CRep2
    129GSM265069PERA/EiJ6CRep3
    130GSM265070PERA/EiJHFRep1
    131GSM265071PERA/EiJHFRep2
    132GSM265072PERA/EiJHFRep3
    133GSM265074SM/J6CRep1
    134GSM265075SM/J6CRep2
    135GSM265105SM/J6CRep3
    136GSM265217SM/JHFRep1
    137GSM265248SM/JHFRep2
    138GSM265275SM/JHFRep3
    139GSM265324SM/J6CRep1
    140GSM265331SM/J6CRep2
    141GSM265357SM/J6CRep3
    142GSM265358SM/JHFRep1
    143GSM265359SM/JHFRep2
    144GSM265360SM/JHFRep3
    +
    +
    diff --git a/general/datasets/Jax_csb_l_hf_0711/citation.rtf b/general/datasets/Jax_csb_l_hf_0711/citation.rtf new file mode 100644 index 0000000..92dd7b6 --- /dev/null +++ b/general/datasets/Jax_csb_l_hf_0711/citation.rtf @@ -0,0 +1 @@ +

    Burgess-Herbert SL, Cox A, Tsaih SW, Paigen B. Practical applications of the bioinformatics toolbox for narrowing quantitative trait loci. Genetics 2008 Dec;180(4):2227-35. PMID: 18845850 Shockley KR, Witmer D, Burgess-Herbert SL, Paigen B et al. Effects of atherogenic diet on hepatic gene expression across mouse strains. Physiol Genomics 2009 Nov 6;39(3):172-82. PMID: 19671657

    diff --git a/general/datasets/Jax_csb_l_hf_0711/contributors.rtf b/general/datasets/Jax_csb_l_hf_0711/contributors.rtf new file mode 100644 index 0000000..04d1867 --- /dev/null +++ b/general/datasets/Jax_csb_l_hf_0711/contributors.rtf @@ -0,0 +1 @@ +

    Churchill GA, Paigen B, Shockley KR, Witmer D

    diff --git a/general/datasets/Jax_csb_l_hf_0711/experiment-design.rtf b/general/datasets/Jax_csb_l_hf_0711/experiment-design.rtf new file mode 100644 index 0000000..dc5fef5 --- /dev/null +++ b/general/datasets/Jax_csb_l_hf_0711/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Expression profiling by array.

    + +

    One group of mice was fed an atherogenic high-fat (30% fat) diet containing cholic acid to increase fat uptake and another was fed a low-fat (6% fat) regular chow diet. Males and females from both diets were studied for mouse strains 129S1/SvImJ, A/J, BALB/cJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, I/LnJ, MRL/MpJ-Tnfrsf6lpr/J, NZB/BINJ, PERA/Ei, and SM/J. All strains were sacrificed between 11- and 13 weeks of age except for CAST and PERA, which were harvested after 50 weeks of age. CAST and PERA were subsequently removed from our analysis based on discrepant harvest age, but can be found in our database (see below). Three replicate animals were used for each combination of diet, strain, and sex, resulting in a total of 120 mice surveyed for gene expression.

    diff --git a/general/datasets/Jax_csb_l_hf_0711/experiment-type.rtf b/general/datasets/Jax_csb_l_hf_0711/experiment-type.rtf new file mode 100644 index 0000000..b8429a3 --- /dev/null +++ b/general/datasets/Jax_csb_l_hf_0711/experiment-type.rtf @@ -0,0 +1 @@ +Expression profiling by array. \ No newline at end of file diff --git a/general/datasets/Jax_csb_l_hf_0711/platform.rtf b/general/datasets/Jax_csb_l_hf_0711/platform.rtf new file mode 100644 index 0000000..459d486 --- /dev/null +++ b/general/datasets/Jax_csb_l_hf_0711/platform.rtf @@ -0,0 +1 @@ +

    [Mouse430_2] Affymetrix Mouse Genome 430 2.0 Array. Affymetrix submissions are typically submitted to GEO using the GEOarchive method described at http://www.ncbi.nlm.nih.gov/projects/geo/info/geo_affy.html All probe sets represented on the GeneChip Mouse Expression Set 430 are included on the GeneChip Mouse Genome 430 2.0 Array. The sequences from which these probe sets were derived were selected from GenBank«, dbEST, and RefSeq. The sequence clusters were created from the UniGene database (Build 107, June 2002) and then refined by analysis and comparison with the publicly available draft assembly of the mouse genome from the Whitehead Institute for Genome Research (MGSC, April 2002).

    diff --git a/general/datasets/Jax_csb_l_hf_0711/summary.rtf b/general/datasets/Jax_csb_l_hf_0711/summary.rtf new file mode 100644 index 0000000..a06430b --- /dev/null +++ b/general/datasets/Jax_csb_l_hf_0711/summary.rtf @@ -0,0 +1 @@ +

    High-fat diets are associated with increased obesity and metabolic disease in mice and humans. Here we used analysis of variance (ANOVA) to scrutinize a microarray data set consisting of 10 inbred strains of mice from both sexes fed atherogenic high-fat and control chow diets. An overall F-test was applied to the 40 unique groups of strain-diet-sex to identify 15,288 genes with altered transcription. Bootstrapping k-means clustering separated these changes into four strain-dependent expression patterns, including two sex-related profiles and two diet-related profiles. Sex-induced effects correspond to secretion (males) or fat and energy metabolism (females), whereas diet-induced changes relate to neurological processes (chow) or immune response (high-fat). The full set of pairwise contrasts for differences between strains within sex (90 different statistical tests) uncovered 32,379 total changes. These differences were unevenly distributed across strains and between sexes, indicating that strain-specific responses to high-fat diet differ between sexes. Correlations between expression levels and 8 obesity-related traits identified 5,274 associations between transcript abundance and measured phenotypic endpoints. From this number, 2,678 genes are positively correlated with total cholesterol levels and associate with immune-related categories while 2,596 genes are negatively correlated with cholesterol and connect to cholesterol synthesis. Keywords: gene expression analysis, strain comparision, effect of dietary fat, sex-specific effects

    diff --git a/general/datasets/Jax_csb_l_hf_0711/tissue.rtf b/general/datasets/Jax_csb_l_hf_0711/tissue.rtf new file mode 100644 index 0000000..778c4a2 --- /dev/null +++ b/general/datasets/Jax_csb_l_hf_0711/tissue.rtf @@ -0,0 +1 @@ +

    Liver

    diff --git a/general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/acknowledgment.rtf b/general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/acknowledgment.rtf new file mode 100644 index 0000000..3201334 --- /dev/null +++ b/general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/acknowledgment.rtf @@ -0,0 +1,3 @@ +

    The Authors would like to thank Electron Microscopy, Flow Cytometry, Histology, and Gene Expression Services at The Jackson Laboratory, Rick Libby for careful reading of the manuscript and discussion, Mimi de Vries for assistance with organizing and mouse colonies, Brynn Cardozo and Trip Freeburg for colony maintenance, Jocelyn Thomas for blood collections, Philipp Tauber for assistance with immunofluorescence, and Amy Bell for intraocular pressure measurements.

    + +

    EY011721 (SWMJ), EY021525 (GRH). Pete Williams is supported by the Karolinska Institutet in the form of a Board of Research Faculty Funded Career Position. Simon John is an Investigator of HHMI.

    diff --git a/general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/citation.rtf b/general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/citation.rtf new file mode 100644 index 0000000..e6a4aa3 --- /dev/null +++ b/general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/citation.rtf @@ -0,0 +1 @@ +

    Williams, P.A., Braine, C.E., Kizhatil, K. et al. Inhibition of monocyte-like cell extravasation protects from neurodegeneration in DBA/2J glaucoma.Mol Neurodegeneration 14, 6 (2019) https://doi.org/10.1186/s13024-018-0303-3

    diff --git a/general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/experiment-design.rtf b/general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/experiment-design.rtf new file mode 100644 index 0000000..1c50734 --- /dev/null +++ b/general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/experiment-design.rtf @@ -0,0 +1 @@ +

    To understand the function of these infiltrating monocyte-like cells, we used RNA-sequencing to profile their transcriptomes. Based on their pro-inflammatory molecular signatures, we hypothesized and confirmed that monocyte-platelet interactions occur in glaucomatous tissue. Furthermore, to test monocyte function we used two approaches to inhibit their entry into the optic nerve head: (1) treatment with DS-SILY, a peptidoglycan that acts as a barrier to platelet adhesion to the vessel wall and to monocytes, and (2) genetic targeting of Itgam (CD11b, an immune cell receptor that enables immune cell extravasation).

    diff --git a/general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/processing.rtf b/general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/processing.rtf new file mode 100644 index 0000000..acc1087 --- /dev/null +++ b/general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/processing.rtf @@ -0,0 +1,5 @@ +

    RNA-sequencing and analysis

    + +

    Monocytes from single optic nerve heads or from peripheral blood (restrained cheek bleed) were FAC sorted into 100 μl buffer RLT + 1% βME and frozen at − 80 °C until further processing. Samples were defrosted on ice and homogenized by syringe in RLT Buffer (total volume 300 μl). Total RNA was isolated using RNeasy micro kits as according to manufacturer’s protocols (Qiagen) including the optional DNase treatment step, and quality was assessed using an Agilent 2100 Bioanalyzer. The concentration was determined using a Ribogreen Assay from Invitrogen. Amplified dscDNA libraries were created using a Nugen Ovation RNA-seq System V2 and a primer titration was performed to remove primer dimers from the sample to allow sample inputs as low as 50 pg RNA. The SPIA dscDNA was sheared to 300 bp in length using a Diogenode Disruptor. Quality control was performed using an Agilent 2100 Bioanalyzer and a DNA 1000 chip assay. Library size produced was analysed using qPCR using the Library Quantitation kit/Illumina GA /ABI Prism (Kapa Biosystems). Libraries were barcoded, pooled, and sequenced 6 samples per lane on a HiSeq 2000 sequencer (Illumina) giving a depth of 30–35 million reads per sample.

    + +

    Following RNA-sequencing samples were subjected to quality control analysis by a custom quality control python script. Reads with 70% of their bases having a base quality score ≥ 30 were retained for further analysis. Read alignment was performed using TopHat v 2.0.7 [34] and expression estimation was performed using HTSeq [35] with supplied annotations and default parameters against the DBA/2 J mouse genome (build-mm10). Bamtools v 1.0.2 [36] were used to calculate the mapping statistics. Differential gene expression analysis between groups was performed using edgeR v 3.10.5 [37] following, batch correction using RUVSeq, the removal of outlier samples and lowly expressed genes by removing genes with less than five reads in more than two samples. Normalization was performed using the trimmed mean of M values (TMM). Unsupervised HC was performed in R (1-cor, Spearman’s rho). Following preliminary analysis, 1 sample was removed as an outlier. Adjustment for multiple testing was performed using false discovery rate (FDR). Genes were considered to be significantly differentially expression at a false discovery rate (FDR; q) of q < 0.05. Pathway analysis was performed in R, IPA (Ingenuity Pathway Analysis, Qiagen), and using publically available tools (see Results).

    diff --git a/general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/specifics.rtf b/general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/specifics.rtf new file mode 100644 index 0000000..954c19f --- /dev/null +++ b/general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/specifics.rtf @@ -0,0 +1 @@ +JAX DBA/2J Monocyte 1 vs PBMC RNA-Seq (Jun19) \ No newline at end of file diff --git a/general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/summary.rtf b/general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/summary.rtf new file mode 100644 index 0000000..b5e090d --- /dev/null +++ b/general/datasets/Jax_d2_mono1vpbmc_ret_rna_seq_0619/summary.rtf @@ -0,0 +1,3 @@ +

    Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. Recent work in animal models suggests that a critical neuroinflammatory event damages retinal ganglion cell axons in the optic nerve head during ocular hypertensive injury. We previously demonstrated that monocyte-like cells enter the optic nerve head in an ocular hypertensive mouse model of glaucoma (DBA/2 J), but their roles, if any, in mediating axon damage remain unclear.

    + +

    https://molecularneurodegeneration.biomedcentral.com/articles/10.1186/s13024-018-0303-3

    diff --git a/general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/acknowledgment.rtf b/general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/acknowledgment.rtf new file mode 100644 index 0000000..3201334 --- /dev/null +++ b/general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/acknowledgment.rtf @@ -0,0 +1,3 @@ +

    The Authors would like to thank Electron Microscopy, Flow Cytometry, Histology, and Gene Expression Services at The Jackson Laboratory, Rick Libby for careful reading of the manuscript and discussion, Mimi de Vries for assistance with organizing and mouse colonies, Brynn Cardozo and Trip Freeburg for colony maintenance, Jocelyn Thomas for blood collections, Philipp Tauber for assistance with immunofluorescence, and Amy Bell for intraocular pressure measurements.

    + +

    EY011721 (SWMJ), EY021525 (GRH). Pete Williams is supported by the Karolinska Institutet in the form of a Board of Research Faculty Funded Career Position. Simon John is an Investigator of HHMI.

    diff --git a/general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/citation.rtf b/general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/citation.rtf new file mode 100644 index 0000000..e6a4aa3 --- /dev/null +++ b/general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/citation.rtf @@ -0,0 +1 @@ +

    Williams, P.A., Braine, C.E., Kizhatil, K. et al. Inhibition of monocyte-like cell extravasation protects from neurodegeneration in DBA/2J glaucoma.Mol Neurodegeneration 14, 6 (2019) https://doi.org/10.1186/s13024-018-0303-3

    diff --git a/general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/experiment-design.rtf b/general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/experiment-design.rtf new file mode 100644 index 0000000..1c50734 --- /dev/null +++ b/general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/experiment-design.rtf @@ -0,0 +1 @@ +

    To understand the function of these infiltrating monocyte-like cells, we used RNA-sequencing to profile their transcriptomes. Based on their pro-inflammatory molecular signatures, we hypothesized and confirmed that monocyte-platelet interactions occur in glaucomatous tissue. Furthermore, to test monocyte function we used two approaches to inhibit their entry into the optic nerve head: (1) treatment with DS-SILY, a peptidoglycan that acts as a barrier to platelet adhesion to the vessel wall and to monocytes, and (2) genetic targeting of Itgam (CD11b, an immune cell receptor that enables immune cell extravasation).

    diff --git a/general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/processing.rtf b/general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/processing.rtf new file mode 100644 index 0000000..acc1087 --- /dev/null +++ b/general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/processing.rtf @@ -0,0 +1,5 @@ +

    RNA-sequencing and analysis

    + +

    Monocytes from single optic nerve heads or from peripheral blood (restrained cheek bleed) were FAC sorted into 100 μl buffer RLT + 1% βME and frozen at − 80 °C until further processing. Samples were defrosted on ice and homogenized by syringe in RLT Buffer (total volume 300 μl). Total RNA was isolated using RNeasy micro kits as according to manufacturer’s protocols (Qiagen) including the optional DNase treatment step, and quality was assessed using an Agilent 2100 Bioanalyzer. The concentration was determined using a Ribogreen Assay from Invitrogen. Amplified dscDNA libraries were created using a Nugen Ovation RNA-seq System V2 and a primer titration was performed to remove primer dimers from the sample to allow sample inputs as low as 50 pg RNA. The SPIA dscDNA was sheared to 300 bp in length using a Diogenode Disruptor. Quality control was performed using an Agilent 2100 Bioanalyzer and a DNA 1000 chip assay. Library size produced was analysed using qPCR using the Library Quantitation kit/Illumina GA /ABI Prism (Kapa Biosystems). Libraries were barcoded, pooled, and sequenced 6 samples per lane on a HiSeq 2000 sequencer (Illumina) giving a depth of 30–35 million reads per sample.

    + +

    Following RNA-sequencing samples were subjected to quality control analysis by a custom quality control python script. Reads with 70% of their bases having a base quality score ≥ 30 were retained for further analysis. Read alignment was performed using TopHat v 2.0.7 [34] and expression estimation was performed using HTSeq [35] with supplied annotations and default parameters against the DBA/2 J mouse genome (build-mm10). Bamtools v 1.0.2 [36] were used to calculate the mapping statistics. Differential gene expression analysis between groups was performed using edgeR v 3.10.5 [37] following, batch correction using RUVSeq, the removal of outlier samples and lowly expressed genes by removing genes with less than five reads in more than two samples. Normalization was performed using the trimmed mean of M values (TMM). Unsupervised HC was performed in R (1-cor, Spearman’s rho). Following preliminary analysis, 1 sample was removed as an outlier. Adjustment for multiple testing was performed using false discovery rate (FDR). Genes were considered to be significantly differentially expression at a false discovery rate (FDR; q) of q < 0.05. Pathway analysis was performed in R, IPA (Ingenuity Pathway Analysis, Qiagen), and using publically available tools (see Results).

    diff --git a/general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/specifics.rtf b/general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/specifics.rtf new file mode 100644 index 0000000..ba732fb --- /dev/null +++ b/general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/specifics.rtf @@ -0,0 +1 @@ +JAX DBA/2J Monocyte 2 vs PBMC RNA-Seq (Jun19) \ No newline at end of file diff --git a/general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/summary.rtf b/general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/summary.rtf new file mode 100644 index 0000000..b5e090d --- /dev/null +++ b/general/datasets/Jax_d2_mono2vpbmc_ret_rna_seq_0619/summary.rtf @@ -0,0 +1,3 @@ +

    Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. Recent work in animal models suggests that a critical neuroinflammatory event damages retinal ganglion cell axons in the optic nerve head during ocular hypertensive injury. We previously demonstrated that monocyte-like cells enter the optic nerve head in an ocular hypertensive mouse model of glaucoma (DBA/2 J), but their roles, if any, in mediating axon damage remain unclear.

    + +

    https://molecularneurodegeneration.biomedcentral.com/articles/10.1186/s13024-018-0303-3

    diff --git a/general/datasets/Jax_d2gm_rseq_log2z_0418/citation.rtf b/general/datasets/Jax_d2gm_rseq_log2z_0418/citation.rtf new file mode 100644 index 0000000..fe14fa7 --- /dev/null +++ b/general/datasets/Jax_d2gm_rseq_log2z_0418/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Jax_d2gm_rseq_log2z_0418/experiment-design.rtf b/general/datasets/Jax_d2gm_rseq_log2z_0418/experiment-design.rtf new file mode 100644 index 0000000..5b2f4c9 --- /dev/null +++ b/general/datasets/Jax_d2gm_rseq_log2z_0418/experiment-design.rtf @@ -0,0 +1 @@ +

    Retinal ganglion cell mRNA from 4 month (young) and 9 month (pre-glaucomatous) DBA/2J mice and age and sex-matched D2-Gpnmb+ controls

    diff --git a/general/datasets/Jax_d2gm_rseq_log2z_0418/platform.rtf b/general/datasets/Jax_d2gm_rseq_log2z_0418/platform.rtf new file mode 100644 index 0000000..c967d36 --- /dev/null +++ b/general/datasets/Jax_d2gm_rseq_log2z_0418/platform.rtf @@ -0,0 +1 @@ +

    GPL17021Illumina HiSeq 2500 (Mus musculus)

    diff --git a/general/datasets/Jax_d2gm_rseq_log2z_0418/specifics.rtf b/general/datasets/Jax_d2gm_rseq_log2z_0418/specifics.rtf new file mode 100644 index 0000000..f57a155 --- /dev/null +++ b/general/datasets/Jax_d2gm_rseq_log2z_0418/specifics.rtf @@ -0,0 +1,3 @@ +

    RNA-Seq log2 Z-Score

    + +

    In general, the array data that we put in GeneNetwork has been logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data).  This removes negative values from the tables.

    diff --git a/general/datasets/Jax_d2gm_rseq_log2z_0418/summary.rtf b/general/datasets/Jax_d2gm_rseq_log2z_0418/summary.rtf new file mode 100644 index 0000000..1cf2292 --- /dev/null +++ b/general/datasets/Jax_d2gm_rseq_log2z_0418/summary.rtf @@ -0,0 +1 @@ +

    RNA-seq analysis from young and pre-glaucomatous DBA/2J retinal ganglion cells and control (age and sex-matched, D2-Gpnmb+) retinal ganglion cells

    diff --git a/general/datasets/Jax_liver_agil_mdp_0113/experiment-type.rtf b/general/datasets/Jax_liver_agil_mdp_0113/experiment-type.rtf new file mode 100644 index 0000000..073f544 --- /dev/null +++ b/general/datasets/Jax_liver_agil_mdp_0113/experiment-type.rtf @@ -0,0 +1,13 @@ + + +Liver histopathology. +Paraffin-embedded liver tissue was cut to 5-μm sections in duplicate and stained with hematoxylin and eosin. Liver injury in the left liver lobe was blindly scored by A.H.H. and confirmed by a certified veterinary pathologist. Necrosis was quantified by unbiased stereology using a point-counting technique (Mouton, 2002). Briefly, a grid with 100 evenly spaced points was overlaid on printed images of liver sections taken at ×100 magnification. The total number of points lying in an area of necrosis was divided by the total number of points lying completely within the entire tissue section to determine a percent necrosis score (0–100%). The necrosis score for each animal in the study is publicly available from the Mouse Phenome Database (http://phenome.jax.org/pub-cgi/phenome/mpdcgi?rtn = projects/details&sym = Threadgill1). + +RNA isolation. +To eliminate variability in transcript expression that might arise between liver lobes, the left liver lobe was selected for the remainder of the data analysis and gene expression profiling. RNA was extracted from the 30 mg of tissue derived from the left lobe of sample livers using the Qiagen RNeasy kit (Qiagen, Valencia, CA). RNA concentrations were measured using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE), and quality was verified using the Agilent Bio-Analyzer (Agilent Technologies, Santa Clara, CA). RNA was determined to be of good quality for use in microarray hybridizations if the 28S:16S rRNA ratio was greater than 1.8 and the 260/280 nm absorbance ratio was in the range of 1.9–2.1. + +Microarray hybridizations. +In this study, all RNA samples were hybridized to arrays individually; none were pooled. RNA amplifications and labeling were performed using Low RNA Input Linear Amplification kits (Agilent Technologies). For hybridization, 750 ng of total RNA from each mouse liver was amplified and labeled with fluorescent dye (Cy5). In parallel, 750 ng of a common reference RNA (Icoria, Inc., RTP, NC) was labeled with the fluorescent dye, Cy3, in order to standardize analysis of global gene expression between mouse strains (Bammler et al., 2005). Labeled cRNA was then processed and hybridized to Agilent Mouse Toxicology Arrays (catalog# 4121A, 22,575 features) according to the manufacturer's protocol. Details regarding the microarray probe set on the 4121A array are available via the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GPL891). Following hybridization, arrays were washed using a custom protocol developed by Icoria, Inc. Briefly, array gaskets were removed under immersion in wash solution 1 (6× sodium chloride/sodium phosphate/EDTA [SSPE], 0.005% N-lauroylsarcosine). Arrays were washed with wash solution 1 and incubated for 1 min with gentle agitation on a magnetic stir plate. A second incubation was performed in wash solution 2 (0.06× SSPE, 0.005% N-lauroylsarcosine). + +Data analysis of significantly changed transcripts. +Raw microarray intensity values were obtained from Agilent Feature Extraction software (v8.5) and archived in the UNC Microarray Database (http://genome.unc.edu). Raw data are available to the public through this database. The log2 ratio of Cy5/Cy3 intensity was normalized using locally weighted scatterplot smoothing to eliminate intensity bias of features. Transcripts with fewer than 70% available data across samples were excluded from the analysis, reducing the probe list to 15,509 transcript probes. Available data are defined as those probes that are neither saturated nor below the limit of quantification. Intensity ratios were transformed to eliminate hybridization batch effects using the batch normalization feature in Partek Genomics Suite (Partek, Inc., St Louis, MO). Analysis of significant transcripts was performed using an analysis of covariance (ANCOVA) model in Partek in which the main effects were mouse strain, treatment, the interaction of mouse strain and treatment, and the sample necrosis score. Transcripts were called significantly different if the p value was less than a threshold determined by a step-down false discovery rate (FDR, Benjamini and Liu, 1999) (α = 0.01) to correct for multiple comparisons across array features. Heat maps were generated using hierarchical agglomerative clustering. \ No newline at end of file diff --git a/general/datasets/Jax_liver_agil_mdp_0113/summary.rtf b/general/datasets/Jax_liver_agil_mdp_0113/summary.rtf new file mode 100644 index 0000000..f6be413 --- /dev/null +++ b/general/datasets/Jax_liver_agil_mdp_0113/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 160, Name: Harrill-Rusyn MDP Liver Acetaminophen Tox Study (G4121A, 2009) \ No newline at end of file diff --git a/general/datasets/Ki_2a_0405_m/acknowledgment.rtf b/general/datasets/Ki_2a_0405_m/acknowledgment.rtf new file mode 100644 index 0000000..956eaca --- /dev/null +++ b/general/datasets/Ki_2a_0405_m/acknowledgment.rtf @@ -0,0 +1 @@ +
    This work was supported with funds to TJA by the MRC Clinical Sciences Centre, the British Heart Foundation, and the Wellcome Trust Cardiovascular Functional Genomics Intiative; to NH from the German Ministry for Science and Education (National Genome Research Network); to MP and Vladimir Kren from the Grant Agency of the Czech Republic; to MP and TJA from the Wellcome Trust Collaborative Research Initiative grant, to Theodore W Kurtz from the NIH, to TWK and MP from a Fogarty International Research Collaboration Award. Microarrays were a generous donation of Affymetrix Inc. Michal Pravenec thanks the Howard Hughes Medical Institute for its support to him as an international research scholar.
    diff --git a/general/datasets/Ki_2a_0405_m/cases.rtf b/general/datasets/Ki_2a_0405_m/cases.rtf new file mode 100644 index 0000000..862deec --- /dev/null +++ b/general/datasets/Ki_2a_0405_m/cases.rtf @@ -0,0 +1,7 @@ +
    Data were generated using the HXB/BXH recombinant inbred strains of rats generated over the past 20 years in Prague. The parental strains from which all HXB lines are derived are SHR (SHR/OlaIpcv or HSR = H) and Brown Norway (BN.Lx/Cub= B). These strains have been used extensively to study cardiovascular system physiology and genetics. +

     

    + +

    The HXB strains were bred by Michal Pravenec at the Institute of Physiology, Czech Academy of Sciences. The BXH strains were bred by Vladimir Kren (see Pravenec et al. 1989, 2004) at a similar animal facility at the Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University. These strains are at approximately the 6oth geenration of continuous inbreeding (F60).

    + +

    Animals used in the transcriptome analyses of kidney and fat (Hübner and colleagues, 2005) were weaned at 4 weeks. Those born at the Charles University were transferred to the Institute of Physiology. Animals were reared on a commerical rat chow (ST-1 from VELAZ, Czech Republic). Four males were house per cage. Cages were made of polystyrene and have a floor size of 22 x 38 cm and height of 23 cm. The bedding was changed twice a week. Light cycle was 12:12 on-off. Vivarium rooms were maintained at 23 deg. C. Rats were sexually naive. All males used in the initial transcriptome studies (Hubner et al., 2005) were born between May and August 2002. They were sacrificed unfastged by rapid cervical dislocation between 9 and 10 AM, following an approved animal protocol (Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague; Animal Protectiion Law of the Czech Republic (311/1997).

    +
    diff --git a/general/datasets/Ki_2a_0405_m/citation.rtf b/general/datasets/Ki_2a_0405_m/citation.rtf new file mode 100644 index 0000000..a8b8cc0 --- /dev/null +++ b/general/datasets/Ki_2a_0405_m/citation.rtf @@ -0,0 +1 @@ +

    PLoS One. 2008;3(12):e4033. doi: 10.1371/journal.pone.0004033. Epub 2008 Dec 29.

    diff --git a/general/datasets/Ki_2a_0405_m/contributors.rtf b/general/datasets/Ki_2a_0405_m/contributors.rtf new file mode 100644 index 0000000..0afa863 --- /dev/null +++ b/general/datasets/Ki_2a_0405_m/contributors.rtf @@ -0,0 +1 @@ +

    Grieve IC1, Dickens NJ, Pravenec M, Kren V, Hubner N, Cook SA, Aitman TJ, Petretto E, Mangion J. Author information 1MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital, London, United Kingdom.

    diff --git a/general/datasets/Ki_2a_0405_m/notes.rtf b/general/datasets/Ki_2a_0405_m/notes.rtf new file mode 100644 index 0000000..1af325d --- /dev/null +++ b/general/datasets/Ki_2a_0405_m/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by Robert Williams, Norbert Hübner, Michal Pravnec, Timothy Aitman, April 19, 2005. Updated by RWW, May 13, 2005.

    +
    diff --git a/general/datasets/Ki_2a_0405_m/platform.rtf b/general/datasets/Ki_2a_0405_m/platform.rtf new file mode 100644 index 0000000..78c5815 --- /dev/null +++ b/general/datasets/Ki_2a_0405_m/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix 230A GeneChip: Expression data were generated using the Affymetrix 230A array. The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Rat Genome Sequencing Consortium assembly.

    +
    diff --git a/general/datasets/Ki_2a_0405_m/processing.rtf b/general/datasets/Ki_2a_0405_m/processing.rtf new file mode 100644 index 0000000..d75d1db --- /dev/null +++ b/general/datasets/Ki_2a_0405_m/processing.rtf @@ -0,0 +1,15 @@ +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of pixel measured in each cell.
    + +
    +

    Probe set data: The original CEL values were log2 transformed and quantile normalized. We then took the antilog values of these quantile adjusted CEL values as input to the standard MAS5 algorithm. Probe set values listed in WebQTL pages are typically the averages of four biological replicates within strain.

    +
    + +

    About Quality Control Procedures:

    + +
    +

    RNA processing:RNA was extracted using Trizol reagent (Invitrogen) and purified using an RNeasy Mini kit from Qiagen. Double-stranded cDNA was generated without pooling. The Ambion MEGAscript T7 kit from Ambion was used to generate biotinylated cRNA for kidney. Fat samples were processed at this step using the Enzo Diagnostics Bioarray High Yield RNA Transcript labeling kit. See Hübner et al. 2005 for additional detail. One-hundred and twenty eight samples passed RNA quality control steps.

    + +

    Probe level QC: All 128 CEL files were collected into a single DataDesk 6.2 file. Probe data from pairs of arrays were plotted and compared. Eight arrays were considered potential outliers (despite having passed RNA quality control) and in the interest of minimizing technical variance, a decision was made to withhold them from the calculation of strain means used in WebQTL. The remaining 120 arrays were quantile normalized and reexamined in DataDesk to ensure reasonble colinearity of all array data sets.

    + +

    Probe set level QC: Probe set level QC involves counting the number of times that a single array data set from a single sample generates outliers at the level of the probe set consensus estimates of expression. With 120 arrays, any single array should generate a comparatively small fraction of the total number of outlier calls. This final step of array QC has NOT been implemented yet in this data set.

    +
    diff --git a/general/datasets/Ki_2a_0405_m/summary.rtf b/general/datasets/Ki_2a_0405_m/summary.rtf new file mode 100644 index 0000000..44fd86e --- /dev/null +++ b/general/datasets/Ki_2a_0405_m/summary.rtf @@ -0,0 +1,19 @@ +

    This April 2005 data set provides estimates of mRNA expression in normal kidneys of 32 strains of rats. The set includes the hypertensive SHR strain, the normotensive BN strain, and 30 HXB/BXH recombinant inbred strains. Each strain was sampled in quadruplicate (6-week-old males). Animals and tissues were generated by Michal Pravenec and colleagues at the Czech Academy of Sciences (CAS). RNA samples were processed at the Max-Delbrück-Center (MDC), Berlin Buch by Nobert Hübner and colleagues. Transcriptome mapping was carried out by Timothy Aitman and colleagues at the Imperial College, London (ICL). Samples were hybridized individually to a total of 128 Affymetrix RAE230A array. This particular data set includes 120 arrays processed using a quantile normalized variant of the Affymetrix MAS5 protocol. The expression values of each array have been logged and adjusted to a mean of 8 and a stardard deviation of 2 (mean and variance stabilized). This data set complements the original MAS5 data set exploited by Hübner and colleagues 2005. Download the particular transform in an Excel work book with both strain means and SEMs.

    + +

    These data can also be viewed using the eQTL Explorer Java application by John Mangion, Tim Aitman, and colleagues (Mueller et al. 2006).

    + +

    Genome-wide co-expression analysis in multiple tissues.

    + +

    And see closely associate set of papers:

    + +
      +
    1. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease.
    2. +
    3. Heritability and tissue specificity of expression quantitative trait loci.
    4. +
    5. Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass.
    6. +
    7. New insights into the genetic control of gene expression using a Bayesian multi-tissue approach.
    8. +
    9. The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance.
    10. +
    11. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk.
    12. +
    13. Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat.
    14. +
    15. Systems-level approaches reveal conservation of trans-regulated genes in the rat and genetic determinants of blood pressure in humans.
    16. +
    diff --git a/general/datasets/Ki_2a_0405_m/tissue.rtf b/general/datasets/Ki_2a_0405_m/tissue.rtf new file mode 100644 index 0000000..8184532 --- /dev/null +++ b/general/datasets/Ki_2a_0405_m/tissue.rtf @@ -0,0 +1,534 @@ +

    All tissues were collected at the age of 6 weeks. Kidneys and other organs were rapidly dissected and cleaned of fat, inserted into a vial, and immersed in liquid nitrogen for storage until RNA extraction.

    + +
    The table below lists the arrays by strain and sample identifier. Each array was hybridized with mRNA from a single young male rat.
    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSampleID
    HSRHSR1
    HSRHSR2
    HSRHSR3
    HSRHSR4
    BNBN1
    BNBN2
    BNBN3
    BNBN4
    BNBN5
    HXB1RI 01-1
    HXB1RI 01-2
    HXB1RI 01-3
    HXB1RI 01-4
    HXB2RI 02-1
    HXB2RI 02-2
    HXB2RI 02-3
    HXB2*RI 02-4
    HXB3RI 03-1
    HXB3RI 03-2
    HXB3RI 03-3
    HXB3RI 03-4
    HXB4RI 04-1
    HXB4RI 04-2
    HXB4RI 04-3
    HXB4RI 04-4
    HXB5RI 05-1
    HXB5RI 05-2
    HXB5RI 05-3
    HXB5*RI 05-4
    HXB7RI 07-1
    HXB7RI 07-2
    HXB7RI 07-3
    HXB7RI 07-4
    HXB10RI 10-1
    HXB10RI 10-2
    HXB10RI 10-3
    HXB10RI 10-4
    HXB15RI 15-1
    HXB15RI 15-2
    HXB15RI 15-3
    HXB15RI 15-4
    HXB17RI 17-1
    HXB17RI 17-2
    HXB17RI 17-3
    HXB17RI 17-4
    HXB18RI 18-1
    HXB18RI 18-2
    HXB18RI 18-3
    HXB18RI 18-4
    HXB20RI 20-1
    HXB20RI 20-2
    HXB20RI 20-3
    HXB20RI 20-4
    HXB21RI 21-1
    HXB21RI 21-2
    HXB21RI 21-3
    HXB21RI 21-4
    HXB22RI 22-1
    HXB22RI 22-2
    HXB22RI 22-3
    HXB22RI 22-4
    HXB23RI 23-1
    HXB23RI 23-2
    HXB23RI 23-3
    HXB23RI 23-4
    HXB24RI 24-1
    HXB24RI 24-2
    HXB24RI 24-3
    HXB24*RI 24-4
    HXB25RI 25-1
    HXB25RI 25-2
    HXB25RI 25-3
    HXB25*RI 25-4
    HXB26RI 26-1
    HXB26RI 26-2
    HXB26RI 26-3
    HXB26RI 26-4
    HXB27RI 27-1
    HXB27RI 27-2
    HXB27RI 27-3
    HXB27RI 27-4
    HXB29RI 29-1
    HXB29RI 29-2
    HXB29RI 29-3
    HXB29*RI 29-4
    HXB31RI 31-1
    HXB31RI 31-2
    HXB31RI 31-3
    HXB31RI 31-4
    BXH2RI 02c-1
    BXH2RI 02c-2
    BXH2RI 02c-3
    BXH2RI 02c-4
    BXH3RI 03c-1
    BXH3RI 03c-2
    BXH3RI 03c-3
    BXH3RI 03c-4
    BXH5RI 05c-1
    BXH5RI 05c-2
    BXH5RI 05c-3
    BXH5*RI 05c-4
    BXH6RI 06c-1
    BXH6RI 06c-2
    BXH6RI 06c-3
    BXH6*RI 06c-4
    BXH8RI 08c-1
    BXH8RI 08c-2
    BXH8RI 08c-3
    BXH8RI 08c-4
    BXH9RI 09c-1
    BXH9RI 09c-2
    BXH9RI 09c-3
    BXH9RI 09c-4
    BXH10RI 10c-1
    BXH10RI 10c-2
    BXH10RI 10c-3
    BXH11RI 11c-1
    BXH11RI 11c-2
    BXH11RI 11c-3
    BXH11*RI 11c-4
    BXH12RI 12c-1
    BXH12RI 12c-2
    BXH12RI 12c-3
    BXH12RI 12c-4
    BXH13RI 13c-1
    BXH13RI 13c-2
    BXH13RI 13c-3
    BXH13RI 13c-4
    +
    + +

    *: These eight arrays were excluded in the final strain summary data. See section of Quality Control for further explanation.

    diff --git a/general/datasets/Ki_2a_0405_r/acknowledgment.rtf b/general/datasets/Ki_2a_0405_r/acknowledgment.rtf new file mode 100644 index 0000000..956eaca --- /dev/null +++ b/general/datasets/Ki_2a_0405_r/acknowledgment.rtf @@ -0,0 +1 @@ +
    This work was supported with funds to TJA by the MRC Clinical Sciences Centre, the British Heart Foundation, and the Wellcome Trust Cardiovascular Functional Genomics Intiative; to NH from the German Ministry for Science and Education (National Genome Research Network); to MP and Vladimir Kren from the Grant Agency of the Czech Republic; to MP and TJA from the Wellcome Trust Collaborative Research Initiative grant, to Theodore W Kurtz from the NIH, to TWK and MP from a Fogarty International Research Collaboration Award. Microarrays were a generous donation of Affymetrix Inc. Michal Pravenec thanks the Howard Hughes Medical Institute for its support to him as an international research scholar.
    diff --git a/general/datasets/Ki_2a_0405_r/cases.rtf b/general/datasets/Ki_2a_0405_r/cases.rtf new file mode 100644 index 0000000..862deec --- /dev/null +++ b/general/datasets/Ki_2a_0405_r/cases.rtf @@ -0,0 +1,7 @@ +
    Data were generated using the HXB/BXH recombinant inbred strains of rats generated over the past 20 years in Prague. The parental strains from which all HXB lines are derived are SHR (SHR/OlaIpcv or HSR = H) and Brown Norway (BN.Lx/Cub= B). These strains have been used extensively to study cardiovascular system physiology and genetics. +

     

    + +

    The HXB strains were bred by Michal Pravenec at the Institute of Physiology, Czech Academy of Sciences. The BXH strains were bred by Vladimir Kren (see Pravenec et al. 1989, 2004) at a similar animal facility at the Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University. These strains are at approximately the 6oth geenration of continuous inbreeding (F60).

    + +

    Animals used in the transcriptome analyses of kidney and fat (Hübner and colleagues, 2005) were weaned at 4 weeks. Those born at the Charles University were transferred to the Institute of Physiology. Animals were reared on a commerical rat chow (ST-1 from VELAZ, Czech Republic). Four males were house per cage. Cages were made of polystyrene and have a floor size of 22 x 38 cm and height of 23 cm. The bedding was changed twice a week. Light cycle was 12:12 on-off. Vivarium rooms were maintained at 23 deg. C. Rats were sexually naive. All males used in the initial transcriptome studies (Hubner et al., 2005) were born between May and August 2002. They were sacrificed unfastged by rapid cervical dislocation between 9 and 10 AM, following an approved animal protocol (Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague; Animal Protectiion Law of the Czech Republic (311/1997).

    +
    diff --git a/general/datasets/Ki_2a_0405_r/citation.rtf b/general/datasets/Ki_2a_0405_r/citation.rtf new file mode 100644 index 0000000..a8b8cc0 --- /dev/null +++ b/general/datasets/Ki_2a_0405_r/citation.rtf @@ -0,0 +1 @@ +

    PLoS One. 2008;3(12):e4033. doi: 10.1371/journal.pone.0004033. Epub 2008 Dec 29.

    diff --git a/general/datasets/Ki_2a_0405_r/contributors.rtf b/general/datasets/Ki_2a_0405_r/contributors.rtf new file mode 100644 index 0000000..0afa863 --- /dev/null +++ b/general/datasets/Ki_2a_0405_r/contributors.rtf @@ -0,0 +1 @@ +

    Grieve IC1, Dickens NJ, Pravenec M, Kren V, Hubner N, Cook SA, Aitman TJ, Petretto E, Mangion J. Author information 1MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital, London, United Kingdom.

    diff --git a/general/datasets/Ki_2a_0405_r/notes.rtf b/general/datasets/Ki_2a_0405_r/notes.rtf new file mode 100644 index 0000000..1af325d --- /dev/null +++ b/general/datasets/Ki_2a_0405_r/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by Robert Williams, Norbert Hübner, Michal Pravnec, Timothy Aitman, April 19, 2005. Updated by RWW, May 13, 2005.

    +
    diff --git a/general/datasets/Ki_2a_0405_r/platform.rtf b/general/datasets/Ki_2a_0405_r/platform.rtf new file mode 100644 index 0000000..78c5815 --- /dev/null +++ b/general/datasets/Ki_2a_0405_r/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix 230A GeneChip: Expression data were generated using the Affymetrix 230A array. The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Rat Genome Sequencing Consortium assembly.

    +
    diff --git a/general/datasets/Ki_2a_0405_r/processing.rtf b/general/datasets/Ki_2a_0405_r/processing.rtf new file mode 100644 index 0000000..d75d1db --- /dev/null +++ b/general/datasets/Ki_2a_0405_r/processing.rtf @@ -0,0 +1,15 @@ +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of pixel measured in each cell.
    + +
    +

    Probe set data: The original CEL values were log2 transformed and quantile normalized. We then took the antilog values of these quantile adjusted CEL values as input to the standard MAS5 algorithm. Probe set values listed in WebQTL pages are typically the averages of four biological replicates within strain.

    +
    + +

    About Quality Control Procedures:

    + +
    +

    RNA processing:RNA was extracted using Trizol reagent (Invitrogen) and purified using an RNeasy Mini kit from Qiagen. Double-stranded cDNA was generated without pooling. The Ambion MEGAscript T7 kit from Ambion was used to generate biotinylated cRNA for kidney. Fat samples were processed at this step using the Enzo Diagnostics Bioarray High Yield RNA Transcript labeling kit. See Hübner et al. 2005 for additional detail. One-hundred and twenty eight samples passed RNA quality control steps.

    + +

    Probe level QC: All 128 CEL files were collected into a single DataDesk 6.2 file. Probe data from pairs of arrays were plotted and compared. Eight arrays were considered potential outliers (despite having passed RNA quality control) and in the interest of minimizing technical variance, a decision was made to withhold them from the calculation of strain means used in WebQTL. The remaining 120 arrays were quantile normalized and reexamined in DataDesk to ensure reasonble colinearity of all array data sets.

    + +

    Probe set level QC: Probe set level QC involves counting the number of times that a single array data set from a single sample generates outliers at the level of the probe set consensus estimates of expression. With 120 arrays, any single array should generate a comparatively small fraction of the total number of outlier calls. This final step of array QC has NOT been implemented yet in this data set.

    +
    diff --git a/general/datasets/Ki_2a_0405_r/summary.rtf b/general/datasets/Ki_2a_0405_r/summary.rtf new file mode 100644 index 0000000..44fd86e --- /dev/null +++ b/general/datasets/Ki_2a_0405_r/summary.rtf @@ -0,0 +1,19 @@ +

    This April 2005 data set provides estimates of mRNA expression in normal kidneys of 32 strains of rats. The set includes the hypertensive SHR strain, the normotensive BN strain, and 30 HXB/BXH recombinant inbred strains. Each strain was sampled in quadruplicate (6-week-old males). Animals and tissues were generated by Michal Pravenec and colleagues at the Czech Academy of Sciences (CAS). RNA samples were processed at the Max-Delbrück-Center (MDC), Berlin Buch by Nobert Hübner and colleagues. Transcriptome mapping was carried out by Timothy Aitman and colleagues at the Imperial College, London (ICL). Samples were hybridized individually to a total of 128 Affymetrix RAE230A array. This particular data set includes 120 arrays processed using a quantile normalized variant of the Affymetrix MAS5 protocol. The expression values of each array have been logged and adjusted to a mean of 8 and a stardard deviation of 2 (mean and variance stabilized). This data set complements the original MAS5 data set exploited by Hübner and colleagues 2005. Download the particular transform in an Excel work book with both strain means and SEMs.

    + +

    These data can also be viewed using the eQTL Explorer Java application by John Mangion, Tim Aitman, and colleagues (Mueller et al. 2006).

    + +

    Genome-wide co-expression analysis in multiple tissues.

    + +

    And see closely associate set of papers:

    + +
      +
    1. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease.
    2. +
    3. Heritability and tissue specificity of expression quantitative trait loci.
    4. +
    5. Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass.
    6. +
    7. New insights into the genetic control of gene expression using a Bayesian multi-tissue approach.
    8. +
    9. The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance.
    10. +
    11. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk.
    12. +
    13. Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat.
    14. +
    15. Systems-level approaches reveal conservation of trans-regulated genes in the rat and genetic determinants of blood pressure in humans.
    16. +
    diff --git a/general/datasets/Ki_2a_0405_r/tissue.rtf b/general/datasets/Ki_2a_0405_r/tissue.rtf new file mode 100644 index 0000000..8184532 --- /dev/null +++ b/general/datasets/Ki_2a_0405_r/tissue.rtf @@ -0,0 +1,534 @@ +

    All tissues were collected at the age of 6 weeks. Kidneys and other organs were rapidly dissected and cleaned of fat, inserted into a vial, and immersed in liquid nitrogen for storage until RNA extraction.

    + +
    The table below lists the arrays by strain and sample identifier. Each array was hybridized with mRNA from a single young male rat.
    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSampleID
    HSRHSR1
    HSRHSR2
    HSRHSR3
    HSRHSR4
    BNBN1
    BNBN2
    BNBN3
    BNBN4
    BNBN5
    HXB1RI 01-1
    HXB1RI 01-2
    HXB1RI 01-3
    HXB1RI 01-4
    HXB2RI 02-1
    HXB2RI 02-2
    HXB2RI 02-3
    HXB2*RI 02-4
    HXB3RI 03-1
    HXB3RI 03-2
    HXB3RI 03-3
    HXB3RI 03-4
    HXB4RI 04-1
    HXB4RI 04-2
    HXB4RI 04-3
    HXB4RI 04-4
    HXB5RI 05-1
    HXB5RI 05-2
    HXB5RI 05-3
    HXB5*RI 05-4
    HXB7RI 07-1
    HXB7RI 07-2
    HXB7RI 07-3
    HXB7RI 07-4
    HXB10RI 10-1
    HXB10RI 10-2
    HXB10RI 10-3
    HXB10RI 10-4
    HXB15RI 15-1
    HXB15RI 15-2
    HXB15RI 15-3
    HXB15RI 15-4
    HXB17RI 17-1
    HXB17RI 17-2
    HXB17RI 17-3
    HXB17RI 17-4
    HXB18RI 18-1
    HXB18RI 18-2
    HXB18RI 18-3
    HXB18RI 18-4
    HXB20RI 20-1
    HXB20RI 20-2
    HXB20RI 20-3
    HXB20RI 20-4
    HXB21RI 21-1
    HXB21RI 21-2
    HXB21RI 21-3
    HXB21RI 21-4
    HXB22RI 22-1
    HXB22RI 22-2
    HXB22RI 22-3
    HXB22RI 22-4
    HXB23RI 23-1
    HXB23RI 23-2
    HXB23RI 23-3
    HXB23RI 23-4
    HXB24RI 24-1
    HXB24RI 24-2
    HXB24RI 24-3
    HXB24*RI 24-4
    HXB25RI 25-1
    HXB25RI 25-2
    HXB25RI 25-3
    HXB25*RI 25-4
    HXB26RI 26-1
    HXB26RI 26-2
    HXB26RI 26-3
    HXB26RI 26-4
    HXB27RI 27-1
    HXB27RI 27-2
    HXB27RI 27-3
    HXB27RI 27-4
    HXB29RI 29-1
    HXB29RI 29-2
    HXB29RI 29-3
    HXB29*RI 29-4
    HXB31RI 31-1
    HXB31RI 31-2
    HXB31RI 31-3
    HXB31RI 31-4
    BXH2RI 02c-1
    BXH2RI 02c-2
    BXH2RI 02c-3
    BXH2RI 02c-4
    BXH3RI 03c-1
    BXH3RI 03c-2
    BXH3RI 03c-3
    BXH3RI 03c-4
    BXH5RI 05c-1
    BXH5RI 05c-2
    BXH5RI 05c-3
    BXH5*RI 05c-4
    BXH6RI 06c-1
    BXH6RI 06c-2
    BXH6RI 06c-3
    BXH6*RI 06c-4
    BXH8RI 08c-1
    BXH8RI 08c-2
    BXH8RI 08c-3
    BXH8RI 08c-4
    BXH9RI 09c-1
    BXH9RI 09c-2
    BXH9RI 09c-3
    BXH9RI 09c-4
    BXH10RI 10c-1
    BXH10RI 10c-2
    BXH10RI 10c-3
    BXH11RI 11c-1
    BXH11RI 11c-2
    BXH11RI 11c-3
    BXH11*RI 11c-4
    BXH12RI 12c-1
    BXH12RI 12c-2
    BXH12RI 12c-3
    BXH12RI 12c-4
    BXH13RI 13c-1
    BXH13RI 13c-2
    BXH13RI 13c-3
    BXH13RI 13c-4
    +
    + +

    *: These eight arrays were excluded in the final strain summary data. See section of Quality Control for further explanation.

    diff --git a/general/datasets/Ki_2a_0405_rz/acknowledgment.rtf b/general/datasets/Ki_2a_0405_rz/acknowledgment.rtf new file mode 100644 index 0000000..956eaca --- /dev/null +++ b/general/datasets/Ki_2a_0405_rz/acknowledgment.rtf @@ -0,0 +1 @@ +
    This work was supported with funds to TJA by the MRC Clinical Sciences Centre, the British Heart Foundation, and the Wellcome Trust Cardiovascular Functional Genomics Intiative; to NH from the German Ministry for Science and Education (National Genome Research Network); to MP and Vladimir Kren from the Grant Agency of the Czech Republic; to MP and TJA from the Wellcome Trust Collaborative Research Initiative grant, to Theodore W Kurtz from the NIH, to TWK and MP from a Fogarty International Research Collaboration Award. Microarrays were a generous donation of Affymetrix Inc. Michal Pravenec thanks the Howard Hughes Medical Institute for its support to him as an international research scholar.
    diff --git a/general/datasets/Ki_2a_0405_rz/cases.rtf b/general/datasets/Ki_2a_0405_rz/cases.rtf new file mode 100644 index 0000000..862deec --- /dev/null +++ b/general/datasets/Ki_2a_0405_rz/cases.rtf @@ -0,0 +1,7 @@ +
    Data were generated using the HXB/BXH recombinant inbred strains of rats generated over the past 20 years in Prague. The parental strains from which all HXB lines are derived are SHR (SHR/OlaIpcv or HSR = H) and Brown Norway (BN.Lx/Cub= B). These strains have been used extensively to study cardiovascular system physiology and genetics. +

     

    + +

    The HXB strains were bred by Michal Pravenec at the Institute of Physiology, Czech Academy of Sciences. The BXH strains were bred by Vladimir Kren (see Pravenec et al. 1989, 2004) at a similar animal facility at the Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University. These strains are at approximately the 6oth geenration of continuous inbreeding (F60).

    + +

    Animals used in the transcriptome analyses of kidney and fat (Hübner and colleagues, 2005) were weaned at 4 weeks. Those born at the Charles University were transferred to the Institute of Physiology. Animals were reared on a commerical rat chow (ST-1 from VELAZ, Czech Republic). Four males were house per cage. Cages were made of polystyrene and have a floor size of 22 x 38 cm and height of 23 cm. The bedding was changed twice a week. Light cycle was 12:12 on-off. Vivarium rooms were maintained at 23 deg. C. Rats were sexually naive. All males used in the initial transcriptome studies (Hubner et al., 2005) were born between May and August 2002. They were sacrificed unfastged by rapid cervical dislocation between 9 and 10 AM, following an approved animal protocol (Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague; Animal Protectiion Law of the Czech Republic (311/1997).

    +
    diff --git a/general/datasets/Ki_2a_0405_rz/citation.rtf b/general/datasets/Ki_2a_0405_rz/citation.rtf new file mode 100644 index 0000000..a8b8cc0 --- /dev/null +++ b/general/datasets/Ki_2a_0405_rz/citation.rtf @@ -0,0 +1 @@ +

    PLoS One. 2008;3(12):e4033. doi: 10.1371/journal.pone.0004033. Epub 2008 Dec 29.

    diff --git a/general/datasets/Ki_2a_0405_rz/contributors.rtf b/general/datasets/Ki_2a_0405_rz/contributors.rtf new file mode 100644 index 0000000..0afa863 --- /dev/null +++ b/general/datasets/Ki_2a_0405_rz/contributors.rtf @@ -0,0 +1 @@ +

    Grieve IC1, Dickens NJ, Pravenec M, Kren V, Hubner N, Cook SA, Aitman TJ, Petretto E, Mangion J. Author information 1MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital, London, United Kingdom.

    diff --git a/general/datasets/Ki_2a_0405_rz/notes.rtf b/general/datasets/Ki_2a_0405_rz/notes.rtf new file mode 100644 index 0000000..1af325d --- /dev/null +++ b/general/datasets/Ki_2a_0405_rz/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by Robert Williams, Norbert Hübner, Michal Pravnec, Timothy Aitman, April 19, 2005. Updated by RWW, May 13, 2005.

    +
    diff --git a/general/datasets/Ki_2a_0405_rz/platform.rtf b/general/datasets/Ki_2a_0405_rz/platform.rtf new file mode 100644 index 0000000..78c5815 --- /dev/null +++ b/general/datasets/Ki_2a_0405_rz/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix 230A GeneChip: Expression data were generated using the Affymetrix 230A array. The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Rat Genome Sequencing Consortium assembly.

    +
    diff --git a/general/datasets/Ki_2a_0405_rz/processing.rtf b/general/datasets/Ki_2a_0405_rz/processing.rtf new file mode 100644 index 0000000..d75d1db --- /dev/null +++ b/general/datasets/Ki_2a_0405_rz/processing.rtf @@ -0,0 +1,15 @@ +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of pixel measured in each cell.
    + +
    +

    Probe set data: The original CEL values were log2 transformed and quantile normalized. We then took the antilog values of these quantile adjusted CEL values as input to the standard MAS5 algorithm. Probe set values listed in WebQTL pages are typically the averages of four biological replicates within strain.

    +
    + +

    About Quality Control Procedures:

    + +
    +

    RNA processing:RNA was extracted using Trizol reagent (Invitrogen) and purified using an RNeasy Mini kit from Qiagen. Double-stranded cDNA was generated without pooling. The Ambion MEGAscript T7 kit from Ambion was used to generate biotinylated cRNA for kidney. Fat samples were processed at this step using the Enzo Diagnostics Bioarray High Yield RNA Transcript labeling kit. See Hübner et al. 2005 for additional detail. One-hundred and twenty eight samples passed RNA quality control steps.

    + +

    Probe level QC: All 128 CEL files were collected into a single DataDesk 6.2 file. Probe data from pairs of arrays were plotted and compared. Eight arrays were considered potential outliers (despite having passed RNA quality control) and in the interest of minimizing technical variance, a decision was made to withhold them from the calculation of strain means used in WebQTL. The remaining 120 arrays were quantile normalized and reexamined in DataDesk to ensure reasonble colinearity of all array data sets.

    + +

    Probe set level QC: Probe set level QC involves counting the number of times that a single array data set from a single sample generates outliers at the level of the probe set consensus estimates of expression. With 120 arrays, any single array should generate a comparatively small fraction of the total number of outlier calls. This final step of array QC has NOT been implemented yet in this data set.

    +
    diff --git a/general/datasets/Ki_2a_0405_rz/summary.rtf b/general/datasets/Ki_2a_0405_rz/summary.rtf new file mode 100644 index 0000000..44fd86e --- /dev/null +++ b/general/datasets/Ki_2a_0405_rz/summary.rtf @@ -0,0 +1,19 @@ +

    This April 2005 data set provides estimates of mRNA expression in normal kidneys of 32 strains of rats. The set includes the hypertensive SHR strain, the normotensive BN strain, and 30 HXB/BXH recombinant inbred strains. Each strain was sampled in quadruplicate (6-week-old males). Animals and tissues were generated by Michal Pravenec and colleagues at the Czech Academy of Sciences (CAS). RNA samples were processed at the Max-Delbrück-Center (MDC), Berlin Buch by Nobert Hübner and colleagues. Transcriptome mapping was carried out by Timothy Aitman and colleagues at the Imperial College, London (ICL). Samples were hybridized individually to a total of 128 Affymetrix RAE230A array. This particular data set includes 120 arrays processed using a quantile normalized variant of the Affymetrix MAS5 protocol. The expression values of each array have been logged and adjusted to a mean of 8 and a stardard deviation of 2 (mean and variance stabilized). This data set complements the original MAS5 data set exploited by Hübner and colleagues 2005. Download the particular transform in an Excel work book with both strain means and SEMs.

    + +

    These data can also be viewed using the eQTL Explorer Java application by John Mangion, Tim Aitman, and colleagues (Mueller et al. 2006).

    + +

    Genome-wide co-expression analysis in multiple tissues.

    + +

    And see closely associate set of papers:

    + +
      +
    1. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease.
    2. +
    3. Heritability and tissue specificity of expression quantitative trait loci.
    4. +
    5. Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass.
    6. +
    7. New insights into the genetic control of gene expression using a Bayesian multi-tissue approach.
    8. +
    9. The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance.
    10. +
    11. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk.
    12. +
    13. Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat.
    14. +
    15. Systems-level approaches reveal conservation of trans-regulated genes in the rat and genetic determinants of blood pressure in humans.
    16. +
    diff --git a/general/datasets/Ki_2a_0405_rz/tissue.rtf b/general/datasets/Ki_2a_0405_rz/tissue.rtf new file mode 100644 index 0000000..8184532 --- /dev/null +++ b/general/datasets/Ki_2a_0405_rz/tissue.rtf @@ -0,0 +1,534 @@ +

    All tissues were collected at the age of 6 weeks. Kidneys and other organs were rapidly dissected and cleaned of fat, inserted into a vial, and immersed in liquid nitrogen for storage until RNA extraction.

    + +
    The table below lists the arrays by strain and sample identifier. Each array was hybridized with mRNA from a single young male rat.
    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSampleID
    HSRHSR1
    HSRHSR2
    HSRHSR3
    HSRHSR4
    BNBN1
    BNBN2
    BNBN3
    BNBN4
    BNBN5
    HXB1RI 01-1
    HXB1RI 01-2
    HXB1RI 01-3
    HXB1RI 01-4
    HXB2RI 02-1
    HXB2RI 02-2
    HXB2RI 02-3
    HXB2*RI 02-4
    HXB3RI 03-1
    HXB3RI 03-2
    HXB3RI 03-3
    HXB3RI 03-4
    HXB4RI 04-1
    HXB4RI 04-2
    HXB4RI 04-3
    HXB4RI 04-4
    HXB5RI 05-1
    HXB5RI 05-2
    HXB5RI 05-3
    HXB5*RI 05-4
    HXB7RI 07-1
    HXB7RI 07-2
    HXB7RI 07-3
    HXB7RI 07-4
    HXB10RI 10-1
    HXB10RI 10-2
    HXB10RI 10-3
    HXB10RI 10-4
    HXB15RI 15-1
    HXB15RI 15-2
    HXB15RI 15-3
    HXB15RI 15-4
    HXB17RI 17-1
    HXB17RI 17-2
    HXB17RI 17-3
    HXB17RI 17-4
    HXB18RI 18-1
    HXB18RI 18-2
    HXB18RI 18-3
    HXB18RI 18-4
    HXB20RI 20-1
    HXB20RI 20-2
    HXB20RI 20-3
    HXB20RI 20-4
    HXB21RI 21-1
    HXB21RI 21-2
    HXB21RI 21-3
    HXB21RI 21-4
    HXB22RI 22-1
    HXB22RI 22-2
    HXB22RI 22-3
    HXB22RI 22-4
    HXB23RI 23-1
    HXB23RI 23-2
    HXB23RI 23-3
    HXB23RI 23-4
    HXB24RI 24-1
    HXB24RI 24-2
    HXB24RI 24-3
    HXB24*RI 24-4
    HXB25RI 25-1
    HXB25RI 25-2
    HXB25RI 25-3
    HXB25*RI 25-4
    HXB26RI 26-1
    HXB26RI 26-2
    HXB26RI 26-3
    HXB26RI 26-4
    HXB27RI 27-1
    HXB27RI 27-2
    HXB27RI 27-3
    HXB27RI 27-4
    HXB29RI 29-1
    HXB29RI 29-2
    HXB29RI 29-3
    HXB29*RI 29-4
    HXB31RI 31-1
    HXB31RI 31-2
    HXB31RI 31-3
    HXB31RI 31-4
    BXH2RI 02c-1
    BXH2RI 02c-2
    BXH2RI 02c-3
    BXH2RI 02c-4
    BXH3RI 03c-1
    BXH3RI 03c-2
    BXH3RI 03c-3
    BXH3RI 03c-4
    BXH5RI 05c-1
    BXH5RI 05c-2
    BXH5RI 05c-3
    BXH5*RI 05c-4
    BXH6RI 06c-1
    BXH6RI 06c-2
    BXH6RI 06c-3
    BXH6*RI 06c-4
    BXH8RI 08c-1
    BXH8RI 08c-2
    BXH8RI 08c-3
    BXH8RI 08c-4
    BXH9RI 09c-1
    BXH9RI 09c-2
    BXH9RI 09c-3
    BXH9RI 09c-4
    BXH10RI 10c-1
    BXH10RI 10c-2
    BXH10RI 10c-3
    BXH11RI 11c-1
    BXH11RI 11c-2
    BXH11RI 11c-3
    BXH11*RI 11c-4
    BXH12RI 12c-1
    BXH12RI 12c-2
    BXH12RI 12c-3
    BXH12RI 12c-4
    BXH13RI 13c-1
    BXH13RI 13c-2
    BXH13RI 13c-3
    BXH13RI 13c-4
    +
    + +

    *: These eight arrays were excluded in the final strain summary data. See section of Quality Control for further explanation.

    diff --git a/general/datasets/Kin_ysm_a1c_0711/cases.rtf b/general/datasets/Kin_ysm_a1c_0711/cases.rtf new file mode 100644 index 0000000..7b0ef71 --- /dev/null +++ b/general/datasets/Kin_ysm_a1c_0711/cases.rtf @@ -0,0 +1,88 @@ +

    RNA was isolated from 13 brain regions, from both hemispheres, of four late mid-fetal human brains, with a total PMI of less than one hour, and hybridized to Affymetrix Human Exon 1.0 ST arrays. Affymetrix CEL files were imported into Partek GS using Robust Multichip Average (RMA) background correction, quantile normalization, and GC content correction. The normalized data were then converted to log-ratios, relative to arrays hybridized with RNA pooled from all regions of the same brain. Signal log-ratios are displayed here as green for negative (underexpression) and red for positive (overexpression).

    + +

    Table 1 | Periods of human development and adulthood as defined in this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    PeriodDescriptionAge
    1Embryonic4≤ Age <8 Postconceptual weeks (PCW)
    2Early fetal8≤ Age <10 PCW
    3Early fetal10≤ Age <13 PCW
    4Early midfetal13≤ Age <16 PCW
    5Early midfetal16≤ Age <19 PCW
    6Late midfetal19≤ Age <24 PCW
    7Late fetal24≤ Age <38 PCW
    8Neonatal and early infancyBirth≤ Age <6 Postnatal months (M)
    9Late infancy6 M≤ Age <12 M
    10Early childhood1≤ Age <6 Postnatal years (Y)
    11Middle and late childhood6≤ Age <12 Y
    12Adolescence12≤ Age <20 Y
    13Young adulthood20≤ Age <40 Y
    14Middle adulthood40≤ Age <60 Y
    15Late adulthood60 Y ≤ Age
    diff --git a/general/datasets/Kin_ysm_a1c_0711/citation.rtf b/general/datasets/Kin_ysm_a1c_0711/citation.rtf new file mode 100644 index 0000000..d450820 --- /dev/null +++ b/general/datasets/Kin_ysm_a1c_0711/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Kin_ysm_a1c_0711/contributors.rtf b/general/datasets/Kin_ysm_a1c_0711/contributors.rtf new file mode 100644 index 0000000..2dfb810 --- /dev/null +++ b/general/datasets/Kin_ysm_a1c_0711/contributors.rtf @@ -0,0 +1 @@ +

    Johnson MBKawasawa YISestan N

    diff --git a/general/datasets/Kin_ysm_a1c_0711/experiment-design.rtf b/general/datasets/Kin_ysm_a1c_0711/experiment-design.rtf new file mode 100644 index 0000000..963e517 --- /dev/null +++ b/general/datasets/Kin_ysm_a1c_0711/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Human Brain Specimens and Tissue Processing This study was carried out using post-mortem human brain specimens collected from the Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed for neuropathological or developmental defects. Details of specimens, tissue processing, microdissection, and neuropathological assessment are given in the Supplemental Experimental Procedures and Table S1. These studies were approved by the Human Investigation Committees of AECOM and Yale University.

    + +

    For initial analysis, all neocortex samples were grouped together. In subsequent analyses, neocortex areas were compared with each other. In most analyses reported, left and right side samples were treated as additional biological replicates.

    diff --git a/general/datasets/Kin_ysm_a1c_0711/experiment-type.rtf b/general/datasets/Kin_ysm_a1c_0711/experiment-type.rtf new file mode 100644 index 0000000..beed8f4 --- /dev/null +++ b/general/datasets/Kin_ysm_a1c_0711/experiment-type.rtf @@ -0,0 +1,9 @@ +Human Brain Specimens and Tissue Processing +This study was carried out using post-mortem human brain specimens collected from the +Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). +Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem +interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed +for neuropathological or developmental defects. Details of specimens, tissue processing, +microdissection, and neuropathological assessment are given in the Supplemental +Experimental Procedures and Table S1. These studies were approved by the Human +Investigation Committees of AECOM and Yale University. \ No newline at end of file diff --git a/general/datasets/Kin_ysm_a1c_0711/notes.rtf b/general/datasets/Kin_ysm_a1c_0711/notes.rtf new file mode 100644 index 0000000..8d266d3 --- /dev/null +++ b/general/datasets/Kin_ysm_a1c_0711/notes.rtf @@ -0,0 +1 @@ +

    The raw microarray data are available via the NCBI Gene Expression Omnibus. Data in GeneNetwork as of July 2015 are only gene-level data. We could also enter exon-level data on request.

    diff --git a/general/datasets/Kin_ysm_a1c_0711/processing.rtf b/general/datasets/Kin_ysm_a1c_0711/processing.rtf new file mode 100644 index 0000000..1920ca7 --- /dev/null +++ b/general/datasets/Kin_ysm_a1c_0711/processing.rtf @@ -0,0 +1 @@ +

    Normalized method: Quantile normalization. Partek Genomics Suite version 6.5 (Partek Incorporated, St. Louis, MO, USA) was used to normalize raw exon array data and to summarize expression of the probe set and transcript cluster. Affymetrix CEL files that passed QC analyses were imported into Partek Genomics Suite using the default Partek settings: RMA background correction114, quantile normalization, mean probe set summarization, and log2-transformation. Only high-quality core probe sets, as defined by Affymetrix, were included. 105,271 core probes (within 62,448 probe sets out of 230,918 core probe sets) contained SNPs defined in the probe group file HuEx-1_0-st-v2.r2-SNPs-Excluded.pgf provided by Affymetrix, which is based on the dbSNP database (version 129, April 2008) and SNPinprobe_1.0 database. we removed SNP-containing probe sets during the normalization step in the Partek program to be control for SNP-related confounding effects. The median of all individual probe sets of one transcript cluster was used as the estimate of gene expression values.

    diff --git a/general/datasets/Kin_ysm_a1c_0711/summary.rtf b/general/datasets/Kin_ysm_a1c_0711/summary.rtf new file mode 100644 index 0000000..66a2289 --- /dev/null +++ b/general/datasets/Kin_ysm_a1c_0711/summary.rtf @@ -0,0 +1 @@ +

    Our understanding of the evolution, formation, and pathological disruption of human brain circuits is impeded by a lack of comprehensive data on the developing brain transcriptome. Thus, we have undertaken whole-genome, exon-level expression analysis of thirteen regions from left and right sides of the mid-fetal human brain, finding 76% of genes to be expressed, and 44% of these to be differentially regulated. These data reveal a large number of specific gene expression and alternative splicing patterns, as well as co-expression networks, associated with distinct regions and neurodevelopmental processes. Of particular relevance to cognitive specializations, we have characterized the transcriptional landscapes of prefrontal cortex and perisylvian speech and language areas, which exhibit a population-level global expression symmetry. Finally, we show that differentially expressed genes are more frequently associated with human-specific evolution of putative cis-regulatory elements. Altogether, these data provide a wealth of novel biological insights into the complex transcriptional and molecular underpinnings of human brain development and evolution.

    diff --git a/general/datasets/Kin_ysm_a1c_0711/tissue.rtf b/general/datasets/Kin_ysm_a1c_0711/tissue.rtf new file mode 100644 index 0000000..f08a838 --- /dev/null +++ b/general/datasets/Kin_ysm_a1c_0711/tissue.rtf @@ -0,0 +1,109 @@ +

    Tissue was microdissected from 13 regions, including 9 distinct neocortical areas, from both left and right sides of four late second trimester human brain specimens. Gene- and exon-level differential expression analyses were performed by mixed model, nested analysis of variance using the XRAY software from Biotique Systems. Further details available in Johnson, Kawasawa, et al., "Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis" Neuron, Volume 62, Issue 4, 2009.

    + +

    Ethnicity codes are as follows: AA = African American, A = ,  A/E =  X,  As,=  , H = , E = , CC =  and n/a= unknown

    + +

     

    + +

    This track displays exon microarray expression data from the late mid-fetal human brain, generated by the Sestan Lab at Yale University. The data represent 13 brain regions, including nine areas of neocortex, and both hemispheres. By default, arrays are grouped by the median for each brain region, including each neocortical area. Alternatively, neocortex areas can be grouped together; arrays can be grouped by mean; or all 95 arrays can be shown individually.

    + +

    Table 2 | Ontology and nomenclature of analyzed brain regions and neocortical areas.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Period 1Period 2Period 3 - 15
    FC: Frontal cerebral wallFCOFC: Orbital prefrontal cortex
      DFC: Dorsolateral prefrontal cortex
      VFC: Ventrolateral prefrontal cortex
      MFC: Medial prefrontal cortex
      M1C: Primary motor (M1) cortex
    PC: Parietal cerebral wallPCS1C: Primary somatosensory (S1) cortex
      IPC: Posterior inferior parietal cortex
    TC: Temporal cerebral wallTC A1C: Primary auditory (A1) cortex
      STC: Posterior superior temporal cortex
      ITC: Inferior temporal cortex
    OC: Occipital cerebral wallOCV1C: Primary visual (V1) cortex
    HIP: Hippocampal anlageHIPHIP: Hippocampus
      AMY: Amygdala
    VF: Ventral forebrainCGE: Caudal ganglionic eminenceSTR: Striatum
     LGE: Lateral ganglionic eminence 
     MGE: Medial ganglionic eminence 
    DIE: DiencephalonDTH: Dorsal thalamusMD: Mediodorsal nucleus of thalamus
    URL: Upper (rostral) rhombic lipURLCBC: Cerebellar cortex
    diff --git a/general/datasets/Kin_ysm_amy_0711/cases.rtf b/general/datasets/Kin_ysm_amy_0711/cases.rtf new file mode 100644 index 0000000..7b0ef71 --- /dev/null +++ b/general/datasets/Kin_ysm_amy_0711/cases.rtf @@ -0,0 +1,88 @@ +

    RNA was isolated from 13 brain regions, from both hemispheres, of four late mid-fetal human brains, with a total PMI of less than one hour, and hybridized to Affymetrix Human Exon 1.0 ST arrays. Affymetrix CEL files were imported into Partek GS using Robust Multichip Average (RMA) background correction, quantile normalization, and GC content correction. The normalized data were then converted to log-ratios, relative to arrays hybridized with RNA pooled from all regions of the same brain. Signal log-ratios are displayed here as green for negative (underexpression) and red for positive (overexpression).

    + +

    Table 1 | Periods of human development and adulthood as defined in this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    PeriodDescriptionAge
    1Embryonic4≤ Age <8 Postconceptual weeks (PCW)
    2Early fetal8≤ Age <10 PCW
    3Early fetal10≤ Age <13 PCW
    4Early midfetal13≤ Age <16 PCW
    5Early midfetal16≤ Age <19 PCW
    6Late midfetal19≤ Age <24 PCW
    7Late fetal24≤ Age <38 PCW
    8Neonatal and early infancyBirth≤ Age <6 Postnatal months (M)
    9Late infancy6 M≤ Age <12 M
    10Early childhood1≤ Age <6 Postnatal years (Y)
    11Middle and late childhood6≤ Age <12 Y
    12Adolescence12≤ Age <20 Y
    13Young adulthood20≤ Age <40 Y
    14Middle adulthood40≤ Age <60 Y
    15Late adulthood60 Y ≤ Age
    diff --git a/general/datasets/Kin_ysm_amy_0711/citation.rtf b/general/datasets/Kin_ysm_amy_0711/citation.rtf new file mode 100644 index 0000000..d450820 --- /dev/null +++ b/general/datasets/Kin_ysm_amy_0711/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Kin_ysm_amy_0711/contributors.rtf b/general/datasets/Kin_ysm_amy_0711/contributors.rtf new file mode 100644 index 0000000..2dfb810 --- /dev/null +++ b/general/datasets/Kin_ysm_amy_0711/contributors.rtf @@ -0,0 +1 @@ +

    Johnson MBKawasawa YISestan N

    diff --git a/general/datasets/Kin_ysm_amy_0711/experiment-design.rtf b/general/datasets/Kin_ysm_amy_0711/experiment-design.rtf new file mode 100644 index 0000000..963e517 --- /dev/null +++ b/general/datasets/Kin_ysm_amy_0711/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Human Brain Specimens and Tissue Processing This study was carried out using post-mortem human brain specimens collected from the Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed for neuropathological or developmental defects. Details of specimens, tissue processing, microdissection, and neuropathological assessment are given in the Supplemental Experimental Procedures and Table S1. These studies were approved by the Human Investigation Committees of AECOM and Yale University.

    + +

    For initial analysis, all neocortex samples were grouped together. In subsequent analyses, neocortex areas were compared with each other. In most analyses reported, left and right side samples were treated as additional biological replicates.

    diff --git a/general/datasets/Kin_ysm_amy_0711/experiment-type.rtf b/general/datasets/Kin_ysm_amy_0711/experiment-type.rtf new file mode 100644 index 0000000..beed8f4 --- /dev/null +++ b/general/datasets/Kin_ysm_amy_0711/experiment-type.rtf @@ -0,0 +1,9 @@ +Human Brain Specimens and Tissue Processing +This study was carried out using post-mortem human brain specimens collected from the +Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). +Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem +interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed +for neuropathological or developmental defects. Details of specimens, tissue processing, +microdissection, and neuropathological assessment are given in the Supplemental +Experimental Procedures and Table S1. These studies were approved by the Human +Investigation Committees of AECOM and Yale University. \ No newline at end of file diff --git a/general/datasets/Kin_ysm_amy_0711/notes.rtf b/general/datasets/Kin_ysm_amy_0711/notes.rtf new file mode 100644 index 0000000..8d266d3 --- /dev/null +++ b/general/datasets/Kin_ysm_amy_0711/notes.rtf @@ -0,0 +1 @@ +

    The raw microarray data are available via the NCBI Gene Expression Omnibus. Data in GeneNetwork as of July 2015 are only gene-level data. We could also enter exon-level data on request.

    diff --git a/general/datasets/Kin_ysm_amy_0711/processing.rtf b/general/datasets/Kin_ysm_amy_0711/processing.rtf new file mode 100644 index 0000000..1920ca7 --- /dev/null +++ b/general/datasets/Kin_ysm_amy_0711/processing.rtf @@ -0,0 +1 @@ +

    Normalized method: Quantile normalization. Partek Genomics Suite version 6.5 (Partek Incorporated, St. Louis, MO, USA) was used to normalize raw exon array data and to summarize expression of the probe set and transcript cluster. Affymetrix CEL files that passed QC analyses were imported into Partek Genomics Suite using the default Partek settings: RMA background correction114, quantile normalization, mean probe set summarization, and log2-transformation. Only high-quality core probe sets, as defined by Affymetrix, were included. 105,271 core probes (within 62,448 probe sets out of 230,918 core probe sets) contained SNPs defined in the probe group file HuEx-1_0-st-v2.r2-SNPs-Excluded.pgf provided by Affymetrix, which is based on the dbSNP database (version 129, April 2008) and SNPinprobe_1.0 database. we removed SNP-containing probe sets during the normalization step in the Partek program to be control for SNP-related confounding effects. The median of all individual probe sets of one transcript cluster was used as the estimate of gene expression values.

    diff --git a/general/datasets/Kin_ysm_amy_0711/summary.rtf b/general/datasets/Kin_ysm_amy_0711/summary.rtf new file mode 100644 index 0000000..66a2289 --- /dev/null +++ b/general/datasets/Kin_ysm_amy_0711/summary.rtf @@ -0,0 +1 @@ +

    Our understanding of the evolution, formation, and pathological disruption of human brain circuits is impeded by a lack of comprehensive data on the developing brain transcriptome. Thus, we have undertaken whole-genome, exon-level expression analysis of thirteen regions from left and right sides of the mid-fetal human brain, finding 76% of genes to be expressed, and 44% of these to be differentially regulated. These data reveal a large number of specific gene expression and alternative splicing patterns, as well as co-expression networks, associated with distinct regions and neurodevelopmental processes. Of particular relevance to cognitive specializations, we have characterized the transcriptional landscapes of prefrontal cortex and perisylvian speech and language areas, which exhibit a population-level global expression symmetry. Finally, we show that differentially expressed genes are more frequently associated with human-specific evolution of putative cis-regulatory elements. Altogether, these data provide a wealth of novel biological insights into the complex transcriptional and molecular underpinnings of human brain development and evolution.

    diff --git a/general/datasets/Kin_ysm_amy_0711/tissue.rtf b/general/datasets/Kin_ysm_amy_0711/tissue.rtf new file mode 100644 index 0000000..f08a838 --- /dev/null +++ b/general/datasets/Kin_ysm_amy_0711/tissue.rtf @@ -0,0 +1,109 @@ +

    Tissue was microdissected from 13 regions, including 9 distinct neocortical areas, from both left and right sides of four late second trimester human brain specimens. Gene- and exon-level differential expression analyses were performed by mixed model, nested analysis of variance using the XRAY software from Biotique Systems. Further details available in Johnson, Kawasawa, et al., "Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis" Neuron, Volume 62, Issue 4, 2009.

    + +

    Ethnicity codes are as follows: AA = African American, A = ,  A/E =  X,  As,=  , H = , E = , CC =  and n/a= unknown

    + +

     

    + +

    This track displays exon microarray expression data from the late mid-fetal human brain, generated by the Sestan Lab at Yale University. The data represent 13 brain regions, including nine areas of neocortex, and both hemispheres. By default, arrays are grouped by the median for each brain region, including each neocortical area. Alternatively, neocortex areas can be grouped together; arrays can be grouped by mean; or all 95 arrays can be shown individually.

    + +

    Table 2 | Ontology and nomenclature of analyzed brain regions and neocortical areas.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Period 1Period 2Period 3 - 15
    FC: Frontal cerebral wallFCOFC: Orbital prefrontal cortex
      DFC: Dorsolateral prefrontal cortex
      VFC: Ventrolateral prefrontal cortex
      MFC: Medial prefrontal cortex
      M1C: Primary motor (M1) cortex
    PC: Parietal cerebral wallPCS1C: Primary somatosensory (S1) cortex
      IPC: Posterior inferior parietal cortex
    TC: Temporal cerebral wallTC A1C: Primary auditory (A1) cortex
      STC: Posterior superior temporal cortex
      ITC: Inferior temporal cortex
    OC: Occipital cerebral wallOCV1C: Primary visual (V1) cortex
    HIP: Hippocampal anlageHIPHIP: Hippocampus
      AMY: Amygdala
    VF: Ventral forebrainCGE: Caudal ganglionic eminenceSTR: Striatum
     LGE: Lateral ganglionic eminence 
     MGE: Medial ganglionic eminence 
    DIE: DiencephalonDTH: Dorsal thalamusMD: Mediodorsal nucleus of thalamus
    URL: Upper (rostral) rhombic lipURLCBC: Cerebellar cortex
    diff --git a/general/datasets/Kin_ysm_cbc_0711/cases.rtf b/general/datasets/Kin_ysm_cbc_0711/cases.rtf new file mode 100644 index 0000000..7b0ef71 --- /dev/null +++ b/general/datasets/Kin_ysm_cbc_0711/cases.rtf @@ -0,0 +1,88 @@ +

    RNA was isolated from 13 brain regions, from both hemispheres, of four late mid-fetal human brains, with a total PMI of less than one hour, and hybridized to Affymetrix Human Exon 1.0 ST arrays. Affymetrix CEL files were imported into Partek GS using Robust Multichip Average (RMA) background correction, quantile normalization, and GC content correction. The normalized data were then converted to log-ratios, relative to arrays hybridized with RNA pooled from all regions of the same brain. Signal log-ratios are displayed here as green for negative (underexpression) and red for positive (overexpression).

    + +

    Table 1 | Periods of human development and adulthood as defined in this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    PeriodDescriptionAge
    1Embryonic4≤ Age <8 Postconceptual weeks (PCW)
    2Early fetal8≤ Age <10 PCW
    3Early fetal10≤ Age <13 PCW
    4Early midfetal13≤ Age <16 PCW
    5Early midfetal16≤ Age <19 PCW
    6Late midfetal19≤ Age <24 PCW
    7Late fetal24≤ Age <38 PCW
    8Neonatal and early infancyBirth≤ Age <6 Postnatal months (M)
    9Late infancy6 M≤ Age <12 M
    10Early childhood1≤ Age <6 Postnatal years (Y)
    11Middle and late childhood6≤ Age <12 Y
    12Adolescence12≤ Age <20 Y
    13Young adulthood20≤ Age <40 Y
    14Middle adulthood40≤ Age <60 Y
    15Late adulthood60 Y ≤ Age
    diff --git a/general/datasets/Kin_ysm_cbc_0711/citation.rtf b/general/datasets/Kin_ysm_cbc_0711/citation.rtf new file mode 100644 index 0000000..d450820 --- /dev/null +++ b/general/datasets/Kin_ysm_cbc_0711/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Kin_ysm_cbc_0711/contributors.rtf b/general/datasets/Kin_ysm_cbc_0711/contributors.rtf new file mode 100644 index 0000000..2dfb810 --- /dev/null +++ b/general/datasets/Kin_ysm_cbc_0711/contributors.rtf @@ -0,0 +1 @@ +

    Johnson MBKawasawa YISestan N

    diff --git a/general/datasets/Kin_ysm_cbc_0711/experiment-design.rtf b/general/datasets/Kin_ysm_cbc_0711/experiment-design.rtf new file mode 100644 index 0000000..963e517 --- /dev/null +++ b/general/datasets/Kin_ysm_cbc_0711/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Human Brain Specimens and Tissue Processing This study was carried out using post-mortem human brain specimens collected from the Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed for neuropathological or developmental defects. Details of specimens, tissue processing, microdissection, and neuropathological assessment are given in the Supplemental Experimental Procedures and Table S1. These studies were approved by the Human Investigation Committees of AECOM and Yale University.

    + +

    For initial analysis, all neocortex samples were grouped together. In subsequent analyses, neocortex areas were compared with each other. In most analyses reported, left and right side samples were treated as additional biological replicates.

    diff --git a/general/datasets/Kin_ysm_cbc_0711/experiment-type.rtf b/general/datasets/Kin_ysm_cbc_0711/experiment-type.rtf new file mode 100644 index 0000000..beed8f4 --- /dev/null +++ b/general/datasets/Kin_ysm_cbc_0711/experiment-type.rtf @@ -0,0 +1,9 @@ +Human Brain Specimens and Tissue Processing +This study was carried out using post-mortem human brain specimens collected from the +Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). +Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem +interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed +for neuropathological or developmental defects. Details of specimens, tissue processing, +microdissection, and neuropathological assessment are given in the Supplemental +Experimental Procedures and Table S1. These studies were approved by the Human +Investigation Committees of AECOM and Yale University. \ No newline at end of file diff --git a/general/datasets/Kin_ysm_cbc_0711/notes.rtf b/general/datasets/Kin_ysm_cbc_0711/notes.rtf new file mode 100644 index 0000000..8d266d3 --- /dev/null +++ b/general/datasets/Kin_ysm_cbc_0711/notes.rtf @@ -0,0 +1 @@ +

    The raw microarray data are available via the NCBI Gene Expression Omnibus. Data in GeneNetwork as of July 2015 are only gene-level data. We could also enter exon-level data on request.

    diff --git a/general/datasets/Kin_ysm_cbc_0711/processing.rtf b/general/datasets/Kin_ysm_cbc_0711/processing.rtf new file mode 100644 index 0000000..1920ca7 --- /dev/null +++ b/general/datasets/Kin_ysm_cbc_0711/processing.rtf @@ -0,0 +1 @@ +

    Normalized method: Quantile normalization. Partek Genomics Suite version 6.5 (Partek Incorporated, St. Louis, MO, USA) was used to normalize raw exon array data and to summarize expression of the probe set and transcript cluster. Affymetrix CEL files that passed QC analyses were imported into Partek Genomics Suite using the default Partek settings: RMA background correction114, quantile normalization, mean probe set summarization, and log2-transformation. Only high-quality core probe sets, as defined by Affymetrix, were included. 105,271 core probes (within 62,448 probe sets out of 230,918 core probe sets) contained SNPs defined in the probe group file HuEx-1_0-st-v2.r2-SNPs-Excluded.pgf provided by Affymetrix, which is based on the dbSNP database (version 129, April 2008) and SNPinprobe_1.0 database. we removed SNP-containing probe sets during the normalization step in the Partek program to be control for SNP-related confounding effects. The median of all individual probe sets of one transcript cluster was used as the estimate of gene expression values.

    diff --git a/general/datasets/Kin_ysm_cbc_0711/summary.rtf b/general/datasets/Kin_ysm_cbc_0711/summary.rtf new file mode 100644 index 0000000..66a2289 --- /dev/null +++ b/general/datasets/Kin_ysm_cbc_0711/summary.rtf @@ -0,0 +1 @@ +

    Our understanding of the evolution, formation, and pathological disruption of human brain circuits is impeded by a lack of comprehensive data on the developing brain transcriptome. Thus, we have undertaken whole-genome, exon-level expression analysis of thirteen regions from left and right sides of the mid-fetal human brain, finding 76% of genes to be expressed, and 44% of these to be differentially regulated. These data reveal a large number of specific gene expression and alternative splicing patterns, as well as co-expression networks, associated with distinct regions and neurodevelopmental processes. Of particular relevance to cognitive specializations, we have characterized the transcriptional landscapes of prefrontal cortex and perisylvian speech and language areas, which exhibit a population-level global expression symmetry. Finally, we show that differentially expressed genes are more frequently associated with human-specific evolution of putative cis-regulatory elements. Altogether, these data provide a wealth of novel biological insights into the complex transcriptional and molecular underpinnings of human brain development and evolution.

    diff --git a/general/datasets/Kin_ysm_cbc_0711/tissue.rtf b/general/datasets/Kin_ysm_cbc_0711/tissue.rtf new file mode 100644 index 0000000..f08a838 --- /dev/null +++ b/general/datasets/Kin_ysm_cbc_0711/tissue.rtf @@ -0,0 +1,109 @@ +

    Tissue was microdissected from 13 regions, including 9 distinct neocortical areas, from both left and right sides of four late second trimester human brain specimens. Gene- and exon-level differential expression analyses were performed by mixed model, nested analysis of variance using the XRAY software from Biotique Systems. Further details available in Johnson, Kawasawa, et al., "Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis" Neuron, Volume 62, Issue 4, 2009.

    + +

    Ethnicity codes are as follows: AA = African American, A = ,  A/E =  X,  As,=  , H = , E = , CC =  and n/a= unknown

    + +

     

    + +

    This track displays exon microarray expression data from the late mid-fetal human brain, generated by the Sestan Lab at Yale University. The data represent 13 brain regions, including nine areas of neocortex, and both hemispheres. By default, arrays are grouped by the median for each brain region, including each neocortical area. Alternatively, neocortex areas can be grouped together; arrays can be grouped by mean; or all 95 arrays can be shown individually.

    + +

    Table 2 | Ontology and nomenclature of analyzed brain regions and neocortical areas.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Period 1Period 2Period 3 - 15
    FC: Frontal cerebral wallFCOFC: Orbital prefrontal cortex
      DFC: Dorsolateral prefrontal cortex
      VFC: Ventrolateral prefrontal cortex
      MFC: Medial prefrontal cortex
      M1C: Primary motor (M1) cortex
    PC: Parietal cerebral wallPCS1C: Primary somatosensory (S1) cortex
      IPC: Posterior inferior parietal cortex
    TC: Temporal cerebral wallTC A1C: Primary auditory (A1) cortex
      STC: Posterior superior temporal cortex
      ITC: Inferior temporal cortex
    OC: Occipital cerebral wallOCV1C: Primary visual (V1) cortex
    HIP: Hippocampal anlageHIPHIP: Hippocampus
      AMY: Amygdala
    VF: Ventral forebrainCGE: Caudal ganglionic eminenceSTR: Striatum
     LGE: Lateral ganglionic eminence 
     MGE: Medial ganglionic eminence 
    DIE: DiencephalonDTH: Dorsal thalamusMD: Mediodorsal nucleus of thalamus
    URL: Upper (rostral) rhombic lipURLCBC: Cerebellar cortex
    diff --git a/general/datasets/Kin_ysm_dfc_0711/cases.rtf b/general/datasets/Kin_ysm_dfc_0711/cases.rtf new file mode 100644 index 0000000..7b0ef71 --- /dev/null +++ b/general/datasets/Kin_ysm_dfc_0711/cases.rtf @@ -0,0 +1,88 @@ +

    RNA was isolated from 13 brain regions, from both hemispheres, of four late mid-fetal human brains, with a total PMI of less than one hour, and hybridized to Affymetrix Human Exon 1.0 ST arrays. Affymetrix CEL files were imported into Partek GS using Robust Multichip Average (RMA) background correction, quantile normalization, and GC content correction. The normalized data were then converted to log-ratios, relative to arrays hybridized with RNA pooled from all regions of the same brain. Signal log-ratios are displayed here as green for negative (underexpression) and red for positive (overexpression).

    + +

    Table 1 | Periods of human development and adulthood as defined in this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    PeriodDescriptionAge
    1Embryonic4≤ Age <8 Postconceptual weeks (PCW)
    2Early fetal8≤ Age <10 PCW
    3Early fetal10≤ Age <13 PCW
    4Early midfetal13≤ Age <16 PCW
    5Early midfetal16≤ Age <19 PCW
    6Late midfetal19≤ Age <24 PCW
    7Late fetal24≤ Age <38 PCW
    8Neonatal and early infancyBirth≤ Age <6 Postnatal months (M)
    9Late infancy6 M≤ Age <12 M
    10Early childhood1≤ Age <6 Postnatal years (Y)
    11Middle and late childhood6≤ Age <12 Y
    12Adolescence12≤ Age <20 Y
    13Young adulthood20≤ Age <40 Y
    14Middle adulthood40≤ Age <60 Y
    15Late adulthood60 Y ≤ Age
    diff --git a/general/datasets/Kin_ysm_dfc_0711/citation.rtf b/general/datasets/Kin_ysm_dfc_0711/citation.rtf new file mode 100644 index 0000000..d450820 --- /dev/null +++ b/general/datasets/Kin_ysm_dfc_0711/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Kin_ysm_dfc_0711/contributors.rtf b/general/datasets/Kin_ysm_dfc_0711/contributors.rtf new file mode 100644 index 0000000..2dfb810 --- /dev/null +++ b/general/datasets/Kin_ysm_dfc_0711/contributors.rtf @@ -0,0 +1 @@ +

    Johnson MBKawasawa YISestan N

    diff --git a/general/datasets/Kin_ysm_dfc_0711/experiment-design.rtf b/general/datasets/Kin_ysm_dfc_0711/experiment-design.rtf new file mode 100644 index 0000000..963e517 --- /dev/null +++ b/general/datasets/Kin_ysm_dfc_0711/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Human Brain Specimens and Tissue Processing This study was carried out using post-mortem human brain specimens collected from the Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed for neuropathological or developmental defects. Details of specimens, tissue processing, microdissection, and neuropathological assessment are given in the Supplemental Experimental Procedures and Table S1. These studies were approved by the Human Investigation Committees of AECOM and Yale University.

    + +

    For initial analysis, all neocortex samples were grouped together. In subsequent analyses, neocortex areas were compared with each other. In most analyses reported, left and right side samples were treated as additional biological replicates.

    diff --git a/general/datasets/Kin_ysm_dfc_0711/experiment-type.rtf b/general/datasets/Kin_ysm_dfc_0711/experiment-type.rtf new file mode 100644 index 0000000..beed8f4 --- /dev/null +++ b/general/datasets/Kin_ysm_dfc_0711/experiment-type.rtf @@ -0,0 +1,9 @@ +Human Brain Specimens and Tissue Processing +This study was carried out using post-mortem human brain specimens collected from the +Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). +Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem +interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed +for neuropathological or developmental defects. Details of specimens, tissue processing, +microdissection, and neuropathological assessment are given in the Supplemental +Experimental Procedures and Table S1. These studies were approved by the Human +Investigation Committees of AECOM and Yale University. \ No newline at end of file diff --git a/general/datasets/Kin_ysm_dfc_0711/notes.rtf b/general/datasets/Kin_ysm_dfc_0711/notes.rtf new file mode 100644 index 0000000..8d266d3 --- /dev/null +++ b/general/datasets/Kin_ysm_dfc_0711/notes.rtf @@ -0,0 +1 @@ +

    The raw microarray data are available via the NCBI Gene Expression Omnibus. Data in GeneNetwork as of July 2015 are only gene-level data. We could also enter exon-level data on request.

    diff --git a/general/datasets/Kin_ysm_dfc_0711/processing.rtf b/general/datasets/Kin_ysm_dfc_0711/processing.rtf new file mode 100644 index 0000000..1920ca7 --- /dev/null +++ b/general/datasets/Kin_ysm_dfc_0711/processing.rtf @@ -0,0 +1 @@ +

    Normalized method: Quantile normalization. Partek Genomics Suite version 6.5 (Partek Incorporated, St. Louis, MO, USA) was used to normalize raw exon array data and to summarize expression of the probe set and transcript cluster. Affymetrix CEL files that passed QC analyses were imported into Partek Genomics Suite using the default Partek settings: RMA background correction114, quantile normalization, mean probe set summarization, and log2-transformation. Only high-quality core probe sets, as defined by Affymetrix, were included. 105,271 core probes (within 62,448 probe sets out of 230,918 core probe sets) contained SNPs defined in the probe group file HuEx-1_0-st-v2.r2-SNPs-Excluded.pgf provided by Affymetrix, which is based on the dbSNP database (version 129, April 2008) and SNPinprobe_1.0 database. we removed SNP-containing probe sets during the normalization step in the Partek program to be control for SNP-related confounding effects. The median of all individual probe sets of one transcript cluster was used as the estimate of gene expression values.

    diff --git a/general/datasets/Kin_ysm_dfc_0711/summary.rtf b/general/datasets/Kin_ysm_dfc_0711/summary.rtf new file mode 100644 index 0000000..66a2289 --- /dev/null +++ b/general/datasets/Kin_ysm_dfc_0711/summary.rtf @@ -0,0 +1 @@ +

    Our understanding of the evolution, formation, and pathological disruption of human brain circuits is impeded by a lack of comprehensive data on the developing brain transcriptome. Thus, we have undertaken whole-genome, exon-level expression analysis of thirteen regions from left and right sides of the mid-fetal human brain, finding 76% of genes to be expressed, and 44% of these to be differentially regulated. These data reveal a large number of specific gene expression and alternative splicing patterns, as well as co-expression networks, associated with distinct regions and neurodevelopmental processes. Of particular relevance to cognitive specializations, we have characterized the transcriptional landscapes of prefrontal cortex and perisylvian speech and language areas, which exhibit a population-level global expression symmetry. Finally, we show that differentially expressed genes are more frequently associated with human-specific evolution of putative cis-regulatory elements. Altogether, these data provide a wealth of novel biological insights into the complex transcriptional and molecular underpinnings of human brain development and evolution.

    diff --git a/general/datasets/Kin_ysm_dfc_0711/tissue.rtf b/general/datasets/Kin_ysm_dfc_0711/tissue.rtf new file mode 100644 index 0000000..f08a838 --- /dev/null +++ b/general/datasets/Kin_ysm_dfc_0711/tissue.rtf @@ -0,0 +1,109 @@ +

    Tissue was microdissected from 13 regions, including 9 distinct neocortical areas, from both left and right sides of four late second trimester human brain specimens. Gene- and exon-level differential expression analyses were performed by mixed model, nested analysis of variance using the XRAY software from Biotique Systems. Further details available in Johnson, Kawasawa, et al., "Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis" Neuron, Volume 62, Issue 4, 2009.

    + +

    Ethnicity codes are as follows: AA = African American, A = ,  A/E =  X,  As,=  , H = , E = , CC =  and n/a= unknown

    + +

     

    + +

    This track displays exon microarray expression data from the late mid-fetal human brain, generated by the Sestan Lab at Yale University. The data represent 13 brain regions, including nine areas of neocortex, and both hemispheres. By default, arrays are grouped by the median for each brain region, including each neocortical area. Alternatively, neocortex areas can be grouped together; arrays can be grouped by mean; or all 95 arrays can be shown individually.

    + +

    Table 2 | Ontology and nomenclature of analyzed brain regions and neocortical areas.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Period 1Period 2Period 3 - 15
    FC: Frontal cerebral wallFCOFC: Orbital prefrontal cortex
      DFC: Dorsolateral prefrontal cortex
      VFC: Ventrolateral prefrontal cortex
      MFC: Medial prefrontal cortex
      M1C: Primary motor (M1) cortex
    PC: Parietal cerebral wallPCS1C: Primary somatosensory (S1) cortex
      IPC: Posterior inferior parietal cortex
    TC: Temporal cerebral wallTC A1C: Primary auditory (A1) cortex
      STC: Posterior superior temporal cortex
      ITC: Inferior temporal cortex
    OC: Occipital cerebral wallOCV1C: Primary visual (V1) cortex
    HIP: Hippocampal anlageHIPHIP: Hippocampus
      AMY: Amygdala
    VF: Ventral forebrainCGE: Caudal ganglionic eminenceSTR: Striatum
     LGE: Lateral ganglionic eminence 
     MGE: Medial ganglionic eminence 
    DIE: DiencephalonDTH: Dorsal thalamusMD: Mediodorsal nucleus of thalamus
    URL: Upper (rostral) rhombic lipURLCBC: Cerebellar cortex
    diff --git a/general/datasets/Kin_ysm_hip_0711/cases.rtf b/general/datasets/Kin_ysm_hip_0711/cases.rtf new file mode 100644 index 0000000..7b0ef71 --- /dev/null +++ b/general/datasets/Kin_ysm_hip_0711/cases.rtf @@ -0,0 +1,88 @@ +

    RNA was isolated from 13 brain regions, from both hemispheres, of four late mid-fetal human brains, with a total PMI of less than one hour, and hybridized to Affymetrix Human Exon 1.0 ST arrays. Affymetrix CEL files were imported into Partek GS using Robust Multichip Average (RMA) background correction, quantile normalization, and GC content correction. The normalized data were then converted to log-ratios, relative to arrays hybridized with RNA pooled from all regions of the same brain. Signal log-ratios are displayed here as green for negative (underexpression) and red for positive (overexpression).

    + +

    Table 1 | Periods of human development and adulthood as defined in this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    PeriodDescriptionAge
    1Embryonic4≤ Age <8 Postconceptual weeks (PCW)
    2Early fetal8≤ Age <10 PCW
    3Early fetal10≤ Age <13 PCW
    4Early midfetal13≤ Age <16 PCW
    5Early midfetal16≤ Age <19 PCW
    6Late midfetal19≤ Age <24 PCW
    7Late fetal24≤ Age <38 PCW
    8Neonatal and early infancyBirth≤ Age <6 Postnatal months (M)
    9Late infancy6 M≤ Age <12 M
    10Early childhood1≤ Age <6 Postnatal years (Y)
    11Middle and late childhood6≤ Age <12 Y
    12Adolescence12≤ Age <20 Y
    13Young adulthood20≤ Age <40 Y
    14Middle adulthood40≤ Age <60 Y
    15Late adulthood60 Y ≤ Age
    diff --git a/general/datasets/Kin_ysm_hip_0711/citation.rtf b/general/datasets/Kin_ysm_hip_0711/citation.rtf new file mode 100644 index 0000000..d450820 --- /dev/null +++ b/general/datasets/Kin_ysm_hip_0711/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Kin_ysm_hip_0711/contributors.rtf b/general/datasets/Kin_ysm_hip_0711/contributors.rtf new file mode 100644 index 0000000..2dfb810 --- /dev/null +++ b/general/datasets/Kin_ysm_hip_0711/contributors.rtf @@ -0,0 +1 @@ +

    Johnson MBKawasawa YISestan N

    diff --git a/general/datasets/Kin_ysm_hip_0711/experiment-design.rtf b/general/datasets/Kin_ysm_hip_0711/experiment-design.rtf new file mode 100644 index 0000000..963e517 --- /dev/null +++ b/general/datasets/Kin_ysm_hip_0711/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Human Brain Specimens and Tissue Processing This study was carried out using post-mortem human brain specimens collected from the Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed for neuropathological or developmental defects. Details of specimens, tissue processing, microdissection, and neuropathological assessment are given in the Supplemental Experimental Procedures and Table S1. These studies were approved by the Human Investigation Committees of AECOM and Yale University.

    + +

    For initial analysis, all neocortex samples were grouped together. In subsequent analyses, neocortex areas were compared with each other. In most analyses reported, left and right side samples were treated as additional biological replicates.

    diff --git a/general/datasets/Kin_ysm_hip_0711/experiment-type.rtf b/general/datasets/Kin_ysm_hip_0711/experiment-type.rtf new file mode 100644 index 0000000..beed8f4 --- /dev/null +++ b/general/datasets/Kin_ysm_hip_0711/experiment-type.rtf @@ -0,0 +1,9 @@ +Human Brain Specimens and Tissue Processing +This study was carried out using post-mortem human brain specimens collected from the +Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). +Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem +interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed +for neuropathological or developmental defects. Details of specimens, tissue processing, +microdissection, and neuropathological assessment are given in the Supplemental +Experimental Procedures and Table S1. These studies were approved by the Human +Investigation Committees of AECOM and Yale University. \ No newline at end of file diff --git a/general/datasets/Kin_ysm_hip_0711/notes.rtf b/general/datasets/Kin_ysm_hip_0711/notes.rtf new file mode 100644 index 0000000..8d266d3 --- /dev/null +++ b/general/datasets/Kin_ysm_hip_0711/notes.rtf @@ -0,0 +1 @@ +

    The raw microarray data are available via the NCBI Gene Expression Omnibus. Data in GeneNetwork as of July 2015 are only gene-level data. We could also enter exon-level data on request.

    diff --git a/general/datasets/Kin_ysm_hip_0711/processing.rtf b/general/datasets/Kin_ysm_hip_0711/processing.rtf new file mode 100644 index 0000000..1920ca7 --- /dev/null +++ b/general/datasets/Kin_ysm_hip_0711/processing.rtf @@ -0,0 +1 @@ +

    Normalized method: Quantile normalization. Partek Genomics Suite version 6.5 (Partek Incorporated, St. Louis, MO, USA) was used to normalize raw exon array data and to summarize expression of the probe set and transcript cluster. Affymetrix CEL files that passed QC analyses were imported into Partek Genomics Suite using the default Partek settings: RMA background correction114, quantile normalization, mean probe set summarization, and log2-transformation. Only high-quality core probe sets, as defined by Affymetrix, were included. 105,271 core probes (within 62,448 probe sets out of 230,918 core probe sets) contained SNPs defined in the probe group file HuEx-1_0-st-v2.r2-SNPs-Excluded.pgf provided by Affymetrix, which is based on the dbSNP database (version 129, April 2008) and SNPinprobe_1.0 database. we removed SNP-containing probe sets during the normalization step in the Partek program to be control for SNP-related confounding effects. The median of all individual probe sets of one transcript cluster was used as the estimate of gene expression values.

    diff --git a/general/datasets/Kin_ysm_hip_0711/summary.rtf b/general/datasets/Kin_ysm_hip_0711/summary.rtf new file mode 100644 index 0000000..66a2289 --- /dev/null +++ b/general/datasets/Kin_ysm_hip_0711/summary.rtf @@ -0,0 +1 @@ +

    Our understanding of the evolution, formation, and pathological disruption of human brain circuits is impeded by a lack of comprehensive data on the developing brain transcriptome. Thus, we have undertaken whole-genome, exon-level expression analysis of thirteen regions from left and right sides of the mid-fetal human brain, finding 76% of genes to be expressed, and 44% of these to be differentially regulated. These data reveal a large number of specific gene expression and alternative splicing patterns, as well as co-expression networks, associated with distinct regions and neurodevelopmental processes. Of particular relevance to cognitive specializations, we have characterized the transcriptional landscapes of prefrontal cortex and perisylvian speech and language areas, which exhibit a population-level global expression symmetry. Finally, we show that differentially expressed genes are more frequently associated with human-specific evolution of putative cis-regulatory elements. Altogether, these data provide a wealth of novel biological insights into the complex transcriptional and molecular underpinnings of human brain development and evolution.

    diff --git a/general/datasets/Kin_ysm_hip_0711/tissue.rtf b/general/datasets/Kin_ysm_hip_0711/tissue.rtf new file mode 100644 index 0000000..f08a838 --- /dev/null +++ b/general/datasets/Kin_ysm_hip_0711/tissue.rtf @@ -0,0 +1,109 @@ +

    Tissue was microdissected from 13 regions, including 9 distinct neocortical areas, from both left and right sides of four late second trimester human brain specimens. Gene- and exon-level differential expression analyses were performed by mixed model, nested analysis of variance using the XRAY software from Biotique Systems. Further details available in Johnson, Kawasawa, et al., "Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis" Neuron, Volume 62, Issue 4, 2009.

    + +

    Ethnicity codes are as follows: AA = African American, A = ,  A/E =  X,  As,=  , H = , E = , CC =  and n/a= unknown

    + +

     

    + +

    This track displays exon microarray expression data from the late mid-fetal human brain, generated by the Sestan Lab at Yale University. The data represent 13 brain regions, including nine areas of neocortex, and both hemispheres. By default, arrays are grouped by the median for each brain region, including each neocortical area. Alternatively, neocortex areas can be grouped together; arrays can be grouped by mean; or all 95 arrays can be shown individually.

    + +

    Table 2 | Ontology and nomenclature of analyzed brain regions and neocortical areas.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Period 1Period 2Period 3 - 15
    FC: Frontal cerebral wallFCOFC: Orbital prefrontal cortex
      DFC: Dorsolateral prefrontal cortex
      VFC: Ventrolateral prefrontal cortex
      MFC: Medial prefrontal cortex
      M1C: Primary motor (M1) cortex
    PC: Parietal cerebral wallPCS1C: Primary somatosensory (S1) cortex
      IPC: Posterior inferior parietal cortex
    TC: Temporal cerebral wallTC A1C: Primary auditory (A1) cortex
      STC: Posterior superior temporal cortex
      ITC: Inferior temporal cortex
    OC: Occipital cerebral wallOCV1C: Primary visual (V1) cortex
    HIP: Hippocampal anlageHIPHIP: Hippocampus
      AMY: Amygdala
    VF: Ventral forebrainCGE: Caudal ganglionic eminenceSTR: Striatum
     LGE: Lateral ganglionic eminence 
     MGE: Medial ganglionic eminence 
    DIE: DiencephalonDTH: Dorsal thalamusMD: Mediodorsal nucleus of thalamus
    URL: Upper (rostral) rhombic lipURLCBC: Cerebellar cortex
    diff --git a/general/datasets/Kin_ysm_ipc_0711/cases.rtf b/general/datasets/Kin_ysm_ipc_0711/cases.rtf new file mode 100644 index 0000000..7b0ef71 --- /dev/null +++ b/general/datasets/Kin_ysm_ipc_0711/cases.rtf @@ -0,0 +1,88 @@ +

    RNA was isolated from 13 brain regions, from both hemispheres, of four late mid-fetal human brains, with a total PMI of less than one hour, and hybridized to Affymetrix Human Exon 1.0 ST arrays. Affymetrix CEL files were imported into Partek GS using Robust Multichip Average (RMA) background correction, quantile normalization, and GC content correction. The normalized data were then converted to log-ratios, relative to arrays hybridized with RNA pooled from all regions of the same brain. Signal log-ratios are displayed here as green for negative (underexpression) and red for positive (overexpression).

    + +

    Table 1 | Periods of human development and adulthood as defined in this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    PeriodDescriptionAge
    1Embryonic4≤ Age <8 Postconceptual weeks (PCW)
    2Early fetal8≤ Age <10 PCW
    3Early fetal10≤ Age <13 PCW
    4Early midfetal13≤ Age <16 PCW
    5Early midfetal16≤ Age <19 PCW
    6Late midfetal19≤ Age <24 PCW
    7Late fetal24≤ Age <38 PCW
    8Neonatal and early infancyBirth≤ Age <6 Postnatal months (M)
    9Late infancy6 M≤ Age <12 M
    10Early childhood1≤ Age <6 Postnatal years (Y)
    11Middle and late childhood6≤ Age <12 Y
    12Adolescence12≤ Age <20 Y
    13Young adulthood20≤ Age <40 Y
    14Middle adulthood40≤ Age <60 Y
    15Late adulthood60 Y ≤ Age
    diff --git a/general/datasets/Kin_ysm_ipc_0711/citation.rtf b/general/datasets/Kin_ysm_ipc_0711/citation.rtf new file mode 100644 index 0000000..d450820 --- /dev/null +++ b/general/datasets/Kin_ysm_ipc_0711/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Kin_ysm_ipc_0711/contributors.rtf b/general/datasets/Kin_ysm_ipc_0711/contributors.rtf new file mode 100644 index 0000000..2dfb810 --- /dev/null +++ b/general/datasets/Kin_ysm_ipc_0711/contributors.rtf @@ -0,0 +1 @@ +

    Johnson MBKawasawa YISestan N

    diff --git a/general/datasets/Kin_ysm_ipc_0711/experiment-design.rtf b/general/datasets/Kin_ysm_ipc_0711/experiment-design.rtf new file mode 100644 index 0000000..963e517 --- /dev/null +++ b/general/datasets/Kin_ysm_ipc_0711/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Human Brain Specimens and Tissue Processing This study was carried out using post-mortem human brain specimens collected from the Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed for neuropathological or developmental defects. Details of specimens, tissue processing, microdissection, and neuropathological assessment are given in the Supplemental Experimental Procedures and Table S1. These studies were approved by the Human Investigation Committees of AECOM and Yale University.

    + +

    For initial analysis, all neocortex samples were grouped together. In subsequent analyses, neocortex areas were compared with each other. In most analyses reported, left and right side samples were treated as additional biological replicates.

    diff --git a/general/datasets/Kin_ysm_ipc_0711/experiment-type.rtf b/general/datasets/Kin_ysm_ipc_0711/experiment-type.rtf new file mode 100644 index 0000000..beed8f4 --- /dev/null +++ b/general/datasets/Kin_ysm_ipc_0711/experiment-type.rtf @@ -0,0 +1,9 @@ +Human Brain Specimens and Tissue Processing +This study was carried out using post-mortem human brain specimens collected from the +Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). +Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem +interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed +for neuropathological or developmental defects. Details of specimens, tissue processing, +microdissection, and neuropathological assessment are given in the Supplemental +Experimental Procedures and Table S1. These studies were approved by the Human +Investigation Committees of AECOM and Yale University. \ No newline at end of file diff --git a/general/datasets/Kin_ysm_ipc_0711/notes.rtf b/general/datasets/Kin_ysm_ipc_0711/notes.rtf new file mode 100644 index 0000000..8d266d3 --- /dev/null +++ b/general/datasets/Kin_ysm_ipc_0711/notes.rtf @@ -0,0 +1 @@ +

    The raw microarray data are available via the NCBI Gene Expression Omnibus. Data in GeneNetwork as of July 2015 are only gene-level data. We could also enter exon-level data on request.

    diff --git a/general/datasets/Kin_ysm_ipc_0711/processing.rtf b/general/datasets/Kin_ysm_ipc_0711/processing.rtf new file mode 100644 index 0000000..1920ca7 --- /dev/null +++ b/general/datasets/Kin_ysm_ipc_0711/processing.rtf @@ -0,0 +1 @@ +

    Normalized method: Quantile normalization. Partek Genomics Suite version 6.5 (Partek Incorporated, St. Louis, MO, USA) was used to normalize raw exon array data and to summarize expression of the probe set and transcript cluster. Affymetrix CEL files that passed QC analyses were imported into Partek Genomics Suite using the default Partek settings: RMA background correction114, quantile normalization, mean probe set summarization, and log2-transformation. Only high-quality core probe sets, as defined by Affymetrix, were included. 105,271 core probes (within 62,448 probe sets out of 230,918 core probe sets) contained SNPs defined in the probe group file HuEx-1_0-st-v2.r2-SNPs-Excluded.pgf provided by Affymetrix, which is based on the dbSNP database (version 129, April 2008) and SNPinprobe_1.0 database. we removed SNP-containing probe sets during the normalization step in the Partek program to be control for SNP-related confounding effects. The median of all individual probe sets of one transcript cluster was used as the estimate of gene expression values.

    diff --git a/general/datasets/Kin_ysm_ipc_0711/summary.rtf b/general/datasets/Kin_ysm_ipc_0711/summary.rtf new file mode 100644 index 0000000..66a2289 --- /dev/null +++ b/general/datasets/Kin_ysm_ipc_0711/summary.rtf @@ -0,0 +1 @@ +

    Our understanding of the evolution, formation, and pathological disruption of human brain circuits is impeded by a lack of comprehensive data on the developing brain transcriptome. Thus, we have undertaken whole-genome, exon-level expression analysis of thirteen regions from left and right sides of the mid-fetal human brain, finding 76% of genes to be expressed, and 44% of these to be differentially regulated. These data reveal a large number of specific gene expression and alternative splicing patterns, as well as co-expression networks, associated with distinct regions and neurodevelopmental processes. Of particular relevance to cognitive specializations, we have characterized the transcriptional landscapes of prefrontal cortex and perisylvian speech and language areas, which exhibit a population-level global expression symmetry. Finally, we show that differentially expressed genes are more frequently associated with human-specific evolution of putative cis-regulatory elements. Altogether, these data provide a wealth of novel biological insights into the complex transcriptional and molecular underpinnings of human brain development and evolution.

    diff --git a/general/datasets/Kin_ysm_ipc_0711/tissue.rtf b/general/datasets/Kin_ysm_ipc_0711/tissue.rtf new file mode 100644 index 0000000..f08a838 --- /dev/null +++ b/general/datasets/Kin_ysm_ipc_0711/tissue.rtf @@ -0,0 +1,109 @@ +

    Tissue was microdissected from 13 regions, including 9 distinct neocortical areas, from both left and right sides of four late second trimester human brain specimens. Gene- and exon-level differential expression analyses were performed by mixed model, nested analysis of variance using the XRAY software from Biotique Systems. Further details available in Johnson, Kawasawa, et al., "Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis" Neuron, Volume 62, Issue 4, 2009.

    + +

    Ethnicity codes are as follows: AA = African American, A = ,  A/E =  X,  As,=  , H = , E = , CC =  and n/a= unknown

    + +

     

    + +

    This track displays exon microarray expression data from the late mid-fetal human brain, generated by the Sestan Lab at Yale University. The data represent 13 brain regions, including nine areas of neocortex, and both hemispheres. By default, arrays are grouped by the median for each brain region, including each neocortical area. Alternatively, neocortex areas can be grouped together; arrays can be grouped by mean; or all 95 arrays can be shown individually.

    + +

    Table 2 | Ontology and nomenclature of analyzed brain regions and neocortical areas.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Period 1Period 2Period 3 - 15
    FC: Frontal cerebral wallFCOFC: Orbital prefrontal cortex
      DFC: Dorsolateral prefrontal cortex
      VFC: Ventrolateral prefrontal cortex
      MFC: Medial prefrontal cortex
      M1C: Primary motor (M1) cortex
    PC: Parietal cerebral wallPCS1C: Primary somatosensory (S1) cortex
      IPC: Posterior inferior parietal cortex
    TC: Temporal cerebral wallTC A1C: Primary auditory (A1) cortex
      STC: Posterior superior temporal cortex
      ITC: Inferior temporal cortex
    OC: Occipital cerebral wallOCV1C: Primary visual (V1) cortex
    HIP: Hippocampal anlageHIPHIP: Hippocampus
      AMY: Amygdala
    VF: Ventral forebrainCGE: Caudal ganglionic eminenceSTR: Striatum
     LGE: Lateral ganglionic eminence 
     MGE: Medial ganglionic eminence 
    DIE: DiencephalonDTH: Dorsal thalamusMD: Mediodorsal nucleus of thalamus
    URL: Upper (rostral) rhombic lipURLCBC: Cerebellar cortex
    diff --git a/general/datasets/Kin_ysm_itc_0711/cases.rtf b/general/datasets/Kin_ysm_itc_0711/cases.rtf new file mode 100644 index 0000000..7b0ef71 --- /dev/null +++ b/general/datasets/Kin_ysm_itc_0711/cases.rtf @@ -0,0 +1,88 @@ +

    RNA was isolated from 13 brain regions, from both hemispheres, of four late mid-fetal human brains, with a total PMI of less than one hour, and hybridized to Affymetrix Human Exon 1.0 ST arrays. Affymetrix CEL files were imported into Partek GS using Robust Multichip Average (RMA) background correction, quantile normalization, and GC content correction. The normalized data were then converted to log-ratios, relative to arrays hybridized with RNA pooled from all regions of the same brain. Signal log-ratios are displayed here as green for negative (underexpression) and red for positive (overexpression).

    + +

    Table 1 | Periods of human development and adulthood as defined in this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    PeriodDescriptionAge
    1Embryonic4≤ Age <8 Postconceptual weeks (PCW)
    2Early fetal8≤ Age <10 PCW
    3Early fetal10≤ Age <13 PCW
    4Early midfetal13≤ Age <16 PCW
    5Early midfetal16≤ Age <19 PCW
    6Late midfetal19≤ Age <24 PCW
    7Late fetal24≤ Age <38 PCW
    8Neonatal and early infancyBirth≤ Age <6 Postnatal months (M)
    9Late infancy6 M≤ Age <12 M
    10Early childhood1≤ Age <6 Postnatal years (Y)
    11Middle and late childhood6≤ Age <12 Y
    12Adolescence12≤ Age <20 Y
    13Young adulthood20≤ Age <40 Y
    14Middle adulthood40≤ Age <60 Y
    15Late adulthood60 Y ≤ Age
    diff --git a/general/datasets/Kin_ysm_itc_0711/citation.rtf b/general/datasets/Kin_ysm_itc_0711/citation.rtf new file mode 100644 index 0000000..d450820 --- /dev/null +++ b/general/datasets/Kin_ysm_itc_0711/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Kin_ysm_itc_0711/contributors.rtf b/general/datasets/Kin_ysm_itc_0711/contributors.rtf new file mode 100644 index 0000000..2dfb810 --- /dev/null +++ b/general/datasets/Kin_ysm_itc_0711/contributors.rtf @@ -0,0 +1 @@ +

    Johnson MBKawasawa YISestan N

    diff --git a/general/datasets/Kin_ysm_itc_0711/experiment-design.rtf b/general/datasets/Kin_ysm_itc_0711/experiment-design.rtf new file mode 100644 index 0000000..963e517 --- /dev/null +++ b/general/datasets/Kin_ysm_itc_0711/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Human Brain Specimens and Tissue Processing This study was carried out using post-mortem human brain specimens collected from the Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed for neuropathological or developmental defects. Details of specimens, tissue processing, microdissection, and neuropathological assessment are given in the Supplemental Experimental Procedures and Table S1. These studies were approved by the Human Investigation Committees of AECOM and Yale University.

    + +

    For initial analysis, all neocortex samples were grouped together. In subsequent analyses, neocortex areas were compared with each other. In most analyses reported, left and right side samples were treated as additional biological replicates.

    diff --git a/general/datasets/Kin_ysm_itc_0711/experiment-type.rtf b/general/datasets/Kin_ysm_itc_0711/experiment-type.rtf new file mode 100644 index 0000000..beed8f4 --- /dev/null +++ b/general/datasets/Kin_ysm_itc_0711/experiment-type.rtf @@ -0,0 +1,9 @@ +Human Brain Specimens and Tissue Processing +This study was carried out using post-mortem human brain specimens collected from the +Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). +Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem +interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed +for neuropathological or developmental defects. Details of specimens, tissue processing, +microdissection, and neuropathological assessment are given in the Supplemental +Experimental Procedures and Table S1. These studies were approved by the Human +Investigation Committees of AECOM and Yale University. \ No newline at end of file diff --git a/general/datasets/Kin_ysm_itc_0711/notes.rtf b/general/datasets/Kin_ysm_itc_0711/notes.rtf new file mode 100644 index 0000000..8d266d3 --- /dev/null +++ b/general/datasets/Kin_ysm_itc_0711/notes.rtf @@ -0,0 +1 @@ +

    The raw microarray data are available via the NCBI Gene Expression Omnibus. Data in GeneNetwork as of July 2015 are only gene-level data. We could also enter exon-level data on request.

    diff --git a/general/datasets/Kin_ysm_itc_0711/processing.rtf b/general/datasets/Kin_ysm_itc_0711/processing.rtf new file mode 100644 index 0000000..1920ca7 --- /dev/null +++ b/general/datasets/Kin_ysm_itc_0711/processing.rtf @@ -0,0 +1 @@ +

    Normalized method: Quantile normalization. Partek Genomics Suite version 6.5 (Partek Incorporated, St. Louis, MO, USA) was used to normalize raw exon array data and to summarize expression of the probe set and transcript cluster. Affymetrix CEL files that passed QC analyses were imported into Partek Genomics Suite using the default Partek settings: RMA background correction114, quantile normalization, mean probe set summarization, and log2-transformation. Only high-quality core probe sets, as defined by Affymetrix, were included. 105,271 core probes (within 62,448 probe sets out of 230,918 core probe sets) contained SNPs defined in the probe group file HuEx-1_0-st-v2.r2-SNPs-Excluded.pgf provided by Affymetrix, which is based on the dbSNP database (version 129, April 2008) and SNPinprobe_1.0 database. we removed SNP-containing probe sets during the normalization step in the Partek program to be control for SNP-related confounding effects. The median of all individual probe sets of one transcript cluster was used as the estimate of gene expression values.

    diff --git a/general/datasets/Kin_ysm_itc_0711/summary.rtf b/general/datasets/Kin_ysm_itc_0711/summary.rtf new file mode 100644 index 0000000..66a2289 --- /dev/null +++ b/general/datasets/Kin_ysm_itc_0711/summary.rtf @@ -0,0 +1 @@ +

    Our understanding of the evolution, formation, and pathological disruption of human brain circuits is impeded by a lack of comprehensive data on the developing brain transcriptome. Thus, we have undertaken whole-genome, exon-level expression analysis of thirteen regions from left and right sides of the mid-fetal human brain, finding 76% of genes to be expressed, and 44% of these to be differentially regulated. These data reveal a large number of specific gene expression and alternative splicing patterns, as well as co-expression networks, associated with distinct regions and neurodevelopmental processes. Of particular relevance to cognitive specializations, we have characterized the transcriptional landscapes of prefrontal cortex and perisylvian speech and language areas, which exhibit a population-level global expression symmetry. Finally, we show that differentially expressed genes are more frequently associated with human-specific evolution of putative cis-regulatory elements. Altogether, these data provide a wealth of novel biological insights into the complex transcriptional and molecular underpinnings of human brain development and evolution.

    diff --git a/general/datasets/Kin_ysm_itc_0711/tissue.rtf b/general/datasets/Kin_ysm_itc_0711/tissue.rtf new file mode 100644 index 0000000..f08a838 --- /dev/null +++ b/general/datasets/Kin_ysm_itc_0711/tissue.rtf @@ -0,0 +1,109 @@ +

    Tissue was microdissected from 13 regions, including 9 distinct neocortical areas, from both left and right sides of four late second trimester human brain specimens. Gene- and exon-level differential expression analyses were performed by mixed model, nested analysis of variance using the XRAY software from Biotique Systems. Further details available in Johnson, Kawasawa, et al., "Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis" Neuron, Volume 62, Issue 4, 2009.

    + +

    Ethnicity codes are as follows: AA = African American, A = ,  A/E =  X,  As,=  , H = , E = , CC =  and n/a= unknown

    + +

     

    + +

    This track displays exon microarray expression data from the late mid-fetal human brain, generated by the Sestan Lab at Yale University. The data represent 13 brain regions, including nine areas of neocortex, and both hemispheres. By default, arrays are grouped by the median for each brain region, including each neocortical area. Alternatively, neocortex areas can be grouped together; arrays can be grouped by mean; or all 95 arrays can be shown individually.

    + +

    Table 2 | Ontology and nomenclature of analyzed brain regions and neocortical areas.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Period 1Period 2Period 3 - 15
    FC: Frontal cerebral wallFCOFC: Orbital prefrontal cortex
      DFC: Dorsolateral prefrontal cortex
      VFC: Ventrolateral prefrontal cortex
      MFC: Medial prefrontal cortex
      M1C: Primary motor (M1) cortex
    PC: Parietal cerebral wallPCS1C: Primary somatosensory (S1) cortex
      IPC: Posterior inferior parietal cortex
    TC: Temporal cerebral wallTC A1C: Primary auditory (A1) cortex
      STC: Posterior superior temporal cortex
      ITC: Inferior temporal cortex
    OC: Occipital cerebral wallOCV1C: Primary visual (V1) cortex
    HIP: Hippocampal anlageHIPHIP: Hippocampus
      AMY: Amygdala
    VF: Ventral forebrainCGE: Caudal ganglionic eminenceSTR: Striatum
     LGE: Lateral ganglionic eminence 
     MGE: Medial ganglionic eminence 
    DIE: DiencephalonDTH: Dorsal thalamusMD: Mediodorsal nucleus of thalamus
    URL: Upper (rostral) rhombic lipURLCBC: Cerebellar cortex
    diff --git a/general/datasets/Kin_ysm_m1c_0711/cases.rtf b/general/datasets/Kin_ysm_m1c_0711/cases.rtf new file mode 100644 index 0000000..7b0ef71 --- /dev/null +++ b/general/datasets/Kin_ysm_m1c_0711/cases.rtf @@ -0,0 +1,88 @@ +

    RNA was isolated from 13 brain regions, from both hemispheres, of four late mid-fetal human brains, with a total PMI of less than one hour, and hybridized to Affymetrix Human Exon 1.0 ST arrays. Affymetrix CEL files were imported into Partek GS using Robust Multichip Average (RMA) background correction, quantile normalization, and GC content correction. The normalized data were then converted to log-ratios, relative to arrays hybridized with RNA pooled from all regions of the same brain. Signal log-ratios are displayed here as green for negative (underexpression) and red for positive (overexpression).

    + +

    Table 1 | Periods of human development and adulthood as defined in this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    PeriodDescriptionAge
    1Embryonic4≤ Age <8 Postconceptual weeks (PCW)
    2Early fetal8≤ Age <10 PCW
    3Early fetal10≤ Age <13 PCW
    4Early midfetal13≤ Age <16 PCW
    5Early midfetal16≤ Age <19 PCW
    6Late midfetal19≤ Age <24 PCW
    7Late fetal24≤ Age <38 PCW
    8Neonatal and early infancyBirth≤ Age <6 Postnatal months (M)
    9Late infancy6 M≤ Age <12 M
    10Early childhood1≤ Age <6 Postnatal years (Y)
    11Middle and late childhood6≤ Age <12 Y
    12Adolescence12≤ Age <20 Y
    13Young adulthood20≤ Age <40 Y
    14Middle adulthood40≤ Age <60 Y
    15Late adulthood60 Y ≤ Age
    diff --git a/general/datasets/Kin_ysm_m1c_0711/citation.rtf b/general/datasets/Kin_ysm_m1c_0711/citation.rtf new file mode 100644 index 0000000..d450820 --- /dev/null +++ b/general/datasets/Kin_ysm_m1c_0711/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Kin_ysm_m1c_0711/contributors.rtf b/general/datasets/Kin_ysm_m1c_0711/contributors.rtf new file mode 100644 index 0000000..2dfb810 --- /dev/null +++ b/general/datasets/Kin_ysm_m1c_0711/contributors.rtf @@ -0,0 +1 @@ +

    Johnson MBKawasawa YISestan N

    diff --git a/general/datasets/Kin_ysm_m1c_0711/experiment-design.rtf b/general/datasets/Kin_ysm_m1c_0711/experiment-design.rtf new file mode 100644 index 0000000..963e517 --- /dev/null +++ b/general/datasets/Kin_ysm_m1c_0711/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Human Brain Specimens and Tissue Processing This study was carried out using post-mortem human brain specimens collected from the Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed for neuropathological or developmental defects. Details of specimens, tissue processing, microdissection, and neuropathological assessment are given in the Supplemental Experimental Procedures and Table S1. These studies were approved by the Human Investigation Committees of AECOM and Yale University.

    + +

    For initial analysis, all neocortex samples were grouped together. In subsequent analyses, neocortex areas were compared with each other. In most analyses reported, left and right side samples were treated as additional biological replicates.

    diff --git a/general/datasets/Kin_ysm_m1c_0711/experiment-type.rtf b/general/datasets/Kin_ysm_m1c_0711/experiment-type.rtf new file mode 100644 index 0000000..beed8f4 --- /dev/null +++ b/general/datasets/Kin_ysm_m1c_0711/experiment-type.rtf @@ -0,0 +1,9 @@ +Human Brain Specimens and Tissue Processing +This study was carried out using post-mortem human brain specimens collected from the +Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). +Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem +interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed +for neuropathological or developmental defects. Details of specimens, tissue processing, +microdissection, and neuropathological assessment are given in the Supplemental +Experimental Procedures and Table S1. These studies were approved by the Human +Investigation Committees of AECOM and Yale University. \ No newline at end of file diff --git a/general/datasets/Kin_ysm_m1c_0711/notes.rtf b/general/datasets/Kin_ysm_m1c_0711/notes.rtf new file mode 100644 index 0000000..8d266d3 --- /dev/null +++ b/general/datasets/Kin_ysm_m1c_0711/notes.rtf @@ -0,0 +1 @@ +

    The raw microarray data are available via the NCBI Gene Expression Omnibus. Data in GeneNetwork as of July 2015 are only gene-level data. We could also enter exon-level data on request.

    diff --git a/general/datasets/Kin_ysm_m1c_0711/processing.rtf b/general/datasets/Kin_ysm_m1c_0711/processing.rtf new file mode 100644 index 0000000..1920ca7 --- /dev/null +++ b/general/datasets/Kin_ysm_m1c_0711/processing.rtf @@ -0,0 +1 @@ +

    Normalized method: Quantile normalization. Partek Genomics Suite version 6.5 (Partek Incorporated, St. Louis, MO, USA) was used to normalize raw exon array data and to summarize expression of the probe set and transcript cluster. Affymetrix CEL files that passed QC analyses were imported into Partek Genomics Suite using the default Partek settings: RMA background correction114, quantile normalization, mean probe set summarization, and log2-transformation. Only high-quality core probe sets, as defined by Affymetrix, were included. 105,271 core probes (within 62,448 probe sets out of 230,918 core probe sets) contained SNPs defined in the probe group file HuEx-1_0-st-v2.r2-SNPs-Excluded.pgf provided by Affymetrix, which is based on the dbSNP database (version 129, April 2008) and SNPinprobe_1.0 database. we removed SNP-containing probe sets during the normalization step in the Partek program to be control for SNP-related confounding effects. The median of all individual probe sets of one transcript cluster was used as the estimate of gene expression values.

    diff --git a/general/datasets/Kin_ysm_m1c_0711/summary.rtf b/general/datasets/Kin_ysm_m1c_0711/summary.rtf new file mode 100644 index 0000000..66a2289 --- /dev/null +++ b/general/datasets/Kin_ysm_m1c_0711/summary.rtf @@ -0,0 +1 @@ +

    Our understanding of the evolution, formation, and pathological disruption of human brain circuits is impeded by a lack of comprehensive data on the developing brain transcriptome. Thus, we have undertaken whole-genome, exon-level expression analysis of thirteen regions from left and right sides of the mid-fetal human brain, finding 76% of genes to be expressed, and 44% of these to be differentially regulated. These data reveal a large number of specific gene expression and alternative splicing patterns, as well as co-expression networks, associated with distinct regions and neurodevelopmental processes. Of particular relevance to cognitive specializations, we have characterized the transcriptional landscapes of prefrontal cortex and perisylvian speech and language areas, which exhibit a population-level global expression symmetry. Finally, we show that differentially expressed genes are more frequently associated with human-specific evolution of putative cis-regulatory elements. Altogether, these data provide a wealth of novel biological insights into the complex transcriptional and molecular underpinnings of human brain development and evolution.

    diff --git a/general/datasets/Kin_ysm_m1c_0711/tissue.rtf b/general/datasets/Kin_ysm_m1c_0711/tissue.rtf new file mode 100644 index 0000000..f08a838 --- /dev/null +++ b/general/datasets/Kin_ysm_m1c_0711/tissue.rtf @@ -0,0 +1,109 @@ +

    Tissue was microdissected from 13 regions, including 9 distinct neocortical areas, from both left and right sides of four late second trimester human brain specimens. Gene- and exon-level differential expression analyses were performed by mixed model, nested analysis of variance using the XRAY software from Biotique Systems. Further details available in Johnson, Kawasawa, et al., "Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis" Neuron, Volume 62, Issue 4, 2009.

    + +

    Ethnicity codes are as follows: AA = African American, A = ,  A/E =  X,  As,=  , H = , E = , CC =  and n/a= unknown

    + +

     

    + +

    This track displays exon microarray expression data from the late mid-fetal human brain, generated by the Sestan Lab at Yale University. The data represent 13 brain regions, including nine areas of neocortex, and both hemispheres. By default, arrays are grouped by the median for each brain region, including each neocortical area. Alternatively, neocortex areas can be grouped together; arrays can be grouped by mean; or all 95 arrays can be shown individually.

    + +

    Table 2 | Ontology and nomenclature of analyzed brain regions and neocortical areas.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Period 1Period 2Period 3 - 15
    FC: Frontal cerebral wallFCOFC: Orbital prefrontal cortex
      DFC: Dorsolateral prefrontal cortex
      VFC: Ventrolateral prefrontal cortex
      MFC: Medial prefrontal cortex
      M1C: Primary motor (M1) cortex
    PC: Parietal cerebral wallPCS1C: Primary somatosensory (S1) cortex
      IPC: Posterior inferior parietal cortex
    TC: Temporal cerebral wallTC A1C: Primary auditory (A1) cortex
      STC: Posterior superior temporal cortex
      ITC: Inferior temporal cortex
    OC: Occipital cerebral wallOCV1C: Primary visual (V1) cortex
    HIP: Hippocampal anlageHIPHIP: Hippocampus
      AMY: Amygdala
    VF: Ventral forebrainCGE: Caudal ganglionic eminenceSTR: Striatum
     LGE: Lateral ganglionic eminence 
     MGE: Medial ganglionic eminence 
    DIE: DiencephalonDTH: Dorsal thalamusMD: Mediodorsal nucleus of thalamus
    URL: Upper (rostral) rhombic lipURLCBC: Cerebellar cortex
    diff --git a/general/datasets/Kin_ysm_md_0711/cases.rtf b/general/datasets/Kin_ysm_md_0711/cases.rtf new file mode 100644 index 0000000..7b0ef71 --- /dev/null +++ b/general/datasets/Kin_ysm_md_0711/cases.rtf @@ -0,0 +1,88 @@ +

    RNA was isolated from 13 brain regions, from both hemispheres, of four late mid-fetal human brains, with a total PMI of less than one hour, and hybridized to Affymetrix Human Exon 1.0 ST arrays. Affymetrix CEL files were imported into Partek GS using Robust Multichip Average (RMA) background correction, quantile normalization, and GC content correction. The normalized data were then converted to log-ratios, relative to arrays hybridized with RNA pooled from all regions of the same brain. Signal log-ratios are displayed here as green for negative (underexpression) and red for positive (overexpression).

    + +

    Table 1 | Periods of human development and adulthood as defined in this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    PeriodDescriptionAge
    1Embryonic4≤ Age <8 Postconceptual weeks (PCW)
    2Early fetal8≤ Age <10 PCW
    3Early fetal10≤ Age <13 PCW
    4Early midfetal13≤ Age <16 PCW
    5Early midfetal16≤ Age <19 PCW
    6Late midfetal19≤ Age <24 PCW
    7Late fetal24≤ Age <38 PCW
    8Neonatal and early infancyBirth≤ Age <6 Postnatal months (M)
    9Late infancy6 M≤ Age <12 M
    10Early childhood1≤ Age <6 Postnatal years (Y)
    11Middle and late childhood6≤ Age <12 Y
    12Adolescence12≤ Age <20 Y
    13Young adulthood20≤ Age <40 Y
    14Middle adulthood40≤ Age <60 Y
    15Late adulthood60 Y ≤ Age
    diff --git a/general/datasets/Kin_ysm_md_0711/citation.rtf b/general/datasets/Kin_ysm_md_0711/citation.rtf new file mode 100644 index 0000000..d450820 --- /dev/null +++ b/general/datasets/Kin_ysm_md_0711/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Kin_ysm_md_0711/contributors.rtf b/general/datasets/Kin_ysm_md_0711/contributors.rtf new file mode 100644 index 0000000..2dfb810 --- /dev/null +++ b/general/datasets/Kin_ysm_md_0711/contributors.rtf @@ -0,0 +1 @@ +

    Johnson MBKawasawa YISestan N

    diff --git a/general/datasets/Kin_ysm_md_0711/experiment-design.rtf b/general/datasets/Kin_ysm_md_0711/experiment-design.rtf new file mode 100644 index 0000000..963e517 --- /dev/null +++ b/general/datasets/Kin_ysm_md_0711/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Human Brain Specimens and Tissue Processing This study was carried out using post-mortem human brain specimens collected from the Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed for neuropathological or developmental defects. Details of specimens, tissue processing, microdissection, and neuropathological assessment are given in the Supplemental Experimental Procedures and Table S1. These studies were approved by the Human Investigation Committees of AECOM and Yale University.

    + +

    For initial analysis, all neocortex samples were grouped together. In subsequent analyses, neocortex areas were compared with each other. In most analyses reported, left and right side samples were treated as additional biological replicates.

    diff --git a/general/datasets/Kin_ysm_md_0711/experiment-type.rtf b/general/datasets/Kin_ysm_md_0711/experiment-type.rtf new file mode 100644 index 0000000..beed8f4 --- /dev/null +++ b/general/datasets/Kin_ysm_md_0711/experiment-type.rtf @@ -0,0 +1,9 @@ +Human Brain Specimens and Tissue Processing +This study was carried out using post-mortem human brain specimens collected from the +Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). +Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem +interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed +for neuropathological or developmental defects. Details of specimens, tissue processing, +microdissection, and neuropathological assessment are given in the Supplemental +Experimental Procedures and Table S1. These studies were approved by the Human +Investigation Committees of AECOM and Yale University. \ No newline at end of file diff --git a/general/datasets/Kin_ysm_md_0711/notes.rtf b/general/datasets/Kin_ysm_md_0711/notes.rtf new file mode 100644 index 0000000..8d266d3 --- /dev/null +++ b/general/datasets/Kin_ysm_md_0711/notes.rtf @@ -0,0 +1 @@ +

    The raw microarray data are available via the NCBI Gene Expression Omnibus. Data in GeneNetwork as of July 2015 are only gene-level data. We could also enter exon-level data on request.

    diff --git a/general/datasets/Kin_ysm_md_0711/processing.rtf b/general/datasets/Kin_ysm_md_0711/processing.rtf new file mode 100644 index 0000000..1920ca7 --- /dev/null +++ b/general/datasets/Kin_ysm_md_0711/processing.rtf @@ -0,0 +1 @@ +

    Normalized method: Quantile normalization. Partek Genomics Suite version 6.5 (Partek Incorporated, St. Louis, MO, USA) was used to normalize raw exon array data and to summarize expression of the probe set and transcript cluster. Affymetrix CEL files that passed QC analyses were imported into Partek Genomics Suite using the default Partek settings: RMA background correction114, quantile normalization, mean probe set summarization, and log2-transformation. Only high-quality core probe sets, as defined by Affymetrix, were included. 105,271 core probes (within 62,448 probe sets out of 230,918 core probe sets) contained SNPs defined in the probe group file HuEx-1_0-st-v2.r2-SNPs-Excluded.pgf provided by Affymetrix, which is based on the dbSNP database (version 129, April 2008) and SNPinprobe_1.0 database. we removed SNP-containing probe sets during the normalization step in the Partek program to be control for SNP-related confounding effects. The median of all individual probe sets of one transcript cluster was used as the estimate of gene expression values.

    diff --git a/general/datasets/Kin_ysm_md_0711/summary.rtf b/general/datasets/Kin_ysm_md_0711/summary.rtf new file mode 100644 index 0000000..66a2289 --- /dev/null +++ b/general/datasets/Kin_ysm_md_0711/summary.rtf @@ -0,0 +1 @@ +

    Our understanding of the evolution, formation, and pathological disruption of human brain circuits is impeded by a lack of comprehensive data on the developing brain transcriptome. Thus, we have undertaken whole-genome, exon-level expression analysis of thirteen regions from left and right sides of the mid-fetal human brain, finding 76% of genes to be expressed, and 44% of these to be differentially regulated. These data reveal a large number of specific gene expression and alternative splicing patterns, as well as co-expression networks, associated with distinct regions and neurodevelopmental processes. Of particular relevance to cognitive specializations, we have characterized the transcriptional landscapes of prefrontal cortex and perisylvian speech and language areas, which exhibit a population-level global expression symmetry. Finally, we show that differentially expressed genes are more frequently associated with human-specific evolution of putative cis-regulatory elements. Altogether, these data provide a wealth of novel biological insights into the complex transcriptional and molecular underpinnings of human brain development and evolution.

    diff --git a/general/datasets/Kin_ysm_md_0711/tissue.rtf b/general/datasets/Kin_ysm_md_0711/tissue.rtf new file mode 100644 index 0000000..f08a838 --- /dev/null +++ b/general/datasets/Kin_ysm_md_0711/tissue.rtf @@ -0,0 +1,109 @@ +

    Tissue was microdissected from 13 regions, including 9 distinct neocortical areas, from both left and right sides of four late second trimester human brain specimens. Gene- and exon-level differential expression analyses were performed by mixed model, nested analysis of variance using the XRAY software from Biotique Systems. Further details available in Johnson, Kawasawa, et al., "Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis" Neuron, Volume 62, Issue 4, 2009.

    + +

    Ethnicity codes are as follows: AA = African American, A = ,  A/E =  X,  As,=  , H = , E = , CC =  and n/a= unknown

    + +

     

    + +

    This track displays exon microarray expression data from the late mid-fetal human brain, generated by the Sestan Lab at Yale University. The data represent 13 brain regions, including nine areas of neocortex, and both hemispheres. By default, arrays are grouped by the median for each brain region, including each neocortical area. Alternatively, neocortex areas can be grouped together; arrays can be grouped by mean; or all 95 arrays can be shown individually.

    + +

    Table 2 | Ontology and nomenclature of analyzed brain regions and neocortical areas.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Period 1Period 2Period 3 - 15
    FC: Frontal cerebral wallFCOFC: Orbital prefrontal cortex
      DFC: Dorsolateral prefrontal cortex
      VFC: Ventrolateral prefrontal cortex
      MFC: Medial prefrontal cortex
      M1C: Primary motor (M1) cortex
    PC: Parietal cerebral wallPCS1C: Primary somatosensory (S1) cortex
      IPC: Posterior inferior parietal cortex
    TC: Temporal cerebral wallTC A1C: Primary auditory (A1) cortex
      STC: Posterior superior temporal cortex
      ITC: Inferior temporal cortex
    OC: Occipital cerebral wallOCV1C: Primary visual (V1) cortex
    HIP: Hippocampal anlageHIPHIP: Hippocampus
      AMY: Amygdala
    VF: Ventral forebrainCGE: Caudal ganglionic eminenceSTR: Striatum
     LGE: Lateral ganglionic eminence 
     MGE: Medial ganglionic eminence 
    DIE: DiencephalonDTH: Dorsal thalamusMD: Mediodorsal nucleus of thalamus
    URL: Upper (rostral) rhombic lipURLCBC: Cerebellar cortex
    diff --git a/general/datasets/Kin_ysm_mfc_0711/cases.rtf b/general/datasets/Kin_ysm_mfc_0711/cases.rtf new file mode 100644 index 0000000..7b0ef71 --- /dev/null +++ b/general/datasets/Kin_ysm_mfc_0711/cases.rtf @@ -0,0 +1,88 @@ +

    RNA was isolated from 13 brain regions, from both hemispheres, of four late mid-fetal human brains, with a total PMI of less than one hour, and hybridized to Affymetrix Human Exon 1.0 ST arrays. Affymetrix CEL files were imported into Partek GS using Robust Multichip Average (RMA) background correction, quantile normalization, and GC content correction. The normalized data were then converted to log-ratios, relative to arrays hybridized with RNA pooled from all regions of the same brain. Signal log-ratios are displayed here as green for negative (underexpression) and red for positive (overexpression).

    + +

    Table 1 | Periods of human development and adulthood as defined in this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    PeriodDescriptionAge
    1Embryonic4≤ Age <8 Postconceptual weeks (PCW)
    2Early fetal8≤ Age <10 PCW
    3Early fetal10≤ Age <13 PCW
    4Early midfetal13≤ Age <16 PCW
    5Early midfetal16≤ Age <19 PCW
    6Late midfetal19≤ Age <24 PCW
    7Late fetal24≤ Age <38 PCW
    8Neonatal and early infancyBirth≤ Age <6 Postnatal months (M)
    9Late infancy6 M≤ Age <12 M
    10Early childhood1≤ Age <6 Postnatal years (Y)
    11Middle and late childhood6≤ Age <12 Y
    12Adolescence12≤ Age <20 Y
    13Young adulthood20≤ Age <40 Y
    14Middle adulthood40≤ Age <60 Y
    15Late adulthood60 Y ≤ Age
    diff --git a/general/datasets/Kin_ysm_mfc_0711/citation.rtf b/general/datasets/Kin_ysm_mfc_0711/citation.rtf new file mode 100644 index 0000000..d450820 --- /dev/null +++ b/general/datasets/Kin_ysm_mfc_0711/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Kin_ysm_mfc_0711/contributors.rtf b/general/datasets/Kin_ysm_mfc_0711/contributors.rtf new file mode 100644 index 0000000..2dfb810 --- /dev/null +++ b/general/datasets/Kin_ysm_mfc_0711/contributors.rtf @@ -0,0 +1 @@ +

    Johnson MBKawasawa YISestan N

    diff --git a/general/datasets/Kin_ysm_mfc_0711/experiment-design.rtf b/general/datasets/Kin_ysm_mfc_0711/experiment-design.rtf new file mode 100644 index 0000000..963e517 --- /dev/null +++ b/general/datasets/Kin_ysm_mfc_0711/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Human Brain Specimens and Tissue Processing This study was carried out using post-mortem human brain specimens collected from the Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed for neuropathological or developmental defects. Details of specimens, tissue processing, microdissection, and neuropathological assessment are given in the Supplemental Experimental Procedures and Table S1. These studies were approved by the Human Investigation Committees of AECOM and Yale University.

    + +

    For initial analysis, all neocortex samples were grouped together. In subsequent analyses, neocortex areas were compared with each other. In most analyses reported, left and right side samples were treated as additional biological replicates.

    diff --git a/general/datasets/Kin_ysm_mfc_0711/experiment-type.rtf b/general/datasets/Kin_ysm_mfc_0711/experiment-type.rtf new file mode 100644 index 0000000..beed8f4 --- /dev/null +++ b/general/datasets/Kin_ysm_mfc_0711/experiment-type.rtf @@ -0,0 +1,9 @@ +Human Brain Specimens and Tissue Processing +This study was carried out using post-mortem human brain specimens collected from the +Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). +Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem +interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed +for neuropathological or developmental defects. Details of specimens, tissue processing, +microdissection, and neuropathological assessment are given in the Supplemental +Experimental Procedures and Table S1. These studies were approved by the Human +Investigation Committees of AECOM and Yale University. \ No newline at end of file diff --git a/general/datasets/Kin_ysm_mfc_0711/notes.rtf b/general/datasets/Kin_ysm_mfc_0711/notes.rtf new file mode 100644 index 0000000..8d266d3 --- /dev/null +++ b/general/datasets/Kin_ysm_mfc_0711/notes.rtf @@ -0,0 +1 @@ +

    The raw microarray data are available via the NCBI Gene Expression Omnibus. Data in GeneNetwork as of July 2015 are only gene-level data. We could also enter exon-level data on request.

    diff --git a/general/datasets/Kin_ysm_mfc_0711/processing.rtf b/general/datasets/Kin_ysm_mfc_0711/processing.rtf new file mode 100644 index 0000000..1920ca7 --- /dev/null +++ b/general/datasets/Kin_ysm_mfc_0711/processing.rtf @@ -0,0 +1 @@ +

    Normalized method: Quantile normalization. Partek Genomics Suite version 6.5 (Partek Incorporated, St. Louis, MO, USA) was used to normalize raw exon array data and to summarize expression of the probe set and transcript cluster. Affymetrix CEL files that passed QC analyses were imported into Partek Genomics Suite using the default Partek settings: RMA background correction114, quantile normalization, mean probe set summarization, and log2-transformation. Only high-quality core probe sets, as defined by Affymetrix, were included. 105,271 core probes (within 62,448 probe sets out of 230,918 core probe sets) contained SNPs defined in the probe group file HuEx-1_0-st-v2.r2-SNPs-Excluded.pgf provided by Affymetrix, which is based on the dbSNP database (version 129, April 2008) and SNPinprobe_1.0 database. we removed SNP-containing probe sets during the normalization step in the Partek program to be control for SNP-related confounding effects. The median of all individual probe sets of one transcript cluster was used as the estimate of gene expression values.

    diff --git a/general/datasets/Kin_ysm_mfc_0711/summary.rtf b/general/datasets/Kin_ysm_mfc_0711/summary.rtf new file mode 100644 index 0000000..66a2289 --- /dev/null +++ b/general/datasets/Kin_ysm_mfc_0711/summary.rtf @@ -0,0 +1 @@ +

    Our understanding of the evolution, formation, and pathological disruption of human brain circuits is impeded by a lack of comprehensive data on the developing brain transcriptome. Thus, we have undertaken whole-genome, exon-level expression analysis of thirteen regions from left and right sides of the mid-fetal human brain, finding 76% of genes to be expressed, and 44% of these to be differentially regulated. These data reveal a large number of specific gene expression and alternative splicing patterns, as well as co-expression networks, associated with distinct regions and neurodevelopmental processes. Of particular relevance to cognitive specializations, we have characterized the transcriptional landscapes of prefrontal cortex and perisylvian speech and language areas, which exhibit a population-level global expression symmetry. Finally, we show that differentially expressed genes are more frequently associated with human-specific evolution of putative cis-regulatory elements. Altogether, these data provide a wealth of novel biological insights into the complex transcriptional and molecular underpinnings of human brain development and evolution.

    diff --git a/general/datasets/Kin_ysm_mfc_0711/tissue.rtf b/general/datasets/Kin_ysm_mfc_0711/tissue.rtf new file mode 100644 index 0000000..f08a838 --- /dev/null +++ b/general/datasets/Kin_ysm_mfc_0711/tissue.rtf @@ -0,0 +1,109 @@ +

    Tissue was microdissected from 13 regions, including 9 distinct neocortical areas, from both left and right sides of four late second trimester human brain specimens. Gene- and exon-level differential expression analyses were performed by mixed model, nested analysis of variance using the XRAY software from Biotique Systems. Further details available in Johnson, Kawasawa, et al., "Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis" Neuron, Volume 62, Issue 4, 2009.

    + +

    Ethnicity codes are as follows: AA = African American, A = ,  A/E =  X,  As,=  , H = , E = , CC =  and n/a= unknown

    + +

     

    + +

    This track displays exon microarray expression data from the late mid-fetal human brain, generated by the Sestan Lab at Yale University. The data represent 13 brain regions, including nine areas of neocortex, and both hemispheres. By default, arrays are grouped by the median for each brain region, including each neocortical area. Alternatively, neocortex areas can be grouped together; arrays can be grouped by mean; or all 95 arrays can be shown individually.

    + +

    Table 2 | Ontology and nomenclature of analyzed brain regions and neocortical areas.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Period 1Period 2Period 3 - 15
    FC: Frontal cerebral wallFCOFC: Orbital prefrontal cortex
      DFC: Dorsolateral prefrontal cortex
      VFC: Ventrolateral prefrontal cortex
      MFC: Medial prefrontal cortex
      M1C: Primary motor (M1) cortex
    PC: Parietal cerebral wallPCS1C: Primary somatosensory (S1) cortex
      IPC: Posterior inferior parietal cortex
    TC: Temporal cerebral wallTC A1C: Primary auditory (A1) cortex
      STC: Posterior superior temporal cortex
      ITC: Inferior temporal cortex
    OC: Occipital cerebral wallOCV1C: Primary visual (V1) cortex
    HIP: Hippocampal anlageHIPHIP: Hippocampus
      AMY: Amygdala
    VF: Ventral forebrainCGE: Caudal ganglionic eminenceSTR: Striatum
     LGE: Lateral ganglionic eminence 
     MGE: Medial ganglionic eminence 
    DIE: DiencephalonDTH: Dorsal thalamusMD: Mediodorsal nucleus of thalamus
    URL: Upper (rostral) rhombic lipURLCBC: Cerebellar cortex
    diff --git a/general/datasets/Kin_ysm_ofc_0711/cases.rtf b/general/datasets/Kin_ysm_ofc_0711/cases.rtf new file mode 100644 index 0000000..7b0ef71 --- /dev/null +++ b/general/datasets/Kin_ysm_ofc_0711/cases.rtf @@ -0,0 +1,88 @@ +

    RNA was isolated from 13 brain regions, from both hemispheres, of four late mid-fetal human brains, with a total PMI of less than one hour, and hybridized to Affymetrix Human Exon 1.0 ST arrays. Affymetrix CEL files were imported into Partek GS using Robust Multichip Average (RMA) background correction, quantile normalization, and GC content correction. The normalized data were then converted to log-ratios, relative to arrays hybridized with RNA pooled from all regions of the same brain. Signal log-ratios are displayed here as green for negative (underexpression) and red for positive (overexpression).

    + +

    Table 1 | Periods of human development and adulthood as defined in this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    PeriodDescriptionAge
    1Embryonic4≤ Age <8 Postconceptual weeks (PCW)
    2Early fetal8≤ Age <10 PCW
    3Early fetal10≤ Age <13 PCW
    4Early midfetal13≤ Age <16 PCW
    5Early midfetal16≤ Age <19 PCW
    6Late midfetal19≤ Age <24 PCW
    7Late fetal24≤ Age <38 PCW
    8Neonatal and early infancyBirth≤ Age <6 Postnatal months (M)
    9Late infancy6 M≤ Age <12 M
    10Early childhood1≤ Age <6 Postnatal years (Y)
    11Middle and late childhood6≤ Age <12 Y
    12Adolescence12≤ Age <20 Y
    13Young adulthood20≤ Age <40 Y
    14Middle adulthood40≤ Age <60 Y
    15Late adulthood60 Y ≤ Age
    diff --git a/general/datasets/Kin_ysm_ofc_0711/citation.rtf b/general/datasets/Kin_ysm_ofc_0711/citation.rtf new file mode 100644 index 0000000..d450820 --- /dev/null +++ b/general/datasets/Kin_ysm_ofc_0711/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Kin_ysm_ofc_0711/contributors.rtf b/general/datasets/Kin_ysm_ofc_0711/contributors.rtf new file mode 100644 index 0000000..2dfb810 --- /dev/null +++ b/general/datasets/Kin_ysm_ofc_0711/contributors.rtf @@ -0,0 +1 @@ +

    Johnson MBKawasawa YISestan N

    diff --git a/general/datasets/Kin_ysm_ofc_0711/experiment-design.rtf b/general/datasets/Kin_ysm_ofc_0711/experiment-design.rtf new file mode 100644 index 0000000..963e517 --- /dev/null +++ b/general/datasets/Kin_ysm_ofc_0711/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Human Brain Specimens and Tissue Processing This study was carried out using post-mortem human brain specimens collected from the Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed for neuropathological or developmental defects. Details of specimens, tissue processing, microdissection, and neuropathological assessment are given in the Supplemental Experimental Procedures and Table S1. These studies were approved by the Human Investigation Committees of AECOM and Yale University.

    + +

    For initial analysis, all neocortex samples were grouped together. In subsequent analyses, neocortex areas were compared with each other. In most analyses reported, left and right side samples were treated as additional biological replicates.

    diff --git a/general/datasets/Kin_ysm_ofc_0711/experiment-type.rtf b/general/datasets/Kin_ysm_ofc_0711/experiment-type.rtf new file mode 100644 index 0000000..beed8f4 --- /dev/null +++ b/general/datasets/Kin_ysm_ofc_0711/experiment-type.rtf @@ -0,0 +1,9 @@ +Human Brain Specimens and Tissue Processing +This study was carried out using post-mortem human brain specimens collected from the +Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). +Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem +interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed +for neuropathological or developmental defects. Details of specimens, tissue processing, +microdissection, and neuropathological assessment are given in the Supplemental +Experimental Procedures and Table S1. These studies were approved by the Human +Investigation Committees of AECOM and Yale University. \ No newline at end of file diff --git a/general/datasets/Kin_ysm_ofc_0711/notes.rtf b/general/datasets/Kin_ysm_ofc_0711/notes.rtf new file mode 100644 index 0000000..8d266d3 --- /dev/null +++ b/general/datasets/Kin_ysm_ofc_0711/notes.rtf @@ -0,0 +1 @@ +

    The raw microarray data are available via the NCBI Gene Expression Omnibus. Data in GeneNetwork as of July 2015 are only gene-level data. We could also enter exon-level data on request.

    diff --git a/general/datasets/Kin_ysm_ofc_0711/processing.rtf b/general/datasets/Kin_ysm_ofc_0711/processing.rtf new file mode 100644 index 0000000..1920ca7 --- /dev/null +++ b/general/datasets/Kin_ysm_ofc_0711/processing.rtf @@ -0,0 +1 @@ +

    Normalized method: Quantile normalization. Partek Genomics Suite version 6.5 (Partek Incorporated, St. Louis, MO, USA) was used to normalize raw exon array data and to summarize expression of the probe set and transcript cluster. Affymetrix CEL files that passed QC analyses were imported into Partek Genomics Suite using the default Partek settings: RMA background correction114, quantile normalization, mean probe set summarization, and log2-transformation. Only high-quality core probe sets, as defined by Affymetrix, were included. 105,271 core probes (within 62,448 probe sets out of 230,918 core probe sets) contained SNPs defined in the probe group file HuEx-1_0-st-v2.r2-SNPs-Excluded.pgf provided by Affymetrix, which is based on the dbSNP database (version 129, April 2008) and SNPinprobe_1.0 database. we removed SNP-containing probe sets during the normalization step in the Partek program to be control for SNP-related confounding effects. The median of all individual probe sets of one transcript cluster was used as the estimate of gene expression values.

    diff --git a/general/datasets/Kin_ysm_ofc_0711/summary.rtf b/general/datasets/Kin_ysm_ofc_0711/summary.rtf new file mode 100644 index 0000000..66a2289 --- /dev/null +++ b/general/datasets/Kin_ysm_ofc_0711/summary.rtf @@ -0,0 +1 @@ +

    Our understanding of the evolution, formation, and pathological disruption of human brain circuits is impeded by a lack of comprehensive data on the developing brain transcriptome. Thus, we have undertaken whole-genome, exon-level expression analysis of thirteen regions from left and right sides of the mid-fetal human brain, finding 76% of genes to be expressed, and 44% of these to be differentially regulated. These data reveal a large number of specific gene expression and alternative splicing patterns, as well as co-expression networks, associated with distinct regions and neurodevelopmental processes. Of particular relevance to cognitive specializations, we have characterized the transcriptional landscapes of prefrontal cortex and perisylvian speech and language areas, which exhibit a population-level global expression symmetry. Finally, we show that differentially expressed genes are more frequently associated with human-specific evolution of putative cis-regulatory elements. Altogether, these data provide a wealth of novel biological insights into the complex transcriptional and molecular underpinnings of human brain development and evolution.

    diff --git a/general/datasets/Kin_ysm_ofc_0711/tissue.rtf b/general/datasets/Kin_ysm_ofc_0711/tissue.rtf new file mode 100644 index 0000000..f08a838 --- /dev/null +++ b/general/datasets/Kin_ysm_ofc_0711/tissue.rtf @@ -0,0 +1,109 @@ +

    Tissue was microdissected from 13 regions, including 9 distinct neocortical areas, from both left and right sides of four late second trimester human brain specimens. Gene- and exon-level differential expression analyses were performed by mixed model, nested analysis of variance using the XRAY software from Biotique Systems. Further details available in Johnson, Kawasawa, et al., "Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis" Neuron, Volume 62, Issue 4, 2009.

    + +

    Ethnicity codes are as follows: AA = African American, A = ,  A/E =  X,  As,=  , H = , E = , CC =  and n/a= unknown

    + +

     

    + +

    This track displays exon microarray expression data from the late mid-fetal human brain, generated by the Sestan Lab at Yale University. The data represent 13 brain regions, including nine areas of neocortex, and both hemispheres. By default, arrays are grouped by the median for each brain region, including each neocortical area. Alternatively, neocortex areas can be grouped together; arrays can be grouped by mean; or all 95 arrays can be shown individually.

    + +

    Table 2 | Ontology and nomenclature of analyzed brain regions and neocortical areas.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Period 1Period 2Period 3 - 15
    FC: Frontal cerebral wallFCOFC: Orbital prefrontal cortex
      DFC: Dorsolateral prefrontal cortex
      VFC: Ventrolateral prefrontal cortex
      MFC: Medial prefrontal cortex
      M1C: Primary motor (M1) cortex
    PC: Parietal cerebral wallPCS1C: Primary somatosensory (S1) cortex
      IPC: Posterior inferior parietal cortex
    TC: Temporal cerebral wallTC A1C: Primary auditory (A1) cortex
      STC: Posterior superior temporal cortex
      ITC: Inferior temporal cortex
    OC: Occipital cerebral wallOCV1C: Primary visual (V1) cortex
    HIP: Hippocampal anlageHIPHIP: Hippocampus
      AMY: Amygdala
    VF: Ventral forebrainCGE: Caudal ganglionic eminenceSTR: Striatum
     LGE: Lateral ganglionic eminence 
     MGE: Medial ganglionic eminence 
    DIE: DiencephalonDTH: Dorsal thalamusMD: Mediodorsal nucleus of thalamus
    URL: Upper (rostral) rhombic lipURLCBC: Cerebellar cortex
    diff --git a/general/datasets/Kin_ysm_s1c_0711/cases.rtf b/general/datasets/Kin_ysm_s1c_0711/cases.rtf new file mode 100644 index 0000000..7b0ef71 --- /dev/null +++ b/general/datasets/Kin_ysm_s1c_0711/cases.rtf @@ -0,0 +1,88 @@ +

    RNA was isolated from 13 brain regions, from both hemispheres, of four late mid-fetal human brains, with a total PMI of less than one hour, and hybridized to Affymetrix Human Exon 1.0 ST arrays. Affymetrix CEL files were imported into Partek GS using Robust Multichip Average (RMA) background correction, quantile normalization, and GC content correction. The normalized data were then converted to log-ratios, relative to arrays hybridized with RNA pooled from all regions of the same brain. Signal log-ratios are displayed here as green for negative (underexpression) and red for positive (overexpression).

    + +

    Table 1 | Periods of human development and adulthood as defined in this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    PeriodDescriptionAge
    1Embryonic4≤ Age <8 Postconceptual weeks (PCW)
    2Early fetal8≤ Age <10 PCW
    3Early fetal10≤ Age <13 PCW
    4Early midfetal13≤ Age <16 PCW
    5Early midfetal16≤ Age <19 PCW
    6Late midfetal19≤ Age <24 PCW
    7Late fetal24≤ Age <38 PCW
    8Neonatal and early infancyBirth≤ Age <6 Postnatal months (M)
    9Late infancy6 M≤ Age <12 M
    10Early childhood1≤ Age <6 Postnatal years (Y)
    11Middle and late childhood6≤ Age <12 Y
    12Adolescence12≤ Age <20 Y
    13Young adulthood20≤ Age <40 Y
    14Middle adulthood40≤ Age <60 Y
    15Late adulthood60 Y ≤ Age
    diff --git a/general/datasets/Kin_ysm_s1c_0711/citation.rtf b/general/datasets/Kin_ysm_s1c_0711/citation.rtf new file mode 100644 index 0000000..d450820 --- /dev/null +++ b/general/datasets/Kin_ysm_s1c_0711/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Kin_ysm_s1c_0711/contributors.rtf b/general/datasets/Kin_ysm_s1c_0711/contributors.rtf new file mode 100644 index 0000000..2dfb810 --- /dev/null +++ b/general/datasets/Kin_ysm_s1c_0711/contributors.rtf @@ -0,0 +1 @@ +

    Johnson MBKawasawa YISestan N

    diff --git a/general/datasets/Kin_ysm_s1c_0711/experiment-design.rtf b/general/datasets/Kin_ysm_s1c_0711/experiment-design.rtf new file mode 100644 index 0000000..963e517 --- /dev/null +++ b/general/datasets/Kin_ysm_s1c_0711/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Human Brain Specimens and Tissue Processing This study was carried out using post-mortem human brain specimens collected from the Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed for neuropathological or developmental defects. Details of specimens, tissue processing, microdissection, and neuropathological assessment are given in the Supplemental Experimental Procedures and Table S1. These studies were approved by the Human Investigation Committees of AECOM and Yale University.

    + +

    For initial analysis, all neocortex samples were grouped together. In subsequent analyses, neocortex areas were compared with each other. In most analyses reported, left and right side samples were treated as additional biological replicates.

    diff --git a/general/datasets/Kin_ysm_s1c_0711/experiment-type.rtf b/general/datasets/Kin_ysm_s1c_0711/experiment-type.rtf new file mode 100644 index 0000000..beed8f4 --- /dev/null +++ b/general/datasets/Kin_ysm_s1c_0711/experiment-type.rtf @@ -0,0 +1,9 @@ +Human Brain Specimens and Tissue Processing +This study was carried out using post-mortem human brain specimens collected from the +Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). +Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem +interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed +for neuropathological or developmental defects. Details of specimens, tissue processing, +microdissection, and neuropathological assessment are given in the Supplemental +Experimental Procedures and Table S1. These studies were approved by the Human +Investigation Committees of AECOM and Yale University. \ No newline at end of file diff --git a/general/datasets/Kin_ysm_s1c_0711/notes.rtf b/general/datasets/Kin_ysm_s1c_0711/notes.rtf new file mode 100644 index 0000000..8d266d3 --- /dev/null +++ b/general/datasets/Kin_ysm_s1c_0711/notes.rtf @@ -0,0 +1 @@ +

    The raw microarray data are available via the NCBI Gene Expression Omnibus. Data in GeneNetwork as of July 2015 are only gene-level data. We could also enter exon-level data on request.

    diff --git a/general/datasets/Kin_ysm_s1c_0711/processing.rtf b/general/datasets/Kin_ysm_s1c_0711/processing.rtf new file mode 100644 index 0000000..1920ca7 --- /dev/null +++ b/general/datasets/Kin_ysm_s1c_0711/processing.rtf @@ -0,0 +1 @@ +

    Normalized method: Quantile normalization. Partek Genomics Suite version 6.5 (Partek Incorporated, St. Louis, MO, USA) was used to normalize raw exon array data and to summarize expression of the probe set and transcript cluster. Affymetrix CEL files that passed QC analyses were imported into Partek Genomics Suite using the default Partek settings: RMA background correction114, quantile normalization, mean probe set summarization, and log2-transformation. Only high-quality core probe sets, as defined by Affymetrix, were included. 105,271 core probes (within 62,448 probe sets out of 230,918 core probe sets) contained SNPs defined in the probe group file HuEx-1_0-st-v2.r2-SNPs-Excluded.pgf provided by Affymetrix, which is based on the dbSNP database (version 129, April 2008) and SNPinprobe_1.0 database. we removed SNP-containing probe sets during the normalization step in the Partek program to be control for SNP-related confounding effects. The median of all individual probe sets of one transcript cluster was used as the estimate of gene expression values.

    diff --git a/general/datasets/Kin_ysm_s1c_0711/summary.rtf b/general/datasets/Kin_ysm_s1c_0711/summary.rtf new file mode 100644 index 0000000..66a2289 --- /dev/null +++ b/general/datasets/Kin_ysm_s1c_0711/summary.rtf @@ -0,0 +1 @@ +

    Our understanding of the evolution, formation, and pathological disruption of human brain circuits is impeded by a lack of comprehensive data on the developing brain transcriptome. Thus, we have undertaken whole-genome, exon-level expression analysis of thirteen regions from left and right sides of the mid-fetal human brain, finding 76% of genes to be expressed, and 44% of these to be differentially regulated. These data reveal a large number of specific gene expression and alternative splicing patterns, as well as co-expression networks, associated with distinct regions and neurodevelopmental processes. Of particular relevance to cognitive specializations, we have characterized the transcriptional landscapes of prefrontal cortex and perisylvian speech and language areas, which exhibit a population-level global expression symmetry. Finally, we show that differentially expressed genes are more frequently associated with human-specific evolution of putative cis-regulatory elements. Altogether, these data provide a wealth of novel biological insights into the complex transcriptional and molecular underpinnings of human brain development and evolution.

    diff --git a/general/datasets/Kin_ysm_s1c_0711/tissue.rtf b/general/datasets/Kin_ysm_s1c_0711/tissue.rtf new file mode 100644 index 0000000..f08a838 --- /dev/null +++ b/general/datasets/Kin_ysm_s1c_0711/tissue.rtf @@ -0,0 +1,109 @@ +

    Tissue was microdissected from 13 regions, including 9 distinct neocortical areas, from both left and right sides of four late second trimester human brain specimens. Gene- and exon-level differential expression analyses were performed by mixed model, nested analysis of variance using the XRAY software from Biotique Systems. Further details available in Johnson, Kawasawa, et al., "Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis" Neuron, Volume 62, Issue 4, 2009.

    + +

    Ethnicity codes are as follows: AA = African American, A = ,  A/E =  X,  As,=  , H = , E = , CC =  and n/a= unknown

    + +

     

    + +

    This track displays exon microarray expression data from the late mid-fetal human brain, generated by the Sestan Lab at Yale University. The data represent 13 brain regions, including nine areas of neocortex, and both hemispheres. By default, arrays are grouped by the median for each brain region, including each neocortical area. Alternatively, neocortex areas can be grouped together; arrays can be grouped by mean; or all 95 arrays can be shown individually.

    + +

    Table 2 | Ontology and nomenclature of analyzed brain regions and neocortical areas.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Period 1Period 2Period 3 - 15
    FC: Frontal cerebral wallFCOFC: Orbital prefrontal cortex
      DFC: Dorsolateral prefrontal cortex
      VFC: Ventrolateral prefrontal cortex
      MFC: Medial prefrontal cortex
      M1C: Primary motor (M1) cortex
    PC: Parietal cerebral wallPCS1C: Primary somatosensory (S1) cortex
      IPC: Posterior inferior parietal cortex
    TC: Temporal cerebral wallTC A1C: Primary auditory (A1) cortex
      STC: Posterior superior temporal cortex
      ITC: Inferior temporal cortex
    OC: Occipital cerebral wallOCV1C: Primary visual (V1) cortex
    HIP: Hippocampal anlageHIPHIP: Hippocampus
      AMY: Amygdala
    VF: Ventral forebrainCGE: Caudal ganglionic eminenceSTR: Striatum
     LGE: Lateral ganglionic eminence 
     MGE: Medial ganglionic eminence 
    DIE: DiencephalonDTH: Dorsal thalamusMD: Mediodorsal nucleus of thalamus
    URL: Upper (rostral) rhombic lipURLCBC: Cerebellar cortex
    diff --git a/general/datasets/Kin_ysm_stc_0711/cases.rtf b/general/datasets/Kin_ysm_stc_0711/cases.rtf new file mode 100644 index 0000000..7b0ef71 --- /dev/null +++ b/general/datasets/Kin_ysm_stc_0711/cases.rtf @@ -0,0 +1,88 @@ +

    RNA was isolated from 13 brain regions, from both hemispheres, of four late mid-fetal human brains, with a total PMI of less than one hour, and hybridized to Affymetrix Human Exon 1.0 ST arrays. Affymetrix CEL files were imported into Partek GS using Robust Multichip Average (RMA) background correction, quantile normalization, and GC content correction. The normalized data were then converted to log-ratios, relative to arrays hybridized with RNA pooled from all regions of the same brain. Signal log-ratios are displayed here as green for negative (underexpression) and red for positive (overexpression).

    + +

    Table 1 | Periods of human development and adulthood as defined in this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    PeriodDescriptionAge
    1Embryonic4≤ Age <8 Postconceptual weeks (PCW)
    2Early fetal8≤ Age <10 PCW
    3Early fetal10≤ Age <13 PCW
    4Early midfetal13≤ Age <16 PCW
    5Early midfetal16≤ Age <19 PCW
    6Late midfetal19≤ Age <24 PCW
    7Late fetal24≤ Age <38 PCW
    8Neonatal and early infancyBirth≤ Age <6 Postnatal months (M)
    9Late infancy6 M≤ Age <12 M
    10Early childhood1≤ Age <6 Postnatal years (Y)
    11Middle and late childhood6≤ Age <12 Y
    12Adolescence12≤ Age <20 Y
    13Young adulthood20≤ Age <40 Y
    14Middle adulthood40≤ Age <60 Y
    15Late adulthood60 Y ≤ Age
    diff --git a/general/datasets/Kin_ysm_stc_0711/citation.rtf b/general/datasets/Kin_ysm_stc_0711/citation.rtf new file mode 100644 index 0000000..d450820 --- /dev/null +++ b/general/datasets/Kin_ysm_stc_0711/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Kin_ysm_stc_0711/contributors.rtf b/general/datasets/Kin_ysm_stc_0711/contributors.rtf new file mode 100644 index 0000000..2dfb810 --- /dev/null +++ b/general/datasets/Kin_ysm_stc_0711/contributors.rtf @@ -0,0 +1 @@ +

    Johnson MBKawasawa YISestan N

    diff --git a/general/datasets/Kin_ysm_stc_0711/experiment-design.rtf b/general/datasets/Kin_ysm_stc_0711/experiment-design.rtf new file mode 100644 index 0000000..963e517 --- /dev/null +++ b/general/datasets/Kin_ysm_stc_0711/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Human Brain Specimens and Tissue Processing This study was carried out using post-mortem human brain specimens collected from the Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed for neuropathological or developmental defects. Details of specimens, tissue processing, microdissection, and neuropathological assessment are given in the Supplemental Experimental Procedures and Table S1. These studies were approved by the Human Investigation Committees of AECOM and Yale University.

    + +

    For initial analysis, all neocortex samples were grouped together. In subsequent analyses, neocortex areas were compared with each other. In most analyses reported, left and right side samples were treated as additional biological replicates.

    diff --git a/general/datasets/Kin_ysm_stc_0711/experiment-type.rtf b/general/datasets/Kin_ysm_stc_0711/experiment-type.rtf new file mode 100644 index 0000000..beed8f4 --- /dev/null +++ b/general/datasets/Kin_ysm_stc_0711/experiment-type.rtf @@ -0,0 +1,9 @@ +Human Brain Specimens and Tissue Processing +This study was carried out using post-mortem human brain specimens collected from the +Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). +Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem +interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed +for neuropathological or developmental defects. Details of specimens, tissue processing, +microdissection, and neuropathological assessment are given in the Supplemental +Experimental Procedures and Table S1. These studies were approved by the Human +Investigation Committees of AECOM and Yale University. \ No newline at end of file diff --git a/general/datasets/Kin_ysm_stc_0711/notes.rtf b/general/datasets/Kin_ysm_stc_0711/notes.rtf new file mode 100644 index 0000000..8d266d3 --- /dev/null +++ b/general/datasets/Kin_ysm_stc_0711/notes.rtf @@ -0,0 +1 @@ +

    The raw microarray data are available via the NCBI Gene Expression Omnibus. Data in GeneNetwork as of July 2015 are only gene-level data. We could also enter exon-level data on request.

    diff --git a/general/datasets/Kin_ysm_stc_0711/processing.rtf b/general/datasets/Kin_ysm_stc_0711/processing.rtf new file mode 100644 index 0000000..1920ca7 --- /dev/null +++ b/general/datasets/Kin_ysm_stc_0711/processing.rtf @@ -0,0 +1 @@ +

    Normalized method: Quantile normalization. Partek Genomics Suite version 6.5 (Partek Incorporated, St. Louis, MO, USA) was used to normalize raw exon array data and to summarize expression of the probe set and transcript cluster. Affymetrix CEL files that passed QC analyses were imported into Partek Genomics Suite using the default Partek settings: RMA background correction114, quantile normalization, mean probe set summarization, and log2-transformation. Only high-quality core probe sets, as defined by Affymetrix, were included. 105,271 core probes (within 62,448 probe sets out of 230,918 core probe sets) contained SNPs defined in the probe group file HuEx-1_0-st-v2.r2-SNPs-Excluded.pgf provided by Affymetrix, which is based on the dbSNP database (version 129, April 2008) and SNPinprobe_1.0 database. we removed SNP-containing probe sets during the normalization step in the Partek program to be control for SNP-related confounding effects. The median of all individual probe sets of one transcript cluster was used as the estimate of gene expression values.

    diff --git a/general/datasets/Kin_ysm_stc_0711/summary.rtf b/general/datasets/Kin_ysm_stc_0711/summary.rtf new file mode 100644 index 0000000..66a2289 --- /dev/null +++ b/general/datasets/Kin_ysm_stc_0711/summary.rtf @@ -0,0 +1 @@ +

    Our understanding of the evolution, formation, and pathological disruption of human brain circuits is impeded by a lack of comprehensive data on the developing brain transcriptome. Thus, we have undertaken whole-genome, exon-level expression analysis of thirteen regions from left and right sides of the mid-fetal human brain, finding 76% of genes to be expressed, and 44% of these to be differentially regulated. These data reveal a large number of specific gene expression and alternative splicing patterns, as well as co-expression networks, associated with distinct regions and neurodevelopmental processes. Of particular relevance to cognitive specializations, we have characterized the transcriptional landscapes of prefrontal cortex and perisylvian speech and language areas, which exhibit a population-level global expression symmetry. Finally, we show that differentially expressed genes are more frequently associated with human-specific evolution of putative cis-regulatory elements. Altogether, these data provide a wealth of novel biological insights into the complex transcriptional and molecular underpinnings of human brain development and evolution.

    diff --git a/general/datasets/Kin_ysm_stc_0711/tissue.rtf b/general/datasets/Kin_ysm_stc_0711/tissue.rtf new file mode 100644 index 0000000..f08a838 --- /dev/null +++ b/general/datasets/Kin_ysm_stc_0711/tissue.rtf @@ -0,0 +1,109 @@ +

    Tissue was microdissected from 13 regions, including 9 distinct neocortical areas, from both left and right sides of four late second trimester human brain specimens. Gene- and exon-level differential expression analyses were performed by mixed model, nested analysis of variance using the XRAY software from Biotique Systems. Further details available in Johnson, Kawasawa, et al., "Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis" Neuron, Volume 62, Issue 4, 2009.

    + +

    Ethnicity codes are as follows: AA = African American, A = ,  A/E =  X,  As,=  , H = , E = , CC =  and n/a= unknown

    + +

     

    + +

    This track displays exon microarray expression data from the late mid-fetal human brain, generated by the Sestan Lab at Yale University. The data represent 13 brain regions, including nine areas of neocortex, and both hemispheres. By default, arrays are grouped by the median for each brain region, including each neocortical area. Alternatively, neocortex areas can be grouped together; arrays can be grouped by mean; or all 95 arrays can be shown individually.

    + +

    Table 2 | Ontology and nomenclature of analyzed brain regions and neocortical areas.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Period 1Period 2Period 3 - 15
    FC: Frontal cerebral wallFCOFC: Orbital prefrontal cortex
      DFC: Dorsolateral prefrontal cortex
      VFC: Ventrolateral prefrontal cortex
      MFC: Medial prefrontal cortex
      M1C: Primary motor (M1) cortex
    PC: Parietal cerebral wallPCS1C: Primary somatosensory (S1) cortex
      IPC: Posterior inferior parietal cortex
    TC: Temporal cerebral wallTC A1C: Primary auditory (A1) cortex
      STC: Posterior superior temporal cortex
      ITC: Inferior temporal cortex
    OC: Occipital cerebral wallOCV1C: Primary visual (V1) cortex
    HIP: Hippocampal anlageHIPHIP: Hippocampus
      AMY: Amygdala
    VF: Ventral forebrainCGE: Caudal ganglionic eminenceSTR: Striatum
     LGE: Lateral ganglionic eminence 
     MGE: Medial ganglionic eminence 
    DIE: DiencephalonDTH: Dorsal thalamusMD: Mediodorsal nucleus of thalamus
    URL: Upper (rostral) rhombic lipURLCBC: Cerebellar cortex
    diff --git a/general/datasets/Kin_ysm_str_0711/cases.rtf b/general/datasets/Kin_ysm_str_0711/cases.rtf new file mode 100644 index 0000000..7b0ef71 --- /dev/null +++ b/general/datasets/Kin_ysm_str_0711/cases.rtf @@ -0,0 +1,88 @@ +

    RNA was isolated from 13 brain regions, from both hemispheres, of four late mid-fetal human brains, with a total PMI of less than one hour, and hybridized to Affymetrix Human Exon 1.0 ST arrays. Affymetrix CEL files were imported into Partek GS using Robust Multichip Average (RMA) background correction, quantile normalization, and GC content correction. The normalized data were then converted to log-ratios, relative to arrays hybridized with RNA pooled from all regions of the same brain. Signal log-ratios are displayed here as green for negative (underexpression) and red for positive (overexpression).

    + +

    Table 1 | Periods of human development and adulthood as defined in this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    PeriodDescriptionAge
    1Embryonic4≤ Age <8 Postconceptual weeks (PCW)
    2Early fetal8≤ Age <10 PCW
    3Early fetal10≤ Age <13 PCW
    4Early midfetal13≤ Age <16 PCW
    5Early midfetal16≤ Age <19 PCW
    6Late midfetal19≤ Age <24 PCW
    7Late fetal24≤ Age <38 PCW
    8Neonatal and early infancyBirth≤ Age <6 Postnatal months (M)
    9Late infancy6 M≤ Age <12 M
    10Early childhood1≤ Age <6 Postnatal years (Y)
    11Middle and late childhood6≤ Age <12 Y
    12Adolescence12≤ Age <20 Y
    13Young adulthood20≤ Age <40 Y
    14Middle adulthood40≤ Age <60 Y
    15Late adulthood60 Y ≤ Age
    diff --git a/general/datasets/Kin_ysm_str_0711/citation.rtf b/general/datasets/Kin_ysm_str_0711/citation.rtf new file mode 100644 index 0000000..d450820 --- /dev/null +++ b/general/datasets/Kin_ysm_str_0711/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Kin_ysm_str_0711/contributors.rtf b/general/datasets/Kin_ysm_str_0711/contributors.rtf new file mode 100644 index 0000000..2dfb810 --- /dev/null +++ b/general/datasets/Kin_ysm_str_0711/contributors.rtf @@ -0,0 +1 @@ +

    Johnson MBKawasawa YISestan N

    diff --git a/general/datasets/Kin_ysm_str_0711/experiment-design.rtf b/general/datasets/Kin_ysm_str_0711/experiment-design.rtf new file mode 100644 index 0000000..963e517 --- /dev/null +++ b/general/datasets/Kin_ysm_str_0711/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Human Brain Specimens and Tissue Processing This study was carried out using post-mortem human brain specimens collected from the Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed for neuropathological or developmental defects. Details of specimens, tissue processing, microdissection, and neuropathological assessment are given in the Supplemental Experimental Procedures and Table S1. These studies were approved by the Human Investigation Committees of AECOM and Yale University.

    + +

    For initial analysis, all neocortex samples were grouped together. In subsequent analyses, neocortex areas were compared with each other. In most analyses reported, left and right side samples were treated as additional biological replicates.

    diff --git a/general/datasets/Kin_ysm_str_0711/experiment-type.rtf b/general/datasets/Kin_ysm_str_0711/experiment-type.rtf new file mode 100644 index 0000000..beed8f4 --- /dev/null +++ b/general/datasets/Kin_ysm_str_0711/experiment-type.rtf @@ -0,0 +1,9 @@ +Human Brain Specimens and Tissue Processing +This study was carried out using post-mortem human brain specimens collected from the +Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). +Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem +interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed +for neuropathological or developmental defects. Details of specimens, tissue processing, +microdissection, and neuropathological assessment are given in the Supplemental +Experimental Procedures and Table S1. These studies were approved by the Human +Investigation Committees of AECOM and Yale University. \ No newline at end of file diff --git a/general/datasets/Kin_ysm_str_0711/notes.rtf b/general/datasets/Kin_ysm_str_0711/notes.rtf new file mode 100644 index 0000000..8d266d3 --- /dev/null +++ b/general/datasets/Kin_ysm_str_0711/notes.rtf @@ -0,0 +1 @@ +

    The raw microarray data are available via the NCBI Gene Expression Omnibus. Data in GeneNetwork as of July 2015 are only gene-level data. We could also enter exon-level data on request.

    diff --git a/general/datasets/Kin_ysm_str_0711/processing.rtf b/general/datasets/Kin_ysm_str_0711/processing.rtf new file mode 100644 index 0000000..1920ca7 --- /dev/null +++ b/general/datasets/Kin_ysm_str_0711/processing.rtf @@ -0,0 +1 @@ +

    Normalized method: Quantile normalization. Partek Genomics Suite version 6.5 (Partek Incorporated, St. Louis, MO, USA) was used to normalize raw exon array data and to summarize expression of the probe set and transcript cluster. Affymetrix CEL files that passed QC analyses were imported into Partek Genomics Suite using the default Partek settings: RMA background correction114, quantile normalization, mean probe set summarization, and log2-transformation. Only high-quality core probe sets, as defined by Affymetrix, were included. 105,271 core probes (within 62,448 probe sets out of 230,918 core probe sets) contained SNPs defined in the probe group file HuEx-1_0-st-v2.r2-SNPs-Excluded.pgf provided by Affymetrix, which is based on the dbSNP database (version 129, April 2008) and SNPinprobe_1.0 database. we removed SNP-containing probe sets during the normalization step in the Partek program to be control for SNP-related confounding effects. The median of all individual probe sets of one transcript cluster was used as the estimate of gene expression values.

    diff --git a/general/datasets/Kin_ysm_str_0711/summary.rtf b/general/datasets/Kin_ysm_str_0711/summary.rtf new file mode 100644 index 0000000..66a2289 --- /dev/null +++ b/general/datasets/Kin_ysm_str_0711/summary.rtf @@ -0,0 +1 @@ +

    Our understanding of the evolution, formation, and pathological disruption of human brain circuits is impeded by a lack of comprehensive data on the developing brain transcriptome. Thus, we have undertaken whole-genome, exon-level expression analysis of thirteen regions from left and right sides of the mid-fetal human brain, finding 76% of genes to be expressed, and 44% of these to be differentially regulated. These data reveal a large number of specific gene expression and alternative splicing patterns, as well as co-expression networks, associated with distinct regions and neurodevelopmental processes. Of particular relevance to cognitive specializations, we have characterized the transcriptional landscapes of prefrontal cortex and perisylvian speech and language areas, which exhibit a population-level global expression symmetry. Finally, we show that differentially expressed genes are more frequently associated with human-specific evolution of putative cis-regulatory elements. Altogether, these data provide a wealth of novel biological insights into the complex transcriptional and molecular underpinnings of human brain development and evolution.

    diff --git a/general/datasets/Kin_ysm_str_0711/tissue.rtf b/general/datasets/Kin_ysm_str_0711/tissue.rtf new file mode 100644 index 0000000..f08a838 --- /dev/null +++ b/general/datasets/Kin_ysm_str_0711/tissue.rtf @@ -0,0 +1,109 @@ +

    Tissue was microdissected from 13 regions, including 9 distinct neocortical areas, from both left and right sides of four late second trimester human brain specimens. Gene- and exon-level differential expression analyses were performed by mixed model, nested analysis of variance using the XRAY software from Biotique Systems. Further details available in Johnson, Kawasawa, et al., "Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis" Neuron, Volume 62, Issue 4, 2009.

    + +

    Ethnicity codes are as follows: AA = African American, A = ,  A/E =  X,  As,=  , H = , E = , CC =  and n/a= unknown

    + +

     

    + +

    This track displays exon microarray expression data from the late mid-fetal human brain, generated by the Sestan Lab at Yale University. The data represent 13 brain regions, including nine areas of neocortex, and both hemispheres. By default, arrays are grouped by the median for each brain region, including each neocortical area. Alternatively, neocortex areas can be grouped together; arrays can be grouped by mean; or all 95 arrays can be shown individually.

    + +

    Table 2 | Ontology and nomenclature of analyzed brain regions and neocortical areas.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Period 1Period 2Period 3 - 15
    FC: Frontal cerebral wallFCOFC: Orbital prefrontal cortex
      DFC: Dorsolateral prefrontal cortex
      VFC: Ventrolateral prefrontal cortex
      MFC: Medial prefrontal cortex
      M1C: Primary motor (M1) cortex
    PC: Parietal cerebral wallPCS1C: Primary somatosensory (S1) cortex
      IPC: Posterior inferior parietal cortex
    TC: Temporal cerebral wallTC A1C: Primary auditory (A1) cortex
      STC: Posterior superior temporal cortex
      ITC: Inferior temporal cortex
    OC: Occipital cerebral wallOCV1C: Primary visual (V1) cortex
    HIP: Hippocampal anlageHIPHIP: Hippocampus
      AMY: Amygdala
    VF: Ventral forebrainCGE: Caudal ganglionic eminenceSTR: Striatum
     LGE: Lateral ganglionic eminence 
     MGE: Medial ganglionic eminence 
    DIE: DiencephalonDTH: Dorsal thalamusMD: Mediodorsal nucleus of thalamus
    URL: Upper (rostral) rhombic lipURLCBC: Cerebellar cortex
    diff --git a/general/datasets/Kin_ysm_v1c_0711/cases.rtf b/general/datasets/Kin_ysm_v1c_0711/cases.rtf new file mode 100644 index 0000000..7b0ef71 --- /dev/null +++ b/general/datasets/Kin_ysm_v1c_0711/cases.rtf @@ -0,0 +1,88 @@ +

    RNA was isolated from 13 brain regions, from both hemispheres, of four late mid-fetal human brains, with a total PMI of less than one hour, and hybridized to Affymetrix Human Exon 1.0 ST arrays. Affymetrix CEL files were imported into Partek GS using Robust Multichip Average (RMA) background correction, quantile normalization, and GC content correction. The normalized data were then converted to log-ratios, relative to arrays hybridized with RNA pooled from all regions of the same brain. Signal log-ratios are displayed here as green for negative (underexpression) and red for positive (overexpression).

    + +

    Table 1 | Periods of human development and adulthood as defined in this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    PeriodDescriptionAge
    1Embryonic4≤ Age <8 Postconceptual weeks (PCW)
    2Early fetal8≤ Age <10 PCW
    3Early fetal10≤ Age <13 PCW
    4Early midfetal13≤ Age <16 PCW
    5Early midfetal16≤ Age <19 PCW
    6Late midfetal19≤ Age <24 PCW
    7Late fetal24≤ Age <38 PCW
    8Neonatal and early infancyBirth≤ Age <6 Postnatal months (M)
    9Late infancy6 M≤ Age <12 M
    10Early childhood1≤ Age <6 Postnatal years (Y)
    11Middle and late childhood6≤ Age <12 Y
    12Adolescence12≤ Age <20 Y
    13Young adulthood20≤ Age <40 Y
    14Middle adulthood40≤ Age <60 Y
    15Late adulthood60 Y ≤ Age
    diff --git a/general/datasets/Kin_ysm_v1c_0711/citation.rtf b/general/datasets/Kin_ysm_v1c_0711/citation.rtf new file mode 100644 index 0000000..d450820 --- /dev/null +++ b/general/datasets/Kin_ysm_v1c_0711/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Kin_ysm_v1c_0711/contributors.rtf b/general/datasets/Kin_ysm_v1c_0711/contributors.rtf new file mode 100644 index 0000000..2dfb810 --- /dev/null +++ b/general/datasets/Kin_ysm_v1c_0711/contributors.rtf @@ -0,0 +1 @@ +

    Johnson MBKawasawa YISestan N

    diff --git a/general/datasets/Kin_ysm_v1c_0711/experiment-design.rtf b/general/datasets/Kin_ysm_v1c_0711/experiment-design.rtf new file mode 100644 index 0000000..963e517 --- /dev/null +++ b/general/datasets/Kin_ysm_v1c_0711/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Human Brain Specimens and Tissue Processing This study was carried out using post-mortem human brain specimens collected from the Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed for neuropathological or developmental defects. Details of specimens, tissue processing, microdissection, and neuropathological assessment are given in the Supplemental Experimental Procedures and Table S1. These studies were approved by the Human Investigation Committees of AECOM and Yale University.

    + +

    For initial analysis, all neocortex samples were grouped together. In subsequent analyses, neocortex areas were compared with each other. In most analyses reported, left and right side samples were treated as additional biological replicates.

    diff --git a/general/datasets/Kin_ysm_v1c_0711/experiment-type.rtf b/general/datasets/Kin_ysm_v1c_0711/experiment-type.rtf new file mode 100644 index 0000000..beed8f4 --- /dev/null +++ b/general/datasets/Kin_ysm_v1c_0711/experiment-type.rtf @@ -0,0 +1,9 @@ +Human Brain Specimens and Tissue Processing +This study was carried out using post-mortem human brain specimens collected from the +Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). +Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem +interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed +for neuropathological or developmental defects. Details of specimens, tissue processing, +microdissection, and neuropathological assessment are given in the Supplemental +Experimental Procedures and Table S1. These studies were approved by the Human +Investigation Committees of AECOM and Yale University. \ No newline at end of file diff --git a/general/datasets/Kin_ysm_v1c_0711/notes.rtf b/general/datasets/Kin_ysm_v1c_0711/notes.rtf new file mode 100644 index 0000000..8d266d3 --- /dev/null +++ b/general/datasets/Kin_ysm_v1c_0711/notes.rtf @@ -0,0 +1 @@ +

    The raw microarray data are available via the NCBI Gene Expression Omnibus. Data in GeneNetwork as of July 2015 are only gene-level data. We could also enter exon-level data on request.

    diff --git a/general/datasets/Kin_ysm_v1c_0711/processing.rtf b/general/datasets/Kin_ysm_v1c_0711/processing.rtf new file mode 100644 index 0000000..1920ca7 --- /dev/null +++ b/general/datasets/Kin_ysm_v1c_0711/processing.rtf @@ -0,0 +1 @@ +

    Normalized method: Quantile normalization. Partek Genomics Suite version 6.5 (Partek Incorporated, St. Louis, MO, USA) was used to normalize raw exon array data and to summarize expression of the probe set and transcript cluster. Affymetrix CEL files that passed QC analyses were imported into Partek Genomics Suite using the default Partek settings: RMA background correction114, quantile normalization, mean probe set summarization, and log2-transformation. Only high-quality core probe sets, as defined by Affymetrix, were included. 105,271 core probes (within 62,448 probe sets out of 230,918 core probe sets) contained SNPs defined in the probe group file HuEx-1_0-st-v2.r2-SNPs-Excluded.pgf provided by Affymetrix, which is based on the dbSNP database (version 129, April 2008) and SNPinprobe_1.0 database. we removed SNP-containing probe sets during the normalization step in the Partek program to be control for SNP-related confounding effects. The median of all individual probe sets of one transcript cluster was used as the estimate of gene expression values.

    diff --git a/general/datasets/Kin_ysm_v1c_0711/summary.rtf b/general/datasets/Kin_ysm_v1c_0711/summary.rtf new file mode 100644 index 0000000..66a2289 --- /dev/null +++ b/general/datasets/Kin_ysm_v1c_0711/summary.rtf @@ -0,0 +1 @@ +

    Our understanding of the evolution, formation, and pathological disruption of human brain circuits is impeded by a lack of comprehensive data on the developing brain transcriptome. Thus, we have undertaken whole-genome, exon-level expression analysis of thirteen regions from left and right sides of the mid-fetal human brain, finding 76% of genes to be expressed, and 44% of these to be differentially regulated. These data reveal a large number of specific gene expression and alternative splicing patterns, as well as co-expression networks, associated with distinct regions and neurodevelopmental processes. Of particular relevance to cognitive specializations, we have characterized the transcriptional landscapes of prefrontal cortex and perisylvian speech and language areas, which exhibit a population-level global expression symmetry. Finally, we show that differentially expressed genes are more frequently associated with human-specific evolution of putative cis-regulatory elements. Altogether, these data provide a wealth of novel biological insights into the complex transcriptional and molecular underpinnings of human brain development and evolution.

    diff --git a/general/datasets/Kin_ysm_v1c_0711/tissue.rtf b/general/datasets/Kin_ysm_v1c_0711/tissue.rtf new file mode 100644 index 0000000..f08a838 --- /dev/null +++ b/general/datasets/Kin_ysm_v1c_0711/tissue.rtf @@ -0,0 +1,109 @@ +

    Tissue was microdissected from 13 regions, including 9 distinct neocortical areas, from both left and right sides of four late second trimester human brain specimens. Gene- and exon-level differential expression analyses were performed by mixed model, nested analysis of variance using the XRAY software from Biotique Systems. Further details available in Johnson, Kawasawa, et al., "Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis" Neuron, Volume 62, Issue 4, 2009.

    + +

    Ethnicity codes are as follows: AA = African American, A = ,  A/E =  X,  As,=  , H = , E = , CC =  and n/a= unknown

    + +

     

    + +

    This track displays exon microarray expression data from the late mid-fetal human brain, generated by the Sestan Lab at Yale University. The data represent 13 brain regions, including nine areas of neocortex, and both hemispheres. By default, arrays are grouped by the median for each brain region, including each neocortical area. Alternatively, neocortex areas can be grouped together; arrays can be grouped by mean; or all 95 arrays can be shown individually.

    + +

    Table 2 | Ontology and nomenclature of analyzed brain regions and neocortical areas.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Period 1Period 2Period 3 - 15
    FC: Frontal cerebral wallFCOFC: Orbital prefrontal cortex
      DFC: Dorsolateral prefrontal cortex
      VFC: Ventrolateral prefrontal cortex
      MFC: Medial prefrontal cortex
      M1C: Primary motor (M1) cortex
    PC: Parietal cerebral wallPCS1C: Primary somatosensory (S1) cortex
      IPC: Posterior inferior parietal cortex
    TC: Temporal cerebral wallTC A1C: Primary auditory (A1) cortex
      STC: Posterior superior temporal cortex
      ITC: Inferior temporal cortex
    OC: Occipital cerebral wallOCV1C: Primary visual (V1) cortex
    HIP: Hippocampal anlageHIPHIP: Hippocampus
      AMY: Amygdala
    VF: Ventral forebrainCGE: Caudal ganglionic eminenceSTR: Striatum
     LGE: Lateral ganglionic eminence 
     MGE: Medial ganglionic eminence 
    DIE: DiencephalonDTH: Dorsal thalamusMD: Mediodorsal nucleus of thalamus
    URL: Upper (rostral) rhombic lipURLCBC: Cerebellar cortex
    diff --git a/general/datasets/Kin_ysm_vfc_0711/cases.rtf b/general/datasets/Kin_ysm_vfc_0711/cases.rtf new file mode 100644 index 0000000..7b0ef71 --- /dev/null +++ b/general/datasets/Kin_ysm_vfc_0711/cases.rtf @@ -0,0 +1,88 @@ +

    RNA was isolated from 13 brain regions, from both hemispheres, of four late mid-fetal human brains, with a total PMI of less than one hour, and hybridized to Affymetrix Human Exon 1.0 ST arrays. Affymetrix CEL files were imported into Partek GS using Robust Multichip Average (RMA) background correction, quantile normalization, and GC content correction. The normalized data were then converted to log-ratios, relative to arrays hybridized with RNA pooled from all regions of the same brain. Signal log-ratios are displayed here as green for negative (underexpression) and red for positive (overexpression).

    + +

    Table 1 | Periods of human development and adulthood as defined in this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    PeriodDescriptionAge
    1Embryonic4≤ Age <8 Postconceptual weeks (PCW)
    2Early fetal8≤ Age <10 PCW
    3Early fetal10≤ Age <13 PCW
    4Early midfetal13≤ Age <16 PCW
    5Early midfetal16≤ Age <19 PCW
    6Late midfetal19≤ Age <24 PCW
    7Late fetal24≤ Age <38 PCW
    8Neonatal and early infancyBirth≤ Age <6 Postnatal months (M)
    9Late infancy6 M≤ Age <12 M
    10Early childhood1≤ Age <6 Postnatal years (Y)
    11Middle and late childhood6≤ Age <12 Y
    12Adolescence12≤ Age <20 Y
    13Young adulthood20≤ Age <40 Y
    14Middle adulthood40≤ Age <60 Y
    15Late adulthood60 Y ≤ Age
    diff --git a/general/datasets/Kin_ysm_vfc_0711/citation.rtf b/general/datasets/Kin_ysm_vfc_0711/citation.rtf new file mode 100644 index 0000000..d450820 --- /dev/null +++ b/general/datasets/Kin_ysm_vfc_0711/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Kin_ysm_vfc_0711/contributors.rtf b/general/datasets/Kin_ysm_vfc_0711/contributors.rtf new file mode 100644 index 0000000..2dfb810 --- /dev/null +++ b/general/datasets/Kin_ysm_vfc_0711/contributors.rtf @@ -0,0 +1 @@ +

    Johnson MBKawasawa YISestan N

    diff --git a/general/datasets/Kin_ysm_vfc_0711/experiment-design.rtf b/general/datasets/Kin_ysm_vfc_0711/experiment-design.rtf new file mode 100644 index 0000000..963e517 --- /dev/null +++ b/general/datasets/Kin_ysm_vfc_0711/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Human Brain Specimens and Tissue Processing This study was carried out using post-mortem human brain specimens collected from the Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed for neuropathological or developmental defects. Details of specimens, tissue processing, microdissection, and neuropathological assessment are given in the Supplemental Experimental Procedures and Table S1. These studies were approved by the Human Investigation Committees of AECOM and Yale University.

    + +

    For initial analysis, all neocortex samples were grouped together. In subsequent analyses, neocortex areas were compared with each other. In most analyses reported, left and right side samples were treated as additional biological replicates.

    diff --git a/general/datasets/Kin_ysm_vfc_0711/experiment-type.rtf b/general/datasets/Kin_ysm_vfc_0711/experiment-type.rtf new file mode 100644 index 0000000..beed8f4 --- /dev/null +++ b/general/datasets/Kin_ysm_vfc_0711/experiment-type.rtf @@ -0,0 +1,9 @@ +Human Brain Specimens and Tissue Processing +This study was carried out using post-mortem human brain specimens collected from the +Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). +Dissected tissue was fresh-frozen in Trizol for RNA and DNA extraction, with a post-mortem +interval of less than 1 hour. Remaining tissue was fixed and frozen, and sections were analyzed +for neuropathological or developmental defects. Details of specimens, tissue processing, +microdissection, and neuropathological assessment are given in the Supplemental +Experimental Procedures and Table S1. These studies were approved by the Human +Investigation Committees of AECOM and Yale University. \ No newline at end of file diff --git a/general/datasets/Kin_ysm_vfc_0711/notes.rtf b/general/datasets/Kin_ysm_vfc_0711/notes.rtf new file mode 100644 index 0000000..8d266d3 --- /dev/null +++ b/general/datasets/Kin_ysm_vfc_0711/notes.rtf @@ -0,0 +1 @@ +

    The raw microarray data are available via the NCBI Gene Expression Omnibus. Data in GeneNetwork as of July 2015 are only gene-level data. We could also enter exon-level data on request.

    diff --git a/general/datasets/Kin_ysm_vfc_0711/processing.rtf b/general/datasets/Kin_ysm_vfc_0711/processing.rtf new file mode 100644 index 0000000..1920ca7 --- /dev/null +++ b/general/datasets/Kin_ysm_vfc_0711/processing.rtf @@ -0,0 +1 @@ +

    Normalized method: Quantile normalization. Partek Genomics Suite version 6.5 (Partek Incorporated, St. Louis, MO, USA) was used to normalize raw exon array data and to summarize expression of the probe set and transcript cluster. Affymetrix CEL files that passed QC analyses were imported into Partek Genomics Suite using the default Partek settings: RMA background correction114, quantile normalization, mean probe set summarization, and log2-transformation. Only high-quality core probe sets, as defined by Affymetrix, were included. 105,271 core probes (within 62,448 probe sets out of 230,918 core probe sets) contained SNPs defined in the probe group file HuEx-1_0-st-v2.r2-SNPs-Excluded.pgf provided by Affymetrix, which is based on the dbSNP database (version 129, April 2008) and SNPinprobe_1.0 database. we removed SNP-containing probe sets during the normalization step in the Partek program to be control for SNP-related confounding effects. The median of all individual probe sets of one transcript cluster was used as the estimate of gene expression values.

    diff --git a/general/datasets/Kin_ysm_vfc_0711/summary.rtf b/general/datasets/Kin_ysm_vfc_0711/summary.rtf new file mode 100644 index 0000000..66a2289 --- /dev/null +++ b/general/datasets/Kin_ysm_vfc_0711/summary.rtf @@ -0,0 +1 @@ +

    Our understanding of the evolution, formation, and pathological disruption of human brain circuits is impeded by a lack of comprehensive data on the developing brain transcriptome. Thus, we have undertaken whole-genome, exon-level expression analysis of thirteen regions from left and right sides of the mid-fetal human brain, finding 76% of genes to be expressed, and 44% of these to be differentially regulated. These data reveal a large number of specific gene expression and alternative splicing patterns, as well as co-expression networks, associated with distinct regions and neurodevelopmental processes. Of particular relevance to cognitive specializations, we have characterized the transcriptional landscapes of prefrontal cortex and perisylvian speech and language areas, which exhibit a population-level global expression symmetry. Finally, we show that differentially expressed genes are more frequently associated with human-specific evolution of putative cis-regulatory elements. Altogether, these data provide a wealth of novel biological insights into the complex transcriptional and molecular underpinnings of human brain development and evolution.

    diff --git a/general/datasets/Kin_ysm_vfc_0711/tissue.rtf b/general/datasets/Kin_ysm_vfc_0711/tissue.rtf new file mode 100644 index 0000000..f08a838 --- /dev/null +++ b/general/datasets/Kin_ysm_vfc_0711/tissue.rtf @@ -0,0 +1,109 @@ +

    Tissue was microdissected from 13 regions, including 9 distinct neocortical areas, from both left and right sides of four late second trimester human brain specimens. Gene- and exon-level differential expression analyses were performed by mixed model, nested analysis of variance using the XRAY software from Biotique Systems. Further details available in Johnson, Kawasawa, et al., "Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis" Neuron, Volume 62, Issue 4, 2009.

    + +

    Ethnicity codes are as follows: AA = African American, A = ,  A/E =  X,  As,=  , H = , E = , CC =  and n/a= unknown

    + +

     

    + +

    This track displays exon microarray expression data from the late mid-fetal human brain, generated by the Sestan Lab at Yale University. The data represent 13 brain regions, including nine areas of neocortex, and both hemispheres. By default, arrays are grouped by the median for each brain region, including each neocortical area. Alternatively, neocortex areas can be grouped together; arrays can be grouped by mean; or all 95 arrays can be shown individually.

    + +

    Table 2 | Ontology and nomenclature of analyzed brain regions and neocortical areas.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Period 1Period 2Period 3 - 15
    FC: Frontal cerebral wallFCOFC: Orbital prefrontal cortex
      DFC: Dorsolateral prefrontal cortex
      VFC: Ventrolateral prefrontal cortex
      MFC: Medial prefrontal cortex
      M1C: Primary motor (M1) cortex
    PC: Parietal cerebral wallPCS1C: Primary somatosensory (S1) cortex
      IPC: Posterior inferior parietal cortex
    TC: Temporal cerebral wallTC A1C: Primary auditory (A1) cortex
      STC: Posterior superior temporal cortex
      ITC: Inferior temporal cortex
    OC: Occipital cerebral wallOCV1C: Primary visual (V1) cortex
    HIP: Hippocampal anlageHIPHIP: Hippocampus
      AMY: Amygdala
    VF: Ventral forebrainCGE: Caudal ganglionic eminenceSTR: Striatum
     LGE: Lateral ganglionic eminence 
     MGE: Medial ganglionic eminence 
    DIE: DiencephalonDTH: Dorsal thalamusMD: Mediodorsal nucleus of thalamus
    URL: Upper (rostral) rhombic lipURLCBC: Cerebellar cortex
    diff --git a/general/datasets/LGSM_AIG34_50_56_GBSPublish/specifics.rtf b/general/datasets/LGSM_AIG34_50_56_GBSPublish/specifics.rtf deleted file mode 100644 index ab45490..0000000 --- a/general/datasets/LGSM_AIG34_50_56_GBSPublish/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Phenotypes \ No newline at end of file diff --git a/general/datasets/LGSM_AIG34_50_56_GBSPublish/summary.rtf b/general/datasets/LGSM_AIG34_50_56_GBSPublish/summary.rtf deleted file mode 100644 index 32329c0..0000000 --- a/general/datasets/LGSM_AIG34_50_56_GBSPublish/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Muscle bulk in adult healthy humans is highly variable even after accounting for height, age and sex. Low muscle mass, due to fewer and/or smaller constituent muscle fibers, would exacerbate the impact of muscle loss occurring in aging or disease. Genetic variability substantially influences muscle mass differences, but causative genes remain largely unknown. In a genome-wide association study (GWAS) on appendicular lean mass (ALM) in a population of 85,750 middle-age (38-49 years) individuals from the UK Biobank (UKB) we found 182 loci associated with ALM (P<5x10-8). We replicated associations for 78% of these loci (P<5x10-8) with ALM in a population of 181,862 elderly (60-74 years) individuals from UKB. We also conducted a GWAS on hindlimb skeletal muscle mass of 1,867 mice from an advanced intercross between two inbred strains (LG/J and SM/J) which identified 23 quantitative trait loci. 38 positional candidates distributed across 5 loci overlapped between the two species. In vitro studies of positional candidates confirmed CPNE1 and STC2 as modifiers of myogenesis. Collectively, these findings shed light on the genetics of muscle mass variability in humans and identify targets for the development of interventions for treatment of muscle loss. The overlapping results between humans and the mouse model GWAS point to shared genetic mechanisms across species.

    - -

    Reference collection

    diff --git a/general/datasets/LGSM_AI_G34_39_43_GBSPublish/specifics.rtf b/general/datasets/LGSM_AI_G34_39_43_GBSPublish/specifics.rtf deleted file mode 100644 index ab45490..0000000 --- a/general/datasets/LGSM_AI_G34_39_43_GBSPublish/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Phenotypes \ No newline at end of file diff --git a/general/datasets/LGSM_AI_G34_39_43_GBSPublish/summary.rtf b/general/datasets/LGSM_AI_G34_39_43_GBSPublish/summary.rtf deleted file mode 100644 index 383339b..0000000 --- a/general/datasets/LGSM_AI_G34_39_43_GBSPublish/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    LGSM AI G39-43 Palmer (GBS)

    diff --git a/general/datasets/LGSM_AI_G34_APublish/specifics.rtf b/general/datasets/LGSM_AI_G34_APublish/specifics.rtf deleted file mode 100644 index ab45490..0000000 --- a/general/datasets/LGSM_AI_G34_APublish/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Phenotypes \ No newline at end of file diff --git a/general/datasets/LGSM_AI_G34_APublish/summary.rtf b/general/datasets/LGSM_AI_G34_APublish/summary.rtf deleted file mode 100644 index 85836e3..0000000 --- a/general/datasets/LGSM_AI_G34_APublish/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    LGSM AI G34 Palmer (Array)

    diff --git a/general/datasets/LGSM_AI_G34_GBSPublish/specifics.rtf b/general/datasets/LGSM_AI_G34_GBSPublish/specifics.rtf deleted file mode 100644 index ab45490..0000000 --- a/general/datasets/LGSM_AI_G34_GBSPublish/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Phenotypes \ No newline at end of file diff --git a/general/datasets/LGSM_AI_G34_GBSPublish/summary.rtf b/general/datasets/LGSM_AI_G34_GBSPublish/summary.rtf deleted file mode 100644 index 9899270..0000000 --- a/general/datasets/LGSM_AI_G34_GBSPublish/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    LGSM AI G34 Palmer (GBS)

    diff --git a/general/datasets/LGSM_AI_G39_43_GBSPublish/specifics.rtf b/general/datasets/LGSM_AI_G39_43_GBSPublish/specifics.rtf deleted file mode 100644 index ab45490..0000000 --- a/general/datasets/LGSM_AI_G39_43_GBSPublish/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Phenotypes \ No newline at end of file diff --git a/general/datasets/LGSM_AI_G39_43_GBSPublish/summary.rtf b/general/datasets/LGSM_AI_G39_43_GBSPublish/summary.rtf deleted file mode 100644 index 5f4e985..0000000 --- a/general/datasets/LGSM_AI_G39_43_GBSPublish/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    LGSM AI G34 G39-43 Palmer (GBS)

    diff --git a/general/datasets/LSRU_CC_ST_1219/acknowledgment.rtf b/general/datasets/LSRU_CC_ST_1219/acknowledgment.rtf deleted file mode 100644 index 3b345f3..0000000 --- a/general/datasets/LSRU_CC_ST_1219/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    LS and MB would like to thank the Luxembourg National Research Fund (FNR) for the support  (FNR CORE C15/BM/10406131 grant).

    diff --git a/general/datasets/LSRU_CC_ST_1219/cases.rtf b/general/datasets/LSRU_CC_ST_1219/cases.rtf deleted file mode 100644 index f519f24..0000000 --- a/general/datasets/LSRU_CC_ST_1219/cases.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    CC mice were bred by Dr. Klaus Schughart at the HZI, Braunschweig, Germany.

    - -

    Note: Only one of 8 - 10 male samples was processed for RNA-seq (unilateral dissection of VMB). Luxembourg team also has 8 - 10 female samples. 16 to 20 complete brain hemispheres fixed in paraformaldehyde for 48 hours and then transferred to PBS with sodium azide (now stored at 4 degree Celsius at BT1, 7 ave des Hauts-Fourneaux, L-4362 Esch-sur-Alzette).

    - -

    C57BL/6J, A/J, and DBA/2J were bred by University of Luxembourg.

    diff --git a/general/datasets/LSRU_CC_ST_1219/experiment-design.rtf b/general/datasets/LSRU_CC_ST_1219/experiment-design.rtf deleted file mode 100644 index e2c242d..0000000 --- a/general/datasets/LSRU_CC_ST_1219/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Single-end 75bp reads at a depth of about 30 million reads/sample. Processed by Yujuan Gui using both RPKM and TPM. Log2 of TPM+1 uploaded into GeneNetwork Dec 2019 by Arthur Centeno and Robert W. Williams.

    - -

    Half of the C57BL/6J and A/J were sequenced in Genomics Core Facility - EMBL Heidelberg with single-end 80bp reads at a depth of about 30 million reads/sample.

    diff --git a/general/datasets/LSRU_CC_ST_1219/platform.rtf b/general/datasets/LSRU_CC_ST_1219/platform.rtf deleted file mode 100644 index a9c7084..0000000 --- a/general/datasets/LSRU_CC_ST_1219/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Illumina NextSeq 5000

    diff --git a/general/datasets/LSRU_CC_ST_1219/processing.rtf b/general/datasets/LSRU_CC_ST_1219/processing.rtf deleted file mode 100644 index 3a35b8f..0000000 --- a/general/datasets/LSRU_CC_ST_1219/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Sequencing data processed by Yujuan Gui. Sequencing data were TPM transformed then log2.

    diff --git a/general/datasets/LSRU_CC_ST_1219/specifics.rtf b/general/datasets/LSRU_CC_ST_1219/specifics.rtf deleted file mode 100644 index 4609fdf..0000000 --- a/general/datasets/LSRU_CC_ST_1219/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -CC \ No newline at end of file diff --git a/general/datasets/LSRU_CC_ST_1219/summary.rtf b/general/datasets/LSRU_CC_ST_1219/summary.rtf deleted file mode 100644 index aaf3176..0000000 --- a/general/datasets/LSRU_CC_ST_1219/summary.rtf +++ /dev/null @@ -1,13 +0,0 @@ -

    RNA-seq on ventral midbrains, all animals ~ 3-month old.

    - -

    Collaborative Cross: 1 male per strain for 32 CC strains.

    - -

    C57BL/6J, A/J, and DBA/2J: The value is the mean of 12 samples (6 males + 6 females).

    - -

    Team of Investigators:

    - -

    Lasse Sinkkkonen, Manuel Buttini, Yujuan Gui, and Melanie Thomas at the University of Luxembourg

    - -

    Data entered into GeneNetwork December 2019 by Arthur Centeno, Robert W. Williams, Yujuan Gui

    - -

     

    diff --git a/general/datasets/LSRU_CC_ST_1219/tissue.rtf b/general/datasets/LSRU_CC_ST_1219/tissue.rtf deleted file mode 100644 index e8f4aff..0000000 --- a/general/datasets/LSRU_CC_ST_1219/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Ventral midbrains

    diff --git a/general/datasets/Lgsm_ai_g34_39_43_gbspublish/specifics.rtf b/general/datasets/Lgsm_ai_g34_39_43_gbspublish/specifics.rtf new file mode 100644 index 0000000..ab45490 --- /dev/null +++ b/general/datasets/Lgsm_ai_g34_39_43_gbspublish/specifics.rtf @@ -0,0 +1 @@ +Phenotypes \ No newline at end of file diff --git a/general/datasets/Lgsm_ai_g34_39_43_gbspublish/summary.rtf b/general/datasets/Lgsm_ai_g34_39_43_gbspublish/summary.rtf new file mode 100644 index 0000000..383339b --- /dev/null +++ b/general/datasets/Lgsm_ai_g34_39_43_gbspublish/summary.rtf @@ -0,0 +1 @@ +

    LGSM AI G39-43 Palmer (GBS)

    diff --git a/general/datasets/Lgsm_ai_g34_apublish/specifics.rtf b/general/datasets/Lgsm_ai_g34_apublish/specifics.rtf new file mode 100644 index 0000000..ab45490 --- /dev/null +++ b/general/datasets/Lgsm_ai_g34_apublish/specifics.rtf @@ -0,0 +1 @@ +Phenotypes \ No newline at end of file diff --git a/general/datasets/Lgsm_ai_g34_apublish/summary.rtf b/general/datasets/Lgsm_ai_g34_apublish/summary.rtf new file mode 100644 index 0000000..85836e3 --- /dev/null +++ b/general/datasets/Lgsm_ai_g34_apublish/summary.rtf @@ -0,0 +1 @@ +

    LGSM AI G34 Palmer (Array)

    diff --git a/general/datasets/Lgsm_ai_g34_gbspublish/specifics.rtf b/general/datasets/Lgsm_ai_g34_gbspublish/specifics.rtf new file mode 100644 index 0000000..ab45490 --- /dev/null +++ b/general/datasets/Lgsm_ai_g34_gbspublish/specifics.rtf @@ -0,0 +1 @@ +Phenotypes \ No newline at end of file diff --git a/general/datasets/Lgsm_ai_g34_gbspublish/summary.rtf b/general/datasets/Lgsm_ai_g34_gbspublish/summary.rtf new file mode 100644 index 0000000..9899270 --- /dev/null +++ b/general/datasets/Lgsm_ai_g34_gbspublish/summary.rtf @@ -0,0 +1 @@ +

    LGSM AI G34 Palmer (GBS)

    diff --git a/general/datasets/Lgsm_ai_g39_43_gbspublish/specifics.rtf b/general/datasets/Lgsm_ai_g39_43_gbspublish/specifics.rtf new file mode 100644 index 0000000..ab45490 --- /dev/null +++ b/general/datasets/Lgsm_ai_g39_43_gbspublish/specifics.rtf @@ -0,0 +1 @@ +Phenotypes \ No newline at end of file diff --git a/general/datasets/Lgsm_ai_g39_43_gbspublish/summary.rtf b/general/datasets/Lgsm_ai_g39_43_gbspublish/summary.rtf new file mode 100644 index 0000000..5f4e985 --- /dev/null +++ b/general/datasets/Lgsm_ai_g39_43_gbspublish/summary.rtf @@ -0,0 +1 @@ +

    LGSM AI G34 G39-43 Palmer (GBS)

    diff --git a/general/datasets/Lgsm_aig34_50_56_gbspublish/contributors.rtf b/general/datasets/Lgsm_aig34_50_56_gbspublish/contributors.rtf new file mode 100644 index 0000000..af3e1ca --- /dev/null +++ b/general/datasets/Lgsm_aig34_50_56_gbspublish/contributors.rtf @@ -0,0 +1 @@ +

    Hernandez Cordero AI, Gonzales NM, Parker CC, Sokoloff G, Vandenbergh DJ, Cheng R, Abney M, Skol A, Douglas A, Palmer AA, Gregory JS, Lionikas A

    diff --git a/general/datasets/Lgsm_aig34_50_56_gbspublish/specifics.rtf b/general/datasets/Lgsm_aig34_50_56_gbspublish/specifics.rtf new file mode 100644 index 0000000..ab45490 --- /dev/null +++ b/general/datasets/Lgsm_aig34_50_56_gbspublish/specifics.rtf @@ -0,0 +1 @@ +Phenotypes \ No newline at end of file diff --git a/general/datasets/Lgsm_aig34_50_56_gbspublish/summary.rtf b/general/datasets/Lgsm_aig34_50_56_gbspublish/summary.rtf new file mode 100644 index 0000000..32329c0 --- /dev/null +++ b/general/datasets/Lgsm_aig34_50_56_gbspublish/summary.rtf @@ -0,0 +1,3 @@ +

    Muscle bulk in adult healthy humans is highly variable even after accounting for height, age and sex. Low muscle mass, due to fewer and/or smaller constituent muscle fibers, would exacerbate the impact of muscle loss occurring in aging or disease. Genetic variability substantially influences muscle mass differences, but causative genes remain largely unknown. In a genome-wide association study (GWAS) on appendicular lean mass (ALM) in a population of 85,750 middle-age (38-49 years) individuals from the UK Biobank (UKB) we found 182 loci associated with ALM (P<5x10-8). We replicated associations for 78% of these loci (P<5x10-8) with ALM in a population of 181,862 elderly (60-74 years) individuals from UKB. We also conducted a GWAS on hindlimb skeletal muscle mass of 1,867 mice from an advanced intercross between two inbred strains (LG/J and SM/J) which identified 23 quantitative trait loci. 38 positional candidates distributed across 5 loci overlapped between the two species. In vitro studies of positional candidates confirmed CPNE1 and STC2 as modifiers of myogenesis. Collectively, these findings shed light on the genetics of muscle mass variability in humans and identify targets for the development of interventions for treatment of muscle loss. The overlapping results between humans and the mouse model GWAS point to shared genetic mechanisms across species.

    + +

    Reference collection

    diff --git a/general/datasets/Linsenbardt_BoehmGeno/summary.rtf b/general/datasets/Linsenbardt_BoehmGeno/summary.rtf deleted file mode 100644 index f8938b3..0000000 --- a/general/datasets/Linsenbardt_BoehmGeno/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Error-correcting for the genotypes for the first 96 EtOH-sensitived B6xD2 F2-S4 cases it's done. Genotypes are good and the kinship matrix and family structure all makes sense. You can certainly detect the family structure of this six generation cross. This data set can only be mapped correctly using your new Py-LMM code in GeneNetwork 2.

    diff --git a/general/datasets/Linsenbardt_BoehmPublish/summary.rtf b/general/datasets/Linsenbardt_BoehmPublish/summary.rtf deleted file mode 100644 index b04eab6..0000000 --- a/general/datasets/Linsenbardt_BoehmPublish/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Currently this dataset is private

    diff --git a/general/datasets/Linsenbardt_boehmgeno/summary.rtf b/general/datasets/Linsenbardt_boehmgeno/summary.rtf new file mode 100644 index 0000000..f8938b3 --- /dev/null +++ b/general/datasets/Linsenbardt_boehmgeno/summary.rtf @@ -0,0 +1 @@ +

    Error-correcting for the genotypes for the first 96 EtOH-sensitived B6xD2 F2-S4 cases it's done. Genotypes are good and the kinship matrix and family structure all makes sense. You can certainly detect the family structure of this six generation cross. This data set can only be mapped correctly using your new Py-LMM code in GeneNetwork 2.

    diff --git a/general/datasets/Linsenbardt_boehmpublish/summary.rtf b/general/datasets/Linsenbardt_boehmpublish/summary.rtf new file mode 100644 index 0000000..b04eab6 --- /dev/null +++ b/general/datasets/Linsenbardt_boehmpublish/summary.rtf @@ -0,0 +1 @@ +

    Currently this dataset is private

    diff --git a/general/datasets/Lsru_cc_st_1219/acknowledgment.rtf b/general/datasets/Lsru_cc_st_1219/acknowledgment.rtf new file mode 100644 index 0000000..3b345f3 --- /dev/null +++ b/general/datasets/Lsru_cc_st_1219/acknowledgment.rtf @@ -0,0 +1 @@ +

    LS and MB would like to thank the Luxembourg National Research Fund (FNR) for the support  (FNR CORE C15/BM/10406131 grant).

    diff --git a/general/datasets/Lsru_cc_st_1219/cases.rtf b/general/datasets/Lsru_cc_st_1219/cases.rtf new file mode 100644 index 0000000..f519f24 --- /dev/null +++ b/general/datasets/Lsru_cc_st_1219/cases.rtf @@ -0,0 +1,5 @@ +

    CC mice were bred by Dr. Klaus Schughart at the HZI, Braunschweig, Germany.

    + +

    Note: Only one of 8 - 10 male samples was processed for RNA-seq (unilateral dissection of VMB). Luxembourg team also has 8 - 10 female samples. 16 to 20 complete brain hemispheres fixed in paraformaldehyde for 48 hours and then transferred to PBS with sodium azide (now stored at 4 degree Celsius at BT1, 7 ave des Hauts-Fourneaux, L-4362 Esch-sur-Alzette).

    + +

    C57BL/6J, A/J, and DBA/2J were bred by University of Luxembourg.

    diff --git a/general/datasets/Lsru_cc_st_1219/citation.rtf b/general/datasets/Lsru_cc_st_1219/citation.rtf new file mode 100644 index 0000000..94560c7 --- /dev/null +++ b/general/datasets/Lsru_cc_st_1219/citation.rtf @@ -0,0 +1 @@ +

    None as of December 2019

    diff --git a/general/datasets/Lsru_cc_st_1219/contributors.rtf b/general/datasets/Lsru_cc_st_1219/contributors.rtf new file mode 100644 index 0000000..c0e81ee --- /dev/null +++ b/general/datasets/Lsru_cc_st_1219/contributors.rtf @@ -0,0 +1,5 @@ +

    manuel.buttini@uni.lu

    + +

    lasse.sinkkonen@uni.lu

    + +

    yujuan.gui@uni.lu

    diff --git a/general/datasets/Lsru_cc_st_1219/experiment-design.rtf b/general/datasets/Lsru_cc_st_1219/experiment-design.rtf new file mode 100644 index 0000000..e2c242d --- /dev/null +++ b/general/datasets/Lsru_cc_st_1219/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Single-end 75bp reads at a depth of about 30 million reads/sample. Processed by Yujuan Gui using both RPKM and TPM. Log2 of TPM+1 uploaded into GeneNetwork Dec 2019 by Arthur Centeno and Robert W. Williams.

    + +

    Half of the C57BL/6J and A/J were sequenced in Genomics Core Facility - EMBL Heidelberg with single-end 80bp reads at a depth of about 30 million reads/sample.

    diff --git a/general/datasets/Lsru_cc_st_1219/platform.rtf b/general/datasets/Lsru_cc_st_1219/platform.rtf new file mode 100644 index 0000000..a9c7084 --- /dev/null +++ b/general/datasets/Lsru_cc_st_1219/platform.rtf @@ -0,0 +1 @@ +

    Illumina NextSeq 5000

    diff --git a/general/datasets/Lsru_cc_st_1219/processing.rtf b/general/datasets/Lsru_cc_st_1219/processing.rtf new file mode 100644 index 0000000..3a35b8f --- /dev/null +++ b/general/datasets/Lsru_cc_st_1219/processing.rtf @@ -0,0 +1 @@ +

    Sequencing data processed by Yujuan Gui. Sequencing data were TPM transformed then log2.

    diff --git a/general/datasets/Lsru_cc_st_1219/specifics.rtf b/general/datasets/Lsru_cc_st_1219/specifics.rtf new file mode 100644 index 0000000..4609fdf --- /dev/null +++ b/general/datasets/Lsru_cc_st_1219/specifics.rtf @@ -0,0 +1 @@ +CC \ No newline at end of file diff --git a/general/datasets/Lsru_cc_st_1219/summary.rtf b/general/datasets/Lsru_cc_st_1219/summary.rtf new file mode 100644 index 0000000..aaf3176 --- /dev/null +++ b/general/datasets/Lsru_cc_st_1219/summary.rtf @@ -0,0 +1,13 @@ +

    RNA-seq on ventral midbrains, all animals ~ 3-month old.

    + +

    Collaborative Cross: 1 male per strain for 32 CC strains.

    + +

    C57BL/6J, A/J, and DBA/2J: The value is the mean of 12 samples (6 males + 6 females).

    + +

    Team of Investigators:

    + +

    Lasse Sinkkkonen, Manuel Buttini, Yujuan Gui, and Melanie Thomas at the University of Luxembourg

    + +

    Data entered into GeneNetwork December 2019 by Arthur Centeno, Robert W. Williams, Yujuan Gui

    + +

     

    diff --git a/general/datasets/Lsru_cc_st_1219/tissue.rtf b/general/datasets/Lsru_cc_st_1219/tissue.rtf new file mode 100644 index 0000000..e8f4aff --- /dev/null +++ b/general/datasets/Lsru_cc_st_1219/tissue.rtf @@ -0,0 +1 @@ +

    Ventral midbrains

    diff --git a/general/datasets/Luca_gse23352hlt0613/citation.rtf b/general/datasets/Luca_gse23352hlt0613/citation.rtf new file mode 100644 index 0000000..2aafa46 --- /dev/null +++ b/general/datasets/Luca_gse23352hlt0613/citation.rtf @@ -0,0 +1 @@ +

    Bossé Y, Postma DS, Sin DD, Lamontagne M et al. Molecular signature of smoking in human lung tissues. Cancer Res 2012 Aug 1;72(15):3753-63. PMID: 22659451

    diff --git a/general/datasets/Luca_gse23352hlt0613/contributors.rtf b/general/datasets/Luca_gse23352hlt0613/contributors.rtf new file mode 100644 index 0000000..a22a4a5 --- /dev/null +++ b/general/datasets/Luca_gse23352hlt0613/contributors.rtf @@ -0,0 +1 @@ +

    Bossé Y, Laviolette M

    diff --git a/general/datasets/Luca_gse23352hlt0613/summary.rtf b/general/datasets/Luca_gse23352hlt0613/summary.rtf new file mode 100644 index 0000000..9cb9538 --- /dev/null +++ b/general/datasets/Luca_gse23352hlt0613/summary.rtf @@ -0,0 +1,15 @@ +

    This SuperSeries is composed of the following SubSeries:

    + + + + + + + + + + + + + +
    GSE23352 Whole-genome gene expression profiles of non-tumorous human lung tissues: Laval set
    GSE23529 Whole-genome gene expression profiles of non-tumorous human lung tissues: UBC set
    GSE23545 Whole-genome gene expression profiles of non-tumorous human lung tissues: GRNG set
    diff --git a/general/datasets/Lv_g_0106_b/citation.rtf b/general/datasets/Lv_g_0106_b/citation.rtf new file mode 100644 index 0000000..2f6dbd6 --- /dev/null +++ b/general/datasets/Lv_g_0106_b/citation.rtf @@ -0,0 +1 @@ +

    Genome-level analysis of genetic regulation of liver gene expression networks. Gatti D, Maki A, Chesler EJ, Kirova R, Kosyk O, Lu L, Manly KF, Williams RW, Perkins A, Langston MA, Threadgill DW, Rusyn I. Hepatology. 2007 Aug;46(2):548-57. PMID: 17542012

    diff --git a/general/datasets/Lv_g_0106_b/platform.rtf b/general/datasets/Lv_g_0106_b/platform.rtf new file mode 100644 index 0000000..dd35c6a --- /dev/null +++ b/general/datasets/Lv_g_0106_b/platform.rtf @@ -0,0 +1 @@ +

    The arrays were Agilent two color arrays.

    diff --git a/general/datasets/Lv_g_0106_b/processing.rtf b/general/datasets/Lv_g_0106_b/processing.rtf new file mode 100644 index 0000000..ae2363c --- /dev/null +++ b/general/datasets/Lv_g_0106_b/processing.rtf @@ -0,0 +1 @@ +

    We used a mix of C57BL/6J RNA as the reference (liver, kidney, lung, brain and spleen). Each measurement is the ratio of sample intensity over the reference intensity. The data was normalized using a robust LOWESS smoothing method that adjusts for non-linearity between the two color channels (see Yang Yee Hwa et. al., Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation, Nucl. Acid Res., 2002). We then took the log2 of these ratios. A value of 1 indicates that the expression of that gene in the sample is twice that of the reference. Since the reference, includes liver, the range of values is more modest than some other scales of gene expression. (From Dan Gatti, Sept 2012).

    diff --git a/general/datasets/Lv_g_0106_b/summary.rtf b/general/datasets/Lv_g_0106_b/summary.rtf new file mode 100644 index 0000000..fe91a13 --- /dev/null +++ b/general/datasets/Lv_g_0106_b/summary.rtf @@ -0,0 +1,9 @@ +

    Genome-level analysis of genetic regulation of liver gene expression networks

    + +

    Gatti D, Maki A, Chesler EJ, Kirova R, Kosyk O, Lu L, Manly KF, Williams RW, Perkins A, Langston MA, Threadgill DW, Rusyn I

    + +

    Hepatology. 2007 Aug;46(2):548-57

    + +

    Source: Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA

    + +

    The liver is the primary site for the metabolism of nutrients, drugs, and chemical agents. Although metabolic pathways are complex and tightly regulated, genetic variation among individuals, reflected in variations in gene expression levels, introduces complexity into research on liver disease. This study dissected genetic networks that control liver gene expression through the combination of large-scale quantitative mRNA expression analysis with genetic mapping in a reference population of BXD recombinant inbred mouse strains for which extensive single-nucleotide polymorphism, haplotype, and phenotypic data are publicly available. We profiled gene expression in livers of naive mice of both sexes from C57BL/6J, DBA/2J, B6D2F1, and 37 BXD strains using Agilent oligonucleotide microarrays. These data were used to map quantitative trait loci (QTLs) responsible for variations in the expression of about 19,000 transcripts. We identified polymorphic local and distant QTLs, including several loci that control the expression of large numbers of genes in liver, by comparing the physical transcript position with the location of the controlling QTL. CONCLUSION: The data are available through a public web-based resource (www.genenetwork.org) that allows custom data mining, identification of coregulated transcripts and correlated phenotypes, cross-tissue, and cross-species comparisons, as well as testing of a broad array of hypotheses.

    diff --git a/general/datasets/Lv_g_0106_f/citation.rtf b/general/datasets/Lv_g_0106_f/citation.rtf new file mode 100644 index 0000000..2f6dbd6 --- /dev/null +++ b/general/datasets/Lv_g_0106_f/citation.rtf @@ -0,0 +1 @@ +

    Genome-level analysis of genetic regulation of liver gene expression networks. Gatti D, Maki A, Chesler EJ, Kirova R, Kosyk O, Lu L, Manly KF, Williams RW, Perkins A, Langston MA, Threadgill DW, Rusyn I. Hepatology. 2007 Aug;46(2):548-57. PMID: 17542012

    diff --git a/general/datasets/Lv_g_0106_f/platform.rtf b/general/datasets/Lv_g_0106_f/platform.rtf new file mode 100644 index 0000000..dd35c6a --- /dev/null +++ b/general/datasets/Lv_g_0106_f/platform.rtf @@ -0,0 +1 @@ +

    The arrays were Agilent two color arrays.

    diff --git a/general/datasets/Lv_g_0106_f/processing.rtf b/general/datasets/Lv_g_0106_f/processing.rtf new file mode 100644 index 0000000..ae2363c --- /dev/null +++ b/general/datasets/Lv_g_0106_f/processing.rtf @@ -0,0 +1 @@ +

    We used a mix of C57BL/6J RNA as the reference (liver, kidney, lung, brain and spleen). Each measurement is the ratio of sample intensity over the reference intensity. The data was normalized using a robust LOWESS smoothing method that adjusts for non-linearity between the two color channels (see Yang Yee Hwa et. al., Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation, Nucl. Acid Res., 2002). We then took the log2 of these ratios. A value of 1 indicates that the expression of that gene in the sample is twice that of the reference. Since the reference, includes liver, the range of values is more modest than some other scales of gene expression. (From Dan Gatti, Sept 2012).

    diff --git a/general/datasets/Lv_g_0106_f/summary.rtf b/general/datasets/Lv_g_0106_f/summary.rtf new file mode 100644 index 0000000..fe91a13 --- /dev/null +++ b/general/datasets/Lv_g_0106_f/summary.rtf @@ -0,0 +1,9 @@ +

    Genome-level analysis of genetic regulation of liver gene expression networks

    + +

    Gatti D, Maki A, Chesler EJ, Kirova R, Kosyk O, Lu L, Manly KF, Williams RW, Perkins A, Langston MA, Threadgill DW, Rusyn I

    + +

    Hepatology. 2007 Aug;46(2):548-57

    + +

    Source: Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA

    + +

    The liver is the primary site for the metabolism of nutrients, drugs, and chemical agents. Although metabolic pathways are complex and tightly regulated, genetic variation among individuals, reflected in variations in gene expression levels, introduces complexity into research on liver disease. This study dissected genetic networks that control liver gene expression through the combination of large-scale quantitative mRNA expression analysis with genetic mapping in a reference population of BXD recombinant inbred mouse strains for which extensive single-nucleotide polymorphism, haplotype, and phenotypic data are publicly available. We profiled gene expression in livers of naive mice of both sexes from C57BL/6J, DBA/2J, B6D2F1, and 37 BXD strains using Agilent oligonucleotide microarrays. These data were used to map quantitative trait loci (QTLs) responsible for variations in the expression of about 19,000 transcripts. We identified polymorphic local and distant QTLs, including several loci that control the expression of large numbers of genes in liver, by comparing the physical transcript position with the location of the controlling QTL. CONCLUSION: The data are available through a public web-based resource (www.genenetwork.org) that allows custom data mining, identification of coregulated transcripts and correlated phenotypes, cross-tissue, and cross-species comparisons, as well as testing of a broad array of hypotheses.

    diff --git a/general/datasets/Lv_g_0106_m/citation.rtf b/general/datasets/Lv_g_0106_m/citation.rtf new file mode 100644 index 0000000..2f6dbd6 --- /dev/null +++ b/general/datasets/Lv_g_0106_m/citation.rtf @@ -0,0 +1 @@ +

    Genome-level analysis of genetic regulation of liver gene expression networks. Gatti D, Maki A, Chesler EJ, Kirova R, Kosyk O, Lu L, Manly KF, Williams RW, Perkins A, Langston MA, Threadgill DW, Rusyn I. Hepatology. 2007 Aug;46(2):548-57. PMID: 17542012

    diff --git a/general/datasets/Lv_g_0106_m/platform.rtf b/general/datasets/Lv_g_0106_m/platform.rtf new file mode 100644 index 0000000..dd35c6a --- /dev/null +++ b/general/datasets/Lv_g_0106_m/platform.rtf @@ -0,0 +1 @@ +

    The arrays were Agilent two color arrays.

    diff --git a/general/datasets/Lv_g_0106_m/processing.rtf b/general/datasets/Lv_g_0106_m/processing.rtf new file mode 100644 index 0000000..ae2363c --- /dev/null +++ b/general/datasets/Lv_g_0106_m/processing.rtf @@ -0,0 +1 @@ +

    We used a mix of C57BL/6J RNA as the reference (liver, kidney, lung, brain and spleen). Each measurement is the ratio of sample intensity over the reference intensity. The data was normalized using a robust LOWESS smoothing method that adjusts for non-linearity between the two color channels (see Yang Yee Hwa et. al., Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation, Nucl. Acid Res., 2002). We then took the log2 of these ratios. A value of 1 indicates that the expression of that gene in the sample is twice that of the reference. Since the reference, includes liver, the range of values is more modest than some other scales of gene expression. (From Dan Gatti, Sept 2012).

    diff --git a/general/datasets/Lv_g_0106_m/summary.rtf b/general/datasets/Lv_g_0106_m/summary.rtf new file mode 100644 index 0000000..fe91a13 --- /dev/null +++ b/general/datasets/Lv_g_0106_m/summary.rtf @@ -0,0 +1,9 @@ +

    Genome-level analysis of genetic regulation of liver gene expression networks

    + +

    Gatti D, Maki A, Chesler EJ, Kirova R, Kosyk O, Lu L, Manly KF, Williams RW, Perkins A, Langston MA, Threadgill DW, Rusyn I

    + +

    Hepatology. 2007 Aug;46(2):548-57

    + +

    Source: Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA

    + +

    The liver is the primary site for the metabolism of nutrients, drugs, and chemical agents. Although metabolic pathways are complex and tightly regulated, genetic variation among individuals, reflected in variations in gene expression levels, introduces complexity into research on liver disease. This study dissected genetic networks that control liver gene expression through the combination of large-scale quantitative mRNA expression analysis with genetic mapping in a reference population of BXD recombinant inbred mouse strains for which extensive single-nucleotide polymorphism, haplotype, and phenotypic data are publicly available. We profiled gene expression in livers of naive mice of both sexes from C57BL/6J, DBA/2J, B6D2F1, and 37 BXD strains using Agilent oligonucleotide microarrays. These data were used to map quantitative trait loci (QTLs) responsible for variations in the expression of about 19,000 transcripts. We identified polymorphic local and distant QTLs, including several loci that control the expression of large numbers of genes in liver, by comparing the physical transcript position with the location of the controlling QTL. CONCLUSION: The data are available through a public web-based resource (www.genenetwork.org) that allows custom data mining, identification of coregulated transcripts and correlated phenotypes, cross-tissue, and cross-species comparisons, as well as testing of a broad array of hypotheses.

    diff --git a/general/datasets/Lv_g_0704_a/citation.rtf b/general/datasets/Lv_g_0704_a/citation.rtf new file mode 100644 index 0000000..2f6dbd6 --- /dev/null +++ b/general/datasets/Lv_g_0704_a/citation.rtf @@ -0,0 +1 @@ +

    Genome-level analysis of genetic regulation of liver gene expression networks. Gatti D, Maki A, Chesler EJ, Kirova R, Kosyk O, Lu L, Manly KF, Williams RW, Perkins A, Langston MA, Threadgill DW, Rusyn I. Hepatology. 2007 Aug;46(2):548-57. PMID: 17542012

    diff --git a/general/datasets/Lv_g_0704_a/platform.rtf b/general/datasets/Lv_g_0704_a/platform.rtf new file mode 100644 index 0000000..dd35c6a --- /dev/null +++ b/general/datasets/Lv_g_0704_a/platform.rtf @@ -0,0 +1 @@ +

    The arrays were Agilent two color arrays.

    diff --git a/general/datasets/Lv_g_0704_a/processing.rtf b/general/datasets/Lv_g_0704_a/processing.rtf new file mode 100644 index 0000000..ae2363c --- /dev/null +++ b/general/datasets/Lv_g_0704_a/processing.rtf @@ -0,0 +1 @@ +

    We used a mix of C57BL/6J RNA as the reference (liver, kidney, lung, brain and spleen). Each measurement is the ratio of sample intensity over the reference intensity. The data was normalized using a robust LOWESS smoothing method that adjusts for non-linearity between the two color channels (see Yang Yee Hwa et. al., Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation, Nucl. Acid Res., 2002). We then took the log2 of these ratios. A value of 1 indicates that the expression of that gene in the sample is twice that of the reference. Since the reference, includes liver, the range of values is more modest than some other scales of gene expression. (From Dan Gatti, Sept 2012).

    diff --git a/general/datasets/Lv_g_0704_a/summary.rtf b/general/datasets/Lv_g_0704_a/summary.rtf new file mode 100644 index 0000000..fe91a13 --- /dev/null +++ b/general/datasets/Lv_g_0704_a/summary.rtf @@ -0,0 +1,9 @@ +

    Genome-level analysis of genetic regulation of liver gene expression networks

    + +

    Gatti D, Maki A, Chesler EJ, Kirova R, Kosyk O, Lu L, Manly KF, Williams RW, Perkins A, Langston MA, Threadgill DW, Rusyn I

    + +

    Hepatology. 2007 Aug;46(2):548-57

    + +

    Source: Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA

    + +

    The liver is the primary site for the metabolism of nutrients, drugs, and chemical agents. Although metabolic pathways are complex and tightly regulated, genetic variation among individuals, reflected in variations in gene expression levels, introduces complexity into research on liver disease. This study dissected genetic networks that control liver gene expression through the combination of large-scale quantitative mRNA expression analysis with genetic mapping in a reference population of BXD recombinant inbred mouse strains for which extensive single-nucleotide polymorphism, haplotype, and phenotypic data are publicly available. We profiled gene expression in livers of naive mice of both sexes from C57BL/6J, DBA/2J, B6D2F1, and 37 BXD strains using Agilent oligonucleotide microarrays. These data were used to map quantitative trait loci (QTLs) responsible for variations in the expression of about 19,000 transcripts. We identified polymorphic local and distant QTLs, including several loci that control the expression of large numbers of genes in liver, by comparing the physical transcript position with the location of the controlling QTL. CONCLUSION: The data are available through a public web-based resource (www.genenetwork.org) that allows custom data mining, identification of coregulated transcripts and correlated phenotypes, cross-tissue, and cross-species comparisons, as well as testing of a broad array of hypotheses.

    diff --git a/general/datasets/Lv_g_0704_r/citation.rtf b/general/datasets/Lv_g_0704_r/citation.rtf new file mode 100644 index 0000000..2f6dbd6 --- /dev/null +++ b/general/datasets/Lv_g_0704_r/citation.rtf @@ -0,0 +1 @@ +

    Genome-level analysis of genetic regulation of liver gene expression networks. Gatti D, Maki A, Chesler EJ, Kirova R, Kosyk O, Lu L, Manly KF, Williams RW, Perkins A, Langston MA, Threadgill DW, Rusyn I. Hepatology. 2007 Aug;46(2):548-57. PMID: 17542012

    diff --git a/general/datasets/Lv_g_0704_r/platform.rtf b/general/datasets/Lv_g_0704_r/platform.rtf new file mode 100644 index 0000000..dd35c6a --- /dev/null +++ b/general/datasets/Lv_g_0704_r/platform.rtf @@ -0,0 +1 @@ +

    The arrays were Agilent two color arrays.

    diff --git a/general/datasets/Lv_g_0704_r/processing.rtf b/general/datasets/Lv_g_0704_r/processing.rtf new file mode 100644 index 0000000..ae2363c --- /dev/null +++ b/general/datasets/Lv_g_0704_r/processing.rtf @@ -0,0 +1 @@ +

    We used a mix of C57BL/6J RNA as the reference (liver, kidney, lung, brain and spleen). Each measurement is the ratio of sample intensity over the reference intensity. The data was normalized using a robust LOWESS smoothing method that adjusts for non-linearity between the two color channels (see Yang Yee Hwa et. al., Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation, Nucl. Acid Res., 2002). We then took the log2 of these ratios. A value of 1 indicates that the expression of that gene in the sample is twice that of the reference. Since the reference, includes liver, the range of values is more modest than some other scales of gene expression. (From Dan Gatti, Sept 2012).

    diff --git a/general/datasets/Lv_g_0704_r/summary.rtf b/general/datasets/Lv_g_0704_r/summary.rtf new file mode 100644 index 0000000..fe91a13 --- /dev/null +++ b/general/datasets/Lv_g_0704_r/summary.rtf @@ -0,0 +1,9 @@ +

    Genome-level analysis of genetic regulation of liver gene expression networks

    + +

    Gatti D, Maki A, Chesler EJ, Kirova R, Kosyk O, Lu L, Manly KF, Williams RW, Perkins A, Langston MA, Threadgill DW, Rusyn I

    + +

    Hepatology. 2007 Aug;46(2):548-57

    + +

    Source: Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA

    + +

    The liver is the primary site for the metabolism of nutrients, drugs, and chemical agents. Although metabolic pathways are complex and tightly regulated, genetic variation among individuals, reflected in variations in gene expression levels, introduces complexity into research on liver disease. This study dissected genetic networks that control liver gene expression through the combination of large-scale quantitative mRNA expression analysis with genetic mapping in a reference population of BXD recombinant inbred mouse strains for which extensive single-nucleotide polymorphism, haplotype, and phenotypic data are publicly available. We profiled gene expression in livers of naive mice of both sexes from C57BL/6J, DBA/2J, B6D2F1, and 37 BXD strains using Agilent oligonucleotide microarrays. These data were used to map quantitative trait loci (QTLs) responsible for variations in the expression of about 19,000 transcripts. We identified polymorphic local and distant QTLs, including several loci that control the expression of large numbers of genes in liver, by comparing the physical transcript position with the location of the controlling QTL. CONCLUSION: The data are available through a public web-based resource (www.genenetwork.org) that allows custom data mining, identification of coregulated transcripts and correlated phenotypes, cross-tissue, and cross-species comparisons, as well as testing of a broad array of hypotheses.

    diff --git a/general/datasets/Lvf2_m_0704_m/acknowledgment.rtf b/general/datasets/Lvf2_m_0704_m/acknowledgment.rtf new file mode 100644 index 0000000..42f7eec --- /dev/null +++ b/general/datasets/Lvf2_m_0704_m/acknowledgment.rtf @@ -0,0 +1,3 @@ +
    This project was supported in part by NIH/NIDDK 5803701, NIH/NIDDK 66369-01 and American Diabetes Association 7-03-IG-01 to Alan D. Attie, USDA CSREES grants to the University of Wisconsin-Madison to Brian S. Yandell, and HHMI grant A-53-1200-4 to Christina Kendziorski.
    + +
    B6BTBRF2 Liver Database. All of the original (B6 x BTBR)F2-ob/ob liver mRNA M430AB array data were generated by Hong Lan and Alan Attie at The University of Wisconsin-Madison. For contact and citations and other information on these data sets, please review the INFO pages and contact Drs. Alan Attie, Christina Kendziorski, and Brian Yandell regarding use of this data set in publications or projects.
    diff --git a/general/datasets/Lvf2_m_0704_m/cases.rtf b/general/datasets/Lvf2_m_0704_m/cases.rtf new file mode 100644 index 0000000..ece7be7 --- /dev/null +++ b/general/datasets/Lvf2_m_0704_m/cases.rtf @@ -0,0 +1 @@ +
    The F2-ob/ob mice were chosen from a mapping panel that we created to map diabetes related physiological phenotypes (Stoehr et al. 2000). About 110 of these F2-ob/ob mice were also used to map mRNA abundance traits derived by quantitative real-time RT-PCR (Lan et al. 2003). The sixty F2-ob/ob mice that were used to generate microarray-derived mRNA abundance traits were selected from the 110 mice based on a selective phenotyping algorithm (Jin et al. 2004). The F2-ob/ob mice were housed at weaning at the University of Wisconsin-Madison animal care facility on a 12-h light/dark cycle. Mice were provided Purina Formulab Chow 5008 (6.5% fat) and acidified water ad libitum. Mice were killed at 14 weeks of age by CO2 asphyxiation after a 4-hour fast. The livers, along with other tissues, were immediately foil wrapped and frozen in liquid nitrogen, and subsequently transferred to -80 °C freezers for storage.
    diff --git a/general/datasets/Lvf2_m_0704_m/citation.rtf b/general/datasets/Lvf2_m_0704_m/citation.rtf new file mode 100644 index 0000000..48722e7 --- /dev/null +++ b/general/datasets/Lvf2_m_0704_m/citation.rtf @@ -0,0 +1,27 @@ +
    +

    Lan H, Chen M, Byers JE, Yandell BS, Stapleton DS, Mata CM, Mui ET, Flowers MT, Schueler KL, Malnly KF, Williams RW, Kendziorski CM, Attie AD (2005) Combined expression trait correlations and expression quantitative trait locus mapping. Submitted, Aug. 2005.

    +
    + +
    +

    Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889-890.

    +
    + +
    +

    Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31: e15.

    +
    + +
    +

    Jin C, Lan H, Attie AD, Churchill GA, Bulutuglo D, Yanell BS (2004) Selective phenotyping for increased efficiency in genetic mapping studies. Genetics 168:2285-2293.

    +
    + +
    +

    Lan H, Stoehr JP, Nadler ST, Schueler KL, Yandel BS, Attie AD (2003) Dimension reduction for mapping mRNA abundance as quantitative traits. Genetics 164: 1607-1614.

    +
    + +
    +

    Stoehr JP, Nadler ST, Schueler KL, Rabaglia ME, Yandell BS, Metz SA, Attie AD (2000) Genetic obesity unmasks nonlinear interactions between murine type 2 diabetes susceptibility loci. Diabetes 49: 1946-1954.

    +
    + +
    +

    Zhang L, Miles MF, Aldape KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotechnol 21: 818-821.

    +
    diff --git a/general/datasets/Lvf2_m_0704_m/notes.rtf b/general/datasets/Lvf2_m_0704_m/notes.rtf new file mode 100644 index 0000000..5e9c255 --- /dev/null +++ b/general/datasets/Lvf2_m_0704_m/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by RWW and Alan Attie, July 2, 2004. Updated by RWW, Aug 20, 5, 2004; April 7, 2005; August 20, 2005.

    +
    diff --git a/general/datasets/Lvf2_m_0704_m/platform.rtf b/general/datasets/Lvf2_m_0704_m/platform.rtf new file mode 100644 index 0000000..29c90d3 --- /dev/null +++ b/general/datasets/Lvf2_m_0704_m/platform.rtf @@ -0,0 +1,876 @@ +
    +

    Affymetrix Mouse Genome 430A and 430B array pairs: The 430A and B array pairs collectively consist of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (some are variant transcipts and many are duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequence as the 430 2.0 series. However, roughy 75000 probes differ between those on A and B arrays and those on the 430 2.0.

    +
    + +
    Liver samples were assayed individually using 60 M430A and B Affymetrix oligonucleotide microarray pairs. Each array ID is denoted by a 10-letter code: the first three letters represent the F2-ob/ob mouse ID number, the fourth letter (either A or B) denotes M430A or M430B arrays, and the last six letters represent the date the array was scanned (MMDDYY).
    + +
    All 120 M430A and B arrays used in this project were purchased at one time and had the same Affymetrix lot number. The table below lists the arrays by Animal ID, sex, and ArrayID.
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Animal ID

    +
    +

    sex

    +
    +

    MOE430A ArrayID

    +
    +

    MOE430B ArrayID

    +
    +

    2

    +
    +

    M

    +
    +

    002A100203

    +
    +

    002B100503

    +
    +

    12

    +
    +

    M

    +
    +

    012A100203

    +
    +

    012B100503

    +
    +

    22

    +
    +

    M

    +
    +

    022A100203

    +
    +

    022B100503

    +
    +

    44

    +
    +

    M

    +
    +

    044A100203

    +
    +

    044B100503

    +
    +

    46

    +
    +

    M

    +
    +

    046A100203

    +
    +

    046B100503

    +
    +

    61

    +
    +

    M

    +
    +

    061A100203

    +
    +

    061B100503

    +
    +

    100

    +
    +

    M

    +
    +

    100A100303

    +
    +

    100B100503

    +
    +

    105

    +
    +

    F

    +
    +

    105A100303

    +
    +

    105B100503

    +
    +

    111

    +
    +

    F

    +
    +

    111A100303

    +
    +

    111B100503

    +
    +

    123

    +
    +

    M

    +
    +

    123A100303

    +
    +

    123B100503

    +
    +

    156

    +
    +

    F

    +
    +

    156A100303

    +
    +

    156B100503

    +
    +

    165

    +
    +

    M

    +
    +

    165A100303

    +
    +

    165B100503

    +
    +

    167

    +
    +

    M

    +
    +

    167A100303

    +
    +

    167B100503

    +
    +

    173

    +
    +

    M

    +
    +

    173A100303

    +
    +

    173B100503

    +
    +

    186

    +
    +

    F

    +
    +

    186A100203

    +
    +

    186B100503

    +
    +

    190

    +
    +

    F

    +
    +

    190A100303

    +
    +

    190B100503

    +
    +

    194

    +
    +

    M

    +
    +

    194A100303

    +
    +

    194B100503

    +
    +

    200

    +
    +

    F

    +
    +

    200A100303

    +
    +

    200B100503

    +
    +

    207

    +
    +

    F

    +
    +

    207A100303

    +
    +

    207B100503

    +
    +

    209

    +
    +

    F

    +
    +

    209A100203

    +
    +

    209B100503

    +
    +

    212

    +
    +

    F

    +
    +

    212A100303

    +
    +

    212B100503

    +
    +

    223

    +
    +

    M

    +
    +

    223A100303

    +
    +

    223B100503

    +
    +

    224

    +
    +

    M

    +
    +

    224A100303

    +
    +

    224B100503

    +
    +

    253

    +
    +

    F

    +
    +

    253A100303

    +
    +

    253B100503

    +
    +

    254

    +
    +

    F

    +
    +

    254A100603

    +
    +

    254B100703

    +
    +

    260

    +
    +

    F

    +
    +

    260A100603

    +
    +

    260B100703

    +
    +

    264

    +
    +

    F

    +
    +

    264A100603

    +
    +

    264B100703

    +
    +

    310

    +
    +

    F

    +
    +

    310A100603

    +
    +

    310B100703

    +
    +

    317

    +
    +

    M

    +
    +

    317A100603

    +
    +

    317B100703

    +
    +

    318

    +
    +

    F

    +
    +

    318A100603

    +
    +

    318B100703

    +
    +

    324

    +
    +

    F

    +
    +

    324A100603

    +
    +

    324B100703

    +
    +

    327

    +
    +

    F

    +
    +

    327A100603

    +
    +

    327B100703

    +
    +

    343

    +
    +

    M

    +
    +

    343A100603

    +
    +

    343B100703

    +
    +

    416

    +
    +

    M

    +
    +

    416A100603

    +
    +

    416B100703

    +
    +

    419

    +
    +

    F

    +
    +

    419A100603

    +
    +

    419B100703

    +
    +

    438

    +
    +

    M

    +
    +

    438A100603

    +
    +

    438B100703

    +
    +

    440

    +
    +

    M

    +
    +

    440A100603

    +
    +

    440B100803

    +
    +

    455

    +
    +

    M

    +
    +

    455A100603

    +
    +

    455B100803

    +
    +

    458

    +
    +

    F

    +
    +

    458A100603

    +
    +

    458B100803

    +
    +

    472

    +
    +

    M

    +
    +

    472A100603

    +
    +

    472B100803

    +
    +

    474

    +
    +

    F

    +
    +

    474A100603

    +
    +

    474B100803

    +
    +

    479

    +
    +

    F

    +
    +

    479A100603

    +
    +

    479B100803

    +
    +

    484

    +
    +

    F

    +
    +

    484A100603

    +
    +

    484B100803

    +
    +

    486

    +
    +

    F

    +
    +

    486A100603

    +
    +

    486B100803

    +
    +

    489

    +
    +

    F

    +
    +

    489A100603

    +
    +

    489B100803

    +
    +

    493

    +
    +

    F

    +
    +

    493A100603

    +
    +

    493B100803

    +
    +

    499

    +
    +

    M

    +
    +

    499A100603

    +
    +

    499B100803

    +
    +

    513

    +
    +

    M

    +
    +

    513A100603

    +
    +

    513B100803

    +
    +

    517

    +
    +

    M

    +
    +

    517A100703

    +
    +

    517B100803

    +
    +

    523

    +
    +

    M

    +
    +

    523A100703

    +
    +

    523B100803

    +
    +

    549

    +
    +

    M

    +
    +

    549A100703

    +
    +

    549B100803

    +
    +

    553

    +
    +

    F

    +
    +

    553A100703

    +
    +

    553B100803

    +
    +

    554

    +
    +

    F

    +
    +

    554A100703

    +
    +

    554B100803

    +
    +

    559

    +
    +

    F

    +
    +

    559A100703

    +
    +

    559B100803

    +
    +

    560

    +
    +

    F

    +
    +

    560A100703

    +
    +

    560B100803

    +
    +

    566

    +
    +

    M

    +
    +

    566A100703

    +
    +

    566B100803

    +
    +

    608

    +
    +

    F

    +
    +

    608A100703

    +
    +

    608B100803

    +
    +

    615

    +
    +

    F

    +
    +

    615A100703

    +
    +

    615B100803

    +
    +

    617

    +
    +

    M

    +
    +

    617A100703

    +
    +

    617B100803

    +
    +

    620

    +
    +

    M

    +
    +

    620A100703

    +
    +

    620B100803

    +
    +
    +
    diff --git a/general/datasets/Lvf2_m_0704_m/processing.rtf b/general/datasets/Lvf2_m_0704_m/processing.rtf new file mode 100644 index 0000000..3ed08db --- /dev/null +++ b/general/datasets/Lvf2_m_0704_m/processing.rtf @@ -0,0 +1,14 @@ +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + + +Probe set data from the .CHP file: The expression data were generated using MAS5. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    + +
    The 60 mice were each genotyped at 194 MIT microsatellite markers an average of approximately 10 cM (and always < 30 cM) apart across the entire genome (Y chromsome, excepted). The genotyping error-check routine implemented within R/qtl (Broman et al. 2003) showed no likely errors at p <0.01 probability.
    diff --git a/general/datasets/Lvf2_m_0704_m/summary.rtf b/general/datasets/Lvf2_m_0704_m/summary.rtf new file mode 100644 index 0000000..9492e80 --- /dev/null +++ b/general/datasets/Lvf2_m_0704_m/summary.rtf @@ -0,0 +1,3 @@ +
    +

    This August 2005 data freeze provides estimates of mRNA expression in adult liver from a selected set of 60 F2 animals generated by crossing strain C57BL/6J-ob/+ with BTBR and then intercrossing the F1-ob/+ progeny. The F2 progeny included, in a total of 350 progeny, 110 ob/ob progeny homozygous for the obese (ob) allele of leptin (Lep) on Chr 6. Sixty of the ob/ob progeny were selected for expression assays. This selection means that the data set is not useful for defining QTLs on Chr 6. Array data were generated at the University of Wisconsin by Alan Attie and colleagues. This data release accompanies the paper of Lan and colleagues (in submission, 2005). A set of 24 complementary phenotypes such as body weight, blood chemistry, and rtPCR results, are also available for these animals and an additional set of 50 F2s (see Phenotypes database. Samples were hybridized to 60 pairs of Affymetrix M430A and B arrays. This particular data set was processed using the RMA normalization method. To simplify comparison among transforms, RMA values of each array were adjusted to an average of 8 units and a standard deviation of two units.

    +
    diff --git a/general/datasets/Lvf2_m_0704_m/tissue.rtf b/general/datasets/Lvf2_m_0704_m/tissue.rtf new file mode 100644 index 0000000..de3964c --- /dev/null +++ b/general/datasets/Lvf2_m_0704_m/tissue.rtf @@ -0,0 +1,3 @@ +
    +

    Liver samples were taken from 29 male and 31 females. Total RNA was isolated with RNAzol Reagent (Tel-Test, Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer's protocol. The extracted RNA was purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for concentration. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. RNA samples were converted to cDNA, and then biotin-labeled cRNA according to Affymetrix Expression Analysis Technical Manual. The labeled samples were hybridized to the M430A, and subsequently the M430B array. The hybridization, washing and scanning steps were carried out by Hong Lan using the Affymetrix core facility at the Gene Expression Center of University of Wisconsin-Madison.

    +
    diff --git a/general/datasets/Lvf2_m_0704_r/acknowledgment.rtf b/general/datasets/Lvf2_m_0704_r/acknowledgment.rtf new file mode 100644 index 0000000..42f7eec --- /dev/null +++ b/general/datasets/Lvf2_m_0704_r/acknowledgment.rtf @@ -0,0 +1,3 @@ +
    This project was supported in part by NIH/NIDDK 5803701, NIH/NIDDK 66369-01 and American Diabetes Association 7-03-IG-01 to Alan D. Attie, USDA CSREES grants to the University of Wisconsin-Madison to Brian S. Yandell, and HHMI grant A-53-1200-4 to Christina Kendziorski.
    + +
    B6BTBRF2 Liver Database. All of the original (B6 x BTBR)F2-ob/ob liver mRNA M430AB array data were generated by Hong Lan and Alan Attie at The University of Wisconsin-Madison. For contact and citations and other information on these data sets, please review the INFO pages and contact Drs. Alan Attie, Christina Kendziorski, and Brian Yandell regarding use of this data set in publications or projects.
    diff --git a/general/datasets/Lvf2_m_0704_r/cases.rtf b/general/datasets/Lvf2_m_0704_r/cases.rtf new file mode 100644 index 0000000..ece7be7 --- /dev/null +++ b/general/datasets/Lvf2_m_0704_r/cases.rtf @@ -0,0 +1 @@ +
    The F2-ob/ob mice were chosen from a mapping panel that we created to map diabetes related physiological phenotypes (Stoehr et al. 2000). About 110 of these F2-ob/ob mice were also used to map mRNA abundance traits derived by quantitative real-time RT-PCR (Lan et al. 2003). The sixty F2-ob/ob mice that were used to generate microarray-derived mRNA abundance traits were selected from the 110 mice based on a selective phenotyping algorithm (Jin et al. 2004). The F2-ob/ob mice were housed at weaning at the University of Wisconsin-Madison animal care facility on a 12-h light/dark cycle. Mice were provided Purina Formulab Chow 5008 (6.5% fat) and acidified water ad libitum. Mice were killed at 14 weeks of age by CO2 asphyxiation after a 4-hour fast. The livers, along with other tissues, were immediately foil wrapped and frozen in liquid nitrogen, and subsequently transferred to -80 °C freezers for storage.
    diff --git a/general/datasets/Lvf2_m_0704_r/citation.rtf b/general/datasets/Lvf2_m_0704_r/citation.rtf new file mode 100644 index 0000000..48722e7 --- /dev/null +++ b/general/datasets/Lvf2_m_0704_r/citation.rtf @@ -0,0 +1,27 @@ +
    +

    Lan H, Chen M, Byers JE, Yandell BS, Stapleton DS, Mata CM, Mui ET, Flowers MT, Schueler KL, Malnly KF, Williams RW, Kendziorski CM, Attie AD (2005) Combined expression trait correlations and expression quantitative trait locus mapping. Submitted, Aug. 2005.

    +
    + +
    +

    Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889-890.

    +
    + +
    +

    Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31: e15.

    +
    + +
    +

    Jin C, Lan H, Attie AD, Churchill GA, Bulutuglo D, Yanell BS (2004) Selective phenotyping for increased efficiency in genetic mapping studies. Genetics 168:2285-2293.

    +
    + +
    +

    Lan H, Stoehr JP, Nadler ST, Schueler KL, Yandel BS, Attie AD (2003) Dimension reduction for mapping mRNA abundance as quantitative traits. Genetics 164: 1607-1614.

    +
    + +
    +

    Stoehr JP, Nadler ST, Schueler KL, Rabaglia ME, Yandell BS, Metz SA, Attie AD (2000) Genetic obesity unmasks nonlinear interactions between murine type 2 diabetes susceptibility loci. Diabetes 49: 1946-1954.

    +
    + +
    +

    Zhang L, Miles MF, Aldape KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotechnol 21: 818-821.

    +
    diff --git a/general/datasets/Lvf2_m_0704_r/notes.rtf b/general/datasets/Lvf2_m_0704_r/notes.rtf new file mode 100644 index 0000000..5e9c255 --- /dev/null +++ b/general/datasets/Lvf2_m_0704_r/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by RWW and Alan Attie, July 2, 2004. Updated by RWW, Aug 20, 5, 2004; April 7, 2005; August 20, 2005.

    +
    diff --git a/general/datasets/Lvf2_m_0704_r/platform.rtf b/general/datasets/Lvf2_m_0704_r/platform.rtf new file mode 100644 index 0000000..29c90d3 --- /dev/null +++ b/general/datasets/Lvf2_m_0704_r/platform.rtf @@ -0,0 +1,876 @@ +
    +

    Affymetrix Mouse Genome 430A and 430B array pairs: The 430A and B array pairs collectively consist of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (some are variant transcipts and many are duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequence as the 430 2.0 series. However, roughy 75000 probes differ between those on A and B arrays and those on the 430 2.0.

    +
    + +
    Liver samples were assayed individually using 60 M430A and B Affymetrix oligonucleotide microarray pairs. Each array ID is denoted by a 10-letter code: the first three letters represent the F2-ob/ob mouse ID number, the fourth letter (either A or B) denotes M430A or M430B arrays, and the last six letters represent the date the array was scanned (MMDDYY).
    + +
    All 120 M430A and B arrays used in this project were purchased at one time and had the same Affymetrix lot number. The table below lists the arrays by Animal ID, sex, and ArrayID.
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Animal ID

    +
    +

    sex

    +
    +

    MOE430A ArrayID

    +
    +

    MOE430B ArrayID

    +
    +

    2

    +
    +

    M

    +
    +

    002A100203

    +
    +

    002B100503

    +
    +

    12

    +
    +

    M

    +
    +

    012A100203

    +
    +

    012B100503

    +
    +

    22

    +
    +

    M

    +
    +

    022A100203

    +
    +

    022B100503

    +
    +

    44

    +
    +

    M

    +
    +

    044A100203

    +
    +

    044B100503

    +
    +

    46

    +
    +

    M

    +
    +

    046A100203

    +
    +

    046B100503

    +
    +

    61

    +
    +

    M

    +
    +

    061A100203

    +
    +

    061B100503

    +
    +

    100

    +
    +

    M

    +
    +

    100A100303

    +
    +

    100B100503

    +
    +

    105

    +
    +

    F

    +
    +

    105A100303

    +
    +

    105B100503

    +
    +

    111

    +
    +

    F

    +
    +

    111A100303

    +
    +

    111B100503

    +
    +

    123

    +
    +

    M

    +
    +

    123A100303

    +
    +

    123B100503

    +
    +

    156

    +
    +

    F

    +
    +

    156A100303

    +
    +

    156B100503

    +
    +

    165

    +
    +

    M

    +
    +

    165A100303

    +
    +

    165B100503

    +
    +

    167

    +
    +

    M

    +
    +

    167A100303

    +
    +

    167B100503

    +
    +

    173

    +
    +

    M

    +
    +

    173A100303

    +
    +

    173B100503

    +
    +

    186

    +
    +

    F

    +
    +

    186A100203

    +
    +

    186B100503

    +
    +

    190

    +
    +

    F

    +
    +

    190A100303

    +
    +

    190B100503

    +
    +

    194

    +
    +

    M

    +
    +

    194A100303

    +
    +

    194B100503

    +
    +

    200

    +
    +

    F

    +
    +

    200A100303

    +
    +

    200B100503

    +
    +

    207

    +
    +

    F

    +
    +

    207A100303

    +
    +

    207B100503

    +
    +

    209

    +
    +

    F

    +
    +

    209A100203

    +
    +

    209B100503

    +
    +

    212

    +
    +

    F

    +
    +

    212A100303

    +
    +

    212B100503

    +
    +

    223

    +
    +

    M

    +
    +

    223A100303

    +
    +

    223B100503

    +
    +

    224

    +
    +

    M

    +
    +

    224A100303

    +
    +

    224B100503

    +
    +

    253

    +
    +

    F

    +
    +

    253A100303

    +
    +

    253B100503

    +
    +

    254

    +
    +

    F

    +
    +

    254A100603

    +
    +

    254B100703

    +
    +

    260

    +
    +

    F

    +
    +

    260A100603

    +
    +

    260B100703

    +
    +

    264

    +
    +

    F

    +
    +

    264A100603

    +
    +

    264B100703

    +
    +

    310

    +
    +

    F

    +
    +

    310A100603

    +
    +

    310B100703

    +
    +

    317

    +
    +

    M

    +
    +

    317A100603

    +
    +

    317B100703

    +
    +

    318

    +
    +

    F

    +
    +

    318A100603

    +
    +

    318B100703

    +
    +

    324

    +
    +

    F

    +
    +

    324A100603

    +
    +

    324B100703

    +
    +

    327

    +
    +

    F

    +
    +

    327A100603

    +
    +

    327B100703

    +
    +

    343

    +
    +

    M

    +
    +

    343A100603

    +
    +

    343B100703

    +
    +

    416

    +
    +

    M

    +
    +

    416A100603

    +
    +

    416B100703

    +
    +

    419

    +
    +

    F

    +
    +

    419A100603

    +
    +

    419B100703

    +
    +

    438

    +
    +

    M

    +
    +

    438A100603

    +
    +

    438B100703

    +
    +

    440

    +
    +

    M

    +
    +

    440A100603

    +
    +

    440B100803

    +
    +

    455

    +
    +

    M

    +
    +

    455A100603

    +
    +

    455B100803

    +
    +

    458

    +
    +

    F

    +
    +

    458A100603

    +
    +

    458B100803

    +
    +

    472

    +
    +

    M

    +
    +

    472A100603

    +
    +

    472B100803

    +
    +

    474

    +
    +

    F

    +
    +

    474A100603

    +
    +

    474B100803

    +
    +

    479

    +
    +

    F

    +
    +

    479A100603

    +
    +

    479B100803

    +
    +

    484

    +
    +

    F

    +
    +

    484A100603

    +
    +

    484B100803

    +
    +

    486

    +
    +

    F

    +
    +

    486A100603

    +
    +

    486B100803

    +
    +

    489

    +
    +

    F

    +
    +

    489A100603

    +
    +

    489B100803

    +
    +

    493

    +
    +

    F

    +
    +

    493A100603

    +
    +

    493B100803

    +
    +

    499

    +
    +

    M

    +
    +

    499A100603

    +
    +

    499B100803

    +
    +

    513

    +
    +

    M

    +
    +

    513A100603

    +
    +

    513B100803

    +
    +

    517

    +
    +

    M

    +
    +

    517A100703

    +
    +

    517B100803

    +
    +

    523

    +
    +

    M

    +
    +

    523A100703

    +
    +

    523B100803

    +
    +

    549

    +
    +

    M

    +
    +

    549A100703

    +
    +

    549B100803

    +
    +

    553

    +
    +

    F

    +
    +

    553A100703

    +
    +

    553B100803

    +
    +

    554

    +
    +

    F

    +
    +

    554A100703

    +
    +

    554B100803

    +
    +

    559

    +
    +

    F

    +
    +

    559A100703

    +
    +

    559B100803

    +
    +

    560

    +
    +

    F

    +
    +

    560A100703

    +
    +

    560B100803

    +
    +

    566

    +
    +

    M

    +
    +

    566A100703

    +
    +

    566B100803

    +
    +

    608

    +
    +

    F

    +
    +

    608A100703

    +
    +

    608B100803

    +
    +

    615

    +
    +

    F

    +
    +

    615A100703

    +
    +

    615B100803

    +
    +

    617

    +
    +

    M

    +
    +

    617A100703

    +
    +

    617B100803

    +
    +

    620

    +
    +

    M

    +
    +

    620A100703

    +
    +

    620B100803

    +
    +
    +
    diff --git a/general/datasets/Lvf2_m_0704_r/processing.rtf b/general/datasets/Lvf2_m_0704_r/processing.rtf new file mode 100644 index 0000000..3ed08db --- /dev/null +++ b/general/datasets/Lvf2_m_0704_r/processing.rtf @@ -0,0 +1,14 @@ +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + + +Probe set data from the .CHP file: The expression data were generated using MAS5. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    + +
    The 60 mice were each genotyped at 194 MIT microsatellite markers an average of approximately 10 cM (and always < 30 cM) apart across the entire genome (Y chromsome, excepted). The genotyping error-check routine implemented within R/qtl (Broman et al. 2003) showed no likely errors at p <0.01 probability.
    diff --git a/general/datasets/Lvf2_m_0704_r/summary.rtf b/general/datasets/Lvf2_m_0704_r/summary.rtf new file mode 100644 index 0000000..9492e80 --- /dev/null +++ b/general/datasets/Lvf2_m_0704_r/summary.rtf @@ -0,0 +1,3 @@ +
    +

    This August 2005 data freeze provides estimates of mRNA expression in adult liver from a selected set of 60 F2 animals generated by crossing strain C57BL/6J-ob/+ with BTBR and then intercrossing the F1-ob/+ progeny. The F2 progeny included, in a total of 350 progeny, 110 ob/ob progeny homozygous for the obese (ob) allele of leptin (Lep) on Chr 6. Sixty of the ob/ob progeny were selected for expression assays. This selection means that the data set is not useful for defining QTLs on Chr 6. Array data were generated at the University of Wisconsin by Alan Attie and colleagues. This data release accompanies the paper of Lan and colleagues (in submission, 2005). A set of 24 complementary phenotypes such as body weight, blood chemistry, and rtPCR results, are also available for these animals and an additional set of 50 F2s (see Phenotypes database. Samples were hybridized to 60 pairs of Affymetrix M430A and B arrays. This particular data set was processed using the RMA normalization method. To simplify comparison among transforms, RMA values of each array were adjusted to an average of 8 units and a standard deviation of two units.

    +
    diff --git a/general/datasets/Lvf2_m_0704_r/tissue.rtf b/general/datasets/Lvf2_m_0704_r/tissue.rtf new file mode 100644 index 0000000..de3964c --- /dev/null +++ b/general/datasets/Lvf2_m_0704_r/tissue.rtf @@ -0,0 +1,3 @@ +
    +

    Liver samples were taken from 29 male and 31 females. Total RNA was isolated with RNAzol Reagent (Tel-Test, Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer's protocol. The extracted RNA was purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for concentration. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. RNA samples were converted to cDNA, and then biotin-labeled cRNA according to Affymetrix Expression Analysis Technical Manual. The labeled samples were hybridized to the M430A, and subsequently the M430B array. The hybridization, washing and scanning steps were carried out by Hong Lan using the Affymetrix core facility at the Gene Expression Center of University of Wisconsin-Madison.

    +
    diff --git a/general/datasets/Lxsgeno/summary.rtf b/general/datasets/Lxsgeno/summary.rtf new file mode 100644 index 0000000..dc176b3 --- /dev/null +++ b/general/datasets/Lxsgeno/summary.rtf @@ -0,0 +1,21 @@ +
    +

    The LXS genotype file used by WebQTL consists of a set of 2659 carefully error-checked SNPs and microsatellites typed across all 77 strains. Download all LXS genotypes as a 478 Kb text file.

    + +

    LXS strains were derived from a cross between the following 8 strains: A, AKR, BALB/c, C3H/2, C57BL, DBA/2, IS/Bi, and RIII. All of these strains were maintained at the Institute for Behavior Genetics, Bolder Colorado by Dr. Gerald McClearn and colleagues. C3H/2 is presumably the same as C3H/Crgl/2 (see paper by Green V (1981) Behavioral and Neural Biology 31:56). C57BL is presumably the same as C57BL/Crgl. IS/Bi is extinct.

    + +

    See Williams, Bennett, Johnson and colleagues (2004) for more details on the LXS panel.

    +
    + +

        About the genotypes used in these studies:

    + +
    WebQTL mapping algorithms rely on an initial set of 330 microsatellites genotyped in 2002 and 2003 at UTHSC (labeled Mit). The current expanded marker set (n = 2659) have been selected from a total of 13377 SNPs genotyped in collaboration with Jonathan Flint, Richard Mott, Beth Bennett, Lu Lu, and Jing Gu. Closely linked genetic markers often have the same strain distribution pattern (SDP) across the LXS strains. For computational efficiency, we only use a single marker associated with each SDP.
    + +
    All LXS strains are from the Institute of Behavioral Genetics, Boulder Colorado. They were generated by Beth Bennett, Tom Johnson, and colleagues over a ten-year period. All of these strains are beyond the 22 generation of serial sibling mating and are formally fully inbred.
    + +

        Reference:

    + +
    +

    Williams RW, Bennett B, Lu L, Gu J, DeFries JC, Carosone-Link P, Rikke B, Belknap JK, Johnson TE (2004) Genetic structure of the LXS panel of recombinant inbred mouse strains. Mammalian Genome 15:637-647

    +
    + +
    This text file was originally written by RW Williams, July 26, 2005.
    diff --git a/general/datasets/Lxspublish/acknowledgment.rtf b/general/datasets/Lxspublish/acknowledgment.rtf new file mode 100644 index 0000000..3d302d7 --- /dev/null +++ b/general/datasets/Lxspublish/acknowledgment.rtf @@ -0,0 +1 @@ +

    The initial construction of this database was performed by Beth Bennett and colleagues at the University of Colorado, Boulder, and by Lu Lu and colleagues at the University of Tennessee Health Sciences Center.

    diff --git a/general/datasets/Lxspublish/cases.rtf b/general/datasets/Lxspublish/cases.rtf new file mode 100644 index 0000000..6bd4be6 --- /dev/null +++ b/general/datasets/Lxspublish/cases.rtf @@ -0,0 +1,7 @@ +

    The parental strains of the LXS set are Inbred Long-Sleep (ILS) and Inbred Short-Sleep (ISS) strains. These parental strains have been phenotyped intensively by behavioral geneticists and neuropharmacologists for a decade (e.g., Markel PD et al. 1995, Hanania and Zahniser 2004. The LXS strains have an intriguing history and trace back to an 8-way cross initiated in the 1950s by Gerald McClearn, the dean of mouse behavior genetics.

    + +

    The LXS panel has recently been genotyped at 330 microsatellite markers, and this panel can already be used to map Mendelian and quantitative trait loci. As an example, the current prototype LXS phenotype database contains information on coat color treated as an ordinal trait (1 = albino, 5 = black). This simple trait produces a QTL with an LRS score of 73 (LOD score of ~16) on Chr 7 with a peak within a few megabases of the tyrosinase gene.

    + +

    Submitting data and reporting errors:

    + +

    The utility of this resource increases greatly as new phenotypes are added to the database. To submit new data or report errors, please contact Beth Bennett at bennettb@colorado.edu or Lu Lu at lulu@uthsc.edu

    diff --git a/general/datasets/Lxspublish/summary.rtf b/general/datasets/Lxspublish/summary.rtf new file mode 100644 index 0000000..af9cf31 --- /dev/null +++ b/general/datasets/Lxspublish/summary.rtf @@ -0,0 +1 @@ +

    The set of 77 LXS recombinant inbred strains were generated at the Institute for Behavioral Genetics (University of Colorado, Boulder) by Beth Bennett, John DeFries, Tom Johnson, and colleages. Strains first became available for phenotyping in 2003. The large size of this panel ensures good power in genetic studies of a wide variety of complex traits.

    diff --git a/general/datasets/Ma_m2_0706_p/acknowledgment.rtf b/general/datasets/Ma_m2_0706_p/acknowledgment.rtf new file mode 100644 index 0000000..fea38e8 --- /dev/null +++ b/general/datasets/Ma_m2_0706_p/acknowledgment.rtf @@ -0,0 +1,24 @@ +
    +

    Data were generated with funds provided by a variety of public and private source to members of the Kidney Consortium. Members of the Kidney Consortium thank the following sources for financial support of this effort:

    + + + +

     

    +
    diff --git a/general/datasets/Ma_m2_0706_p/cases.rtf b/general/datasets/Ma_m2_0706_p/cases.rtf new file mode 100644 index 0000000..465b87c --- /dev/null +++ b/general/datasets/Ma_m2_0706_p/cases.rtf @@ -0,0 +1,44 @@ +
    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 30 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred. We have also included 24 BXD lines generated by Lu and Peirce. All of these strains have been genotyped at 13,377 SNPs.

    + +
    +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 15 inbred strains and a pair of F1 hybrids; D2B6F1. These strains were selected for the following reasons: This panel will be a powerful tool in systems genetic analysis of a wide variety of traits, and will provide additional power in fine mapping modulators through an association analysis of sequence variants.

    + + + +
      +
    1. BTBR T+tf/J
      +     Multiple recessive stock; Homozygotes show repeated waves of hair loss and regrowth, which begin in the nose and pass posteriorly along the body.
    2. +
    3. C3H/HeJ
      +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
    4. +
    5. C57BL/6J
      +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
    6. +
    7. C57BL/6ByJ
      +     Paternal substrain of B6 used to generate the CXB panel
    8. +
    9. CAST/Ei
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
    10. +
    11. DBA/2J
      +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
    12. +
    13. KK/HlJ
      +     Sequenced by Perlegen/NIEHS
    14. +
    15. NOD/LtJ
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
    16. +
    17. PWD/PhJ
      +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
    18. +
    19. PWK/PhJ
      +     Collaborative Cross strain; Phenome Project D list
    20. +
    21. WSB/EiJ
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
    22. +
    23. D2B6F1
      + F1 hybrid generated by crossing C57BL/6J with DBA/2J
    24. +
    + +

    These inbred strains can be ordered from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC.P>

    +
    +
    diff --git a/general/datasets/Ma_m2_0706_p/experiment-design.rtf b/general/datasets/Ma_m2_0706_p/experiment-design.rtf new file mode 100644 index 0000000..464e50d --- /dev/null +++ b/general/datasets/Ma_m2_0706_p/experiment-design.rtf @@ -0,0 +1,1864 @@ +
    +

    Sample Processing: : Samples were processed at the Mount Sinai School of Medicine in the laboratory of Dr. Erwin Bottinger. All processing steps were performed Kremena Star. Total RNA was extracted with TRIZOL, followed by Rneasy Mini Kit purification (QUAGEN) by Kremena Star at MSSM. RNA purity was evaluated using the 260/280 nm (protein contamination) and the 260/230 nm (TRIZOL contamination) absorbance ratios, and values had to be greater than 1.9 and 0.8 respectively. Most of the samples 260/280 nm values fell between 1.9 and 2.1 and the majority of the 260/230 nm measurements were in the range 1.8 to 2.3. RNA integrity was assessed with the Agilent Bioanalyzer 2100. We set a quality threshold at 28s/18s rRNA greater than 0.9 or RNA integrity number (RIN) of greater than 6.9. When the two metrics were in disagreement we gave priority on the RIN value as recommended by the Agilent Bioanalyzer 2100 technical support representative. Synthesis of cDNA template from total RNA was performed using the one-cyclecDNA synthesis kit from Affymetrix (Affymetrix, P/N 900431). The Affymetrix IVT-labeling kit ((Affymetrix, P/N 900449)) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 1.9 to 2.1). The cRNA is then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup (Affymetrix, P/N 900371). Fragmented cRNA samples were accessed with Agilent Bioanalyzer 2100 (cRNA frgments between 25 and 200 nucleotides are required for optimal hybridization and immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols.

    + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. Initially all strains were represented by male and female samples, however, not all data sets passed the quality control steps. Forty-two (thirty-one BXD, D2B6F1 and ten inbred strains) are represented by male and female samples.

    + +

    Experimental Design and Batch Structure: The data set consists of arrays processed in twenty-three groups over a six month period (March 2006 to July 2006). Each group consists of 4 to 12 arrays. All arrays were processed using the Affymetrix Eukaryotic Sample and Array Processing protocol (701024 Rev. 3), by a single operator, Kremena Star. All samples in a group were labeled on the same. The hybridization station accommodates up to 4 samples, and since most of the groups had 12 samples, processed in 3 batches on the same day. Samples were washed in groups of four and kept at 4° C until all 12 (or 4-12) arrays were ready to scan. Samples were scanned in sets of four.

    +
    + +
    This table lists all arrays ordered by strain and includes Microarray ID, number of mice per pool, Microarray date, GAPDH 3`/5`Signal Ratio, Percent of transcripts present on the microarray chip, Strain, Generation, Sex, Age and Source of mice.
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Microarray_ID# miceMicroarray DateGAPDH (3`/5`)% presentstrainsgenerationsexageMice Source
    GKHI-KS-050603.07-051706305/14/020.7337.6C57BL/6J M56UTM RW
    GKHI-KS-070803.01-051706305/14/020.7541.6C57BL/6J F69UTM RW
    GKHI-KS-DBA-Male-070706207/06/020.7137.3DBA/2J M56JAX
    GKHI_KS_121404.75-042106404/18/02  DBA/2J F59UTM RW
    GKHI_KS_121404.75-033006403/19/020.7348.5DBA/2J F59UTM RW
    GKHI_KS_121404.78-042006404/17/020.8340.6DBA/2J F59UTM RW
    GKHI_KS_070804.39-042006404/17/020.8239.0D2B6F1 M59UTM RW
    GKHI_KS_030904.01-042006404/17/020.8235.9D2B6F1 M57UTM RW
    GKHI-KS-121404.73-070706207/06/020.7636.3D2B6F1 F69UTM RW
    GKHI-KS-010705.38-051206505/09/020.8139.9BXD1 M59Harvard/BIDMC
    GKHI-KS-060905.19506/05/020.7542.3BXD1 M68UTM RW
    GKHI-KS-051206.13-070706307/06/020.7136.3BXD1 F57UTM RW
    GKHI-KS-021304.10-051206405/09/020.8139.1BXD2 M61Harvard/BIDMC
    GKHI-KS-040303-04-050406305/01/020.8037.6BXD5 F56UMemphis
    GKHI-KS-010705-53-050306505/01/020.7637.1BXD5 F58Harvard/BIDMC
    GKHI-KS-031103.01-062206306/21/020.7537.1BXD5 M71UMemphis
    GKHI-KS-040505-51-050306505/01/020.7135.5BXD6 M58UTM RW
    GKHI-KS-092705-29--050406505/02/020.7536.1BXD6160F64UTM RW
    GKHI_KS_092404.01-042106404/18/020.7136.3BXD8 M59Harvard/BIDMC
    GKHI-KS-051205-25-042706504/23/020.9237.9BXD8 F77UTM RW
    KS-021605-17-042606504/22/020.8540.8BXD9 F67UTM RW
    KS-032905-32-042606504/22/020.9136.8BXD9 F60UTM RW
    GKHI-KS-062006.08-070706307/06/020.7436.3BXD9 M78UTM RW
    GKHI-KS-031505.22-051206505/09/020.7439.5BXD11 F65UTM RW
    GKHI-KS-031605.01506/05/020.7443.4BXD11 F69UTM RW
    GKHI_KS_102104.40-042106404/18/020.7238.5BXD12 M60Harvard/BIDMC
    GKHI-KS-112002.07-051106205/08/020.7742.0BXD12 F64UMemphis
    GKHI-KS-120904.33-051206405/09/020.7138.4BXD13 F60Harvard/BIDMC
    GKHI-KS-042304.01406/05/020.7144.1BXD13 F58Harvard/BIDMC
    GKHI-KS-020905.34-051106505/08/020.7540.7BXD14 F68UTM RW
    GKHI-KS-022405.46-051106505/08/020.7140.2BXD14 F60Harvard/BIDMC
    GKHI-KS-091704.09-062206406/21/020.7339.0BXD14 M59Harvard/BIDMC
    GKHI-KS-013004.45-062206406/21/020.7638.5BXD15 M61Harvard/BIDMC
    GKHI-KS-022405.43-051106505/08/020.7340.5BXD15 F60Harvard/BIDMC
    GKHI-KS-041604.10-051106405/08/020.7342.6BXD15 F60Harvard/BIDMC
    GKHI-KS-031805.01-051106505/08/020.7942.4BXD16 F59Harvard/BIDMC
    GKHI-KS-031805.04-051106505/08/020.7739.9BXD16 M60Harvard/BIDMC
    GKHI-KS-040805.10-051006505/05/020.9338.7BXD18 F59Harvard/BIDMC
    GKHI-KS-052804.09-051106405/05/020.6737.6BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.47-051106505/05/020.7342.3BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.44-070706307/06/020.7336.1BXD19 M60Harvard/BIDMC
    GKHI-KS-062905.07-051106505/05/020.7237.9BXD20 M60Harvard/BIDMC
    GKHI-KS-072104.58-051106405/05/020.7337.0BXD20 F59Harvard/BIDMC
    GKHI-KS-050405.21-051206405/09/020.8135.1BXD21 F60Harvard/BIDMC
    GKHI-KS-040705.24506/05/020.8040.2BXD21 F99UAB
    GKHI-KS-110405.01-051006505/05/020.7142.1BXD22 F60Harvard/BIDMC
    GKHI-KS-110405.04-051006505/05/020.7640.6BXD22 M60Harvard/BIDMC
    GKHI-KS-040805.01-051206505/09/020.7436.4BXD23 F60Harvard/BIDMC
    GKHI-KS-040805.04-051006505/05/020.7339.3BXD23 M60Harvard/BIDMC
    GKHI_KS_091704.13-042106404/18/020.7337.7BXD24 M59Harvard/BIDMC
    GKHI-KS-040303-20-050206304/30/020.7736.3BXD24 F71UMemphis
    GKHI-KS-021805.20-051006505/05/020.8340.5BXD25 F67UAB
    GKHI-KS-090705.05-062206506/21/020.7638.4BXD25 M58UTM RW
    GKHI-KS-090705.03-051006505/05/020.8140.1BXD25 F58UTM RW
    GKHI-KS-022105.42-051006505/05/020.8141.8BXD27 M70UAB
    GKHI-KS-032205.31-051006505/05/020.7439.0BXD27 M60UTM RW
    GKHI-KS-060706.10-070706307/06/020.6937.8BXD27 F85UTM RW
    GKHI-KS-012805-41-050506505/04/020.8134.2BXD28 F60Harvard/BIDMC
    GKHI-KS-012805-44-050506505/04/020.8135.8BXD28 M60Harvard/BIDMC
    GKHI-KS-012805-38-050506505/04/020.7742.7BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-35-050506505/04/020.8435.8BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-32-050506505/04/020.7439.9BXD31 F60Harvard/BIDMC
    GKHI-KS-100604-07-050506405/04/020.7940.2BXD31 M60Harvard/BIDMC
    GKHI-KS-021605.26-051706505/14/021.1139.0BXD32 F63UTM RW
    GKHI-KS-112002.01-051206205/09/020.7638.1BXD32 F60UMemphis
    GKHI-KS-072605-01-050506505/04/020.7941.3BXD3350F63UTM RW
    GKHI-KS-091405-23-050506505/04/020.8438.4BXD3350M76UTM RW
    GKHI-KS-111104-18-050506405/04/020.7942.2BXD36 F61Harvard/BIDMC
    GKHI-KS-031804-07-050506405/04/020.8542.5BXD36 F58Harvard/BIDMC
    GKHI-KS-092005.16-051206505/09/020.7237.2BXD3846F65UTM RW
    GKHI-KS-031403.01-060806106/07/020.6939.6BXD38 M69UMemphis
    GKHI-KS-090104.21-051106405/08/020.7236.3BXD39 F60Harvard/BIDMC
    GKHI-KS-040204.30406/05/020.7743.9BXD39 F59Harvard/BIDMC
    GKHI-KS-051805-16-050506505/04/022.1643.8BXD40 F61UTM RW
    GKHI-KS-111902-04-050506205/04/020.8441.0BXD40 F56UMemphis
    GKHI-KS-050604-01-050406405/01/020.8535.6BXD4323F61UTM RW
    GKHI-KS-080905-43-050406505/01/020.7833.7BXD4328F62UTM RW
    GKHI-KS-031004-01-050406405/01/020.7536.2BXD4421F57UTM RW
    GKHI-KS-020504-01-050406405/01/020.7530.8BXD4420M66UTM RW
    GKHI-KS-071504-01-050406405/01/020.7437.7BXD4520F58UTM RW
    GKHI-KS-081104-05-050406405/01/020.7834.2BXD4520M93UTM RW
    GKHI-KS-031204-01-050406405/01/020.7535.6BXD4822M60UTM RW
    GKHI-KS-021104.06-051706405/14/020.7541.1BXD4821F58UTM RW
    GKHI-KS-033005-21-050306505/01/020.7834.9BXD5127M64UTM RW
    GKHI-KS-090204-01-050306405/01/020.7238.3BXD5124F63UTM RW
    GKHI_KS-010704.01-040606404/03/020.7537.5BXD6021M64UTM RW
    GKHI_KS_013004.38-042006404/17/020.7840.1BXD6021F60UTM RW
    GKHI-KS-030905-28-050206504/30/020.7336.6BXD6120F63UTM RW
    GKHI-KS-050305-18-050206504/30/020.8335.8BXD6121F70UTM RW
    GKHI_KS-121803.01-040706304/03/020.8040.0BXD6220M54UTM RW
    GKHI_KS_021204.01-042006404/17/020.8539.8BXD6221F59UTM RW
    GKHI-KS-020905-25-050206504/30/020.8435.2BXD6321M70UTM RW
    GKHI-KS-040705.49-060806206/07/020.8539.4BXD6520F55UTM RW
    GKHI-KS-040406.12-060806206/07/020.7340.4BXD6523F60UTM RW
    GKHI-KS-052405-36-050406505/02/020.8436.8BXD6720F65UTM RW
    GKHI-KS-041205-01-050206504/30/020.7739.7BXD6720F54UTM RW
    GKHI-KS-062305-01-050206504/30/020.7636.0BXD6820F59UTM RW
    GKHI-KS-062305-09-050206504/30/020.9337.4BXD6820F64UTM RW
    GKHI_KS_110105.30-042006504/17/020.8039.0BXD6926F66UTM RW
    GKHI-KS-061504.64-062206406/21/020.7239.3BXD6920M55UTM RW
    GKHI_KS-050404.04-040606404/03/020.7738.3BXD6920F63UTM RW
    GKHI-KS-042705-01-042706504/23/020.8338.6BXD7021F64UTM RW
    GKHI-KS-051705-59-042706504/23/020.8938.5BXD7022F61UTM RW
    GKHI-KS-030805-40-042706504/23/020.8638.5BXD7323F61UTM RW
    GKHI-KS-041905.172-062206506/21/020.7937.6BXD7324M64UTM RW
    GKHI-KS-072605-03-042706504/23/020.8738.2BXD7325F72UTM RW
    GKHI-KS-041205-04-050406505/02/020.8341.4BXD7522F60UTM RW
    GKHI-KS-041205.07506/05/020.7945.8BXD7522F60UTM RW
    GKHI-KS-101805-35-050406505/02/020.7938.4BXD7724F60UTM RW
    GKHI-KS-070605.43506/05/020.7742.8BXD7723F62UTM RW
    GKHI-KS-071205-31-042706504/23/020.9137.7BXD8020F65UTM RW
    GKHI-KS-071205-2-042706504/23/020.9038.1BXD8020F65UTM RW
    KS-011305-11-042606504/22/020.8239.0BXD8522M91UTM RW
    KS-110805-27-042606504/22/020.9135.2BXD8525F63UTM RW
    KS-080404-28-042606404/22/020.8436.8BXD8621F58UTM RW
    KS-080504-04-042606404/22/020.8133.4BXD8620M77UTM RW
    KS-051705-57-042606504/22/021.1135.6BXD8720M63UTM RW
    KS-032905-46-042606504/22/020.8536.1BXD8720M57UTM RW
    GKHI-KS-080905-49-042706504/23/020.8937.6BXD9023F71UTM RW
    GKHI-KS-101105.26506/05/020.8443.6BXD9025F70UTM RW
    GKHI_KS-062304.02-040606404/03/020.8540.9BXD9221M55UTM RW
    GKHI_KS_071404.01-042006404/17/020.7739.5BXD9221F62UTM RW
    GKHI_KS_031005.17-042006504/17/020.7738.1BXD9620M65UTM RW
    GKHI-KS-111505.12506/05/020.7744.1BXD9623M66UTM RW
    GKHI-KS-012406.21-060806306/07/020.7336.6BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-012406.24-060806306/07/021.2839.2BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-030206.13-060806306/07/020.7141.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-030206.16-060806306/07/020.6637.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-011906.31-060806306/07/020.8037.2C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-011906.34-060806306/07/020.7638.5C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-060806.04-070706307/06/020.6837.3C3H/HeJ F76Harvard/BIDMC
    GKHI-KS-071505.08-060806306/07/020.7137.4C57BL/6ByJ F51JAX
    GKHI-KS-071505.11-060806206/07/020.7339.2C57BL/6ByJ F51JAX
    GKHI-KS-030305.15-060806306/07/020.7137.4CAST/Ei F64JAX
    GKHI-KS-031005.35-060906306/08/020.7035.7CAST/Ei M64JAX
    GKHI-KS-022206.16-060906306/08/020.7137.9KK/HlJ F61Harvard/BIDMC
    GKHI-KS-022206.07-060906306/08/020.7235.5KK/HlJ M61Harvard/BIDMC
    GKHI-KS-031606.01-060906306/08/020.8635.9MOLF/Ei M60Harvard/BIDMC
    GKHI-KS-022206.16-060906306/08/020.8737.4MOLF/Ei F60Harvard/BIDMC
    GKHI-KS-012006.25-060906306/08/020.7538.3NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-012006.28-061306306/11/020.8237.1NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-032306.04.060906306/08/020.7340.2NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-032306.07-060906306/08/020.7439.4NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-020706.04-060906306/08/020.7141.6NZW/LacJ F65Harvard/BIDMC
    GKHI-KS-020206.19-060906306/08/020.7736.7NZW/LacJ M60Harvard/BIDMC
    GKHI-KS-012406.33-061306306/11/020.9535.3PWD/PhJ F60Harvard/BIDMC
    GKHI-KS-012406.30-062006306/18/020.8836.3PWD/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.01-062206306/21/021.0235.9PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.04-062206306/21/020.9638.7PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.07-062206306/21/020.9836.6PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.10-062206306/21/020.8735.2PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-052705.01-061306206/11/020.7238.3WSB/EiJ F52UTM RW
    GKHI-KS-051005.07-061306306/11/020.7738.0WSB/EiJ M58JAX
    +
    diff --git a/general/datasets/Ma_m2_0706_p/notes.rtf b/general/datasets/Ma_m2_0706_p/notes.rtf new file mode 100644 index 0000000..d41fda1 --- /dev/null +++ b/general/datasets/Ma_m2_0706_p/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by Kremena Star on July 22 ,2006. Updated by KS on July 25, 2006.

    +
    diff --git a/general/datasets/Ma_m2_0706_p/platform.rtf b/general/datasets/Ma_m2_0706_p/platform.rtf new file mode 100644 index 0000000..cb0e8d5 --- /dev/null +++ b/general/datasets/Ma_m2_0706_p/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    +
    diff --git a/general/datasets/Ma_m2_0706_p/processing.rtf b/general/datasets/Ma_m2_0706_p/processing.rtf new file mode 100644 index 0000000..b313d60 --- /dev/null +++ b/general/datasets/Ma_m2_0706_p/processing.rtf @@ -0,0 +1,15 @@ +
    +

    Probe set data from the CHP file: The expression values were generated using RMA. The same simple steps described above were also applied to these values.

    +
    + +
    +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients.

    + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain.

    + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby.

    +
    + +
    +

    All data links (right-most column above) will be made active as sooon as the global analysis of these data by the Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access probelms.

    +
    diff --git a/general/datasets/Ma_m2_0706_p/summary.rtf b/general/datasets/Ma_m2_0706_p/summary.rtf new file mode 100644 index 0000000..9055ba0 --- /dev/null +++ b/general/datasets/Ma_m2_0706_p/summary.rtf @@ -0,0 +1 @@ +
    The July 2006 Kidney QTL Consortium data set provides estimates of mRNA expression in the adult kidney of 70 genetically diverse strains of mice including 54 BXD recombinant inbred strains, a set of 15 inbred strains, and 1 F1 hybrid; D2B6F1. Kidney samples were processed using a total of 153 Affymetrix Mouse Expression 430 2.0 microarrays (M430v2.0). This particular data set was processed using the RMA protocol. CAUTION: This dataset is not sex-balanced.
    diff --git a/general/datasets/Ma_m2_0706_p/tissue.rtf b/general/datasets/Ma_m2_0706_p/tissue.rtf new file mode 100644 index 0000000..5bc52e9 --- /dev/null +++ b/general/datasets/Ma_m2_0706_p/tissue.rtf @@ -0,0 +1,3 @@ +
    +

    BXD animals were obtained from UTHSC, and the Jackson Laboratory (Table 1). Animals were housed at UTHSC, at Harvard/BIDMC (Glenn Rosen), at the University of Memphis (Douglas Matthews), or the Jackson Laboratory before sacrifice (see Table 1). Mice were killed by cervical dislocation and kidneys were removed and placed in RNAlater prior to dissection. Kidneys were dissected whole and cleaned from the adrenal glands by Hong Tao Zhang in Dr. Lu’s lab. Kidneys from two to six animals per strain were pooled and shipped to Kremena Star at Mount Sinai School of Medicine (MSSM). Animals used in this study were between 50 and 99 days of age (average of 62 days; see Table 1).

    +
    diff --git a/general/datasets/Ma_m2_0706_r/acknowledgment.rtf b/general/datasets/Ma_m2_0706_r/acknowledgment.rtf new file mode 100644 index 0000000..fea38e8 --- /dev/null +++ b/general/datasets/Ma_m2_0706_r/acknowledgment.rtf @@ -0,0 +1,24 @@ +
    +

    Data were generated with funds provided by a variety of public and private source to members of the Kidney Consortium. Members of the Kidney Consortium thank the following sources for financial support of this effort:

    + + + +

     

    +
    diff --git a/general/datasets/Ma_m2_0706_r/cases.rtf b/general/datasets/Ma_m2_0706_r/cases.rtf new file mode 100644 index 0000000..465b87c --- /dev/null +++ b/general/datasets/Ma_m2_0706_r/cases.rtf @@ -0,0 +1,44 @@ +
    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 30 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred. We have also included 24 BXD lines generated by Lu and Peirce. All of these strains have been genotyped at 13,377 SNPs.

    + +
    +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 15 inbred strains and a pair of F1 hybrids; D2B6F1. These strains were selected for the following reasons: This panel will be a powerful tool in systems genetic analysis of a wide variety of traits, and will provide additional power in fine mapping modulators through an association analysis of sequence variants.

    + + + +
      +
    1. BTBR T+tf/J
      +     Multiple recessive stock; Homozygotes show repeated waves of hair loss and regrowth, which begin in the nose and pass posteriorly along the body.
    2. +
    3. C3H/HeJ
      +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
    4. +
    5. C57BL/6J
      +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
    6. +
    7. C57BL/6ByJ
      +     Paternal substrain of B6 used to generate the CXB panel
    8. +
    9. CAST/Ei
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
    10. +
    11. DBA/2J
      +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
    12. +
    13. KK/HlJ
      +     Sequenced by Perlegen/NIEHS
    14. +
    15. NOD/LtJ
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
    16. +
    17. PWD/PhJ
      +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
    18. +
    19. PWK/PhJ
      +     Collaborative Cross strain; Phenome Project D list
    20. +
    21. WSB/EiJ
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
    22. +
    23. D2B6F1
      + F1 hybrid generated by crossing C57BL/6J with DBA/2J
    24. +
    + +

    These inbred strains can be ordered from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC.P>

    +
    +
    diff --git a/general/datasets/Ma_m2_0706_r/experiment-design.rtf b/general/datasets/Ma_m2_0706_r/experiment-design.rtf new file mode 100644 index 0000000..464e50d --- /dev/null +++ b/general/datasets/Ma_m2_0706_r/experiment-design.rtf @@ -0,0 +1,1864 @@ +
    +

    Sample Processing: : Samples were processed at the Mount Sinai School of Medicine in the laboratory of Dr. Erwin Bottinger. All processing steps were performed Kremena Star. Total RNA was extracted with TRIZOL, followed by Rneasy Mini Kit purification (QUAGEN) by Kremena Star at MSSM. RNA purity was evaluated using the 260/280 nm (protein contamination) and the 260/230 nm (TRIZOL contamination) absorbance ratios, and values had to be greater than 1.9 and 0.8 respectively. Most of the samples 260/280 nm values fell between 1.9 and 2.1 and the majority of the 260/230 nm measurements were in the range 1.8 to 2.3. RNA integrity was assessed with the Agilent Bioanalyzer 2100. We set a quality threshold at 28s/18s rRNA greater than 0.9 or RNA integrity number (RIN) of greater than 6.9. When the two metrics were in disagreement we gave priority on the RIN value as recommended by the Agilent Bioanalyzer 2100 technical support representative. Synthesis of cDNA template from total RNA was performed using the one-cyclecDNA synthesis kit from Affymetrix (Affymetrix, P/N 900431). The Affymetrix IVT-labeling kit ((Affymetrix, P/N 900449)) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 1.9 to 2.1). The cRNA is then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup (Affymetrix, P/N 900371). Fragmented cRNA samples were accessed with Agilent Bioanalyzer 2100 (cRNA frgments between 25 and 200 nucleotides are required for optimal hybridization and immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols.

    + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. Initially all strains were represented by male and female samples, however, not all data sets passed the quality control steps. Forty-two (thirty-one BXD, D2B6F1 and ten inbred strains) are represented by male and female samples.

    + +

    Experimental Design and Batch Structure: The data set consists of arrays processed in twenty-three groups over a six month period (March 2006 to July 2006). Each group consists of 4 to 12 arrays. All arrays were processed using the Affymetrix Eukaryotic Sample and Array Processing protocol (701024 Rev. 3), by a single operator, Kremena Star. All samples in a group were labeled on the same. The hybridization station accommodates up to 4 samples, and since most of the groups had 12 samples, processed in 3 batches on the same day. Samples were washed in groups of four and kept at 4° C until all 12 (or 4-12) arrays were ready to scan. Samples were scanned in sets of four.

    +
    + +
    This table lists all arrays ordered by strain and includes Microarray ID, number of mice per pool, Microarray date, GAPDH 3`/5`Signal Ratio, Percent of transcripts present on the microarray chip, Strain, Generation, Sex, Age and Source of mice.
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Microarray_ID# miceMicroarray DateGAPDH (3`/5`)% presentstrainsgenerationsexageMice Source
    GKHI-KS-050603.07-051706305/14/020.7337.6C57BL/6J M56UTM RW
    GKHI-KS-070803.01-051706305/14/020.7541.6C57BL/6J F69UTM RW
    GKHI-KS-DBA-Male-070706207/06/020.7137.3DBA/2J M56JAX
    GKHI_KS_121404.75-042106404/18/02  DBA/2J F59UTM RW
    GKHI_KS_121404.75-033006403/19/020.7348.5DBA/2J F59UTM RW
    GKHI_KS_121404.78-042006404/17/020.8340.6DBA/2J F59UTM RW
    GKHI_KS_070804.39-042006404/17/020.8239.0D2B6F1 M59UTM RW
    GKHI_KS_030904.01-042006404/17/020.8235.9D2B6F1 M57UTM RW
    GKHI-KS-121404.73-070706207/06/020.7636.3D2B6F1 F69UTM RW
    GKHI-KS-010705.38-051206505/09/020.8139.9BXD1 M59Harvard/BIDMC
    GKHI-KS-060905.19506/05/020.7542.3BXD1 M68UTM RW
    GKHI-KS-051206.13-070706307/06/020.7136.3BXD1 F57UTM RW
    GKHI-KS-021304.10-051206405/09/020.8139.1BXD2 M61Harvard/BIDMC
    GKHI-KS-040303-04-050406305/01/020.8037.6BXD5 F56UMemphis
    GKHI-KS-010705-53-050306505/01/020.7637.1BXD5 F58Harvard/BIDMC
    GKHI-KS-031103.01-062206306/21/020.7537.1BXD5 M71UMemphis
    GKHI-KS-040505-51-050306505/01/020.7135.5BXD6 M58UTM RW
    GKHI-KS-092705-29--050406505/02/020.7536.1BXD6160F64UTM RW
    GKHI_KS_092404.01-042106404/18/020.7136.3BXD8 M59Harvard/BIDMC
    GKHI-KS-051205-25-042706504/23/020.9237.9BXD8 F77UTM RW
    KS-021605-17-042606504/22/020.8540.8BXD9 F67UTM RW
    KS-032905-32-042606504/22/020.9136.8BXD9 F60UTM RW
    GKHI-KS-062006.08-070706307/06/020.7436.3BXD9 M78UTM RW
    GKHI-KS-031505.22-051206505/09/020.7439.5BXD11 F65UTM RW
    GKHI-KS-031605.01506/05/020.7443.4BXD11 F69UTM RW
    GKHI_KS_102104.40-042106404/18/020.7238.5BXD12 M60Harvard/BIDMC
    GKHI-KS-112002.07-051106205/08/020.7742.0BXD12 F64UMemphis
    GKHI-KS-120904.33-051206405/09/020.7138.4BXD13 F60Harvard/BIDMC
    GKHI-KS-042304.01406/05/020.7144.1BXD13 F58Harvard/BIDMC
    GKHI-KS-020905.34-051106505/08/020.7540.7BXD14 F68UTM RW
    GKHI-KS-022405.46-051106505/08/020.7140.2BXD14 F60Harvard/BIDMC
    GKHI-KS-091704.09-062206406/21/020.7339.0BXD14 M59Harvard/BIDMC
    GKHI-KS-013004.45-062206406/21/020.7638.5BXD15 M61Harvard/BIDMC
    GKHI-KS-022405.43-051106505/08/020.7340.5BXD15 F60Harvard/BIDMC
    GKHI-KS-041604.10-051106405/08/020.7342.6BXD15 F60Harvard/BIDMC
    GKHI-KS-031805.01-051106505/08/020.7942.4BXD16 F59Harvard/BIDMC
    GKHI-KS-031805.04-051106505/08/020.7739.9BXD16 M60Harvard/BIDMC
    GKHI-KS-040805.10-051006505/05/020.9338.7BXD18 F59Harvard/BIDMC
    GKHI-KS-052804.09-051106405/05/020.6737.6BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.47-051106505/05/020.7342.3BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.44-070706307/06/020.7336.1BXD19 M60Harvard/BIDMC
    GKHI-KS-062905.07-051106505/05/020.7237.9BXD20 M60Harvard/BIDMC
    GKHI-KS-072104.58-051106405/05/020.7337.0BXD20 F59Harvard/BIDMC
    GKHI-KS-050405.21-051206405/09/020.8135.1BXD21 F60Harvard/BIDMC
    GKHI-KS-040705.24506/05/020.8040.2BXD21 F99UAB
    GKHI-KS-110405.01-051006505/05/020.7142.1BXD22 F60Harvard/BIDMC
    GKHI-KS-110405.04-051006505/05/020.7640.6BXD22 M60Harvard/BIDMC
    GKHI-KS-040805.01-051206505/09/020.7436.4BXD23 F60Harvard/BIDMC
    GKHI-KS-040805.04-051006505/05/020.7339.3BXD23 M60Harvard/BIDMC
    GKHI_KS_091704.13-042106404/18/020.7337.7BXD24 M59Harvard/BIDMC
    GKHI-KS-040303-20-050206304/30/020.7736.3BXD24 F71UMemphis
    GKHI-KS-021805.20-051006505/05/020.8340.5BXD25 F67UAB
    GKHI-KS-090705.05-062206506/21/020.7638.4BXD25 M58UTM RW
    GKHI-KS-090705.03-051006505/05/020.8140.1BXD25 F58UTM RW
    GKHI-KS-022105.42-051006505/05/020.8141.8BXD27 M70UAB
    GKHI-KS-032205.31-051006505/05/020.7439.0BXD27 M60UTM RW
    GKHI-KS-060706.10-070706307/06/020.6937.8BXD27 F85UTM RW
    GKHI-KS-012805-41-050506505/04/020.8134.2BXD28 F60Harvard/BIDMC
    GKHI-KS-012805-44-050506505/04/020.8135.8BXD28 M60Harvard/BIDMC
    GKHI-KS-012805-38-050506505/04/020.7742.7BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-35-050506505/04/020.8435.8BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-32-050506505/04/020.7439.9BXD31 F60Harvard/BIDMC
    GKHI-KS-100604-07-050506405/04/020.7940.2BXD31 M60Harvard/BIDMC
    GKHI-KS-021605.26-051706505/14/021.1139.0BXD32 F63UTM RW
    GKHI-KS-112002.01-051206205/09/020.7638.1BXD32 F60UMemphis
    GKHI-KS-072605-01-050506505/04/020.7941.3BXD3350F63UTM RW
    GKHI-KS-091405-23-050506505/04/020.8438.4BXD3350M76UTM RW
    GKHI-KS-111104-18-050506405/04/020.7942.2BXD36 F61Harvard/BIDMC
    GKHI-KS-031804-07-050506405/04/020.8542.5BXD36 F58Harvard/BIDMC
    GKHI-KS-092005.16-051206505/09/020.7237.2BXD3846F65UTM RW
    GKHI-KS-031403.01-060806106/07/020.6939.6BXD38 M69UMemphis
    GKHI-KS-090104.21-051106405/08/020.7236.3BXD39 F60Harvard/BIDMC
    GKHI-KS-040204.30406/05/020.7743.9BXD39 F59Harvard/BIDMC
    GKHI-KS-051805-16-050506505/04/022.1643.8BXD40 F61UTM RW
    GKHI-KS-111902-04-050506205/04/020.8441.0BXD40 F56UMemphis
    GKHI-KS-050604-01-050406405/01/020.8535.6BXD4323F61UTM RW
    GKHI-KS-080905-43-050406505/01/020.7833.7BXD4328F62UTM RW
    GKHI-KS-031004-01-050406405/01/020.7536.2BXD4421F57UTM RW
    GKHI-KS-020504-01-050406405/01/020.7530.8BXD4420M66UTM RW
    GKHI-KS-071504-01-050406405/01/020.7437.7BXD4520F58UTM RW
    GKHI-KS-081104-05-050406405/01/020.7834.2BXD4520M93UTM RW
    GKHI-KS-031204-01-050406405/01/020.7535.6BXD4822M60UTM RW
    GKHI-KS-021104.06-051706405/14/020.7541.1BXD4821F58UTM RW
    GKHI-KS-033005-21-050306505/01/020.7834.9BXD5127M64UTM RW
    GKHI-KS-090204-01-050306405/01/020.7238.3BXD5124F63UTM RW
    GKHI_KS-010704.01-040606404/03/020.7537.5BXD6021M64UTM RW
    GKHI_KS_013004.38-042006404/17/020.7840.1BXD6021F60UTM RW
    GKHI-KS-030905-28-050206504/30/020.7336.6BXD6120F63UTM RW
    GKHI-KS-050305-18-050206504/30/020.8335.8BXD6121F70UTM RW
    GKHI_KS-121803.01-040706304/03/020.8040.0BXD6220M54UTM RW
    GKHI_KS_021204.01-042006404/17/020.8539.8BXD6221F59UTM RW
    GKHI-KS-020905-25-050206504/30/020.8435.2BXD6321M70UTM RW
    GKHI-KS-040705.49-060806206/07/020.8539.4BXD6520F55UTM RW
    GKHI-KS-040406.12-060806206/07/020.7340.4BXD6523F60UTM RW
    GKHI-KS-052405-36-050406505/02/020.8436.8BXD6720F65UTM RW
    GKHI-KS-041205-01-050206504/30/020.7739.7BXD6720F54UTM RW
    GKHI-KS-062305-01-050206504/30/020.7636.0BXD6820F59UTM RW
    GKHI-KS-062305-09-050206504/30/020.9337.4BXD6820F64UTM RW
    GKHI_KS_110105.30-042006504/17/020.8039.0BXD6926F66UTM RW
    GKHI-KS-061504.64-062206406/21/020.7239.3BXD6920M55UTM RW
    GKHI_KS-050404.04-040606404/03/020.7738.3BXD6920F63UTM RW
    GKHI-KS-042705-01-042706504/23/020.8338.6BXD7021F64UTM RW
    GKHI-KS-051705-59-042706504/23/020.8938.5BXD7022F61UTM RW
    GKHI-KS-030805-40-042706504/23/020.8638.5BXD7323F61UTM RW
    GKHI-KS-041905.172-062206506/21/020.7937.6BXD7324M64UTM RW
    GKHI-KS-072605-03-042706504/23/020.8738.2BXD7325F72UTM RW
    GKHI-KS-041205-04-050406505/02/020.8341.4BXD7522F60UTM RW
    GKHI-KS-041205.07506/05/020.7945.8BXD7522F60UTM RW
    GKHI-KS-101805-35-050406505/02/020.7938.4BXD7724F60UTM RW
    GKHI-KS-070605.43506/05/020.7742.8BXD7723F62UTM RW
    GKHI-KS-071205-31-042706504/23/020.9137.7BXD8020F65UTM RW
    GKHI-KS-071205-2-042706504/23/020.9038.1BXD8020F65UTM RW
    KS-011305-11-042606504/22/020.8239.0BXD8522M91UTM RW
    KS-110805-27-042606504/22/020.9135.2BXD8525F63UTM RW
    KS-080404-28-042606404/22/020.8436.8BXD8621F58UTM RW
    KS-080504-04-042606404/22/020.8133.4BXD8620M77UTM RW
    KS-051705-57-042606504/22/021.1135.6BXD8720M63UTM RW
    KS-032905-46-042606504/22/020.8536.1BXD8720M57UTM RW
    GKHI-KS-080905-49-042706504/23/020.8937.6BXD9023F71UTM RW
    GKHI-KS-101105.26506/05/020.8443.6BXD9025F70UTM RW
    GKHI_KS-062304.02-040606404/03/020.8540.9BXD9221M55UTM RW
    GKHI_KS_071404.01-042006404/17/020.7739.5BXD9221F62UTM RW
    GKHI_KS_031005.17-042006504/17/020.7738.1BXD9620M65UTM RW
    GKHI-KS-111505.12506/05/020.7744.1BXD9623M66UTM RW
    GKHI-KS-012406.21-060806306/07/020.7336.6BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-012406.24-060806306/07/021.2839.2BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-030206.13-060806306/07/020.7141.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-030206.16-060806306/07/020.6637.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-011906.31-060806306/07/020.8037.2C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-011906.34-060806306/07/020.7638.5C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-060806.04-070706307/06/020.6837.3C3H/HeJ F76Harvard/BIDMC
    GKHI-KS-071505.08-060806306/07/020.7137.4C57BL/6ByJ F51JAX
    GKHI-KS-071505.11-060806206/07/020.7339.2C57BL/6ByJ F51JAX
    GKHI-KS-030305.15-060806306/07/020.7137.4CAST/Ei F64JAX
    GKHI-KS-031005.35-060906306/08/020.7035.7CAST/Ei M64JAX
    GKHI-KS-022206.16-060906306/08/020.7137.9KK/HlJ F61Harvard/BIDMC
    GKHI-KS-022206.07-060906306/08/020.7235.5KK/HlJ M61Harvard/BIDMC
    GKHI-KS-031606.01-060906306/08/020.8635.9MOLF/Ei M60Harvard/BIDMC
    GKHI-KS-022206.16-060906306/08/020.8737.4MOLF/Ei F60Harvard/BIDMC
    GKHI-KS-012006.25-060906306/08/020.7538.3NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-012006.28-061306306/11/020.8237.1NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-032306.04.060906306/08/020.7340.2NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-032306.07-060906306/08/020.7439.4NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-020706.04-060906306/08/020.7141.6NZW/LacJ F65Harvard/BIDMC
    GKHI-KS-020206.19-060906306/08/020.7736.7NZW/LacJ M60Harvard/BIDMC
    GKHI-KS-012406.33-061306306/11/020.9535.3PWD/PhJ F60Harvard/BIDMC
    GKHI-KS-012406.30-062006306/18/020.8836.3PWD/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.01-062206306/21/021.0235.9PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.04-062206306/21/020.9638.7PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.07-062206306/21/020.9836.6PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.10-062206306/21/020.8735.2PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-052705.01-061306206/11/020.7238.3WSB/EiJ F52UTM RW
    GKHI-KS-051005.07-061306306/11/020.7738.0WSB/EiJ M58JAX
    +
    diff --git a/general/datasets/Ma_m2_0706_r/notes.rtf b/general/datasets/Ma_m2_0706_r/notes.rtf new file mode 100644 index 0000000..d41fda1 --- /dev/null +++ b/general/datasets/Ma_m2_0706_r/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by Kremena Star on July 22 ,2006. Updated by KS on July 25, 2006.

    +
    diff --git a/general/datasets/Ma_m2_0706_r/platform.rtf b/general/datasets/Ma_m2_0706_r/platform.rtf new file mode 100644 index 0000000..cb0e8d5 --- /dev/null +++ b/general/datasets/Ma_m2_0706_r/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    +
    diff --git a/general/datasets/Ma_m2_0706_r/processing.rtf b/general/datasets/Ma_m2_0706_r/processing.rtf new file mode 100644 index 0000000..b313d60 --- /dev/null +++ b/general/datasets/Ma_m2_0706_r/processing.rtf @@ -0,0 +1,15 @@ +
    +

    Probe set data from the CHP file: The expression values were generated using RMA. The same simple steps described above were also applied to these values.

    +
    + +
    +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients.

    + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain.

    + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby.

    +
    + +
    +

    All data links (right-most column above) will be made active as sooon as the global analysis of these data by the Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access probelms.

    +
    diff --git a/general/datasets/Ma_m2_0706_r/summary.rtf b/general/datasets/Ma_m2_0706_r/summary.rtf new file mode 100644 index 0000000..9055ba0 --- /dev/null +++ b/general/datasets/Ma_m2_0706_r/summary.rtf @@ -0,0 +1 @@ +
    The July 2006 Kidney QTL Consortium data set provides estimates of mRNA expression in the adult kidney of 70 genetically diverse strains of mice including 54 BXD recombinant inbred strains, a set of 15 inbred strains, and 1 F1 hybrid; D2B6F1. Kidney samples were processed using a total of 153 Affymetrix Mouse Expression 430 2.0 microarrays (M430v2.0). This particular data set was processed using the RMA protocol. CAUTION: This dataset is not sex-balanced.
    diff --git a/general/datasets/Ma_m2_0706_r/tissue.rtf b/general/datasets/Ma_m2_0706_r/tissue.rtf new file mode 100644 index 0000000..5bc52e9 --- /dev/null +++ b/general/datasets/Ma_m2_0706_r/tissue.rtf @@ -0,0 +1,3 @@ +
    +

    BXD animals were obtained from UTHSC, and the Jackson Laboratory (Table 1). Animals were housed at UTHSC, at Harvard/BIDMC (Glenn Rosen), at the University of Memphis (Douglas Matthews), or the Jackson Laboratory before sacrifice (see Table 1). Mice were killed by cervical dislocation and kidneys were removed and placed in RNAlater prior to dissection. Kidneys were dissected whole and cleaned from the adrenal glands by Hong Tao Zhang in Dr. Lu’s lab. Kidneys from two to six animals per strain were pooled and shipped to Kremena Star at Mount Sinai School of Medicine (MSSM). Animals used in this study were between 50 and 99 days of age (average of 62 days; see Table 1).

    +
    diff --git a/general/datasets/Ma_m2_0806_p/acknowledgment.rtf b/general/datasets/Ma_m2_0806_p/acknowledgment.rtf new file mode 100644 index 0000000..fea38e8 --- /dev/null +++ b/general/datasets/Ma_m2_0806_p/acknowledgment.rtf @@ -0,0 +1,24 @@ +
    +

    Data were generated with funds provided by a variety of public and private source to members of the Kidney Consortium. Members of the Kidney Consortium thank the following sources for financial support of this effort:

    + + + +

     

    +
    diff --git a/general/datasets/Ma_m2_0806_p/cases.rtf b/general/datasets/Ma_m2_0806_p/cases.rtf new file mode 100644 index 0000000..465b87c --- /dev/null +++ b/general/datasets/Ma_m2_0806_p/cases.rtf @@ -0,0 +1,44 @@ +
    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 30 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred. We have also included 24 BXD lines generated by Lu and Peirce. All of these strains have been genotyped at 13,377 SNPs.

    + +
    +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 15 inbred strains and a pair of F1 hybrids; D2B6F1. These strains were selected for the following reasons: This panel will be a powerful tool in systems genetic analysis of a wide variety of traits, and will provide additional power in fine mapping modulators through an association analysis of sequence variants.

    + + + +
      +
    1. BTBR T+tf/J
      +     Multiple recessive stock; Homozygotes show repeated waves of hair loss and regrowth, which begin in the nose and pass posteriorly along the body.
    2. +
    3. C3H/HeJ
      +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
    4. +
    5. C57BL/6J
      +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
    6. +
    7. C57BL/6ByJ
      +     Paternal substrain of B6 used to generate the CXB panel
    8. +
    9. CAST/Ei
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
    10. +
    11. DBA/2J
      +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
    12. +
    13. KK/HlJ
      +     Sequenced by Perlegen/NIEHS
    14. +
    15. NOD/LtJ
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
    16. +
    17. PWD/PhJ
      +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
    18. +
    19. PWK/PhJ
      +     Collaborative Cross strain; Phenome Project D list
    20. +
    21. WSB/EiJ
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
    22. +
    23. D2B6F1
      + F1 hybrid generated by crossing C57BL/6J with DBA/2J
    24. +
    + +

    These inbred strains can be ordered from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC.P>

    +
    +
    diff --git a/general/datasets/Ma_m2_0806_p/experiment-design.rtf b/general/datasets/Ma_m2_0806_p/experiment-design.rtf new file mode 100644 index 0000000..464e50d --- /dev/null +++ b/general/datasets/Ma_m2_0806_p/experiment-design.rtf @@ -0,0 +1,1864 @@ +
    +

    Sample Processing: : Samples were processed at the Mount Sinai School of Medicine in the laboratory of Dr. Erwin Bottinger. All processing steps were performed Kremena Star. Total RNA was extracted with TRIZOL, followed by Rneasy Mini Kit purification (QUAGEN) by Kremena Star at MSSM. RNA purity was evaluated using the 260/280 nm (protein contamination) and the 260/230 nm (TRIZOL contamination) absorbance ratios, and values had to be greater than 1.9 and 0.8 respectively. Most of the samples 260/280 nm values fell between 1.9 and 2.1 and the majority of the 260/230 nm measurements were in the range 1.8 to 2.3. RNA integrity was assessed with the Agilent Bioanalyzer 2100. We set a quality threshold at 28s/18s rRNA greater than 0.9 or RNA integrity number (RIN) of greater than 6.9. When the two metrics were in disagreement we gave priority on the RIN value as recommended by the Agilent Bioanalyzer 2100 technical support representative. Synthesis of cDNA template from total RNA was performed using the one-cyclecDNA synthesis kit from Affymetrix (Affymetrix, P/N 900431). The Affymetrix IVT-labeling kit ((Affymetrix, P/N 900449)) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 1.9 to 2.1). The cRNA is then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup (Affymetrix, P/N 900371). Fragmented cRNA samples were accessed with Agilent Bioanalyzer 2100 (cRNA frgments between 25 and 200 nucleotides are required for optimal hybridization and immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols.

    + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. Initially all strains were represented by male and female samples, however, not all data sets passed the quality control steps. Forty-two (thirty-one BXD, D2B6F1 and ten inbred strains) are represented by male and female samples.

    + +

    Experimental Design and Batch Structure: The data set consists of arrays processed in twenty-three groups over a six month period (March 2006 to July 2006). Each group consists of 4 to 12 arrays. All arrays were processed using the Affymetrix Eukaryotic Sample and Array Processing protocol (701024 Rev. 3), by a single operator, Kremena Star. All samples in a group were labeled on the same. The hybridization station accommodates up to 4 samples, and since most of the groups had 12 samples, processed in 3 batches on the same day. Samples were washed in groups of four and kept at 4° C until all 12 (or 4-12) arrays were ready to scan. Samples were scanned in sets of four.

    +
    + +
    This table lists all arrays ordered by strain and includes Microarray ID, number of mice per pool, Microarray date, GAPDH 3`/5`Signal Ratio, Percent of transcripts present on the microarray chip, Strain, Generation, Sex, Age and Source of mice.
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Microarray_ID# miceMicroarray DateGAPDH (3`/5`)% presentstrainsgenerationsexageMice Source
    GKHI-KS-050603.07-051706305/14/020.7337.6C57BL/6J M56UTM RW
    GKHI-KS-070803.01-051706305/14/020.7541.6C57BL/6J F69UTM RW
    GKHI-KS-DBA-Male-070706207/06/020.7137.3DBA/2J M56JAX
    GKHI_KS_121404.75-042106404/18/02  DBA/2J F59UTM RW
    GKHI_KS_121404.75-033006403/19/020.7348.5DBA/2J F59UTM RW
    GKHI_KS_121404.78-042006404/17/020.8340.6DBA/2J F59UTM RW
    GKHI_KS_070804.39-042006404/17/020.8239.0D2B6F1 M59UTM RW
    GKHI_KS_030904.01-042006404/17/020.8235.9D2B6F1 M57UTM RW
    GKHI-KS-121404.73-070706207/06/020.7636.3D2B6F1 F69UTM RW
    GKHI-KS-010705.38-051206505/09/020.8139.9BXD1 M59Harvard/BIDMC
    GKHI-KS-060905.19506/05/020.7542.3BXD1 M68UTM RW
    GKHI-KS-051206.13-070706307/06/020.7136.3BXD1 F57UTM RW
    GKHI-KS-021304.10-051206405/09/020.8139.1BXD2 M61Harvard/BIDMC
    GKHI-KS-040303-04-050406305/01/020.8037.6BXD5 F56UMemphis
    GKHI-KS-010705-53-050306505/01/020.7637.1BXD5 F58Harvard/BIDMC
    GKHI-KS-031103.01-062206306/21/020.7537.1BXD5 M71UMemphis
    GKHI-KS-040505-51-050306505/01/020.7135.5BXD6 M58UTM RW
    GKHI-KS-092705-29--050406505/02/020.7536.1BXD6160F64UTM RW
    GKHI_KS_092404.01-042106404/18/020.7136.3BXD8 M59Harvard/BIDMC
    GKHI-KS-051205-25-042706504/23/020.9237.9BXD8 F77UTM RW
    KS-021605-17-042606504/22/020.8540.8BXD9 F67UTM RW
    KS-032905-32-042606504/22/020.9136.8BXD9 F60UTM RW
    GKHI-KS-062006.08-070706307/06/020.7436.3BXD9 M78UTM RW
    GKHI-KS-031505.22-051206505/09/020.7439.5BXD11 F65UTM RW
    GKHI-KS-031605.01506/05/020.7443.4BXD11 F69UTM RW
    GKHI_KS_102104.40-042106404/18/020.7238.5BXD12 M60Harvard/BIDMC
    GKHI-KS-112002.07-051106205/08/020.7742.0BXD12 F64UMemphis
    GKHI-KS-120904.33-051206405/09/020.7138.4BXD13 F60Harvard/BIDMC
    GKHI-KS-042304.01406/05/020.7144.1BXD13 F58Harvard/BIDMC
    GKHI-KS-020905.34-051106505/08/020.7540.7BXD14 F68UTM RW
    GKHI-KS-022405.46-051106505/08/020.7140.2BXD14 F60Harvard/BIDMC
    GKHI-KS-091704.09-062206406/21/020.7339.0BXD14 M59Harvard/BIDMC
    GKHI-KS-013004.45-062206406/21/020.7638.5BXD15 M61Harvard/BIDMC
    GKHI-KS-022405.43-051106505/08/020.7340.5BXD15 F60Harvard/BIDMC
    GKHI-KS-041604.10-051106405/08/020.7342.6BXD15 F60Harvard/BIDMC
    GKHI-KS-031805.01-051106505/08/020.7942.4BXD16 F59Harvard/BIDMC
    GKHI-KS-031805.04-051106505/08/020.7739.9BXD16 M60Harvard/BIDMC
    GKHI-KS-040805.10-051006505/05/020.9338.7BXD18 F59Harvard/BIDMC
    GKHI-KS-052804.09-051106405/05/020.6737.6BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.47-051106505/05/020.7342.3BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.44-070706307/06/020.7336.1BXD19 M60Harvard/BIDMC
    GKHI-KS-062905.07-051106505/05/020.7237.9BXD20 M60Harvard/BIDMC
    GKHI-KS-072104.58-051106405/05/020.7337.0BXD20 F59Harvard/BIDMC
    GKHI-KS-050405.21-051206405/09/020.8135.1BXD21 F60Harvard/BIDMC
    GKHI-KS-040705.24506/05/020.8040.2BXD21 F99UAB
    GKHI-KS-110405.01-051006505/05/020.7142.1BXD22 F60Harvard/BIDMC
    GKHI-KS-110405.04-051006505/05/020.7640.6BXD22 M60Harvard/BIDMC
    GKHI-KS-040805.01-051206505/09/020.7436.4BXD23 F60Harvard/BIDMC
    GKHI-KS-040805.04-051006505/05/020.7339.3BXD23 M60Harvard/BIDMC
    GKHI_KS_091704.13-042106404/18/020.7337.7BXD24 M59Harvard/BIDMC
    GKHI-KS-040303-20-050206304/30/020.7736.3BXD24 F71UMemphis
    GKHI-KS-021805.20-051006505/05/020.8340.5BXD25 F67UAB
    GKHI-KS-090705.05-062206506/21/020.7638.4BXD25 M58UTM RW
    GKHI-KS-090705.03-051006505/05/020.8140.1BXD25 F58UTM RW
    GKHI-KS-022105.42-051006505/05/020.8141.8BXD27 M70UAB
    GKHI-KS-032205.31-051006505/05/020.7439.0BXD27 M60UTM RW
    GKHI-KS-060706.10-070706307/06/020.6937.8BXD27 F85UTM RW
    GKHI-KS-012805-41-050506505/04/020.8134.2BXD28 F60Harvard/BIDMC
    GKHI-KS-012805-44-050506505/04/020.8135.8BXD28 M60Harvard/BIDMC
    GKHI-KS-012805-38-050506505/04/020.7742.7BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-35-050506505/04/020.8435.8BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-32-050506505/04/020.7439.9BXD31 F60Harvard/BIDMC
    GKHI-KS-100604-07-050506405/04/020.7940.2BXD31 M60Harvard/BIDMC
    GKHI-KS-021605.26-051706505/14/021.1139.0BXD32 F63UTM RW
    GKHI-KS-112002.01-051206205/09/020.7638.1BXD32 F60UMemphis
    GKHI-KS-072605-01-050506505/04/020.7941.3BXD3350F63UTM RW
    GKHI-KS-091405-23-050506505/04/020.8438.4BXD3350M76UTM RW
    GKHI-KS-111104-18-050506405/04/020.7942.2BXD36 F61Harvard/BIDMC
    GKHI-KS-031804-07-050506405/04/020.8542.5BXD36 F58Harvard/BIDMC
    GKHI-KS-092005.16-051206505/09/020.7237.2BXD3846F65UTM RW
    GKHI-KS-031403.01-060806106/07/020.6939.6BXD38 M69UMemphis
    GKHI-KS-090104.21-051106405/08/020.7236.3BXD39 F60Harvard/BIDMC
    GKHI-KS-040204.30406/05/020.7743.9BXD39 F59Harvard/BIDMC
    GKHI-KS-051805-16-050506505/04/022.1643.8BXD40 F61UTM RW
    GKHI-KS-111902-04-050506205/04/020.8441.0BXD40 F56UMemphis
    GKHI-KS-050604-01-050406405/01/020.8535.6BXD4323F61UTM RW
    GKHI-KS-080905-43-050406505/01/020.7833.7BXD4328F62UTM RW
    GKHI-KS-031004-01-050406405/01/020.7536.2BXD4421F57UTM RW
    GKHI-KS-020504-01-050406405/01/020.7530.8BXD4420M66UTM RW
    GKHI-KS-071504-01-050406405/01/020.7437.7BXD4520F58UTM RW
    GKHI-KS-081104-05-050406405/01/020.7834.2BXD4520M93UTM RW
    GKHI-KS-031204-01-050406405/01/020.7535.6BXD4822M60UTM RW
    GKHI-KS-021104.06-051706405/14/020.7541.1BXD4821F58UTM RW
    GKHI-KS-033005-21-050306505/01/020.7834.9BXD5127M64UTM RW
    GKHI-KS-090204-01-050306405/01/020.7238.3BXD5124F63UTM RW
    GKHI_KS-010704.01-040606404/03/020.7537.5BXD6021M64UTM RW
    GKHI_KS_013004.38-042006404/17/020.7840.1BXD6021F60UTM RW
    GKHI-KS-030905-28-050206504/30/020.7336.6BXD6120F63UTM RW
    GKHI-KS-050305-18-050206504/30/020.8335.8BXD6121F70UTM RW
    GKHI_KS-121803.01-040706304/03/020.8040.0BXD6220M54UTM RW
    GKHI_KS_021204.01-042006404/17/020.8539.8BXD6221F59UTM RW
    GKHI-KS-020905-25-050206504/30/020.8435.2BXD6321M70UTM RW
    GKHI-KS-040705.49-060806206/07/020.8539.4BXD6520F55UTM RW
    GKHI-KS-040406.12-060806206/07/020.7340.4BXD6523F60UTM RW
    GKHI-KS-052405-36-050406505/02/020.8436.8BXD6720F65UTM RW
    GKHI-KS-041205-01-050206504/30/020.7739.7BXD6720F54UTM RW
    GKHI-KS-062305-01-050206504/30/020.7636.0BXD6820F59UTM RW
    GKHI-KS-062305-09-050206504/30/020.9337.4BXD6820F64UTM RW
    GKHI_KS_110105.30-042006504/17/020.8039.0BXD6926F66UTM RW
    GKHI-KS-061504.64-062206406/21/020.7239.3BXD6920M55UTM RW
    GKHI_KS-050404.04-040606404/03/020.7738.3BXD6920F63UTM RW
    GKHI-KS-042705-01-042706504/23/020.8338.6BXD7021F64UTM RW
    GKHI-KS-051705-59-042706504/23/020.8938.5BXD7022F61UTM RW
    GKHI-KS-030805-40-042706504/23/020.8638.5BXD7323F61UTM RW
    GKHI-KS-041905.172-062206506/21/020.7937.6BXD7324M64UTM RW
    GKHI-KS-072605-03-042706504/23/020.8738.2BXD7325F72UTM RW
    GKHI-KS-041205-04-050406505/02/020.8341.4BXD7522F60UTM RW
    GKHI-KS-041205.07506/05/020.7945.8BXD7522F60UTM RW
    GKHI-KS-101805-35-050406505/02/020.7938.4BXD7724F60UTM RW
    GKHI-KS-070605.43506/05/020.7742.8BXD7723F62UTM RW
    GKHI-KS-071205-31-042706504/23/020.9137.7BXD8020F65UTM RW
    GKHI-KS-071205-2-042706504/23/020.9038.1BXD8020F65UTM RW
    KS-011305-11-042606504/22/020.8239.0BXD8522M91UTM RW
    KS-110805-27-042606504/22/020.9135.2BXD8525F63UTM RW
    KS-080404-28-042606404/22/020.8436.8BXD8621F58UTM RW
    KS-080504-04-042606404/22/020.8133.4BXD8620M77UTM RW
    KS-051705-57-042606504/22/021.1135.6BXD8720M63UTM RW
    KS-032905-46-042606504/22/020.8536.1BXD8720M57UTM RW
    GKHI-KS-080905-49-042706504/23/020.8937.6BXD9023F71UTM RW
    GKHI-KS-101105.26506/05/020.8443.6BXD9025F70UTM RW
    GKHI_KS-062304.02-040606404/03/020.8540.9BXD9221M55UTM RW
    GKHI_KS_071404.01-042006404/17/020.7739.5BXD9221F62UTM RW
    GKHI_KS_031005.17-042006504/17/020.7738.1BXD9620M65UTM RW
    GKHI-KS-111505.12506/05/020.7744.1BXD9623M66UTM RW
    GKHI-KS-012406.21-060806306/07/020.7336.6BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-012406.24-060806306/07/021.2839.2BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-030206.13-060806306/07/020.7141.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-030206.16-060806306/07/020.6637.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-011906.31-060806306/07/020.8037.2C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-011906.34-060806306/07/020.7638.5C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-060806.04-070706307/06/020.6837.3C3H/HeJ F76Harvard/BIDMC
    GKHI-KS-071505.08-060806306/07/020.7137.4C57BL/6ByJ F51JAX
    GKHI-KS-071505.11-060806206/07/020.7339.2C57BL/6ByJ F51JAX
    GKHI-KS-030305.15-060806306/07/020.7137.4CAST/Ei F64JAX
    GKHI-KS-031005.35-060906306/08/020.7035.7CAST/Ei M64JAX
    GKHI-KS-022206.16-060906306/08/020.7137.9KK/HlJ F61Harvard/BIDMC
    GKHI-KS-022206.07-060906306/08/020.7235.5KK/HlJ M61Harvard/BIDMC
    GKHI-KS-031606.01-060906306/08/020.8635.9MOLF/Ei M60Harvard/BIDMC
    GKHI-KS-022206.16-060906306/08/020.8737.4MOLF/Ei F60Harvard/BIDMC
    GKHI-KS-012006.25-060906306/08/020.7538.3NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-012006.28-061306306/11/020.8237.1NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-032306.04.060906306/08/020.7340.2NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-032306.07-060906306/08/020.7439.4NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-020706.04-060906306/08/020.7141.6NZW/LacJ F65Harvard/BIDMC
    GKHI-KS-020206.19-060906306/08/020.7736.7NZW/LacJ M60Harvard/BIDMC
    GKHI-KS-012406.33-061306306/11/020.9535.3PWD/PhJ F60Harvard/BIDMC
    GKHI-KS-012406.30-062006306/18/020.8836.3PWD/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.01-062206306/21/021.0235.9PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.04-062206306/21/020.9638.7PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.07-062206306/21/020.9836.6PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.10-062206306/21/020.8735.2PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-052705.01-061306206/11/020.7238.3WSB/EiJ F52UTM RW
    GKHI-KS-051005.07-061306306/11/020.7738.0WSB/EiJ M58JAX
    +
    diff --git a/general/datasets/Ma_m2_0806_p/notes.rtf b/general/datasets/Ma_m2_0806_p/notes.rtf new file mode 100644 index 0000000..d41fda1 --- /dev/null +++ b/general/datasets/Ma_m2_0806_p/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by Kremena Star on July 22 ,2006. Updated by KS on July 25, 2006.

    +
    diff --git a/general/datasets/Ma_m2_0806_p/platform.rtf b/general/datasets/Ma_m2_0806_p/platform.rtf new file mode 100644 index 0000000..cb0e8d5 --- /dev/null +++ b/general/datasets/Ma_m2_0806_p/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    +
    diff --git a/general/datasets/Ma_m2_0806_p/processing.rtf b/general/datasets/Ma_m2_0806_p/processing.rtf new file mode 100644 index 0000000..b313d60 --- /dev/null +++ b/general/datasets/Ma_m2_0806_p/processing.rtf @@ -0,0 +1,15 @@ +
    +

    Probe set data from the CHP file: The expression values were generated using RMA. The same simple steps described above were also applied to these values.

    +
    + +
    +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients.

    + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain.

    + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby.

    +
    + +
    +

    All data links (right-most column above) will be made active as sooon as the global analysis of these data by the Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access probelms.

    +
    diff --git a/general/datasets/Ma_m2_0806_p/summary.rtf b/general/datasets/Ma_m2_0806_p/summary.rtf new file mode 100644 index 0000000..9055ba0 --- /dev/null +++ b/general/datasets/Ma_m2_0806_p/summary.rtf @@ -0,0 +1 @@ +
    The July 2006 Kidney QTL Consortium data set provides estimates of mRNA expression in the adult kidney of 70 genetically diverse strains of mice including 54 BXD recombinant inbred strains, a set of 15 inbred strains, and 1 F1 hybrid; D2B6F1. Kidney samples were processed using a total of 153 Affymetrix Mouse Expression 430 2.0 microarrays (M430v2.0). This particular data set was processed using the RMA protocol. CAUTION: This dataset is not sex-balanced.
    diff --git a/general/datasets/Ma_m2_0806_p/tissue.rtf b/general/datasets/Ma_m2_0806_p/tissue.rtf new file mode 100644 index 0000000..5bc52e9 --- /dev/null +++ b/general/datasets/Ma_m2_0806_p/tissue.rtf @@ -0,0 +1,3 @@ +
    +

    BXD animals were obtained from UTHSC, and the Jackson Laboratory (Table 1). Animals were housed at UTHSC, at Harvard/BIDMC (Glenn Rosen), at the University of Memphis (Douglas Matthews), or the Jackson Laboratory before sacrifice (see Table 1). Mice were killed by cervical dislocation and kidneys were removed and placed in RNAlater prior to dissection. Kidneys were dissected whole and cleaned from the adrenal glands by Hong Tao Zhang in Dr. Lu’s lab. Kidneys from two to six animals per strain were pooled and shipped to Kremena Star at Mount Sinai School of Medicine (MSSM). Animals used in this study were between 50 and 99 days of age (average of 62 days; see Table 1).

    +
    diff --git a/general/datasets/Ma_m2_0806_r/acknowledgment.rtf b/general/datasets/Ma_m2_0806_r/acknowledgment.rtf new file mode 100644 index 0000000..fea38e8 --- /dev/null +++ b/general/datasets/Ma_m2_0806_r/acknowledgment.rtf @@ -0,0 +1,24 @@ +
    +

    Data were generated with funds provided by a variety of public and private source to members of the Kidney Consortium. Members of the Kidney Consortium thank the following sources for financial support of this effort:

    + + + +

     

    +
    diff --git a/general/datasets/Ma_m2_0806_r/cases.rtf b/general/datasets/Ma_m2_0806_r/cases.rtf new file mode 100644 index 0000000..465b87c --- /dev/null +++ b/general/datasets/Ma_m2_0806_r/cases.rtf @@ -0,0 +1,44 @@ +
    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 30 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred. We have also included 24 BXD lines generated by Lu and Peirce. All of these strains have been genotyped at 13,377 SNPs.

    + +
    +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 15 inbred strains and a pair of F1 hybrids; D2B6F1. These strains were selected for the following reasons: This panel will be a powerful tool in systems genetic analysis of a wide variety of traits, and will provide additional power in fine mapping modulators through an association analysis of sequence variants.

    + + + +
      +
    1. BTBR T+tf/J
      +     Multiple recessive stock; Homozygotes show repeated waves of hair loss and regrowth, which begin in the nose and pass posteriorly along the body.
    2. +
    3. C3H/HeJ
      +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
    4. +
    5. C57BL/6J
      +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
    6. +
    7. C57BL/6ByJ
      +     Paternal substrain of B6 used to generate the CXB panel
    8. +
    9. CAST/Ei
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
    10. +
    11. DBA/2J
      +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
    12. +
    13. KK/HlJ
      +     Sequenced by Perlegen/NIEHS
    14. +
    15. NOD/LtJ
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
    16. +
    17. PWD/PhJ
      +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
    18. +
    19. PWK/PhJ
      +     Collaborative Cross strain; Phenome Project D list
    20. +
    21. WSB/EiJ
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
    22. +
    23. D2B6F1
      + F1 hybrid generated by crossing C57BL/6J with DBA/2J
    24. +
    + +

    These inbred strains can be ordered from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC.P>

    +
    +
    diff --git a/general/datasets/Ma_m2_0806_r/experiment-design.rtf b/general/datasets/Ma_m2_0806_r/experiment-design.rtf new file mode 100644 index 0000000..464e50d --- /dev/null +++ b/general/datasets/Ma_m2_0806_r/experiment-design.rtf @@ -0,0 +1,1864 @@ +
    +

    Sample Processing: : Samples were processed at the Mount Sinai School of Medicine in the laboratory of Dr. Erwin Bottinger. All processing steps were performed Kremena Star. Total RNA was extracted with TRIZOL, followed by Rneasy Mini Kit purification (QUAGEN) by Kremena Star at MSSM. RNA purity was evaluated using the 260/280 nm (protein contamination) and the 260/230 nm (TRIZOL contamination) absorbance ratios, and values had to be greater than 1.9 and 0.8 respectively. Most of the samples 260/280 nm values fell between 1.9 and 2.1 and the majority of the 260/230 nm measurements were in the range 1.8 to 2.3. RNA integrity was assessed with the Agilent Bioanalyzer 2100. We set a quality threshold at 28s/18s rRNA greater than 0.9 or RNA integrity number (RIN) of greater than 6.9. When the two metrics were in disagreement we gave priority on the RIN value as recommended by the Agilent Bioanalyzer 2100 technical support representative. Synthesis of cDNA template from total RNA was performed using the one-cyclecDNA synthesis kit from Affymetrix (Affymetrix, P/N 900431). The Affymetrix IVT-labeling kit ((Affymetrix, P/N 900449)) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 1.9 to 2.1). The cRNA is then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup (Affymetrix, P/N 900371). Fragmented cRNA samples were accessed with Agilent Bioanalyzer 2100 (cRNA frgments between 25 and 200 nucleotides are required for optimal hybridization and immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols.

    + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. Initially all strains were represented by male and female samples, however, not all data sets passed the quality control steps. Forty-two (thirty-one BXD, D2B6F1 and ten inbred strains) are represented by male and female samples.

    + +

    Experimental Design and Batch Structure: The data set consists of arrays processed in twenty-three groups over a six month period (March 2006 to July 2006). Each group consists of 4 to 12 arrays. All arrays were processed using the Affymetrix Eukaryotic Sample and Array Processing protocol (701024 Rev. 3), by a single operator, Kremena Star. All samples in a group were labeled on the same. The hybridization station accommodates up to 4 samples, and since most of the groups had 12 samples, processed in 3 batches on the same day. Samples were washed in groups of four and kept at 4° C until all 12 (or 4-12) arrays were ready to scan. Samples were scanned in sets of four.

    +
    + +
    This table lists all arrays ordered by strain and includes Microarray ID, number of mice per pool, Microarray date, GAPDH 3`/5`Signal Ratio, Percent of transcripts present on the microarray chip, Strain, Generation, Sex, Age and Source of mice.
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Microarray_ID# miceMicroarray DateGAPDH (3`/5`)% presentstrainsgenerationsexageMice Source
    GKHI-KS-050603.07-051706305/14/020.7337.6C57BL/6J M56UTM RW
    GKHI-KS-070803.01-051706305/14/020.7541.6C57BL/6J F69UTM RW
    GKHI-KS-DBA-Male-070706207/06/020.7137.3DBA/2J M56JAX
    GKHI_KS_121404.75-042106404/18/02  DBA/2J F59UTM RW
    GKHI_KS_121404.75-033006403/19/020.7348.5DBA/2J F59UTM RW
    GKHI_KS_121404.78-042006404/17/020.8340.6DBA/2J F59UTM RW
    GKHI_KS_070804.39-042006404/17/020.8239.0D2B6F1 M59UTM RW
    GKHI_KS_030904.01-042006404/17/020.8235.9D2B6F1 M57UTM RW
    GKHI-KS-121404.73-070706207/06/020.7636.3D2B6F1 F69UTM RW
    GKHI-KS-010705.38-051206505/09/020.8139.9BXD1 M59Harvard/BIDMC
    GKHI-KS-060905.19506/05/020.7542.3BXD1 M68UTM RW
    GKHI-KS-051206.13-070706307/06/020.7136.3BXD1 F57UTM RW
    GKHI-KS-021304.10-051206405/09/020.8139.1BXD2 M61Harvard/BIDMC
    GKHI-KS-040303-04-050406305/01/020.8037.6BXD5 F56UMemphis
    GKHI-KS-010705-53-050306505/01/020.7637.1BXD5 F58Harvard/BIDMC
    GKHI-KS-031103.01-062206306/21/020.7537.1BXD5 M71UMemphis
    GKHI-KS-040505-51-050306505/01/020.7135.5BXD6 M58UTM RW
    GKHI-KS-092705-29--050406505/02/020.7536.1BXD6160F64UTM RW
    GKHI_KS_092404.01-042106404/18/020.7136.3BXD8 M59Harvard/BIDMC
    GKHI-KS-051205-25-042706504/23/020.9237.9BXD8 F77UTM RW
    KS-021605-17-042606504/22/020.8540.8BXD9 F67UTM RW
    KS-032905-32-042606504/22/020.9136.8BXD9 F60UTM RW
    GKHI-KS-062006.08-070706307/06/020.7436.3BXD9 M78UTM RW
    GKHI-KS-031505.22-051206505/09/020.7439.5BXD11 F65UTM RW
    GKHI-KS-031605.01506/05/020.7443.4BXD11 F69UTM RW
    GKHI_KS_102104.40-042106404/18/020.7238.5BXD12 M60Harvard/BIDMC
    GKHI-KS-112002.07-051106205/08/020.7742.0BXD12 F64UMemphis
    GKHI-KS-120904.33-051206405/09/020.7138.4BXD13 F60Harvard/BIDMC
    GKHI-KS-042304.01406/05/020.7144.1BXD13 F58Harvard/BIDMC
    GKHI-KS-020905.34-051106505/08/020.7540.7BXD14 F68UTM RW
    GKHI-KS-022405.46-051106505/08/020.7140.2BXD14 F60Harvard/BIDMC
    GKHI-KS-091704.09-062206406/21/020.7339.0BXD14 M59Harvard/BIDMC
    GKHI-KS-013004.45-062206406/21/020.7638.5BXD15 M61Harvard/BIDMC
    GKHI-KS-022405.43-051106505/08/020.7340.5BXD15 F60Harvard/BIDMC
    GKHI-KS-041604.10-051106405/08/020.7342.6BXD15 F60Harvard/BIDMC
    GKHI-KS-031805.01-051106505/08/020.7942.4BXD16 F59Harvard/BIDMC
    GKHI-KS-031805.04-051106505/08/020.7739.9BXD16 M60Harvard/BIDMC
    GKHI-KS-040805.10-051006505/05/020.9338.7BXD18 F59Harvard/BIDMC
    GKHI-KS-052804.09-051106405/05/020.6737.6BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.47-051106505/05/020.7342.3BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.44-070706307/06/020.7336.1BXD19 M60Harvard/BIDMC
    GKHI-KS-062905.07-051106505/05/020.7237.9BXD20 M60Harvard/BIDMC
    GKHI-KS-072104.58-051106405/05/020.7337.0BXD20 F59Harvard/BIDMC
    GKHI-KS-050405.21-051206405/09/020.8135.1BXD21 F60Harvard/BIDMC
    GKHI-KS-040705.24506/05/020.8040.2BXD21 F99UAB
    GKHI-KS-110405.01-051006505/05/020.7142.1BXD22 F60Harvard/BIDMC
    GKHI-KS-110405.04-051006505/05/020.7640.6BXD22 M60Harvard/BIDMC
    GKHI-KS-040805.01-051206505/09/020.7436.4BXD23 F60Harvard/BIDMC
    GKHI-KS-040805.04-051006505/05/020.7339.3BXD23 M60Harvard/BIDMC
    GKHI_KS_091704.13-042106404/18/020.7337.7BXD24 M59Harvard/BIDMC
    GKHI-KS-040303-20-050206304/30/020.7736.3BXD24 F71UMemphis
    GKHI-KS-021805.20-051006505/05/020.8340.5BXD25 F67UAB
    GKHI-KS-090705.05-062206506/21/020.7638.4BXD25 M58UTM RW
    GKHI-KS-090705.03-051006505/05/020.8140.1BXD25 F58UTM RW
    GKHI-KS-022105.42-051006505/05/020.8141.8BXD27 M70UAB
    GKHI-KS-032205.31-051006505/05/020.7439.0BXD27 M60UTM RW
    GKHI-KS-060706.10-070706307/06/020.6937.8BXD27 F85UTM RW
    GKHI-KS-012805-41-050506505/04/020.8134.2BXD28 F60Harvard/BIDMC
    GKHI-KS-012805-44-050506505/04/020.8135.8BXD28 M60Harvard/BIDMC
    GKHI-KS-012805-38-050506505/04/020.7742.7BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-35-050506505/04/020.8435.8BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-32-050506505/04/020.7439.9BXD31 F60Harvard/BIDMC
    GKHI-KS-100604-07-050506405/04/020.7940.2BXD31 M60Harvard/BIDMC
    GKHI-KS-021605.26-051706505/14/021.1139.0BXD32 F63UTM RW
    GKHI-KS-112002.01-051206205/09/020.7638.1BXD32 F60UMemphis
    GKHI-KS-072605-01-050506505/04/020.7941.3BXD3350F63UTM RW
    GKHI-KS-091405-23-050506505/04/020.8438.4BXD3350M76UTM RW
    GKHI-KS-111104-18-050506405/04/020.7942.2BXD36 F61Harvard/BIDMC
    GKHI-KS-031804-07-050506405/04/020.8542.5BXD36 F58Harvard/BIDMC
    GKHI-KS-092005.16-051206505/09/020.7237.2BXD3846F65UTM RW
    GKHI-KS-031403.01-060806106/07/020.6939.6BXD38 M69UMemphis
    GKHI-KS-090104.21-051106405/08/020.7236.3BXD39 F60Harvard/BIDMC
    GKHI-KS-040204.30406/05/020.7743.9BXD39 F59Harvard/BIDMC
    GKHI-KS-051805-16-050506505/04/022.1643.8BXD40 F61UTM RW
    GKHI-KS-111902-04-050506205/04/020.8441.0BXD40 F56UMemphis
    GKHI-KS-050604-01-050406405/01/020.8535.6BXD4323F61UTM RW
    GKHI-KS-080905-43-050406505/01/020.7833.7BXD4328F62UTM RW
    GKHI-KS-031004-01-050406405/01/020.7536.2BXD4421F57UTM RW
    GKHI-KS-020504-01-050406405/01/020.7530.8BXD4420M66UTM RW
    GKHI-KS-071504-01-050406405/01/020.7437.7BXD4520F58UTM RW
    GKHI-KS-081104-05-050406405/01/020.7834.2BXD4520M93UTM RW
    GKHI-KS-031204-01-050406405/01/020.7535.6BXD4822M60UTM RW
    GKHI-KS-021104.06-051706405/14/020.7541.1BXD4821F58UTM RW
    GKHI-KS-033005-21-050306505/01/020.7834.9BXD5127M64UTM RW
    GKHI-KS-090204-01-050306405/01/020.7238.3BXD5124F63UTM RW
    GKHI_KS-010704.01-040606404/03/020.7537.5BXD6021M64UTM RW
    GKHI_KS_013004.38-042006404/17/020.7840.1BXD6021F60UTM RW
    GKHI-KS-030905-28-050206504/30/020.7336.6BXD6120F63UTM RW
    GKHI-KS-050305-18-050206504/30/020.8335.8BXD6121F70UTM RW
    GKHI_KS-121803.01-040706304/03/020.8040.0BXD6220M54UTM RW
    GKHI_KS_021204.01-042006404/17/020.8539.8BXD6221F59UTM RW
    GKHI-KS-020905-25-050206504/30/020.8435.2BXD6321M70UTM RW
    GKHI-KS-040705.49-060806206/07/020.8539.4BXD6520F55UTM RW
    GKHI-KS-040406.12-060806206/07/020.7340.4BXD6523F60UTM RW
    GKHI-KS-052405-36-050406505/02/020.8436.8BXD6720F65UTM RW
    GKHI-KS-041205-01-050206504/30/020.7739.7BXD6720F54UTM RW
    GKHI-KS-062305-01-050206504/30/020.7636.0BXD6820F59UTM RW
    GKHI-KS-062305-09-050206504/30/020.9337.4BXD6820F64UTM RW
    GKHI_KS_110105.30-042006504/17/020.8039.0BXD6926F66UTM RW
    GKHI-KS-061504.64-062206406/21/020.7239.3BXD6920M55UTM RW
    GKHI_KS-050404.04-040606404/03/020.7738.3BXD6920F63UTM RW
    GKHI-KS-042705-01-042706504/23/020.8338.6BXD7021F64UTM RW
    GKHI-KS-051705-59-042706504/23/020.8938.5BXD7022F61UTM RW
    GKHI-KS-030805-40-042706504/23/020.8638.5BXD7323F61UTM RW
    GKHI-KS-041905.172-062206506/21/020.7937.6BXD7324M64UTM RW
    GKHI-KS-072605-03-042706504/23/020.8738.2BXD7325F72UTM RW
    GKHI-KS-041205-04-050406505/02/020.8341.4BXD7522F60UTM RW
    GKHI-KS-041205.07506/05/020.7945.8BXD7522F60UTM RW
    GKHI-KS-101805-35-050406505/02/020.7938.4BXD7724F60UTM RW
    GKHI-KS-070605.43506/05/020.7742.8BXD7723F62UTM RW
    GKHI-KS-071205-31-042706504/23/020.9137.7BXD8020F65UTM RW
    GKHI-KS-071205-2-042706504/23/020.9038.1BXD8020F65UTM RW
    KS-011305-11-042606504/22/020.8239.0BXD8522M91UTM RW
    KS-110805-27-042606504/22/020.9135.2BXD8525F63UTM RW
    KS-080404-28-042606404/22/020.8436.8BXD8621F58UTM RW
    KS-080504-04-042606404/22/020.8133.4BXD8620M77UTM RW
    KS-051705-57-042606504/22/021.1135.6BXD8720M63UTM RW
    KS-032905-46-042606504/22/020.8536.1BXD8720M57UTM RW
    GKHI-KS-080905-49-042706504/23/020.8937.6BXD9023F71UTM RW
    GKHI-KS-101105.26506/05/020.8443.6BXD9025F70UTM RW
    GKHI_KS-062304.02-040606404/03/020.8540.9BXD9221M55UTM RW
    GKHI_KS_071404.01-042006404/17/020.7739.5BXD9221F62UTM RW
    GKHI_KS_031005.17-042006504/17/020.7738.1BXD9620M65UTM RW
    GKHI-KS-111505.12506/05/020.7744.1BXD9623M66UTM RW
    GKHI-KS-012406.21-060806306/07/020.7336.6BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-012406.24-060806306/07/021.2839.2BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-030206.13-060806306/07/020.7141.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-030206.16-060806306/07/020.6637.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-011906.31-060806306/07/020.8037.2C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-011906.34-060806306/07/020.7638.5C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-060806.04-070706307/06/020.6837.3C3H/HeJ F76Harvard/BIDMC
    GKHI-KS-071505.08-060806306/07/020.7137.4C57BL/6ByJ F51JAX
    GKHI-KS-071505.11-060806206/07/020.7339.2C57BL/6ByJ F51JAX
    GKHI-KS-030305.15-060806306/07/020.7137.4CAST/Ei F64JAX
    GKHI-KS-031005.35-060906306/08/020.7035.7CAST/Ei M64JAX
    GKHI-KS-022206.16-060906306/08/020.7137.9KK/HlJ F61Harvard/BIDMC
    GKHI-KS-022206.07-060906306/08/020.7235.5KK/HlJ M61Harvard/BIDMC
    GKHI-KS-031606.01-060906306/08/020.8635.9MOLF/Ei M60Harvard/BIDMC
    GKHI-KS-022206.16-060906306/08/020.8737.4MOLF/Ei F60Harvard/BIDMC
    GKHI-KS-012006.25-060906306/08/020.7538.3NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-012006.28-061306306/11/020.8237.1NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-032306.04.060906306/08/020.7340.2NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-032306.07-060906306/08/020.7439.4NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-020706.04-060906306/08/020.7141.6NZW/LacJ F65Harvard/BIDMC
    GKHI-KS-020206.19-060906306/08/020.7736.7NZW/LacJ M60Harvard/BIDMC
    GKHI-KS-012406.33-061306306/11/020.9535.3PWD/PhJ F60Harvard/BIDMC
    GKHI-KS-012406.30-062006306/18/020.8836.3PWD/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.01-062206306/21/021.0235.9PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.04-062206306/21/020.9638.7PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.07-062206306/21/020.9836.6PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.10-062206306/21/020.8735.2PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-052705.01-061306206/11/020.7238.3WSB/EiJ F52UTM RW
    GKHI-KS-051005.07-061306306/11/020.7738.0WSB/EiJ M58JAX
    +
    diff --git a/general/datasets/Ma_m2_0806_r/notes.rtf b/general/datasets/Ma_m2_0806_r/notes.rtf new file mode 100644 index 0000000..d41fda1 --- /dev/null +++ b/general/datasets/Ma_m2_0806_r/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by Kremena Star on July 22 ,2006. Updated by KS on July 25, 2006.

    +
    diff --git a/general/datasets/Ma_m2_0806_r/platform.rtf b/general/datasets/Ma_m2_0806_r/platform.rtf new file mode 100644 index 0000000..cb0e8d5 --- /dev/null +++ b/general/datasets/Ma_m2_0806_r/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    +
    diff --git a/general/datasets/Ma_m2_0806_r/processing.rtf b/general/datasets/Ma_m2_0806_r/processing.rtf new file mode 100644 index 0000000..b313d60 --- /dev/null +++ b/general/datasets/Ma_m2_0806_r/processing.rtf @@ -0,0 +1,15 @@ +
    +

    Probe set data from the CHP file: The expression values were generated using RMA. The same simple steps described above were also applied to these values.

    +
    + +
    +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients.

    + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain.

    + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby.

    +
    + +
    +

    All data links (right-most column above) will be made active as sooon as the global analysis of these data by the Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access probelms.

    +
    diff --git a/general/datasets/Ma_m2_0806_r/summary.rtf b/general/datasets/Ma_m2_0806_r/summary.rtf new file mode 100644 index 0000000..9055ba0 --- /dev/null +++ b/general/datasets/Ma_m2_0806_r/summary.rtf @@ -0,0 +1 @@ +
    The July 2006 Kidney QTL Consortium data set provides estimates of mRNA expression in the adult kidney of 70 genetically diverse strains of mice including 54 BXD recombinant inbred strains, a set of 15 inbred strains, and 1 F1 hybrid; D2B6F1. Kidney samples were processed using a total of 153 Affymetrix Mouse Expression 430 2.0 microarrays (M430v2.0). This particular data set was processed using the RMA protocol. CAUTION: This dataset is not sex-balanced.
    diff --git a/general/datasets/Ma_m2_0806_r/tissue.rtf b/general/datasets/Ma_m2_0806_r/tissue.rtf new file mode 100644 index 0000000..5bc52e9 --- /dev/null +++ b/general/datasets/Ma_m2_0806_r/tissue.rtf @@ -0,0 +1,3 @@ +
    +

    BXD animals were obtained from UTHSC, and the Jackson Laboratory (Table 1). Animals were housed at UTHSC, at Harvard/BIDMC (Glenn Rosen), at the University of Memphis (Douglas Matthews), or the Jackson Laboratory before sacrifice (see Table 1). Mice were killed by cervical dislocation and kidneys were removed and placed in RNAlater prior to dissection. Kidneys were dissected whole and cleaned from the adrenal glands by Hong Tao Zhang in Dr. Lu’s lab. Kidneys from two to six animals per strain were pooled and shipped to Kremena Star at Mount Sinai School of Medicine (MSSM). Animals used in this study were between 50 and 99 days of age (average of 62 days; see Table 1).

    +
    diff --git a/general/datasets/Ma_m2f_0706_r/acknowledgment.rtf b/general/datasets/Ma_m2f_0706_r/acknowledgment.rtf new file mode 100644 index 0000000..fea38e8 --- /dev/null +++ b/general/datasets/Ma_m2f_0706_r/acknowledgment.rtf @@ -0,0 +1,24 @@ +
    +

    Data were generated with funds provided by a variety of public and private source to members of the Kidney Consortium. Members of the Kidney Consortium thank the following sources for financial support of this effort:

    + + + +

     

    +
    diff --git a/general/datasets/Ma_m2f_0706_r/cases.rtf b/general/datasets/Ma_m2f_0706_r/cases.rtf new file mode 100644 index 0000000..465b87c --- /dev/null +++ b/general/datasets/Ma_m2f_0706_r/cases.rtf @@ -0,0 +1,44 @@ +
    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 30 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred. We have also included 24 BXD lines generated by Lu and Peirce. All of these strains have been genotyped at 13,377 SNPs.

    + +
    +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 15 inbred strains and a pair of F1 hybrids; D2B6F1. These strains were selected for the following reasons: This panel will be a powerful tool in systems genetic analysis of a wide variety of traits, and will provide additional power in fine mapping modulators through an association analysis of sequence variants.

    + + + +
      +
    1. BTBR T+tf/J
      +     Multiple recessive stock; Homozygotes show repeated waves of hair loss and regrowth, which begin in the nose and pass posteriorly along the body.
    2. +
    3. C3H/HeJ
      +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
    4. +
    5. C57BL/6J
      +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
    6. +
    7. C57BL/6ByJ
      +     Paternal substrain of B6 used to generate the CXB panel
    8. +
    9. CAST/Ei
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
    10. +
    11. DBA/2J
      +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
    12. +
    13. KK/HlJ
      +     Sequenced by Perlegen/NIEHS
    14. +
    15. NOD/LtJ
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
    16. +
    17. PWD/PhJ
      +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
    18. +
    19. PWK/PhJ
      +     Collaborative Cross strain; Phenome Project D list
    20. +
    21. WSB/EiJ
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
    22. +
    23. D2B6F1
      + F1 hybrid generated by crossing C57BL/6J with DBA/2J
    24. +
    + +

    These inbred strains can be ordered from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC.P>

    +
    +
    diff --git a/general/datasets/Ma_m2f_0706_r/experiment-design.rtf b/general/datasets/Ma_m2f_0706_r/experiment-design.rtf new file mode 100644 index 0000000..464e50d --- /dev/null +++ b/general/datasets/Ma_m2f_0706_r/experiment-design.rtf @@ -0,0 +1,1864 @@ +
    +

    Sample Processing: : Samples were processed at the Mount Sinai School of Medicine in the laboratory of Dr. Erwin Bottinger. All processing steps were performed Kremena Star. Total RNA was extracted with TRIZOL, followed by Rneasy Mini Kit purification (QUAGEN) by Kremena Star at MSSM. RNA purity was evaluated using the 260/280 nm (protein contamination) and the 260/230 nm (TRIZOL contamination) absorbance ratios, and values had to be greater than 1.9 and 0.8 respectively. Most of the samples 260/280 nm values fell between 1.9 and 2.1 and the majority of the 260/230 nm measurements were in the range 1.8 to 2.3. RNA integrity was assessed with the Agilent Bioanalyzer 2100. We set a quality threshold at 28s/18s rRNA greater than 0.9 or RNA integrity number (RIN) of greater than 6.9. When the two metrics were in disagreement we gave priority on the RIN value as recommended by the Agilent Bioanalyzer 2100 technical support representative. Synthesis of cDNA template from total RNA was performed using the one-cyclecDNA synthesis kit from Affymetrix (Affymetrix, P/N 900431). The Affymetrix IVT-labeling kit ((Affymetrix, P/N 900449)) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 1.9 to 2.1). The cRNA is then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup (Affymetrix, P/N 900371). Fragmented cRNA samples were accessed with Agilent Bioanalyzer 2100 (cRNA frgments between 25 and 200 nucleotides are required for optimal hybridization and immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols.

    + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. Initially all strains were represented by male and female samples, however, not all data sets passed the quality control steps. Forty-two (thirty-one BXD, D2B6F1 and ten inbred strains) are represented by male and female samples.

    + +

    Experimental Design and Batch Structure: The data set consists of arrays processed in twenty-three groups over a six month period (March 2006 to July 2006). Each group consists of 4 to 12 arrays. All arrays were processed using the Affymetrix Eukaryotic Sample and Array Processing protocol (701024 Rev. 3), by a single operator, Kremena Star. All samples in a group were labeled on the same. The hybridization station accommodates up to 4 samples, and since most of the groups had 12 samples, processed in 3 batches on the same day. Samples were washed in groups of four and kept at 4° C until all 12 (or 4-12) arrays were ready to scan. Samples were scanned in sets of four.

    +
    + +
    This table lists all arrays ordered by strain and includes Microarray ID, number of mice per pool, Microarray date, GAPDH 3`/5`Signal Ratio, Percent of transcripts present on the microarray chip, Strain, Generation, Sex, Age and Source of mice.
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Microarray_ID# miceMicroarray DateGAPDH (3`/5`)% presentstrainsgenerationsexageMice Source
    GKHI-KS-050603.07-051706305/14/020.7337.6C57BL/6J M56UTM RW
    GKHI-KS-070803.01-051706305/14/020.7541.6C57BL/6J F69UTM RW
    GKHI-KS-DBA-Male-070706207/06/020.7137.3DBA/2J M56JAX
    GKHI_KS_121404.75-042106404/18/02  DBA/2J F59UTM RW
    GKHI_KS_121404.75-033006403/19/020.7348.5DBA/2J F59UTM RW
    GKHI_KS_121404.78-042006404/17/020.8340.6DBA/2J F59UTM RW
    GKHI_KS_070804.39-042006404/17/020.8239.0D2B6F1 M59UTM RW
    GKHI_KS_030904.01-042006404/17/020.8235.9D2B6F1 M57UTM RW
    GKHI-KS-121404.73-070706207/06/020.7636.3D2B6F1 F69UTM RW
    GKHI-KS-010705.38-051206505/09/020.8139.9BXD1 M59Harvard/BIDMC
    GKHI-KS-060905.19506/05/020.7542.3BXD1 M68UTM RW
    GKHI-KS-051206.13-070706307/06/020.7136.3BXD1 F57UTM RW
    GKHI-KS-021304.10-051206405/09/020.8139.1BXD2 M61Harvard/BIDMC
    GKHI-KS-040303-04-050406305/01/020.8037.6BXD5 F56UMemphis
    GKHI-KS-010705-53-050306505/01/020.7637.1BXD5 F58Harvard/BIDMC
    GKHI-KS-031103.01-062206306/21/020.7537.1BXD5 M71UMemphis
    GKHI-KS-040505-51-050306505/01/020.7135.5BXD6 M58UTM RW
    GKHI-KS-092705-29--050406505/02/020.7536.1BXD6160F64UTM RW
    GKHI_KS_092404.01-042106404/18/020.7136.3BXD8 M59Harvard/BIDMC
    GKHI-KS-051205-25-042706504/23/020.9237.9BXD8 F77UTM RW
    KS-021605-17-042606504/22/020.8540.8BXD9 F67UTM RW
    KS-032905-32-042606504/22/020.9136.8BXD9 F60UTM RW
    GKHI-KS-062006.08-070706307/06/020.7436.3BXD9 M78UTM RW
    GKHI-KS-031505.22-051206505/09/020.7439.5BXD11 F65UTM RW
    GKHI-KS-031605.01506/05/020.7443.4BXD11 F69UTM RW
    GKHI_KS_102104.40-042106404/18/020.7238.5BXD12 M60Harvard/BIDMC
    GKHI-KS-112002.07-051106205/08/020.7742.0BXD12 F64UMemphis
    GKHI-KS-120904.33-051206405/09/020.7138.4BXD13 F60Harvard/BIDMC
    GKHI-KS-042304.01406/05/020.7144.1BXD13 F58Harvard/BIDMC
    GKHI-KS-020905.34-051106505/08/020.7540.7BXD14 F68UTM RW
    GKHI-KS-022405.46-051106505/08/020.7140.2BXD14 F60Harvard/BIDMC
    GKHI-KS-091704.09-062206406/21/020.7339.0BXD14 M59Harvard/BIDMC
    GKHI-KS-013004.45-062206406/21/020.7638.5BXD15 M61Harvard/BIDMC
    GKHI-KS-022405.43-051106505/08/020.7340.5BXD15 F60Harvard/BIDMC
    GKHI-KS-041604.10-051106405/08/020.7342.6BXD15 F60Harvard/BIDMC
    GKHI-KS-031805.01-051106505/08/020.7942.4BXD16 F59Harvard/BIDMC
    GKHI-KS-031805.04-051106505/08/020.7739.9BXD16 M60Harvard/BIDMC
    GKHI-KS-040805.10-051006505/05/020.9338.7BXD18 F59Harvard/BIDMC
    GKHI-KS-052804.09-051106405/05/020.6737.6BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.47-051106505/05/020.7342.3BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.44-070706307/06/020.7336.1BXD19 M60Harvard/BIDMC
    GKHI-KS-062905.07-051106505/05/020.7237.9BXD20 M60Harvard/BIDMC
    GKHI-KS-072104.58-051106405/05/020.7337.0BXD20 F59Harvard/BIDMC
    GKHI-KS-050405.21-051206405/09/020.8135.1BXD21 F60Harvard/BIDMC
    GKHI-KS-040705.24506/05/020.8040.2BXD21 F99UAB
    GKHI-KS-110405.01-051006505/05/020.7142.1BXD22 F60Harvard/BIDMC
    GKHI-KS-110405.04-051006505/05/020.7640.6BXD22 M60Harvard/BIDMC
    GKHI-KS-040805.01-051206505/09/020.7436.4BXD23 F60Harvard/BIDMC
    GKHI-KS-040805.04-051006505/05/020.7339.3BXD23 M60Harvard/BIDMC
    GKHI_KS_091704.13-042106404/18/020.7337.7BXD24 M59Harvard/BIDMC
    GKHI-KS-040303-20-050206304/30/020.7736.3BXD24 F71UMemphis
    GKHI-KS-021805.20-051006505/05/020.8340.5BXD25 F67UAB
    GKHI-KS-090705.05-062206506/21/020.7638.4BXD25 M58UTM RW
    GKHI-KS-090705.03-051006505/05/020.8140.1BXD25 F58UTM RW
    GKHI-KS-022105.42-051006505/05/020.8141.8BXD27 M70UAB
    GKHI-KS-032205.31-051006505/05/020.7439.0BXD27 M60UTM RW
    GKHI-KS-060706.10-070706307/06/020.6937.8BXD27 F85UTM RW
    GKHI-KS-012805-41-050506505/04/020.8134.2BXD28 F60Harvard/BIDMC
    GKHI-KS-012805-44-050506505/04/020.8135.8BXD28 M60Harvard/BIDMC
    GKHI-KS-012805-38-050506505/04/020.7742.7BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-35-050506505/04/020.8435.8BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-32-050506505/04/020.7439.9BXD31 F60Harvard/BIDMC
    GKHI-KS-100604-07-050506405/04/020.7940.2BXD31 M60Harvard/BIDMC
    GKHI-KS-021605.26-051706505/14/021.1139.0BXD32 F63UTM RW
    GKHI-KS-112002.01-051206205/09/020.7638.1BXD32 F60UMemphis
    GKHI-KS-072605-01-050506505/04/020.7941.3BXD3350F63UTM RW
    GKHI-KS-091405-23-050506505/04/020.8438.4BXD3350M76UTM RW
    GKHI-KS-111104-18-050506405/04/020.7942.2BXD36 F61Harvard/BIDMC
    GKHI-KS-031804-07-050506405/04/020.8542.5BXD36 F58Harvard/BIDMC
    GKHI-KS-092005.16-051206505/09/020.7237.2BXD3846F65UTM RW
    GKHI-KS-031403.01-060806106/07/020.6939.6BXD38 M69UMemphis
    GKHI-KS-090104.21-051106405/08/020.7236.3BXD39 F60Harvard/BIDMC
    GKHI-KS-040204.30406/05/020.7743.9BXD39 F59Harvard/BIDMC
    GKHI-KS-051805-16-050506505/04/022.1643.8BXD40 F61UTM RW
    GKHI-KS-111902-04-050506205/04/020.8441.0BXD40 F56UMemphis
    GKHI-KS-050604-01-050406405/01/020.8535.6BXD4323F61UTM RW
    GKHI-KS-080905-43-050406505/01/020.7833.7BXD4328F62UTM RW
    GKHI-KS-031004-01-050406405/01/020.7536.2BXD4421F57UTM RW
    GKHI-KS-020504-01-050406405/01/020.7530.8BXD4420M66UTM RW
    GKHI-KS-071504-01-050406405/01/020.7437.7BXD4520F58UTM RW
    GKHI-KS-081104-05-050406405/01/020.7834.2BXD4520M93UTM RW
    GKHI-KS-031204-01-050406405/01/020.7535.6BXD4822M60UTM RW
    GKHI-KS-021104.06-051706405/14/020.7541.1BXD4821F58UTM RW
    GKHI-KS-033005-21-050306505/01/020.7834.9BXD5127M64UTM RW
    GKHI-KS-090204-01-050306405/01/020.7238.3BXD5124F63UTM RW
    GKHI_KS-010704.01-040606404/03/020.7537.5BXD6021M64UTM RW
    GKHI_KS_013004.38-042006404/17/020.7840.1BXD6021F60UTM RW
    GKHI-KS-030905-28-050206504/30/020.7336.6BXD6120F63UTM RW
    GKHI-KS-050305-18-050206504/30/020.8335.8BXD6121F70UTM RW
    GKHI_KS-121803.01-040706304/03/020.8040.0BXD6220M54UTM RW
    GKHI_KS_021204.01-042006404/17/020.8539.8BXD6221F59UTM RW
    GKHI-KS-020905-25-050206504/30/020.8435.2BXD6321M70UTM RW
    GKHI-KS-040705.49-060806206/07/020.8539.4BXD6520F55UTM RW
    GKHI-KS-040406.12-060806206/07/020.7340.4BXD6523F60UTM RW
    GKHI-KS-052405-36-050406505/02/020.8436.8BXD6720F65UTM RW
    GKHI-KS-041205-01-050206504/30/020.7739.7BXD6720F54UTM RW
    GKHI-KS-062305-01-050206504/30/020.7636.0BXD6820F59UTM RW
    GKHI-KS-062305-09-050206504/30/020.9337.4BXD6820F64UTM RW
    GKHI_KS_110105.30-042006504/17/020.8039.0BXD6926F66UTM RW
    GKHI-KS-061504.64-062206406/21/020.7239.3BXD6920M55UTM RW
    GKHI_KS-050404.04-040606404/03/020.7738.3BXD6920F63UTM RW
    GKHI-KS-042705-01-042706504/23/020.8338.6BXD7021F64UTM RW
    GKHI-KS-051705-59-042706504/23/020.8938.5BXD7022F61UTM RW
    GKHI-KS-030805-40-042706504/23/020.8638.5BXD7323F61UTM RW
    GKHI-KS-041905.172-062206506/21/020.7937.6BXD7324M64UTM RW
    GKHI-KS-072605-03-042706504/23/020.8738.2BXD7325F72UTM RW
    GKHI-KS-041205-04-050406505/02/020.8341.4BXD7522F60UTM RW
    GKHI-KS-041205.07506/05/020.7945.8BXD7522F60UTM RW
    GKHI-KS-101805-35-050406505/02/020.7938.4BXD7724F60UTM RW
    GKHI-KS-070605.43506/05/020.7742.8BXD7723F62UTM RW
    GKHI-KS-071205-31-042706504/23/020.9137.7BXD8020F65UTM RW
    GKHI-KS-071205-2-042706504/23/020.9038.1BXD8020F65UTM RW
    KS-011305-11-042606504/22/020.8239.0BXD8522M91UTM RW
    KS-110805-27-042606504/22/020.9135.2BXD8525F63UTM RW
    KS-080404-28-042606404/22/020.8436.8BXD8621F58UTM RW
    KS-080504-04-042606404/22/020.8133.4BXD8620M77UTM RW
    KS-051705-57-042606504/22/021.1135.6BXD8720M63UTM RW
    KS-032905-46-042606504/22/020.8536.1BXD8720M57UTM RW
    GKHI-KS-080905-49-042706504/23/020.8937.6BXD9023F71UTM RW
    GKHI-KS-101105.26506/05/020.8443.6BXD9025F70UTM RW
    GKHI_KS-062304.02-040606404/03/020.8540.9BXD9221M55UTM RW
    GKHI_KS_071404.01-042006404/17/020.7739.5BXD9221F62UTM RW
    GKHI_KS_031005.17-042006504/17/020.7738.1BXD9620M65UTM RW
    GKHI-KS-111505.12506/05/020.7744.1BXD9623M66UTM RW
    GKHI-KS-012406.21-060806306/07/020.7336.6BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-012406.24-060806306/07/021.2839.2BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-030206.13-060806306/07/020.7141.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-030206.16-060806306/07/020.6637.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-011906.31-060806306/07/020.8037.2C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-011906.34-060806306/07/020.7638.5C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-060806.04-070706307/06/020.6837.3C3H/HeJ F76Harvard/BIDMC
    GKHI-KS-071505.08-060806306/07/020.7137.4C57BL/6ByJ F51JAX
    GKHI-KS-071505.11-060806206/07/020.7339.2C57BL/6ByJ F51JAX
    GKHI-KS-030305.15-060806306/07/020.7137.4CAST/Ei F64JAX
    GKHI-KS-031005.35-060906306/08/020.7035.7CAST/Ei M64JAX
    GKHI-KS-022206.16-060906306/08/020.7137.9KK/HlJ F61Harvard/BIDMC
    GKHI-KS-022206.07-060906306/08/020.7235.5KK/HlJ M61Harvard/BIDMC
    GKHI-KS-031606.01-060906306/08/020.8635.9MOLF/Ei M60Harvard/BIDMC
    GKHI-KS-022206.16-060906306/08/020.8737.4MOLF/Ei F60Harvard/BIDMC
    GKHI-KS-012006.25-060906306/08/020.7538.3NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-012006.28-061306306/11/020.8237.1NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-032306.04.060906306/08/020.7340.2NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-032306.07-060906306/08/020.7439.4NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-020706.04-060906306/08/020.7141.6NZW/LacJ F65Harvard/BIDMC
    GKHI-KS-020206.19-060906306/08/020.7736.7NZW/LacJ M60Harvard/BIDMC
    GKHI-KS-012406.33-061306306/11/020.9535.3PWD/PhJ F60Harvard/BIDMC
    GKHI-KS-012406.30-062006306/18/020.8836.3PWD/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.01-062206306/21/021.0235.9PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.04-062206306/21/020.9638.7PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.07-062206306/21/020.9836.6PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.10-062206306/21/020.8735.2PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-052705.01-061306206/11/020.7238.3WSB/EiJ F52UTM RW
    GKHI-KS-051005.07-061306306/11/020.7738.0WSB/EiJ M58JAX
    +
    diff --git a/general/datasets/Ma_m2f_0706_r/notes.rtf b/general/datasets/Ma_m2f_0706_r/notes.rtf new file mode 100644 index 0000000..d41fda1 --- /dev/null +++ b/general/datasets/Ma_m2f_0706_r/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by Kremena Star on July 22 ,2006. Updated by KS on July 25, 2006.

    +
    diff --git a/general/datasets/Ma_m2f_0706_r/platform.rtf b/general/datasets/Ma_m2f_0706_r/platform.rtf new file mode 100644 index 0000000..cb0e8d5 --- /dev/null +++ b/general/datasets/Ma_m2f_0706_r/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    +
    diff --git a/general/datasets/Ma_m2f_0706_r/processing.rtf b/general/datasets/Ma_m2f_0706_r/processing.rtf new file mode 100644 index 0000000..b313d60 --- /dev/null +++ b/general/datasets/Ma_m2f_0706_r/processing.rtf @@ -0,0 +1,15 @@ +
    +

    Probe set data from the CHP file: The expression values were generated using RMA. The same simple steps described above were also applied to these values.

    +
    + +
    +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients.

    + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain.

    + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby.

    +
    + +
    +

    All data links (right-most column above) will be made active as sooon as the global analysis of these data by the Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access probelms.

    +
    diff --git a/general/datasets/Ma_m2f_0706_r/summary.rtf b/general/datasets/Ma_m2f_0706_r/summary.rtf new file mode 100644 index 0000000..9055ba0 --- /dev/null +++ b/general/datasets/Ma_m2f_0706_r/summary.rtf @@ -0,0 +1 @@ +
    The July 2006 Kidney QTL Consortium data set provides estimates of mRNA expression in the adult kidney of 70 genetically diverse strains of mice including 54 BXD recombinant inbred strains, a set of 15 inbred strains, and 1 F1 hybrid; D2B6F1. Kidney samples were processed using a total of 153 Affymetrix Mouse Expression 430 2.0 microarrays (M430v2.0). This particular data set was processed using the RMA protocol. CAUTION: This dataset is not sex-balanced.
    diff --git a/general/datasets/Ma_m2f_0706_r/tissue.rtf b/general/datasets/Ma_m2f_0706_r/tissue.rtf new file mode 100644 index 0000000..5bc52e9 --- /dev/null +++ b/general/datasets/Ma_m2f_0706_r/tissue.rtf @@ -0,0 +1,3 @@ +
    +

    BXD animals were obtained from UTHSC, and the Jackson Laboratory (Table 1). Animals were housed at UTHSC, at Harvard/BIDMC (Glenn Rosen), at the University of Memphis (Douglas Matthews), or the Jackson Laboratory before sacrifice (see Table 1). Mice were killed by cervical dislocation and kidneys were removed and placed in RNAlater prior to dissection. Kidneys were dissected whole and cleaned from the adrenal glands by Hong Tao Zhang in Dr. Lu’s lab. Kidneys from two to six animals per strain were pooled and shipped to Kremena Star at Mount Sinai School of Medicine (MSSM). Animals used in this study were between 50 and 99 days of age (average of 62 days; see Table 1).

    +
    diff --git a/general/datasets/Ma_m2m_0706_r/acknowledgment.rtf b/general/datasets/Ma_m2m_0706_r/acknowledgment.rtf new file mode 100644 index 0000000..fea38e8 --- /dev/null +++ b/general/datasets/Ma_m2m_0706_r/acknowledgment.rtf @@ -0,0 +1,24 @@ +
    +

    Data were generated with funds provided by a variety of public and private source to members of the Kidney Consortium. Members of the Kidney Consortium thank the following sources for financial support of this effort:

    + + + +

     

    +
    diff --git a/general/datasets/Ma_m2m_0706_r/cases.rtf b/general/datasets/Ma_m2m_0706_r/cases.rtf new file mode 100644 index 0000000..465b87c --- /dev/null +++ b/general/datasets/Ma_m2m_0706_r/cases.rtf @@ -0,0 +1,44 @@ +
    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 30 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred. We have also included 24 BXD lines generated by Lu and Peirce. All of these strains have been genotyped at 13,377 SNPs.

    + +
    +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 15 inbred strains and a pair of F1 hybrids; D2B6F1. These strains were selected for the following reasons: This panel will be a powerful tool in systems genetic analysis of a wide variety of traits, and will provide additional power in fine mapping modulators through an association analysis of sequence variants.

    + + + +
      +
    1. BTBR T+tf/J
      +     Multiple recessive stock; Homozygotes show repeated waves of hair loss and regrowth, which begin in the nose and pass posteriorly along the body.
    2. +
    3. C3H/HeJ
      +     Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list
    4. +
    5. C57BL/6J
      +     Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list
    6. +
    7. C57BL/6ByJ
      +     Paternal substrain of B6 used to generate the CXB panel
    8. +
    9. CAST/Ei
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project A list
    10. +
    11. DBA/2J
      +     Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list
    12. +
    13. KK/HlJ
      +     Sequenced by Perlegen/NIEHS
    14. +
    15. NOD/LtJ
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic
    16. +
    17. PWD/PhJ
      +     Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues
    18. +
    19. PWK/PhJ
      +     Collaborative Cross strain; Phenome Project D list
    20. +
    21. WSB/EiJ
      +     Collaborative Cross strain sequenced by NIEHS; Phenome Project C list
    22. +
    23. D2B6F1
      + F1 hybrid generated by crossing C57BL/6J with DBA/2J
    24. +
    + +

    These inbred strains can be ordered from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC.P>

    +
    +
    diff --git a/general/datasets/Ma_m2m_0706_r/experiment-design.rtf b/general/datasets/Ma_m2m_0706_r/experiment-design.rtf new file mode 100644 index 0000000..464e50d --- /dev/null +++ b/general/datasets/Ma_m2m_0706_r/experiment-design.rtf @@ -0,0 +1,1864 @@ +
    +

    Sample Processing: : Samples were processed at the Mount Sinai School of Medicine in the laboratory of Dr. Erwin Bottinger. All processing steps were performed Kremena Star. Total RNA was extracted with TRIZOL, followed by Rneasy Mini Kit purification (QUAGEN) by Kremena Star at MSSM. RNA purity was evaluated using the 260/280 nm (protein contamination) and the 260/230 nm (TRIZOL contamination) absorbance ratios, and values had to be greater than 1.9 and 0.8 respectively. Most of the samples 260/280 nm values fell between 1.9 and 2.1 and the majority of the 260/230 nm measurements were in the range 1.8 to 2.3. RNA integrity was assessed with the Agilent Bioanalyzer 2100. We set a quality threshold at 28s/18s rRNA greater than 0.9 or RNA integrity number (RIN) of greater than 6.9. When the two metrics were in disagreement we gave priority on the RIN value as recommended by the Agilent Bioanalyzer 2100 technical support representative. Synthesis of cDNA template from total RNA was performed using the one-cyclecDNA synthesis kit from Affymetrix (Affymetrix, P/N 900431). The Affymetrix IVT-labeling kit ((Affymetrix, P/N 900449)) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 1.9 to 2.1). The cRNA is then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup (Affymetrix, P/N 900371). Fragmented cRNA samples were accessed with Agilent Bioanalyzer 2100 (cRNA frgments between 25 and 200 nucleotides are required for optimal hybridization and immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols.

    + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. Initially all strains were represented by male and female samples, however, not all data sets passed the quality control steps. Forty-two (thirty-one BXD, D2B6F1 and ten inbred strains) are represented by male and female samples.

    + +

    Experimental Design and Batch Structure: The data set consists of arrays processed in twenty-three groups over a six month period (March 2006 to July 2006). Each group consists of 4 to 12 arrays. All arrays were processed using the Affymetrix Eukaryotic Sample and Array Processing protocol (701024 Rev. 3), by a single operator, Kremena Star. All samples in a group were labeled on the same. The hybridization station accommodates up to 4 samples, and since most of the groups had 12 samples, processed in 3 batches on the same day. Samples were washed in groups of four and kept at 4° C until all 12 (or 4-12) arrays were ready to scan. Samples were scanned in sets of four.

    +
    + +
    This table lists all arrays ordered by strain and includes Microarray ID, number of mice per pool, Microarray date, GAPDH 3`/5`Signal Ratio, Percent of transcripts present on the microarray chip, Strain, Generation, Sex, Age and Source of mice.
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Microarray_ID# miceMicroarray DateGAPDH (3`/5`)% presentstrainsgenerationsexageMice Source
    GKHI-KS-050603.07-051706305/14/020.7337.6C57BL/6J M56UTM RW
    GKHI-KS-070803.01-051706305/14/020.7541.6C57BL/6J F69UTM RW
    GKHI-KS-DBA-Male-070706207/06/020.7137.3DBA/2J M56JAX
    GKHI_KS_121404.75-042106404/18/02  DBA/2J F59UTM RW
    GKHI_KS_121404.75-033006403/19/020.7348.5DBA/2J F59UTM RW
    GKHI_KS_121404.78-042006404/17/020.8340.6DBA/2J F59UTM RW
    GKHI_KS_070804.39-042006404/17/020.8239.0D2B6F1 M59UTM RW
    GKHI_KS_030904.01-042006404/17/020.8235.9D2B6F1 M57UTM RW
    GKHI-KS-121404.73-070706207/06/020.7636.3D2B6F1 F69UTM RW
    GKHI-KS-010705.38-051206505/09/020.8139.9BXD1 M59Harvard/BIDMC
    GKHI-KS-060905.19506/05/020.7542.3BXD1 M68UTM RW
    GKHI-KS-051206.13-070706307/06/020.7136.3BXD1 F57UTM RW
    GKHI-KS-021304.10-051206405/09/020.8139.1BXD2 M61Harvard/BIDMC
    GKHI-KS-040303-04-050406305/01/020.8037.6BXD5 F56UMemphis
    GKHI-KS-010705-53-050306505/01/020.7637.1BXD5 F58Harvard/BIDMC
    GKHI-KS-031103.01-062206306/21/020.7537.1BXD5 M71UMemphis
    GKHI-KS-040505-51-050306505/01/020.7135.5BXD6 M58UTM RW
    GKHI-KS-092705-29--050406505/02/020.7536.1BXD6160F64UTM RW
    GKHI_KS_092404.01-042106404/18/020.7136.3BXD8 M59Harvard/BIDMC
    GKHI-KS-051205-25-042706504/23/020.9237.9BXD8 F77UTM RW
    KS-021605-17-042606504/22/020.8540.8BXD9 F67UTM RW
    KS-032905-32-042606504/22/020.9136.8BXD9 F60UTM RW
    GKHI-KS-062006.08-070706307/06/020.7436.3BXD9 M78UTM RW
    GKHI-KS-031505.22-051206505/09/020.7439.5BXD11 F65UTM RW
    GKHI-KS-031605.01506/05/020.7443.4BXD11 F69UTM RW
    GKHI_KS_102104.40-042106404/18/020.7238.5BXD12 M60Harvard/BIDMC
    GKHI-KS-112002.07-051106205/08/020.7742.0BXD12 F64UMemphis
    GKHI-KS-120904.33-051206405/09/020.7138.4BXD13 F60Harvard/BIDMC
    GKHI-KS-042304.01406/05/020.7144.1BXD13 F58Harvard/BIDMC
    GKHI-KS-020905.34-051106505/08/020.7540.7BXD14 F68UTM RW
    GKHI-KS-022405.46-051106505/08/020.7140.2BXD14 F60Harvard/BIDMC
    GKHI-KS-091704.09-062206406/21/020.7339.0BXD14 M59Harvard/BIDMC
    GKHI-KS-013004.45-062206406/21/020.7638.5BXD15 M61Harvard/BIDMC
    GKHI-KS-022405.43-051106505/08/020.7340.5BXD15 F60Harvard/BIDMC
    GKHI-KS-041604.10-051106405/08/020.7342.6BXD15 F60Harvard/BIDMC
    GKHI-KS-031805.01-051106505/08/020.7942.4BXD16 F59Harvard/BIDMC
    GKHI-KS-031805.04-051106505/08/020.7739.9BXD16 M60Harvard/BIDMC
    GKHI-KS-040805.10-051006505/05/020.9338.7BXD18 F59Harvard/BIDMC
    GKHI-KS-052804.09-051106405/05/020.6737.6BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.47-051106505/05/020.7342.3BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.44-070706307/06/020.7336.1BXD19 M60Harvard/BIDMC
    GKHI-KS-062905.07-051106505/05/020.7237.9BXD20 M60Harvard/BIDMC
    GKHI-KS-072104.58-051106405/05/020.7337.0BXD20 F59Harvard/BIDMC
    GKHI-KS-050405.21-051206405/09/020.8135.1BXD21 F60Harvard/BIDMC
    GKHI-KS-040705.24506/05/020.8040.2BXD21 F99UAB
    GKHI-KS-110405.01-051006505/05/020.7142.1BXD22 F60Harvard/BIDMC
    GKHI-KS-110405.04-051006505/05/020.7640.6BXD22 M60Harvard/BIDMC
    GKHI-KS-040805.01-051206505/09/020.7436.4BXD23 F60Harvard/BIDMC
    GKHI-KS-040805.04-051006505/05/020.7339.3BXD23 M60Harvard/BIDMC
    GKHI_KS_091704.13-042106404/18/020.7337.7BXD24 M59Harvard/BIDMC
    GKHI-KS-040303-20-050206304/30/020.7736.3BXD24 F71UMemphis
    GKHI-KS-021805.20-051006505/05/020.8340.5BXD25 F67UAB
    GKHI-KS-090705.05-062206506/21/020.7638.4BXD25 M58UTM RW
    GKHI-KS-090705.03-051006505/05/020.8140.1BXD25 F58UTM RW
    GKHI-KS-022105.42-051006505/05/020.8141.8BXD27 M70UAB
    GKHI-KS-032205.31-051006505/05/020.7439.0BXD27 M60UTM RW
    GKHI-KS-060706.10-070706307/06/020.6937.8BXD27 F85UTM RW
    GKHI-KS-012805-41-050506505/04/020.8134.2BXD28 F60Harvard/BIDMC
    GKHI-KS-012805-44-050506505/04/020.8135.8BXD28 M60Harvard/BIDMC
    GKHI-KS-012805-38-050506505/04/020.7742.7BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-35-050506505/04/020.8435.8BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-32-050506505/04/020.7439.9BXD31 F60Harvard/BIDMC
    GKHI-KS-100604-07-050506405/04/020.7940.2BXD31 M60Harvard/BIDMC
    GKHI-KS-021605.26-051706505/14/021.1139.0BXD32 F63UTM RW
    GKHI-KS-112002.01-051206205/09/020.7638.1BXD32 F60UMemphis
    GKHI-KS-072605-01-050506505/04/020.7941.3BXD3350F63UTM RW
    GKHI-KS-091405-23-050506505/04/020.8438.4BXD3350M76UTM RW
    GKHI-KS-111104-18-050506405/04/020.7942.2BXD36 F61Harvard/BIDMC
    GKHI-KS-031804-07-050506405/04/020.8542.5BXD36 F58Harvard/BIDMC
    GKHI-KS-092005.16-051206505/09/020.7237.2BXD3846F65UTM RW
    GKHI-KS-031403.01-060806106/07/020.6939.6BXD38 M69UMemphis
    GKHI-KS-090104.21-051106405/08/020.7236.3BXD39 F60Harvard/BIDMC
    GKHI-KS-040204.30406/05/020.7743.9BXD39 F59Harvard/BIDMC
    GKHI-KS-051805-16-050506505/04/022.1643.8BXD40 F61UTM RW
    GKHI-KS-111902-04-050506205/04/020.8441.0BXD40 F56UMemphis
    GKHI-KS-050604-01-050406405/01/020.8535.6BXD4323F61UTM RW
    GKHI-KS-080905-43-050406505/01/020.7833.7BXD4328F62UTM RW
    GKHI-KS-031004-01-050406405/01/020.7536.2BXD4421F57UTM RW
    GKHI-KS-020504-01-050406405/01/020.7530.8BXD4420M66UTM RW
    GKHI-KS-071504-01-050406405/01/020.7437.7BXD4520F58UTM RW
    GKHI-KS-081104-05-050406405/01/020.7834.2BXD4520M93UTM RW
    GKHI-KS-031204-01-050406405/01/020.7535.6BXD4822M60UTM RW
    GKHI-KS-021104.06-051706405/14/020.7541.1BXD4821F58UTM RW
    GKHI-KS-033005-21-050306505/01/020.7834.9BXD5127M64UTM RW
    GKHI-KS-090204-01-050306405/01/020.7238.3BXD5124F63UTM RW
    GKHI_KS-010704.01-040606404/03/020.7537.5BXD6021M64UTM RW
    GKHI_KS_013004.38-042006404/17/020.7840.1BXD6021F60UTM RW
    GKHI-KS-030905-28-050206504/30/020.7336.6BXD6120F63UTM RW
    GKHI-KS-050305-18-050206504/30/020.8335.8BXD6121F70UTM RW
    GKHI_KS-121803.01-040706304/03/020.8040.0BXD6220M54UTM RW
    GKHI_KS_021204.01-042006404/17/020.8539.8BXD6221F59UTM RW
    GKHI-KS-020905-25-050206504/30/020.8435.2BXD6321M70UTM RW
    GKHI-KS-040705.49-060806206/07/020.8539.4BXD6520F55UTM RW
    GKHI-KS-040406.12-060806206/07/020.7340.4BXD6523F60UTM RW
    GKHI-KS-052405-36-050406505/02/020.8436.8BXD6720F65UTM RW
    GKHI-KS-041205-01-050206504/30/020.7739.7BXD6720F54UTM RW
    GKHI-KS-062305-01-050206504/30/020.7636.0BXD6820F59UTM RW
    GKHI-KS-062305-09-050206504/30/020.9337.4BXD6820F64UTM RW
    GKHI_KS_110105.30-042006504/17/020.8039.0BXD6926F66UTM RW
    GKHI-KS-061504.64-062206406/21/020.7239.3BXD6920M55UTM RW
    GKHI_KS-050404.04-040606404/03/020.7738.3BXD6920F63UTM RW
    GKHI-KS-042705-01-042706504/23/020.8338.6BXD7021F64UTM RW
    GKHI-KS-051705-59-042706504/23/020.8938.5BXD7022F61UTM RW
    GKHI-KS-030805-40-042706504/23/020.8638.5BXD7323F61UTM RW
    GKHI-KS-041905.172-062206506/21/020.7937.6BXD7324M64UTM RW
    GKHI-KS-072605-03-042706504/23/020.8738.2BXD7325F72UTM RW
    GKHI-KS-041205-04-050406505/02/020.8341.4BXD7522F60UTM RW
    GKHI-KS-041205.07506/05/020.7945.8BXD7522F60UTM RW
    GKHI-KS-101805-35-050406505/02/020.7938.4BXD7724F60UTM RW
    GKHI-KS-070605.43506/05/020.7742.8BXD7723F62UTM RW
    GKHI-KS-071205-31-042706504/23/020.9137.7BXD8020F65UTM RW
    GKHI-KS-071205-2-042706504/23/020.9038.1BXD8020F65UTM RW
    KS-011305-11-042606504/22/020.8239.0BXD8522M91UTM RW
    KS-110805-27-042606504/22/020.9135.2BXD8525F63UTM RW
    KS-080404-28-042606404/22/020.8436.8BXD8621F58UTM RW
    KS-080504-04-042606404/22/020.8133.4BXD8620M77UTM RW
    KS-051705-57-042606504/22/021.1135.6BXD8720M63UTM RW
    KS-032905-46-042606504/22/020.8536.1BXD8720M57UTM RW
    GKHI-KS-080905-49-042706504/23/020.8937.6BXD9023F71UTM RW
    GKHI-KS-101105.26506/05/020.8443.6BXD9025F70UTM RW
    GKHI_KS-062304.02-040606404/03/020.8540.9BXD9221M55UTM RW
    GKHI_KS_071404.01-042006404/17/020.7739.5BXD9221F62UTM RW
    GKHI_KS_031005.17-042006504/17/020.7738.1BXD9620M65UTM RW
    GKHI-KS-111505.12506/05/020.7744.1BXD9623M66UTM RW
    GKHI-KS-012406.21-060806306/07/020.7336.6BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-012406.24-060806306/07/021.2839.2BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-030206.13-060806306/07/020.7141.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-030206.16-060806306/07/020.6637.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-011906.31-060806306/07/020.8037.2C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-011906.34-060806306/07/020.7638.5C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-060806.04-070706307/06/020.6837.3C3H/HeJ F76Harvard/BIDMC
    GKHI-KS-071505.08-060806306/07/020.7137.4C57BL/6ByJ F51JAX
    GKHI-KS-071505.11-060806206/07/020.7339.2C57BL/6ByJ F51JAX
    GKHI-KS-030305.15-060806306/07/020.7137.4CAST/Ei F64JAX
    GKHI-KS-031005.35-060906306/08/020.7035.7CAST/Ei M64JAX
    GKHI-KS-022206.16-060906306/08/020.7137.9KK/HlJ F61Harvard/BIDMC
    GKHI-KS-022206.07-060906306/08/020.7235.5KK/HlJ M61Harvard/BIDMC
    GKHI-KS-031606.01-060906306/08/020.8635.9MOLF/Ei M60Harvard/BIDMC
    GKHI-KS-022206.16-060906306/08/020.8737.4MOLF/Ei F60Harvard/BIDMC
    GKHI-KS-012006.25-060906306/08/020.7538.3NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-012006.28-061306306/11/020.8237.1NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-032306.04.060906306/08/020.7340.2NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-032306.07-060906306/08/020.7439.4NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-020706.04-060906306/08/020.7141.6NZW/LacJ F65Harvard/BIDMC
    GKHI-KS-020206.19-060906306/08/020.7736.7NZW/LacJ M60Harvard/BIDMC
    GKHI-KS-012406.33-061306306/11/020.9535.3PWD/PhJ F60Harvard/BIDMC
    GKHI-KS-012406.30-062006306/18/020.8836.3PWD/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.01-062206306/21/021.0235.9PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.04-062206306/21/020.9638.7PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.07-062206306/21/020.9836.6PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.10-062206306/21/020.8735.2PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-052705.01-061306206/11/020.7238.3WSB/EiJ F52UTM RW
    GKHI-KS-051005.07-061306306/11/020.7738.0WSB/EiJ M58JAX
    +
    diff --git a/general/datasets/Ma_m2m_0706_r/notes.rtf b/general/datasets/Ma_m2m_0706_r/notes.rtf new file mode 100644 index 0000000..d41fda1 --- /dev/null +++ b/general/datasets/Ma_m2m_0706_r/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by Kremena Star on July 22 ,2006. Updated by KS on July 25, 2006.

    +
    diff --git a/general/datasets/Ma_m2m_0706_r/platform.rtf b/general/datasets/Ma_m2m_0706_r/platform.rtf new file mode 100644 index 0000000..cb0e8d5 --- /dev/null +++ b/general/datasets/Ma_m2m_0706_r/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    +
    diff --git a/general/datasets/Ma_m2m_0706_r/processing.rtf b/general/datasets/Ma_m2m_0706_r/processing.rtf new file mode 100644 index 0000000..b313d60 --- /dev/null +++ b/general/datasets/Ma_m2m_0706_r/processing.rtf @@ -0,0 +1,15 @@ +
    +

    Probe set data from the CHP file: The expression values were generated using RMA. The same simple steps described above were also applied to these values.

    +
    + +
    +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients.

    + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain.

    + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby.

    +
    + +
    +

    All data links (right-most column above) will be made active as sooon as the global analysis of these data by the Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access probelms.

    +
    diff --git a/general/datasets/Ma_m2m_0706_r/summary.rtf b/general/datasets/Ma_m2m_0706_r/summary.rtf new file mode 100644 index 0000000..9055ba0 --- /dev/null +++ b/general/datasets/Ma_m2m_0706_r/summary.rtf @@ -0,0 +1 @@ +
    The July 2006 Kidney QTL Consortium data set provides estimates of mRNA expression in the adult kidney of 70 genetically diverse strains of mice including 54 BXD recombinant inbred strains, a set of 15 inbred strains, and 1 F1 hybrid; D2B6F1. Kidney samples were processed using a total of 153 Affymetrix Mouse Expression 430 2.0 microarrays (M430v2.0). This particular data set was processed using the RMA protocol. CAUTION: This dataset is not sex-balanced.
    diff --git a/general/datasets/Ma_m2m_0706_r/tissue.rtf b/general/datasets/Ma_m2m_0706_r/tissue.rtf new file mode 100644 index 0000000..5bc52e9 --- /dev/null +++ b/general/datasets/Ma_m2m_0706_r/tissue.rtf @@ -0,0 +1,3 @@ +
    +

    BXD animals were obtained from UTHSC, and the Jackson Laboratory (Table 1). Animals were housed at UTHSC, at Harvard/BIDMC (Glenn Rosen), at the University of Memphis (Douglas Matthews), or the Jackson Laboratory before sacrifice (see Table 1). Mice were killed by cervical dislocation and kidneys were removed and placed in RNAlater prior to dissection. Kidneys were dissected whole and cleaned from the adrenal glands by Hong Tao Zhang in Dr. Lu’s lab. Kidneys from two to six animals per strain were pooled and shipped to Kremena Star at Mount Sinai School of Medicine (MSSM). Animals used in this study were between 50 and 99 days of age (average of 62 days; see Table 1).

    +
    diff --git a/general/datasets/Ma_m_0704_m/acknowledgment.rtf b/general/datasets/Ma_m_0704_m/acknowledgment.rtf new file mode 100644 index 0000000..2408013 --- /dev/null +++ b/general/datasets/Ma_m_0704_m/acknowledgment.rtf @@ -0,0 +1 @@ +
    All of the NCI mammary mRNA M430A and M430B data sets have been generated by Kent Hunter at the Laboratory of Population Genetics at the National Cancer Institute in Bethesda. For contact and citations and other information on these data sets please review the INFO pages and contact Dr. Hunter regarding use of this data set in publications or projects.
    diff --git a/general/datasets/Ma_m_0704_m/cases.rtf b/general/datasets/Ma_m_0704_m/cases.rtf new file mode 100644 index 0000000..615a0f3 --- /dev/null +++ b/general/datasets/Ma_m_0704_m/cases.rtf @@ -0,0 +1,4 @@ +
    The lines of mice used in this NCI-sponsored project consist of 18 groups of isogenic F1 progeny made by crossing females from each of 18 AKXD recombinant inbred strains (AKXD2, 3, 7, 9, 10, 11, 13, 14, 16, 18, 20, 21, 22, 23, 24, 25, 27, and 28) to male FVB/N mice that carry a transgene that consistently leads to the development of mammary tumors in females (e.g. Le Voyer et al., 2001). The formal nomenclature of the male transgenic line is FVB/N-TgN(MMTV-PyMT)634Mul. The genomes of each AKXD x FVB F1 consist of one set of FVB chromosomes (including the transgene) and one set of chromosomes inherited from one of the 18 AKXD RI strain mothers. Only the AKXD chromosomes are "recombinant" across this panel of F1 progeny, and the set therefore has a genetic architecture similar to backcross progeny. It is possible to map modifiers that influence tumor characteristics and expression patterns. It is also possible to study covariance of transcript expression levels in tumor tissue. For further background on this special mapping design please see Hunter and Williams (2002).
    + +
    The ancestral strains from which all AKXD strains are derived are AKR/J (AKR) and DBA/2J (D2 or D). DBA/2J has been partially sequenced (approximately 1.5x coverage by D by Celera Genomics). Significant genomic sequence data for AKR is not currently available. Chromosomes of the two parental strains have recombined in the different AKXD strains. All of these strains are available from The Jackson Laboratory as cryopreserved stocks. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html.
    diff --git a/general/datasets/Ma_m_0704_m/notes.rtf b/general/datasets/Ma_m_0704_m/notes.rtf new file mode 100644 index 0000000..4e0118b --- /dev/null +++ b/general/datasets/Ma_m_0704_m/notes.rtf @@ -0,0 +1 @@ +
    Text originally written by Kent Hunter and Robert W. Williams, July 2004. Updated by RWW, Nov 6, 2004.
    diff --git a/general/datasets/Ma_m_0704_m/platform.rtf b/general/datasets/Ma_m_0704_m/platform.rtf new file mode 100644 index 0000000..4b22e44 --- /dev/null +++ b/general/datasets/Ma_m_0704_m/platform.rtf @@ -0,0 +1,643 @@ +
    All samples were processed and arrayed in the Laboratory of Population Genetics at the NCI. The table below lists the arrays by Samples, AKXD strain and Age.
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Sample

    +
    +

    AKXD strain

    +
    +

    Age

    +
    +

    AKXD2957

    +
    +

    2

    +
    +

    98

    +
    +

    AKXD2959

    +
    +

    2

    +
    +

    96

    +
    +

    AKXD1747

    +
    +

    3

    +
    +

    84

    +
    +

    AKXD3446

    +
    +

    3

    +
    +

    91

    +
    +

    AKXD4225

    +
    +

    3

    +
    +

    83

    +
    +

    AKXD2543

    +
    +

    7

    +
    +

    82

    +
    +

    AKXD2967

    +
    +

    7

    +
    +

    88

    +
    +

    AKXD3336

    +
    +

    7

    +
    +

    95

    +
    +

    AKXD2685

    +
    +

    9

    +
    +

    113

    +
    +

    AKXD2710

    +
    +

    9

    +
    +

    109

    +
    +

    AKXD2949

    +
    +

    9

    +
    +

    115

    +
    +

    AKXD2618

    +
    +

    10

    +
    +

    99

    +
    +

    AKXD2620

    +
    +

    10

    +
    +

    99

    +
    +

    AKXD3023

    +
    +

    10

    +
    +

    94

    +
    +

    AKXD1910

    +
    +

    11

    +
    +

    87

    +
    +

    AKXD2824

    +
    +

    11

    +
    +

    92

    +
    +

    AKXD2825

    +
    +

    11

    +
    +

    103

    +
    +

    AKXD2635

    +
    +

    13

    +
    +

    83

    +
    +

    AKXD2718

    +
    +

    13

    +
    +

    100

    +
    +

    AKXD2721

    +
    +

    13

    +
    +

    91

    +
    +

    AKXD2632

    +
    +

    14

    +
    +

    99

    +
    +

    AKXD2640

    +
    +

    14

    +
    +

    100

    +
    +

    AKXD3444

    +
    +

    14

    +
    +

    96

    +
    +

    AKXD1636

    +
    +

    16

    +
    +

    112

    +
    +

    AKXD3688

    +
    +

    16

    +
    +

    80

    +
    +

    AKXD4152

    +
    +

    16

    +
    +

    91

    +
    +

    AKXD1647

    +
    +

    18

    +
    +

    91

    +
    +

    AKXD2616

    +
    +

    18

    +
    +

    91

    +
    +

    AKXD2804

    +
    +

    18

    +
    +

    80

    +
    +

    AKXD2456

    +
    +

    20

    +
    +

    100

    +
    +

    AKXD2554

    +
    +

    20

    +
    +

    107

    +
    +

    AKXD2829

    +
    +

    20

    +
    +

    105

    +
    +

    AKXD1610

    +
    +

    21

    +
    +

    98

    +
    +

    AKXD2611

    +
    +

    21

    +
    +

    88

    +
    +

    AKXD2918

    +
    +

    21

    +
    +

    98

    +
    +

    AKXD2460

    +
    +

    22

    +
    +

    107

    +
    +

    AKXD2461

    +
    +

    22

    +
    +

    94

    +
    +

    AKXD2463

    +
    +

    22

    +
    +

    110

    +
    +

    AKXD2975

    +
    +

    23

    +
    +

    82

    +
    +

    AKXD2976

    +
    +

    23

    +
    +

    86

    +
    +

    AKXD3955

    +
    +

    23

    +
    +

    90

    +
    +

    AKXD1494

    +
    +

    24

    +
    +

    103

    +
    +

    AKXD1880

    +
    +

    24

    +
    +

    104

    +
    +

    AKXD3030

    +
    +

    24

    +
    +

    89

    +
    +

    AKXD1607

    +
    +

    25

    +
    +

    110

    +
    +

    AKXD2326

    +
    +

    25

    +
    +

    92

    +
    +

    AKXD2328

    +
    +

    25

    +
    +

    90

    +
    +

    AKXD2629

    +
    +

    25

    +
    +

    96

    +
    +

    AKXD1756

    +
    +

    27

    +
    +

    100

    +
    +

    AKXD1757

    +
    +

    27

    +
    +

    98

    +
    +

    AKXD1948

    +
    +

    27

    +
    +

    99

    +
    +

    AKXD1950

    +
    +

    27

    +
    +

    97

    +
    +

    AKXD2968

    +
    +

    27

    +
    +

    94

    +
    +

    AKXD2809

    +
    +

    28

    +
    +

    88

    +
    +

    AKXD2815

    +
    +

    28

    +
    +

    90

    +
    +

    AKXD3432

    +
    +

    28

    +
    +

    91

    +
    +
    +
    diff --git a/general/datasets/Ma_m_0704_m/processing.rtf b/general/datasets/Ma_m_0704_m/processing.rtf new file mode 100644 index 0000000..0d11078 --- /dev/null +++ b/general/datasets/Ma_m_0704_m/processing.rtf @@ -0,0 +1,15 @@ +
    Probe (cell) level data from the .CEL file: These .CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +Probe set data from the .CHP file: The expression data were generated using MAS5. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    + +

    About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    diff --git a/general/datasets/Ma_m_0704_m/summary.rtf b/general/datasets/Ma_m_0704_m/summary.rtf new file mode 100644 index 0000000..6423e7c --- /dev/null +++ b/general/datasets/Ma_m_0704_m/summary.rtf @@ -0,0 +1 @@ +

    Used the Affymetrix M430A and M430B pair of arrays (total of 45,137 probe sets). Data available as CEL files from GeneNetwork upon request.

    diff --git a/general/datasets/Ma_m_0704_m/tissue.rtf b/general/datasets/Ma_m_0704_m/tissue.rtf new file mode 100644 index 0000000..01385cb --- /dev/null +++ b/general/datasets/Ma_m_0704_m/tissue.rtf @@ -0,0 +1 @@ +
    Mammary tumors used in this array experiment were derived from 18 sets of AKXD x FVB/N F1 females as described above. After the primary tumor was diagnosed, the animals were aged an additional 40 days to permit metastatic progression. Females were sacrificed and mammary tumors were harvested. Samples were processed and arrayed on Affymetrix M430A and M430B arrays. The majority of the samples were assayed on arrays obtained from the same lot number.
    diff --git a/general/datasets/Ma_m_0704_r/acknowledgment.rtf b/general/datasets/Ma_m_0704_r/acknowledgment.rtf new file mode 100644 index 0000000..2408013 --- /dev/null +++ b/general/datasets/Ma_m_0704_r/acknowledgment.rtf @@ -0,0 +1 @@ +
    All of the NCI mammary mRNA M430A and M430B data sets have been generated by Kent Hunter at the Laboratory of Population Genetics at the National Cancer Institute in Bethesda. For contact and citations and other information on these data sets please review the INFO pages and contact Dr. Hunter regarding use of this data set in publications or projects.
    diff --git a/general/datasets/Ma_m_0704_r/cases.rtf b/general/datasets/Ma_m_0704_r/cases.rtf new file mode 100644 index 0000000..615a0f3 --- /dev/null +++ b/general/datasets/Ma_m_0704_r/cases.rtf @@ -0,0 +1,4 @@ +
    The lines of mice used in this NCI-sponsored project consist of 18 groups of isogenic F1 progeny made by crossing females from each of 18 AKXD recombinant inbred strains (AKXD2, 3, 7, 9, 10, 11, 13, 14, 16, 18, 20, 21, 22, 23, 24, 25, 27, and 28) to male FVB/N mice that carry a transgene that consistently leads to the development of mammary tumors in females (e.g. Le Voyer et al., 2001). The formal nomenclature of the male transgenic line is FVB/N-TgN(MMTV-PyMT)634Mul. The genomes of each AKXD x FVB F1 consist of one set of FVB chromosomes (including the transgene) and one set of chromosomes inherited from one of the 18 AKXD RI strain mothers. Only the AKXD chromosomes are "recombinant" across this panel of F1 progeny, and the set therefore has a genetic architecture similar to backcross progeny. It is possible to map modifiers that influence tumor characteristics and expression patterns. It is also possible to study covariance of transcript expression levels in tumor tissue. For further background on this special mapping design please see Hunter and Williams (2002).
    + +
    The ancestral strains from which all AKXD strains are derived are AKR/J (AKR) and DBA/2J (D2 or D). DBA/2J has been partially sequenced (approximately 1.5x coverage by D by Celera Genomics). Significant genomic sequence data for AKR is not currently available. Chromosomes of the two parental strains have recombined in the different AKXD strains. All of these strains are available from The Jackson Laboratory as cryopreserved stocks. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html.
    diff --git a/general/datasets/Ma_m_0704_r/notes.rtf b/general/datasets/Ma_m_0704_r/notes.rtf new file mode 100644 index 0000000..4e0118b --- /dev/null +++ b/general/datasets/Ma_m_0704_r/notes.rtf @@ -0,0 +1 @@ +
    Text originally written by Kent Hunter and Robert W. Williams, July 2004. Updated by RWW, Nov 6, 2004.
    diff --git a/general/datasets/Ma_m_0704_r/platform.rtf b/general/datasets/Ma_m_0704_r/platform.rtf new file mode 100644 index 0000000..4b22e44 --- /dev/null +++ b/general/datasets/Ma_m_0704_r/platform.rtf @@ -0,0 +1,643 @@ +
    All samples were processed and arrayed in the Laboratory of Population Genetics at the NCI. The table below lists the arrays by Samples, AKXD strain and Age.
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Sample

    +
    +

    AKXD strain

    +
    +

    Age

    +
    +

    AKXD2957

    +
    +

    2

    +
    +

    98

    +
    +

    AKXD2959

    +
    +

    2

    +
    +

    96

    +
    +

    AKXD1747

    +
    +

    3

    +
    +

    84

    +
    +

    AKXD3446

    +
    +

    3

    +
    +

    91

    +
    +

    AKXD4225

    +
    +

    3

    +
    +

    83

    +
    +

    AKXD2543

    +
    +

    7

    +
    +

    82

    +
    +

    AKXD2967

    +
    +

    7

    +
    +

    88

    +
    +

    AKXD3336

    +
    +

    7

    +
    +

    95

    +
    +

    AKXD2685

    +
    +

    9

    +
    +

    113

    +
    +

    AKXD2710

    +
    +

    9

    +
    +

    109

    +
    +

    AKXD2949

    +
    +

    9

    +
    +

    115

    +
    +

    AKXD2618

    +
    +

    10

    +
    +

    99

    +
    +

    AKXD2620

    +
    +

    10

    +
    +

    99

    +
    +

    AKXD3023

    +
    +

    10

    +
    +

    94

    +
    +

    AKXD1910

    +
    +

    11

    +
    +

    87

    +
    +

    AKXD2824

    +
    +

    11

    +
    +

    92

    +
    +

    AKXD2825

    +
    +

    11

    +
    +

    103

    +
    +

    AKXD2635

    +
    +

    13

    +
    +

    83

    +
    +

    AKXD2718

    +
    +

    13

    +
    +

    100

    +
    +

    AKXD2721

    +
    +

    13

    +
    +

    91

    +
    +

    AKXD2632

    +
    +

    14

    +
    +

    99

    +
    +

    AKXD2640

    +
    +

    14

    +
    +

    100

    +
    +

    AKXD3444

    +
    +

    14

    +
    +

    96

    +
    +

    AKXD1636

    +
    +

    16

    +
    +

    112

    +
    +

    AKXD3688

    +
    +

    16

    +
    +

    80

    +
    +

    AKXD4152

    +
    +

    16

    +
    +

    91

    +
    +

    AKXD1647

    +
    +

    18

    +
    +

    91

    +
    +

    AKXD2616

    +
    +

    18

    +
    +

    91

    +
    +

    AKXD2804

    +
    +

    18

    +
    +

    80

    +
    +

    AKXD2456

    +
    +

    20

    +
    +

    100

    +
    +

    AKXD2554

    +
    +

    20

    +
    +

    107

    +
    +

    AKXD2829

    +
    +

    20

    +
    +

    105

    +
    +

    AKXD1610

    +
    +

    21

    +
    +

    98

    +
    +

    AKXD2611

    +
    +

    21

    +
    +

    88

    +
    +

    AKXD2918

    +
    +

    21

    +
    +

    98

    +
    +

    AKXD2460

    +
    +

    22

    +
    +

    107

    +
    +

    AKXD2461

    +
    +

    22

    +
    +

    94

    +
    +

    AKXD2463

    +
    +

    22

    +
    +

    110

    +
    +

    AKXD2975

    +
    +

    23

    +
    +

    82

    +
    +

    AKXD2976

    +
    +

    23

    +
    +

    86

    +
    +

    AKXD3955

    +
    +

    23

    +
    +

    90

    +
    +

    AKXD1494

    +
    +

    24

    +
    +

    103

    +
    +

    AKXD1880

    +
    +

    24

    +
    +

    104

    +
    +

    AKXD3030

    +
    +

    24

    +
    +

    89

    +
    +

    AKXD1607

    +
    +

    25

    +
    +

    110

    +
    +

    AKXD2326

    +
    +

    25

    +
    +

    92

    +
    +

    AKXD2328

    +
    +

    25

    +
    +

    90

    +
    +

    AKXD2629

    +
    +

    25

    +
    +

    96

    +
    +

    AKXD1756

    +
    +

    27

    +
    +

    100

    +
    +

    AKXD1757

    +
    +

    27

    +
    +

    98

    +
    +

    AKXD1948

    +
    +

    27

    +
    +

    99

    +
    +

    AKXD1950

    +
    +

    27

    +
    +

    97

    +
    +

    AKXD2968

    +
    +

    27

    +
    +

    94

    +
    +

    AKXD2809

    +
    +

    28

    +
    +

    88

    +
    +

    AKXD2815

    +
    +

    28

    +
    +

    90

    +
    +

    AKXD3432

    +
    +

    28

    +
    +

    91

    +
    +
    +
    diff --git a/general/datasets/Ma_m_0704_r/processing.rtf b/general/datasets/Ma_m_0704_r/processing.rtf new file mode 100644 index 0000000..0d11078 --- /dev/null +++ b/general/datasets/Ma_m_0704_r/processing.rtf @@ -0,0 +1,15 @@ +
    Probe (cell) level data from the .CEL file: These .CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +Probe set data from the .CHP file: The expression data were generated using MAS5. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    + +

    About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    diff --git a/general/datasets/Ma_m_0704_r/summary.rtf b/general/datasets/Ma_m_0704_r/summary.rtf new file mode 100644 index 0000000..6423e7c --- /dev/null +++ b/general/datasets/Ma_m_0704_r/summary.rtf @@ -0,0 +1 @@ +

    Used the Affymetrix M430A and M430B pair of arrays (total of 45,137 probe sets). Data available as CEL files from GeneNetwork upon request.

    diff --git a/general/datasets/Ma_m_0704_r/tissue.rtf b/general/datasets/Ma_m_0704_r/tissue.rtf new file mode 100644 index 0000000..01385cb --- /dev/null +++ b/general/datasets/Ma_m_0704_r/tissue.rtf @@ -0,0 +1 @@ +
    Mammary tumors used in this array experiment were derived from 18 sets of AKXD x FVB/N F1 females as described above. After the primary tumor was diagnosed, the animals were aged an additional 40 days to permit metastatic progression. Females were sacrificed and mammary tumors were harvested. Samples were processed and arrayed on Affymetrix M430A and M430B arrays. The majority of the samples were assayed on arrays obtained from the same lot number.
    diff --git a/general/datasets/Mdppublish/citation.rtf b/general/datasets/Mdppublish/citation.rtf new file mode 100644 index 0000000..ace9bc3 --- /dev/null +++ b/general/datasets/Mdppublish/citation.rtf @@ -0,0 +1,17 @@ +

    When mentioning the MPD please use and cite this URL: http://www.jax.org/phenome. This is the MPD's best known location and is usually preferable to the longer dynamic system URLs that may appear in URL address fields.

    + +

    Publications:

    + +

    Grubb SC, Churchill GA, Bogue MA. A collaborative database of inbred mouse strain characteristics. Bioinformatics. 2004 Nov 1;20(16):2857-9. Epub 2004 May 6. PMID: 15130929

    + +

    Bogue MA, Grubb SC. The mouse phenome project. Genetica. 2004 Sep;122:71-74. PMID: 15619963

    + +

    To cite specific phenotyping data in the MPD, a format similar to this may be used. (Please be sure you have read and agree with our user agreement for taking and using MPD data.)

    + +

    Investigators. Project Title. MPD accession#. Mouse Phenome Database Web Site, The Jackson Laboratory, Bar Harbor, Maine USA. World Wide Web (URL: http://www.jax.org/phenome, month and year of download ).

    + +

    Example:

    + +

    Wahlsten D, Crabbe JC. Comparative study of activity, anxiety, motor learning, and spatial learning in two laboratories. MPD:108. Mouse Phenome Database Web Site, The Jackson Laboratory, Bar Harbor, ME USA. World Wide Web (URL: http://www.jax.org/phenome, July 2004).

    + +

    Each phenotyping project in the MPD is assigned an accession number having the format MPD:NNN, where NNN is an integer. Accession numbers are displayed in the projects index and the individual project detail pages.

    diff --git a/general/datasets/Mdppublish/summary.rtf b/general/datasets/Mdppublish/summary.rtf new file mode 100644 index 0000000..a5cb4f6 --- /dev/null +++ b/general/datasets/Mdppublish/summary.rtf @@ -0,0 +1,17 @@ +

    MDP: The great majority of data on the Mouse Diversity Panel is taken from the Phenome Project. Unlike the PHone Project, the MDP also includes limited data from the older literature.

    + +

    These data were downloaded from the Mouse Phenome Database at The Jackson Laboratory in June 2006 and implemented in GeneNetwork July 2006.

    + +

    The Mouse Phenome Database (MPD) and several other large data sets are being integrated into the GeneNetwork's Mouse Diversity Panel. To access these new data sets please select "MOUSE-GROUP-Mouse Diversity Panel". The Mouse Diversity Panel will eventually includes the MPD, additional strain data sets extracted from the published literature, the Wellcome Trust-CTC SNP collection, and several large gene expression data sets, including those for whole brain, hippocampus, cerebellum, and eye. (Implemented by Jintao Wang and Evan G. Williams.)

    + +

     

    + +

    + +

    Legend: Access to the new Mouse Diversity Panel data sets.

    + +

     

    + +

    + +

    Legend: Bar chart of white blood cell counts across 43 strains of mice taken from the Mouse Diversity Panel. Virutally all of the phenotype data are provided from the Mouse Phenome Project.

    diff --git a/general/datasets/NHLBI_BXD_Aged_Heart_CD_RNA_Seq_1120/experiment-design.rtf b/general/datasets/NHLBI_BXD_Aged_Heart_CD_RNA_Seq_1120/experiment-design.rtf deleted file mode 100644 index fbdad24..0000000 --- a/general/datasets/NHLBI_BXD_Aged_Heart_CD_RNA_Seq_1120/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    RNA Extraction

    - -

    Total RNA was extracted using MIRNEASY MINI KIT (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Approximately 30 mg of left ventricle tissue was added into a 2 ml tube containing 700ul QIAzol Lysis Reagent and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 minutes in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 r followed by incubating for 5 minutes.140 µl chloroform was added into the homogenate, shaken vigorously for 15 seconds, and centrifuged for 15 minutes at 12,000 x g at 4 â„ƒ. 280 µl upper aqueous was then transferred into a new collection tube containing 500 µl 100% ethanol. The mixture was loaded into a RNeasy mini‐spin column (Qiagen, Valencia, CA, USA), once with Buffer RWT and twice with Buffer RPE purification. All RNA had been verified by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA with OD260/280 > 1.8 and RIN > 8.0 were used for library preparation

    diff --git a/general/datasets/NHLBI_BXD_Aged_Heart_CD_RNA_Seq_1120/processing.rtf b/general/datasets/NHLBI_BXD_Aged_Heart_CD_RNA_Seq_1120/processing.rtf deleted file mode 100644 index 8e460ff..0000000 --- a/general/datasets/NHLBI_BXD_Aged_Heart_CD_RNA_Seq_1120/processing.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

    Generation of RNA-seq data

    - -

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    - -

     

    - -

    Read mapping and normalization

    - -

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/NHLBI_BXD_Aged_Heart_CD_RNA_Seq_1120/specifics.rtf b/general/datasets/NHLBI_BXD_Aged_Heart_CD_RNA_Seq_1120/specifics.rtf deleted file mode 100644 index d109d3c..0000000 --- a/general/datasets/NHLBI_BXD_Aged_Heart_CD_RNA_Seq_1120/specifics.rtf +++ /dev/null @@ -1,2770 +0,0 @@ -

    NHLBI BXD Aged Heart CD RNA-Seq (Nov20) TMP Log2

    - -

    About the cases used to generate this set of data:

    - -

    The study included 105 mice (~12 month) from B6, D2, B6D2F1,and 51 advanced intercross BXD strains (about 2 mice per strain). All mice were fed on chow diet (CD). All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    - -

     

    - -

    The table of samples that are finally used for this study.

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -

    Index

    -
    -

    Sample ID

    -
    -

    Case id

    -
    -

    Strain

    -
    -

    Fuyi_Sex_Final

    -
    -

    Sac age/Day

    -
    -

    Tissue

    -
    -

    Diet

    -
    -

    1

    -
    -

    K100

    -
    -

    *103017.77

    -
    -

    BXD155

    -
    -

    M

    -
    -

    362

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    2

    -
    -

    K101

    -
    -

    *071917.111

    -
    -

    BXD184

    -
    -

    M

    -
    -

    387

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    3

    -
    -

    K104

    -
    -

    *103017.75

    -
    -

    BXD155

    -
    -

    F

    -
    -

    362

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    4

    -
    -

    K107

    -
    -

    *071917.45

    -
    -

    BXD73

    -
    -

    F

    -
    -

    338

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    5

    -
    -

    K108

    -
    -

    *071917.72

    -
    -

    BXD90

    -
    -

    M

    -
    -

    330

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    6

    -
    -

    K10

    -
    -

    *062117.51

    -
    -

    BXD150

    -
    -

    F

    -
    -

    385

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    7

    -
    -

    K112

    -
    -

    *071917.74

    -
    -

    BXD122

    -
    -

    M

    -
    -

    331

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    8

    -
    -

    K113

    -
    -

    *071917.88

    -
    -

    BXD144

    -
    -

    M

    -
    -

    331

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    9

    -
    -

    K114

    -
    -

    *071917.47

    -
    -

    BXD73

    -
    -

    M

    -
    -

    338

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    10

    -
    -

    K117

    -
    -

    *071917.87

    -
    -

    BXD144

    -
    -

    F

    -
    -

    331

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    11

    -
    -

    K118

    -
    -

    *071917.73

    -
    -

    BXD122

    -
    -

    F

    -
    -

    331

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    12

    -
    -

    K12

    -
    -

    *062117.48

    -
    -

    BXD125

    -
    -

    F

    -
    -

    396

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    13

    -
    -

    K13

    -
    -

    *062117.54

    -
    -

    BXD151

    -
    -

    F

    -
    -

    396

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    14

    -
    -

    K143

    -
    -

    *071917.18

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    387

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    15

    -
    -

    K144

    -
    -

    *071917.42

    -
    -

    BXD71

    -
    -

    F

    -
    -

    400

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    16

    -
    -

    K147

    -
    -

    *071917.31

    -
    -

    BXD66

    -
    -

    F

    -
    -

    331

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    17

    -
    -

    K149

    -
    -

    *071917.92

    -
    -

    BXD156

    -
    -

    F

    -
    -

    342

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    18

    -
    -

    K14

    -
    -

    *062117.55

    -
    -

    BXD151

    -
    -

    M

    -
    -

    396

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    19

    -
    -

    K150

    -
    -

    *071917.93

    -
    -

    BXD156

    -
    -

    M

    -
    -

    342

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    20

    -
    -

    K152

    -
    -

    *071917.107

    -
    -

    BXD180

    -
    -

    M

    -
    -

    341

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    21

    -
    -

    K153

    -
    -

    *071917.89

    -
    -

    BXD152

    -
    -

    F

    -
    -

    405

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    22

    -
    -

    K155

    -
    -

    *071917.70

    -
    -

    BXD90

    -
    -

    F

    -
    -

    330

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    23

    -
    -

    K156

    -
    -

    *071917.33

    -
    -

    BXD66

    -
    -

    M

    -
    -

    331

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    24

    -
    -

    K15

    -
    -

    *062117.34

    -
    -

    BXD77

    -
    -

    F

    -
    -

    355

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    25

    -
    -

    K164

    -
    -

    E092718.08

    -
    -

    BXD40

    -
    -

    F

    -
    -

    340

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    26

    -
    -

    K165

    -
    -

    E092718.09

    -
    -

    BXD40

    -
    -

    M

    -
    -

    340

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    27

    -
    -

    K168

    -
    -

    E100318.34

    -
    -

    BXD102

    -
    -

    F

    -
    -

    412

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    28

    -
    -

    K169

    -
    -

    E100318.35

    -
    -

    BXD102

    -
    -

    M

    -
    -

    412

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    29

    -
    -

    K16

    -
    -

    *062117.44

    -
    -

    BXD123

    -
    -

    F

    -
    -

    361

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    30

    -
    -

    K172

    -
    -

    *041118.01

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    343

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    31

    -
    -

    K173

    -
    -

    *041118.03

    -
    -

    C57BL/6J

    -
    -

    M

    -
    -

    343

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    32

    -
    -

    K175

    -
    -

    *041118.05

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    435

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    33

    -
    -

    K176

    -
    -

    *041118.06

    -
    -

    DBA/2J

    -
    -

    M

    -
    -

    435

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    34

    -
    -

    K177

    -
    -

    042314.10

    -
    -

    B6D2F1

    -
    -

    M

    -
    -

    364

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    35

    -
    -

    K178

    -
    -

    042314.12

    -
    -

    B6D2F1

    -
    -

    F

    -
    -

    364

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    36

    -
    -

    K17

    -
    -

    *062117.41

    -
    -

    BXD100

    -
    -

    F

    -
    -

    449

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    37

    -
    -

    K182

    -
    -

    083016.01

    -
    -

    BXD32

    -
    -

    F

    -
    -

    386

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    38

    -
    -

    K183

    -
    -

    083016.02

    -
    -

    BXD32

    -
    -

    F

    -
    -

    386

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    39

    -
    -

    K18

    -
    -

    *062117.49

    -
    -

    BXD125

    -
    -

    M

    -
    -

    396

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    40

    -
    -

    K19

    -
    -

    *062117.45

    -
    -

    BXD123

    -
    -

    F

    -
    -

    361

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    41

    -
    -

    K21

    -
    -

    *062117.43

    -
    -

    BXD100

    -
    -

    M

    -
    -

    449

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    42

    -
    -

    K22

    -
    -

    *062117.28

    -
    -

    BXD70

    -
    -

    F

    -
    -

    359

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    43

    -
    -

    K23

    -
    -

    *062117.39

    -
    -

    BXD87

    -
    -

    F

    -
    -

    359

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    44

    -
    -

    K24

    -
    -

    *062117.52

    -
    -

    BXD150

    -
    -

    M

    -
    -

    385

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    45

    -
    -

    K25

    -
    -

    *062117.29

    -
    -

    BXD70

    -
    -

    M

    -
    -

    359

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    46

    -
    -

    K27

    -
    -

    *071917.54

    -
    -

    BXD75

    -
    -

    F

    -
    -

    366

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    47

    -
    -

    K28

    -
    -

    *071917.50

    -
    -

    BXD73b

    -
    -

    M

    -
    -

    422

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    48

    -
    -

    K29

    -
    -

    *071917.66

    -
    -

    BXD86

    -
    -

    M

    -
    -

    404

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    49

    -
    -

    K2

    -
    -

    *071917.106

    -
    -

    BXD178

    -
    -

    M

    -
    -

    359

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    50

    -
    -

    K30

    -
    -

    *103017.59

    -
    -

    BXD113

    -
    -

    F

    -
    -

    373

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    51

    -
    -

    K32

    -
    -

    *103017.83

    -
    -

    BXD168

    -
    -

    M

    -
    -

    398

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    52

    -
    -

    K33

    -
    -

    *103017.81

    -
    -

    BXD168

    -
    -

    F

    -
    -

    398

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    53

    -
    -

    K35

    -
    -

    *103017.74

    -
    -

    BXD154

    -
    -

    M

    -
    -

    417

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    54

    -
    -

    K36

    -
    -

    *103017.86

    -
    -

    BXD195

    -
    -

    F

    -
    -

    355

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    55

    -
    -

    K38

    -
    -

    *103017.61

    -
    -

    BXD113

    -
    -

    M

    -
    -

    373

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    56

    -
    -

    K39

    -
    -

    *103017.72

    -
    -

    BXD154

    -
    -

    F

    -
    -

    417

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    57

    -
    -

    K40

    -
    -

    *103017.51

    -
    -

    BXD83

    -
    -

    M

    -
    -

    407

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    58

    -
    -

    K41

    -
    -

    *103017.49

    -
    -

    BXD83

    -
    -

    F

    -
    -

    407

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    59

    -
    -

    K42

    -
    -

    *103017.87

    -
    -

    BXD195

    -
    -

    M

    -
    -

    355

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    60

    -
    -

    K44

    -
    -

    *062117.40

    -
    -

    BXD87

    -
    -

    M

    -
    -

    359

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    61

    -
    -

    K49

    -
    -

    *062117.63

    -
    -

    BXD169

    -
    -

    F

    -
    -

    352

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    62

    -
    -

    K4

    -
    -

    *071917.105

    -
    -

    BXD178

    -
    -

    F

    -
    -

    359

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    63

    -
    -

    K50

    -
    -

    *062117.04

    -
    -

    BXD18

    -
    -

    M

    -
    -

    379

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    64

    -
    -

    K51

    -
    -

    *062117.17

    -
    -

    BXD48

    -
    -

    F

    -
    -

    380

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    65

    -
    -

    K53

    -
    -

    *062117.06

    -
    -

    BXD27

    -
    -

    F

    -
    -

    435

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    66

    -
    -

    K54

    -
    -

    *062117.02

    -
    -

    BXD15

    -
    -

    M

    -
    -

    379

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    67

    -
    -

    K56

    -
    -

    *062117.15

    -
    -

    BXD45

    -
    -

    M

    -
    -

    437

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    68

    -
    -

    K57

    -
    -

    *062117.25

    -
    -

    BXD63

    -
    -

    F

    -
    -

    404

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    69

    -
    -

    K59

    -
    -

    *062117.01

    -
    -

    BXD15

    -
    -

    F

    -
    -

    379

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    70

    -
    -

    K5

    -
    -

    *071917.104

    -
    -

    BXD161

    -
    -

    M

    -
    -

    352

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    71

    -
    -

    K60

    -
    -

    *062117.13

    -
    -

    BXD34

    -
    -

    M

    -
    -

    411

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    72

    -
    -

    K61

    -
    -

    *062117.12

    -
    -

    BXD34

    -
    -

    F

    -
    -

    411

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    73

    -
    -

    K62

    -
    -

    *062117.26

    -
    -

    BXD63

    -
    -

    M

    -
    -

    404

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    74

    -
    -

    K63

    -
    -

    *062117.18

    -
    -

    BXD48

    -
    -

    M

    -
    -

    380

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    75

    -
    -

    K65

    -
    -

    *062117.03

    -
    -

    BXD18

    -
    -

    F

    -
    -

    379

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    76

    -
    -

    K67

    -
    -

    *062117.62

    -
    -

    BXD169

    -
    -

    F

    -
    -

    352

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    77

    -
    -

    K68

    -
    -

    *062117.14

    -
    -

    BXD45

    -
    -

    F

    -
    -

    437

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    78

    -
    -

    K69

    -
    -

    *062117.07

    -
    -

    BXD27

    -
    -

    M

    -
    -

    435

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    79

    -
    -

    K6

    -
    -

    *071917.100

    -
    -

    BXD160

    -
    -

    F

    -
    -

    446

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    80

    -
    -

    K71

    -
    -

    *071917.63

    -
    -

    BXD79

    -
    -

    F

    -
    -

    418

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    81

    -
    -

    K73

    -
    -

    *071917.64

    -
    -

    BXD79

    -
    -

    M

    -
    -

    418

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    82

    -
    -

    K74

    -
    -

    *071917.56

    -
    -

    BXD75

    -
    -

    M

    -
    -

    366

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    83

    -
    -

    K76

    -
    -

    *071917.65

    -
    -

    BXD86

    -
    -

    F

    -
    -

    404

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    84

    -
    -

    K78

    -
    -

    *071917.01

    -
    -

    BXD16

    -
    -

    F

    -
    -

    416

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    85

    -
    -

    K79

    -
    -

    *071917.03

    -
    -

    BXD16

    -
    -

    M

    -
    -

    416

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    86

    -
    -

    K7

    -
    -

    *071917.98

    -
    -

    BXD157

    -
    -

    M

    -
    -

    381

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    87

    -
    -

    K80

    -
    -

    *071917.26

    -
    -

    BXD65

    -
    -

    F

    -
    -

    423

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    88

    -
    -

    K82

    -
    -

    *071917.28

    -
    -

    BXD65

    -
    -

    M

    -
    -

    423

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    89

    -
    -

    K83

    -
    -

    *071917.44

    -
    -

    BXD71

    -
    -

    M

    -
    -

    400

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    90

    -
    -

    K84

    -
    -

    *071917.30

    -
    -

    BXD65b

    -
    -

    M

    -
    -

    351

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    91

    -
    -

    K85

    -
    -

    *071917.20

    -
    -

    BXD48a

    -
    -

    M

    -
    -

    387

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    92

    -
    -

    K86

    -
    -

    *071917.29

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    351

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    93

    -
    -

    K88

    -
    -

    *071917.97

    -
    -

    BXD157

    -
    -

    M

    -
    -

    381

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    94

    -
    -

    K89

    -
    -

    *071917.101

    -
    -

    BXD160

    -
    -

    M

    -
    -

    446

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    95

    -
    -

    K90

    -
    -

    *071917.112

    -
    -

    BXD186

    -
    -

    F

    -
    -

    403

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    96

    -
    -

    K91

    -
    -

    *071917.102

    -
    -

    BXD161

    -
    -

    F

    -
    -

    352

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    97

    -
    -

    K92

    -
    -

    *071917.114

    -
    -

    BXD186

    -
    -

    M

    -
    -

    403

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    98

    -
    -

    K93

    -
    -

    *071917.90

    -
    -

    BXD152

    -
    -

    F

    -
    -

    405

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    99

    -
    -

    K94

    -
    -

    *071917.53

    -
    -

    BXD74

    -
    -

    M

    -
    -

    427

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    100

    -
    -

    K95

    -
    -

    *071917.48

    -
    -

    BXD73b

    -
    -

    F

    -
    -

    422

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    101

    -
    -

    K96

    -
    -

    *071917.52

    -
    -

    BXD74

    -
    -

    F

    -
    -

    427

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    102

    -
    -

    K97

    -
    -

    *062117.36

    -
    -

    BXD84

    -
    -

    F

    -
    -

    441

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    103

    -
    -

    K98

    -
    -

    *103017.58

    -
    -

    BXD111

    -
    -

    M

    -
    -

    441

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    104

    -
    -

    K99

    -
    -

    *103017.57

    -
    -

    BXD111

    -
    -

    F

    -
    -

    441

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    105

    -
    -

    K9

    -
    -

    *062117.33

    -
    -

    BXD77

    -
    -

    F

    -
    -

    355

    -
    -

    Heart

    -
    -

    Chow diet

    -
    diff --git a/general/datasets/NHLBI_BXD_Aged_Heart_CD_RNA_Seq_1120/tissue.rtf b/general/datasets/NHLBI_BXD_Aged_Heart_CD_RNA_Seq_1120/tissue.rtf deleted file mode 100644 index 8d370c0..0000000 --- a/general/datasets/NHLBI_BXD_Aged_Heart_CD_RNA_Seq_1120/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Tissue Harvest 

    - -

    The animals were sacrificed under saturated isoflurane. Whole heart from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/NHLBI_BXD_Aged_Heart_HFD_RNA_Seq_1120/experiment-design.rtf b/general/datasets/NHLBI_BXD_Aged_Heart_HFD_RNA_Seq_1120/experiment-design.rtf deleted file mode 100644 index fbdad24..0000000 --- a/general/datasets/NHLBI_BXD_Aged_Heart_HFD_RNA_Seq_1120/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    RNA Extraction

    - -

    Total RNA was extracted using MIRNEASY MINI KIT (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Approximately 30 mg of left ventricle tissue was added into a 2 ml tube containing 700ul QIAzol Lysis Reagent and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 minutes in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 r followed by incubating for 5 minutes.140 µl chloroform was added into the homogenate, shaken vigorously for 15 seconds, and centrifuged for 15 minutes at 12,000 x g at 4 â„ƒ. 280 µl upper aqueous was then transferred into a new collection tube containing 500 µl 100% ethanol. The mixture was loaded into a RNeasy mini‐spin column (Qiagen, Valencia, CA, USA), once with Buffer RWT and twice with Buffer RPE purification. All RNA had been verified by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA with OD260/280 > 1.8 and RIN > 8.0 were used for library preparation

    diff --git a/general/datasets/NHLBI_BXD_Aged_Heart_HFD_RNA_Seq_1120/processing.rtf b/general/datasets/NHLBI_BXD_Aged_Heart_HFD_RNA_Seq_1120/processing.rtf deleted file mode 100644 index 8e460ff..0000000 --- a/general/datasets/NHLBI_BXD_Aged_Heart_HFD_RNA_Seq_1120/processing.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

    Generation of RNA-seq data

    - -

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    - -

     

    - -

    Read mapping and normalization

    - -

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/NHLBI_BXD_Aged_Heart_HFD_RNA_Seq_1120/specifics.rtf b/general/datasets/NHLBI_BXD_Aged_Heart_HFD_RNA_Seq_1120/specifics.rtf deleted file mode 100644 index 49d8e5b..0000000 --- a/general/datasets/NHLBI_BXD_Aged_Heart_HFD_RNA_Seq_1120/specifics.rtf +++ /dev/null @@ -1,1758 +0,0 @@ -

    NHLBI BXD Aged Heart HFD RNA-Seq (Nov20) TMP Log2

    - -

    About the cases used to generate this set of data:

    - -

    The study included 66 mice (~12 month) from B6, B6D2F1, D2B6F1, and 31 advanced intercross BXD strains (about 2 mice per strain). All mice were fed on high fat diet (HFD). All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    - -

     

    - -

    The table of samples that are finally used for this study.

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -

    Index

    -
    -

    Sample ID

    -
    -

    Case id

    -
    -

    Strain

    -
    -

    Fuyi_Sex_Final

    -
    -

    Sac age/Day

    -
    -

    Tissue

    -
    -

    Diet

    -
    -

    1

    -
    -

    A12

    -
    -

    042214.06

    -
    -

    BXD29

    -
    -

    F

    -
    -

    369

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    2

    -
    -

    A13

    -
    -

    042214.13

    -
    -

    BXD86

    -
    -

    F

    -
    -

    360

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    3

    -
    -

    A14

    -
    -

    042214.14

    -
    -

    BXD86

    -
    -

    F

    -
    -

    360

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    4

    -
    -

    A15

    -
    -

    042314.15

    -
    -

    C57BL/6J

    -
    -

    M

    -
    -

    363

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    5

    -
    -

    A16

    -
    -

    042314.16

    -
    -

    C57BL/6J

    -
    -

    M

    -
    -

    363

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    6

    -
    -

    A17

    -
    -

    042314.08

    -
    -

    B6D2F1

    -
    -

    M

    -
    -

    404

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    7

    -
    -

    A18

    -
    -

    042314.07

    -
    -

    B6D2F1

    -
    -

    M

    -
    -

    404

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    8

    -
    -

    A19

    -
    -

    042314.05

    -
    -

    BXD64

    -
    -

    F

    -
    -

    366

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    9

    -
    -

    A20

    -
    -

    042314.06

    -
    -

    BXD64

    -
    -

    F

    -
    -

    366

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    10

    -
    -

    A21

    -
    -

    042314.03

    -
    -

    BXD100

    -
    -

    F

    -
    -

    363

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    11

    -
    -

    A22

    -
    -

    042314.04

    -
    -

    BXD100

    -
    -

    F

    -
    -

    363

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    12

    -
    -

    A23

    -
    -

    042314.02

    -
    -

    D2B6F1

    -
    -

    F

    -
    -

    371

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    13

    -
    -

    A24

    -
    -

    042314.01

    -
    -

    D2B6F1

    -
    -

    F

    -
    -

    371

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    14

    -
    -

    A25

    -
    -

    021313.30

    -
    -

    BXD87

    -
    -

    F

    -
    -

    359

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    15

    -
    -

    A26

    -
    -

    021313.29

    -
    -

    BXD87

    -
    -

    F

    -
    -

    359

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    16

    -
    -

    A27

    -
    -

    042915.06

    -
    -

    BXD29

    -
    -

    F

    -
    -

    431

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    17

    -
    -

    A28

    -
    -

    050115.03

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    415

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    18

    -
    -

    A29

    -
    -

    042915.10

    -
    -

    BXD32

    -
    -

    F

    -
    -

    441

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    19

    -
    -

    A2

    -
    -

    042415.14

    -
    -

    BXD102

    -
    -

    F

    -
    -

    353

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    20

    -
    -

    A30

    -
    -

    050115.04

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    415

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    21

    -
    -

    A31

    -
    -

    121515.16

    -
    -

    BXD45

    -
    -

    F

    -
    -

    350

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    22

    -
    -

    A32

    -
    -

    012615.22

    -
    -

    BXD50

    -
    -

    F

    -
    -

    361

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    23

    -
    -

    A33

    -
    -

    012615.21

    -
    -

    BXD50

    -
    -

    F

    -
    -

    361

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    24

    -
    -

    A34

    -
    -

    121515.17

    -
    -

    BXD45

    -
    -

    F

    -
    -

    350

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    25

    -
    -

    A36

    -
    -

    012615.13

    -
    -

    BXD44

    -
    -

    F

    -
    -

    379

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    26

    -
    -

    A37

    -
    -

    012615.24

    -
    -

    BXD75

    -
    -

    F

    -
    -

    367

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    27

    -
    -

    A3

    -
    -

    090512.12

    -
    -

    BXD77

    -
    -

    F

    -
    -

    353

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    28

    -
    -

    A40

    -
    -

    012615.23

    -
    -

    BXD75

    -
    -

    F

    -
    -

    367

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    29

    -
    -

    A41

    -
    -

    042915.16

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    436

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    30

    -
    -

    A42

    -
    -

    042915.15

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    436

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    31

    -
    -

    A43

    -
    -

    111414.15

    -
    -

    BXD102

    -
    -

    F

    -
    -

    351

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    32

    -
    -

    A44

    -
    -

    012615.12

    -
    -

    BXD44

    -
    -

    F

    -
    -

    379

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    33

    -
    -

    A45

    -
    -

    121214.12

    -
    -

    BXD73

    -
    -

    F

    -
    -

    361

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    34

    -
    -

    A49

    -
    -

    121214.14

    -
    -

    BXD40

    -
    -

    F

    -
    -

    358

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    35

    -
    -

    A4

    -
    -

    090512.11

    -
    -

    BXD77

    -
    -

    F

    -
    -

    353

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    36

    -
    -

    A50

    -
    -

    010614.21

    -
    -

    BXD90

    -
    -

    F

    -
    -

    343

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    37

    -
    -

    A51

    -
    -

    121214.04

    -
    -

    BXD66

    -
    -

    F

    -
    -

    367

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    38

    -
    -

    A52

    -
    -

    121214.13

    -
    -

    BXD40

    -
    -

    F

    -
    -

    358

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    39

    -
    -

    A53

    -
    -

    121214.11

    -
    -

    BXD73

    -
    -

    F

    -
    -

    361

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    40

    -
    -

    A54

    -
    -

    021213.24

    -
    -

    BXD84

    -
    -

    F

    -
    -

    343

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    41

    -
    -

    A55

    -
    -

    021213.18

    -
    -

    BXD69

    -
    -

    F

    -
    -

    347

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    42

    -
    -

    A56

    -
    -

    021213.17

    -
    -

    BXD69

    -
    -

    F

    -
    -

    347

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    43

    -
    -

    A57

    -
    -

    021213.16

    -
    -

    BXD62

    -
    -

    F

    -
    -

    343

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    44

    -
    -

    A58

    -
    -

    021213.15

    -
    -

    BXD62

    -
    -

    F

    -
    -

    343

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    45

    -
    -

    A59

    -
    -

    021113.11

    -
    -

    BXD51

    -
    -

    F

    -
    -

    357

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    46

    -
    -

    A60

    -
    -

    010614.14

    -
    -

    BXD65

    -
    -

    F

    -
    -

    367

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    47

    -
    -

    A61

    -
    -

    010614.13

    -
    -

    BXD65

    -
    -

    F

    -
    -

    367

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    48

    -
    -

    A62

    -
    -

    021213.23

    -
    -

    BXD84

    -
    -

    F

    -
    -

    343

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    49

    -
    -

    A63

    -
    -

    090514.03

    -
    -

    BXD43

    -
    -

    F

    -
    -

    367

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    50

    -
    -

    A64

    -
    -

    090514.04

    -
    -

    BXD43

    -
    -

    F

    -
    -

    367

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    51

    -
    -

    A65

    -
    -

    010614.22

    -
    -

    BXD90

    -
    -

    F

    -
    -

    343

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    52

    -
    -

    A66

    -
    -

    010614.17

    -
    -

    BXD73b

    -
    -

    F

    -
    -

    385

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    53

    -
    -

    A68

    -
    -

    121214.22

    -
    -

    BXD39

    -
    -

    F

    -
    -

    350

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    54

    -
    -

    A69

    -
    -

    121214.21

    -
    -

    BXD39

    -
    -

    F

    -
    -

    350

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    55

    -
    -

    A6

    -
    -

    090512.08

    -
    -

    BXD66

    -
    -

    F

    -
    -

    359

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    56

    -
    -

    A70

    -
    -

    121214.18

    -
    -

    BXD70

    -
    -

    F

    -
    -

    357

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    57

    -
    -

    A71

    -
    -

    121214.17

    -
    -

    BXD70

    -
    -

    F

    -
    -

    357

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    58

    -
    -

    A72

    -
    -

    021313.33

    -
    -

    BXD98

    -
    -

    F

    -
    -

    360

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    59

    -
    -

    A73

    -
    -

    021313.34

    -
    -

    BXD98

    -
    -

    F

    -
    -

    360

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    60

    -
    -

    A74

    -
    -

    092216.09

    -
    -

    BXD27

    -
    -

    F

    -
    -

    387

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    61

    -
    -

    A75

    -
    -

    092216.10

    -
    -

    BXD27

    -
    -

    F

    -
    -

    387

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    62

    -
    -

    A77

    -
    -

    121615.02

    -
    -

    BXD61

    -
    -

    F

    -
    -

    364

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    63

    -
    -

    A78

    -
    -

    121615.01

    -
    -

    BXD61

    -
    -

    F

    -
    -

    364

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    64

    -
    -

    A7

    -
    -

    090512.01

    -
    -

    BXD9

    -
    -

    F

    -
    -

    347

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    65

    -
    -

    A8

    -
    -

    090512.02

    -
    -

    BXD9

    -
    -

    F

    -
    -

    349

    -
    -

    Heart

    -
    -

    High fat diet

    -
    -

    66

    -
    -

    A97

    -
    -

    050115.11

    -
    -

    BXD73b

    -
    -

    F

    -
    -

    474

    -
    -

    Heart

    -
    -

    High fat diet

    -
    - -

     

    diff --git a/general/datasets/NHLBI_BXD_Aged_Heart_HFD_RNA_Seq_1120/tissue.rtf b/general/datasets/NHLBI_BXD_Aged_Heart_HFD_RNA_Seq_1120/tissue.rtf deleted file mode 100644 index 8d370c0..0000000 --- a/general/datasets/NHLBI_BXD_Aged_Heart_HFD_RNA_Seq_1120/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Tissue Harvest 

    - -

    The animals were sacrificed under saturated isoflurane. Whole heart from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/NHLBI_BXD_All_Ages_Heart_RNA_Seq_1120/experiment-design.rtf b/general/datasets/NHLBI_BXD_All_Ages_Heart_RNA_Seq_1120/experiment-design.rtf deleted file mode 100644 index fbdad24..0000000 --- a/general/datasets/NHLBI_BXD_All_Ages_Heart_RNA_Seq_1120/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    RNA Extraction

    - -

    Total RNA was extracted using MIRNEASY MINI KIT (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Approximately 30 mg of left ventricle tissue was added into a 2 ml tube containing 700ul QIAzol Lysis Reagent and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 minutes in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 r followed by incubating for 5 minutes.140 µl chloroform was added into the homogenate, shaken vigorously for 15 seconds, and centrifuged for 15 minutes at 12,000 x g at 4 â„ƒ. 280 µl upper aqueous was then transferred into a new collection tube containing 500 µl 100% ethanol. The mixture was loaded into a RNeasy mini‐spin column (Qiagen, Valencia, CA, USA), once with Buffer RWT and twice with Buffer RPE purification. All RNA had been verified by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA with OD260/280 > 1.8 and RIN > 8.0 were used for library preparation

    diff --git a/general/datasets/NHLBI_BXD_All_Ages_Heart_RNA_Seq_1120/processing.rtf b/general/datasets/NHLBI_BXD_All_Ages_Heart_RNA_Seq_1120/processing.rtf deleted file mode 100644 index 8e460ff..0000000 --- a/general/datasets/NHLBI_BXD_All_Ages_Heart_RNA_Seq_1120/processing.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

    Generation of RNA-seq data

    - -

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    - -

     

    - -

    Read mapping and normalization

    - -

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/NHLBI_BXD_All_Ages_Heart_RNA_Seq_1120/specifics.rtf b/general/datasets/NHLBI_BXD_All_Ages_Heart_RNA_Seq_1120/specifics.rtf deleted file mode 100644 index 55635fc..0000000 --- a/general/datasets/NHLBI_BXD_All_Ages_Heart_RNA_Seq_1120/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -NHLBI BXD All Ages Heart RNA-Seq (Nov20) TMP Log2 \ No newline at end of file diff --git a/general/datasets/NHLBI_BXD_All_Ages_Heart_RNA_Seq_1120/tissue.rtf b/general/datasets/NHLBI_BXD_All_Ages_Heart_RNA_Seq_1120/tissue.rtf deleted file mode 100644 index 8d370c0..0000000 --- a/general/datasets/NHLBI_BXD_All_Ages_Heart_RNA_Seq_1120/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Tissue Harvest 

    - -

    The animals were sacrificed under saturated isoflurane. Whole heart from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_CMS_RNA/experiment-design.rtf b/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_CMS_RNA/experiment-design.rtf deleted file mode 100644 index fbdad24..0000000 --- a/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_CMS_RNA/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    RNA Extraction

    - -

    Total RNA was extracted using MIRNEASY MINI KIT (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Approximately 30 mg of left ventricle tissue was added into a 2 ml tube containing 700ul QIAzol Lysis Reagent and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 minutes in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 r followed by incubating for 5 minutes.140 µl chloroform was added into the homogenate, shaken vigorously for 15 seconds, and centrifuged for 15 minutes at 12,000 x g at 4 â„ƒ. 280 µl upper aqueous was then transferred into a new collection tube containing 500 µl 100% ethanol. The mixture was loaded into a RNeasy mini‐spin column (Qiagen, Valencia, CA, USA), once with Buffer RWT and twice with Buffer RPE purification. All RNA had been verified by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA with OD260/280 > 1.8 and RIN > 8.0 were used for library preparation

    diff --git a/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_CMS_RNA/processing.rtf b/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_CMS_RNA/processing.rtf deleted file mode 100644 index 8e460ff..0000000 --- a/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_CMS_RNA/processing.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

    Generation of RNA-seq data

    - -

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    - -

     

    - -

    Read mapping and normalization

    - -

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_CMS_RNA/specifics.rtf b/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_CMS_RNA/specifics.rtf deleted file mode 100644 index 24b6e71..0000000 --- a/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_CMS_RNA/specifics.rtf +++ /dev/null @@ -1,1907 +0,0 @@ -

    NHLBI BXD Young Adult Heart CD CMS RNA-Seq (Nov20) TMP Log2

    - -

    About the cases used to generate this set of data:

    - -

    The study included 64 mice (~6 month) from B6, D2, and 32 advanced intercross BXD strains (about 2 mice per strain). All mice were fed on chow diet (CD) and treated with chronic mild stress (CMS). All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    - -

     

    - -

    Chronic Mild Stress (CMS)

    - -

    During a period of 7 weeks, mice received 2 disturbances per day. These consisted of being exposed to wet bedding for 1 hour, 1 cm of water in the bottom of the cage with no bedding for 1 hour, no bedding for 1 hour, confinement in a 3 × 3 × 3 cm plastic box for 15 minutes, tilted cage at 45º for 1 hour, and exposure to foreign mouse or fox urine odor for 1 hour. The other stressor was a complete phase shift in the light:dark cycle over each weekend. Disruption of the light cycle (lights constantly on) occurred over the weekend (starting Friday 11:00 am) with the light cycle resuming at 11 am on Monday (lights off). The schedule was repeated weekly over the duration of the study.

    - -

     

    - -

     

    - -

    The table of samples that are finally used for this study.

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -

    Index

    -
    -

    Sample ID

    -
    -

    Case id

    -
    -

    Strain

    -
    -

    Fuyi_Sex_Final

    -
    -

    Sac age/Day

    -
    -

    Tissue

    -
    -

    Diet

    -
    -

    Treatment

    -
    -

    1

    -
    -

    C100

    -
    -

    090215.15

    -
    -

    BXD68

    -
    -

    F

    -
    -

    185

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    2

    -
    -

    C101

    -
    -

    090215.16

    -
    -

    BXD48

    -
    -

    F

    -
    -

    171

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    3

    -
    -

    C102

    -
    -

    090215.20

    -
    -

    BXD79

    -
    -

    F

    -
    -

    162

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    4

    -
    -

    C103

    -
    -

    090215.21

    -
    -

    BXD63

    -
    -

    F

    -
    -

    169

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    5

    -
    -

    C104

    -
    -

    090215.24

    -
    -

    BXD32

    -
    -

    F

    -
    -

    188

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    6

    -
    -

    C105

    -
    -

    090215.28

    -
    -

    BXD63

    -
    -

    F

    -
    -

    169

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    7

    -
    -

    C10

    -
    -

    CMS102816.14

    -
    -

    BXD77

    -
    -

    F

    -
    -

    124

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    8

    -
    -

    C112

    -
    -

    CMS032917.33

    -
    -

    BXD70

    -
    -

    F

    -
    -

    162

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    9

    -
    -

    C118

    -
    -

    CMS082917.05

    -
    -

    BXD77

    -
    -

    F

    -
    -

    196

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    10

    -
    -

    C11

    -
    -

    CMS102816.15

    -
    -

    BXD73b

    -
    -

    F

    -
    -

    163

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    11

    -
    -

    C13

    -
    -

    CMS102816.17

    -
    -

    BXD100

    -
    -

    F

    -
    -

    139

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    12

    -
    -

    C14

    -
    -

    CMS102816.18

    -
    -

    BXD43

    -
    -

    F

    -
    -

    155

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    13

    -
    -

    C15

    -
    -

    CMS102816.19

    -
    -

    BXD83

    -
    -

    F

    -
    -

    168

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    14

    -
    -

    C17

    -
    -

    CMS102816.21

    -
    -

    BXD65

    -
    -

    F

    -
    -

    163

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    15

    -
    -

    C19

    -
    -

    CMS102816.05

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    156

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    16

    -
    -

    C1

    -
    -

    CMS082817.05

    -
    -

    BXD48

    -
    -

    F

    -
    -

    174

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    17

    -
    -

    C21

    -
    -

    CMS102816.07

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    156

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    18

    -
    -

    C23

    -
    -

    CMS102816.09

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    159

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    19

    -
    -

    C25

    -
    -

    CMS102816.11

    -
    -

    BXD100

    -
    -

    F

    -
    -

    139

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    20

    -
    -

    C28

    -
    -

    CMS102716.16

    -
    -

    BXD77

    -
    -

    F

    -
    -

    123

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    21

    -
    -

    C2

    -
    -

    CMS083017.19

    -
    -

    BXD24

    -
    -

    F

    -
    -

    171

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    22

    -
    -

    C30

    -
    -

    CMS102716.19

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    121

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    23

    -
    -

    C31

    -
    -

    CMS102716.20

    -
    -

    BXD50

    -
    -

    F

    -
    -

    161

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    24

    -
    -

    C32

    -
    -

    CMS102716.01

    -
    -

    BXD83

    -
    -

    F

    -
    -

    167

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    25

    -
    -

    C34

    -
    -

    CMS102716.10

    -
    -

    BXD43

    -
    -

    F

    -
    -

    144

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    26

    -
    -

    C35

    -
    -

    CMS102716.12

    -
    -

    BXD62

    -
    -

    F

    -
    -

    144

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    27

    -
    -

    C36

    -
    -

    CMS102716.03

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    121

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    28

    -
    -

    C38

    -
    -

    CMS102716.06

    -
    -

    BXD34

    -
    -

    M

    -
    -

    157

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    29

    -
    -

    C39

    -
    -

    CMS102716.07

    -
    -

    BXD24

    -
    -

    F

    -
    -

    157

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    30

    -
    -

    C3

    -
    -

    CMS083017.18

    -
    -

    BXD87

    -
    -

    F

    -
    -

    174

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    31

    -
    -

    C40

    -
    -

    CMS102716.08

    -
    -

    BXD60

    -
    -

    F

    -
    -

    155

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    32

    -
    -

    C41

    -
    -

    CMS102716.09

    -
    -

    BXD60

    -
    -

    F

    -
    -

    142

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    33

    -
    -

    C44

    -
    -

    CMS033017.25

    -
    -

    BXD78

    -
    -

    F

    -
    -

    163

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    34

    -
    -

    C45

    -
    -

    CMS032817.28

    -
    -

    BXD66

    -
    -

    F

    -
    -

    168

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    35

    -
    -

    C46

    -
    -

    CMS032817.23

    -
    -

    BXD86

    -
    -

    F

    -
    -

    179

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    36

    -
    -

    C47

    -
    -

    CMS082817.24

    -
    -

    BXD51

    -
    -

    F

    -
    -

    186

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    37

    -
    -

    C48

    -
    -

    CMS082817.14

    -
    -

    BXD65

    -
    -

    F

    -
    -

    182

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    38

    -
    -

    C49

    -
    -

    CMS082817.07

    -
    -

    BXD44

    -
    -

    F

    -
    -

    202

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    39

    -
    -

    C56

    -
    -

    CMS102716.13

    -
    -

    BXD77

    -
    -

    F

    -
    -

    151

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    40

    -
    -

    C60

    -
    -

    CMS032917.33

    -
    -

    BXD70

    -
    -

    F

    -
    -

    162

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    41

    -
    -

    C61

    -
    -

    CMS032917.29

    -
    -

    BXD71

    -
    -

    F

    -
    -

    162

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    42

    -
    -

    C62

    -
    -

    CMS032917.26

    -
    -

    BXD87

    -
    -

    F

    -
    -

    173

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    43

    -
    -

    C63

    -
    -

    CMS032917.22

    -
    -

    BXD71

    -
    -

    F

    -
    -

    170

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    44

    -
    -

    C64

    -
    -

    CMS083017.07

    -
    -

    BXD69

    -
    -

    F

    -
    -

    202

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    45

    -
    -

    C65

    -
    -

    CMS082917.19

    -
    -

    BXD44

    -
    -

    F

    -
    -

    182

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    46

    -
    -

    C66

    -
    -

    CMS030716.03

    -
    -

    BXD101

    -
    -

    F

    -
    -

    196

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    47

    -
    -

    C67

    -
    -

    CMS030716.06

    -
    -

    BXD69

    -
    -

    F

    -
    -

    193

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    48

    -
    -

    C68

    -
    -

    CMS030716.12

    -
    -

    BXD68

    -
    -

    F

    -
    -

    166

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    49

    -
    -

    C69

    -
    -

    CMS030716.13

    -
    -

    BXD55

    -
    -

    F

    -
    -

    166

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    50

    -
    -

    C70

    -
    -

    CMS030716.18

    -
    -

    BXD40

    -
    -

    F

    -
    -

    182

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    51

    -
    -

    C71

    -
    -

    CMS030716.19

    -
    -

    BXD40

    -
    -

    F

    -
    -

    182

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    52

    -
    -

    C73

    -
    -

    CMS030716.32

    -
    -

    BXD101

    -
    -

    F

    -
    -

    196

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    53

    -
    -

    C75

    -
    -

    CMS030916.11

    -
    -

    BXD79

    -
    -

    F

    -
    -

    167

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    54

    -
    -

    C76

    -
    -

    CMS030916.14

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    168

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    55

    -
    -

    C77

    -
    -

    CMS030916.20

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    190

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    56

    -
    -

    C79

    -
    -

    CMS030916.23

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    182

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    57

    -
    -

    C80

    -
    -

    CMS030916.28

    -
    -

    BXD66

    -
    -

    F

    -
    -

    162

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    58

    -
    -

    C81

    -
    -

    CMS030916.32

    -
    -

    BXD86

    -
    -

    F

    -
    -

    193

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    59

    -
    -

    C84

    -
    -

    CMS102816.03

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    159

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    60

    -
    -

    C85

    -
    -

    CMS102716.11

    -
    -

    BXD34

    -
    -

    F

    -
    -

    157

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    61

    -
    -

    C96

    -
    -

    090215.02

    -
    -

    BXD62

    -
    -

    F

    -
    -

    137

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    62

    -
    -

    C97

    -
    -

    090215.05

    -
    -

    BXD75

    -
    -

    F

    -
    -

    180

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    63

    -
    -

    C98

    -
    -

    090215.06

    -
    -

    BXD32

    -
    -

    F

    -
    -

    188

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    -

    64

    -
    -

    C99

    -
    -

    090215.09

    -
    -

    BXD75

    -
    -

    F

    -
    -

    180

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    CMS

    -
    diff --git a/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_CMS_RNA/tissue.rtf b/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_CMS_RNA/tissue.rtf deleted file mode 100644 index 8d370c0..0000000 --- a/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_CMS_RNA/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Tissue Harvest 

    - -

    The animals were sacrificed under saturated isoflurane. Whole heart from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_RNA_Seq/experiment-design.rtf b/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_RNA_Seq/experiment-design.rtf deleted file mode 100644 index fbdad24..0000000 --- a/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_RNA_Seq/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    RNA Extraction

    - -

    Total RNA was extracted using MIRNEASY MINI KIT (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Approximately 30 mg of left ventricle tissue was added into a 2 ml tube containing 700ul QIAzol Lysis Reagent and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 minutes in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 r followed by incubating for 5 minutes.140 µl chloroform was added into the homogenate, shaken vigorously for 15 seconds, and centrifuged for 15 minutes at 12,000 x g at 4 â„ƒ. 280 µl upper aqueous was then transferred into a new collection tube containing 500 µl 100% ethanol. The mixture was loaded into a RNeasy mini‐spin column (Qiagen, Valencia, CA, USA), once with Buffer RWT and twice with Buffer RPE purification. All RNA had been verified by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA with OD260/280 > 1.8 and RIN > 8.0 were used for library preparation

    diff --git a/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_RNA_Seq/processing.rtf b/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_RNA_Seq/processing.rtf deleted file mode 100644 index 8e460ff..0000000 --- a/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_RNA_Seq/processing.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

    Generation of RNA-seq data

    - -

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    - -

     

    - -

    Read mapping and normalization

    - -

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_RNA_Seq/specifics.rtf b/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_RNA_Seq/specifics.rtf deleted file mode 100644 index 96fa0b5..0000000 --- a/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_RNA_Seq/specifics.rtf +++ /dev/null @@ -1,2302 +0,0 @@ -

    NHLBI BXD Young Adult Heart CD RNA-Seq (Nov20) TMP Log2

    - -

    About the cases used to generate this set of data:

    - -

    The study included 87 mice (~6 month) from B6, D2, and 41 advanced intercross BXD strains (about 2 mice per strain). All mice were fed on chow diet (CD). All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    - -

     

    - -

    The table of samples that are finally used for this study.

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -

    Index

    -
    -

    Sample ID

    -
    -

    Case id

    -
    -

    Strain

    -
    -

    Fuyi_Sex_Final

    -
    -

    Age (Day)

    -
    -

    Tissue

    -
    -

    Diet

    -
    -

    1

    -
    -

    H100

    -
    -

    *091317.07

    -
    -

    BXD61

    -
    -

    M

    -
    -

    128

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    2

    -
    -

    H101

    -
    -

    *052417.59

    -
    -

    BXD177

    -
    -

    F

    -
    -

    125

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    3

    -
    -

    H102

    -
    -

    *052417.26

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    141

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    4

    -
    -

    H103

    -
    -

    *060717.02

    -
    -

    BXD9

    -
    -

    M

    -
    -

    149

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    5

    -
    -

    H109

    -
    -

    *052417.49

    -
    -

    BXD152

    -
    -

    F

    -
    -

    147

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    6

    -
    -

    H110

    -
    -

    *052417.35

    -
    -

    BXD86

    -
    -

    F

    -
    -

    127

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    7

    -
    -

    H112

    -
    -

    *052417.24

    -
    -

    BXD73

    -
    -

    F

    -
    -

    173

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    8

    -
    -

    H113

    -
    -

    *052417.25

    -
    -

    BXD73

    -
    -

    M

    -
    -

    173

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    9

    -
    -

    H116

    -
    -

    *121917.28

    -
    -

    BXD180

    -
    -

    F

    -
    -

    120

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    10

    -
    -

    H11

    -
    -

    *121917.20

    -
    -

    BXD111

    -
    -

    M

    -
    -

    122

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    11

    -
    -

    H120

    -
    -

    *111417.04

    -
    -

    BXD40

    -
    -

    M

    -
    -

    133

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    12

    -
    -

    H121

    -
    -

    *091317.02

    -
    -

    BXD48a

    -
    -

    M

    -
    -

    125

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    13

    -
    -

    H122

    -
    -

    *092717.59

    -
    -

    BXD154

    -
    -

    F

    -
    -

    135

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    14

    -
    -

    H124

    -
    -

    *092717.60

    -
    -

    BXD154

    -
    -

    F

    -
    -

    135

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    15

    -
    -

    H126

    -
    -

    *092717.65

    -
    -

    BXD155

    -
    -

    F

    -
    -

    133

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    16

    -
    -

    H127

    -
    -

    *092717.67

    -
    -

    BXD169

    -
    -

    M

    -
    -

    133

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    17

    -
    -

    H129

    -
    -

    *092717.37

    -
    -

    BXD78

    -
    -

    F

    -
    -

    133

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    18

    -
    -

    H12

    -
    -

    *121917.21

    -
    -

    BXD111

    -
    -

    M

    -
    -

    122

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    19

    -
    -

    H130

    -
    -

    AGE050118.27

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    167

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    20

    -
    -

    H131

    -
    -

    AGE050118.28

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    167

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    21

    -
    -

    H132

    -
    -

    AGE050118.29

    -
    -

    DBA/2J

    -
    -

    M

    -
    -

    167

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    22

    -
    -

    H138

    -
    -

    *112118.32

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    208

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    23

    -
    -

    H139

    -
    -

    *112118.33

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    208

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    24

    -
    -

    H140

    -
    -

    *112118.34

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    208

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    25

    -
    -

    H14

    -
    -

    *092017.36

    -
    -

    BXD113

    -
    -

    F

    -
    -

    132

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    26

    -
    -

    H15

    -
    -

    *092017.37

    -
    -

    BXD113

    -
    -

    M

    -
    -

    132

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    27

    -
    -

    H16

    -
    -

    *060717.15

    -
    -

    BXD123

    -
    -

    F

    -
    -

    182

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    28

    -
    -

    H17

    -
    -

    *060717.16

    -
    -

    BXD123

    -
    -

    M

    -
    -

    182

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    29

    -
    -

    H19

    -
    -

    *052417.44

    -
    -

    BXD128 (WAS b)

    -
    -

    F

    -
    -

    161

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    30

    -
    -

    H20

    -
    -

    *052417.45

    -
    -

    BXD128 (WAS b)

    -
    -

    F

    -
    -

    161

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    31

    -
    -

    H21

    -
    -

    *092017.38

    -
    -

    BXD144

    -
    -

    F

    -
    -

    133

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    32

    -
    -

    H23

    -
    -

    *092017.39

    -
    -

    BXD144

    -
    -

    M

    -
    -

    133

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    33

    -
    -

    H25

    -
    -

    *060717.03

    -
    -

    BXD15

    -
    -

    F

    -
    -

    143

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    34

    -
    -

    H26

    -
    -

    *060717.04

    -
    -

    BXD15

    -
    -

    F

    -
    -

    143

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    35

    -
    -

    H27

    -
    -

    *052417.47

    -
    -

    BXD151

    -
    -

    F

    -
    -

    127

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    36

    -
    -

    H28

    -
    -

    *092017.40

    -
    -

    BXD151

    -
    -

    M

    -
    -

    133

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    37

    -
    -

    H30

    -
    -

    *052417.51

    -
    -

    BXD152

    -
    -

    M

    -
    -

    147

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    38

    -
    -

    H31

    -
    -

    *052417.54

    -
    -

    BXD155

    -
    -

    M

    -
    -

    119

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    39

    -
    -

    H32

    -
    -

    *091317.01

    -
    -

    BXD16

    -
    -

    F

    -
    -

    128

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    40

    -
    -

    H33

    -
    -

    *111417.11

    -
    -

    BXD169

    -
    -

    F

    -
    -

    121

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    41

    -
    -

    H36

    -
    -

    *121917.16

    -
    -

    BXD171

    -
    -

    F

    -
    -

    124

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    42

    -
    -

    H38

    -
    -

    *092017.41

    -
    -

    BXD171

    -
    -

    M

    -
    -

    133

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    43

    -
    -

    H41

    -
    -

    *052417.60

    -
    -

    BXD177

    -
    -

    M

    -
    -

    125

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    44

    -
    -

    H43

    -
    -

    *052417.62

    -
    -

    BXD180

    -
    -

    M

    -
    -

    119

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    45

    -
    -

    H44

    -
    -

    *052417.32

    -
    -

    BXD83

    -
    -

    F

    -
    -

    155

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    46

    -
    -

    H46

    -
    -

    *052417.28

    -
    -

    BXD73a

    -
    -

    M

    -
    -

    141

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    47

    -
    -

    H48

    -
    -

    *052417.40

    -
    -

    BXD89

    -
    -

    M

    -
    -

    173

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    48

    -
    -

    H49

    -
    -

    *060717.09

    -
    -

    BXD63

    -
    -

    F

    -
    -

    160

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    49

    -
    -

    H50

    -
    -

    *060717.06

    -
    -

    BXD24

    -
    -

    M

    -
    -

    138

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    50

    -
    -

    H51

    -
    -

    *060717.07

    -
    -

    BXD48

    -
    -

    F

    -
    -

    134

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    51

    -
    -

    H52

    -
    -

    *060717.08

    -
    -

    BXD48

    -
    -

    F

    -
    -

    134

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    52

    -
    -

    H53

    -
    -

    *060717.11

    -
    -

    BXD63

    -
    -

    M

    -
    -

    160

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    53

    -
    -

    H54

    -
    -

    *052417.22

    -
    -

    BXD62

    -
    -

    M

    -
    -

    165

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    54

    -
    -

    H55

    -
    -

    *052417.17

    -
    -

    BXD51

    -
    -

    F

    -
    -

    154

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    55

    -
    -

    H56

    -
    -

    *052417.15

    -
    -

    BXD50

    -
    -

    F

    -
    -

    167

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    56

    -
    -

    H57

    -
    -

    *052417.08

    -
    -

    BXD32

    -
    -

    M

    -
    -

    156

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    57

    -
    -

    H59

    -
    -

    *052417.21

    -
    -

    BXD62

    -
    -

    F

    -
    -

    165

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    58

    -
    -

    H60

    -
    -

    *052417.19

    -
    -

    BXD51

    -
    -

    M

    -
    -

    154

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    59

    -
    -

    H61

    -
    -

    *052417.16

    -
    -

    BXD50

    -
    -

    M

    -
    -

    167

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    60

    -
    -

    H62

    -
    -

    *052417.37

    -
    -

    BXD86

    -
    -

    M

    -
    -

    127

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    61

    -
    -

    H63

    -
    -

    *052417.29

    -
    -

    BXD73b

    -
    -

    F

    -
    -

    145

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    62

    -
    -

    H64

    -
    -

    *052417.31

    -
    -

    BXD73b

    -
    -

    M

    -
    -

    145

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    63

    -
    -

    H65

    -
    -

    *121917.01

    -
    -

    BXD43

    -
    -

    F

    -
    -

    126

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    64

    -
    -

    H66

    -
    -

    *121917.13

    -
    -

    BXD45

    -
    -

    M

    -
    -

    126

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    65

    -
    -

    H67

    -
    -

    *121917.12

    -
    -

    BXD45

    -
    -

    F

    -
    -

    126

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    66

    -
    -

    H68

    -
    -

    *121917.02

    -
    -

    BXD43

    -
    -

    F

    -
    -

    126

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    67

    -
    -

    H69

    -
    -

    *071917.35

    -
    -

    BXD68

    -
    -

    M

    -
    -

    134

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    68

    -
    -

    H71

    -
    -

    *092017.32

    -
    -

    BXD83

    -
    -

    M

    -
    -

    136

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    69

    -
    -

    H72

    -
    -

    *092017.30

    -
    -

    BXD78

    -
    -

    M

    -
    -

    132

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    70

    -
    -

    H74

    -
    -

    *092017.29

    -
    -

    BXD75

    -
    -

    M

    -
    -

    133

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    71

    -
    -

    H76

    -
    -

    *092017.26

    -
    -

    BXD75

    -
    -

    F

    -
    -

    133

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    72

    -
    -

    H78

    -
    -

    *092017.05

    -
    -

    BXD40

    -
    -

    F

    -
    -

    128

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    73

    -
    -

    H79

    -
    -

    *092017.02

    -
    -

    BXD24

    -
    -

    F

    -
    -

    131

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    74

    -
    -

    H80

    -
    -

    *092017.01

    -
    -

    BXD9

    -
    -

    F

    -
    -

    129

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    75

    -
    -

    H81

    -
    -

    *092017.12

    -
    -

    BXD65

    -
    -

    F

    -
    -

    132

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    76

    -
    -

    H83

    -
    -

    *092017.33

    -
    -

    BXD89

    -
    -

    F

    -
    -

    136

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    77

    -
    -

    H84

    -
    -

    *092017.23

    -
    -

    BXD70

    -
    -

    F

    -
    -

    130

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    78

    -
    -

    H85

    -
    -

    *092017.22

    -
    -

    BXD70

    -
    -

    F

    -
    -

    127

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    79

    -
    -

    H86

    -
    -

    *092017.07

    -
    -

    BXD44

    -
    -

    F

    -
    -

    128

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    80

    -
    -

    H89

    -
    -

    *092017.14

    -
    -

    BXD65

    -
    -

    M

    -
    -

    132

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    81

    -
    -

    H90

    -
    -

    *092017.03

    -
    -

    BXD32

    -
    -

    F

    -
    -

    131

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    82

    -
    -

    H91

    -
    -

    *092017.20

    -
    -

    BXD65b

    -
    -

    M

    -
    -

    130

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    83

    -
    -

    H92

    -
    -

    *092017.09

    -
    -

    BXD44

    -
    -

    F

    -
    -

    128

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    84

    -
    -

    H94

    -
    -

    *092017.18

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    130

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    85

    -
    -

    H96

    -
    -

    *091317.06

    -
    -

    BXD61

    -
    -

    M

    -
    -

    128

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    86

    -
    -

    H97

    -
    -

    *091317.12

    -
    -

    BXD68

    -
    -

    F

    -
    -

    132

    -
    -

    Heart

    -
    -

    Chow diet

    -
    -

    87

    -
    -

    H99

    -
    -

    *091317.04

    -
    -

    BXD48a

    -
    -

    M

    -
    -

    125

    -
    -

    Heart

    -
    -

    Chow diet

    -
    diff --git a/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_RNA_Seq/tissue.rtf b/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_RNA_Seq/tissue.rtf deleted file mode 100644 index 8d370c0..0000000 --- a/general/datasets/NHLBI_BXD_Young_Adult_Heart_CD_RNA_Seq/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Tissue Harvest 

    - -

    The animals were sacrificed under saturated isoflurane. Whole heart from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/NIAAA_BXD_Hip_CMS_DID_RNAseq1020/cases.rtf b/general/datasets/NIAAA_BXD_Hip_CMS_DID_RNAseq1020/cases.rtf deleted file mode 100644 index 08a20a8..0000000 --- a/general/datasets/NIAAA_BXD_Hip_CMS_DID_RNAseq1020/cases.rtf +++ /dev/null @@ -1,4848 +0,0 @@ -

    The study included 241 females (aged 50 to 90 ± 2 days at the start of the experiment) from B6, D2, and 35 advanced intercross BXD strains (about 2 mice per strain and per condition). Mice were divided into 4 groups of Control (CTL, 53 mice for 31 strains), Chronic Mild Stress (CMS, 64 mice for 32 strains), Drinking in Dark (DID, 64 mice for 35 strains), and CMS+DID (60 mice for 35 strains). Mice in CTL were normally handled, while mice in  other groups were singly housed in shoebox cages, with food and water provided ad libitum except when the water was replaced by 20% (v/v) EtOH (see below) for DID and CMS+DID groups (detailed treatments and schemes  are showing in the Table and Figure). The ambient temperature was 21 ± 2°C, and the light cycle was 7:00/19:00 for CTL, and 23:00/11:00 the rest groups lights on/off. The animals were weighed weekly to assess health and to provide the basis for calculating the amount of EtOH consumed in grams per kilogram. All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    - -

    The table of samples that are finally used for this study.

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -

    Index

    -
    -

    ID

    -
    -

    Strain

    -
    -

    Sex 

    -
    -

    Treatment Group

    -
    -

    Tissue

    -
    -

    1

    -
    -

    CMS030716_12

    -
    -

    BXD68

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    2

    -
    -

    CMS030716_18

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    3

    -
    -

    CMS030716_19

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    4

    -
    -

    CMS030916_02

    -
    -

    BXD101

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    5

    -
    -

    CMS030916_09

    -
    -

    BXD101

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    6

    -
    -

    CMS030916_11

    -
    -

    BXD79

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    7

    -
    -

    CMS030916_14

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    8

    -
    -

    CMS030916_20

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    9

    -
    -

    CMS030916_23

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    10

    -
    -

    CMS030916_32

    -
    -

    BXD86

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    11

    -
    -

    CMS032817_02

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    12

    -
    -

    CMS032817_28

    -
    -

    BXD66

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    13

    -
    -

    CMS032917_08

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    14

    -
    -

    CMS032917_24

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    15

    -
    -

    CMS032917_26

    -
    -

    BXD87

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    16

    -
    -

    CMS032917_33

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    17

    -
    -

    CMS033017_05

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    18

    -
    -

    CMS033017_25

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    19

    -
    -

    CMS061218_12

    -
    -

    BXD87

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    20

    -
    -

    CMS061218_13

    -
    -

    BXD60

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    21

    -
    -

    CMS061218_14

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    22

    -
    -

    CMS071216_17

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    23

    -
    -

    CMS071216_23

    -
    -

    BXD73B

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    24

    -
    -

    CMS071216_25

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    25

    -
    -

    CMS071316_06

    -
    -

    BXD90

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    26

    -
    -

    CMS071316_08

    -
    -

    BXD66

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    27

    -
    -

    CMS071316_14

    -
    -

    BXD87

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    28

    -
    -

    CMS071316_17

    -
    -

    BXD62

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    29

    -
    -

    CMS071316_18

    -
    -

    BXD65

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    30

    -
    -

    CMS071316_32

    -
    -

    BXD90

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    31

    -
    -

    CMS071416_06

    -
    -

    BXD50

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    32

    -
    -

    CMS082817_07

    -
    -

    BXD44

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    33

    -
    -

    CMS082817_25

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    34

    -
    -

    CMS082917_16

    -
    -

    BXD79

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    35

    -
    -

    CMS083017_07

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    36

    -
    -

    CMS083017_25

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    37

    -
    -

    CMS092018_01

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    38

    -
    -

    CMS092018_05

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    39

    -
    -

    CMS092118_08

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    40

    -
    -

    CMS102716_01

    -
    -

    BXD83

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    41

    -
    -

    CMS102716_02

    -
    -

    BXD75

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    42

    -
    -

    CMS102716_03

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    43

    -
    -

    CMS102716_05

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    44

    -
    -

    CMS102716_06

    -
    -

    BXD34

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    45

    -
    -

    CMS102716_07

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    46

    -
    -

    CMS102716_08

    -
    -

    BXD60

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    47

    -
    -

    CMS102716_11

    -
    -

    BXD34

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    48

    -
    -

    CMS102716_12

    -
    -

    BXD62

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    49

    -
    -

    CMS102716_14

    -
    -

    BXD83

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    50

    -
    -

    CMS102716_15

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    51

    -
    -

    CMS102716_16

    -
    -

    BXD77

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    52

    -
    -

    CMS102716_20

    -
    -

    BXD50

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    53

    -
    -

    CMS102816_02

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    54

    -
    -

    CMS102816_03

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    55

    -
    -

    CMS102816_04

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    56

    -
    -

    CMS102816_06

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    57

    -
    -

    CMS102816_10

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    58

    -
    -

    CMS102816_11

    -
    -

    BXD100

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    59

    -
    -

    CMS102816_13

    -
    -

    BXD75

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    60

    -
    -

    CMS102816_14

    -
    -

    BXD77

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    61

    -
    -

    CMS102816_17

    -
    -

    BXD100

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    62

    -
    -

    CMS102816_18

    -
    -

    BXD43

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    63

    -
    -

    CMS102816_20

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    64

    -
    -

    CMS102816_21

    -
    -

    BXD65

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    65

    -
    -

    CMS030716_01

    -
    -

    BXD55

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    66

    -
    -

    CMS030716_08

    -
    -

    BXD63

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    67

    -
    -

    CMS030716_09

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    68

    -
    -

    CMS030716_15

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    69

    -
    -

    CMS030716_27

    -
    -

    BXD86

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    70

    -
    -

    CMS030716_29

    -
    -

    BXD55

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    71

    -
    -

    CMS030716_30

    -
    -

    BXD62

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    72

    -
    -

    CMS030716_31

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    73

    -
    -

    CMS030916_15

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    74

    -
    -

    CMS030916_16

    -
    -

    BXD68

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    75

    -
    -

    CMS030916_17

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    76

    -
    -

    CMS030916_26

    -
    -

    BXD79

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    77

    -
    -

    CMS032817_10

    -
    -

    BXD87

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    78

    -
    -

    CMS032817_18

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    79

    -
    -

    CMS032817_25

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    80

    -
    -

    CMS032817_27

    -
    -

    BXD83

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    81

    -
    -

    CMS032817_31

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    82

    -
    -

    CMS032817_32

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    83

    -
    -

    CMS032917_15

    -
    -

    BXD86

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    84

    -
    -

    CMS032917_17

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    85

    -
    -

    CMS032917_25

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    86

    -
    -

    CMS033017_04

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    87

    -
    -

    CMS033017_11

    -
    -

    BXD83

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    88

    -
    -

    CMS033017_13

    -
    -

    BXD73

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    89

    -
    -

    CMS071216_01

    -
    -

    BXD50

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    90

    -
    -

    CMS071216_24

    -
    -

    BXD100

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    91

    -
    -

    CMS071316_05

    -
    -

    BXD51

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    92

    -
    -

    CMS071316_20

    -
    -

    BXD65

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    93

    -
    -

    CMS071316_22

    -
    -

    BXD90

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    94

    -
    -

    CMS071316_29

    -
    -

    BXD51

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    95

    -
    -

    CMS071416_01

    -
    -

    BXD100

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    96

    -
    -

    CMS071416_08

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    97

    -
    -

    CMS071416_13

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    98

    -
    -

    CMS071416_19

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    99

    -
    -

    CMS071416_27

    -
    -

    BXD63

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    100

    -
    -

    CMS082817_02

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    101

    -
    -

    CMS082817_03

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    102

    -
    -

    CMS082817_09

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    103

    -
    -

    CMS082817_28

    -
    -

    BXD79

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    104

    -
    -

    CMS082917_07

    -
    -

    BXD43

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    105

    -
    -

    CMS082917_10

    -
    -

    BXD44

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    106

    -
    -

    CMS082917_18

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    107

    -
    -

    CMS082917_21

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    108

    -
    -

    CMS082917_29

    -
    -

    BXD87

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    109

    -
    -

    CMS083017_02

    -
    -

    BXD101

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    110

    -
    -

    CMS083017_03

    -
    -

    BXD66

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    111

    -
    -

    CMS083017_11

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    112

    -
    -

    CMS083017_28

    -
    -

    BXD101

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    113

    -
    -

    CMS111716_07

    -
    -

    BXD75

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    114

    -
    -

    CMS111716_11

    -
    -

    BXD73b

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    115

    -
    -

    CMS111716_12

    -
    -

    BXD75

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    116

    -
    -

    CMS111716_14

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    117

    -
    -

    CMS111716_17

    -
    -

    BXD50

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    118

    -
    -

    CMS111816_05

    -
    -

    BXD77

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    119

    -
    -

    CMS111816_07

    -
    -

    BXD73b

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    120

    -
    -

    CMS111816_12

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    121

    -
    -

    CMS111816_13

    -
    -

    BXD77

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    122

    -
    -

    CMS111816_26

    -
    -

    BXD34

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    123

    -
    -

    S32315_14

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    124

    -
    -

    S32415_09

    -
    -

    BXD68

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    125

    -
    -

    CMS030716_05

    -
    -

    BXD44

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    126

    -
    -

    CMS030716_14

    -
    -

    BXD40

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    127

    -
    -

    CMS030716_21

    -
    -

    BXD68

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    128

    -
    -

    CMS030716_24

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    129

    -
    -

    CMS030716_28

    -
    -

    BXD79

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    130

    -
    -

    CMS030716_33

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    131

    -
    -

    CMS030916_04

    -
    -

    BXD55

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    132

    -
    -

    CMS030916_06

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    133

    -
    -

    CMS030916_07

    -
    -

    BXD60

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    134

    -
    -

    CMS030916_10

    -
    -

    BXD63

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    135

    -
    -

    CMS030916_18

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    136

    -
    -

    CMS030916_22

    -
    -

    BXD79

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    137

    -
    -

    CMS030916_24

    -
    -

    BXD63

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    138

    -
    -

    CMS030916_29

    -
    -

    BXD55

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    139

    -
    -

    CMS030916_33

    -
    -

    BXD69

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    140

    -
    -

    CMS032817_08

    -
    -

    BXD73

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    141

    -
    -

    CMS032817_24

    -
    -

    BXD70

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    142

    -
    -

    CMS032917_07

    -
    -

    BXD70

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    143

    -
    -

    CMS032917_19

    -
    -

    BXD78

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    144

    -
    -

    CMS032917_21

    -
    -

    BXD86

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    145

    -
    -

    CMS032917_23

    -
    -

    BXD66

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    146

    -
    -

    CMS032917_30

    -
    -

    BXD78

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    147

    -
    -

    CMS032917_31

    -
    -

    BXD48

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    148

    -
    -

    CMS032917_32

    -
    -

    BXD71

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    149

    -
    -

    CMS033017_16

    -
    -

    BXD62

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    150

    -
    -

    CMS033017_29

    -
    -

    BXD83

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    151

    -
    -

    CMS071216_04

    -
    -

    BXD90

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    152

    -
    -

    CMS071216_09

    -
    -

    BXD77

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    153

    -
    -

    CMS071216_16

    -
    -

    BXD65

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    154

    -
    -

    CMS071216_22

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    155

    -
    -

    CMS071316_15

    -
    -

    BXD90

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    156

    -
    -

    CMS071316_16

    -
    -

    BXD50

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    157

    -
    -

    CMS071316_27

    -
    -

    BXD65

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    158

    -
    -

    CMS071316_30

    -
    -

    BXD51

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    159

    -
    -

    CMS071416_10

    -
    -

    BXD44

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    160

    -
    -

    CMS071416_21

    -
    -

    BXD69

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    161

    -
    -

    CMS082817_12

    -
    -

    BXD51

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    162

    -
    -

    CMS082817_16

    -
    -

    BXD101

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    163

    -
    -

    CMS082817_22

    -
    -

    BXD101

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    164

    -
    -

    CMS082817_23

    -
    -

    BXD24

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    165

    -
    -

    CMS082917_13

    -
    -

    BXD40

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    166

    -
    -

    CMS082917_22

    -
    -

    BXD87

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    167

    -
    -

    CMS083017_10

    -
    -

    BXD24

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    168

    -
    -

    CMS102215_20

    -
    -

    BXD73B

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    169

    -
    -

    CMS111716_02

    -
    -

    BXD75

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    170

    -
    -

    CMS111716_05

    -
    -

    BXD43

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    171

    -
    -

    CMS111716_08

    -
    -

    BXD75

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    172

    -
    -

    CMS111716_10

    -
    -

    BXD32

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    173

    -
    -

    CMS111716_16

    -
    -

    BXD100

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    174

    -
    -

    CMS111716_20

    -
    -

    BXD60

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    175

    -
    -

    CMS111716_22

    -
    -

    BXD83

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    176

    -
    -

    CMS111716_23

    -
    -

    BXD73b

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    177

    -
    -

    CMS111716_25

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    178

    -
    -

    CMS111816_01

    -
    -

    BXD34

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    179

    -
    -

    CMS111816_03

    -
    -

    BXD48

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    180

    -
    -

    CMS111816_08

    -
    -

    BXD43

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    181

    -
    -

    CMS111816_11

    -
    -

    BXD87

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    182

    -
    -

    CMS111816_14

    -
    -

    BXD60

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    183

    -
    -

    CMS111816_16

    -
    -

    BXD73b

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    184

    -
    -

    CMS111816_17

    -
    -

    BXD77

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    185

    -
    -

    CMS111816_20

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    186

    -
    -

    CMS111816_28

    -
    -

    BXD50

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    187

    -
    -

    S32515_12

    -
    -

    BXD68

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    188

    -
    -

    S32515_16

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    189

    -
    -

    13118_35

    -
    -

    BXD62

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    190

    -
    -

    13118_41

    -
    -

    BXD66

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    191

    -
    -

    13118_56

    -
    -

    BXD75

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    192

    -
    -

    31218_19

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    193

    -
    -

    31218_3

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    194

    -
    -

    31218_36

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    195

    -
    -

    AGE041118_03

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    196

    -
    -

    AGE050118_07

    -
    -

    BXD55

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    197

    -
    -

    AGE050118_12

    -
    -

    BXD73

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    198

    -
    -

    AGE050118_16

    -
    -

    BXD77

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    199

    -
    -

    AGE050118_21

    -
    -

    BXD86

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    200

    -
    -

    AGE050118_23

    -
    -

    BXD86

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    201

    -
    -

    AGE050118_27

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    202

    -
    -

    AGE061818_02

    -
    -

    BXD100

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    203

    -
    -

    BL013118_12

    -
    -

    BXD34

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    204

    -
    -

    BL013118_13

    -
    -

    BXD34

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    205

    -
    -

    CMS092118_24

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    206

    -
    -

    E100118_16

    -
    -

    BXD65

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    207

    -
    -

    MT052417_09

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    208

    -
    -

    MT052417_17

    -
    -

    BXD51

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    209

    -
    -

    S13118_07

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    210

    -
    -

    S13118_08

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    211

    -
    -

    S13118_15

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    212

    -
    -

    S13118_18

    -
    -

    BXD43

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    213

    -
    -

    S13118_19

    -
    -

    BXD43

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    214

    -
    -

    S13118_23

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    215

    -
    -

    S13118_24

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    216

    -
    -

    S13118_26

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    217

    -
    -

    S13118_36

    -
    -

    BXD62

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    218

    -
    -

    S13118_38

    -
    -

    BXD65

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    219

    -
    -

    S13118_42

    -
    -

    BXD66

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    220

    -
    -

    S13118_44

    -
    -

    BXD68

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    221

    -
    -

    S13118_58

    -
    -

    BXD79

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    222

    -
    -

    S13118_64

    -
    -

    BXD90

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    223

    -
    -

    S13118_65

    -
    -

    BXD90

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    224

    -
    -

    S13118_7

    -
    -

    BXD101

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    225

    -
    -

    S31218_01

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    226

    -
    -

    S31218_02

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    227

    -
    -

    S31218_04

    -
    -

    BXD44

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    228

    -
    -

    S31218_15

    -
    -

    BXD63

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    229

    -
    -

    S31218_16

    -
    -

    BXD63

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    230

    -
    -

    S31218_18

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    231

    -
    -

    S31218_1

    -
    -

    BXD51

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    232

    -
    -

    S31218_21

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    233

    -
    -

    S31218_22

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    234

    -
    -

    S31218_24

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    235

    -
    -

    S31218_25

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    236

    -
    -

    S31218_27

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    237

    -
    -

    S31218_28

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    238

    -
    -

    S31218_31

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    239

    -
    -

    S31218_35

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    240

    -
    -

    S32718_01

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    241

    -
    -

    S32718_03

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    diff --git a/general/datasets/NIAAA_BXD_Hip_CMS_DID_RNAseq1020/experiment-design.rtf b/general/datasets/NIAAA_BXD_Hip_CMS_DID_RNAseq1020/experiment-design.rtf deleted file mode 100644 index 54fad3e..0000000 --- a/general/datasets/NIAAA_BXD_Hip_CMS_DID_RNAseq1020/experiment-design.rtf +++ /dev/null @@ -1,7 +0,0 @@ -

    Alcohol consumption was evaluated using the DID method. The protocol calls for 4 consecutive days of testing. Each day, starting on a Tuesday 3 h after lights were turned off, the water bottles were removed from the cages and replaced with 15 ml centrifuge tubes filled with 20% (v/v) ethanol from 95% USP ethanol. On days 1–3 (Tuesday through Thursday) the length of exposure was 2 h and on the 4th day (Friday) the exposure was 4 h. No alcohol was offered in the intervening period (Saturday through Monday). This protocol was repeated weekly for 16 weeks (Table). Tubes were weighed immediately before and after the exposure period. Volume consumed was converted to g/kg body weight of ethanol. 

    - -

    During a period of 7 weeks, mice received 2 disturbances per day (see Figure). These consisted of being exposed to wet bedding for 1 hour, 1 cm of water in the bottom of the cage with no bedding for 1 hour, no bedding for 1 hour, confinement in a 3 × 3 × 3 cm plastic box for 15 minutes, tilted cage at 45º for 1 hour, and exposure to foreign mouse or fox urine odor for 1 hour. The other stressor was a complete phase shift in the light:dark cycle over each weekend. Disruption of the light cycle (lights constantly on) occurred over the weekend (starting Friday 11:00 am) with the light cycle resuming at 11 am on Monday (lights off). The schedule was repeated weekly over the duration of the study.

    - -

    Treatment Periods

    - -

    The entire protocol took 16 weeks to complete and was subdivided into 3 periods: baseline (initial 5 weeks), CMS (next 7 weeks), and post‐CMS (final 4 weeks). Alcohol was offered as described above for all periods and experimental groups. During the intervening 7‐week CMS period, control animals were subjected to normal housing and experimental (stress) animals were subjected to CMS.

    diff --git a/general/datasets/NIAAA_BXD_Hip_CMS_DID_RNAseq1020/processing.rtf b/general/datasets/NIAAA_BXD_Hip_CMS_DID_RNAseq1020/processing.rtf deleted file mode 100644 index 7d83d76..0000000 --- a/general/datasets/NIAAA_BXD_Hip_CMS_DID_RNAseq1020/processing.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

    Generation of RNA-seq data

    - -

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    - -

     

    - -

    Read mapping and normalization

    - -

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/NIAAA_BXD_Hip_CMS_DID_RNAseq1020/specifics.rtf b/general/datasets/NIAAA_BXD_Hip_CMS_DID_RNAseq1020/specifics.rtf deleted file mode 100644 index c2753aa..0000000 --- a/general/datasets/NIAAA_BXD_Hip_CMS_DID_RNAseq1020/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -NIAAA BXD Hippocampus CMS-DID RNA-Seq (Oct20) TPM Log2 \ No newline at end of file diff --git a/general/datasets/NIAAA_BXD_Hip_CMS_DID_RNAseq1020/tissue.rtf b/general/datasets/NIAAA_BXD_Hip_CMS_DID_RNAseq1020/tissue.rtf deleted file mode 100644 index 30cdeea..0000000 --- a/general/datasets/NIAAA_BXD_Hip_CMS_DID_RNAseq1020/tissue.rtf +++ /dev/null @@ -1,7 +0,0 @@ -

    Tissue Harvest and RNA extraction

    - -

    The animals were sacrificed under saturated isoflurane. Brains from the animals were dissected under a cold plate (≤4o C), and hippocampus were weighted and snap frozen in dry ice bath with isopentane and stored at −80°C until RNA extraction. 

    - -

    RNA Extraction

    - -

    Total RNA was extracted using Direct-zol RNA Miniprep Plus Kits (Zymo Research, Irvine, CA, USA) according to the manufacturer’s instructions. Approximately 15 mg of hippocampus tissue was added into a 2 ml tube containing 1 ml TRI Reagent® and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 min in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 rpm followed by incubating for 5 min.   0.1 ml of 1‑bromo-3‑chloropropane was add into the homogenate, shaken vigorously for 15 s, and centrifuged for 15 min at 12,000×g at 4 °C. 600 µl upper aqueous was then transferred into a new collection tube containing 600 µl 100% ethanol. The mixture was loaded into a Zymo-Spin IIC column, wash once with RNA Prep Buffer and twice with RNA Wash Buffer. All RNA had been treated with DNase to eliminate possible DNA contamination, and further precipitated with ethanol. RNA purity and integrity were verified by a nanodrop spectrophotometer and an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). 

    diff --git a/general/datasets/NIAAA_BXD_Hip_CMS_RNAseq1020/cases.rtf b/general/datasets/NIAAA_BXD_Hip_CMS_RNAseq1020/cases.rtf deleted file mode 100644 index 08a20a8..0000000 --- a/general/datasets/NIAAA_BXD_Hip_CMS_RNAseq1020/cases.rtf +++ /dev/null @@ -1,4848 +0,0 @@ -

    The study included 241 females (aged 50 to 90 ± 2 days at the start of the experiment) from B6, D2, and 35 advanced intercross BXD strains (about 2 mice per strain and per condition). Mice were divided into 4 groups of Control (CTL, 53 mice for 31 strains), Chronic Mild Stress (CMS, 64 mice for 32 strains), Drinking in Dark (DID, 64 mice for 35 strains), and CMS+DID (60 mice for 35 strains). Mice in CTL were normally handled, while mice in  other groups were singly housed in shoebox cages, with food and water provided ad libitum except when the water was replaced by 20% (v/v) EtOH (see below) for DID and CMS+DID groups (detailed treatments and schemes  are showing in the Table and Figure). The ambient temperature was 21 ± 2°C, and the light cycle was 7:00/19:00 for CTL, and 23:00/11:00 the rest groups lights on/off. The animals were weighed weekly to assess health and to provide the basis for calculating the amount of EtOH consumed in grams per kilogram. All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    - -

    The table of samples that are finally used for this study.

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -

    Index

    -
    -

    ID

    -
    -

    Strain

    -
    -

    Sex 

    -
    -

    Treatment Group

    -
    -

    Tissue

    -
    -

    1

    -
    -

    CMS030716_12

    -
    -

    BXD68

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    2

    -
    -

    CMS030716_18

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    3

    -
    -

    CMS030716_19

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    4

    -
    -

    CMS030916_02

    -
    -

    BXD101

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    5

    -
    -

    CMS030916_09

    -
    -

    BXD101

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    6

    -
    -

    CMS030916_11

    -
    -

    BXD79

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    7

    -
    -

    CMS030916_14

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    8

    -
    -

    CMS030916_20

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    9

    -
    -

    CMS030916_23

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    10

    -
    -

    CMS030916_32

    -
    -

    BXD86

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    11

    -
    -

    CMS032817_02

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    12

    -
    -

    CMS032817_28

    -
    -

    BXD66

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    13

    -
    -

    CMS032917_08

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    14

    -
    -

    CMS032917_24

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    15

    -
    -

    CMS032917_26

    -
    -

    BXD87

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    16

    -
    -

    CMS032917_33

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    17

    -
    -

    CMS033017_05

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    18

    -
    -

    CMS033017_25

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    19

    -
    -

    CMS061218_12

    -
    -

    BXD87

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    20

    -
    -

    CMS061218_13

    -
    -

    BXD60

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    21

    -
    -

    CMS061218_14

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    22

    -
    -

    CMS071216_17

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    23

    -
    -

    CMS071216_23

    -
    -

    BXD73B

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    24

    -
    -

    CMS071216_25

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    25

    -
    -

    CMS071316_06

    -
    -

    BXD90

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    26

    -
    -

    CMS071316_08

    -
    -

    BXD66

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    27

    -
    -

    CMS071316_14

    -
    -

    BXD87

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    28

    -
    -

    CMS071316_17

    -
    -

    BXD62

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    29

    -
    -

    CMS071316_18

    -
    -

    BXD65

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    30

    -
    -

    CMS071316_32

    -
    -

    BXD90

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    31

    -
    -

    CMS071416_06

    -
    -

    BXD50

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    32

    -
    -

    CMS082817_07

    -
    -

    BXD44

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    33

    -
    -

    CMS082817_25

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    34

    -
    -

    CMS082917_16

    -
    -

    BXD79

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    35

    -
    -

    CMS083017_07

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    36

    -
    -

    CMS083017_25

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    37

    -
    -

    CMS092018_01

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    38

    -
    -

    CMS092018_05

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    39

    -
    -

    CMS092118_08

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    40

    -
    -

    CMS102716_01

    -
    -

    BXD83

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    41

    -
    -

    CMS102716_02

    -
    -

    BXD75

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    42

    -
    -

    CMS102716_03

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    43

    -
    -

    CMS102716_05

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    44

    -
    -

    CMS102716_06

    -
    -

    BXD34

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    45

    -
    -

    CMS102716_07

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    46

    -
    -

    CMS102716_08

    -
    -

    BXD60

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    47

    -
    -

    CMS102716_11

    -
    -

    BXD34

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    48

    -
    -

    CMS102716_12

    -
    -

    BXD62

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    49

    -
    -

    CMS102716_14

    -
    -

    BXD83

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    50

    -
    -

    CMS102716_15

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    51

    -
    -

    CMS102716_16

    -
    -

    BXD77

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    52

    -
    -

    CMS102716_20

    -
    -

    BXD50

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    53

    -
    -

    CMS102816_02

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    54

    -
    -

    CMS102816_03

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    55

    -
    -

    CMS102816_04

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    56

    -
    -

    CMS102816_06

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    57

    -
    -

    CMS102816_10

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    58

    -
    -

    CMS102816_11

    -
    -

    BXD100

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    59

    -
    -

    CMS102816_13

    -
    -

    BXD75

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    60

    -
    -

    CMS102816_14

    -
    -

    BXD77

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    61

    -
    -

    CMS102816_17

    -
    -

    BXD100

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    62

    -
    -

    CMS102816_18

    -
    -

    BXD43

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    63

    -
    -

    CMS102816_20

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    64

    -
    -

    CMS102816_21

    -
    -

    BXD65

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    65

    -
    -

    CMS030716_01

    -
    -

    BXD55

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    66

    -
    -

    CMS030716_08

    -
    -

    BXD63

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    67

    -
    -

    CMS030716_09

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    68

    -
    -

    CMS030716_15

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    69

    -
    -

    CMS030716_27

    -
    -

    BXD86

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    70

    -
    -

    CMS030716_29

    -
    -

    BXD55

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    71

    -
    -

    CMS030716_30

    -
    -

    BXD62

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    72

    -
    -

    CMS030716_31

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    73

    -
    -

    CMS030916_15

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    74

    -
    -

    CMS030916_16

    -
    -

    BXD68

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    75

    -
    -

    CMS030916_17

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    76

    -
    -

    CMS030916_26

    -
    -

    BXD79

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    77

    -
    -

    CMS032817_10

    -
    -

    BXD87

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    78

    -
    -

    CMS032817_18

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    79

    -
    -

    CMS032817_25

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    80

    -
    -

    CMS032817_27

    -
    -

    BXD83

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    81

    -
    -

    CMS032817_31

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    82

    -
    -

    CMS032817_32

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    83

    -
    -

    CMS032917_15

    -
    -

    BXD86

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    84

    -
    -

    CMS032917_17

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    85

    -
    -

    CMS032917_25

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    86

    -
    -

    CMS033017_04

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    87

    -
    -

    CMS033017_11

    -
    -

    BXD83

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    88

    -
    -

    CMS033017_13

    -
    -

    BXD73

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    89

    -
    -

    CMS071216_01

    -
    -

    BXD50

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    90

    -
    -

    CMS071216_24

    -
    -

    BXD100

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    91

    -
    -

    CMS071316_05

    -
    -

    BXD51

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    92

    -
    -

    CMS071316_20

    -
    -

    BXD65

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    93

    -
    -

    CMS071316_22

    -
    -

    BXD90

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    94

    -
    -

    CMS071316_29

    -
    -

    BXD51

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    95

    -
    -

    CMS071416_01

    -
    -

    BXD100

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    96

    -
    -

    CMS071416_08

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    97

    -
    -

    CMS071416_13

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    98

    -
    -

    CMS071416_19

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    99

    -
    -

    CMS071416_27

    -
    -

    BXD63

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    100

    -
    -

    CMS082817_02

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    101

    -
    -

    CMS082817_03

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    102

    -
    -

    CMS082817_09

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    103

    -
    -

    CMS082817_28

    -
    -

    BXD79

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    104

    -
    -

    CMS082917_07

    -
    -

    BXD43

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    105

    -
    -

    CMS082917_10

    -
    -

    BXD44

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    106

    -
    -

    CMS082917_18

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    107

    -
    -

    CMS082917_21

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    108

    -
    -

    CMS082917_29

    -
    -

    BXD87

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    109

    -
    -

    CMS083017_02

    -
    -

    BXD101

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    110

    -
    -

    CMS083017_03

    -
    -

    BXD66

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    111

    -
    -

    CMS083017_11

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    112

    -
    -

    CMS083017_28

    -
    -

    BXD101

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    113

    -
    -

    CMS111716_07

    -
    -

    BXD75

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    114

    -
    -

    CMS111716_11

    -
    -

    BXD73b

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    115

    -
    -

    CMS111716_12

    -
    -

    BXD75

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    116

    -
    -

    CMS111716_14

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    117

    -
    -

    CMS111716_17

    -
    -

    BXD50

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    118

    -
    -

    CMS111816_05

    -
    -

    BXD77

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    119

    -
    -

    CMS111816_07

    -
    -

    BXD73b

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    120

    -
    -

    CMS111816_12

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    121

    -
    -

    CMS111816_13

    -
    -

    BXD77

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    122

    -
    -

    CMS111816_26

    -
    -

    BXD34

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    123

    -
    -

    S32315_14

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    124

    -
    -

    S32415_09

    -
    -

    BXD68

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    125

    -
    -

    CMS030716_05

    -
    -

    BXD44

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    126

    -
    -

    CMS030716_14

    -
    -

    BXD40

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    127

    -
    -

    CMS030716_21

    -
    -

    BXD68

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    128

    -
    -

    CMS030716_24

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    129

    -
    -

    CMS030716_28

    -
    -

    BXD79

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    130

    -
    -

    CMS030716_33

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    131

    -
    -

    CMS030916_04

    -
    -

    BXD55

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    132

    -
    -

    CMS030916_06

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    133

    -
    -

    CMS030916_07

    -
    -

    BXD60

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    134

    -
    -

    CMS030916_10

    -
    -

    BXD63

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    135

    -
    -

    CMS030916_18

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    136

    -
    -

    CMS030916_22

    -
    -

    BXD79

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    137

    -
    -

    CMS030916_24

    -
    -

    BXD63

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    138

    -
    -

    CMS030916_29

    -
    -

    BXD55

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    139

    -
    -

    CMS030916_33

    -
    -

    BXD69

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    140

    -
    -

    CMS032817_08

    -
    -

    BXD73

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    141

    -
    -

    CMS032817_24

    -
    -

    BXD70

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    142

    -
    -

    CMS032917_07

    -
    -

    BXD70

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    143

    -
    -

    CMS032917_19

    -
    -

    BXD78

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    144

    -
    -

    CMS032917_21

    -
    -

    BXD86

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    145

    -
    -

    CMS032917_23

    -
    -

    BXD66

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    146

    -
    -

    CMS032917_30

    -
    -

    BXD78

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    147

    -
    -

    CMS032917_31

    -
    -

    BXD48

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    148

    -
    -

    CMS032917_32

    -
    -

    BXD71

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    149

    -
    -

    CMS033017_16

    -
    -

    BXD62

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    150

    -
    -

    CMS033017_29

    -
    -

    BXD83

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    151

    -
    -

    CMS071216_04

    -
    -

    BXD90

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    152

    -
    -

    CMS071216_09

    -
    -

    BXD77

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    153

    -
    -

    CMS071216_16

    -
    -

    BXD65

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    154

    -
    -

    CMS071216_22

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    155

    -
    -

    CMS071316_15

    -
    -

    BXD90

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    156

    -
    -

    CMS071316_16

    -
    -

    BXD50

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    157

    -
    -

    CMS071316_27

    -
    -

    BXD65

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    158

    -
    -

    CMS071316_30

    -
    -

    BXD51

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    159

    -
    -

    CMS071416_10

    -
    -

    BXD44

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    160

    -
    -

    CMS071416_21

    -
    -

    BXD69

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    161

    -
    -

    CMS082817_12

    -
    -

    BXD51

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    162

    -
    -

    CMS082817_16

    -
    -

    BXD101

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    163

    -
    -

    CMS082817_22

    -
    -

    BXD101

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    164

    -
    -

    CMS082817_23

    -
    -

    BXD24

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    165

    -
    -

    CMS082917_13

    -
    -

    BXD40

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    166

    -
    -

    CMS082917_22

    -
    -

    BXD87

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    167

    -
    -

    CMS083017_10

    -
    -

    BXD24

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    168

    -
    -

    CMS102215_20

    -
    -

    BXD73B

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    169

    -
    -

    CMS111716_02

    -
    -

    BXD75

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    170

    -
    -

    CMS111716_05

    -
    -

    BXD43

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    171

    -
    -

    CMS111716_08

    -
    -

    BXD75

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    172

    -
    -

    CMS111716_10

    -
    -

    BXD32

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    173

    -
    -

    CMS111716_16

    -
    -

    BXD100

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    174

    -
    -

    CMS111716_20

    -
    -

    BXD60

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    175

    -
    -

    CMS111716_22

    -
    -

    BXD83

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    176

    -
    -

    CMS111716_23

    -
    -

    BXD73b

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    177

    -
    -

    CMS111716_25

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    178

    -
    -

    CMS111816_01

    -
    -

    BXD34

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    179

    -
    -

    CMS111816_03

    -
    -

    BXD48

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    180

    -
    -

    CMS111816_08

    -
    -

    BXD43

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    181

    -
    -

    CMS111816_11

    -
    -

    BXD87

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    182

    -
    -

    CMS111816_14

    -
    -

    BXD60

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    183

    -
    -

    CMS111816_16

    -
    -

    BXD73b

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    184

    -
    -

    CMS111816_17

    -
    -

    BXD77

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    185

    -
    -

    CMS111816_20

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    186

    -
    -

    CMS111816_28

    -
    -

    BXD50

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    187

    -
    -

    S32515_12

    -
    -

    BXD68

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    188

    -
    -

    S32515_16

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    189

    -
    -

    13118_35

    -
    -

    BXD62

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    190

    -
    -

    13118_41

    -
    -

    BXD66

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    191

    -
    -

    13118_56

    -
    -

    BXD75

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    192

    -
    -

    31218_19

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    193

    -
    -

    31218_3

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    194

    -
    -

    31218_36

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    195

    -
    -

    AGE041118_03

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    196

    -
    -

    AGE050118_07

    -
    -

    BXD55

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    197

    -
    -

    AGE050118_12

    -
    -

    BXD73

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    198

    -
    -

    AGE050118_16

    -
    -

    BXD77

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    199

    -
    -

    AGE050118_21

    -
    -

    BXD86

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    200

    -
    -

    AGE050118_23

    -
    -

    BXD86

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    201

    -
    -

    AGE050118_27

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    202

    -
    -

    AGE061818_02

    -
    -

    BXD100

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    203

    -
    -

    BL013118_12

    -
    -

    BXD34

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    204

    -
    -

    BL013118_13

    -
    -

    BXD34

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    205

    -
    -

    CMS092118_24

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    206

    -
    -

    E100118_16

    -
    -

    BXD65

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    207

    -
    -

    MT052417_09

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    208

    -
    -

    MT052417_17

    -
    -

    BXD51

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    209

    -
    -

    S13118_07

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    210

    -
    -

    S13118_08

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    211

    -
    -

    S13118_15

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    212

    -
    -

    S13118_18

    -
    -

    BXD43

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    213

    -
    -

    S13118_19

    -
    -

    BXD43

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    214

    -
    -

    S13118_23

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    215

    -
    -

    S13118_24

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    216

    -
    -

    S13118_26

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    217

    -
    -

    S13118_36

    -
    -

    BXD62

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    218

    -
    -

    S13118_38

    -
    -

    BXD65

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    219

    -
    -

    S13118_42

    -
    -

    BXD66

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    220

    -
    -

    S13118_44

    -
    -

    BXD68

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    221

    -
    -

    S13118_58

    -
    -

    BXD79

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    222

    -
    -

    S13118_64

    -
    -

    BXD90

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    223

    -
    -

    S13118_65

    -
    -

    BXD90

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    224

    -
    -

    S13118_7

    -
    -

    BXD101

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    225

    -
    -

    S31218_01

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    226

    -
    -

    S31218_02

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    227

    -
    -

    S31218_04

    -
    -

    BXD44

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    228

    -
    -

    S31218_15

    -
    -

    BXD63

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    229

    -
    -

    S31218_16

    -
    -

    BXD63

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    230

    -
    -

    S31218_18

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    231

    -
    -

    S31218_1

    -
    -

    BXD51

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    232

    -
    -

    S31218_21

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    233

    -
    -

    S31218_22

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    234

    -
    -

    S31218_24

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    235

    -
    -

    S31218_25

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    236

    -
    -

    S31218_27

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    237

    -
    -

    S31218_28

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    238

    -
    -

    S31218_31

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    239

    -
    -

    S31218_35

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    240

    -
    -

    S32718_01

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    241

    -
    -

    S32718_03

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    diff --git a/general/datasets/NIAAA_BXD_Hip_CMS_RNAseq1020/experiment-design.rtf b/general/datasets/NIAAA_BXD_Hip_CMS_RNAseq1020/experiment-design.rtf deleted file mode 100644 index 54fad3e..0000000 --- a/general/datasets/NIAAA_BXD_Hip_CMS_RNAseq1020/experiment-design.rtf +++ /dev/null @@ -1,7 +0,0 @@ -

    Alcohol consumption was evaluated using the DID method. The protocol calls for 4 consecutive days of testing. Each day, starting on a Tuesday 3 h after lights were turned off, the water bottles were removed from the cages and replaced with 15 ml centrifuge tubes filled with 20% (v/v) ethanol from 95% USP ethanol. On days 1–3 (Tuesday through Thursday) the length of exposure was 2 h and on the 4th day (Friday) the exposure was 4 h. No alcohol was offered in the intervening period (Saturday through Monday). This protocol was repeated weekly for 16 weeks (Table). Tubes were weighed immediately before and after the exposure period. Volume consumed was converted to g/kg body weight of ethanol. 

    - -

    During a period of 7 weeks, mice received 2 disturbances per day (see Figure). These consisted of being exposed to wet bedding for 1 hour, 1 cm of water in the bottom of the cage with no bedding for 1 hour, no bedding for 1 hour, confinement in a 3 × 3 × 3 cm plastic box for 15 minutes, tilted cage at 45º for 1 hour, and exposure to foreign mouse or fox urine odor for 1 hour. The other stressor was a complete phase shift in the light:dark cycle over each weekend. Disruption of the light cycle (lights constantly on) occurred over the weekend (starting Friday 11:00 am) with the light cycle resuming at 11 am on Monday (lights off). The schedule was repeated weekly over the duration of the study.

    - -

    Treatment Periods

    - -

    The entire protocol took 16 weeks to complete and was subdivided into 3 periods: baseline (initial 5 weeks), CMS (next 7 weeks), and post‐CMS (final 4 weeks). Alcohol was offered as described above for all periods and experimental groups. During the intervening 7‐week CMS period, control animals were subjected to normal housing and experimental (stress) animals were subjected to CMS.

    diff --git a/general/datasets/NIAAA_BXD_Hip_CMS_RNAseq1020/processing.rtf b/general/datasets/NIAAA_BXD_Hip_CMS_RNAseq1020/processing.rtf deleted file mode 100644 index 7d83d76..0000000 --- a/general/datasets/NIAAA_BXD_Hip_CMS_RNAseq1020/processing.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

    Generation of RNA-seq data

    - -

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    - -

     

    - -

    Read mapping and normalization

    - -

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/NIAAA_BXD_Hip_CMS_RNAseq1020/specifics.rtf b/general/datasets/NIAAA_BXD_Hip_CMS_RNAseq1020/specifics.rtf deleted file mode 100644 index 5089c79..0000000 --- a/general/datasets/NIAAA_BXD_Hip_CMS_RNAseq1020/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -NIAAA BXD Hippocampus CMS RNA-Seq (Oct20) TPM Log2 \ No newline at end of file diff --git a/general/datasets/NIAAA_BXD_Hip_CMS_RNAseq1020/tissue.rtf b/general/datasets/NIAAA_BXD_Hip_CMS_RNAseq1020/tissue.rtf deleted file mode 100644 index 30cdeea..0000000 --- a/general/datasets/NIAAA_BXD_Hip_CMS_RNAseq1020/tissue.rtf +++ /dev/null @@ -1,7 +0,0 @@ -

    Tissue Harvest and RNA extraction

    - -

    The animals were sacrificed under saturated isoflurane. Brains from the animals were dissected under a cold plate (≤4o C), and hippocampus were weighted and snap frozen in dry ice bath with isopentane and stored at −80°C until RNA extraction. 

    - -

    RNA Extraction

    - -

    Total RNA was extracted using Direct-zol RNA Miniprep Plus Kits (Zymo Research, Irvine, CA, USA) according to the manufacturer’s instructions. Approximately 15 mg of hippocampus tissue was added into a 2 ml tube containing 1 ml TRI Reagent® and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 min in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 rpm followed by incubating for 5 min.   0.1 ml of 1‑bromo-3‑chloropropane was add into the homogenate, shaken vigorously for 15 s, and centrifuged for 15 min at 12,000×g at 4 °C. 600 µl upper aqueous was then transferred into a new collection tube containing 600 µl 100% ethanol. The mixture was loaded into a Zymo-Spin IIC column, wash once with RNA Prep Buffer and twice with RNA Wash Buffer. All RNA had been treated with DNase to eliminate possible DNA contamination, and further precipitated with ethanol. RNA purity and integrity were verified by a nanodrop spectrophotometer and an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). 

    diff --git a/general/datasets/NIAAA_BXD_Hip_CTL_RNAseq1020/cases.rtf b/general/datasets/NIAAA_BXD_Hip_CTL_RNAseq1020/cases.rtf deleted file mode 100644 index 08a20a8..0000000 --- a/general/datasets/NIAAA_BXD_Hip_CTL_RNAseq1020/cases.rtf +++ /dev/null @@ -1,4848 +0,0 @@ -

    The study included 241 females (aged 50 to 90 ± 2 days at the start of the experiment) from B6, D2, and 35 advanced intercross BXD strains (about 2 mice per strain and per condition). Mice were divided into 4 groups of Control (CTL, 53 mice for 31 strains), Chronic Mild Stress (CMS, 64 mice for 32 strains), Drinking in Dark (DID, 64 mice for 35 strains), and CMS+DID (60 mice for 35 strains). Mice in CTL were normally handled, while mice in  other groups were singly housed in shoebox cages, with food and water provided ad libitum except when the water was replaced by 20% (v/v) EtOH (see below) for DID and CMS+DID groups (detailed treatments and schemes  are showing in the Table and Figure). The ambient temperature was 21 ± 2°C, and the light cycle was 7:00/19:00 for CTL, and 23:00/11:00 the rest groups lights on/off. The animals were weighed weekly to assess health and to provide the basis for calculating the amount of EtOH consumed in grams per kilogram. All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    - -

    The table of samples that are finally used for this study.

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -

    Index

    -
    -

    ID

    -
    -

    Strain

    -
    -

    Sex 

    -
    -

    Treatment Group

    -
    -

    Tissue

    -
    -

    1

    -
    -

    CMS030716_12

    -
    -

    BXD68

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    2

    -
    -

    CMS030716_18

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    3

    -
    -

    CMS030716_19

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    4

    -
    -

    CMS030916_02

    -
    -

    BXD101

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    5

    -
    -

    CMS030916_09

    -
    -

    BXD101

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    6

    -
    -

    CMS030916_11

    -
    -

    BXD79

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    7

    -
    -

    CMS030916_14

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    8

    -
    -

    CMS030916_20

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    9

    -
    -

    CMS030916_23

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    10

    -
    -

    CMS030916_32

    -
    -

    BXD86

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    11

    -
    -

    CMS032817_02

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    12

    -
    -

    CMS032817_28

    -
    -

    BXD66

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    13

    -
    -

    CMS032917_08

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    14

    -
    -

    CMS032917_24

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    15

    -
    -

    CMS032917_26

    -
    -

    BXD87

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    16

    -
    -

    CMS032917_33

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    17

    -
    -

    CMS033017_05

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    18

    -
    -

    CMS033017_25

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    19

    -
    -

    CMS061218_12

    -
    -

    BXD87

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    20

    -
    -

    CMS061218_13

    -
    -

    BXD60

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    21

    -
    -

    CMS061218_14

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    22

    -
    -

    CMS071216_17

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    23

    -
    -

    CMS071216_23

    -
    -

    BXD73B

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    24

    -
    -

    CMS071216_25

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    25

    -
    -

    CMS071316_06

    -
    -

    BXD90

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    26

    -
    -

    CMS071316_08

    -
    -

    BXD66

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    27

    -
    -

    CMS071316_14

    -
    -

    BXD87

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    28

    -
    -

    CMS071316_17

    -
    -

    BXD62

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    29

    -
    -

    CMS071316_18

    -
    -

    BXD65

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    30

    -
    -

    CMS071316_32

    -
    -

    BXD90

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    31

    -
    -

    CMS071416_06

    -
    -

    BXD50

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    32

    -
    -

    CMS082817_07

    -
    -

    BXD44

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    33

    -
    -

    CMS082817_25

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    34

    -
    -

    CMS082917_16

    -
    -

    BXD79

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    35

    -
    -

    CMS083017_07

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    36

    -
    -

    CMS083017_25

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    37

    -
    -

    CMS092018_01

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    38

    -
    -

    CMS092018_05

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    39

    -
    -

    CMS092118_08

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    40

    -
    -

    CMS102716_01

    -
    -

    BXD83

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    41

    -
    -

    CMS102716_02

    -
    -

    BXD75

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    42

    -
    -

    CMS102716_03

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    43

    -
    -

    CMS102716_05

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    44

    -
    -

    CMS102716_06

    -
    -

    BXD34

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    45

    -
    -

    CMS102716_07

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    46

    -
    -

    CMS102716_08

    -
    -

    BXD60

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    47

    -
    -

    CMS102716_11

    -
    -

    BXD34

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    48

    -
    -

    CMS102716_12

    -
    -

    BXD62

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    49

    -
    -

    CMS102716_14

    -
    -

    BXD83

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    50

    -
    -

    CMS102716_15

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    51

    -
    -

    CMS102716_16

    -
    -

    BXD77

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    52

    -
    -

    CMS102716_20

    -
    -

    BXD50

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    53

    -
    -

    CMS102816_02

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    54

    -
    -

    CMS102816_03

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    55

    -
    -

    CMS102816_04

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    56

    -
    -

    CMS102816_06

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    57

    -
    -

    CMS102816_10

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    58

    -
    -

    CMS102816_11

    -
    -

    BXD100

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    59

    -
    -

    CMS102816_13

    -
    -

    BXD75

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    60

    -
    -

    CMS102816_14

    -
    -

    BXD77

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    61

    -
    -

    CMS102816_17

    -
    -

    BXD100

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    62

    -
    -

    CMS102816_18

    -
    -

    BXD43

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    63

    -
    -

    CMS102816_20

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    64

    -
    -

    CMS102816_21

    -
    -

    BXD65

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    65

    -
    -

    CMS030716_01

    -
    -

    BXD55

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    66

    -
    -

    CMS030716_08

    -
    -

    BXD63

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    67

    -
    -

    CMS030716_09

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    68

    -
    -

    CMS030716_15

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    69

    -
    -

    CMS030716_27

    -
    -

    BXD86

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    70

    -
    -

    CMS030716_29

    -
    -

    BXD55

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    71

    -
    -

    CMS030716_30

    -
    -

    BXD62

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    72

    -
    -

    CMS030716_31

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    73

    -
    -

    CMS030916_15

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    74

    -
    -

    CMS030916_16

    -
    -

    BXD68

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    75

    -
    -

    CMS030916_17

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    76

    -
    -

    CMS030916_26

    -
    -

    BXD79

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    77

    -
    -

    CMS032817_10

    -
    -

    BXD87

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    78

    -
    -

    CMS032817_18

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    79

    -
    -

    CMS032817_25

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    80

    -
    -

    CMS032817_27

    -
    -

    BXD83

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    81

    -
    -

    CMS032817_31

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    82

    -
    -

    CMS032817_32

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    83

    -
    -

    CMS032917_15

    -
    -

    BXD86

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    84

    -
    -

    CMS032917_17

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    85

    -
    -

    CMS032917_25

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    86

    -
    -

    CMS033017_04

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    87

    -
    -

    CMS033017_11

    -
    -

    BXD83

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    88

    -
    -

    CMS033017_13

    -
    -

    BXD73

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    89

    -
    -

    CMS071216_01

    -
    -

    BXD50

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    90

    -
    -

    CMS071216_24

    -
    -

    BXD100

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    91

    -
    -

    CMS071316_05

    -
    -

    BXD51

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    92

    -
    -

    CMS071316_20

    -
    -

    BXD65

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    93

    -
    -

    CMS071316_22

    -
    -

    BXD90

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    94

    -
    -

    CMS071316_29

    -
    -

    BXD51

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    95

    -
    -

    CMS071416_01

    -
    -

    BXD100

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    96

    -
    -

    CMS071416_08

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    97

    -
    -

    CMS071416_13

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    98

    -
    -

    CMS071416_19

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    99

    -
    -

    CMS071416_27

    -
    -

    BXD63

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    100

    -
    -

    CMS082817_02

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    101

    -
    -

    CMS082817_03

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    102

    -
    -

    CMS082817_09

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    103

    -
    -

    CMS082817_28

    -
    -

    BXD79

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    104

    -
    -

    CMS082917_07

    -
    -

    BXD43

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    105

    -
    -

    CMS082917_10

    -
    -

    BXD44

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    106

    -
    -

    CMS082917_18

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    107

    -
    -

    CMS082917_21

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    108

    -
    -

    CMS082917_29

    -
    -

    BXD87

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    109

    -
    -

    CMS083017_02

    -
    -

    BXD101

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    110

    -
    -

    CMS083017_03

    -
    -

    BXD66

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    111

    -
    -

    CMS083017_11

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    112

    -
    -

    CMS083017_28

    -
    -

    BXD101

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    113

    -
    -

    CMS111716_07

    -
    -

    BXD75

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    114

    -
    -

    CMS111716_11

    -
    -

    BXD73b

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    115

    -
    -

    CMS111716_12

    -
    -

    BXD75

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    116

    -
    -

    CMS111716_14

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    117

    -
    -

    CMS111716_17

    -
    -

    BXD50

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    118

    -
    -

    CMS111816_05

    -
    -

    BXD77

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    119

    -
    -

    CMS111816_07

    -
    -

    BXD73b

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    120

    -
    -

    CMS111816_12

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    121

    -
    -

    CMS111816_13

    -
    -

    BXD77

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    122

    -
    -

    CMS111816_26

    -
    -

    BXD34

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    123

    -
    -

    S32315_14

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    124

    -
    -

    S32415_09

    -
    -

    BXD68

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    125

    -
    -

    CMS030716_05

    -
    -

    BXD44

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    126

    -
    -

    CMS030716_14

    -
    -

    BXD40

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    127

    -
    -

    CMS030716_21

    -
    -

    BXD68

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    128

    -
    -

    CMS030716_24

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    129

    -
    -

    CMS030716_28

    -
    -

    BXD79

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    130

    -
    -

    CMS030716_33

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    131

    -
    -

    CMS030916_04

    -
    -

    BXD55

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    132

    -
    -

    CMS030916_06

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    133

    -
    -

    CMS030916_07

    -
    -

    BXD60

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    134

    -
    -

    CMS030916_10

    -
    -

    BXD63

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    135

    -
    -

    CMS030916_18

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    136

    -
    -

    CMS030916_22

    -
    -

    BXD79

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    137

    -
    -

    CMS030916_24

    -
    -

    BXD63

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    138

    -
    -

    CMS030916_29

    -
    -

    BXD55

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    139

    -
    -

    CMS030916_33

    -
    -

    BXD69

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    140

    -
    -

    CMS032817_08

    -
    -

    BXD73

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    141

    -
    -

    CMS032817_24

    -
    -

    BXD70

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    142

    -
    -

    CMS032917_07

    -
    -

    BXD70

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    143

    -
    -

    CMS032917_19

    -
    -

    BXD78

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    144

    -
    -

    CMS032917_21

    -
    -

    BXD86

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    145

    -
    -

    CMS032917_23

    -
    -

    BXD66

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    146

    -
    -

    CMS032917_30

    -
    -

    BXD78

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    147

    -
    -

    CMS032917_31

    -
    -

    BXD48

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    148

    -
    -

    CMS032917_32

    -
    -

    BXD71

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    149

    -
    -

    CMS033017_16

    -
    -

    BXD62

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    150

    -
    -

    CMS033017_29

    -
    -

    BXD83

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    151

    -
    -

    CMS071216_04

    -
    -

    BXD90

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    152

    -
    -

    CMS071216_09

    -
    -

    BXD77

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    153

    -
    -

    CMS071216_16

    -
    -

    BXD65

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    154

    -
    -

    CMS071216_22

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    155

    -
    -

    CMS071316_15

    -
    -

    BXD90

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    156

    -
    -

    CMS071316_16

    -
    -

    BXD50

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    157

    -
    -

    CMS071316_27

    -
    -

    BXD65

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    158

    -
    -

    CMS071316_30

    -
    -

    BXD51

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    159

    -
    -

    CMS071416_10

    -
    -

    BXD44

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    160

    -
    -

    CMS071416_21

    -
    -

    BXD69

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    161

    -
    -

    CMS082817_12

    -
    -

    BXD51

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    162

    -
    -

    CMS082817_16

    -
    -

    BXD101

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    163

    -
    -

    CMS082817_22

    -
    -

    BXD101

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    164

    -
    -

    CMS082817_23

    -
    -

    BXD24

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    165

    -
    -

    CMS082917_13

    -
    -

    BXD40

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    166

    -
    -

    CMS082917_22

    -
    -

    BXD87

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    167

    -
    -

    CMS083017_10

    -
    -

    BXD24

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    168

    -
    -

    CMS102215_20

    -
    -

    BXD73B

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    169

    -
    -

    CMS111716_02

    -
    -

    BXD75

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    170

    -
    -

    CMS111716_05

    -
    -

    BXD43

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    171

    -
    -

    CMS111716_08

    -
    -

    BXD75

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    172

    -
    -

    CMS111716_10

    -
    -

    BXD32

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    173

    -
    -

    CMS111716_16

    -
    -

    BXD100

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    174

    -
    -

    CMS111716_20

    -
    -

    BXD60

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    175

    -
    -

    CMS111716_22

    -
    -

    BXD83

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    176

    -
    -

    CMS111716_23

    -
    -

    BXD73b

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    177

    -
    -

    CMS111716_25

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    178

    -
    -

    CMS111816_01

    -
    -

    BXD34

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    179

    -
    -

    CMS111816_03

    -
    -

    BXD48

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    180

    -
    -

    CMS111816_08

    -
    -

    BXD43

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    181

    -
    -

    CMS111816_11

    -
    -

    BXD87

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    182

    -
    -

    CMS111816_14

    -
    -

    BXD60

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    183

    -
    -

    CMS111816_16

    -
    -

    BXD73b

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    184

    -
    -

    CMS111816_17

    -
    -

    BXD77

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    185

    -
    -

    CMS111816_20

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    186

    -
    -

    CMS111816_28

    -
    -

    BXD50

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    187

    -
    -

    S32515_12

    -
    -

    BXD68

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    188

    -
    -

    S32515_16

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    189

    -
    -

    13118_35

    -
    -

    BXD62

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    190

    -
    -

    13118_41

    -
    -

    BXD66

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    191

    -
    -

    13118_56

    -
    -

    BXD75

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    192

    -
    -

    31218_19

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    193

    -
    -

    31218_3

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    194

    -
    -

    31218_36

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    195

    -
    -

    AGE041118_03

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    196

    -
    -

    AGE050118_07

    -
    -

    BXD55

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    197

    -
    -

    AGE050118_12

    -
    -

    BXD73

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    198

    -
    -

    AGE050118_16

    -
    -

    BXD77

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    199

    -
    -

    AGE050118_21

    -
    -

    BXD86

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    200

    -
    -

    AGE050118_23

    -
    -

    BXD86

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    201

    -
    -

    AGE050118_27

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    202

    -
    -

    AGE061818_02

    -
    -

    BXD100

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    203

    -
    -

    BL013118_12

    -
    -

    BXD34

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    204

    -
    -

    BL013118_13

    -
    -

    BXD34

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    205

    -
    -

    CMS092118_24

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    206

    -
    -

    E100118_16

    -
    -

    BXD65

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    207

    -
    -

    MT052417_09

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    208

    -
    -

    MT052417_17

    -
    -

    BXD51

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    209

    -
    -

    S13118_07

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    210

    -
    -

    S13118_08

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    211

    -
    -

    S13118_15

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    212

    -
    -

    S13118_18

    -
    -

    BXD43

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    213

    -
    -

    S13118_19

    -
    -

    BXD43

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    214

    -
    -

    S13118_23

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    215

    -
    -

    S13118_24

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    216

    -
    -

    S13118_26

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    217

    -
    -

    S13118_36

    -
    -

    BXD62

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    218

    -
    -

    S13118_38

    -
    -

    BXD65

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    219

    -
    -

    S13118_42

    -
    -

    BXD66

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    220

    -
    -

    S13118_44

    -
    -

    BXD68

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    221

    -
    -

    S13118_58

    -
    -

    BXD79

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    222

    -
    -

    S13118_64

    -
    -

    BXD90

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    223

    -
    -

    S13118_65

    -
    -

    BXD90

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    224

    -
    -

    S13118_7

    -
    -

    BXD101

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    225

    -
    -

    S31218_01

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    226

    -
    -

    S31218_02

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    227

    -
    -

    S31218_04

    -
    -

    BXD44

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    228

    -
    -

    S31218_15

    -
    -

    BXD63

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    229

    -
    -

    S31218_16

    -
    -

    BXD63

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    230

    -
    -

    S31218_18

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    231

    -
    -

    S31218_1

    -
    -

    BXD51

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    232

    -
    -

    S31218_21

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    233

    -
    -

    S31218_22

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    234

    -
    -

    S31218_24

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    235

    -
    -

    S31218_25

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    236

    -
    -

    S31218_27

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    237

    -
    -

    S31218_28

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    238

    -
    -

    S31218_31

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    239

    -
    -

    S31218_35

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    240

    -
    -

    S32718_01

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    241

    -
    -

    S32718_03

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    diff --git a/general/datasets/NIAAA_BXD_Hip_CTL_RNAseq1020/experiment-design.rtf b/general/datasets/NIAAA_BXD_Hip_CTL_RNAseq1020/experiment-design.rtf deleted file mode 100644 index 54fad3e..0000000 --- a/general/datasets/NIAAA_BXD_Hip_CTL_RNAseq1020/experiment-design.rtf +++ /dev/null @@ -1,7 +0,0 @@ -

    Alcohol consumption was evaluated using the DID method. The protocol calls for 4 consecutive days of testing. Each day, starting on a Tuesday 3 h after lights were turned off, the water bottles were removed from the cages and replaced with 15 ml centrifuge tubes filled with 20% (v/v) ethanol from 95% USP ethanol. On days 1–3 (Tuesday through Thursday) the length of exposure was 2 h and on the 4th day (Friday) the exposure was 4 h. No alcohol was offered in the intervening period (Saturday through Monday). This protocol was repeated weekly for 16 weeks (Table). Tubes were weighed immediately before and after the exposure period. Volume consumed was converted to g/kg body weight of ethanol. 

    - -

    During a period of 7 weeks, mice received 2 disturbances per day (see Figure). These consisted of being exposed to wet bedding for 1 hour, 1 cm of water in the bottom of the cage with no bedding for 1 hour, no bedding for 1 hour, confinement in a 3 × 3 × 3 cm plastic box for 15 minutes, tilted cage at 45º for 1 hour, and exposure to foreign mouse or fox urine odor for 1 hour. The other stressor was a complete phase shift in the light:dark cycle over each weekend. Disruption of the light cycle (lights constantly on) occurred over the weekend (starting Friday 11:00 am) with the light cycle resuming at 11 am on Monday (lights off). The schedule was repeated weekly over the duration of the study.

    - -

    Treatment Periods

    - -

    The entire protocol took 16 weeks to complete and was subdivided into 3 periods: baseline (initial 5 weeks), CMS (next 7 weeks), and post‐CMS (final 4 weeks). Alcohol was offered as described above for all periods and experimental groups. During the intervening 7‐week CMS period, control animals were subjected to normal housing and experimental (stress) animals were subjected to CMS.

    diff --git a/general/datasets/NIAAA_BXD_Hip_CTL_RNAseq1020/processing.rtf b/general/datasets/NIAAA_BXD_Hip_CTL_RNAseq1020/processing.rtf deleted file mode 100644 index 7d83d76..0000000 --- a/general/datasets/NIAAA_BXD_Hip_CTL_RNAseq1020/processing.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

    Generation of RNA-seq data

    - -

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    - -

     

    - -

    Read mapping and normalization

    - -

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/NIAAA_BXD_Hip_CTL_RNAseq1020/specifics.rtf b/general/datasets/NIAAA_BXD_Hip_CTL_RNAseq1020/specifics.rtf deleted file mode 100644 index 072040e..0000000 --- a/general/datasets/NIAAA_BXD_Hip_CTL_RNAseq1020/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -NIAAA BXD Hippocampus CTL RNA-Seq (Oct20) TPM Log2 \ No newline at end of file diff --git a/general/datasets/NIAAA_BXD_Hip_CTL_RNAseq1020/tissue.rtf b/general/datasets/NIAAA_BXD_Hip_CTL_RNAseq1020/tissue.rtf deleted file mode 100644 index 30cdeea..0000000 --- a/general/datasets/NIAAA_BXD_Hip_CTL_RNAseq1020/tissue.rtf +++ /dev/null @@ -1,7 +0,0 @@ -

    Tissue Harvest and RNA extraction

    - -

    The animals were sacrificed under saturated isoflurane. Brains from the animals were dissected under a cold plate (≤4o C), and hippocampus were weighted and snap frozen in dry ice bath with isopentane and stored at −80°C until RNA extraction. 

    - -

    RNA Extraction

    - -

    Total RNA was extracted using Direct-zol RNA Miniprep Plus Kits (Zymo Research, Irvine, CA, USA) according to the manufacturer’s instructions. Approximately 15 mg of hippocampus tissue was added into a 2 ml tube containing 1 ml TRI Reagent® and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 min in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 rpm followed by incubating for 5 min.   0.1 ml of 1‑bromo-3‑chloropropane was add into the homogenate, shaken vigorously for 15 s, and centrifuged for 15 min at 12,000×g at 4 °C. 600 µl upper aqueous was then transferred into a new collection tube containing 600 µl 100% ethanol. The mixture was loaded into a Zymo-Spin IIC column, wash once with RNA Prep Buffer and twice with RNA Wash Buffer. All RNA had been treated with DNase to eliminate possible DNA contamination, and further precipitated with ethanol. RNA purity and integrity were verified by a nanodrop spectrophotometer and an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). 

    diff --git a/general/datasets/NIAAA_BXD_Hip_DID_RNAseq1020/cases.rtf b/general/datasets/NIAAA_BXD_Hip_DID_RNAseq1020/cases.rtf deleted file mode 100644 index 08a20a8..0000000 --- a/general/datasets/NIAAA_BXD_Hip_DID_RNAseq1020/cases.rtf +++ /dev/null @@ -1,4848 +0,0 @@ -

    The study included 241 females (aged 50 to 90 ± 2 days at the start of the experiment) from B6, D2, and 35 advanced intercross BXD strains (about 2 mice per strain and per condition). Mice were divided into 4 groups of Control (CTL, 53 mice for 31 strains), Chronic Mild Stress (CMS, 64 mice for 32 strains), Drinking in Dark (DID, 64 mice for 35 strains), and CMS+DID (60 mice for 35 strains). Mice in CTL were normally handled, while mice in  other groups were singly housed in shoebox cages, with food and water provided ad libitum except when the water was replaced by 20% (v/v) EtOH (see below) for DID and CMS+DID groups (detailed treatments and schemes  are showing in the Table and Figure). The ambient temperature was 21 ± 2°C, and the light cycle was 7:00/19:00 for CTL, and 23:00/11:00 the rest groups lights on/off. The animals were weighed weekly to assess health and to provide the basis for calculating the amount of EtOH consumed in grams per kilogram. All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    - -

    The table of samples that are finally used for this study.

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -

    Index

    -
    -

    ID

    -
    -

    Strain

    -
    -

    Sex 

    -
    -

    Treatment Group

    -
    -

    Tissue

    -
    -

    1

    -
    -

    CMS030716_12

    -
    -

    BXD68

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    2

    -
    -

    CMS030716_18

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    3

    -
    -

    CMS030716_19

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    4

    -
    -

    CMS030916_02

    -
    -

    BXD101

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    5

    -
    -

    CMS030916_09

    -
    -

    BXD101

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    6

    -
    -

    CMS030916_11

    -
    -

    BXD79

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    7

    -
    -

    CMS030916_14

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    8

    -
    -

    CMS030916_20

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    9

    -
    -

    CMS030916_23

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    10

    -
    -

    CMS030916_32

    -
    -

    BXD86

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    11

    -
    -

    CMS032817_02

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    12

    -
    -

    CMS032817_28

    -
    -

    BXD66

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    13

    -
    -

    CMS032917_08

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    14

    -
    -

    CMS032917_24

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    15

    -
    -

    CMS032917_26

    -
    -

    BXD87

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    16

    -
    -

    CMS032917_33

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    17

    -
    -

    CMS033017_05

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    18

    -
    -

    CMS033017_25

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    19

    -
    -

    CMS061218_12

    -
    -

    BXD87

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    20

    -
    -

    CMS061218_13

    -
    -

    BXD60

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    21

    -
    -

    CMS061218_14

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    22

    -
    -

    CMS071216_17

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    23

    -
    -

    CMS071216_23

    -
    -

    BXD73B

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    24

    -
    -

    CMS071216_25

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    25

    -
    -

    CMS071316_06

    -
    -

    BXD90

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    26

    -
    -

    CMS071316_08

    -
    -

    BXD66

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    27

    -
    -

    CMS071316_14

    -
    -

    BXD87

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    28

    -
    -

    CMS071316_17

    -
    -

    BXD62

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    29

    -
    -

    CMS071316_18

    -
    -

    BXD65

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    30

    -
    -

    CMS071316_32

    -
    -

    BXD90

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    31

    -
    -

    CMS071416_06

    -
    -

    BXD50

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    32

    -
    -

    CMS082817_07

    -
    -

    BXD44

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    33

    -
    -

    CMS082817_25

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    34

    -
    -

    CMS082917_16

    -
    -

    BXD79

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    35

    -
    -

    CMS083017_07

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    36

    -
    -

    CMS083017_25

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    37

    -
    -

    CMS092018_01

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    38

    -
    -

    CMS092018_05

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    39

    -
    -

    CMS092118_08

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    40

    -
    -

    CMS102716_01

    -
    -

    BXD83

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    41

    -
    -

    CMS102716_02

    -
    -

    BXD75

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    42

    -
    -

    CMS102716_03

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    43

    -
    -

    CMS102716_05

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    44

    -
    -

    CMS102716_06

    -
    -

    BXD34

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    45

    -
    -

    CMS102716_07

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    46

    -
    -

    CMS102716_08

    -
    -

    BXD60

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    47

    -
    -

    CMS102716_11

    -
    -

    BXD34

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    48

    -
    -

    CMS102716_12

    -
    -

    BXD62

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    49

    -
    -

    CMS102716_14

    -
    -

    BXD83

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    50

    -
    -

    CMS102716_15

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    51

    -
    -

    CMS102716_16

    -
    -

    BXD77

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    52

    -
    -

    CMS102716_20

    -
    -

    BXD50

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    53

    -
    -

    CMS102816_02

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    54

    -
    -

    CMS102816_03

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    55

    -
    -

    CMS102816_04

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    56

    -
    -

    CMS102816_06

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    57

    -
    -

    CMS102816_10

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    58

    -
    -

    CMS102816_11

    -
    -

    BXD100

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    59

    -
    -

    CMS102816_13

    -
    -

    BXD75

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    60

    -
    -

    CMS102816_14

    -
    -

    BXD77

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    61

    -
    -

    CMS102816_17

    -
    -

    BXD100

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    62

    -
    -

    CMS102816_18

    -
    -

    BXD43

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    63

    -
    -

    CMS102816_20

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    64

    -
    -

    CMS102816_21

    -
    -

    BXD65

    -
    -

    F

    -
    -

    CMS

    -
    -

    hippocampus

    -
    -

    65

    -
    -

    CMS030716_01

    -
    -

    BXD55

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    66

    -
    -

    CMS030716_08

    -
    -

    BXD63

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    67

    -
    -

    CMS030716_09

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    68

    -
    -

    CMS030716_15

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    69

    -
    -

    CMS030716_27

    -
    -

    BXD86

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    70

    -
    -

    CMS030716_29

    -
    -

    BXD55

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    71

    -
    -

    CMS030716_30

    -
    -

    BXD62

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    72

    -
    -

    CMS030716_31

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    73

    -
    -

    CMS030916_15

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    74

    -
    -

    CMS030916_16

    -
    -

    BXD68

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    75

    -
    -

    CMS030916_17

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    76

    -
    -

    CMS030916_26

    -
    -

    BXD79

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    77

    -
    -

    CMS032817_10

    -
    -

    BXD87

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    78

    -
    -

    CMS032817_18

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    79

    -
    -

    CMS032817_25

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    80

    -
    -

    CMS032817_27

    -
    -

    BXD83

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    81

    -
    -

    CMS032817_31

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    82

    -
    -

    CMS032817_32

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    83

    -
    -

    CMS032917_15

    -
    -

    BXD86

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    84

    -
    -

    CMS032917_17

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    85

    -
    -

    CMS032917_25

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    86

    -
    -

    CMS033017_04

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    87

    -
    -

    CMS033017_11

    -
    -

    BXD83

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    88

    -
    -

    CMS033017_13

    -
    -

    BXD73

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    89

    -
    -

    CMS071216_01

    -
    -

    BXD50

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    90

    -
    -

    CMS071216_24

    -
    -

    BXD100

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    91

    -
    -

    CMS071316_05

    -
    -

    BXD51

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    92

    -
    -

    CMS071316_20

    -
    -

    BXD65

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    93

    -
    -

    CMS071316_22

    -
    -

    BXD90

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    94

    -
    -

    CMS071316_29

    -
    -

    BXD51

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    95

    -
    -

    CMS071416_01

    -
    -

    BXD100

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    96

    -
    -

    CMS071416_08

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    97

    -
    -

    CMS071416_13

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    98

    -
    -

    CMS071416_19

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    99

    -
    -

    CMS071416_27

    -
    -

    BXD63

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    100

    -
    -

    CMS082817_02

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    101

    -
    -

    CMS082817_03

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    102

    -
    -

    CMS082817_09

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    103

    -
    -

    CMS082817_28

    -
    -

    BXD79

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    104

    -
    -

    CMS082917_07

    -
    -

    BXD43

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    105

    -
    -

    CMS082917_10

    -
    -

    BXD44

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    106

    -
    -

    CMS082917_18

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    107

    -
    -

    CMS082917_21

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    108

    -
    -

    CMS082917_29

    -
    -

    BXD87

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    109

    -
    -

    CMS083017_02

    -
    -

    BXD101

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    110

    -
    -

    CMS083017_03

    -
    -

    BXD66

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    111

    -
    -

    CMS083017_11

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    112

    -
    -

    CMS083017_28

    -
    -

    BXD101

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    113

    -
    -

    CMS111716_07

    -
    -

    BXD75

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    114

    -
    -

    CMS111716_11

    -
    -

    BXD73b

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    115

    -
    -

    CMS111716_12

    -
    -

    BXD75

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    116

    -
    -

    CMS111716_14

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    117

    -
    -

    CMS111716_17

    -
    -

    BXD50

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    118

    -
    -

    CMS111816_05

    -
    -

    BXD77

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    119

    -
    -

    CMS111816_07

    -
    -

    BXD73b

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    120

    -
    -

    CMS111816_12

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    121

    -
    -

    CMS111816_13

    -
    -

    BXD77

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    122

    -
    -

    CMS111816_26

    -
    -

    BXD34

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    123

    -
    -

    S32315_14

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    124

    -
    -

    S32415_09

    -
    -

    BXD68

    -
    -

    F

    -
    -

    CMS+DID

    -
    -

    hippocampus

    -
    -

    125

    -
    -

    CMS030716_05

    -
    -

    BXD44

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    126

    -
    -

    CMS030716_14

    -
    -

    BXD40

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    127

    -
    -

    CMS030716_21

    -
    -

    BXD68

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    128

    -
    -

    CMS030716_24

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    129

    -
    -

    CMS030716_28

    -
    -

    BXD79

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    130

    -
    -

    CMS030716_33

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    131

    -
    -

    CMS030916_04

    -
    -

    BXD55

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    132

    -
    -

    CMS030916_06

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    133

    -
    -

    CMS030916_07

    -
    -

    BXD60

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    134

    -
    -

    CMS030916_10

    -
    -

    BXD63

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    135

    -
    -

    CMS030916_18

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    136

    -
    -

    CMS030916_22

    -
    -

    BXD79

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    137

    -
    -

    CMS030916_24

    -
    -

    BXD63

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    138

    -
    -

    CMS030916_29

    -
    -

    BXD55

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    139

    -
    -

    CMS030916_33

    -
    -

    BXD69

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    140

    -
    -

    CMS032817_08

    -
    -

    BXD73

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    141

    -
    -

    CMS032817_24

    -
    -

    BXD70

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    142

    -
    -

    CMS032917_07

    -
    -

    BXD70

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    143

    -
    -

    CMS032917_19

    -
    -

    BXD78

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    144

    -
    -

    CMS032917_21

    -
    -

    BXD86

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    145

    -
    -

    CMS032917_23

    -
    -

    BXD66

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    146

    -
    -

    CMS032917_30

    -
    -

    BXD78

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    147

    -
    -

    CMS032917_31

    -
    -

    BXD48

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    148

    -
    -

    CMS032917_32

    -
    -

    BXD71

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    149

    -
    -

    CMS033017_16

    -
    -

    BXD62

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    150

    -
    -

    CMS033017_29

    -
    -

    BXD83

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    151

    -
    -

    CMS071216_04

    -
    -

    BXD90

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    152

    -
    -

    CMS071216_09

    -
    -

    BXD77

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    153

    -
    -

    CMS071216_16

    -
    -

    BXD65

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    154

    -
    -

    CMS071216_22

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    155

    -
    -

    CMS071316_15

    -
    -

    BXD90

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    156

    -
    -

    CMS071316_16

    -
    -

    BXD50

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    157

    -
    -

    CMS071316_27

    -
    -

    BXD65

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    158

    -
    -

    CMS071316_30

    -
    -

    BXD51

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    159

    -
    -

    CMS071416_10

    -
    -

    BXD44

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    160

    -
    -

    CMS071416_21

    -
    -

    BXD69

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    161

    -
    -

    CMS082817_12

    -
    -

    BXD51

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    162

    -
    -

    CMS082817_16

    -
    -

    BXD101

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    163

    -
    -

    CMS082817_22

    -
    -

    BXD101

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    164

    -
    -

    CMS082817_23

    -
    -

    BXD24

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    165

    -
    -

    CMS082917_13

    -
    -

    BXD40

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    166

    -
    -

    CMS082917_22

    -
    -

    BXD87

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    167

    -
    -

    CMS083017_10

    -
    -

    BXD24

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    168

    -
    -

    CMS102215_20

    -
    -

    BXD73B

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    169

    -
    -

    CMS111716_02

    -
    -

    BXD75

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    170

    -
    -

    CMS111716_05

    -
    -

    BXD43

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    171

    -
    -

    CMS111716_08

    -
    -

    BXD75

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    172

    -
    -

    CMS111716_10

    -
    -

    BXD32

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    173

    -
    -

    CMS111716_16

    -
    -

    BXD100

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    174

    -
    -

    CMS111716_20

    -
    -

    BXD60

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    175

    -
    -

    CMS111716_22

    -
    -

    BXD83

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    176

    -
    -

    CMS111716_23

    -
    -

    BXD73b

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    177

    -
    -

    CMS111716_25

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    178

    -
    -

    CMS111816_01

    -
    -

    BXD34

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    179

    -
    -

    CMS111816_03

    -
    -

    BXD48

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    180

    -
    -

    CMS111816_08

    -
    -

    BXD43

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    181

    -
    -

    CMS111816_11

    -
    -

    BXD87

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    182

    -
    -

    CMS111816_14

    -
    -

    BXD60

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    183

    -
    -

    CMS111816_16

    -
    -

    BXD73b

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    184

    -
    -

    CMS111816_17

    -
    -

    BXD77

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    185

    -
    -

    CMS111816_20

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    186

    -
    -

    CMS111816_28

    -
    -

    BXD50

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    187

    -
    -

    S32515_12

    -
    -

    BXD68

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    188

    -
    -

    S32515_16

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    DID

    -
    -

    hippocampus

    -
    -

    189

    -
    -

    13118_35

    -
    -

    BXD62

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    190

    -
    -

    13118_41

    -
    -

    BXD66

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    191

    -
    -

    13118_56

    -
    -

    BXD75

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    192

    -
    -

    31218_19

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    193

    -
    -

    31218_3

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    194

    -
    -

    31218_36

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    195

    -
    -

    AGE041118_03

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    196

    -
    -

    AGE050118_07

    -
    -

    BXD55

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    197

    -
    -

    AGE050118_12

    -
    -

    BXD73

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    198

    -
    -

    AGE050118_16

    -
    -

    BXD77

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    199

    -
    -

    AGE050118_21

    -
    -

    BXD86

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    200

    -
    -

    AGE050118_23

    -
    -

    BXD86

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    201

    -
    -

    AGE050118_27

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    202

    -
    -

    AGE061818_02

    -
    -

    BXD100

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    203

    -
    -

    BL013118_12

    -
    -

    BXD34

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    204

    -
    -

    BL013118_13

    -
    -

    BXD34

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    205

    -
    -

    CMS092118_24

    -
    -

    C57BL/6J

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    206

    -
    -

    E100118_16

    -
    -

    BXD65

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    207

    -
    -

    MT052417_09

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    208

    -
    -

    MT052417_17

    -
    -

    BXD51

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    209

    -
    -

    S13118_07

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    210

    -
    -

    S13118_08

    -
    -

    BXD24

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    211

    -
    -

    S13118_15

    -
    -

    BXD40

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    212

    -
    -

    S13118_18

    -
    -

    BXD43

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    213

    -
    -

    S13118_19

    -
    -

    BXD43

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    214

    -
    -

    S13118_23

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    215

    -
    -

    S13118_24

    -
    -

    BXD48

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    216

    -
    -

    S13118_26

    -
    -

    BXD48a

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    217

    -
    -

    S13118_36

    -
    -

    BXD62

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    218

    -
    -

    S13118_38

    -
    -

    BXD65

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    219

    -
    -

    S13118_42

    -
    -

    BXD66

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    220

    -
    -

    S13118_44

    -
    -

    BXD68

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    221

    -
    -

    S13118_58

    -
    -

    BXD79

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    222

    -
    -

    S13118_64

    -
    -

    BXD90

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    223

    -
    -

    S13118_65

    -
    -

    BXD90

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    224

    -
    -

    S13118_7

    -
    -

    BXD101

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    225

    -
    -

    S31218_01

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    226

    -
    -

    S31218_02

    -
    -

    BXD32

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    227

    -
    -

    S31218_04

    -
    -

    BXD44

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    228

    -
    -

    S31218_15

    -
    -

    BXD63

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    229

    -
    -

    S31218_16

    -
    -

    BXD63

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    230

    -
    -

    S31218_18

    -
    -

    BXD65b

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    231

    -
    -

    S31218_1

    -
    -

    BXD51

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    232

    -
    -

    S31218_21

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    233

    -
    -

    S31218_22

    -
    -

    BXD69

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    234

    -
    -

    S31218_24

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    235

    -
    -

    S31218_25

    -
    -

    BXD70

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    236

    -
    -

    S31218_27

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    237

    -
    -

    S31218_28

    -
    -

    BXD71

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    238

    -
    -

    S31218_31

    -
    -

    BXD73a

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    239

    -
    -

    S31218_35

    -
    -

    BXD78

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    240

    -
    -

    S32718_01

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    -

    241

    -
    -

    S32718_03

    -
    -

    DBA/2J

    -
    -

    F

    -
    -

    CTL

    -
    -

    hippocampus

    -
    diff --git a/general/datasets/NIAAA_BXD_Hip_DID_RNAseq1020/experiment-design.rtf b/general/datasets/NIAAA_BXD_Hip_DID_RNAseq1020/experiment-design.rtf deleted file mode 100644 index 54fad3e..0000000 --- a/general/datasets/NIAAA_BXD_Hip_DID_RNAseq1020/experiment-design.rtf +++ /dev/null @@ -1,7 +0,0 @@ -

    Alcohol consumption was evaluated using the DID method. The protocol calls for 4 consecutive days of testing. Each day, starting on a Tuesday 3 h after lights were turned off, the water bottles were removed from the cages and replaced with 15 ml centrifuge tubes filled with 20% (v/v) ethanol from 95% USP ethanol. On days 1–3 (Tuesday through Thursday) the length of exposure was 2 h and on the 4th day (Friday) the exposure was 4 h. No alcohol was offered in the intervening period (Saturday through Monday). This protocol was repeated weekly for 16 weeks (Table). Tubes were weighed immediately before and after the exposure period. Volume consumed was converted to g/kg body weight of ethanol. 

    - -

    During a period of 7 weeks, mice received 2 disturbances per day (see Figure). These consisted of being exposed to wet bedding for 1 hour, 1 cm of water in the bottom of the cage with no bedding for 1 hour, no bedding for 1 hour, confinement in a 3 × 3 × 3 cm plastic box for 15 minutes, tilted cage at 45º for 1 hour, and exposure to foreign mouse or fox urine odor for 1 hour. The other stressor was a complete phase shift in the light:dark cycle over each weekend. Disruption of the light cycle (lights constantly on) occurred over the weekend (starting Friday 11:00 am) with the light cycle resuming at 11 am on Monday (lights off). The schedule was repeated weekly over the duration of the study.

    - -

    Treatment Periods

    - -

    The entire protocol took 16 weeks to complete and was subdivided into 3 periods: baseline (initial 5 weeks), CMS (next 7 weeks), and post‐CMS (final 4 weeks). Alcohol was offered as described above for all periods and experimental groups. During the intervening 7‐week CMS period, control animals were subjected to normal housing and experimental (stress) animals were subjected to CMS.

    diff --git a/general/datasets/NIAAA_BXD_Hip_DID_RNAseq1020/processing.rtf b/general/datasets/NIAAA_BXD_Hip_DID_RNAseq1020/processing.rtf deleted file mode 100644 index 7d83d76..0000000 --- a/general/datasets/NIAAA_BXD_Hip_DID_RNAseq1020/processing.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

    Generation of RNA-seq data

    - -

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    - -

     

    - -

    Read mapping and normalization

    - -

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/NIAAA_BXD_Hip_DID_RNAseq1020/specifics.rtf b/general/datasets/NIAAA_BXD_Hip_DID_RNAseq1020/specifics.rtf deleted file mode 100644 index 017deac..0000000 --- a/general/datasets/NIAAA_BXD_Hip_DID_RNAseq1020/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -NIAAA BXD Hippocampus DID RNA-Seq (Oct20) TPM Log2 \ No newline at end of file diff --git a/general/datasets/NIAAA_BXD_Hip_DID_RNAseq1020/tissue.rtf b/general/datasets/NIAAA_BXD_Hip_DID_RNAseq1020/tissue.rtf deleted file mode 100644 index 30cdeea..0000000 --- a/general/datasets/NIAAA_BXD_Hip_DID_RNAseq1020/tissue.rtf +++ /dev/null @@ -1,7 +0,0 @@ -

    Tissue Harvest and RNA extraction

    - -

    The animals were sacrificed under saturated isoflurane. Brains from the animals were dissected under a cold plate (≤4o C), and hippocampus were weighted and snap frozen in dry ice bath with isopentane and stored at −80°C until RNA extraction. 

    - -

    RNA Extraction

    - -

    Total RNA was extracted using Direct-zol RNA Miniprep Plus Kits (Zymo Research, Irvine, CA, USA) according to the manufacturer’s instructions. Approximately 15 mg of hippocampus tissue was added into a 2 ml tube containing 1 ml TRI Reagent® and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 min in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 rpm followed by incubating for 5 min.   0.1 ml of 1‑bromo-3‑chloropropane was add into the homogenate, shaken vigorously for 15 s, and centrifuged for 15 min at 12,000×g at 4 °C. 600 µl upper aqueous was then transferred into a new collection tube containing 600 µl 100% ethanol. The mixture was loaded into a Zymo-Spin IIC column, wash once with RNA Prep Buffer and twice with RNA Wash Buffer. All RNA had been treated with DNase to eliminate possible DNA contamination, and further precipitated with ethanol. RNA purity and integrity were verified by a nanodrop spectrophotometer and an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). 

    diff --git a/general/datasets/NIA_AgBXD_Liv_CDHFD_rna_seq_0818/specifics.rtf b/general/datasets/NIA_AgBXD_Liv_CDHFD_rna_seq_0818/specifics.rtf deleted file mode 100644 index 8ee3ead..0000000 --- a/general/datasets/NIA_AgBXD_Liv_CDHFD_rna_seq_0818/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -CD+HFD \ No newline at end of file diff --git a/general/datasets/NIA_AgBXD_Liv_CDHFD_rna_seq_0818/summary.rtf b/general/datasets/NIA_AgBXD_Liv_CDHFD_rna_seq_0818/summary.rtf deleted file mode 100644 index f32b018..0000000 --- a/general/datasets/NIA_AgBXD_Liv_CDHFD_rna_seq_0818/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Impact of diet and genetics on survival in BXD GRP. Overall, on a population level of 84 unique BXD strains (666 mice on CD and 688 on HFD) when all strains were averaged the CD cohort lived significantly longer than the HFD cohort if genetics is not considered. (This dataset still unpublished). For more information or for access to this dataset please contact the person in the contact list above.

    diff --git a/general/datasets/NIA_AgBXD_Liv_CD_rna_seq_0818/specifics.rtf b/general/datasets/NIA_AgBXD_Liv_CD_rna_seq_0818/specifics.rtf deleted file mode 100644 index be3025c..0000000 --- a/general/datasets/NIA_AgBXD_Liv_CD_rna_seq_0818/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -CD Control diet. \ No newline at end of file diff --git a/general/datasets/NIA_AgBXD_Liv_CD_rna_seq_0818/summary.rtf b/general/datasets/NIA_AgBXD_Liv_CD_rna_seq_0818/summary.rtf deleted file mode 100644 index f32b018..0000000 --- a/general/datasets/NIA_AgBXD_Liv_CD_rna_seq_0818/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Impact of diet and genetics on survival in BXD GRP. Overall, on a population level of 84 unique BXD strains (666 mice on CD and 688 on HFD) when all strains were averaged the CD cohort lived significantly longer than the HFD cohort if genetics is not considered. (This dataset still unpublished). For more information or for access to this dataset please contact the person in the contact list above.

    diff --git a/general/datasets/NIA_AgBXD_Liv_HFD_rna_seq_0818/specifics.rtf b/general/datasets/NIA_AgBXD_Liv_HFD_rna_seq_0818/specifics.rtf deleted file mode 100644 index a21c56e..0000000 --- a/general/datasets/NIA_AgBXD_Liv_HFD_rna_seq_0818/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -HFD High fat diet. \ No newline at end of file diff --git a/general/datasets/NIA_AgBXD_Liv_HFD_rna_seq_0818/summary.rtf b/general/datasets/NIA_AgBXD_Liv_HFD_rna_seq_0818/summary.rtf deleted file mode 100644 index f32b018..0000000 --- a/general/datasets/NIA_AgBXD_Liv_HFD_rna_seq_0818/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Impact of diet and genetics on survival in BXD GRP. Overall, on a population level of 84 unique BXD strains (666 mice on CD and 688 on HFD) when all strains were averaged the CD cohort lived significantly longer than the HFD cohort if genetics is not considered. (This dataset still unpublished). For more information or for access to this dataset please contact the person in the contact list above.

    diff --git a/general/datasets/Nci_agil_mam_tum_rma_0409/summary.rtf b/general/datasets/Nci_agil_mam_tum_rma_0409/summary.rtf new file mode 100644 index 0000000..adb7c9d --- /dev/null +++ b/general/datasets/Nci_agil_mam_tum_rma_0409/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 71, Name: NCI Mammary LMT miRNA v2 (Apr09) RMA \ No newline at end of file diff --git a/general/datasets/Nci_mam_tum_rma_0409/experiment-type.rtf b/general/datasets/Nci_mam_tum_rma_0409/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Nci_mam_tum_rma_0409/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Nci_mam_tum_rma_0409/summary.rtf b/general/datasets/Nci_mam_tum_rma_0409/summary.rtf new file mode 100644 index 0000000..bc18abd --- /dev/null +++ b/general/datasets/Nci_mam_tum_rma_0409/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 72, Name: NCI Mammary M430v2 (Apr09) RMA \ No newline at end of file diff --git a/general/datasets/Ncsu_droswb_lc_rma_0111/acknowledgment.rtf b/general/datasets/Ncsu_droswb_lc_rma_0111/acknowledgment.rtf new file mode 100644 index 0000000..3a00fd4 --- /dev/null +++ b/general/datasets/Ncsu_droswb_lc_rma_0111/acknowledgment.rtf @@ -0,0 +1 @@ +

    Mackay laboratory: http://mackay.gnets.ncsu.edu/MackaySite/Homepage.html

    diff --git a/general/datasets/Ncsu_droswb_lc_rma_0111/cases.rtf b/general/datasets/Ncsu_droswb_lc_rma_0111/cases.rtf new file mode 100644 index 0000000..333a904 --- /dev/null +++ b/general/datasets/Ncsu_droswb_lc_rma_0111/cases.rtf @@ -0,0 +1,3 @@ +

    The raw microarray data are deposited in the ArrayExpress database (www.ebi.ac.uk/arrayexpress,) under accession number E-MEXP-1594

    + +

    We have derived a population of 192 inbred lines by 20 generations of full sib inbreeding of isofemale lines collected from the Raleigh, NC population. A White Paper to obtain complete genome sequences of these lines (link to pdf of White Paper) has been approved by the National Institutes of Health National Human Genome Research Institute, using a combination of 454 XLR long read pyrosequencing and paired end Solexa short read (currently 45 bp) technology. The sequencing is being done at the Baylor College of Medicine Sequencing Center, in collaboration with Richard Gibbs and Stephen Richards.

    diff --git a/general/datasets/Ncsu_droswb_lc_rma_0111/citation.rtf b/general/datasets/Ncsu_droswb_lc_rma_0111/citation.rtf new file mode 100644 index 0000000..8d1d5d7 --- /dev/null +++ b/general/datasets/Ncsu_droswb_lc_rma_0111/citation.rtf @@ -0,0 +1 @@ +

    Ayroles JF, Carbone MA, Stone EA, Jordan KW, Lyman RF, Magwire MM, Rollmann SM, Duncan LH, Lawrence F, Anholt RR, Mackay TF (2009) Systems genetics of complex traits in Drosophila melanogaster. Nat Genet 41(3):299-307. PMID: 19234471

    diff --git a/general/datasets/Ncsu_droswb_lc_rma_0111/contributors.rtf b/general/datasets/Ncsu_droswb_lc_rma_0111/contributors.rtf new file mode 100644 index 0000000..3e69a35 --- /dev/null +++ b/general/datasets/Ncsu_droswb_lc_rma_0111/contributors.rtf @@ -0,0 +1,3 @@ +

    Ayroles JF, Carbone MA, Stone EA, Jordan KW, Lyman RF, Magwire MM, Rollmann SM, Duncan LH, Lawrence F, Anholt RR, Mackay TF.

    + +

    Data entry by Arthur Centeno, UTHSC.

    diff --git a/general/datasets/Ncsu_droswb_lc_rma_0111/experiment-design.rtf b/general/datasets/Ncsu_droswb_lc_rma_0111/experiment-design.rtf new file mode 100644 index 0000000..387a16a --- /dev/null +++ b/general/datasets/Ncsu_droswb_lc_rma_0111/experiment-design.rtf @@ -0,0 +1,5 @@ +

    We derived inbred lines from the Raleigh, USA population by 20 generations of full-sib mating. We used the C(2L)RM-P1, b1; C(2R)RM-SKIA, cn1bw1 compound autosome (CA) stock for fitness assays. P-element mutations and co-isogenic control lines were a gift of H. Bellen (Howard Hughes Medical Institute, Baylor College of Medicine). We reared flies on cornmeal-molasses-agar medium at 25 °C, 60–75% relative humidity and a 12-h light-dark cycle unless otherwise specified.

    + +

    Organismal phenotypes.

    + +

    For the starvation stress resistance group, we placed ten same-sex, 2-d-old flies in vials containing 1.5% agar and 5 ml water, and scored survival every eight hours (N = 5 vials/sex/line). For the chill coma recovery group, we placed 3- to 7-d-old flies in empty vials on ice for three hours, and recorded the time for each individual to right itself after transfer to room temperature (N = 20 flies/sex/line). For longevity, we placed five 1- to 2-d-old same-sex virgin flies into vials containing 5 ml medium, and recorded survival every two days (N = 5 vials/sex/line). For locomotor reactivity, we placed single 3- to 7-d-old flies into vials containing 5 ml medium. The following day, between 8 am and 12 pm, we mechanically disturbed each fly19, and recorded the total activity in the 45 s immediately following the disturbance. We obtained two replicate measurements of 20 flies/sex/replicate/line. For the copulation latency group, we aspirated pairs of 3- to 7-d-old virgin flies into vials containing 5 ml medium between 8 am and 12 pm, and recorded the number of minutes until initiation of copulation, for a maximum of 120 min (N = 24 pairs/line). For the reproductive fitness group, we used the competitive index technique45, 46. We reared all wild-type and CA parents in constant density (10 pairs) vials. We placed six 3- to 4-d-old virgin CA males and females and three 3- to 4-d-old wild-type males and females in a vial containing 10 ml medium, discarding the flies after 7 d. The competitive index was the ratio of the number of wild type to the total number of progeny emerging by day 17 (N = 20 replicate vials/line).

    diff --git a/general/datasets/Ncsu_droswb_lc_rma_0111/experiment-type.rtf b/general/datasets/Ncsu_droswb_lc_rma_0111/experiment-type.rtf new file mode 100644 index 0000000..22e3439 --- /dev/null +++ b/general/datasets/Ncsu_droswb_lc_rma_0111/experiment-type.rtf @@ -0,0 +1 @@ +We derived inbred lines from the Raleigh, USA population by 20 generations of full-sib mating. We used the C(2L)RM-P1, b1; C(2R)RM-SKIA, cn1bw1 compound autosome (CA) stock for fitness assays. P-element mutations and co-isogenic control lines were a gift of H. Bellen (Howard Hughes Medical Institute, Baylor College of Medicine). We reared flies on cornmeal-molasses-agar medium at 25 °C, 60–75% relative humidity and a 12-h light-dark cycle unless otherwise specified. \ No newline at end of file diff --git a/general/datasets/Ncsu_droswb_lc_rma_0111/notes.rtf b/general/datasets/Ncsu_droswb_lc_rma_0111/notes.rtf new file mode 100644 index 0000000..790f36a --- /dev/null +++ b/general/datasets/Ncsu_droswb_lc_rma_0111/notes.rtf @@ -0,0 +1,3 @@ +

    Please see Mackay lab link: http://mackay.gnets.ncsu.edu/MackaySite/DGRP_files/The40ExpressionDataMatrix10096.txt

    + +

    ArrayExpress: accession number E-MEXP-1594

    diff --git a/general/datasets/Ncsu_droswb_lc_rma_0111/platform.rtf b/general/datasets/Ncsu_droswb_lc_rma_0111/platform.rtf new file mode 100644 index 0000000..74f3b36 --- /dev/null +++ b/general/datasets/Ncsu_droswb_lc_rma_0111/platform.rtf @@ -0,0 +1,3 @@ +

    We used Affymetrix Drosophila 2.0 arrays to assess transcript profiles of 3- to 5-d-old flies from the inbred lines. All samples were frozen between 1 and 3 pm. We extracted RNA from two independent pools (25 flies/sex/line), and hybridized 10 g fragmented cRNA to each array. We randomized RNA extraction, labeling and array hybridization across all samples, and normalized the raw array data across sexes and lines using a median standardization.

    + +

    Each transcript is represented by 14 perfect-match 25-bp oligonucleotides. To identify perfect-match probes with SFPs between the wild-derived lines and the strain used to design the array, we quantified the maximal degree to which the variation between lines could be reduced by partitioning the lines into two allelic classes. We computed the sum of squared deviations from each class mean and expressed their sum as a fraction of the total sum of squares. The smallest fraction across all bipartitions was used to score each probe. We identified 3,136 candidate SFPs with scores 0.1 (a tenfold reduction in the sum of squares). We validated polymorphisms in 20 of 21 of these SFPs by designing primers flanking the SFP and sequencing the PCR products (data not shown).

    diff --git a/general/datasets/Ncsu_droswb_lc_rma_0111/processing.rtf b/general/datasets/Ncsu_droswb_lc_rma_0111/processing.rtf new file mode 100644 index 0000000..33266b5 --- /dev/null +++ b/general/datasets/Ncsu_droswb_lc_rma_0111/processing.rtf @@ -0,0 +1,3 @@ +

    Our measure of expression for each probe set was the median log2 signal intensity of perfect-match probes without SFPs. We used negative control probes to estimate the background intensity, and removed probes below this threshold.

    + +

    Data may have been normalized prior to entry into GeneNetwork using 2z + 8 transform. This method simply stabilizes the variance of all array data sets, and resets the z score to 8 (rather than 0).

    diff --git a/general/datasets/Ncsu_droswb_lc_rma_0111/summary.rtf b/general/datasets/Ncsu_droswb_lc_rma_0111/summary.rtf new file mode 100644 index 0000000..68b99df --- /dev/null +++ b/general/datasets/Ncsu_droswb_lc_rma_0111/summary.rtf @@ -0,0 +1,2 @@ +

    Determining the genetic architecture of complex traits is challenging because phenotypic variation arises from interactions between multiple, environmentally sensitive alleles. We quantified genomewide transcript abundance and phenotypes for six ecologically relevant traits in D. melanogaster wild-derived inbred lines. We observed 10,096 genetically variable transcripts and high heritabilities for all organismal phenotypes. The transcriptome is highly genetically inter-correlated, forming 241 transcriptional modules. Modules are enriched for transcripts in common pathways, gene ontology categories, tissue-specific expression, and transcription factor binding sites. The high transcriptional connectivity allows us to infer genetic networks and the function of predicted genes based on annotations of other genes in the network. Regressions of organismal phenotypes on transcript abundance implicate several hundred candidate genes that form modules of biologically meaningful correlated transcripts affecting each phenotype. Overlapping transcripts in modules associated with different traits provides insight into the molecular basis of pleiotropy between complex traits.
    +Full Article

    diff --git a/general/datasets/Ncsu_droswb_lc_rma_0111/tissue.rtf b/general/datasets/Ncsu_droswb_lc_rma_0111/tissue.rtf new file mode 100644 index 0000000..0ba4e81 --- /dev/null +++ b/general/datasets/Ncsu_droswb_lc_rma_0111/tissue.rtf @@ -0,0 +1 @@ +

    Whole body. 3- to 5-d-old flies from the inbred lines. All samples were frozen between 1 and 3 pm. We extracted RNA from two independent pools (25 flies/sex/line)We derived inbred lines from the Raleigh, USA population by 20 generations of full-sib mating. We used the C(2L)RM-P1, b1; C(2R)RM-SKIA, cn1bw1 compound autosome (CA) stock for fitness assays. P-element mutations and co-isogenic control lines were a gift of H. Bellen (Howard Hughes Medical Institute, Baylor College of Medicine). We reared flies on cornmeal-molasses-agar medium at 25 °C, 60–75% relative humidity and a 12-h light-dark cycle unless otherwise specified.

    diff --git a/general/datasets/Nhlbi_bxd_aged_heart_cd_rna_seq_1120/experiment-design.rtf b/general/datasets/Nhlbi_bxd_aged_heart_cd_rna_seq_1120/experiment-design.rtf new file mode 100644 index 0000000..fbdad24 --- /dev/null +++ b/general/datasets/Nhlbi_bxd_aged_heart_cd_rna_seq_1120/experiment-design.rtf @@ -0,0 +1,3 @@ +

    RNA Extraction

    + +

    Total RNA was extracted using MIRNEASY MINI KIT (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Approximately 30 mg of left ventricle tissue was added into a 2 ml tube containing 700ul QIAzol Lysis Reagent and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 minutes in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 r followed by incubating for 5 minutes.140 µl chloroform was added into the homogenate, shaken vigorously for 15 seconds, and centrifuged for 15 minutes at 12,000 x g at 4 â„ƒ. 280 µl upper aqueous was then transferred into a new collection tube containing 500 µl 100% ethanol. The mixture was loaded into a RNeasy mini‐spin column (Qiagen, Valencia, CA, USA), once with Buffer RWT and twice with Buffer RPE purification. All RNA had been verified by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA with OD260/280 > 1.8 and RIN > 8.0 were used for library preparation

    diff --git a/general/datasets/Nhlbi_bxd_aged_heart_cd_rna_seq_1120/processing.rtf b/general/datasets/Nhlbi_bxd_aged_heart_cd_rna_seq_1120/processing.rtf new file mode 100644 index 0000000..8e460ff --- /dev/null +++ b/general/datasets/Nhlbi_bxd_aged_heart_cd_rna_seq_1120/processing.rtf @@ -0,0 +1,9 @@ +

    Generation of RNA-seq data

    + +

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    + +

     

    + +

    Read mapping and normalization

    + +

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/Nhlbi_bxd_aged_heart_cd_rna_seq_1120/specifics.rtf b/general/datasets/Nhlbi_bxd_aged_heart_cd_rna_seq_1120/specifics.rtf new file mode 100644 index 0000000..d109d3c --- /dev/null +++ b/general/datasets/Nhlbi_bxd_aged_heart_cd_rna_seq_1120/specifics.rtf @@ -0,0 +1,2770 @@ +

    NHLBI BXD Aged Heart CD RNA-Seq (Nov20) TMP Log2

    + +

    About the cases used to generate this set of data:

    + +

    The study included 105 mice (~12 month) from B6, D2, B6D2F1,and 51 advanced intercross BXD strains (about 2 mice per strain). All mice were fed on chow diet (CD). All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    + +

     

    + +

    The table of samples that are finally used for this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Index

    +
    +

    Sample ID

    +
    +

    Case id

    +
    +

    Strain

    +
    +

    Fuyi_Sex_Final

    +
    +

    Sac age/Day

    +
    +

    Tissue

    +
    +

    Diet

    +
    +

    1

    +
    +

    K100

    +
    +

    *103017.77

    +
    +

    BXD155

    +
    +

    M

    +
    +

    362

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    2

    +
    +

    K101

    +
    +

    *071917.111

    +
    +

    BXD184

    +
    +

    M

    +
    +

    387

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    3

    +
    +

    K104

    +
    +

    *103017.75

    +
    +

    BXD155

    +
    +

    F

    +
    +

    362

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    4

    +
    +

    K107

    +
    +

    *071917.45

    +
    +

    BXD73

    +
    +

    F

    +
    +

    338

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    5

    +
    +

    K108

    +
    +

    *071917.72

    +
    +

    BXD90

    +
    +

    M

    +
    +

    330

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    6

    +
    +

    K10

    +
    +

    *062117.51

    +
    +

    BXD150

    +
    +

    F

    +
    +

    385

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    7

    +
    +

    K112

    +
    +

    *071917.74

    +
    +

    BXD122

    +
    +

    M

    +
    +

    331

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    8

    +
    +

    K113

    +
    +

    *071917.88

    +
    +

    BXD144

    +
    +

    M

    +
    +

    331

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    9

    +
    +

    K114

    +
    +

    *071917.47

    +
    +

    BXD73

    +
    +

    M

    +
    +

    338

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    10

    +
    +

    K117

    +
    +

    *071917.87

    +
    +

    BXD144

    +
    +

    F

    +
    +

    331

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    11

    +
    +

    K118

    +
    +

    *071917.73

    +
    +

    BXD122

    +
    +

    F

    +
    +

    331

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    12

    +
    +

    K12

    +
    +

    *062117.48

    +
    +

    BXD125

    +
    +

    F

    +
    +

    396

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    13

    +
    +

    K13

    +
    +

    *062117.54

    +
    +

    BXD151

    +
    +

    F

    +
    +

    396

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    14

    +
    +

    K143

    +
    +

    *071917.18

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    387

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    15

    +
    +

    K144

    +
    +

    *071917.42

    +
    +

    BXD71

    +
    +

    F

    +
    +

    400

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    16

    +
    +

    K147

    +
    +

    *071917.31

    +
    +

    BXD66

    +
    +

    F

    +
    +

    331

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    17

    +
    +

    K149

    +
    +

    *071917.92

    +
    +

    BXD156

    +
    +

    F

    +
    +

    342

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    18

    +
    +

    K14

    +
    +

    *062117.55

    +
    +

    BXD151

    +
    +

    M

    +
    +

    396

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    19

    +
    +

    K150

    +
    +

    *071917.93

    +
    +

    BXD156

    +
    +

    M

    +
    +

    342

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    20

    +
    +

    K152

    +
    +

    *071917.107

    +
    +

    BXD180

    +
    +

    M

    +
    +

    341

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    21

    +
    +

    K153

    +
    +

    *071917.89

    +
    +

    BXD152

    +
    +

    F

    +
    +

    405

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    22

    +
    +

    K155

    +
    +

    *071917.70

    +
    +

    BXD90

    +
    +

    F

    +
    +

    330

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    23

    +
    +

    K156

    +
    +

    *071917.33

    +
    +

    BXD66

    +
    +

    M

    +
    +

    331

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    24

    +
    +

    K15

    +
    +

    *062117.34

    +
    +

    BXD77

    +
    +

    F

    +
    +

    355

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    25

    +
    +

    K164

    +
    +

    E092718.08

    +
    +

    BXD40

    +
    +

    F

    +
    +

    340

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    26

    +
    +

    K165

    +
    +

    E092718.09

    +
    +

    BXD40

    +
    +

    M

    +
    +

    340

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    27

    +
    +

    K168

    +
    +

    E100318.34

    +
    +

    BXD102

    +
    +

    F

    +
    +

    412

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    28

    +
    +

    K169

    +
    +

    E100318.35

    +
    +

    BXD102

    +
    +

    M

    +
    +

    412

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    29

    +
    +

    K16

    +
    +

    *062117.44

    +
    +

    BXD123

    +
    +

    F

    +
    +

    361

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    30

    +
    +

    K172

    +
    +

    *041118.01

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    343

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    31

    +
    +

    K173

    +
    +

    *041118.03

    +
    +

    C57BL/6J

    +
    +

    M

    +
    +

    343

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    32

    +
    +

    K175

    +
    +

    *041118.05

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    435

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    33

    +
    +

    K176

    +
    +

    *041118.06

    +
    +

    DBA/2J

    +
    +

    M

    +
    +

    435

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    34

    +
    +

    K177

    +
    +

    042314.10

    +
    +

    B6D2F1

    +
    +

    M

    +
    +

    364

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    35

    +
    +

    K178

    +
    +

    042314.12

    +
    +

    B6D2F1

    +
    +

    F

    +
    +

    364

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    36

    +
    +

    K17

    +
    +

    *062117.41

    +
    +

    BXD100

    +
    +

    F

    +
    +

    449

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    37

    +
    +

    K182

    +
    +

    083016.01

    +
    +

    BXD32

    +
    +

    F

    +
    +

    386

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    38

    +
    +

    K183

    +
    +

    083016.02

    +
    +

    BXD32

    +
    +

    F

    +
    +

    386

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    39

    +
    +

    K18

    +
    +

    *062117.49

    +
    +

    BXD125

    +
    +

    M

    +
    +

    396

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    40

    +
    +

    K19

    +
    +

    *062117.45

    +
    +

    BXD123

    +
    +

    F

    +
    +

    361

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    41

    +
    +

    K21

    +
    +

    *062117.43

    +
    +

    BXD100

    +
    +

    M

    +
    +

    449

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    42

    +
    +

    K22

    +
    +

    *062117.28

    +
    +

    BXD70

    +
    +

    F

    +
    +

    359

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    43

    +
    +

    K23

    +
    +

    *062117.39

    +
    +

    BXD87

    +
    +

    F

    +
    +

    359

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    44

    +
    +

    K24

    +
    +

    *062117.52

    +
    +

    BXD150

    +
    +

    M

    +
    +

    385

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    45

    +
    +

    K25

    +
    +

    *062117.29

    +
    +

    BXD70

    +
    +

    M

    +
    +

    359

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    46

    +
    +

    K27

    +
    +

    *071917.54

    +
    +

    BXD75

    +
    +

    F

    +
    +

    366

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    47

    +
    +

    K28

    +
    +

    *071917.50

    +
    +

    BXD73b

    +
    +

    M

    +
    +

    422

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    48

    +
    +

    K29

    +
    +

    *071917.66

    +
    +

    BXD86

    +
    +

    M

    +
    +

    404

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    49

    +
    +

    K2

    +
    +

    *071917.106

    +
    +

    BXD178

    +
    +

    M

    +
    +

    359

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    50

    +
    +

    K30

    +
    +

    *103017.59

    +
    +

    BXD113

    +
    +

    F

    +
    +

    373

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    51

    +
    +

    K32

    +
    +

    *103017.83

    +
    +

    BXD168

    +
    +

    M

    +
    +

    398

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    52

    +
    +

    K33

    +
    +

    *103017.81

    +
    +

    BXD168

    +
    +

    F

    +
    +

    398

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    53

    +
    +

    K35

    +
    +

    *103017.74

    +
    +

    BXD154

    +
    +

    M

    +
    +

    417

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    54

    +
    +

    K36

    +
    +

    *103017.86

    +
    +

    BXD195

    +
    +

    F

    +
    +

    355

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    55

    +
    +

    K38

    +
    +

    *103017.61

    +
    +

    BXD113

    +
    +

    M

    +
    +

    373

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    56

    +
    +

    K39

    +
    +

    *103017.72

    +
    +

    BXD154

    +
    +

    F

    +
    +

    417

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    57

    +
    +

    K40

    +
    +

    *103017.51

    +
    +

    BXD83

    +
    +

    M

    +
    +

    407

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    58

    +
    +

    K41

    +
    +

    *103017.49

    +
    +

    BXD83

    +
    +

    F

    +
    +

    407

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    59

    +
    +

    K42

    +
    +

    *103017.87

    +
    +

    BXD195

    +
    +

    M

    +
    +

    355

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    60

    +
    +

    K44

    +
    +

    *062117.40

    +
    +

    BXD87

    +
    +

    M

    +
    +

    359

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    61

    +
    +

    K49

    +
    +

    *062117.63

    +
    +

    BXD169

    +
    +

    F

    +
    +

    352

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    62

    +
    +

    K4

    +
    +

    *071917.105

    +
    +

    BXD178

    +
    +

    F

    +
    +

    359

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    63

    +
    +

    K50

    +
    +

    *062117.04

    +
    +

    BXD18

    +
    +

    M

    +
    +

    379

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    64

    +
    +

    K51

    +
    +

    *062117.17

    +
    +

    BXD48

    +
    +

    F

    +
    +

    380

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    65

    +
    +

    K53

    +
    +

    *062117.06

    +
    +

    BXD27

    +
    +

    F

    +
    +

    435

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    66

    +
    +

    K54

    +
    +

    *062117.02

    +
    +

    BXD15

    +
    +

    M

    +
    +

    379

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    67

    +
    +

    K56

    +
    +

    *062117.15

    +
    +

    BXD45

    +
    +

    M

    +
    +

    437

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    68

    +
    +

    K57

    +
    +

    *062117.25

    +
    +

    BXD63

    +
    +

    F

    +
    +

    404

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    69

    +
    +

    K59

    +
    +

    *062117.01

    +
    +

    BXD15

    +
    +

    F

    +
    +

    379

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    70

    +
    +

    K5

    +
    +

    *071917.104

    +
    +

    BXD161

    +
    +

    M

    +
    +

    352

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    71

    +
    +

    K60

    +
    +

    *062117.13

    +
    +

    BXD34

    +
    +

    M

    +
    +

    411

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    72

    +
    +

    K61

    +
    +

    *062117.12

    +
    +

    BXD34

    +
    +

    F

    +
    +

    411

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    73

    +
    +

    K62

    +
    +

    *062117.26

    +
    +

    BXD63

    +
    +

    M

    +
    +

    404

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    74

    +
    +

    K63

    +
    +

    *062117.18

    +
    +

    BXD48

    +
    +

    M

    +
    +

    380

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    75

    +
    +

    K65

    +
    +

    *062117.03

    +
    +

    BXD18

    +
    +

    F

    +
    +

    379

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    76

    +
    +

    K67

    +
    +

    *062117.62

    +
    +

    BXD169

    +
    +

    F

    +
    +

    352

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    77

    +
    +

    K68

    +
    +

    *062117.14

    +
    +

    BXD45

    +
    +

    F

    +
    +

    437

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    78

    +
    +

    K69

    +
    +

    *062117.07

    +
    +

    BXD27

    +
    +

    M

    +
    +

    435

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    79

    +
    +

    K6

    +
    +

    *071917.100

    +
    +

    BXD160

    +
    +

    F

    +
    +

    446

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    80

    +
    +

    K71

    +
    +

    *071917.63

    +
    +

    BXD79

    +
    +

    F

    +
    +

    418

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    81

    +
    +

    K73

    +
    +

    *071917.64

    +
    +

    BXD79

    +
    +

    M

    +
    +

    418

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    82

    +
    +

    K74

    +
    +

    *071917.56

    +
    +

    BXD75

    +
    +

    M

    +
    +

    366

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    83

    +
    +

    K76

    +
    +

    *071917.65

    +
    +

    BXD86

    +
    +

    F

    +
    +

    404

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    84

    +
    +

    K78

    +
    +

    *071917.01

    +
    +

    BXD16

    +
    +

    F

    +
    +

    416

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    85

    +
    +

    K79

    +
    +

    *071917.03

    +
    +

    BXD16

    +
    +

    M

    +
    +

    416

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    86

    +
    +

    K7

    +
    +

    *071917.98

    +
    +

    BXD157

    +
    +

    M

    +
    +

    381

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    87

    +
    +

    K80

    +
    +

    *071917.26

    +
    +

    BXD65

    +
    +

    F

    +
    +

    423

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    88

    +
    +

    K82

    +
    +

    *071917.28

    +
    +

    BXD65

    +
    +

    M

    +
    +

    423

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    89

    +
    +

    K83

    +
    +

    *071917.44

    +
    +

    BXD71

    +
    +

    M

    +
    +

    400

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    90

    +
    +

    K84

    +
    +

    *071917.30

    +
    +

    BXD65b

    +
    +

    M

    +
    +

    351

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    91

    +
    +

    K85

    +
    +

    *071917.20

    +
    +

    BXD48a

    +
    +

    M

    +
    +

    387

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    92

    +
    +

    K86

    +
    +

    *071917.29

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    351

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    93

    +
    +

    K88

    +
    +

    *071917.97

    +
    +

    BXD157

    +
    +

    M

    +
    +

    381

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    94

    +
    +

    K89

    +
    +

    *071917.101

    +
    +

    BXD160

    +
    +

    M

    +
    +

    446

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    95

    +
    +

    K90

    +
    +

    *071917.112

    +
    +

    BXD186

    +
    +

    F

    +
    +

    403

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    96

    +
    +

    K91

    +
    +

    *071917.102

    +
    +

    BXD161

    +
    +

    F

    +
    +

    352

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    97

    +
    +

    K92

    +
    +

    *071917.114

    +
    +

    BXD186

    +
    +

    M

    +
    +

    403

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    98

    +
    +

    K93

    +
    +

    *071917.90

    +
    +

    BXD152

    +
    +

    F

    +
    +

    405

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    99

    +
    +

    K94

    +
    +

    *071917.53

    +
    +

    BXD74

    +
    +

    M

    +
    +

    427

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    100

    +
    +

    K95

    +
    +

    *071917.48

    +
    +

    BXD73b

    +
    +

    F

    +
    +

    422

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    101

    +
    +

    K96

    +
    +

    *071917.52

    +
    +

    BXD74

    +
    +

    F

    +
    +

    427

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    102

    +
    +

    K97

    +
    +

    *062117.36

    +
    +

    BXD84

    +
    +

    F

    +
    +

    441

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    103

    +
    +

    K98

    +
    +

    *103017.58

    +
    +

    BXD111

    +
    +

    M

    +
    +

    441

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    104

    +
    +

    K99

    +
    +

    *103017.57

    +
    +

    BXD111

    +
    +

    F

    +
    +

    441

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    105

    +
    +

    K9

    +
    +

    *062117.33

    +
    +

    BXD77

    +
    +

    F

    +
    +

    355

    +
    +

    Heart

    +
    +

    Chow diet

    +
    diff --git a/general/datasets/Nhlbi_bxd_aged_heart_cd_rna_seq_1120/tissue.rtf b/general/datasets/Nhlbi_bxd_aged_heart_cd_rna_seq_1120/tissue.rtf new file mode 100644 index 0000000..8d370c0 --- /dev/null +++ b/general/datasets/Nhlbi_bxd_aged_heart_cd_rna_seq_1120/tissue.rtf @@ -0,0 +1,3 @@ +

    Tissue Harvest 

    + +

    The animals were sacrificed under saturated isoflurane. Whole heart from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/Nhlbi_bxd_aged_heart_hfd_rna_seq_1120/experiment-design.rtf b/general/datasets/Nhlbi_bxd_aged_heart_hfd_rna_seq_1120/experiment-design.rtf new file mode 100644 index 0000000..fbdad24 --- /dev/null +++ b/general/datasets/Nhlbi_bxd_aged_heart_hfd_rna_seq_1120/experiment-design.rtf @@ -0,0 +1,3 @@ +

    RNA Extraction

    + +

    Total RNA was extracted using MIRNEASY MINI KIT (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Approximately 30 mg of left ventricle tissue was added into a 2 ml tube containing 700ul QIAzol Lysis Reagent and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 minutes in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 r followed by incubating for 5 minutes.140 µl chloroform was added into the homogenate, shaken vigorously for 15 seconds, and centrifuged for 15 minutes at 12,000 x g at 4 â„ƒ. 280 µl upper aqueous was then transferred into a new collection tube containing 500 µl 100% ethanol. The mixture was loaded into a RNeasy mini‐spin column (Qiagen, Valencia, CA, USA), once with Buffer RWT and twice with Buffer RPE purification. All RNA had been verified by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA with OD260/280 > 1.8 and RIN > 8.0 were used for library preparation

    diff --git a/general/datasets/Nhlbi_bxd_aged_heart_hfd_rna_seq_1120/processing.rtf b/general/datasets/Nhlbi_bxd_aged_heart_hfd_rna_seq_1120/processing.rtf new file mode 100644 index 0000000..8e460ff --- /dev/null +++ b/general/datasets/Nhlbi_bxd_aged_heart_hfd_rna_seq_1120/processing.rtf @@ -0,0 +1,9 @@ +

    Generation of RNA-seq data

    + +

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    + +

     

    + +

    Read mapping and normalization

    + +

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/Nhlbi_bxd_aged_heart_hfd_rna_seq_1120/specifics.rtf b/general/datasets/Nhlbi_bxd_aged_heart_hfd_rna_seq_1120/specifics.rtf new file mode 100644 index 0000000..49d8e5b --- /dev/null +++ b/general/datasets/Nhlbi_bxd_aged_heart_hfd_rna_seq_1120/specifics.rtf @@ -0,0 +1,1758 @@ +

    NHLBI BXD Aged Heart HFD RNA-Seq (Nov20) TMP Log2

    + +

    About the cases used to generate this set of data:

    + +

    The study included 66 mice (~12 month) from B6, B6D2F1, D2B6F1, and 31 advanced intercross BXD strains (about 2 mice per strain). All mice were fed on high fat diet (HFD). All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    + +

     

    + +

    The table of samples that are finally used for this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Index

    +
    +

    Sample ID

    +
    +

    Case id

    +
    +

    Strain

    +
    +

    Fuyi_Sex_Final

    +
    +

    Sac age/Day

    +
    +

    Tissue

    +
    +

    Diet

    +
    +

    1

    +
    +

    A12

    +
    +

    042214.06

    +
    +

    BXD29

    +
    +

    F

    +
    +

    369

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    2

    +
    +

    A13

    +
    +

    042214.13

    +
    +

    BXD86

    +
    +

    F

    +
    +

    360

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    3

    +
    +

    A14

    +
    +

    042214.14

    +
    +

    BXD86

    +
    +

    F

    +
    +

    360

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    4

    +
    +

    A15

    +
    +

    042314.15

    +
    +

    C57BL/6J

    +
    +

    M

    +
    +

    363

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    5

    +
    +

    A16

    +
    +

    042314.16

    +
    +

    C57BL/6J

    +
    +

    M

    +
    +

    363

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    6

    +
    +

    A17

    +
    +

    042314.08

    +
    +

    B6D2F1

    +
    +

    M

    +
    +

    404

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    7

    +
    +

    A18

    +
    +

    042314.07

    +
    +

    B6D2F1

    +
    +

    M

    +
    +

    404

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    8

    +
    +

    A19

    +
    +

    042314.05

    +
    +

    BXD64

    +
    +

    F

    +
    +

    366

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    9

    +
    +

    A20

    +
    +

    042314.06

    +
    +

    BXD64

    +
    +

    F

    +
    +

    366

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    10

    +
    +

    A21

    +
    +

    042314.03

    +
    +

    BXD100

    +
    +

    F

    +
    +

    363

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    11

    +
    +

    A22

    +
    +

    042314.04

    +
    +

    BXD100

    +
    +

    F

    +
    +

    363

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    12

    +
    +

    A23

    +
    +

    042314.02

    +
    +

    D2B6F1

    +
    +

    F

    +
    +

    371

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    13

    +
    +

    A24

    +
    +

    042314.01

    +
    +

    D2B6F1

    +
    +

    F

    +
    +

    371

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    14

    +
    +

    A25

    +
    +

    021313.30

    +
    +

    BXD87

    +
    +

    F

    +
    +

    359

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    15

    +
    +

    A26

    +
    +

    021313.29

    +
    +

    BXD87

    +
    +

    F

    +
    +

    359

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    16

    +
    +

    A27

    +
    +

    042915.06

    +
    +

    BXD29

    +
    +

    F

    +
    +

    431

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    17

    +
    +

    A28

    +
    +

    050115.03

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    415

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    18

    +
    +

    A29

    +
    +

    042915.10

    +
    +

    BXD32

    +
    +

    F

    +
    +

    441

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    19

    +
    +

    A2

    +
    +

    042415.14

    +
    +

    BXD102

    +
    +

    F

    +
    +

    353

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    20

    +
    +

    A30

    +
    +

    050115.04

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    415

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    21

    +
    +

    A31

    +
    +

    121515.16

    +
    +

    BXD45

    +
    +

    F

    +
    +

    350

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    22

    +
    +

    A32

    +
    +

    012615.22

    +
    +

    BXD50

    +
    +

    F

    +
    +

    361

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    23

    +
    +

    A33

    +
    +

    012615.21

    +
    +

    BXD50

    +
    +

    F

    +
    +

    361

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    24

    +
    +

    A34

    +
    +

    121515.17

    +
    +

    BXD45

    +
    +

    F

    +
    +

    350

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    25

    +
    +

    A36

    +
    +

    012615.13

    +
    +

    BXD44

    +
    +

    F

    +
    +

    379

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    26

    +
    +

    A37

    +
    +

    012615.24

    +
    +

    BXD75

    +
    +

    F

    +
    +

    367

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    27

    +
    +

    A3

    +
    +

    090512.12

    +
    +

    BXD77

    +
    +

    F

    +
    +

    353

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    28

    +
    +

    A40

    +
    +

    012615.23

    +
    +

    BXD75

    +
    +

    F

    +
    +

    367

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    29

    +
    +

    A41

    +
    +

    042915.16

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    436

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    30

    +
    +

    A42

    +
    +

    042915.15

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    436

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    31

    +
    +

    A43

    +
    +

    111414.15

    +
    +

    BXD102

    +
    +

    F

    +
    +

    351

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    32

    +
    +

    A44

    +
    +

    012615.12

    +
    +

    BXD44

    +
    +

    F

    +
    +

    379

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    33

    +
    +

    A45

    +
    +

    121214.12

    +
    +

    BXD73

    +
    +

    F

    +
    +

    361

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    34

    +
    +

    A49

    +
    +

    121214.14

    +
    +

    BXD40

    +
    +

    F

    +
    +

    358

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    35

    +
    +

    A4

    +
    +

    090512.11

    +
    +

    BXD77

    +
    +

    F

    +
    +

    353

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    36

    +
    +

    A50

    +
    +

    010614.21

    +
    +

    BXD90

    +
    +

    F

    +
    +

    343

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    37

    +
    +

    A51

    +
    +

    121214.04

    +
    +

    BXD66

    +
    +

    F

    +
    +

    367

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    38

    +
    +

    A52

    +
    +

    121214.13

    +
    +

    BXD40

    +
    +

    F

    +
    +

    358

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    39

    +
    +

    A53

    +
    +

    121214.11

    +
    +

    BXD73

    +
    +

    F

    +
    +

    361

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    40

    +
    +

    A54

    +
    +

    021213.24

    +
    +

    BXD84

    +
    +

    F

    +
    +

    343

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    41

    +
    +

    A55

    +
    +

    021213.18

    +
    +

    BXD69

    +
    +

    F

    +
    +

    347

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    42

    +
    +

    A56

    +
    +

    021213.17

    +
    +

    BXD69

    +
    +

    F

    +
    +

    347

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    43

    +
    +

    A57

    +
    +

    021213.16

    +
    +

    BXD62

    +
    +

    F

    +
    +

    343

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    44

    +
    +

    A58

    +
    +

    021213.15

    +
    +

    BXD62

    +
    +

    F

    +
    +

    343

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    45

    +
    +

    A59

    +
    +

    021113.11

    +
    +

    BXD51

    +
    +

    F

    +
    +

    357

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    46

    +
    +

    A60

    +
    +

    010614.14

    +
    +

    BXD65

    +
    +

    F

    +
    +

    367

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    47

    +
    +

    A61

    +
    +

    010614.13

    +
    +

    BXD65

    +
    +

    F

    +
    +

    367

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    48

    +
    +

    A62

    +
    +

    021213.23

    +
    +

    BXD84

    +
    +

    F

    +
    +

    343

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    49

    +
    +

    A63

    +
    +

    090514.03

    +
    +

    BXD43

    +
    +

    F

    +
    +

    367

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    50

    +
    +

    A64

    +
    +

    090514.04

    +
    +

    BXD43

    +
    +

    F

    +
    +

    367

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    51

    +
    +

    A65

    +
    +

    010614.22

    +
    +

    BXD90

    +
    +

    F

    +
    +

    343

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    52

    +
    +

    A66

    +
    +

    010614.17

    +
    +

    BXD73b

    +
    +

    F

    +
    +

    385

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    53

    +
    +

    A68

    +
    +

    121214.22

    +
    +

    BXD39

    +
    +

    F

    +
    +

    350

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    54

    +
    +

    A69

    +
    +

    121214.21

    +
    +

    BXD39

    +
    +

    F

    +
    +

    350

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    55

    +
    +

    A6

    +
    +

    090512.08

    +
    +

    BXD66

    +
    +

    F

    +
    +

    359

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    56

    +
    +

    A70

    +
    +

    121214.18

    +
    +

    BXD70

    +
    +

    F

    +
    +

    357

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    57

    +
    +

    A71

    +
    +

    121214.17

    +
    +

    BXD70

    +
    +

    F

    +
    +

    357

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    58

    +
    +

    A72

    +
    +

    021313.33

    +
    +

    BXD98

    +
    +

    F

    +
    +

    360

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    59

    +
    +

    A73

    +
    +

    021313.34

    +
    +

    BXD98

    +
    +

    F

    +
    +

    360

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    60

    +
    +

    A74

    +
    +

    092216.09

    +
    +

    BXD27

    +
    +

    F

    +
    +

    387

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    61

    +
    +

    A75

    +
    +

    092216.10

    +
    +

    BXD27

    +
    +

    F

    +
    +

    387

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    62

    +
    +

    A77

    +
    +

    121615.02

    +
    +

    BXD61

    +
    +

    F

    +
    +

    364

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    63

    +
    +

    A78

    +
    +

    121615.01

    +
    +

    BXD61

    +
    +

    F

    +
    +

    364

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    64

    +
    +

    A7

    +
    +

    090512.01

    +
    +

    BXD9

    +
    +

    F

    +
    +

    347

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    65

    +
    +

    A8

    +
    +

    090512.02

    +
    +

    BXD9

    +
    +

    F

    +
    +

    349

    +
    +

    Heart

    +
    +

    High fat diet

    +
    +

    66

    +
    +

    A97

    +
    +

    050115.11

    +
    +

    BXD73b

    +
    +

    F

    +
    +

    474

    +
    +

    Heart

    +
    +

    High fat diet

    +
    + +

     

    diff --git a/general/datasets/Nhlbi_bxd_aged_heart_hfd_rna_seq_1120/tissue.rtf b/general/datasets/Nhlbi_bxd_aged_heart_hfd_rna_seq_1120/tissue.rtf new file mode 100644 index 0000000..8d370c0 --- /dev/null +++ b/general/datasets/Nhlbi_bxd_aged_heart_hfd_rna_seq_1120/tissue.rtf @@ -0,0 +1,3 @@ +

    Tissue Harvest 

    + +

    The animals were sacrificed under saturated isoflurane. Whole heart from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/Nhlbi_bxd_all_ages_heart_rna_seq_1120/experiment-design.rtf b/general/datasets/Nhlbi_bxd_all_ages_heart_rna_seq_1120/experiment-design.rtf new file mode 100644 index 0000000..fbdad24 --- /dev/null +++ b/general/datasets/Nhlbi_bxd_all_ages_heart_rna_seq_1120/experiment-design.rtf @@ -0,0 +1,3 @@ +

    RNA Extraction

    + +

    Total RNA was extracted using MIRNEASY MINI KIT (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Approximately 30 mg of left ventricle tissue was added into a 2 ml tube containing 700ul QIAzol Lysis Reagent and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 minutes in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 r followed by incubating for 5 minutes.140 µl chloroform was added into the homogenate, shaken vigorously for 15 seconds, and centrifuged for 15 minutes at 12,000 x g at 4 â„ƒ. 280 µl upper aqueous was then transferred into a new collection tube containing 500 µl 100% ethanol. The mixture was loaded into a RNeasy mini‐spin column (Qiagen, Valencia, CA, USA), once with Buffer RWT and twice with Buffer RPE purification. All RNA had been verified by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA with OD260/280 > 1.8 and RIN > 8.0 were used for library preparation

    diff --git a/general/datasets/Nhlbi_bxd_all_ages_heart_rna_seq_1120/processing.rtf b/general/datasets/Nhlbi_bxd_all_ages_heart_rna_seq_1120/processing.rtf new file mode 100644 index 0000000..8e460ff --- /dev/null +++ b/general/datasets/Nhlbi_bxd_all_ages_heart_rna_seq_1120/processing.rtf @@ -0,0 +1,9 @@ +

    Generation of RNA-seq data

    + +

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    + +

     

    + +

    Read mapping and normalization

    + +

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/Nhlbi_bxd_all_ages_heart_rna_seq_1120/specifics.rtf b/general/datasets/Nhlbi_bxd_all_ages_heart_rna_seq_1120/specifics.rtf new file mode 100644 index 0000000..55635fc --- /dev/null +++ b/general/datasets/Nhlbi_bxd_all_ages_heart_rna_seq_1120/specifics.rtf @@ -0,0 +1 @@ +NHLBI BXD All Ages Heart RNA-Seq (Nov20) TMP Log2 \ No newline at end of file diff --git a/general/datasets/Nhlbi_bxd_all_ages_heart_rna_seq_1120/tissue.rtf b/general/datasets/Nhlbi_bxd_all_ages_heart_rna_seq_1120/tissue.rtf new file mode 100644 index 0000000..8d370c0 --- /dev/null +++ b/general/datasets/Nhlbi_bxd_all_ages_heart_rna_seq_1120/tissue.rtf @@ -0,0 +1,3 @@ +

    Tissue Harvest 

    + +

    The animals were sacrificed under saturated isoflurane. Whole heart from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/Nhlbi_bxd_young_adult_heart_cd_cms_rna/experiment-design.rtf b/general/datasets/Nhlbi_bxd_young_adult_heart_cd_cms_rna/experiment-design.rtf new file mode 100644 index 0000000..fbdad24 --- /dev/null +++ b/general/datasets/Nhlbi_bxd_young_adult_heart_cd_cms_rna/experiment-design.rtf @@ -0,0 +1,3 @@ +

    RNA Extraction

    + +

    Total RNA was extracted using MIRNEASY MINI KIT (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Approximately 30 mg of left ventricle tissue was added into a 2 ml tube containing 700ul QIAzol Lysis Reagent and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 minutes in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 r followed by incubating for 5 minutes.140 µl chloroform was added into the homogenate, shaken vigorously for 15 seconds, and centrifuged for 15 minutes at 12,000 x g at 4 â„ƒ. 280 µl upper aqueous was then transferred into a new collection tube containing 500 µl 100% ethanol. The mixture was loaded into a RNeasy mini‐spin column (Qiagen, Valencia, CA, USA), once with Buffer RWT and twice with Buffer RPE purification. All RNA had been verified by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA with OD260/280 > 1.8 and RIN > 8.0 were used for library preparation

    diff --git a/general/datasets/Nhlbi_bxd_young_adult_heart_cd_cms_rna/processing.rtf b/general/datasets/Nhlbi_bxd_young_adult_heart_cd_cms_rna/processing.rtf new file mode 100644 index 0000000..8e460ff --- /dev/null +++ b/general/datasets/Nhlbi_bxd_young_adult_heart_cd_cms_rna/processing.rtf @@ -0,0 +1,9 @@ +

    Generation of RNA-seq data

    + +

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    + +

     

    + +

    Read mapping and normalization

    + +

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/Nhlbi_bxd_young_adult_heart_cd_cms_rna/specifics.rtf b/general/datasets/Nhlbi_bxd_young_adult_heart_cd_cms_rna/specifics.rtf new file mode 100644 index 0000000..24b6e71 --- /dev/null +++ b/general/datasets/Nhlbi_bxd_young_adult_heart_cd_cms_rna/specifics.rtf @@ -0,0 +1,1907 @@ +

    NHLBI BXD Young Adult Heart CD CMS RNA-Seq (Nov20) TMP Log2

    + +

    About the cases used to generate this set of data:

    + +

    The study included 64 mice (~6 month) from B6, D2, and 32 advanced intercross BXD strains (about 2 mice per strain). All mice were fed on chow diet (CD) and treated with chronic mild stress (CMS). All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    + +

     

    + +

    Chronic Mild Stress (CMS)

    + +

    During a period of 7 weeks, mice received 2 disturbances per day. These consisted of being exposed to wet bedding for 1 hour, 1 cm of water in the bottom of the cage with no bedding for 1 hour, no bedding for 1 hour, confinement in a 3 × 3 × 3 cm plastic box for 15 minutes, tilted cage at 45º for 1 hour, and exposure to foreign mouse or fox urine odor for 1 hour. The other stressor was a complete phase shift in the light:dark cycle over each weekend. Disruption of the light cycle (lights constantly on) occurred over the weekend (starting Friday 11:00 am) with the light cycle resuming at 11 am on Monday (lights off). The schedule was repeated weekly over the duration of the study.

    + +

     

    + +

     

    + +

    The table of samples that are finally used for this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Index

    +
    +

    Sample ID

    +
    +

    Case id

    +
    +

    Strain

    +
    +

    Fuyi_Sex_Final

    +
    +

    Sac age/Day

    +
    +

    Tissue

    +
    +

    Diet

    +
    +

    Treatment

    +
    +

    1

    +
    +

    C100

    +
    +

    090215.15

    +
    +

    BXD68

    +
    +

    F

    +
    +

    185

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    2

    +
    +

    C101

    +
    +

    090215.16

    +
    +

    BXD48

    +
    +

    F

    +
    +

    171

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    3

    +
    +

    C102

    +
    +

    090215.20

    +
    +

    BXD79

    +
    +

    F

    +
    +

    162

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    4

    +
    +

    C103

    +
    +

    090215.21

    +
    +

    BXD63

    +
    +

    F

    +
    +

    169

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    5

    +
    +

    C104

    +
    +

    090215.24

    +
    +

    BXD32

    +
    +

    F

    +
    +

    188

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    6

    +
    +

    C105

    +
    +

    090215.28

    +
    +

    BXD63

    +
    +

    F

    +
    +

    169

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    7

    +
    +

    C10

    +
    +

    CMS102816.14

    +
    +

    BXD77

    +
    +

    F

    +
    +

    124

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    8

    +
    +

    C112

    +
    +

    CMS032917.33

    +
    +

    BXD70

    +
    +

    F

    +
    +

    162

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    9

    +
    +

    C118

    +
    +

    CMS082917.05

    +
    +

    BXD77

    +
    +

    F

    +
    +

    196

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    10

    +
    +

    C11

    +
    +

    CMS102816.15

    +
    +

    BXD73b

    +
    +

    F

    +
    +

    163

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    11

    +
    +

    C13

    +
    +

    CMS102816.17

    +
    +

    BXD100

    +
    +

    F

    +
    +

    139

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    12

    +
    +

    C14

    +
    +

    CMS102816.18

    +
    +

    BXD43

    +
    +

    F

    +
    +

    155

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    13

    +
    +

    C15

    +
    +

    CMS102816.19

    +
    +

    BXD83

    +
    +

    F

    +
    +

    168

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    14

    +
    +

    C17

    +
    +

    CMS102816.21

    +
    +

    BXD65

    +
    +

    F

    +
    +

    163

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    15

    +
    +

    C19

    +
    +

    CMS102816.05

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    156

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    16

    +
    +

    C1

    +
    +

    CMS082817.05

    +
    +

    BXD48

    +
    +

    F

    +
    +

    174

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    17

    +
    +

    C21

    +
    +

    CMS102816.07

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    156

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    18

    +
    +

    C23

    +
    +

    CMS102816.09

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    159

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    19

    +
    +

    C25

    +
    +

    CMS102816.11

    +
    +

    BXD100

    +
    +

    F

    +
    +

    139

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    20

    +
    +

    C28

    +
    +

    CMS102716.16

    +
    +

    BXD77

    +
    +

    F

    +
    +

    123

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    21

    +
    +

    C2

    +
    +

    CMS083017.19

    +
    +

    BXD24

    +
    +

    F

    +
    +

    171

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    22

    +
    +

    C30

    +
    +

    CMS102716.19

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    121

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    23

    +
    +

    C31

    +
    +

    CMS102716.20

    +
    +

    BXD50

    +
    +

    F

    +
    +

    161

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    24

    +
    +

    C32

    +
    +

    CMS102716.01

    +
    +

    BXD83

    +
    +

    F

    +
    +

    167

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    25

    +
    +

    C34

    +
    +

    CMS102716.10

    +
    +

    BXD43

    +
    +

    F

    +
    +

    144

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    26

    +
    +

    C35

    +
    +

    CMS102716.12

    +
    +

    BXD62

    +
    +

    F

    +
    +

    144

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    27

    +
    +

    C36

    +
    +

    CMS102716.03

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    121

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    28

    +
    +

    C38

    +
    +

    CMS102716.06

    +
    +

    BXD34

    +
    +

    M

    +
    +

    157

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    29

    +
    +

    C39

    +
    +

    CMS102716.07

    +
    +

    BXD24

    +
    +

    F

    +
    +

    157

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    30

    +
    +

    C3

    +
    +

    CMS083017.18

    +
    +

    BXD87

    +
    +

    F

    +
    +

    174

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    31

    +
    +

    C40

    +
    +

    CMS102716.08

    +
    +

    BXD60

    +
    +

    F

    +
    +

    155

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    32

    +
    +

    C41

    +
    +

    CMS102716.09

    +
    +

    BXD60

    +
    +

    F

    +
    +

    142

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    33

    +
    +

    C44

    +
    +

    CMS033017.25

    +
    +

    BXD78

    +
    +

    F

    +
    +

    163

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    34

    +
    +

    C45

    +
    +

    CMS032817.28

    +
    +

    BXD66

    +
    +

    F

    +
    +

    168

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    35

    +
    +

    C46

    +
    +

    CMS032817.23

    +
    +

    BXD86

    +
    +

    F

    +
    +

    179

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    36

    +
    +

    C47

    +
    +

    CMS082817.24

    +
    +

    BXD51

    +
    +

    F

    +
    +

    186

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    37

    +
    +

    C48

    +
    +

    CMS082817.14

    +
    +

    BXD65

    +
    +

    F

    +
    +

    182

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    38

    +
    +

    C49

    +
    +

    CMS082817.07

    +
    +

    BXD44

    +
    +

    F

    +
    +

    202

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    39

    +
    +

    C56

    +
    +

    CMS102716.13

    +
    +

    BXD77

    +
    +

    F

    +
    +

    151

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    40

    +
    +

    C60

    +
    +

    CMS032917.33

    +
    +

    BXD70

    +
    +

    F

    +
    +

    162

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    41

    +
    +

    C61

    +
    +

    CMS032917.29

    +
    +

    BXD71

    +
    +

    F

    +
    +

    162

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    42

    +
    +

    C62

    +
    +

    CMS032917.26

    +
    +

    BXD87

    +
    +

    F

    +
    +

    173

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    43

    +
    +

    C63

    +
    +

    CMS032917.22

    +
    +

    BXD71

    +
    +

    F

    +
    +

    170

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    44

    +
    +

    C64

    +
    +

    CMS083017.07

    +
    +

    BXD69

    +
    +

    F

    +
    +

    202

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    45

    +
    +

    C65

    +
    +

    CMS082917.19

    +
    +

    BXD44

    +
    +

    F

    +
    +

    182

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    46

    +
    +

    C66

    +
    +

    CMS030716.03

    +
    +

    BXD101

    +
    +

    F

    +
    +

    196

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    47

    +
    +

    C67

    +
    +

    CMS030716.06

    +
    +

    BXD69

    +
    +

    F

    +
    +

    193

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    48

    +
    +

    C68

    +
    +

    CMS030716.12

    +
    +

    BXD68

    +
    +

    F

    +
    +

    166

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    49

    +
    +

    C69

    +
    +

    CMS030716.13

    +
    +

    BXD55

    +
    +

    F

    +
    +

    166

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    50

    +
    +

    C70

    +
    +

    CMS030716.18

    +
    +

    BXD40

    +
    +

    F

    +
    +

    182

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    51

    +
    +

    C71

    +
    +

    CMS030716.19

    +
    +

    BXD40

    +
    +

    F

    +
    +

    182

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    52

    +
    +

    C73

    +
    +

    CMS030716.32

    +
    +

    BXD101

    +
    +

    F

    +
    +

    196

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    53

    +
    +

    C75

    +
    +

    CMS030916.11

    +
    +

    BXD79

    +
    +

    F

    +
    +

    167

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    54

    +
    +

    C76

    +
    +

    CMS030916.14

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    168

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    55

    +
    +

    C77

    +
    +

    CMS030916.20

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    190

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    56

    +
    +

    C79

    +
    +

    CMS030916.23

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    182

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    57

    +
    +

    C80

    +
    +

    CMS030916.28

    +
    +

    BXD66

    +
    +

    F

    +
    +

    162

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    58

    +
    +

    C81

    +
    +

    CMS030916.32

    +
    +

    BXD86

    +
    +

    F

    +
    +

    193

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    59

    +
    +

    C84

    +
    +

    CMS102816.03

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    159

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    60

    +
    +

    C85

    +
    +

    CMS102716.11

    +
    +

    BXD34

    +
    +

    F

    +
    +

    157

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    61

    +
    +

    C96

    +
    +

    090215.02

    +
    +

    BXD62

    +
    +

    F

    +
    +

    137

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    62

    +
    +

    C97

    +
    +

    090215.05

    +
    +

    BXD75

    +
    +

    F

    +
    +

    180

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    63

    +
    +

    C98

    +
    +

    090215.06

    +
    +

    BXD32

    +
    +

    F

    +
    +

    188

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    +

    64

    +
    +

    C99

    +
    +

    090215.09

    +
    +

    BXD75

    +
    +

    F

    +
    +

    180

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    CMS

    +
    diff --git a/general/datasets/Nhlbi_bxd_young_adult_heart_cd_cms_rna/tissue.rtf b/general/datasets/Nhlbi_bxd_young_adult_heart_cd_cms_rna/tissue.rtf new file mode 100644 index 0000000..8d370c0 --- /dev/null +++ b/general/datasets/Nhlbi_bxd_young_adult_heart_cd_cms_rna/tissue.rtf @@ -0,0 +1,3 @@ +

    Tissue Harvest 

    + +

    The animals were sacrificed under saturated isoflurane. Whole heart from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/Nhlbi_bxd_young_adult_heart_cd_rna_seq/experiment-design.rtf b/general/datasets/Nhlbi_bxd_young_adult_heart_cd_rna_seq/experiment-design.rtf new file mode 100644 index 0000000..fbdad24 --- /dev/null +++ b/general/datasets/Nhlbi_bxd_young_adult_heart_cd_rna_seq/experiment-design.rtf @@ -0,0 +1,3 @@ +

    RNA Extraction

    + +

    Total RNA was extracted using MIRNEASY MINI KIT (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Approximately 30 mg of left ventricle tissue was added into a 2 ml tube containing 700ul QIAzol Lysis Reagent and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 minutes in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 r followed by incubating for 5 minutes.140 µl chloroform was added into the homogenate, shaken vigorously for 15 seconds, and centrifuged for 15 minutes at 12,000 x g at 4 â„ƒ. 280 µl upper aqueous was then transferred into a new collection tube containing 500 µl 100% ethanol. The mixture was loaded into a RNeasy mini‐spin column (Qiagen, Valencia, CA, USA), once with Buffer RWT and twice with Buffer RPE purification. All RNA had been verified by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA with OD260/280 > 1.8 and RIN > 8.0 were used for library preparation

    diff --git a/general/datasets/Nhlbi_bxd_young_adult_heart_cd_rna_seq/processing.rtf b/general/datasets/Nhlbi_bxd_young_adult_heart_cd_rna_seq/processing.rtf new file mode 100644 index 0000000..8e460ff --- /dev/null +++ b/general/datasets/Nhlbi_bxd_young_adult_heart_cd_rna_seq/processing.rtf @@ -0,0 +1,9 @@ +

    Generation of RNA-seq data

    + +

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    + +

     

    + +

    Read mapping and normalization

    + +

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/Nhlbi_bxd_young_adult_heart_cd_rna_seq/specifics.rtf b/general/datasets/Nhlbi_bxd_young_adult_heart_cd_rna_seq/specifics.rtf new file mode 100644 index 0000000..96fa0b5 --- /dev/null +++ b/general/datasets/Nhlbi_bxd_young_adult_heart_cd_rna_seq/specifics.rtf @@ -0,0 +1,2302 @@ +

    NHLBI BXD Young Adult Heart CD RNA-Seq (Nov20) TMP Log2

    + +

    About the cases used to generate this set of data:

    + +

    The study included 87 mice (~6 month) from B6, D2, and 41 advanced intercross BXD strains (about 2 mice per strain). All mice were fed on chow diet (CD). All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    + +

     

    + +

    The table of samples that are finally used for this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Index

    +
    +

    Sample ID

    +
    +

    Case id

    +
    +

    Strain

    +
    +

    Fuyi_Sex_Final

    +
    +

    Age (Day)

    +
    +

    Tissue

    +
    +

    Diet

    +
    +

    1

    +
    +

    H100

    +
    +

    *091317.07

    +
    +

    BXD61

    +
    +

    M

    +
    +

    128

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    2

    +
    +

    H101

    +
    +

    *052417.59

    +
    +

    BXD177

    +
    +

    F

    +
    +

    125

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    3

    +
    +

    H102

    +
    +

    *052417.26

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    141

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    4

    +
    +

    H103

    +
    +

    *060717.02

    +
    +

    BXD9

    +
    +

    M

    +
    +

    149

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    5

    +
    +

    H109

    +
    +

    *052417.49

    +
    +

    BXD152

    +
    +

    F

    +
    +

    147

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    6

    +
    +

    H110

    +
    +

    *052417.35

    +
    +

    BXD86

    +
    +

    F

    +
    +

    127

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    7

    +
    +

    H112

    +
    +

    *052417.24

    +
    +

    BXD73

    +
    +

    F

    +
    +

    173

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    8

    +
    +

    H113

    +
    +

    *052417.25

    +
    +

    BXD73

    +
    +

    M

    +
    +

    173

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    9

    +
    +

    H116

    +
    +

    *121917.28

    +
    +

    BXD180

    +
    +

    F

    +
    +

    120

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    10

    +
    +

    H11

    +
    +

    *121917.20

    +
    +

    BXD111

    +
    +

    M

    +
    +

    122

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    11

    +
    +

    H120

    +
    +

    *111417.04

    +
    +

    BXD40

    +
    +

    M

    +
    +

    133

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    12

    +
    +

    H121

    +
    +

    *091317.02

    +
    +

    BXD48a

    +
    +

    M

    +
    +

    125

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    13

    +
    +

    H122

    +
    +

    *092717.59

    +
    +

    BXD154

    +
    +

    F

    +
    +

    135

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    14

    +
    +

    H124

    +
    +

    *092717.60

    +
    +

    BXD154

    +
    +

    F

    +
    +

    135

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    15

    +
    +

    H126

    +
    +

    *092717.65

    +
    +

    BXD155

    +
    +

    F

    +
    +

    133

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    16

    +
    +

    H127

    +
    +

    *092717.67

    +
    +

    BXD169

    +
    +

    M

    +
    +

    133

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    17

    +
    +

    H129

    +
    +

    *092717.37

    +
    +

    BXD78

    +
    +

    F

    +
    +

    133

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    18

    +
    +

    H12

    +
    +

    *121917.21

    +
    +

    BXD111

    +
    +

    M

    +
    +

    122

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    19

    +
    +

    H130

    +
    +

    AGE050118.27

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    167

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    20

    +
    +

    H131

    +
    +

    AGE050118.28

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    167

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    21

    +
    +

    H132

    +
    +

    AGE050118.29

    +
    +

    DBA/2J

    +
    +

    M

    +
    +

    167

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    22

    +
    +

    H138

    +
    +

    *112118.32

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    208

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    23

    +
    +

    H139

    +
    +

    *112118.33

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    208

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    24

    +
    +

    H140

    +
    +

    *112118.34

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    208

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    25

    +
    +

    H14

    +
    +

    *092017.36

    +
    +

    BXD113

    +
    +

    F

    +
    +

    132

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    26

    +
    +

    H15

    +
    +

    *092017.37

    +
    +

    BXD113

    +
    +

    M

    +
    +

    132

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    27

    +
    +

    H16

    +
    +

    *060717.15

    +
    +

    BXD123

    +
    +

    F

    +
    +

    182

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    28

    +
    +

    H17

    +
    +

    *060717.16

    +
    +

    BXD123

    +
    +

    M

    +
    +

    182

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    29

    +
    +

    H19

    +
    +

    *052417.44

    +
    +

    BXD128 (WAS b)

    +
    +

    F

    +
    +

    161

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    30

    +
    +

    H20

    +
    +

    *052417.45

    +
    +

    BXD128 (WAS b)

    +
    +

    F

    +
    +

    161

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    31

    +
    +

    H21

    +
    +

    *092017.38

    +
    +

    BXD144

    +
    +

    F

    +
    +

    133

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    32

    +
    +

    H23

    +
    +

    *092017.39

    +
    +

    BXD144

    +
    +

    M

    +
    +

    133

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    33

    +
    +

    H25

    +
    +

    *060717.03

    +
    +

    BXD15

    +
    +

    F

    +
    +

    143

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    34

    +
    +

    H26

    +
    +

    *060717.04

    +
    +

    BXD15

    +
    +

    F

    +
    +

    143

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    35

    +
    +

    H27

    +
    +

    *052417.47

    +
    +

    BXD151

    +
    +

    F

    +
    +

    127

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    36

    +
    +

    H28

    +
    +

    *092017.40

    +
    +

    BXD151

    +
    +

    M

    +
    +

    133

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    37

    +
    +

    H30

    +
    +

    *052417.51

    +
    +

    BXD152

    +
    +

    M

    +
    +

    147

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    38

    +
    +

    H31

    +
    +

    *052417.54

    +
    +

    BXD155

    +
    +

    M

    +
    +

    119

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    39

    +
    +

    H32

    +
    +

    *091317.01

    +
    +

    BXD16

    +
    +

    F

    +
    +

    128

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    40

    +
    +

    H33

    +
    +

    *111417.11

    +
    +

    BXD169

    +
    +

    F

    +
    +

    121

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    41

    +
    +

    H36

    +
    +

    *121917.16

    +
    +

    BXD171

    +
    +

    F

    +
    +

    124

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    42

    +
    +

    H38

    +
    +

    *092017.41

    +
    +

    BXD171

    +
    +

    M

    +
    +

    133

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    43

    +
    +

    H41

    +
    +

    *052417.60

    +
    +

    BXD177

    +
    +

    M

    +
    +

    125

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    44

    +
    +

    H43

    +
    +

    *052417.62

    +
    +

    BXD180

    +
    +

    M

    +
    +

    119

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    45

    +
    +

    H44

    +
    +

    *052417.32

    +
    +

    BXD83

    +
    +

    F

    +
    +

    155

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    46

    +
    +

    H46

    +
    +

    *052417.28

    +
    +

    BXD73a

    +
    +

    M

    +
    +

    141

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    47

    +
    +

    H48

    +
    +

    *052417.40

    +
    +

    BXD89

    +
    +

    M

    +
    +

    173

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    48

    +
    +

    H49

    +
    +

    *060717.09

    +
    +

    BXD63

    +
    +

    F

    +
    +

    160

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    49

    +
    +

    H50

    +
    +

    *060717.06

    +
    +

    BXD24

    +
    +

    M

    +
    +

    138

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    50

    +
    +

    H51

    +
    +

    *060717.07

    +
    +

    BXD48

    +
    +

    F

    +
    +

    134

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    51

    +
    +

    H52

    +
    +

    *060717.08

    +
    +

    BXD48

    +
    +

    F

    +
    +

    134

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    52

    +
    +

    H53

    +
    +

    *060717.11

    +
    +

    BXD63

    +
    +

    M

    +
    +

    160

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    53

    +
    +

    H54

    +
    +

    *052417.22

    +
    +

    BXD62

    +
    +

    M

    +
    +

    165

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    54

    +
    +

    H55

    +
    +

    *052417.17

    +
    +

    BXD51

    +
    +

    F

    +
    +

    154

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    55

    +
    +

    H56

    +
    +

    *052417.15

    +
    +

    BXD50

    +
    +

    F

    +
    +

    167

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    56

    +
    +

    H57

    +
    +

    *052417.08

    +
    +

    BXD32

    +
    +

    M

    +
    +

    156

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    57

    +
    +

    H59

    +
    +

    *052417.21

    +
    +

    BXD62

    +
    +

    F

    +
    +

    165

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    58

    +
    +

    H60

    +
    +

    *052417.19

    +
    +

    BXD51

    +
    +

    M

    +
    +

    154

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    59

    +
    +

    H61

    +
    +

    *052417.16

    +
    +

    BXD50

    +
    +

    M

    +
    +

    167

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    60

    +
    +

    H62

    +
    +

    *052417.37

    +
    +

    BXD86

    +
    +

    M

    +
    +

    127

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    61

    +
    +

    H63

    +
    +

    *052417.29

    +
    +

    BXD73b

    +
    +

    F

    +
    +

    145

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    62

    +
    +

    H64

    +
    +

    *052417.31

    +
    +

    BXD73b

    +
    +

    M

    +
    +

    145

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    63

    +
    +

    H65

    +
    +

    *121917.01

    +
    +

    BXD43

    +
    +

    F

    +
    +

    126

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    64

    +
    +

    H66

    +
    +

    *121917.13

    +
    +

    BXD45

    +
    +

    M

    +
    +

    126

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    65

    +
    +

    H67

    +
    +

    *121917.12

    +
    +

    BXD45

    +
    +

    F

    +
    +

    126

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    66

    +
    +

    H68

    +
    +

    *121917.02

    +
    +

    BXD43

    +
    +

    F

    +
    +

    126

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    67

    +
    +

    H69

    +
    +

    *071917.35

    +
    +

    BXD68

    +
    +

    M

    +
    +

    134

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    68

    +
    +

    H71

    +
    +

    *092017.32

    +
    +

    BXD83

    +
    +

    M

    +
    +

    136

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    69

    +
    +

    H72

    +
    +

    *092017.30

    +
    +

    BXD78

    +
    +

    M

    +
    +

    132

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    70

    +
    +

    H74

    +
    +

    *092017.29

    +
    +

    BXD75

    +
    +

    M

    +
    +

    133

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    71

    +
    +

    H76

    +
    +

    *092017.26

    +
    +

    BXD75

    +
    +

    F

    +
    +

    133

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    72

    +
    +

    H78

    +
    +

    *092017.05

    +
    +

    BXD40

    +
    +

    F

    +
    +

    128

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    73

    +
    +

    H79

    +
    +

    *092017.02

    +
    +

    BXD24

    +
    +

    F

    +
    +

    131

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    74

    +
    +

    H80

    +
    +

    *092017.01

    +
    +

    BXD9

    +
    +

    F

    +
    +

    129

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    75

    +
    +

    H81

    +
    +

    *092017.12

    +
    +

    BXD65

    +
    +

    F

    +
    +

    132

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    76

    +
    +

    H83

    +
    +

    *092017.33

    +
    +

    BXD89

    +
    +

    F

    +
    +

    136

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    77

    +
    +

    H84

    +
    +

    *092017.23

    +
    +

    BXD70

    +
    +

    F

    +
    +

    130

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    78

    +
    +

    H85

    +
    +

    *092017.22

    +
    +

    BXD70

    +
    +

    F

    +
    +

    127

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    79

    +
    +

    H86

    +
    +

    *092017.07

    +
    +

    BXD44

    +
    +

    F

    +
    +

    128

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    80

    +
    +

    H89

    +
    +

    *092017.14

    +
    +

    BXD65

    +
    +

    M

    +
    +

    132

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    81

    +
    +

    H90

    +
    +

    *092017.03

    +
    +

    BXD32

    +
    +

    F

    +
    +

    131

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    82

    +
    +

    H91

    +
    +

    *092017.20

    +
    +

    BXD65b

    +
    +

    M

    +
    +

    130

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    83

    +
    +

    H92

    +
    +

    *092017.09

    +
    +

    BXD44

    +
    +

    F

    +
    +

    128

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    84

    +
    +

    H94

    +
    +

    *092017.18

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    130

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    85

    +
    +

    H96

    +
    +

    *091317.06

    +
    +

    BXD61

    +
    +

    M

    +
    +

    128

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    86

    +
    +

    H97

    +
    +

    *091317.12

    +
    +

    BXD68

    +
    +

    F

    +
    +

    132

    +
    +

    Heart

    +
    +

    Chow diet

    +
    +

    87

    +
    +

    H99

    +
    +

    *091317.04

    +
    +

    BXD48a

    +
    +

    M

    +
    +

    125

    +
    +

    Heart

    +
    +

    Chow diet

    +
    diff --git a/general/datasets/Nhlbi_bxd_young_adult_heart_cd_rna_seq/tissue.rtf b/general/datasets/Nhlbi_bxd_young_adult_heart_cd_rna_seq/tissue.rtf new file mode 100644 index 0000000..8d370c0 --- /dev/null +++ b/general/datasets/Nhlbi_bxd_young_adult_heart_cd_rna_seq/tissue.rtf @@ -0,0 +1,3 @@ +

    Tissue Harvest 

    + +

    The animals were sacrificed under saturated isoflurane. Whole heart from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/Nia_agbxd_liv_cd_rna_seq_0818/specifics.rtf b/general/datasets/Nia_agbxd_liv_cd_rna_seq_0818/specifics.rtf new file mode 100644 index 0000000..be3025c --- /dev/null +++ b/general/datasets/Nia_agbxd_liv_cd_rna_seq_0818/specifics.rtf @@ -0,0 +1 @@ +CD Control diet. \ No newline at end of file diff --git a/general/datasets/Nia_agbxd_liv_cd_rna_seq_0818/summary.rtf b/general/datasets/Nia_agbxd_liv_cd_rna_seq_0818/summary.rtf new file mode 100644 index 0000000..f32b018 --- /dev/null +++ b/general/datasets/Nia_agbxd_liv_cd_rna_seq_0818/summary.rtf @@ -0,0 +1 @@ +

    Impact of diet and genetics on survival in BXD GRP. Overall, on a population level of 84 unique BXD strains (666 mice on CD and 688 on HFD) when all strains were averaged the CD cohort lived significantly longer than the HFD cohort if genetics is not considered. (This dataset still unpublished). For more information or for access to this dataset please contact the person in the contact list above.

    diff --git a/general/datasets/Nia_agbxd_liv_cdhfd_rna_seq_0818/specifics.rtf b/general/datasets/Nia_agbxd_liv_cdhfd_rna_seq_0818/specifics.rtf new file mode 100644 index 0000000..8ee3ead --- /dev/null +++ b/general/datasets/Nia_agbxd_liv_cdhfd_rna_seq_0818/specifics.rtf @@ -0,0 +1 @@ +CD+HFD \ No newline at end of file diff --git a/general/datasets/Nia_agbxd_liv_cdhfd_rna_seq_0818/summary.rtf b/general/datasets/Nia_agbxd_liv_cdhfd_rna_seq_0818/summary.rtf new file mode 100644 index 0000000..f32b018 --- /dev/null +++ b/general/datasets/Nia_agbxd_liv_cdhfd_rna_seq_0818/summary.rtf @@ -0,0 +1 @@ +

    Impact of diet and genetics on survival in BXD GRP. Overall, on a population level of 84 unique BXD strains (666 mice on CD and 688 on HFD) when all strains were averaged the CD cohort lived significantly longer than the HFD cohort if genetics is not considered. (This dataset still unpublished). For more information or for access to this dataset please contact the person in the contact list above.

    diff --git a/general/datasets/Nia_agbxd_liv_hfd_rna_seq_0818/specifics.rtf b/general/datasets/Nia_agbxd_liv_hfd_rna_seq_0818/specifics.rtf new file mode 100644 index 0000000..a21c56e --- /dev/null +++ b/general/datasets/Nia_agbxd_liv_hfd_rna_seq_0818/specifics.rtf @@ -0,0 +1 @@ +HFD High fat diet. \ No newline at end of file diff --git a/general/datasets/Nia_agbxd_liv_hfd_rna_seq_0818/summary.rtf b/general/datasets/Nia_agbxd_liv_hfd_rna_seq_0818/summary.rtf new file mode 100644 index 0000000..f32b018 --- /dev/null +++ b/general/datasets/Nia_agbxd_liv_hfd_rna_seq_0818/summary.rtf @@ -0,0 +1 @@ +

    Impact of diet and genetics on survival in BXD GRP. Overall, on a population level of 84 unique BXD strains (666 mice on CD and 688 on HFD) when all strains were averaged the CD cohort lived significantly longer than the HFD cohort if genetics is not considered. (This dataset still unpublished). For more information or for access to this dataset please contact the person in the contact list above.

    diff --git a/general/datasets/Niaaa_bxd_hip_cms_did_rnaseq1020/cases.rtf b/general/datasets/Niaaa_bxd_hip_cms_did_rnaseq1020/cases.rtf new file mode 100644 index 0000000..08a20a8 --- /dev/null +++ b/general/datasets/Niaaa_bxd_hip_cms_did_rnaseq1020/cases.rtf @@ -0,0 +1,4848 @@ +

    The study included 241 females (aged 50 to 90 ± 2 days at the start of the experiment) from B6, D2, and 35 advanced intercross BXD strains (about 2 mice per strain and per condition). Mice were divided into 4 groups of Control (CTL, 53 mice for 31 strains), Chronic Mild Stress (CMS, 64 mice for 32 strains), Drinking in Dark (DID, 64 mice for 35 strains), and CMS+DID (60 mice for 35 strains). Mice in CTL were normally handled, while mice in  other groups were singly housed in shoebox cages, with food and water provided ad libitum except when the water was replaced by 20% (v/v) EtOH (see below) for DID and CMS+DID groups (detailed treatments and schemes  are showing in the Table and Figure). The ambient temperature was 21 ± 2°C, and the light cycle was 7:00/19:00 for CTL, and 23:00/11:00 the rest groups lights on/off. The animals were weighed weekly to assess health and to provide the basis for calculating the amount of EtOH consumed in grams per kilogram. All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    + +

    The table of samples that are finally used for this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Index

    +
    +

    ID

    +
    +

    Strain

    +
    +

    Sex 

    +
    +

    Treatment Group

    +
    +

    Tissue

    +
    +

    1

    +
    +

    CMS030716_12

    +
    +

    BXD68

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    2

    +
    +

    CMS030716_18

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    3

    +
    +

    CMS030716_19

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    4

    +
    +

    CMS030916_02

    +
    +

    BXD101

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    5

    +
    +

    CMS030916_09

    +
    +

    BXD101

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    6

    +
    +

    CMS030916_11

    +
    +

    BXD79

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    7

    +
    +

    CMS030916_14

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    8

    +
    +

    CMS030916_20

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    9

    +
    +

    CMS030916_23

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    10

    +
    +

    CMS030916_32

    +
    +

    BXD86

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    11

    +
    +

    CMS032817_02

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    12

    +
    +

    CMS032817_28

    +
    +

    BXD66

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    13

    +
    +

    CMS032917_08

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    14

    +
    +

    CMS032917_24

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    15

    +
    +

    CMS032917_26

    +
    +

    BXD87

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    16

    +
    +

    CMS032917_33

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    17

    +
    +

    CMS033017_05

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    18

    +
    +

    CMS033017_25

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    19

    +
    +

    CMS061218_12

    +
    +

    BXD87

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    20

    +
    +

    CMS061218_13

    +
    +

    BXD60

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    21

    +
    +

    CMS061218_14

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    22

    +
    +

    CMS071216_17

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    23

    +
    +

    CMS071216_23

    +
    +

    BXD73B

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    24

    +
    +

    CMS071216_25

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    25

    +
    +

    CMS071316_06

    +
    +

    BXD90

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    26

    +
    +

    CMS071316_08

    +
    +

    BXD66

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    27

    +
    +

    CMS071316_14

    +
    +

    BXD87

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    28

    +
    +

    CMS071316_17

    +
    +

    BXD62

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    29

    +
    +

    CMS071316_18

    +
    +

    BXD65

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    30

    +
    +

    CMS071316_32

    +
    +

    BXD90

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    31

    +
    +

    CMS071416_06

    +
    +

    BXD50

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    32

    +
    +

    CMS082817_07

    +
    +

    BXD44

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    33

    +
    +

    CMS082817_25

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    34

    +
    +

    CMS082917_16

    +
    +

    BXD79

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    35

    +
    +

    CMS083017_07

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    36

    +
    +

    CMS083017_25

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    37

    +
    +

    CMS092018_01

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    38

    +
    +

    CMS092018_05

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    39

    +
    +

    CMS092118_08

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    40

    +
    +

    CMS102716_01

    +
    +

    BXD83

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    41

    +
    +

    CMS102716_02

    +
    +

    BXD75

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    42

    +
    +

    CMS102716_03

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    43

    +
    +

    CMS102716_05

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    44

    +
    +

    CMS102716_06

    +
    +

    BXD34

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    45

    +
    +

    CMS102716_07

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    46

    +
    +

    CMS102716_08

    +
    +

    BXD60

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    47

    +
    +

    CMS102716_11

    +
    +

    BXD34

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    48

    +
    +

    CMS102716_12

    +
    +

    BXD62

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    49

    +
    +

    CMS102716_14

    +
    +

    BXD83

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    50

    +
    +

    CMS102716_15

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    51

    +
    +

    CMS102716_16

    +
    +

    BXD77

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    52

    +
    +

    CMS102716_20

    +
    +

    BXD50

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    53

    +
    +

    CMS102816_02

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    54

    +
    +

    CMS102816_03

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    55

    +
    +

    CMS102816_04

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    56

    +
    +

    CMS102816_06

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    57

    +
    +

    CMS102816_10

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    58

    +
    +

    CMS102816_11

    +
    +

    BXD100

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    59

    +
    +

    CMS102816_13

    +
    +

    BXD75

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    60

    +
    +

    CMS102816_14

    +
    +

    BXD77

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    61

    +
    +

    CMS102816_17

    +
    +

    BXD100

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    62

    +
    +

    CMS102816_18

    +
    +

    BXD43

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    63

    +
    +

    CMS102816_20

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    64

    +
    +

    CMS102816_21

    +
    +

    BXD65

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    65

    +
    +

    CMS030716_01

    +
    +

    BXD55

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    66

    +
    +

    CMS030716_08

    +
    +

    BXD63

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    67

    +
    +

    CMS030716_09

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    68

    +
    +

    CMS030716_15

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    69

    +
    +

    CMS030716_27

    +
    +

    BXD86

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    70

    +
    +

    CMS030716_29

    +
    +

    BXD55

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    71

    +
    +

    CMS030716_30

    +
    +

    BXD62

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    72

    +
    +

    CMS030716_31

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    73

    +
    +

    CMS030916_15

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    74

    +
    +

    CMS030916_16

    +
    +

    BXD68

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    75

    +
    +

    CMS030916_17

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    76

    +
    +

    CMS030916_26

    +
    +

    BXD79

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    77

    +
    +

    CMS032817_10

    +
    +

    BXD87

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    78

    +
    +

    CMS032817_18

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    79

    +
    +

    CMS032817_25

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    80

    +
    +

    CMS032817_27

    +
    +

    BXD83

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    81

    +
    +

    CMS032817_31

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    82

    +
    +

    CMS032817_32

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    83

    +
    +

    CMS032917_15

    +
    +

    BXD86

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    84

    +
    +

    CMS032917_17

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    85

    +
    +

    CMS032917_25

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    86

    +
    +

    CMS033017_04

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    87

    +
    +

    CMS033017_11

    +
    +

    BXD83

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    88

    +
    +

    CMS033017_13

    +
    +

    BXD73

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    89

    +
    +

    CMS071216_01

    +
    +

    BXD50

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    90

    +
    +

    CMS071216_24

    +
    +

    BXD100

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    91

    +
    +

    CMS071316_05

    +
    +

    BXD51

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    92

    +
    +

    CMS071316_20

    +
    +

    BXD65

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    93

    +
    +

    CMS071316_22

    +
    +

    BXD90

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    94

    +
    +

    CMS071316_29

    +
    +

    BXD51

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    95

    +
    +

    CMS071416_01

    +
    +

    BXD100

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    96

    +
    +

    CMS071416_08

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    97

    +
    +

    CMS071416_13

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    98

    +
    +

    CMS071416_19

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    99

    +
    +

    CMS071416_27

    +
    +

    BXD63

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    100

    +
    +

    CMS082817_02

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    101

    +
    +

    CMS082817_03

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    102

    +
    +

    CMS082817_09

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    103

    +
    +

    CMS082817_28

    +
    +

    BXD79

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    104

    +
    +

    CMS082917_07

    +
    +

    BXD43

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    105

    +
    +

    CMS082917_10

    +
    +

    BXD44

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    106

    +
    +

    CMS082917_18

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    107

    +
    +

    CMS082917_21

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    108

    +
    +

    CMS082917_29

    +
    +

    BXD87

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    109

    +
    +

    CMS083017_02

    +
    +

    BXD101

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    110

    +
    +

    CMS083017_03

    +
    +

    BXD66

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    111

    +
    +

    CMS083017_11

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    112

    +
    +

    CMS083017_28

    +
    +

    BXD101

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    113

    +
    +

    CMS111716_07

    +
    +

    BXD75

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    114

    +
    +

    CMS111716_11

    +
    +

    BXD73b

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    115

    +
    +

    CMS111716_12

    +
    +

    BXD75

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    116

    +
    +

    CMS111716_14

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    117

    +
    +

    CMS111716_17

    +
    +

    BXD50

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    118

    +
    +

    CMS111816_05

    +
    +

    BXD77

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    119

    +
    +

    CMS111816_07

    +
    +

    BXD73b

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    120

    +
    +

    CMS111816_12

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    121

    +
    +

    CMS111816_13

    +
    +

    BXD77

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    122

    +
    +

    CMS111816_26

    +
    +

    BXD34

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    123

    +
    +

    S32315_14

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    124

    +
    +

    S32415_09

    +
    +

    BXD68

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    125

    +
    +

    CMS030716_05

    +
    +

    BXD44

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    126

    +
    +

    CMS030716_14

    +
    +

    BXD40

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    127

    +
    +

    CMS030716_21

    +
    +

    BXD68

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    128

    +
    +

    CMS030716_24

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    129

    +
    +

    CMS030716_28

    +
    +

    BXD79

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    130

    +
    +

    CMS030716_33

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    131

    +
    +

    CMS030916_04

    +
    +

    BXD55

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    132

    +
    +

    CMS030916_06

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    133

    +
    +

    CMS030916_07

    +
    +

    BXD60

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    134

    +
    +

    CMS030916_10

    +
    +

    BXD63

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    135

    +
    +

    CMS030916_18

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    136

    +
    +

    CMS030916_22

    +
    +

    BXD79

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    137

    +
    +

    CMS030916_24

    +
    +

    BXD63

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    138

    +
    +

    CMS030916_29

    +
    +

    BXD55

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    139

    +
    +

    CMS030916_33

    +
    +

    BXD69

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    140

    +
    +

    CMS032817_08

    +
    +

    BXD73

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    141

    +
    +

    CMS032817_24

    +
    +

    BXD70

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    142

    +
    +

    CMS032917_07

    +
    +

    BXD70

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    143

    +
    +

    CMS032917_19

    +
    +

    BXD78

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    144

    +
    +

    CMS032917_21

    +
    +

    BXD86

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    145

    +
    +

    CMS032917_23

    +
    +

    BXD66

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    146

    +
    +

    CMS032917_30

    +
    +

    BXD78

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    147

    +
    +

    CMS032917_31

    +
    +

    BXD48

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    148

    +
    +

    CMS032917_32

    +
    +

    BXD71

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    149

    +
    +

    CMS033017_16

    +
    +

    BXD62

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    150

    +
    +

    CMS033017_29

    +
    +

    BXD83

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    151

    +
    +

    CMS071216_04

    +
    +

    BXD90

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    152

    +
    +

    CMS071216_09

    +
    +

    BXD77

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    153

    +
    +

    CMS071216_16

    +
    +

    BXD65

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    154

    +
    +

    CMS071216_22

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    155

    +
    +

    CMS071316_15

    +
    +

    BXD90

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    156

    +
    +

    CMS071316_16

    +
    +

    BXD50

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    157

    +
    +

    CMS071316_27

    +
    +

    BXD65

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    158

    +
    +

    CMS071316_30

    +
    +

    BXD51

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    159

    +
    +

    CMS071416_10

    +
    +

    BXD44

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    160

    +
    +

    CMS071416_21

    +
    +

    BXD69

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    161

    +
    +

    CMS082817_12

    +
    +

    BXD51

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    162

    +
    +

    CMS082817_16

    +
    +

    BXD101

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    163

    +
    +

    CMS082817_22

    +
    +

    BXD101

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    164

    +
    +

    CMS082817_23

    +
    +

    BXD24

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    165

    +
    +

    CMS082917_13

    +
    +

    BXD40

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    166

    +
    +

    CMS082917_22

    +
    +

    BXD87

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    167

    +
    +

    CMS083017_10

    +
    +

    BXD24

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    168

    +
    +

    CMS102215_20

    +
    +

    BXD73B

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    169

    +
    +

    CMS111716_02

    +
    +

    BXD75

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    170

    +
    +

    CMS111716_05

    +
    +

    BXD43

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    171

    +
    +

    CMS111716_08

    +
    +

    BXD75

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    172

    +
    +

    CMS111716_10

    +
    +

    BXD32

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    173

    +
    +

    CMS111716_16

    +
    +

    BXD100

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    174

    +
    +

    CMS111716_20

    +
    +

    BXD60

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    175

    +
    +

    CMS111716_22

    +
    +

    BXD83

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    176

    +
    +

    CMS111716_23

    +
    +

    BXD73b

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    177

    +
    +

    CMS111716_25

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    178

    +
    +

    CMS111816_01

    +
    +

    BXD34

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    179

    +
    +

    CMS111816_03

    +
    +

    BXD48

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    180

    +
    +

    CMS111816_08

    +
    +

    BXD43

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    181

    +
    +

    CMS111816_11

    +
    +

    BXD87

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    182

    +
    +

    CMS111816_14

    +
    +

    BXD60

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    183

    +
    +

    CMS111816_16

    +
    +

    BXD73b

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    184

    +
    +

    CMS111816_17

    +
    +

    BXD77

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    185

    +
    +

    CMS111816_20

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    186

    +
    +

    CMS111816_28

    +
    +

    BXD50

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    187

    +
    +

    S32515_12

    +
    +

    BXD68

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    188

    +
    +

    S32515_16

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    189

    +
    +

    13118_35

    +
    +

    BXD62

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    190

    +
    +

    13118_41

    +
    +

    BXD66

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    191

    +
    +

    13118_56

    +
    +

    BXD75

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    192

    +
    +

    31218_19

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    193

    +
    +

    31218_3

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    194

    +
    +

    31218_36

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    195

    +
    +

    AGE041118_03

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    196

    +
    +

    AGE050118_07

    +
    +

    BXD55

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    197

    +
    +

    AGE050118_12

    +
    +

    BXD73

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    198

    +
    +

    AGE050118_16

    +
    +

    BXD77

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    199

    +
    +

    AGE050118_21

    +
    +

    BXD86

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    200

    +
    +

    AGE050118_23

    +
    +

    BXD86

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    201

    +
    +

    AGE050118_27

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    202

    +
    +

    AGE061818_02

    +
    +

    BXD100

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    203

    +
    +

    BL013118_12

    +
    +

    BXD34

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    204

    +
    +

    BL013118_13

    +
    +

    BXD34

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    205

    +
    +

    CMS092118_24

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    206

    +
    +

    E100118_16

    +
    +

    BXD65

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    207

    +
    +

    MT052417_09

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    208

    +
    +

    MT052417_17

    +
    +

    BXD51

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    209

    +
    +

    S13118_07

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    210

    +
    +

    S13118_08

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    211

    +
    +

    S13118_15

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    212

    +
    +

    S13118_18

    +
    +

    BXD43

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    213

    +
    +

    S13118_19

    +
    +

    BXD43

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    214

    +
    +

    S13118_23

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    215

    +
    +

    S13118_24

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    216

    +
    +

    S13118_26

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    217

    +
    +

    S13118_36

    +
    +

    BXD62

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    218

    +
    +

    S13118_38

    +
    +

    BXD65

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    219

    +
    +

    S13118_42

    +
    +

    BXD66

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    220

    +
    +

    S13118_44

    +
    +

    BXD68

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    221

    +
    +

    S13118_58

    +
    +

    BXD79

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    222

    +
    +

    S13118_64

    +
    +

    BXD90

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    223

    +
    +

    S13118_65

    +
    +

    BXD90

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    224

    +
    +

    S13118_7

    +
    +

    BXD101

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    225

    +
    +

    S31218_01

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    226

    +
    +

    S31218_02

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    227

    +
    +

    S31218_04

    +
    +

    BXD44

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    228

    +
    +

    S31218_15

    +
    +

    BXD63

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    229

    +
    +

    S31218_16

    +
    +

    BXD63

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    230

    +
    +

    S31218_18

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    231

    +
    +

    S31218_1

    +
    +

    BXD51

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    232

    +
    +

    S31218_21

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    233

    +
    +

    S31218_22

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    234

    +
    +

    S31218_24

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    235

    +
    +

    S31218_25

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    236

    +
    +

    S31218_27

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    237

    +
    +

    S31218_28

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    238

    +
    +

    S31218_31

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    239

    +
    +

    S31218_35

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    240

    +
    +

    S32718_01

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    241

    +
    +

    S32718_03

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    diff --git a/general/datasets/Niaaa_bxd_hip_cms_did_rnaseq1020/experiment-design.rtf b/general/datasets/Niaaa_bxd_hip_cms_did_rnaseq1020/experiment-design.rtf new file mode 100644 index 0000000..54fad3e --- /dev/null +++ b/general/datasets/Niaaa_bxd_hip_cms_did_rnaseq1020/experiment-design.rtf @@ -0,0 +1,7 @@ +

    Alcohol consumption was evaluated using the DID method. The protocol calls for 4 consecutive days of testing. Each day, starting on a Tuesday 3 h after lights were turned off, the water bottles were removed from the cages and replaced with 15 ml centrifuge tubes filled with 20% (v/v) ethanol from 95% USP ethanol. On days 1–3 (Tuesday through Thursday) the length of exposure was 2 h and on the 4th day (Friday) the exposure was 4 h. No alcohol was offered in the intervening period (Saturday through Monday). This protocol was repeated weekly for 16 weeks (Table). Tubes were weighed immediately before and after the exposure period. Volume consumed was converted to g/kg body weight of ethanol. 

    + +

    During a period of 7 weeks, mice received 2 disturbances per day (see Figure). These consisted of being exposed to wet bedding for 1 hour, 1 cm of water in the bottom of the cage with no bedding for 1 hour, no bedding for 1 hour, confinement in a 3 × 3 × 3 cm plastic box for 15 minutes, tilted cage at 45º for 1 hour, and exposure to foreign mouse or fox urine odor for 1 hour. The other stressor was a complete phase shift in the light:dark cycle over each weekend. Disruption of the light cycle (lights constantly on) occurred over the weekend (starting Friday 11:00 am) with the light cycle resuming at 11 am on Monday (lights off). The schedule was repeated weekly over the duration of the study.

    + +

    Treatment Periods

    + +

    The entire protocol took 16 weeks to complete and was subdivided into 3 periods: baseline (initial 5 weeks), CMS (next 7 weeks), and post‐CMS (final 4 weeks). Alcohol was offered as described above for all periods and experimental groups. During the intervening 7‐week CMS period, control animals were subjected to normal housing and experimental (stress) animals were subjected to CMS.

    diff --git a/general/datasets/Niaaa_bxd_hip_cms_did_rnaseq1020/processing.rtf b/general/datasets/Niaaa_bxd_hip_cms_did_rnaseq1020/processing.rtf new file mode 100644 index 0000000..7d83d76 --- /dev/null +++ b/general/datasets/Niaaa_bxd_hip_cms_did_rnaseq1020/processing.rtf @@ -0,0 +1,9 @@ +

    Generation of RNA-seq data

    + +

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    + +

     

    + +

    Read mapping and normalization

    + +

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/Niaaa_bxd_hip_cms_did_rnaseq1020/specifics.rtf b/general/datasets/Niaaa_bxd_hip_cms_did_rnaseq1020/specifics.rtf new file mode 100644 index 0000000..c2753aa --- /dev/null +++ b/general/datasets/Niaaa_bxd_hip_cms_did_rnaseq1020/specifics.rtf @@ -0,0 +1 @@ +NIAAA BXD Hippocampus CMS-DID RNA-Seq (Oct20) TPM Log2 \ No newline at end of file diff --git a/general/datasets/Niaaa_bxd_hip_cms_did_rnaseq1020/tissue.rtf b/general/datasets/Niaaa_bxd_hip_cms_did_rnaseq1020/tissue.rtf new file mode 100644 index 0000000..30cdeea --- /dev/null +++ b/general/datasets/Niaaa_bxd_hip_cms_did_rnaseq1020/tissue.rtf @@ -0,0 +1,7 @@ +

    Tissue Harvest and RNA extraction

    + +

    The animals were sacrificed under saturated isoflurane. Brains from the animals were dissected under a cold plate (≤4o C), and hippocampus were weighted and snap frozen in dry ice bath with isopentane and stored at −80°C until RNA extraction. 

    + +

    RNA Extraction

    + +

    Total RNA was extracted using Direct-zol RNA Miniprep Plus Kits (Zymo Research, Irvine, CA, USA) according to the manufacturer’s instructions. Approximately 15 mg of hippocampus tissue was added into a 2 ml tube containing 1 ml TRI Reagent® and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 min in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 rpm followed by incubating for 5 min.   0.1 ml of 1‑bromo-3‑chloropropane was add into the homogenate, shaken vigorously for 15 s, and centrifuged for 15 min at 12,000×g at 4 °C. 600 µl upper aqueous was then transferred into a new collection tube containing 600 µl 100% ethanol. The mixture was loaded into a Zymo-Spin IIC column, wash once with RNA Prep Buffer and twice with RNA Wash Buffer. All RNA had been treated with DNase to eliminate possible DNA contamination, and further precipitated with ethanol. RNA purity and integrity were verified by a nanodrop spectrophotometer and an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). 

    diff --git a/general/datasets/Niaaa_bxd_hip_cms_rnaseq1020/cases.rtf b/general/datasets/Niaaa_bxd_hip_cms_rnaseq1020/cases.rtf new file mode 100644 index 0000000..08a20a8 --- /dev/null +++ b/general/datasets/Niaaa_bxd_hip_cms_rnaseq1020/cases.rtf @@ -0,0 +1,4848 @@ +

    The study included 241 females (aged 50 to 90 ± 2 days at the start of the experiment) from B6, D2, and 35 advanced intercross BXD strains (about 2 mice per strain and per condition). Mice were divided into 4 groups of Control (CTL, 53 mice for 31 strains), Chronic Mild Stress (CMS, 64 mice for 32 strains), Drinking in Dark (DID, 64 mice for 35 strains), and CMS+DID (60 mice for 35 strains). Mice in CTL were normally handled, while mice in  other groups were singly housed in shoebox cages, with food and water provided ad libitum except when the water was replaced by 20% (v/v) EtOH (see below) for DID and CMS+DID groups (detailed treatments and schemes  are showing in the Table and Figure). The ambient temperature was 21 ± 2°C, and the light cycle was 7:00/19:00 for CTL, and 23:00/11:00 the rest groups lights on/off. The animals were weighed weekly to assess health and to provide the basis for calculating the amount of EtOH consumed in grams per kilogram. All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    + +

    The table of samples that are finally used for this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Index

    +
    +

    ID

    +
    +

    Strain

    +
    +

    Sex 

    +
    +

    Treatment Group

    +
    +

    Tissue

    +
    +

    1

    +
    +

    CMS030716_12

    +
    +

    BXD68

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    2

    +
    +

    CMS030716_18

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    3

    +
    +

    CMS030716_19

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    4

    +
    +

    CMS030916_02

    +
    +

    BXD101

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    5

    +
    +

    CMS030916_09

    +
    +

    BXD101

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    6

    +
    +

    CMS030916_11

    +
    +

    BXD79

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    7

    +
    +

    CMS030916_14

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    8

    +
    +

    CMS030916_20

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    9

    +
    +

    CMS030916_23

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    10

    +
    +

    CMS030916_32

    +
    +

    BXD86

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    11

    +
    +

    CMS032817_02

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    12

    +
    +

    CMS032817_28

    +
    +

    BXD66

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    13

    +
    +

    CMS032917_08

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    14

    +
    +

    CMS032917_24

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    15

    +
    +

    CMS032917_26

    +
    +

    BXD87

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    16

    +
    +

    CMS032917_33

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    17

    +
    +

    CMS033017_05

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    18

    +
    +

    CMS033017_25

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    19

    +
    +

    CMS061218_12

    +
    +

    BXD87

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    20

    +
    +

    CMS061218_13

    +
    +

    BXD60

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    21

    +
    +

    CMS061218_14

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    22

    +
    +

    CMS071216_17

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    23

    +
    +

    CMS071216_23

    +
    +

    BXD73B

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    24

    +
    +

    CMS071216_25

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    25

    +
    +

    CMS071316_06

    +
    +

    BXD90

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    26

    +
    +

    CMS071316_08

    +
    +

    BXD66

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    27

    +
    +

    CMS071316_14

    +
    +

    BXD87

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    28

    +
    +

    CMS071316_17

    +
    +

    BXD62

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    29

    +
    +

    CMS071316_18

    +
    +

    BXD65

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    30

    +
    +

    CMS071316_32

    +
    +

    BXD90

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    31

    +
    +

    CMS071416_06

    +
    +

    BXD50

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    32

    +
    +

    CMS082817_07

    +
    +

    BXD44

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    33

    +
    +

    CMS082817_25

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    34

    +
    +

    CMS082917_16

    +
    +

    BXD79

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    35

    +
    +

    CMS083017_07

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    36

    +
    +

    CMS083017_25

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    37

    +
    +

    CMS092018_01

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    38

    +
    +

    CMS092018_05

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    39

    +
    +

    CMS092118_08

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    40

    +
    +

    CMS102716_01

    +
    +

    BXD83

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    41

    +
    +

    CMS102716_02

    +
    +

    BXD75

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    42

    +
    +

    CMS102716_03

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    43

    +
    +

    CMS102716_05

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    44

    +
    +

    CMS102716_06

    +
    +

    BXD34

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    45

    +
    +

    CMS102716_07

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    46

    +
    +

    CMS102716_08

    +
    +

    BXD60

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    47

    +
    +

    CMS102716_11

    +
    +

    BXD34

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    48

    +
    +

    CMS102716_12

    +
    +

    BXD62

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    49

    +
    +

    CMS102716_14

    +
    +

    BXD83

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    50

    +
    +

    CMS102716_15

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    51

    +
    +

    CMS102716_16

    +
    +

    BXD77

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    52

    +
    +

    CMS102716_20

    +
    +

    BXD50

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    53

    +
    +

    CMS102816_02

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    54

    +
    +

    CMS102816_03

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    55

    +
    +

    CMS102816_04

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    56

    +
    +

    CMS102816_06

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    57

    +
    +

    CMS102816_10

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    58

    +
    +

    CMS102816_11

    +
    +

    BXD100

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    59

    +
    +

    CMS102816_13

    +
    +

    BXD75

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    60

    +
    +

    CMS102816_14

    +
    +

    BXD77

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    61

    +
    +

    CMS102816_17

    +
    +

    BXD100

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    62

    +
    +

    CMS102816_18

    +
    +

    BXD43

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    63

    +
    +

    CMS102816_20

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    64

    +
    +

    CMS102816_21

    +
    +

    BXD65

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    65

    +
    +

    CMS030716_01

    +
    +

    BXD55

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    66

    +
    +

    CMS030716_08

    +
    +

    BXD63

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    67

    +
    +

    CMS030716_09

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    68

    +
    +

    CMS030716_15

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    69

    +
    +

    CMS030716_27

    +
    +

    BXD86

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    70

    +
    +

    CMS030716_29

    +
    +

    BXD55

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    71

    +
    +

    CMS030716_30

    +
    +

    BXD62

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    72

    +
    +

    CMS030716_31

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    73

    +
    +

    CMS030916_15

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    74

    +
    +

    CMS030916_16

    +
    +

    BXD68

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    75

    +
    +

    CMS030916_17

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    76

    +
    +

    CMS030916_26

    +
    +

    BXD79

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    77

    +
    +

    CMS032817_10

    +
    +

    BXD87

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    78

    +
    +

    CMS032817_18

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    79

    +
    +

    CMS032817_25

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    80

    +
    +

    CMS032817_27

    +
    +

    BXD83

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    81

    +
    +

    CMS032817_31

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    82

    +
    +

    CMS032817_32

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    83

    +
    +

    CMS032917_15

    +
    +

    BXD86

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    84

    +
    +

    CMS032917_17

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    85

    +
    +

    CMS032917_25

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    86

    +
    +

    CMS033017_04

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    87

    +
    +

    CMS033017_11

    +
    +

    BXD83

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    88

    +
    +

    CMS033017_13

    +
    +

    BXD73

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    89

    +
    +

    CMS071216_01

    +
    +

    BXD50

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    90

    +
    +

    CMS071216_24

    +
    +

    BXD100

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    91

    +
    +

    CMS071316_05

    +
    +

    BXD51

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    92

    +
    +

    CMS071316_20

    +
    +

    BXD65

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    93

    +
    +

    CMS071316_22

    +
    +

    BXD90

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    94

    +
    +

    CMS071316_29

    +
    +

    BXD51

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    95

    +
    +

    CMS071416_01

    +
    +

    BXD100

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    96

    +
    +

    CMS071416_08

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    97

    +
    +

    CMS071416_13

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    98

    +
    +

    CMS071416_19

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    99

    +
    +

    CMS071416_27

    +
    +

    BXD63

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    100

    +
    +

    CMS082817_02

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    101

    +
    +

    CMS082817_03

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    102

    +
    +

    CMS082817_09

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    103

    +
    +

    CMS082817_28

    +
    +

    BXD79

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    104

    +
    +

    CMS082917_07

    +
    +

    BXD43

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    105

    +
    +

    CMS082917_10

    +
    +

    BXD44

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    106

    +
    +

    CMS082917_18

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    107

    +
    +

    CMS082917_21

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    108

    +
    +

    CMS082917_29

    +
    +

    BXD87

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    109

    +
    +

    CMS083017_02

    +
    +

    BXD101

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    110

    +
    +

    CMS083017_03

    +
    +

    BXD66

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    111

    +
    +

    CMS083017_11

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    112

    +
    +

    CMS083017_28

    +
    +

    BXD101

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    113

    +
    +

    CMS111716_07

    +
    +

    BXD75

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    114

    +
    +

    CMS111716_11

    +
    +

    BXD73b

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    115

    +
    +

    CMS111716_12

    +
    +

    BXD75

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    116

    +
    +

    CMS111716_14

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    117

    +
    +

    CMS111716_17

    +
    +

    BXD50

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    118

    +
    +

    CMS111816_05

    +
    +

    BXD77

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    119

    +
    +

    CMS111816_07

    +
    +

    BXD73b

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    120

    +
    +

    CMS111816_12

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    121

    +
    +

    CMS111816_13

    +
    +

    BXD77

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    122

    +
    +

    CMS111816_26

    +
    +

    BXD34

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    123

    +
    +

    S32315_14

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    124

    +
    +

    S32415_09

    +
    +

    BXD68

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    125

    +
    +

    CMS030716_05

    +
    +

    BXD44

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    126

    +
    +

    CMS030716_14

    +
    +

    BXD40

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    127

    +
    +

    CMS030716_21

    +
    +

    BXD68

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    128

    +
    +

    CMS030716_24

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    129

    +
    +

    CMS030716_28

    +
    +

    BXD79

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    130

    +
    +

    CMS030716_33

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    131

    +
    +

    CMS030916_04

    +
    +

    BXD55

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    132

    +
    +

    CMS030916_06

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    133

    +
    +

    CMS030916_07

    +
    +

    BXD60

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    134

    +
    +

    CMS030916_10

    +
    +

    BXD63

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    135

    +
    +

    CMS030916_18

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    136

    +
    +

    CMS030916_22

    +
    +

    BXD79

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    137

    +
    +

    CMS030916_24

    +
    +

    BXD63

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    138

    +
    +

    CMS030916_29

    +
    +

    BXD55

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    139

    +
    +

    CMS030916_33

    +
    +

    BXD69

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    140

    +
    +

    CMS032817_08

    +
    +

    BXD73

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    141

    +
    +

    CMS032817_24

    +
    +

    BXD70

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    142

    +
    +

    CMS032917_07

    +
    +

    BXD70

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    143

    +
    +

    CMS032917_19

    +
    +

    BXD78

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    144

    +
    +

    CMS032917_21

    +
    +

    BXD86

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    145

    +
    +

    CMS032917_23

    +
    +

    BXD66

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    146

    +
    +

    CMS032917_30

    +
    +

    BXD78

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    147

    +
    +

    CMS032917_31

    +
    +

    BXD48

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    148

    +
    +

    CMS032917_32

    +
    +

    BXD71

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    149

    +
    +

    CMS033017_16

    +
    +

    BXD62

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    150

    +
    +

    CMS033017_29

    +
    +

    BXD83

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    151

    +
    +

    CMS071216_04

    +
    +

    BXD90

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    152

    +
    +

    CMS071216_09

    +
    +

    BXD77

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    153

    +
    +

    CMS071216_16

    +
    +

    BXD65

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    154

    +
    +

    CMS071216_22

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    155

    +
    +

    CMS071316_15

    +
    +

    BXD90

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    156

    +
    +

    CMS071316_16

    +
    +

    BXD50

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    157

    +
    +

    CMS071316_27

    +
    +

    BXD65

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    158

    +
    +

    CMS071316_30

    +
    +

    BXD51

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    159

    +
    +

    CMS071416_10

    +
    +

    BXD44

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    160

    +
    +

    CMS071416_21

    +
    +

    BXD69

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    161

    +
    +

    CMS082817_12

    +
    +

    BXD51

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    162

    +
    +

    CMS082817_16

    +
    +

    BXD101

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    163

    +
    +

    CMS082817_22

    +
    +

    BXD101

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    164

    +
    +

    CMS082817_23

    +
    +

    BXD24

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    165

    +
    +

    CMS082917_13

    +
    +

    BXD40

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    166

    +
    +

    CMS082917_22

    +
    +

    BXD87

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    167

    +
    +

    CMS083017_10

    +
    +

    BXD24

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    168

    +
    +

    CMS102215_20

    +
    +

    BXD73B

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    169

    +
    +

    CMS111716_02

    +
    +

    BXD75

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    170

    +
    +

    CMS111716_05

    +
    +

    BXD43

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    171

    +
    +

    CMS111716_08

    +
    +

    BXD75

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    172

    +
    +

    CMS111716_10

    +
    +

    BXD32

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    173

    +
    +

    CMS111716_16

    +
    +

    BXD100

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    174

    +
    +

    CMS111716_20

    +
    +

    BXD60

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    175

    +
    +

    CMS111716_22

    +
    +

    BXD83

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    176

    +
    +

    CMS111716_23

    +
    +

    BXD73b

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    177

    +
    +

    CMS111716_25

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    178

    +
    +

    CMS111816_01

    +
    +

    BXD34

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    179

    +
    +

    CMS111816_03

    +
    +

    BXD48

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    180

    +
    +

    CMS111816_08

    +
    +

    BXD43

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    181

    +
    +

    CMS111816_11

    +
    +

    BXD87

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    182

    +
    +

    CMS111816_14

    +
    +

    BXD60

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    183

    +
    +

    CMS111816_16

    +
    +

    BXD73b

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    184

    +
    +

    CMS111816_17

    +
    +

    BXD77

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    185

    +
    +

    CMS111816_20

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    186

    +
    +

    CMS111816_28

    +
    +

    BXD50

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    187

    +
    +

    S32515_12

    +
    +

    BXD68

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    188

    +
    +

    S32515_16

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    189

    +
    +

    13118_35

    +
    +

    BXD62

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    190

    +
    +

    13118_41

    +
    +

    BXD66

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    191

    +
    +

    13118_56

    +
    +

    BXD75

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    192

    +
    +

    31218_19

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    193

    +
    +

    31218_3

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    194

    +
    +

    31218_36

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    195

    +
    +

    AGE041118_03

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    196

    +
    +

    AGE050118_07

    +
    +

    BXD55

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    197

    +
    +

    AGE050118_12

    +
    +

    BXD73

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    198

    +
    +

    AGE050118_16

    +
    +

    BXD77

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    199

    +
    +

    AGE050118_21

    +
    +

    BXD86

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    200

    +
    +

    AGE050118_23

    +
    +

    BXD86

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    201

    +
    +

    AGE050118_27

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    202

    +
    +

    AGE061818_02

    +
    +

    BXD100

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    203

    +
    +

    BL013118_12

    +
    +

    BXD34

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    204

    +
    +

    BL013118_13

    +
    +

    BXD34

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    205

    +
    +

    CMS092118_24

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    206

    +
    +

    E100118_16

    +
    +

    BXD65

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    207

    +
    +

    MT052417_09

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    208

    +
    +

    MT052417_17

    +
    +

    BXD51

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    209

    +
    +

    S13118_07

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    210

    +
    +

    S13118_08

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    211

    +
    +

    S13118_15

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    212

    +
    +

    S13118_18

    +
    +

    BXD43

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    213

    +
    +

    S13118_19

    +
    +

    BXD43

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    214

    +
    +

    S13118_23

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    215

    +
    +

    S13118_24

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    216

    +
    +

    S13118_26

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    217

    +
    +

    S13118_36

    +
    +

    BXD62

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    218

    +
    +

    S13118_38

    +
    +

    BXD65

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    219

    +
    +

    S13118_42

    +
    +

    BXD66

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    220

    +
    +

    S13118_44

    +
    +

    BXD68

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    221

    +
    +

    S13118_58

    +
    +

    BXD79

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    222

    +
    +

    S13118_64

    +
    +

    BXD90

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    223

    +
    +

    S13118_65

    +
    +

    BXD90

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    224

    +
    +

    S13118_7

    +
    +

    BXD101

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    225

    +
    +

    S31218_01

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    226

    +
    +

    S31218_02

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    227

    +
    +

    S31218_04

    +
    +

    BXD44

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    228

    +
    +

    S31218_15

    +
    +

    BXD63

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    229

    +
    +

    S31218_16

    +
    +

    BXD63

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    230

    +
    +

    S31218_18

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    231

    +
    +

    S31218_1

    +
    +

    BXD51

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    232

    +
    +

    S31218_21

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    233

    +
    +

    S31218_22

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    234

    +
    +

    S31218_24

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    235

    +
    +

    S31218_25

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    236

    +
    +

    S31218_27

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    237

    +
    +

    S31218_28

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    238

    +
    +

    S31218_31

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    239

    +
    +

    S31218_35

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    240

    +
    +

    S32718_01

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    241

    +
    +

    S32718_03

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    diff --git a/general/datasets/Niaaa_bxd_hip_cms_rnaseq1020/experiment-design.rtf b/general/datasets/Niaaa_bxd_hip_cms_rnaseq1020/experiment-design.rtf new file mode 100644 index 0000000..54fad3e --- /dev/null +++ b/general/datasets/Niaaa_bxd_hip_cms_rnaseq1020/experiment-design.rtf @@ -0,0 +1,7 @@ +

    Alcohol consumption was evaluated using the DID method. The protocol calls for 4 consecutive days of testing. Each day, starting on a Tuesday 3 h after lights were turned off, the water bottles were removed from the cages and replaced with 15 ml centrifuge tubes filled with 20% (v/v) ethanol from 95% USP ethanol. On days 1–3 (Tuesday through Thursday) the length of exposure was 2 h and on the 4th day (Friday) the exposure was 4 h. No alcohol was offered in the intervening period (Saturday through Monday). This protocol was repeated weekly for 16 weeks (Table). Tubes were weighed immediately before and after the exposure period. Volume consumed was converted to g/kg body weight of ethanol. 

    + +

    During a period of 7 weeks, mice received 2 disturbances per day (see Figure). These consisted of being exposed to wet bedding for 1 hour, 1 cm of water in the bottom of the cage with no bedding for 1 hour, no bedding for 1 hour, confinement in a 3 × 3 × 3 cm plastic box for 15 minutes, tilted cage at 45º for 1 hour, and exposure to foreign mouse or fox urine odor for 1 hour. The other stressor was a complete phase shift in the light:dark cycle over each weekend. Disruption of the light cycle (lights constantly on) occurred over the weekend (starting Friday 11:00 am) with the light cycle resuming at 11 am on Monday (lights off). The schedule was repeated weekly over the duration of the study.

    + +

    Treatment Periods

    + +

    The entire protocol took 16 weeks to complete and was subdivided into 3 periods: baseline (initial 5 weeks), CMS (next 7 weeks), and post‐CMS (final 4 weeks). Alcohol was offered as described above for all periods and experimental groups. During the intervening 7‐week CMS period, control animals were subjected to normal housing and experimental (stress) animals were subjected to CMS.

    diff --git a/general/datasets/Niaaa_bxd_hip_cms_rnaseq1020/processing.rtf b/general/datasets/Niaaa_bxd_hip_cms_rnaseq1020/processing.rtf new file mode 100644 index 0000000..7d83d76 --- /dev/null +++ b/general/datasets/Niaaa_bxd_hip_cms_rnaseq1020/processing.rtf @@ -0,0 +1,9 @@ +

    Generation of RNA-seq data

    + +

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    + +

     

    + +

    Read mapping and normalization

    + +

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/Niaaa_bxd_hip_cms_rnaseq1020/specifics.rtf b/general/datasets/Niaaa_bxd_hip_cms_rnaseq1020/specifics.rtf new file mode 100644 index 0000000..5089c79 --- /dev/null +++ b/general/datasets/Niaaa_bxd_hip_cms_rnaseq1020/specifics.rtf @@ -0,0 +1 @@ +NIAAA BXD Hippocampus CMS RNA-Seq (Oct20) TPM Log2 \ No newline at end of file diff --git a/general/datasets/Niaaa_bxd_hip_cms_rnaseq1020/tissue.rtf b/general/datasets/Niaaa_bxd_hip_cms_rnaseq1020/tissue.rtf new file mode 100644 index 0000000..30cdeea --- /dev/null +++ b/general/datasets/Niaaa_bxd_hip_cms_rnaseq1020/tissue.rtf @@ -0,0 +1,7 @@ +

    Tissue Harvest and RNA extraction

    + +

    The animals were sacrificed under saturated isoflurane. Brains from the animals were dissected under a cold plate (≤4o C), and hippocampus were weighted and snap frozen in dry ice bath with isopentane and stored at −80°C until RNA extraction. 

    + +

    RNA Extraction

    + +

    Total RNA was extracted using Direct-zol RNA Miniprep Plus Kits (Zymo Research, Irvine, CA, USA) according to the manufacturer’s instructions. Approximately 15 mg of hippocampus tissue was added into a 2 ml tube containing 1 ml TRI Reagent® and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 min in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 rpm followed by incubating for 5 min.   0.1 ml of 1‑bromo-3‑chloropropane was add into the homogenate, shaken vigorously for 15 s, and centrifuged for 15 min at 12,000×g at 4 °C. 600 µl upper aqueous was then transferred into a new collection tube containing 600 µl 100% ethanol. The mixture was loaded into a Zymo-Spin IIC column, wash once with RNA Prep Buffer and twice with RNA Wash Buffer. All RNA had been treated with DNase to eliminate possible DNA contamination, and further precipitated with ethanol. RNA purity and integrity were verified by a nanodrop spectrophotometer and an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). 

    diff --git a/general/datasets/Niaaa_bxd_hip_ctl_rnaseq1020/cases.rtf b/general/datasets/Niaaa_bxd_hip_ctl_rnaseq1020/cases.rtf new file mode 100644 index 0000000..08a20a8 --- /dev/null +++ b/general/datasets/Niaaa_bxd_hip_ctl_rnaseq1020/cases.rtf @@ -0,0 +1,4848 @@ +

    The study included 241 females (aged 50 to 90 ± 2 days at the start of the experiment) from B6, D2, and 35 advanced intercross BXD strains (about 2 mice per strain and per condition). Mice were divided into 4 groups of Control (CTL, 53 mice for 31 strains), Chronic Mild Stress (CMS, 64 mice for 32 strains), Drinking in Dark (DID, 64 mice for 35 strains), and CMS+DID (60 mice for 35 strains). Mice in CTL were normally handled, while mice in  other groups were singly housed in shoebox cages, with food and water provided ad libitum except when the water was replaced by 20% (v/v) EtOH (see below) for DID and CMS+DID groups (detailed treatments and schemes  are showing in the Table and Figure). The ambient temperature was 21 ± 2°C, and the light cycle was 7:00/19:00 for CTL, and 23:00/11:00 the rest groups lights on/off. The animals were weighed weekly to assess health and to provide the basis for calculating the amount of EtOH consumed in grams per kilogram. All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    + +

    The table of samples that are finally used for this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Index

    +
    +

    ID

    +
    +

    Strain

    +
    +

    Sex 

    +
    +

    Treatment Group

    +
    +

    Tissue

    +
    +

    1

    +
    +

    CMS030716_12

    +
    +

    BXD68

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    2

    +
    +

    CMS030716_18

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    3

    +
    +

    CMS030716_19

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    4

    +
    +

    CMS030916_02

    +
    +

    BXD101

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    5

    +
    +

    CMS030916_09

    +
    +

    BXD101

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    6

    +
    +

    CMS030916_11

    +
    +

    BXD79

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    7

    +
    +

    CMS030916_14

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    8

    +
    +

    CMS030916_20

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    9

    +
    +

    CMS030916_23

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    10

    +
    +

    CMS030916_32

    +
    +

    BXD86

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    11

    +
    +

    CMS032817_02

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    12

    +
    +

    CMS032817_28

    +
    +

    BXD66

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    13

    +
    +

    CMS032917_08

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    14

    +
    +

    CMS032917_24

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    15

    +
    +

    CMS032917_26

    +
    +

    BXD87

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    16

    +
    +

    CMS032917_33

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    17

    +
    +

    CMS033017_05

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    18

    +
    +

    CMS033017_25

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    19

    +
    +

    CMS061218_12

    +
    +

    BXD87

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    20

    +
    +

    CMS061218_13

    +
    +

    BXD60

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    21

    +
    +

    CMS061218_14

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    22

    +
    +

    CMS071216_17

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    23

    +
    +

    CMS071216_23

    +
    +

    BXD73B

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    24

    +
    +

    CMS071216_25

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    25

    +
    +

    CMS071316_06

    +
    +

    BXD90

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    26

    +
    +

    CMS071316_08

    +
    +

    BXD66

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    27

    +
    +

    CMS071316_14

    +
    +

    BXD87

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    28

    +
    +

    CMS071316_17

    +
    +

    BXD62

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    29

    +
    +

    CMS071316_18

    +
    +

    BXD65

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    30

    +
    +

    CMS071316_32

    +
    +

    BXD90

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    31

    +
    +

    CMS071416_06

    +
    +

    BXD50

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    32

    +
    +

    CMS082817_07

    +
    +

    BXD44

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    33

    +
    +

    CMS082817_25

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    34

    +
    +

    CMS082917_16

    +
    +

    BXD79

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    35

    +
    +

    CMS083017_07

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    36

    +
    +

    CMS083017_25

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    37

    +
    +

    CMS092018_01

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    38

    +
    +

    CMS092018_05

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    39

    +
    +

    CMS092118_08

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    40

    +
    +

    CMS102716_01

    +
    +

    BXD83

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    41

    +
    +

    CMS102716_02

    +
    +

    BXD75

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    42

    +
    +

    CMS102716_03

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    43

    +
    +

    CMS102716_05

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    44

    +
    +

    CMS102716_06

    +
    +

    BXD34

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    45

    +
    +

    CMS102716_07

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    46

    +
    +

    CMS102716_08

    +
    +

    BXD60

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    47

    +
    +

    CMS102716_11

    +
    +

    BXD34

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    48

    +
    +

    CMS102716_12

    +
    +

    BXD62

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    49

    +
    +

    CMS102716_14

    +
    +

    BXD83

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    50

    +
    +

    CMS102716_15

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    51

    +
    +

    CMS102716_16

    +
    +

    BXD77

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    52

    +
    +

    CMS102716_20

    +
    +

    BXD50

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    53

    +
    +

    CMS102816_02

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    54

    +
    +

    CMS102816_03

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    55

    +
    +

    CMS102816_04

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    56

    +
    +

    CMS102816_06

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    57

    +
    +

    CMS102816_10

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    58

    +
    +

    CMS102816_11

    +
    +

    BXD100

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    59

    +
    +

    CMS102816_13

    +
    +

    BXD75

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    60

    +
    +

    CMS102816_14

    +
    +

    BXD77

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    61

    +
    +

    CMS102816_17

    +
    +

    BXD100

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    62

    +
    +

    CMS102816_18

    +
    +

    BXD43

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    63

    +
    +

    CMS102816_20

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    64

    +
    +

    CMS102816_21

    +
    +

    BXD65

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    65

    +
    +

    CMS030716_01

    +
    +

    BXD55

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    66

    +
    +

    CMS030716_08

    +
    +

    BXD63

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    67

    +
    +

    CMS030716_09

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    68

    +
    +

    CMS030716_15

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    69

    +
    +

    CMS030716_27

    +
    +

    BXD86

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    70

    +
    +

    CMS030716_29

    +
    +

    BXD55

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    71

    +
    +

    CMS030716_30

    +
    +

    BXD62

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    72

    +
    +

    CMS030716_31

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    73

    +
    +

    CMS030916_15

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    74

    +
    +

    CMS030916_16

    +
    +

    BXD68

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    75

    +
    +

    CMS030916_17

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    76

    +
    +

    CMS030916_26

    +
    +

    BXD79

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    77

    +
    +

    CMS032817_10

    +
    +

    BXD87

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    78

    +
    +

    CMS032817_18

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    79

    +
    +

    CMS032817_25

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    80

    +
    +

    CMS032817_27

    +
    +

    BXD83

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    81

    +
    +

    CMS032817_31

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    82

    +
    +

    CMS032817_32

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    83

    +
    +

    CMS032917_15

    +
    +

    BXD86

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    84

    +
    +

    CMS032917_17

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    85

    +
    +

    CMS032917_25

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    86

    +
    +

    CMS033017_04

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    87

    +
    +

    CMS033017_11

    +
    +

    BXD83

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    88

    +
    +

    CMS033017_13

    +
    +

    BXD73

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    89

    +
    +

    CMS071216_01

    +
    +

    BXD50

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    90

    +
    +

    CMS071216_24

    +
    +

    BXD100

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    91

    +
    +

    CMS071316_05

    +
    +

    BXD51

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    92

    +
    +

    CMS071316_20

    +
    +

    BXD65

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    93

    +
    +

    CMS071316_22

    +
    +

    BXD90

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    94

    +
    +

    CMS071316_29

    +
    +

    BXD51

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    95

    +
    +

    CMS071416_01

    +
    +

    BXD100

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    96

    +
    +

    CMS071416_08

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    97

    +
    +

    CMS071416_13

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    98

    +
    +

    CMS071416_19

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    99

    +
    +

    CMS071416_27

    +
    +

    BXD63

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    100

    +
    +

    CMS082817_02

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    101

    +
    +

    CMS082817_03

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    102

    +
    +

    CMS082817_09

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    103

    +
    +

    CMS082817_28

    +
    +

    BXD79

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    104

    +
    +

    CMS082917_07

    +
    +

    BXD43

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    105

    +
    +

    CMS082917_10

    +
    +

    BXD44

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    106

    +
    +

    CMS082917_18

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    107

    +
    +

    CMS082917_21

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    108

    +
    +

    CMS082917_29

    +
    +

    BXD87

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    109

    +
    +

    CMS083017_02

    +
    +

    BXD101

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    110

    +
    +

    CMS083017_03

    +
    +

    BXD66

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    111

    +
    +

    CMS083017_11

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    112

    +
    +

    CMS083017_28

    +
    +

    BXD101

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    113

    +
    +

    CMS111716_07

    +
    +

    BXD75

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    114

    +
    +

    CMS111716_11

    +
    +

    BXD73b

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    115

    +
    +

    CMS111716_12

    +
    +

    BXD75

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    116

    +
    +

    CMS111716_14

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    117

    +
    +

    CMS111716_17

    +
    +

    BXD50

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    118

    +
    +

    CMS111816_05

    +
    +

    BXD77

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    119

    +
    +

    CMS111816_07

    +
    +

    BXD73b

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    120

    +
    +

    CMS111816_12

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    121

    +
    +

    CMS111816_13

    +
    +

    BXD77

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    122

    +
    +

    CMS111816_26

    +
    +

    BXD34

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    123

    +
    +

    S32315_14

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    124

    +
    +

    S32415_09

    +
    +

    BXD68

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    125

    +
    +

    CMS030716_05

    +
    +

    BXD44

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    126

    +
    +

    CMS030716_14

    +
    +

    BXD40

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    127

    +
    +

    CMS030716_21

    +
    +

    BXD68

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    128

    +
    +

    CMS030716_24

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    129

    +
    +

    CMS030716_28

    +
    +

    BXD79

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    130

    +
    +

    CMS030716_33

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    131

    +
    +

    CMS030916_04

    +
    +

    BXD55

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    132

    +
    +

    CMS030916_06

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    133

    +
    +

    CMS030916_07

    +
    +

    BXD60

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    134

    +
    +

    CMS030916_10

    +
    +

    BXD63

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    135

    +
    +

    CMS030916_18

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    136

    +
    +

    CMS030916_22

    +
    +

    BXD79

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    137

    +
    +

    CMS030916_24

    +
    +

    BXD63

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    138

    +
    +

    CMS030916_29

    +
    +

    BXD55

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    139

    +
    +

    CMS030916_33

    +
    +

    BXD69

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    140

    +
    +

    CMS032817_08

    +
    +

    BXD73

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    141

    +
    +

    CMS032817_24

    +
    +

    BXD70

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    142

    +
    +

    CMS032917_07

    +
    +

    BXD70

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    143

    +
    +

    CMS032917_19

    +
    +

    BXD78

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    144

    +
    +

    CMS032917_21

    +
    +

    BXD86

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    145

    +
    +

    CMS032917_23

    +
    +

    BXD66

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    146

    +
    +

    CMS032917_30

    +
    +

    BXD78

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    147

    +
    +

    CMS032917_31

    +
    +

    BXD48

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    148

    +
    +

    CMS032917_32

    +
    +

    BXD71

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    149

    +
    +

    CMS033017_16

    +
    +

    BXD62

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    150

    +
    +

    CMS033017_29

    +
    +

    BXD83

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    151

    +
    +

    CMS071216_04

    +
    +

    BXD90

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    152

    +
    +

    CMS071216_09

    +
    +

    BXD77

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    153

    +
    +

    CMS071216_16

    +
    +

    BXD65

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    154

    +
    +

    CMS071216_22

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    155

    +
    +

    CMS071316_15

    +
    +

    BXD90

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    156

    +
    +

    CMS071316_16

    +
    +

    BXD50

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    157

    +
    +

    CMS071316_27

    +
    +

    BXD65

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    158

    +
    +

    CMS071316_30

    +
    +

    BXD51

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    159

    +
    +

    CMS071416_10

    +
    +

    BXD44

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    160

    +
    +

    CMS071416_21

    +
    +

    BXD69

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    161

    +
    +

    CMS082817_12

    +
    +

    BXD51

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    162

    +
    +

    CMS082817_16

    +
    +

    BXD101

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    163

    +
    +

    CMS082817_22

    +
    +

    BXD101

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    164

    +
    +

    CMS082817_23

    +
    +

    BXD24

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    165

    +
    +

    CMS082917_13

    +
    +

    BXD40

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    166

    +
    +

    CMS082917_22

    +
    +

    BXD87

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    167

    +
    +

    CMS083017_10

    +
    +

    BXD24

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    168

    +
    +

    CMS102215_20

    +
    +

    BXD73B

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    169

    +
    +

    CMS111716_02

    +
    +

    BXD75

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    170

    +
    +

    CMS111716_05

    +
    +

    BXD43

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    171

    +
    +

    CMS111716_08

    +
    +

    BXD75

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    172

    +
    +

    CMS111716_10

    +
    +

    BXD32

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    173

    +
    +

    CMS111716_16

    +
    +

    BXD100

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    174

    +
    +

    CMS111716_20

    +
    +

    BXD60

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    175

    +
    +

    CMS111716_22

    +
    +

    BXD83

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    176

    +
    +

    CMS111716_23

    +
    +

    BXD73b

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    177

    +
    +

    CMS111716_25

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    178

    +
    +

    CMS111816_01

    +
    +

    BXD34

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    179

    +
    +

    CMS111816_03

    +
    +

    BXD48

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    180

    +
    +

    CMS111816_08

    +
    +

    BXD43

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    181

    +
    +

    CMS111816_11

    +
    +

    BXD87

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    182

    +
    +

    CMS111816_14

    +
    +

    BXD60

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    183

    +
    +

    CMS111816_16

    +
    +

    BXD73b

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    184

    +
    +

    CMS111816_17

    +
    +

    BXD77

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    185

    +
    +

    CMS111816_20

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    186

    +
    +

    CMS111816_28

    +
    +

    BXD50

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    187

    +
    +

    S32515_12

    +
    +

    BXD68

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    188

    +
    +

    S32515_16

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    189

    +
    +

    13118_35

    +
    +

    BXD62

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    190

    +
    +

    13118_41

    +
    +

    BXD66

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    191

    +
    +

    13118_56

    +
    +

    BXD75

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    192

    +
    +

    31218_19

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    193

    +
    +

    31218_3

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    194

    +
    +

    31218_36

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    195

    +
    +

    AGE041118_03

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    196

    +
    +

    AGE050118_07

    +
    +

    BXD55

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    197

    +
    +

    AGE050118_12

    +
    +

    BXD73

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    198

    +
    +

    AGE050118_16

    +
    +

    BXD77

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    199

    +
    +

    AGE050118_21

    +
    +

    BXD86

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    200

    +
    +

    AGE050118_23

    +
    +

    BXD86

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    201

    +
    +

    AGE050118_27

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    202

    +
    +

    AGE061818_02

    +
    +

    BXD100

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    203

    +
    +

    BL013118_12

    +
    +

    BXD34

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    204

    +
    +

    BL013118_13

    +
    +

    BXD34

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    205

    +
    +

    CMS092118_24

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    206

    +
    +

    E100118_16

    +
    +

    BXD65

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    207

    +
    +

    MT052417_09

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    208

    +
    +

    MT052417_17

    +
    +

    BXD51

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    209

    +
    +

    S13118_07

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    210

    +
    +

    S13118_08

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    211

    +
    +

    S13118_15

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    212

    +
    +

    S13118_18

    +
    +

    BXD43

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    213

    +
    +

    S13118_19

    +
    +

    BXD43

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    214

    +
    +

    S13118_23

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    215

    +
    +

    S13118_24

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    216

    +
    +

    S13118_26

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    217

    +
    +

    S13118_36

    +
    +

    BXD62

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    218

    +
    +

    S13118_38

    +
    +

    BXD65

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    219

    +
    +

    S13118_42

    +
    +

    BXD66

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    220

    +
    +

    S13118_44

    +
    +

    BXD68

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    221

    +
    +

    S13118_58

    +
    +

    BXD79

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    222

    +
    +

    S13118_64

    +
    +

    BXD90

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    223

    +
    +

    S13118_65

    +
    +

    BXD90

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    224

    +
    +

    S13118_7

    +
    +

    BXD101

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    225

    +
    +

    S31218_01

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    226

    +
    +

    S31218_02

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    227

    +
    +

    S31218_04

    +
    +

    BXD44

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    228

    +
    +

    S31218_15

    +
    +

    BXD63

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    229

    +
    +

    S31218_16

    +
    +

    BXD63

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    230

    +
    +

    S31218_18

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    231

    +
    +

    S31218_1

    +
    +

    BXD51

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    232

    +
    +

    S31218_21

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    233

    +
    +

    S31218_22

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    234

    +
    +

    S31218_24

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    235

    +
    +

    S31218_25

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    236

    +
    +

    S31218_27

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    237

    +
    +

    S31218_28

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    238

    +
    +

    S31218_31

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    239

    +
    +

    S31218_35

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    240

    +
    +

    S32718_01

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    241

    +
    +

    S32718_03

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    diff --git a/general/datasets/Niaaa_bxd_hip_ctl_rnaseq1020/experiment-design.rtf b/general/datasets/Niaaa_bxd_hip_ctl_rnaseq1020/experiment-design.rtf new file mode 100644 index 0000000..54fad3e --- /dev/null +++ b/general/datasets/Niaaa_bxd_hip_ctl_rnaseq1020/experiment-design.rtf @@ -0,0 +1,7 @@ +

    Alcohol consumption was evaluated using the DID method. The protocol calls for 4 consecutive days of testing. Each day, starting on a Tuesday 3 h after lights were turned off, the water bottles were removed from the cages and replaced with 15 ml centrifuge tubes filled with 20% (v/v) ethanol from 95% USP ethanol. On days 1–3 (Tuesday through Thursday) the length of exposure was 2 h and on the 4th day (Friday) the exposure was 4 h. No alcohol was offered in the intervening period (Saturday through Monday). This protocol was repeated weekly for 16 weeks (Table). Tubes were weighed immediately before and after the exposure period. Volume consumed was converted to g/kg body weight of ethanol. 

    + +

    During a period of 7 weeks, mice received 2 disturbances per day (see Figure). These consisted of being exposed to wet bedding for 1 hour, 1 cm of water in the bottom of the cage with no bedding for 1 hour, no bedding for 1 hour, confinement in a 3 × 3 × 3 cm plastic box for 15 minutes, tilted cage at 45º for 1 hour, and exposure to foreign mouse or fox urine odor for 1 hour. The other stressor was a complete phase shift in the light:dark cycle over each weekend. Disruption of the light cycle (lights constantly on) occurred over the weekend (starting Friday 11:00 am) with the light cycle resuming at 11 am on Monday (lights off). The schedule was repeated weekly over the duration of the study.

    + +

    Treatment Periods

    + +

    The entire protocol took 16 weeks to complete and was subdivided into 3 periods: baseline (initial 5 weeks), CMS (next 7 weeks), and post‐CMS (final 4 weeks). Alcohol was offered as described above for all periods and experimental groups. During the intervening 7‐week CMS period, control animals were subjected to normal housing and experimental (stress) animals were subjected to CMS.

    diff --git a/general/datasets/Niaaa_bxd_hip_ctl_rnaseq1020/processing.rtf b/general/datasets/Niaaa_bxd_hip_ctl_rnaseq1020/processing.rtf new file mode 100644 index 0000000..7d83d76 --- /dev/null +++ b/general/datasets/Niaaa_bxd_hip_ctl_rnaseq1020/processing.rtf @@ -0,0 +1,9 @@ +

    Generation of RNA-seq data

    + +

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    + +

     

    + +

    Read mapping and normalization

    + +

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/Niaaa_bxd_hip_ctl_rnaseq1020/specifics.rtf b/general/datasets/Niaaa_bxd_hip_ctl_rnaseq1020/specifics.rtf new file mode 100644 index 0000000..072040e --- /dev/null +++ b/general/datasets/Niaaa_bxd_hip_ctl_rnaseq1020/specifics.rtf @@ -0,0 +1 @@ +NIAAA BXD Hippocampus CTL RNA-Seq (Oct20) TPM Log2 \ No newline at end of file diff --git a/general/datasets/Niaaa_bxd_hip_ctl_rnaseq1020/tissue.rtf b/general/datasets/Niaaa_bxd_hip_ctl_rnaseq1020/tissue.rtf new file mode 100644 index 0000000..30cdeea --- /dev/null +++ b/general/datasets/Niaaa_bxd_hip_ctl_rnaseq1020/tissue.rtf @@ -0,0 +1,7 @@ +

    Tissue Harvest and RNA extraction

    + +

    The animals were sacrificed under saturated isoflurane. Brains from the animals were dissected under a cold plate (≤4o C), and hippocampus were weighted and snap frozen in dry ice bath with isopentane and stored at −80°C until RNA extraction. 

    + +

    RNA Extraction

    + +

    Total RNA was extracted using Direct-zol RNA Miniprep Plus Kits (Zymo Research, Irvine, CA, USA) according to the manufacturer’s instructions. Approximately 15 mg of hippocampus tissue was added into a 2 ml tube containing 1 ml TRI Reagent® and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 min in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 rpm followed by incubating for 5 min.   0.1 ml of 1‑bromo-3‑chloropropane was add into the homogenate, shaken vigorously for 15 s, and centrifuged for 15 min at 12,000×g at 4 °C. 600 µl upper aqueous was then transferred into a new collection tube containing 600 µl 100% ethanol. The mixture was loaded into a Zymo-Spin IIC column, wash once with RNA Prep Buffer and twice with RNA Wash Buffer. All RNA had been treated with DNase to eliminate possible DNA contamination, and further precipitated with ethanol. RNA purity and integrity were verified by a nanodrop spectrophotometer and an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). 

    diff --git a/general/datasets/Niaaa_bxd_hip_did_rnaseq1020/cases.rtf b/general/datasets/Niaaa_bxd_hip_did_rnaseq1020/cases.rtf new file mode 100644 index 0000000..08a20a8 --- /dev/null +++ b/general/datasets/Niaaa_bxd_hip_did_rnaseq1020/cases.rtf @@ -0,0 +1,4848 @@ +

    The study included 241 females (aged 50 to 90 ± 2 days at the start of the experiment) from B6, D2, and 35 advanced intercross BXD strains (about 2 mice per strain and per condition). Mice were divided into 4 groups of Control (CTL, 53 mice for 31 strains), Chronic Mild Stress (CMS, 64 mice for 32 strains), Drinking in Dark (DID, 64 mice for 35 strains), and CMS+DID (60 mice for 35 strains). Mice in CTL were normally handled, while mice in  other groups were singly housed in shoebox cages, with food and water provided ad libitum except when the water was replaced by 20% (v/v) EtOH (see below) for DID and CMS+DID groups (detailed treatments and schemes  are showing in the Table and Figure). The ambient temperature was 21 ± 2°C, and the light cycle was 7:00/19:00 for CTL, and 23:00/11:00 the rest groups lights on/off. The animals were weighed weekly to assess health and to provide the basis for calculating the amount of EtOH consumed in grams per kilogram. All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    + +

    The table of samples that are finally used for this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Index

    +
    +

    ID

    +
    +

    Strain

    +
    +

    Sex 

    +
    +

    Treatment Group

    +
    +

    Tissue

    +
    +

    1

    +
    +

    CMS030716_12

    +
    +

    BXD68

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    2

    +
    +

    CMS030716_18

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    3

    +
    +

    CMS030716_19

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    4

    +
    +

    CMS030916_02

    +
    +

    BXD101

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    5

    +
    +

    CMS030916_09

    +
    +

    BXD101

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    6

    +
    +

    CMS030916_11

    +
    +

    BXD79

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    7

    +
    +

    CMS030916_14

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    8

    +
    +

    CMS030916_20

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    9

    +
    +

    CMS030916_23

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    10

    +
    +

    CMS030916_32

    +
    +

    BXD86

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    11

    +
    +

    CMS032817_02

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    12

    +
    +

    CMS032817_28

    +
    +

    BXD66

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    13

    +
    +

    CMS032917_08

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    14

    +
    +

    CMS032917_24

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    15

    +
    +

    CMS032917_26

    +
    +

    BXD87

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    16

    +
    +

    CMS032917_33

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    17

    +
    +

    CMS033017_05

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    18

    +
    +

    CMS033017_25

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    19

    +
    +

    CMS061218_12

    +
    +

    BXD87

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    20

    +
    +

    CMS061218_13

    +
    +

    BXD60

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    21

    +
    +

    CMS061218_14

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    22

    +
    +

    CMS071216_17

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    23

    +
    +

    CMS071216_23

    +
    +

    BXD73B

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    24

    +
    +

    CMS071216_25

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    25

    +
    +

    CMS071316_06

    +
    +

    BXD90

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    26

    +
    +

    CMS071316_08

    +
    +

    BXD66

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    27

    +
    +

    CMS071316_14

    +
    +

    BXD87

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    28

    +
    +

    CMS071316_17

    +
    +

    BXD62

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    29

    +
    +

    CMS071316_18

    +
    +

    BXD65

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    30

    +
    +

    CMS071316_32

    +
    +

    BXD90

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    31

    +
    +

    CMS071416_06

    +
    +

    BXD50

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    32

    +
    +

    CMS082817_07

    +
    +

    BXD44

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    33

    +
    +

    CMS082817_25

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    34

    +
    +

    CMS082917_16

    +
    +

    BXD79

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    35

    +
    +

    CMS083017_07

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    36

    +
    +

    CMS083017_25

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    37

    +
    +

    CMS092018_01

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    38

    +
    +

    CMS092018_05

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    39

    +
    +

    CMS092118_08

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    40

    +
    +

    CMS102716_01

    +
    +

    BXD83

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    41

    +
    +

    CMS102716_02

    +
    +

    BXD75

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    42

    +
    +

    CMS102716_03

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    43

    +
    +

    CMS102716_05

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    44

    +
    +

    CMS102716_06

    +
    +

    BXD34

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    45

    +
    +

    CMS102716_07

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    46

    +
    +

    CMS102716_08

    +
    +

    BXD60

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    47

    +
    +

    CMS102716_11

    +
    +

    BXD34

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    48

    +
    +

    CMS102716_12

    +
    +

    BXD62

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    49

    +
    +

    CMS102716_14

    +
    +

    BXD83

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    50

    +
    +

    CMS102716_15

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    51

    +
    +

    CMS102716_16

    +
    +

    BXD77

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    52

    +
    +

    CMS102716_20

    +
    +

    BXD50

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    53

    +
    +

    CMS102816_02

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    54

    +
    +

    CMS102816_03

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    55

    +
    +

    CMS102816_04

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    56

    +
    +

    CMS102816_06

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    57

    +
    +

    CMS102816_10

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    58

    +
    +

    CMS102816_11

    +
    +

    BXD100

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    59

    +
    +

    CMS102816_13

    +
    +

    BXD75

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    60

    +
    +

    CMS102816_14

    +
    +

    BXD77

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    61

    +
    +

    CMS102816_17

    +
    +

    BXD100

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    62

    +
    +

    CMS102816_18

    +
    +

    BXD43

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    63

    +
    +

    CMS102816_20

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    64

    +
    +

    CMS102816_21

    +
    +

    BXD65

    +
    +

    F

    +
    +

    CMS

    +
    +

    hippocampus

    +
    +

    65

    +
    +

    CMS030716_01

    +
    +

    BXD55

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    66

    +
    +

    CMS030716_08

    +
    +

    BXD63

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    67

    +
    +

    CMS030716_09

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    68

    +
    +

    CMS030716_15

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    69

    +
    +

    CMS030716_27

    +
    +

    BXD86

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    70

    +
    +

    CMS030716_29

    +
    +

    BXD55

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    71

    +
    +

    CMS030716_30

    +
    +

    BXD62

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    72

    +
    +

    CMS030716_31

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    73

    +
    +

    CMS030916_15

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    74

    +
    +

    CMS030916_16

    +
    +

    BXD68

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    75

    +
    +

    CMS030916_17

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    76

    +
    +

    CMS030916_26

    +
    +

    BXD79

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    77

    +
    +

    CMS032817_10

    +
    +

    BXD87

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    78

    +
    +

    CMS032817_18

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    79

    +
    +

    CMS032817_25

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    80

    +
    +

    CMS032817_27

    +
    +

    BXD83

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    81

    +
    +

    CMS032817_31

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    82

    +
    +

    CMS032817_32

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    83

    +
    +

    CMS032917_15

    +
    +

    BXD86

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    84

    +
    +

    CMS032917_17

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    85

    +
    +

    CMS032917_25

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    86

    +
    +

    CMS033017_04

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    87

    +
    +

    CMS033017_11

    +
    +

    BXD83

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    88

    +
    +

    CMS033017_13

    +
    +

    BXD73

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    89

    +
    +

    CMS071216_01

    +
    +

    BXD50

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    90

    +
    +

    CMS071216_24

    +
    +

    BXD100

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    91

    +
    +

    CMS071316_05

    +
    +

    BXD51

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    92

    +
    +

    CMS071316_20

    +
    +

    BXD65

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    93

    +
    +

    CMS071316_22

    +
    +

    BXD90

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    94

    +
    +

    CMS071316_29

    +
    +

    BXD51

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    95

    +
    +

    CMS071416_01

    +
    +

    BXD100

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    96

    +
    +

    CMS071416_08

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    97

    +
    +

    CMS071416_13

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    98

    +
    +

    CMS071416_19

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    99

    +
    +

    CMS071416_27

    +
    +

    BXD63

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    100

    +
    +

    CMS082817_02

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    101

    +
    +

    CMS082817_03

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    102

    +
    +

    CMS082817_09

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    103

    +
    +

    CMS082817_28

    +
    +

    BXD79

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    104

    +
    +

    CMS082917_07

    +
    +

    BXD43

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    105

    +
    +

    CMS082917_10

    +
    +

    BXD44

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    106

    +
    +

    CMS082917_18

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    107

    +
    +

    CMS082917_21

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    108

    +
    +

    CMS082917_29

    +
    +

    BXD87

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    109

    +
    +

    CMS083017_02

    +
    +

    BXD101

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    110

    +
    +

    CMS083017_03

    +
    +

    BXD66

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    111

    +
    +

    CMS083017_11

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    112

    +
    +

    CMS083017_28

    +
    +

    BXD101

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    113

    +
    +

    CMS111716_07

    +
    +

    BXD75

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    114

    +
    +

    CMS111716_11

    +
    +

    BXD73b

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    115

    +
    +

    CMS111716_12

    +
    +

    BXD75

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    116

    +
    +

    CMS111716_14

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    117

    +
    +

    CMS111716_17

    +
    +

    BXD50

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    118

    +
    +

    CMS111816_05

    +
    +

    BXD77

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    119

    +
    +

    CMS111816_07

    +
    +

    BXD73b

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    120

    +
    +

    CMS111816_12

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    121

    +
    +

    CMS111816_13

    +
    +

    BXD77

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    122

    +
    +

    CMS111816_26

    +
    +

    BXD34

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    123

    +
    +

    S32315_14

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    124

    +
    +

    S32415_09

    +
    +

    BXD68

    +
    +

    F

    +
    +

    CMS+DID

    +
    +

    hippocampus

    +
    +

    125

    +
    +

    CMS030716_05

    +
    +

    BXD44

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    126

    +
    +

    CMS030716_14

    +
    +

    BXD40

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    127

    +
    +

    CMS030716_21

    +
    +

    BXD68

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    128

    +
    +

    CMS030716_24

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    129

    +
    +

    CMS030716_28

    +
    +

    BXD79

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    130

    +
    +

    CMS030716_33

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    131

    +
    +

    CMS030916_04

    +
    +

    BXD55

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    132

    +
    +

    CMS030916_06

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    133

    +
    +

    CMS030916_07

    +
    +

    BXD60

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    134

    +
    +

    CMS030916_10

    +
    +

    BXD63

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    135

    +
    +

    CMS030916_18

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    136

    +
    +

    CMS030916_22

    +
    +

    BXD79

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    137

    +
    +

    CMS030916_24

    +
    +

    BXD63

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    138

    +
    +

    CMS030916_29

    +
    +

    BXD55

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    139

    +
    +

    CMS030916_33

    +
    +

    BXD69

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    140

    +
    +

    CMS032817_08

    +
    +

    BXD73

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    141

    +
    +

    CMS032817_24

    +
    +

    BXD70

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    142

    +
    +

    CMS032917_07

    +
    +

    BXD70

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    143

    +
    +

    CMS032917_19

    +
    +

    BXD78

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    144

    +
    +

    CMS032917_21

    +
    +

    BXD86

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    145

    +
    +

    CMS032917_23

    +
    +

    BXD66

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    146

    +
    +

    CMS032917_30

    +
    +

    BXD78

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    147

    +
    +

    CMS032917_31

    +
    +

    BXD48

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    148

    +
    +

    CMS032917_32

    +
    +

    BXD71

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    149

    +
    +

    CMS033017_16

    +
    +

    BXD62

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    150

    +
    +

    CMS033017_29

    +
    +

    BXD83

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    151

    +
    +

    CMS071216_04

    +
    +

    BXD90

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    152

    +
    +

    CMS071216_09

    +
    +

    BXD77

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    153

    +
    +

    CMS071216_16

    +
    +

    BXD65

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    154

    +
    +

    CMS071216_22

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    155

    +
    +

    CMS071316_15

    +
    +

    BXD90

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    156

    +
    +

    CMS071316_16

    +
    +

    BXD50

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    157

    +
    +

    CMS071316_27

    +
    +

    BXD65

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    158

    +
    +

    CMS071316_30

    +
    +

    BXD51

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    159

    +
    +

    CMS071416_10

    +
    +

    BXD44

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    160

    +
    +

    CMS071416_21

    +
    +

    BXD69

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    161

    +
    +

    CMS082817_12

    +
    +

    BXD51

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    162

    +
    +

    CMS082817_16

    +
    +

    BXD101

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    163

    +
    +

    CMS082817_22

    +
    +

    BXD101

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    164

    +
    +

    CMS082817_23

    +
    +

    BXD24

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    165

    +
    +

    CMS082917_13

    +
    +

    BXD40

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    166

    +
    +

    CMS082917_22

    +
    +

    BXD87

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    167

    +
    +

    CMS083017_10

    +
    +

    BXD24

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    168

    +
    +

    CMS102215_20

    +
    +

    BXD73B

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    169

    +
    +

    CMS111716_02

    +
    +

    BXD75

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    170

    +
    +

    CMS111716_05

    +
    +

    BXD43

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    171

    +
    +

    CMS111716_08

    +
    +

    BXD75

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    172

    +
    +

    CMS111716_10

    +
    +

    BXD32

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    173

    +
    +

    CMS111716_16

    +
    +

    BXD100

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    174

    +
    +

    CMS111716_20

    +
    +

    BXD60

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    175

    +
    +

    CMS111716_22

    +
    +

    BXD83

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    176

    +
    +

    CMS111716_23

    +
    +

    BXD73b

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    177

    +
    +

    CMS111716_25

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    178

    +
    +

    CMS111816_01

    +
    +

    BXD34

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    179

    +
    +

    CMS111816_03

    +
    +

    BXD48

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    180

    +
    +

    CMS111816_08

    +
    +

    BXD43

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    181

    +
    +

    CMS111816_11

    +
    +

    BXD87

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    182

    +
    +

    CMS111816_14

    +
    +

    BXD60

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    183

    +
    +

    CMS111816_16

    +
    +

    BXD73b

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    184

    +
    +

    CMS111816_17

    +
    +

    BXD77

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    185

    +
    +

    CMS111816_20

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    186

    +
    +

    CMS111816_28

    +
    +

    BXD50

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    187

    +
    +

    S32515_12

    +
    +

    BXD68

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    188

    +
    +

    S32515_16

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    DID

    +
    +

    hippocampus

    +
    +

    189

    +
    +

    13118_35

    +
    +

    BXD62

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    190

    +
    +

    13118_41

    +
    +

    BXD66

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    191

    +
    +

    13118_56

    +
    +

    BXD75

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    192

    +
    +

    31218_19

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    193

    +
    +

    31218_3

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    194

    +
    +

    31218_36

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    195

    +
    +

    AGE041118_03

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    196

    +
    +

    AGE050118_07

    +
    +

    BXD55

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    197

    +
    +

    AGE050118_12

    +
    +

    BXD73

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    198

    +
    +

    AGE050118_16

    +
    +

    BXD77

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    199

    +
    +

    AGE050118_21

    +
    +

    BXD86

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    200

    +
    +

    AGE050118_23

    +
    +

    BXD86

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    201

    +
    +

    AGE050118_27

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    202

    +
    +

    AGE061818_02

    +
    +

    BXD100

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    203

    +
    +

    BL013118_12

    +
    +

    BXD34

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    204

    +
    +

    BL013118_13

    +
    +

    BXD34

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    205

    +
    +

    CMS092118_24

    +
    +

    C57BL/6J

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    206

    +
    +

    E100118_16

    +
    +

    BXD65

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    207

    +
    +

    MT052417_09

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    208

    +
    +

    MT052417_17

    +
    +

    BXD51

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    209

    +
    +

    S13118_07

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    210

    +
    +

    S13118_08

    +
    +

    BXD24

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    211

    +
    +

    S13118_15

    +
    +

    BXD40

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    212

    +
    +

    S13118_18

    +
    +

    BXD43

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    213

    +
    +

    S13118_19

    +
    +

    BXD43

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    214

    +
    +

    S13118_23

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    215

    +
    +

    S13118_24

    +
    +

    BXD48

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    216

    +
    +

    S13118_26

    +
    +

    BXD48a

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    217

    +
    +

    S13118_36

    +
    +

    BXD62

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    218

    +
    +

    S13118_38

    +
    +

    BXD65

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    219

    +
    +

    S13118_42

    +
    +

    BXD66

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    220

    +
    +

    S13118_44

    +
    +

    BXD68

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    221

    +
    +

    S13118_58

    +
    +

    BXD79

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    222

    +
    +

    S13118_64

    +
    +

    BXD90

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    223

    +
    +

    S13118_65

    +
    +

    BXD90

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    224

    +
    +

    S13118_7

    +
    +

    BXD101

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    225

    +
    +

    S31218_01

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    226

    +
    +

    S31218_02

    +
    +

    BXD32

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    227

    +
    +

    S31218_04

    +
    +

    BXD44

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    228

    +
    +

    S31218_15

    +
    +

    BXD63

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    229

    +
    +

    S31218_16

    +
    +

    BXD63

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    230

    +
    +

    S31218_18

    +
    +

    BXD65b

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    231

    +
    +

    S31218_1

    +
    +

    BXD51

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    232

    +
    +

    S31218_21

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    233

    +
    +

    S31218_22

    +
    +

    BXD69

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    234

    +
    +

    S31218_24

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    235

    +
    +

    S31218_25

    +
    +

    BXD70

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    236

    +
    +

    S31218_27

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    237

    +
    +

    S31218_28

    +
    +

    BXD71

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    238

    +
    +

    S31218_31

    +
    +

    BXD73a

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    239

    +
    +

    S31218_35

    +
    +

    BXD78

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    240

    +
    +

    S32718_01

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    +

    241

    +
    +

    S32718_03

    +
    +

    DBA/2J

    +
    +

    F

    +
    +

    CTL

    +
    +

    hippocampus

    +
    diff --git a/general/datasets/Niaaa_bxd_hip_did_rnaseq1020/experiment-design.rtf b/general/datasets/Niaaa_bxd_hip_did_rnaseq1020/experiment-design.rtf new file mode 100644 index 0000000..54fad3e --- /dev/null +++ b/general/datasets/Niaaa_bxd_hip_did_rnaseq1020/experiment-design.rtf @@ -0,0 +1,7 @@ +

    Alcohol consumption was evaluated using the DID method. The protocol calls for 4 consecutive days of testing. Each day, starting on a Tuesday 3 h after lights were turned off, the water bottles were removed from the cages and replaced with 15 ml centrifuge tubes filled with 20% (v/v) ethanol from 95% USP ethanol. On days 1–3 (Tuesday through Thursday) the length of exposure was 2 h and on the 4th day (Friday) the exposure was 4 h. No alcohol was offered in the intervening period (Saturday through Monday). This protocol was repeated weekly for 16 weeks (Table). Tubes were weighed immediately before and after the exposure period. Volume consumed was converted to g/kg body weight of ethanol. 

    + +

    During a period of 7 weeks, mice received 2 disturbances per day (see Figure). These consisted of being exposed to wet bedding for 1 hour, 1 cm of water in the bottom of the cage with no bedding for 1 hour, no bedding for 1 hour, confinement in a 3 × 3 × 3 cm plastic box for 15 minutes, tilted cage at 45º for 1 hour, and exposure to foreign mouse or fox urine odor for 1 hour. The other stressor was a complete phase shift in the light:dark cycle over each weekend. Disruption of the light cycle (lights constantly on) occurred over the weekend (starting Friday 11:00 am) with the light cycle resuming at 11 am on Monday (lights off). The schedule was repeated weekly over the duration of the study.

    + +

    Treatment Periods

    + +

    The entire protocol took 16 weeks to complete and was subdivided into 3 periods: baseline (initial 5 weeks), CMS (next 7 weeks), and post‐CMS (final 4 weeks). Alcohol was offered as described above for all periods and experimental groups. During the intervening 7‐week CMS period, control animals were subjected to normal housing and experimental (stress) animals were subjected to CMS.

    diff --git a/general/datasets/Niaaa_bxd_hip_did_rnaseq1020/processing.rtf b/general/datasets/Niaaa_bxd_hip_did_rnaseq1020/processing.rtf new file mode 100644 index 0000000..7d83d76 --- /dev/null +++ b/general/datasets/Niaaa_bxd_hip_did_rnaseq1020/processing.rtf @@ -0,0 +1,9 @@ +

    Generation of RNA-seq data

    + +

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    + +

     

    + +

    Read mapping and normalization

    + +

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/Niaaa_bxd_hip_did_rnaseq1020/specifics.rtf b/general/datasets/Niaaa_bxd_hip_did_rnaseq1020/specifics.rtf new file mode 100644 index 0000000..017deac --- /dev/null +++ b/general/datasets/Niaaa_bxd_hip_did_rnaseq1020/specifics.rtf @@ -0,0 +1 @@ +NIAAA BXD Hippocampus DID RNA-Seq (Oct20) TPM Log2 \ No newline at end of file diff --git a/general/datasets/Niaaa_bxd_hip_did_rnaseq1020/tissue.rtf b/general/datasets/Niaaa_bxd_hip_did_rnaseq1020/tissue.rtf new file mode 100644 index 0000000..30cdeea --- /dev/null +++ b/general/datasets/Niaaa_bxd_hip_did_rnaseq1020/tissue.rtf @@ -0,0 +1,7 @@ +

    Tissue Harvest and RNA extraction

    + +

    The animals were sacrificed under saturated isoflurane. Brains from the animals were dissected under a cold plate (≤4o C), and hippocampus were weighted and snap frozen in dry ice bath with isopentane and stored at −80°C until RNA extraction. 

    + +

    RNA Extraction

    + +

    Total RNA was extracted using Direct-zol RNA Miniprep Plus Kits (Zymo Research, Irvine, CA, USA) according to the manufacturer’s instructions. Approximately 15 mg of hippocampus tissue was added into a 2 ml tube containing 1 ml TRI Reagent® and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 min in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 rpm followed by incubating for 5 min.   0.1 ml of 1‑bromo-3‑chloropropane was add into the homogenate, shaken vigorously for 15 s, and centrifuged for 15 min at 12,000×g at 4 °C. 600 µl upper aqueous was then transferred into a new collection tube containing 600 µl 100% ethanol. The mixture was loaded into a Zymo-Spin IIC column, wash once with RNA Prep Buffer and twice with RNA Wash Buffer. All RNA had been treated with DNase to eliminate possible DNA contamination, and further precipitated with ethanol. RNA purity and integrity were verified by a nanodrop spectrophotometer and an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). 

    diff --git a/general/datasets/None/summary.rtf b/general/datasets/None/summary.rtf new file mode 100644 index 0000000..5c22bc2 --- /dev/null +++ b/general/datasets/None/summary.rtf @@ -0,0 +1,40 @@ +

    Question: I have generated some phenotype data that I would like to put into GeneNetwork. How should I name my traits?
    +
    +Answer: Phenotype trait names in GeneNetwork should have this general form when possible:

    + +
      +
    1. Your description should start with very short list of "approved" general category and ontology terms. These terms are used to subdivide the entire collection of phenotypes by system, organ, or level of analysis. Some examples may help: "Central nervous system", "Immune system", "Metabolism", "Development", or "Urogenital system". Capitalize this list as you would a standard English sentence. Separate terms by commas and then end the terms with a colon. For example, "Central nervous system, pharmacology, endocrinology:" is a valid set of three terms. These terms do not really describe your trait, but are used by you and other users to figure out how many traits there are in specific categories.
      +
      + Before making up your own terms, please review the current terms in GeneNetwork and find some terms/ontology categories that look good to you. If you have questions contact one of us on the GeneNetwork development team.
    2. +
    3. After the colon start with your description of the phenotype you have generated. For example: "Ethanol response..." or "Anxiety assay...", "Brain weight...". The first letter should almost always be capitalized.
    4. +
    5. Do not start with a generic uninformative word such as "Mean", "Maximum", "Mechanical", "Count", "Number", "Difference", "Baseline", "Induction", "Decrease", "New", "Adjusted", "Distance", "Right", "Left", "Bilateral", "Time", "Total", "Percentage", "Percent". The reason is that the traits should be alphabetized and categorized in a conceptually useful way; not by something "dumb" like the "total" or "percent".
    6. +
    7. Do not start with a specific instrumental assay such as "Morris water maze" or "Dowel test..." or "Porsolt test behavior". Many of these tests will be unknown to other users. Try to use a term that reflects the intent of the assay (Motor coordination test, Learning and memory assay, Allergic airway response). This may be difficult, particularly for tests such as the Porsolt swim test and the Morris water maze that measure aspects of many different traits (anxiety, activity level, spatial navigation, visual acuity etc). But in the interest of clarity of intent rather than precision of measurement, please follow this suggestion. The actual assay instrument can be listed after the primary and secondary trait descriptions.
    8. +
    9. Many traits can be difficult to categorize in a consistent way. For example a trait such as "ventral midbrain copper level in males" could be labeled "copper level in the ventral midbrain." There is no right or wrong way to do this, but the convention should be to choose the order that you think will be most useful to other users in terms of comprehension and consistency with other existing phenotypes. Review related phenotypes before you start naming your own. You will find good and bad examples.
    10. +
    11. Dose and route of drug delivery. If the phenotype is a pharmacological phenotype, whenever practical enter the doses and routes of injection in parentheses after the name of the general trait. For example, "Cocaine response (40 mg/kg ip)". We would prefer to use "ip" and "iv" rather than i.p. and i.v., but this is not a strong preference. If a protocol requires multiple treatments, please include them if possible. For example, "Cocaine response (3 x 3.2 mg/kg ip, Days 2, 3, 4),...").
    12. +
    13. Series of more precise definitions of the phenotype and the subject(s) will often follow with commas used as separators. If possible make this understandable to almost any user, even at the risk of being wordy. +

      For example, "Cocaine response (3 x 3.2 mg/kg ip, Days 2, 3, and 4), conditioned place preference (CPP), change in time in cocaine-paired compartment relative to baseline (Day 5 minus Day 1) for 50 to 90-day-old males and females [sec]"

      +
    14. +
    15. Sex. If the data are for males please write out "in males" or "of male" or "for males". Do not just add a comma such as " , males" or "(M)". This should usually go at the end of the description.
    16. +
    17. Age and condition of subjects can be added if you think it is essential or helpful. However, do not bother with a generic addition "adult" since that is what most users will reasonably assume. If you would like to add an age range then use this format "in 100 to 200-day-old males and females" or "of 3 to 4-month-old males".
    18. +
    19. Mandatory units of measurement between square brackets [min] or [sec] or [n bream breaks/10 min test]. If you are using an ordinal scale, then describe the scale within the brackets. If the units are simply a ratio or percentage then use [ratio] or [%].
    20. +
    + +

    Other advice on trait descriptions:

    + +
      +
    1. Do Not Capitalize Each Word in a Description. (e.g, Ethanol Response, Distance traveled after saline - Distance traveled after ethanol for males and females [cm in a 0-5 min test period] )
    2. +
    3. Do not use "-" as a minus sign. The dash is too confusing and may sometimes be used as a hyphen. Spell out "minus"
    4. +
    5. No not use ALL CAP in a trait description (e.g., TOTAL)
    6. +
    7. Do use commas when appropriate. For example, Morphine response severity of abdominal constriction for males needs a comma between "response" and "severity"
    8. +
    9. Do not use extraneous words such as "time SPENT on rotarod". "time on rotarod" is good enough.
    10. +
    11. Do not start with text or abbreviations that will not be understandable to all users, such as "RSS female and male..."
    12. +
    13. Please us a space between a number and the units: Prepulse inhibition at 70 dB for females (not 70db). Please use the correct form of the abbreviation.
    14. +
    15. Use American spelling. [RWW, September 10, 2009]
    16. +
    + +

    Examples of accepted phenotype descriptions: (by Amelie Baud. Wellcome Trust Centre for Human Genetics, Oxford, UK.)

    + +
      +
    1. Central nervous system, behavior: Anxiety assay, locomotor activity in novel cage between minutes 25 and 30 in novel cage, normalized by Box-Cox transformation [cm]
    2. +
    3. Metabolism: Glycemia (intraperitoneal glucose tolerance test), area under the curve between minutes 0 and 120 after injection, normalized by Box-Cox transformation [mM.min-1]
    4. +
    diff --git a/general/datasets/OHSU_HS-CC_ILMStr_0211/summary.rtf b/general/datasets/OHSU_HS-CC_ILMStr_0211/summary.rtf new file mode 100644 index 0000000..e096b10 --- /dev/null +++ b/general/datasets/OHSU_HS-CC_ILMStr_0211/summary.rtf @@ -0,0 +1,2 @@ +
    The current study focused on the extent genetic diversity within a species (Mus musculus) affects gene co-expression network structure. To examine this issue, we have created a new mouse resource, a heterogeneous stock (HS) formed from the same eight inbred strains that have been used to create the collaborative cross (CC). The eight inbred strains capture > 90% of the genetic diversity available within the species. For contrast with the HS-CC, a C57BL/6J (B6) × DBA/2J (D2) F2 intercross and the HS4, derived from crossing the B6, D2, BALB/cJ and LP/J strains, were used. Brain (striatum) gene expression data were obtained using the Illumina Mouse WG 6.1 array, and the data sets were interrogated using a weighted gene co-expression network analysis (WGCNA).
    +Read full article: Genetic diversity and striatal gene networks: focus on the heterogeneous stock-collaborative cross (HS-CC) mouse.
    diff --git a/general/datasets/OHSU_HS_CC_ILMStr_0211/summary.rtf b/general/datasets/OHSU_HS_CC_ILMStr_0211/summary.rtf deleted file mode 100644 index e096b10..0000000 --- a/general/datasets/OHSU_HS_CC_ILMStr_0211/summary.rtf +++ /dev/null @@ -1,2 +0,0 @@ -
    The current study focused on the extent genetic diversity within a species (Mus musculus) affects gene co-expression network structure. To examine this issue, we have created a new mouse resource, a heterogeneous stock (HS) formed from the same eight inbred strains that have been used to create the collaborative cross (CC). The eight inbred strains capture > 90% of the genetic diversity available within the species. For contrast with the HS-CC, a C57BL/6J (B6) × DBA/2J (D2) F2 intercross and the HS4, derived from crossing the B6, D2, BALB/cJ and LP/J strains, were used. Brain (striatum) gene expression data were obtained using the Illumina Mouse WG 6.1 array, and the data sets were interrogated using a weighted gene co-expression network analysis (WGCNA).
    -Read full article: Genetic diversity and striatal gene networks: focus on the heterogeneous stock-collaborative cross (HS-CC) mouse.
    diff --git a/general/datasets/ONCRetExMoGene2_0413/acknowledgment.rtf b/general/datasets/ONCRetExMoGene2_0413/acknowledgment.rtf deleted file mode 100644 index 13c6b1e..0000000 --- a/general/datasets/ONCRetExMoGene2_0413/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    DoD funding (W81XWH-12-0255) Genetic Networks Activated by Blast Injury to the Eye (Eldon E. Geisert).

    diff --git a/general/datasets/ONCRetExMoGene2_0413/cases.rtf b/general/datasets/ONCRetExMoGene2_0413/cases.rtf deleted file mode 100644 index 6b36c70..0000000 --- a/general/datasets/ONCRetExMoGene2_0413/cases.rtf +++ /dev/null @@ -1,1728 +0,0 @@ -

    Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 50 and maximum age is 134 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set.

    - -
    - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexEIGC ID (LIMS ID)StrainSexAge at harvestRIN Score
    1602BXD9F1339.1
    2603BXD9M1009.5
    3604BXD40F1009.4
    4605BXD40M1009.1
    5606BXD48F759.1
    6607BXD48M758.6
    7608BXD63F759.2
    8609BXD63M619.4
    9612BXD73M10810
    10614BXD87M859.2
    11615BXD87F859.9
    12616BXD69F769.3
    13617BXD69M10010
    14618BXD51M828.9
    15619BXD92 (BXD65b)M828.8
    16620BXD92 (BXD65b)F828.8
    17635BXD100M709
    18636BXD100M708.8
    19652BXD92 (BXD65b)F649
    20653BXD87F679.7
    21654BXD87M678.9
    22655BXD63M719
    23660BXD69M9710
    24687BXD6M857.7
    25688BXD6M859.4
    26690BXD12F8310
    27691BXD12F8310
    28692BXD12M8310
    29695BXD5F7710
    30696BXD5M7710
    31698BXD5F779.9
    32699BXD5F7710
    33701BXD8M7910
    34702BXD8M7910
    35705BXD8F779.2
    36707BXD15F779.4
    37708BXD15F779.1
    38710BXD15M779.1
    39713BXD22F719.5
    40714BXD22F719.7
    41716BXD22M719.1
    42717BXD22M719.1
    43719BXD14F709.2
    44722BXD14M708.9
    45723BXD14M709.2
    46725BXD18F709
    47726BXD18F709.1
    48728BXD18M709.1
    49729BXD18M709.2
    50731BXD19F669.3
    51732BXD19F669.4
    52734BXD19M669.8
    53735BXD19M669.4
    54737BXD21F719.7
    55738BXD21F719.6
    56740BXD21M719.1
    57741BXD21M719.7
    58743BXD2F708.3
    59744BXD2F708.6
    60746BXD2M707.5
    61747BXD2M778.6
    62768BXD48M1219.4
    63770BXD92 (BXD65b)M6510
    64771BXD101F858.3
    65772BXD101F859.3
    66773BXD101M869.5
    67774BXD101M869.8
    68775BXD102F669.5
    69776BXD102F6610
    70777BXD102M849.6
    71787BXD60M869.9
    72788BXD60M869.9
    73789BXD63F1159.7
    74790BXD100F729.8
    75791BXD100F7210
    76818BXD51F779.7
    77819BXD51F779.6
    78820BXD51M729.7
    79821BXD65M729.6
    80822BXD65M659.5
    81825BXD65F729.5
    82827BXD86M699.1
    83828BXD86M699.4
    84829BXD90F699.6
    85831BXD9M1279.7
    86832BXD39F999.4
    87833BXD39F1079.3
    88834BXD60F1079.5
    89836BXD84M1039.7
    90846BXD39M639.7
    91847BXD39M639.8
    92849BXD20F7010
    93850BXD20M7010
    94851BXD20*709.5
    95855DBA/2JF789.7
    96856DBA/2JF7810
    97857DBA/2JM7810
    98858DBA/2JM789.9
    99859C57BL/6JF7810
    100860C57BL/6JF7810
    101861C57BL/6JM7810
    102862C57BL/6JM789.6
    103EGE10907-0172_890_20844BXD28M7510
    104EGE10907-0173_891_20845BXD28M759.7
    105EGE10907-0174_892_20846BXD28F759.7
    106EGE10907-0176_895_20848BXD33M759.88
    107EGE10907-0177_896_20849BXD33F7510
    108EGE10907-0178_897_20850BXD33F759.4
    109EGE10907-0179_898_20851BXD36M759.4
    110EGE10907-0180_899_20852BXD36F759.5
    111EGE10907-0181_900_20853BXD36F759.1
    112EGE10907-0182_910_20854BXD27M709.7
    113EGE10907-0183_990_20855BXD9F989.4
    114EGE10907-0184_991_20856BXD16F11310
    115EGE10907-0185_992_20857BXD16M1139
    116EGE10907-0186_993_20858BXD27F969.4
    117EGE10907-0187_994_20859BXD27F969.4
    118EGE10907-0188_996_20860BXD48F989.4
    119EGE10907-0189_997_20861BXD73M10610
    120EGE10907-0190_999_20862BXD11F1219.6
    121EGE10907-0191_100_20863BXD11F1219.9
    122EGE10907-0192_1010_21276BXD13M699.8
    123EGE10907-0193_1011_21277BXD13M699.8
    124EGE10907-0194_1012_21278BXD16F6510
    125EGE10907-0195_1015_21279BXD16M6510
    126EGE10907-0196_1019_21280BXD33M7510
    127EGE10907-0197_1020_21281BXD36M7810
    128EGE10907-0198_1021_21282BXD38F709.8
    129EGE10907-0199_1022_21283BXD38F7010
    130EGE10907-0200_1023_21284BXD38M709.7
    131EGE10907-0201_1047_21285BXD11M6510
    132EGE10907-0202_1048_21286BXD11M6510
    133EGE10907-0203_1049_21287BXD38M7710
    134EGE10907-0204_1050_21288BXD73F7010
    135EGE10907-0205_1051_21289BXD73F7010
    136EGE10907-0206_1052_21290BXD86F6910
    137EGE10907-0207_1053_21291BXD86F6910
    138EGE10907-0208_1054_21292BXD90F7110
    139EGE10907-0209_1055_21293BXD90M7110
    140EGE10907-0210_1056_21294BXD90M7110
    141EGE10907-0211_1148_21295BXD31F9010
    142EGE10907-0212_1149_21296BXD31F9010
    143EGE10907-0213_1150_21297BXD31M9010
    144EGE10907-0214_1151_21298BXD31M909.9
    145EGE10907-0215_1152_21299BXD42F8310
    146EGE10907-0216_21429BXD42F8310
    147EGE10907-0217_21430BXD42M8310
    148EGE10907-0218_21431BXD42M839.3
    149EGE10907-0219_21432BXD50F929.6
    150EGE10907-0220_21433BXD50F929.6
    151EGE10907-0221_21434BXD50F9210
    152EGE10907-0222_21435BXD1M739.6
    153EGE10907-0223_21436BXD13F719.7
    154EGE10907-0224_21437BXD1M719.5
    155EGE10907-0225_21438BXD13F719.6
    156EGE10907-0226_21439BXD43F8510
    157EGE10907-0227_21452BXD43F859.6
    158EGE10907-0229_21442BXD43M858.2
    159EGE10907-0230_21443BXD50M699.4
    160EGE10907-0231_21444BXD1F689.4
    161EGE10907-0232_21445BXD1F689.6
    162EGE10907-0233_21446BXD29M659.5
    163EGE10907-0234_21447BXD29M6510
    164EGE10907-0235_21448BXD75F6810
    165EGE10907-0236_21449BXD75M6810
    166EGE10907-0237_21450BXD96F679.9
    167EGE10907-0238_21931BXD99M717.9
    168EGE10907-0239_21932BXD99M719.7
    169EGE10907-0240_21933BXD67F688.8
    170EGE10907-0241_21934BXD67F688.5
    171EGE10907-0242_21935BXD67M689.5
    172EGE10907-0243_21936BXD67M689.6
    173EGE10907-0244_21937BXD6F689.6
    174EGE10907-0245_21938BXD12M829.5
    175EGE10907-0246_21939BXD60F729.6
    176EGE10907-0247_21940BXD65F759.1
    177EGE10907-0248_21941BXD75F698.8
    178EGE10907-0249_21942_(MoGene-2_0-st)BXD75M699.2
    179EGE10907-0250_21943BXD8F979.1
    180EGE10907-0251_21944BXD85F798.6
    181EGE10907-0252_21945BXD85M799.1
    182EGE10907-0253_21946BXD85M799.4
    183EGE10907-0254_21947BXD102M948.6
    184EGE10907-0255_21948BXD99F839
    185EGE10907-0256_21949BXD69F689
    186EGE10907-0257_21950BXD84F749.5
    187EGE10907-0258_21951BXD84F749.4
    188EGE10907-0259_21952BXD84M748.6
    189EGE10907-0260_21451BXD96M679.2
    190EGE10907-0261_21452BXD99F718.9
    191EGE10907-0262_21931BXD6F669.4
    192EGE10907-0263_21932BXD14F698.5
    193EGE10907-0264_21933BXD34M799.1
    194EGE10907-0265_21934BXD34M799.9
    195EGE10907-0266_21935BXD40F759.6
    196EGE10907-0267_21936BXD40M789.7
    197EGE10907-0268_21937BXD56F729.7
    198EGE10907-0269_21938BXD56F729.7
    199EGE10907-0270_21939BXD56M729.6
    200EGE10907-0271_21940BXD56M729.4
    201EGE10907-0272_21941BXD71F729.9
    202EGE10907-0273_21942BXD71F759.4
    203EGE10907-0274_21943BXD71M7510
    204EGE10907-0275_21944BXD71M7510
    205EGE10907-0276_21945BXD27M6510
    206EGE10907-0277_21946BXD15M6510
    207EGE10907-0278_21947BXD20F12510
    208EGE10907-0279_21948BXD29F7710
    209EGE10907-0280_21949BXD29F7710
    210EGE10907-0281_21950BXD34F7410
    211EGE10907-0282_21951BXD34F7410
    212EGE10907-0283_21952BXD85F8710
    213EGE10907-0284_21451BXD43M759.8
    -
    -
    diff --git a/general/datasets/ONCRetExMoGene2_0413/platform.rtf b/general/datasets/ONCRetExMoGene2_0413/platform.rtf deleted file mode 100644 index 19fc38c..0000000 --- a/general/datasets/ONCRetExMoGene2_0413/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The Affymetrics GeneChip&reg; Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. Nonetheless, there is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs.

    diff --git a/general/datasets/ONCRetExMoGene2_0413/processing.rtf b/general/datasets/ONCRetExMoGene2_0413/processing.rtf deleted file mode 100644 index a7b767e..0000000 --- a/general/datasets/ONCRetExMoGene2_0413/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

    diff --git a/general/datasets/ONCRetExMoGene2_0413/summary.rtf b/general/datasets/ONCRetExMoGene2_0413/summary.rtf deleted file mode 100644 index 96a87e5..0000000 --- a/general/datasets/ONCRetExMoGene2_0413/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The DoD dataset was constructed using the Affymetrics GeneChip® Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. There is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs. This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.77 to 14.62, a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

    diff --git a/general/datasets/ONCRetExMoGene2_0413/tissue.rtf b/general/datasets/ONCRetExMoGene2_0413/tissue.rtf deleted file mode 100644 index 056d7eb..0000000 --- a/general/datasets/ONCRetExMoGene2_0413/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RiboLock (RiboLock: Thermo Scientific RiboLock RNase #EO0381 40U/&micro;l 2500U) at room temperature. Individual retinas from the mouse were stored in each tube. RNA was isolated using a Qiacube with the resultant RIN scores ranging from 8.5 to 10.0.

    diff --git a/general/datasets/ONCRetMoGene2_0413/acknowledgment.rtf b/general/datasets/ONCRetMoGene2_0413/acknowledgment.rtf deleted file mode 100644 index 13c6b1e..0000000 --- a/general/datasets/ONCRetMoGene2_0413/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    DoD funding (W81XWH-12-0255) Genetic Networks Activated by Blast Injury to the Eye (Eldon E. Geisert).

    diff --git a/general/datasets/ONCRetMoGene2_0413/cases.rtf b/general/datasets/ONCRetMoGene2_0413/cases.rtf deleted file mode 100644 index 6b36c70..0000000 --- a/general/datasets/ONCRetMoGene2_0413/cases.rtf +++ /dev/null @@ -1,1728 +0,0 @@ -

    Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 50 and maximum age is 134 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set.

    - -
    - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexEIGC ID (LIMS ID)StrainSexAge at harvestRIN Score
    1602BXD9F1339.1
    2603BXD9M1009.5
    3604BXD40F1009.4
    4605BXD40M1009.1
    5606BXD48F759.1
    6607BXD48M758.6
    7608BXD63F759.2
    8609BXD63M619.4
    9612BXD73M10810
    10614BXD87M859.2
    11615BXD87F859.9
    12616BXD69F769.3
    13617BXD69M10010
    14618BXD51M828.9
    15619BXD92 (BXD65b)M828.8
    16620BXD92 (BXD65b)F828.8
    17635BXD100M709
    18636BXD100M708.8
    19652BXD92 (BXD65b)F649
    20653BXD87F679.7
    21654BXD87M678.9
    22655BXD63M719
    23660BXD69M9710
    24687BXD6M857.7
    25688BXD6M859.4
    26690BXD12F8310
    27691BXD12F8310
    28692BXD12M8310
    29695BXD5F7710
    30696BXD5M7710
    31698BXD5F779.9
    32699BXD5F7710
    33701BXD8M7910
    34702BXD8M7910
    35705BXD8F779.2
    36707BXD15F779.4
    37708BXD15F779.1
    38710BXD15M779.1
    39713BXD22F719.5
    40714BXD22F719.7
    41716BXD22M719.1
    42717BXD22M719.1
    43719BXD14F709.2
    44722BXD14M708.9
    45723BXD14M709.2
    46725BXD18F709
    47726BXD18F709.1
    48728BXD18M709.1
    49729BXD18M709.2
    50731BXD19F669.3
    51732BXD19F669.4
    52734BXD19M669.8
    53735BXD19M669.4
    54737BXD21F719.7
    55738BXD21F719.6
    56740BXD21M719.1
    57741BXD21M719.7
    58743BXD2F708.3
    59744BXD2F708.6
    60746BXD2M707.5
    61747BXD2M778.6
    62768BXD48M1219.4
    63770BXD92 (BXD65b)M6510
    64771BXD101F858.3
    65772BXD101F859.3
    66773BXD101M869.5
    67774BXD101M869.8
    68775BXD102F669.5
    69776BXD102F6610
    70777BXD102M849.6
    71787BXD60M869.9
    72788BXD60M869.9
    73789BXD63F1159.7
    74790BXD100F729.8
    75791BXD100F7210
    76818BXD51F779.7
    77819BXD51F779.6
    78820BXD51M729.7
    79821BXD65M729.6
    80822BXD65M659.5
    81825BXD65F729.5
    82827BXD86M699.1
    83828BXD86M699.4
    84829BXD90F699.6
    85831BXD9M1279.7
    86832BXD39F999.4
    87833BXD39F1079.3
    88834BXD60F1079.5
    89836BXD84M1039.7
    90846BXD39M639.7
    91847BXD39M639.8
    92849BXD20F7010
    93850BXD20M7010
    94851BXD20*709.5
    95855DBA/2JF789.7
    96856DBA/2JF7810
    97857DBA/2JM7810
    98858DBA/2JM789.9
    99859C57BL/6JF7810
    100860C57BL/6JF7810
    101861C57BL/6JM7810
    102862C57BL/6JM789.6
    103EGE10907-0172_890_20844BXD28M7510
    104EGE10907-0173_891_20845BXD28M759.7
    105EGE10907-0174_892_20846BXD28F759.7
    106EGE10907-0176_895_20848BXD33M759.88
    107EGE10907-0177_896_20849BXD33F7510
    108EGE10907-0178_897_20850BXD33F759.4
    109EGE10907-0179_898_20851BXD36M759.4
    110EGE10907-0180_899_20852BXD36F759.5
    111EGE10907-0181_900_20853BXD36F759.1
    112EGE10907-0182_910_20854BXD27M709.7
    113EGE10907-0183_990_20855BXD9F989.4
    114EGE10907-0184_991_20856BXD16F11310
    115EGE10907-0185_992_20857BXD16M1139
    116EGE10907-0186_993_20858BXD27F969.4
    117EGE10907-0187_994_20859BXD27F969.4
    118EGE10907-0188_996_20860BXD48F989.4
    119EGE10907-0189_997_20861BXD73M10610
    120EGE10907-0190_999_20862BXD11F1219.6
    121EGE10907-0191_100_20863BXD11F1219.9
    122EGE10907-0192_1010_21276BXD13M699.8
    123EGE10907-0193_1011_21277BXD13M699.8
    124EGE10907-0194_1012_21278BXD16F6510
    125EGE10907-0195_1015_21279BXD16M6510
    126EGE10907-0196_1019_21280BXD33M7510
    127EGE10907-0197_1020_21281BXD36M7810
    128EGE10907-0198_1021_21282BXD38F709.8
    129EGE10907-0199_1022_21283BXD38F7010
    130EGE10907-0200_1023_21284BXD38M709.7
    131EGE10907-0201_1047_21285BXD11M6510
    132EGE10907-0202_1048_21286BXD11M6510
    133EGE10907-0203_1049_21287BXD38M7710
    134EGE10907-0204_1050_21288BXD73F7010
    135EGE10907-0205_1051_21289BXD73F7010
    136EGE10907-0206_1052_21290BXD86F6910
    137EGE10907-0207_1053_21291BXD86F6910
    138EGE10907-0208_1054_21292BXD90F7110
    139EGE10907-0209_1055_21293BXD90M7110
    140EGE10907-0210_1056_21294BXD90M7110
    141EGE10907-0211_1148_21295BXD31F9010
    142EGE10907-0212_1149_21296BXD31F9010
    143EGE10907-0213_1150_21297BXD31M9010
    144EGE10907-0214_1151_21298BXD31M909.9
    145EGE10907-0215_1152_21299BXD42F8310
    146EGE10907-0216_21429BXD42F8310
    147EGE10907-0217_21430BXD42M8310
    148EGE10907-0218_21431BXD42M839.3
    149EGE10907-0219_21432BXD50F929.6
    150EGE10907-0220_21433BXD50F929.6
    151EGE10907-0221_21434BXD50F9210
    152EGE10907-0222_21435BXD1M739.6
    153EGE10907-0223_21436BXD13F719.7
    154EGE10907-0224_21437BXD1M719.5
    155EGE10907-0225_21438BXD13F719.6
    156EGE10907-0226_21439BXD43F8510
    157EGE10907-0227_21452BXD43F859.6
    158EGE10907-0229_21442BXD43M858.2
    159EGE10907-0230_21443BXD50M699.4
    160EGE10907-0231_21444BXD1F689.4
    161EGE10907-0232_21445BXD1F689.6
    162EGE10907-0233_21446BXD29M659.5
    163EGE10907-0234_21447BXD29M6510
    164EGE10907-0235_21448BXD75F6810
    165EGE10907-0236_21449BXD75M6810
    166EGE10907-0237_21450BXD96F679.9
    167EGE10907-0238_21931BXD99M717.9
    168EGE10907-0239_21932BXD99M719.7
    169EGE10907-0240_21933BXD67F688.8
    170EGE10907-0241_21934BXD67F688.5
    171EGE10907-0242_21935BXD67M689.5
    172EGE10907-0243_21936BXD67M689.6
    173EGE10907-0244_21937BXD6F689.6
    174EGE10907-0245_21938BXD12M829.5
    175EGE10907-0246_21939BXD60F729.6
    176EGE10907-0247_21940BXD65F759.1
    177EGE10907-0248_21941BXD75F698.8
    178EGE10907-0249_21942_(MoGene-2_0-st)BXD75M699.2
    179EGE10907-0250_21943BXD8F979.1
    180EGE10907-0251_21944BXD85F798.6
    181EGE10907-0252_21945BXD85M799.1
    182EGE10907-0253_21946BXD85M799.4
    183EGE10907-0254_21947BXD102M948.6
    184EGE10907-0255_21948BXD99F839
    185EGE10907-0256_21949BXD69F689
    186EGE10907-0257_21950BXD84F749.5
    187EGE10907-0258_21951BXD84F749.4
    188EGE10907-0259_21952BXD84M748.6
    189EGE10907-0260_21451BXD96M679.2
    190EGE10907-0261_21452BXD99F718.9
    191EGE10907-0262_21931BXD6F669.4
    192EGE10907-0263_21932BXD14F698.5
    193EGE10907-0264_21933BXD34M799.1
    194EGE10907-0265_21934BXD34M799.9
    195EGE10907-0266_21935BXD40F759.6
    196EGE10907-0267_21936BXD40M789.7
    197EGE10907-0268_21937BXD56F729.7
    198EGE10907-0269_21938BXD56F729.7
    199EGE10907-0270_21939BXD56M729.6
    200EGE10907-0271_21940BXD56M729.4
    201EGE10907-0272_21941BXD71F729.9
    202EGE10907-0273_21942BXD71F759.4
    203EGE10907-0274_21943BXD71M7510
    204EGE10907-0275_21944BXD71M7510
    205EGE10907-0276_21945BXD27M6510
    206EGE10907-0277_21946BXD15M6510
    207EGE10907-0278_21947BXD20F12510
    208EGE10907-0279_21948BXD29F7710
    209EGE10907-0280_21949BXD29F7710
    210EGE10907-0281_21950BXD34F7410
    211EGE10907-0282_21951BXD34F7410
    212EGE10907-0283_21952BXD85F8710
    213EGE10907-0284_21451BXD43M759.8
    -
    -
    diff --git a/general/datasets/ONCRetMoGene2_0413/platform.rtf b/general/datasets/ONCRetMoGene2_0413/platform.rtf deleted file mode 100644 index 19fc38c..0000000 --- a/general/datasets/ONCRetMoGene2_0413/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The Affymetrics GeneChip&reg; Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. Nonetheless, there is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs.

    diff --git a/general/datasets/ONCRetMoGene2_0413/processing.rtf b/general/datasets/ONCRetMoGene2_0413/processing.rtf deleted file mode 100644 index a7b767e..0000000 --- a/general/datasets/ONCRetMoGene2_0413/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

    diff --git a/general/datasets/ONCRetMoGene2_0413/summary.rtf b/general/datasets/ONCRetMoGene2_0413/summary.rtf deleted file mode 100644 index 96a87e5..0000000 --- a/general/datasets/ONCRetMoGene2_0413/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The DoD dataset was constructed using the Affymetrics GeneChip® Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. There is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs. This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.77 to 14.62, a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

    diff --git a/general/datasets/ONCRetMoGene2_0413/tissue.rtf b/general/datasets/ONCRetMoGene2_0413/tissue.rtf deleted file mode 100644 index 056d7eb..0000000 --- a/general/datasets/ONCRetMoGene2_0413/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RiboLock (RiboLock: Thermo Scientific RiboLock RNase #EO0381 40U/&micro;l 2500U) at room temperature. Individual retinas from the mouse were stored in each tube. RNA was isolated using a Qiacube with the resultant RIN scores ranging from 8.5 to 10.0.

    diff --git a/general/datasets/Ohsu_hs_cc_ilmstr_0211/summary.rtf b/general/datasets/Ohsu_hs_cc_ilmstr_0211/summary.rtf new file mode 100644 index 0000000..e096b10 --- /dev/null +++ b/general/datasets/Ohsu_hs_cc_ilmstr_0211/summary.rtf @@ -0,0 +1,2 @@ +
    The current study focused on the extent genetic diversity within a species (Mus musculus) affects gene co-expression network structure. To examine this issue, we have created a new mouse resource, a heterogeneous stock (HS) formed from the same eight inbred strains that have been used to create the collaborative cross (CC). The eight inbred strains capture > 90% of the genetic diversity available within the species. For contrast with the HS-CC, a C57BL/6J (B6) × DBA/2J (D2) F2 intercross and the HS4, derived from crossing the B6, D2, BALB/cJ and LP/J strains, were used. Brain (striatum) gene expression data were obtained using the Illumina Mouse WG 6.1 array, and the data sets were interrogated using a weighted gene co-expression network analysis (WGCNA).
    +Read full article: Genetic diversity and striatal gene networks: focus on the heterogeneous stock-collaborative cross (HS-CC) mouse.
    diff --git a/general/datasets/Oncretexmogene2_0413/acknowledgment.rtf b/general/datasets/Oncretexmogene2_0413/acknowledgment.rtf new file mode 100644 index 0000000..13c6b1e --- /dev/null +++ b/general/datasets/Oncretexmogene2_0413/acknowledgment.rtf @@ -0,0 +1 @@ +

    DoD funding (W81XWH-12-0255) Genetic Networks Activated by Blast Injury to the Eye (Eldon E. Geisert).

    diff --git a/general/datasets/Oncretexmogene2_0413/cases.rtf b/general/datasets/Oncretexmogene2_0413/cases.rtf new file mode 100644 index 0000000..6b36c70 --- /dev/null +++ b/general/datasets/Oncretexmogene2_0413/cases.rtf @@ -0,0 +1,1728 @@ +

    Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 50 and maximum age is 134 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set.

    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexEIGC ID (LIMS ID)StrainSexAge at harvestRIN Score
    1602BXD9F1339.1
    2603BXD9M1009.5
    3604BXD40F1009.4
    4605BXD40M1009.1
    5606BXD48F759.1
    6607BXD48M758.6
    7608BXD63F759.2
    8609BXD63M619.4
    9612BXD73M10810
    10614BXD87M859.2
    11615BXD87F859.9
    12616BXD69F769.3
    13617BXD69M10010
    14618BXD51M828.9
    15619BXD92 (BXD65b)M828.8
    16620BXD92 (BXD65b)F828.8
    17635BXD100M709
    18636BXD100M708.8
    19652BXD92 (BXD65b)F649
    20653BXD87F679.7
    21654BXD87M678.9
    22655BXD63M719
    23660BXD69M9710
    24687BXD6M857.7
    25688BXD6M859.4
    26690BXD12F8310
    27691BXD12F8310
    28692BXD12M8310
    29695BXD5F7710
    30696BXD5M7710
    31698BXD5F779.9
    32699BXD5F7710
    33701BXD8M7910
    34702BXD8M7910
    35705BXD8F779.2
    36707BXD15F779.4
    37708BXD15F779.1
    38710BXD15M779.1
    39713BXD22F719.5
    40714BXD22F719.7
    41716BXD22M719.1
    42717BXD22M719.1
    43719BXD14F709.2
    44722BXD14M708.9
    45723BXD14M709.2
    46725BXD18F709
    47726BXD18F709.1
    48728BXD18M709.1
    49729BXD18M709.2
    50731BXD19F669.3
    51732BXD19F669.4
    52734BXD19M669.8
    53735BXD19M669.4
    54737BXD21F719.7
    55738BXD21F719.6
    56740BXD21M719.1
    57741BXD21M719.7
    58743BXD2F708.3
    59744BXD2F708.6
    60746BXD2M707.5
    61747BXD2M778.6
    62768BXD48M1219.4
    63770BXD92 (BXD65b)M6510
    64771BXD101F858.3
    65772BXD101F859.3
    66773BXD101M869.5
    67774BXD101M869.8
    68775BXD102F669.5
    69776BXD102F6610
    70777BXD102M849.6
    71787BXD60M869.9
    72788BXD60M869.9
    73789BXD63F1159.7
    74790BXD100F729.8
    75791BXD100F7210
    76818BXD51F779.7
    77819BXD51F779.6
    78820BXD51M729.7
    79821BXD65M729.6
    80822BXD65M659.5
    81825BXD65F729.5
    82827BXD86M699.1
    83828BXD86M699.4
    84829BXD90F699.6
    85831BXD9M1279.7
    86832BXD39F999.4
    87833BXD39F1079.3
    88834BXD60F1079.5
    89836BXD84M1039.7
    90846BXD39M639.7
    91847BXD39M639.8
    92849BXD20F7010
    93850BXD20M7010
    94851BXD20*709.5
    95855DBA/2JF789.7
    96856DBA/2JF7810
    97857DBA/2JM7810
    98858DBA/2JM789.9
    99859C57BL/6JF7810
    100860C57BL/6JF7810
    101861C57BL/6JM7810
    102862C57BL/6JM789.6
    103EGE10907-0172_890_20844BXD28M7510
    104EGE10907-0173_891_20845BXD28M759.7
    105EGE10907-0174_892_20846BXD28F759.7
    106EGE10907-0176_895_20848BXD33M759.88
    107EGE10907-0177_896_20849BXD33F7510
    108EGE10907-0178_897_20850BXD33F759.4
    109EGE10907-0179_898_20851BXD36M759.4
    110EGE10907-0180_899_20852BXD36F759.5
    111EGE10907-0181_900_20853BXD36F759.1
    112EGE10907-0182_910_20854BXD27M709.7
    113EGE10907-0183_990_20855BXD9F989.4
    114EGE10907-0184_991_20856BXD16F11310
    115EGE10907-0185_992_20857BXD16M1139
    116EGE10907-0186_993_20858BXD27F969.4
    117EGE10907-0187_994_20859BXD27F969.4
    118EGE10907-0188_996_20860BXD48F989.4
    119EGE10907-0189_997_20861BXD73M10610
    120EGE10907-0190_999_20862BXD11F1219.6
    121EGE10907-0191_100_20863BXD11F1219.9
    122EGE10907-0192_1010_21276BXD13M699.8
    123EGE10907-0193_1011_21277BXD13M699.8
    124EGE10907-0194_1012_21278BXD16F6510
    125EGE10907-0195_1015_21279BXD16M6510
    126EGE10907-0196_1019_21280BXD33M7510
    127EGE10907-0197_1020_21281BXD36M7810
    128EGE10907-0198_1021_21282BXD38F709.8
    129EGE10907-0199_1022_21283BXD38F7010
    130EGE10907-0200_1023_21284BXD38M709.7
    131EGE10907-0201_1047_21285BXD11M6510
    132EGE10907-0202_1048_21286BXD11M6510
    133EGE10907-0203_1049_21287BXD38M7710
    134EGE10907-0204_1050_21288BXD73F7010
    135EGE10907-0205_1051_21289BXD73F7010
    136EGE10907-0206_1052_21290BXD86F6910
    137EGE10907-0207_1053_21291BXD86F6910
    138EGE10907-0208_1054_21292BXD90F7110
    139EGE10907-0209_1055_21293BXD90M7110
    140EGE10907-0210_1056_21294BXD90M7110
    141EGE10907-0211_1148_21295BXD31F9010
    142EGE10907-0212_1149_21296BXD31F9010
    143EGE10907-0213_1150_21297BXD31M9010
    144EGE10907-0214_1151_21298BXD31M909.9
    145EGE10907-0215_1152_21299BXD42F8310
    146EGE10907-0216_21429BXD42F8310
    147EGE10907-0217_21430BXD42M8310
    148EGE10907-0218_21431BXD42M839.3
    149EGE10907-0219_21432BXD50F929.6
    150EGE10907-0220_21433BXD50F929.6
    151EGE10907-0221_21434BXD50F9210
    152EGE10907-0222_21435BXD1M739.6
    153EGE10907-0223_21436BXD13F719.7
    154EGE10907-0224_21437BXD1M719.5
    155EGE10907-0225_21438BXD13F719.6
    156EGE10907-0226_21439BXD43F8510
    157EGE10907-0227_21452BXD43F859.6
    158EGE10907-0229_21442BXD43M858.2
    159EGE10907-0230_21443BXD50M699.4
    160EGE10907-0231_21444BXD1F689.4
    161EGE10907-0232_21445BXD1F689.6
    162EGE10907-0233_21446BXD29M659.5
    163EGE10907-0234_21447BXD29M6510
    164EGE10907-0235_21448BXD75F6810
    165EGE10907-0236_21449BXD75M6810
    166EGE10907-0237_21450BXD96F679.9
    167EGE10907-0238_21931BXD99M717.9
    168EGE10907-0239_21932BXD99M719.7
    169EGE10907-0240_21933BXD67F688.8
    170EGE10907-0241_21934BXD67F688.5
    171EGE10907-0242_21935BXD67M689.5
    172EGE10907-0243_21936BXD67M689.6
    173EGE10907-0244_21937BXD6F689.6
    174EGE10907-0245_21938BXD12M829.5
    175EGE10907-0246_21939BXD60F729.6
    176EGE10907-0247_21940BXD65F759.1
    177EGE10907-0248_21941BXD75F698.8
    178EGE10907-0249_21942_(MoGene-2_0-st)BXD75M699.2
    179EGE10907-0250_21943BXD8F979.1
    180EGE10907-0251_21944BXD85F798.6
    181EGE10907-0252_21945BXD85M799.1
    182EGE10907-0253_21946BXD85M799.4
    183EGE10907-0254_21947BXD102M948.6
    184EGE10907-0255_21948BXD99F839
    185EGE10907-0256_21949BXD69F689
    186EGE10907-0257_21950BXD84F749.5
    187EGE10907-0258_21951BXD84F749.4
    188EGE10907-0259_21952BXD84M748.6
    189EGE10907-0260_21451BXD96M679.2
    190EGE10907-0261_21452BXD99F718.9
    191EGE10907-0262_21931BXD6F669.4
    192EGE10907-0263_21932BXD14F698.5
    193EGE10907-0264_21933BXD34M799.1
    194EGE10907-0265_21934BXD34M799.9
    195EGE10907-0266_21935BXD40F759.6
    196EGE10907-0267_21936BXD40M789.7
    197EGE10907-0268_21937BXD56F729.7
    198EGE10907-0269_21938BXD56F729.7
    199EGE10907-0270_21939BXD56M729.6
    200EGE10907-0271_21940BXD56M729.4
    201EGE10907-0272_21941BXD71F729.9
    202EGE10907-0273_21942BXD71F759.4
    203EGE10907-0274_21943BXD71M7510
    204EGE10907-0275_21944BXD71M7510
    205EGE10907-0276_21945BXD27M6510
    206EGE10907-0277_21946BXD15M6510
    207EGE10907-0278_21947BXD20F12510
    208EGE10907-0279_21948BXD29F7710
    209EGE10907-0280_21949BXD29F7710
    210EGE10907-0281_21950BXD34F7410
    211EGE10907-0282_21951BXD34F7410
    212EGE10907-0283_21952BXD85F8710
    213EGE10907-0284_21451BXD43M759.8
    +
    +
    diff --git a/general/datasets/Oncretexmogene2_0413/citation.rtf b/general/datasets/Oncretexmogene2_0413/citation.rtf new file mode 100644 index 0000000..d84717d --- /dev/null +++ b/general/datasets/Oncretexmogene2_0413/citation.rtf @@ -0,0 +1,3 @@ +

    Related Publications: Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link) Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674 Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link) Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.

    + +

    Other Data Sets Users of these mouse retina data may also find the following complementary resources useful: NEIBank collection of ESTs and SAGE data. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases.

    diff --git a/general/datasets/Oncretexmogene2_0413/contributors.rtf b/general/datasets/Oncretexmogene2_0413/contributors.rtf new file mode 100644 index 0000000..11fece2 --- /dev/null +++ b/general/datasets/Oncretexmogene2_0413/contributors.rtf @@ -0,0 +1 @@ +

    Eldon E. Geisert, Lu Lu, XiangDi Wang, Justin P. Templeton and Robert W. Williams.

    diff --git a/general/datasets/Oncretexmogene2_0413/experiment-type.rtf b/general/datasets/Oncretexmogene2_0413/experiment-type.rtf new file mode 100644 index 0000000..2d74654 --- /dev/null +++ b/general/datasets/Oncretexmogene2_0413/experiment-type.rtf @@ -0,0 +1,3 @@ +Dissecting and preparing eyes for RNA extraction + +RNA was extracted from retinas using the RNeasy Mini Kit (Qiagen) and the Quiagen Qiacube. For RNA amplification and cDNA preparation we used the Ambion® WT Expression Kit (Life Technologies Cat#: 4411974). For Fragmentation and Labeling the WT Terminal Labeling Kit from Affymetrix (Cat#: 900671) was used. \ No newline at end of file diff --git a/general/datasets/Oncretexmogene2_0413/platform.rtf b/general/datasets/Oncretexmogene2_0413/platform.rtf new file mode 100644 index 0000000..19fc38c --- /dev/null +++ b/general/datasets/Oncretexmogene2_0413/platform.rtf @@ -0,0 +1 @@ +

    The Affymetrics GeneChip&reg; Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. Nonetheless, there is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs.

    diff --git a/general/datasets/Oncretexmogene2_0413/processing.rtf b/general/datasets/Oncretexmogene2_0413/processing.rtf new file mode 100644 index 0000000..a7b767e --- /dev/null +++ b/general/datasets/Oncretexmogene2_0413/processing.rtf @@ -0,0 +1 @@ +

    Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

    diff --git a/general/datasets/Oncretexmogene2_0413/summary.rtf b/general/datasets/Oncretexmogene2_0413/summary.rtf new file mode 100644 index 0000000..96a87e5 --- /dev/null +++ b/general/datasets/Oncretexmogene2_0413/summary.rtf @@ -0,0 +1 @@ +

    The DoD dataset was constructed using the Affymetrics GeneChip® Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. There is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs. This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.77 to 14.62, a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

    diff --git a/general/datasets/Oncretexmogene2_0413/tissue.rtf b/general/datasets/Oncretexmogene2_0413/tissue.rtf new file mode 100644 index 0000000..056d7eb --- /dev/null +++ b/general/datasets/Oncretexmogene2_0413/tissue.rtf @@ -0,0 +1 @@ +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RiboLock (RiboLock: Thermo Scientific RiboLock RNase #EO0381 40U/&micro;l 2500U) at room temperature. Individual retinas from the mouse were stored in each tube. RNA was isolated using a Qiacube with the resultant RIN scores ranging from 8.5 to 10.0.

    diff --git a/general/datasets/Oncretilm6_0412/acknowledgment.rtf b/general/datasets/Oncretilm6_0412/acknowledgment.rtf new file mode 100644 index 0000000..a41ff76 --- /dev/null +++ b/general/datasets/Oncretilm6_0412/acknowledgment.rtf @@ -0,0 +1,13 @@ +

    The HEI Retinal Database is supported by National Eye Institute Grants:

    + +

     

    + + diff --git a/general/datasets/Oncretilm6_0412/cases.rtf b/general/datasets/Oncretilm6_0412/cases.rtf new file mode 100644 index 0000000..b37d700 --- /dev/null +++ b/general/datasets/Oncretilm6_0412/cases.rtf @@ -0,0 +1,14 @@ +
    +

    Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 48 and maximum age is 118 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J.

    + +
    BXD strains: + + +
    +
    + +

    What Makes the G2 HEI Retina Database different from the HEI Retina Database Examination of Gfap expression across all of the strains in the HEI Retinal Dataset, reveals that some strains express very high levels of Gfap relative to others. For example, BXD24 expresses Gfap at a 9-fold higher level, than BXD22. It has been established that BXD24 acquired a mutation in Cep290 that results in early onset photoreceptor degeneration (Chang et al., 2006). This degeneration results in reactive gliosis throughout the retina. In addition to BXD24, other BXD strains expressed very high levels of Gfap including: BXD32, BXD49, BXD70, BXD83 and BXD89. For the G2 dataset all of these strains with potential reactive gliosis were removed from the dataset.

    diff --git a/general/datasets/Oncretilm6_0412/contributors.rtf b/general/datasets/Oncretilm6_0412/contributors.rtf new file mode 100644 index 0000000..b1f321b --- /dev/null +++ b/general/datasets/Oncretilm6_0412/contributors.rtf @@ -0,0 +1 @@ +

    Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Justin P. Templeton, Robert W. Williams

    diff --git a/general/datasets/Oncretilm6_0412/experiment-design.rtf b/general/datasets/Oncretilm6_0412/experiment-design.rtf new file mode 100644 index 0000000..4fff707 --- /dev/null +++ b/general/datasets/Oncretilm6_0412/experiment-design.rtf @@ -0,0 +1,12 @@ +

    Expression profiling by array

    + +

    We used pooled RNA samples of retinas, usually two independent pools--two male, two female pool--for most lines of mice.

    + +

    All normalization was performed by William E. Orr in the HEI Vision Core Facility

    + +
      +
    1. Computed the log base 2 of each raw signal value
    2. +
    3. Calculated the mean and standard Deviation of each Mouse WG-6 v2.0 array
    4. +
    5. Normalized each array using the formula, 2 (z-score of log2 [intensity]) The result is to produce arrays that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage is that a two-fold difference in expression level corresponds approximately to a 1 unit difference.
    6. +
    7. computed the mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples.
    8. +
    diff --git a/general/datasets/Oncretilm6_0412/experiment-type.rtf b/general/datasets/Oncretilm6_0412/experiment-type.rtf new file mode 100644 index 0000000..0546e04 --- /dev/null +++ b/general/datasets/Oncretilm6_0412/experiment-type.rtf @@ -0,0 +1 @@ +Expression profiling by array \ No newline at end of file diff --git a/general/datasets/Oncretilm6_0412/notes.rtf b/general/datasets/Oncretilm6_0412/notes.rtf new file mode 100644 index 0000000..13ff99a --- /dev/null +++ b/general/datasets/Oncretilm6_0412/notes.rtf @@ -0,0 +1 @@ +

    This data set is available as a bulk download in several formats. The data are available as either strain means or the individual arrays. Due to the involved normalization procedures required to correct for batch effects we strongly recommend not using the raw CEL files without special statistical procedures.

    diff --git a/general/datasets/Oncretilm6_0412/platform.rtf b/general/datasets/Oncretilm6_0412/platform.rtf new file mode 100644 index 0000000..2c52707 --- /dev/null +++ b/general/datasets/Oncretilm6_0412/platform.rtf @@ -0,0 +1 @@ +

    Illumina MouseWG-6 v2.0 arrays: The Illumina Sentrix Mouse-6 BeadChip uses 50-nucleotide probes to interrogate approximately 46,000 sequences from the mouse transcriptome. For each array, the RNA was pooled from two retinas.

    diff --git a/general/datasets/Oncretilm6_0412/processing.rtf b/general/datasets/Oncretilm6_0412/processing.rtf new file mode 100644 index 0000000..97cc2be --- /dev/null +++ b/general/datasets/Oncretilm6_0412/processing.rtf @@ -0,0 +1,2654 @@ +

    Values of all 45,281 probe sets in this data set range from a low of 6.25 (Rho GTPase activating protein 11A, Arhgap11a, probe ID ILMN_2747167) to a high of 18.08 (Ubiquitin B, Ubb, probe ID ILMN_2516699). This corresponds to 11.83 units or a 1 to 3641 dynamic range of expression (2^11.83). We normalized raw signal values using Beadstudio’s rank invariant normalization algorithm. BXD62 was the strain used as the control group

    + +

     

    + +

    Sample Processing: Drs. Natalie E. Freeman-Anderson and Justin P. Templeton extracted the retinas from the mice and Dr. Natalie Freeman-Anderson processed all samples in the HEI Vision Core Facility. The tissue was homogenized and extracted according to the RNA-Stat-60 protocol as described by the manufacturer (Tel-Test, Friendswood, TX) listed above. The quality and purity of RNA was assessed using an Agilent Bioanalyzer 2100 system. The RNA from each sample was processed with the Illumina TotalPrep RNA Amplification Kit (Ambion, Austin, TX) to produce labeled cRNA. The cRNA for each sample was then hybridized to an Illumina Sentrix® Mouse-6-V2 BeadChip (Illumina, San Diego, CA)

    + +

     

    + +

     

    + +

    Quality control analysis of the raw image data was performed using the Illumina BeadStudio software. MIAME standards were used for all microarray data. Rank invariant normalization with BeadStudio software was used to calculate the data. Once this data was collected, the data was globally normalized across all samples using the formula 2 (z-score of log2 [intensity]) + 8.

    + +

    Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

    + +

    Table 1: HEI Retina case IDs, including sample tube ID, strain, age, sex, and source of mice

    + +

     

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDStrainAgeSexSource of Animal
    1121608_11-C57BL/6JcFAC57BL/6J69FJAX
    2121608_12-C57BL/6JcFBC57BL/6J69FJAX
    3KA7444-C57BL/6JcMCC57BL/6J97MUTHSC RW
    4KA7444-C57BL/6JcMDC57BL/6J97MUTHSC RW
    531209.05-DBA2JcFADBA2J75FUTHSC RW
    631209.05-DBA2JcFBDBA2J75FUTHSC RW
    7121608_13-DBA/2JcMADBA/2J89MUTHSC RW
    8121608_14-DBA/2JcMBDBA/2J89MUTHSC RW
    9KA7446-B6D2F1cFAB6D2F192FUTHSC RW
    10KA7446-B6D2F1cFBB6D2F192FUTHSC RW
    11KA7446-B6D2F1cMCB6D2F192MUTHSC RW
    12KA7446-B6D2F1cMDB6D2F192MUTHSC RW
    13KA7466-D2B6F1cFAD2B6F170FUTHSC RW
    14KA7466-D2B6F1cFBD2B6F170FUTHSC RW
    15KA7466-D2B6F1cMCD2B6F170MUTHSC RW
    16KA7466-D2B6F1cMDD2B6F170MUTHSC RW
    1782609.13-1cFABXD0162FJAX
    1882609.14-1cFBBXD0162FJAX
    19KA7389-1cFABXD0151FUTHSC RW
    20KA7389-1cFBBXD0151FUTHSC RW
    21KA7389-1cMCBXD0151MUTHSC RW
    22KA7389-1cMDBXD0151MUTHSC RW
    23KA7300-2cFABXD0275FUTHSC RW
    24KA7300-2cFBBXD0275FUTHSC RW
    25100909.01-2cMABXD0265MJAX
    26100909.02-2cMBBXD0265MJAX
    27KA6699-5cFABXD0562FUTHSC RW
    28KA6699-5cFBBXD0562FUTHSC RW
    29KA6699-5cFCBXD0562FUTHSC RW
    30KA6699-5cFDBXD0562FUTHSC RW
    3182609.09-5cMABXD0560MJAX
    3282609.1-5cMBBXD0560MJAX
    33KA6763-6cFABXD0648FUTHSC RW
    34KA6763-6cFBBXD0648FUTHSC RW
    3581209.06-6cMABXD0669MVAMC
    3681209.07-6cMBBXD0669MVAMC
    3782609.07-8cFABXD0868FJAX
    3882609.08-8cFBBXD0868FJAX
    39JAX-8cMABXD0876MJAX
    40JAX-8cMBBXD0876MJAX
    41KA7289-9cFABXD0987FUTHSC RW
    42KA7289-9cFBBXD0987FUTHSC RW
    43KA7289-9cMCBXD0987MUTHSC RW
    44KA7289-9cMDBXD0987MUTHSC RW
    45JAX-11cFABXD1184FJAX
    46JAX-11cFBBXD1184FJAX
    47JAX-11cMCBXD1171MJAX
    48JAX-11cMDBXD1171MJAX
    4940209.07-12cFABXD1265FVAMC
    5040209.08-12cFBBXD1265FVAMC
    51011309.01-12cMABXD1265MUTHSC RW
    52011309.02-12cMBBXD1265MUTHSC RW
    53KA7286-13cFABXD1389FUTHSC RW
    54KA7286-13cFBBXD1389FUTHSC RW
    55KA7286-13cMCBXD1389MUTHSC RW
    56KA7286-13cMDBXD1389MUTHSC RW
    57KA7302-14cFABXD1473FUTHSC RW
    58KA7302-14cFBBXD1473FUTHSC RW
    59100909.05-14cMABXD1466MJAX
    60100909.06-14cMBBXD1466MJAX
    61KA7288-15cFABXD1589FUTHSC RW
    62KA7288-15cFBBXD1589FUTHSC RW
    63KA7288-15cMCBXD1589MUTHSC RW
    64KA7288-15cMDBXD1589MUTHSC RW
    65062509.01-16cFABXD1668FUTHSC RW
    66KA7267-16cMABXD1691MUTHSC RW
    67KA7267-16cMBBXD1691MUTHSC RW
    68KA6686-18cFBBXD1865FUTHSC RW
    69KA6686-18cFCBXD1865FUTHSC RW
    70KA6686-18cMEBXD1865MUTHSC RW
    71KA6686-18cMFBXD1865MUTHSC RW
    72KA6676-19cFBBXD1963FUTHSC RW
    73KA6676-19cFCBXD1963FUTHSC RW
    74KA6676-19cMEBXD1963MUTHSC RW
    75KA6676-19cMFBXD1963MUTHSC RW
    76060409.05-20cFABXD2067FUTHSC RW
    77060409.06-20cFBBXD2067FUTHSC RW
    78021909.03-20cMABXD2064MUTHSC RW
    79021909.04-20cMBBXD2064MUTHSC RW
    8082609.02-21cFCBXD2165FJAX
    8182609.03-21cFDBXD2165FJAX
    82121709.01-21cMABXD2180MJAX
    83121709.02-21cMBBXD2180MJAX
    84121709.03-22cFABXD2262FJAX
    85121709.04-22cFBBXD2262FJAX
    86092308_03-22cMABXD22118MUTHSC RW
    87092308_04-22cMBBXD22118MUTHSC RW
    8880409.01-24AcFABXD24A72FUTHSC RW
    89080409_02_24AcFBBXD24A72FUTHSC RW
    9082609.26-24AcFCBXD24A64FUTHSC RW
    9181209.03-24AcMCBXD24A62MUTHSC RW
    92KA6678-24cFABXD2462FUTHSC RW
    93KA6678-24cFBBXD2462FUTHSC RW
    94KA6678-24cMEBXD2462MUTHSC RW
    95KA6678-24cMFBXD2462MUTHSC RW
    96060409.07-27cFABXD2763FUTHSC RW
    97060409.08-27cFBBXD2763FUTHSC RW
    9880409.03-27cMABXD2774MUTHSC RW
    9980409.04-27cMBBXD2774MUTHSC RW
    100JAX-28cFABXD2867FJAX
    101JAX-28cFBBXD2867FJAX
    102JAX-28cMCBXD2867MJAX
    103JAX-28cMDBXD2867MJAX
    10482609.11-29cFABXD2966FJAX
    10582609.12-29cFBBXD2966FJAX
    10682609.04-29cMABXD2966MJAX
    10782609.05-29cMBBXD2966MJAX
    108JAX-31cMBBXD 3156MJAX
    109JAX-31cFCBXD 3169FJAX
    110JAX-31cFDBXD 3169FJAX
    111011309.03-32cFABXD3262FUTHSC RW
    112011309.04-32cFBBXD3262FUTHSC RW
    113KA7318-32cFCBXD3271FUTHSC RW
    114KA7319-32cMABXD3274MUTHSC RW
    115KA7319-32cMBBXD3274MUTHSC RW
    116100909.07-33cFABXD3365FJAX
    117100909.08-33cFBBXD3365FJAX
    118022609.01-33cMABXD3392MUTHSC RW
    119022609.02-33cMBBXD3392MUTHSC RW
    120KA7416-34cFABXD3497FUTHSC RW
    121KA7416-34cFBBXD3497FUTHSC RW
    122KA6321-34cMABXD3466MUTHSC RW
    123KA6321-34cMBBXD3466MUTHSC RW
    124060409.01-36cFABXD3663FUTHSC RW
    125060409.02-36cFBBXD3663FUTHSC RW
    126060409.03-36cMCBXD3663MUTHSC RW
    127KA6702-38cFABXD3863FUTHSC RW
    128KA6702-38cFBBXD3863FUTHSC RW
    12982609.24-38cFABXD3885FUTHSC RW
    13082609.25-38cFBBXD3885FUTHSC RW
    131100909.03-38cMABXD3861MJAX
    132100909.04-38cMBBXD3861MJAX
    133022609.05-39cFABXD3965FUTHSC RW
    134022609.06-39cFBBXD3965FUTHSC RW
    13531209.01-39cMCBXD3967MUTHSC RW
    13692409.01-40cFABXD4064FUTHSC RW
    13792409.02-40cFBBXD4064FUTHSC RW
    138KA6173-40cMABXD4059MUTHSC RW
    139KA6173-40cMBBXD4059MUTHSC RW
    140KA6173-40cMCBXD4059MUTHSC RW
    141091809.01-42cFABXD4273FUTHSC RW
    142091809.02-42cFBBXD4273FUTHSC RW
    143021909.01-42cFABXD4289FUTHSC RW
    144011309.06-42cMABXD4267MUTHSC RW
    145011309.07-42cMBBXD4267MUTHSC RW
    146110408_02-43cFABXD4361FUTHSC RW
    147110408_03-43cFBBXD4361FUTHSC RW
    148KA6158-43cMABXD4366MUTHSC RW
    149KA6158-43cMBBXD4366MUTHSC RW
    150100308_01-44cFABXD4467FUTHSC RW
    151102208_02-44cMDBXD4464MUTHSC RW
    152103009.03-45cFABXD4568FUTHSC RW
    153103009.04-45cFBBXD4568FUTHSC RW
    154022609.03-45cFABXD4578FUTHSC RW
    155022609.04-45cFBBXD4578FUTHSC RW
    15640309.05-45cMBBXD4565MUTHSC RW
    15740209.05-48cFBBXD4858FVAMC
    15840209.06-48cFCBXD4858FVAMC
    15981209.04-48cMABXD4882MUTHSC RW
    16081209.05-48cMBBXD4882MUTHSC RW
    16181209.08-49cFABXD4970FVAMC
    16281209.09-49cFBBXD4970FVAMC
    16340209.01-49cMABXD4987MVAMC
    16440209.02-49cMBBXD4987MVAMC
    16540209.03-49cMCBXD4987MVAMC
    166KA737850cFABXD5050FUTHSC RW
    167KA737850cFBBXD5050FUTHSC RW
    168121908_01-50cMABXD5049MUTHSC RW
    169121908_02-50cMBBXD5049MUTHSC RW
    170111208_01-51cFABXD5199FUTHSC RW
    171102208_03-51cMABXD5156MUTHSC RW
    172102208_04-51cMBBXD5156MUTHSC RW
    173090208_14-53BcFABXD53B93FUTHSC RW
    174090208_15-53BcFBBXD53B93FUTHSC RW
    175090208_16-53BcMCBXD53B93MUTHSC RW
    176090208_17-53BcMDBXD53B93MUTHSC RW
    177111208_05-55cFBBXD5570FUTHSC RW
    178KA6183-55cMABXD5563MUTHSC RW
    179KA6183-55cMBBXD5563MUTHSC RW
    180KA7362-56cFBBXD 5654FUTHSC RW
    181KA6088-56cMABXD5687MUTHSC RW
    182KA6088-56cMBBXD5687MUTHSC RW
    183KA6088-56cMCBXD5687MUTHSC RW
    18421810.01-60RFABXD 6067FUTHSC RW
    18521810.02-60RFBBXD 6067FUTHSC RW
    18621810.02-60RFCBXD 6067FUTHSC RW
    187SQ7325-60cMABXD6085MUTHSC RW
    188SQ7325-60cMBBXD6085MUTHSC RW
    189092308_10-61cFABXD61110FUTHSC RW
    190092308_11-61cFBBXD61110FUTHSC RW
    19131909.01-61cMABXD6167MUTHSC RW
    19231909.02-61cMBBXD6167MUTHSC RW
    193KA7462-62cFABXD6276FUTHSC RW
    194KA7462-62cFBBXD6276FUTHSC RW
    195KA5996-62cMABXD62113MUTHSC RW
    196KA5996-62cMBBXD62113MUTHSC RW
    197KA5996-62cMCBXD62113MUTHSC RW
    198090309.01-63cFABXD6369FUTHSC RW
    199090309.02-63cFBBXD6369FUTHSC RW
    200110609.01-63cMABXD6366MUTHSC RW
    201110609.02-63cMBBXD6366MUTHSC RW
    202091809.03-65cFABXD6565FUTHSC RW
    203091809.04-65cFBBXD6565FUTHSC RW
    204103009.01-65cMABXD6574MUTHSC RW
    205103009.02-65cMBBXD6574MUTHSC RW
    206110408_05-66cFBBXD6659FUTHSC RW
    207KA7165-66cMABXD6695MUTHSC RW
    208KA7165-66cMBBXD6695MUTHSC RW
    20990809.01-67cMABXD6761MUTHSC RW
    21090809.02-67cMBBXD6761MUTHSC RW
    211110609.03-67cFABXD6768FUTHSC RW
    212110609.04-67cFBBXD6768FUTHSC RW
    213120408_01-68cFABXD6867FUTHSC RW
    214120408_02-68cFBBXD6867FUTHSC RW
    215SQ7205-68cMABXD6887MUTHSC RW
    216SQ7205-68cMBBXD6887MUTHSC RW
    217KA6316-68cMABXD6876MUTHSC RW
    218KA6316-68cMBBXD6876MUTHSC RW
    219KA6316-68cMCBXD6876MUTHSC RW
    220KA76-69cFABXD6948FUTHSC RW
    221KA76-69cFBBXD6948FUTHSC RW
    222KA6074-69cMABXD6990MUTHSC RW
    223KA6074-69cMBBXD6990MUTHSC RW
    224121608_01-70cFABXD7080FUTHSC RW
    225121608_02-70cFBBXD7080FUTHSC RW
    226KA7394-70cMABXD7051MUTHSC RW
    22781209.08-70cMABXD7071MVAMC
    22881209.09-70cMBBXD7071MVAMC
    229052809.01-71cFABXD7170FUTHSC RW
    230060409.09-71cMABXD7162MUTHSC RW
    231060409.10-71cMBBXD7162MUTHSC RW
    23240809.01-73cFABXD7383FUTHSC RW
    23340809.02-73cFBBXD7383FUTHSC RW
    234111708_01-73cFABXD7355FUTHSC RW
    235111708_01-73cFBBXD7355FUTHSC RW
    236KA6164-73cMBBXD7359MUTHSC RW
    237KA6164-73cMCBXD7359MUTHSC RW
    23882609.22-74cFABXD7468FVAMC
    23982609.23-74cFBBXD7468FVAMC
    24082609.20-74cMABXD7468MVAMC
    24182609.21-74cMBBXD7468MVAMC
    242KA733675cFABXD7559FUTHSC RW
    243KA733675cFBBXD7559FUTHSC RW
    244KA38-75cMBBXD7562MUTHSC RW
    245KA38-75cMCBXD7562MUTHSC RW
    24641509.01-77cFABXD7770FUTHSC RW
    24741509.02-77cFBBXD7770FUTHSC RW
    24841509.03-77cMCBXD7770MUTHSC RW
    24941509.04-77cMDBXD7770MUTHSC RW
    250121608_03-80cFABXD8077FUTHSC RW
    251121608_05-80cMCBXD8070MUTHSC RW
    252KA23-80cMCBXD8077MUTHSC RW
    253KA7305-81cFABXD8151FUTHSC RW
    254KA7305-81cFBBXD8151FUTHSC RW
    255KA7305-81cMDBXD8151MUTHSC RW
    256060409.11-83cFABXD8365FUTHSC RW
    257KA24-83cFABXD8378FUTHSC RW
    258121608_07-83cMABXD8378MUTHSC RW
    259121608_08-83cMBBXD8378MUTHSC RW
    260KA24-83cMDBXD8378MUTHSC RW
    261090409.05-84cFABXD8465FVAMC
    262090409.06-84cFBBXD8465FVAMC
    263KA6203-84cMABXD8459MUTHSC RW
    264KA6203-84cMBBXD8459MUTHSC RW
    26540309.02-85cFDBXD8558FUTHSC RW
    26640309.03-85cFEBXD8558FUTHSC RW
    26732609.01-85cMABXD8567MUTHSC RW
    26832609.02-85cMBBXD8567MUTHSC RW
    26941509.05-86cFABXD8673FUTHSC RW
    27041509.06-86cFBBXD8673FUTHSC RW
    271KA6101-86cMABXD8682MUTHSC RW
    272KA6101-86cMCBXD8682MUTHSC RW
    273070909.02-87cFABXD8786FUTHSC RW
    274070909.03-87cFBBXD8786FUTHSC RW
    275KA7407-87cMABXD87113MUTHSC RW
    276KA7407-87cMBBXD87113MUTHSC RW
    277102208_05-89cFABXD8982FUTHSC RW
    278KA5974-89cMABXD89113MUTHSC RW
    279KA5974-89cMBBXD89113MUTHSC RW
    280102208_06-89cMCBXD8982MUTHSC RW
    28172309.01-90cFABXD9067FUTHSC RW
    28272309.02-90cFBBXD9067FUTHSC RW
    283090409.03-90cMABXD9064MVAMC
    284090409.04-90cMBBXD9064MVAMC
    285KA6094-92cMABXD9285MUTHSC RW
    286020609.01-95cFABXD9571FUTHSC RW
    287020609.02-95cFBBXD9571FUTHSC RW
    288KA6181-95cMABXD9561MUTHSC RW
    289KA6181-95cMBBXD9561MUTHSC RW
    29031209.03-96cFABXD9662FUTHSC RW
    29131209.04-96cFBBXD9662FUTHSC RW
    292KA7246-96cMABXD9673MUTHSC RW
    293KA7246-96cMBBXD9673MUTHSC RW
    29481209.10-97cFABXD9783FVAMC
    29581209.11-97cFBBXD9783FVAMC
    29681209.1-97cMABXD9783MVAMC
    29781209.11-97cMBBXD9783MVAMC
    298SQ7520-98cFABXD9859FUTHSC RW
    299SQ7520-98cFBBXD9859FUTHSC RW
    300SQ7520-98cMCBXD9859MUTHSC RW
    301SQ7520-98cMDBXD9859MUTHSC RW
    30282609.17-99cFABXD9964FVAMC
    30382609.18-99cFBBXD9964FVAMC
    30481409.01-99cMABXD9966MUTHSC RW
    30581409.02-99cMBBXD9966MUTHSC RW
    306121608_09-100cFABXD10081FUTHSC RW
    307121608_10-100cFBBXD10081FUTHSC RW
    308KA6001-100cMABXD100111MUTHSC RW
    309KA6001-100cMBBXD100111MUTHSC RW
    31081209.12-101cFABXD10172FVAMC
    31181209.13-101cFBBXD10172FVAMC
    312KA7296-101cMABXD10175MUTHSC RW
    313KA7296-101cMBBXD10175MUTHSC RW
    31492409.03-102cFABXD10271FVAMC
    31592409.04-102cFBBXD10271FVAMC
    316KA7380-102cMABXD102115MUTHSC RW
    31743009.01-103cFABXD10368FUTHSC RW
    31843009.02-103cFBBXD10368FUTHSC RW
    319KA79-103cFABXD10348FUTHSC RW
    320KA79-103cFBBXD10348FUTHSC RW
    321KA79-103cMCBXD10348MUTHSC RW
    32282609.15-103cMABXD10369MVAMC
    32382609.16-103cMBBXD10369MVAMC
    324102909.01-BALBCcFABALB/cByJ78FJAX
    325102909.02-BALBCcFBBALB/cByJ78FJAX
    326102909.03-BALBCcMABALB/cByJ78MJAX
    327102909.04-BALBCcMBBALB/cByJ78MJAX
    +
    diff --git a/general/datasets/Oncretilm6_0412/summary.rtf b/general/datasets/Oncretilm6_0412/summary.rtf new file mode 100644 index 0000000..44e98a7 --- /dev/null +++ b/general/datasets/Oncretilm6_0412/summary.rtf @@ -0,0 +1,50 @@ +
    +

    This is a subtractive dataset. The Normal retina dataset was subtracted from the ONC data set probe by probe to create a data set of the changes occurring following ONC. This data set can be used to define gene changes following ONC. It is not compatible with most of the bioinformatic tools available on GeneNetwork.

    + +

    HEI Retina Illumina V6.2 (April 2010) RankInv was normalized and scaled by William E. Orr and uploaded by Arthur Centeno and Xiaodong Zhou on April 7, 2010. This data set consists of either 69 BXD strains (Normal data set) or 75 BXD strains (Full data set), C57BL/6J, DBA/2J, both reciprocal F1s, and BALB/cByJ. A total of either 74 strains (Normal data set) or 80 strains (Full data set) were quantified.

    + +

    COMMENT on  FULL versus NORMAL data sets: For many general uses there is no significant difference between FULL and NORMAL data sets. However, the FULL data set includes strains with high endogenous Gfap mRNA expression, indicative of reactive gliosis. For that reason, and to compare to OPTIC NERVE CRUSH (ONC), we removed data from six strains to make the NORMAL data set.

    + +

    The NORMAL data set exludes data from BXD24, BXD32, BXD49, BXD70, BXD83, and BXD89. BXD24 has known retinal degeneration and is now known officially as  BXD24/TyJ-Cep290/J, JAX Stock number 000031. BXD32 has mild retinal degeneration. The NORMAL data set does include BXD24a, now also known as BXD24/TyJ (JAX Stock number 005243).

    + +

    The data are now open and available for analysis.

    + +

    Please cite: Freeman NE, Templeton JP, Orr WE, Lu L, Williams RW, Geisert EE (2011) Genetic networks in the mouse retina: Growth Associated Protein 43 and Phosphate Tensin Homology network. Molecular Vision 17:1355-1372. Full Text PDF or HTML

    + +

    This is rank invariant expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 6.25 to 18.08 (11.83 units), a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

    + +

    The lowest level of expression is 6.254 for ILMN_2747167 (Arhgap11a) from HEI Retina Illumina V6.2 (April 2010) RankInv **. Lowest single data about 5.842.

    + +

    The highest level of expression is 18.077 for ILMN_2516699 (Ubb). Highest single value is about 18.934.

    + +

     

    +
    + +

    Other Related Publications

    + +
    +

     

    + +
      +
    1. Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link)
    2. +
    3. Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674
    4. +
    5. Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link)
    6. +
    7. Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.(Link) +

       

      + +

       

      +
    8. +
    +
    + +
    Other Data Sets Users of these mouse retina data may also find the following complementary resources useful: + +
      +
    1. NEIBank collection of ESTs and SAGE data.
    2. +
    3. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases
    4. +
    5. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.
    6. +
    7. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus.
    8. +
    9. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430).
    10. +
    11. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.
    12. +
    +
    diff --git a/general/datasets/Oncretilm6_0412/tissue.rtf b/general/datasets/Oncretilm6_0412/tissue.rtf new file mode 100644 index 0000000..766ab59 --- /dev/null +++ b/general/datasets/Oncretilm6_0412/tissue.rtf @@ -0,0 +1,32 @@ +
    +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RNAlater at room temperature. Two retinas from one mouse were stored in a single tube.

    + +

    Each array was hybridized with a pool of cRNA from 2 retinas (1 mouse). Natalie Freeman-Anderson extracted RNA at UTHSC.

    + +

     

    + +

    Dissecting and preparing eyes for RNA extraction

    + +

     

    + +

    Retinas for RNA extraction were placed in RNA STAT-60 (Tel-Test Inc.) and processed per manufacturer’s instructions (in brief form below). Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we:

    + +

     

    + + +
    diff --git a/general/datasets/Oncretmogene2_0413/acknowledgment.rtf b/general/datasets/Oncretmogene2_0413/acknowledgment.rtf new file mode 100644 index 0000000..13c6b1e --- /dev/null +++ b/general/datasets/Oncretmogene2_0413/acknowledgment.rtf @@ -0,0 +1 @@ +

    DoD funding (W81XWH-12-0255) Genetic Networks Activated by Blast Injury to the Eye (Eldon E. Geisert).

    diff --git a/general/datasets/Oncretmogene2_0413/cases.rtf b/general/datasets/Oncretmogene2_0413/cases.rtf new file mode 100644 index 0000000..6b36c70 --- /dev/null +++ b/general/datasets/Oncretmogene2_0413/cases.rtf @@ -0,0 +1,1728 @@ +

    Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 50 and maximum age is 134 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. BXD strains: The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set.

    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexEIGC ID (LIMS ID)StrainSexAge at harvestRIN Score
    1602BXD9F1339.1
    2603BXD9M1009.5
    3604BXD40F1009.4
    4605BXD40M1009.1
    5606BXD48F759.1
    6607BXD48M758.6
    7608BXD63F759.2
    8609BXD63M619.4
    9612BXD73M10810
    10614BXD87M859.2
    11615BXD87F859.9
    12616BXD69F769.3
    13617BXD69M10010
    14618BXD51M828.9
    15619BXD92 (BXD65b)M828.8
    16620BXD92 (BXD65b)F828.8
    17635BXD100M709
    18636BXD100M708.8
    19652BXD92 (BXD65b)F649
    20653BXD87F679.7
    21654BXD87M678.9
    22655BXD63M719
    23660BXD69M9710
    24687BXD6M857.7
    25688BXD6M859.4
    26690BXD12F8310
    27691BXD12F8310
    28692BXD12M8310
    29695BXD5F7710
    30696BXD5M7710
    31698BXD5F779.9
    32699BXD5F7710
    33701BXD8M7910
    34702BXD8M7910
    35705BXD8F779.2
    36707BXD15F779.4
    37708BXD15F779.1
    38710BXD15M779.1
    39713BXD22F719.5
    40714BXD22F719.7
    41716BXD22M719.1
    42717BXD22M719.1
    43719BXD14F709.2
    44722BXD14M708.9
    45723BXD14M709.2
    46725BXD18F709
    47726BXD18F709.1
    48728BXD18M709.1
    49729BXD18M709.2
    50731BXD19F669.3
    51732BXD19F669.4
    52734BXD19M669.8
    53735BXD19M669.4
    54737BXD21F719.7
    55738BXD21F719.6
    56740BXD21M719.1
    57741BXD21M719.7
    58743BXD2F708.3
    59744BXD2F708.6
    60746BXD2M707.5
    61747BXD2M778.6
    62768BXD48M1219.4
    63770BXD92 (BXD65b)M6510
    64771BXD101F858.3
    65772BXD101F859.3
    66773BXD101M869.5
    67774BXD101M869.8
    68775BXD102F669.5
    69776BXD102F6610
    70777BXD102M849.6
    71787BXD60M869.9
    72788BXD60M869.9
    73789BXD63F1159.7
    74790BXD100F729.8
    75791BXD100F7210
    76818BXD51F779.7
    77819BXD51F779.6
    78820BXD51M729.7
    79821BXD65M729.6
    80822BXD65M659.5
    81825BXD65F729.5
    82827BXD86M699.1
    83828BXD86M699.4
    84829BXD90F699.6
    85831BXD9M1279.7
    86832BXD39F999.4
    87833BXD39F1079.3
    88834BXD60F1079.5
    89836BXD84M1039.7
    90846BXD39M639.7
    91847BXD39M639.8
    92849BXD20F7010
    93850BXD20M7010
    94851BXD20*709.5
    95855DBA/2JF789.7
    96856DBA/2JF7810
    97857DBA/2JM7810
    98858DBA/2JM789.9
    99859C57BL/6JF7810
    100860C57BL/6JF7810
    101861C57BL/6JM7810
    102862C57BL/6JM789.6
    103EGE10907-0172_890_20844BXD28M7510
    104EGE10907-0173_891_20845BXD28M759.7
    105EGE10907-0174_892_20846BXD28F759.7
    106EGE10907-0176_895_20848BXD33M759.88
    107EGE10907-0177_896_20849BXD33F7510
    108EGE10907-0178_897_20850BXD33F759.4
    109EGE10907-0179_898_20851BXD36M759.4
    110EGE10907-0180_899_20852BXD36F759.5
    111EGE10907-0181_900_20853BXD36F759.1
    112EGE10907-0182_910_20854BXD27M709.7
    113EGE10907-0183_990_20855BXD9F989.4
    114EGE10907-0184_991_20856BXD16F11310
    115EGE10907-0185_992_20857BXD16M1139
    116EGE10907-0186_993_20858BXD27F969.4
    117EGE10907-0187_994_20859BXD27F969.4
    118EGE10907-0188_996_20860BXD48F989.4
    119EGE10907-0189_997_20861BXD73M10610
    120EGE10907-0190_999_20862BXD11F1219.6
    121EGE10907-0191_100_20863BXD11F1219.9
    122EGE10907-0192_1010_21276BXD13M699.8
    123EGE10907-0193_1011_21277BXD13M699.8
    124EGE10907-0194_1012_21278BXD16F6510
    125EGE10907-0195_1015_21279BXD16M6510
    126EGE10907-0196_1019_21280BXD33M7510
    127EGE10907-0197_1020_21281BXD36M7810
    128EGE10907-0198_1021_21282BXD38F709.8
    129EGE10907-0199_1022_21283BXD38F7010
    130EGE10907-0200_1023_21284BXD38M709.7
    131EGE10907-0201_1047_21285BXD11M6510
    132EGE10907-0202_1048_21286BXD11M6510
    133EGE10907-0203_1049_21287BXD38M7710
    134EGE10907-0204_1050_21288BXD73F7010
    135EGE10907-0205_1051_21289BXD73F7010
    136EGE10907-0206_1052_21290BXD86F6910
    137EGE10907-0207_1053_21291BXD86F6910
    138EGE10907-0208_1054_21292BXD90F7110
    139EGE10907-0209_1055_21293BXD90M7110
    140EGE10907-0210_1056_21294BXD90M7110
    141EGE10907-0211_1148_21295BXD31F9010
    142EGE10907-0212_1149_21296BXD31F9010
    143EGE10907-0213_1150_21297BXD31M9010
    144EGE10907-0214_1151_21298BXD31M909.9
    145EGE10907-0215_1152_21299BXD42F8310
    146EGE10907-0216_21429BXD42F8310
    147EGE10907-0217_21430BXD42M8310
    148EGE10907-0218_21431BXD42M839.3
    149EGE10907-0219_21432BXD50F929.6
    150EGE10907-0220_21433BXD50F929.6
    151EGE10907-0221_21434BXD50F9210
    152EGE10907-0222_21435BXD1M739.6
    153EGE10907-0223_21436BXD13F719.7
    154EGE10907-0224_21437BXD1M719.5
    155EGE10907-0225_21438BXD13F719.6
    156EGE10907-0226_21439BXD43F8510
    157EGE10907-0227_21452BXD43F859.6
    158EGE10907-0229_21442BXD43M858.2
    159EGE10907-0230_21443BXD50M699.4
    160EGE10907-0231_21444BXD1F689.4
    161EGE10907-0232_21445BXD1F689.6
    162EGE10907-0233_21446BXD29M659.5
    163EGE10907-0234_21447BXD29M6510
    164EGE10907-0235_21448BXD75F6810
    165EGE10907-0236_21449BXD75M6810
    166EGE10907-0237_21450BXD96F679.9
    167EGE10907-0238_21931BXD99M717.9
    168EGE10907-0239_21932BXD99M719.7
    169EGE10907-0240_21933BXD67F688.8
    170EGE10907-0241_21934BXD67F688.5
    171EGE10907-0242_21935BXD67M689.5
    172EGE10907-0243_21936BXD67M689.6
    173EGE10907-0244_21937BXD6F689.6
    174EGE10907-0245_21938BXD12M829.5
    175EGE10907-0246_21939BXD60F729.6
    176EGE10907-0247_21940BXD65F759.1
    177EGE10907-0248_21941BXD75F698.8
    178EGE10907-0249_21942_(MoGene-2_0-st)BXD75M699.2
    179EGE10907-0250_21943BXD8F979.1
    180EGE10907-0251_21944BXD85F798.6
    181EGE10907-0252_21945BXD85M799.1
    182EGE10907-0253_21946BXD85M799.4
    183EGE10907-0254_21947BXD102M948.6
    184EGE10907-0255_21948BXD99F839
    185EGE10907-0256_21949BXD69F689
    186EGE10907-0257_21950BXD84F749.5
    187EGE10907-0258_21951BXD84F749.4
    188EGE10907-0259_21952BXD84M748.6
    189EGE10907-0260_21451BXD96M679.2
    190EGE10907-0261_21452BXD99F718.9
    191EGE10907-0262_21931BXD6F669.4
    192EGE10907-0263_21932BXD14F698.5
    193EGE10907-0264_21933BXD34M799.1
    194EGE10907-0265_21934BXD34M799.9
    195EGE10907-0266_21935BXD40F759.6
    196EGE10907-0267_21936BXD40M789.7
    197EGE10907-0268_21937BXD56F729.7
    198EGE10907-0269_21938BXD56F729.7
    199EGE10907-0270_21939BXD56M729.6
    200EGE10907-0271_21940BXD56M729.4
    201EGE10907-0272_21941BXD71F729.9
    202EGE10907-0273_21942BXD71F759.4
    203EGE10907-0274_21943BXD71M7510
    204EGE10907-0275_21944BXD71M7510
    205EGE10907-0276_21945BXD27M6510
    206EGE10907-0277_21946BXD15M6510
    207EGE10907-0278_21947BXD20F12510
    208EGE10907-0279_21948BXD29F7710
    209EGE10907-0280_21949BXD29F7710
    210EGE10907-0281_21950BXD34F7410
    211EGE10907-0282_21951BXD34F7410
    212EGE10907-0283_21952BXD85F8710
    213EGE10907-0284_21451BXD43M759.8
    +
    +
    diff --git a/general/datasets/Oncretmogene2_0413/citation.rtf b/general/datasets/Oncretmogene2_0413/citation.rtf new file mode 100644 index 0000000..d84717d --- /dev/null +++ b/general/datasets/Oncretmogene2_0413/citation.rtf @@ -0,0 +1,3 @@ +

    Related Publications: Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link) Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674 Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link) Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.

    + +

    Other Data Sets Users of these mouse retina data may also find the following complementary resources useful: NEIBank collection of ESTs and SAGE data. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases.

    diff --git a/general/datasets/Oncretmogene2_0413/contributors.rtf b/general/datasets/Oncretmogene2_0413/contributors.rtf new file mode 100644 index 0000000..11fece2 --- /dev/null +++ b/general/datasets/Oncretmogene2_0413/contributors.rtf @@ -0,0 +1 @@ +

    Eldon E. Geisert, Lu Lu, XiangDi Wang, Justin P. Templeton and Robert W. Williams.

    diff --git a/general/datasets/Oncretmogene2_0413/experiment-type.rtf b/general/datasets/Oncretmogene2_0413/experiment-type.rtf new file mode 100644 index 0000000..2d74654 --- /dev/null +++ b/general/datasets/Oncretmogene2_0413/experiment-type.rtf @@ -0,0 +1,3 @@ +Dissecting and preparing eyes for RNA extraction + +RNA was extracted from retinas using the RNeasy Mini Kit (Qiagen) and the Quiagen Qiacube. For RNA amplification and cDNA preparation we used the Ambion® WT Expression Kit (Life Technologies Cat#: 4411974). For Fragmentation and Labeling the WT Terminal Labeling Kit from Affymetrix (Cat#: 900671) was used. \ No newline at end of file diff --git a/general/datasets/Oncretmogene2_0413/platform.rtf b/general/datasets/Oncretmogene2_0413/platform.rtf new file mode 100644 index 0000000..19fc38c --- /dev/null +++ b/general/datasets/Oncretmogene2_0413/platform.rtf @@ -0,0 +1 @@ +

    The Affymetrics GeneChip&reg; Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. Nonetheless, there is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs.

    diff --git a/general/datasets/Oncretmogene2_0413/processing.rtf b/general/datasets/Oncretmogene2_0413/processing.rtf new file mode 100644 index 0000000..a7b767e --- /dev/null +++ b/general/datasets/Oncretmogene2_0413/processing.rtf @@ -0,0 +1 @@ +

    Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication.

    diff --git a/general/datasets/Oncretmogene2_0413/summary.rtf b/general/datasets/Oncretmogene2_0413/summary.rtf new file mode 100644 index 0000000..96a87e5 --- /dev/null +++ b/general/datasets/Oncretmogene2_0413/summary.rtf @@ -0,0 +1 @@ +

    The DoD dataset was constructed using the Affymetrics GeneChip® Mouse Gene 2.0 ST microarrays. This relatively recent microarray was specifically designed to represent the whole-transcriptome. It includes probes to measure mRNA, long intergenic non-coding RNAs and microRNAs. Researchers have identified many transcripts in the mouse genome that do not have protein coding potential. Most of these non-coding RNAs have little functional annotation. There is considerable evidence that these non-coding RNAs play important roles in development of the retina and the progression of disease. The coverage in the new ST 2.0 array includes over 28,000 coding transcripts and over 7,000 non-coding transcripts. There are also probes on the array covering 590 microRNAs. This is RMA expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 3.77 to 14.62, a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale.

    diff --git a/general/datasets/Oncretmogene2_0413/tissue.rtf b/general/datasets/Oncretmogene2_0413/tissue.rtf new file mode 100644 index 0000000..056d7eb --- /dev/null +++ b/general/datasets/Oncretmogene2_0413/tissue.rtf @@ -0,0 +1 @@ +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RiboLock (RiboLock: Thermo Scientific RiboLock RNase #EO0381 40U/&micro;l 2500U) at room temperature. Individual retinas from the mouse were stored in each tube. RNA was isolated using a Qiacube with the resultant RIN scores ranging from 8.5 to 10.0.

    diff --git a/general/datasets/Oxukhs_ilmhipp_ri0510/cases.rtf b/general/datasets/Oxukhs_ilmhipp_ri0510/cases.rtf new file mode 100644 index 0000000..d216153 --- /dev/null +++ b/general/datasets/Oxukhs_ilmhipp_ri0510/cases.rtf @@ -0,0 +1 @@ +

    HS Northport stock (see https://www.nature.com/articles/ng1840) descended from eight inbred progenitor strains (A/J, AKR/J, BALBc/J, CBA/J, C3H/HeJ, C57BL/6J, DBA/2J and LP/J). For details, please see Demarest, K., Koyner, J., McCaughran, J. Jr., Cipp, L. & Hitzemann, R. Further characterization and high-resolution mapping of quantitative trait loci for ethanol-induced locomotor activity. Behav. Genet. 31, 79–91 (2001).

    diff --git a/general/datasets/Oxukhs_ilmhipp_ri0510/citation.rtf b/general/datasets/Oxukhs_ilmhipp_ri0510/citation.rtf new file mode 100644 index 0000000..4b2926f --- /dev/null +++ b/general/datasets/Oxukhs_ilmhipp_ri0510/citation.rtf @@ -0,0 +1,5 @@ +

    Key Citation: Huang GJ, Shifman S, Valdar W, Johannesson M, Yalcin B, Taylor MS, Taylor JM, Mott R, Flint J (2009) High resolution mapping of expression QTLs in heterogeneous stock mice in multiple tissues. Genome Res 19:1133-1140 PubMed 19376938

    + +

    Contact: Richard Mott. Email: Richard.Mott at well.ox.ac.uk University of Oxford

    + +

    Data entered by A. Centeno on May 20, 2010

    diff --git a/general/datasets/Oxukhs_ilmhipp_ri0510/experiment-type.rtf b/general/datasets/Oxukhs_ilmhipp_ri0510/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Oxukhs_ilmhipp_ri0510/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Oxukhs_ilmhipp_ri0510/platform.rtf b/general/datasets/Oxukhs_ilmhipp_ri0510/platform.rtf new file mode 100644 index 0000000..c8db2c0 --- /dev/null +++ b/general/datasets/Oxukhs_ilmhipp_ri0510/platform.rtf @@ -0,0 +1 @@ +

    Array design: A-MEXP-533 - Illumina Mouse-6 v1 Expression BeadChip

    diff --git a/general/datasets/Oxukhs_ilmhipp_ri0510/summary.rtf b/general/datasets/Oxukhs_ilmhipp_ri0510/summary.rtf new file mode 100644 index 0000000..5b53e35 --- /dev/null +++ b/general/datasets/Oxukhs_ilmhipp_ri0510/summary.rtf @@ -0,0 +1 @@ +

    A proportion of the genetic variants underlying complex phenotypes do so through their effects on gene expression, so an important challenge in complex trait analysis is to discover the genetic basis for the variation in transcript abundance. So far, the potential of mapping both quantitative trait loci (QTLs) and expression quantitative trait loci (eQTLs) in rodents has been limited by the low mapping resolution inherent in crosses between inbred strains. We provide a megabase resolution map of thousands of eQTLs in hippocampus, lung, and liver samples from heterogeneous stock (HS) mice in which 843 QTLs have also been mapped at megabase resolution. We exploit dense mouse SNP data to show that artifacts due to allele-specific hybridization occur in _30% of the cis-acting eQTLs and, by comparison with exon expression data, we show that alternative splicing of the 3_ end of the genes accounts for <1% of cis-acting eQTLs. Approximately one third of cis-acting eQTLs and one half of trans-acting eQTLs are tissue specific. We have created an important systems biology resource for the genetic analysis of complex traits in a key model organism.

    diff --git a/general/datasets/Oxukhs_ilmliver_ri0510/cases.rtf b/general/datasets/Oxukhs_ilmliver_ri0510/cases.rtf new file mode 100644 index 0000000..fcc2f2d --- /dev/null +++ b/general/datasets/Oxukhs_ilmliver_ri0510/cases.rtf @@ -0,0 +1 @@ +

    HS Northport stock (see https://www.nature.com/articles/ng1840) descended from eight inbred progenitor strains (A/J, AKR/J, BALBc/J, CBA/J, C3H/HeJ, C57BL/6J, DBA/2J and LP/J). For details, please see Demarest, K., Koyner, J., McCaughran, J. Jr., Cipp, L. & Hitzemann, R. Further characterization and high-resolution mapping of quantitative trait loci for ethanol-induced locomotor activityBehav. Genet.31, 79–91 (2001).

    diff --git a/general/datasets/Oxukhs_ilmliver_ri0510/citation.rtf b/general/datasets/Oxukhs_ilmliver_ri0510/citation.rtf new file mode 100644 index 0000000..82113fe --- /dev/null +++ b/general/datasets/Oxukhs_ilmliver_ri0510/citation.rtf @@ -0,0 +1,5 @@ +

    Citations: High resolution mapping of expression QTLs in heterogeneous stock mice in multiple tissues. Huang GJ, Shifman S, Valdar W, Johannesson M, Yalcin B, Taylor MS, Taylor JM, Mott R, Flint J. Genome Res 19(6):1133-40 (Genome Res), PubMed 19376938

    + +

    Contact: Richard Mott. Email: Richard.Mott at well.ox.ac.uk University of Oxford

    + +

    Data entered by A. Centeno on May 20, 2010

    diff --git a/general/datasets/Oxukhs_ilmliver_ri0510/experiment-type.rtf b/general/datasets/Oxukhs_ilmliver_ri0510/experiment-type.rtf new file mode 100644 index 0000000..5fac908 --- /dev/null +++ b/general/datasets/Oxukhs_ilmliver_ri0510/experiment-type.rtf @@ -0,0 +1 @@ +See http://genome.cshlp.org/content/19/6/1133.long \ No newline at end of file diff --git a/general/datasets/Oxukhs_ilmliver_ri0510/platform.rtf b/general/datasets/Oxukhs_ilmliver_ri0510/platform.rtf new file mode 100644 index 0000000..add8a75 --- /dev/null +++ b/general/datasets/Oxukhs_ilmliver_ri0510/platform.rtf @@ -0,0 +1 @@ +

    Organism: Mus musculus. Tissue: Liver. Array design: A-MEXP-533 - Illumina Mouse-6 v1 Expression BeadChip

    diff --git a/general/datasets/Oxukhs_ilmliver_ri0510/summary.rtf b/general/datasets/Oxukhs_ilmliver_ri0510/summary.rtf new file mode 100644 index 0000000..5b53e35 --- /dev/null +++ b/general/datasets/Oxukhs_ilmliver_ri0510/summary.rtf @@ -0,0 +1 @@ +

    A proportion of the genetic variants underlying complex phenotypes do so through their effects on gene expression, so an important challenge in complex trait analysis is to discover the genetic basis for the variation in transcript abundance. So far, the potential of mapping both quantitative trait loci (QTLs) and expression quantitative trait loci (eQTLs) in rodents has been limited by the low mapping resolution inherent in crosses between inbred strains. We provide a megabase resolution map of thousands of eQTLs in hippocampus, lung, and liver samples from heterogeneous stock (HS) mice in which 843 QTLs have also been mapped at megabase resolution. We exploit dense mouse SNP data to show that artifacts due to allele-specific hybridization occur in _30% of the cis-acting eQTLs and, by comparison with exon expression data, we show that alternative splicing of the 3_ end of the genes accounts for <1% of cis-acting eQTLs. Approximately one third of cis-acting eQTLs and one half of trans-acting eQTLs are tissue specific. We have created an important systems biology resource for the genetic analysis of complex traits in a key model organism.

    diff --git a/general/datasets/Oxukhs_ilmlung_ri0510/cases.rtf b/general/datasets/Oxukhs_ilmlung_ri0510/cases.rtf new file mode 100644 index 0000000..fcc2f2d --- /dev/null +++ b/general/datasets/Oxukhs_ilmlung_ri0510/cases.rtf @@ -0,0 +1 @@ +

    HS Northport stock (see https://www.nature.com/articles/ng1840) descended from eight inbred progenitor strains (A/J, AKR/J, BALBc/J, CBA/J, C3H/HeJ, C57BL/6J, DBA/2J and LP/J). For details, please see Demarest, K., Koyner, J., McCaughran, J. Jr., Cipp, L. & Hitzemann, R. Further characterization and high-resolution mapping of quantitative trait loci for ethanol-induced locomotor activityBehav. Genet.31, 79–91 (2001).

    diff --git a/general/datasets/Oxukhs_ilmlung_ri0510/citation.rtf b/general/datasets/Oxukhs_ilmlung_ri0510/citation.rtf new file mode 100644 index 0000000..82113fe --- /dev/null +++ b/general/datasets/Oxukhs_ilmlung_ri0510/citation.rtf @@ -0,0 +1,5 @@ +

    Citations: High resolution mapping of expression QTLs in heterogeneous stock mice in multiple tissues. Huang GJ, Shifman S, Valdar W, Johannesson M, Yalcin B, Taylor MS, Taylor JM, Mott R, Flint J. Genome Res 19(6):1133-40 (Genome Res), PubMed 19376938

    + +

    Contact: Richard Mott. Email: Richard.Mott at well.ox.ac.uk University of Oxford

    + +

    Data entered by A. Centeno on May 20, 2010

    diff --git a/general/datasets/Oxukhs_ilmlung_ri0510/platform.rtf b/general/datasets/Oxukhs_ilmlung_ri0510/platform.rtf new file mode 100644 index 0000000..56e6161 --- /dev/null +++ b/general/datasets/Oxukhs_ilmlung_ri0510/platform.rtf @@ -0,0 +1 @@ +

    Organism: Mus musculus. Tissue: Lung. Array design: A-MEXP-533 - Illumina Mouse-6 v1 Expression BeadChip

    diff --git a/general/datasets/Oxukhs_ilmlung_ri0510/summary.rtf b/general/datasets/Oxukhs_ilmlung_ri0510/summary.rtf new file mode 100644 index 0000000..5b53e35 --- /dev/null +++ b/general/datasets/Oxukhs_ilmlung_ri0510/summary.rtf @@ -0,0 +1 @@ +

    A proportion of the genetic variants underlying complex phenotypes do so through their effects on gene expression, so an important challenge in complex trait analysis is to discover the genetic basis for the variation in transcript abundance. So far, the potential of mapping both quantitative trait loci (QTLs) and expression quantitative trait loci (eQTLs) in rodents has been limited by the low mapping resolution inherent in crosses between inbred strains. We provide a megabase resolution map of thousands of eQTLs in hippocampus, lung, and liver samples from heterogeneous stock (HS) mice in which 843 QTLs have also been mapped at megabase resolution. We exploit dense mouse SNP data to show that artifacts due to allele-specific hybridization occur in _30% of the cis-acting eQTLs and, by comparison with exon expression data, we show that alternative splicing of the 3_ end of the genes accounts for <1% of cis-acting eQTLs. Approximately one third of cis-acting eQTLs and one half of trans-acting eQTLs are tissue specific. We have created an important systems biology resource for the genetic analysis of complex traits in a key model organism.

    diff --git a/general/datasets/PGenRatBrn_rna_0520/acknowledgment.rtf b/general/datasets/PGenRatBrn_rna_0520/acknowledgment.rtf deleted file mode 100644 index b5348f4..0000000 --- a/general/datasets/PGenRatBrn_rna_0520/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Data were generated with funds provided by NIAAA, NIDA, the Banbury Fund, Czech Academy of Sciences, and The National BioResource Project-Rat. Dr. Michal Pravenec of the Czech Academy of Sciences kindly provided the tissues from the HXB/BXH recombinant inbred panel. Dr. Masahide Asano of the University of Kyoto kindly provided tissues from the F344/Stm and LE/Stm strains. Dr. Melinda Dwinell will be providing tissues for many of the remaining HRDP strains. We would like to thank Spencer Mahaffey, Jennifer Mahaffey, Yinni Yu, Seija Tililanen, Lauren Vanderlinden, and Harry Smith for help with extracting RNA, generating libraries, and processing data. We would also like to acknowledge the support of UNLV National Supercomputing Institute (UNLV NSI) by providing access to supercomputing resources to support analysis of sequencing data.

    diff --git a/general/datasets/PGenRatBrn_rna_0520/cases.rtf b/general/datasets/PGenRatBrn_rna_0520/cases.rtf deleted file mode 100644 index 022c897..0000000 --- a/general/datasets/PGenRatBrn_rna_0520/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

    For this data set, a subset of the Hybrid Rat Diversity Panel (HRDP) was used that included 30 HXB/BXH recombinant inbred strains and 15 classic inbred strains for a total of 45 inbred strains. Male rats at the age of 90 days were used for this study. The animals from the 30 RI strains and the 2 progenitor strains of the HXB/BXH RI panel (SHR/OlaIpcv and BN-Lx/Cub) were bred and maintained at the Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. The 11 classic inbred strains were purchased from US Vendors (either Charles River or Envigo) and shipped to the University of Colorado Anschutz Medical Campus where they were acclimated prior to sacrifice. The remaining 2 classic inbred strains are the progenitor strains of the LEXF/FXLE RI panel and were bred and maintained at the National BioResource Project for the Rat in Japan. In Colorado, rats were sacrificed by rapid CO2 exposure. In the Czech Republic, rats were sacrificed by cervical dislocation. All experiments involving the harvesting of whole brain of the HXB/BXH RI panel and two progenitor strains were performed in accordance with the Animal Protection Law of the Czech Republic and were approved by the Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague. All experiments involving the harvesting of whole brain of the 11 classic inbred strains maintained at the University of Colorado Anschutz Medical Campus were approved by the Institutional Animal Care and Use Committee of the University of Colorado Anschutz Medical Campus and were performed in accordance with the guidelines in the NIH Guide for the Care and Use of Laboratory Animals. Animal experiments involving the F344/Stm and LE/Stm strains were conducted in accordance with the Fundamental Guidelines for Proper Conduct of Animal Experiment and Related Activities in Academic Research Institutions under the jurisdiction of the Ministry of Education, Culture, Sports, Science and Technology of Japan, and were approved by the Committee on Animal Experimentation at Kyoto University, Japan.

    diff --git a/general/datasets/PGenRatBrn_rna_0520/experiment-design.rtf b/general/datasets/PGenRatBrn_rna_0520/experiment-design.rtf deleted file mode 100644 index 3ff2342..0000000 --- a/general/datasets/PGenRatBrn_rna_0520/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Predisposition database. RNA expression levels were measured on rats that had not been exposed to any type of intervention (e.g., alcohol, drugs, stress).

    diff --git a/general/datasets/PGenRatBrn_rna_0520/platform.rtf b/general/datasets/PGenRatBrn_rna_0520/platform.rtf deleted file mode 100644 index da38d8b..0000000 --- a/general/datasets/PGenRatBrn_rna_0520/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Total RNA was isolated from 3 biological replicates of each of the HRDP v5 strains using QIAzol (Qiagen, Valencia, CA, USA).The RNAeasy Plus Universal Midi Kit (Qiagen) was used to separate long (>200 nt) and short (<200 nt, miRNA-enriched) fractions. The long RNA fraction was purified using the RNeasy Mini Kit (Qiagen). Four microliters of a 1:100 dilution of either ERCC Spike‐In Mix 1 or Mix 2 (Thermo Fisher Scientific, Wilmington, DE) was added to each extracted RNA sample. Sequencing libraries for the long RNA fraction were constructed using the Illumina TruSeq Stranded Total RNA Sample Preparation Kit with Ribo-Zero ribosomal RNA reduction chemistry (Illumina) in accordance with the manufacturer’s instructions. An Agilent Technologies Bioanalyzer 2100 was utilized to assess sequencing library quality. A loading control was included in each sequencing batch. The loading control was a library generated from an SHR animal. Samples were sequenced (depending on batch either 2X100 or 2x150 paired end reads) on an Ilumina sequencer.

    diff --git a/general/datasets/PGenRatBrn_rna_0520/processing.rtf b/general/datasets/PGenRatBrn_rna_0520/processing.rtf deleted file mode 100644 index 4c9da95..0000000 --- a/general/datasets/PGenRatBrn_rna_0520/processing.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Prior to alignment, reads were demultiplexed and read fragments were trimmed for adaptors and for quality using Cutadapt (version 1.9.1;(Martin, 2011)). Reads were eliminated if the trimmed length of either read fragment was <20 nucleotides. Next, bowtie2(v 2.2.6) (4) was used to align reads to ribosomal RNA, and the unmapped reads were retained. These will be referred to as “cleaned” reads. The RNA-Seq Expectation Maximization (RSEM v1.2.31) algorithm (Li and Dewey 2011) was used to estimate the number of aligned reads for individual Ensembl transcripts (version 96). The number of reads aligned to each Ensembl gene was calculated as the sum of the number of reads aligned to individual Ensembl transcripts annotated to that gene.

    - -

    Prior to normalization and transformation, a detection above background filter was applied where we required a gene to have at least 2/3 of the samples have 1 count or more to be considered expressed above background. All genes that did not pass this detection above background criteria were removed. Count values were normalized using RUVg (PMID: 25150836) and transformed using the regularized log function (PMID: 25516281).

    diff --git a/general/datasets/PGenRatBrn_rna_0520/specifics.rtf b/general/datasets/PGenRatBrn_rna_0520/specifics.rtf deleted file mode 100644 index f98e245..0000000 --- a/general/datasets/PGenRatBrn_rna_0520/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Non zeros included. \ No newline at end of file diff --git a/general/datasets/PGenRatBrn_rna_0520/summary.rtf b/general/datasets/PGenRatBrn_rna_0520/summary.rtf deleted file mode 100644 index a70b10f..0000000 --- a/general/datasets/PGenRatBrn_rna_0520/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This data set was generated as part of the RGAP project funded by NIAAA (R24 AA013162; MPI – Tabakoff, Hoffman, Saba) at the University of Colorado Anschutz Medical Campus. The processing of the RNA-Seq data was also supported by the NIDA Center of Excellence in Omics, Systems Genetics, and the Addictome (P30 DA044223; MPI – Williams, Saba). These data represent the RNA expression levels of Ensembl genes in brain. Ribosomal RNA depleted total RNA was used to generate paired end libraries. Levels were estimated in 45 (version 5) strains of the Hybrid Rat Diversity Panel (HRDP) including 30 HXB/BXH recombinant inbred strain and 15 classic inbred strains. Two to three biological replicates per strain were included in the strain-level means. Male rats were used for all analyses.

    diff --git a/general/datasets/PGenRatBrn_rna_0520/tissue.rtf b/general/datasets/PGenRatBrn_rna_0520/tissue.rtf deleted file mode 100644 index 732bdc1..0000000 --- a/general/datasets/PGenRatBrn_rna_0520/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Upon sacrifice, brains (including cerebellum and brain stem) were rapidly removed, sectioned sagittally into two hemispheres, and stored in liquid nitrogen. Each hemisphere was stored separately at -80⁰C until used for RNA extraction. Tissues from the Czech Republic and Japan were shipped on dry ice to the University of Colorado Anschutz Medical Campus for RNA extraction and cDNA library preparation

    diff --git a/general/datasets/PGenRatBrn_rna_z_0520/acknowledgment.rtf b/general/datasets/PGenRatBrn_rna_z_0520/acknowledgment.rtf deleted file mode 100644 index b5348f4..0000000 --- a/general/datasets/PGenRatBrn_rna_z_0520/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Data were generated with funds provided by NIAAA, NIDA, the Banbury Fund, Czech Academy of Sciences, and The National BioResource Project-Rat. Dr. Michal Pravenec of the Czech Academy of Sciences kindly provided the tissues from the HXB/BXH recombinant inbred panel. Dr. Masahide Asano of the University of Kyoto kindly provided tissues from the F344/Stm and LE/Stm strains. Dr. Melinda Dwinell will be providing tissues for many of the remaining HRDP strains. We would like to thank Spencer Mahaffey, Jennifer Mahaffey, Yinni Yu, Seija Tililanen, Lauren Vanderlinden, and Harry Smith for help with extracting RNA, generating libraries, and processing data. We would also like to acknowledge the support of UNLV National Supercomputing Institute (UNLV NSI) by providing access to supercomputing resources to support analysis of sequencing data.

    diff --git a/general/datasets/PGenRatBrn_rna_z_0520/cases.rtf b/general/datasets/PGenRatBrn_rna_z_0520/cases.rtf deleted file mode 100644 index 022c897..0000000 --- a/general/datasets/PGenRatBrn_rna_z_0520/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

    For this data set, a subset of the Hybrid Rat Diversity Panel (HRDP) was used that included 30 HXB/BXH recombinant inbred strains and 15 classic inbred strains for a total of 45 inbred strains. Male rats at the age of 90 days were used for this study. The animals from the 30 RI strains and the 2 progenitor strains of the HXB/BXH RI panel (SHR/OlaIpcv and BN-Lx/Cub) were bred and maintained at the Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. The 11 classic inbred strains were purchased from US Vendors (either Charles River or Envigo) and shipped to the University of Colorado Anschutz Medical Campus where they were acclimated prior to sacrifice. The remaining 2 classic inbred strains are the progenitor strains of the LEXF/FXLE RI panel and were bred and maintained at the National BioResource Project for the Rat in Japan. In Colorado, rats were sacrificed by rapid CO2 exposure. In the Czech Republic, rats were sacrificed by cervical dislocation. All experiments involving the harvesting of whole brain of the HXB/BXH RI panel and two progenitor strains were performed in accordance with the Animal Protection Law of the Czech Republic and were approved by the Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague. All experiments involving the harvesting of whole brain of the 11 classic inbred strains maintained at the University of Colorado Anschutz Medical Campus were approved by the Institutional Animal Care and Use Committee of the University of Colorado Anschutz Medical Campus and were performed in accordance with the guidelines in the NIH Guide for the Care and Use of Laboratory Animals. Animal experiments involving the F344/Stm and LE/Stm strains were conducted in accordance with the Fundamental Guidelines for Proper Conduct of Animal Experiment and Related Activities in Academic Research Institutions under the jurisdiction of the Ministry of Education, Culture, Sports, Science and Technology of Japan, and were approved by the Committee on Animal Experimentation at Kyoto University, Japan.

    diff --git a/general/datasets/PGenRatBrn_rna_z_0520/experiment-design.rtf b/general/datasets/PGenRatBrn_rna_z_0520/experiment-design.rtf deleted file mode 100644 index 3ff2342..0000000 --- a/general/datasets/PGenRatBrn_rna_z_0520/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Predisposition database. RNA expression levels were measured on rats that had not been exposed to any type of intervention (e.g., alcohol, drugs, stress).

    diff --git a/general/datasets/PGenRatBrn_rna_z_0520/platform.rtf b/general/datasets/PGenRatBrn_rna_z_0520/platform.rtf deleted file mode 100644 index da38d8b..0000000 --- a/general/datasets/PGenRatBrn_rna_z_0520/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Total RNA was isolated from 3 biological replicates of each of the HRDP v5 strains using QIAzol (Qiagen, Valencia, CA, USA).The RNAeasy Plus Universal Midi Kit (Qiagen) was used to separate long (>200 nt) and short (<200 nt, miRNA-enriched) fractions. The long RNA fraction was purified using the RNeasy Mini Kit (Qiagen). Four microliters of a 1:100 dilution of either ERCC Spike‐In Mix 1 or Mix 2 (Thermo Fisher Scientific, Wilmington, DE) was added to each extracted RNA sample. Sequencing libraries for the long RNA fraction were constructed using the Illumina TruSeq Stranded Total RNA Sample Preparation Kit with Ribo-Zero ribosomal RNA reduction chemistry (Illumina) in accordance with the manufacturer’s instructions. An Agilent Technologies Bioanalyzer 2100 was utilized to assess sequencing library quality. A loading control was included in each sequencing batch. The loading control was a library generated from an SHR animal. Samples were sequenced (depending on batch either 2X100 or 2x150 paired end reads) on an Ilumina sequencer.

    diff --git a/general/datasets/PGenRatBrn_rna_z_0520/processing.rtf b/general/datasets/PGenRatBrn_rna_z_0520/processing.rtf deleted file mode 100644 index 4c9da95..0000000 --- a/general/datasets/PGenRatBrn_rna_z_0520/processing.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Prior to alignment, reads were demultiplexed and read fragments were trimmed for adaptors and for quality using Cutadapt (version 1.9.1;(Martin, 2011)). Reads were eliminated if the trimmed length of either read fragment was <20 nucleotides. Next, bowtie2(v 2.2.6) (4) was used to align reads to ribosomal RNA, and the unmapped reads were retained. These will be referred to as “cleaned” reads. The RNA-Seq Expectation Maximization (RSEM v1.2.31) algorithm (Li and Dewey 2011) was used to estimate the number of aligned reads for individual Ensembl transcripts (version 96). The number of reads aligned to each Ensembl gene was calculated as the sum of the number of reads aligned to individual Ensembl transcripts annotated to that gene.

    - -

    Prior to normalization and transformation, a detection above background filter was applied where we required a gene to have at least 2/3 of the samples have 1 count or more to be considered expressed above background. All genes that did not pass this detection above background criteria were removed. Count values were normalized using RUVg (PMID: 25150836) and transformed using the regularized log function (PMID: 25516281).

    diff --git a/general/datasets/PGenRatBrn_rna_z_0520/specifics.rtf b/general/datasets/PGenRatBrn_rna_z_0520/specifics.rtf deleted file mode 100644 index edb176d..0000000 --- a/general/datasets/PGenRatBrn_rna_z_0520/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -zeros included \ No newline at end of file diff --git a/general/datasets/PGenRatBrn_rna_z_0520/summary.rtf b/general/datasets/PGenRatBrn_rna_z_0520/summary.rtf deleted file mode 100644 index a70b10f..0000000 --- a/general/datasets/PGenRatBrn_rna_z_0520/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This data set was generated as part of the RGAP project funded by NIAAA (R24 AA013162; MPI – Tabakoff, Hoffman, Saba) at the University of Colorado Anschutz Medical Campus. The processing of the RNA-Seq data was also supported by the NIDA Center of Excellence in Omics, Systems Genetics, and the Addictome (P30 DA044223; MPI – Williams, Saba). These data represent the RNA expression levels of Ensembl genes in brain. Ribosomal RNA depleted total RNA was used to generate paired end libraries. Levels were estimated in 45 (version 5) strains of the Hybrid Rat Diversity Panel (HRDP) including 30 HXB/BXH recombinant inbred strain and 15 classic inbred strains. Two to three biological replicates per strain were included in the strain-level means. Male rats were used for all analyses.

    diff --git a/general/datasets/PGenRatBrn_rna_z_0520/tissue.rtf b/general/datasets/PGenRatBrn_rna_z_0520/tissue.rtf deleted file mode 100644 index 732bdc1..0000000 --- a/general/datasets/PGenRatBrn_rna_z_0520/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Upon sacrifice, brains (including cerebellum and brain stem) were rapidly removed, sectioned sagittally into two hemispheres, and stored in liquid nitrogen. Each hemisphere was stored separately at -80⁰C until used for RNA extraction. Tissues from the Czech Republic and Japan were shipped on dry ice to the University of Colorado Anschutz Medical Campus for RNA extraction and cDNA library preparation

    diff --git a/general/datasets/PGenRatLiv_rna_0520/acknowledgment.rtf b/general/datasets/PGenRatLiv_rna_0520/acknowledgment.rtf deleted file mode 100644 index b5348f4..0000000 --- a/general/datasets/PGenRatLiv_rna_0520/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Data were generated with funds provided by NIAAA, NIDA, the Banbury Fund, Czech Academy of Sciences, and The National BioResource Project-Rat. Dr. Michal Pravenec of the Czech Academy of Sciences kindly provided the tissues from the HXB/BXH recombinant inbred panel. Dr. Masahide Asano of the University of Kyoto kindly provided tissues from the F344/Stm and LE/Stm strains. Dr. Melinda Dwinell will be providing tissues for many of the remaining HRDP strains. We would like to thank Spencer Mahaffey, Jennifer Mahaffey, Yinni Yu, Seija Tililanen, Lauren Vanderlinden, and Harry Smith for help with extracting RNA, generating libraries, and processing data. We would also like to acknowledge the support of UNLV National Supercomputing Institute (UNLV NSI) by providing access to supercomputing resources to support analysis of sequencing data.

    diff --git a/general/datasets/PGenRatLiv_rna_0520/cases.rtf b/general/datasets/PGenRatLiv_rna_0520/cases.rtf deleted file mode 100644 index 69ff672..0000000 --- a/general/datasets/PGenRatLiv_rna_0520/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

    For this data set, a subset of the Hybrid Rat Diversity Panel (HRDP) was used that included 30 HXB/BXH recombinant inbred strains and 15 classic inbred strains for a total of 45 inbred strains. Male rats at the age of 90 days were used for this study. The animals from the 30 RI strains and the 2 progenitor strains of the HXB/BXH RI panel (SHR/OlaIpcv and BN-Lx/Cub) were bred and maintained at the Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. The 11 classic inbred strains were purchased from US Vendors (either Charles River or Envigo) and shipped to the University of Colorado Anschutz Medical Campus where they were acclimated prior to sacrifice. The remaining 2 classic inbred strains are the progenitor strains of the LEXF/FXLE RI panel and were bred and maintained at the National BioResource Project for the Rat in Japan. In Colorado, rats were sacrificed by rapid CO2 exposure. In the Czech Republic, rats were sacrificed by cervical dislocation. All experiments involving the HXB/BXH RI panel and two progenitor strains were performed in accordance with the Animal Protection Law of the Czech Republic and were approved by the Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague. All experiments involving the 11 classic inbred strains maintained at the University of Colorado Anschutz Medical Campus were approved by the Institutional Animal Care and Use Committee of the University of Colorado Anschutz Medical Campus and were performed in accordance with the guidelines in the NIH Guide for the Care and Use of Laboratory Animals. Animal experiments involving the F344/Stm and LE/Stm strains were conducted in accordance with the Fundamental Guidelines for Proper Conduct of Animal Experiment and Related Activities in Academic Research Institutions under the jurisdiction of the Ministry of Education, Culture, Sports, Science and Technology of Japan, and were approved by the Committee on Animal Experimentation at Kyoto University, Japan.

    diff --git a/general/datasets/PGenRatLiv_rna_0520/experiment-design.rtf b/general/datasets/PGenRatLiv_rna_0520/experiment-design.rtf deleted file mode 100644 index 3ff2342..0000000 --- a/general/datasets/PGenRatLiv_rna_0520/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Predisposition database. RNA expression levels were measured on rats that had not been exposed to any type of intervention (e.g., alcohol, drugs, stress).

    diff --git a/general/datasets/PGenRatLiv_rna_0520/platform.rtf b/general/datasets/PGenRatLiv_rna_0520/platform.rtf deleted file mode 100644 index da38d8b..0000000 --- a/general/datasets/PGenRatLiv_rna_0520/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Total RNA was isolated from 3 biological replicates of each of the HRDP v5 strains using QIAzol (Qiagen, Valencia, CA, USA).The RNAeasy Plus Universal Midi Kit (Qiagen) was used to separate long (>200 nt) and short (<200 nt, miRNA-enriched) fractions. The long RNA fraction was purified using the RNeasy Mini Kit (Qiagen). Four microliters of a 1:100 dilution of either ERCC Spike‐In Mix 1 or Mix 2 (Thermo Fisher Scientific, Wilmington, DE) was added to each extracted RNA sample. Sequencing libraries for the long RNA fraction were constructed using the Illumina TruSeq Stranded Total RNA Sample Preparation Kit with Ribo-Zero ribosomal RNA reduction chemistry (Illumina) in accordance with the manufacturer’s instructions. An Agilent Technologies Bioanalyzer 2100 was utilized to assess sequencing library quality. A loading control was included in each sequencing batch. The loading control was a library generated from an SHR animal. Samples were sequenced (depending on batch either 2X100 or 2x150 paired end reads) on an Ilumina sequencer.

    diff --git a/general/datasets/PGenRatLiv_rna_0520/processing.rtf b/general/datasets/PGenRatLiv_rna_0520/processing.rtf deleted file mode 100644 index 4c9da95..0000000 --- a/general/datasets/PGenRatLiv_rna_0520/processing.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Prior to alignment, reads were demultiplexed and read fragments were trimmed for adaptors and for quality using Cutadapt (version 1.9.1;(Martin, 2011)). Reads were eliminated if the trimmed length of either read fragment was <20 nucleotides. Next, bowtie2(v 2.2.6) (4) was used to align reads to ribosomal RNA, and the unmapped reads were retained. These will be referred to as “cleaned” reads. The RNA-Seq Expectation Maximization (RSEM v1.2.31) algorithm (Li and Dewey 2011) was used to estimate the number of aligned reads for individual Ensembl transcripts (version 96). The number of reads aligned to each Ensembl gene was calculated as the sum of the number of reads aligned to individual Ensembl transcripts annotated to that gene.

    - -

    Prior to normalization and transformation, a detection above background filter was applied where we required a gene to have at least 2/3 of the samples have 1 count or more to be considered expressed above background. All genes that did not pass this detection above background criteria were removed. Count values were normalized using RUVg (PMID: 25150836) and transformed using the regularized log function (PMID: 25516281).

    diff --git a/general/datasets/PGenRatLiv_rna_0520/specifics.rtf b/general/datasets/PGenRatLiv_rna_0520/specifics.rtf deleted file mode 100644 index 7169dc3..0000000 --- a/general/datasets/PGenRatLiv_rna_0520/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -zeros no included \ No newline at end of file diff --git a/general/datasets/PGenRatLiv_rna_0520/summary.rtf b/general/datasets/PGenRatLiv_rna_0520/summary.rtf deleted file mode 100644 index 3ced7f9..0000000 --- a/general/datasets/PGenRatLiv_rna_0520/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This data set was generated as part of the RGAP project funded by NIAAA (R24 AA013162; MPI – Tabakoff, Hoffman, Saba) at the University of Colorado Anschutz Medical Campus. The processing of the RNA-Seq data was also supported by the NIDA Center of Excellence in Omics, Systems Genetics, and the Addictome (P30 DA044223; MPI – Williams, Saba). These data represent the RNA expression levels of Ensembl genes in liver. Ribosomal RNA depleted total RNA was used to generate paired end libraries. Levels were estimated in 45 (version 5) strains of the Hybrid Rat Diversity Panel (HRDP) including 30 HXB/BXH recombinant inbred strain and 15 classic inbred strains. Two to three biological replicates per strain were included in the strain-level means. Male rats were used for all analyses.

    diff --git a/general/datasets/PGenRatLiv_rna_0520/tissue.rtf b/general/datasets/PGenRatLiv_rna_0520/tissue.rtf deleted file mode 100644 index 117c7a1..0000000 --- a/general/datasets/PGenRatLiv_rna_0520/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Upon sacrifice, livers were rapidly removed and stored in liquid nitrogen. Livers were stored at -80⁰C until used for RNA extraction. Tissues from the Czech Republic and Japan were shipped on dry ice to the University of Colorado Anschutz Medical Campus for RNA extraction and cDNA library preparation

    diff --git a/general/datasets/PGenRatLiv_rna_z_0520/acknowledgment.rtf b/general/datasets/PGenRatLiv_rna_z_0520/acknowledgment.rtf deleted file mode 100644 index b5348f4..0000000 --- a/general/datasets/PGenRatLiv_rna_z_0520/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Data were generated with funds provided by NIAAA, NIDA, the Banbury Fund, Czech Academy of Sciences, and The National BioResource Project-Rat. Dr. Michal Pravenec of the Czech Academy of Sciences kindly provided the tissues from the HXB/BXH recombinant inbred panel. Dr. Masahide Asano of the University of Kyoto kindly provided tissues from the F344/Stm and LE/Stm strains. Dr. Melinda Dwinell will be providing tissues for many of the remaining HRDP strains. We would like to thank Spencer Mahaffey, Jennifer Mahaffey, Yinni Yu, Seija Tililanen, Lauren Vanderlinden, and Harry Smith for help with extracting RNA, generating libraries, and processing data. We would also like to acknowledge the support of UNLV National Supercomputing Institute (UNLV NSI) by providing access to supercomputing resources to support analysis of sequencing data.

    diff --git a/general/datasets/PGenRatLiv_rna_z_0520/cases.rtf b/general/datasets/PGenRatLiv_rna_z_0520/cases.rtf deleted file mode 100644 index 69ff672..0000000 --- a/general/datasets/PGenRatLiv_rna_z_0520/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

    For this data set, a subset of the Hybrid Rat Diversity Panel (HRDP) was used that included 30 HXB/BXH recombinant inbred strains and 15 classic inbred strains for a total of 45 inbred strains. Male rats at the age of 90 days were used for this study. The animals from the 30 RI strains and the 2 progenitor strains of the HXB/BXH RI panel (SHR/OlaIpcv and BN-Lx/Cub) were bred and maintained at the Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. The 11 classic inbred strains were purchased from US Vendors (either Charles River or Envigo) and shipped to the University of Colorado Anschutz Medical Campus where they were acclimated prior to sacrifice. The remaining 2 classic inbred strains are the progenitor strains of the LEXF/FXLE RI panel and were bred and maintained at the National BioResource Project for the Rat in Japan. In Colorado, rats were sacrificed by rapid CO2 exposure. In the Czech Republic, rats were sacrificed by cervical dislocation. All experiments involving the HXB/BXH RI panel and two progenitor strains were performed in accordance with the Animal Protection Law of the Czech Republic and were approved by the Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague. All experiments involving the 11 classic inbred strains maintained at the University of Colorado Anschutz Medical Campus were approved by the Institutional Animal Care and Use Committee of the University of Colorado Anschutz Medical Campus and were performed in accordance with the guidelines in the NIH Guide for the Care and Use of Laboratory Animals. Animal experiments involving the F344/Stm and LE/Stm strains were conducted in accordance with the Fundamental Guidelines for Proper Conduct of Animal Experiment and Related Activities in Academic Research Institutions under the jurisdiction of the Ministry of Education, Culture, Sports, Science and Technology of Japan, and were approved by the Committee on Animal Experimentation at Kyoto University, Japan.

    diff --git a/general/datasets/PGenRatLiv_rna_z_0520/experiment-design.rtf b/general/datasets/PGenRatLiv_rna_z_0520/experiment-design.rtf deleted file mode 100644 index 3ff2342..0000000 --- a/general/datasets/PGenRatLiv_rna_z_0520/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Predisposition database. RNA expression levels were measured on rats that had not been exposed to any type of intervention (e.g., alcohol, drugs, stress).

    diff --git a/general/datasets/PGenRatLiv_rna_z_0520/platform.rtf b/general/datasets/PGenRatLiv_rna_z_0520/platform.rtf deleted file mode 100644 index da38d8b..0000000 --- a/general/datasets/PGenRatLiv_rna_z_0520/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Total RNA was isolated from 3 biological replicates of each of the HRDP v5 strains using QIAzol (Qiagen, Valencia, CA, USA).The RNAeasy Plus Universal Midi Kit (Qiagen) was used to separate long (>200 nt) and short (<200 nt, miRNA-enriched) fractions. The long RNA fraction was purified using the RNeasy Mini Kit (Qiagen). Four microliters of a 1:100 dilution of either ERCC Spike‐In Mix 1 or Mix 2 (Thermo Fisher Scientific, Wilmington, DE) was added to each extracted RNA sample. Sequencing libraries for the long RNA fraction were constructed using the Illumina TruSeq Stranded Total RNA Sample Preparation Kit with Ribo-Zero ribosomal RNA reduction chemistry (Illumina) in accordance with the manufacturer’s instructions. An Agilent Technologies Bioanalyzer 2100 was utilized to assess sequencing library quality. A loading control was included in each sequencing batch. The loading control was a library generated from an SHR animal. Samples were sequenced (depending on batch either 2X100 or 2x150 paired end reads) on an Ilumina sequencer.

    diff --git a/general/datasets/PGenRatLiv_rna_z_0520/processing.rtf b/general/datasets/PGenRatLiv_rna_z_0520/processing.rtf deleted file mode 100644 index 4c9da95..0000000 --- a/general/datasets/PGenRatLiv_rna_z_0520/processing.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Prior to alignment, reads were demultiplexed and read fragments were trimmed for adaptors and for quality using Cutadapt (version 1.9.1;(Martin, 2011)). Reads were eliminated if the trimmed length of either read fragment was <20 nucleotides. Next, bowtie2(v 2.2.6) (4) was used to align reads to ribosomal RNA, and the unmapped reads were retained. These will be referred to as “cleaned” reads. The RNA-Seq Expectation Maximization (RSEM v1.2.31) algorithm (Li and Dewey 2011) was used to estimate the number of aligned reads for individual Ensembl transcripts (version 96). The number of reads aligned to each Ensembl gene was calculated as the sum of the number of reads aligned to individual Ensembl transcripts annotated to that gene.

    - -

    Prior to normalization and transformation, a detection above background filter was applied where we required a gene to have at least 2/3 of the samples have 1 count or more to be considered expressed above background. All genes that did not pass this detection above background criteria were removed. Count values were normalized using RUVg (PMID: 25150836) and transformed using the regularized log function (PMID: 25516281).

    diff --git a/general/datasets/PGenRatLiv_rna_z_0520/specifics.rtf b/general/datasets/PGenRatLiv_rna_z_0520/specifics.rtf deleted file mode 100644 index edb176d..0000000 --- a/general/datasets/PGenRatLiv_rna_z_0520/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -zeros included \ No newline at end of file diff --git a/general/datasets/PGenRatLiv_rna_z_0520/summary.rtf b/general/datasets/PGenRatLiv_rna_z_0520/summary.rtf deleted file mode 100644 index 3ced7f9..0000000 --- a/general/datasets/PGenRatLiv_rna_z_0520/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This data set was generated as part of the RGAP project funded by NIAAA (R24 AA013162; MPI – Tabakoff, Hoffman, Saba) at the University of Colorado Anschutz Medical Campus. The processing of the RNA-Seq data was also supported by the NIDA Center of Excellence in Omics, Systems Genetics, and the Addictome (P30 DA044223; MPI – Williams, Saba). These data represent the RNA expression levels of Ensembl genes in liver. Ribosomal RNA depleted total RNA was used to generate paired end libraries. Levels were estimated in 45 (version 5) strains of the Hybrid Rat Diversity Panel (HRDP) including 30 HXB/BXH recombinant inbred strain and 15 classic inbred strains. Two to three biological replicates per strain were included in the strain-level means. Male rats were used for all analyses.

    diff --git a/general/datasets/PGenRatLiv_rna_z_0520/tissue.rtf b/general/datasets/PGenRatLiv_rna_z_0520/tissue.rtf deleted file mode 100644 index 117c7a1..0000000 --- a/general/datasets/PGenRatLiv_rna_z_0520/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Upon sacrifice, livers were rapidly removed and stored in liquid nitrogen. Livers were stored at -80⁰C until used for RNA extraction. Tissues from the Czech Republic and Japan were shipped on dry ice to the University of Colorado Anschutz Medical Campus for RNA extraction and cDNA library preparation

    diff --git a/general/datasets/PSU_B6D2F2_0812/platform.rtf b/general/datasets/PSU_B6D2F2_0812/platform.rtf deleted file mode 100644 index 7b362a7..0000000 --- a/general/datasets/PSU_B6D2F2_0812/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Affymetrix Mouse Genome 430 2.0 Array. All probe sets represented on the GeneChip Mouse Expression Set 430 are included on the GeneChip Mouse Genome 430 2.0 Array. The sequences from which these probe sets were derived were selected from GenBank«, dbEST, and RefSeq. The sequence clusters were created from the UniGene database (Build 107, June 2002) and then refined by analysis and comparison with the publicly available draft assembly of the mouse genome from the Whitehead Institute for Genome Research (MGSC, April 2002).

    diff --git a/general/datasets/PSU_B6D2F2_0812/summary.rtf b/general/datasets/PSU_B6D2F2_0812/summary.rtf deleted file mode 100644 index f7a3b5d..0000000 --- a/general/datasets/PSU_B6D2F2_0812/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Summary of DatasetId 153, Name: PSU B6D2F2 Muscle Affy Mouse Genome 430 2.0 (Aug12)

    diff --git a/general/datasets/PSU_B6D2F2_M0812/platform.rtf b/general/datasets/PSU_B6D2F2_M0812/platform.rtf deleted file mode 100644 index 7b362a7..0000000 --- a/general/datasets/PSU_B6D2F2_M0812/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Affymetrix Mouse Genome 430 2.0 Array. All probe sets represented on the GeneChip Mouse Expression Set 430 are included on the GeneChip Mouse Genome 430 2.0 Array. The sequences from which these probe sets were derived were selected from GenBank«, dbEST, and RefSeq. The sequence clusters were created from the UniGene database (Build 107, June 2002) and then refined by analysis and comparison with the publicly available draft assembly of the mouse genome from the Whitehead Institute for Genome Research (MGSC, April 2002).

    diff --git a/general/datasets/PSU_B6D2F2_M0812/summary.rtf b/general/datasets/PSU_B6D2F2_M0812/summary.rtf deleted file mode 100644 index f7a3b5d..0000000 --- a/general/datasets/PSU_B6D2F2_M0812/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Summary of DatasetId 153, Name: PSU B6D2F2 Muscle Affy Mouse Genome 430 2.0 (Aug12)

    diff --git a/general/datasets/Pgenratbrn_rna_0520/acknowledgment.rtf b/general/datasets/Pgenratbrn_rna_0520/acknowledgment.rtf new file mode 100644 index 0000000..b5348f4 --- /dev/null +++ b/general/datasets/Pgenratbrn_rna_0520/acknowledgment.rtf @@ -0,0 +1 @@ +

    Data were generated with funds provided by NIAAA, NIDA, the Banbury Fund, Czech Academy of Sciences, and The National BioResource Project-Rat. Dr. Michal Pravenec of the Czech Academy of Sciences kindly provided the tissues from the HXB/BXH recombinant inbred panel. Dr. Masahide Asano of the University of Kyoto kindly provided tissues from the F344/Stm and LE/Stm strains. Dr. Melinda Dwinell will be providing tissues for many of the remaining HRDP strains. We would like to thank Spencer Mahaffey, Jennifer Mahaffey, Yinni Yu, Seija Tililanen, Lauren Vanderlinden, and Harry Smith for help with extracting RNA, generating libraries, and processing data. We would also like to acknowledge the support of UNLV National Supercomputing Institute (UNLV NSI) by providing access to supercomputing resources to support analysis of sequencing data.

    diff --git a/general/datasets/Pgenratbrn_rna_0520/cases.rtf b/general/datasets/Pgenratbrn_rna_0520/cases.rtf new file mode 100644 index 0000000..022c897 --- /dev/null +++ b/general/datasets/Pgenratbrn_rna_0520/cases.rtf @@ -0,0 +1 @@ +

    For this data set, a subset of the Hybrid Rat Diversity Panel (HRDP) was used that included 30 HXB/BXH recombinant inbred strains and 15 classic inbred strains for a total of 45 inbred strains. Male rats at the age of 90 days were used for this study. The animals from the 30 RI strains and the 2 progenitor strains of the HXB/BXH RI panel (SHR/OlaIpcv and BN-Lx/Cub) were bred and maintained at the Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. The 11 classic inbred strains were purchased from US Vendors (either Charles River or Envigo) and shipped to the University of Colorado Anschutz Medical Campus where they were acclimated prior to sacrifice. The remaining 2 classic inbred strains are the progenitor strains of the LEXF/FXLE RI panel and were bred and maintained at the National BioResource Project for the Rat in Japan. In Colorado, rats were sacrificed by rapid CO2 exposure. In the Czech Republic, rats were sacrificed by cervical dislocation. All experiments involving the harvesting of whole brain of the HXB/BXH RI panel and two progenitor strains were performed in accordance with the Animal Protection Law of the Czech Republic and were approved by the Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague. All experiments involving the harvesting of whole brain of the 11 classic inbred strains maintained at the University of Colorado Anschutz Medical Campus were approved by the Institutional Animal Care and Use Committee of the University of Colorado Anschutz Medical Campus and were performed in accordance with the guidelines in the NIH Guide for the Care and Use of Laboratory Animals. Animal experiments involving the F344/Stm and LE/Stm strains were conducted in accordance with the Fundamental Guidelines for Proper Conduct of Animal Experiment and Related Activities in Academic Research Institutions under the jurisdiction of the Ministry of Education, Culture, Sports, Science and Technology of Japan, and were approved by the Committee on Animal Experimentation at Kyoto University, Japan.

    diff --git a/general/datasets/Pgenratbrn_rna_0520/citation.rtf b/general/datasets/Pgenratbrn_rna_0520/citation.rtf new file mode 100644 index 0000000..cac3b01 --- /dev/null +++ b/general/datasets/Pgenratbrn_rna_0520/citation.rtf @@ -0,0 +1 @@ +

    Tabakoff B., Smith H., Vanderlinden L.A., Hoffman P.L., Saba L.M. (2019) Networking in Biology: The Hybrid Rat Diversity Panel. In: Hayman G., Smith J., Dwinell M., Shimoyama M. (eds) Rat Genomics. Methods in Molecular Biology, vol 2018. Humana, New York, NY

    diff --git a/general/datasets/Pgenratbrn_rna_0520/contributors.rtf b/general/datasets/Pgenratbrn_rna_0520/contributors.rtf new file mode 100644 index 0000000..b32b308 --- /dev/null +++ b/general/datasets/Pgenratbrn_rna_0520/contributors.rtf @@ -0,0 +1,23 @@ +

    Boris Tabakoff, PhD
    +University of Colorado Anschutz Medical Campus
    +Grant Support: NIAAA R24 AA013162

    + +

    Paula Hoffman, PhD
    +University of Colorado Anschutz Medical Campus
    +Grant Support: NIAAA R24 AA013162

    + +

    Laura Saba, PhD
    +University of Colorado Anschutz Medical Campus
    +Grant Support: NIAAA R24 AA013162 and NIDA P30 DA044223

    + +

    Michal Pravenec PhD
    +The Czech Academy of Sciences
    +Grant Support: Academic premium of the Czech Academy of Sciences (AP1502)

    + +

    Masahide Asano, PhD
    +Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University
    +Grant Support: The National BioResource Project-Rat (Grant Number: 964706, 19 km 0210167j0001)

    + +

    Melinda Dwinell, PhD
    +Medical College of Wisconsin
    +Grant Support: R24 OD024617

    diff --git a/general/datasets/Pgenratbrn_rna_0520/experiment-design.rtf b/general/datasets/Pgenratbrn_rna_0520/experiment-design.rtf new file mode 100644 index 0000000..3ff2342 --- /dev/null +++ b/general/datasets/Pgenratbrn_rna_0520/experiment-design.rtf @@ -0,0 +1 @@ +

    Predisposition database. RNA expression levels were measured on rats that had not been exposed to any type of intervention (e.g., alcohol, drugs, stress).

    diff --git a/general/datasets/Pgenratbrn_rna_0520/platform.rtf b/general/datasets/Pgenratbrn_rna_0520/platform.rtf new file mode 100644 index 0000000..da38d8b --- /dev/null +++ b/general/datasets/Pgenratbrn_rna_0520/platform.rtf @@ -0,0 +1 @@ +

    Total RNA was isolated from 3 biological replicates of each of the HRDP v5 strains using QIAzol (Qiagen, Valencia, CA, USA).The RNAeasy Plus Universal Midi Kit (Qiagen) was used to separate long (>200 nt) and short (<200 nt, miRNA-enriched) fractions. The long RNA fraction was purified using the RNeasy Mini Kit (Qiagen). Four microliters of a 1:100 dilution of either ERCC Spike‐In Mix 1 or Mix 2 (Thermo Fisher Scientific, Wilmington, DE) was added to each extracted RNA sample. Sequencing libraries for the long RNA fraction were constructed using the Illumina TruSeq Stranded Total RNA Sample Preparation Kit with Ribo-Zero ribosomal RNA reduction chemistry (Illumina) in accordance with the manufacturer’s instructions. An Agilent Technologies Bioanalyzer 2100 was utilized to assess sequencing library quality. A loading control was included in each sequencing batch. The loading control was a library generated from an SHR animal. Samples were sequenced (depending on batch either 2X100 or 2x150 paired end reads) on an Ilumina sequencer.

    diff --git a/general/datasets/Pgenratbrn_rna_0520/processing.rtf b/general/datasets/Pgenratbrn_rna_0520/processing.rtf new file mode 100644 index 0000000..4c9da95 --- /dev/null +++ b/general/datasets/Pgenratbrn_rna_0520/processing.rtf @@ -0,0 +1,3 @@ +

    Prior to alignment, reads were demultiplexed and read fragments were trimmed for adaptors and for quality using Cutadapt (version 1.9.1;(Martin, 2011)). Reads were eliminated if the trimmed length of either read fragment was <20 nucleotides. Next, bowtie2(v 2.2.6) (4) was used to align reads to ribosomal RNA, and the unmapped reads were retained. These will be referred to as “cleaned” reads. The RNA-Seq Expectation Maximization (RSEM v1.2.31) algorithm (Li and Dewey 2011) was used to estimate the number of aligned reads for individual Ensembl transcripts (version 96). The number of reads aligned to each Ensembl gene was calculated as the sum of the number of reads aligned to individual Ensembl transcripts annotated to that gene.

    + +

    Prior to normalization and transformation, a detection above background filter was applied where we required a gene to have at least 2/3 of the samples have 1 count or more to be considered expressed above background. All genes that did not pass this detection above background criteria were removed. Count values were normalized using RUVg (PMID: 25150836) and transformed using the regularized log function (PMID: 25516281).

    diff --git a/general/datasets/Pgenratbrn_rna_0520/specifics.rtf b/general/datasets/Pgenratbrn_rna_0520/specifics.rtf new file mode 100644 index 0000000..f98e245 --- /dev/null +++ b/general/datasets/Pgenratbrn_rna_0520/specifics.rtf @@ -0,0 +1 @@ +Non zeros included. \ No newline at end of file diff --git a/general/datasets/Pgenratbrn_rna_0520/summary.rtf b/general/datasets/Pgenratbrn_rna_0520/summary.rtf new file mode 100644 index 0000000..a70b10f --- /dev/null +++ b/general/datasets/Pgenratbrn_rna_0520/summary.rtf @@ -0,0 +1 @@ +

    This data set was generated as part of the RGAP project funded by NIAAA (R24 AA013162; MPI – Tabakoff, Hoffman, Saba) at the University of Colorado Anschutz Medical Campus. The processing of the RNA-Seq data was also supported by the NIDA Center of Excellence in Omics, Systems Genetics, and the Addictome (P30 DA044223; MPI – Williams, Saba). These data represent the RNA expression levels of Ensembl genes in brain. Ribosomal RNA depleted total RNA was used to generate paired end libraries. Levels were estimated in 45 (version 5) strains of the Hybrid Rat Diversity Panel (HRDP) including 30 HXB/BXH recombinant inbred strain and 15 classic inbred strains. Two to three biological replicates per strain were included in the strain-level means. Male rats were used for all analyses.

    diff --git a/general/datasets/Pgenratbrn_rna_0520/tissue.rtf b/general/datasets/Pgenratbrn_rna_0520/tissue.rtf new file mode 100644 index 0000000..732bdc1 --- /dev/null +++ b/general/datasets/Pgenratbrn_rna_0520/tissue.rtf @@ -0,0 +1 @@ +

    Upon sacrifice, brains (including cerebellum and brain stem) were rapidly removed, sectioned sagittally into two hemispheres, and stored in liquid nitrogen. Each hemisphere was stored separately at -80⁰C until used for RNA extraction. Tissues from the Czech Republic and Japan were shipped on dry ice to the University of Colorado Anschutz Medical Campus for RNA extraction and cDNA library preparation

    diff --git a/general/datasets/Pgenratbrn_rna_z_0520/acknowledgment.rtf b/general/datasets/Pgenratbrn_rna_z_0520/acknowledgment.rtf new file mode 100644 index 0000000..b5348f4 --- /dev/null +++ b/general/datasets/Pgenratbrn_rna_z_0520/acknowledgment.rtf @@ -0,0 +1 @@ +

    Data were generated with funds provided by NIAAA, NIDA, the Banbury Fund, Czech Academy of Sciences, and The National BioResource Project-Rat. Dr. Michal Pravenec of the Czech Academy of Sciences kindly provided the tissues from the HXB/BXH recombinant inbred panel. Dr. Masahide Asano of the University of Kyoto kindly provided tissues from the F344/Stm and LE/Stm strains. Dr. Melinda Dwinell will be providing tissues for many of the remaining HRDP strains. We would like to thank Spencer Mahaffey, Jennifer Mahaffey, Yinni Yu, Seija Tililanen, Lauren Vanderlinden, and Harry Smith for help with extracting RNA, generating libraries, and processing data. We would also like to acknowledge the support of UNLV National Supercomputing Institute (UNLV NSI) by providing access to supercomputing resources to support analysis of sequencing data.

    diff --git a/general/datasets/Pgenratbrn_rna_z_0520/cases.rtf b/general/datasets/Pgenratbrn_rna_z_0520/cases.rtf new file mode 100644 index 0000000..022c897 --- /dev/null +++ b/general/datasets/Pgenratbrn_rna_z_0520/cases.rtf @@ -0,0 +1 @@ +

    For this data set, a subset of the Hybrid Rat Diversity Panel (HRDP) was used that included 30 HXB/BXH recombinant inbred strains and 15 classic inbred strains for a total of 45 inbred strains. Male rats at the age of 90 days were used for this study. The animals from the 30 RI strains and the 2 progenitor strains of the HXB/BXH RI panel (SHR/OlaIpcv and BN-Lx/Cub) were bred and maintained at the Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. The 11 classic inbred strains were purchased from US Vendors (either Charles River or Envigo) and shipped to the University of Colorado Anschutz Medical Campus where they were acclimated prior to sacrifice. The remaining 2 classic inbred strains are the progenitor strains of the LEXF/FXLE RI panel and were bred and maintained at the National BioResource Project for the Rat in Japan. In Colorado, rats were sacrificed by rapid CO2 exposure. In the Czech Republic, rats were sacrificed by cervical dislocation. All experiments involving the harvesting of whole brain of the HXB/BXH RI panel and two progenitor strains were performed in accordance with the Animal Protection Law of the Czech Republic and were approved by the Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague. All experiments involving the harvesting of whole brain of the 11 classic inbred strains maintained at the University of Colorado Anschutz Medical Campus were approved by the Institutional Animal Care and Use Committee of the University of Colorado Anschutz Medical Campus and were performed in accordance with the guidelines in the NIH Guide for the Care and Use of Laboratory Animals. Animal experiments involving the F344/Stm and LE/Stm strains were conducted in accordance with the Fundamental Guidelines for Proper Conduct of Animal Experiment and Related Activities in Academic Research Institutions under the jurisdiction of the Ministry of Education, Culture, Sports, Science and Technology of Japan, and were approved by the Committee on Animal Experimentation at Kyoto University, Japan.

    diff --git a/general/datasets/Pgenratbrn_rna_z_0520/citation.rtf b/general/datasets/Pgenratbrn_rna_z_0520/citation.rtf new file mode 100644 index 0000000..cac3b01 --- /dev/null +++ b/general/datasets/Pgenratbrn_rna_z_0520/citation.rtf @@ -0,0 +1 @@ +

    Tabakoff B., Smith H., Vanderlinden L.A., Hoffman P.L., Saba L.M. (2019) Networking in Biology: The Hybrid Rat Diversity Panel. In: Hayman G., Smith J., Dwinell M., Shimoyama M. (eds) Rat Genomics. Methods in Molecular Biology, vol 2018. Humana, New York, NY

    diff --git a/general/datasets/Pgenratbrn_rna_z_0520/contributors.rtf b/general/datasets/Pgenratbrn_rna_z_0520/contributors.rtf new file mode 100644 index 0000000..b32b308 --- /dev/null +++ b/general/datasets/Pgenratbrn_rna_z_0520/contributors.rtf @@ -0,0 +1,23 @@ +

    Boris Tabakoff, PhD
    +University of Colorado Anschutz Medical Campus
    +Grant Support: NIAAA R24 AA013162

    + +

    Paula Hoffman, PhD
    +University of Colorado Anschutz Medical Campus
    +Grant Support: NIAAA R24 AA013162

    + +

    Laura Saba, PhD
    +University of Colorado Anschutz Medical Campus
    +Grant Support: NIAAA R24 AA013162 and NIDA P30 DA044223

    + +

    Michal Pravenec PhD
    +The Czech Academy of Sciences
    +Grant Support: Academic premium of the Czech Academy of Sciences (AP1502)

    + +

    Masahide Asano, PhD
    +Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University
    +Grant Support: The National BioResource Project-Rat (Grant Number: 964706, 19 km 0210167j0001)

    + +

    Melinda Dwinell, PhD
    +Medical College of Wisconsin
    +Grant Support: R24 OD024617

    diff --git a/general/datasets/Pgenratbrn_rna_z_0520/experiment-design.rtf b/general/datasets/Pgenratbrn_rna_z_0520/experiment-design.rtf new file mode 100644 index 0000000..3ff2342 --- /dev/null +++ b/general/datasets/Pgenratbrn_rna_z_0520/experiment-design.rtf @@ -0,0 +1 @@ +

    Predisposition database. RNA expression levels were measured on rats that had not been exposed to any type of intervention (e.g., alcohol, drugs, stress).

    diff --git a/general/datasets/Pgenratbrn_rna_z_0520/platform.rtf b/general/datasets/Pgenratbrn_rna_z_0520/platform.rtf new file mode 100644 index 0000000..da38d8b --- /dev/null +++ b/general/datasets/Pgenratbrn_rna_z_0520/platform.rtf @@ -0,0 +1 @@ +

    Total RNA was isolated from 3 biological replicates of each of the HRDP v5 strains using QIAzol (Qiagen, Valencia, CA, USA).The RNAeasy Plus Universal Midi Kit (Qiagen) was used to separate long (>200 nt) and short (<200 nt, miRNA-enriched) fractions. The long RNA fraction was purified using the RNeasy Mini Kit (Qiagen). Four microliters of a 1:100 dilution of either ERCC Spike‐In Mix 1 or Mix 2 (Thermo Fisher Scientific, Wilmington, DE) was added to each extracted RNA sample. Sequencing libraries for the long RNA fraction were constructed using the Illumina TruSeq Stranded Total RNA Sample Preparation Kit with Ribo-Zero ribosomal RNA reduction chemistry (Illumina) in accordance with the manufacturer’s instructions. An Agilent Technologies Bioanalyzer 2100 was utilized to assess sequencing library quality. A loading control was included in each sequencing batch. The loading control was a library generated from an SHR animal. Samples were sequenced (depending on batch either 2X100 or 2x150 paired end reads) on an Ilumina sequencer.

    diff --git a/general/datasets/Pgenratbrn_rna_z_0520/processing.rtf b/general/datasets/Pgenratbrn_rna_z_0520/processing.rtf new file mode 100644 index 0000000..4c9da95 --- /dev/null +++ b/general/datasets/Pgenratbrn_rna_z_0520/processing.rtf @@ -0,0 +1,3 @@ +

    Prior to alignment, reads were demultiplexed and read fragments were trimmed for adaptors and for quality using Cutadapt (version 1.9.1;(Martin, 2011)). Reads were eliminated if the trimmed length of either read fragment was <20 nucleotides. Next, bowtie2(v 2.2.6) (4) was used to align reads to ribosomal RNA, and the unmapped reads were retained. These will be referred to as “cleaned” reads. The RNA-Seq Expectation Maximization (RSEM v1.2.31) algorithm (Li and Dewey 2011) was used to estimate the number of aligned reads for individual Ensembl transcripts (version 96). The number of reads aligned to each Ensembl gene was calculated as the sum of the number of reads aligned to individual Ensembl transcripts annotated to that gene.

    + +

    Prior to normalization and transformation, a detection above background filter was applied where we required a gene to have at least 2/3 of the samples have 1 count or more to be considered expressed above background. All genes that did not pass this detection above background criteria were removed. Count values were normalized using RUVg (PMID: 25150836) and transformed using the regularized log function (PMID: 25516281).

    diff --git a/general/datasets/Pgenratbrn_rna_z_0520/specifics.rtf b/general/datasets/Pgenratbrn_rna_z_0520/specifics.rtf new file mode 100644 index 0000000..edb176d --- /dev/null +++ b/general/datasets/Pgenratbrn_rna_z_0520/specifics.rtf @@ -0,0 +1 @@ +zeros included \ No newline at end of file diff --git a/general/datasets/Pgenratbrn_rna_z_0520/summary.rtf b/general/datasets/Pgenratbrn_rna_z_0520/summary.rtf new file mode 100644 index 0000000..a70b10f --- /dev/null +++ b/general/datasets/Pgenratbrn_rna_z_0520/summary.rtf @@ -0,0 +1 @@ +

    This data set was generated as part of the RGAP project funded by NIAAA (R24 AA013162; MPI – Tabakoff, Hoffman, Saba) at the University of Colorado Anschutz Medical Campus. The processing of the RNA-Seq data was also supported by the NIDA Center of Excellence in Omics, Systems Genetics, and the Addictome (P30 DA044223; MPI – Williams, Saba). These data represent the RNA expression levels of Ensembl genes in brain. Ribosomal RNA depleted total RNA was used to generate paired end libraries. Levels were estimated in 45 (version 5) strains of the Hybrid Rat Diversity Panel (HRDP) including 30 HXB/BXH recombinant inbred strain and 15 classic inbred strains. Two to three biological replicates per strain were included in the strain-level means. Male rats were used for all analyses.

    diff --git a/general/datasets/Pgenratbrn_rna_z_0520/tissue.rtf b/general/datasets/Pgenratbrn_rna_z_0520/tissue.rtf new file mode 100644 index 0000000..732bdc1 --- /dev/null +++ b/general/datasets/Pgenratbrn_rna_z_0520/tissue.rtf @@ -0,0 +1 @@ +

    Upon sacrifice, brains (including cerebellum and brain stem) were rapidly removed, sectioned sagittally into two hemispheres, and stored in liquid nitrogen. Each hemisphere was stored separately at -80⁰C until used for RNA extraction. Tissues from the Czech Republic and Japan were shipped on dry ice to the University of Colorado Anschutz Medical Campus for RNA extraction and cDNA library preparation

    diff --git a/general/datasets/Pgenratliv_rna_0520/acknowledgment.rtf b/general/datasets/Pgenratliv_rna_0520/acknowledgment.rtf new file mode 100644 index 0000000..b5348f4 --- /dev/null +++ b/general/datasets/Pgenratliv_rna_0520/acknowledgment.rtf @@ -0,0 +1 @@ +

    Data were generated with funds provided by NIAAA, NIDA, the Banbury Fund, Czech Academy of Sciences, and The National BioResource Project-Rat. Dr. Michal Pravenec of the Czech Academy of Sciences kindly provided the tissues from the HXB/BXH recombinant inbred panel. Dr. Masahide Asano of the University of Kyoto kindly provided tissues from the F344/Stm and LE/Stm strains. Dr. Melinda Dwinell will be providing tissues for many of the remaining HRDP strains. We would like to thank Spencer Mahaffey, Jennifer Mahaffey, Yinni Yu, Seija Tililanen, Lauren Vanderlinden, and Harry Smith for help with extracting RNA, generating libraries, and processing data. We would also like to acknowledge the support of UNLV National Supercomputing Institute (UNLV NSI) by providing access to supercomputing resources to support analysis of sequencing data.

    diff --git a/general/datasets/Pgenratliv_rna_0520/cases.rtf b/general/datasets/Pgenratliv_rna_0520/cases.rtf new file mode 100644 index 0000000..69ff672 --- /dev/null +++ b/general/datasets/Pgenratliv_rna_0520/cases.rtf @@ -0,0 +1 @@ +

    For this data set, a subset of the Hybrid Rat Diversity Panel (HRDP) was used that included 30 HXB/BXH recombinant inbred strains and 15 classic inbred strains for a total of 45 inbred strains. Male rats at the age of 90 days were used for this study. The animals from the 30 RI strains and the 2 progenitor strains of the HXB/BXH RI panel (SHR/OlaIpcv and BN-Lx/Cub) were bred and maintained at the Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. The 11 classic inbred strains were purchased from US Vendors (either Charles River or Envigo) and shipped to the University of Colorado Anschutz Medical Campus where they were acclimated prior to sacrifice. The remaining 2 classic inbred strains are the progenitor strains of the LEXF/FXLE RI panel and were bred and maintained at the National BioResource Project for the Rat in Japan. In Colorado, rats were sacrificed by rapid CO2 exposure. In the Czech Republic, rats were sacrificed by cervical dislocation. All experiments involving the HXB/BXH RI panel and two progenitor strains were performed in accordance with the Animal Protection Law of the Czech Republic and were approved by the Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague. All experiments involving the 11 classic inbred strains maintained at the University of Colorado Anschutz Medical Campus were approved by the Institutional Animal Care and Use Committee of the University of Colorado Anschutz Medical Campus and were performed in accordance with the guidelines in the NIH Guide for the Care and Use of Laboratory Animals. Animal experiments involving the F344/Stm and LE/Stm strains were conducted in accordance with the Fundamental Guidelines for Proper Conduct of Animal Experiment and Related Activities in Academic Research Institutions under the jurisdiction of the Ministry of Education, Culture, Sports, Science and Technology of Japan, and were approved by the Committee on Animal Experimentation at Kyoto University, Japan.

    diff --git a/general/datasets/Pgenratliv_rna_0520/citation.rtf b/general/datasets/Pgenratliv_rna_0520/citation.rtf new file mode 100644 index 0000000..cac3b01 --- /dev/null +++ b/general/datasets/Pgenratliv_rna_0520/citation.rtf @@ -0,0 +1 @@ +

    Tabakoff B., Smith H., Vanderlinden L.A., Hoffman P.L., Saba L.M. (2019) Networking in Biology: The Hybrid Rat Diversity Panel. In: Hayman G., Smith J., Dwinell M., Shimoyama M. (eds) Rat Genomics. Methods in Molecular Biology, vol 2018. Humana, New York, NY

    diff --git a/general/datasets/Pgenratliv_rna_0520/contributors.rtf b/general/datasets/Pgenratliv_rna_0520/contributors.rtf new file mode 100644 index 0000000..b32b308 --- /dev/null +++ b/general/datasets/Pgenratliv_rna_0520/contributors.rtf @@ -0,0 +1,23 @@ +

    Boris Tabakoff, PhD
    +University of Colorado Anschutz Medical Campus
    +Grant Support: NIAAA R24 AA013162

    + +

    Paula Hoffman, PhD
    +University of Colorado Anschutz Medical Campus
    +Grant Support: NIAAA R24 AA013162

    + +

    Laura Saba, PhD
    +University of Colorado Anschutz Medical Campus
    +Grant Support: NIAAA R24 AA013162 and NIDA P30 DA044223

    + +

    Michal Pravenec PhD
    +The Czech Academy of Sciences
    +Grant Support: Academic premium of the Czech Academy of Sciences (AP1502)

    + +

    Masahide Asano, PhD
    +Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University
    +Grant Support: The National BioResource Project-Rat (Grant Number: 964706, 19 km 0210167j0001)

    + +

    Melinda Dwinell, PhD
    +Medical College of Wisconsin
    +Grant Support: R24 OD024617

    diff --git a/general/datasets/Pgenratliv_rna_0520/experiment-design.rtf b/general/datasets/Pgenratliv_rna_0520/experiment-design.rtf new file mode 100644 index 0000000..3ff2342 --- /dev/null +++ b/general/datasets/Pgenratliv_rna_0520/experiment-design.rtf @@ -0,0 +1 @@ +

    Predisposition database. RNA expression levels were measured on rats that had not been exposed to any type of intervention (e.g., alcohol, drugs, stress).

    diff --git a/general/datasets/Pgenratliv_rna_0520/platform.rtf b/general/datasets/Pgenratliv_rna_0520/platform.rtf new file mode 100644 index 0000000..da38d8b --- /dev/null +++ b/general/datasets/Pgenratliv_rna_0520/platform.rtf @@ -0,0 +1 @@ +

    Total RNA was isolated from 3 biological replicates of each of the HRDP v5 strains using QIAzol (Qiagen, Valencia, CA, USA).The RNAeasy Plus Universal Midi Kit (Qiagen) was used to separate long (>200 nt) and short (<200 nt, miRNA-enriched) fractions. The long RNA fraction was purified using the RNeasy Mini Kit (Qiagen). Four microliters of a 1:100 dilution of either ERCC Spike‐In Mix 1 or Mix 2 (Thermo Fisher Scientific, Wilmington, DE) was added to each extracted RNA sample. Sequencing libraries for the long RNA fraction were constructed using the Illumina TruSeq Stranded Total RNA Sample Preparation Kit with Ribo-Zero ribosomal RNA reduction chemistry (Illumina) in accordance with the manufacturer’s instructions. An Agilent Technologies Bioanalyzer 2100 was utilized to assess sequencing library quality. A loading control was included in each sequencing batch. The loading control was a library generated from an SHR animal. Samples were sequenced (depending on batch either 2X100 or 2x150 paired end reads) on an Ilumina sequencer.

    diff --git a/general/datasets/Pgenratliv_rna_0520/processing.rtf b/general/datasets/Pgenratliv_rna_0520/processing.rtf new file mode 100644 index 0000000..4c9da95 --- /dev/null +++ b/general/datasets/Pgenratliv_rna_0520/processing.rtf @@ -0,0 +1,3 @@ +

    Prior to alignment, reads were demultiplexed and read fragments were trimmed for adaptors and for quality using Cutadapt (version 1.9.1;(Martin, 2011)). Reads were eliminated if the trimmed length of either read fragment was <20 nucleotides. Next, bowtie2(v 2.2.6) (4) was used to align reads to ribosomal RNA, and the unmapped reads were retained. These will be referred to as “cleaned” reads. The RNA-Seq Expectation Maximization (RSEM v1.2.31) algorithm (Li and Dewey 2011) was used to estimate the number of aligned reads for individual Ensembl transcripts (version 96). The number of reads aligned to each Ensembl gene was calculated as the sum of the number of reads aligned to individual Ensembl transcripts annotated to that gene.

    + +

    Prior to normalization and transformation, a detection above background filter was applied where we required a gene to have at least 2/3 of the samples have 1 count or more to be considered expressed above background. All genes that did not pass this detection above background criteria were removed. Count values were normalized using RUVg (PMID: 25150836) and transformed using the regularized log function (PMID: 25516281).

    diff --git a/general/datasets/Pgenratliv_rna_0520/specifics.rtf b/general/datasets/Pgenratliv_rna_0520/specifics.rtf new file mode 100644 index 0000000..7169dc3 --- /dev/null +++ b/general/datasets/Pgenratliv_rna_0520/specifics.rtf @@ -0,0 +1 @@ +zeros no included \ No newline at end of file diff --git a/general/datasets/Pgenratliv_rna_0520/summary.rtf b/general/datasets/Pgenratliv_rna_0520/summary.rtf new file mode 100644 index 0000000..3ced7f9 --- /dev/null +++ b/general/datasets/Pgenratliv_rna_0520/summary.rtf @@ -0,0 +1 @@ +

    This data set was generated as part of the RGAP project funded by NIAAA (R24 AA013162; MPI – Tabakoff, Hoffman, Saba) at the University of Colorado Anschutz Medical Campus. The processing of the RNA-Seq data was also supported by the NIDA Center of Excellence in Omics, Systems Genetics, and the Addictome (P30 DA044223; MPI – Williams, Saba). These data represent the RNA expression levels of Ensembl genes in liver. Ribosomal RNA depleted total RNA was used to generate paired end libraries. Levels were estimated in 45 (version 5) strains of the Hybrid Rat Diversity Panel (HRDP) including 30 HXB/BXH recombinant inbred strain and 15 classic inbred strains. Two to three biological replicates per strain were included in the strain-level means. Male rats were used for all analyses.

    diff --git a/general/datasets/Pgenratliv_rna_0520/tissue.rtf b/general/datasets/Pgenratliv_rna_0520/tissue.rtf new file mode 100644 index 0000000..117c7a1 --- /dev/null +++ b/general/datasets/Pgenratliv_rna_0520/tissue.rtf @@ -0,0 +1 @@ +

    Upon sacrifice, livers were rapidly removed and stored in liquid nitrogen. Livers were stored at -80⁰C until used for RNA extraction. Tissues from the Czech Republic and Japan were shipped on dry ice to the University of Colorado Anschutz Medical Campus for RNA extraction and cDNA library preparation

    diff --git a/general/datasets/Pgenratliv_rna_z_0520/acknowledgment.rtf b/general/datasets/Pgenratliv_rna_z_0520/acknowledgment.rtf new file mode 100644 index 0000000..b5348f4 --- /dev/null +++ b/general/datasets/Pgenratliv_rna_z_0520/acknowledgment.rtf @@ -0,0 +1 @@ +

    Data were generated with funds provided by NIAAA, NIDA, the Banbury Fund, Czech Academy of Sciences, and The National BioResource Project-Rat. Dr. Michal Pravenec of the Czech Academy of Sciences kindly provided the tissues from the HXB/BXH recombinant inbred panel. Dr. Masahide Asano of the University of Kyoto kindly provided tissues from the F344/Stm and LE/Stm strains. Dr. Melinda Dwinell will be providing tissues for many of the remaining HRDP strains. We would like to thank Spencer Mahaffey, Jennifer Mahaffey, Yinni Yu, Seija Tililanen, Lauren Vanderlinden, and Harry Smith for help with extracting RNA, generating libraries, and processing data. We would also like to acknowledge the support of UNLV National Supercomputing Institute (UNLV NSI) by providing access to supercomputing resources to support analysis of sequencing data.

    diff --git a/general/datasets/Pgenratliv_rna_z_0520/cases.rtf b/general/datasets/Pgenratliv_rna_z_0520/cases.rtf new file mode 100644 index 0000000..69ff672 --- /dev/null +++ b/general/datasets/Pgenratliv_rna_z_0520/cases.rtf @@ -0,0 +1 @@ +

    For this data set, a subset of the Hybrid Rat Diversity Panel (HRDP) was used that included 30 HXB/BXH recombinant inbred strains and 15 classic inbred strains for a total of 45 inbred strains. Male rats at the age of 90 days were used for this study. The animals from the 30 RI strains and the 2 progenitor strains of the HXB/BXH RI panel (SHR/OlaIpcv and BN-Lx/Cub) were bred and maintained at the Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. The 11 classic inbred strains were purchased from US Vendors (either Charles River or Envigo) and shipped to the University of Colorado Anschutz Medical Campus where they were acclimated prior to sacrifice. The remaining 2 classic inbred strains are the progenitor strains of the LEXF/FXLE RI panel and were bred and maintained at the National BioResource Project for the Rat in Japan. In Colorado, rats were sacrificed by rapid CO2 exposure. In the Czech Republic, rats were sacrificed by cervical dislocation. All experiments involving the HXB/BXH RI panel and two progenitor strains were performed in accordance with the Animal Protection Law of the Czech Republic and were approved by the Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague. All experiments involving the 11 classic inbred strains maintained at the University of Colorado Anschutz Medical Campus were approved by the Institutional Animal Care and Use Committee of the University of Colorado Anschutz Medical Campus and were performed in accordance with the guidelines in the NIH Guide for the Care and Use of Laboratory Animals. Animal experiments involving the F344/Stm and LE/Stm strains were conducted in accordance with the Fundamental Guidelines for Proper Conduct of Animal Experiment and Related Activities in Academic Research Institutions under the jurisdiction of the Ministry of Education, Culture, Sports, Science and Technology of Japan, and were approved by the Committee on Animal Experimentation at Kyoto University, Japan.

    diff --git a/general/datasets/Pgenratliv_rna_z_0520/citation.rtf b/general/datasets/Pgenratliv_rna_z_0520/citation.rtf new file mode 100644 index 0000000..cac3b01 --- /dev/null +++ b/general/datasets/Pgenratliv_rna_z_0520/citation.rtf @@ -0,0 +1 @@ +

    Tabakoff B., Smith H., Vanderlinden L.A., Hoffman P.L., Saba L.M. (2019) Networking in Biology: The Hybrid Rat Diversity Panel. In: Hayman G., Smith J., Dwinell M., Shimoyama M. (eds) Rat Genomics. Methods in Molecular Biology, vol 2018. Humana, New York, NY

    diff --git a/general/datasets/Pgenratliv_rna_z_0520/contributors.rtf b/general/datasets/Pgenratliv_rna_z_0520/contributors.rtf new file mode 100644 index 0000000..b32b308 --- /dev/null +++ b/general/datasets/Pgenratliv_rna_z_0520/contributors.rtf @@ -0,0 +1,23 @@ +

    Boris Tabakoff, PhD
    +University of Colorado Anschutz Medical Campus
    +Grant Support: NIAAA R24 AA013162

    + +

    Paula Hoffman, PhD
    +University of Colorado Anschutz Medical Campus
    +Grant Support: NIAAA R24 AA013162

    + +

    Laura Saba, PhD
    +University of Colorado Anschutz Medical Campus
    +Grant Support: NIAAA R24 AA013162 and NIDA P30 DA044223

    + +

    Michal Pravenec PhD
    +The Czech Academy of Sciences
    +Grant Support: Academic premium of the Czech Academy of Sciences (AP1502)

    + +

    Masahide Asano, PhD
    +Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University
    +Grant Support: The National BioResource Project-Rat (Grant Number: 964706, 19 km 0210167j0001)

    + +

    Melinda Dwinell, PhD
    +Medical College of Wisconsin
    +Grant Support: R24 OD024617

    diff --git a/general/datasets/Pgenratliv_rna_z_0520/experiment-design.rtf b/general/datasets/Pgenratliv_rna_z_0520/experiment-design.rtf new file mode 100644 index 0000000..3ff2342 --- /dev/null +++ b/general/datasets/Pgenratliv_rna_z_0520/experiment-design.rtf @@ -0,0 +1 @@ +

    Predisposition database. RNA expression levels were measured on rats that had not been exposed to any type of intervention (e.g., alcohol, drugs, stress).

    diff --git a/general/datasets/Pgenratliv_rna_z_0520/platform.rtf b/general/datasets/Pgenratliv_rna_z_0520/platform.rtf new file mode 100644 index 0000000..da38d8b --- /dev/null +++ b/general/datasets/Pgenratliv_rna_z_0520/platform.rtf @@ -0,0 +1 @@ +

    Total RNA was isolated from 3 biological replicates of each of the HRDP v5 strains using QIAzol (Qiagen, Valencia, CA, USA).The RNAeasy Plus Universal Midi Kit (Qiagen) was used to separate long (>200 nt) and short (<200 nt, miRNA-enriched) fractions. The long RNA fraction was purified using the RNeasy Mini Kit (Qiagen). Four microliters of a 1:100 dilution of either ERCC Spike‐In Mix 1 or Mix 2 (Thermo Fisher Scientific, Wilmington, DE) was added to each extracted RNA sample. Sequencing libraries for the long RNA fraction were constructed using the Illumina TruSeq Stranded Total RNA Sample Preparation Kit with Ribo-Zero ribosomal RNA reduction chemistry (Illumina) in accordance with the manufacturer’s instructions. An Agilent Technologies Bioanalyzer 2100 was utilized to assess sequencing library quality. A loading control was included in each sequencing batch. The loading control was a library generated from an SHR animal. Samples were sequenced (depending on batch either 2X100 or 2x150 paired end reads) on an Ilumina sequencer.

    diff --git a/general/datasets/Pgenratliv_rna_z_0520/processing.rtf b/general/datasets/Pgenratliv_rna_z_0520/processing.rtf new file mode 100644 index 0000000..4c9da95 --- /dev/null +++ b/general/datasets/Pgenratliv_rna_z_0520/processing.rtf @@ -0,0 +1,3 @@ +

    Prior to alignment, reads were demultiplexed and read fragments were trimmed for adaptors and for quality using Cutadapt (version 1.9.1;(Martin, 2011)). Reads were eliminated if the trimmed length of either read fragment was <20 nucleotides. Next, bowtie2(v 2.2.6) (4) was used to align reads to ribosomal RNA, and the unmapped reads were retained. These will be referred to as “cleaned” reads. The RNA-Seq Expectation Maximization (RSEM v1.2.31) algorithm (Li and Dewey 2011) was used to estimate the number of aligned reads for individual Ensembl transcripts (version 96). The number of reads aligned to each Ensembl gene was calculated as the sum of the number of reads aligned to individual Ensembl transcripts annotated to that gene.

    + +

    Prior to normalization and transformation, a detection above background filter was applied where we required a gene to have at least 2/3 of the samples have 1 count or more to be considered expressed above background. All genes that did not pass this detection above background criteria were removed. Count values were normalized using RUVg (PMID: 25150836) and transformed using the regularized log function (PMID: 25516281).

    diff --git a/general/datasets/Pgenratliv_rna_z_0520/specifics.rtf b/general/datasets/Pgenratliv_rna_z_0520/specifics.rtf new file mode 100644 index 0000000..edb176d --- /dev/null +++ b/general/datasets/Pgenratliv_rna_z_0520/specifics.rtf @@ -0,0 +1 @@ +zeros included \ No newline at end of file diff --git a/general/datasets/Pgenratliv_rna_z_0520/summary.rtf b/general/datasets/Pgenratliv_rna_z_0520/summary.rtf new file mode 100644 index 0000000..3ced7f9 --- /dev/null +++ b/general/datasets/Pgenratliv_rna_z_0520/summary.rtf @@ -0,0 +1 @@ +

    This data set was generated as part of the RGAP project funded by NIAAA (R24 AA013162; MPI – Tabakoff, Hoffman, Saba) at the University of Colorado Anschutz Medical Campus. The processing of the RNA-Seq data was also supported by the NIDA Center of Excellence in Omics, Systems Genetics, and the Addictome (P30 DA044223; MPI – Williams, Saba). These data represent the RNA expression levels of Ensembl genes in liver. Ribosomal RNA depleted total RNA was used to generate paired end libraries. Levels were estimated in 45 (version 5) strains of the Hybrid Rat Diversity Panel (HRDP) including 30 HXB/BXH recombinant inbred strain and 15 classic inbred strains. Two to three biological replicates per strain were included in the strain-level means. Male rats were used for all analyses.

    diff --git a/general/datasets/Pgenratliv_rna_z_0520/tissue.rtf b/general/datasets/Pgenratliv_rna_z_0520/tissue.rtf new file mode 100644 index 0000000..117c7a1 --- /dev/null +++ b/general/datasets/Pgenratliv_rna_z_0520/tissue.rtf @@ -0,0 +1 @@ +

    Upon sacrifice, livers were rapidly removed and stored in liquid nitrogen. Livers were stored at -80⁰C until used for RNA extraction. Tissues from the Czech Republic and Japan were shipped on dry ice to the University of Colorado Anschutz Medical Campus for RNA extraction and cDNA library preparation

    diff --git a/general/datasets/PoplarPublish/acknowledgment.rtf b/general/datasets/PoplarPublish/acknowledgment.rtf deleted file mode 100644 index b137fef..0000000 --- a/general/datasets/PoplarPublish/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    We thank L. E. Gunter, M. S. Azam, E. Drewes, N. Farzaneh, L. Liao, E. Moreno, L. Muenter and L. Quamme for data monitoring, collection and image presentation. We also thank anonymous reviewers for their suggestions and revisions in improving the manuscript. This work was supported by the Genome British Columbia Applied Genomics Innovation Program (Project 103BIO) and Genome Canada Large-Scale Applied Research Project (Project 168BIO) funds to R.D.G., J.E., Q.C.B.C., Y.A.E-K., S.D.M. and C.J.D. and by funds within the BioEnergy Science Center, a US Department of Energy Bioenergy Research Facility under contract DE–AC05–00OR22725.

    diff --git a/general/datasets/PoplarPublish/platform.rtf b/general/datasets/PoplarPublish/platform.rtf deleted file mode 100644 index 228a076..0000000 --- a/general/datasets/PoplarPublish/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Illumina iSelect Infinium 34K Populus SNP genotyping array

    diff --git a/general/datasets/PoplarPublish/processing.rtf b/general/datasets/PoplarPublish/processing.rtf deleted file mode 100644 index 9a6b788..0000000 --- a/general/datasets/PoplarPublish/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    http://bioenergycenter.org/besc/gwas/

    diff --git a/general/datasets/PoplarPublish/summary.rtf b/general/datasets/PoplarPublish/summary.rtf deleted file mode 100644 index ab9c38a..0000000 --- a/general/datasets/PoplarPublish/summary.rtf +++ /dev/null @@ -1,8 +0,0 @@ -

    Full article available here.

    - - diff --git a/general/datasets/Poplarpublish/acknowledgment.rtf b/general/datasets/Poplarpublish/acknowledgment.rtf new file mode 100644 index 0000000..b137fef --- /dev/null +++ b/general/datasets/Poplarpublish/acknowledgment.rtf @@ -0,0 +1 @@ +

    We thank L. E. Gunter, M. S. Azam, E. Drewes, N. Farzaneh, L. Liao, E. Moreno, L. Muenter and L. Quamme for data monitoring, collection and image presentation. We also thank anonymous reviewers for their suggestions and revisions in improving the manuscript. This work was supported by the Genome British Columbia Applied Genomics Innovation Program (Project 103BIO) and Genome Canada Large-Scale Applied Research Project (Project 168BIO) funds to R.D.G., J.E., Q.C.B.C., Y.A.E-K., S.D.M. and C.J.D. and by funds within the BioEnergy Science Center, a US Department of Energy Bioenergy Research Facility under contract DE–AC05–00OR22725.

    diff --git a/general/datasets/Poplarpublish/citation.rtf b/general/datasets/Poplarpublish/citation.rtf new file mode 100644 index 0000000..84e4c06 --- /dev/null +++ b/general/datasets/Poplarpublish/citation.rtf @@ -0,0 +1,3 @@ +

    Athena D. McKown1*, Jaroslav Kla´psˇteˇ1,2*, Robert D. Guy1, Armando Geraldes3, Ilga Porth1,4, Jan Hannemann5, Michael Friedmann3, Wellington Muchero6, Gerald A. Tuskan6, J€urgen Ehlting5, Quentin C. B. Cronk3, Yousry A. El-Kassaby1, Shawn D. Mansfield4 and Carl J. Douglas3

    + +

    1Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada; 2Department of Dendrology and Forest Tree Breeding, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague 165 21, Czech Republic; 3Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; 4Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada; 5Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, BC, V8W 3N5, Canada; 6BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

    diff --git a/general/datasets/Poplarpublish/platform.rtf b/general/datasets/Poplarpublish/platform.rtf new file mode 100644 index 0000000..228a076 --- /dev/null +++ b/general/datasets/Poplarpublish/platform.rtf @@ -0,0 +1 @@ +

    Illumina iSelect Infinium 34K Populus SNP genotyping array

    diff --git a/general/datasets/Poplarpublish/processing.rtf b/general/datasets/Poplarpublish/processing.rtf new file mode 100644 index 0000000..9a6b788 --- /dev/null +++ b/general/datasets/Poplarpublish/processing.rtf @@ -0,0 +1 @@ +

    http://bioenergycenter.org/besc/gwas/

    diff --git a/general/datasets/Poplarpublish/summary.rtf b/general/datasets/Poplarpublish/summary.rtf new file mode 100644 index 0000000..ab9c38a --- /dev/null +++ b/general/datasets/Poplarpublish/summary.rtf @@ -0,0 +1,8 @@ +

    Full article available here.

    + + diff --git a/general/datasets/Psu_b6d2f2_0812/experiment-type.rtf b/general/datasets/Psu_b6d2f2_0812/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Psu_b6d2f2_0812/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Psu_b6d2f2_0812/platform.rtf b/general/datasets/Psu_b6d2f2_0812/platform.rtf new file mode 100644 index 0000000..7b362a7 --- /dev/null +++ b/general/datasets/Psu_b6d2f2_0812/platform.rtf @@ -0,0 +1 @@ +

    Affymetrix Mouse Genome 430 2.0 Array. All probe sets represented on the GeneChip Mouse Expression Set 430 are included on the GeneChip Mouse Genome 430 2.0 Array. The sequences from which these probe sets were derived were selected from GenBank«, dbEST, and RefSeq. The sequence clusters were created from the UniGene database (Build 107, June 2002) and then refined by analysis and comparison with the publicly available draft assembly of the mouse genome from the Whitehead Institute for Genome Research (MGSC, April 2002).

    diff --git a/general/datasets/Psu_b6d2f2_0812/summary.rtf b/general/datasets/Psu_b6d2f2_0812/summary.rtf new file mode 100644 index 0000000..f7a3b5d --- /dev/null +++ b/general/datasets/Psu_b6d2f2_0812/summary.rtf @@ -0,0 +1 @@ +

    Summary of DatasetId 153, Name: PSU B6D2F2 Muscle Affy Mouse Genome 430 2.0 (Aug12)

    diff --git a/general/datasets/Psu_b6d2f2_m0812/platform.rtf b/general/datasets/Psu_b6d2f2_m0812/platform.rtf new file mode 100644 index 0000000..7b362a7 --- /dev/null +++ b/general/datasets/Psu_b6d2f2_m0812/platform.rtf @@ -0,0 +1 @@ +

    Affymetrix Mouse Genome 430 2.0 Array. All probe sets represented on the GeneChip Mouse Expression Set 430 are included on the GeneChip Mouse Genome 430 2.0 Array. The sequences from which these probe sets were derived were selected from GenBank«, dbEST, and RefSeq. The sequence clusters were created from the UniGene database (Build 107, June 2002) and then refined by analysis and comparison with the publicly available draft assembly of the mouse genome from the Whitehead Institute for Genome Research (MGSC, April 2002).

    diff --git a/general/datasets/Psu_b6d2f2_m0812/summary.rtf b/general/datasets/Psu_b6d2f2_m0812/summary.rtf new file mode 100644 index 0000000..f7a3b5d --- /dev/null +++ b/general/datasets/Psu_b6d2f2_m0812/summary.rtf @@ -0,0 +1 @@ +

    Summary of DatasetId 153, Name: PSU B6D2F2 Muscle Affy Mouse Genome 430 2.0 (Aug12)

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMet0814/acknowledgment.rtf b/general/datasets/RTI_RCMRC_BXDFecMet0814/acknowledgment.rtf deleted file mode 100644 index 57f0c02..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMet0814/acknowledgment.rtf +++ /dev/null @@ -1,7 +0,0 @@ -

    This work done in collaboration with RTI under a special pilot project grant from the RCMRC Center.

    - -

    1. Dr. Susan Sumner. PI of grant

    - -

    2. Dr. Robert Clarke. Lead investigator on this project

    - -

    3. Surja Dhungana

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMet0814/cases.rtf b/general/datasets/RTI_RCMRC_BXDFecMet0814/cases.rtf deleted file mode 100644 index f06f259..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMet0814/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    All animals are females sacrificed as part of an NIA grant to RW Williams to study effects of diet on aging (longevity)  in the BXD strains. A subset of females were sacrificed at specific ages for tissue harvesting and fecal pelltets from these animals were removed from the large intestine by K. Mozhui and snap frozen in liquid nitrogen prior to shipping to RTI.

    - -

    Three large data sets in GeneNetwork with a common set of 4091 metabolite entries per data set (high fat, chow diet, and combined) and for as many as 18 strains.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMet0814/experiment-design.rtf b/general/datasets/RTI_RCMRC_BXDFecMet0814/experiment-design.rtf deleted file mode 100644 index 4ee0a7b..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMet0814/experiment-design.rtf +++ /dev/null @@ -1,17 +0,0 @@ -

    Sample Preparation Summary

    - - - -

    Instruments for LC-MS Analysis
    -Waters SYNAPT G2 QTOF with Acquity UPLC (Waters Corporation, MA)
    -MS data collected over 50-1000 m/z was collected in the positive and negative ion modes.

    - -

    UPLC-MS Solutions(Reversed Phase)
    -Mobile Phase A (Reversed-Phase)—Water with 0.1% Formic Acid
    -Mobile Phase B (Reversed-Phase)—Methanol with 0.1% Formic Acid
    -Column: Waters Acquity BEH HSS T3, 2.1 x 100 mm at 50 °C

    - -

     

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMet0814/notes.rtf b/general/datasets/RTI_RCMRC_BXDFecMet0814/notes.rtf deleted file mode 100644 index 8da96fa..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMet0814/notes.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    For symbols of metabolites if the differences were greater than .0003 proportional m/z units (m/z difference divided by m/z value) then the symbol was labeled "circa" after the atomic composition. 

    - -

    For description of metabolites if the proportional difference of the m/z ratio between Evan's EPFL Polar metabolite assignments and RTI assignments was very low (<.0001 proportional m/z units) then the symbol and description was taken directly from Evan's metabolite file, but if differences were between 0.0001 and about .0003 proportional m/z units then the descriptions were labeled "Putative" . If the differences were greater than .0003 units, then the descriptions were labeled "Provisional". For example, "Provisional assignment. Vanilpyruvic acid is a catecholamine metabolite and precursor to vanilactic acid. Accumulation in urine is indicative of Aromatic L-aminoacid decarboxylase deficiency (PMID 16288991)." 

    - -

     by Rob Williams and Arthur Centeno, Aug 25, 2014

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMet0814/platform.rtf b/general/datasets/RTI_RCMRC_BXDFecMet0814/platform.rtf deleted file mode 100644 index 072286a..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMet0814/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This is LC-MS data. Analysis exploited a Chenomx library at RTI with many updated metabolite identifications from the standard Chenomx library. Note that a single m/z ratio can correspond to multiple metabolites.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMet0814/summary.rtf b/general/datasets/RTI_RCMRC_BXDFecMet0814/summary.rtf deleted file mode 100644 index 10218c7..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMet0814/summary.rtf +++ /dev/null @@ -1,11 +0,0 @@ -

    The goal of this project is to study expression of a large set of defined and undefined metabolites in fecal samples from a genetically diverse set of BXD mouse strains (females) raised either on a high fat diet or low fat diet. Samples were taken from animals at sacrifices directly from the large intestine.

    - -

    Aim: Effect of genetics and diet on fecal metabolomics

    - -

    Use UPLC-MS Broad Spectrum Metabolomics to study:

    - - - -

    To capture the most signal, all samples were analyzed under positive and negative ion mode using a reversed-phase separation.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMet0814/tissue.rtf b/general/datasets/RTI_RCMRC_BXDFecMet0814/tissue.rtf deleted file mode 100644 index 3a26107..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMet0814/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Fresh fecal pellets taken directly at dissection from the lower GI tract by Dr. Khyobeni Mozhui.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetHF0814/acknowledgment.rtf b/general/datasets/RTI_RCMRC_BXDFecMetHF0814/acknowledgment.rtf deleted file mode 100644 index 57f0c02..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetHF0814/acknowledgment.rtf +++ /dev/null @@ -1,7 +0,0 @@ -

    This work done in collaboration with RTI under a special pilot project grant from the RCMRC Center.

    - -

    1. Dr. Susan Sumner. PI of grant

    - -

    2. Dr. Robert Clarke. Lead investigator on this project

    - -

    3. Surja Dhungana

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetHF0814/cases.rtf b/general/datasets/RTI_RCMRC_BXDFecMetHF0814/cases.rtf deleted file mode 100644 index f06f259..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetHF0814/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    All animals are females sacrificed as part of an NIA grant to RW Williams to study effects of diet on aging (longevity)  in the BXD strains. A subset of females were sacrificed at specific ages for tissue harvesting and fecal pelltets from these animals were removed from the large intestine by K. Mozhui and snap frozen in liquid nitrogen prior to shipping to RTI.

    - -

    Three large data sets in GeneNetwork with a common set of 4091 metabolite entries per data set (high fat, chow diet, and combined) and for as many as 18 strains.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetHF0814/experiment-design.rtf b/general/datasets/RTI_RCMRC_BXDFecMetHF0814/experiment-design.rtf deleted file mode 100644 index 4ee0a7b..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetHF0814/experiment-design.rtf +++ /dev/null @@ -1,17 +0,0 @@ -

    Sample Preparation Summary

    - - - -

    Instruments for LC-MS Analysis
    -Waters SYNAPT G2 QTOF with Acquity UPLC (Waters Corporation, MA)
    -MS data collected over 50-1000 m/z was collected in the positive and negative ion modes.

    - -

    UPLC-MS Solutions(Reversed Phase)
    -Mobile Phase A (Reversed-Phase)—Water with 0.1% Formic Acid
    -Mobile Phase B (Reversed-Phase)—Methanol with 0.1% Formic Acid
    -Column: Waters Acquity BEH HSS T3, 2.1 x 100 mm at 50 °C

    - -

     

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetHF0814/notes.rtf b/general/datasets/RTI_RCMRC_BXDFecMetHF0814/notes.rtf deleted file mode 100644 index 8da96fa..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetHF0814/notes.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    For symbols of metabolites if the differences were greater than .0003 proportional m/z units (m/z difference divided by m/z value) then the symbol was labeled "circa" after the atomic composition. 

    - -

    For description of metabolites if the proportional difference of the m/z ratio between Evan's EPFL Polar metabolite assignments and RTI assignments was very low (<.0001 proportional m/z units) then the symbol and description was taken directly from Evan's metabolite file, but if differences were between 0.0001 and about .0003 proportional m/z units then the descriptions were labeled "Putative" . If the differences were greater than .0003 units, then the descriptions were labeled "Provisional". For example, "Provisional assignment. Vanilpyruvic acid is a catecholamine metabolite and precursor to vanilactic acid. Accumulation in urine is indicative of Aromatic L-aminoacid decarboxylase deficiency (PMID 16288991)." 

    - -

     by Rob Williams and Arthur Centeno, Aug 25, 2014

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetHF0814/platform.rtf b/general/datasets/RTI_RCMRC_BXDFecMetHF0814/platform.rtf deleted file mode 100644 index 072286a..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetHF0814/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This is LC-MS data. Analysis exploited a Chenomx library at RTI with many updated metabolite identifications from the standard Chenomx library. Note that a single m/z ratio can correspond to multiple metabolites.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetHF0814/summary.rtf b/general/datasets/RTI_RCMRC_BXDFecMetHF0814/summary.rtf deleted file mode 100644 index 10218c7..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetHF0814/summary.rtf +++ /dev/null @@ -1,11 +0,0 @@ -

    The goal of this project is to study expression of a large set of defined and undefined metabolites in fecal samples from a genetically diverse set of BXD mouse strains (females) raised either on a high fat diet or low fat diet. Samples were taken from animals at sacrifices directly from the large intestine.

    - -

    Aim: Effect of genetics and diet on fecal metabolomics

    - -

    Use UPLC-MS Broad Spectrum Metabolomics to study:

    - - - -

    To capture the most signal, all samples were analyzed under positive and negative ion mode using a reversed-phase separation.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetHF0814/tissue.rtf b/general/datasets/RTI_RCMRC_BXDFecMetHF0814/tissue.rtf deleted file mode 100644 index 3a26107..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetHF0814/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Fresh fecal pellets taken directly at dissection from the lower GI tract by Dr. Khyobeni Mozhui.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/acknowledgment.rtf b/general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/acknowledgment.rtf deleted file mode 100644 index 57f0c02..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/acknowledgment.rtf +++ /dev/null @@ -1,7 +0,0 @@ -

    This work done in collaboration with RTI under a special pilot project grant from the RCMRC Center.

    - -

    1. Dr. Susan Sumner. PI of grant

    - -

    2. Dr. Robert Clarke. Lead investigator on this project

    - -

    3. Surja Dhungana

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/cases.rtf b/general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/cases.rtf deleted file mode 100644 index f06f259..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    All animals are females sacrificed as part of an NIA grant to RW Williams to study effects of diet on aging (longevity)  in the BXD strains. A subset of females were sacrificed at specific ages for tissue harvesting and fecal pelltets from these animals were removed from the large intestine by K. Mozhui and snap frozen in liquid nitrogen prior to shipping to RTI.

    - -

    Three large data sets in GeneNetwork with a common set of 4091 metabolite entries per data set (high fat, chow diet, and combined) and for as many as 18 strains.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/experiment-design.rtf b/general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/experiment-design.rtf deleted file mode 100644 index 4ee0a7b..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/experiment-design.rtf +++ /dev/null @@ -1,17 +0,0 @@ -

    Sample Preparation Summary

    - - - -

    Instruments for LC-MS Analysis
    -Waters SYNAPT G2 QTOF with Acquity UPLC (Waters Corporation, MA)
    -MS data collected over 50-1000 m/z was collected in the positive and negative ion modes.

    - -

    UPLC-MS Solutions(Reversed Phase)
    -Mobile Phase A (Reversed-Phase)—Water with 0.1% Formic Acid
    -Mobile Phase B (Reversed-Phase)—Methanol with 0.1% Formic Acid
    -Column: Waters Acquity BEH HSS T3, 2.1 x 100 mm at 50 °C

    - -

     

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/notes.rtf b/general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/notes.rtf deleted file mode 100644 index 8da96fa..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/notes.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    For symbols of metabolites if the differences were greater than .0003 proportional m/z units (m/z difference divided by m/z value) then the symbol was labeled "circa" after the atomic composition. 

    - -

    For description of metabolites if the proportional difference of the m/z ratio between Evan's EPFL Polar metabolite assignments and RTI assignments was very low (<.0001 proportional m/z units) then the symbol and description was taken directly from Evan's metabolite file, but if differences were between 0.0001 and about .0003 proportional m/z units then the descriptions were labeled "Putative" . If the differences were greater than .0003 units, then the descriptions were labeled "Provisional". For example, "Provisional assignment. Vanilpyruvic acid is a catecholamine metabolite and precursor to vanilactic acid. Accumulation in urine is indicative of Aromatic L-aminoacid decarboxylase deficiency (PMID 16288991)." 

    - -

     by Rob Williams and Arthur Centeno, Aug 25, 2014

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/platform.rtf b/general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/platform.rtf deleted file mode 100644 index 072286a..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This is LC-MS data. Analysis exploited a Chenomx library at RTI with many updated metabolite identifications from the standard Chenomx library. Note that a single m/z ratio can correspond to multiple metabolites.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/summary.rtf b/general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/summary.rtf deleted file mode 100644 index 10218c7..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/summary.rtf +++ /dev/null @@ -1,11 +0,0 @@ -

    The goal of this project is to study expression of a large set of defined and undefined metabolites in fecal samples from a genetically diverse set of BXD mouse strains (females) raised either on a high fat diet or low fat diet. Samples were taken from animals at sacrifices directly from the large intestine.

    - -

    Aim: Effect of genetics and diet on fecal metabolomics

    - -

    Use UPLC-MS Broad Spectrum Metabolomics to study:

    - - - -

    To capture the most signal, all samples were analyzed under positive and negative ion mode using a reversed-phase separation.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/tissue.rtf b/general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/tissue.rtf deleted file mode 100644 index 3a26107..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetHFlog0814/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Fresh fecal pellets taken directly at dissection from the lower GI tract by Dr. Khyobeni Mozhui.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetLF0814/acknowledgment.rtf b/general/datasets/RTI_RCMRC_BXDFecMetLF0814/acknowledgment.rtf deleted file mode 100644 index 57f0c02..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetLF0814/acknowledgment.rtf +++ /dev/null @@ -1,7 +0,0 @@ -

    This work done in collaboration with RTI under a special pilot project grant from the RCMRC Center.

    - -

    1. Dr. Susan Sumner. PI of grant

    - -

    2. Dr. Robert Clarke. Lead investigator on this project

    - -

    3. Surja Dhungana

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetLF0814/cases.rtf b/general/datasets/RTI_RCMRC_BXDFecMetLF0814/cases.rtf deleted file mode 100644 index f06f259..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetLF0814/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    All animals are females sacrificed as part of an NIA grant to RW Williams to study effects of diet on aging (longevity)  in the BXD strains. A subset of females were sacrificed at specific ages for tissue harvesting and fecal pelltets from these animals were removed from the large intestine by K. Mozhui and snap frozen in liquid nitrogen prior to shipping to RTI.

    - -

    Three large data sets in GeneNetwork with a common set of 4091 metabolite entries per data set (high fat, chow diet, and combined) and for as many as 18 strains.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetLF0814/experiment-design.rtf b/general/datasets/RTI_RCMRC_BXDFecMetLF0814/experiment-design.rtf deleted file mode 100644 index 4ee0a7b..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetLF0814/experiment-design.rtf +++ /dev/null @@ -1,17 +0,0 @@ -

    Sample Preparation Summary

    - - - -

    Instruments for LC-MS Analysis
    -Waters SYNAPT G2 QTOF with Acquity UPLC (Waters Corporation, MA)
    -MS data collected over 50-1000 m/z was collected in the positive and negative ion modes.

    - -

    UPLC-MS Solutions(Reversed Phase)
    -Mobile Phase A (Reversed-Phase)—Water with 0.1% Formic Acid
    -Mobile Phase B (Reversed-Phase)—Methanol with 0.1% Formic Acid
    -Column: Waters Acquity BEH HSS T3, 2.1 x 100 mm at 50 °C

    - -

     

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetLF0814/notes.rtf b/general/datasets/RTI_RCMRC_BXDFecMetLF0814/notes.rtf deleted file mode 100644 index 8da96fa..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetLF0814/notes.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    For symbols of metabolites if the differences were greater than .0003 proportional m/z units (m/z difference divided by m/z value) then the symbol was labeled "circa" after the atomic composition. 

    - -

    For description of metabolites if the proportional difference of the m/z ratio between Evan's EPFL Polar metabolite assignments and RTI assignments was very low (<.0001 proportional m/z units) then the symbol and description was taken directly from Evan's metabolite file, but if differences were between 0.0001 and about .0003 proportional m/z units then the descriptions were labeled "Putative" . If the differences were greater than .0003 units, then the descriptions were labeled "Provisional". For example, "Provisional assignment. Vanilpyruvic acid is a catecholamine metabolite and precursor to vanilactic acid. Accumulation in urine is indicative of Aromatic L-aminoacid decarboxylase deficiency (PMID 16288991)." 

    - -

     by Rob Williams and Arthur Centeno, Aug 25, 2014

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetLF0814/platform.rtf b/general/datasets/RTI_RCMRC_BXDFecMetLF0814/platform.rtf deleted file mode 100644 index 072286a..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetLF0814/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This is LC-MS data. Analysis exploited a Chenomx library at RTI with many updated metabolite identifications from the standard Chenomx library. Note that a single m/z ratio can correspond to multiple metabolites.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetLF0814/summary.rtf b/general/datasets/RTI_RCMRC_BXDFecMetLF0814/summary.rtf deleted file mode 100644 index 10218c7..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetLF0814/summary.rtf +++ /dev/null @@ -1,11 +0,0 @@ -

    The goal of this project is to study expression of a large set of defined and undefined metabolites in fecal samples from a genetically diverse set of BXD mouse strains (females) raised either on a high fat diet or low fat diet. Samples were taken from animals at sacrifices directly from the large intestine.

    - -

    Aim: Effect of genetics and diet on fecal metabolomics

    - -

    Use UPLC-MS Broad Spectrum Metabolomics to study:

    - - - -

    To capture the most signal, all samples were analyzed under positive and negative ion mode using a reversed-phase separation.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetLF0814/tissue.rtf b/general/datasets/RTI_RCMRC_BXDFecMetLF0814/tissue.rtf deleted file mode 100644 index 3a26107..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetLF0814/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Fresh fecal pellets taken directly at dissection from the lower GI tract by Dr. Khyobeni Mozhui.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/acknowledgment.rtf b/general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/acknowledgment.rtf deleted file mode 100644 index 57f0c02..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/acknowledgment.rtf +++ /dev/null @@ -1,7 +0,0 @@ -

    This work done in collaboration with RTI under a special pilot project grant from the RCMRC Center.

    - -

    1. Dr. Susan Sumner. PI of grant

    - -

    2. Dr. Robert Clarke. Lead investigator on this project

    - -

    3. Surja Dhungana

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/cases.rtf b/general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/cases.rtf deleted file mode 100644 index f06f259..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    All animals are females sacrificed as part of an NIA grant to RW Williams to study effects of diet on aging (longevity)  in the BXD strains. A subset of females were sacrificed at specific ages for tissue harvesting and fecal pelltets from these animals were removed from the large intestine by K. Mozhui and snap frozen in liquid nitrogen prior to shipping to RTI.

    - -

    Three large data sets in GeneNetwork with a common set of 4091 metabolite entries per data set (high fat, chow diet, and combined) and for as many as 18 strains.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/experiment-design.rtf b/general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/experiment-design.rtf deleted file mode 100644 index 4ee0a7b..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/experiment-design.rtf +++ /dev/null @@ -1,17 +0,0 @@ -

    Sample Preparation Summary

    - - - -

    Instruments for LC-MS Analysis
    -Waters SYNAPT G2 QTOF with Acquity UPLC (Waters Corporation, MA)
    -MS data collected over 50-1000 m/z was collected in the positive and negative ion modes.

    - -

    UPLC-MS Solutions(Reversed Phase)
    -Mobile Phase A (Reversed-Phase)—Water with 0.1% Formic Acid
    -Mobile Phase B (Reversed-Phase)—Methanol with 0.1% Formic Acid
    -Column: Waters Acquity BEH HSS T3, 2.1 x 100 mm at 50 °C

    - -

     

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/notes.rtf b/general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/notes.rtf deleted file mode 100644 index 8da96fa..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/notes.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    For symbols of metabolites if the differences were greater than .0003 proportional m/z units (m/z difference divided by m/z value) then the symbol was labeled "circa" after the atomic composition. 

    - -

    For description of metabolites if the proportional difference of the m/z ratio between Evan's EPFL Polar metabolite assignments and RTI assignments was very low (<.0001 proportional m/z units) then the symbol and description was taken directly from Evan's metabolite file, but if differences were between 0.0001 and about .0003 proportional m/z units then the descriptions were labeled "Putative" . If the differences were greater than .0003 units, then the descriptions were labeled "Provisional". For example, "Provisional assignment. Vanilpyruvic acid is a catecholamine metabolite and precursor to vanilactic acid. Accumulation in urine is indicative of Aromatic L-aminoacid decarboxylase deficiency (PMID 16288991)." 

    - -

     by Rob Williams and Arthur Centeno, Aug 25, 2014

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/platform.rtf b/general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/platform.rtf deleted file mode 100644 index 072286a..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This is LC-MS data. Analysis exploited a Chenomx library at RTI with many updated metabolite identifications from the standard Chenomx library. Note that a single m/z ratio can correspond to multiple metabolites.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/summary.rtf b/general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/summary.rtf deleted file mode 100644 index 10218c7..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/summary.rtf +++ /dev/null @@ -1,11 +0,0 @@ -

    The goal of this project is to study expression of a large set of defined and undefined metabolites in fecal samples from a genetically diverse set of BXD mouse strains (females) raised either on a high fat diet or low fat diet. Samples were taken from animals at sacrifices directly from the large intestine.

    - -

    Aim: Effect of genetics and diet on fecal metabolomics

    - -

    Use UPLC-MS Broad Spectrum Metabolomics to study:

    - - - -

    To capture the most signal, all samples were analyzed under positive and negative ion mode using a reversed-phase separation.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/tissue.rtf b/general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/tissue.rtf deleted file mode 100644 index 3a26107..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetLFlog0814/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Fresh fecal pellets taken directly at dissection from the lower GI tract by Dr. Khyobeni Mozhui.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetlog0814/acknowledgment.rtf b/general/datasets/RTI_RCMRC_BXDFecMetlog0814/acknowledgment.rtf deleted file mode 100644 index 57f0c02..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetlog0814/acknowledgment.rtf +++ /dev/null @@ -1,7 +0,0 @@ -

    This work done in collaboration with RTI under a special pilot project grant from the RCMRC Center.

    - -

    1. Dr. Susan Sumner. PI of grant

    - -

    2. Dr. Robert Clarke. Lead investigator on this project

    - -

    3. Surja Dhungana

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetlog0814/cases.rtf b/general/datasets/RTI_RCMRC_BXDFecMetlog0814/cases.rtf deleted file mode 100644 index f06f259..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetlog0814/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    All animals are females sacrificed as part of an NIA grant to RW Williams to study effects of diet on aging (longevity)  in the BXD strains. A subset of females were sacrificed at specific ages for tissue harvesting and fecal pelltets from these animals were removed from the large intestine by K. Mozhui and snap frozen in liquid nitrogen prior to shipping to RTI.

    - -

    Three large data sets in GeneNetwork with a common set of 4091 metabolite entries per data set (high fat, chow diet, and combined) and for as many as 18 strains.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetlog0814/experiment-design.rtf b/general/datasets/RTI_RCMRC_BXDFecMetlog0814/experiment-design.rtf deleted file mode 100644 index 4ee0a7b..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetlog0814/experiment-design.rtf +++ /dev/null @@ -1,17 +0,0 @@ -

    Sample Preparation Summary

    - - - -

    Instruments for LC-MS Analysis
    -Waters SYNAPT G2 QTOF with Acquity UPLC (Waters Corporation, MA)
    -MS data collected over 50-1000 m/z was collected in the positive and negative ion modes.

    - -

    UPLC-MS Solutions(Reversed Phase)
    -Mobile Phase A (Reversed-Phase)—Water with 0.1% Formic Acid
    -Mobile Phase B (Reversed-Phase)—Methanol with 0.1% Formic Acid
    -Column: Waters Acquity BEH HSS T3, 2.1 x 100 mm at 50 °C

    - -

     

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetlog0814/notes.rtf b/general/datasets/RTI_RCMRC_BXDFecMetlog0814/notes.rtf deleted file mode 100644 index 8da96fa..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetlog0814/notes.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    For symbols of metabolites if the differences were greater than .0003 proportional m/z units (m/z difference divided by m/z value) then the symbol was labeled "circa" after the atomic composition. 

    - -

    For description of metabolites if the proportional difference of the m/z ratio between Evan's EPFL Polar metabolite assignments and RTI assignments was very low (<.0001 proportional m/z units) then the symbol and description was taken directly from Evan's metabolite file, but if differences were between 0.0001 and about .0003 proportional m/z units then the descriptions were labeled "Putative" . If the differences were greater than .0003 units, then the descriptions were labeled "Provisional". For example, "Provisional assignment. Vanilpyruvic acid is a catecholamine metabolite and precursor to vanilactic acid. Accumulation in urine is indicative of Aromatic L-aminoacid decarboxylase deficiency (PMID 16288991)." 

    - -

     by Rob Williams and Arthur Centeno, Aug 25, 2014

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetlog0814/platform.rtf b/general/datasets/RTI_RCMRC_BXDFecMetlog0814/platform.rtf deleted file mode 100644 index 072286a..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetlog0814/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This is LC-MS data. Analysis exploited a Chenomx library at RTI with many updated metabolite identifications from the standard Chenomx library. Note that a single m/z ratio can correspond to multiple metabolites.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetlog0814/summary.rtf b/general/datasets/RTI_RCMRC_BXDFecMetlog0814/summary.rtf deleted file mode 100644 index 10218c7..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetlog0814/summary.rtf +++ /dev/null @@ -1,11 +0,0 @@ -

    The goal of this project is to study expression of a large set of defined and undefined metabolites in fecal samples from a genetically diverse set of BXD mouse strains (females) raised either on a high fat diet or low fat diet. Samples were taken from animals at sacrifices directly from the large intestine.

    - -

    Aim: Effect of genetics and diet on fecal metabolomics

    - -

    Use UPLC-MS Broad Spectrum Metabolomics to study:

    - - - -

    To capture the most signal, all samples were analyzed under positive and negative ion mode using a reversed-phase separation.

    diff --git a/general/datasets/RTI_RCMRC_BXDFecMetlog0814/tissue.rtf b/general/datasets/RTI_RCMRC_BXDFecMetlog0814/tissue.rtf deleted file mode 100644 index 3a26107..0000000 --- a/general/datasets/RTI_RCMRC_BXDFecMetlog0814/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Fresh fecal pellets taken directly at dissection from the lower GI tract by Dr. Khyobeni Mozhui.

    diff --git a/general/datasets/Riken_Wu_BXD_CDHF_WAdip_0920/experiment-design.rtf b/general/datasets/Riken_Wu_BXD_CDHF_WAdip_0920/experiment-design.rtf deleted file mode 100644 index 6bd1793..0000000 --- a/general/datasets/Riken_Wu_BXD_CDHF_WAdip_0920/experiment-design.rtf +++ /dev/null @@ -1,23 +0,0 @@ -

    Sample preparation for proteomic analysis

    - -

    Proteins were extracted from adipose tissue samples in lysis buffer containing 12 mM sodium deoxycholate, 12 mM sodium N-dodecanoylsarcosinate, and 100 mM Tris.Cl pH 9.0, with cOmplete, mini, EDTA-free Protease Inhibitor Cocktail (Roche, Switzerland), using homogenization with a glass dounce followed by sonication for 15 minutes using a Bioruptor water bath sonicator on high power, with cycles of one min sonication followed by one min rest (Cosmo Bio Co. Ltd., Japan). The samples were centrifuged at 18,000 x g, for 20 min at 4 oC and the supernatant fractions were taken. Protein concentrations were determined using a Pierce BCA Assay Kit (Thermo Fisher Scientific, USA), according to manufacturer’s instructions. Samples were prepared for liquid chromatography tandem mass spectrometry (LC-M/MS) using the Phase Transfer Surfactant Method (Masuda et al., 2008; Masuda et al., 2009), with minor modifications as previously described (Mostafa et al., 2020). Afterwards, dried Lys-C/tryptic peptides were dissolved in 0.1% TFA and desalted using MonoSpin C18 columns (GL Sciences Inc., Japan). Peptides were eluted from C18 columns in 0.1% (v/v) TFA in 50% (v/v) acetonitrile and dried in a centrifugal vacuum concentrator. Tryptic peptides were dissolved in 0.1% (v/v) formic acid, 3% (v/v) acetonitrile in water for MS analysis and the peptide concentrations were determined using a Pierce Quantitative Colorimetric Peptide Assay Kit (Thermo Fisher). A portion of the peptides from the samples were pooled and fractionated using a Pierce High pH Reversed-Phase (HPRP) Peptide Fractionation Kit (Thermo Fisher) to generate a spectral library.

    - -

    MS measurement

    - -

    Samples were measured using a Q Exactive Plus Orbitrap LC–MS/MS System (Thermo Fisher), equipped with a Nanospray Flex ion source. Peptides were separated on 3-µm particle, 75-µm inner diameter, 12-cm filling length C18 columns (Nikkyo Technos Co., Ltd., Japan). For each sample, 600 ng was injected and the samples were measured with data-independent acquisition (DIA).  For HPRP fractions, 450 ng was injected and the samples were measured with data-dependent acquisition (DDA). LC-MS/MS conditions were as previously described (Mostafa et al., 2020), except for DDA the first mass for MS2 scans was not fixed and for DIA the AGC target of DIA segments was 3e6.

    - -

    Protein identification and quantification

    - -

    Raw files from DDA measurements were searched against a mouse-specific database (uniprot-reviewed_Mus_musculus_10090_.fasta) using Proteome Discoverer v2.4 software (Thermo Fisher). Filtered output was used to generate a sample-specific spectral library using Spectronaut software (Biognosys, Switzerland). Raw files from DIA measurements were used for quantitative data extraction with the generated spectral library, as previously described (Mostafa et al., 2020). FDR was estimated with the mProphet approach (Reiter et al., 2011) and set to 0.01 at both peptide precursor level and protein level (Rosenberger et al., 2017). 

    - -

    References

    - -

    Masuda, T., Tomita, M., and Ishihama, Y. (2008) Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res7, 731-740.

    - -

    Masuda, T., Saito, N., Tomita, M., and Ishihama, Y. (2009) Unbiased quantification of Escherichia coli membrane proteome using phase transfer surfactants. Mol. Cell. Proteomics 8, 2770-2777.

    - -

    Mostafa, D., Yanagiya, A., Georgiadou, E., Wu, Y., Stylianides, T., Rutter, G. A., Suzuki, T., & Yamamoto, T. (2020). Loss of β-cell identity and diabetic phenotype in mice caused by disruption of CNOT3-dependent mRNA deadenylation. Commun. Biol. 3, 476.

    - -

    Reiter, L., Rinner, O., Picotti, P., Hüttenhain, R., Beck, M., Hengartner, M. O., and Aebersold, R. (2011) mProphet: automated data processing and statistical validation for large scale SRM experiments. Nat. Methods 8, 430–435.

    - -

    Rosenberger, G., Bludau, I., Schmitt, U., Heusel, M., Hunter, C. L., Liu, Y., MacCoss, M. J., MacLean, B. X., Nesvizhskii, A. I., Pedrioli, P. G. A., Reiter, L., Röst, H. L., Tate, S., Ting, Y. S., Collins, B. C., and Aebersold, R. (2017) Statistical control of peptide and protein error rates in large-scale targeted data-independent acquisition analyses. Nat. Methods 14, 921–927.

    diff --git a/general/datasets/Riken_Wu_BXD_CDHF_WAdip_0920/specifics.rtf b/general/datasets/Riken_Wu_BXD_CDHF_WAdip_0920/specifics.rtf deleted file mode 100644 index 68167de..0000000 --- a/general/datasets/Riken_Wu_BXD_CDHF_WAdip_0920/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Riken-Wu BXD CD-HF White Adipose Proteome (Sep20) \ No newline at end of file diff --git a/general/datasets/Riken_Wu_BXD_CD_WAdip_0920/experiment-design.rtf b/general/datasets/Riken_Wu_BXD_CD_WAdip_0920/experiment-design.rtf deleted file mode 100644 index 6bd1793..0000000 --- a/general/datasets/Riken_Wu_BXD_CD_WAdip_0920/experiment-design.rtf +++ /dev/null @@ -1,23 +0,0 @@ -

    Sample preparation for proteomic analysis

    - -

    Proteins were extracted from adipose tissue samples in lysis buffer containing 12 mM sodium deoxycholate, 12 mM sodium N-dodecanoylsarcosinate, and 100 mM Tris.Cl pH 9.0, with cOmplete, mini, EDTA-free Protease Inhibitor Cocktail (Roche, Switzerland), using homogenization with a glass dounce followed by sonication for 15 minutes using a Bioruptor water bath sonicator on high power, with cycles of one min sonication followed by one min rest (Cosmo Bio Co. Ltd., Japan). The samples were centrifuged at 18,000 x g, for 20 min at 4 oC and the supernatant fractions were taken. Protein concentrations were determined using a Pierce BCA Assay Kit (Thermo Fisher Scientific, USA), according to manufacturer’s instructions. Samples were prepared for liquid chromatography tandem mass spectrometry (LC-M/MS) using the Phase Transfer Surfactant Method (Masuda et al., 2008; Masuda et al., 2009), with minor modifications as previously described (Mostafa et al., 2020). Afterwards, dried Lys-C/tryptic peptides were dissolved in 0.1% TFA and desalted using MonoSpin C18 columns (GL Sciences Inc., Japan). Peptides were eluted from C18 columns in 0.1% (v/v) TFA in 50% (v/v) acetonitrile and dried in a centrifugal vacuum concentrator. Tryptic peptides were dissolved in 0.1% (v/v) formic acid, 3% (v/v) acetonitrile in water for MS analysis and the peptide concentrations were determined using a Pierce Quantitative Colorimetric Peptide Assay Kit (Thermo Fisher). A portion of the peptides from the samples were pooled and fractionated using a Pierce High pH Reversed-Phase (HPRP) Peptide Fractionation Kit (Thermo Fisher) to generate a spectral library.

    - -

    MS measurement

    - -

    Samples were measured using a Q Exactive Plus Orbitrap LC–MS/MS System (Thermo Fisher), equipped with a Nanospray Flex ion source. Peptides were separated on 3-µm particle, 75-µm inner diameter, 12-cm filling length C18 columns (Nikkyo Technos Co., Ltd., Japan). For each sample, 600 ng was injected and the samples were measured with data-independent acquisition (DIA).  For HPRP fractions, 450 ng was injected and the samples were measured with data-dependent acquisition (DDA). LC-MS/MS conditions were as previously described (Mostafa et al., 2020), except for DDA the first mass for MS2 scans was not fixed and for DIA the AGC target of DIA segments was 3e6.

    - -

    Protein identification and quantification

    - -

    Raw files from DDA measurements were searched against a mouse-specific database (uniprot-reviewed_Mus_musculus_10090_.fasta) using Proteome Discoverer v2.4 software (Thermo Fisher). Filtered output was used to generate a sample-specific spectral library using Spectronaut software (Biognosys, Switzerland). Raw files from DIA measurements were used for quantitative data extraction with the generated spectral library, as previously described (Mostafa et al., 2020). FDR was estimated with the mProphet approach (Reiter et al., 2011) and set to 0.01 at both peptide precursor level and protein level (Rosenberger et al., 2017). 

    - -

    References

    - -

    Masuda, T., Tomita, M., and Ishihama, Y. (2008) Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res7, 731-740.

    - -

    Masuda, T., Saito, N., Tomita, M., and Ishihama, Y. (2009) Unbiased quantification of Escherichia coli membrane proteome using phase transfer surfactants. Mol. Cell. Proteomics 8, 2770-2777.

    - -

    Mostafa, D., Yanagiya, A., Georgiadou, E., Wu, Y., Stylianides, T., Rutter, G. A., Suzuki, T., & Yamamoto, T. (2020). Loss of β-cell identity and diabetic phenotype in mice caused by disruption of CNOT3-dependent mRNA deadenylation. Commun. Biol. 3, 476.

    - -

    Reiter, L., Rinner, O., Picotti, P., Hüttenhain, R., Beck, M., Hengartner, M. O., and Aebersold, R. (2011) mProphet: automated data processing and statistical validation for large scale SRM experiments. Nat. Methods 8, 430–435.

    - -

    Rosenberger, G., Bludau, I., Schmitt, U., Heusel, M., Hunter, C. L., Liu, Y., MacCoss, M. J., MacLean, B. X., Nesvizhskii, A. I., Pedrioli, P. G. A., Reiter, L., Röst, H. L., Tate, S., Ting, Y. S., Collins, B. C., and Aebersold, R. (2017) Statistical control of peptide and protein error rates in large-scale targeted data-independent acquisition analyses. Nat. Methods 14, 921–927.

    diff --git a/general/datasets/Riken_Wu_BXD_CD_WAdip_0920/specifics.rtf b/general/datasets/Riken_Wu_BXD_CD_WAdip_0920/specifics.rtf deleted file mode 100644 index 04d0771..0000000 --- a/general/datasets/Riken_Wu_BXD_CD_WAdip_0920/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -BXD CD White Adipose Proteome (Sep20) \ No newline at end of file diff --git a/general/datasets/Riken_Wu_BXD_HF_WAdip_0920/experiment-design.rtf b/general/datasets/Riken_Wu_BXD_HF_WAdip_0920/experiment-design.rtf deleted file mode 100644 index 6bd1793..0000000 --- a/general/datasets/Riken_Wu_BXD_HF_WAdip_0920/experiment-design.rtf +++ /dev/null @@ -1,23 +0,0 @@ -

    Sample preparation for proteomic analysis

    - -

    Proteins were extracted from adipose tissue samples in lysis buffer containing 12 mM sodium deoxycholate, 12 mM sodium N-dodecanoylsarcosinate, and 100 mM Tris.Cl pH 9.0, with cOmplete, mini, EDTA-free Protease Inhibitor Cocktail (Roche, Switzerland), using homogenization with a glass dounce followed by sonication for 15 minutes using a Bioruptor water bath sonicator on high power, with cycles of one min sonication followed by one min rest (Cosmo Bio Co. Ltd., Japan). The samples were centrifuged at 18,000 x g, for 20 min at 4 oC and the supernatant fractions were taken. Protein concentrations were determined using a Pierce BCA Assay Kit (Thermo Fisher Scientific, USA), according to manufacturer’s instructions. Samples were prepared for liquid chromatography tandem mass spectrometry (LC-M/MS) using the Phase Transfer Surfactant Method (Masuda et al., 2008; Masuda et al., 2009), with minor modifications as previously described (Mostafa et al., 2020). Afterwards, dried Lys-C/tryptic peptides were dissolved in 0.1% TFA and desalted using MonoSpin C18 columns (GL Sciences Inc., Japan). Peptides were eluted from C18 columns in 0.1% (v/v) TFA in 50% (v/v) acetonitrile and dried in a centrifugal vacuum concentrator. Tryptic peptides were dissolved in 0.1% (v/v) formic acid, 3% (v/v) acetonitrile in water for MS analysis and the peptide concentrations were determined using a Pierce Quantitative Colorimetric Peptide Assay Kit (Thermo Fisher). A portion of the peptides from the samples were pooled and fractionated using a Pierce High pH Reversed-Phase (HPRP) Peptide Fractionation Kit (Thermo Fisher) to generate a spectral library.

    - -

    MS measurement

    - -

    Samples were measured using a Q Exactive Plus Orbitrap LC–MS/MS System (Thermo Fisher), equipped with a Nanospray Flex ion source. Peptides were separated on 3-µm particle, 75-µm inner diameter, 12-cm filling length C18 columns (Nikkyo Technos Co., Ltd., Japan). For each sample, 600 ng was injected and the samples were measured with data-independent acquisition (DIA).  For HPRP fractions, 450 ng was injected and the samples were measured with data-dependent acquisition (DDA). LC-MS/MS conditions were as previously described (Mostafa et al., 2020), except for DDA the first mass for MS2 scans was not fixed and for DIA the AGC target of DIA segments was 3e6.

    - -

    Protein identification and quantification

    - -

    Raw files from DDA measurements were searched against a mouse-specific database (uniprot-reviewed_Mus_musculus_10090_.fasta) using Proteome Discoverer v2.4 software (Thermo Fisher). Filtered output was used to generate a sample-specific spectral library using Spectronaut software (Biognosys, Switzerland). Raw files from DIA measurements were used for quantitative data extraction with the generated spectral library, as previously described (Mostafa et al., 2020). FDR was estimated with the mProphet approach (Reiter et al., 2011) and set to 0.01 at both peptide precursor level and protein level (Rosenberger et al., 2017). 

    - -

    References

    - -

    Masuda, T., Tomita, M., and Ishihama, Y. (2008) Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res7, 731-740.

    - -

    Masuda, T., Saito, N., Tomita, M., and Ishihama, Y. (2009) Unbiased quantification of Escherichia coli membrane proteome using phase transfer surfactants. Mol. Cell. Proteomics 8, 2770-2777.

    - -

    Mostafa, D., Yanagiya, A., Georgiadou, E., Wu, Y., Stylianides, T., Rutter, G. A., Suzuki, T., & Yamamoto, T. (2020). Loss of β-cell identity and diabetic phenotype in mice caused by disruption of CNOT3-dependent mRNA deadenylation. Commun. Biol. 3, 476.

    - -

    Reiter, L., Rinner, O., Picotti, P., Hüttenhain, R., Beck, M., Hengartner, M. O., and Aebersold, R. (2011) mProphet: automated data processing and statistical validation for large scale SRM experiments. Nat. Methods 8, 430–435.

    - -

    Rosenberger, G., Bludau, I., Schmitt, U., Heusel, M., Hunter, C. L., Liu, Y., MacCoss, M. J., MacLean, B. X., Nesvizhskii, A. I., Pedrioli, P. G. A., Reiter, L., Röst, H. L., Tate, S., Ting, Y. S., Collins, B. C., and Aebersold, R. (2017) Statistical control of peptide and protein error rates in large-scale targeted data-independent acquisition analyses. Nat. Methods 14, 921–927.

    diff --git a/general/datasets/Riken_Wu_BXD_HF_WAdip_0920/specifics.rtf b/general/datasets/Riken_Wu_BXD_HF_WAdip_0920/specifics.rtf deleted file mode 100644 index e405714..0000000 --- a/general/datasets/Riken_Wu_BXD_HF_WAdip_0920/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -BXD HF White Adipose Proteome (Sep20) \ No newline at end of file diff --git a/general/datasets/Riken_Wu_BXD_WAdip_0720/experiment-design.rtf b/general/datasets/Riken_Wu_BXD_WAdip_0720/experiment-design.rtf deleted file mode 100644 index 6bd1793..0000000 --- a/general/datasets/Riken_Wu_BXD_WAdip_0720/experiment-design.rtf +++ /dev/null @@ -1,23 +0,0 @@ -

    Sample preparation for proteomic analysis

    - -

    Proteins were extracted from adipose tissue samples in lysis buffer containing 12 mM sodium deoxycholate, 12 mM sodium N-dodecanoylsarcosinate, and 100 mM Tris.Cl pH 9.0, with cOmplete, mini, EDTA-free Protease Inhibitor Cocktail (Roche, Switzerland), using homogenization with a glass dounce followed by sonication for 15 minutes using a Bioruptor water bath sonicator on high power, with cycles of one min sonication followed by one min rest (Cosmo Bio Co. Ltd., Japan). The samples were centrifuged at 18,000 x g, for 20 min at 4 oC and the supernatant fractions were taken. Protein concentrations were determined using a Pierce BCA Assay Kit (Thermo Fisher Scientific, USA), according to manufacturer’s instructions. Samples were prepared for liquid chromatography tandem mass spectrometry (LC-M/MS) using the Phase Transfer Surfactant Method (Masuda et al., 2008; Masuda et al., 2009), with minor modifications as previously described (Mostafa et al., 2020). Afterwards, dried Lys-C/tryptic peptides were dissolved in 0.1% TFA and desalted using MonoSpin C18 columns (GL Sciences Inc., Japan). Peptides were eluted from C18 columns in 0.1% (v/v) TFA in 50% (v/v) acetonitrile and dried in a centrifugal vacuum concentrator. Tryptic peptides were dissolved in 0.1% (v/v) formic acid, 3% (v/v) acetonitrile in water for MS analysis and the peptide concentrations were determined using a Pierce Quantitative Colorimetric Peptide Assay Kit (Thermo Fisher). A portion of the peptides from the samples were pooled and fractionated using a Pierce High pH Reversed-Phase (HPRP) Peptide Fractionation Kit (Thermo Fisher) to generate a spectral library.

    - -

    MS measurement

    - -

    Samples were measured using a Q Exactive Plus Orbitrap LC–MS/MS System (Thermo Fisher), equipped with a Nanospray Flex ion source. Peptides were separated on 3-µm particle, 75-µm inner diameter, 12-cm filling length C18 columns (Nikkyo Technos Co., Ltd., Japan). For each sample, 600 ng was injected and the samples were measured with data-independent acquisition (DIA).  For HPRP fractions, 450 ng was injected and the samples were measured with data-dependent acquisition (DDA). LC-MS/MS conditions were as previously described (Mostafa et al., 2020), except for DDA the first mass for MS2 scans was not fixed and for DIA the AGC target of DIA segments was 3e6.

    - -

    Protein identification and quantification

    - -

    Raw files from DDA measurements were searched against a mouse-specific database (uniprot-reviewed_Mus_musculus_10090_.fasta) using Proteome Discoverer v2.4 software (Thermo Fisher). Filtered output was used to generate a sample-specific spectral library using Spectronaut software (Biognosys, Switzerland). Raw files from DIA measurements were used for quantitative data extraction with the generated spectral library, as previously described (Mostafa et al., 2020). FDR was estimated with the mProphet approach (Reiter et al., 2011) and set to 0.01 at both peptide precursor level and protein level (Rosenberger et al., 2017). 

    - -

    References

    - -

    Masuda, T., Tomita, M., and Ishihama, Y. (2008) Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res7, 731-740.

    - -

    Masuda, T., Saito, N., Tomita, M., and Ishihama, Y. (2009) Unbiased quantification of Escherichia coli membrane proteome using phase transfer surfactants. Mol. Cell. Proteomics 8, 2770-2777.

    - -

    Mostafa, D., Yanagiya, A., Georgiadou, E., Wu, Y., Stylianides, T., Rutter, G. A., Suzuki, T., & Yamamoto, T. (2020). Loss of β-cell identity and diabetic phenotype in mice caused by disruption of CNOT3-dependent mRNA deadenylation. Commun. Biol. 3, 476.

    - -

    Reiter, L., Rinner, O., Picotti, P., Hüttenhain, R., Beck, M., Hengartner, M. O., and Aebersold, R. (2011) mProphet: automated data processing and statistical validation for large scale SRM experiments. Nat. Methods 8, 430–435.

    - -

    Rosenberger, G., Bludau, I., Schmitt, U., Heusel, M., Hunter, C. L., Liu, Y., MacCoss, M. J., MacLean, B. X., Nesvizhskii, A. I., Pedrioli, P. G. A., Reiter, L., Röst, H. L., Tate, S., Ting, Y. S., Collins, B. C., and Aebersold, R. (2017) Statistical control of peptide and protein error rates in large-scale targeted data-independent acquisition analyses. Nat. Methods 14, 921–927.

    diff --git a/general/datasets/Riken_Wu_BXD_WAdip_0720/specifics.rtf b/general/datasets/Riken_Wu_BXD_WAdip_0720/specifics.rtf deleted file mode 100644 index e42b3b9..0000000 --- a/general/datasets/Riken_Wu_BXD_WAdip_0720/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -BXD White Adipose Proteome Individual (Sep20) \ No newline at end of file diff --git a/general/datasets/Riken_wu_bxd_cd_wadip_0920/experiment-design.rtf b/general/datasets/Riken_wu_bxd_cd_wadip_0920/experiment-design.rtf new file mode 100644 index 0000000..6bd1793 --- /dev/null +++ b/general/datasets/Riken_wu_bxd_cd_wadip_0920/experiment-design.rtf @@ -0,0 +1,23 @@ +

    Sample preparation for proteomic analysis

    + +

    Proteins were extracted from adipose tissue samples in lysis buffer containing 12 mM sodium deoxycholate, 12 mM sodium N-dodecanoylsarcosinate, and 100 mM Tris.Cl pH 9.0, with cOmplete, mini, EDTA-free Protease Inhibitor Cocktail (Roche, Switzerland), using homogenization with a glass dounce followed by sonication for 15 minutes using a Bioruptor water bath sonicator on high power, with cycles of one min sonication followed by one min rest (Cosmo Bio Co. Ltd., Japan). The samples were centrifuged at 18,000 x g, for 20 min at 4 oC and the supernatant fractions were taken. Protein concentrations were determined using a Pierce BCA Assay Kit (Thermo Fisher Scientific, USA), according to manufacturer’s instructions. Samples were prepared for liquid chromatography tandem mass spectrometry (LC-M/MS) using the Phase Transfer Surfactant Method (Masuda et al., 2008; Masuda et al., 2009), with minor modifications as previously described (Mostafa et al., 2020). Afterwards, dried Lys-C/tryptic peptides were dissolved in 0.1% TFA and desalted using MonoSpin C18 columns (GL Sciences Inc., Japan). Peptides were eluted from C18 columns in 0.1% (v/v) TFA in 50% (v/v) acetonitrile and dried in a centrifugal vacuum concentrator. Tryptic peptides were dissolved in 0.1% (v/v) formic acid, 3% (v/v) acetonitrile in water for MS analysis and the peptide concentrations were determined using a Pierce Quantitative Colorimetric Peptide Assay Kit (Thermo Fisher). A portion of the peptides from the samples were pooled and fractionated using a Pierce High pH Reversed-Phase (HPRP) Peptide Fractionation Kit (Thermo Fisher) to generate a spectral library.

    + +

    MS measurement

    + +

    Samples were measured using a Q Exactive Plus Orbitrap LC–MS/MS System (Thermo Fisher), equipped with a Nanospray Flex ion source. Peptides were separated on 3-µm particle, 75-µm inner diameter, 12-cm filling length C18 columns (Nikkyo Technos Co., Ltd., Japan). For each sample, 600 ng was injected and the samples were measured with data-independent acquisition (DIA).  For HPRP fractions, 450 ng was injected and the samples were measured with data-dependent acquisition (DDA). LC-MS/MS conditions were as previously described (Mostafa et al., 2020), except for DDA the first mass for MS2 scans was not fixed and for DIA the AGC target of DIA segments was 3e6.

    + +

    Protein identification and quantification

    + +

    Raw files from DDA measurements were searched against a mouse-specific database (uniprot-reviewed_Mus_musculus_10090_.fasta) using Proteome Discoverer v2.4 software (Thermo Fisher). Filtered output was used to generate a sample-specific spectral library using Spectronaut software (Biognosys, Switzerland). Raw files from DIA measurements were used for quantitative data extraction with the generated spectral library, as previously described (Mostafa et al., 2020). FDR was estimated with the mProphet approach (Reiter et al., 2011) and set to 0.01 at both peptide precursor level and protein level (Rosenberger et al., 2017). 

    + +

    References

    + +

    Masuda, T., Tomita, M., and Ishihama, Y. (2008) Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res7, 731-740.

    + +

    Masuda, T., Saito, N., Tomita, M., and Ishihama, Y. (2009) Unbiased quantification of Escherichia coli membrane proteome using phase transfer surfactants. Mol. Cell. Proteomics 8, 2770-2777.

    + +

    Mostafa, D., Yanagiya, A., Georgiadou, E., Wu, Y., Stylianides, T., Rutter, G. A., Suzuki, T., & Yamamoto, T. (2020). Loss of β-cell identity and diabetic phenotype in mice caused by disruption of CNOT3-dependent mRNA deadenylation. Commun. Biol. 3, 476.

    + +

    Reiter, L., Rinner, O., Picotti, P., Hüttenhain, R., Beck, M., Hengartner, M. O., and Aebersold, R. (2011) mProphet: automated data processing and statistical validation for large scale SRM experiments. Nat. Methods 8, 430–435.

    + +

    Rosenberger, G., Bludau, I., Schmitt, U., Heusel, M., Hunter, C. L., Liu, Y., MacCoss, M. J., MacLean, B. X., Nesvizhskii, A. I., Pedrioli, P. G. A., Reiter, L., Röst, H. L., Tate, S., Ting, Y. S., Collins, B. C., and Aebersold, R. (2017) Statistical control of peptide and protein error rates in large-scale targeted data-independent acquisition analyses. Nat. Methods 14, 921–927.

    diff --git a/general/datasets/Riken_wu_bxd_cd_wadip_0920/specifics.rtf b/general/datasets/Riken_wu_bxd_cd_wadip_0920/specifics.rtf new file mode 100644 index 0000000..04d0771 --- /dev/null +++ b/general/datasets/Riken_wu_bxd_cd_wadip_0920/specifics.rtf @@ -0,0 +1 @@ +BXD CD White Adipose Proteome (Sep20) \ No newline at end of file diff --git a/general/datasets/Riken_wu_bxd_cdhf_wadip_0920/experiment-design.rtf b/general/datasets/Riken_wu_bxd_cdhf_wadip_0920/experiment-design.rtf new file mode 100644 index 0000000..6bd1793 --- /dev/null +++ b/general/datasets/Riken_wu_bxd_cdhf_wadip_0920/experiment-design.rtf @@ -0,0 +1,23 @@ +

    Sample preparation for proteomic analysis

    + +

    Proteins were extracted from adipose tissue samples in lysis buffer containing 12 mM sodium deoxycholate, 12 mM sodium N-dodecanoylsarcosinate, and 100 mM Tris.Cl pH 9.0, with cOmplete, mini, EDTA-free Protease Inhibitor Cocktail (Roche, Switzerland), using homogenization with a glass dounce followed by sonication for 15 minutes using a Bioruptor water bath sonicator on high power, with cycles of one min sonication followed by one min rest (Cosmo Bio Co. Ltd., Japan). The samples were centrifuged at 18,000 x g, for 20 min at 4 oC and the supernatant fractions were taken. Protein concentrations were determined using a Pierce BCA Assay Kit (Thermo Fisher Scientific, USA), according to manufacturer’s instructions. Samples were prepared for liquid chromatography tandem mass spectrometry (LC-M/MS) using the Phase Transfer Surfactant Method (Masuda et al., 2008; Masuda et al., 2009), with minor modifications as previously described (Mostafa et al., 2020). Afterwards, dried Lys-C/tryptic peptides were dissolved in 0.1% TFA and desalted using MonoSpin C18 columns (GL Sciences Inc., Japan). Peptides were eluted from C18 columns in 0.1% (v/v) TFA in 50% (v/v) acetonitrile and dried in a centrifugal vacuum concentrator. Tryptic peptides were dissolved in 0.1% (v/v) formic acid, 3% (v/v) acetonitrile in water for MS analysis and the peptide concentrations were determined using a Pierce Quantitative Colorimetric Peptide Assay Kit (Thermo Fisher). A portion of the peptides from the samples were pooled and fractionated using a Pierce High pH Reversed-Phase (HPRP) Peptide Fractionation Kit (Thermo Fisher) to generate a spectral library.

    + +

    MS measurement

    + +

    Samples were measured using a Q Exactive Plus Orbitrap LC–MS/MS System (Thermo Fisher), equipped with a Nanospray Flex ion source. Peptides were separated on 3-µm particle, 75-µm inner diameter, 12-cm filling length C18 columns (Nikkyo Technos Co., Ltd., Japan). For each sample, 600 ng was injected and the samples were measured with data-independent acquisition (DIA).  For HPRP fractions, 450 ng was injected and the samples were measured with data-dependent acquisition (DDA). LC-MS/MS conditions were as previously described (Mostafa et al., 2020), except for DDA the first mass for MS2 scans was not fixed and for DIA the AGC target of DIA segments was 3e6.

    + +

    Protein identification and quantification

    + +

    Raw files from DDA measurements were searched against a mouse-specific database (uniprot-reviewed_Mus_musculus_10090_.fasta) using Proteome Discoverer v2.4 software (Thermo Fisher). Filtered output was used to generate a sample-specific spectral library using Spectronaut software (Biognosys, Switzerland). Raw files from DIA measurements were used for quantitative data extraction with the generated spectral library, as previously described (Mostafa et al., 2020). FDR was estimated with the mProphet approach (Reiter et al., 2011) and set to 0.01 at both peptide precursor level and protein level (Rosenberger et al., 2017). 

    + +

    References

    + +

    Masuda, T., Tomita, M., and Ishihama, Y. (2008) Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res7, 731-740.

    + +

    Masuda, T., Saito, N., Tomita, M., and Ishihama, Y. (2009) Unbiased quantification of Escherichia coli membrane proteome using phase transfer surfactants. Mol. Cell. Proteomics 8, 2770-2777.

    + +

    Mostafa, D., Yanagiya, A., Georgiadou, E., Wu, Y., Stylianides, T., Rutter, G. A., Suzuki, T., & Yamamoto, T. (2020). Loss of β-cell identity and diabetic phenotype in mice caused by disruption of CNOT3-dependent mRNA deadenylation. Commun. Biol. 3, 476.

    + +

    Reiter, L., Rinner, O., Picotti, P., Hüttenhain, R., Beck, M., Hengartner, M. O., and Aebersold, R. (2011) mProphet: automated data processing and statistical validation for large scale SRM experiments. Nat. Methods 8, 430–435.

    + +

    Rosenberger, G., Bludau, I., Schmitt, U., Heusel, M., Hunter, C. L., Liu, Y., MacCoss, M. J., MacLean, B. X., Nesvizhskii, A. I., Pedrioli, P. G. A., Reiter, L., Röst, H. L., Tate, S., Ting, Y. S., Collins, B. C., and Aebersold, R. (2017) Statistical control of peptide and protein error rates in large-scale targeted data-independent acquisition analyses. Nat. Methods 14, 921–927.

    diff --git a/general/datasets/Riken_wu_bxd_cdhf_wadip_0920/specifics.rtf b/general/datasets/Riken_wu_bxd_cdhf_wadip_0920/specifics.rtf new file mode 100644 index 0000000..68167de --- /dev/null +++ b/general/datasets/Riken_wu_bxd_cdhf_wadip_0920/specifics.rtf @@ -0,0 +1 @@ +Riken-Wu BXD CD-HF White Adipose Proteome (Sep20) \ No newline at end of file diff --git a/general/datasets/Riken_wu_bxd_hf_wadip_0920/experiment-design.rtf b/general/datasets/Riken_wu_bxd_hf_wadip_0920/experiment-design.rtf new file mode 100644 index 0000000..6bd1793 --- /dev/null +++ b/general/datasets/Riken_wu_bxd_hf_wadip_0920/experiment-design.rtf @@ -0,0 +1,23 @@ +

    Sample preparation for proteomic analysis

    + +

    Proteins were extracted from adipose tissue samples in lysis buffer containing 12 mM sodium deoxycholate, 12 mM sodium N-dodecanoylsarcosinate, and 100 mM Tris.Cl pH 9.0, with cOmplete, mini, EDTA-free Protease Inhibitor Cocktail (Roche, Switzerland), using homogenization with a glass dounce followed by sonication for 15 minutes using a Bioruptor water bath sonicator on high power, with cycles of one min sonication followed by one min rest (Cosmo Bio Co. Ltd., Japan). The samples were centrifuged at 18,000 x g, for 20 min at 4 oC and the supernatant fractions were taken. Protein concentrations were determined using a Pierce BCA Assay Kit (Thermo Fisher Scientific, USA), according to manufacturer’s instructions. Samples were prepared for liquid chromatography tandem mass spectrometry (LC-M/MS) using the Phase Transfer Surfactant Method (Masuda et al., 2008; Masuda et al., 2009), with minor modifications as previously described (Mostafa et al., 2020). Afterwards, dried Lys-C/tryptic peptides were dissolved in 0.1% TFA and desalted using MonoSpin C18 columns (GL Sciences Inc., Japan). Peptides were eluted from C18 columns in 0.1% (v/v) TFA in 50% (v/v) acetonitrile and dried in a centrifugal vacuum concentrator. Tryptic peptides were dissolved in 0.1% (v/v) formic acid, 3% (v/v) acetonitrile in water for MS analysis and the peptide concentrations were determined using a Pierce Quantitative Colorimetric Peptide Assay Kit (Thermo Fisher). A portion of the peptides from the samples were pooled and fractionated using a Pierce High pH Reversed-Phase (HPRP) Peptide Fractionation Kit (Thermo Fisher) to generate a spectral library.

    + +

    MS measurement

    + +

    Samples were measured using a Q Exactive Plus Orbitrap LC–MS/MS System (Thermo Fisher), equipped with a Nanospray Flex ion source. Peptides were separated on 3-µm particle, 75-µm inner diameter, 12-cm filling length C18 columns (Nikkyo Technos Co., Ltd., Japan). For each sample, 600 ng was injected and the samples were measured with data-independent acquisition (DIA).  For HPRP fractions, 450 ng was injected and the samples were measured with data-dependent acquisition (DDA). LC-MS/MS conditions were as previously described (Mostafa et al., 2020), except for DDA the first mass for MS2 scans was not fixed and for DIA the AGC target of DIA segments was 3e6.

    + +

    Protein identification and quantification

    + +

    Raw files from DDA measurements were searched against a mouse-specific database (uniprot-reviewed_Mus_musculus_10090_.fasta) using Proteome Discoverer v2.4 software (Thermo Fisher). Filtered output was used to generate a sample-specific spectral library using Spectronaut software (Biognosys, Switzerland). Raw files from DIA measurements were used for quantitative data extraction with the generated spectral library, as previously described (Mostafa et al., 2020). FDR was estimated with the mProphet approach (Reiter et al., 2011) and set to 0.01 at both peptide precursor level and protein level (Rosenberger et al., 2017). 

    + +

    References

    + +

    Masuda, T., Tomita, M., and Ishihama, Y. (2008) Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res7, 731-740.

    + +

    Masuda, T., Saito, N., Tomita, M., and Ishihama, Y. (2009) Unbiased quantification of Escherichia coli membrane proteome using phase transfer surfactants. Mol. Cell. Proteomics 8, 2770-2777.

    + +

    Mostafa, D., Yanagiya, A., Georgiadou, E., Wu, Y., Stylianides, T., Rutter, G. A., Suzuki, T., & Yamamoto, T. (2020). Loss of β-cell identity and diabetic phenotype in mice caused by disruption of CNOT3-dependent mRNA deadenylation. Commun. Biol. 3, 476.

    + +

    Reiter, L., Rinner, O., Picotti, P., Hüttenhain, R., Beck, M., Hengartner, M. O., and Aebersold, R. (2011) mProphet: automated data processing and statistical validation for large scale SRM experiments. Nat. Methods 8, 430–435.

    + +

    Rosenberger, G., Bludau, I., Schmitt, U., Heusel, M., Hunter, C. L., Liu, Y., MacCoss, M. J., MacLean, B. X., Nesvizhskii, A. I., Pedrioli, P. G. A., Reiter, L., Röst, H. L., Tate, S., Ting, Y. S., Collins, B. C., and Aebersold, R. (2017) Statistical control of peptide and protein error rates in large-scale targeted data-independent acquisition analyses. Nat. Methods 14, 921–927.

    diff --git a/general/datasets/Riken_wu_bxd_hf_wadip_0920/specifics.rtf b/general/datasets/Riken_wu_bxd_hf_wadip_0920/specifics.rtf new file mode 100644 index 0000000..e405714 --- /dev/null +++ b/general/datasets/Riken_wu_bxd_hf_wadip_0920/specifics.rtf @@ -0,0 +1 @@ +BXD HF White Adipose Proteome (Sep20) \ No newline at end of file diff --git a/general/datasets/Riken_wu_bxd_wadip_0720/experiment-design.rtf b/general/datasets/Riken_wu_bxd_wadip_0720/experiment-design.rtf new file mode 100644 index 0000000..6bd1793 --- /dev/null +++ b/general/datasets/Riken_wu_bxd_wadip_0720/experiment-design.rtf @@ -0,0 +1,23 @@ +

    Sample preparation for proteomic analysis

    + +

    Proteins were extracted from adipose tissue samples in lysis buffer containing 12 mM sodium deoxycholate, 12 mM sodium N-dodecanoylsarcosinate, and 100 mM Tris.Cl pH 9.0, with cOmplete, mini, EDTA-free Protease Inhibitor Cocktail (Roche, Switzerland), using homogenization with a glass dounce followed by sonication for 15 minutes using a Bioruptor water bath sonicator on high power, with cycles of one min sonication followed by one min rest (Cosmo Bio Co. Ltd., Japan). The samples were centrifuged at 18,000 x g, for 20 min at 4 oC and the supernatant fractions were taken. Protein concentrations were determined using a Pierce BCA Assay Kit (Thermo Fisher Scientific, USA), according to manufacturer’s instructions. Samples were prepared for liquid chromatography tandem mass spectrometry (LC-M/MS) using the Phase Transfer Surfactant Method (Masuda et al., 2008; Masuda et al., 2009), with minor modifications as previously described (Mostafa et al., 2020). Afterwards, dried Lys-C/tryptic peptides were dissolved in 0.1% TFA and desalted using MonoSpin C18 columns (GL Sciences Inc., Japan). Peptides were eluted from C18 columns in 0.1% (v/v) TFA in 50% (v/v) acetonitrile and dried in a centrifugal vacuum concentrator. Tryptic peptides were dissolved in 0.1% (v/v) formic acid, 3% (v/v) acetonitrile in water for MS analysis and the peptide concentrations were determined using a Pierce Quantitative Colorimetric Peptide Assay Kit (Thermo Fisher). A portion of the peptides from the samples were pooled and fractionated using a Pierce High pH Reversed-Phase (HPRP) Peptide Fractionation Kit (Thermo Fisher) to generate a spectral library.

    + +

    MS measurement

    + +

    Samples were measured using a Q Exactive Plus Orbitrap LC–MS/MS System (Thermo Fisher), equipped with a Nanospray Flex ion source. Peptides were separated on 3-µm particle, 75-µm inner diameter, 12-cm filling length C18 columns (Nikkyo Technos Co., Ltd., Japan). For each sample, 600 ng was injected and the samples were measured with data-independent acquisition (DIA).  For HPRP fractions, 450 ng was injected and the samples were measured with data-dependent acquisition (DDA). LC-MS/MS conditions were as previously described (Mostafa et al., 2020), except for DDA the first mass for MS2 scans was not fixed and for DIA the AGC target of DIA segments was 3e6.

    + +

    Protein identification and quantification

    + +

    Raw files from DDA measurements were searched against a mouse-specific database (uniprot-reviewed_Mus_musculus_10090_.fasta) using Proteome Discoverer v2.4 software (Thermo Fisher). Filtered output was used to generate a sample-specific spectral library using Spectronaut software (Biognosys, Switzerland). Raw files from DIA measurements were used for quantitative data extraction with the generated spectral library, as previously described (Mostafa et al., 2020). FDR was estimated with the mProphet approach (Reiter et al., 2011) and set to 0.01 at both peptide precursor level and protein level (Rosenberger et al., 2017). 

    + +

    References

    + +

    Masuda, T., Tomita, M., and Ishihama, Y. (2008) Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res7, 731-740.

    + +

    Masuda, T., Saito, N., Tomita, M., and Ishihama, Y. (2009) Unbiased quantification of Escherichia coli membrane proteome using phase transfer surfactants. Mol. Cell. Proteomics 8, 2770-2777.

    + +

    Mostafa, D., Yanagiya, A., Georgiadou, E., Wu, Y., Stylianides, T., Rutter, G. A., Suzuki, T., & Yamamoto, T. (2020). Loss of β-cell identity and diabetic phenotype in mice caused by disruption of CNOT3-dependent mRNA deadenylation. Commun. Biol. 3, 476.

    + +

    Reiter, L., Rinner, O., Picotti, P., Hüttenhain, R., Beck, M., Hengartner, M. O., and Aebersold, R. (2011) mProphet: automated data processing and statistical validation for large scale SRM experiments. Nat. Methods 8, 430–435.

    + +

    Rosenberger, G., Bludau, I., Schmitt, U., Heusel, M., Hunter, C. L., Liu, Y., MacCoss, M. J., MacLean, B. X., Nesvizhskii, A. I., Pedrioli, P. G. A., Reiter, L., Röst, H. L., Tate, S., Ting, Y. S., Collins, B. C., and Aebersold, R. (2017) Statistical control of peptide and protein error rates in large-scale targeted data-independent acquisition analyses. Nat. Methods 14, 921–927.

    diff --git a/general/datasets/Riken_wu_bxd_wadip_0720/specifics.rtf b/general/datasets/Riken_wu_bxd_wadip_0720/specifics.rtf new file mode 100644 index 0000000..e42b3b9 --- /dev/null +++ b/general/datasets/Riken_wu_bxd_wadip_0720/specifics.rtf @@ -0,0 +1 @@ +BXD White Adipose Proteome Individual (Sep20) \ No newline at end of file diff --git a/general/datasets/Rtc_1106_r/acknowledgment.rtf b/general/datasets/Rtc_1106_r/acknowledgment.rtf new file mode 100644 index 0000000..3246da5 --- /dev/null +++ b/general/datasets/Rtc_1106_r/acknowledgment.rtf @@ -0,0 +1,5 @@ +
    +

    These data were generated by Prof. Dr. Klaus Schughart (Department of Experimental Mouse Genetics) and Dr. Dunja Bruder (Research Group Immune Regulation) at the Helmholtz Center for Infection Research with the help of Dr. Lothar Gröbe (FACS sorting, Research Group Mucosal Immunity).

    + +

    Funding was provided by the Helmholtz Association and publicly funded research projects awarded to Drs. Klaus Schughart and Dunja Bruder.

    +
    diff --git a/general/datasets/Rtc_1106_r/cases.rtf b/general/datasets/Rtc_1106_r/cases.rtf new file mode 100644 index 0000000..5ae01c7 --- /dev/null +++ b/general/datasets/Rtc_1106_r/cases.rtf @@ -0,0 +1,914 @@ +
    +

    Parental and 31 BXD lines were studied. Mice were received from The Jackson Laboratory, or from The Oak Ridge National and were bred in the facility of the Neuro-BSIK consortium (VU University Amsterdam). The data set includes expression values for 18 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD40), as well as the two parental strains, C57BL/6J and DBA/2J. All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding.

    + +

    BXD spleen sample pools (from 2-3 mice) were obtained from a pathogen-free mice of the Dutch Mouse Phenomics Consortium (MPC) in Amsterdam. Mice were imported into the central animal facility at the HZI and kept in a pathogen-free vivarium. Mice were euthanized using CO2 and spleenocytes were prepared. Most mice were between 17 and 22 weeks of age when samples were collected. FACS sorting was used to select the CD4-positive T cells. These cells were further separated into CD4+CD25+ and CD4+CD25- pools.

    + +

    Error-checking strain identity. A set of more than 20 probe sets with Mendelian segregation patterns in this HZI data set were used to confirm strain identify in early June, 2007. Two errors were detected and rectified. As of June 22, 2007, data are registered correctly. Prior to June 22, 2007, data listed as strains BXD33 and BXD39 were essentially hybrid (mixed) data sets.

    + +

    On Aug 23, 2007, we loaded the final QTL Reaper data into GeneNetwork for the corrected data set. The maximum LRS generated by any probe set is 84.6 for 1436240_at (Tra2a). A total of 41 probe sets are associated with QTLs that have LRS values above 46 (LOD > 10).

    + +

    Sex of samples is listed below in Table 1. In brief, data for BXD14 and 23 are male-only samples, whereas BXD12, 16, 31, 34, 36 and C57BL/6J are from female-only samples. All other samples (DBA/2J, BXD1, 2, 6, 9, 11, 18, 21 32, 33, 39, 40) consist of one male and one female array. The sex of samples can be independently validated using the Xist probe set (1427262_at).

    + +

    + +

    Figure 1: The expression of Xist can be used as an independent marker for sex. Xist is expressed at very low levels (noise) in male samples (far left) and at high values in females (far right). Sex-balanced samples (middle) have high variance due to the inclusion of one array per sex.

    + +

        Table 1

    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexProbeSet IDSample DescriptionSexStraincd25MicroarrayShort DescriptionAgePool No.Pool members (animal number)Date of preparation
    1HZI1008BXD-06f (f1) CD25+FBXD6CD25+YesBXD-06f17f11,3,41-31-2006
    2HZI1009BXD-06m (m2) CD25+MBXD6CD25+YesBXD-06m18m25,6,71-31-2006
    3HZI1010BXD-14m (m3) CD25+MBXD14CD25+YesBXD-14m17m31,3,41-31-2006
    4HZI1013BXD-40f (f6) CD25+FBXD40CD25+YesBXD-40f17f61,2,32-1-2006
    5HZI1014BXD-40m (m7) CD25+MBXD40CD25+YesBXD-40m17m75,6,72-2-2006
    6HZI1015BXD-02f (f8) CD25+FBXD2CD25+YesBXD-02f17f81,2,32-14-2006
    7HZI1016BXD-02m (m20) CD25+MBXD2CD25+YesBXD-02m21m204,5,64-6-2006
    8HZI1017BXD-11f (f30) CD25+FBXD11CD25+YesBXD-11f17f303,4,55-11-2006
    9HZI1018BXD-11m (m9) CD25+MBXD11CD25+YesBXD-11m18m91,22-14-2006
    10HZI1019BXD-12f (f10) CD25+FBXD12CD25+YesBXD-12f17f101,2,32-14-2006
    11HZI1020BXD-39f (f23) CD25+FBXD39CD25+YesBXD-39f19f234,5,64-11-2006
    12HZI1021BXD-33m (m11) CD25+MBXD33CD25+YesBXD-33m17m111,22-14-2006
    13HZI1022BXD-18f (f14) CD25+FBXD18CD25+YesBXD-18f17f143,4,52-15-2006
    14HZI1023BXD-18m (m13) CD25+MBXD18CD25+YesBXD-18m18m137,82-15-2006
    15HZI1024BXD-23m (m15) CD25+MBXD23CD25+YesBXD-23m18m151,2,32-15-2006
    16HZI1026BXD-09f (f17) CD25+FBXD9CD25+YesBXD-09f21f171,2,34-5-2006
    17HZI1028BXD-09m (m35) CD25+MBXD9CD25+YesBXD-09m15m357,8,97-7-2006
    18HZI1029BXD-32f (f18) CD25+FBXD32CD25+YesBXD-32f21f181,2,34-6-2006
    19HZI1030BXD-32m (m19) CD25+MBXD32CD25+YesBXD-32m22m191,2,34-6-2006
    20HZI1031BXD-33f (f22) CD25+FBXD33CD25+YesBXD-33f18f222,3,44-11-2006
    21HZI1032BXD-39m (m29) CD25+MBXD39CD25+YesBXD-39m17m295,6,75-10-2006
    22HZI1033BXD-01f (f32) CD25+FBXD1CD25+YesBXD-01f18f323,47-6-2006
    23HZI1034BXD-01m (m31) CD25+MBXD1CD25+YesBXD-01m18m311,27-6-2006
    24HZI1035BXD-16f (f26) CD25+FBXD16CD25+YesBXD-16f18f261,2,34-12-2006
    25HZI1036BXD-21f (f25) CD25+FBXD21CD25+YesBXD-21f19f255,6,74-12-2006
    26HZI1037BXD-21m (m24) CD25+MBXD21CD25+YesBXD-21m18m241,2,34-12-2006
    27HZI1039BXD-31f (f34) CD25+FBXD31CD25+YesBXD-31f16f341,2,37-7-2006
    28HZI1040C57BL/6Jf (f28) CD25+FC57BL/6JCD25+YesC57BL/6Jf16f281,2,35-10-2006
    29HZI1041DBA/2Jf (f27) CD25+FDBA/2JCD25+YesDBA/2Jf16f275,6,75-10-2006
    30HZI1042DBA/2Jm (m21) CD25+MDBA/2JCD25+YesDBA/2Jm21m211,2,34-11-2006
    31HZI1487BXD-08f (f67) CD25+FBXD8CD25+YesBXD-08f11f674,5,66-25-2007
    32HZI1488BXD-08m (m66) CD25+MBXD8CD25+YesBXD-08m17m661,2,36-25-2007
    33HZI1489BXD-16m (m36) CD25+MBXD16CD25+YesBXD-16m20, 16m365,6,78-28-2006
    34HZI1490BXD-12m (m42) CD25+MBXD12CD25+YesBXD-12m20m425,6,710-23-2006
    35HZI1491BXD-13f (f44) CD25+FBXD13CD25+YesBXD-13f15f441,2,312-13-2006
    36HZI1492BXD-13m (m45) CD25+MBXD13CD25+YesBXD-13m15m454,5,6,712-13-2006
    37HZI1493BXD-14f (f48) CD25+FBXD14CD25+YesBXD-14f16f485,6,72-15-2007
    38HZI1494BXD-19f (f64) CD25+FBXD19CD25+YesBXD-19f19f647,8,96-20-2007
    39HZI1495BXD-19m (m46) CD25+MBXD19CD25+YesBXD-19m16m464,5,612-15-2006
    40HZI1499BXD-28m (m43) CD25+MBXD28CD25+YesBXD-28m17,2m431,2,310-23-2006
    41HZI1500BXD-42f (f49) CD25+FBXD42CD25+YesBXD-42f17f49??3-8-2007
    42HZI1502F1 (BXD)m (f50) CD25+MB6D2F1CD25+YesF1 (BXD)m15m511,2,3,4-18-2007
    43HZI1503F1 (BXD)m (m51) CD25+FB6D2F1CD25+YesF1 (BXD)f15f501,2,34-18-2007
    44HZI1504BXD-86f (f52) CD25+FBXD86CD25+YesBXD-86f16f521,2,34-18-2007
    45HZI1505BXD-43f (f53) CD25+FBXD43CD25+YesBXD-43f16f531,2,34-23-2007
    46HZI1506BXD-44f (f54) CD25+FBXD44CD25+YesBXD-44f18f541,2,34-23-2007
    47HZI1507BXD-45f (f55) CD25+FBXD45CD25+YesBXD-45f19f551,2,34-23-2007
    48HZI1508BXD-62f (f56) CD25+FBXD62CD25+YesBXD-62f17f561,2,34-26-2007
    49HZI1509BXD-73f (f57) CD25+FBXD73CD25+YesBXD-73f18f571,2,34-26-2007
    50HZI1510BXD-51f (f59) CD25+FBXD51CD25+YesBXD-51f22f591,2,36-18-2007
    51HZI1523BXD-75f (f58) CD25+FBXD75CD25+YesBXD-75f15,17f581,2,34-26-2007
    52HZI1525BXD-29m (m37) CD25+MBXD29CD25+YesBXD-29m20, 16m371,2,38-29-2006
    53HZI1526BXD-34f (f4) CD25+FBXD34CD25+YesBXD-34f17f41,2,32-1-2006
    54HZI1940BXD-27m (m39) CD25+MBXD27CD25+YesBXD-27m18 - 20m391,3,49-1-2006
    55HZI1941BXD-42m (m47) CD25+MBXD42CD25+YesBXD-42m15,16m471,2,312-15-2006
    56HZI1942BXD-34m (m5) CD25+MBXD34CD25+YesBXD-34m17m55,7,82-1-2006
    57HZI1943BXD-38f (f70) CD25+FBXD38CD25+YesBXD-38f13f704,5,6,72-1-2008
    58HZI1944BXD-31m (m69) CD25+MBXD31CD25+YesBXD-31m14m694,5,62-1-2008
    59HZI1945BXD-27f (f12) CD25+FBXD27CD25+YesBXD-27f18f121,22-15-2006
    60HZI1946BXD-38m (m63) CD25+MBXD38CD25+YesBXD-38m18m631,2,36-20-2007
    61HZI1947BXD-23f (f62) CD25+FBXD23CD25+YesBXD-23f21f621,2,36-20-2007
    62HZI1948BXD-28f (f61) CD25+FBXD28CD25+YesBXD-28f22f611,2,36-18-2007
    +
    +
    +
    diff --git a/general/datasets/Rtc_1106_r/experiment-design.rtf b/general/datasets/Rtc_1106_r/experiment-design.rtf new file mode 100644 index 0000000..a69dffc --- /dev/null +++ b/general/datasets/Rtc_1106_r/experiment-design.rtf @@ -0,0 +1,7 @@ +
    +

    Parental and BXD lines were received from Jackson Laboratory, or from Oak Ridge Laboratory (BXD43, BXD51, BXD61, BXD62, BXD65, BXD68, BXD69, BXD73, BXD75, BXD87, BXD90), and were bred in the facility of the Neuro-BSIK consortium (VU University Amsterdam). Female mice, 3 per strain, were housed on sawdust in standard Makrolon type II cages with food (Harlan Teklad 2018) and water ad libitum under specific pathogen free conditions. For the analysis, mice were transferred to the animal facility in Braunschweig and adapted for at least two weeks to the new environment before preparing the spleen cells. All protocols involving mice were approved by national animal welfare committees.

    + +

    For sorting of Tregs and Th cells, splenocytes from 31 BXD recombinant inbred strains, as well as from the parental strains DBA/2J and C57BL/6J, were isolated by flushing the spleens with erythrocyte lysis buffer. Cells were collected by centrifugation, resuspended in cold FACS-buffer (PBS / 2% FCS / 0,5 mM EDTA). After passing the cells through a 100 µm cell strainer and an additional washing step with FACS-buffer, splenocytes were stained with anti-CD4-APC and anti-CD25-PE for 10 minutes at 4 °C, washed and resuspended in FACS-buffer. CD4+ T cells were separated into CD4+CD25+ Tregs and CD4+CD25- Th cells using a MoFlo cell sorter (Cytomation) and purity of the sorted T cell subsets reached 95-97%.

    + +

    Quality and integrity of the total RNA isolated from 1x105 cells was controlled by running all samples on an Agilent Technologies 2100 Bioanalyzer (Agilent Technologies; Waldbronn, Germany). RNA amplification and labeling was done according to manufactures protocol (Small Sample Target Labeling Assay Version II, Affymetrix; Santa Clara, CA).  The concentration of biotin-labeled cRNA was determined by UV absorbance. In all cases, 10 µg of each biotinylated cRNA preparation were fragmented and placed in a hybridization cocktail containing four biotinylated hybridization controls (BioB, BioC, BioD, and Cre) as recommended by the manufacturer. Samples were hybridized to an identical lot of Affymetrix MOE430 2.0 for 16 hours at 46 °C. After hybridisation the GeneChips were washed and stained using the Affymetrix´s recommended EukGE-WS2v5 protocol for GeneChip  Fluidics FS400 station.  Images were scanned using GeneChip Scanner 3000 under the control of GCOS 1.3 software package (Affymetrix; Santa Clara, CA).

    +
    diff --git a/general/datasets/Rtc_1106_r/notes.rtf b/general/datasets/Rtc_1106_r/notes.rtf new file mode 100644 index 0000000..dbd0c60 --- /dev/null +++ b/general/datasets/Rtc_1106_r/notes.rtf @@ -0,0 +1 @@ +

    This text file was generated by KS on July, 18 2011.

    diff --git a/general/datasets/Rtc_1106_r/platform.rtf b/general/datasets/Rtc_1106_r/platform.rtf new file mode 100644 index 0000000..ed42a9b --- /dev/null +++ b/general/datasets/Rtc_1106_r/platform.rtf @@ -0,0 +1,3 @@ +
    +

    The Affymetrix M430 2.0 array consists of approximately 992,936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts, including a majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using NCBI Build 107 by Affymetrix. The UTHSC GN group continuously reannotated probe sets on this array, producing more accurate data on probe and probe set targets. All probes have also be aligned to the most recent assembly of the Mouse Genome using Jim Kent's BLAT program.

    +
    diff --git a/general/datasets/Rtc_1106_r/processing.rtf b/general/datasets/Rtc_1106_r/processing.rtf new file mode 100644 index 0000000..b8d49b7 --- /dev/null +++ b/general/datasets/Rtc_1106_r/processing.rtf @@ -0,0 +1,6 @@ +
    +

    Microarray data then was preprocessed using the RMA method [bolstad] and subsequently batch corrected [Alberts et al]. In this study, RNA was extracted at three different points in time for the Treg samples and also microarray processing was performed at three different points in time. Similarly, the Th samples were processed in two batches. Therefore, we performed a batch correction for both cell types using the following ANOVA model before further analysis of the data.
    +yi = μ + Bi + ei
    +Where yi is the expression level of the ith microarray, μ is the overall mean, Bi is the batch to which the ith individual belongs and ei is the residual error.
    +Batch corrected data sets were then preprocessed before transferring them to the GeneNetwork (GN) database: Adding an offset of 1 unit to each signal intensity value to ensure that the logarithm of all values were positive, computing the log2 value, performing a quantile normalization of the log2 values for the total set of arrays using the same initial steps used by the RMA transform, computing the Z scores for each cell value, multiplying all Z scores by 2 and adding 8 to the value of all Z scores. The advantage of this variant of a Z transformation is that all values are positive and that 1 unit represents approximately a 2-fold difference in expression as determined using the spike-in control probe sets. The mean values were subsequently calculated if multiple samples from one BXD line were recorded (male and females or replicates).

    +
    diff --git a/general/datasets/Rtc_1106_r/summary.rtf b/general/datasets/Rtc_1106_r/summary.rtf new file mode 100644 index 0000000..2094b06 --- /dev/null +++ b/general/datasets/Rtc_1106_r/summary.rtf @@ -0,0 +1,3 @@ +
    ERROR-CHECKED FIRST PHASE PRIVATE TEST DATA SET. This data set provides estimates of gene expression in regulatory T cells (CD4+CD25+) of BXD strains. Data were generated by Prof. Dr. Klaus Schughart and colleagues at the Helmholtz Centre for Infection Research (HZI). Samples were processed using a total of 35 Affymetrix MOE 430 2.0 short oligomer microarrays, of which 33 passed stringent quality control and error checking. +

    This is a private test data set. Please contact Dr. Klaus Schughart for early access.

    +
    diff --git a/general/datasets/Rthc_0211_r/acknowledgment.rtf b/general/datasets/Rthc_0211_r/acknowledgment.rtf new file mode 100644 index 0000000..3246da5 --- /dev/null +++ b/general/datasets/Rthc_0211_r/acknowledgment.rtf @@ -0,0 +1,5 @@ +
    +

    These data were generated by Prof. Dr. Klaus Schughart (Department of Experimental Mouse Genetics) and Dr. Dunja Bruder (Research Group Immune Regulation) at the Helmholtz Center for Infection Research with the help of Dr. Lothar Gröbe (FACS sorting, Research Group Mucosal Immunity).

    + +

    Funding was provided by the Helmholtz Association and publicly funded research projects awarded to Drs. Klaus Schughart and Dunja Bruder.

    +
    diff --git a/general/datasets/Rthc_0211_r/cases.rtf b/general/datasets/Rthc_0211_r/cases.rtf new file mode 100644 index 0000000..5f97723 --- /dev/null +++ b/general/datasets/Rthc_0211_r/cases.rtf @@ -0,0 +1,824 @@ +
    +

    Parental and 31 BXD lines were studied. Mice were received from Jackson Laboratory, or from The Oak Ridge National and were bred in the facility of the Neuro-BSIK consortium (VU University Amsterdam). The data set includes expression values for 18 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD40, as well as the two parental strains, C57BL/6J and DBA/2J. All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding.

    + +

    BXD spleen sample pools (from 2-3 mice) were obtained from a pathogen-free mice of the Dutch Mouse Phenomics Consortium (MPC) in Amsterdam. Mice were imported into the central animal facility at the HZI and kept in a pathogen-free vivarium. Mice were euthanized using CO2 and spleenocytes wre prepared. Most mice were between 17 and 22 weeks of age when samples were collected. FACS sorting was used to select the CD4-positive T cells. These cells were further separated into CD4+CD25+ and CD4+CD25- pools.

    + +

    Error-checking strain identity. A set of more than 20 probe sets with Mendelian segregation patterns in this HZI data set were used to confirm strain identify in early June, 2007. Two errors were detected and rectified. As of June 22, 2007, data are registered correctly. Prior to June 22, 2007, data listed as strains BXD33 and BXD39 were essentially hybrid (mixed) data sets.

    + +

    On Aug 23, 2007, we loaded the final QTL Reaper data into GeneNetwork for the corrected data set. The maximum LRS generated by any probe set is 84.6 for 1436240_at (Tra2a). A total of 41 probe sets are associated with QTLs that have LRS values above 46 (LOD > 10).

    + +

        Table 1

    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexProbeSet IDSample DescriptionSexStraincd25MicroarrayShort DescriptionAgePool No.Pool members (animal number)Date of preparation
    1HZI1176BXD-06f (f1) CD25FBXD6CD25-YesBXD-06f17f11,3,41-31-2006
    2HZI1177BXD-06m (m2) CD25MBXD6CD25-YesBXD-06m18m25,6,71-31-2006
    3HZI1178BXD-14m (m3) CD25MBXD14CD25-YesBXD-14m17m31,3,41-31-2006
    4HZI1179BXD-34f (f4) CD25FBXD34CD25-YesBXD-34f17f41,2,32-1-2006
    5HZI1180BXD-34m (m5) CD25MBXD34CD25-YesBXD-34m17m55,7,82-1-2006
    6HZI1181BXD-40f (f6) CD25FBXD40CD25-YesBXD-40f17f61,2,32-1-2006
    7HZI1182BXD-40m (m7) CD25MBXD40CD25-YesBXD-40m17m75,6,72-2-2006
    8HZI1183BXD-02f (f8) CD25FBXD2CD25-YesBXD-02f17f81,2,32-14-2006
    9HZI1184BXD-02m (m20) CD25MBXD2CD25-YesBXD-02m21m204,5,64-6-2006
    10HZI1185BXD-11f (f30) CD25FBXD11CD25-YesBXD-11f17f303,4,55-11-2006
    11HZI1186BXD-11m (m9) CD25MBXD11CD25-YesBXD-11m18m91,22-14-2006
    12HZI1187BXD-12f (f10) CD25FBXD12CD25-YesBXD-12f17f101,2,32-14-2006
    13HZI1188BXD-39f (f23) CD25FBXD39CD25-YesBXD-39f19f234,5,64-11-2006
    14HZI1191BXD-18m (m13) CD25MBXD18CD25-YesBXD-18m18m137,82-15-2006
    15HZI1192BXD-23m (m15) CD25MBXD23CD25-YesBXD-23m18m151,2,32-15-2006
    16HZI1194BXD-09f (f17) CD25FBXD9CD25-YesBXD-09f21f171,2,34-5-2006
    17HZI1195BXD-09m (m16) CD25MBXD9CD25-YesBXD-09m221m165,64-5-2006
    18HZI1196BXD-09m (m35) CD25MBXD9CD25-YesBXD-09m15m357,8,97-7-2006
    19HZI1197BXD-32f (f18) CD25FBXD32CD25-YesBXD-32f21f181,2,34-6-2006
    20HZI1198BXD-32m (m19) CD25MBXD32CD25-YesBXD-32m22m191,2,34-6-2006
    21HZI1199BXD-33f (f22) CD25FBXD33CD25-YesBXD-33f18f222,3,44-11-2006
    22HZI1200BXD-39m (m29) CD25MBXD39CD25-YesBXD-39m17m295,6,75-10-2006
    23HZI1201BXD-01f (f32) CD25FBXD1CD25-YesBXD-01f18f323,47-6-2006
    24HZI1202BXD-01m (m31) CD25MBXD1CD25-YesBXD-01m18m311,27-6-2006
    25HZI1203BXD-16f (f26) CD25FBXD16CD25-YesBXD-16f18f261,2,34-12-2006
    26HZI1204BXD-21f (f25) CD25FBXD21CD25-YesBXD-21f19f255,6,74-12-2006
    27HZI1205BXD-21m (m24) CD25MBXD21CD25-YesBXD-21m18m241,2,34-12-2006
    28HZI1208C57BL/6Jf (f28) CD25FC57BL/6JCD25-YesC57BL/6Jf16f281,2,35-10-2006
    29HZI1209DBA/2Jf (f27) CD25FDBA/2JCD25-YesDBA/2Jf16f275,6,75-10-2006
    30HZI1210DBA/2Jm (m21) CD25MDBA/2JCD25-YesDBA/2Jm21m211,2,34-11-2006
    31HZI2473BXD-13 m 45MBXD13CD25-YesBXD-13m15m454,5,6,712-13-2006
    32HZI2474BXD-19 m 46MBXD19CD25-YesBXD-19m16m464,5,612-15-2006
    33HZI2475BXD-28 m 43MBXD28CD25-YesBXD-28m17,2m431,2,310-23-2006
    34HZI2476BXD-29 m 37MBXD29CD25-YesBXD-29m20, 16m371,2,38-29-2006
    35HZI2477BXD-31 m 69MBXD31CD25-YesBXD-31m14m694,5,62-1-2008
    36HZI2478BXD-33 m 11MBXD33CD25-YesBXD-33m17m111,22-14-2006
    37HZI2479BXD-38 m 63MBXD38CD25-YesBXD-38m18m631,2,36-20-2007
    38HZI2480BXD-42 m 47MBXD42CD25-YesBXD-42m15,16m471,2,312-15-2006
    39HZI2481BXD-42 m 65MBXD42CD25-YesBXD-42m15,16m471,2,312-15-2006
    40HZI2482BXD-13 f 44FBXD13CD25-YesBXD-13f15f441,2,312-13-2006
    41HZI2483BXD-18 F 14FBXD18CD25-YesBXD-18f17f143,4,52-15-2006
    42HZI2484BXD-19 f 38FBXD19CD25-YesBXD-19f221f381,2,39-1-2006
    43HZI2485BXD-19 f 64FBXD19CD25-YesBXD-19f19f647,8,96-20-2007
    44HZI2486BXD-28 f 61FBXD28CD25-YesBXD-28f22f611,2,36-18-2007
    45HZI2487BXD-29 f 40FBXD29CD25-YesBXD-29f15 - 16f404,5,69-25-2006
    46HZI2488BXD-31 f 34FBXD31CD25-YesBXD-31f16f341,2,37-7-2006
    47HZI2489BXD-38 f 70FBXD38CD25-YesBXD-38f13f704,5,6,72-1-2008
    48HZI2490BXD-42 f 49FBXD42CD25-YesBXD-42f17f49??3-8-2007
    49HZI2491BXD-43 f 53FBXD43CD25-YesBXD-43f16f531,2,34-23-2007
    50HZI2492BXD-44 f 54FBXD44CD25-YesBXD-44f18f541,2,34-23-2007
    51HZI2493BXD-45 f 55FBXD45CD25-YesBXD-45f19f551,2,34-23-2007
    52HZI2494BXD-51 f 59FBXD51CD25-YesBXD-51f22f591,2,36-18-2007
    53HZI2495BXD-62 f 56FBXD62CD25-YesBXD-62f17f561,2,34-26-2007
    54HZI2496BXD-73 f 57FBXD73CD25-YesBXD-73f18f571,2,34-26-2007
    55HZI2497BXD-75 f 58FBXD75CD25-YesBXD-75f15,17f581,2,34-26-2007
    56HZI2498BXD-86 f 52FBXD86CD25-YesBXD-86f16f521,2,34-18-2007
    +
    +
    +
    diff --git a/general/datasets/Rthc_0211_r/experiment-design.rtf b/general/datasets/Rthc_0211_r/experiment-design.rtf new file mode 100644 index 0000000..2b4d4cc --- /dev/null +++ b/general/datasets/Rthc_0211_r/experiment-design.rtf @@ -0,0 +1,7 @@ +
    +

    Parental and BXD lines were received from Jackson Laboratory, or from Oak Ridge Laboratory (BXD43, BXD51, BXD61, BXD62, BXD65, BXD68, BXD69, BXD73, BXD75, BXD87, BXD90), and were bred in the facility of the Neuro-BSIK consortium (VU University Amsterdam). Female mice 3 per strain were housed on sawdust in standard Makrolon type II cages with food (Harlan Teklad 2018) and water ad libitum under specific pathogen free conditions. For the analysis, mice were transferred to the animal facility in Braunschweig and adapted for at least two weeks to the new environment before preparing the spleen cells. All protocols involving mice were approved by national animal welfare committees.

    + +

    For sorting of Tregs and Th cells, splenocytes from 31 BXD recombinant inbred strains as well as from the parental mouse lines DBA/2J and C57BL/6J were isolated by flushing the spleens with erythrocyte-lysis-buffer. Cells were collected by centrifugation, re-suspended in cold FACS-buffer (PBS / 2% FCS / 0,5 mM EDTA). After passing the cells through a 100 µm cell strainer and an additional washing step with FACS-buffer, splenocytes were stained with anti-CD4-APC and anti-CD25-PE for 10 minutes at 4°C, washed and re-suspended in FACS-buffer. CD4+ T cells were separated into CD4+CD25+ Tregs and CD4+CD25- Th cells using a MoFlo cell sorter (Cytomation) and purity of the sorted T cell subsets reached 95-97%.

    + +

    Quality and integrity of the total RNA isolated from 1x105 cells was controlled by running all samples on an Agilent Technologies 2100 Bioanalyzer (Agilent Technologies; Waldbronn, Germany). RNA amplification and labeling was done according to manufactures protocol (Small Sample Target Labeling Assay Version II, Affymetrix; Santa Clara, CA).  The concentration of biotin-labeled cRNA was determined by UV absorbance. In all cases, 10 µg of each biotinylated cRNA preparation were fragmented and placed in a hybridization cocktail containing four biotinylated hybridization controls (BioB, BioC, BioD, and Cre) as recommended by the manufacturer. Samples were hybridized to an identical lot of Affymetrix MOE430 2.0 for 16 hours at 46°C. After hybridisation the GeneChips were washed and stained using the Affymetrix´s recommended EukGE-WS2v5 protocol for GeneChip®  Fluidics FS400 station.  Images were scanned using GeneChip® Scanner 3000 under the control of GCOS 1.3 software package (Affymetrix; Santa Clara, CA).

    +
    diff --git a/general/datasets/Rthc_0211_r/experiment-type.rtf b/general/datasets/Rthc_0211_r/experiment-type.rtf new file mode 100644 index 0000000..0139307 --- /dev/null +++ b/general/datasets/Rthc_0211_r/experiment-type.rtf @@ -0,0 +1,4 @@ +

    Parental and BXD lines were received from Jackson Laboratory, or from Oak Ridge Laboratory (BXD43, BXD51, BXD61, BXD62, BXD65, BXD68, BXD69, BXD73, BXD75, BXD87, BXD90), and were bred in the facility of the Neuro-BSIK consortium (VU University Amsterdam). Female mice 3 per strain were housed on sawdust in standard Makrolon type II cages with food (Harlan Teklad 2018) and water ad libitum under specific pathogen free conditions. For the analysis, mice were transferred to the animal facility in Braunschweig and adapted for at least two weeks to the new environment before preparing the spleen cells. All protocols involving mice were approved by national animal welfare committees.

    + For sorting of Tregs and Th cells, splenocytes from 31 BXD recombinant inbred strains as well as from the parental mouse lines DBA/2J and C57BL/6J were isolated by flushing the spleens with erythrocyte-lysis-buffer. Cells were collected by centrifugation, re-suspended in cold FACS-buffer (PBS / 2% FCS / 0,5 mM EDTA). After passing the cells through a 100 µm cell strainer and an additional washing step with FACS-buffer, splenocytes were stained with anti-CD4-APC and anti-CD25-PE for 10 minutes at 4°C, washed and re-suspended in FACS-buffer. CD4+ T cells were separated into CD4+CD25+ Tregs and CD4+CD25- Th cells using a MoFlo cell sorter (Cytomation) and purity of the sorted T cell subsets reached 95-97%.

    + Quality and integrity of the total RNA isolated from 1x105 cells was controlled by running all samples on an Agilent Technologies 2100 Bioanalyzer (Agilent Technologies; Waldbronn, Germany). RNA amplification and labeling was done according to manufactures protocol (Small Sample Target Labeling Assay Version II, Affymetrix; Santa Clara, CA).  The concentration of biotin-labeled cRNA was determined by UV absorbance. In all cases, 10 µg of each biotinylated cRNA preparation were fragmented and placed in a hybridization cocktail containing four biotinylated hybridization controls (BioB, BioC, BioD, and Cre) as recommended by the manufacturer. Samples were hybridized to an identical lot of Affymetrix MOE430 2.0 for 16 hours at 46°C. After hybridisation the GeneChips were washed and stained using the Affymetrix´s recommended EukGE-WS2v5 protocol for GeneChip®  Fluidics FS400 station.  Images were scanned using GeneChip® Scanner 3000 under the control of GCOS 1.3 software package (Affymetrix; Santa Clara, CA).

    + \ No newline at end of file diff --git a/general/datasets/Rthc_0211_r/notes.rtf b/general/datasets/Rthc_0211_r/notes.rtf new file mode 100644 index 0000000..dbd0c60 --- /dev/null +++ b/general/datasets/Rthc_0211_r/notes.rtf @@ -0,0 +1 @@ +

    This text file was generated by KS on July, 18 2011.

    diff --git a/general/datasets/Rthc_0211_r/platform.rtf b/general/datasets/Rthc_0211_r/platform.rtf new file mode 100644 index 0000000..ed42a9b --- /dev/null +++ b/general/datasets/Rthc_0211_r/platform.rtf @@ -0,0 +1,3 @@ +
    +

    The Affymetrix M430 2.0 array consists of approximately 992,936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts, including a majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using NCBI Build 107 by Affymetrix. The UTHSC GN group continuously reannotated probe sets on this array, producing more accurate data on probe and probe set targets. All probes have also be aligned to the most recent assembly of the Mouse Genome using Jim Kent's BLAT program.

    +
    diff --git a/general/datasets/Rthc_0211_r/processing.rtf b/general/datasets/Rthc_0211_r/processing.rtf new file mode 100644 index 0000000..b8d49b7 --- /dev/null +++ b/general/datasets/Rthc_0211_r/processing.rtf @@ -0,0 +1,6 @@ +
    +

    Microarray data then was preprocessed using the RMA method [bolstad] and subsequently batch corrected [Alberts et al]. In this study, RNA was extracted at three different points in time for the Treg samples and also microarray processing was performed at three different points in time. Similarly, the Th samples were processed in two batches. Therefore, we performed a batch correction for both cell types using the following ANOVA model before further analysis of the data.
    +yi = μ + Bi + ei
    +Where yi is the expression level of the ith microarray, μ is the overall mean, Bi is the batch to which the ith individual belongs and ei is the residual error.
    +Batch corrected data sets were then preprocessed before transferring them to the GeneNetwork (GN) database: Adding an offset of 1 unit to each signal intensity value to ensure that the logarithm of all values were positive, computing the log2 value, performing a quantile normalization of the log2 values for the total set of arrays using the same initial steps used by the RMA transform, computing the Z scores for each cell value, multiplying all Z scores by 2 and adding 8 to the value of all Z scores. The advantage of this variant of a Z transformation is that all values are positive and that 1 unit represents approximately a 2-fold difference in expression as determined using the spike-in control probe sets. The mean values were subsequently calculated if multiple samples from one BXD line were recorded (male and females or replicates).

    +
    diff --git a/general/datasets/Rthc_0211_r/summary.rtf b/general/datasets/Rthc_0211_r/summary.rtf new file mode 100644 index 0000000..4fd2899 --- /dev/null +++ b/general/datasets/Rthc_0211_r/summary.rtf @@ -0,0 +1,4 @@ +
    ERROR-CHECKED FIRST PHASE PRIVATE TEST DATA SET. This data set provides estimates of gene expression in helper T cells (CD4+CD25+) of BXD strains. Data were generated by Prof. Dr. Klaus Schughart and colleagues at the Helmholtz Centre for Infection Research (HZI). Samples were processed using a total of 35 Affymetrix MOE 430 2.0 short oligomer microarrays, of which 33 passed stringent quality control and error checking. + +

    This is a private test data set. Please contact Dr. Klaus Schughart for early access.

    +
    diff --git a/general/datasets/Rti_rcmrc_bxdfecmet0814/acknowledgment.rtf b/general/datasets/Rti_rcmrc_bxdfecmet0814/acknowledgment.rtf new file mode 100644 index 0000000..57f0c02 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmet0814/acknowledgment.rtf @@ -0,0 +1,7 @@ +

    This work done in collaboration with RTI under a special pilot project grant from the RCMRC Center.

    + +

    1. Dr. Susan Sumner. PI of grant

    + +

    2. Dr. Robert Clarke. Lead investigator on this project

    + +

    3. Surja Dhungana

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmet0814/cases.rtf b/general/datasets/Rti_rcmrc_bxdfecmet0814/cases.rtf new file mode 100644 index 0000000..f06f259 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmet0814/cases.rtf @@ -0,0 +1,3 @@ +

    All animals are females sacrificed as part of an NIA grant to RW Williams to study effects of diet on aging (longevity)  in the BXD strains. A subset of females were sacrificed at specific ages for tissue harvesting and fecal pelltets from these animals were removed from the large intestine by K. Mozhui and snap frozen in liquid nitrogen prior to shipping to RTI.

    + +

    Three large data sets in GeneNetwork with a common set of 4091 metabolite entries per data set (high fat, chow diet, and combined) and for as many as 18 strains.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmet0814/citation.rtf b/general/datasets/Rti_rcmrc_bxdfecmet0814/citation.rtf new file mode 100644 index 0000000..e85e0ae --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmet0814/citation.rtf @@ -0,0 +1 @@ +

    None as of Nov 2015

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmet0814/contributors.rtf b/general/datasets/Rti_rcmrc_bxdfecmet0814/contributors.rtf new file mode 100644 index 0000000..09093bb --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmet0814/contributors.rtf @@ -0,0 +1,9 @@ +

    1. Susan Sumner.  PI of grant

    + +

    2. Robert Clarke.   Lead investigator on this project

    + +

    3.  Robert W. Williams. Lead geneticist and data entry

    + +

    4. Khyobeni Mozhui: Fecal tissue collection from aging colony samples

    + +

    5. Lu Lu: worked on experimental design, organized tissue acquistion, and prepared summary Excel spreadsheets of animals to be used.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmet0814/experiment-design.rtf b/general/datasets/Rti_rcmrc_bxdfecmet0814/experiment-design.rtf new file mode 100644 index 0000000..4ee0a7b --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmet0814/experiment-design.rtf @@ -0,0 +1,17 @@ +

    Sample Preparation Summary

    + + + +

    Instruments for LC-MS Analysis
    +Waters SYNAPT G2 QTOF with Acquity UPLC (Waters Corporation, MA)
    +MS data collected over 50-1000 m/z was collected in the positive and negative ion modes.

    + +

    UPLC-MS Solutions(Reversed Phase)
    +Mobile Phase A (Reversed-Phase)—Water with 0.1% Formic Acid
    +Mobile Phase B (Reversed-Phase)—Methanol with 0.1% Formic Acid
    +Column: Waters Acquity BEH HSS T3, 2.1 x 100 mm at 50 °C

    + +

     

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmet0814/notes.rtf b/general/datasets/Rti_rcmrc_bxdfecmet0814/notes.rtf new file mode 100644 index 0000000..8da96fa --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmet0814/notes.rtf @@ -0,0 +1,5 @@ +

    For symbols of metabolites if the differences were greater than .0003 proportional m/z units (m/z difference divided by m/z value) then the symbol was labeled "circa" after the atomic composition. 

    + +

    For description of metabolites if the proportional difference of the m/z ratio between Evan's EPFL Polar metabolite assignments and RTI assignments was very low (<.0001 proportional m/z units) then the symbol and description was taken directly from Evan's metabolite file, but if differences were between 0.0001 and about .0003 proportional m/z units then the descriptions were labeled "Putative" . If the differences were greater than .0003 units, then the descriptions were labeled "Provisional". For example, "Provisional assignment. Vanilpyruvic acid is a catecholamine metabolite and precursor to vanilactic acid. Accumulation in urine is indicative of Aromatic L-aminoacid decarboxylase deficiency (PMID 16288991)." 

    + +

     by Rob Williams and Arthur Centeno, Aug 25, 2014

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmet0814/platform.rtf b/general/datasets/Rti_rcmrc_bxdfecmet0814/platform.rtf new file mode 100644 index 0000000..072286a --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmet0814/platform.rtf @@ -0,0 +1 @@ +

    This is LC-MS data. Analysis exploited a Chenomx library at RTI with many updated metabolite identifications from the standard Chenomx library. Note that a single m/z ratio can correspond to multiple metabolites.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmet0814/summary.rtf b/general/datasets/Rti_rcmrc_bxdfecmet0814/summary.rtf new file mode 100644 index 0000000..10218c7 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmet0814/summary.rtf @@ -0,0 +1,11 @@ +

    The goal of this project is to study expression of a large set of defined and undefined metabolites in fecal samples from a genetically diverse set of BXD mouse strains (females) raised either on a high fat diet or low fat diet. Samples were taken from animals at sacrifices directly from the large intestine.

    + +

    Aim: Effect of genetics and diet on fecal metabolomics

    + +

    Use UPLC-MS Broad Spectrum Metabolomics to study:

    + + + +

    To capture the most signal, all samples were analyzed under positive and negative ion mode using a reversed-phase separation.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmet0814/tissue.rtf b/general/datasets/Rti_rcmrc_bxdfecmet0814/tissue.rtf new file mode 100644 index 0000000..3a26107 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmet0814/tissue.rtf @@ -0,0 +1 @@ +

    Fresh fecal pellets taken directly at dissection from the lower GI tract by Dr. Khyobeni Mozhui.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmethf0814/acknowledgment.rtf b/general/datasets/Rti_rcmrc_bxdfecmethf0814/acknowledgment.rtf new file mode 100644 index 0000000..57f0c02 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmethf0814/acknowledgment.rtf @@ -0,0 +1,7 @@ +

    This work done in collaboration with RTI under a special pilot project grant from the RCMRC Center.

    + +

    1. Dr. Susan Sumner. PI of grant

    + +

    2. Dr. Robert Clarke. Lead investigator on this project

    + +

    3. Surja Dhungana

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmethf0814/cases.rtf b/general/datasets/Rti_rcmrc_bxdfecmethf0814/cases.rtf new file mode 100644 index 0000000..f06f259 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmethf0814/cases.rtf @@ -0,0 +1,3 @@ +

    All animals are females sacrificed as part of an NIA grant to RW Williams to study effects of diet on aging (longevity)  in the BXD strains. A subset of females were sacrificed at specific ages for tissue harvesting and fecal pelltets from these animals were removed from the large intestine by K. Mozhui and snap frozen in liquid nitrogen prior to shipping to RTI.

    + +

    Three large data sets in GeneNetwork with a common set of 4091 metabolite entries per data set (high fat, chow diet, and combined) and for as many as 18 strains.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmethf0814/citation.rtf b/general/datasets/Rti_rcmrc_bxdfecmethf0814/citation.rtf new file mode 100644 index 0000000..e85e0ae --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmethf0814/citation.rtf @@ -0,0 +1 @@ +

    None as of Nov 2015

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmethf0814/contributors.rtf b/general/datasets/Rti_rcmrc_bxdfecmethf0814/contributors.rtf new file mode 100644 index 0000000..09093bb --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmethf0814/contributors.rtf @@ -0,0 +1,9 @@ +

    1. Susan Sumner.  PI of grant

    + +

    2. Robert Clarke.   Lead investigator on this project

    + +

    3.  Robert W. Williams. Lead geneticist and data entry

    + +

    4. Khyobeni Mozhui: Fecal tissue collection from aging colony samples

    + +

    5. Lu Lu: worked on experimental design, organized tissue acquistion, and prepared summary Excel spreadsheets of animals to be used.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmethf0814/experiment-design.rtf b/general/datasets/Rti_rcmrc_bxdfecmethf0814/experiment-design.rtf new file mode 100644 index 0000000..4ee0a7b --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmethf0814/experiment-design.rtf @@ -0,0 +1,17 @@ +

    Sample Preparation Summary

    + + + +

    Instruments for LC-MS Analysis
    +Waters SYNAPT G2 QTOF with Acquity UPLC (Waters Corporation, MA)
    +MS data collected over 50-1000 m/z was collected in the positive and negative ion modes.

    + +

    UPLC-MS Solutions(Reversed Phase)
    +Mobile Phase A (Reversed-Phase)—Water with 0.1% Formic Acid
    +Mobile Phase B (Reversed-Phase)—Methanol with 0.1% Formic Acid
    +Column: Waters Acquity BEH HSS T3, 2.1 x 100 mm at 50 °C

    + +

     

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmethf0814/notes.rtf b/general/datasets/Rti_rcmrc_bxdfecmethf0814/notes.rtf new file mode 100644 index 0000000..8da96fa --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmethf0814/notes.rtf @@ -0,0 +1,5 @@ +

    For symbols of metabolites if the differences were greater than .0003 proportional m/z units (m/z difference divided by m/z value) then the symbol was labeled "circa" after the atomic composition. 

    + +

    For description of metabolites if the proportional difference of the m/z ratio between Evan's EPFL Polar metabolite assignments and RTI assignments was very low (<.0001 proportional m/z units) then the symbol and description was taken directly from Evan's metabolite file, but if differences were between 0.0001 and about .0003 proportional m/z units then the descriptions were labeled "Putative" . If the differences were greater than .0003 units, then the descriptions were labeled "Provisional". For example, "Provisional assignment. Vanilpyruvic acid is a catecholamine metabolite and precursor to vanilactic acid. Accumulation in urine is indicative of Aromatic L-aminoacid decarboxylase deficiency (PMID 16288991)." 

    + +

     by Rob Williams and Arthur Centeno, Aug 25, 2014

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmethf0814/platform.rtf b/general/datasets/Rti_rcmrc_bxdfecmethf0814/platform.rtf new file mode 100644 index 0000000..072286a --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmethf0814/platform.rtf @@ -0,0 +1 @@ +

    This is LC-MS data. Analysis exploited a Chenomx library at RTI with many updated metabolite identifications from the standard Chenomx library. Note that a single m/z ratio can correspond to multiple metabolites.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmethf0814/summary.rtf b/general/datasets/Rti_rcmrc_bxdfecmethf0814/summary.rtf new file mode 100644 index 0000000..10218c7 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmethf0814/summary.rtf @@ -0,0 +1,11 @@ +

    The goal of this project is to study expression of a large set of defined and undefined metabolites in fecal samples from a genetically diverse set of BXD mouse strains (females) raised either on a high fat diet or low fat diet. Samples were taken from animals at sacrifices directly from the large intestine.

    + +

    Aim: Effect of genetics and diet on fecal metabolomics

    + +

    Use UPLC-MS Broad Spectrum Metabolomics to study:

    + + + +

    To capture the most signal, all samples were analyzed under positive and negative ion mode using a reversed-phase separation.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmethf0814/tissue.rtf b/general/datasets/Rti_rcmrc_bxdfecmethf0814/tissue.rtf new file mode 100644 index 0000000..3a26107 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmethf0814/tissue.rtf @@ -0,0 +1 @@ +

    Fresh fecal pellets taken directly at dissection from the lower GI tract by Dr. Khyobeni Mozhui.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmethflog0814/acknowledgment.rtf b/general/datasets/Rti_rcmrc_bxdfecmethflog0814/acknowledgment.rtf new file mode 100644 index 0000000..57f0c02 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmethflog0814/acknowledgment.rtf @@ -0,0 +1,7 @@ +

    This work done in collaboration with RTI under a special pilot project grant from the RCMRC Center.

    + +

    1. Dr. Susan Sumner. PI of grant

    + +

    2. Dr. Robert Clarke. Lead investigator on this project

    + +

    3. Surja Dhungana

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmethflog0814/cases.rtf b/general/datasets/Rti_rcmrc_bxdfecmethflog0814/cases.rtf new file mode 100644 index 0000000..f06f259 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmethflog0814/cases.rtf @@ -0,0 +1,3 @@ +

    All animals are females sacrificed as part of an NIA grant to RW Williams to study effects of diet on aging (longevity)  in the BXD strains. A subset of females were sacrificed at specific ages for tissue harvesting and fecal pelltets from these animals were removed from the large intestine by K. Mozhui and snap frozen in liquid nitrogen prior to shipping to RTI.

    + +

    Three large data sets in GeneNetwork with a common set of 4091 metabolite entries per data set (high fat, chow diet, and combined) and for as many as 18 strains.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmethflog0814/citation.rtf b/general/datasets/Rti_rcmrc_bxdfecmethflog0814/citation.rtf new file mode 100644 index 0000000..e85e0ae --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmethflog0814/citation.rtf @@ -0,0 +1 @@ +

    None as of Nov 2015

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmethflog0814/contributors.rtf b/general/datasets/Rti_rcmrc_bxdfecmethflog0814/contributors.rtf new file mode 100644 index 0000000..09093bb --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmethflog0814/contributors.rtf @@ -0,0 +1,9 @@ +

    1. Susan Sumner.  PI of grant

    + +

    2. Robert Clarke.   Lead investigator on this project

    + +

    3.  Robert W. Williams. Lead geneticist and data entry

    + +

    4. Khyobeni Mozhui: Fecal tissue collection from aging colony samples

    + +

    5. Lu Lu: worked on experimental design, organized tissue acquistion, and prepared summary Excel spreadsheets of animals to be used.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmethflog0814/experiment-design.rtf b/general/datasets/Rti_rcmrc_bxdfecmethflog0814/experiment-design.rtf new file mode 100644 index 0000000..4ee0a7b --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmethflog0814/experiment-design.rtf @@ -0,0 +1,17 @@ +

    Sample Preparation Summary

    + + + +

    Instruments for LC-MS Analysis
    +Waters SYNAPT G2 QTOF with Acquity UPLC (Waters Corporation, MA)
    +MS data collected over 50-1000 m/z was collected in the positive and negative ion modes.

    + +

    UPLC-MS Solutions(Reversed Phase)
    +Mobile Phase A (Reversed-Phase)—Water with 0.1% Formic Acid
    +Mobile Phase B (Reversed-Phase)—Methanol with 0.1% Formic Acid
    +Column: Waters Acquity BEH HSS T3, 2.1 x 100 mm at 50 °C

    + +

     

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmethflog0814/notes.rtf b/general/datasets/Rti_rcmrc_bxdfecmethflog0814/notes.rtf new file mode 100644 index 0000000..8da96fa --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmethflog0814/notes.rtf @@ -0,0 +1,5 @@ +

    For symbols of metabolites if the differences were greater than .0003 proportional m/z units (m/z difference divided by m/z value) then the symbol was labeled "circa" after the atomic composition. 

    + +

    For description of metabolites if the proportional difference of the m/z ratio between Evan's EPFL Polar metabolite assignments and RTI assignments was very low (<.0001 proportional m/z units) then the symbol and description was taken directly from Evan's metabolite file, but if differences were between 0.0001 and about .0003 proportional m/z units then the descriptions were labeled "Putative" . If the differences were greater than .0003 units, then the descriptions were labeled "Provisional". For example, "Provisional assignment. Vanilpyruvic acid is a catecholamine metabolite and precursor to vanilactic acid. Accumulation in urine is indicative of Aromatic L-aminoacid decarboxylase deficiency (PMID 16288991)." 

    + +

     by Rob Williams and Arthur Centeno, Aug 25, 2014

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmethflog0814/platform.rtf b/general/datasets/Rti_rcmrc_bxdfecmethflog0814/platform.rtf new file mode 100644 index 0000000..072286a --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmethflog0814/platform.rtf @@ -0,0 +1 @@ +

    This is LC-MS data. Analysis exploited a Chenomx library at RTI with many updated metabolite identifications from the standard Chenomx library. Note that a single m/z ratio can correspond to multiple metabolites.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmethflog0814/summary.rtf b/general/datasets/Rti_rcmrc_bxdfecmethflog0814/summary.rtf new file mode 100644 index 0000000..10218c7 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmethflog0814/summary.rtf @@ -0,0 +1,11 @@ +

    The goal of this project is to study expression of a large set of defined and undefined metabolites in fecal samples from a genetically diverse set of BXD mouse strains (females) raised either on a high fat diet or low fat diet. Samples were taken from animals at sacrifices directly from the large intestine.

    + +

    Aim: Effect of genetics and diet on fecal metabolomics

    + +

    Use UPLC-MS Broad Spectrum Metabolomics to study:

    + + + +

    To capture the most signal, all samples were analyzed under positive and negative ion mode using a reversed-phase separation.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmethflog0814/tissue.rtf b/general/datasets/Rti_rcmrc_bxdfecmethflog0814/tissue.rtf new file mode 100644 index 0000000..3a26107 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmethflog0814/tissue.rtf @@ -0,0 +1 @@ +

    Fresh fecal pellets taken directly at dissection from the lower GI tract by Dr. Khyobeni Mozhui.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlf0814/acknowledgment.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlf0814/acknowledgment.rtf new file mode 100644 index 0000000..57f0c02 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlf0814/acknowledgment.rtf @@ -0,0 +1,7 @@ +

    This work done in collaboration with RTI under a special pilot project grant from the RCMRC Center.

    + +

    1. Dr. Susan Sumner. PI of grant

    + +

    2. Dr. Robert Clarke. Lead investigator on this project

    + +

    3. Surja Dhungana

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlf0814/cases.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlf0814/cases.rtf new file mode 100644 index 0000000..f06f259 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlf0814/cases.rtf @@ -0,0 +1,3 @@ +

    All animals are females sacrificed as part of an NIA grant to RW Williams to study effects of diet on aging (longevity)  in the BXD strains. A subset of females were sacrificed at specific ages for tissue harvesting and fecal pelltets from these animals were removed from the large intestine by K. Mozhui and snap frozen in liquid nitrogen prior to shipping to RTI.

    + +

    Three large data sets in GeneNetwork with a common set of 4091 metabolite entries per data set (high fat, chow diet, and combined) and for as many as 18 strains.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlf0814/citation.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlf0814/citation.rtf new file mode 100644 index 0000000..e85e0ae --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlf0814/citation.rtf @@ -0,0 +1 @@ +

    None as of Nov 2015

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlf0814/contributors.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlf0814/contributors.rtf new file mode 100644 index 0000000..09093bb --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlf0814/contributors.rtf @@ -0,0 +1,9 @@ +

    1. Susan Sumner.  PI of grant

    + +

    2. Robert Clarke.   Lead investigator on this project

    + +

    3.  Robert W. Williams. Lead geneticist and data entry

    + +

    4. Khyobeni Mozhui: Fecal tissue collection from aging colony samples

    + +

    5. Lu Lu: worked on experimental design, organized tissue acquistion, and prepared summary Excel spreadsheets of animals to be used.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlf0814/experiment-design.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlf0814/experiment-design.rtf new file mode 100644 index 0000000..4ee0a7b --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlf0814/experiment-design.rtf @@ -0,0 +1,17 @@ +

    Sample Preparation Summary

    + + + +

    Instruments for LC-MS Analysis
    +Waters SYNAPT G2 QTOF with Acquity UPLC (Waters Corporation, MA)
    +MS data collected over 50-1000 m/z was collected in the positive and negative ion modes.

    + +

    UPLC-MS Solutions(Reversed Phase)
    +Mobile Phase A (Reversed-Phase)—Water with 0.1% Formic Acid
    +Mobile Phase B (Reversed-Phase)—Methanol with 0.1% Formic Acid
    +Column: Waters Acquity BEH HSS T3, 2.1 x 100 mm at 50 °C

    + +

     

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlf0814/notes.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlf0814/notes.rtf new file mode 100644 index 0000000..8da96fa --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlf0814/notes.rtf @@ -0,0 +1,5 @@ +

    For symbols of metabolites if the differences were greater than .0003 proportional m/z units (m/z difference divided by m/z value) then the symbol was labeled "circa" after the atomic composition. 

    + +

    For description of metabolites if the proportional difference of the m/z ratio between Evan's EPFL Polar metabolite assignments and RTI assignments was very low (<.0001 proportional m/z units) then the symbol and description was taken directly from Evan's metabolite file, but if differences were between 0.0001 and about .0003 proportional m/z units then the descriptions were labeled "Putative" . If the differences were greater than .0003 units, then the descriptions were labeled "Provisional". For example, "Provisional assignment. Vanilpyruvic acid is a catecholamine metabolite and precursor to vanilactic acid. Accumulation in urine is indicative of Aromatic L-aminoacid decarboxylase deficiency (PMID 16288991)." 

    + +

     by Rob Williams and Arthur Centeno, Aug 25, 2014

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlf0814/platform.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlf0814/platform.rtf new file mode 100644 index 0000000..072286a --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlf0814/platform.rtf @@ -0,0 +1 @@ +

    This is LC-MS data. Analysis exploited a Chenomx library at RTI with many updated metabolite identifications from the standard Chenomx library. Note that a single m/z ratio can correspond to multiple metabolites.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlf0814/summary.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlf0814/summary.rtf new file mode 100644 index 0000000..10218c7 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlf0814/summary.rtf @@ -0,0 +1,11 @@ +

    The goal of this project is to study expression of a large set of defined and undefined metabolites in fecal samples from a genetically diverse set of BXD mouse strains (females) raised either on a high fat diet or low fat diet. Samples were taken from animals at sacrifices directly from the large intestine.

    + +

    Aim: Effect of genetics and diet on fecal metabolomics

    + +

    Use UPLC-MS Broad Spectrum Metabolomics to study:

    + + + +

    To capture the most signal, all samples were analyzed under positive and negative ion mode using a reversed-phase separation.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlf0814/tissue.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlf0814/tissue.rtf new file mode 100644 index 0000000..3a26107 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlf0814/tissue.rtf @@ -0,0 +1 @@ +

    Fresh fecal pellets taken directly at dissection from the lower GI tract by Dr. Khyobeni Mozhui.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/acknowledgment.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/acknowledgment.rtf new file mode 100644 index 0000000..57f0c02 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/acknowledgment.rtf @@ -0,0 +1,7 @@ +

    This work done in collaboration with RTI under a special pilot project grant from the RCMRC Center.

    + +

    1. Dr. Susan Sumner. PI of grant

    + +

    2. Dr. Robert Clarke. Lead investigator on this project

    + +

    3. Surja Dhungana

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/cases.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/cases.rtf new file mode 100644 index 0000000..f06f259 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/cases.rtf @@ -0,0 +1,3 @@ +

    All animals are females sacrificed as part of an NIA grant to RW Williams to study effects of diet on aging (longevity)  in the BXD strains. A subset of females were sacrificed at specific ages for tissue harvesting and fecal pelltets from these animals were removed from the large intestine by K. Mozhui and snap frozen in liquid nitrogen prior to shipping to RTI.

    + +

    Three large data sets in GeneNetwork with a common set of 4091 metabolite entries per data set (high fat, chow diet, and combined) and for as many as 18 strains.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/citation.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/citation.rtf new file mode 100644 index 0000000..e85e0ae --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/citation.rtf @@ -0,0 +1 @@ +

    None as of Nov 2015

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/contributors.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/contributors.rtf new file mode 100644 index 0000000..09093bb --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/contributors.rtf @@ -0,0 +1,9 @@ +

    1. Susan Sumner.  PI of grant

    + +

    2. Robert Clarke.   Lead investigator on this project

    + +

    3.  Robert W. Williams. Lead geneticist and data entry

    + +

    4. Khyobeni Mozhui: Fecal tissue collection from aging colony samples

    + +

    5. Lu Lu: worked on experimental design, organized tissue acquistion, and prepared summary Excel spreadsheets of animals to be used.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/experiment-design.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/experiment-design.rtf new file mode 100644 index 0000000..4ee0a7b --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/experiment-design.rtf @@ -0,0 +1,17 @@ +

    Sample Preparation Summary

    + + + +

    Instruments for LC-MS Analysis
    +Waters SYNAPT G2 QTOF with Acquity UPLC (Waters Corporation, MA)
    +MS data collected over 50-1000 m/z was collected in the positive and negative ion modes.

    + +

    UPLC-MS Solutions(Reversed Phase)
    +Mobile Phase A (Reversed-Phase)—Water with 0.1% Formic Acid
    +Mobile Phase B (Reversed-Phase)—Methanol with 0.1% Formic Acid
    +Column: Waters Acquity BEH HSS T3, 2.1 x 100 mm at 50 °C

    + +

     

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/notes.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/notes.rtf new file mode 100644 index 0000000..8da96fa --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/notes.rtf @@ -0,0 +1,5 @@ +

    For symbols of metabolites if the differences were greater than .0003 proportional m/z units (m/z difference divided by m/z value) then the symbol was labeled "circa" after the atomic composition. 

    + +

    For description of metabolites if the proportional difference of the m/z ratio between Evan's EPFL Polar metabolite assignments and RTI assignments was very low (<.0001 proportional m/z units) then the symbol and description was taken directly from Evan's metabolite file, but if differences were between 0.0001 and about .0003 proportional m/z units then the descriptions were labeled "Putative" . If the differences were greater than .0003 units, then the descriptions were labeled "Provisional". For example, "Provisional assignment. Vanilpyruvic acid is a catecholamine metabolite and precursor to vanilactic acid. Accumulation in urine is indicative of Aromatic L-aminoacid decarboxylase deficiency (PMID 16288991)." 

    + +

     by Rob Williams and Arthur Centeno, Aug 25, 2014

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/platform.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/platform.rtf new file mode 100644 index 0000000..072286a --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/platform.rtf @@ -0,0 +1 @@ +

    This is LC-MS data. Analysis exploited a Chenomx library at RTI with many updated metabolite identifications from the standard Chenomx library. Note that a single m/z ratio can correspond to multiple metabolites.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/summary.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/summary.rtf new file mode 100644 index 0000000..10218c7 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/summary.rtf @@ -0,0 +1,11 @@ +

    The goal of this project is to study expression of a large set of defined and undefined metabolites in fecal samples from a genetically diverse set of BXD mouse strains (females) raised either on a high fat diet or low fat diet. Samples were taken from animals at sacrifices directly from the large intestine.

    + +

    Aim: Effect of genetics and diet on fecal metabolomics

    + +

    Use UPLC-MS Broad Spectrum Metabolomics to study:

    + + + +

    To capture the most signal, all samples were analyzed under positive and negative ion mode using a reversed-phase separation.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/tissue.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/tissue.rtf new file mode 100644 index 0000000..3a26107 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlflog0814/tissue.rtf @@ -0,0 +1 @@ +

    Fresh fecal pellets taken directly at dissection from the lower GI tract by Dr. Khyobeni Mozhui.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlog0814/acknowledgment.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlog0814/acknowledgment.rtf new file mode 100644 index 0000000..57f0c02 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlog0814/acknowledgment.rtf @@ -0,0 +1,7 @@ +

    This work done in collaboration with RTI under a special pilot project grant from the RCMRC Center.

    + +

    1. Dr. Susan Sumner. PI of grant

    + +

    2. Dr. Robert Clarke. Lead investigator on this project

    + +

    3. Surja Dhungana

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlog0814/cases.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlog0814/cases.rtf new file mode 100644 index 0000000..f06f259 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlog0814/cases.rtf @@ -0,0 +1,3 @@ +

    All animals are females sacrificed as part of an NIA grant to RW Williams to study effects of diet on aging (longevity)  in the BXD strains. A subset of females were sacrificed at specific ages for tissue harvesting and fecal pelltets from these animals were removed from the large intestine by K. Mozhui and snap frozen in liquid nitrogen prior to shipping to RTI.

    + +

    Three large data sets in GeneNetwork with a common set of 4091 metabolite entries per data set (high fat, chow diet, and combined) and for as many as 18 strains.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlog0814/citation.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlog0814/citation.rtf new file mode 100644 index 0000000..e85e0ae --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlog0814/citation.rtf @@ -0,0 +1 @@ +

    None as of Nov 2015

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlog0814/contributors.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlog0814/contributors.rtf new file mode 100644 index 0000000..09093bb --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlog0814/contributors.rtf @@ -0,0 +1,9 @@ +

    1. Susan Sumner.  PI of grant

    + +

    2. Robert Clarke.   Lead investigator on this project

    + +

    3.  Robert W. Williams. Lead geneticist and data entry

    + +

    4. Khyobeni Mozhui: Fecal tissue collection from aging colony samples

    + +

    5. Lu Lu: worked on experimental design, organized tissue acquistion, and prepared summary Excel spreadsheets of animals to be used.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlog0814/experiment-design.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlog0814/experiment-design.rtf new file mode 100644 index 0000000..4ee0a7b --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlog0814/experiment-design.rtf @@ -0,0 +1,17 @@ +

    Sample Preparation Summary

    + + + +

    Instruments for LC-MS Analysis
    +Waters SYNAPT G2 QTOF with Acquity UPLC (Waters Corporation, MA)
    +MS data collected over 50-1000 m/z was collected in the positive and negative ion modes.

    + +

    UPLC-MS Solutions(Reversed Phase)
    +Mobile Phase A (Reversed-Phase)—Water with 0.1% Formic Acid
    +Mobile Phase B (Reversed-Phase)—Methanol with 0.1% Formic Acid
    +Column: Waters Acquity BEH HSS T3, 2.1 x 100 mm at 50 °C

    + +

     

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlog0814/notes.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlog0814/notes.rtf new file mode 100644 index 0000000..8da96fa --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlog0814/notes.rtf @@ -0,0 +1,5 @@ +

    For symbols of metabolites if the differences were greater than .0003 proportional m/z units (m/z difference divided by m/z value) then the symbol was labeled "circa" after the atomic composition. 

    + +

    For description of metabolites if the proportional difference of the m/z ratio between Evan's EPFL Polar metabolite assignments and RTI assignments was very low (<.0001 proportional m/z units) then the symbol and description was taken directly from Evan's metabolite file, but if differences were between 0.0001 and about .0003 proportional m/z units then the descriptions were labeled "Putative" . If the differences were greater than .0003 units, then the descriptions were labeled "Provisional". For example, "Provisional assignment. Vanilpyruvic acid is a catecholamine metabolite and precursor to vanilactic acid. Accumulation in urine is indicative of Aromatic L-aminoacid decarboxylase deficiency (PMID 16288991)." 

    + +

     by Rob Williams and Arthur Centeno, Aug 25, 2014

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlog0814/platform.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlog0814/platform.rtf new file mode 100644 index 0000000..072286a --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlog0814/platform.rtf @@ -0,0 +1 @@ +

    This is LC-MS data. Analysis exploited a Chenomx library at RTI with many updated metabolite identifications from the standard Chenomx library. Note that a single m/z ratio can correspond to multiple metabolites.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlog0814/summary.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlog0814/summary.rtf new file mode 100644 index 0000000..10218c7 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlog0814/summary.rtf @@ -0,0 +1,11 @@ +

    The goal of this project is to study expression of a large set of defined and undefined metabolites in fecal samples from a genetically diverse set of BXD mouse strains (females) raised either on a high fat diet or low fat diet. Samples were taken from animals at sacrifices directly from the large intestine.

    + +

    Aim: Effect of genetics and diet on fecal metabolomics

    + +

    Use UPLC-MS Broad Spectrum Metabolomics to study:

    + + + +

    To capture the most signal, all samples were analyzed under positive and negative ion mode using a reversed-phase separation.

    diff --git a/general/datasets/Rti_rcmrc_bxdfecmetlog0814/tissue.rtf b/general/datasets/Rti_rcmrc_bxdfecmetlog0814/tissue.rtf new file mode 100644 index 0000000..3a26107 --- /dev/null +++ b/general/datasets/Rti_rcmrc_bxdfecmetlog0814/tissue.rtf @@ -0,0 +1 @@ +

    Fresh fecal pellets taken directly at dissection from the lower GI tract by Dr. Khyobeni Mozhui.

    diff --git a/general/datasets/STJ_PLN_0912/summary.rtf b/general/datasets/STJ_PLN_0912/summary.rtf deleted file mode 100644 index fd9009a..0000000 --- a/general/datasets/STJ_PLN_0912/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -Summary of DatasetId 154, Name: St Jude BXD Popliteal Lymph Node Affy HT MG-430 PM (Sep12) \ No newline at end of file diff --git a/general/datasets/SUH_Liv_RMAEx_0611/processing.rtf b/general/datasets/SUH_Liv_RMAEx_0611/processing.rtf deleted file mode 100644 index ca7e79b..0000000 --- a/general/datasets/SUH_Liv_RMAEx_0611/processing.rtf +++ /dev/null @@ -1,660 +0,0 @@ -

    QC Results: This data set consists of expression data for 33 strains. A total of 166 probe sets are associated with LOD scores above 10 and the highest linkage score of 22 for Rpl3 (probe set 10430669). Strain distribution patterns of eQTLs with a Mendelian expression pattern match those of their closest markers perfectly, verifying that there are no errors of strain assignment in this data set.

    - -

    Analysis of XIST probe set 1060617 confirms that most strains are purely female. However, only males were available for BXD1 and BXD6. BXD28 and BXD33 data are based on the average of two female samples and one male sample. All other strains are purely female.

    - -

    Data were analyzed by Rabea Hall and Dr. Frank Lammert at the Universitätsklinikum des Saarlandes in Homburg, Germany.

    - -

    Contacts: rabea.hall at uks.eu, Rabea.Hall at uniklinikum-saarland.de, and frank.lammert at uks.eu

    - -

    Table updated 7-19-2011

    - -
    - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexSample IDStrain IDTreatment
    1504B6D2F1CCl4
    2506B6D2F1CCl4
    3508B6D2F1CCl4
    4414C57BL/6JCCl4
    5488C57BL/6JCCl4
    6489C57BL/6JCCl4
    7B6J1C57BL/6Juntreated control
    8B6J2C57BL/6Juntreated control
    9B6J3C57BL/6Juntreated control
    10449DBA/2JCCl4
    11450DBA/2JCCl4
    12451DBA/2JCCl4
    13219.1DBA/2Juntreated control
    14219.2DBA/2Juntreated control
    15219.3DBA/2Juntreated control
    16276BXD1CCl4
    17278BXD1CCl4
    18279BXD1CCl4
    19353BXD2CCl4
    20357BXD2CCl4
    21358BXD2CCl4
    22272BXD6CCl4
    23273BXD6CCl4
    24274BXD6CCl4
    25405BXD11CCl4
    26406BXD11CCl4
    27408BXD11CCl4
    28239BXD12CCl4
    29240BXD12CCl4
    30241BXD12CCl4
    31553BXD13CCl4
    32554BXD13CCl4
    33555BXD13CCl4
    34249BXD14CCl4
    35250BXD14CCl4
    36288BXD14CCl4
    37191BXD19CCl4
    38644BXD19CCl4
    39645BXD19CCl4
    40442BXD24aCCl4
    41443BXD24aCCl4
    42444BXD24aCCl4
    43216BXD27CCl4
    44218BXD27CCl4
    45290BXD27CCl4
    4628BXD28CCl4
    4771BXD28CCl4
    48129BXD28CCl4
    49219BXD31CCl4
    50220BXD31CCl4
    51231BXD31CCl4
    52549BXD32CCl4
    53550BXD32CCl4
    54551BXD32CCl4
    55139BXD33CCl4
    56140BXD33CCl4
    57559BXD33CCl4
    58132BXD34CCl4
    59146BXD34CCl4
    60147BXD34CCl4
    61293BXD39CCl4
    62597BXD39CCl4
    63599BXD39CCl4
    64154BXD40CCl4
    65570BXD40CCl4
    66572BXD40CCl4
    67361BXD42CCl4
    68362BXD42CCl4
    69373BXD42CCl4
    70428BXD43CCl4
    71429BXD43CCl4
    72556BXD43CCl4
    73472BXD51CCl4
    74473BXD51CCl4
    75474BXD51CCl4
    76533BXD55CCl4
    77534BXD55CCl4
    78535BXD55CCl4
    79519BXD62CCl4
    80520BXD62CCl4
    81521BXD62CCl4
    82463BXD65CCl4
    83464BXD65CCl4
    84465BXD65CCl4
    85327BXD69CCl4
    86346BXD69CCl4
    87347BXD69CCl4
    88614BXD73CCl4
    89616BXD73CCl4
    90619BXD73CCl4
    91395BXD75CCl4
    92482BXD75CCl4
    93483BXD75CCl4
    94317BXD87CCl4
    95319BXD87CCl4
    96322BXD87CCl4
    97374BXD90CCl4
    98388BXD90CCl4
    99389BXD90CCl4
    100402BXD96CCl4
    101403BXD96CCl4
    102404BXD96CCl4
    103584BXD98CCl4
    104585BXD98CCl4
    105607BXD98CCl4
    -
    -
    diff --git a/general/datasets/SUH_Liv_RMAEx_0611/summary.rtf b/general/datasets/SUH_Liv_RMAEx_0611/summary.rtf deleted file mode 100644 index 2684b46..0000000 --- a/general/datasets/SUH_Liv_RMAEx_0611/summary.rtf +++ /dev/null @@ -1,22 +0,0 @@ -

    Saarland University Homburg (SUH) Carbon Tetrachloride-Treated BXD Mouse Affymetrix Mouse Gene 1.0 ST Array data set

    - -

    This experimental liver gene expression data set (~100 Affymetrix exon-type arrays), was generated by Frank Lammert, Sonja Hillebrandt, Rabea Hall, and colleagues at the Saarland University Medical Center in Homburg, Germany. This work is part of the German Network for Systems Genetics (GeNeSys).

    - -

    Expression data after carbon tetrachloride treatment (CCl4, also known as Halon, Freon, carbon tet, or tetrachloromethane) were generated using RNA sample from 30 BXD strains, both parental strains (C57BL/6J, DBA/2J), and B6D2 F1 hybrids. The great majority of cases were females and were treated with carbon tetrachloride injections over a six week period. Three arrays were run for each strain using independent liver samples.

    - -

    PURPOSE: The overall goal of the project is to understand the etiology of liver fibrogenesis using carbon tetracholoride as a toxin and inducer of liver disease. Liver fibrogenesis, or scarring of the liver, is the common end-stage of chronic liver diseases, in particular after chronic viral infections. In Germany along complications associated with liver fibrosis cause approximately 10,000 deaths per year. In the past decade key molecular pathomechanisms of hepatic fibrogenesis due to chronic viral infections have been identified. Activated hepatic stellate cells (HSCs) drive the process of de novo deposition of abnormal extracellular matrix, which is modulated by complex interactions between cytokines, receptors, and matrix components.

    - -

    Several studies have demonstrated that the course and progression of the fibrogenic response to chronic liver injury is highly variability among individuals. This marked variabilityhas been attributed to etiology, age, gender, and environmental factors. In humans these genetic disease fibrosis predisposition factors have not yet to be studied systematically.

    - -

    Our group recently identified a gene variant that contributes to liver fibrogenesis by using QTL mapping in an experimental crosses between fibrosis-susceptible and resistant strains of mice (Hillebrandt et al., 2005). We demonstrated that sequence differences in the HC gene that encodes complement factor C5 (also known as hemolytic complement), are responsible for this strain difference. Common haplotype-tagging polymorphisms of the human HC gene were shown to be associated with advanced fibrosis in chronic hepatitis C virus infection. Thus, the mouse analysis led to the identification of an unknown gene underlying human susceptibility to liver fibrosis, supporting the idea that HC has a causal role in chronic inflammatory disorders and organ fibrogenesis across species.

    - -

    As part of the GeNeSys program we have studied liver fibrogenesis in the BXD family of strains as a model for chronic liver injury. This expression data set is used to map complex genetic traits that modulate gene expression and determine gene networks during liver fibrogenesis in GRPs.

    - -

    The following assays are complete or are in progress:

    - -
      -
    1. Liver fibrosis studies: Phenotyping protocols include standard histology, morphometry, biochemical quantification of hepatic collagen contents, serum surrogate markers of fibrosis, immunohistochemistry, and expression profiling of proinflammatory and profibrogenic genes by qRT-PCR and Affymetrix microarrays (this data set).
    2. -
    3. Characterization of liver cells: Liver immune cell fractions will be isolated and sorted according to SOPs developed in the Lammert laboratory. In addition, in cooperation with the technology platforms of the HepatoSys Network of Excellence, we will characterize primary HSCs that play critical roles in liver fibrogenesis with respect to proinflammatory responses during chronic liver inflammation.
    4. -
    - -

    PROTOCOL for carbon tetrachloride (CCl4) treatment (parental strains, F1, and BXD lines). Animals were injected with CCl4 (12 x 0.7 mg/kg ip) over a 6-week period on days 1 and 4 of each week. Intraperitoneal injections were begun between the ages of 6-8 weeks. Animals were sacrificed after 6 weeks of treatment at 12 to 14 weeks of age. Untreated control mice from only the two parental strains were also sacrificed at 12-14 weeks of age

    diff --git a/general/datasets/SUH_Liv_RMAEx_0611/tissue.rtf b/general/datasets/SUH_Liv_RMAEx_0611/tissue.rtf deleted file mode 100644 index 05a7607..0000000 --- a/general/datasets/SUH_Liv_RMAEx_0611/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Tissue: Livers were snap frozen in liquid nitrogen immediately after harvesting. RNA was extracted and submitted to the UTHSC Molecular Resource Core for expression profiling. Expression data were generated by Lorne Rose, William Taylor and colleagues. Data were entered into GeneNetwork by Arthur Centeno, June 17, 2011. Data were quality controlled by R. W. Williams.

    diff --git a/general/datasets/Sa_m2_0405_m/acknowledgment.rtf b/general/datasets/Sa_m2_0405_m/acknowledgment.rtf new file mode 100644 index 0000000..94eec11 --- /dev/null +++ b/general/datasets/Sa_m2_0405_m/acknowledgment.rtf @@ -0,0 +1,3 @@ +
    +

    Data were generated with funds to Glenn Rosen from P20 MH62009 (see below for specifics). Samples and arrays were processed by the Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    +
    diff --git a/general/datasets/Sa_m2_0405_m/cases.rtf b/general/datasets/Sa_m2_0405_m/cases.rtf new file mode 100644 index 0000000..491788f --- /dev/null +++ b/general/datasets/Sa_m2_0405_m/cases.rtf @@ -0,0 +1,5 @@ +
    +

    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

    + +

     

    +
    diff --git a/general/datasets/Sa_m2_0405_m/experiment-design.rtf b/general/datasets/Sa_m2_0405_m/experiment-design.rtf new file mode 100644 index 0000000..cb07f36 --- /dev/null +++ b/general/datasets/Sa_m2_0405_m/experiment-design.rtf @@ -0,0 +1,5 @@ +
    RNA was extracted by Rosen and colleagues and was then processed by the BIDMC Genomics Core. Labeled cRNA was generated using the Amersham Biosciences cRNA synthesis kit protocol. +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one sample from each sex for all BXD strains. We have not yet achieved this goal. Twenty-three of 33 strains are represented by male and female samples. The remaining 8 strains are still represented by single sex samples: BXD11 (F), BXD13 (F), BXD19 (F), BXD20 (F), BXD22 (M), BXD23 (M), BXD24 (M), BXD32 (M), C57BL/6J (M), and DBA/2J (M).

    + +

    Batch Structure: This data set consists of arrays processed in three batches with several reruns for the first batch. All arrays were processed using a single protocol. All data have been corrected for batch effects as described below.

    +
    diff --git a/general/datasets/Sa_m2_0405_m/notes.rtf b/general/datasets/Sa_m2_0405_m/notes.rtf new file mode 100644 index 0000000..0af01e6 --- /dev/null +++ b/general/datasets/Sa_m2_0405_m/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by GDR, RWW, and YHQ on Nov 2004. Updated by RWW Nov 17, 2004; GDR and RWW, Dec 23, 2004; RWW and GDR April 8, 2005.

    +
    diff --git a/general/datasets/Sa_m2_0405_m/platform.rtf b/general/datasets/Sa_m2_0405_m/platform.rtf new file mode 100644 index 0000000..30c2f8c --- /dev/null +++ b/general/datasets/Sa_m2_0405_m/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    diff --git a/general/datasets/Sa_m2_0405_m/processing.rtf b/general/datasets/Sa_m2_0405_m/processing.rtf new file mode 100644 index 0000000..2e46796 --- /dev/null +++ b/general/datasets/Sa_m2_0405_m/processing.rtf @@ -0,0 +1,17 @@ +

    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.

    + + + +

    Probe set data: The expression data were processed by Yanhua Qu (UTHSC). Probe set data were generated from the fully normalized CEL files (quantile and batch corrected) using the standard MAS 5 Tukey biweight procedure. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. Data quality control: A total of 62 samples passed RNA quality control.

    + +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients (62x61/2). Arrays with probe data that was not homogeneous when compared to any other arrays was flagged. If the correlation at the probe level was less than approximately 0.92 we deleted that array data set. Three arrays we lost during this process (BXD19_M_Str_Batch03, BXD23_F_Str_Batch03, and BXD24_F_Str_Batch03).

    + +

    Probe set level QC: The final normalized strain averages were evaluated for outliers. This involved counting the number of times that the probe set value for a particular strain was beyond two standard deviations of the mean of all strains. (We used the PDNN transform as our reference probe set data for this QC step.) Two strains, each represented by single arrays, generated greater than 5,000 outlier counts (10% of the number of probe sets). These two arrays generated a great number of outliers across the entire range of expression and since we do not yet have replicate arrays for either of these two strains we opted to delete them from the final April 2005 striatum data sets.

    diff --git a/general/datasets/Sa_m2_0405_m/summary.rtf b/general/datasets/Sa_m2_0405_m/summary.rtf new file mode 100644 index 0000000..e674c86 --- /dev/null +++ b/general/datasets/Sa_m2_0405_m/summary.rtf @@ -0,0 +1 @@ +
    This April 2005 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of 33 lines of mice including C57BL/6J, DBA/2J, and 31 BXD recombinant inbred strains. Data were generated using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 250 brain samples (males and females) from 33 strains were used in this experiment. Samples were hybridized to a total of 59 arrays. This particular data set was processed using the Microarray Suite 5 protocol (MAS 5). To simplify comparison among different transforms, MAS5 values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units.
    diff --git a/general/datasets/Sa_m2_0405_m/tissue.rtf b/general/datasets/Sa_m2_0405_m/tissue.rtf new file mode 100644 index 0000000..6503813 --- /dev/null +++ b/general/datasets/Sa_m2_0405_m/tissue.rtf @@ -0,0 +1,440 @@ +
    +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 20 to 25 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by GD Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25 to 30 mg of tissue) of the same strain, sex, and age was collected in one session and used to generate cRNA samples.

    +
    + +
    The table below lists the arrays by strain, sex, sample name, and batch ID. Each array was hybridized to a pool of mRNA from 3 to 4 mice. All mice were between 55 and 62 days.
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexSample_nameBatchId
    1C57BL/6JMChip41_Batch02_B6_M_StrBatch02
    2C57BL/6JMChip11_Batch03_B6_M_StrBatch03
    3BXD1FChip03_Batch03_BXD1_F_StrBatch03
    4BXD1MChip04_Batch03_BXD1_M_StrBatch03
    5BXD2FChip20_Rerun01_BXD2_F_StrRerun01
    6BXD2MChip05_Batch01_BXD2_M_StrBatch01
    7BXD5FChip10_Batch03_BXD5_F_StrBatch03
    8BXD5MChip12_Batch03_BXD5_M_StrBatch03
    9BXD6FChip38_Batch02_BXD6_F_StrBatch02
    10BXD6MChip39_Batch02_BXD6_M_StrBatch02
    11BXD8FChip07_Batch03_BXD8_F_StrBatch03
    12BXD8MChip02_Batch03_BXD8_M_StrBatch03
    13BXD9FChip16_Batch01_BXD9_F_StrBatch01
    14BXD9MChip10_Batch01_BXD9_M_StrBatch01
    15BXD11FChip31_Batch02_BXD11_F_StrBatch02
    16BXD12FChip11_Batch01_BXD12_F_StrBatch01
    17BXD12MChip18_Batch03_BXD12_M_StrBatch03
    18BXD13FChip33_Batch02_BXD13_F_StrBatch02
    19BXD14FChip48_Batch02_BXD14_F_StrBatch02
    20BXD14MChip47_Rerun01_BXD14_M_StrRerun01
    21BXD15FChip21_Batch01_BXD15_F_StrBatch01
    22BXD15MChip13_Batch01_BXD15_M_StrBatch01
    23BXD16FChip36_Batch02_BXD16_F_StrBatch02
    24BXD16MChip44_Rerun01_BXD16_M_StrRerun01
    25BXD18FChip15_Batch03_BXD18_F_StrBatch03
    26BXD18MChip19_Batch03_BXD18_M_StrBatch03
    27BXD19FChip19_Batch01_BXD19_F_StrBatch01
    28BXD20FChip14_Batch03_BXD20_F_StrBatch03
    29BXD21FChip18_Batch01_BXD21_F_StrBatch01
    30BXD21MChip09_Batch01_BXD21_M_StrBatch01
    31BXD22MChip13_Batch03_BXD22_M_StrBatch03
    32BXD23MChip01_Batch03_BXD23_M_StrBatch03
    33BXD24MChip17_Batch03_BXD24_M_StrBatch03
    34BXD27FChip29_Batch02_BXD27_F_StrBatch02
    35BXD27MChip40_Batch02_BXD27_M_StrBatch02
    36BXD28FChip06_Batch01_BXD28_F_StrBatch01
    37BXD28MChip23_Batch01_BXD28_M_StrBatch01
    38BXD29FChip45_Batch02_BXD29_F_StrBatch02
    39BXD29MChip42_Batch02_BXD29_M_StrBatch02
    40BXD31FChip14_Batch01_BXD31_F_StrBatch01
    41BXD31MChip09_Batch03_BXD31_M_StrBatch03
    42BXD32MChip30_Batch02_BXD32_M_StrBatch02
    43BXD33FChip27_Rerun01_BXD33_F_StrRerun01
    44BXD33MChip34_Batch02_BXD33_M_StrBatch02
    45BXD34FChip03_Batch01_BXD34_F_StrBatch01
    46BXD34MChip07_Batch01_BXD34_M_StrBatch01
    47BXD36FChip22_Batch03_BXD36_F_StrBatch03
    48BXD36MChip24_Batch03_BXD36_M_StrBatch03
    49BXD38FChip17_Batch01_BXD38_F_StrBatch01
    50BXD38MChip24_Batch01_BXD38_M_StrBatch01
    51BXD39MChip20_Batch03_BXD39_M_StrBatch03
    52BXD39FChip23_Batch03_BXD39_F_StrBatch03
    53BXD39MChip43_Rerun01_BXD39_M_StrRerun01
    54BXD40FChip08_Rerun01_BXD40_F_StrRerun01
    55BXD40MChip22_Batch01_BXD40_M_StrBatch01
    56BXD42FChip35_Batch02_BXD42_F_StrBatch02
    57BXD42MChip32_Batch02_BXD42_M_StrBatch02
    58DBA/2JMChip02_Batch01_D2_M_StrBatch01
    59DBA/2JMChip05_Batch03_D2_M_StrBatch03
    +
    +
    diff --git a/general/datasets/Sa_m2_0405_mc/acknowledgment.rtf b/general/datasets/Sa_m2_0405_mc/acknowledgment.rtf new file mode 100644 index 0000000..94eec11 --- /dev/null +++ b/general/datasets/Sa_m2_0405_mc/acknowledgment.rtf @@ -0,0 +1,3 @@ +
    +

    Data were generated with funds to Glenn Rosen from P20 MH62009 (see below for specifics). Samples and arrays were processed by the Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    +
    diff --git a/general/datasets/Sa_m2_0405_mc/cases.rtf b/general/datasets/Sa_m2_0405_mc/cases.rtf new file mode 100644 index 0000000..491788f --- /dev/null +++ b/general/datasets/Sa_m2_0405_mc/cases.rtf @@ -0,0 +1,5 @@ +
    +

    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

    + +

     

    +
    diff --git a/general/datasets/Sa_m2_0405_mc/experiment-design.rtf b/general/datasets/Sa_m2_0405_mc/experiment-design.rtf new file mode 100644 index 0000000..cb07f36 --- /dev/null +++ b/general/datasets/Sa_m2_0405_mc/experiment-design.rtf @@ -0,0 +1,5 @@ +
    RNA was extracted by Rosen and colleagues and was then processed by the BIDMC Genomics Core. Labeled cRNA was generated using the Amersham Biosciences cRNA synthesis kit protocol. +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one sample from each sex for all BXD strains. We have not yet achieved this goal. Twenty-three of 33 strains are represented by male and female samples. The remaining 8 strains are still represented by single sex samples: BXD11 (F), BXD13 (F), BXD19 (F), BXD20 (F), BXD22 (M), BXD23 (M), BXD24 (M), BXD32 (M), C57BL/6J (M), and DBA/2J (M).

    + +

    Batch Structure: This data set consists of arrays processed in three batches with several reruns for the first batch. All arrays were processed using a single protocol. All data have been corrected for batch effects as described below.

    +
    diff --git a/general/datasets/Sa_m2_0405_mc/notes.rtf b/general/datasets/Sa_m2_0405_mc/notes.rtf new file mode 100644 index 0000000..0af01e6 --- /dev/null +++ b/general/datasets/Sa_m2_0405_mc/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by GDR, RWW, and YHQ on Nov 2004. Updated by RWW Nov 17, 2004; GDR and RWW, Dec 23, 2004; RWW and GDR April 8, 2005.

    +
    diff --git a/general/datasets/Sa_m2_0405_mc/platform.rtf b/general/datasets/Sa_m2_0405_mc/platform.rtf new file mode 100644 index 0000000..30c2f8c --- /dev/null +++ b/general/datasets/Sa_m2_0405_mc/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    diff --git a/general/datasets/Sa_m2_0405_mc/processing.rtf b/general/datasets/Sa_m2_0405_mc/processing.rtf new file mode 100644 index 0000000..2e46796 --- /dev/null +++ b/general/datasets/Sa_m2_0405_mc/processing.rtf @@ -0,0 +1,17 @@ +

    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.

    + + + +

    Probe set data: The expression data were processed by Yanhua Qu (UTHSC). Probe set data were generated from the fully normalized CEL files (quantile and batch corrected) using the standard MAS 5 Tukey biweight procedure. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. Data quality control: A total of 62 samples passed RNA quality control.

    + +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients (62x61/2). Arrays with probe data that was not homogeneous when compared to any other arrays was flagged. If the correlation at the probe level was less than approximately 0.92 we deleted that array data set. Three arrays we lost during this process (BXD19_M_Str_Batch03, BXD23_F_Str_Batch03, and BXD24_F_Str_Batch03).

    + +

    Probe set level QC: The final normalized strain averages were evaluated for outliers. This involved counting the number of times that the probe set value for a particular strain was beyond two standard deviations of the mean of all strains. (We used the PDNN transform as our reference probe set data for this QC step.) Two strains, each represented by single arrays, generated greater than 5,000 outlier counts (10% of the number of probe sets). These two arrays generated a great number of outliers across the entire range of expression and since we do not yet have replicate arrays for either of these two strains we opted to delete them from the final April 2005 striatum data sets.

    diff --git a/general/datasets/Sa_m2_0405_mc/summary.rtf b/general/datasets/Sa_m2_0405_mc/summary.rtf new file mode 100644 index 0000000..e674c86 --- /dev/null +++ b/general/datasets/Sa_m2_0405_mc/summary.rtf @@ -0,0 +1 @@ +
    This April 2005 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of 33 lines of mice including C57BL/6J, DBA/2J, and 31 BXD recombinant inbred strains. Data were generated using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 250 brain samples (males and females) from 33 strains were used in this experiment. Samples were hybridized to a total of 59 arrays. This particular data set was processed using the Microarray Suite 5 protocol (MAS 5). To simplify comparison among different transforms, MAS5 values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units.
    diff --git a/general/datasets/Sa_m2_0405_mc/tissue.rtf b/general/datasets/Sa_m2_0405_mc/tissue.rtf new file mode 100644 index 0000000..6503813 --- /dev/null +++ b/general/datasets/Sa_m2_0405_mc/tissue.rtf @@ -0,0 +1,440 @@ +
    +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 20 to 25 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by GD Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25 to 30 mg of tissue) of the same strain, sex, and age was collected in one session and used to generate cRNA samples.

    +
    + +
    The table below lists the arrays by strain, sex, sample name, and batch ID. Each array was hybridized to a pool of mRNA from 3 to 4 mice. All mice were between 55 and 62 days.
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexSample_nameBatchId
    1C57BL/6JMChip41_Batch02_B6_M_StrBatch02
    2C57BL/6JMChip11_Batch03_B6_M_StrBatch03
    3BXD1FChip03_Batch03_BXD1_F_StrBatch03
    4BXD1MChip04_Batch03_BXD1_M_StrBatch03
    5BXD2FChip20_Rerun01_BXD2_F_StrRerun01
    6BXD2MChip05_Batch01_BXD2_M_StrBatch01
    7BXD5FChip10_Batch03_BXD5_F_StrBatch03
    8BXD5MChip12_Batch03_BXD5_M_StrBatch03
    9BXD6FChip38_Batch02_BXD6_F_StrBatch02
    10BXD6MChip39_Batch02_BXD6_M_StrBatch02
    11BXD8FChip07_Batch03_BXD8_F_StrBatch03
    12BXD8MChip02_Batch03_BXD8_M_StrBatch03
    13BXD9FChip16_Batch01_BXD9_F_StrBatch01
    14BXD9MChip10_Batch01_BXD9_M_StrBatch01
    15BXD11FChip31_Batch02_BXD11_F_StrBatch02
    16BXD12FChip11_Batch01_BXD12_F_StrBatch01
    17BXD12MChip18_Batch03_BXD12_M_StrBatch03
    18BXD13FChip33_Batch02_BXD13_F_StrBatch02
    19BXD14FChip48_Batch02_BXD14_F_StrBatch02
    20BXD14MChip47_Rerun01_BXD14_M_StrRerun01
    21BXD15FChip21_Batch01_BXD15_F_StrBatch01
    22BXD15MChip13_Batch01_BXD15_M_StrBatch01
    23BXD16FChip36_Batch02_BXD16_F_StrBatch02
    24BXD16MChip44_Rerun01_BXD16_M_StrRerun01
    25BXD18FChip15_Batch03_BXD18_F_StrBatch03
    26BXD18MChip19_Batch03_BXD18_M_StrBatch03
    27BXD19FChip19_Batch01_BXD19_F_StrBatch01
    28BXD20FChip14_Batch03_BXD20_F_StrBatch03
    29BXD21FChip18_Batch01_BXD21_F_StrBatch01
    30BXD21MChip09_Batch01_BXD21_M_StrBatch01
    31BXD22MChip13_Batch03_BXD22_M_StrBatch03
    32BXD23MChip01_Batch03_BXD23_M_StrBatch03
    33BXD24MChip17_Batch03_BXD24_M_StrBatch03
    34BXD27FChip29_Batch02_BXD27_F_StrBatch02
    35BXD27MChip40_Batch02_BXD27_M_StrBatch02
    36BXD28FChip06_Batch01_BXD28_F_StrBatch01
    37BXD28MChip23_Batch01_BXD28_M_StrBatch01
    38BXD29FChip45_Batch02_BXD29_F_StrBatch02
    39BXD29MChip42_Batch02_BXD29_M_StrBatch02
    40BXD31FChip14_Batch01_BXD31_F_StrBatch01
    41BXD31MChip09_Batch03_BXD31_M_StrBatch03
    42BXD32MChip30_Batch02_BXD32_M_StrBatch02
    43BXD33FChip27_Rerun01_BXD33_F_StrRerun01
    44BXD33MChip34_Batch02_BXD33_M_StrBatch02
    45BXD34FChip03_Batch01_BXD34_F_StrBatch01
    46BXD34MChip07_Batch01_BXD34_M_StrBatch01
    47BXD36FChip22_Batch03_BXD36_F_StrBatch03
    48BXD36MChip24_Batch03_BXD36_M_StrBatch03
    49BXD38FChip17_Batch01_BXD38_F_StrBatch01
    50BXD38MChip24_Batch01_BXD38_M_StrBatch01
    51BXD39MChip20_Batch03_BXD39_M_StrBatch03
    52BXD39FChip23_Batch03_BXD39_F_StrBatch03
    53BXD39MChip43_Rerun01_BXD39_M_StrRerun01
    54BXD40FChip08_Rerun01_BXD40_F_StrRerun01
    55BXD40MChip22_Batch01_BXD40_M_StrBatch01
    56BXD42FChip35_Batch02_BXD42_F_StrBatch02
    57BXD42MChip32_Batch02_BXD42_M_StrBatch02
    58DBA/2JMChip02_Batch01_D2_M_StrBatch01
    59DBA/2JMChip05_Batch03_D2_M_StrBatch03
    +
    +
    diff --git a/general/datasets/Sa_m2_0405_p/acknowledgment.rtf b/general/datasets/Sa_m2_0405_p/acknowledgment.rtf new file mode 100644 index 0000000..94eec11 --- /dev/null +++ b/general/datasets/Sa_m2_0405_p/acknowledgment.rtf @@ -0,0 +1,3 @@ +
    +

    Data were generated with funds to Glenn Rosen from P20 MH62009 (see below for specifics). Samples and arrays were processed by the Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    +
    diff --git a/general/datasets/Sa_m2_0405_p/cases.rtf b/general/datasets/Sa_m2_0405_p/cases.rtf new file mode 100644 index 0000000..491788f --- /dev/null +++ b/general/datasets/Sa_m2_0405_p/cases.rtf @@ -0,0 +1,5 @@ +
    +

    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

    + +

     

    +
    diff --git a/general/datasets/Sa_m2_0405_p/experiment-design.rtf b/general/datasets/Sa_m2_0405_p/experiment-design.rtf new file mode 100644 index 0000000..cb07f36 --- /dev/null +++ b/general/datasets/Sa_m2_0405_p/experiment-design.rtf @@ -0,0 +1,5 @@ +
    RNA was extracted by Rosen and colleagues and was then processed by the BIDMC Genomics Core. Labeled cRNA was generated using the Amersham Biosciences cRNA synthesis kit protocol. +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one sample from each sex for all BXD strains. We have not yet achieved this goal. Twenty-three of 33 strains are represented by male and female samples. The remaining 8 strains are still represented by single sex samples: BXD11 (F), BXD13 (F), BXD19 (F), BXD20 (F), BXD22 (M), BXD23 (M), BXD24 (M), BXD32 (M), C57BL/6J (M), and DBA/2J (M).

    + +

    Batch Structure: This data set consists of arrays processed in three batches with several reruns for the first batch. All arrays were processed using a single protocol. All data have been corrected for batch effects as described below.

    +
    diff --git a/general/datasets/Sa_m2_0405_p/notes.rtf b/general/datasets/Sa_m2_0405_p/notes.rtf new file mode 100644 index 0000000..0af01e6 --- /dev/null +++ b/general/datasets/Sa_m2_0405_p/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by GDR, RWW, and YHQ on Nov 2004. Updated by RWW Nov 17, 2004; GDR and RWW, Dec 23, 2004; RWW and GDR April 8, 2005.

    +
    diff --git a/general/datasets/Sa_m2_0405_p/platform.rtf b/general/datasets/Sa_m2_0405_p/platform.rtf new file mode 100644 index 0000000..30c2f8c --- /dev/null +++ b/general/datasets/Sa_m2_0405_p/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    diff --git a/general/datasets/Sa_m2_0405_p/processing.rtf b/general/datasets/Sa_m2_0405_p/processing.rtf new file mode 100644 index 0000000..2e46796 --- /dev/null +++ b/general/datasets/Sa_m2_0405_p/processing.rtf @@ -0,0 +1,17 @@ +

    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.

    + + + +

    Probe set data: The expression data were processed by Yanhua Qu (UTHSC). Probe set data were generated from the fully normalized CEL files (quantile and batch corrected) using the standard MAS 5 Tukey biweight procedure. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. Data quality control: A total of 62 samples passed RNA quality control.

    + +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients (62x61/2). Arrays with probe data that was not homogeneous when compared to any other arrays was flagged. If the correlation at the probe level was less than approximately 0.92 we deleted that array data set. Three arrays we lost during this process (BXD19_M_Str_Batch03, BXD23_F_Str_Batch03, and BXD24_F_Str_Batch03).

    + +

    Probe set level QC: The final normalized strain averages were evaluated for outliers. This involved counting the number of times that the probe set value for a particular strain was beyond two standard deviations of the mean of all strains. (We used the PDNN transform as our reference probe set data for this QC step.) Two strains, each represented by single arrays, generated greater than 5,000 outlier counts (10% of the number of probe sets). These two arrays generated a great number of outliers across the entire range of expression and since we do not yet have replicate arrays for either of these two strains we opted to delete them from the final April 2005 striatum data sets.

    diff --git a/general/datasets/Sa_m2_0405_p/summary.rtf b/general/datasets/Sa_m2_0405_p/summary.rtf new file mode 100644 index 0000000..e674c86 --- /dev/null +++ b/general/datasets/Sa_m2_0405_p/summary.rtf @@ -0,0 +1 @@ +
    This April 2005 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of 33 lines of mice including C57BL/6J, DBA/2J, and 31 BXD recombinant inbred strains. Data were generated using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 250 brain samples (males and females) from 33 strains were used in this experiment. Samples were hybridized to a total of 59 arrays. This particular data set was processed using the Microarray Suite 5 protocol (MAS 5). To simplify comparison among different transforms, MAS5 values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units.
    diff --git a/general/datasets/Sa_m2_0405_p/tissue.rtf b/general/datasets/Sa_m2_0405_p/tissue.rtf new file mode 100644 index 0000000..6503813 --- /dev/null +++ b/general/datasets/Sa_m2_0405_p/tissue.rtf @@ -0,0 +1,440 @@ +
    +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 20 to 25 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by GD Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25 to 30 mg of tissue) of the same strain, sex, and age was collected in one session and used to generate cRNA samples.

    +
    + +
    The table below lists the arrays by strain, sex, sample name, and batch ID. Each array was hybridized to a pool of mRNA from 3 to 4 mice. All mice were between 55 and 62 days.
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexSample_nameBatchId
    1C57BL/6JMChip41_Batch02_B6_M_StrBatch02
    2C57BL/6JMChip11_Batch03_B6_M_StrBatch03
    3BXD1FChip03_Batch03_BXD1_F_StrBatch03
    4BXD1MChip04_Batch03_BXD1_M_StrBatch03
    5BXD2FChip20_Rerun01_BXD2_F_StrRerun01
    6BXD2MChip05_Batch01_BXD2_M_StrBatch01
    7BXD5FChip10_Batch03_BXD5_F_StrBatch03
    8BXD5MChip12_Batch03_BXD5_M_StrBatch03
    9BXD6FChip38_Batch02_BXD6_F_StrBatch02
    10BXD6MChip39_Batch02_BXD6_M_StrBatch02
    11BXD8FChip07_Batch03_BXD8_F_StrBatch03
    12BXD8MChip02_Batch03_BXD8_M_StrBatch03
    13BXD9FChip16_Batch01_BXD9_F_StrBatch01
    14BXD9MChip10_Batch01_BXD9_M_StrBatch01
    15BXD11FChip31_Batch02_BXD11_F_StrBatch02
    16BXD12FChip11_Batch01_BXD12_F_StrBatch01
    17BXD12MChip18_Batch03_BXD12_M_StrBatch03
    18BXD13FChip33_Batch02_BXD13_F_StrBatch02
    19BXD14FChip48_Batch02_BXD14_F_StrBatch02
    20BXD14MChip47_Rerun01_BXD14_M_StrRerun01
    21BXD15FChip21_Batch01_BXD15_F_StrBatch01
    22BXD15MChip13_Batch01_BXD15_M_StrBatch01
    23BXD16FChip36_Batch02_BXD16_F_StrBatch02
    24BXD16MChip44_Rerun01_BXD16_M_StrRerun01
    25BXD18FChip15_Batch03_BXD18_F_StrBatch03
    26BXD18MChip19_Batch03_BXD18_M_StrBatch03
    27BXD19FChip19_Batch01_BXD19_F_StrBatch01
    28BXD20FChip14_Batch03_BXD20_F_StrBatch03
    29BXD21FChip18_Batch01_BXD21_F_StrBatch01
    30BXD21MChip09_Batch01_BXD21_M_StrBatch01
    31BXD22MChip13_Batch03_BXD22_M_StrBatch03
    32BXD23MChip01_Batch03_BXD23_M_StrBatch03
    33BXD24MChip17_Batch03_BXD24_M_StrBatch03
    34BXD27FChip29_Batch02_BXD27_F_StrBatch02
    35BXD27MChip40_Batch02_BXD27_M_StrBatch02
    36BXD28FChip06_Batch01_BXD28_F_StrBatch01
    37BXD28MChip23_Batch01_BXD28_M_StrBatch01
    38BXD29FChip45_Batch02_BXD29_F_StrBatch02
    39BXD29MChip42_Batch02_BXD29_M_StrBatch02
    40BXD31FChip14_Batch01_BXD31_F_StrBatch01
    41BXD31MChip09_Batch03_BXD31_M_StrBatch03
    42BXD32MChip30_Batch02_BXD32_M_StrBatch02
    43BXD33FChip27_Rerun01_BXD33_F_StrRerun01
    44BXD33MChip34_Batch02_BXD33_M_StrBatch02
    45BXD34FChip03_Batch01_BXD34_F_StrBatch01
    46BXD34MChip07_Batch01_BXD34_M_StrBatch01
    47BXD36FChip22_Batch03_BXD36_F_StrBatch03
    48BXD36MChip24_Batch03_BXD36_M_StrBatch03
    49BXD38FChip17_Batch01_BXD38_F_StrBatch01
    50BXD38MChip24_Batch01_BXD38_M_StrBatch01
    51BXD39MChip20_Batch03_BXD39_M_StrBatch03
    52BXD39FChip23_Batch03_BXD39_F_StrBatch03
    53BXD39MChip43_Rerun01_BXD39_M_StrRerun01
    54BXD40FChip08_Rerun01_BXD40_F_StrRerun01
    55BXD40MChip22_Batch01_BXD40_M_StrBatch01
    56BXD42FChip35_Batch02_BXD42_F_StrBatch02
    57BXD42MChip32_Batch02_BXD42_M_StrBatch02
    58DBA/2JMChip02_Batch01_D2_M_StrBatch01
    59DBA/2JMChip05_Batch03_D2_M_StrBatch03
    +
    +
    diff --git a/general/datasets/Sa_m2_0405_pc/acknowledgment.rtf b/general/datasets/Sa_m2_0405_pc/acknowledgment.rtf new file mode 100644 index 0000000..94eec11 --- /dev/null +++ b/general/datasets/Sa_m2_0405_pc/acknowledgment.rtf @@ -0,0 +1,3 @@ +
    +

    Data were generated with funds to Glenn Rosen from P20 MH62009 (see below for specifics). Samples and arrays were processed by the Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    +
    diff --git a/general/datasets/Sa_m2_0405_pc/cases.rtf b/general/datasets/Sa_m2_0405_pc/cases.rtf new file mode 100644 index 0000000..491788f --- /dev/null +++ b/general/datasets/Sa_m2_0405_pc/cases.rtf @@ -0,0 +1,5 @@ +
    +

    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

    + +

     

    +
    diff --git a/general/datasets/Sa_m2_0405_pc/experiment-design.rtf b/general/datasets/Sa_m2_0405_pc/experiment-design.rtf new file mode 100644 index 0000000..cb07f36 --- /dev/null +++ b/general/datasets/Sa_m2_0405_pc/experiment-design.rtf @@ -0,0 +1,5 @@ +
    RNA was extracted by Rosen and colleagues and was then processed by the BIDMC Genomics Core. Labeled cRNA was generated using the Amersham Biosciences cRNA synthesis kit protocol. +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one sample from each sex for all BXD strains. We have not yet achieved this goal. Twenty-three of 33 strains are represented by male and female samples. The remaining 8 strains are still represented by single sex samples: BXD11 (F), BXD13 (F), BXD19 (F), BXD20 (F), BXD22 (M), BXD23 (M), BXD24 (M), BXD32 (M), C57BL/6J (M), and DBA/2J (M).

    + +

    Batch Structure: This data set consists of arrays processed in three batches with several reruns for the first batch. All arrays were processed using a single protocol. All data have been corrected for batch effects as described below.

    +
    diff --git a/general/datasets/Sa_m2_0405_pc/notes.rtf b/general/datasets/Sa_m2_0405_pc/notes.rtf new file mode 100644 index 0000000..0af01e6 --- /dev/null +++ b/general/datasets/Sa_m2_0405_pc/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by GDR, RWW, and YHQ on Nov 2004. Updated by RWW Nov 17, 2004; GDR and RWW, Dec 23, 2004; RWW and GDR April 8, 2005.

    +
    diff --git a/general/datasets/Sa_m2_0405_pc/platform.rtf b/general/datasets/Sa_m2_0405_pc/platform.rtf new file mode 100644 index 0000000..30c2f8c --- /dev/null +++ b/general/datasets/Sa_m2_0405_pc/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    diff --git a/general/datasets/Sa_m2_0405_pc/processing.rtf b/general/datasets/Sa_m2_0405_pc/processing.rtf new file mode 100644 index 0000000..2e46796 --- /dev/null +++ b/general/datasets/Sa_m2_0405_pc/processing.rtf @@ -0,0 +1,17 @@ +

    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.

    + + + +

    Probe set data: The expression data were processed by Yanhua Qu (UTHSC). Probe set data were generated from the fully normalized CEL files (quantile and batch corrected) using the standard MAS 5 Tukey biweight procedure. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. Data quality control: A total of 62 samples passed RNA quality control.

    + +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients (62x61/2). Arrays with probe data that was not homogeneous when compared to any other arrays was flagged. If the correlation at the probe level was less than approximately 0.92 we deleted that array data set. Three arrays we lost during this process (BXD19_M_Str_Batch03, BXD23_F_Str_Batch03, and BXD24_F_Str_Batch03).

    + +

    Probe set level QC: The final normalized strain averages were evaluated for outliers. This involved counting the number of times that the probe set value for a particular strain was beyond two standard deviations of the mean of all strains. (We used the PDNN transform as our reference probe set data for this QC step.) Two strains, each represented by single arrays, generated greater than 5,000 outlier counts (10% of the number of probe sets). These two arrays generated a great number of outliers across the entire range of expression and since we do not yet have replicate arrays for either of these two strains we opted to delete them from the final April 2005 striatum data sets.

    diff --git a/general/datasets/Sa_m2_0405_pc/summary.rtf b/general/datasets/Sa_m2_0405_pc/summary.rtf new file mode 100644 index 0000000..e674c86 --- /dev/null +++ b/general/datasets/Sa_m2_0405_pc/summary.rtf @@ -0,0 +1 @@ +
    This April 2005 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of 33 lines of mice including C57BL/6J, DBA/2J, and 31 BXD recombinant inbred strains. Data were generated using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 250 brain samples (males and females) from 33 strains were used in this experiment. Samples were hybridized to a total of 59 arrays. This particular data set was processed using the Microarray Suite 5 protocol (MAS 5). To simplify comparison among different transforms, MAS5 values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units.
    diff --git a/general/datasets/Sa_m2_0405_pc/tissue.rtf b/general/datasets/Sa_m2_0405_pc/tissue.rtf new file mode 100644 index 0000000..6503813 --- /dev/null +++ b/general/datasets/Sa_m2_0405_pc/tissue.rtf @@ -0,0 +1,440 @@ +
    +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 20 to 25 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by GD Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25 to 30 mg of tissue) of the same strain, sex, and age was collected in one session and used to generate cRNA samples.

    +
    + +
    The table below lists the arrays by strain, sex, sample name, and batch ID. Each array was hybridized to a pool of mRNA from 3 to 4 mice. All mice were between 55 and 62 days.
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexSample_nameBatchId
    1C57BL/6JMChip41_Batch02_B6_M_StrBatch02
    2C57BL/6JMChip11_Batch03_B6_M_StrBatch03
    3BXD1FChip03_Batch03_BXD1_F_StrBatch03
    4BXD1MChip04_Batch03_BXD1_M_StrBatch03
    5BXD2FChip20_Rerun01_BXD2_F_StrRerun01
    6BXD2MChip05_Batch01_BXD2_M_StrBatch01
    7BXD5FChip10_Batch03_BXD5_F_StrBatch03
    8BXD5MChip12_Batch03_BXD5_M_StrBatch03
    9BXD6FChip38_Batch02_BXD6_F_StrBatch02
    10BXD6MChip39_Batch02_BXD6_M_StrBatch02
    11BXD8FChip07_Batch03_BXD8_F_StrBatch03
    12BXD8MChip02_Batch03_BXD8_M_StrBatch03
    13BXD9FChip16_Batch01_BXD9_F_StrBatch01
    14BXD9MChip10_Batch01_BXD9_M_StrBatch01
    15BXD11FChip31_Batch02_BXD11_F_StrBatch02
    16BXD12FChip11_Batch01_BXD12_F_StrBatch01
    17BXD12MChip18_Batch03_BXD12_M_StrBatch03
    18BXD13FChip33_Batch02_BXD13_F_StrBatch02
    19BXD14FChip48_Batch02_BXD14_F_StrBatch02
    20BXD14MChip47_Rerun01_BXD14_M_StrRerun01
    21BXD15FChip21_Batch01_BXD15_F_StrBatch01
    22BXD15MChip13_Batch01_BXD15_M_StrBatch01
    23BXD16FChip36_Batch02_BXD16_F_StrBatch02
    24BXD16MChip44_Rerun01_BXD16_M_StrRerun01
    25BXD18FChip15_Batch03_BXD18_F_StrBatch03
    26BXD18MChip19_Batch03_BXD18_M_StrBatch03
    27BXD19FChip19_Batch01_BXD19_F_StrBatch01
    28BXD20FChip14_Batch03_BXD20_F_StrBatch03
    29BXD21FChip18_Batch01_BXD21_F_StrBatch01
    30BXD21MChip09_Batch01_BXD21_M_StrBatch01
    31BXD22MChip13_Batch03_BXD22_M_StrBatch03
    32BXD23MChip01_Batch03_BXD23_M_StrBatch03
    33BXD24MChip17_Batch03_BXD24_M_StrBatch03
    34BXD27FChip29_Batch02_BXD27_F_StrBatch02
    35BXD27MChip40_Batch02_BXD27_M_StrBatch02
    36BXD28FChip06_Batch01_BXD28_F_StrBatch01
    37BXD28MChip23_Batch01_BXD28_M_StrBatch01
    38BXD29FChip45_Batch02_BXD29_F_StrBatch02
    39BXD29MChip42_Batch02_BXD29_M_StrBatch02
    40BXD31FChip14_Batch01_BXD31_F_StrBatch01
    41BXD31MChip09_Batch03_BXD31_M_StrBatch03
    42BXD32MChip30_Batch02_BXD32_M_StrBatch02
    43BXD33FChip27_Rerun01_BXD33_F_StrRerun01
    44BXD33MChip34_Batch02_BXD33_M_StrBatch02
    45BXD34FChip03_Batch01_BXD34_F_StrBatch01
    46BXD34MChip07_Batch01_BXD34_M_StrBatch01
    47BXD36FChip22_Batch03_BXD36_F_StrBatch03
    48BXD36MChip24_Batch03_BXD36_M_StrBatch03
    49BXD38FChip17_Batch01_BXD38_F_StrBatch01
    50BXD38MChip24_Batch01_BXD38_M_StrBatch01
    51BXD39MChip20_Batch03_BXD39_M_StrBatch03
    52BXD39FChip23_Batch03_BXD39_F_StrBatch03
    53BXD39MChip43_Rerun01_BXD39_M_StrRerun01
    54BXD40FChip08_Rerun01_BXD40_F_StrRerun01
    55BXD40MChip22_Batch01_BXD40_M_StrBatch01
    56BXD42FChip35_Batch02_BXD42_F_StrBatch02
    57BXD42MChip32_Batch02_BXD42_M_StrBatch02
    58DBA/2JMChip02_Batch01_D2_M_StrBatch01
    59DBA/2JMChip05_Batch03_D2_M_StrBatch03
    +
    +
    diff --git a/general/datasets/Sa_m2_0405_r/acknowledgment.rtf b/general/datasets/Sa_m2_0405_r/acknowledgment.rtf new file mode 100644 index 0000000..94eec11 --- /dev/null +++ b/general/datasets/Sa_m2_0405_r/acknowledgment.rtf @@ -0,0 +1,3 @@ +
    +

    Data were generated with funds to Glenn Rosen from P20 MH62009 (see below for specifics). Samples and arrays were processed by the Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    +
    diff --git a/general/datasets/Sa_m2_0405_r/cases.rtf b/general/datasets/Sa_m2_0405_r/cases.rtf new file mode 100644 index 0000000..491788f --- /dev/null +++ b/general/datasets/Sa_m2_0405_r/cases.rtf @@ -0,0 +1,5 @@ +
    +

    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

    + +

     

    +
    diff --git a/general/datasets/Sa_m2_0405_r/experiment-design.rtf b/general/datasets/Sa_m2_0405_r/experiment-design.rtf new file mode 100644 index 0000000..cb07f36 --- /dev/null +++ b/general/datasets/Sa_m2_0405_r/experiment-design.rtf @@ -0,0 +1,5 @@ +
    RNA was extracted by Rosen and colleagues and was then processed by the BIDMC Genomics Core. Labeled cRNA was generated using the Amersham Biosciences cRNA synthesis kit protocol. +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one sample from each sex for all BXD strains. We have not yet achieved this goal. Twenty-three of 33 strains are represented by male and female samples. The remaining 8 strains are still represented by single sex samples: BXD11 (F), BXD13 (F), BXD19 (F), BXD20 (F), BXD22 (M), BXD23 (M), BXD24 (M), BXD32 (M), C57BL/6J (M), and DBA/2J (M).

    + +

    Batch Structure: This data set consists of arrays processed in three batches with several reruns for the first batch. All arrays were processed using a single protocol. All data have been corrected for batch effects as described below.

    +
    diff --git a/general/datasets/Sa_m2_0405_r/notes.rtf b/general/datasets/Sa_m2_0405_r/notes.rtf new file mode 100644 index 0000000..0af01e6 --- /dev/null +++ b/general/datasets/Sa_m2_0405_r/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by GDR, RWW, and YHQ on Nov 2004. Updated by RWW Nov 17, 2004; GDR and RWW, Dec 23, 2004; RWW and GDR April 8, 2005.

    +
    diff --git a/general/datasets/Sa_m2_0405_r/platform.rtf b/general/datasets/Sa_m2_0405_r/platform.rtf new file mode 100644 index 0000000..30c2f8c --- /dev/null +++ b/general/datasets/Sa_m2_0405_r/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    diff --git a/general/datasets/Sa_m2_0405_r/processing.rtf b/general/datasets/Sa_m2_0405_r/processing.rtf new file mode 100644 index 0000000..2e46796 --- /dev/null +++ b/general/datasets/Sa_m2_0405_r/processing.rtf @@ -0,0 +1,17 @@ +

    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.

    + + + +

    Probe set data: The expression data were processed by Yanhua Qu (UTHSC). Probe set data were generated from the fully normalized CEL files (quantile and batch corrected) using the standard MAS 5 Tukey biweight procedure. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. Data quality control: A total of 62 samples passed RNA quality control.

    + +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients (62x61/2). Arrays with probe data that was not homogeneous when compared to any other arrays was flagged. If the correlation at the probe level was less than approximately 0.92 we deleted that array data set. Three arrays we lost during this process (BXD19_M_Str_Batch03, BXD23_F_Str_Batch03, and BXD24_F_Str_Batch03).

    + +

    Probe set level QC: The final normalized strain averages were evaluated for outliers. This involved counting the number of times that the probe set value for a particular strain was beyond two standard deviations of the mean of all strains. (We used the PDNN transform as our reference probe set data for this QC step.) Two strains, each represented by single arrays, generated greater than 5,000 outlier counts (10% of the number of probe sets). These two arrays generated a great number of outliers across the entire range of expression and since we do not yet have replicate arrays for either of these two strains we opted to delete them from the final April 2005 striatum data sets.

    diff --git a/general/datasets/Sa_m2_0405_r/summary.rtf b/general/datasets/Sa_m2_0405_r/summary.rtf new file mode 100644 index 0000000..e674c86 --- /dev/null +++ b/general/datasets/Sa_m2_0405_r/summary.rtf @@ -0,0 +1 @@ +
    This April 2005 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of 33 lines of mice including C57BL/6J, DBA/2J, and 31 BXD recombinant inbred strains. Data were generated using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 250 brain samples (males and females) from 33 strains were used in this experiment. Samples were hybridized to a total of 59 arrays. This particular data set was processed using the Microarray Suite 5 protocol (MAS 5). To simplify comparison among different transforms, MAS5 values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units.
    diff --git a/general/datasets/Sa_m2_0405_r/tissue.rtf b/general/datasets/Sa_m2_0405_r/tissue.rtf new file mode 100644 index 0000000..6503813 --- /dev/null +++ b/general/datasets/Sa_m2_0405_r/tissue.rtf @@ -0,0 +1,440 @@ +
    +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 20 to 25 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by GD Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25 to 30 mg of tissue) of the same strain, sex, and age was collected in one session and used to generate cRNA samples.

    +
    + +
    The table below lists the arrays by strain, sex, sample name, and batch ID. Each array was hybridized to a pool of mRNA from 3 to 4 mice. All mice were between 55 and 62 days.
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexSample_nameBatchId
    1C57BL/6JMChip41_Batch02_B6_M_StrBatch02
    2C57BL/6JMChip11_Batch03_B6_M_StrBatch03
    3BXD1FChip03_Batch03_BXD1_F_StrBatch03
    4BXD1MChip04_Batch03_BXD1_M_StrBatch03
    5BXD2FChip20_Rerun01_BXD2_F_StrRerun01
    6BXD2MChip05_Batch01_BXD2_M_StrBatch01
    7BXD5FChip10_Batch03_BXD5_F_StrBatch03
    8BXD5MChip12_Batch03_BXD5_M_StrBatch03
    9BXD6FChip38_Batch02_BXD6_F_StrBatch02
    10BXD6MChip39_Batch02_BXD6_M_StrBatch02
    11BXD8FChip07_Batch03_BXD8_F_StrBatch03
    12BXD8MChip02_Batch03_BXD8_M_StrBatch03
    13BXD9FChip16_Batch01_BXD9_F_StrBatch01
    14BXD9MChip10_Batch01_BXD9_M_StrBatch01
    15BXD11FChip31_Batch02_BXD11_F_StrBatch02
    16BXD12FChip11_Batch01_BXD12_F_StrBatch01
    17BXD12MChip18_Batch03_BXD12_M_StrBatch03
    18BXD13FChip33_Batch02_BXD13_F_StrBatch02
    19BXD14FChip48_Batch02_BXD14_F_StrBatch02
    20BXD14MChip47_Rerun01_BXD14_M_StrRerun01
    21BXD15FChip21_Batch01_BXD15_F_StrBatch01
    22BXD15MChip13_Batch01_BXD15_M_StrBatch01
    23BXD16FChip36_Batch02_BXD16_F_StrBatch02
    24BXD16MChip44_Rerun01_BXD16_M_StrRerun01
    25BXD18FChip15_Batch03_BXD18_F_StrBatch03
    26BXD18MChip19_Batch03_BXD18_M_StrBatch03
    27BXD19FChip19_Batch01_BXD19_F_StrBatch01
    28BXD20FChip14_Batch03_BXD20_F_StrBatch03
    29BXD21FChip18_Batch01_BXD21_F_StrBatch01
    30BXD21MChip09_Batch01_BXD21_M_StrBatch01
    31BXD22MChip13_Batch03_BXD22_M_StrBatch03
    32BXD23MChip01_Batch03_BXD23_M_StrBatch03
    33BXD24MChip17_Batch03_BXD24_M_StrBatch03
    34BXD27FChip29_Batch02_BXD27_F_StrBatch02
    35BXD27MChip40_Batch02_BXD27_M_StrBatch02
    36BXD28FChip06_Batch01_BXD28_F_StrBatch01
    37BXD28MChip23_Batch01_BXD28_M_StrBatch01
    38BXD29FChip45_Batch02_BXD29_F_StrBatch02
    39BXD29MChip42_Batch02_BXD29_M_StrBatch02
    40BXD31FChip14_Batch01_BXD31_F_StrBatch01
    41BXD31MChip09_Batch03_BXD31_M_StrBatch03
    42BXD32MChip30_Batch02_BXD32_M_StrBatch02
    43BXD33FChip27_Rerun01_BXD33_F_StrRerun01
    44BXD33MChip34_Batch02_BXD33_M_StrBatch02
    45BXD34FChip03_Batch01_BXD34_F_StrBatch01
    46BXD34MChip07_Batch01_BXD34_M_StrBatch01
    47BXD36FChip22_Batch03_BXD36_F_StrBatch03
    48BXD36MChip24_Batch03_BXD36_M_StrBatch03
    49BXD38FChip17_Batch01_BXD38_F_StrBatch01
    50BXD38MChip24_Batch01_BXD38_M_StrBatch01
    51BXD39MChip20_Batch03_BXD39_M_StrBatch03
    52BXD39FChip23_Batch03_BXD39_F_StrBatch03
    53BXD39MChip43_Rerun01_BXD39_M_StrRerun01
    54BXD40FChip08_Rerun01_BXD40_F_StrRerun01
    55BXD40MChip22_Batch01_BXD40_M_StrBatch01
    56BXD42FChip35_Batch02_BXD42_F_StrBatch02
    57BXD42MChip32_Batch02_BXD42_M_StrBatch02
    58DBA/2JMChip02_Batch01_D2_M_StrBatch01
    59DBA/2JMChip05_Batch03_D2_M_StrBatch03
    +
    +
    diff --git a/general/datasets/Sa_m2_0405_rc/acknowledgment.rtf b/general/datasets/Sa_m2_0405_rc/acknowledgment.rtf new file mode 100644 index 0000000..94eec11 --- /dev/null +++ b/general/datasets/Sa_m2_0405_rc/acknowledgment.rtf @@ -0,0 +1,3 @@ +
    +

    Data were generated with funds to Glenn Rosen from P20 MH62009 (see below for specifics). Samples and arrays were processed by the Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    +
    diff --git a/general/datasets/Sa_m2_0405_rc/cases.rtf b/general/datasets/Sa_m2_0405_rc/cases.rtf new file mode 100644 index 0000000..491788f --- /dev/null +++ b/general/datasets/Sa_m2_0405_rc/cases.rtf @@ -0,0 +1,5 @@ +
    +

    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

    + +

     

    +
    diff --git a/general/datasets/Sa_m2_0405_rc/experiment-design.rtf b/general/datasets/Sa_m2_0405_rc/experiment-design.rtf new file mode 100644 index 0000000..cb07f36 --- /dev/null +++ b/general/datasets/Sa_m2_0405_rc/experiment-design.rtf @@ -0,0 +1,5 @@ +
    RNA was extracted by Rosen and colleagues and was then processed by the BIDMC Genomics Core. Labeled cRNA was generated using the Amersham Biosciences cRNA synthesis kit protocol. +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one sample from each sex for all BXD strains. We have not yet achieved this goal. Twenty-three of 33 strains are represented by male and female samples. The remaining 8 strains are still represented by single sex samples: BXD11 (F), BXD13 (F), BXD19 (F), BXD20 (F), BXD22 (M), BXD23 (M), BXD24 (M), BXD32 (M), C57BL/6J (M), and DBA/2J (M).

    + +

    Batch Structure: This data set consists of arrays processed in three batches with several reruns for the first batch. All arrays were processed using a single protocol. All data have been corrected for batch effects as described below.

    +
    diff --git a/general/datasets/Sa_m2_0405_rc/notes.rtf b/general/datasets/Sa_m2_0405_rc/notes.rtf new file mode 100644 index 0000000..0af01e6 --- /dev/null +++ b/general/datasets/Sa_m2_0405_rc/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by GDR, RWW, and YHQ on Nov 2004. Updated by RWW Nov 17, 2004; GDR and RWW, Dec 23, 2004; RWW and GDR April 8, 2005.

    +
    diff --git a/general/datasets/Sa_m2_0405_rc/platform.rtf b/general/datasets/Sa_m2_0405_rc/platform.rtf new file mode 100644 index 0000000..30c2f8c --- /dev/null +++ b/general/datasets/Sa_m2_0405_rc/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    diff --git a/general/datasets/Sa_m2_0405_rc/processing.rtf b/general/datasets/Sa_m2_0405_rc/processing.rtf new file mode 100644 index 0000000..2e46796 --- /dev/null +++ b/general/datasets/Sa_m2_0405_rc/processing.rtf @@ -0,0 +1,17 @@ +

    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.

    + + + +

    Probe set data: The expression data were processed by Yanhua Qu (UTHSC). Probe set data were generated from the fully normalized CEL files (quantile and batch corrected) using the standard MAS 5 Tukey biweight procedure. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. Data quality control: A total of 62 samples passed RNA quality control.

    + +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients (62x61/2). Arrays with probe data that was not homogeneous when compared to any other arrays was flagged. If the correlation at the probe level was less than approximately 0.92 we deleted that array data set. Three arrays we lost during this process (BXD19_M_Str_Batch03, BXD23_F_Str_Batch03, and BXD24_F_Str_Batch03).

    + +

    Probe set level QC: The final normalized strain averages were evaluated for outliers. This involved counting the number of times that the probe set value for a particular strain was beyond two standard deviations of the mean of all strains. (We used the PDNN transform as our reference probe set data for this QC step.) Two strains, each represented by single arrays, generated greater than 5,000 outlier counts (10% of the number of probe sets). These two arrays generated a great number of outliers across the entire range of expression and since we do not yet have replicate arrays for either of these two strains we opted to delete them from the final April 2005 striatum data sets.

    diff --git a/general/datasets/Sa_m2_0405_rc/summary.rtf b/general/datasets/Sa_m2_0405_rc/summary.rtf new file mode 100644 index 0000000..e674c86 --- /dev/null +++ b/general/datasets/Sa_m2_0405_rc/summary.rtf @@ -0,0 +1 @@ +
    This April 2005 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of 33 lines of mice including C57BL/6J, DBA/2J, and 31 BXD recombinant inbred strains. Data were generated using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 250 brain samples (males and females) from 33 strains were used in this experiment. Samples were hybridized to a total of 59 arrays. This particular data set was processed using the Microarray Suite 5 protocol (MAS 5). To simplify comparison among different transforms, MAS5 values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units.
    diff --git a/general/datasets/Sa_m2_0405_rc/tissue.rtf b/general/datasets/Sa_m2_0405_rc/tissue.rtf new file mode 100644 index 0000000..6503813 --- /dev/null +++ b/general/datasets/Sa_m2_0405_rc/tissue.rtf @@ -0,0 +1,440 @@ +
    +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 20 to 25 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by GD Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25 to 30 mg of tissue) of the same strain, sex, and age was collected in one session and used to generate cRNA samples.

    +
    + +
    The table below lists the arrays by strain, sex, sample name, and batch ID. Each array was hybridized to a pool of mRNA from 3 to 4 mice. All mice were between 55 and 62 days.
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexSample_nameBatchId
    1C57BL/6JMChip41_Batch02_B6_M_StrBatch02
    2C57BL/6JMChip11_Batch03_B6_M_StrBatch03
    3BXD1FChip03_Batch03_BXD1_F_StrBatch03
    4BXD1MChip04_Batch03_BXD1_M_StrBatch03
    5BXD2FChip20_Rerun01_BXD2_F_StrRerun01
    6BXD2MChip05_Batch01_BXD2_M_StrBatch01
    7BXD5FChip10_Batch03_BXD5_F_StrBatch03
    8BXD5MChip12_Batch03_BXD5_M_StrBatch03
    9BXD6FChip38_Batch02_BXD6_F_StrBatch02
    10BXD6MChip39_Batch02_BXD6_M_StrBatch02
    11BXD8FChip07_Batch03_BXD8_F_StrBatch03
    12BXD8MChip02_Batch03_BXD8_M_StrBatch03
    13BXD9FChip16_Batch01_BXD9_F_StrBatch01
    14BXD9MChip10_Batch01_BXD9_M_StrBatch01
    15BXD11FChip31_Batch02_BXD11_F_StrBatch02
    16BXD12FChip11_Batch01_BXD12_F_StrBatch01
    17BXD12MChip18_Batch03_BXD12_M_StrBatch03
    18BXD13FChip33_Batch02_BXD13_F_StrBatch02
    19BXD14FChip48_Batch02_BXD14_F_StrBatch02
    20BXD14MChip47_Rerun01_BXD14_M_StrRerun01
    21BXD15FChip21_Batch01_BXD15_F_StrBatch01
    22BXD15MChip13_Batch01_BXD15_M_StrBatch01
    23BXD16FChip36_Batch02_BXD16_F_StrBatch02
    24BXD16MChip44_Rerun01_BXD16_M_StrRerun01
    25BXD18FChip15_Batch03_BXD18_F_StrBatch03
    26BXD18MChip19_Batch03_BXD18_M_StrBatch03
    27BXD19FChip19_Batch01_BXD19_F_StrBatch01
    28BXD20FChip14_Batch03_BXD20_F_StrBatch03
    29BXD21FChip18_Batch01_BXD21_F_StrBatch01
    30BXD21MChip09_Batch01_BXD21_M_StrBatch01
    31BXD22MChip13_Batch03_BXD22_M_StrBatch03
    32BXD23MChip01_Batch03_BXD23_M_StrBatch03
    33BXD24MChip17_Batch03_BXD24_M_StrBatch03
    34BXD27FChip29_Batch02_BXD27_F_StrBatch02
    35BXD27MChip40_Batch02_BXD27_M_StrBatch02
    36BXD28FChip06_Batch01_BXD28_F_StrBatch01
    37BXD28MChip23_Batch01_BXD28_M_StrBatch01
    38BXD29FChip45_Batch02_BXD29_F_StrBatch02
    39BXD29MChip42_Batch02_BXD29_M_StrBatch02
    40BXD31FChip14_Batch01_BXD31_F_StrBatch01
    41BXD31MChip09_Batch03_BXD31_M_StrBatch03
    42BXD32MChip30_Batch02_BXD32_M_StrBatch02
    43BXD33FChip27_Rerun01_BXD33_F_StrRerun01
    44BXD33MChip34_Batch02_BXD33_M_StrBatch02
    45BXD34FChip03_Batch01_BXD34_F_StrBatch01
    46BXD34MChip07_Batch01_BXD34_M_StrBatch01
    47BXD36FChip22_Batch03_BXD36_F_StrBatch03
    48BXD36MChip24_Batch03_BXD36_M_StrBatch03
    49BXD38FChip17_Batch01_BXD38_F_StrBatch01
    50BXD38MChip24_Batch01_BXD38_M_StrBatch01
    51BXD39MChip20_Batch03_BXD39_M_StrBatch03
    52BXD39FChip23_Batch03_BXD39_F_StrBatch03
    53BXD39MChip43_Rerun01_BXD39_M_StrRerun01
    54BXD40FChip08_Rerun01_BXD40_F_StrRerun01
    55BXD40MChip22_Batch01_BXD40_M_StrBatch01
    56BXD42FChip35_Batch02_BXD42_F_StrBatch02
    57BXD42MChip32_Batch02_BXD42_M_StrBatch02
    58DBA/2JMChip02_Batch01_D2_M_StrBatch01
    59DBA/2JMChip05_Batch03_D2_M_StrBatch03
    +
    +
    diff --git a/general/datasets/Sa_m2_0405_rr/acknowledgment.rtf b/general/datasets/Sa_m2_0405_rr/acknowledgment.rtf new file mode 100644 index 0000000..94eec11 --- /dev/null +++ b/general/datasets/Sa_m2_0405_rr/acknowledgment.rtf @@ -0,0 +1,3 @@ +
    +

    Data were generated with funds to Glenn Rosen from P20 MH62009 (see below for specifics). Samples and arrays were processed by the Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    +
    diff --git a/general/datasets/Sa_m2_0405_rr/cases.rtf b/general/datasets/Sa_m2_0405_rr/cases.rtf new file mode 100644 index 0000000..491788f --- /dev/null +++ b/general/datasets/Sa_m2_0405_rr/cases.rtf @@ -0,0 +1,5 @@ +
    +

    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

    + +

     

    +
    diff --git a/general/datasets/Sa_m2_0405_rr/experiment-design.rtf b/general/datasets/Sa_m2_0405_rr/experiment-design.rtf new file mode 100644 index 0000000..cb07f36 --- /dev/null +++ b/general/datasets/Sa_m2_0405_rr/experiment-design.rtf @@ -0,0 +1,5 @@ +
    RNA was extracted by Rosen and colleagues and was then processed by the BIDMC Genomics Core. Labeled cRNA was generated using the Amersham Biosciences cRNA synthesis kit protocol. +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one sample from each sex for all BXD strains. We have not yet achieved this goal. Twenty-three of 33 strains are represented by male and female samples. The remaining 8 strains are still represented by single sex samples: BXD11 (F), BXD13 (F), BXD19 (F), BXD20 (F), BXD22 (M), BXD23 (M), BXD24 (M), BXD32 (M), C57BL/6J (M), and DBA/2J (M).

    + +

    Batch Structure: This data set consists of arrays processed in three batches with several reruns for the first batch. All arrays were processed using a single protocol. All data have been corrected for batch effects as described below.

    +
    diff --git a/general/datasets/Sa_m2_0405_rr/notes.rtf b/general/datasets/Sa_m2_0405_rr/notes.rtf new file mode 100644 index 0000000..0af01e6 --- /dev/null +++ b/general/datasets/Sa_m2_0405_rr/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by GDR, RWW, and YHQ on Nov 2004. Updated by RWW Nov 17, 2004; GDR and RWW, Dec 23, 2004; RWW and GDR April 8, 2005.

    +
    diff --git a/general/datasets/Sa_m2_0405_rr/platform.rtf b/general/datasets/Sa_m2_0405_rr/platform.rtf new file mode 100644 index 0000000..30c2f8c --- /dev/null +++ b/general/datasets/Sa_m2_0405_rr/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    diff --git a/general/datasets/Sa_m2_0405_rr/processing.rtf b/general/datasets/Sa_m2_0405_rr/processing.rtf new file mode 100644 index 0000000..2e46796 --- /dev/null +++ b/general/datasets/Sa_m2_0405_rr/processing.rtf @@ -0,0 +1,17 @@ +

    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.

    + + + +

    Probe set data: The expression data were processed by Yanhua Qu (UTHSC). Probe set data were generated from the fully normalized CEL files (quantile and batch corrected) using the standard MAS 5 Tukey biweight procedure. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. Data quality control: A total of 62 samples passed RNA quality control.

    + +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients (62x61/2). Arrays with probe data that was not homogeneous when compared to any other arrays was flagged. If the correlation at the probe level was less than approximately 0.92 we deleted that array data set. Three arrays we lost during this process (BXD19_M_Str_Batch03, BXD23_F_Str_Batch03, and BXD24_F_Str_Batch03).

    + +

    Probe set level QC: The final normalized strain averages were evaluated for outliers. This involved counting the number of times that the probe set value for a particular strain was beyond two standard deviations of the mean of all strains. (We used the PDNN transform as our reference probe set data for this QC step.) Two strains, each represented by single arrays, generated greater than 5,000 outlier counts (10% of the number of probe sets). These two arrays generated a great number of outliers across the entire range of expression and since we do not yet have replicate arrays for either of these two strains we opted to delete them from the final April 2005 striatum data sets.

    diff --git a/general/datasets/Sa_m2_0405_rr/summary.rtf b/general/datasets/Sa_m2_0405_rr/summary.rtf new file mode 100644 index 0000000..e674c86 --- /dev/null +++ b/general/datasets/Sa_m2_0405_rr/summary.rtf @@ -0,0 +1 @@ +
    This April 2005 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of 33 lines of mice including C57BL/6J, DBA/2J, and 31 BXD recombinant inbred strains. Data were generated using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 250 brain samples (males and females) from 33 strains were used in this experiment. Samples were hybridized to a total of 59 arrays. This particular data set was processed using the Microarray Suite 5 protocol (MAS 5). To simplify comparison among different transforms, MAS5 values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units.
    diff --git a/general/datasets/Sa_m2_0405_rr/tissue.rtf b/general/datasets/Sa_m2_0405_rr/tissue.rtf new file mode 100644 index 0000000..6503813 --- /dev/null +++ b/general/datasets/Sa_m2_0405_rr/tissue.rtf @@ -0,0 +1,440 @@ +
    +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 20 to 25 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by GD Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25 to 30 mg of tissue) of the same strain, sex, and age was collected in one session and used to generate cRNA samples.

    +
    + +
    The table below lists the arrays by strain, sex, sample name, and batch ID. Each array was hybridized to a pool of mRNA from 3 to 4 mice. All mice were between 55 and 62 days.
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexSample_nameBatchId
    1C57BL/6JMChip41_Batch02_B6_M_StrBatch02
    2C57BL/6JMChip11_Batch03_B6_M_StrBatch03
    3BXD1FChip03_Batch03_BXD1_F_StrBatch03
    4BXD1MChip04_Batch03_BXD1_M_StrBatch03
    5BXD2FChip20_Rerun01_BXD2_F_StrRerun01
    6BXD2MChip05_Batch01_BXD2_M_StrBatch01
    7BXD5FChip10_Batch03_BXD5_F_StrBatch03
    8BXD5MChip12_Batch03_BXD5_M_StrBatch03
    9BXD6FChip38_Batch02_BXD6_F_StrBatch02
    10BXD6MChip39_Batch02_BXD6_M_StrBatch02
    11BXD8FChip07_Batch03_BXD8_F_StrBatch03
    12BXD8MChip02_Batch03_BXD8_M_StrBatch03
    13BXD9FChip16_Batch01_BXD9_F_StrBatch01
    14BXD9MChip10_Batch01_BXD9_M_StrBatch01
    15BXD11FChip31_Batch02_BXD11_F_StrBatch02
    16BXD12FChip11_Batch01_BXD12_F_StrBatch01
    17BXD12MChip18_Batch03_BXD12_M_StrBatch03
    18BXD13FChip33_Batch02_BXD13_F_StrBatch02
    19BXD14FChip48_Batch02_BXD14_F_StrBatch02
    20BXD14MChip47_Rerun01_BXD14_M_StrRerun01
    21BXD15FChip21_Batch01_BXD15_F_StrBatch01
    22BXD15MChip13_Batch01_BXD15_M_StrBatch01
    23BXD16FChip36_Batch02_BXD16_F_StrBatch02
    24BXD16MChip44_Rerun01_BXD16_M_StrRerun01
    25BXD18FChip15_Batch03_BXD18_F_StrBatch03
    26BXD18MChip19_Batch03_BXD18_M_StrBatch03
    27BXD19FChip19_Batch01_BXD19_F_StrBatch01
    28BXD20FChip14_Batch03_BXD20_F_StrBatch03
    29BXD21FChip18_Batch01_BXD21_F_StrBatch01
    30BXD21MChip09_Batch01_BXD21_M_StrBatch01
    31BXD22MChip13_Batch03_BXD22_M_StrBatch03
    32BXD23MChip01_Batch03_BXD23_M_StrBatch03
    33BXD24MChip17_Batch03_BXD24_M_StrBatch03
    34BXD27FChip29_Batch02_BXD27_F_StrBatch02
    35BXD27MChip40_Batch02_BXD27_M_StrBatch02
    36BXD28FChip06_Batch01_BXD28_F_StrBatch01
    37BXD28MChip23_Batch01_BXD28_M_StrBatch01
    38BXD29FChip45_Batch02_BXD29_F_StrBatch02
    39BXD29MChip42_Batch02_BXD29_M_StrBatch02
    40BXD31FChip14_Batch01_BXD31_F_StrBatch01
    41BXD31MChip09_Batch03_BXD31_M_StrBatch03
    42BXD32MChip30_Batch02_BXD32_M_StrBatch02
    43BXD33FChip27_Rerun01_BXD33_F_StrRerun01
    44BXD33MChip34_Batch02_BXD33_M_StrBatch02
    45BXD34FChip03_Batch01_BXD34_F_StrBatch01
    46BXD34MChip07_Batch01_BXD34_M_StrBatch01
    47BXD36FChip22_Batch03_BXD36_F_StrBatch03
    48BXD36MChip24_Batch03_BXD36_M_StrBatch03
    49BXD38FChip17_Batch01_BXD38_F_StrBatch01
    50BXD38MChip24_Batch01_BXD38_M_StrBatch01
    51BXD39MChip20_Batch03_BXD39_M_StrBatch03
    52BXD39FChip23_Batch03_BXD39_F_StrBatch03
    53BXD39MChip43_Rerun01_BXD39_M_StrRerun01
    54BXD40FChip08_Rerun01_BXD40_F_StrRerun01
    55BXD40MChip22_Batch01_BXD40_M_StrBatch01
    56BXD42FChip35_Batch02_BXD42_F_StrBatch02
    57BXD42MChip32_Batch02_BXD42_M_StrBatch02
    58DBA/2JMChip02_Batch01_D2_M_StrBatch01
    59DBA/2JMChip05_Batch03_D2_M_StrBatch03
    +
    +
    diff --git a/general/datasets/Sa_m2_0405_ss/acknowledgment.rtf b/general/datasets/Sa_m2_0405_ss/acknowledgment.rtf new file mode 100644 index 0000000..94eec11 --- /dev/null +++ b/general/datasets/Sa_m2_0405_ss/acknowledgment.rtf @@ -0,0 +1,3 @@ +
    +

    Data were generated with funds to Glenn Rosen from P20 MH62009 (see below for specifics). Samples and arrays were processed by the Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    +
    diff --git a/general/datasets/Sa_m2_0405_ss/cases.rtf b/general/datasets/Sa_m2_0405_ss/cases.rtf new file mode 100644 index 0000000..491788f --- /dev/null +++ b/general/datasets/Sa_m2_0405_ss/cases.rtf @@ -0,0 +1,5 @@ +
    +

    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

    + +

     

    +
    diff --git a/general/datasets/Sa_m2_0405_ss/experiment-design.rtf b/general/datasets/Sa_m2_0405_ss/experiment-design.rtf new file mode 100644 index 0000000..cb07f36 --- /dev/null +++ b/general/datasets/Sa_m2_0405_ss/experiment-design.rtf @@ -0,0 +1,5 @@ +
    RNA was extracted by Rosen and colleagues and was then processed by the BIDMC Genomics Core. Labeled cRNA was generated using the Amersham Biosciences cRNA synthesis kit protocol. +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one sample from each sex for all BXD strains. We have not yet achieved this goal. Twenty-three of 33 strains are represented by male and female samples. The remaining 8 strains are still represented by single sex samples: BXD11 (F), BXD13 (F), BXD19 (F), BXD20 (F), BXD22 (M), BXD23 (M), BXD24 (M), BXD32 (M), C57BL/6J (M), and DBA/2J (M).

    + +

    Batch Structure: This data set consists of arrays processed in three batches with several reruns for the first batch. All arrays were processed using a single protocol. All data have been corrected for batch effects as described below.

    +
    diff --git a/general/datasets/Sa_m2_0405_ss/notes.rtf b/general/datasets/Sa_m2_0405_ss/notes.rtf new file mode 100644 index 0000000..0af01e6 --- /dev/null +++ b/general/datasets/Sa_m2_0405_ss/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by GDR, RWW, and YHQ on Nov 2004. Updated by RWW Nov 17, 2004; GDR and RWW, Dec 23, 2004; RWW and GDR April 8, 2005.

    +
    diff --git a/general/datasets/Sa_m2_0405_ss/platform.rtf b/general/datasets/Sa_m2_0405_ss/platform.rtf new file mode 100644 index 0000000..30c2f8c --- /dev/null +++ b/general/datasets/Sa_m2_0405_ss/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    diff --git a/general/datasets/Sa_m2_0405_ss/processing.rtf b/general/datasets/Sa_m2_0405_ss/processing.rtf new file mode 100644 index 0000000..2e46796 --- /dev/null +++ b/general/datasets/Sa_m2_0405_ss/processing.rtf @@ -0,0 +1,17 @@ +

    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell.

    + + + +

    Probe set data: The expression data were processed by Yanhua Qu (UTHSC). Probe set data were generated from the fully normalized CEL files (quantile and batch corrected) using the standard MAS 5 Tukey biweight procedure. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. Data quality control: A total of 62 samples passed RNA quality control.

    + +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients (62x61/2). Arrays with probe data that was not homogeneous when compared to any other arrays was flagged. If the correlation at the probe level was less than approximately 0.92 we deleted that array data set. Three arrays we lost during this process (BXD19_M_Str_Batch03, BXD23_F_Str_Batch03, and BXD24_F_Str_Batch03).

    + +

    Probe set level QC: The final normalized strain averages were evaluated for outliers. This involved counting the number of times that the probe set value for a particular strain was beyond two standard deviations of the mean of all strains. (We used the PDNN transform as our reference probe set data for this QC step.) Two strains, each represented by single arrays, generated greater than 5,000 outlier counts (10% of the number of probe sets). These two arrays generated a great number of outliers across the entire range of expression and since we do not yet have replicate arrays for either of these two strains we opted to delete them from the final April 2005 striatum data sets.

    diff --git a/general/datasets/Sa_m2_0405_ss/summary.rtf b/general/datasets/Sa_m2_0405_ss/summary.rtf new file mode 100644 index 0000000..e674c86 --- /dev/null +++ b/general/datasets/Sa_m2_0405_ss/summary.rtf @@ -0,0 +1 @@ +
    This April 2005 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of 33 lines of mice including C57BL/6J, DBA/2J, and 31 BXD recombinant inbred strains. Data were generated using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 250 brain samples (males and females) from 33 strains were used in this experiment. Samples were hybridized to a total of 59 arrays. This particular data set was processed using the Microarray Suite 5 protocol (MAS 5). To simplify comparison among different transforms, MAS5 values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units.
    diff --git a/general/datasets/Sa_m2_0405_ss/tissue.rtf b/general/datasets/Sa_m2_0405_ss/tissue.rtf new file mode 100644 index 0000000..6503813 --- /dev/null +++ b/general/datasets/Sa_m2_0405_ss/tissue.rtf @@ -0,0 +1,440 @@ +
    +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 20 to 25 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by GD Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25 to 30 mg of tissue) of the same strain, sex, and age was collected in one session and used to generate cRNA samples.

    +
    + +
    The table below lists the arrays by strain, sex, sample name, and batch ID. Each array was hybridized to a pool of mRNA from 3 to 4 mice. All mice were between 55 and 62 days.
    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexSample_nameBatchId
    1C57BL/6JMChip41_Batch02_B6_M_StrBatch02
    2C57BL/6JMChip11_Batch03_B6_M_StrBatch03
    3BXD1FChip03_Batch03_BXD1_F_StrBatch03
    4BXD1MChip04_Batch03_BXD1_M_StrBatch03
    5BXD2FChip20_Rerun01_BXD2_F_StrRerun01
    6BXD2MChip05_Batch01_BXD2_M_StrBatch01
    7BXD5FChip10_Batch03_BXD5_F_StrBatch03
    8BXD5MChip12_Batch03_BXD5_M_StrBatch03
    9BXD6FChip38_Batch02_BXD6_F_StrBatch02
    10BXD6MChip39_Batch02_BXD6_M_StrBatch02
    11BXD8FChip07_Batch03_BXD8_F_StrBatch03
    12BXD8MChip02_Batch03_BXD8_M_StrBatch03
    13BXD9FChip16_Batch01_BXD9_F_StrBatch01
    14BXD9MChip10_Batch01_BXD9_M_StrBatch01
    15BXD11FChip31_Batch02_BXD11_F_StrBatch02
    16BXD12FChip11_Batch01_BXD12_F_StrBatch01
    17BXD12MChip18_Batch03_BXD12_M_StrBatch03
    18BXD13FChip33_Batch02_BXD13_F_StrBatch02
    19BXD14FChip48_Batch02_BXD14_F_StrBatch02
    20BXD14MChip47_Rerun01_BXD14_M_StrRerun01
    21BXD15FChip21_Batch01_BXD15_F_StrBatch01
    22BXD15MChip13_Batch01_BXD15_M_StrBatch01
    23BXD16FChip36_Batch02_BXD16_F_StrBatch02
    24BXD16MChip44_Rerun01_BXD16_M_StrRerun01
    25BXD18FChip15_Batch03_BXD18_F_StrBatch03
    26BXD18MChip19_Batch03_BXD18_M_StrBatch03
    27BXD19FChip19_Batch01_BXD19_F_StrBatch01
    28BXD20FChip14_Batch03_BXD20_F_StrBatch03
    29BXD21FChip18_Batch01_BXD21_F_StrBatch01
    30BXD21MChip09_Batch01_BXD21_M_StrBatch01
    31BXD22MChip13_Batch03_BXD22_M_StrBatch03
    32BXD23MChip01_Batch03_BXD23_M_StrBatch03
    33BXD24MChip17_Batch03_BXD24_M_StrBatch03
    34BXD27FChip29_Batch02_BXD27_F_StrBatch02
    35BXD27MChip40_Batch02_BXD27_M_StrBatch02
    36BXD28FChip06_Batch01_BXD28_F_StrBatch01
    37BXD28MChip23_Batch01_BXD28_M_StrBatch01
    38BXD29FChip45_Batch02_BXD29_F_StrBatch02
    39BXD29MChip42_Batch02_BXD29_M_StrBatch02
    40BXD31FChip14_Batch01_BXD31_F_StrBatch01
    41BXD31MChip09_Batch03_BXD31_M_StrBatch03
    42BXD32MChip30_Batch02_BXD32_M_StrBatch02
    43BXD33FChip27_Rerun01_BXD33_F_StrRerun01
    44BXD33MChip34_Batch02_BXD33_M_StrBatch02
    45BXD34FChip03_Batch01_BXD34_F_StrBatch01
    46BXD34MChip07_Batch01_BXD34_M_StrBatch01
    47BXD36FChip22_Batch03_BXD36_F_StrBatch03
    48BXD36MChip24_Batch03_BXD36_M_StrBatch03
    49BXD38FChip17_Batch01_BXD38_F_StrBatch01
    50BXD38MChip24_Batch01_BXD38_M_StrBatch01
    51BXD39MChip20_Batch03_BXD39_M_StrBatch03
    52BXD39FChip23_Batch03_BXD39_F_StrBatch03
    53BXD39MChip43_Rerun01_BXD39_M_StrRerun01
    54BXD40FChip08_Rerun01_BXD40_F_StrRerun01
    55BXD40MChip22_Batch01_BXD40_M_StrBatch01
    56BXD42FChip35_Batch02_BXD42_F_StrBatch02
    57BXD42MChip32_Batch02_BXD42_M_StrBatch02
    58DBA/2JMChip02_Batch01_D2_M_StrBatch01
    59DBA/2JMChip05_Batch03_D2_M_StrBatch03
    +
    +
    diff --git a/general/datasets/Sa_m2_0905_m/acknowledgment.rtf b/general/datasets/Sa_m2_0905_m/acknowledgment.rtf new file mode 100644 index 0000000..e7f05c1 --- /dev/null +++ b/general/datasets/Sa_m2_0905_m/acknowledgment.rtf @@ -0,0 +1,5 @@ +
    +

    This project was supported by two Department of Veterans Affairs Merit Review Awards (to JK Belknap and R Hitzemann, respectively), AA10760 (Portland Alcohol Research Center), AA06243, AA13484, AA11034, DA05228 and MH51372.

    + +

    Please contact either John Belknap or Robert Hitzemann at the Dept. of Behavioral Neuroscience, Oregon Health & Science University (L470), or Research Service (R&D5), Portland VA Medical Ctr., Portland, OR 97239 USA.

    +
    diff --git a/general/datasets/Sa_m2_0905_m/cases.rtf b/general/datasets/Sa_m2_0905_m/cases.rtf new file mode 100644 index 0000000..4f69ca9 --- /dev/null +++ b/general/datasets/Sa_m2_0905_m/cases.rtf @@ -0,0 +1,3 @@ +

    Fifty-six B6D2F2 samples, each taken from a single brain hemisphere from an individual mouse, were assayed using 56 M430A&B Affymetrix short oligomer microarrays. [The remaining hemisphere will be used later for an anaysis of specific brain regions.] Each array ID (see table below) includes a three letter code; the first letter usually denotes sex of the case (note that we have made a few corrections and there are therefore several sex-discordant IDs), the second letter denotes the hemisphere (R or L), and the third letter is the mouse number within each cell. The F2 mice were experimentally naive, born within a 3-day period from second litters of each dam, and housed at weaning (20- to 24-days-of-age) in like-sex groups of 3 to 4 mice for females and 2 to 3 mice for males in standard mouse shoebox cages within Thoren racks. All 56 F2 mice were killed at 77 to 79 days-of-age by cervical dislocation on December 17, 2003. The brains were immediately split at the midline and then quickly frozen on dry ice. The brains were stored for about two weeks at -80 degrees C until further use.

    + +

    The F2 was derived as follows: C57BL/6J (B6) and DBA/2J (D2) breeders were obtained from The Jackson Laboratory, and two generations later their progeny were crossed to produce B6D2F1 and D2B6F1 hybrid at the Portland VA Veterinary Medical Unit (AAALAC approved). The reciprocal F1s were mated to create an F2 population with both progenitor X and Y chromosomes about equally represented.

    diff --git a/general/datasets/Sa_m2_0905_m/citation.rtf b/general/datasets/Sa_m2_0905_m/citation.rtf new file mode 100644 index 0000000..8e8e73d --- /dev/null +++ b/general/datasets/Sa_m2_0905_m/citation.rtf @@ -0,0 +1,15 @@ +
    +

    Hitzemann R, Reed C, Malmanger B, Lawler M, Hitzemann B, Cunningham B, McWeeney S, Belknap J, Harrington C, Buck K, Phillips T, Crabbe J. (2004) On the integration of alcohol-related quantitative trait loci and gene expression analyses..  Alcohol Clin Exp Res. 2004 Oct;28(10):1437-48.  PMID:15597075

    +
    + +
    +

    Irizarry, RA, Bolstad, BM, Collin, F, Cope, LM, Hobbs, B, Speed, TP (2003) Summaries of Affymetrix GeneChip probe level data. Nuc Acids Res 31:1-15.

    +
    + +
    +

    Lincoln, SE, Lander, ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604-610.

    +
    + +
    +

    Zhang, L, Miles, MF, Aldape, KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotech 21:818-821.

    +
    diff --git a/general/datasets/Sa_m2_0905_m/contributors.rtf b/general/datasets/Sa_m2_0905_m/contributors.rtf new file mode 100644 index 0000000..fa18035 --- /dev/null +++ b/general/datasets/Sa_m2_0905_m/contributors.rtf @@ -0,0 +1,7 @@ +

    BACKGROUND:Quantitative trait loci (QTLs) have been detected for a wide variety of ethanol-related phenotypes, including acute and chronic ethanol withdrawal, acute locomotor activation, and ethanol preference. This study was undertaken to determine whether the process of moving from QTL to quantitative trait gene (QTG) could be accelerated by the integration of functional genomics (gene expression) into the analysis strategy.

    + +

    METHODS:Six ethanol-related QTLs, all detected in C57BL/6J and DBA/2J intercrosses were entered into the analysis. Each of the QTLs had been confirmed in independent genetic models at least once; the cumulative probabilities for QTL existence ranged from 10 to 10. Brain gene expression data for the C57BL/6 and DBA/2 strains (n = 6 per strain) and an F2 intercross sample (n = 56) derived from these strains were obtained by using the Affymetrix U74Av2 and 430A arrays; additional data with the U74Av2 array were available for the extended amygdala, dorsomedial striatum, and hippocampus. Low-level analysis was performed by using multiple methods to determine the likelihood that a transcript was truly differentially expressed. For the 430A array data, the F2 sample was used to determine which of the differentially expressed transcripts within the QTL intervals were cis-regulated and, thus, strong candidates for QTGs.

    + +

    RESULTS:Within the 6 QTL intervals, 39 transcripts (430A array) were identified as being highly likely to be differentially expressed between the C57BL/6 and DBA/2 strains at a false discovery rate of 0.01 or better. Twenty-eight of these transcripts showed significant (logarithm of odds > or =3.6) to highly significant (logarithm of odds >7) cis-regulation. The process correctly detected Mpdz (chromosome 4) as a candidate QTG for acute withdrawal.

    + +

    CONCLUSIONS:Although improvements are needed in the expression databases, the integration of QTL and gene expression analyses seems to have potential as a high-throughput strategy for moving from QTL to QTG.

    diff --git a/general/datasets/Sa_m2_0905_m/notes.rtf b/general/datasets/Sa_m2_0905_m/notes.rtf new file mode 100644 index 0000000..7fafba3 --- /dev/null +++ b/general/datasets/Sa_m2_0905_m/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file was originally generated by John Belknap, March 2004. Updated by RWW, October 31, 2004, EJC June 21, 2005.

    +
    diff --git a/general/datasets/Sa_m2_0905_m/platform.rtf b/general/datasets/Sa_m2_0905_m/platform.rtf new file mode 100644 index 0000000..f0ee528 --- /dev/null +++ b/general/datasets/Sa_m2_0905_m/platform.rtf @@ -0,0 +1,1154 @@ +

    All 56 430A&B arrays used in this project were purchased at one time and had the same Affymetrix lot number. The table below lists the arrays by Case ID, Array ID, Side, Cage ID and Sex.

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Order

    +
    +

    CaseID

    +
    +

    ArrayID

    +
    +

    Side

    +
    +

    CageID

    +
    +

    Sex

    +
    +

    1

    +
    +

    20

    +
    +

    FL10

    +
    +

    L

    +
    +

    H1

    +
    +

    F

    +
    +

    2

    +
    +

    2

    +
    +

    FL11

    +
    +

    L

    +
    +

    H2

    +
    +

    F

    +
    +

    3

    +
    +

    5

    +
    +

    FL12

    +
    +

    L

    +
    +

    H3

    +
    +

    F

    +
    +

    4

    +
    +

    63

    +
    +

    FL13

    +
    +

    L

    +
    +

    H4

    +
    +

    F

    +
    +

    5

    +
    +

    6

    +
    +

    FL14

    +
    +

    L

    +
    +

    K2

    +
    +

    F

    +
    +

    6

    +
    +

    10

    +
    +

    FL15

    +
    +

    L

    +
    +

    Q2

    +
    +

    F

    +
    +

    7

    +
    +

    52

    +
    +

    FL2

    +
    +

    L

    +
    +

    E1

    +
    +

    F

    +
    +

    8

    +
    +

    53

    +
    +

    FL3

    +
    +

    L

    +
    +

    E2

    +
    +

    F

    +
    +

    9

    +
    +

    42

    +
    +

    FL4

    +
    +

    L

    +
    +

    E3

    +
    +

    F

    +
    +

    10

    +
    +

    31

    +
    +

    FL5

    +
    +

    L

    +
    +

    E4

    +
    +

    F

    +
    +

    11

    +
    +

    14

    +
    +

    FL6

    +
    +

    L

    +
    +

    F1

    +
    +

    M

    +
    +

    12

    +
    +

    48

    +
    +

    FL7

    +
    +

    L

    +
    +

    F2

    +
    +

    F

    +
    +

    13

    +
    +

    60

    +
    +

    FL8

    +
    +

    L

    +
    +

    F3

    +
    +

    M

    +
    +

    14

    +
    +

    54

    +
    +

    FL9

    +
    +

    L

    +
    +

    F4

    +
    +

    F

    +
    +

    15

    +
    +

    35

    +
    +

    FR10

    +
    +

    R

    +
    +

    K3

    +
    +

    F

    +
    +

    16

    +
    +

    11

    +
    +

    FR11

    +
    +

    R

    +
    +

    O1

    +
    +

    F

    +
    +

    17

    +
    +

    21

    +
    +

    FR12

    +
    +

    R

    +
    +

    O2

    +
    +

    F

    +
    +

    18

    +
    +

    23

    +
    +

    FR13

    +
    +

    R

    +
    +

    Q1

    +
    +

    F

    +
    +

    19

    +
    +

    15

    +
    +

    FR14

    +
    +

    R

    +
    +

    Q3

    +
    +

    F

    +
    +

    20

    +
    +

    4

    +
    +

    FR15

    +
    +

    R

    +
    +

    Q4

    +
    +

    F

    +
    +

    21

    +
    +

    41

    +
    +

    FR2

    +
    +

    R

    +
    +

    A2

    +
    +

    F

    +
    +

    22

    +
    +

    44

    +
    +

    FR3

    +
    +

    R

    +
    +

    A3

    +
    +

    F

    +
    +

    23

    +
    +

    37

    +
    +

    FR4

    +
    +

    R

    +
    +

    C1

    +
    +

    F

    +
    +

    24

    +
    +

    8

    +
    +

    FR5

    +
    +

    R

    +
    +

    C2

    +
    +

    F

    +
    +

    25

    +
    +

    19

    +
    +

    FR6

    +
    +

    R

    +
    +

    C3

    +
    +

    F

    +
    +

    26

    +
    +

    40

    +
    +

    FR7

    +
    +

    R

    +
    +

    C4

    +
    +

    F

    +
    +

    27

    +
    +

    62

    +
    +

    FR8

    +
    +

    R

    +
    +

    D2

    +
    +

    M

    +
    +

    28

    +
    +

    39

    +
    +

    FR9

    +
    +

    R

    +
    +

    D3

    +
    +

    F

    +
    +

    29

    +
    +

    13

    +
    +

    ML1

    +
    +

    L

    +
    +

    B1

    +
    +

    M

    +
    +

    30

    +
    +

    22

    +
    +

    ML10

    +
    +

    L

    +
    +

    L2

    +
    +

    M

    +
    +

    31

    +
    +

    38

    +
    +

    ML11

    +
    +

    L

    +
    +

    L4

    +
    +

    M

    +
    +

    32

    +
    +

    43

    +
    +

    ML12

    +
    +

    L

    +
    +

    M1

    +
    +

    M

    +
    +

    33

    +
    +

    58

    +
    +

    ML13

    +
    +

    L

    +
    +

    N2

    +
    +

    M

    +
    +

    34

    +
    +

    7

    +
    +

    ML14

    +
    +

    L

    +
    +

    R1

    +
    +

    M

    +
    +

    35

    +
    +

    30

    +
    +

    ML15

    +
    +

    L

    +
    +

    R3

    +
    +

    M

    +
    +

    36

    +
    +

    46

    +
    +

    ML3

    +
    +

    L

    +
    +

    G1

    +
    +

    M

    +
    +

    37

    +
    +

    57

    +
    +

    ML4

    +
    +

    L

    +
    +

    G2

    +
    +

    M

    +
    +

    38

    +
    +

    51

    +
    +

    ML5

    +
    +

    L

    +
    +

    I1

    +
    +

    M

    +
    +

    39

    +
    +

    27

    +
    +

    ML6

    +
    +

    L

    +
    +

    I2

    +
    +

    M

    +
    +

    40

    +
    +

    50

    +
    +

    ML7

    +
    +

    L

    +
    +

    J2

    +
    +

    M

    +
    +

    41

    +
    +

    16

    +
    +

    FL1

    +
    +

    L

    +
    +

    O2

    +
    +

    M

    +
    +

    42

    +
    +

    3

    +
    +

    ML9

    +
    +

    L

    +
    +

    L1

    +
    +

    M

    +
    +

    43

    +
    +

    47

    +
    +

    MR10

    +
    +

    R

    +
    +

    R2

    +
    +

    M

    +
    +

    44

    +
    +

    56

    +
    +

    MR11

    +
    +

    R

    +
    +

    S1

    +
    +

    M

    +
    +

    45

    +
    +

    1

    +
    +

    MR12

    +
    +

    R

    +
    +

    S2

    +
    +

    M

    +
    +

    46

    +
    +

    55

    +
    +

    MR13

    +
    +

    R

    +
    +

    T1

    +
    +

    M

    +
    +

    47

    +
    +

    34

    +
    +

    MR14

    +
    +

    R

    +
    +

    U1

    +
    +

    M

    +
    +

    48

    +
    +

    25

    +
    +

    MR15

    +
    +

    R

    +
    +

    U2

    +
    +

    M

    +
    +

    49

    +
    +

    59

    +
    +

    MR2

    +
    +

    R

    +
    +

    J1

    +
    +

    M

    +
    +

    50

    +
    +

    32

    +
    +

    MR3

    +
    +

    R

    +
    +

    M2

    +
    +

    M

    +
    +

    51

    +
    +

    24

    +
    +

    MR4

    +
    +

    R

    +
    +

    M3

    +
    +

    M

    +
    +

    52

    +
    +

    12

    +
    +

    MR5

    +
    +

    R

    +
    +

    M4

    +
    +

    M

    +
    +

    53

    +
    +

    9

    +
    +

    MR6

    +
    +

    R

    +
    +

    N1

    +
    +

    M

    +
    +

    54

    +
    +

    36

    +
    +

    MR7

    +
    +

    R

    +
    +

    N3

    +
    +

    M

    +
    +

    55

    +
    +

    28

    +
    +

    MR8

    +
    +

    R

    +
    +

    P1

    +
    +

    M

    +
    +

    56

    +
    +

    33

    +
    +

    MR9

    +
    +

    R

    +
    +

    P2

    +
    +

    M

    +
    +
    diff --git a/general/datasets/Sa_m2_0905_m/processing.rtf b/general/datasets/Sa_m2_0905_m/processing.rtf new file mode 100644 index 0000000..8a23d84 --- /dev/null +++ b/general/datasets/Sa_m2_0905_m/processing.rtf @@ -0,0 +1,26 @@ +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are the 75% quantiles from a set of 91 pixel values per cell. Probe values were processed as follows: + + +

    Probe set data from the TXT file: These TXT files were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

    +
    + +

    About the marker set:

    + +
    +

    The 56 mice were each genotyped at 309 MIT microsatellite markers distributed across the genome, including the Y chromosome. The genotyping error check routine (Lincoln and Lander, 1992) implemented within R/qtl (Broman et al., 2003) showed no likely errors at p <.01 probability. Initial genotypes were generated at OHSU. Approximately 200 genotypes were generated at UTHSC by Jing Gu and Shuhua Qi.

    +
    + +

    About the chromosome and megabase position values:

    + +
    The chromosomal locations of M430A and M430B probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium March 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). + +

     

    +
    diff --git a/general/datasets/Sa_m2_0905_m/summary.rtf b/general/datasets/Sa_m2_0905_m/summary.rtf new file mode 100644 index 0000000..6f477fe --- /dev/null +++ b/general/datasets/Sa_m2_0905_m/summary.rtf @@ -0,0 +1 @@ +

    This August 2005 data freeze provides estimate of mRNA expression in adult brains of F2 intercross mice (C57BL/6J x DBA/2J F2) measured using Affymetrix M430A and M430B microarray pairs. Data were generated at The Oregon Health Sciences University (OHSU) in Portland, Oregon, by John Belknap and Robert Hitzemann. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA or PDNN transforms.

    diff --git a/general/datasets/Sa_m2_0905_m/tissue.rtf b/general/datasets/Sa_m2_0905_m/tissue.rtf new file mode 100644 index 0000000..ef85488 --- /dev/null +++ b/general/datasets/Sa_m2_0905_m/tissue.rtf @@ -0,0 +1 @@ +

    Brain samples were from 31 male and 25 females and between 28 right and 28 left hemispheres distributed with good balance across the two sexes. The tissue arrayed included the forebrain, midbrain, one olfactory bulb, the cerebellum; and the rostral part of the medulla. The medulla was trimmed transversely at the caudal aspect of the cerebellum. The sagittal cut was made from a dorsal to ventral direction. (Note that several of the other brain transcriptome databases do not include olfactory bulb or cerebellum.) Total RNA was isolated with TRIZOL Reagent (Life Technologies Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer’s protocol. The extracted RNA was then purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for purity; only samples with an A260/280 ratio greater than 1.8 were used. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. Samples containing at least 10 micrograms of total RNA were sent to the OHSU Gene Microarray Shared Resource facility for analysis. The procedures used at the facility precisely follow the manufacturer’s specifications. Details can be found at http://www.ohsu.edu/gmsr/amc. Following labeling, all samples were hybridized to the GeneChip Test3 array for quality control. If target performance did not meet recommended thresholds, the sample would have been discarded. All labeled samples passed the threshold and were hybridized to the 430A and 430B array pairs.

    diff --git a/general/datasets/Sa_m2_0905_p/acknowledgment.rtf b/general/datasets/Sa_m2_0905_p/acknowledgment.rtf new file mode 100644 index 0000000..e7f05c1 --- /dev/null +++ b/general/datasets/Sa_m2_0905_p/acknowledgment.rtf @@ -0,0 +1,5 @@ +
    +

    This project was supported by two Department of Veterans Affairs Merit Review Awards (to JK Belknap and R Hitzemann, respectively), AA10760 (Portland Alcohol Research Center), AA06243, AA13484, AA11034, DA05228 and MH51372.

    + +

    Please contact either John Belknap or Robert Hitzemann at the Dept. of Behavioral Neuroscience, Oregon Health & Science University (L470), or Research Service (R&D5), Portland VA Medical Ctr., Portland, OR 97239 USA.

    +
    diff --git a/general/datasets/Sa_m2_0905_p/cases.rtf b/general/datasets/Sa_m2_0905_p/cases.rtf new file mode 100644 index 0000000..4f69ca9 --- /dev/null +++ b/general/datasets/Sa_m2_0905_p/cases.rtf @@ -0,0 +1,3 @@ +

    Fifty-six B6D2F2 samples, each taken from a single brain hemisphere from an individual mouse, were assayed using 56 M430A&B Affymetrix short oligomer microarrays. [The remaining hemisphere will be used later for an anaysis of specific brain regions.] Each array ID (see table below) includes a three letter code; the first letter usually denotes sex of the case (note that we have made a few corrections and there are therefore several sex-discordant IDs), the second letter denotes the hemisphere (R or L), and the third letter is the mouse number within each cell. The F2 mice were experimentally naive, born within a 3-day period from second litters of each dam, and housed at weaning (20- to 24-days-of-age) in like-sex groups of 3 to 4 mice for females and 2 to 3 mice for males in standard mouse shoebox cages within Thoren racks. All 56 F2 mice were killed at 77 to 79 days-of-age by cervical dislocation on December 17, 2003. The brains were immediately split at the midline and then quickly frozen on dry ice. The brains were stored for about two weeks at -80 degrees C until further use.

    + +

    The F2 was derived as follows: C57BL/6J (B6) and DBA/2J (D2) breeders were obtained from The Jackson Laboratory, and two generations later their progeny were crossed to produce B6D2F1 and D2B6F1 hybrid at the Portland VA Veterinary Medical Unit (AAALAC approved). The reciprocal F1s were mated to create an F2 population with both progenitor X and Y chromosomes about equally represented.

    diff --git a/general/datasets/Sa_m2_0905_p/citation.rtf b/general/datasets/Sa_m2_0905_p/citation.rtf new file mode 100644 index 0000000..8e8e73d --- /dev/null +++ b/general/datasets/Sa_m2_0905_p/citation.rtf @@ -0,0 +1,15 @@ +
    +

    Hitzemann R, Reed C, Malmanger B, Lawler M, Hitzemann B, Cunningham B, McWeeney S, Belknap J, Harrington C, Buck K, Phillips T, Crabbe J. (2004) On the integration of alcohol-related quantitative trait loci and gene expression analyses..  Alcohol Clin Exp Res. 2004 Oct;28(10):1437-48.  PMID:15597075

    +
    + +
    +

    Irizarry, RA, Bolstad, BM, Collin, F, Cope, LM, Hobbs, B, Speed, TP (2003) Summaries of Affymetrix GeneChip probe level data. Nuc Acids Res 31:1-15.

    +
    + +
    +

    Lincoln, SE, Lander, ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604-610.

    +
    + +
    +

    Zhang, L, Miles, MF, Aldape, KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotech 21:818-821.

    +
    diff --git a/general/datasets/Sa_m2_0905_p/contributors.rtf b/general/datasets/Sa_m2_0905_p/contributors.rtf new file mode 100644 index 0000000..fa18035 --- /dev/null +++ b/general/datasets/Sa_m2_0905_p/contributors.rtf @@ -0,0 +1,7 @@ +

    BACKGROUND:Quantitative trait loci (QTLs) have been detected for a wide variety of ethanol-related phenotypes, including acute and chronic ethanol withdrawal, acute locomotor activation, and ethanol preference. This study was undertaken to determine whether the process of moving from QTL to quantitative trait gene (QTG) could be accelerated by the integration of functional genomics (gene expression) into the analysis strategy.

    + +

    METHODS:Six ethanol-related QTLs, all detected in C57BL/6J and DBA/2J intercrosses were entered into the analysis. Each of the QTLs had been confirmed in independent genetic models at least once; the cumulative probabilities for QTL existence ranged from 10 to 10. Brain gene expression data for the C57BL/6 and DBA/2 strains (n = 6 per strain) and an F2 intercross sample (n = 56) derived from these strains were obtained by using the Affymetrix U74Av2 and 430A arrays; additional data with the U74Av2 array were available for the extended amygdala, dorsomedial striatum, and hippocampus. Low-level analysis was performed by using multiple methods to determine the likelihood that a transcript was truly differentially expressed. For the 430A array data, the F2 sample was used to determine which of the differentially expressed transcripts within the QTL intervals were cis-regulated and, thus, strong candidates for QTGs.

    + +

    RESULTS:Within the 6 QTL intervals, 39 transcripts (430A array) were identified as being highly likely to be differentially expressed between the C57BL/6 and DBA/2 strains at a false discovery rate of 0.01 or better. Twenty-eight of these transcripts showed significant (logarithm of odds > or =3.6) to highly significant (logarithm of odds >7) cis-regulation. The process correctly detected Mpdz (chromosome 4) as a candidate QTG for acute withdrawal.

    + +

    CONCLUSIONS:Although improvements are needed in the expression databases, the integration of QTL and gene expression analyses seems to have potential as a high-throughput strategy for moving from QTL to QTG.

    diff --git a/general/datasets/Sa_m2_0905_p/notes.rtf b/general/datasets/Sa_m2_0905_p/notes.rtf new file mode 100644 index 0000000..7fafba3 --- /dev/null +++ b/general/datasets/Sa_m2_0905_p/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file was originally generated by John Belknap, March 2004. Updated by RWW, October 31, 2004, EJC June 21, 2005.

    +
    diff --git a/general/datasets/Sa_m2_0905_p/platform.rtf b/general/datasets/Sa_m2_0905_p/platform.rtf new file mode 100644 index 0000000..f0ee528 --- /dev/null +++ b/general/datasets/Sa_m2_0905_p/platform.rtf @@ -0,0 +1,1154 @@ +

    All 56 430A&B arrays used in this project were purchased at one time and had the same Affymetrix lot number. The table below lists the arrays by Case ID, Array ID, Side, Cage ID and Sex.

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Order

    +
    +

    CaseID

    +
    +

    ArrayID

    +
    +

    Side

    +
    +

    CageID

    +
    +

    Sex

    +
    +

    1

    +
    +

    20

    +
    +

    FL10

    +
    +

    L

    +
    +

    H1

    +
    +

    F

    +
    +

    2

    +
    +

    2

    +
    +

    FL11

    +
    +

    L

    +
    +

    H2

    +
    +

    F

    +
    +

    3

    +
    +

    5

    +
    +

    FL12

    +
    +

    L

    +
    +

    H3

    +
    +

    F

    +
    +

    4

    +
    +

    63

    +
    +

    FL13

    +
    +

    L

    +
    +

    H4

    +
    +

    F

    +
    +

    5

    +
    +

    6

    +
    +

    FL14

    +
    +

    L

    +
    +

    K2

    +
    +

    F

    +
    +

    6

    +
    +

    10

    +
    +

    FL15

    +
    +

    L

    +
    +

    Q2

    +
    +

    F

    +
    +

    7

    +
    +

    52

    +
    +

    FL2

    +
    +

    L

    +
    +

    E1

    +
    +

    F

    +
    +

    8

    +
    +

    53

    +
    +

    FL3

    +
    +

    L

    +
    +

    E2

    +
    +

    F

    +
    +

    9

    +
    +

    42

    +
    +

    FL4

    +
    +

    L

    +
    +

    E3

    +
    +

    F

    +
    +

    10

    +
    +

    31

    +
    +

    FL5

    +
    +

    L

    +
    +

    E4

    +
    +

    F

    +
    +

    11

    +
    +

    14

    +
    +

    FL6

    +
    +

    L

    +
    +

    F1

    +
    +

    M

    +
    +

    12

    +
    +

    48

    +
    +

    FL7

    +
    +

    L

    +
    +

    F2

    +
    +

    F

    +
    +

    13

    +
    +

    60

    +
    +

    FL8

    +
    +

    L

    +
    +

    F3

    +
    +

    M

    +
    +

    14

    +
    +

    54

    +
    +

    FL9

    +
    +

    L

    +
    +

    F4

    +
    +

    F

    +
    +

    15

    +
    +

    35

    +
    +

    FR10

    +
    +

    R

    +
    +

    K3

    +
    +

    F

    +
    +

    16

    +
    +

    11

    +
    +

    FR11

    +
    +

    R

    +
    +

    O1

    +
    +

    F

    +
    +

    17

    +
    +

    21

    +
    +

    FR12

    +
    +

    R

    +
    +

    O2

    +
    +

    F

    +
    +

    18

    +
    +

    23

    +
    +

    FR13

    +
    +

    R

    +
    +

    Q1

    +
    +

    F

    +
    +

    19

    +
    +

    15

    +
    +

    FR14

    +
    +

    R

    +
    +

    Q3

    +
    +

    F

    +
    +

    20

    +
    +

    4

    +
    +

    FR15

    +
    +

    R

    +
    +

    Q4

    +
    +

    F

    +
    +

    21

    +
    +

    41

    +
    +

    FR2

    +
    +

    R

    +
    +

    A2

    +
    +

    F

    +
    +

    22

    +
    +

    44

    +
    +

    FR3

    +
    +

    R

    +
    +

    A3

    +
    +

    F

    +
    +

    23

    +
    +

    37

    +
    +

    FR4

    +
    +

    R

    +
    +

    C1

    +
    +

    F

    +
    +

    24

    +
    +

    8

    +
    +

    FR5

    +
    +

    R

    +
    +

    C2

    +
    +

    F

    +
    +

    25

    +
    +

    19

    +
    +

    FR6

    +
    +

    R

    +
    +

    C3

    +
    +

    F

    +
    +

    26

    +
    +

    40

    +
    +

    FR7

    +
    +

    R

    +
    +

    C4

    +
    +

    F

    +
    +

    27

    +
    +

    62

    +
    +

    FR8

    +
    +

    R

    +
    +

    D2

    +
    +

    M

    +
    +

    28

    +
    +

    39

    +
    +

    FR9

    +
    +

    R

    +
    +

    D3

    +
    +

    F

    +
    +

    29

    +
    +

    13

    +
    +

    ML1

    +
    +

    L

    +
    +

    B1

    +
    +

    M

    +
    +

    30

    +
    +

    22

    +
    +

    ML10

    +
    +

    L

    +
    +

    L2

    +
    +

    M

    +
    +

    31

    +
    +

    38

    +
    +

    ML11

    +
    +

    L

    +
    +

    L4

    +
    +

    M

    +
    +

    32

    +
    +

    43

    +
    +

    ML12

    +
    +

    L

    +
    +

    M1

    +
    +

    M

    +
    +

    33

    +
    +

    58

    +
    +

    ML13

    +
    +

    L

    +
    +

    N2

    +
    +

    M

    +
    +

    34

    +
    +

    7

    +
    +

    ML14

    +
    +

    L

    +
    +

    R1

    +
    +

    M

    +
    +

    35

    +
    +

    30

    +
    +

    ML15

    +
    +

    L

    +
    +

    R3

    +
    +

    M

    +
    +

    36

    +
    +

    46

    +
    +

    ML3

    +
    +

    L

    +
    +

    G1

    +
    +

    M

    +
    +

    37

    +
    +

    57

    +
    +

    ML4

    +
    +

    L

    +
    +

    G2

    +
    +

    M

    +
    +

    38

    +
    +

    51

    +
    +

    ML5

    +
    +

    L

    +
    +

    I1

    +
    +

    M

    +
    +

    39

    +
    +

    27

    +
    +

    ML6

    +
    +

    L

    +
    +

    I2

    +
    +

    M

    +
    +

    40

    +
    +

    50

    +
    +

    ML7

    +
    +

    L

    +
    +

    J2

    +
    +

    M

    +
    +

    41

    +
    +

    16

    +
    +

    FL1

    +
    +

    L

    +
    +

    O2

    +
    +

    M

    +
    +

    42

    +
    +

    3

    +
    +

    ML9

    +
    +

    L

    +
    +

    L1

    +
    +

    M

    +
    +

    43

    +
    +

    47

    +
    +

    MR10

    +
    +

    R

    +
    +

    R2

    +
    +

    M

    +
    +

    44

    +
    +

    56

    +
    +

    MR11

    +
    +

    R

    +
    +

    S1

    +
    +

    M

    +
    +

    45

    +
    +

    1

    +
    +

    MR12

    +
    +

    R

    +
    +

    S2

    +
    +

    M

    +
    +

    46

    +
    +

    55

    +
    +

    MR13

    +
    +

    R

    +
    +

    T1

    +
    +

    M

    +
    +

    47

    +
    +

    34

    +
    +

    MR14

    +
    +

    R

    +
    +

    U1

    +
    +

    M

    +
    +

    48

    +
    +

    25

    +
    +

    MR15

    +
    +

    R

    +
    +

    U2

    +
    +

    M

    +
    +

    49

    +
    +

    59

    +
    +

    MR2

    +
    +

    R

    +
    +

    J1

    +
    +

    M

    +
    +

    50

    +
    +

    32

    +
    +

    MR3

    +
    +

    R

    +
    +

    M2

    +
    +

    M

    +
    +

    51

    +
    +

    24

    +
    +

    MR4

    +
    +

    R

    +
    +

    M3

    +
    +

    M

    +
    +

    52

    +
    +

    12

    +
    +

    MR5

    +
    +

    R

    +
    +

    M4

    +
    +

    M

    +
    +

    53

    +
    +

    9

    +
    +

    MR6

    +
    +

    R

    +
    +

    N1

    +
    +

    M

    +
    +

    54

    +
    +

    36

    +
    +

    MR7

    +
    +

    R

    +
    +

    N3

    +
    +

    M

    +
    +

    55

    +
    +

    28

    +
    +

    MR8

    +
    +

    R

    +
    +

    P1

    +
    +

    M

    +
    +

    56

    +
    +

    33

    +
    +

    MR9

    +
    +

    R

    +
    +

    P2

    +
    +

    M

    +
    +
    diff --git a/general/datasets/Sa_m2_0905_p/processing.rtf b/general/datasets/Sa_m2_0905_p/processing.rtf new file mode 100644 index 0000000..8a23d84 --- /dev/null +++ b/general/datasets/Sa_m2_0905_p/processing.rtf @@ -0,0 +1,26 @@ +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are the 75% quantiles from a set of 91 pixel values per cell. Probe values were processed as follows: + + +

    Probe set data from the TXT file: These TXT files were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

    +
    + +

    About the marker set:

    + +
    +

    The 56 mice were each genotyped at 309 MIT microsatellite markers distributed across the genome, including the Y chromosome. The genotyping error check routine (Lincoln and Lander, 1992) implemented within R/qtl (Broman et al., 2003) showed no likely errors at p <.01 probability. Initial genotypes were generated at OHSU. Approximately 200 genotypes were generated at UTHSC by Jing Gu and Shuhua Qi.

    +
    + +

    About the chromosome and megabase position values:

    + +
    The chromosomal locations of M430A and M430B probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium March 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). + +

     

    +
    diff --git a/general/datasets/Sa_m2_0905_p/summary.rtf b/general/datasets/Sa_m2_0905_p/summary.rtf new file mode 100644 index 0000000..6f477fe --- /dev/null +++ b/general/datasets/Sa_m2_0905_p/summary.rtf @@ -0,0 +1 @@ +

    This August 2005 data freeze provides estimate of mRNA expression in adult brains of F2 intercross mice (C57BL/6J x DBA/2J F2) measured using Affymetrix M430A and M430B microarray pairs. Data were generated at The Oregon Health Sciences University (OHSU) in Portland, Oregon, by John Belknap and Robert Hitzemann. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA or PDNN transforms.

    diff --git a/general/datasets/Sa_m2_0905_p/tissue.rtf b/general/datasets/Sa_m2_0905_p/tissue.rtf new file mode 100644 index 0000000..ef85488 --- /dev/null +++ b/general/datasets/Sa_m2_0905_p/tissue.rtf @@ -0,0 +1 @@ +

    Brain samples were from 31 male and 25 females and between 28 right and 28 left hemispheres distributed with good balance across the two sexes. The tissue arrayed included the forebrain, midbrain, one olfactory bulb, the cerebellum; and the rostral part of the medulla. The medulla was trimmed transversely at the caudal aspect of the cerebellum. The sagittal cut was made from a dorsal to ventral direction. (Note that several of the other brain transcriptome databases do not include olfactory bulb or cerebellum.) Total RNA was isolated with TRIZOL Reagent (Life Technologies Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer’s protocol. The extracted RNA was then purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for purity; only samples with an A260/280 ratio greater than 1.8 were used. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. Samples containing at least 10 micrograms of total RNA were sent to the OHSU Gene Microarray Shared Resource facility for analysis. The procedures used at the facility precisely follow the manufacturer’s specifications. Details can be found at http://www.ohsu.edu/gmsr/amc. Following labeling, all samples were hybridized to the GeneChip Test3 array for quality control. If target performance did not meet recommended thresholds, the sample would have been discarded. All labeled samples passed the threshold and were hybridized to the 430A and 430B array pairs.

    diff --git a/general/datasets/Sa_m2_0905_r/acknowledgment.rtf b/general/datasets/Sa_m2_0905_r/acknowledgment.rtf new file mode 100644 index 0000000..e7f05c1 --- /dev/null +++ b/general/datasets/Sa_m2_0905_r/acknowledgment.rtf @@ -0,0 +1,5 @@ +
    +

    This project was supported by two Department of Veterans Affairs Merit Review Awards (to JK Belknap and R Hitzemann, respectively), AA10760 (Portland Alcohol Research Center), AA06243, AA13484, AA11034, DA05228 and MH51372.

    + +

    Please contact either John Belknap or Robert Hitzemann at the Dept. of Behavioral Neuroscience, Oregon Health & Science University (L470), or Research Service (R&D5), Portland VA Medical Ctr., Portland, OR 97239 USA.

    +
    diff --git a/general/datasets/Sa_m2_0905_r/cases.rtf b/general/datasets/Sa_m2_0905_r/cases.rtf new file mode 100644 index 0000000..4f69ca9 --- /dev/null +++ b/general/datasets/Sa_m2_0905_r/cases.rtf @@ -0,0 +1,3 @@ +

    Fifty-six B6D2F2 samples, each taken from a single brain hemisphere from an individual mouse, were assayed using 56 M430A&B Affymetrix short oligomer microarrays. [The remaining hemisphere will be used later for an anaysis of specific brain regions.] Each array ID (see table below) includes a three letter code; the first letter usually denotes sex of the case (note that we have made a few corrections and there are therefore several sex-discordant IDs), the second letter denotes the hemisphere (R or L), and the third letter is the mouse number within each cell. The F2 mice were experimentally naive, born within a 3-day period from second litters of each dam, and housed at weaning (20- to 24-days-of-age) in like-sex groups of 3 to 4 mice for females and 2 to 3 mice for males in standard mouse shoebox cages within Thoren racks. All 56 F2 mice were killed at 77 to 79 days-of-age by cervical dislocation on December 17, 2003. The brains were immediately split at the midline and then quickly frozen on dry ice. The brains were stored for about two weeks at -80 degrees C until further use.

    + +

    The F2 was derived as follows: C57BL/6J (B6) and DBA/2J (D2) breeders were obtained from The Jackson Laboratory, and two generations later their progeny were crossed to produce B6D2F1 and D2B6F1 hybrid at the Portland VA Veterinary Medical Unit (AAALAC approved). The reciprocal F1s were mated to create an F2 population with both progenitor X and Y chromosomes about equally represented.

    diff --git a/general/datasets/Sa_m2_0905_r/citation.rtf b/general/datasets/Sa_m2_0905_r/citation.rtf new file mode 100644 index 0000000..8e8e73d --- /dev/null +++ b/general/datasets/Sa_m2_0905_r/citation.rtf @@ -0,0 +1,15 @@ +
    +

    Hitzemann R, Reed C, Malmanger B, Lawler M, Hitzemann B, Cunningham B, McWeeney S, Belknap J, Harrington C, Buck K, Phillips T, Crabbe J. (2004) On the integration of alcohol-related quantitative trait loci and gene expression analyses..  Alcohol Clin Exp Res. 2004 Oct;28(10):1437-48.  PMID:15597075

    +
    + +
    +

    Irizarry, RA, Bolstad, BM, Collin, F, Cope, LM, Hobbs, B, Speed, TP (2003) Summaries of Affymetrix GeneChip probe level data. Nuc Acids Res 31:1-15.

    +
    + +
    +

    Lincoln, SE, Lander, ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604-610.

    +
    + +
    +

    Zhang, L, Miles, MF, Aldape, KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotech 21:818-821.

    +
    diff --git a/general/datasets/Sa_m2_0905_r/contributors.rtf b/general/datasets/Sa_m2_0905_r/contributors.rtf new file mode 100644 index 0000000..fa18035 --- /dev/null +++ b/general/datasets/Sa_m2_0905_r/contributors.rtf @@ -0,0 +1,7 @@ +

    BACKGROUND:Quantitative trait loci (QTLs) have been detected for a wide variety of ethanol-related phenotypes, including acute and chronic ethanol withdrawal, acute locomotor activation, and ethanol preference. This study was undertaken to determine whether the process of moving from QTL to quantitative trait gene (QTG) could be accelerated by the integration of functional genomics (gene expression) into the analysis strategy.

    + +

    METHODS:Six ethanol-related QTLs, all detected in C57BL/6J and DBA/2J intercrosses were entered into the analysis. Each of the QTLs had been confirmed in independent genetic models at least once; the cumulative probabilities for QTL existence ranged from 10 to 10. Brain gene expression data for the C57BL/6 and DBA/2 strains (n = 6 per strain) and an F2 intercross sample (n = 56) derived from these strains were obtained by using the Affymetrix U74Av2 and 430A arrays; additional data with the U74Av2 array were available for the extended amygdala, dorsomedial striatum, and hippocampus. Low-level analysis was performed by using multiple methods to determine the likelihood that a transcript was truly differentially expressed. For the 430A array data, the F2 sample was used to determine which of the differentially expressed transcripts within the QTL intervals were cis-regulated and, thus, strong candidates for QTGs.

    + +

    RESULTS:Within the 6 QTL intervals, 39 transcripts (430A array) were identified as being highly likely to be differentially expressed between the C57BL/6 and DBA/2 strains at a false discovery rate of 0.01 or better. Twenty-eight of these transcripts showed significant (logarithm of odds > or =3.6) to highly significant (logarithm of odds >7) cis-regulation. The process correctly detected Mpdz (chromosome 4) as a candidate QTG for acute withdrawal.

    + +

    CONCLUSIONS:Although improvements are needed in the expression databases, the integration of QTL and gene expression analyses seems to have potential as a high-throughput strategy for moving from QTL to QTG.

    diff --git a/general/datasets/Sa_m2_0905_r/notes.rtf b/general/datasets/Sa_m2_0905_r/notes.rtf new file mode 100644 index 0000000..7fafba3 --- /dev/null +++ b/general/datasets/Sa_m2_0905_r/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file was originally generated by John Belknap, March 2004. Updated by RWW, October 31, 2004, EJC June 21, 2005.

    +
    diff --git a/general/datasets/Sa_m2_0905_r/platform.rtf b/general/datasets/Sa_m2_0905_r/platform.rtf new file mode 100644 index 0000000..f0ee528 --- /dev/null +++ b/general/datasets/Sa_m2_0905_r/platform.rtf @@ -0,0 +1,1154 @@ +

    All 56 430A&B arrays used in this project were purchased at one time and had the same Affymetrix lot number. The table below lists the arrays by Case ID, Array ID, Side, Cage ID and Sex.

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Order

    +
    +

    CaseID

    +
    +

    ArrayID

    +
    +

    Side

    +
    +

    CageID

    +
    +

    Sex

    +
    +

    1

    +
    +

    20

    +
    +

    FL10

    +
    +

    L

    +
    +

    H1

    +
    +

    F

    +
    +

    2

    +
    +

    2

    +
    +

    FL11

    +
    +

    L

    +
    +

    H2

    +
    +

    F

    +
    +

    3

    +
    +

    5

    +
    +

    FL12

    +
    +

    L

    +
    +

    H3

    +
    +

    F

    +
    +

    4

    +
    +

    63

    +
    +

    FL13

    +
    +

    L

    +
    +

    H4

    +
    +

    F

    +
    +

    5

    +
    +

    6

    +
    +

    FL14

    +
    +

    L

    +
    +

    K2

    +
    +

    F

    +
    +

    6

    +
    +

    10

    +
    +

    FL15

    +
    +

    L

    +
    +

    Q2

    +
    +

    F

    +
    +

    7

    +
    +

    52

    +
    +

    FL2

    +
    +

    L

    +
    +

    E1

    +
    +

    F

    +
    +

    8

    +
    +

    53

    +
    +

    FL3

    +
    +

    L

    +
    +

    E2

    +
    +

    F

    +
    +

    9

    +
    +

    42

    +
    +

    FL4

    +
    +

    L

    +
    +

    E3

    +
    +

    F

    +
    +

    10

    +
    +

    31

    +
    +

    FL5

    +
    +

    L

    +
    +

    E4

    +
    +

    F

    +
    +

    11

    +
    +

    14

    +
    +

    FL6

    +
    +

    L

    +
    +

    F1

    +
    +

    M

    +
    +

    12

    +
    +

    48

    +
    +

    FL7

    +
    +

    L

    +
    +

    F2

    +
    +

    F

    +
    +

    13

    +
    +

    60

    +
    +

    FL8

    +
    +

    L

    +
    +

    F3

    +
    +

    M

    +
    +

    14

    +
    +

    54

    +
    +

    FL9

    +
    +

    L

    +
    +

    F4

    +
    +

    F

    +
    +

    15

    +
    +

    35

    +
    +

    FR10

    +
    +

    R

    +
    +

    K3

    +
    +

    F

    +
    +

    16

    +
    +

    11

    +
    +

    FR11

    +
    +

    R

    +
    +

    O1

    +
    +

    F

    +
    +

    17

    +
    +

    21

    +
    +

    FR12

    +
    +

    R

    +
    +

    O2

    +
    +

    F

    +
    +

    18

    +
    +

    23

    +
    +

    FR13

    +
    +

    R

    +
    +

    Q1

    +
    +

    F

    +
    +

    19

    +
    +

    15

    +
    +

    FR14

    +
    +

    R

    +
    +

    Q3

    +
    +

    F

    +
    +

    20

    +
    +

    4

    +
    +

    FR15

    +
    +

    R

    +
    +

    Q4

    +
    +

    F

    +
    +

    21

    +
    +

    41

    +
    +

    FR2

    +
    +

    R

    +
    +

    A2

    +
    +

    F

    +
    +

    22

    +
    +

    44

    +
    +

    FR3

    +
    +

    R

    +
    +

    A3

    +
    +

    F

    +
    +

    23

    +
    +

    37

    +
    +

    FR4

    +
    +

    R

    +
    +

    C1

    +
    +

    F

    +
    +

    24

    +
    +

    8

    +
    +

    FR5

    +
    +

    R

    +
    +

    C2

    +
    +

    F

    +
    +

    25

    +
    +

    19

    +
    +

    FR6

    +
    +

    R

    +
    +

    C3

    +
    +

    F

    +
    +

    26

    +
    +

    40

    +
    +

    FR7

    +
    +

    R

    +
    +

    C4

    +
    +

    F

    +
    +

    27

    +
    +

    62

    +
    +

    FR8

    +
    +

    R

    +
    +

    D2

    +
    +

    M

    +
    +

    28

    +
    +

    39

    +
    +

    FR9

    +
    +

    R

    +
    +

    D3

    +
    +

    F

    +
    +

    29

    +
    +

    13

    +
    +

    ML1

    +
    +

    L

    +
    +

    B1

    +
    +

    M

    +
    +

    30

    +
    +

    22

    +
    +

    ML10

    +
    +

    L

    +
    +

    L2

    +
    +

    M

    +
    +

    31

    +
    +

    38

    +
    +

    ML11

    +
    +

    L

    +
    +

    L4

    +
    +

    M

    +
    +

    32

    +
    +

    43

    +
    +

    ML12

    +
    +

    L

    +
    +

    M1

    +
    +

    M

    +
    +

    33

    +
    +

    58

    +
    +

    ML13

    +
    +

    L

    +
    +

    N2

    +
    +

    M

    +
    +

    34

    +
    +

    7

    +
    +

    ML14

    +
    +

    L

    +
    +

    R1

    +
    +

    M

    +
    +

    35

    +
    +

    30

    +
    +

    ML15

    +
    +

    L

    +
    +

    R3

    +
    +

    M

    +
    +

    36

    +
    +

    46

    +
    +

    ML3

    +
    +

    L

    +
    +

    G1

    +
    +

    M

    +
    +

    37

    +
    +

    57

    +
    +

    ML4

    +
    +

    L

    +
    +

    G2

    +
    +

    M

    +
    +

    38

    +
    +

    51

    +
    +

    ML5

    +
    +

    L

    +
    +

    I1

    +
    +

    M

    +
    +

    39

    +
    +

    27

    +
    +

    ML6

    +
    +

    L

    +
    +

    I2

    +
    +

    M

    +
    +

    40

    +
    +

    50

    +
    +

    ML7

    +
    +

    L

    +
    +

    J2

    +
    +

    M

    +
    +

    41

    +
    +

    16

    +
    +

    FL1

    +
    +

    L

    +
    +

    O2

    +
    +

    M

    +
    +

    42

    +
    +

    3

    +
    +

    ML9

    +
    +

    L

    +
    +

    L1

    +
    +

    M

    +
    +

    43

    +
    +

    47

    +
    +

    MR10

    +
    +

    R

    +
    +

    R2

    +
    +

    M

    +
    +

    44

    +
    +

    56

    +
    +

    MR11

    +
    +

    R

    +
    +

    S1

    +
    +

    M

    +
    +

    45

    +
    +

    1

    +
    +

    MR12

    +
    +

    R

    +
    +

    S2

    +
    +

    M

    +
    +

    46

    +
    +

    55

    +
    +

    MR13

    +
    +

    R

    +
    +

    T1

    +
    +

    M

    +
    +

    47

    +
    +

    34

    +
    +

    MR14

    +
    +

    R

    +
    +

    U1

    +
    +

    M

    +
    +

    48

    +
    +

    25

    +
    +

    MR15

    +
    +

    R

    +
    +

    U2

    +
    +

    M

    +
    +

    49

    +
    +

    59

    +
    +

    MR2

    +
    +

    R

    +
    +

    J1

    +
    +

    M

    +
    +

    50

    +
    +

    32

    +
    +

    MR3

    +
    +

    R

    +
    +

    M2

    +
    +

    M

    +
    +

    51

    +
    +

    24

    +
    +

    MR4

    +
    +

    R

    +
    +

    M3

    +
    +

    M

    +
    +

    52

    +
    +

    12

    +
    +

    MR5

    +
    +

    R

    +
    +

    M4

    +
    +

    M

    +
    +

    53

    +
    +

    9

    +
    +

    MR6

    +
    +

    R

    +
    +

    N1

    +
    +

    M

    +
    +

    54

    +
    +

    36

    +
    +

    MR7

    +
    +

    R

    +
    +

    N3

    +
    +

    M

    +
    +

    55

    +
    +

    28

    +
    +

    MR8

    +
    +

    R

    +
    +

    P1

    +
    +

    M

    +
    +

    56

    +
    +

    33

    +
    +

    MR9

    +
    +

    R

    +
    +

    P2

    +
    +

    M

    +
    +
    diff --git a/general/datasets/Sa_m2_0905_r/processing.rtf b/general/datasets/Sa_m2_0905_r/processing.rtf new file mode 100644 index 0000000..8a23d84 --- /dev/null +++ b/general/datasets/Sa_m2_0905_r/processing.rtf @@ -0,0 +1,26 @@ +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are the 75% quantiles from a set of 91 pixel values per cell. Probe values were processed as follows: + + +

    Probe set data from the TXT file: These TXT files were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

    +
    + +

    About the marker set:

    + +
    +

    The 56 mice were each genotyped at 309 MIT microsatellite markers distributed across the genome, including the Y chromosome. The genotyping error check routine (Lincoln and Lander, 1992) implemented within R/qtl (Broman et al., 2003) showed no likely errors at p <.01 probability. Initial genotypes were generated at OHSU. Approximately 200 genotypes were generated at UTHSC by Jing Gu and Shuhua Qi.

    +
    + +

    About the chromosome and megabase position values:

    + +
    The chromosomal locations of M430A and M430B probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium March 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). + +

     

    +
    diff --git a/general/datasets/Sa_m2_0905_r/summary.rtf b/general/datasets/Sa_m2_0905_r/summary.rtf new file mode 100644 index 0000000..6f477fe --- /dev/null +++ b/general/datasets/Sa_m2_0905_r/summary.rtf @@ -0,0 +1 @@ +

    This August 2005 data freeze provides estimate of mRNA expression in adult brains of F2 intercross mice (C57BL/6J x DBA/2J F2) measured using Affymetrix M430A and M430B microarray pairs. Data were generated at The Oregon Health Sciences University (OHSU) in Portland, Oregon, by John Belknap and Robert Hitzemann. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA or PDNN transforms.

    diff --git a/general/datasets/Sa_m2_0905_r/tissue.rtf b/general/datasets/Sa_m2_0905_r/tissue.rtf new file mode 100644 index 0000000..ef85488 --- /dev/null +++ b/general/datasets/Sa_m2_0905_r/tissue.rtf @@ -0,0 +1 @@ +

    Brain samples were from 31 male and 25 females and between 28 right and 28 left hemispheres distributed with good balance across the two sexes. The tissue arrayed included the forebrain, midbrain, one olfactory bulb, the cerebellum; and the rostral part of the medulla. The medulla was trimmed transversely at the caudal aspect of the cerebellum. The sagittal cut was made from a dorsal to ventral direction. (Note that several of the other brain transcriptome databases do not include olfactory bulb or cerebellum.) Total RNA was isolated with TRIZOL Reagent (Life Technologies Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer’s protocol. The extracted RNA was then purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for purity; only samples with an A260/280 ratio greater than 1.8 were used. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. Samples containing at least 10 micrograms of total RNA were sent to the OHSU Gene Microarray Shared Resource facility for analysis. The procedures used at the facility precisely follow the manufacturer’s specifications. Details can be found at http://www.ohsu.edu/gmsr/amc. Following labeling, all samples were hybridized to the GeneChip Test3 array for quality control. If target performance did not meet recommended thresholds, the sample would have been discarded. All labeled samples passed the threshold and were hybridized to the 430A and 430B array pairs.

    diff --git a/general/datasets/Sa_m2_1104_g/acknowledgment.rtf b/general/datasets/Sa_m2_1104_g/acknowledgment.rtf new file mode 100644 index 0000000..909ea42 --- /dev/null +++ b/general/datasets/Sa_m2_1104_g/acknowledgment.rtf @@ -0,0 +1,3 @@ +
    +

    Data were generated with funds to Glenn Rosen from P20 MH62009 (see below for specifics). Samples and arrays were processed by the Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    +
    diff --git a/general/datasets/Sa_m2_1104_g/cases.rtf b/general/datasets/Sa_m2_1104_g/cases.rtf new file mode 100644 index 0000000..63bba4c --- /dev/null +++ b/general/datasets/Sa_m2_1104_g/cases.rtf @@ -0,0 +1,184 @@ +
    +

    This data set includes estimate of gene expression for 24 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), and 22 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period (see the WebQTL BXD Published Phenotypes database). A significant advantage of this RI set is that both parental strains (B6 and D2) have been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine.

    +
    + +
    The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from 3 to 4 mice.
    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain +

    Sex

    +
    Strain +

    Sex

    +
    C57BL/6J (B6)♂DBA/2J (D2)♂
    B6D2F1 (F1) BXD1 
    BXD2♂♀BXD5 
    BXD6♀BXD8 
    BXD9♂♀BXD11♀
    BXD12♀BXD13♀
    BXD14♂BXD15♂♀
    BXD16♀BXD18 
    BXD19♀BXD21♂♀
    BXD22 BXD23 
    BXD24 BXD25 
    BXD27♂♀BXD28♂♀
    BXD29♂♀BXD31♀
    BXD32♂BXD33♂♀
    BXD34♂♀BXD38♂♀
    BXD39♂BXD40♂♀
    BXD42♂♀  
    +
    + +
    +

    Select the strain name in the table above to review details about the specific cases and to view the array quality control image processed using the PerfectMatch program by Li Zhang.

    +
    diff --git a/general/datasets/Sa_m2_1104_g/experiment-design.rtf b/general/datasets/Sa_m2_1104_g/experiment-design.rtf new file mode 100644 index 0000000..1b0f0b3 --- /dev/null +++ b/general/datasets/Sa_m2_1104_g/experiment-design.rtf @@ -0,0 +1,5 @@ +
    +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 5 to 10 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25-30 mg of tissue from 6 striata) of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Rought 90 to 95% of all cells in the striatum are medium spiny neurons (Gerfen, 1992, for a review of the structure and function of the neostriatum).

    + +

    mRNA processing: We used the Amersham Biosciences cRNA synthesis kit protocol.

    +
    diff --git a/general/datasets/Sa_m2_1104_g/notes.rtf b/general/datasets/Sa_m2_1104_g/notes.rtf new file mode 100644 index 0000000..e37761f --- /dev/null +++ b/general/datasets/Sa_m2_1104_g/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by GDR, RWW, and YHQ Nov 2004. Updated by RWW Nov 17, 2004; GDR and RWW, Dec 23, 2004.

    +
    diff --git a/general/datasets/Sa_m2_1104_g/platform.rtf b/general/datasets/Sa_m2_1104_g/platform.rtf new file mode 100644 index 0000000..bd1a9e0 --- /dev/null +++ b/general/datasets/Sa_m2_1104_g/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are actually duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    diff --git a/general/datasets/Sa_m2_1104_g/processing.rtf b/general/datasets/Sa_m2_1104_g/processing.rtf new file mode 100644 index 0000000..5473eda --- /dev/null +++ b/general/datasets/Sa_m2_1104_g/processing.rtf @@ -0,0 +1,11 @@ +
    Affymetrix CEL files obtained from the BIDMC Genomics Core were processed as follows. + +Probe set data from the CHP file: The expression values were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    diff --git a/general/datasets/Sa_m2_1104_g/summary.rtf b/general/datasets/Sa_m2_1104_g/summary.rtf new file mode 100644 index 0000000..427768f --- /dev/null +++ b/general/datasets/Sa_m2_1104_g/summary.rtf @@ -0,0 +1 @@ +
    This November 2004 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of BXD recombinant inbred mice measured using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays. Data were generated at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 125 brain samples from 24 strains were used in this initial experiment. Data were processed using the Affymetrix Microarray Suite 5 (MAS 5) transform. To simplify comparison among Nov04 data sets, values of each array have been log2 transformed and adjusted to an average expression of 8 units.
    diff --git a/general/datasets/Sa_m2_1104_m/acknowledgment.rtf b/general/datasets/Sa_m2_1104_m/acknowledgment.rtf new file mode 100644 index 0000000..909ea42 --- /dev/null +++ b/general/datasets/Sa_m2_1104_m/acknowledgment.rtf @@ -0,0 +1,3 @@ +
    +

    Data were generated with funds to Glenn Rosen from P20 MH62009 (see below for specifics). Samples and arrays were processed by the Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    +
    diff --git a/general/datasets/Sa_m2_1104_m/cases.rtf b/general/datasets/Sa_m2_1104_m/cases.rtf new file mode 100644 index 0000000..63bba4c --- /dev/null +++ b/general/datasets/Sa_m2_1104_m/cases.rtf @@ -0,0 +1,184 @@ +
    +

    This data set includes estimate of gene expression for 24 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), and 22 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period (see the WebQTL BXD Published Phenotypes database). A significant advantage of this RI set is that both parental strains (B6 and D2) have been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine.

    +
    + +
    The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from 3 to 4 mice.
    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain +

    Sex

    +
    Strain +

    Sex

    +
    C57BL/6J (B6)♂DBA/2J (D2)♂
    B6D2F1 (F1) BXD1 
    BXD2♂♀BXD5 
    BXD6♀BXD8 
    BXD9♂♀BXD11♀
    BXD12♀BXD13♀
    BXD14♂BXD15♂♀
    BXD16♀BXD18 
    BXD19♀BXD21♂♀
    BXD22 BXD23 
    BXD24 BXD25 
    BXD27♂♀BXD28♂♀
    BXD29♂♀BXD31♀
    BXD32♂BXD33♂♀
    BXD34♂♀BXD38♂♀
    BXD39♂BXD40♂♀
    BXD42♂♀  
    +
    + +
    +

    Select the strain name in the table above to review details about the specific cases and to view the array quality control image processed using the PerfectMatch program by Li Zhang.

    +
    diff --git a/general/datasets/Sa_m2_1104_m/experiment-design.rtf b/general/datasets/Sa_m2_1104_m/experiment-design.rtf new file mode 100644 index 0000000..1b0f0b3 --- /dev/null +++ b/general/datasets/Sa_m2_1104_m/experiment-design.rtf @@ -0,0 +1,5 @@ +
    +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 5 to 10 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25-30 mg of tissue from 6 striata) of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Rought 90 to 95% of all cells in the striatum are medium spiny neurons (Gerfen, 1992, for a review of the structure and function of the neostriatum).

    + +

    mRNA processing: We used the Amersham Biosciences cRNA synthesis kit protocol.

    +
    diff --git a/general/datasets/Sa_m2_1104_m/notes.rtf b/general/datasets/Sa_m2_1104_m/notes.rtf new file mode 100644 index 0000000..e37761f --- /dev/null +++ b/general/datasets/Sa_m2_1104_m/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by GDR, RWW, and YHQ Nov 2004. Updated by RWW Nov 17, 2004; GDR and RWW, Dec 23, 2004.

    +
    diff --git a/general/datasets/Sa_m2_1104_m/platform.rtf b/general/datasets/Sa_m2_1104_m/platform.rtf new file mode 100644 index 0000000..bd1a9e0 --- /dev/null +++ b/general/datasets/Sa_m2_1104_m/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are actually duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    diff --git a/general/datasets/Sa_m2_1104_m/processing.rtf b/general/datasets/Sa_m2_1104_m/processing.rtf new file mode 100644 index 0000000..5473eda --- /dev/null +++ b/general/datasets/Sa_m2_1104_m/processing.rtf @@ -0,0 +1,11 @@ +
    Affymetrix CEL files obtained from the BIDMC Genomics Core were processed as follows. + +Probe set data from the CHP file: The expression values were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    diff --git a/general/datasets/Sa_m2_1104_m/summary.rtf b/general/datasets/Sa_m2_1104_m/summary.rtf new file mode 100644 index 0000000..427768f --- /dev/null +++ b/general/datasets/Sa_m2_1104_m/summary.rtf @@ -0,0 +1 @@ +
    This November 2004 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of BXD recombinant inbred mice measured using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays. Data were generated at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 125 brain samples from 24 strains were used in this initial experiment. Data were processed using the Affymetrix Microarray Suite 5 (MAS 5) transform. To simplify comparison among Nov04 data sets, values of each array have been log2 transformed and adjusted to an average expression of 8 units.
    diff --git a/general/datasets/Sa_m2_1104_p/acknowledgment.rtf b/general/datasets/Sa_m2_1104_p/acknowledgment.rtf new file mode 100644 index 0000000..909ea42 --- /dev/null +++ b/general/datasets/Sa_m2_1104_p/acknowledgment.rtf @@ -0,0 +1,3 @@ +
    +

    Data were generated with funds to Glenn Rosen from P20 MH62009 (see below for specifics). Samples and arrays were processed by the Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    +
    diff --git a/general/datasets/Sa_m2_1104_p/cases.rtf b/general/datasets/Sa_m2_1104_p/cases.rtf new file mode 100644 index 0000000..63bba4c --- /dev/null +++ b/general/datasets/Sa_m2_1104_p/cases.rtf @@ -0,0 +1,184 @@ +
    +

    This data set includes estimate of gene expression for 24 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), and 22 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period (see the WebQTL BXD Published Phenotypes database). A significant advantage of this RI set is that both parental strains (B6 and D2) have been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine.

    +
    + +
    The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from 3 to 4 mice.
    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain +

    Sex

    +
    Strain +

    Sex

    +
    C57BL/6J (B6)♂DBA/2J (D2)♂
    B6D2F1 (F1) BXD1 
    BXD2♂♀BXD5 
    BXD6♀BXD8 
    BXD9♂♀BXD11♀
    BXD12♀BXD13♀
    BXD14♂BXD15♂♀
    BXD16♀BXD18 
    BXD19♀BXD21♂♀
    BXD22 BXD23 
    BXD24 BXD25 
    BXD27♂♀BXD28♂♀
    BXD29♂♀BXD31♀
    BXD32♂BXD33♂♀
    BXD34♂♀BXD38♂♀
    BXD39♂BXD40♂♀
    BXD42♂♀  
    +
    + +
    +

    Select the strain name in the table above to review details about the specific cases and to view the array quality control image processed using the PerfectMatch program by Li Zhang.

    +
    diff --git a/general/datasets/Sa_m2_1104_p/experiment-design.rtf b/general/datasets/Sa_m2_1104_p/experiment-design.rtf new file mode 100644 index 0000000..1b0f0b3 --- /dev/null +++ b/general/datasets/Sa_m2_1104_p/experiment-design.rtf @@ -0,0 +1,5 @@ +
    +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 5 to 10 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25-30 mg of tissue from 6 striata) of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Rought 90 to 95% of all cells in the striatum are medium spiny neurons (Gerfen, 1992, for a review of the structure and function of the neostriatum).

    + +

    mRNA processing: We used the Amersham Biosciences cRNA synthesis kit protocol.

    +
    diff --git a/general/datasets/Sa_m2_1104_p/notes.rtf b/general/datasets/Sa_m2_1104_p/notes.rtf new file mode 100644 index 0000000..e37761f --- /dev/null +++ b/general/datasets/Sa_m2_1104_p/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by GDR, RWW, and YHQ Nov 2004. Updated by RWW Nov 17, 2004; GDR and RWW, Dec 23, 2004.

    +
    diff --git a/general/datasets/Sa_m2_1104_p/platform.rtf b/general/datasets/Sa_m2_1104_p/platform.rtf new file mode 100644 index 0000000..bd1a9e0 --- /dev/null +++ b/general/datasets/Sa_m2_1104_p/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are actually duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    diff --git a/general/datasets/Sa_m2_1104_p/processing.rtf b/general/datasets/Sa_m2_1104_p/processing.rtf new file mode 100644 index 0000000..5473eda --- /dev/null +++ b/general/datasets/Sa_m2_1104_p/processing.rtf @@ -0,0 +1,11 @@ +
    Affymetrix CEL files obtained from the BIDMC Genomics Core were processed as follows. + +Probe set data from the CHP file: The expression values were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    diff --git a/general/datasets/Sa_m2_1104_p/summary.rtf b/general/datasets/Sa_m2_1104_p/summary.rtf new file mode 100644 index 0000000..427768f --- /dev/null +++ b/general/datasets/Sa_m2_1104_p/summary.rtf @@ -0,0 +1 @@ +
    This November 2004 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of BXD recombinant inbred mice measured using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays. Data were generated at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 125 brain samples from 24 strains were used in this initial experiment. Data were processed using the Affymetrix Microarray Suite 5 (MAS 5) transform. To simplify comparison among Nov04 data sets, values of each array have been log2 transformed and adjusted to an average expression of 8 units.
    diff --git a/general/datasets/Sa_m2_1104_r/acknowledgment.rtf b/general/datasets/Sa_m2_1104_r/acknowledgment.rtf new file mode 100644 index 0000000..909ea42 --- /dev/null +++ b/general/datasets/Sa_m2_1104_r/acknowledgment.rtf @@ -0,0 +1,3 @@ +
    +

    Data were generated with funds to Glenn Rosen from P20 MH62009 (see below for specifics). Samples and arrays were processed by the Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    +
    diff --git a/general/datasets/Sa_m2_1104_r/cases.rtf b/general/datasets/Sa_m2_1104_r/cases.rtf new file mode 100644 index 0000000..63bba4c --- /dev/null +++ b/general/datasets/Sa_m2_1104_r/cases.rtf @@ -0,0 +1,184 @@ +
    +

    This data set includes estimate of gene expression for 24 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), and 22 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period (see the WebQTL BXD Published Phenotypes database). A significant advantage of this RI set is that both parental strains (B6 and D2) have been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine.

    +
    + +
    The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from 3 to 4 mice.
    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain +

    Sex

    +
    Strain +

    Sex

    +
    C57BL/6J (B6)♂DBA/2J (D2)♂
    B6D2F1 (F1) BXD1 
    BXD2♂♀BXD5 
    BXD6♀BXD8 
    BXD9♂♀BXD11♀
    BXD12♀BXD13♀
    BXD14♂BXD15♂♀
    BXD16♀BXD18 
    BXD19♀BXD21♂♀
    BXD22 BXD23 
    BXD24 BXD25 
    BXD27♂♀BXD28♂♀
    BXD29♂♀BXD31♀
    BXD32♂BXD33♂♀
    BXD34♂♀BXD38♂♀
    BXD39♂BXD40♂♀
    BXD42♂♀  
    +
    + +
    +

    Select the strain name in the table above to review details about the specific cases and to view the array quality control image processed using the PerfectMatch program by Li Zhang.

    +
    diff --git a/general/datasets/Sa_m2_1104_r/experiment-design.rtf b/general/datasets/Sa_m2_1104_r/experiment-design.rtf new file mode 100644 index 0000000..1b0f0b3 --- /dev/null +++ b/general/datasets/Sa_m2_1104_r/experiment-design.rtf @@ -0,0 +1,5 @@ +
    +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 5 to 10 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25-30 mg of tissue from 6 striata) of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Rought 90 to 95% of all cells in the striatum are medium spiny neurons (Gerfen, 1992, for a review of the structure and function of the neostriatum).

    + +

    mRNA processing: We used the Amersham Biosciences cRNA synthesis kit protocol.

    +
    diff --git a/general/datasets/Sa_m2_1104_r/notes.rtf b/general/datasets/Sa_m2_1104_r/notes.rtf new file mode 100644 index 0000000..e37761f --- /dev/null +++ b/general/datasets/Sa_m2_1104_r/notes.rtf @@ -0,0 +1,3 @@ +
    +

    This text file originally generated by GDR, RWW, and YHQ Nov 2004. Updated by RWW Nov 17, 2004; GDR and RWW, Dec 23, 2004.

    +
    diff --git a/general/datasets/Sa_m2_1104_r/platform.rtf b/general/datasets/Sa_m2_1104_r/platform.rtf new file mode 100644 index 0000000..bd1a9e0 --- /dev/null +++ b/general/datasets/Sa_m2_1104_r/platform.rtf @@ -0,0 +1,3 @@ +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are actually duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    diff --git a/general/datasets/Sa_m2_1104_r/processing.rtf b/general/datasets/Sa_m2_1104_r/processing.rtf new file mode 100644 index 0000000..5473eda --- /dev/null +++ b/general/datasets/Sa_m2_1104_r/processing.rtf @@ -0,0 +1,11 @@ +
    Affymetrix CEL files obtained from the BIDMC Genomics Core were processed as follows. + +Probe set data from the CHP file: The expression values were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    diff --git a/general/datasets/Sa_m2_1104_r/summary.rtf b/general/datasets/Sa_m2_1104_r/summary.rtf new file mode 100644 index 0000000..427768f --- /dev/null +++ b/general/datasets/Sa_m2_1104_r/summary.rtf @@ -0,0 +1 @@ +
    This November 2004 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of BXD recombinant inbred mice measured using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays. Data were generated at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 125 brain samples from 24 strains were used in this initial experiment. Data were processed using the Affymetrix Microarray Suite 5 (MAS 5) transform. To simplify comparison among Nov04 data sets, values of each array have been log2 transformed and adjusted to an average expression of 8 units.
    diff --git a/general/datasets/ScrBXDACC4G0513/summary.rtf b/general/datasets/ScrBXDACC4G0513/summary.rtf deleted file mode 100644 index 07eb887..0000000 --- a/general/datasets/ScrBXDACC4G0513/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -Summary of DatasetId 173, Name: Scripps BXD ACC 4 Groups Affy Mouse Gene 1.0 ST (May13) RMA Gene Level ** \ No newline at end of file diff --git a/general/datasets/Scrbxdacc4g0513/summary.rtf b/general/datasets/Scrbxdacc4g0513/summary.rtf new file mode 100644 index 0000000..07eb887 --- /dev/null +++ b/general/datasets/Scrbxdacc4g0513/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 173, Name: Scripps BXD ACC 4 Groups Affy Mouse Gene 1.0 ST (May13) RMA Gene Level ** \ No newline at end of file diff --git a/general/datasets/Stj_pln_0912/experiment-type.rtf b/general/datasets/Stj_pln_0912/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Stj_pln_0912/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Stj_pln_0912/summary.rtf b/general/datasets/Stj_pln_0912/summary.rtf new file mode 100644 index 0000000..fd9009a --- /dev/null +++ b/general/datasets/Stj_pln_0912/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 154, Name: St Jude BXD Popliteal Lymph Node Affy HT MG-430 PM (Sep12) \ No newline at end of file diff --git a/general/datasets/Striatum_exon_0209/cases.rtf b/general/datasets/Striatum_exon_0209/cases.rtf new file mode 100644 index 0000000..e4db26e --- /dev/null +++ b/general/datasets/Striatum_exon_0209/cases.rtf @@ -0,0 +1,947 @@ +

    A movie of the dissection of the brain, including the striatum, by Dr. Glenn Rosen.

    + +

    About the strains used to generate this set of data

    + +
    +

     

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDTube No.TissueStrainAgeSex
    1R3025SA1705Striatum129S1/SvImJ60F
    2R3026SA1375Striatum129S1/SvImJ59M
    3R3027SA1435StriatumA/J59F
    4R3028SA1455StriatumA/J59M
    5R3029SA1395StriatumAKR/J59F
    6R3030SA1415StriatumAKR/J59M
    7R3031SA1227StriatumB6D2F159F
    8R3032SA1225StriatumB6D2F159M
    9R3033SA1495StriatumBALB/cByJ59F
    10R3034SA1475StriatumBALB/cByJ59M
    11R3035SA1665StriatumBTBRT<+>tf/J59F
    12R3036SA1615StriatumBTBRT<+>tf/J60M
    13R3037SA457StriatumBXD159F
    14R3038SA927StriatumBXD159M
    15R3055SA487StriatumBXD261F
    16R3056SA477StriatumBXD261M
    17R3089SA977StriatumBXD558F
    18R3090SA967StriatumBXD558M
    19R3091SA557StriatumBXD659F
    20R3092SA547StriatumBXD659M
    21R3093SA717StriatumBXD861F
    22R3094SA707StriatumBXD861M
    23R3095SA647StriatumBXD960F
    24R3096SA637StriatumBXD960M
    25R3039SA517StriatumBXD1159F
    26R3040SA787StriatumBXD1159M
    27R3041SA817StriatumBXD1262F
    28R3042SA807StriatumBXD1259M
    29R3043SA877StriatumBXD1360F
    30R3044SA867StriatumBXD1360M
    31R3045SA1067StriatumBXD1459F
    32R3144SA1077StriatumBXD1459M
    33R3047SA1057StriatumBXD1560F
    34R3048SA1047StriatumBXD1560M
    35R3049SA767StriatumBXD1661F
    36R3050SA777StriatumBXD1661M
    37R3051SA1177StriatumBXD1859F
    38R3052SA1167StriatumBXD1859M
    39R3053SA957StriatumBXD1960F
    40R3054SA947StriatumBXD1960M
    41R3057SA1255StriatumBXD2060F
    42R3058SA1245StriatumBXD2060M
    43R3059SA1197StriatumBXD2148F
    44R3060SA1187StriatumBXD2148M
    45R3061SA1235StriatumBXD2258F
    46R3062SA1275StriatumBXD2260M
    47R3063SA1137StriatumBXD2360F
    48R3064SA1127StriatumBXD2360M
    49R3065SA437StriatumBXD2459F
    50R3066SA587StriatumBXD2460M
    51R3067SA1107StriatumBXD2760F
    52R3068SA1117StriatumBXD2760M
    53R3069SA1027StriatumBXD2860F
    54R3070SA1037StriatumBXD2860M
    55R3071SA1007StriatumBXD2958F
    56R3072SA1017StriatumBXD2958M
    57R3073SA997StriatumBxD3160F
    58R3074SA987StriatumBxD3160M
    59R3075SA917StriatumBXD3257F
    60R3076SA907StriatumBXD3257M
    61R3077SA897StriatumBXD3359F
    62R3078SA887StriatumBXD3359M
    63R3079SA837StriatumBXD3460F
    64R3080SA827StriatumBXD3460M
    65R3081SA857StriatumBXD3657F
    66R3082SA847StriatumBXD3657M
    67R3083SA697StriatumBXD3860F
    68R3084SA687StriatumBXD3860M
    69R3085SA677StriatumBXD4060F
    70R3086SA667StriatumBXD4060M
    71R3087SA577StriatumBXD4258F
    72R3088SA567StriatumBXD4258M
    73R3097SA1975StriatumBXSB/MpJ61F
    74R3098SA1945StriatumBXSB/MpJ61M
    75R3099SA1575StriatumC3H/HeJ60F
    76R3100SA1595StriatumC3H/HeJ60M
    77R3101SA1228StriatumC57BL/6J58F
    78R3102SA343StriatumC57BL/6J59M
    79R3103SA (sample removed)2305StriatumCAST/Ei61F
    80R3104SA (sample removed)2285StriatumCAST/Ei59M
    81R3105SA1223StriatumDBA/2J58F
    82R3106SA344StriatumDBA/2J59M
    83R3107SA1535StriatumFVB/NJ60F
    84R3108SA1555StriatumFVB/NJ60M
    85R3109SA1845StriatumKK/HlJ61F
    86R3110SA1835StriatumKK/HlJ61M
    87R3111SA1865StriatumMOLF/EiJ60F
    88R3112SA1855StriatumMOLF/EiJ60M
    89R3113SA1295StriatumNOD/LtJ58F
    90R3114SA1315StriatumNOD/LtJ58M
    91R3115SA2075StriatumNZB/BlNJ61F
    92R3116SA1515StriatumNZB/BlNJ58M
    93R3117SA1745StriatumNZO/HlLtJ61F
    94R3118SA1725StriatumNZO/HlLtJ61M
    95R3119SA1805StriatumNZW/LacJ65F
    96R3120SA1685StriatumNZW/LacJ70M
    97R3121SA1875StriatumPWD/PhJ70F
    98R3122SA1885StriatumPWD/PhJ70M
    99R3123SA1765StriatumPWK/PhJ59F
    100R3124SA1785StriatumPWK/PhJ60M
    101R3125SA1825StriatumWSB/EiJ71F
    102R3126SA1655StriatumWSB/EiJ71M
    +
    +
    diff --git a/general/datasets/Striatum_exon_0209/notes.rtf b/general/datasets/Striatum_exon_0209/notes.rtf new file mode 100644 index 0000000..677a1bd --- /dev/null +++ b/general/datasets/Striatum_exon_0209/notes.rtf @@ -0,0 +1 @@ +

    Final and fully corrected Exon 1.0 ST array data. Entered by Arthur Centeno. Data error-checking by Manjunatha N. Jagalur . Tissue collected by Glenn Rosen. Array processing by Weikuan Gu.

    diff --git a/general/datasets/Striatum_exon_1212/cases.rtf b/general/datasets/Striatum_exon_1212/cases.rtf new file mode 100644 index 0000000..e4db26e --- /dev/null +++ b/general/datasets/Striatum_exon_1212/cases.rtf @@ -0,0 +1,947 @@ +

    A movie of the dissection of the brain, including the striatum, by Dr. Glenn Rosen.

    + +

    About the strains used to generate this set of data

    + +
    +

     

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDTube No.TissueStrainAgeSex
    1R3025SA1705Striatum129S1/SvImJ60F
    2R3026SA1375Striatum129S1/SvImJ59M
    3R3027SA1435StriatumA/J59F
    4R3028SA1455StriatumA/J59M
    5R3029SA1395StriatumAKR/J59F
    6R3030SA1415StriatumAKR/J59M
    7R3031SA1227StriatumB6D2F159F
    8R3032SA1225StriatumB6D2F159M
    9R3033SA1495StriatumBALB/cByJ59F
    10R3034SA1475StriatumBALB/cByJ59M
    11R3035SA1665StriatumBTBRT<+>tf/J59F
    12R3036SA1615StriatumBTBRT<+>tf/J60M
    13R3037SA457StriatumBXD159F
    14R3038SA927StriatumBXD159M
    15R3055SA487StriatumBXD261F
    16R3056SA477StriatumBXD261M
    17R3089SA977StriatumBXD558F
    18R3090SA967StriatumBXD558M
    19R3091SA557StriatumBXD659F
    20R3092SA547StriatumBXD659M
    21R3093SA717StriatumBXD861F
    22R3094SA707StriatumBXD861M
    23R3095SA647StriatumBXD960F
    24R3096SA637StriatumBXD960M
    25R3039SA517StriatumBXD1159F
    26R3040SA787StriatumBXD1159M
    27R3041SA817StriatumBXD1262F
    28R3042SA807StriatumBXD1259M
    29R3043SA877StriatumBXD1360F
    30R3044SA867StriatumBXD1360M
    31R3045SA1067StriatumBXD1459F
    32R3144SA1077StriatumBXD1459M
    33R3047SA1057StriatumBXD1560F
    34R3048SA1047StriatumBXD1560M
    35R3049SA767StriatumBXD1661F
    36R3050SA777StriatumBXD1661M
    37R3051SA1177StriatumBXD1859F
    38R3052SA1167StriatumBXD1859M
    39R3053SA957StriatumBXD1960F
    40R3054SA947StriatumBXD1960M
    41R3057SA1255StriatumBXD2060F
    42R3058SA1245StriatumBXD2060M
    43R3059SA1197StriatumBXD2148F
    44R3060SA1187StriatumBXD2148M
    45R3061SA1235StriatumBXD2258F
    46R3062SA1275StriatumBXD2260M
    47R3063SA1137StriatumBXD2360F
    48R3064SA1127StriatumBXD2360M
    49R3065SA437StriatumBXD2459F
    50R3066SA587StriatumBXD2460M
    51R3067SA1107StriatumBXD2760F
    52R3068SA1117StriatumBXD2760M
    53R3069SA1027StriatumBXD2860F
    54R3070SA1037StriatumBXD2860M
    55R3071SA1007StriatumBXD2958F
    56R3072SA1017StriatumBXD2958M
    57R3073SA997StriatumBxD3160F
    58R3074SA987StriatumBxD3160M
    59R3075SA917StriatumBXD3257F
    60R3076SA907StriatumBXD3257M
    61R3077SA897StriatumBXD3359F
    62R3078SA887StriatumBXD3359M
    63R3079SA837StriatumBXD3460F
    64R3080SA827StriatumBXD3460M
    65R3081SA857StriatumBXD3657F
    66R3082SA847StriatumBXD3657M
    67R3083SA697StriatumBXD3860F
    68R3084SA687StriatumBXD3860M
    69R3085SA677StriatumBXD4060F
    70R3086SA667StriatumBXD4060M
    71R3087SA577StriatumBXD4258F
    72R3088SA567StriatumBXD4258M
    73R3097SA1975StriatumBXSB/MpJ61F
    74R3098SA1945StriatumBXSB/MpJ61M
    75R3099SA1575StriatumC3H/HeJ60F
    76R3100SA1595StriatumC3H/HeJ60M
    77R3101SA1228StriatumC57BL/6J58F
    78R3102SA343StriatumC57BL/6J59M
    79R3103SA (sample removed)2305StriatumCAST/Ei61F
    80R3104SA (sample removed)2285StriatumCAST/Ei59M
    81R3105SA1223StriatumDBA/2J58F
    82R3106SA344StriatumDBA/2J59M
    83R3107SA1535StriatumFVB/NJ60F
    84R3108SA1555StriatumFVB/NJ60M
    85R3109SA1845StriatumKK/HlJ61F
    86R3110SA1835StriatumKK/HlJ61M
    87R3111SA1865StriatumMOLF/EiJ60F
    88R3112SA1855StriatumMOLF/EiJ60M
    89R3113SA1295StriatumNOD/LtJ58F
    90R3114SA1315StriatumNOD/LtJ58M
    91R3115SA2075StriatumNZB/BlNJ61F
    92R3116SA1515StriatumNZB/BlNJ58M
    93R3117SA1745StriatumNZO/HlLtJ61F
    94R3118SA1725StriatumNZO/HlLtJ61M
    95R3119SA1805StriatumNZW/LacJ65F
    96R3120SA1685StriatumNZW/LacJ70M
    97R3121SA1875StriatumPWD/PhJ70F
    98R3122SA1885StriatumPWD/PhJ70M
    99R3123SA1765StriatumPWK/PhJ59F
    100R3124SA1785StriatumPWK/PhJ60M
    101R3125SA1825StriatumWSB/EiJ71F
    102R3126SA1655StriatumWSB/EiJ71M
    +
    +
    diff --git a/general/datasets/Striatum_exon_1212/notes.rtf b/general/datasets/Striatum_exon_1212/notes.rtf new file mode 100644 index 0000000..677a1bd --- /dev/null +++ b/general/datasets/Striatum_exon_1212/notes.rtf @@ -0,0 +1 @@ +

    Final and fully corrected Exon 1.0 ST array data. Entered by Arthur Centeno. Data error-checking by Manjunatha N. Jagalur . Tissue collected by Glenn Rosen. Array processing by Weikuan Gu.

    diff --git a/general/datasets/Stspl_1107_r/summary.rtf b/general/datasets/Stspl_1107_r/summary.rtf new file mode 100644 index 0000000..b74d6b2 --- /dev/null +++ b/general/datasets/Stspl_1107_r/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 43, Name: Stuart Spleen M430v2 (Nov07) \ No newline at end of file diff --git a/general/datasets/Suh_liv_rma_0611/experiment-type.rtf b/general/datasets/Suh_liv_rma_0611/experiment-type.rtf new file mode 100644 index 0000000..a92f1f2 --- /dev/null +++ b/general/datasets/Suh_liv_rma_0611/experiment-type.rtf @@ -0,0 +1,158 @@ +

    This experimental liver gene expression data set (~100 Affymetrix exon-type arrays), was generated by Frank Lammert, Sonja Hillebrandt, Rabea Hall, and colleagues at the Saarland University Medical Center in Homburg, Germany. This work is part of the German Network for Systems Genetics (GeNeSys). + +

    Expression data after carbon tetrachloride treatment (CCl4, also known as Halon, Freon, carbon tet, or tetrachloromethane) were generated using RNA sample from 30 BXD strains, both parental strains (C57BL/6J, DBA/2J), and B6D2 F1 hybrids. The great majority of cases were females and were treated with carbon tetrachloride injections over a six week period. Three arrays were run for each strain using independent liver samples. + +

    PURPOSE: The overall goal of the project is to understand the etiology of liver fibrogenesis using carbon tetracholoride as a toxin and inducer of liver disease. Liver fibrogenesis, or scarring of the liver, is the common end-stage of chronic liver diseases, in particular after chronic viral infections. In Germany along complications associated with liver fibrosis cause approximately 10,000 deaths per year. In the past decade key molecular pathomechanisms of hepatic fibrogenesis due to chronic viral infections have been identified. Activated hepatic stellate cells (HSCs) drive the process of de novo deposition of abnormal extracellular matrix, which is modulated by complex interactions between cytokines, receptors, and matrix components. + +

    Several studies have demonstrated that the course and progression of the fibrogenic response to chronic liver injury is highly variability among individuals. This marked variabilityhas been attributed to etiology, age, gender, and environmental factors. In humans these genetic disease fibrosis predisposition factors have not yet to be studied systematically. + +

    Our group recently identified a gene variant that contributes to liver fibrogenesis by using QTL mapping in an experimental crosses between fibrosis-susceptible and resistant strains of mice (Hillebrandt et al., 2005). We demonstrated that sequence differences in the HC gene that encodes complement factor C5 (also known as hemolytic complement), are responsible for this strain difference. Common haplotype-tagging polymorphisms of the human HC gene were shown to be associated with advanced fibrosis in chronic hepatitis C virus infection. Thus, the mouse analysis led to the identification of an unknown gene underlying human susceptibility to liver fibrosis, supporting the idea that HC has a causal role in chronic inflammatory disorders and organ fibrogenesis across species. + +

    As part of the GeNeSys program we have studied liver fibrogenesis in the BXD family of strains as a model for chronic liver injury. This expression data set is used to map complex genetic traits that modulate gene expression and determine gene networks during liver fibrogenesis in GRPs. + +

    The following assays are complete or are in progress: + +

      +
    1. Liver fibrosis studies: Phenotyping protocols include standard histology, morphometry, biochemical quantification of hepatic collagen contents, serum surrogate markers of fibrosis, immunohistochemistry, and expression profiling of proinflammatory and profibrogenic genes by qRT-PCR and Affymetrix microarrays (this data set). + + +
    2. Characterization of liver cells: Liver immune cell fractions will be isolated and sorted according to SOPs developed in the Lammert laboratory. In addition, in cooperation with the technology platforms of the HepatoSys Network of Excellence, we will characterize primary HSCs that play critical roles in liver fibrogenesis with respect to proinflammatory responses during chronic liver inflammation. + +
    + + +

    PROTOCOL for carbon tetrachloride (CCl4) treatment (parental strains, F1, and BXD lines). Animals were injected with CCl4 (12 x 0.7 mg/kg ip) over a 6-week period on days 1 and 4 of each week. Intraperitoneal injections were begun between the ages of 6-8 weeks. Animals were sacrificed after 6 weeks of treatment at 12 to 14 weeks of age. Untreated control mice from only the two parental strains were also sacrificed at 12-14 weeks of age + +

    +Tissue: Livers were snap frozen in liquid nitrogen immediately after harvesting. RNA was extracted and submitted to the UTHSC Molecular Resource Core for expression profiling. Expression data were generated by Lorne Rose, William Taylor and colleagues. Data were entered into GeneNetwork by Arthur Centeno, June 17, 2011. Data were quality controlled by R. W. Williams.

    + +

    QC Results: This data set consists of expression data for 33 strains. A total of 166 probe sets are associated with LOD scores above 10 and the highest linkage score of 22 for Rpl3 (probe set 10430669). Strain distribution patterns of eQTLs with a Mendelian expression pattern match those of their closest markers perfectly, verifying that there are no errors of strain assignment in this data set. + +

    Analysis of XIST probe set 1060617 confirms that most strains are purely female. However, only males were available for BXD1 and BXD6. BXD28 and BXD33 data are based on the average of two female samples and one male sample. All other strains are purely female. + +

    Data were analyzed by Rabea Hall and Dr. Frank Lammert at the Universitätsklinikum des Saarlandes in Homburg, Germany. + +

    Contacts: rabea.hall at uks.eu, Rabea.Hall at uniklinikum-saarland.de, and frank.lammert at uks.eu + + + + +

    Table updated 7-19-2011

    + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDStrain IDTreatment
    1504B6D2F1 CCl4
    2506B6D2F1CCl4
    3508B6D2F1CCl4
    4414C57BL/6JCCl4
    5488C57BL/6JCCl4
    6489C57BL/6JCCl4
    7B6J1 C57BL/6Juntreated control
    8B6J2 C57BL/6Juntreated control
    9B6J3 C57BL/6Juntreated control
    10449DBA/2JCCl4
    11450DBA/2JCCl4
    12451DBA/2JCCl4
    13219.1DBA/2Juntreated control
    14219.2DBA/2Juntreated control
    15219.3DBA/2Juntreated control
    16276BXD1CCl4
    17278BXD1CCl4
    18279BXD1CCl4
    19353BXD2CCl4
    20357BXD2CCl4
    21358BXD2CCl4
    22272BXD6CCl4
    23273BXD6CCl4
    24274BXD6CCl4
    25405BXD11CCl4
    26406BXD11CCl4
    27408BXD11CCl4
    28239BXD12CCl4
    29240BXD12CCl4
    30241BXD12CCl4
    31553BXD13CCl4
    32554BXD13CCl4
    33555BXD13CCl4
    34249BXD14CCl4
    35250BXD14CCl4
    36288BXD14CCl4
    37191BXD19CCl4
    38644BXD19CCl4
    39645BXD19CCl4
    40442BXD24aCCl4
    41443BXD24aCCl4
    42444BXD24aCCl4
    43216BXD27CCl4
    44218BXD27CCl4
    45290BXD27CCl4
    4628BXD28CCl4
    4771BXD28CCl4
    48129BXD28CCl4
    49219BXD31CCl4
    50220BXD31CCl4
    51231BXD31CCl4
    52549BXD32CCl4
    53550BXD32CCl4
    54551BXD32CCl4
    55139BXD33CCl4
    56140BXD33CCl4
    57559BXD33CCl4
    58132BXD34CCl4
    59146BXD34CCl4
    60147BXD34CCl4
    61293BXD39CCl4
    62597BXD39CCl4
    63599BXD39CCl4
    64154BXD40CCl4
    65570BXD40CCl4
    66572BXD40CCl4
    67361BXD42CCl4
    68362BXD42CCl4
    69373BXD42CCl4
    70428BXD43CCl4
    71429BXD43CCl4
    72556BXD43CCl4
    73472BXD51CCl4
    74473BXD51CCl4
    75474BXD51CCl4
    76533BXD55CCl4
    77534BXD55CCl4
    78535BXD55CCl4
    79519BXD62CCl4
    80520BXD62CCl4
    81521BXD62CCl4
    82463BXD65CCl4
    83464BXD65CCl4
    84465BXD65CCl4
    85327BXD69CCl4
    86346BXD69CCl4
    87347BXD69CCl4
    88614BXD73CCl4
    89616BXD73CCl4
    90619BXD73CCl4
    91395BXD75CCl4
    92482BXD75CCl4
    93483BXD75CCl4
    94317BXD87CCl4
    95319BXD87CCl4
    96322BXD87CCl4
    97374BXD90CCl4
    98388BXD90CCl4
    99389BXD90CCl4
    100402BXD96CCl4
    101403BXD96CCl4
    102404BXD96CCl4
    103584BXD98CCl4
    104585BXD98CCl4
    105607BXD98CCl4
    + + +
    + + \ No newline at end of file diff --git a/general/datasets/Suh_liv_rma_0611/processing.rtf b/general/datasets/Suh_liv_rma_0611/processing.rtf new file mode 100644 index 0000000..ca7e79b --- /dev/null +++ b/general/datasets/Suh_liv_rma_0611/processing.rtf @@ -0,0 +1,660 @@ +

    QC Results: This data set consists of expression data for 33 strains. A total of 166 probe sets are associated with LOD scores above 10 and the highest linkage score of 22 for Rpl3 (probe set 10430669). Strain distribution patterns of eQTLs with a Mendelian expression pattern match those of their closest markers perfectly, verifying that there are no errors of strain assignment in this data set.

    + +

    Analysis of XIST probe set 1060617 confirms that most strains are purely female. However, only males were available for BXD1 and BXD6. BXD28 and BXD33 data are based on the average of two female samples and one male sample. All other strains are purely female.

    + +

    Data were analyzed by Rabea Hall and Dr. Frank Lammert at the Universitätsklinikum des Saarlandes in Homburg, Germany.

    + +

    Contacts: rabea.hall at uks.eu, Rabea.Hall at uniklinikum-saarland.de, and frank.lammert at uks.eu

    + +

    Table updated 7-19-2011

    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDStrain IDTreatment
    1504B6D2F1CCl4
    2506B6D2F1CCl4
    3508B6D2F1CCl4
    4414C57BL/6JCCl4
    5488C57BL/6JCCl4
    6489C57BL/6JCCl4
    7B6J1C57BL/6Juntreated control
    8B6J2C57BL/6Juntreated control
    9B6J3C57BL/6Juntreated control
    10449DBA/2JCCl4
    11450DBA/2JCCl4
    12451DBA/2JCCl4
    13219.1DBA/2Juntreated control
    14219.2DBA/2Juntreated control
    15219.3DBA/2Juntreated control
    16276BXD1CCl4
    17278BXD1CCl4
    18279BXD1CCl4
    19353BXD2CCl4
    20357BXD2CCl4
    21358BXD2CCl4
    22272BXD6CCl4
    23273BXD6CCl4
    24274BXD6CCl4
    25405BXD11CCl4
    26406BXD11CCl4
    27408BXD11CCl4
    28239BXD12CCl4
    29240BXD12CCl4
    30241BXD12CCl4
    31553BXD13CCl4
    32554BXD13CCl4
    33555BXD13CCl4
    34249BXD14CCl4
    35250BXD14CCl4
    36288BXD14CCl4
    37191BXD19CCl4
    38644BXD19CCl4
    39645BXD19CCl4
    40442BXD24aCCl4
    41443BXD24aCCl4
    42444BXD24aCCl4
    43216BXD27CCl4
    44218BXD27CCl4
    45290BXD27CCl4
    4628BXD28CCl4
    4771BXD28CCl4
    48129BXD28CCl4
    49219BXD31CCl4
    50220BXD31CCl4
    51231BXD31CCl4
    52549BXD32CCl4
    53550BXD32CCl4
    54551BXD32CCl4
    55139BXD33CCl4
    56140BXD33CCl4
    57559BXD33CCl4
    58132BXD34CCl4
    59146BXD34CCl4
    60147BXD34CCl4
    61293BXD39CCl4
    62597BXD39CCl4
    63599BXD39CCl4
    64154BXD40CCl4
    65570BXD40CCl4
    66572BXD40CCl4
    67361BXD42CCl4
    68362BXD42CCl4
    69373BXD42CCl4
    70428BXD43CCl4
    71429BXD43CCl4
    72556BXD43CCl4
    73472BXD51CCl4
    74473BXD51CCl4
    75474BXD51CCl4
    76533BXD55CCl4
    77534BXD55CCl4
    78535BXD55CCl4
    79519BXD62CCl4
    80520BXD62CCl4
    81521BXD62CCl4
    82463BXD65CCl4
    83464BXD65CCl4
    84465BXD65CCl4
    85327BXD69CCl4
    86346BXD69CCl4
    87347BXD69CCl4
    88614BXD73CCl4
    89616BXD73CCl4
    90619BXD73CCl4
    91395BXD75CCl4
    92482BXD75CCl4
    93483BXD75CCl4
    94317BXD87CCl4
    95319BXD87CCl4
    96322BXD87CCl4
    97374BXD90CCl4
    98388BXD90CCl4
    99389BXD90CCl4
    100402BXD96CCl4
    101403BXD96CCl4
    102404BXD96CCl4
    103584BXD98CCl4
    104585BXD98CCl4
    105607BXD98CCl4
    +
    +
    diff --git a/general/datasets/Suh_liv_rma_0611/summary.rtf b/general/datasets/Suh_liv_rma_0611/summary.rtf new file mode 100644 index 0000000..2684b46 --- /dev/null +++ b/general/datasets/Suh_liv_rma_0611/summary.rtf @@ -0,0 +1,22 @@ +

    Saarland University Homburg (SUH) Carbon Tetrachloride-Treated BXD Mouse Affymetrix Mouse Gene 1.0 ST Array data set

    + +

    This experimental liver gene expression data set (~100 Affymetrix exon-type arrays), was generated by Frank Lammert, Sonja Hillebrandt, Rabea Hall, and colleagues at the Saarland University Medical Center in Homburg, Germany. This work is part of the German Network for Systems Genetics (GeNeSys).

    + +

    Expression data after carbon tetrachloride treatment (CCl4, also known as Halon, Freon, carbon tet, or tetrachloromethane) were generated using RNA sample from 30 BXD strains, both parental strains (C57BL/6J, DBA/2J), and B6D2 F1 hybrids. The great majority of cases were females and were treated with carbon tetrachloride injections over a six week period. Three arrays were run for each strain using independent liver samples.

    + +

    PURPOSE: The overall goal of the project is to understand the etiology of liver fibrogenesis using carbon tetracholoride as a toxin and inducer of liver disease. Liver fibrogenesis, or scarring of the liver, is the common end-stage of chronic liver diseases, in particular after chronic viral infections. In Germany along complications associated with liver fibrosis cause approximately 10,000 deaths per year. In the past decade key molecular pathomechanisms of hepatic fibrogenesis due to chronic viral infections have been identified. Activated hepatic stellate cells (HSCs) drive the process of de novo deposition of abnormal extracellular matrix, which is modulated by complex interactions between cytokines, receptors, and matrix components.

    + +

    Several studies have demonstrated that the course and progression of the fibrogenic response to chronic liver injury is highly variability among individuals. This marked variabilityhas been attributed to etiology, age, gender, and environmental factors. In humans these genetic disease fibrosis predisposition factors have not yet to be studied systematically.

    + +

    Our group recently identified a gene variant that contributes to liver fibrogenesis by using QTL mapping in an experimental crosses between fibrosis-susceptible and resistant strains of mice (Hillebrandt et al., 2005). We demonstrated that sequence differences in the HC gene that encodes complement factor C5 (also known as hemolytic complement), are responsible for this strain difference. Common haplotype-tagging polymorphisms of the human HC gene were shown to be associated with advanced fibrosis in chronic hepatitis C virus infection. Thus, the mouse analysis led to the identification of an unknown gene underlying human susceptibility to liver fibrosis, supporting the idea that HC has a causal role in chronic inflammatory disorders and organ fibrogenesis across species.

    + +

    As part of the GeNeSys program we have studied liver fibrogenesis in the BXD family of strains as a model for chronic liver injury. This expression data set is used to map complex genetic traits that modulate gene expression and determine gene networks during liver fibrogenesis in GRPs.

    + +

    The following assays are complete or are in progress:

    + +
      +
    1. Liver fibrosis studies: Phenotyping protocols include standard histology, morphometry, biochemical quantification of hepatic collagen contents, serum surrogate markers of fibrosis, immunohistochemistry, and expression profiling of proinflammatory and profibrogenic genes by qRT-PCR and Affymetrix microarrays (this data set).
    2. +
    3. Characterization of liver cells: Liver immune cell fractions will be isolated and sorted according to SOPs developed in the Lammert laboratory. In addition, in cooperation with the technology platforms of the HepatoSys Network of Excellence, we will characterize primary HSCs that play critical roles in liver fibrogenesis with respect to proinflammatory responses during chronic liver inflammation.
    4. +
    + +

    PROTOCOL for carbon tetrachloride (CCl4) treatment (parental strains, F1, and BXD lines). Animals were injected with CCl4 (12 x 0.7 mg/kg ip) over a 6-week period on days 1 and 4 of each week. Intraperitoneal injections were begun between the ages of 6-8 weeks. Animals were sacrificed after 6 weeks of treatment at 12 to 14 weeks of age. Untreated control mice from only the two parental strains were also sacrificed at 12-14 weeks of age

    diff --git a/general/datasets/Suh_liv_rma_0611/tissue.rtf b/general/datasets/Suh_liv_rma_0611/tissue.rtf new file mode 100644 index 0000000..05a7607 --- /dev/null +++ b/general/datasets/Suh_liv_rma_0611/tissue.rtf @@ -0,0 +1 @@ +

    Tissue: Livers were snap frozen in liquid nitrogen immediately after harvesting. RNA was extracted and submitted to the UTHSC Molecular Resource Core for expression profiling. Expression data were generated by Lorne Rose, William Taylor and colleagues. Data were entered into GeneNetwork by Arthur Centeno, June 17, 2011. Data were quality controlled by R. W. Williams.

    diff --git a/general/datasets/Suh_liv_rmaex_0611/processing.rtf b/general/datasets/Suh_liv_rmaex_0611/processing.rtf new file mode 100644 index 0000000..ca7e79b --- /dev/null +++ b/general/datasets/Suh_liv_rmaex_0611/processing.rtf @@ -0,0 +1,660 @@ +

    QC Results: This data set consists of expression data for 33 strains. A total of 166 probe sets are associated with LOD scores above 10 and the highest linkage score of 22 for Rpl3 (probe set 10430669). Strain distribution patterns of eQTLs with a Mendelian expression pattern match those of their closest markers perfectly, verifying that there are no errors of strain assignment in this data set.

    + +

    Analysis of XIST probe set 1060617 confirms that most strains are purely female. However, only males were available for BXD1 and BXD6. BXD28 and BXD33 data are based on the average of two female samples and one male sample. All other strains are purely female.

    + +

    Data were analyzed by Rabea Hall and Dr. Frank Lammert at the Universitätsklinikum des Saarlandes in Homburg, Germany.

    + +

    Contacts: rabea.hall at uks.eu, Rabea.Hall at uniklinikum-saarland.de, and frank.lammert at uks.eu

    + +

    Table updated 7-19-2011

    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDStrain IDTreatment
    1504B6D2F1CCl4
    2506B6D2F1CCl4
    3508B6D2F1CCl4
    4414C57BL/6JCCl4
    5488C57BL/6JCCl4
    6489C57BL/6JCCl4
    7B6J1C57BL/6Juntreated control
    8B6J2C57BL/6Juntreated control
    9B6J3C57BL/6Juntreated control
    10449DBA/2JCCl4
    11450DBA/2JCCl4
    12451DBA/2JCCl4
    13219.1DBA/2Juntreated control
    14219.2DBA/2Juntreated control
    15219.3DBA/2Juntreated control
    16276BXD1CCl4
    17278BXD1CCl4
    18279BXD1CCl4
    19353BXD2CCl4
    20357BXD2CCl4
    21358BXD2CCl4
    22272BXD6CCl4
    23273BXD6CCl4
    24274BXD6CCl4
    25405BXD11CCl4
    26406BXD11CCl4
    27408BXD11CCl4
    28239BXD12CCl4
    29240BXD12CCl4
    30241BXD12CCl4
    31553BXD13CCl4
    32554BXD13CCl4
    33555BXD13CCl4
    34249BXD14CCl4
    35250BXD14CCl4
    36288BXD14CCl4
    37191BXD19CCl4
    38644BXD19CCl4
    39645BXD19CCl4
    40442BXD24aCCl4
    41443BXD24aCCl4
    42444BXD24aCCl4
    43216BXD27CCl4
    44218BXD27CCl4
    45290BXD27CCl4
    4628BXD28CCl4
    4771BXD28CCl4
    48129BXD28CCl4
    49219BXD31CCl4
    50220BXD31CCl4
    51231BXD31CCl4
    52549BXD32CCl4
    53550BXD32CCl4
    54551BXD32CCl4
    55139BXD33CCl4
    56140BXD33CCl4
    57559BXD33CCl4
    58132BXD34CCl4
    59146BXD34CCl4
    60147BXD34CCl4
    61293BXD39CCl4
    62597BXD39CCl4
    63599BXD39CCl4
    64154BXD40CCl4
    65570BXD40CCl4
    66572BXD40CCl4
    67361BXD42CCl4
    68362BXD42CCl4
    69373BXD42CCl4
    70428BXD43CCl4
    71429BXD43CCl4
    72556BXD43CCl4
    73472BXD51CCl4
    74473BXD51CCl4
    75474BXD51CCl4
    76533BXD55CCl4
    77534BXD55CCl4
    78535BXD55CCl4
    79519BXD62CCl4
    80520BXD62CCl4
    81521BXD62CCl4
    82463BXD65CCl4
    83464BXD65CCl4
    84465BXD65CCl4
    85327BXD69CCl4
    86346BXD69CCl4
    87347BXD69CCl4
    88614BXD73CCl4
    89616BXD73CCl4
    90619BXD73CCl4
    91395BXD75CCl4
    92482BXD75CCl4
    93483BXD75CCl4
    94317BXD87CCl4
    95319BXD87CCl4
    96322BXD87CCl4
    97374BXD90CCl4
    98388BXD90CCl4
    99389BXD90CCl4
    100402BXD96CCl4
    101403BXD96CCl4
    102404BXD96CCl4
    103584BXD98CCl4
    104585BXD98CCl4
    105607BXD98CCl4
    +
    +
    diff --git a/general/datasets/Suh_liv_rmaex_0611/summary.rtf b/general/datasets/Suh_liv_rmaex_0611/summary.rtf new file mode 100644 index 0000000..2684b46 --- /dev/null +++ b/general/datasets/Suh_liv_rmaex_0611/summary.rtf @@ -0,0 +1,22 @@ +

    Saarland University Homburg (SUH) Carbon Tetrachloride-Treated BXD Mouse Affymetrix Mouse Gene 1.0 ST Array data set

    + +

    This experimental liver gene expression data set (~100 Affymetrix exon-type arrays), was generated by Frank Lammert, Sonja Hillebrandt, Rabea Hall, and colleagues at the Saarland University Medical Center in Homburg, Germany. This work is part of the German Network for Systems Genetics (GeNeSys).

    + +

    Expression data after carbon tetrachloride treatment (CCl4, also known as Halon, Freon, carbon tet, or tetrachloromethane) were generated using RNA sample from 30 BXD strains, both parental strains (C57BL/6J, DBA/2J), and B6D2 F1 hybrids. The great majority of cases were females and were treated with carbon tetrachloride injections over a six week period. Three arrays were run for each strain using independent liver samples.

    + +

    PURPOSE: The overall goal of the project is to understand the etiology of liver fibrogenesis using carbon tetracholoride as a toxin and inducer of liver disease. Liver fibrogenesis, or scarring of the liver, is the common end-stage of chronic liver diseases, in particular after chronic viral infections. In Germany along complications associated with liver fibrosis cause approximately 10,000 deaths per year. In the past decade key molecular pathomechanisms of hepatic fibrogenesis due to chronic viral infections have been identified. Activated hepatic stellate cells (HSCs) drive the process of de novo deposition of abnormal extracellular matrix, which is modulated by complex interactions between cytokines, receptors, and matrix components.

    + +

    Several studies have demonstrated that the course and progression of the fibrogenic response to chronic liver injury is highly variability among individuals. This marked variabilityhas been attributed to etiology, age, gender, and environmental factors. In humans these genetic disease fibrosis predisposition factors have not yet to be studied systematically.

    + +

    Our group recently identified a gene variant that contributes to liver fibrogenesis by using QTL mapping in an experimental crosses between fibrosis-susceptible and resistant strains of mice (Hillebrandt et al., 2005). We demonstrated that sequence differences in the HC gene that encodes complement factor C5 (also known as hemolytic complement), are responsible for this strain difference. Common haplotype-tagging polymorphisms of the human HC gene were shown to be associated with advanced fibrosis in chronic hepatitis C virus infection. Thus, the mouse analysis led to the identification of an unknown gene underlying human susceptibility to liver fibrosis, supporting the idea that HC has a causal role in chronic inflammatory disorders and organ fibrogenesis across species.

    + +

    As part of the GeNeSys program we have studied liver fibrogenesis in the BXD family of strains as a model for chronic liver injury. This expression data set is used to map complex genetic traits that modulate gene expression and determine gene networks during liver fibrogenesis in GRPs.

    + +

    The following assays are complete or are in progress:

    + +
      +
    1. Liver fibrosis studies: Phenotyping protocols include standard histology, morphometry, biochemical quantification of hepatic collagen contents, serum surrogate markers of fibrosis, immunohistochemistry, and expression profiling of proinflammatory and profibrogenic genes by qRT-PCR and Affymetrix microarrays (this data set).
    2. +
    3. Characterization of liver cells: Liver immune cell fractions will be isolated and sorted according to SOPs developed in the Lammert laboratory. In addition, in cooperation with the technology platforms of the HepatoSys Network of Excellence, we will characterize primary HSCs that play critical roles in liver fibrogenesis with respect to proinflammatory responses during chronic liver inflammation.
    4. +
    + +

    PROTOCOL for carbon tetrachloride (CCl4) treatment (parental strains, F1, and BXD lines). Animals were injected with CCl4 (12 x 0.7 mg/kg ip) over a 6-week period on days 1 and 4 of each week. Intraperitoneal injections were begun between the ages of 6-8 weeks. Animals were sacrificed after 6 weeks of treatment at 12 to 14 weeks of age. Untreated control mice from only the two parental strains were also sacrificed at 12-14 weeks of age

    diff --git a/general/datasets/Suh_liv_rmaex_0611/tissue.rtf b/general/datasets/Suh_liv_rmaex_0611/tissue.rtf new file mode 100644 index 0000000..05a7607 --- /dev/null +++ b/general/datasets/Suh_liv_rmaex_0611/tissue.rtf @@ -0,0 +1 @@ +

    Tissue: Livers were snap frozen in liquid nitrogen immediately after harvesting. RNA was extracted and submitted to the UTHSC Molecular Resource Core for expression profiling. Expression data were generated by Lorne Rose, William Taylor and colleagues. Data were entered into GeneNetwork by Arthur Centeno, June 17, 2011. Data were quality controlled by R. W. Williams.

    diff --git a/general/datasets/Sxmpublish/summary.rtf b/general/datasets/Sxmpublish/summary.rtf new file mode 100644 index 0000000..941152c --- /dev/null +++ b/general/datasets/Sxmpublish/summary.rtf @@ -0,0 +1,482 @@ +

    Barley Phenotype Database

    + +

    Steptoe x Morex (SxM):
    +North American Barley Genome Project (NABGP) dataset
    +Hayes, P. M., B. H. Liu, S. J. Knapp, F. Chen, B. Jones, T. Blake, J. Franckowiak, D Rasmusson, M. Sorrells, S. E. Ullrich, D. Wesenberg and A. Kleinhofs. 1993. Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor. Appl. Genet. 87: 392-401. The data set is available at the http://wheat.pw.usda.gov/ggpages/SxM/phenotypes.html

    + +

    It comprises the following agronomic and malting quality traits:

    + + + +

    Agronomic and malting quality traits were measured in 16 and 9 environments, respectively. The phenotype data files are coded for each environment as follows:
    +Environment # Location Year Cooperator

    + +
      +
    1. Crookston, Minnesota 1992 D. Rasmusson (rasmu002@maroon.tc.umn.edu)
    2. +
    3. Ithaca, New York 1992 M. Sorrells (mes12@cornell.edu)
    4. +
    5. Guelph, Ontario 1992 D. Falk (dfalk@crop.uoguelph.ca)
    6. +
    7. Pullman, Washington 1992 S. Ullrich (ullrich@wsu.edu)
    8. +
    9. Brandon, Manitoba 1992 W. Legge (legge@mbrsbr.agr.ca)
    10. +
    11. Outlook, Saskatchewan 1992 R. Irvine
    12. +
    13. Goodale, Saskatchewan 1992 B. Rossnagel (rossnagel@sask.uask.ca)
    14. +
    15. Saskatoon, Saskatchewan 1992 B. Rossnagel (rossnagel@sask.uask.ca)
    16. +
    17. Tetonia, Idaho D. Wesenberg (fax: 208-397-4165) 1992
    18. +
    19. Bozeman, Montana (irrigated) 1992 T. Blake (blake@hordeum.oscs.montana.edu)
    20. +
    21. Bozeman, Montana (dryland) 1992 T. Blake (blake@hordeum.oscs.montana.edu)
    22. +
    23. Aberdeen, Idaho 1991 D. Wesenberg (fax: 208-397-4165)
    24. +
    25. Klamath Falls, Oregon 1991 P. Hayes (hayesp@css.orst.edu)
    26. +
    27. Pullman, Washington 1991 S. Ullrich (ullrich@wsu.edu)
    28. +
    29. Bozeman, Montana (irrigated) 1991 T. Blake (blake@hordeum.oscs.montana.edu)
    30. +
    31. Bozeman, Montana (dryland) 1991 T. Blake (blake@hordeum.oscs.montana.edu)
    32. +
    + +

    Other data sets
    +ENSAT-INP: Ecole Nationale Supérieure Agronomique de Toulouse, Institut National Polytechnique (ENSAT-INP), France
    +UM: University of Minnesota, USA
    +JLU: Justus Liebig University, Germany
    +UW: University of Wageningen, Netherlands
    +SCRI: Scottish Crop Research Institute, UK
    +WSU: Washington State University, USA

    + +

    α-amylase (NABGP)
    +(see description of the NABGP dataset)

    + +

    Diastatic power (NABGP)
    +(see description of the NABGP dataset)

    + +

    Disease resistance, bacterial streak, Xanthomonas campestris (ENSAT-INP)
    +El Attari H., Rebai A., Hayes P. M.; Barrault G.; Dechamp-Guillaume G.; Sarrafi A. Potential of doubled-haploid lines and localization of quantitative trait loci (QTL) for partial resistance to bacterial leaf streak (Xanthomonas campestris pv. hordei) in barley. Theoretical and Applied Genetics 1998, vol. 96, no1, pp. 95-100.

    + +

    Two experiments were undertaken in a randomized complete block design with three replicates, in a controlled growth chamber. Twenty seeds per replicate were planted in plastic containers (60 x 40 x 8 cm) containing moistened vermiculite. At the two-leaf stage seedlings were inoculated with an Iranian strain of the pathogen.

    + +

    Disease resistance, head blight, Fusarium graminearum (UM) or FHB data set
    +Prom, L. K., B. J. Steffenson, B. Salas, T. G. Fetch Jr., and H. H. Casper. 1997. Barley accessions resistant to Fusarium head blight and the accumulation of deoxyvalenol. Cereal Res. Comm. 25:807-808.

    + +

    Prom, L.K., Horsley, R.D., Steffenson, B.J., and Schwarz, P.B. 1999. Development of Fusarium head blight and accumulation of deoxynivalenol in barley sampled at different growth stages. J. Am. Soc. Brew. Chem. 57:60-63.

    + +

    Steffenson, B. J. 2003. Fusarium head blight of barley: Impact, epidemics, management, and strategies for identifying and utilizing genetic resistance. Pages 241-295: In: K. J. Leonard and W.R. Bushnell, eds. 2003. Fusarium Head Blight of Wheat and Barley. APS Press. St. Paul. 512 pp.

    + +

    Tacke, B. K., and H. H. Casper. 1996. Determination of deoxyvalenol in wheat, barley, and malt by column cleanup and gas chromatography with electron capture detection. J. Assoc. Off. Anal. Chem. 79:472-475.

    + +

    FHB and DON assays
    +Parents and DH progeny from the Steptoe/Morex were assessed for FHB severity (in %) and DON accumulation (in ppm) at three different environments in 1994 and 1995: Fargo, ND in both 1994 and 1995 and Langdon, ND in 1995. A randomized complete block design was used in the three environments and included a single replicate. Progeny and parents were planted in short rows (10-20 seeds) spaced 0.33 cm apart in two adjacent rows. Planting, maintenance of plots, and inoculation protocols were as described by (Prom et al. 1997). Disease assessments were made when the parents and DH progeny were at the mid-dough stage of development (growth stage 84-86) (Zadoks et al. 1974). The percent severity of FHB was determined by counting the number of infected kernels (those with greater than one-fourth of their surface area showing disease symptoms) and dividing that quantity by the total number of kernels in that spike multiplied by 100 (Prom et al. 1997). These assessments were made on 10-20 randomly selected spikes per plot as described by Prom et al. (1997). When the plants were mature, all spikes from each plot were harvested, dried, and threshed. DON assays were made using the method developed by Tacke and Casper (Tacke and Casper 1996). For this assay, a random six-gram sample of seed was used from each parent and DH line (Prom et al. 1999).

    + +

    File names in the dataset:
    +DON94F.TXT final
    +amount of vomitoxin in samples vom ppm

    + +

    DONP195F.TXT final
    +DON levels in ppm planting date 1 (Fargo 1995)

    + +

    DONP295F.TXT final
    +DON levels in ppm planting date 2 (Fargo 1995)

    + +

    DONP295L.TXT final
    +DON levels in ppm planting date 2 (Langdon 1995)

    + +

    DON94F.TXT final
    +amount of vomitoxin vom ppm

    + +

    FGINC04.94
    +incidence of Fusarium graminearum isolated from seed in all severity classes.

    + +

    FGINC14.94
    +incidence of Fusarium graminearum isolated from seeds with a severity rating of 1, 2, 3, or 4.

    + +

    FGINC24.94
    +incidence of Fusarium graminearum isolated from seeds with a severity rating of 2, 3, or 4.

    + +

    FGINC34.94
    +incidence of Fusarium graminearum isolated from seeds with a severity rating of 3 or 4.

    + +

    FHB1494F.TXT
    +incidence of Fusarium head blight (visual rating) with a severity rating of 1, 2, 3, or 4.

    + +

    FHB1494F.TXT final
    +incidence of Fusarium head blight (visual rating) with a severity rating of 1, 2, 3, or 4.

    + +

    FHB2494F.TXT
    +no heading

    + +

    FHB2494F.TXT final
    +no heading

    + +

    FHB3494F.TXT
    +incidence of Fusarium head blight (visual rating) when severity categories 3 or 4 only are considered blighted.

    + +

    FHB3494F.TXT final
    +incidence of Fusarium head blight (visual rating) when severity categories 3 or 4 only are considered blighted.

    + +

    FHBINC14.94
    +incidence of Fusarium head blight (visual rating) with a severity rating of 1, 2, 3, or 4.

    + +

    FHBINC34.94
    +incidence of Fusarium head blight (visual rating) when severity categories 3 or 4 only are considered blighted.

    + +

    FHBSE94F.TXT
    +severity of Fusarium head blight

    + +

    FHBSE94F.TXT final
    +severity of Fusarium head blight

    + +

    FHBSEV.94
    +severity of Fusarium head blight

    + +

    FPPLTT95.TXT final
    +Fusarium Poae Isolations from seed 1995 (Fargo PD1, Fargo PD2, and Langdon PD2)

    + +

    FSPD195F.TXT final
    +Percentage of FHB infection in S/M lines from the first planting date at Fargo 1995

    + +

    FSPD295F.TXT final
    +Percentage of FHB infection in S/M lines from the second planting date at Fargo 1995

    + +

    FSPD295L.TXT final
    +Percentage of FHB infection in S/M lines from the second planting date at Langdon 1995

    + +

    GRSTG94F.TXT
    +developmental stages of the Steptoe/Morex population
    +The first column is the SM line,
    +the second is Zadok's Growth Stage,
    +the third estimated days to mid-milk and
    +the 4th days to heading (St. Paul).

    + +

    GRSTG94F.TXT final
    +developmental stages of the Steptoe/Morex population
    +The first column is the SM line,
    +the second is Zadok's Growth Stage,
    +the third estimated days to mid-milk and
    +the 4th days to heading (St. Paul).

    + +

    GRTHSTGE.94
    +developmental stages of the Steptoe/Morex population
    +The first column is the SM line,
    +the second is Zadok's Growth Stage,
    +the third estimated days to mid-milk and the 4th days to heading (St. Paul).

    + +

    GZP0494F.TXT
    +incidence of Fusarium graminearum isolated from seed in all severity classes.

    + +

    GZP0494F.TXT final
    +incidence of Fusarium graminearum isolated from seed in all severity classes.

    + +

    GZP1494F.TXT
    +incidence of Fusarium graminearum isolated from seeds with a severity rating of 1, 2, 3, or 4.

    + +

    GZP1494F.TXT final
    +incidence of Fusarium graminearum isolated from seeds with a severity rating of 1, 2, 3, or 4.

    + +

    GZP2494F.TXT
    +incidence of Fusarium graminearum isolated from seeds with a severity rating of 2, 3, or 4.

    + +

    GZP2494F.TXT final
    +incidence of Fusarium graminearum isolated from seeds with a severity rating of 2, 3, or 4.
    +ND94

    + +

    GZP3494F.TXT
    +incidence of Fusarium graminearum isolated from seeds with a severity rating of 3 or 4.

    + +

    GZP3494F.TXT final
    +incidence of Fusarium graminearum isolated from seeds with a severity rating of 3 or 4.

    + +

    GZPLT95.TXT final
    +no heading

    + +

    HDPD295L.TXT final
    +1995 LANGDON - number of days until heading (planted June 9)

    + +

    SEVPD1F95.TXT
    +Percentage of FHB infection in S/M lines from the first planting date at Fargo 1995

    + +

    SEVPD2F95.TXT
    +Percentage of FHB infection in S/M lines
    +from the second planting date at Fargo 1995

    + +

    SEVPD2L95.TXT
    +Percentage of FHB infection in S/M lines from the second planting date at Langdon 1995

    + +

    SMDNSITY.95 (Converted)
    +head density ratings (field 1995)spikelets/cm

    + +

    SMFHB1.95F
    +1st planting date Fargo

    + +

    SMFHB2.95F
    +2nd planting date Fargo

    + +

    SMFHB2.95L
    +2nd planting date Langdon

    + +

    SPDEN95F.TXT final
    +spikelet density ratings (Fargo 1995)

    + +

    SPDEN95L.TXT final
    +spikelet density ratings (Langdon 1995) spikelets/cm

    + +

    SPIKELET DENSITY FARGO 95
    +spikelet density ratings (Fargo 1995) spikelets/cm

    + +

    SPIKELET DENSITY LANGDON 95
    +spikelet density ratings (Langdon 1995) spikelets/cm

    + +

    SPKDENF95.TXT
    +spikelet density ratings (Fargo 1995) spikelets/cm

    + +

    SPKDENL95.TXT
    +spikelet density ratings (Langdon 1995) spikelets/cm

    + +

    VOMPPM.94
    +No headings

    + +

    Disease resistance, leaf scald, Rhynchosporium secalis (JLU)
    +Schweizer GF, Herz M, Mikolajewski S, Brenner M, Hartl L, Baumer M (2004) Genetic mapping of a novel scald resistance gene Rrs15CI8288 in barley. 9th International Barley Genetics Symposium, Brno, Czech Republic, 20-26 June 2004. Proceedings:258-265).

    + +

    Jackson LF, Webster RK (1976) Race differentiation, distribution and frequency of Rhynchosporium secalis in California. Phytopathology 66:719-725.

    + +

    Schweizer G, Baumer M, Daniel G, Rugel H, Röder MS (1995) RFLP-markers linked to scald (Rhynchosporium secalis) resistance gene Rh2 in barley. Theor Appl Genet 90:920-924.

    + +

    Disease resistance assay R. secalis
    +
    +General description
    +Disease severity was assessed at seedling stage in a greenhouse chamber. Therefore, the plants were sown and grown at a temperature of 16-18°C in 9x9 cm plastic pots whereas each line was represented by four individuals. The plants were inoculated at the three-leaves stage, approximately 20 days after sowing. The parents as well as some differential genotypes (resistant: Atlas; susceptible: Alexis, Hendrix, Steffi) were included as internal controls.
    +The single-spore isolate 271 (Straßmoos, Bavaria) of R. secalis, provided by Dr. Sachs, BBA Kleinmachnow, was grown for approximately 20 days on Lima bean agar (Difco, Detroit, USA) in Petri-dishes at 16°C in the dark. The spores were harvested after addition of water by gently rubbing of the mycel with a glass rod. The advanced spore suspension was decanted, filtrated and adjusted to 2-300.000 spores/ml. One inoculum preparation was used for the inoculation of all seedlings. by covering the inoculated plants with black plastic hoods for 48 hours high humidity and darkness were maintained to provide optimal infection conditions. 10-14 days after infection plants were assessed visually for scald symptoms on the lamina of the second leaf approximately according to the scale described by Jackson & Webster (1976). The third leaf was later consult to verify the infection. The final score of scald severity per DH line was achieved by averaging the scoring results of the four included plants.
    +
    +Detailed description
    +The Steptoe/Morex DH mapping population and reference cultivars were tested for reaction to Rhynchosporium secalis according to Schweizer et al. 1995 with some modifications. The single-spore isolate “271” (Straßmoos, LfL-Bavaria, Germany) of R. secalis, provided by Dr. Sachs was grown for approximately 20 days on 2.3% (w/v) Lima bean agar (Difco Laboratories) in Petri-dishes at 16°C in the dark. For inoculation a conidial suspension was prepared by rinsing the plates with water and filtering the mycel through gauze. The spore concentration was adjusted to 200.000 spores/ml-1. One inoculum preparation was used for all seedlings in a given experiment.
    +Seedlings at the 2- to 3-leaf stage (3 weeks after sowing) were sprayed uniformly with inoculum (approximately 0.25 ml per plant) and left for 20 min to dry. Inoculated plants were then lightly sprayed with water and kept for 48h in a dark moist chamber at 18°C. DH lines (four independent plants/DH line) were assessed 10-14 days after inoculation visually for scald symptoms on the lamina of the second leaf (the third leaf was used as further control) according to the scale described by Jackson & Webster (1976). Differential genotypes ´Atlas´ (res) and ´Steffi´ (susc) and the parents Steptoe and Morex were used as reference cultivars.

    + +

    Disease resistance, net blotch, Pyrenophora teres (UM)
    +Steffenson, B.J., Hayes, P.M., and Kleinhofs, A. 1996. Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in barley. Theor. Appl. Genet. 92:552-558.

    + +

    Burleigh JR, Loubane, M (1984) Plot size effects on disease progress and yield of wheat infected by Mycosphaerella graminicola and barley infected by Pyrenophora teres. Phytopathology 74:545--549
    +
    +Fetch, T.G., Jr., and Steffenson, B.J. 1999. Rating scales for assessing infection responses of barley infected with Cochliobolus sativus. Plant Dis. 83:213-217.

    + +

    James WC (1971) A manual of disease assessment keys for plant diseases. Can Dep Agric Publ 1458

    + +

    Tekauz, A (1985) A numerical scale to classify reactions of barley to Pyrenophora teres. Can J Plant Pathol 7:181—183

    + +

    Fetch, T. G., Jr., and Steffenson, B. J. 1999. Rating scales for assessing infection responses of
    +barley infected with Cochliobolus sativus. Plant Dis. 83:213-217.

    + +

    Seedling evaluations
    +For seedling evaluations, four to six seeds of parents and DH lines were sown in plastic cones (3.8 cm diameter and 21 cm length) filled with a peat moss:perlite (3:1) potting mix and grown at 22-26C in a greenhouse. Fertilization was provided at planting with water soluble (15-0-15, N-P-K) and controlled release (14-14-14, N-P-K) formulations. When the second leaves of plants were fully expanded (14 days after planting), inoculations were made with conidial suspensions of the individual pathogens using an atomizer pressured by an air pump at 414 kPa. Inoculations with isolate ND89-19 of P. t. f. teres and ND85F of C. sativus were made using a concentration of 5,000 and 8,000 conidia/ml, respectively. The volume of the inoculum suspension applied to each plant was approximately 0.15 ml. To facilitate even distribution and adherence of conidia, 10 ul of Tween® 20 (polyoxyethylene-20-sorbitan monolaurate) was added for every 100 ml of the inoculum suspension. Plants were allowed to dry slightly after inoculation before being placed in chambers maintained near saturation by periodic mistings from ultrasonic humidifiers. After a 16 hour infection period in complete darkness, the plants were allowed to dry slowly for approximately four hours before being returned to the greenhouse. Assessments of the infection response (IR) were made 9--11 days post-inoculation using the rating scale of Tekauz (1985) for net blotch and Fetch and Steffenson (1999) for spot blotch. The experiment was conducted in a randomized complete block design with two replicates and was repeated twice.

    + +

    Adult plant evaluations
    +Parents and DH lines were also evaluated to the net and spot blotch pathogens in the field at Langdon and Fargo, North Dakota, respectively. The host entries were sown in hill plots (8--15 seeds/hill) spaced 0.3 m apart in paired rows. Susceptible barley genotypes (cultivar Hector for net blotch and line ND 5883 for spot blotch) were planted around the paired rows of hill plots to increase disease development in the nurseries. When most of the DH lines were at the mid-tillering stage of development, the susceptible spreader plants were inoculated with barley straw infected with either isolate ND89-19 of P. t. f. teres or ND85F of C. sativus. This infected barley straw was taken from the previous season's crop at the respective locations. Assessments of disease severity (percentage of leaf area affected by disease) were made at the mid-dough stage of development using standard disease area diagrams (Burleigh and Loubane [1984] for net blotch and James [1971] for spot blotch). The experimental design was a randomized complete block with three replications. Evaluations for net blotch reaction were made in 1991 only and for spot blotch both in 1991 and 1992.

    + +

    Disease resistance, leaf rust, Puccinia hordei (UW)
    +Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJ, Graner A, Niks RE: A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor.Appl.Genet. 2007, 114:487-500.

    + +

    Disease evaluations at seedling plant stage
    +The standard barley leaf rust isolate 1.2.1 (P. hordei Otth) was used to evaluate the level of partial resistance of the 150 DH lines of StMx at seedling stage in a greenhouse compartment. The disease experiments were conducted in six replications in time and within each replication one seedling of each DH line was inoculated. The seeds were sown in trays of 37 x 39 cm, each of them containing two rows of 10–15 seeds. In each tray one seed of each parental line, Steptoe and Morex and of the control lines, L94 and Vada, were sown. The inoculation was performed with about 200 spores per cm2. The latency period (LP) on each seedling was evaluated and the relative latency period (RLP50S) was calculated, relative to the LP on L94.

    + +

    Disease resistance, spot blotch, Cochliobolus sativus (UM)
    +See the net blotch description

    + +

    Disease resistance, stem rust, Puccinia graminis (UM)
    +Stakman EC, Stewart DM, Loegering WQ (1962) Identification of physiologic races of Puccinia graminis var. tritici. USDA Agricultural Research Service Bulletin 617.

    + +

    Miller JD, J.W.Lambert (1965) Variability and inheritance of reaction of barley to race
    +32 l5B of stem rust. Aqron J 47:373-377.

    + +

    Druka, A., Potokina, E., Luo, Z., Bonar, N., Druka, I., Zhang, L., Marshall, D.F., Steffenson, B.J., Close, T.J., Wise, R.P., Kleinhofs, A., Williams, R.W., Kearsey, M.J. and Waugh, R. 2008. Exploiting regulatory variation to identify genes underlying quantitative resistance to the wheat stem rust pathogen Puccinia graminis f. sp. tritici in barley. Theoretical and Applied Genetics. 117(2):261-72

    + +

    Stem rust infection phenotyping
    +Each of the St/Mx DH lines was challenged with the stem rust fungus race Pgt-MCC in 5 replications over 2 years (1990 and 1991). Phenotypic scores were made 12 to 14 days after inoculation according to the infection type (IT) scale of Stakman et al. (1962) as modified by Miller and Lambert (Miller and Lambert 1965). Under the Stakman system, IT 0 indicates no visible infection; only a necrotic “fleck” (i.e. hypersensitive response) with no sporulation; IT 1 designates a minute uredinium (i.e. sporulating pustule) surrounded by necrosis; IT 2 designates a small uredinium often surrounded by chlorosis; IT 3 designates a moderate sized uredinium sometimes surrounded by chlorosis; and IT 4 designates a large uredinium. Since barley exhibits chlorosis in association with most ITs (excluding IT 0, and IT 1), Miller and Lambert modified the Stakman system and classified ITs 2, 3, and 4 on the basis of uredinium size alone. Barley often exhibits a mixture of different ITs on a single plant—the “mesothetic” reaction described by Stakman et al (1962). ITs on the St/Mx DH lines were recorded according to prevalence. In most cases, the one or two most common ITs comprised over 75% of the total observed and were used to assign the general binary classes of resistant and susceptible. ITs 0, 1 and 2 were
    +3 considered indicative of host resistance (i.e. a low infection type), whereas IT 3 and 4
    +4 were indicative of host susceptibility (a high infection type). The classic “diamond
    +5 shaped” uredinium of IT 4 was not observed on plants in the St/Mx population.

    + +

    Emergence of the second leaf (SCRI)
    +Seeds of all 150 recombinant lines from the Steptoe x Morex DH population and the parents, Steptoe and Morex were planted in the 24 x 30 cm pots filled with the ‘Cereal Mix’ and placed on the automatically irrigated glasshouse benches (cubicle AO59). Three sterilized seeds per line were sown in each of four replicate pots. Placement of the pots was randomized across the glasshouse space. Temperature in the cubicle was set at 20° with 16-hr light/15° 8-hr dark periods. Intensity of the supplementary light was 400 µE m–1 sec–1.

    + +

    Single leaf frequency
    +After 20 days, seedlings were counted based on number of emerged visible leaves (either single or two). Frequency of the single leaf across all four replicates within the recombinant line was used for QTL mapping.

    + +

    Ratio
    +The lengths of the leaf blades were measured for the seedlings that have two visible leaves. Ratio of the length of both blades was used for QTL mapping.

    + +

    Endosperm modification (SCRI)
    +Jorgensen (1988) Carlsberg Res. Commun. 53:277

    + +

    ImageJ is a public domain Java image processing program.
    +Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/, 1997-2008.

    + +

    Abramoff, M.D., Magelhaes, P.J., Ram, S.J. "Image Processing with ImageJ". Biophotonics International, volume 11, issue 7, pp. 36-42, 2004.

    + +

    Druka, A., Muehlbauer, G., Druka, I., Caldo, R., Baumann, U., Rostoks, N., Schreiber, A., Wise, R., Close, T., Kleinhofs, A., Graner, A., Schulman, A., Langridge, P., Sato, K., Hayes, P., McNicol, J., Marshall, D., Waugh, R. 2006. An atlas of gene expression from seed to seed through barley development. Functional Integrative Genomics 6, 202-211.

    + +

    Plant material was generated essentially as described previously (Druka et al 2006) but with some modifications specific to these studies. To obtain embryo-derived tissue from the germinating grain, 30–50 sterilized seeds per line of the trial set were germinated on a petri plate between three layers of wet 3-mm filter paper in the dark, for 16 hr at 17° and 8 hr at 12°, for 96 hr total. 6-10 similarly looking or ‘average’ seeds were cut in half longitudally, and stained with calcuflor.

    + +

    Calcufluor staining
    +1) 30 sec - 1min 0.1% calcufluor (H2O);
    +2) 10 sec 70% EtOH;
    +3) Dry shortly;
    +4) 30-60 sec 0.1% fast green H2O;
    +5) blot off residual stain, put under the UV microscope at 400 nm to take photographs.
    +Photographs were taken by using Leica DM IL Inverted contrasting microscope Leica Microsystems. Image analysis was by using ImageJ software.

    + +

    Fermentability (SCRI)
    +Fermentability is the proportion of fermentable material in a malt extract. It is measured using a standard yeast strain following 48 hrs fermentation according to the IoB Recommended Methods for Analysis (1992) buut modified for small aliquots as described by Swanson & Thomas (1996)

    + +

    Fermentable malt extract (SCRI)
    +Fermentable malt extract is the total amount of fermentable material in a sample of barley grain and is the product of hot water extract and ferementability

    + +

    Flecking of leaves (SCRI)
    +Leaf flecking is a visual score of the degree of flag and flag leaf-1 coverage by dark brown leasions that are not attributable to known foliar pathogens or pests. It is scored on a 1-8 scale with 1 = 0 and 9=100% coverage

    + +

    Germination (WSU)
    +See Dormancy and Pre-harvest sprouting

    + +

    Grain length F0-F9 (SCRI)
    +Number of seeds from a sample of approx 100 cleaned grain that have passed over a 2.5mm sieve and are between 2.5 and 3 mm in width as determined by MARVIN 4.0 analysis of a digital image (www.gta-sensorik.com)

    + +

    Grain length, average (SCRI)
    +Grain length is the average length of a sample of approx 100 cleaned sseds that have passed over a 2.5mm sieve. Seed length is determined by analysis of digital images using the Marvin 4.0 system (www.gta-sensorik.com).

    + +

    Grain nitrogen (SCRI)
    +Grain nitrogen is the estimated % nitrogen content of a sample of cleaned grain that has passed over a 2.5mm sieve. It was measured by a FOSS 1251 Near Infra Red Transmittance grain analyser (www.foss.dk)

    + +

    Grain protein (NABGP)
    +(see description of the NABGP dataset).

    + +

    Grain shape (width/length) (SCRI)
    +Grain shape is the average grain width divided by the average grain length.

    + +

    Grain surface area (SCRI)
    +Grain surface area is the average area 2D area of a sample of approx 100 leaned barley grain that have passed over a 2.5mm sieve. Surface area is determined by analysis of digital images using the Marvin 4.0 system (www.gta-sensorik.com).

    + +

    Grain width (average) (SCRI)
    +Grain width is the average width of a sample of approx 100 cleaned seeds that have passed over a 2.5mm sieve. Seed width is determined by analysis of digital images using the Marvin 4.0 system (www.gta-sensorik.com).

    + +

    Grain width F0-F9 (SCRI)
    +Number of seeds from a sample of approx 100 cleaned grain that have passed over a 2.5mm sieve and are between 2.5 and 3 mm in width as determined by MARVIN 4.0 analysis of a digital image (www.gta-sensorik.com).

    + +

    Head length (SCRI)
    +Length (cm) of ear from collar to base of awn of last spikelet measured on a random sample from a field grown barley plot.

    + +

    Heading date - glasshouse (SCRI)
    +Seeds of all 150 recombinant lines from the Steptoe x Morex DH population and the parents, Steptoe and Morex were planted in the 24 x 30 cm pots filled with the ‘Cereal Mix’ and placed on the automatically irrigated glasshouse benches (cubicle AO59). Three sterilized seeds per line were sown in each of four replicate pots. Placement of the pots was randomized across the glasshouse space. Temperature in the cubicle was set at 20° with 16-hr light/15° 8-hr dark periods. Intensity of the supplementary light was 400 µE m–1 sec–1.

    + +

    Heading date was measured as number of days to anthesis. Anthesis was determined by observing the colour and the response of anthers to the mechanical disturbance. Anthers should be yellow and a slight mechanical disturbance should cause shedding of the pollen meaning that anthesis is about to happen.

    + +

    Heading date (NABGP)
    +(see description of the NABGP dataset)

    + +

    Heading date (SCRI)
    +Days after May31st on which 50% of the plot first reached DGS53

    + +

    Heading date (UM)
    +Steffenson, B. J. 2003. Fusarium head blight of barley: Impact, epidemics, management, and strategies for identifying and utilizing genetic resistance. Pages 241-295: In: K. J. Leonard and W.R. Bushnell, eds. 2003. Fusarium Head Blight of Wheat and Barley. APS Press. St. Paul. 512 pp.

    + +

    Zadoks, J. C., T. T. Chang, and C. F. Konzak. 1974. A decimal code for the growth stages of cereals. Weed. Res. 14:415-421.

    + +

    Morphological and agronomic trait assessment
    +Various morphological (especially spike characters) and agronomic traits may affect the development of FHB on lines in the field (Steffenson 2003). To determine the possible contribution of such factors on FHB severity, assessments were made on heading date, plant height, spike, and the number of nodes per cm of rachis in the spike (kernel density). Heading date was defined as the number of days from planting to when 50% of the plants in a plot had emerged spikes. Plant height was the number of cm from the ground to the tip of the spike, excluding the awns. Spike angle was rated at maturity on a scale of 1 to 3 where spikes bending less than 45 degrees from vertical were scored as 1; those bending from 45-120 degrees from vertical were scored as 2, and those bending greater than 120 degrees from vertical were scored as 3. The number of nodes per cm of rachis was measured on four randomly selected spikes for each parent and DH line.

    + +

    Hot water extract (SCRI)
    +Amount of material extracted by hot water from a clean 25g sample of barley grain that has passed over a 2.5mm sieve following micro-malting under standard conditions of steeping and air rests. Hot water extract is measured by refractometry and expressed as Lintner degrees per kg. NB, this is equivalent to malt extract but the micro-malting protocol will be different.

    + +

    Lodging (NABGP)
    +(see description of the NABGP dataset)

    + +

    Lodging (SCRI)
    +Lodging is the proportion of the plot that is less than 45 degrees from horizontal. It is measured on a 1-9 scale with 1=0 and 9=100%.

    + +

    Malt extract (NABGP)
    +(see description of the NABGP dataset)

    + +

    Malt extract (SCRI)
    +See HWE

    + +

    Maturity (SCRI)
    +Maturity is a visual estimate of the relative physiological maturity of a plot with 1=early and 9=late.

    + +

    Milling energy (SCRI)
    +Milling energy is the amount of energy required to mill a weighed sample of clean grain that has passed over a 2.5mm sieve. It is expressed as Joules per 5g grain ane measured using the Comparamill.

    + +

    Moisture content in the grain (SCRI)
    +Estimate of moisture in sample by NIT after drying and storage!

    + +

    Necrotic spotting doughy stage (SCRI)
    +Spotting at the doughy stage is a visual score of the degree of flag and flag leaf-1 coverage by dark brown lesions that are considered to be due to infection by Ramularia collo-cygni. It is scored on a 1-9 scale with 1 = 0 and 9=100% covereage

    + +

    Normalised difference vegetation index (SCRI)
    +NDVI is ((ref660nm-ref770nm)/(ref660nm+ref770nm)) as measured by the Greenseeker (www.ntechindustries.com) at GS61

    + +

    Normalised difference vegetation index @GS43 (SCRI)
    +NDVI is ((ref660nm-ref770nm)/(ref660nm+ref770nm)) as measured by the Greenseeker (www.ntechindustries.com) at GS43

    + +

    Plant height (NABGP)
    +(see description of the NABGP dataset)

    + +

    Plant height (SCRI)
    +Height is the height(cm) of a plot from the ground to the collar at GS71+

    + +

    Dormancy and pre-harvest sprouting (WSU)
    +AOSA (1988) Association of Official Seed Analysis rules for testing seeds. J Seed Technol 12 (3).
    +Ullrich, S.E., J.A. Clancy, I.A. del Blanco, H. Lee, V.A. Jitkov, F. Han, A. Kleinhofs, and K. Matsui. 2007. Genetic analysis of preharvest sprouting in a six-row barley cross. Molecular Breeding. Submitted.

    + +

    Hayes, P. M., B. H. Liu, S. J. Knapp, F. Chen, B. Jones, T. Blake, J. Franckowiak, D Rasmusson, M. Sorrells, S. E. Ullrich, D. Wesenberg and A. Kleinhofs. 1993. Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor. Appl. Genet. 87: 392-401.

    + +

    Han, F., and S.E. Ullrich. 1994. Mapping of quantitative trait loci for malting quality traits in barley. Barley Genetics Newsletter 23:84-97.

    + +

    Ullrich, S. E., P. M. Hayes, W. E. Dyer, T. K. Blake, and J. A. Clancy. 1993. Quantitative trait locus analysis of seed dormancy in "Steptoe" barley. p. 136-145. In: M. K. Walker-Simmons and J. L. Reid (eds.) Preharvest sprouting in cereals 1992. Amer.Assoc. Cereal Chemist, St. Paul.

    + +

    Oberthur, L., T.K. Blake, W.E. Dyer, and S.E. Ullrich. 1995. Genetic analysis of seed dormancy in barley (Hordeum vulgare L.). J. Quant. Trait Loci (on line), available: http://probe.nalusda.gov. 8000/other docs/jqtl/jqtl 1995-05/ dormancy.html.

    + +

    Han, F., S.E. Ullrich, S. Chirat, S. Menteur, L. Jestin, A. Sarrafi, P.M. Hayes, B.L. Jones, T.K. Blake, D.M. Wesenberg, A. Kleinhofs, and A. Kilian. 1995. Mapping of b-glucan content and b-glucanase activity loci in barley grain and malt. Theor. Appl. Genet. 91:921-927.

    + +

    Clancy, J.A., F. Han, and S.E. Ullrich. 2003. Comparative mapping of b-amylase activity QTLs among three barley crosses. Crop Sci.43:1043-1052.

    + +

    Ullrich, S.E., J.A. Clancy, I.A. del Blanco, H. Lee, V.A. Jitkov, F. Han, A. Kleinhofs, and K. Matsui. 2007. Genetic analysis of preharvest sprouting in a six-row barley cross. Molecular Breeding. Submitted.

    + +

    Dormancy as measured by germination tests
    +Dormancy defined as the failure of viable mature seed to germinate under favorable conditions was measured indirectly by measuring germination percentage, as there is no known direct test for dormancy. Two different after-ripening periods (0 and 14 days) were included in the study to measure the state of and change in dormancy over time. Genetic sub-traits for dormancy based on physiological activity/state could include the development of dormancy as seeds mature, the state of dormancy at maturity, and the dissipation of dormancy with time following maturity. The latter two situations were considered in this study. Germination percentage has also been used to measure susceptibility/resistance to preharvest sprouting (PHS) as well, but it is also a very indirect measure, which assumes that dormancy is the opposite of PHS, which may or may not be entirely true.

    + +

    Seeds were harvested at physiological maturity (as determined when green color was lost from the spike). Heads were collected and stored in a -20°C freezer prior to germination tests of the seeds to arrest physiological activity. Germination tests were carried out after two different post-harvest after-ripening periods at room temperature; 0 d and 14 d for materials grown in field and glasshouse environments. For each after-ripening period, two replications of 100 seeds were germinated at 20°C on moist filter paper in a petri dish. Standard germination tests were performed (AOSA 1988). After 7 d the number of germinated seeds were counted and expressed as a percentage of the total.

    + +

    Pre-harvest Sprouting (PHS) experiment in the greenhouse.
    +Trait scores:
    +0 = no visible roots
    +1 = roots <or = 3/ no shoots
    +2 = roots < or = 5/ shoots < or = 3
    +3 = roots < or = 8/ shoots < or = 5
    +4 = roots and shoots over 25% but < 50% of head
    +5 roots and shoots over 50% of head

    + +

    Predicted spirit yield (SCRI)
    +PSY is fermentable extract multiplied vy a constant to give the yield of spirit(l) per tonne of malt (Dolan, 1982).

    + +

    Soluble nitrogen content of wort (SCRI)
    +Soluble nitrogen content is the amount of nirogen that has been solubilised in a hot water extract follwing micro-malting under standard conditions (see Hot Water Extract, HWE). It is measure by UV spectrophotometry (Haselmore & Gill, 1995).

    + +

    Spike density (UM)
    +Steffenson, B. J. 2003. Fusarium head blight of barley: Impact, epidemics, management, and strategies for identifying and utilizing genetic resistance. Pages 241-295: In: K. J. Leonard and W.R. Bushnell, eds. 2003. Fusarium Head Blight of Wheat and Barley. APS Press. St. Paul. 512 pp.

    + +

    Zadoks, J. C., T. T. Chang, and C. F. Konzak. 1974. A decimal code for the growth stages of cereals. Weed. Res. 14:415-421.

    + +

    Morphological and agronomic trait assessment
    +Various morphological (especially spike characters) and agronomic traits may affect the development of Fusarium Head Blight (FHB) on lines in the field (Steffenson 2003). To determine the possible contribution of such factors on FHB severity, assessments were made on heading date, plant height, spike, and the number of nodes per cm of rachis in the spike (kernel density). Heading date was defined as the number of days from planting to when 50% of the plants in a plot had emerged spikes. Plant height was the number of cm from the ground to the tip of the spike, excluding the awns. Spike angle was rated at maturity on a scale of 1 to 3 where spikes bending less than 45 degrees from vertical were scored as 1; those bending from 45-120 degrees from vertical were scored as 2, and those bending greater than 120 degrees from vertical were scored as 3. The number of nodes per cm of rachis was measured on four randomly selected spikes for each parent and DH line.

    + +

    Thousand grain weight (SCRI)
    +Thousand grain weight is measured by counting and weighing a clean sample of grain that has passed over a 2.5 mm sieve using MARVIN 4.0 (www.gta-sensorik.com)

    + +

    Vegetation index (SCRI)
    +This is Infra Red Vegetation Index, IRVI (ref660nm/ref770nm) as measured by the Greenseeker (www.ntechindustries.com) at GS61.

    + +

    Vegetation index @ GS43 (SCRI)
    +This is Infra Red Vegetation Index, IRVI (ref660nm/ref770nm) as measured by the Greenseeker (www.ntechindustries.com) at GS43.

    + +

    Yield (MT/ha) (NABGP)
    +(see description of the NABGP dataset).

    diff --git a/general/datasets/TIGEM_hg38_ret_rna_seq_0916/acknowledgment.rtf b/general/datasets/TIGEM_hg38_ret_rna_seq_0916/acknowledgment.rtf deleted file mode 100644 index 54bc7ff..0000000 --- a/general/datasets/TIGEM_hg38_ret_rna_seq_0916/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The authors are grateful to Mohit Parekh from the Fondazione Banca degli Occhi del Veneto (FBOV) for the collection of human retina samples. The authors would also like to thank Manuela Dionisi (technician) and Vincenzo Nigro (Head) of the Next Generation Sequencing Facility (TIGEM). This work was supported by FondazioneTelethon Grant (TGM11SB2) to SB and (TGM11SB1) toDdB and to the EU FP7 Radiant project (305626) to DdB.

    diff --git a/general/datasets/TIGEM_hg38_ret_rna_seq_0916/cases.rtf b/general/datasets/TIGEM_hg38_ret_rna_seq_0916/cases.rtf deleted file mode 100644 index 71f6c2f..0000000 --- a/general/datasets/TIGEM_hg38_ret_rna_seq_0916/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Human retina sample collection

    - -

    Retina samples were collected at Fondazione Banca degli Occhi del Veneto (FBOV) from 50 different donors for cornea transplantation in compliance with the tenets of the Declaration of Helsinki and after an informed consent allowing the use of tissues for research purposes was signed by the donor's next of kin (for a description of donors Supplementary Table S1). Each harvested tissue was accompanied with the FBOV progressive number and with details on the age and gender of donor, the cause of death and the total post-mortem time (T). To limit the possible effects of post-mortem time on RNA integrity and transcriptomic profiles, retinal tissues were isolated only from eye bulbs with a total post-mortem interval (T) ≤ 26 h. The average post-mortem time of the samples was 20.5 h (ranging from 6 to 26 h). For the same reason, bulbs deriving from multi-organ donors were excluded from the analysis. In order to limit cross-contamination with adjacent tissues, we established a protocol for the dissection of the retina from the eye bulbs (14). The dissected retinal tissue was visually inspected to exclude any cross-contamination with the pigmented RPE/choroid and was immediately submerged in RNA Stabilization Reagent (RNA later; QIAGEN).

    diff --git a/general/datasets/TIGEM_hg38_ret_rna_seq_0916/experiment-design.rtf b/general/datasets/TIGEM_hg38_ret_rna_seq_0916/experiment-design.rtf deleted file mode 100644 index f9da145..0000000 --- a/general/datasets/TIGEM_hg38_ret_rna_seq_0916/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    RNA extraction, library preparation and sequencing

    - -

    Total RNA was extracted from the 50 human retina samples using the miRNeasy Kit (QIAGEN) according to the manufacturer's instructions. RNA was quantified using a NanoDrop ND-8000 spectrophotometer (NanoDrop Technologies) and the integrity was evaluated using an RNA 6000 Nano chip on a Bioanalyzer (Agilent Technologies). The RNA of the 50 samples had an average RNA integrity number (RIN) of 8.7 (ranging from 7.2 to 9.7). Libraries were prepared according to manufacturer's instructions (TruSeq RNA Sample Preparation kit) with an initial amount of 4 μg of total RNA. Quality control of library templates was performed using a High Sensitivity DNA Assay kit (Agilent Technologies) on a Bioanalyzer (Agilent Technologies). Qubit quantification platform was used to normalize samples for the library preparation (Qubit 2.0 Fluorometer, Life Technologies). Libraries were sequenced via a paired-end chemistry on an Illumina HiSeq1000 platform with an average yield of ∼6 Mb.

    diff --git a/general/datasets/TIGEM_hg38_ret_rna_seq_0916/processing.rtf b/general/datasets/TIGEM_hg38_ret_rna_seq_0916/processing.rtf deleted file mode 100644 index 7d8d4b3..0000000 --- a/general/datasets/TIGEM_hg38_ret_rna_seq_0916/processing.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Data analysis

    - -

    The exploratory analysis, whose steps are shown in Figure 1, was carried out with the ‘tuxedo’ software suite (Trapnell et al., 2010) and led to the definition of the Observed Transcriptome (ObsT). The conservative analysis (Figure 1) was carried out by running the RNA-Seq by Expectation-Maximization (RSEM) package (Li & Dewey, 2011) and led to the definition of the RefT.

    diff --git a/general/datasets/TIGEM_hg38_ret_rna_seq_0916/summary.rtf b/general/datasets/TIGEM_hg38_ret_rna_seq_0916/summary.rtf deleted file mode 100644 index 52d3ca2..0000000 --- a/general/datasets/TIGEM_hg38_ret_rna_seq_0916/summary.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    Citation: â€‹ Pinelli M, Carissimo A, Cutillo L, Lai CH, Mutarelli M, Moretti MN, Singh MV, Karali M, Carrella D, Pizzo M, Russo F, Ferrari S, Ponzin D, Angelini C, Banfi S, di Bernardo D (2016) An atlas of gene expression and gene co-regulation in the human retina. Nucleic acids research 44 (12), 5773-5784

    - -

     

    - -

    The human retina is a specialized tissue involved in light stimulus transduction. Despite its unique biology, an accurate reference transcriptome is still missing. Here, we performed gene expression analysis (RNA-seq) of 50 retinal samples from non-visually impaired post-mortem donors. We identified novel transcripts with high confidence (Observed Transcriptome (ObsT)) and quantified the expression level of known transcripts (Reference Transcriptome (RefT)). The ObsT included 77 623 transcripts (23 960 genes) covering 137 Mb (35 Mb new transcribed genome). Most of the transcripts (92%) were multi-exonic: 81% with known isoforms, 16% with new isoforms and 3% belonging to new genes. The RefT included 13 792 genes across 94 521 known transcripts. Mitochondrial genes were among the most highly expressed, accounting for about 10% of the reads. Of all the protein-coding genes in Gencode, 65% are expressed in the retina. We exploited inter-individual variability in gene expression to infer a gene co-expression network and to identify genes specifically expressed in photoreceptor cells. We experimentally validated the photoreceptors localization of three genes in human retina that had not been previously reported. RNA-seq data and the gene co-expression network are available online (http://retina.tigem.it).

    diff --git a/general/datasets/TSRI-DRG-AffyMOE430_0113-MDP/summary.rtf b/general/datasets/TSRI-DRG-AffyMOE430_0113-MDP/summary.rtf new file mode 100644 index 0000000..643b371 --- /dev/null +++ b/general/datasets/TSRI-DRG-AffyMOE430_0113-MDP/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 159, Name: TSRI DRG Affy Mouse Genome 430 2.0 (Jan13) RMA MDP ** \ No newline at end of file diff --git a/general/datasets/TSRI_DRG_AffyMOE430_0113_MDP/summary.rtf b/general/datasets/TSRI_DRG_AffyMOE430_0113_MDP/summary.rtf deleted file mode 100644 index 643b371..0000000 --- a/general/datasets/TSRI_DRG_AffyMOE430_0113_MDP/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -Summary of DatasetId 159, Name: TSRI DRG Affy Mouse Genome 430 2.0 (Jan13) RMA MDP ** \ No newline at end of file diff --git a/general/datasets/Tigem_hg38_ret_rna_seq_0916/acknowledgment.rtf b/general/datasets/Tigem_hg38_ret_rna_seq_0916/acknowledgment.rtf new file mode 100644 index 0000000..54bc7ff --- /dev/null +++ b/general/datasets/Tigem_hg38_ret_rna_seq_0916/acknowledgment.rtf @@ -0,0 +1 @@ +

    The authors are grateful to Mohit Parekh from the Fondazione Banca degli Occhi del Veneto (FBOV) for the collection of human retina samples. The authors would also like to thank Manuela Dionisi (technician) and Vincenzo Nigro (Head) of the Next Generation Sequencing Facility (TIGEM). This work was supported by FondazioneTelethon Grant (TGM11SB2) to SB and (TGM11SB1) toDdB and to the EU FP7 Radiant project (305626) to DdB.

    diff --git a/general/datasets/Tigem_hg38_ret_rna_seq_0916/cases.rtf b/general/datasets/Tigem_hg38_ret_rna_seq_0916/cases.rtf new file mode 100644 index 0000000..71f6c2f --- /dev/null +++ b/general/datasets/Tigem_hg38_ret_rna_seq_0916/cases.rtf @@ -0,0 +1,3 @@ +

    Human retina sample collection

    + +

    Retina samples were collected at Fondazione Banca degli Occhi del Veneto (FBOV) from 50 different donors for cornea transplantation in compliance with the tenets of the Declaration of Helsinki and after an informed consent allowing the use of tissues for research purposes was signed by the donor's next of kin (for a description of donors Supplementary Table S1). Each harvested tissue was accompanied with the FBOV progressive number and with details on the age and gender of donor, the cause of death and the total post-mortem time (T). To limit the possible effects of post-mortem time on RNA integrity and transcriptomic profiles, retinal tissues were isolated only from eye bulbs with a total post-mortem interval (T) ≤ 26 h. The average post-mortem time of the samples was 20.5 h (ranging from 6 to 26 h). For the same reason, bulbs deriving from multi-organ donors were excluded from the analysis. In order to limit cross-contamination with adjacent tissues, we established a protocol for the dissection of the retina from the eye bulbs (14). The dissected retinal tissue was visually inspected to exclude any cross-contamination with the pigmented RPE/choroid and was immediately submerged in RNA Stabilization Reagent (RNA later; QIAGEN).

    diff --git a/general/datasets/Tigem_hg38_ret_rna_seq_0916/contributors.rtf b/general/datasets/Tigem_hg38_ret_rna_seq_0916/contributors.rtf new file mode 100644 index 0000000..7684e13 --- /dev/null +++ b/general/datasets/Tigem_hg38_ret_rna_seq_0916/contributors.rtf @@ -0,0 +1,50 @@ +
      +
    1. Michele Pinelli1,
    2. +
    3. Annamaria Carissimo1,
    4. +
    5. Luisa Cutillo1,2,
    6. +
    7. Ching-Hung Lai1,
    8. +
    9. Margherita Mutarelli1,
    10. +
    11. Maria Nicoletta Moretti1,
    12. +
    13. Marwah Veer Singh1
    14. +
    15. Marianthi Karali1
    16. +
    17. Diego Carrella1
    18. +
    19. Mariateresa Pizzo1
    20. +
    21. Francesco Russo3
    22. +
    23. Stefano Ferrari4
    24. +
    25. Diego Ponzin4
    26. +
    27. Claudia Angelini3
    28. +
    29. Sandro Banfi1,5,* and 
    30. +
    31. Diego di Bernardo1,6,*
    32. +
    + +

    -Author Affiliations

    + +
      +
    1. + +
      1Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
      +
    2. +
    3. +
      2Dipartimento Studi Aziendali e Quantitativi (DISAQ), Università degli studi di Napoli ‘Parthenope’, Via Generale Parisi, 80132 Napoli, Italy
      +
    4. +
    5. +
      3Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerca, Via Pietro Castellino 111, 80131 Napoli, Italy
      +
    6. +
    7. +
      4Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, 30174 Zelarino (Venice), Italy
      +
    8. +
    9. +
      5Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via Luigi De Crecchio 7, 80138 Naples (NA), Italy
      +
    10. +
    11. +
      6Dept. Of Chemical, Materials and Industrial Production Engineering, University of Naples ‘Federico II’, Piazzale Tecchio 80, 80125 Naples, Italy
      +
    12. +
    + +

    +Author Notes

    + +
      +
    1. *To whom correspondence should be addressed. Tel: +39 81 192 30 600; Fax: +39 81 192 30 651; Email: dibernardo@tigem.it
    2. +
    3. Correspondence may also be addressed to Sandro Banfi. Tel: +39 81 192 30 600; Fax: +39 81 192 30 651; Email: banfi@tigem.it
    4. +
    5. †These authors contributed equally to this work as the first authors.
    6. +
    diff --git a/general/datasets/Tigem_hg38_ret_rna_seq_0916/experiment-design.rtf b/general/datasets/Tigem_hg38_ret_rna_seq_0916/experiment-design.rtf new file mode 100644 index 0000000..f9da145 --- /dev/null +++ b/general/datasets/Tigem_hg38_ret_rna_seq_0916/experiment-design.rtf @@ -0,0 +1,3 @@ +

    RNA extraction, library preparation and sequencing

    + +

    Total RNA was extracted from the 50 human retina samples using the miRNeasy Kit (QIAGEN) according to the manufacturer's instructions. RNA was quantified using a NanoDrop ND-8000 spectrophotometer (NanoDrop Technologies) and the integrity was evaluated using an RNA 6000 Nano chip on a Bioanalyzer (Agilent Technologies). The RNA of the 50 samples had an average RNA integrity number (RIN) of 8.7 (ranging from 7.2 to 9.7). Libraries were prepared according to manufacturer's instructions (TruSeq RNA Sample Preparation kit) with an initial amount of 4 μg of total RNA. Quality control of library templates was performed using a High Sensitivity DNA Assay kit (Agilent Technologies) on a Bioanalyzer (Agilent Technologies). Qubit quantification platform was used to normalize samples for the library preparation (Qubit 2.0 Fluorometer, Life Technologies). Libraries were sequenced via a paired-end chemistry on an Illumina HiSeq1000 platform with an average yield of ∼6 Mb.

    diff --git a/general/datasets/Tigem_hg38_ret_rna_seq_0916/processing.rtf b/general/datasets/Tigem_hg38_ret_rna_seq_0916/processing.rtf new file mode 100644 index 0000000..7d8d4b3 --- /dev/null +++ b/general/datasets/Tigem_hg38_ret_rna_seq_0916/processing.rtf @@ -0,0 +1,3 @@ +

    Data analysis

    + +

    The exploratory analysis, whose steps are shown in Figure 1, was carried out with the ‘tuxedo’ software suite (Trapnell et al., 2010) and led to the definition of the Observed Transcriptome (ObsT). The conservative analysis (Figure 1) was carried out by running the RNA-Seq by Expectation-Maximization (RSEM) package (Li & Dewey, 2011) and led to the definition of the RefT.

    diff --git a/general/datasets/Tigem_hg38_ret_rna_seq_0916/summary.rtf b/general/datasets/Tigem_hg38_ret_rna_seq_0916/summary.rtf new file mode 100644 index 0000000..52d3ca2 --- /dev/null +++ b/general/datasets/Tigem_hg38_ret_rna_seq_0916/summary.rtf @@ -0,0 +1,5 @@ +

    Citation: â€‹ Pinelli M, Carissimo A, Cutillo L, Lai CH, Mutarelli M, Moretti MN, Singh MV, Karali M, Carrella D, Pizzo M, Russo F, Ferrari S, Ponzin D, Angelini C, Banfi S, di Bernardo D (2016) An atlas of gene expression and gene co-regulation in the human retina. Nucleic acids research 44 (12), 5773-5784

    + +

     

    + +

    The human retina is a specialized tissue involved in light stimulus transduction. Despite its unique biology, an accurate reference transcriptome is still missing. Here, we performed gene expression analysis (RNA-seq) of 50 retinal samples from non-visually impaired post-mortem donors. We identified novel transcripts with high confidence (Observed Transcriptome (ObsT)) and quantified the expression level of known transcripts (Reference Transcriptome (RefT)). The ObsT included 77 623 transcripts (23 960 genes) covering 137 Mb (35 Mb new transcribed genome). Most of the transcripts (92%) were multi-exonic: 81% with known isoforms, 16% with new isoforms and 3% belonging to new genes. The RefT included 13 792 genes across 94 521 known transcripts. Mitochondrial genes were among the most highly expressed, accounting for about 10% of the reads. Of all the protein-coding genes in Gencode, 65% are expressed in the retina. We exploited inter-individual variability in gene expression to infer a gene co-expression network and to identify genes specifically expressed in photoreceptor cells. We experimentally validated the photoreceptors localization of three genes in human retina that had not been previously reported. RNA-seq data and the gene co-expression network are available online (http://retina.tigem.it).

    diff --git a/general/datasets/Tsri_drg_affymoe430_0113_mdp/summary.rtf b/general/datasets/Tsri_drg_affymoe430_0113_mdp/summary.rtf new file mode 100644 index 0000000..643b371 --- /dev/null +++ b/general/datasets/Tsri_drg_affymoe430_0113_mdp/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 159, Name: TSRI DRG Affy Mouse Genome 430 2.0 (Jan13) RMA MDP ** \ No newline at end of file diff --git a/general/datasets/UBC_GSE23529HLT0613/summary.rtf b/general/datasets/UBC_GSE23529HLT0613/summary.rtf deleted file mode 100644 index 9cb9538..0000000 --- a/general/datasets/UBC_GSE23529HLT0613/summary.rtf +++ /dev/null @@ -1,15 +0,0 @@ -

    This SuperSeries is composed of the following SubSeries:

    - - - - - - - - - - - - - -
    GSE23352 Whole-genome gene expression profiles of non-tumorous human lung tissues: Laval set
    GSE23529 Whole-genome gene expression profiles of non-tumorous human lung tissues: UBC set
    GSE23545 Whole-genome gene expression profiles of non-tumorous human lung tissues: GRNG set
    diff --git a/general/datasets/UCAMC_LXSBrEtOH_RNA_Seq_0216/specifics.rtf b/general/datasets/UCAMC_LXSBrEtOH_RNA_Seq_0216/specifics.rtf deleted file mode 100644 index ecd3498..0000000 --- a/general/datasets/UCAMC_LXSBrEtOH_RNA_Seq_0216/specifics.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    Summary: RNA-seq in the LXS RI Panel Following an Intraperitoneal Injection of Ethanol

    - -

    RNA-seq-derived gene expression was determined from the LXS recombinant inbred strains and the two parental strains (ILS/Ibg and ISS/Ibg) that had been treated with 5 g/kg ethanol (20% v/v in normal saline, ip) 8 hours before being sacrificed. (This is a companion to a similar dataset in which the same strains were treated with normal saline [ip] and sacrificed at 8 hours). Breeders were obtained from the Jackson Laboratory and experimental mice were bred in-house at the University of Colorado Anschutz Medical Campus. All samples were from whole brain (minus cerebellum and olfactory bulbs) of male mice at an average age of 80 days (SEM: +/- 0.4; range: 56-106; median: 81). The rationale for the dosing and the implicit overall rationale for this experiment can be found in Radcliffe et al. (2006); Radcliffe et al. (2013); Darlington et al. (2013); and Bennett et al. (2015).

    - -

    A total of 396 mice representing 44 LXS RI strains and the ILS and ISS were used. Following total RNA isolation, an equal amount of RNA from three mice of each strain was quantitatively pooled and then the samples were enriched for poly-A RNA using the Dynabeads mRNA Purification kit (Invitrogen) as directed by the manufacturer. Paired-end (2x100, expected size of 300 bp), strand-specific, cluster-ready libraries were prepared from the poly-A enriched RNA using the ScriptSeq RNA-Seq Library Preparation Kit v2 (Illumina). Three libraries per strain were prepared, 132 in total. Due to poor quality or other technical difficulties, 5 libraries were eliminated leaving a total of 44 strains (including ILS and ISS) comprised of 40 strains with n=3, 3 strains with n=2 and 1 strains with n=1. Tophat (Trapnell et al., 2009) was used to map reads to RI-specific genomes; i.e., the ILS and ISS were sequenced (see Bennett et al., 2015) and with the use of genotype data from the LXS (see Saba et al., 2011), a genome was created for each RI strain. Mapped reads were then quantified at the gene level using HTSeq (Anders et al., 2015) with Ensembl full gene annotations and then converted to FPKM using the formula FPKM=fragments/kb exon/million mapped reads/2 (note that this assumes that both reads of a pair were successfully mapped; for a small percentage of the reads this was not the case and these were treated separately and added in). FPKM values were converted to log2 (FPKM+1) which gives a value of 0 for FPKM=0, 1 for FPKM=1, 2 for FPKM=3, 3 for FPKM=7, 4 for FPKM=15, and so on.

    diff --git a/general/datasets/UCAMC_LXSBrSal_RNA_Seq_0216/specifics.rtf b/general/datasets/UCAMC_LXSBrSal_RNA_Seq_0216/specifics.rtf deleted file mode 100644 index 89ef78d..0000000 --- a/general/datasets/UCAMC_LXSBrSal_RNA_Seq_0216/specifics.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    Summary: RNA-seq in the LXS RI Panel Following an Intraperitoneal Injection of Saline

    - -

    RNA-seq-derived gene expression was determined from the LXS recombinant inbred strains and the two parental strains (ILS/Ibg and ISS/Ibg) that had been treated with normal saline (ip) 8 hours before being sacrificed. (This is a companion to a similar dataset in which the same strains were treated with 5 g/kg ethanol [20% v/v in normal saline, ip] and sacrificed at 8 hours). Breeders were obtained from the Jackson Laboratory and experimental mice were bred in-house at the University of Colorado Anschutz Medical Campus. All samples were from whole brain (minus cerebellum and olfactory bulbs) of male mice at an average age of 80 days (SEM: +/- 0.3; range: 58-106; median: 82). The rationale for the dosing and the implicit overall rationale for this experiment can be found in Radcliffe et al. (2006); Radcliffe et al. (2013); Darlington et al. (2013); and Bennett et al. (2015).

    - -

    A total of 396 mice representing 43 LXS RI strains and the ILS and ISS were used. Following total RNA isolation, an equal amount of RNA from three mice of each strain was quantitatively pooled and then the samples were enriched for poly-A RNA using the Dynabeads mRNA Purification kit (Invitrogen) as directed by the manufacturer. Paired-end (2x100, expected size of 300 bp), strand-specific, cluster-ready libraries were prepared from the poly-A enriched RNA using the ScriptSeq RNA-Seq Library Preparation Kit v2 (Illumina). Three libraries per strain were prepared, 132 in total. Due to poor quality or other technical difficulties, 9 libraries were eliminated leaving a total of 41 strains (including ILS and ISS) comprised of 36 strains with n=3, 3 strains with n=2 and 2 strains with n=1. Tophat (Trapnell et al., 2009) was used to map reads to RI-specific genomes; i.e., the ILS and ISS were sequenced (see Bennett et al., 2015) and with the use of genotype data from the LXS (see Saba et al., 2011), a genome was created for each RI strain. Mapped reads were then quantified at the gene level using HTSeq (Anders et al., 2015) with Ensembl full gene annotations and then converted to FPKM using the formula FPKM=fragments/kb exon/million mapped reads/2 (note that this assumes that both reads of a pair were successfully mapped; for a small percentage of the reads this was not the case and these were treated separately and added in). FPKM values were converted to log2 (FPKM+1) which gives a value of 0 for FPKM=0, 1 for FPKM=1, 2 for FPKM=3, 3 for FPKM=7, 4 for FPKM=15, and so on.

    diff --git a/general/datasets/UCI_EC_0913/experiment-design.rtf b/general/datasets/UCI_EC_0913/experiment-design.rtf deleted file mode 100644 index f6a3038..0000000 --- a/general/datasets/UCI_EC_0913/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Postmortem brain tissue was collected from ADRC brain banks. Cases were preferentially selected where 3 or more brain regions were available.

    diff --git a/general/datasets/UCI_EC_0913/summary.rtf b/general/datasets/UCI_EC_0913/summary.rtf deleted file mode 100644 index fea08e6..0000000 --- a/general/datasets/UCI_EC_0913/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Gene expression profiles were assessed in the hippocampus (HC), entorhinal cortex (EC), superior frontal gyrus (SG), and postcentral gyrus (PCG) across the lifespan of 63 cognitively intact individuals from 20-99 years old. New perspectives on the global gene changes that are associated with brain aging emerged, revealing two overarching concepts. First, different regions of the forebrain exhibited substantially different gene profile changes with age. For example, comparing equally powered groups, 5,029 probe sets were significantly altered with age (20-59 vs. 60-99) in the superior frontal gyrus, compared with 1,110 in the entorhinal cortex. Prominent change occurred in the 6th-7th decades across cortical regions, suggesting that this period is a critical transition point in brain aging, particularly in males. Second, clear gender differences in brain aging were evident across the lifespan, suggesting that the brain undergoes sexually dimorphic changes in gene expression not only in development but also in later life. Globally across all brain regions, males showed more gene change than females. Further, Gene Ontology analysis revealed that different categories of genes were predominantly affected in males vs. females. Notably, the male brain was characterized by global decreased catabolic and anabolic capacity with aging, with downregulated genes heavily enriched in energy production and protein synthesis/transport categories. Increased immune activation was a prominent feature of aging in both sexes, with more widespread activation in the female brain. These data open new opportunities to explore age-dependent changes in gene expression that set the balance between neurodegeneration and compensatory mechanisms in the brain, and suggest that this balance is set differently in males and females, an intriguing and novel idea. HgU133plus2.0 microarray chips were used to profile gene expression in 4 brain regions of cognitively intact humans, across the adult lifespan (ages 20-99).

    diff --git a/general/datasets/UCI_HC_0913/experiment-design.rtf b/general/datasets/UCI_HC_0913/experiment-design.rtf deleted file mode 100644 index f6a3038..0000000 --- a/general/datasets/UCI_HC_0913/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Postmortem brain tissue was collected from ADRC brain banks. Cases were preferentially selected where 3 or more brain regions were available.

    diff --git a/general/datasets/UCI_HC_0913/summary.rtf b/general/datasets/UCI_HC_0913/summary.rtf deleted file mode 100644 index fea08e6..0000000 --- a/general/datasets/UCI_HC_0913/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Gene expression profiles were assessed in the hippocampus (HC), entorhinal cortex (EC), superior frontal gyrus (SG), and postcentral gyrus (PCG) across the lifespan of 63 cognitively intact individuals from 20-99 years old. New perspectives on the global gene changes that are associated with brain aging emerged, revealing two overarching concepts. First, different regions of the forebrain exhibited substantially different gene profile changes with age. For example, comparing equally powered groups, 5,029 probe sets were significantly altered with age (20-59 vs. 60-99) in the superior frontal gyrus, compared with 1,110 in the entorhinal cortex. Prominent change occurred in the 6th-7th decades across cortical regions, suggesting that this period is a critical transition point in brain aging, particularly in males. Second, clear gender differences in brain aging were evident across the lifespan, suggesting that the brain undergoes sexually dimorphic changes in gene expression not only in development but also in later life. Globally across all brain regions, males showed more gene change than females. Further, Gene Ontology analysis revealed that different categories of genes were predominantly affected in males vs. females. Notably, the male brain was characterized by global decreased catabolic and anabolic capacity with aging, with downregulated genes heavily enriched in energy production and protein synthesis/transport categories. Increased immune activation was a prominent feature of aging in both sexes, with more widespread activation in the female brain. These data open new opportunities to explore age-dependent changes in gene expression that set the balance between neurodegeneration and compensatory mechanisms in the brain, and suggest that this balance is set differently in males and females, an intriguing and novel idea. HgU133plus2.0 microarray chips were used to profile gene expression in 4 brain regions of cognitively intact humans, across the adult lifespan (ages 20-99).

    diff --git a/general/datasets/UCI_PCG_0913/experiment-design.rtf b/general/datasets/UCI_PCG_0913/experiment-design.rtf deleted file mode 100644 index f6a3038..0000000 --- a/general/datasets/UCI_PCG_0913/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Postmortem brain tissue was collected from ADRC brain banks. Cases were preferentially selected where 3 or more brain regions were available.

    diff --git a/general/datasets/UCI_PCG_0913/summary.rtf b/general/datasets/UCI_PCG_0913/summary.rtf deleted file mode 100644 index fea08e6..0000000 --- a/general/datasets/UCI_PCG_0913/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Gene expression profiles were assessed in the hippocampus (HC), entorhinal cortex (EC), superior frontal gyrus (SG), and postcentral gyrus (PCG) across the lifespan of 63 cognitively intact individuals from 20-99 years old. New perspectives on the global gene changes that are associated with brain aging emerged, revealing two overarching concepts. First, different regions of the forebrain exhibited substantially different gene profile changes with age. For example, comparing equally powered groups, 5,029 probe sets were significantly altered with age (20-59 vs. 60-99) in the superior frontal gyrus, compared with 1,110 in the entorhinal cortex. Prominent change occurred in the 6th-7th decades across cortical regions, suggesting that this period is a critical transition point in brain aging, particularly in males. Second, clear gender differences in brain aging were evident across the lifespan, suggesting that the brain undergoes sexually dimorphic changes in gene expression not only in development but also in later life. Globally across all brain regions, males showed more gene change than females. Further, Gene Ontology analysis revealed that different categories of genes were predominantly affected in males vs. females. Notably, the male brain was characterized by global decreased catabolic and anabolic capacity with aging, with downregulated genes heavily enriched in energy production and protein synthesis/transport categories. Increased immune activation was a prominent feature of aging in both sexes, with more widespread activation in the female brain. These data open new opportunities to explore age-dependent changes in gene expression that set the balance between neurodegeneration and compensatory mechanisms in the brain, and suggest that this balance is set differently in males and females, an intriguing and novel idea. HgU133plus2.0 microarray chips were used to profile gene expression in 4 brain regions of cognitively intact humans, across the adult lifespan (ages 20-99).

    diff --git a/general/datasets/UCI_SG_0913/experiment-design.rtf b/general/datasets/UCI_SG_0913/experiment-design.rtf deleted file mode 100644 index f6a3038..0000000 --- a/general/datasets/UCI_SG_0913/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Postmortem brain tissue was collected from ADRC brain banks. Cases were preferentially selected where 3 or more brain regions were available.

    diff --git a/general/datasets/UCI_SG_0913/summary.rtf b/general/datasets/UCI_SG_0913/summary.rtf deleted file mode 100644 index fea08e6..0000000 --- a/general/datasets/UCI_SG_0913/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Gene expression profiles were assessed in the hippocampus (HC), entorhinal cortex (EC), superior frontal gyrus (SG), and postcentral gyrus (PCG) across the lifespan of 63 cognitively intact individuals from 20-99 years old. New perspectives on the global gene changes that are associated with brain aging emerged, revealing two overarching concepts. First, different regions of the forebrain exhibited substantially different gene profile changes with age. For example, comparing equally powered groups, 5,029 probe sets were significantly altered with age (20-59 vs. 60-99) in the superior frontal gyrus, compared with 1,110 in the entorhinal cortex. Prominent change occurred in the 6th-7th decades across cortical regions, suggesting that this period is a critical transition point in brain aging, particularly in males. Second, clear gender differences in brain aging were evident across the lifespan, suggesting that the brain undergoes sexually dimorphic changes in gene expression not only in development but also in later life. Globally across all brain regions, males showed more gene change than females. Further, Gene Ontology analysis revealed that different categories of genes were predominantly affected in males vs. females. Notably, the male brain was characterized by global decreased catabolic and anabolic capacity with aging, with downregulated genes heavily enriched in energy production and protein synthesis/transport categories. Increased immune activation was a prominent feature of aging in both sexes, with more widespread activation in the female brain. These data open new opportunities to explore age-dependent changes in gene expression that set the balance between neurodegeneration and compensatory mechanisms in the brain, and suggest that this balance is set differently in males and females, an intriguing and novel idea. HgU133plus2.0 microarray chips were used to profile gene expression in 4 brain regions of cognitively intact humans, across the adult lifespan (ages 20-99).

    diff --git a/general/datasets/UCLA_AXB_BXA_Aor_Jan16/experiment-design.rtf b/general/datasets/UCLA_AXB_BXA_Aor_Jan16/experiment-design.rtf deleted file mode 100644 index 1113b37..0000000 --- a/general/datasets/UCLA_AXB_BXA_Aor_Jan16/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    GWAS for expression in aortas of F1 offspring of inbred strains crossed with C57BL/6J carrying ApoE-Leiden and CETP transgenes fed chow diet for 8 weeks followed by Western diet for 16 weeks

    diff --git a/general/datasets/UCLA_AXB_BXA_Aor_Jan16/platform.rtf b/general/datasets/UCLA_AXB_BXA_Aor_Jan16/platform.rtf deleted file mode 100644 index 41439e8..0000000 --- a/general/datasets/UCLA_AXB_BXA_Aor_Jan16/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    GPL11180 HT_MG-430_PM] Affymetrix HT MG-430 PM Array Plate

    diff --git a/general/datasets/UCLA_AXB_BXA_Aor_Jan16/specifics.rtf b/general/datasets/UCLA_AXB_BXA_Aor_Jan16/specifics.rtf deleted file mode 100644 index 8cdd2b9..0000000 --- a/general/datasets/UCLA_AXB_BXA_Aor_Jan16/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Group AXB/BXA \ No newline at end of file diff --git a/general/datasets/UCLA_AXB_BXA_Aor_Jan16/summary.rtf b/general/datasets/UCLA_AXB_BXA_Aor_Jan16/summary.rtf deleted file mode 100644 index 59e49a1..0000000 --- a/general/datasets/UCLA_AXB_BXA_Aor_Jan16/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Identify genes in the aorta whose expression is under genetic regulation in the Hybrid Mouse Diversity Panel (HMDP). The HMDP comprises classical inbred and recombinant inbred wild type mice. 104 of these strains were bred onto a C57BL/6J background carrying transgenes for both ApoE-Leiden and cholesteryl ester transfer protein (CETP). The RMA values of genes were used for genome wide association as described in Davis et al PLOS Genetics 2015. These data are used to identify candidate genes at loci associated with atherosclerotic lesion size.

    diff --git a/general/datasets/UCLA_AXB_BXA_Femur_0113_RSN/summary.rtf b/general/datasets/UCLA_AXB_BXA_Femur_0113_RSN/summary.rtf deleted file mode 100644 index aaa3dd1..0000000 --- a/general/datasets/UCLA_AXB_BXA_Femur_0113_RSN/summary.rtf +++ /dev/null @@ -1,15 +0,0 @@ -

    Summary of DatasetId 163, Name: UCLA GSE27483 AXB/BXA Bone Femur ILM Mouse WG-6 v1, v1.1 (Jan13)

    - -

     2009 Jan;24(1):105-16. doi: 10.1359/jbmr.080908.

    - -

    An integrative genetics approach to identify candidate genes regulating BMD: combining linkage, gene expression, and association

    - -

    Farber CRvan Nas AGhazalpour AAten JEDoss SSos BSchadt EEIngram-Drake LDavis RCHorvath SSmith DJDrake TALusis AJ

    - -

    Abstract

    - -

    Numerous quantitative trait loci (QTLs) affecting bone traits have been identified in the mouse; however, few of the underlying genes have been discovered. To improve the process of transitioning from QTL to gene, we describe an integrative genetics approach, which combines linkage analysis, expression QTL (eQTL) mapping, causality modeling, and genetic association in outbred mice. In C57BL/6J x C3H/HeJ (BXH) F(2) mice, nine QTLs regulating femoral BMD were identified. To select candidate genes from within each QTL region, microarray gene expression profiles from individual F(2) mice were used to identify 148 genes whose expression was correlated with BMD and regulated by local eQTLs. Many of the genes that were the most highly correlated with BMD have been previously shown to modulate bonemass or skeletal development. Candidates were further prioritized by determining whether their expression was predicted to underlie variation in BMD. Using network edge orienting (NEO), a causality modeling algorithm, 18 of the 148 candidates were predicted to be causally related to differences in BMD. To fine-map QTLs, markers in outbred MF1 mice were tested for association with BMD. Three chromosome 11 SNPs were identified that were associated with BMD within the Bmd11 QTL. Finally, our approach provides strong support for Wnt9a, Rasd1, or both underlying Bmd11. Integration of multiple genetic and genomic data sets can substantially improve the efficiency of QTL fine-mapping and candidate gene identification.

    - -
    -
    PMID:18767929, PMCID: PMC2661539, DOI:10.1359/jbmr.080908
    -
    diff --git a/general/datasets/UCLA_AXB_BXA_Liv_Jan16/experiment-design.rtf b/general/datasets/UCLA_AXB_BXA_Liv_Jan16/experiment-design.rtf deleted file mode 100644 index 715a1a3..0000000 --- a/general/datasets/UCLA_AXB_BXA_Liv_Jan16/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    GWAS for expression in livers of F1 offspring of inbred strains crossed with C57BL/6J carrying ApoE-Leiden and CETP transgenes fed chow diet for 8 weeks followed by Western diet for 16 weeks

    diff --git a/general/datasets/UCLA_AXB_BXA_Liv_Jan16/platform.rtf b/general/datasets/UCLA_AXB_BXA_Liv_Jan16/platform.rtf deleted file mode 100644 index 7659aeb..0000000 --- a/general/datasets/UCLA_AXB_BXA_Liv_Jan16/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    GPL11180 HT_MG-430_PM] Affymetrix HT MG-430 PM Array Plate

    diff --git a/general/datasets/UCLA_AXB_BXA_Liv_Jan16/specifics.rtf b/general/datasets/UCLA_AXB_BXA_Liv_Jan16/specifics.rtf deleted file mode 100644 index 8cdd2b9..0000000 --- a/general/datasets/UCLA_AXB_BXA_Liv_Jan16/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Group AXB/BXA \ No newline at end of file diff --git a/general/datasets/UCLA_AXB_BXA_Liv_Jan16/summary.rtf b/general/datasets/UCLA_AXB_BXA_Liv_Jan16/summary.rtf deleted file mode 100644 index 9ffc1be..0000000 --- a/general/datasets/UCLA_AXB_BXA_Liv_Jan16/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Identify genes in the liver whose expression is under genetic regulation in the Hybrid Mouse Diversity Panel (HMDP). The HMDP comprises classical inbred and recombinant inbred wild type mice. 104 of these strains were bred onto a C57BL/6J background carrying transgenes for both ApoE-Leiden and cholesteryl ester transfer protein (CETP). The RMA values of genes were used for genome wide association as described in Davis et al PLOS Genetics 2015. These data are used to identify candidate genes at loci associated with atherosclerotic lesion size.

    diff --git a/general/datasets/UCLA_BXD-on_Femur_0113_RSN/acknowledgment.rtf b/general/datasets/UCLA_BXD-on_Femur_0113_RSN/acknowledgment.rtf new file mode 100644 index 0000000..841713a --- /dev/null +++ b/general/datasets/UCLA_BXD-on_Femur_0113_RSN/acknowledgment.rtf @@ -0,0 +1 @@ +

    Calabrese G, Bennett BJ, Orozco L, Kang HM, Eskin E, Dombret C, De Backer O, Lusis AJ, Farber CR.

    diff --git a/general/datasets/UCLA_BXD-on_Femur_0113_RSN/experiment-design.rtf b/general/datasets/UCLA_BXD-on_Femur_0113_RSN/experiment-design.rtf new file mode 100644 index 0000000..6a72392 --- /dev/null +++ b/general/datasets/UCLA_BXD-on_Femur_0113_RSN/experiment-design.rtf @@ -0,0 +1 @@ +

    RNA from cortical bone (femoral diaphysis free of marrow) were profiled from 99 Hybrid Mouse Diversity Panel strains were profiled. Sixteen-week old male mice were used in this study. A total of 1-3 mice per strain were arrayed.

    diff --git a/general/datasets/UCLA_BXD-on_Femur_0113_RSN/platform.rtf b/general/datasets/UCLA_BXD-on_Femur_0113_RSN/platform.rtf new file mode 100644 index 0000000..578985c --- /dev/null +++ b/general/datasets/UCLA_BXD-on_Femur_0113_RSN/platform.rtf @@ -0,0 +1 @@ +

    Illumina mouse-6 v1.1 expression beadchip

    diff --git a/general/datasets/UCLA_BXD-on_Femur_0113_RSN/processing.rtf b/general/datasets/UCLA_BXD-on_Femur_0113_RSN/processing.rtf new file mode 100644 index 0000000..9f66d05 --- /dev/null +++ b/general/datasets/UCLA_BXD-on_Femur_0113_RSN/processing.rtf @@ -0,0 +1 @@ +

    The expression values were transformed using the Variance Stabilizing Transformation (VST), and normalized with the Robust Spline Normalization (RSN) algorithm using the LumiR R package. After normalization, the ComBat software was used to adjust for batch effects using an empirical Bayes method.

    diff --git a/general/datasets/UCLA_BXD-on_Femur_0113_RSN/summary.rtf b/general/datasets/UCLA_BXD-on_Femur_0113_RSN/summary.rtf new file mode 100644 index 0000000..df75fa6 --- /dev/null +++ b/general/datasets/UCLA_BXD-on_Femur_0113_RSN/summary.rtf @@ -0,0 +1 @@ +

    Significant advances have been made in the discovery of genes affecting bone mineral density (BMD); however, our understanding of its genetic basis remains incomplete. In the current study, genome-wide association (GWA) and co-expression network analysis was used in the recently described Hybrid Mouse Diversity Panel (HMDP) to identify and functionally characterize novel BMD genes. In the HMDP, a GWA of total body, spinal and femoral BMD revealed four significant associations (-log10P > 5.39) affecting at least one BMD trait on chromosomes (Chrs.) 7, 11, 12 and 17. The associations implicated a total of 163 genes with each association harboring between 14 and 112 genes. This list was reduced to 26 functional candidates by identifying those genes that were regulated by local eQTL in bone or harbored potentially functional non-synonymous (NS) SNPs. This analysis revealed that the most significant BMD SNP on Chr. 12 was a NS SNP in the additional sex combs like-2 (Asxl2) gene that was predicted to be functional. The involvement of Asxl2 in the regulation of bone mass was confirmed by the observation that Asxl2 knockout mice had reduced BMD. To begin to unravel the mechanism though which Asxl2 influenced BMD, a gene co-expression network was created using cortical bone gene expression microarray data from the HMDP strains. Asxl2 was identified as a member of a co-expression gene module enriched for genes involved in the differentiation of myeloid cells. In bone, osteoclasts are bone-resorbing cell of myeloid origin, suggesting that Asxl2 may play a role in osteoclast differentiation. In agreement, the knockdown of Asxl2 in bone marrow macrophages impaired their ability to form osteoclasts. This study identifies a new regulator of BMD and osteoclastogenesis and highlights the power of GWA and systems genetics in the mouse for dissecting complex genetic traits.

    diff --git a/general/datasets/UCLA_BXD_Aor_Jan16/experiment-design.rtf b/general/datasets/UCLA_BXD_Aor_Jan16/experiment-design.rtf deleted file mode 100644 index 1113b37..0000000 --- a/general/datasets/UCLA_BXD_Aor_Jan16/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    GWAS for expression in aortas of F1 offspring of inbred strains crossed with C57BL/6J carrying ApoE-Leiden and CETP transgenes fed chow diet for 8 weeks followed by Western diet for 16 weeks

    diff --git a/general/datasets/UCLA_BXD_Aor_Jan16/platform.rtf b/general/datasets/UCLA_BXD_Aor_Jan16/platform.rtf deleted file mode 100644 index 41439e8..0000000 --- a/general/datasets/UCLA_BXD_Aor_Jan16/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    GPL11180 HT_MG-430_PM] Affymetrix HT MG-430 PM Array Plate

    diff --git a/general/datasets/UCLA_BXD_Aor_Jan16/specifics.rtf b/general/datasets/UCLA_BXD_Aor_Jan16/specifics.rtf deleted file mode 100644 index 3864d15..0000000 --- a/general/datasets/UCLA_BXD_Aor_Jan16/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Group BXD \ No newline at end of file diff --git a/general/datasets/UCLA_BXD_Aor_Jan16/summary.rtf b/general/datasets/UCLA_BXD_Aor_Jan16/summary.rtf deleted file mode 100644 index 59e49a1..0000000 --- a/general/datasets/UCLA_BXD_Aor_Jan16/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Identify genes in the aorta whose expression is under genetic regulation in the Hybrid Mouse Diversity Panel (HMDP). The HMDP comprises classical inbred and recombinant inbred wild type mice. 104 of these strains were bred onto a C57BL/6J background carrying transgenes for both ApoE-Leiden and cholesteryl ester transfer protein (CETP). The RMA values of genes were used for genome wide association as described in Davis et al PLOS Genetics 2015. These data are used to identify candidate genes at loci associated with atherosclerotic lesion size.

    diff --git a/general/datasets/UCLA_BXD_Liv_Jan16/experiment-design.rtf b/general/datasets/UCLA_BXD_Liv_Jan16/experiment-design.rtf deleted file mode 100644 index 715a1a3..0000000 --- a/general/datasets/UCLA_BXD_Liv_Jan16/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    GWAS for expression in livers of F1 offspring of inbred strains crossed with C57BL/6J carrying ApoE-Leiden and CETP transgenes fed chow diet for 8 weeks followed by Western diet for 16 weeks

    diff --git a/general/datasets/UCLA_BXD_Liv_Jan16/platform.rtf b/general/datasets/UCLA_BXD_Liv_Jan16/platform.rtf deleted file mode 100644 index 7659aeb..0000000 --- a/general/datasets/UCLA_BXD_Liv_Jan16/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    GPL11180 HT_MG-430_PM] Affymetrix HT MG-430 PM Array Plate

    diff --git a/general/datasets/UCLA_BXD_Liv_Jan16/summary.rtf b/general/datasets/UCLA_BXD_Liv_Jan16/summary.rtf deleted file mode 100644 index 9ffc1be..0000000 --- a/general/datasets/UCLA_BXD_Liv_Jan16/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Identify genes in the liver whose expression is under genetic regulation in the Hybrid Mouse Diversity Panel (HMDP). The HMDP comprises classical inbred and recombinant inbred wild type mice. 104 of these strains were bred onto a C57BL/6J background carrying transgenes for both ApoE-Leiden and cholesteryl ester transfer protein (CETP). The RMA values of genes were used for genome wide association as described in Davis et al PLOS Genetics 2015. These data are used to identify candidate genes at loci associated with atherosclerotic lesion size.

    diff --git a/general/datasets/UCLA_BXD_on_Femur_0113_RSN/acknowledgment.rtf b/general/datasets/UCLA_BXD_on_Femur_0113_RSN/acknowledgment.rtf deleted file mode 100644 index 841713a..0000000 --- a/general/datasets/UCLA_BXD_on_Femur_0113_RSN/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Calabrese G, Bennett BJ, Orozco L, Kang HM, Eskin E, Dombret C, De Backer O, Lusis AJ, Farber CR.

    diff --git a/general/datasets/UCLA_BXD_on_Femur_0113_RSN/experiment-design.rtf b/general/datasets/UCLA_BXD_on_Femur_0113_RSN/experiment-design.rtf deleted file mode 100644 index 6a72392..0000000 --- a/general/datasets/UCLA_BXD_on_Femur_0113_RSN/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    RNA from cortical bone (femoral diaphysis free of marrow) were profiled from 99 Hybrid Mouse Diversity Panel strains were profiled. Sixteen-week old male mice were used in this study. A total of 1-3 mice per strain were arrayed.

    diff --git a/general/datasets/UCLA_BXD_on_Femur_0113_RSN/platform.rtf b/general/datasets/UCLA_BXD_on_Femur_0113_RSN/platform.rtf deleted file mode 100644 index 578985c..0000000 --- a/general/datasets/UCLA_BXD_on_Femur_0113_RSN/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Illumina mouse-6 v1.1 expression beadchip

    diff --git a/general/datasets/UCLA_BXD_on_Femur_0113_RSN/processing.rtf b/general/datasets/UCLA_BXD_on_Femur_0113_RSN/processing.rtf deleted file mode 100644 index 9f66d05..0000000 --- a/general/datasets/UCLA_BXD_on_Femur_0113_RSN/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The expression values were transformed using the Variance Stabilizing Transformation (VST), and normalized with the Robust Spline Normalization (RSN) algorithm using the LumiR R package. After normalization, the ComBat software was used to adjust for batch effects using an empirical Bayes method.

    diff --git a/general/datasets/UCLA_BXD_on_Femur_0113_RSN/summary.rtf b/general/datasets/UCLA_BXD_on_Femur_0113_RSN/summary.rtf deleted file mode 100644 index df75fa6..0000000 --- a/general/datasets/UCLA_BXD_on_Femur_0113_RSN/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Significant advances have been made in the discovery of genes affecting bone mineral density (BMD); however, our understanding of its genetic basis remains incomplete. In the current study, genome-wide association (GWA) and co-expression network analysis was used in the recently described Hybrid Mouse Diversity Panel (HMDP) to identify and functionally characterize novel BMD genes. In the HMDP, a GWA of total body, spinal and femoral BMD revealed four significant associations (-log10P > 5.39) affecting at least one BMD trait on chromosomes (Chrs.) 7, 11, 12 and 17. The associations implicated a total of 163 genes with each association harboring between 14 and 112 genes. This list was reduced to 26 functional candidates by identifying those genes that were regulated by local eQTL in bone or harbored potentially functional non-synonymous (NS) SNPs. This analysis revealed that the most significant BMD SNP on Chr. 12 was a NS SNP in the additional sex combs like-2 (Asxl2) gene that was predicted to be functional. The involvement of Asxl2 in the regulation of bone mass was confirmed by the observation that Asxl2 knockout mice had reduced BMD. To begin to unravel the mechanism though which Asxl2 influenced BMD, a gene co-expression network was created using cortical bone gene expression microarray data from the HMDP strains. Asxl2 was identified as a member of a co-expression gene module enriched for genes involved in the differentiation of myeloid cells. In bone, osteoclasts are bone-resorbing cell of myeloid origin, suggesting that Asxl2 may play a role in osteoclast differentiation. In agreement, the knockdown of Asxl2 in bone marrow macrophages impaired their ability to form osteoclasts. This study identifies a new regulator of BMD and osteoclastogenesis and highlights the power of GWA and systems genetics in the mouse for dissecting complex genetic traits.

    diff --git a/general/datasets/UCLA_BXH_Femur_0113_RSN/summary.rtf b/general/datasets/UCLA_BXH_Femur_0113_RSN/summary.rtf deleted file mode 100644 index b5cf311..0000000 --- a/general/datasets/UCLA_BXH_Femur_0113_RSN/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -Summary of DatasetId 164, Name: UCLA GSE27483 BXH Bone Femur ILM Mouse WG-6 v1, v1.1 (Jan13) \ No newline at end of file diff --git a/general/datasets/UCLA_CXB_Aor_Jan16/experiment-design.rtf b/general/datasets/UCLA_CXB_Aor_Jan16/experiment-design.rtf deleted file mode 100644 index 1113b37..0000000 --- a/general/datasets/UCLA_CXB_Aor_Jan16/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    GWAS for expression in aortas of F1 offspring of inbred strains crossed with C57BL/6J carrying ApoE-Leiden and CETP transgenes fed chow diet for 8 weeks followed by Western diet for 16 weeks

    diff --git a/general/datasets/UCLA_CXB_Aor_Jan16/platform.rtf b/general/datasets/UCLA_CXB_Aor_Jan16/platform.rtf deleted file mode 100644 index 41439e8..0000000 --- a/general/datasets/UCLA_CXB_Aor_Jan16/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    GPL11180 HT_MG-430_PM] Affymetrix HT MG-430 PM Array Plate

    diff --git a/general/datasets/UCLA_CXB_Aor_Jan16/specifics.rtf b/general/datasets/UCLA_CXB_Aor_Jan16/specifics.rtf deleted file mode 100644 index 20dd05b..0000000 --- a/general/datasets/UCLA_CXB_Aor_Jan16/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Group CXB \ No newline at end of file diff --git a/general/datasets/UCLA_CXB_Aor_Jan16/summary.rtf b/general/datasets/UCLA_CXB_Aor_Jan16/summary.rtf deleted file mode 100644 index 59e49a1..0000000 --- a/general/datasets/UCLA_CXB_Aor_Jan16/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Identify genes in the aorta whose expression is under genetic regulation in the Hybrid Mouse Diversity Panel (HMDP). The HMDP comprises classical inbred and recombinant inbred wild type mice. 104 of these strains were bred onto a C57BL/6J background carrying transgenes for both ApoE-Leiden and cholesteryl ester transfer protein (CETP). The RMA values of genes were used for genome wide association as described in Davis et al PLOS Genetics 2015. These data are used to identify candidate genes at loci associated with atherosclerotic lesion size.

    diff --git a/general/datasets/UCLA_CXB_Liv_Jan16/experiment-design.rtf b/general/datasets/UCLA_CXB_Liv_Jan16/experiment-design.rtf deleted file mode 100644 index 715a1a3..0000000 --- a/general/datasets/UCLA_CXB_Liv_Jan16/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    GWAS for expression in livers of F1 offspring of inbred strains crossed with C57BL/6J carrying ApoE-Leiden and CETP transgenes fed chow diet for 8 weeks followed by Western diet for 16 weeks

    diff --git a/general/datasets/UCLA_CXB_Liv_Jan16/platform.rtf b/general/datasets/UCLA_CXB_Liv_Jan16/platform.rtf deleted file mode 100644 index 7659aeb..0000000 --- a/general/datasets/UCLA_CXB_Liv_Jan16/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    GPL11180 HT_MG-430_PM] Affymetrix HT MG-430 PM Array Plate

    diff --git a/general/datasets/UCLA_CXB_Liv_Jan16/specifics.rtf b/general/datasets/UCLA_CXB_Liv_Jan16/specifics.rtf deleted file mode 100644 index 20dd05b..0000000 --- a/general/datasets/UCLA_CXB_Liv_Jan16/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Group CXB \ No newline at end of file diff --git a/general/datasets/UCLA_CXB_Liv_Jan16/summary.rtf b/general/datasets/UCLA_CXB_Liv_Jan16/summary.rtf deleted file mode 100644 index 9ffc1be..0000000 --- a/general/datasets/UCLA_CXB_Liv_Jan16/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Identify genes in the liver whose expression is under genetic regulation in the Hybrid Mouse Diversity Panel (HMDP). The HMDP comprises classical inbred and recombinant inbred wild type mice. 104 of these strains were bred onto a C57BL/6J background carrying transgenes for both ApoE-Leiden and cholesteryl ester transfer protein (CETP). The RMA values of genes were used for genome wide association as described in Davis et al PLOS Genetics 2015. These data are used to identify candidate genes at loci associated with atherosclerotic lesion size.

    diff --git a/general/datasets/UCLA_MDP_Femur_0113_RSN/acknowledgment.rtf b/general/datasets/UCLA_MDP_Femur_0113_RSN/acknowledgment.rtf deleted file mode 100644 index 841713a..0000000 --- a/general/datasets/UCLA_MDP_Femur_0113_RSN/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Calabrese G, Bennett BJ, Orozco L, Kang HM, Eskin E, Dombret C, De Backer O, Lusis AJ, Farber CR.

    diff --git a/general/datasets/UCLA_MDP_Femur_0113_RSN/experiment-design.rtf b/general/datasets/UCLA_MDP_Femur_0113_RSN/experiment-design.rtf deleted file mode 100644 index 6a72392..0000000 --- a/general/datasets/UCLA_MDP_Femur_0113_RSN/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    RNA from cortical bone (femoral diaphysis free of marrow) were profiled from 99 Hybrid Mouse Diversity Panel strains were profiled. Sixteen-week old male mice were used in this study. A total of 1-3 mice per strain were arrayed.

    diff --git a/general/datasets/UCLA_MDP_Femur_0113_RSN/platform.rtf b/general/datasets/UCLA_MDP_Femur_0113_RSN/platform.rtf deleted file mode 100644 index 578985c..0000000 --- a/general/datasets/UCLA_MDP_Femur_0113_RSN/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Illumina mouse-6 v1.1 expression beadchip

    diff --git a/general/datasets/UCLA_MDP_Femur_0113_RSN/processing.rtf b/general/datasets/UCLA_MDP_Femur_0113_RSN/processing.rtf deleted file mode 100644 index 9f66d05..0000000 --- a/general/datasets/UCLA_MDP_Femur_0113_RSN/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The expression values were transformed using the Variance Stabilizing Transformation (VST), and normalized with the Robust Spline Normalization (RSN) algorithm using the LumiR R package. After normalization, the ComBat software was used to adjust for batch effects using an empirical Bayes method.

    diff --git a/general/datasets/UCLA_MDP_Femur_0113_RSN/summary.rtf b/general/datasets/UCLA_MDP_Femur_0113_RSN/summary.rtf deleted file mode 100644 index df75fa6..0000000 --- a/general/datasets/UCLA_MDP_Femur_0113_RSN/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Significant advances have been made in the discovery of genes affecting bone mineral density (BMD); however, our understanding of its genetic basis remains incomplete. In the current study, genome-wide association (GWA) and co-expression network analysis was used in the recently described Hybrid Mouse Diversity Panel (HMDP) to identify and functionally characterize novel BMD genes. In the HMDP, a GWA of total body, spinal and femoral BMD revealed four significant associations (-log10P > 5.39) affecting at least one BMD trait on chromosomes (Chrs.) 7, 11, 12 and 17. The associations implicated a total of 163 genes with each association harboring between 14 and 112 genes. This list was reduced to 26 functional candidates by identifying those genes that were regulated by local eQTL in bone or harbored potentially functional non-synonymous (NS) SNPs. This analysis revealed that the most significant BMD SNP on Chr. 12 was a NS SNP in the additional sex combs like-2 (Asxl2) gene that was predicted to be functional. The involvement of Asxl2 in the regulation of bone mass was confirmed by the observation that Asxl2 knockout mice had reduced BMD. To begin to unravel the mechanism though which Asxl2 influenced BMD, a gene co-expression network was created using cortical bone gene expression microarray data from the HMDP strains. Asxl2 was identified as a member of a co-expression gene module enriched for genes involved in the differentiation of myeloid cells. In bone, osteoclasts are bone-resorbing cell of myeloid origin, suggesting that Asxl2 may play a role in osteoclast differentiation. In agreement, the knockdown of Asxl2 in bone marrow macrophages impaired their ability to form osteoclasts. This study identifies a new regulator of BMD and osteoclastogenesis and highlights the power of GWA and systems genetics in the mouse for dissecting complex genetic traits.

    diff --git a/general/datasets/UCSD_AIL_HIP_RNA_Seq_0418/specifics.rtf b/general/datasets/UCSD_AIL_HIP_RNA_Seq_0418/specifics.rtf deleted file mode 100644 index f3a4dfd..0000000 --- a/general/datasets/UCSD_AIL_HIP_RNA_Seq_0418/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Hippocampus \ No newline at end of file diff --git a/general/datasets/UCSD_AIL_HIP_RNA_Seq_0418/summary.rtf b/general/datasets/UCSD_AIL_HIP_RNA_Seq_0418/summary.rtf deleted file mode 100644 index 37e2d16..0000000 --- a/general/datasets/UCSD_AIL_HIP_RNA_Seq_0418/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Genome wide association analyses (GWAS) in model organisms have numerous advantages compared to human GWAS, including the ability to use populations with well-defined genetic diversity, the ability to collect tissue for gene expression analysis and the ability to perform experimental manipulations. We examined behavioral, physiological, and gene expression traits in 1,063 male and female mice from a 50-generation intercross between two inbred strains (LG/J and SM/J). We used genotyping by sequencing in conjunction with whole genome sequence data from the two founder strains to obtain genotypes at 4.3 million SNPs. As expected, all alleles were common (mean MAF=0.35) and linkage disequilibrium degraded rapidly, providing excellent power and sub-megabase mapping precision. We identified 126 genome-wide significant loci for 50 traits and integrated this information with 7,081 cis-eQTLs and 1,476 trans-eQTLs identified in hippocampus, striatum and prefrontal cortex. We replicated several loci that were identified using an earlier generation of this intercross, including an association between locomotor activity and a locus containing a single gene, Csmd1. We also showed that Csmd1 mutant mice recapitulated the locomotor phenotype. Our results demonstrate the utility of this population, identify numerous novel associations, and provide examples of replication in an independent cohort, which is customary in human genetics, and replication by experimental manipulation, which is a unique advantage of model organisms.

    diff --git a/general/datasets/UCSD_AIL_HIP_RNA_Seq_log2_0418/specifics.rtf b/general/datasets/UCSD_AIL_HIP_RNA_Seq_log2_0418/specifics.rtf deleted file mode 100644 index 843d470..0000000 --- a/general/datasets/UCSD_AIL_HIP_RNA_Seq_log2_0418/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Log2 \ No newline at end of file diff --git a/general/datasets/UCSD_AIL_HIP_RNA_Seq_log2_0418/summary.rtf b/general/datasets/UCSD_AIL_HIP_RNA_Seq_log2_0418/summary.rtf deleted file mode 100644 index 37e2d16..0000000 --- a/general/datasets/UCSD_AIL_HIP_RNA_Seq_log2_0418/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Genome wide association analyses (GWAS) in model organisms have numerous advantages compared to human GWAS, including the ability to use populations with well-defined genetic diversity, the ability to collect tissue for gene expression analysis and the ability to perform experimental manipulations. We examined behavioral, physiological, and gene expression traits in 1,063 male and female mice from a 50-generation intercross between two inbred strains (LG/J and SM/J). We used genotyping by sequencing in conjunction with whole genome sequence data from the two founder strains to obtain genotypes at 4.3 million SNPs. As expected, all alleles were common (mean MAF=0.35) and linkage disequilibrium degraded rapidly, providing excellent power and sub-megabase mapping precision. We identified 126 genome-wide significant loci for 50 traits and integrated this information with 7,081 cis-eQTLs and 1,476 trans-eQTLs identified in hippocampus, striatum and prefrontal cortex. We replicated several loci that were identified using an earlier generation of this intercross, including an association between locomotor activity and a locus containing a single gene, Csmd1. We also showed that Csmd1 mutant mice recapitulated the locomotor phenotype. Our results demonstrate the utility of this population, identify numerous novel associations, and provide examples of replication in an independent cohort, which is customary in human genetics, and replication by experimental manipulation, which is a unique advantage of model organisms.

    diff --git a/general/datasets/UCSD_AIL_PFC_RNA_Seq_0418/specifics.rtf b/general/datasets/UCSD_AIL_PFC_RNA_Seq_0418/specifics.rtf deleted file mode 100644 index 30656c6..0000000 --- a/general/datasets/UCSD_AIL_PFC_RNA_Seq_0418/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Prefrontal Cortex \ No newline at end of file diff --git a/general/datasets/UCSD_AIL_PFC_RNA_Seq_0418/summary.rtf b/general/datasets/UCSD_AIL_PFC_RNA_Seq_0418/summary.rtf deleted file mode 100644 index 37e2d16..0000000 --- a/general/datasets/UCSD_AIL_PFC_RNA_Seq_0418/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Genome wide association analyses (GWAS) in model organisms have numerous advantages compared to human GWAS, including the ability to use populations with well-defined genetic diversity, the ability to collect tissue for gene expression analysis and the ability to perform experimental manipulations. We examined behavioral, physiological, and gene expression traits in 1,063 male and female mice from a 50-generation intercross between two inbred strains (LG/J and SM/J). We used genotyping by sequencing in conjunction with whole genome sequence data from the two founder strains to obtain genotypes at 4.3 million SNPs. As expected, all alleles were common (mean MAF=0.35) and linkage disequilibrium degraded rapidly, providing excellent power and sub-megabase mapping precision. We identified 126 genome-wide significant loci for 50 traits and integrated this information with 7,081 cis-eQTLs and 1,476 trans-eQTLs identified in hippocampus, striatum and prefrontal cortex. We replicated several loci that were identified using an earlier generation of this intercross, including an association between locomotor activity and a locus containing a single gene, Csmd1. We also showed that Csmd1 mutant mice recapitulated the locomotor phenotype. Our results demonstrate the utility of this population, identify numerous novel associations, and provide examples of replication in an independent cohort, which is customary in human genetics, and replication by experimental manipulation, which is a unique advantage of model organisms.

    diff --git a/general/datasets/UCSD_AIL_PFC_RNA_Seq_log2_0418/specifics.rtf b/general/datasets/UCSD_AIL_PFC_RNA_Seq_log2_0418/specifics.rtf deleted file mode 100644 index 843d470..0000000 --- a/general/datasets/UCSD_AIL_PFC_RNA_Seq_log2_0418/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Log2 \ No newline at end of file diff --git a/general/datasets/UCSD_AIL_PFC_RNA_Seq_log2_0418/summary.rtf b/general/datasets/UCSD_AIL_PFC_RNA_Seq_log2_0418/summary.rtf deleted file mode 100644 index 37e2d16..0000000 --- a/general/datasets/UCSD_AIL_PFC_RNA_Seq_log2_0418/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Genome wide association analyses (GWAS) in model organisms have numerous advantages compared to human GWAS, including the ability to use populations with well-defined genetic diversity, the ability to collect tissue for gene expression analysis and the ability to perform experimental manipulations. We examined behavioral, physiological, and gene expression traits in 1,063 male and female mice from a 50-generation intercross between two inbred strains (LG/J and SM/J). We used genotyping by sequencing in conjunction with whole genome sequence data from the two founder strains to obtain genotypes at 4.3 million SNPs. As expected, all alleles were common (mean MAF=0.35) and linkage disequilibrium degraded rapidly, providing excellent power and sub-megabase mapping precision. We identified 126 genome-wide significant loci for 50 traits and integrated this information with 7,081 cis-eQTLs and 1,476 trans-eQTLs identified in hippocampus, striatum and prefrontal cortex. We replicated several loci that were identified using an earlier generation of this intercross, including an association between locomotor activity and a locus containing a single gene, Csmd1. We also showed that Csmd1 mutant mice recapitulated the locomotor phenotype. Our results demonstrate the utility of this population, identify numerous novel associations, and provide examples of replication in an independent cohort, which is customary in human genetics, and replication by experimental manipulation, which is a unique advantage of model organisms.

    diff --git a/general/datasets/UCSD_AIL_STR_RNA_Seq_0418/specifics.rtf b/general/datasets/UCSD_AIL_STR_RNA_Seq_0418/specifics.rtf deleted file mode 100644 index fe51d98..0000000 --- a/general/datasets/UCSD_AIL_STR_RNA_Seq_0418/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Striatum \ No newline at end of file diff --git a/general/datasets/UCSD_AIL_STR_RNA_Seq_0418/summary.rtf b/general/datasets/UCSD_AIL_STR_RNA_Seq_0418/summary.rtf deleted file mode 100644 index 37e2d16..0000000 --- a/general/datasets/UCSD_AIL_STR_RNA_Seq_0418/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Genome wide association analyses (GWAS) in model organisms have numerous advantages compared to human GWAS, including the ability to use populations with well-defined genetic diversity, the ability to collect tissue for gene expression analysis and the ability to perform experimental manipulations. We examined behavioral, physiological, and gene expression traits in 1,063 male and female mice from a 50-generation intercross between two inbred strains (LG/J and SM/J). We used genotyping by sequencing in conjunction with whole genome sequence data from the two founder strains to obtain genotypes at 4.3 million SNPs. As expected, all alleles were common (mean MAF=0.35) and linkage disequilibrium degraded rapidly, providing excellent power and sub-megabase mapping precision. We identified 126 genome-wide significant loci for 50 traits and integrated this information with 7,081 cis-eQTLs and 1,476 trans-eQTLs identified in hippocampus, striatum and prefrontal cortex. We replicated several loci that were identified using an earlier generation of this intercross, including an association between locomotor activity and a locus containing a single gene, Csmd1. We also showed that Csmd1 mutant mice recapitulated the locomotor phenotype. Our results demonstrate the utility of this population, identify numerous novel associations, and provide examples of replication in an independent cohort, which is customary in human genetics, and replication by experimental manipulation, which is a unique advantage of model organisms.

    diff --git a/general/datasets/UCSD_AIL_STR_RNA_Seq_log2_0418/specifics.rtf b/general/datasets/UCSD_AIL_STR_RNA_Seq_log2_0418/specifics.rtf deleted file mode 100644 index 843d470..0000000 --- a/general/datasets/UCSD_AIL_STR_RNA_Seq_log2_0418/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Log2 \ No newline at end of file diff --git a/general/datasets/UCSD_AIL_STR_RNA_Seq_log2_0418/summary.rtf b/general/datasets/UCSD_AIL_STR_RNA_Seq_log2_0418/summary.rtf deleted file mode 100644 index 37e2d16..0000000 --- a/general/datasets/UCSD_AIL_STR_RNA_Seq_log2_0418/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Genome wide association analyses (GWAS) in model organisms have numerous advantages compared to human GWAS, including the ability to use populations with well-defined genetic diversity, the ability to collect tissue for gene expression analysis and the ability to perform experimental manipulations. We examined behavioral, physiological, and gene expression traits in 1,063 male and female mice from a 50-generation intercross between two inbred strains (LG/J and SM/J). We used genotyping by sequencing in conjunction with whole genome sequence data from the two founder strains to obtain genotypes at 4.3 million SNPs. As expected, all alleles were common (mean MAF=0.35) and linkage disequilibrium degraded rapidly, providing excellent power and sub-megabase mapping precision. We identified 126 genome-wide significant loci for 50 traits and integrated this information with 7,081 cis-eQTLs and 1,476 trans-eQTLs identified in hippocampus, striatum and prefrontal cortex. We replicated several loci that were identified using an earlier generation of this intercross, including an association between locomotor activity and a locus containing a single gene, Csmd1. We also showed that Csmd1 mutant mice recapitulated the locomotor phenotype. Our results demonstrate the utility of this population, identify numerous novel associations, and provide examples of replication in an independent cohort, which is customary in human genetics, and replication by experimental manipulation, which is a unique advantage of model organisms.

    diff --git a/general/datasets/UCSD_CFW_HIP_RNA_Seq_0117/acknowledgment.rtf b/general/datasets/UCSD_CFW_HIP_RNA_Seq_0117/acknowledgment.rtf deleted file mode 100644 index 24f8c40..0000000 --- a/general/datasets/UCSD_CFW_HIP_RNA_Seq_0117/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The authors wish to acknowledge technical assistance from: D. Godfrey, S. Lionikaite, V. Lionikaite, A.S. Lionikiene and J. Zekos as well as technical and intellectual input from M. Abney, J. Borevitz, K. Broman, N. Cai, R. Cheng, N. Cox, R. Davies, J. Flint, L. Goodstadt, P. Grabowski, B. Harr, E. Leffler, R. Mott, J. Nicod, J. Novembre, A. Price, M. Stephens, D. Weeks and X. Zhou. This project was funded by NIH R01GM097737 and P50DA037844 (A.A.P.), NIH T32DA07255 (C.C.P.), NIH T32GM07197 (N.M.G.), NIH R01AR056280 (D.A.B.), NIH R01AR060234 (C.L.A.-B.), the Fellowship from the Human Frontiers Science Program (P.C.) and the Howard Hughes Medical Institute (J.K.P.).

    diff --git a/general/datasets/UCSD_CFW_HIP_RNA_Seq_0117/cases.rtf b/general/datasets/UCSD_CFW_HIP_RNA_Seq_0117/cases.rtf deleted file mode 100644 index 97eed8a..0000000 --- a/general/datasets/UCSD_CFW_HIP_RNA_Seq_0117/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Phenotype, genotype and RNA-seq gene expression data is available at

    - -

    http://datadryad.org/resource/doi:10.5061/dryad.2rs41

    diff --git a/general/datasets/UCSD_CFW_HIP_RNA_Seq_0117/processing.rtf b/general/datasets/UCSD_CFW_HIP_RNA_Seq_0117/processing.rtf deleted file mode 100644 index 9c368fa..0000000 --- a/general/datasets/UCSD_CFW_HIP_RNA_Seq_0117/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    FPKM data were quantitle normalized for each ENSEMBL gene (mRNA) model (Identifiers such as ENSMUSG00000093778). Every gene/mRNA therefore has a mean expression value of 0 and a perfectly normal distribution, even if the original distribution was bimodal. The QQ plots is GN will be straight lines. There is no data at all on expression level in this original data set downloaded from http://dx.doi.org/10.5061/dryad.2rs41

    diff --git a/general/datasets/UCSD_CFW_HIP_RNA_Seq_0117/specifics.rtf b/general/datasets/UCSD_CFW_HIP_RNA_Seq_0117/specifics.rtf deleted file mode 100644 index 780e837..0000000 --- a/general/datasets/UCSD_CFW_HIP_RNA_Seq_0117/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Hippocampus

    quantitle normalized

    \ No newline at end of file diff --git a/general/datasets/UCSD_CFW_HIP_RNA_Seq_0117/summary.rtf b/general/datasets/UCSD_CFW_HIP_RNA_Seq_0117/summary.rtf deleted file mode 100644 index 0639fe7..0000000 --- a/general/datasets/UCSD_CFW_HIP_RNA_Seq_0117/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Although mice are the most widely used mammalian model organism, genetic studies have suffered from limited mapping resolution due to extensive linkage disequilibrium (LD) that is characteristic of crosses among inbred strains. Carworth Farms White (CFW) mice are a commercially available outbred mouse population that exhibit rapid LD decay in comparison to other available mouse populations. We performed a genome-wide association study (GWAS) of behavioral, physiological and gene expression phenotypes using 1,200 male CFW mice. We used genotyping by sequencing (GBS) to obtain genotypes at 92,734 SNPs. We also measured gene expression using RNA sequencing in three brain regions. Our study identified numerous behavioral, physiological and expression quantitative trait loci (QTLs). We integrated the behavioral QTL and eQTL results to implicate specific genes, including Azi2 in sensitivity to methamphetamine and Zmynd11 in anxiety-like behavior. The combination of CFW mice, GBS and RNA sequencing constitutes a powerful approach to GWAS in mice. Full article available here.

    diff --git a/general/datasets/UCSD_CFW_HIP_RNA_Seq_log2_0117/acknowledgment.rtf b/general/datasets/UCSD_CFW_HIP_RNA_Seq_log2_0117/acknowledgment.rtf deleted file mode 100644 index 24f8c40..0000000 --- a/general/datasets/UCSD_CFW_HIP_RNA_Seq_log2_0117/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The authors wish to acknowledge technical assistance from: D. Godfrey, S. Lionikaite, V. Lionikaite, A.S. Lionikiene and J. Zekos as well as technical and intellectual input from M. Abney, J. Borevitz, K. Broman, N. Cai, R. Cheng, N. Cox, R. Davies, J. Flint, L. Goodstadt, P. Grabowski, B. Harr, E. Leffler, R. Mott, J. Nicod, J. Novembre, A. Price, M. Stephens, D. Weeks and X. Zhou. This project was funded by NIH R01GM097737 and P50DA037844 (A.A.P.), NIH T32DA07255 (C.C.P.), NIH T32GM07197 (N.M.G.), NIH R01AR056280 (D.A.B.), NIH R01AR060234 (C.L.A.-B.), the Fellowship from the Human Frontiers Science Program (P.C.) and the Howard Hughes Medical Institute (J.K.P.).

    diff --git a/general/datasets/UCSD_CFW_HIP_RNA_Seq_log2_0117/cases.rtf b/general/datasets/UCSD_CFW_HIP_RNA_Seq_log2_0117/cases.rtf deleted file mode 100644 index 97eed8a..0000000 --- a/general/datasets/UCSD_CFW_HIP_RNA_Seq_log2_0117/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Phenotype, genotype and RNA-seq gene expression data is available at

    - -

    http://datadryad.org/resource/doi:10.5061/dryad.2rs41

    diff --git a/general/datasets/UCSD_CFW_HIP_RNA_Seq_log2_0117/processing.rtf b/general/datasets/UCSD_CFW_HIP_RNA_Seq_log2_0117/processing.rtf deleted file mode 100644 index 9c368fa..0000000 --- a/general/datasets/UCSD_CFW_HIP_RNA_Seq_log2_0117/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    FPKM data were quantitle normalized for each ENSEMBL gene (mRNA) model (Identifiers such as ENSMUSG00000093778). Every gene/mRNA therefore has a mean expression value of 0 and a perfectly normal distribution, even if the original distribution was bimodal. The QQ plots is GN will be straight lines. There is no data at all on expression level in this original data set downloaded from http://dx.doi.org/10.5061/dryad.2rs41

    diff --git a/general/datasets/UCSD_CFW_HIP_RNA_Seq_log2_0117/specifics.rtf b/general/datasets/UCSD_CFW_HIP_RNA_Seq_log2_0117/specifics.rtf deleted file mode 100644 index 0ef5311..0000000 --- a/general/datasets/UCSD_CFW_HIP_RNA_Seq_log2_0117/specifics.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    Notes: We took the raw fpkm values provided by Apurva from file GN811-UCSD_CFW_RNA-Seq_HIP_raw_FPKM.txt.zip (11M) and transformed to log2 Z-scored. (GN811-UCSD_CFW_RNA-Seq_HIP_log2_ZScore.txt.zip (4.0M))

    - -

    RNA-Seq Log2 Z-score

    - -

    In general, the array data that we put in GeneNetwork has been logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having a standard deviation of 2 units (what we call 2Z + 8 normalized data).  This removes negative values from the tables.

    diff --git a/general/datasets/UCSD_CFW_HIP_RNA_Seq_log2_0117/summary.rtf b/general/datasets/UCSD_CFW_HIP_RNA_Seq_log2_0117/summary.rtf deleted file mode 100644 index 0639fe7..0000000 --- a/general/datasets/UCSD_CFW_HIP_RNA_Seq_log2_0117/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Although mice are the most widely used mammalian model organism, genetic studies have suffered from limited mapping resolution due to extensive linkage disequilibrium (LD) that is characteristic of crosses among inbred strains. Carworth Farms White (CFW) mice are a commercially available outbred mouse population that exhibit rapid LD decay in comparison to other available mouse populations. We performed a genome-wide association study (GWAS) of behavioral, physiological and gene expression phenotypes using 1,200 male CFW mice. We used genotyping by sequencing (GBS) to obtain genotypes at 92,734 SNPs. We also measured gene expression using RNA sequencing in three brain regions. Our study identified numerous behavioral, physiological and expression quantitative trait loci (QTLs). We integrated the behavioral QTL and eQTL results to implicate specific genes, including Azi2 in sensitivity to methamphetamine and Zmynd11 in anxiety-like behavior. The combination of CFW mice, GBS and RNA sequencing constitutes a powerful approach to GWAS in mice. Full article available here.

    diff --git a/general/datasets/UCSD_CFW_PFC_RNA_Seq_0117/acknowledgment.rtf b/general/datasets/UCSD_CFW_PFC_RNA_Seq_0117/acknowledgment.rtf deleted file mode 100644 index 24f8c40..0000000 --- a/general/datasets/UCSD_CFW_PFC_RNA_Seq_0117/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The authors wish to acknowledge technical assistance from: D. Godfrey, S. Lionikaite, V. Lionikaite, A.S. Lionikiene and J. Zekos as well as technical and intellectual input from M. Abney, J. Borevitz, K. Broman, N. Cai, R. Cheng, N. Cox, R. Davies, J. Flint, L. Goodstadt, P. Grabowski, B. Harr, E. Leffler, R. Mott, J. Nicod, J. Novembre, A. Price, M. Stephens, D. Weeks and X. Zhou. This project was funded by NIH R01GM097737 and P50DA037844 (A.A.P.), NIH T32DA07255 (C.C.P.), NIH T32GM07197 (N.M.G.), NIH R01AR056280 (D.A.B.), NIH R01AR060234 (C.L.A.-B.), the Fellowship from the Human Frontiers Science Program (P.C.) and the Howard Hughes Medical Institute (J.K.P.).

    diff --git a/general/datasets/UCSD_CFW_PFC_RNA_Seq_0117/cases.rtf b/general/datasets/UCSD_CFW_PFC_RNA_Seq_0117/cases.rtf deleted file mode 100644 index 97eed8a..0000000 --- a/general/datasets/UCSD_CFW_PFC_RNA_Seq_0117/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Phenotype, genotype and RNA-seq gene expression data is available at

    - -

    http://datadryad.org/resource/doi:10.5061/dryad.2rs41

    diff --git a/general/datasets/UCSD_CFW_PFC_RNA_Seq_0117/processing.rtf b/general/datasets/UCSD_CFW_PFC_RNA_Seq_0117/processing.rtf deleted file mode 100644 index 9c368fa..0000000 --- a/general/datasets/UCSD_CFW_PFC_RNA_Seq_0117/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    FPKM data were quantitle normalized for each ENSEMBL gene (mRNA) model (Identifiers such as ENSMUSG00000093778). Every gene/mRNA therefore has a mean expression value of 0 and a perfectly normal distribution, even if the original distribution was bimodal. The QQ plots is GN will be straight lines. There is no data at all on expression level in this original data set downloaded from http://dx.doi.org/10.5061/dryad.2rs41

    diff --git a/general/datasets/UCSD_CFW_PFC_RNA_Seq_0117/specifics.rtf b/general/datasets/UCSD_CFW_PFC_RNA_Seq_0117/specifics.rtf deleted file mode 100644 index 30656c6..0000000 --- a/general/datasets/UCSD_CFW_PFC_RNA_Seq_0117/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Prefrontal Cortex \ No newline at end of file diff --git a/general/datasets/UCSD_CFW_PFC_RNA_Seq_0117/summary.rtf b/general/datasets/UCSD_CFW_PFC_RNA_Seq_0117/summary.rtf deleted file mode 100644 index 0639fe7..0000000 --- a/general/datasets/UCSD_CFW_PFC_RNA_Seq_0117/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Although mice are the most widely used mammalian model organism, genetic studies have suffered from limited mapping resolution due to extensive linkage disequilibrium (LD) that is characteristic of crosses among inbred strains. Carworth Farms White (CFW) mice are a commercially available outbred mouse population that exhibit rapid LD decay in comparison to other available mouse populations. We performed a genome-wide association study (GWAS) of behavioral, physiological and gene expression phenotypes using 1,200 male CFW mice. We used genotyping by sequencing (GBS) to obtain genotypes at 92,734 SNPs. We also measured gene expression using RNA sequencing in three brain regions. Our study identified numerous behavioral, physiological and expression quantitative trait loci (QTLs). We integrated the behavioral QTL and eQTL results to implicate specific genes, including Azi2 in sensitivity to methamphetamine and Zmynd11 in anxiety-like behavior. The combination of CFW mice, GBS and RNA sequencing constitutes a powerful approach to GWAS in mice. Full article available here.

    diff --git a/general/datasets/UCSD_CFW_PFC_RNA_Seq_log2_0117/acknowledgment.rtf b/general/datasets/UCSD_CFW_PFC_RNA_Seq_log2_0117/acknowledgment.rtf deleted file mode 100644 index 24f8c40..0000000 --- a/general/datasets/UCSD_CFW_PFC_RNA_Seq_log2_0117/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The authors wish to acknowledge technical assistance from: D. Godfrey, S. Lionikaite, V. Lionikaite, A.S. Lionikiene and J. Zekos as well as technical and intellectual input from M. Abney, J. Borevitz, K. Broman, N. Cai, R. Cheng, N. Cox, R. Davies, J. Flint, L. Goodstadt, P. Grabowski, B. Harr, E. Leffler, R. Mott, J. Nicod, J. Novembre, A. Price, M. Stephens, D. Weeks and X. Zhou. This project was funded by NIH R01GM097737 and P50DA037844 (A.A.P.), NIH T32DA07255 (C.C.P.), NIH T32GM07197 (N.M.G.), NIH R01AR056280 (D.A.B.), NIH R01AR060234 (C.L.A.-B.), the Fellowship from the Human Frontiers Science Program (P.C.) and the Howard Hughes Medical Institute (J.K.P.).

    diff --git a/general/datasets/UCSD_CFW_PFC_RNA_Seq_log2_0117/cases.rtf b/general/datasets/UCSD_CFW_PFC_RNA_Seq_log2_0117/cases.rtf deleted file mode 100644 index 97eed8a..0000000 --- a/general/datasets/UCSD_CFW_PFC_RNA_Seq_log2_0117/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Phenotype, genotype and RNA-seq gene expression data is available at

    - -

    http://datadryad.org/resource/doi:10.5061/dryad.2rs41

    diff --git a/general/datasets/UCSD_CFW_PFC_RNA_Seq_log2_0117/processing.rtf b/general/datasets/UCSD_CFW_PFC_RNA_Seq_log2_0117/processing.rtf deleted file mode 100644 index 9c368fa..0000000 --- a/general/datasets/UCSD_CFW_PFC_RNA_Seq_log2_0117/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    FPKM data were quantitle normalized for each ENSEMBL gene (mRNA) model (Identifiers such as ENSMUSG00000093778). Every gene/mRNA therefore has a mean expression value of 0 and a perfectly normal distribution, even if the original distribution was bimodal. The QQ plots is GN will be straight lines. There is no data at all on expression level in this original data set downloaded from http://dx.doi.org/10.5061/dryad.2rs41

    diff --git a/general/datasets/UCSD_CFW_PFC_RNA_Seq_log2_0117/specifics.rtf b/general/datasets/UCSD_CFW_PFC_RNA_Seq_log2_0117/specifics.rtf deleted file mode 100644 index 6077f41..0000000 --- a/general/datasets/UCSD_CFW_PFC_RNA_Seq_log2_0117/specifics.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    RNA-Seq Log2 Z-score

    - -

    In general, the array data that we put in GeneNetwork has been logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data).  This removes negative values from the tables.

    diff --git a/general/datasets/UCSD_CFW_PFC_RNA_Seq_log2_0117/summary.rtf b/general/datasets/UCSD_CFW_PFC_RNA_Seq_log2_0117/summary.rtf deleted file mode 100644 index 0639fe7..0000000 --- a/general/datasets/UCSD_CFW_PFC_RNA_Seq_log2_0117/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Although mice are the most widely used mammalian model organism, genetic studies have suffered from limited mapping resolution due to extensive linkage disequilibrium (LD) that is characteristic of crosses among inbred strains. Carworth Farms White (CFW) mice are a commercially available outbred mouse population that exhibit rapid LD decay in comparison to other available mouse populations. We performed a genome-wide association study (GWAS) of behavioral, physiological and gene expression phenotypes using 1,200 male CFW mice. We used genotyping by sequencing (GBS) to obtain genotypes at 92,734 SNPs. We also measured gene expression using RNA sequencing in three brain regions. Our study identified numerous behavioral, physiological and expression quantitative trait loci (QTLs). We integrated the behavioral QTL and eQTL results to implicate specific genes, including Azi2 in sensitivity to methamphetamine and Zmynd11 in anxiety-like behavior. The combination of CFW mice, GBS and RNA sequencing constitutes a powerful approach to GWAS in mice. Full article available here.

    diff --git a/general/datasets/UCSD_CFW_SPL_RNA_Seq_0117/acknowledgment.rtf b/general/datasets/UCSD_CFW_SPL_RNA_Seq_0117/acknowledgment.rtf deleted file mode 100644 index 24f8c40..0000000 --- a/general/datasets/UCSD_CFW_SPL_RNA_Seq_0117/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The authors wish to acknowledge technical assistance from: D. Godfrey, S. Lionikaite, V. Lionikaite, A.S. Lionikiene and J. Zekos as well as technical and intellectual input from M. Abney, J. Borevitz, K. Broman, N. Cai, R. Cheng, N. Cox, R. Davies, J. Flint, L. Goodstadt, P. Grabowski, B. Harr, E. Leffler, R. Mott, J. Nicod, J. Novembre, A. Price, M. Stephens, D. Weeks and X. Zhou. This project was funded by NIH R01GM097737 and P50DA037844 (A.A.P.), NIH T32DA07255 (C.C.P.), NIH T32GM07197 (N.M.G.), NIH R01AR056280 (D.A.B.), NIH R01AR060234 (C.L.A.-B.), the Fellowship from the Human Frontiers Science Program (P.C.) and the Howard Hughes Medical Institute (J.K.P.).

    diff --git a/general/datasets/UCSD_CFW_SPL_RNA_Seq_0117/cases.rtf b/general/datasets/UCSD_CFW_SPL_RNA_Seq_0117/cases.rtf deleted file mode 100644 index 97eed8a..0000000 --- a/general/datasets/UCSD_CFW_SPL_RNA_Seq_0117/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Phenotype, genotype and RNA-seq gene expression data is available at

    - -

    http://datadryad.org/resource/doi:10.5061/dryad.2rs41

    diff --git a/general/datasets/UCSD_CFW_SPL_RNA_Seq_0117/processing.rtf b/general/datasets/UCSD_CFW_SPL_RNA_Seq_0117/processing.rtf deleted file mode 100644 index 9c368fa..0000000 --- a/general/datasets/UCSD_CFW_SPL_RNA_Seq_0117/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    FPKM data were quantitle normalized for each ENSEMBL gene (mRNA) model (Identifiers such as ENSMUSG00000093778). Every gene/mRNA therefore has a mean expression value of 0 and a perfectly normal distribution, even if the original distribution was bimodal. The QQ plots is GN will be straight lines. There is no data at all on expression level in this original data set downloaded from http://dx.doi.org/10.5061/dryad.2rs41

    diff --git a/general/datasets/UCSD_CFW_SPL_RNA_Seq_0117/specifics.rtf b/general/datasets/UCSD_CFW_SPL_RNA_Seq_0117/specifics.rtf deleted file mode 100644 index 0e70b6c..0000000 --- a/general/datasets/UCSD_CFW_SPL_RNA_Seq_0117/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Striatum

    diff --git a/general/datasets/UCSD_CFW_SPL_RNA_Seq_0117/summary.rtf b/general/datasets/UCSD_CFW_SPL_RNA_Seq_0117/summary.rtf deleted file mode 100644 index 0639fe7..0000000 --- a/general/datasets/UCSD_CFW_SPL_RNA_Seq_0117/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Although mice are the most widely used mammalian model organism, genetic studies have suffered from limited mapping resolution due to extensive linkage disequilibrium (LD) that is characteristic of crosses among inbred strains. Carworth Farms White (CFW) mice are a commercially available outbred mouse population that exhibit rapid LD decay in comparison to other available mouse populations. We performed a genome-wide association study (GWAS) of behavioral, physiological and gene expression phenotypes using 1,200 male CFW mice. We used genotyping by sequencing (GBS) to obtain genotypes at 92,734 SNPs. We also measured gene expression using RNA sequencing in three brain regions. Our study identified numerous behavioral, physiological and expression quantitative trait loci (QTLs). We integrated the behavioral QTL and eQTL results to implicate specific genes, including Azi2 in sensitivity to methamphetamine and Zmynd11 in anxiety-like behavior. The combination of CFW mice, GBS and RNA sequencing constitutes a powerful approach to GWAS in mice. Full article available here.

    diff --git a/general/datasets/UCSD_CFW_STR_RNA_Seq_log2_0117/acknowledgment.rtf b/general/datasets/UCSD_CFW_STR_RNA_Seq_log2_0117/acknowledgment.rtf deleted file mode 100644 index 24f8c40..0000000 --- a/general/datasets/UCSD_CFW_STR_RNA_Seq_log2_0117/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The authors wish to acknowledge technical assistance from: D. Godfrey, S. Lionikaite, V. Lionikaite, A.S. Lionikiene and J. Zekos as well as technical and intellectual input from M. Abney, J. Borevitz, K. Broman, N. Cai, R. Cheng, N. Cox, R. Davies, J. Flint, L. Goodstadt, P. Grabowski, B. Harr, E. Leffler, R. Mott, J. Nicod, J. Novembre, A. Price, M. Stephens, D. Weeks and X. Zhou. This project was funded by NIH R01GM097737 and P50DA037844 (A.A.P.), NIH T32DA07255 (C.C.P.), NIH T32GM07197 (N.M.G.), NIH R01AR056280 (D.A.B.), NIH R01AR060234 (C.L.A.-B.), the Fellowship from the Human Frontiers Science Program (P.C.) and the Howard Hughes Medical Institute (J.K.P.).

    diff --git a/general/datasets/UCSD_CFW_STR_RNA_Seq_log2_0117/cases.rtf b/general/datasets/UCSD_CFW_STR_RNA_Seq_log2_0117/cases.rtf deleted file mode 100644 index 97eed8a..0000000 --- a/general/datasets/UCSD_CFW_STR_RNA_Seq_log2_0117/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Phenotype, genotype and RNA-seq gene expression data is available at

    - -

    http://datadryad.org/resource/doi:10.5061/dryad.2rs41

    diff --git a/general/datasets/UCSD_CFW_STR_RNA_Seq_log2_0117/processing.rtf b/general/datasets/UCSD_CFW_STR_RNA_Seq_log2_0117/processing.rtf deleted file mode 100644 index 9c368fa..0000000 --- a/general/datasets/UCSD_CFW_STR_RNA_Seq_log2_0117/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    FPKM data were quantitle normalized for each ENSEMBL gene (mRNA) model (Identifiers such as ENSMUSG00000093778). Every gene/mRNA therefore has a mean expression value of 0 and a perfectly normal distribution, even if the original distribution was bimodal. The QQ plots is GN will be straight lines. There is no data at all on expression level in this original data set downloaded from http://dx.doi.org/10.5061/dryad.2rs41

    diff --git a/general/datasets/UCSD_CFW_STR_RNA_Seq_log2_0117/specifics.rtf b/general/datasets/UCSD_CFW_STR_RNA_Seq_log2_0117/specifics.rtf deleted file mode 100644 index 6077f41..0000000 --- a/general/datasets/UCSD_CFW_STR_RNA_Seq_log2_0117/specifics.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    RNA-Seq Log2 Z-score

    - -

    In general, the array data that we put in GeneNetwork has been logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data).  This removes negative values from the tables.

    diff --git a/general/datasets/UCSD_CFW_STR_RNA_Seq_log2_0117/summary.rtf b/general/datasets/UCSD_CFW_STR_RNA_Seq_log2_0117/summary.rtf deleted file mode 100644 index 0639fe7..0000000 --- a/general/datasets/UCSD_CFW_STR_RNA_Seq_log2_0117/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Although mice are the most widely used mammalian model organism, genetic studies have suffered from limited mapping resolution due to extensive linkage disequilibrium (LD) that is characteristic of crosses among inbred strains. Carworth Farms White (CFW) mice are a commercially available outbred mouse population that exhibit rapid LD decay in comparison to other available mouse populations. We performed a genome-wide association study (GWAS) of behavioral, physiological and gene expression phenotypes using 1,200 male CFW mice. We used genotyping by sequencing (GBS) to obtain genotypes at 92,734 SNPs. We also measured gene expression using RNA sequencing in three brain regions. Our study identified numerous behavioral, physiological and expression quantitative trait loci (QTLs). We integrated the behavioral QTL and eQTL results to implicate specific genes, including Azi2 in sensitivity to methamphetamine and Zmynd11 in anxiety-like behavior. The combination of CFW mice, GBS and RNA sequencing constitutes a powerful approach to GWAS in mice. Full article available here.

    diff --git a/general/datasets/UConn_RGC_RSeq_log2_0918/specifics.rtf b/general/datasets/UConn_RGC_RSeq_log2_0918/specifics.rtf deleted file mode 100644 index 843d470..0000000 --- a/general/datasets/UConn_RGC_RSeq_log2_0918/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Log2 \ No newline at end of file diff --git a/general/datasets/UConn_RGC_RSeq_log2_0918/summary.rtf b/general/datasets/UConn_RGC_RSeq_log2_0918/summary.rtf deleted file mode 100644 index aab94b8..0000000 --- a/general/datasets/UConn_RGC_RSeq_log2_0918/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Retinal ganglion cells (RGCs) convey the major output of information collected from the eye to the brain. Thirty subtypes of RGCs have been identified to date. Here, we analyze 6225 RGCs (average of 5000 genes per cell) from right and left eyes by single-cell RNA-seq and classify them into 40 subtypes using clustering algorithms. We identify additional subtypes and markers, as well as transcription factors predicted to cooperate in specifying RGC subtypes. Zic1, a marker of the right eye-enriched subtype, is validated by immunostaining in situ. Runx1 and Fst, the markers of other subtypes, are validated in purified RGCs by fluorescent in situ hybridization (FISH) and immunostaining. We show the extent of gene expression variability needed for subtype segregation, and we show a hierarchy in diversification from a cell-type population to subtypes. Finally, we present a website for comparing the gene expression of RGC subtypes.

    - -

    https://www.nature.com/articles/s41467-018-05134-3

    diff --git a/general/datasets/UConn_RGC_RSeq_r_0918/specifics.rtf b/general/datasets/UConn_RGC_RSeq_r_0918/specifics.rtf deleted file mode 100644 index 8c82808..0000000 --- a/general/datasets/UConn_RGC_RSeq_r_0918/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Raw data \ No newline at end of file diff --git a/general/datasets/UConn_RGC_RSeq_r_0918/summary.rtf b/general/datasets/UConn_RGC_RSeq_r_0918/summary.rtf deleted file mode 100644 index aab94b8..0000000 --- a/general/datasets/UConn_RGC_RSeq_r_0918/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Retinal ganglion cells (RGCs) convey the major output of information collected from the eye to the brain. Thirty subtypes of RGCs have been identified to date. Here, we analyze 6225 RGCs (average of 5000 genes per cell) from right and left eyes by single-cell RNA-seq and classify them into 40 subtypes using clustering algorithms. We identify additional subtypes and markers, as well as transcription factors predicted to cooperate in specifying RGC subtypes. Zic1, a marker of the right eye-enriched subtype, is validated by immunostaining in situ. Runx1 and Fst, the markers of other subtypes, are validated in purified RGCs by fluorescent in situ hybridization (FISH) and immunostaining. We show the extent of gene expression variability needed for subtype segregation, and we show a hierarchy in diversification from a cell-type population to subtypes. Finally, we present a website for comparing the gene expression of RGC subtypes.

    - -

    https://www.nature.com/articles/s41467-018-05134-3

    diff --git a/general/datasets/UConn_RGC_RSeq_s_0918/specifics.rtf b/general/datasets/UConn_RGC_RSeq_s_0918/specifics.rtf deleted file mode 100644 index 394e70a..0000000 --- a/general/datasets/UConn_RGC_RSeq_s_0918/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Siamak normalization mapped to our DB \ No newline at end of file diff --git a/general/datasets/UConn_RGC_RSeq_s_0918/summary.rtf b/general/datasets/UConn_RGC_RSeq_s_0918/summary.rtf deleted file mode 100644 index aab94b8..0000000 --- a/general/datasets/UConn_RGC_RSeq_s_0918/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Retinal ganglion cells (RGCs) convey the major output of information collected from the eye to the brain. Thirty subtypes of RGCs have been identified to date. Here, we analyze 6225 RGCs (average of 5000 genes per cell) from right and left eyes by single-cell RNA-seq and classify them into 40 subtypes using clustering algorithms. We identify additional subtypes and markers, as well as transcription factors predicted to cooperate in specifying RGC subtypes. Zic1, a marker of the right eye-enriched subtype, is validated by immunostaining in situ. Runx1 and Fst, the markers of other subtypes, are validated in purified RGCs by fluorescent in situ hybridization (FISH) and immunostaining. We show the extent of gene expression variability needed for subtype segregation, and we show a hierarchy in diversification from a cell-type population to subtypes. Finally, we present a website for comparing the gene expression of RGC subtypes.

    - -

    https://www.nature.com/articles/s41467-018-05134-3

    diff --git a/general/datasets/UFL_MDP_Hipp0814/summary.rtf b/general/datasets/UFL_MDP_Hipp0814/summary.rtf deleted file mode 100644 index 5bf7963..0000000 --- a/general/datasets/UFL_MDP_Hipp0814/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Information regarding of this data set will become available soon

    diff --git a/general/datasets/UND_NIDA_HXB_BXH_IndBP_log2z8_0321/cases.rtf b/general/datasets/UND_NIDA_HXB_BXH_IndBP_log2z8_0321/cases.rtf deleted file mode 100644 index ce39718..0000000 --- a/general/datasets/UND_NIDA_HXB_BXH_IndBP_log2z8_0321/cases.rtf +++ /dev/null @@ -1,1075 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -

    Index

    -
    -

    Strain

    -
    -

    Sex

    -
    -

    TMT Batch

    -
    -

    TMT Channel

    -
    -

    1

    -
    -

    SHR

    -
    -

    M

    -
    -

    1

    -
    -

    sig127C

    -
    -

    2

    -
    -

    SHR

    -
    -

    F

    -
    -

    1

    -
    -

    sig128N

    -
    -

    3

    -
    -

    BN.Lx

    -
    -

    M

    -
    -

    1

    -
    -

    sig129C

    -
    -

    4

    -
    -

    BN.Lx

    -
    -

    F

    -
    -

    1

    -
    -

    sig131N

    -
    -

    5

    -
    -

    HXB18

    -
    -

    F

    -
    -

    1

    -
    -

    sig126

    -
    -

    6

    -
    -

    HXB18

    -
    -

    M

    -
    -

    1

    -
    -

    sig127N

    -
    -

    7

    -
    -

    BXH3

    -
    -

    M

    -
    -

    1

    -
    -

    sig131C

    -
    -

    8

    -
    -

    BXH3

    -
    -

    F

    -
    -

    1

    -
    -

    sig132N

    -
    -

    9

    -
    -

    BXH12

    -
    -

    M

    -
    -

    1

    -
    -

    sig132C

    -
    -

    10

    -
    -

    BXH12

    -
    -

    F

    -
    -

    1

    -
    -

    sig133N

    -
    -

    11

    -
    -

    BXH13

    -
    -

    M

    -
    -

    1

    -
    -

    sig133C

    -
    -

    12

    -
    -

    BXH13

    -
    -

    F

    -
    -

    1

    -
    -

    sig134N

    -
    -

    13

    -
    -

    BXH6

    -
    -

    M

    -
    -

    2

    -
    -

    sig127N

    -
    -

    14

    -
    -

    BXH6

    -
    -

    F

    -
    -

    2

    -
    -

    sig127C

    -
    -

    15

    -
    -

    BXH8

    -
    -

    M

    -
    -

    2

    -
    -

    sig128N

    -
    -

    16

    -
    -

    BXH8

    -
    -

    F

    -
    -

    2

    -
    -

    sig128C

    -
    -

    17

    -
    -

    HXB1

    -
    -

    M

    -
    -

    2

    -
    -

    sig129N

    -
    -

    18

    -
    -

    HXB1

    -
    -

    F

    -
    -

    2

    -
    -

    sig129C

    -
    -

    19

    -
    -

    HXB10

    -
    -

    M

    -
    -

    2

    -
    -

    sig130N

    -
    -

    20

    -
    -

    HXB10

    -
    -

    F

    -
    -

    2

    -
    -

    sig130C

    -
    -

    21

    -
    -

    HXB13

    -
    -

    M

    -
    -

    2

    -
    -

    sig131N

    -
    -

    22

    -
    -

    HXB13

    -
    -

    F

    -
    -

    2

    -
    -

    sig131C

    -
    -

    23

    -
    -

    HXB15

    -
    -

    M

    -
    -

    2

    -
    -

    sig132N

    -
    -

    24

    -
    -

    HXB15

    -
    -

    F

    -
    -

    2

    -
    -

    sig132C

    -
    -

    25

    -
    -

    HXB17

    -
    -

    M

    -
    -

    2

    -
    -

    sig133N

    -
    -

    26

    -
    -

    HXB17

    -
    -

    F

    -
    -

    2

    -
    -

    sig133C

    -
    -

    27

    -
    -

    HXB4

    -
    -

    M

    -
    -

    2

    -
    -

    sig134N

    -
    -

    28

    -
    -

    HXB4

    -
    -

    F

    -
    -

    3

    -
    -

    sig127N

    -
    -

    29

    -
    -

    HXB2

    -
    -

    M

    -
    -

    3

    -
    -

    sig127C

    -
    -

    30

    -
    -

    HXB2

    -
    -

    F

    -
    -

    3

    -
    -

    sig128N

    -
    -

    31

    -
    -

    HXB20

    -
    -

    M

    -
    -

    3

    -
    -

    sig128C

    -
    -

    32

    -
    -

    HXB20

    -
    -

    F

    -
    -

    3

    -
    -

    sig129N

    -
    -

    33

    -
    -

    HXB22

    -
    -

    M

    -
    -

    3

    -
    -

    sig129C

    -
    -

    34

    -
    -

    HXB22

    -
    -

    F

    -
    -

    3

    -
    -

    sig130N

    -
    -

    35

    -
    -

    HXB29

    -
    -

    M

    -
    -

    3

    -
    -

    sig130C

    -
    -

    36

    -
    -

    HXB29

    -
    -

    F

    -
    -

    3

    -
    -

    sig131N

    -
    -

    37

    -
    -

    HXB3

    -
    -

    M

    -
    -

    3

    -
    -

    sig131C

    -
    -

    38

    -
    -

    HXB3

    -
    -

    F

    -
    -

    3

    -
    -

    sig132N

    -
    -

    39

    -
    -

    HXB31

    -
    -

    M

    -
    -

    3

    -
    -

    sig132C

    -
    -

    40

    -
    -

    HXB31

    -
    -

    F

    -
    -

    3

    -
    -

    sig133N

    -
    -

    41

    -
    -

    HXB7

    -
    -

    M

    -
    -

    3

    -
    -

    sig133C

    -
    -

    42

    -
    -

    HXB7

    -
    -

    F

    -
    -

    3

    -
    -

    sig134N

    -
    -

    43

    -
    -

    BXH5

    -
    -

    F

    -
    -

    4

    -
    -

    sig126

    -
    -

    44

    -
    -

    BXH5

    -
    -

    M

    -
    -

    4

    -
    -

    sig127N

    -
    -

    45

    -
    -

    BXH9

    -
    -

    F

    -
    -

    4

    -
    -

    sig127C

    -
    -

    46

    -
    -

    BXH9

    -
    -

    M

    -
    -

    4

    -
    -

    sig128N

    -
    -

    47

    -
    -

    BXH10

    -
    -

    F

    -
    -

    4

    -
    -

    sig128C

    -
    -

    48

    -
    -

    BXH10

    -
    -

    M

    -
    -

    4

    -
    -

    sig129N

    -
    -

    49

    -
    -

    BXH11

    -
    -

    F

    -
    -

    4

    -
    -

    sig129C

    -
    -

    50

    -
    -

    BXH11

    -
    -

    M

    -
    -

    4

    -
    -

    sig130N

    -
    -

    51

    -
    -

    HXB5

    -
    -

    F

    -
    -

    4

    -
    -

    sig130C

    -
    -

    52

    -
    -

    HXB5

    -
    -

    M

    -
    -

    4

    -
    -

    sig131N

    -
    -

    53

    -
    -

    HXB21

    -
    -

    F

    -
    -

    5

    -
    -

    sig126

    -
    -

    54

    -
    -

    HXB21

    -
    -

    M

    -
    -

    5

    -
    -

    sig127N

    -
    -

    55

    -
    -

    HXB23

    -
    -

    F

    -
    -

    5

    -
    -

    sig127C

    -
    -

    56

    -
    -

    HXB23

    -
    -

    M

    -
    -

    5

    -
    -

    sig128N

    -
    -

    57

    -
    -

    HXB24

    -
    -

    F

    -
    -

    5

    -
    -

    sig128C

    -
    -

    58

    -
    -

    HXB24

    -
    -

    M

    -
    -

    5

    -
    -

    sig129N

    -
    -

    59

    -
    -

    HXB25

    -
    -

    F

    -
    -

    5

    -
    -

    sig129C

    -
    -

    60

    -
    -

    HXB25

    -
    -

    M

    -
    -

    5

    -
    -

    sig130N

    -
    -

    61

    -
    -

    HXB27

    -
    -

    F

    -
    -

    5

    -
    -

    sig130C

    -
    -

    62

    -
    -

    HXB27

    -
    -

    M

    -
    -

    5

    -
    -

    sig131N

    -
    diff --git a/general/datasets/UND_NIDA_HXB_BXH_IndBP_log2z8_0321/processing.rtf b/general/datasets/UND_NIDA_HXB_BXH_IndBP_log2z8_0321/processing.rtf deleted file mode 100644 index c05f172..0000000 --- a/general/datasets/UND_NIDA_HXB_BXH_IndBP_log2z8_0321/processing.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    Sample processing protocol: The proteomic data were generated with 3 batches of 16-plex and 2 batches of 11-plex TMT experiments. The rat brain samples from 31 HXB/BXH strains with replicates (i.e., male and female) were lysed, digested, and labeled with either 11 or 16 different TMT tags. The TMT-labeled peptides were pooled with an equal amount of each and fractionated into 42 fractions in a concatenated fashion on an RP-HPLC column (4.6 mm x 250 mm) under basic pH conditions. each fraction was run sequentially on a column (75 μm x 20 cm for the whole proteome, 50 μm x ∼30 cm for phosphoproteome, 1.9 μm C18 resin from Dr. Maisch GmbH, 65°C to reduce backpressure) interfaced with a Q Exactive HF Orbitrap or Fusion MS (Thermo Fisher). Peptides were eluted by a 2-3 hr gradient (buffer A: 0.2% formic acid, 5% DMSO; buffer B: buffer A plus 65% acetonitrile). MS settings included the MS1 scan (410-1600 m/z, 60,000 or 120,000 resolution, 1 × 106 AGC and 50 ms maximal ion time) and 20 data-dependent MS2 scans (fixed first mass of 120 m/z, 60,000 resolution, 1 × 105 AGC, 100-150 ms maximal ion time, HCD, 35%–38% normalized collision energy, ∼1.0 m/z isolation window). 

    - -

    Data processing protocol: The MS/MS raw files are processed using the JUMP searching engine against the UniProt mouse database.  Searches were performed using 8 ppm mass tolerance for precursor ions due to JUMP’s auto mass correction function and 15 ppm for fragment ions, allowing up to two missed trypsin cleavage sites. TMT tags on lysine residues and peptide N termini (+229.162932 Da) were used for static modifications and the dynamic modifications include oxidation of methionine residues (+15.99492 Da). The assigned peptides are filtered by minimal peptide length, maximum miscleavages, mass-to-charge accuracy and matching scores. The peptides are then divided into groups according to peptide length, trypticity, modification, miscleavage, and charge and then further filtered by matching scores to reduce protein or phosphopeptide FDR to below 1%. Proteins or phosphopeptides were quantified by summing reporter ion counts across all matched PSMs using our in-house software.

    - -

    Protein quantification: We first extracted the TMT reporter ion intensities of each PSM and corrected the raw intensities based on the isotopic distribution of each labeling reagent. We discarded PSMs with low intensities (i.e., the minimum intensity of 1,000 and the median intensity of 5,000). After normalizing abundance with the trimmed median intensity of all PSMs, we calculated the mean-centered intensities across samples (e.g., relative intensities between each sample and the mean) and summarized protein relative intensities by averaging related PSMs. Finally, we derived protein absolute intensities by multiplying the relative intensities by the grand mean of the three most highly abundant PSMs. We first used the internal standard to normalize 3 batches of 16-plex experiments and 2 batches of 11-plex experiments. We then used the LIMMA batch removal function to normalize all five batches of TMT experiments.  

    diff --git a/general/datasets/UND_NIDA_HXB_BXH_IndBP_log2z8_0321/specifics.rtf b/general/datasets/UND_NIDA_HXB_BXH_IndBP_log2z8_0321/specifics.rtf deleted file mode 100644 index 2fa1f25..0000000 --- a/general/datasets/UND_NIDA_HXB_BXH_IndBP_log2z8_0321/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Brain Proteome Individual (protein level) \ No newline at end of file diff --git a/general/datasets/UND_NIDA_HXB_BXH_IndBP_log2z8_0321/summary.rtf b/general/datasets/UND_NIDA_HXB_BXH_IndBP_log2z8_0321/summary.rtf deleted file mode 100644 index 94c8e6e..0000000 --- a/general/datasets/UND_NIDA_HXB_BXH_IndBP_log2z8_0321/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Brain proteome data. Deep proteome data were generated using whole brain tissue from both parents and 29 members of the HXB family, one male and one female per strain. Proteins in these samples were identified and quantified using the tandem-mass-tag (TMT) labeling strategy coupled with two-dimensional liquid chromatography-tandem mass spectrometry (LC/LC-MS/MS).

    - -

    This rat whole brain proteome data provide protein expression of 31 HXB/BXH strains, including 29 RI strains, and two parental strains, SHR/OlaIpcv and BN-Lx/Cub. A total of 8,124 proteins were quantified across all 31 strains.

    diff --git a/general/datasets/UND_NIDA_HXB_BXH_IndBPep_log2z8_0321/cases.rtf b/general/datasets/UND_NIDA_HXB_BXH_IndBPep_log2z8_0321/cases.rtf deleted file mode 100644 index ce39718..0000000 --- a/general/datasets/UND_NIDA_HXB_BXH_IndBPep_log2z8_0321/cases.rtf +++ /dev/null @@ -1,1075 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -

    Index

    -
    -

    Strain

    -
    -

    Sex

    -
    -

    TMT Batch

    -
    -

    TMT Channel

    -
    -

    1

    -
    -

    SHR

    -
    -

    M

    -
    -

    1

    -
    -

    sig127C

    -
    -

    2

    -
    -

    SHR

    -
    -

    F

    -
    -

    1

    -
    -

    sig128N

    -
    -

    3

    -
    -

    BN.Lx

    -
    -

    M

    -
    -

    1

    -
    -

    sig129C

    -
    -

    4

    -
    -

    BN.Lx

    -
    -

    F

    -
    -

    1

    -
    -

    sig131N

    -
    -

    5

    -
    -

    HXB18

    -
    -

    F

    -
    -

    1

    -
    -

    sig126

    -
    -

    6

    -
    -

    HXB18

    -
    -

    M

    -
    -

    1

    -
    -

    sig127N

    -
    -

    7

    -
    -

    BXH3

    -
    -

    M

    -
    -

    1

    -
    -

    sig131C

    -
    -

    8

    -
    -

    BXH3

    -
    -

    F

    -
    -

    1

    -
    -

    sig132N

    -
    -

    9

    -
    -

    BXH12

    -
    -

    M

    -
    -

    1

    -
    -

    sig132C

    -
    -

    10

    -
    -

    BXH12

    -
    -

    F

    -
    -

    1

    -
    -

    sig133N

    -
    -

    11

    -
    -

    BXH13

    -
    -

    M

    -
    -

    1

    -
    -

    sig133C

    -
    -

    12

    -
    -

    BXH13

    -
    -

    F

    -
    -

    1

    -
    -

    sig134N

    -
    -

    13

    -
    -

    BXH6

    -
    -

    M

    -
    -

    2

    -
    -

    sig127N

    -
    -

    14

    -
    -

    BXH6

    -
    -

    F

    -
    -

    2

    -
    -

    sig127C

    -
    -

    15

    -
    -

    BXH8

    -
    -

    M

    -
    -

    2

    -
    -

    sig128N

    -
    -

    16

    -
    -

    BXH8

    -
    -

    F

    -
    -

    2

    -
    -

    sig128C

    -
    -

    17

    -
    -

    HXB1

    -
    -

    M

    -
    -

    2

    -
    -

    sig129N

    -
    -

    18

    -
    -

    HXB1

    -
    -

    F

    -
    -

    2

    -
    -

    sig129C

    -
    -

    19

    -
    -

    HXB10

    -
    -

    M

    -
    -

    2

    -
    -

    sig130N

    -
    -

    20

    -
    -

    HXB10

    -
    -

    F

    -
    -

    2

    -
    -

    sig130C

    -
    -

    21

    -
    -

    HXB13

    -
    -

    M

    -
    -

    2

    -
    -

    sig131N

    -
    -

    22

    -
    -

    HXB13

    -
    -

    F

    -
    -

    2

    -
    -

    sig131C

    -
    -

    23

    -
    -

    HXB15

    -
    -

    M

    -
    -

    2

    -
    -

    sig132N

    -
    -

    24

    -
    -

    HXB15

    -
    -

    F

    -
    -

    2

    -
    -

    sig132C

    -
    -

    25

    -
    -

    HXB17

    -
    -

    M

    -
    -

    2

    -
    -

    sig133N

    -
    -

    26

    -
    -

    HXB17

    -
    -

    F

    -
    -

    2

    -
    -

    sig133C

    -
    -

    27

    -
    -

    HXB4

    -
    -

    M

    -
    -

    2

    -
    -

    sig134N

    -
    -

    28

    -
    -

    HXB4

    -
    -

    F

    -
    -

    3

    -
    -

    sig127N

    -
    -

    29

    -
    -

    HXB2

    -
    -

    M

    -
    -

    3

    -
    -

    sig127C

    -
    -

    30

    -
    -

    HXB2

    -
    -

    F

    -
    -

    3

    -
    -

    sig128N

    -
    -

    31

    -
    -

    HXB20

    -
    -

    M

    -
    -

    3

    -
    -

    sig128C

    -
    -

    32

    -
    -

    HXB20

    -
    -

    F

    -
    -

    3

    -
    -

    sig129N

    -
    -

    33

    -
    -

    HXB22

    -
    -

    M

    -
    -

    3

    -
    -

    sig129C

    -
    -

    34

    -
    -

    HXB22

    -
    -

    F

    -
    -

    3

    -
    -

    sig130N

    -
    -

    35

    -
    -

    HXB29

    -
    -

    M

    -
    -

    3

    -
    -

    sig130C

    -
    -

    36

    -
    -

    HXB29

    -
    -

    F

    -
    -

    3

    -
    -

    sig131N

    -
    -

    37

    -
    -

    HXB3

    -
    -

    M

    -
    -

    3

    -
    -

    sig131C

    -
    -

    38

    -
    -

    HXB3

    -
    -

    F

    -
    -

    3

    -
    -

    sig132N

    -
    -

    39

    -
    -

    HXB31

    -
    -

    M

    -
    -

    3

    -
    -

    sig132C

    -
    -

    40

    -
    -

    HXB31

    -
    -

    F

    -
    -

    3

    -
    -

    sig133N

    -
    -

    41

    -
    -

    HXB7

    -
    -

    M

    -
    -

    3

    -
    -

    sig133C

    -
    -

    42

    -
    -

    HXB7

    -
    -

    F

    -
    -

    3

    -
    -

    sig134N

    -
    -

    43

    -
    -

    BXH5

    -
    -

    F

    -
    -

    4

    -
    -

    sig126

    -
    -

    44

    -
    -

    BXH5

    -
    -

    M

    -
    -

    4

    -
    -

    sig127N

    -
    -

    45

    -
    -

    BXH9

    -
    -

    F

    -
    -

    4

    -
    -

    sig127C

    -
    -

    46

    -
    -

    BXH9

    -
    -

    M

    -
    -

    4

    -
    -

    sig128N

    -
    -

    47

    -
    -

    BXH10

    -
    -

    F

    -
    -

    4

    -
    -

    sig128C

    -
    -

    48

    -
    -

    BXH10

    -
    -

    M

    -
    -

    4

    -
    -

    sig129N

    -
    -

    49

    -
    -

    BXH11

    -
    -

    F

    -
    -

    4

    -
    -

    sig129C

    -
    -

    50

    -
    -

    BXH11

    -
    -

    M

    -
    -

    4

    -
    -

    sig130N

    -
    -

    51

    -
    -

    HXB5

    -
    -

    F

    -
    -

    4

    -
    -

    sig130C

    -
    -

    52

    -
    -

    HXB5

    -
    -

    M

    -
    -

    4

    -
    -

    sig131N

    -
    -

    53

    -
    -

    HXB21

    -
    -

    F

    -
    -

    5

    -
    -

    sig126

    -
    -

    54

    -
    -

    HXB21

    -
    -

    M

    -
    -

    5

    -
    -

    sig127N

    -
    -

    55

    -
    -

    HXB23

    -
    -

    F

    -
    -

    5

    -
    -

    sig127C

    -
    -

    56

    -
    -

    HXB23

    -
    -

    M

    -
    -

    5

    -
    -

    sig128N

    -
    -

    57

    -
    -

    HXB24

    -
    -

    F

    -
    -

    5

    -
    -

    sig128C

    -
    -

    58

    -
    -

    HXB24

    -
    -

    M

    -
    -

    5

    -
    -

    sig129N

    -
    -

    59

    -
    -

    HXB25

    -
    -

    F

    -
    -

    5

    -
    -

    sig129C

    -
    -

    60

    -
    -

    HXB25

    -
    -

    M

    -
    -

    5

    -
    -

    sig130N

    -
    -

    61

    -
    -

    HXB27

    -
    -

    F

    -
    -

    5

    -
    -

    sig130C

    -
    -

    62

    -
    -

    HXB27

    -
    -

    M

    -
    -

    5

    -
    -

    sig131N

    -
    diff --git a/general/datasets/UND_NIDA_HXB_BXH_IndBPep_log2z8_0321/processing.rtf b/general/datasets/UND_NIDA_HXB_BXH_IndBPep_log2z8_0321/processing.rtf deleted file mode 100644 index c05f172..0000000 --- a/general/datasets/UND_NIDA_HXB_BXH_IndBPep_log2z8_0321/processing.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    Sample processing protocol: The proteomic data were generated with 3 batches of 16-plex and 2 batches of 11-plex TMT experiments. The rat brain samples from 31 HXB/BXH strains with replicates (i.e., male and female) were lysed, digested, and labeled with either 11 or 16 different TMT tags. The TMT-labeled peptides were pooled with an equal amount of each and fractionated into 42 fractions in a concatenated fashion on an RP-HPLC column (4.6 mm x 250 mm) under basic pH conditions. each fraction was run sequentially on a column (75 μm x 20 cm for the whole proteome, 50 μm x ∼30 cm for phosphoproteome, 1.9 μm C18 resin from Dr. Maisch GmbH, 65°C to reduce backpressure) interfaced with a Q Exactive HF Orbitrap or Fusion MS (Thermo Fisher). Peptides were eluted by a 2-3 hr gradient (buffer A: 0.2% formic acid, 5% DMSO; buffer B: buffer A plus 65% acetonitrile). MS settings included the MS1 scan (410-1600 m/z, 60,000 or 120,000 resolution, 1 × 106 AGC and 50 ms maximal ion time) and 20 data-dependent MS2 scans (fixed first mass of 120 m/z, 60,000 resolution, 1 × 105 AGC, 100-150 ms maximal ion time, HCD, 35%–38% normalized collision energy, ∼1.0 m/z isolation window). 

    - -

    Data processing protocol: The MS/MS raw files are processed using the JUMP searching engine against the UniProt mouse database.  Searches were performed using 8 ppm mass tolerance for precursor ions due to JUMP’s auto mass correction function and 15 ppm for fragment ions, allowing up to two missed trypsin cleavage sites. TMT tags on lysine residues and peptide N termini (+229.162932 Da) were used for static modifications and the dynamic modifications include oxidation of methionine residues (+15.99492 Da). The assigned peptides are filtered by minimal peptide length, maximum miscleavages, mass-to-charge accuracy and matching scores. The peptides are then divided into groups according to peptide length, trypticity, modification, miscleavage, and charge and then further filtered by matching scores to reduce protein or phosphopeptide FDR to below 1%. Proteins or phosphopeptides were quantified by summing reporter ion counts across all matched PSMs using our in-house software.

    - -

    Protein quantification: We first extracted the TMT reporter ion intensities of each PSM and corrected the raw intensities based on the isotopic distribution of each labeling reagent. We discarded PSMs with low intensities (i.e., the minimum intensity of 1,000 and the median intensity of 5,000). After normalizing abundance with the trimmed median intensity of all PSMs, we calculated the mean-centered intensities across samples (e.g., relative intensities between each sample and the mean) and summarized protein relative intensities by averaging related PSMs. Finally, we derived protein absolute intensities by multiplying the relative intensities by the grand mean of the three most highly abundant PSMs. We first used the internal standard to normalize 3 batches of 16-plex experiments and 2 batches of 11-plex experiments. We then used the LIMMA batch removal function to normalize all five batches of TMT experiments.  

    diff --git a/general/datasets/UND_NIDA_HXB_BXH_IndBPep_log2z8_0321/specifics.rtf b/general/datasets/UND_NIDA_HXB_BXH_IndBPep_log2z8_0321/specifics.rtf deleted file mode 100644 index f255583..0000000 --- a/general/datasets/UND_NIDA_HXB_BXH_IndBPep_log2z8_0321/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -UND NIDA Brain Proteome Individual (peptide-level) log2z+8 (Mar21) \ No newline at end of file diff --git a/general/datasets/UND_NIDA_HXB_BXH_IndBPep_log2z8_0321/summary.rtf b/general/datasets/UND_NIDA_HXB_BXH_IndBPep_log2z8_0321/summary.rtf deleted file mode 100644 index 94c8e6e..0000000 --- a/general/datasets/UND_NIDA_HXB_BXH_IndBPep_log2z8_0321/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Brain proteome data. Deep proteome data were generated using whole brain tissue from both parents and 29 members of the HXB family, one male and one female per strain. Proteins in these samples were identified and quantified using the tandem-mass-tag (TMT) labeling strategy coupled with two-dimensional liquid chromatography-tandem mass spectrometry (LC/LC-MS/MS).

    - -

    This rat whole brain proteome data provide protein expression of 31 HXB/BXH strains, including 29 RI strains, and two parental strains, SHR/OlaIpcv and BN-Lx/Cub. A total of 8,124 proteins were quantified across all 31 strains.

    diff --git a/general/datasets/UTHSCWGU88BFMG1013/summary.rtf b/general/datasets/UTHSCWGU88BFMG1013/summary.rtf deleted file mode 100644 index 5798608..0000000 --- a/general/datasets/UTHSCWGU88BFMG1013/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This group of datasets is confidential. Please refer to the contact information above.

    diff --git a/general/datasets/UTHSC_B6D2RI_H_0912/summary.rtf b/general/datasets/UTHSC_B6D2RI_H_0912/summary.rtf deleted file mode 100644 index a0fc73e..0000000 --- a/general/datasets/UTHSC_B6D2RI_H_0912/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -Summary of DatasetId 155, Name: UTHSC B6D2RI Aged Hippocampus Affy Mouse Gene 1.0 ST (Sep12) \ No newline at end of file diff --git a/general/datasets/UTHSC_BXDAgedEx_1116/cases.rtf b/general/datasets/UTHSC_BXDAgedEx_1116/cases.rtf deleted file mode 100644 index fba3fbb..0000000 --- a/general/datasets/UTHSC_BXDAgedEx_1116/cases.rtf +++ /dev/null @@ -1,1894 +0,0 @@ -
    - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexSampleStrainSexAgeBatch
    1R7264HC57BL/6J_1M4891
    2052008.03C57BL/6J_2F6502
    3R7289HC57BL/6J_3M7561
    4052008.01C57BL/6J_4M7562
    5R7269HDBA/2J_1M3671
    6R7185HDBA/2J_2F4331
    7R7301HDBA/2J_3F5661
    8R7265HD2B6F1_1M4921
    9R7304HD2B6F1_2F4951
    10R7276HBXD1_1M3231
    11R7281HBXD1_2F4481
    12051209.20BXD1_3F4772
    13R7261HBXD2_1M3941
    14R7256HBXD2_2F4561
    15022807.04BXD2_3M4832
    16042909.46BXD2_4M6092
    17042909.47BXD2_5F6092
    18R7223HBXD6_1M5261
    19R7198HBXD8_1F4331
    20R7200HBXD8_2F4601
    21R7203HBXD8_3M4711
    22R7294HBXD9_1F4561
    23052008.17BXD9_2M6312
    24052008.18BXD9_3M6312
    25R7300HBXD11_1M4571
    26R7227HBXD11_2F5361
    27021113.01BXD11_3F7412
    28021113.02BXD11_4F7412
    29R7183HBXD12_1F5061
    30R7233HBXD12_2F5611
    31R7234HBXD12_3M6061
    32020409.01BXD12_4F8502
    33020409.03BXD12_5M8502
    34R7238HBXD14_1F6051
    35R7235HBXD14_2M6051
    36022807.11BXD16_1F4552
    37R7239HBXD16_2M4751
    38R7236HBXD16_3F5611
    39R7229HBXD18_1F4931
    40020409.28BXD18_2F5482
    41R7268HBXD19_1M4921
    42R7267HBXD19_2F5511
    43R7263HBXD20_1M4891
    44R7232HBXD20_2M5061
    45R7230HBXD21_1F5371
    46R7260HBXD22_1F5021
    47R7262HBXD22_2M5961
    48020409.08BXD22_3F6752
    49R7257HBXD23_1M4621
    50R7258HBXD23_2F5021
    51020107.15BXD23_3M5122
    52R7228HBXD24_1F4151
    53R7255HBXD24_2F4561
    54R7231HBXD24_3M4701
    55020409.21BXD24_4F6362
    56020409.29BXD24_5F6392
    57052008.36BXD25_1F4302
    58R7252HBXD25_2F4541
    59052008.115BXD25_3M7092
    60R7286HBXD27_1F4721
    61R7170HBXD27_2F4721
    62R7254HBXD28_1M4931
    63R7251HBXD28_2F5431
    64020107.18BXD28_3M6052
    65R7259HBXD29_1F4831
    66040109.92BXD31_1F4452
    67031407.18BXD31_2F4672
    68020409.31BXD31_3F6482
    69042909.71BXD32_1M5662
    70R7244HBXD33_1F4481
    71R7253HBXD33_2M4641
    72R7174HBXD33_3F4711
    73R7270HBXD33_4M6621
    74040109.79BXD33_5F6832
    75050609.35BXD34_1F4142
    76052008.51BXD34_2F5492
    77101513.06BXD34_3F5542
    78101513.07BXD34_4F7482
    79R7247HBXD38_1M4461
    80R7242HBXD38_3F4641
    81020107.25BXD38_4M5302
    82R7173HBXD39_1F5001
    83R7175HBXD39_2M5001
    84R7250HBXD39_3M5361
    85020409.19BXD39_4F6612
    86R7288HBXD40_1F4511
    87051209.56BXD40_2F4512
    88R7210HBXD40_3M4701
    89R7197HBXD40_4M6141
    90042909.19BXD40_5F6332
    91020409.73BXD40_6F7282
    92R7246HBXD42_1M4461
    93R7266HBXD42_2F4861
    94R7280HBXD42_3F5181
    95R7249HBXD43_1F4541
    96R7248HBXD43_2M4621
    97050609.76BXD43_3M6162
    98R7241HBXD44_1M4151
    99R7279HBXD44_2M4191
    100R7243HBXD44_3F4381
    101042607.13BXD44_4F5642
    102042607.14BXD44_5F5642
    103R7176HBXD45_1F4511
    104040109.88BXD45_2M6312
    105R7245HBXD48_1F4991
    106R7220HBXD48_2M5261
    107051209.29BXD48_3M7402
    108101513.10BXD48_4F7402
    109R7299HBXD48a_1F4791
    110R7297HBXD48a_2M4791
    111051209.01BXD48a_3F4792
    112051209.03BXD48a_4M4792
    113051209.52BXD48a_5F6082
    114051209.65BXD48a_6M7482
    115R7224HBXD50_1F5301
    116R7221HBXD50_2M5301
    117050609.04BXD50_3F7782
    118R7177HBXD51_1F4871
    119R7290HBXD51_2M4071
    120041709.11BXD51_3M6212
    121R7222HBXD55_1M5281
    122R7225HBXD55_2F5871
    123052008.134BXD55_3F7782
    124052008.135BXD55_4F7662
    125R7178HBXD56_1M5011
    126051209.66BXD56_2M6942
    127052008.139BXD56_3F7342
    128042909.52BXD60_1M4572
    129101513.14BXD60_2F7592
    130052008.63BXD61_1M6502
    131020409.14BXD61_2F7022
    132121214.20BXD62_1F3532
    133R7291HBXD62_2M4391
    134040109.91BXD62_3F6992
    135R7218HBXD63_1M4381
    136R7215HBXD63_2F4751
    137050609.28BXD63_3M9722
    138R7219HBXD64_1M5281
    139R7216HBXD64_2F5871
    140R7217HBXD65_1F4251
    141050609.39BXD65_2M6012
    142052008.67BXD65_3F8082
    143R7273HBXD65a_1F3891
    144R7277HBXD65a_2M7151
    145061407.15BXD65a_3F5362
    146061407.16BXD65a_4F5362
    147R7271HBXD65b_1M4831
    148R7302HBXD66_1F4461
    149R7214HBXD66_2M4631
    150042507.19BXD66_3M5572
    151042507.20BXD66_4F5572
    152R7278HBXD67_1F4151
    153R7213HBXD67_2M4251
    154R7240HBXD67_3F4991
    155042607.11BXD67_4F6062
    156052008.71BXD67_5F6492
    157R7211HBXD68_1F4151
    158R7212HBXD68_2M4211
    159042607.27BXD68_3F6232
    160042607.28BXD68_4F6232
    161R7305HBXD69_1F5041
    162061913.13BXD69_2F5582
    163112707.08BXD69_3F6022
    164R7207HBXD70_1F4581
    165R7204HBXD70_2M4601
    166042909.28BXD70_3F7612
    167042909.29BXD70_4F7612
    168R7205HBXD71_1M4711
    169R7208HBXD71_2F4741
    170020409.11BXD71_3F7012
    171020409.49BXD71_4F5822
    172R7209HBXD73_1F4701
    173R7206HBXD73_2M4641
    174011007.16BXD73_3F5442
    175052008.81BXD73_4F6422
    176R7181HBXD73a_1F4431
    177061407.18BXD73a_2F4432
    178R7182HBXD73a_3M6141
    179052008.86BXD73a_4M7102
    180031407.10BXD74_1M8042
    181011107.08BXD75_1F5352
    182R7188HBXD76_1F4081
    183R7187HBXD76_2M5641
    184R7179HBXD76_3M5791
    185R7292HRBXD77_1M3471
    186R7201HBXD77_2F4541
    187052008.83BXD77_3F6592
    188R7202HBXD79_1M4851
    189R7199HBXD79_2F5151
    190R7298HBXD79_3M7041
    191050609.25BXD81_1F4342
    192R7190HBXD81_2F4581
    193R7196HBXD81_3M5151
    194R7184HBXD83_1M4411
    195061307.30BXD83_2F6122
    196121907.10BXD83_3M6172
    197R7195HBXD84_1M4741
    198R7296HBXD84_2M4841
    199R7192HBXD84_3F5221
    200020409.80BXD84_4F5642
    201112707.12BXD84_5F5922
    202R7272HBXD85_1M4251
    203R7193HBXD85_2F5061
    204020409.12BXD85_3F7022
    205020409.13BXD85_4F7022
    206R7191HBXD86_1M4251
    207020409.35BXD86_2F6132
    208020409.36BXD86_3F6132
    209R7194HBXD87_1F4251
    210R7303HRBXD87_2M4781
    211R7186HBXD87_3M4421
    212052008.97BXD87_4F6662
    213052008.98BXD87_5M6662
    214R7295HBXD89_1F4461
    215052008.100BXD89_2M6162
    216R7287HBXD90_1M4341
    217R7293HBXD90_2M5581
    218052008.105BXD90_3F4522
    219R7180HBXD95_1F4671
    220R7169HBXD95_2M4671
    221100914.09BXD95_3F5362
    222R7237HBXD98_1M6051
    223R7171HBXD98_2F6391
    224R7275HBXD98_3F4881
    225R7189HBXD99_1M5241
    226R7172HBXD99_2F4711
    227R7282HBXD100_1F4631
    228R7283HBXD100_2M5071
    229R7274HBXD100_3M5771
    230R7226HBXD100_4F4641
    231051209.62BXD100_5M5772
    232R7284HBXD101_1F4901
    233R7285HBXD101_2M4081
    234051112.10BXD101_3F2232
    -
    -
    diff --git a/general/datasets/UTHSC_BXDAgedEx_1116/specifics.rtf b/general/datasets/UTHSC_BXDAgedEx_1116/specifics.rtf deleted file mode 100644 index 7c1a914..0000000 --- a/general/datasets/UTHSC_BXDAgedEx_1116/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Exon Level \ No newline at end of file diff --git a/general/datasets/UTHSC_BXDAgedEx_1116/summary.rtf b/general/datasets/UTHSC_BXDAgedEx_1116/summary.rtf deleted file mode 100644 index 73a0125..0000000 --- a/general/datasets/UTHSC_BXDAgedEx_1116/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This dataset is now public.

    diff --git a/general/datasets/UTHSC_BXDAged_0615/cases.rtf b/general/datasets/UTHSC_BXDAged_0615/cases.rtf deleted file mode 100644 index fba3fbb..0000000 --- a/general/datasets/UTHSC_BXDAged_0615/cases.rtf +++ /dev/null @@ -1,1894 +0,0 @@ -
    - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexSampleStrainSexAgeBatch
    1R7264HC57BL/6J_1M4891
    2052008.03C57BL/6J_2F6502
    3R7289HC57BL/6J_3M7561
    4052008.01C57BL/6J_4M7562
    5R7269HDBA/2J_1M3671
    6R7185HDBA/2J_2F4331
    7R7301HDBA/2J_3F5661
    8R7265HD2B6F1_1M4921
    9R7304HD2B6F1_2F4951
    10R7276HBXD1_1M3231
    11R7281HBXD1_2F4481
    12051209.20BXD1_3F4772
    13R7261HBXD2_1M3941
    14R7256HBXD2_2F4561
    15022807.04BXD2_3M4832
    16042909.46BXD2_4M6092
    17042909.47BXD2_5F6092
    18R7223HBXD6_1M5261
    19R7198HBXD8_1F4331
    20R7200HBXD8_2F4601
    21R7203HBXD8_3M4711
    22R7294HBXD9_1F4561
    23052008.17BXD9_2M6312
    24052008.18BXD9_3M6312
    25R7300HBXD11_1M4571
    26R7227HBXD11_2F5361
    27021113.01BXD11_3F7412
    28021113.02BXD11_4F7412
    29R7183HBXD12_1F5061
    30R7233HBXD12_2F5611
    31R7234HBXD12_3M6061
    32020409.01BXD12_4F8502
    33020409.03BXD12_5M8502
    34R7238HBXD14_1F6051
    35R7235HBXD14_2M6051
    36022807.11BXD16_1F4552
    37R7239HBXD16_2M4751
    38R7236HBXD16_3F5611
    39R7229HBXD18_1F4931
    40020409.28BXD18_2F5482
    41R7268HBXD19_1M4921
    42R7267HBXD19_2F5511
    43R7263HBXD20_1M4891
    44R7232HBXD20_2M5061
    45R7230HBXD21_1F5371
    46R7260HBXD22_1F5021
    47R7262HBXD22_2M5961
    48020409.08BXD22_3F6752
    49R7257HBXD23_1M4621
    50R7258HBXD23_2F5021
    51020107.15BXD23_3M5122
    52R7228HBXD24_1F4151
    53R7255HBXD24_2F4561
    54R7231HBXD24_3M4701
    55020409.21BXD24_4F6362
    56020409.29BXD24_5F6392
    57052008.36BXD25_1F4302
    58R7252HBXD25_2F4541
    59052008.115BXD25_3M7092
    60R7286HBXD27_1F4721
    61R7170HBXD27_2F4721
    62R7254HBXD28_1M4931
    63R7251HBXD28_2F5431
    64020107.18BXD28_3M6052
    65R7259HBXD29_1F4831
    66040109.92BXD31_1F4452
    67031407.18BXD31_2F4672
    68020409.31BXD31_3F6482
    69042909.71BXD32_1M5662
    70R7244HBXD33_1F4481
    71R7253HBXD33_2M4641
    72R7174HBXD33_3F4711
    73R7270HBXD33_4M6621
    74040109.79BXD33_5F6832
    75050609.35BXD34_1F4142
    76052008.51BXD34_2F5492
    77101513.06BXD34_3F5542
    78101513.07BXD34_4F7482
    79R7247HBXD38_1M4461
    80R7242HBXD38_3F4641
    81020107.25BXD38_4M5302
    82R7173HBXD39_1F5001
    83R7175HBXD39_2M5001
    84R7250HBXD39_3M5361
    85020409.19BXD39_4F6612
    86R7288HBXD40_1F4511
    87051209.56BXD40_2F4512
    88R7210HBXD40_3M4701
    89R7197HBXD40_4M6141
    90042909.19BXD40_5F6332
    91020409.73BXD40_6F7282
    92R7246HBXD42_1M4461
    93R7266HBXD42_2F4861
    94R7280HBXD42_3F5181
    95R7249HBXD43_1F4541
    96R7248HBXD43_2M4621
    97050609.76BXD43_3M6162
    98R7241HBXD44_1M4151
    99R7279HBXD44_2M4191
    100R7243HBXD44_3F4381
    101042607.13BXD44_4F5642
    102042607.14BXD44_5F5642
    103R7176HBXD45_1F4511
    104040109.88BXD45_2M6312
    105R7245HBXD48_1F4991
    106R7220HBXD48_2M5261
    107051209.29BXD48_3M7402
    108101513.10BXD48_4F7402
    109R7299HBXD48a_1F4791
    110R7297HBXD48a_2M4791
    111051209.01BXD48a_3F4792
    112051209.03BXD48a_4M4792
    113051209.52BXD48a_5F6082
    114051209.65BXD48a_6M7482
    115R7224HBXD50_1F5301
    116R7221HBXD50_2M5301
    117050609.04BXD50_3F7782
    118R7177HBXD51_1F4871
    119R7290HBXD51_2M4071
    120041709.11BXD51_3M6212
    121R7222HBXD55_1M5281
    122R7225HBXD55_2F5871
    123052008.134BXD55_3F7782
    124052008.135BXD55_4F7662
    125R7178HBXD56_1M5011
    126051209.66BXD56_2M6942
    127052008.139BXD56_3F7342
    128042909.52BXD60_1M4572
    129101513.14BXD60_2F7592
    130052008.63BXD61_1M6502
    131020409.14BXD61_2F7022
    132121214.20BXD62_1F3532
    133R7291HBXD62_2M4391
    134040109.91BXD62_3F6992
    135R7218HBXD63_1M4381
    136R7215HBXD63_2F4751
    137050609.28BXD63_3M9722
    138R7219HBXD64_1M5281
    139R7216HBXD64_2F5871
    140R7217HBXD65_1F4251
    141050609.39BXD65_2M6012
    142052008.67BXD65_3F8082
    143R7273HBXD65a_1F3891
    144R7277HBXD65a_2M7151
    145061407.15BXD65a_3F5362
    146061407.16BXD65a_4F5362
    147R7271HBXD65b_1M4831
    148R7302HBXD66_1F4461
    149R7214HBXD66_2M4631
    150042507.19BXD66_3M5572
    151042507.20BXD66_4F5572
    152R7278HBXD67_1F4151
    153R7213HBXD67_2M4251
    154R7240HBXD67_3F4991
    155042607.11BXD67_4F6062
    156052008.71BXD67_5F6492
    157R7211HBXD68_1F4151
    158R7212HBXD68_2M4211
    159042607.27BXD68_3F6232
    160042607.28BXD68_4F6232
    161R7305HBXD69_1F5041
    162061913.13BXD69_2F5582
    163112707.08BXD69_3F6022
    164R7207HBXD70_1F4581
    165R7204HBXD70_2M4601
    166042909.28BXD70_3F7612
    167042909.29BXD70_4F7612
    168R7205HBXD71_1M4711
    169R7208HBXD71_2F4741
    170020409.11BXD71_3F7012
    171020409.49BXD71_4F5822
    172R7209HBXD73_1F4701
    173R7206HBXD73_2M4641
    174011007.16BXD73_3F5442
    175052008.81BXD73_4F6422
    176R7181HBXD73a_1F4431
    177061407.18BXD73a_2F4432
    178R7182HBXD73a_3M6141
    179052008.86BXD73a_4M7102
    180031407.10BXD74_1M8042
    181011107.08BXD75_1F5352
    182R7188HBXD76_1F4081
    183R7187HBXD76_2M5641
    184R7179HBXD76_3M5791
    185R7292HRBXD77_1M3471
    186R7201HBXD77_2F4541
    187052008.83BXD77_3F6592
    188R7202HBXD79_1M4851
    189R7199HBXD79_2F5151
    190R7298HBXD79_3M7041
    191050609.25BXD81_1F4342
    192R7190HBXD81_2F4581
    193R7196HBXD81_3M5151
    194R7184HBXD83_1M4411
    195061307.30BXD83_2F6122
    196121907.10BXD83_3M6172
    197R7195HBXD84_1M4741
    198R7296HBXD84_2M4841
    199R7192HBXD84_3F5221
    200020409.80BXD84_4F5642
    201112707.12BXD84_5F5922
    202R7272HBXD85_1M4251
    203R7193HBXD85_2F5061
    204020409.12BXD85_3F7022
    205020409.13BXD85_4F7022
    206R7191HBXD86_1M4251
    207020409.35BXD86_2F6132
    208020409.36BXD86_3F6132
    209R7194HBXD87_1F4251
    210R7303HRBXD87_2M4781
    211R7186HBXD87_3M4421
    212052008.97BXD87_4F6662
    213052008.98BXD87_5M6662
    214R7295HBXD89_1F4461
    215052008.100BXD89_2M6162
    216R7287HBXD90_1M4341
    217R7293HBXD90_2M5581
    218052008.105BXD90_3F4522
    219R7180HBXD95_1F4671
    220R7169HBXD95_2M4671
    221100914.09BXD95_3F5362
    222R7237HBXD98_1M6051
    223R7171HBXD98_2F6391
    224R7275HBXD98_3F4881
    225R7189HBXD99_1M5241
    226R7172HBXD99_2F4711
    227R7282HBXD100_1F4631
    228R7283HBXD100_2M5071
    229R7274HBXD100_3M5771
    230R7226HBXD100_4F4641
    231051209.62BXD100_5M5772
    232R7284HBXD101_1F4901
    233R7285HBXD101_2M4081
    234051112.10BXD101_3F2232
    -
    -
    diff --git a/general/datasets/UTHSC_BXDAged_0615/specifics.rtf b/general/datasets/UTHSC_BXDAged_0615/specifics.rtf deleted file mode 100644 index d877bcf..0000000 --- a/general/datasets/UTHSC_BXDAged_0615/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Gene Level

    diff --git a/general/datasets/UTHSC_BXDAged_0615/summary.rtf b/general/datasets/UTHSC_BXDAged_0615/summary.rtf deleted file mode 100644 index 73a0125..0000000 --- a/general/datasets/UTHSC_BXDAged_0615/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This dataset is now public.

    diff --git a/general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/cases.rtf b/general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/cases.rtf deleted file mode 100644 index 9fbf83b..0000000 --- a/general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/cases.rtf +++ /dev/null @@ -1,4336 +0,0 @@ -

    The study included 187 mice (12~18 month) from B6, D2, D2-Gpmnb, B6D2F1, D2B6F1, and 87 advanced intercross BXD strains (about 2 mice per strain). All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    - -

     

    - -

    The table of samples that are finally used for this study.

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -

    Index

    -
    -

    RNA ID

    -
    -

    case ID

    -
    -

    DA_corrected_strain

    -
    -

    Corrected Sex

    -
    -

    AgeAtDeath days

    -
    -

    Tissue

    -
    -

    1

    -
    -

    E18

    -
    -

    050115.16

    -
    -

    BXD75

    -
    -

    Female

    -
    -

    460

    -
    -

    Eyeball

    -
    -

    2

    -
    -

    E19

    -
    -

    050115.17

    -
    -

    BXD75

    -
    -

    Female

    -
    -

    460

    -
    -

    Eyeball

    -
    -

    3

    -
    -

    E21

    -
    -

    042715.10

    -
    -

    D2B6F1

    -
    -

    Female

    -
    -

    500

    -
    -

    Eyeball

    -
    -

    4

    -
    -

    E22

    -
    -

    050115.19

    -
    -

    BXD79

    -
    -

    Female

    -
    -

    468

    -
    -

    Eyeball

    -
    -

    5

    -
    -

    E31

    -
    -

    121515.13

    -
    -

    BXD45

    -
    -

    Female

    -
    -

    507

    -
    -

    Eyeball

    -
    -

    6

    -
    -

    E33

    -
    -

    012615.10

    -
    -

    BXD45

    -
    -

    Female

    -
    -

    384

    -
    -

    Eyeball

    -
    -

    7

    -
    -

    E34

    -
    -

    012615.04

    -
    -

    BXD62

    -
    -

    Female

    -
    -

    376

    -
    -

    Eyeball

    -
    -

    8

    -
    -

    E40

    -
    -

    021213.21

    -
    -

    BXD79

    -
    -

    Female

    -
    -

    378

    -
    -

    Eyeball

    -
    -

    9

    -
    -

    E49

    -
    -

    021213.13

    -
    -

    BXD60

    -
    -

    Female

    -
    -

    530

    -
    -

    Eyeball

    -
    -

    10

    -
    -

    E60

    -
    -

    101713.01

    -
    -

    BXD60

    -
    -

    Female

    -
    -

    374

    -
    -

    Eyeball

    -
    -

    11

    -
    -

    E62

    -
    -

    090612.07

    -
    -

    BXD73b

    -
    -

    Female

    -
    -

    377

    -
    -

    Eyeball

    -
    -

    12

    -
    -

    E63

    -
    -

    090612.08

    -
    -

    BXD73b

    -
    -

    Female

    -
    -

    377

    -
    -

    Eyeball

    -
    -

    13

    -
    -

    E65

    -
    -

    050912.04

    -
    -

    BXD34

    -
    -

    Female

    -
    -

    419

    -
    -

    Eyeball

    -
    -

    14

    -
    -

    E67

    -
    -

    42214.08

    -
    -

    BXD40

    -
    -

    Female

    -
    -

    362

    -
    -

    Eyeball

    -
    -

    15

    -
    -

    E72

    -
    -

    42214.04

    -
    -

    BXD24

    -
    -

    Female

    -
    -

    377

    -
    -

    Eyeball

    -
    -

    16

    -
    -

    E75

    -
    -

    42214.03

    -
    -

    BXD24

    -
    -

    Female

    -
    -

    377

    -
    -

    Eyeball

    -
    -

    17

    -
    -

    E78

    -
    -

    42314.1

    -
    -

    B6D2F1

    -
    -

    Male

    -
    -

    364

    -
    -

    Eyeball

    -
    -

    18

    -
    -

    E82

    -
    -

    121615.05

    -
    -

    BXD62

    -
    -

    Female

    -
    -

    525

    -
    -

    Eyeball

    -
    -

    19

    -
    -

    E87

    -
    -

    101014.10

    -
    -

    BXD95

    -
    -

    Female

    -
    -

    536

    -
    -

    Eyeball

    -
    -

    20

    -
    -

    E89

    -
    -

    121615.22

    -
    -

    BXD89

    -
    -

    Female

    -
    -

    444

    -
    -

    Eyeball

    -
    -

    21

    -
    -

    E90

    -
    -

    101014.09

    -
    -

    BXD95

    -
    -

    Female

    -
    -

    536

    -
    -

    Eyeball

    -
    -

    22

    -
    -

    E99

    -
    -

    121214.15

    -
    -

    BXD70

    -
    -

    Female

    -
    -

    357

    -
    -

    Eyeball

    -
    -

    23

    -
    -

    E100

    -
    -

    121214.16

    -
    -

    BXD70

    -
    -

    Female

    -
    -

    357

    -
    -

    Eyeball

    -
    -

    24

    -
    -

    E124

    -
    -

    042214.18

    -
    -

    D2B6F1

    -
    -

    Male

    -
    -

    397

    -
    -

    Eyeball

    -
    -

    25

    -
    -

    E152

    -
    -

    050912.04

    -
    -

    BXD48a

    -
    -

    Female

    -
    -

    419

    -
    -

    Eyeball

    -
    -

    26

    -
    -

    E158

    -
    -

    101713.02

    -
    -

    BXD100

    -
    -

    Female

    -
    -

    374

    -
    -

    Eyeball

    -
    -

    27

    -
    -

    E224

    -
    -

    021313.26

    -
    -

    BXD84

    -
    -

    Female

    -
    -

    385

    -
    -

    Eyeball

    -
    -

    28

    -
    -

    E264

    -
    -

    *050318.12

    -
    -

    BXD69

    -
    -

    Male

    -
    -

    387

    -
    -

    Eyeball

    -
    -

    29

    -
    -

    E288

    -
    -

    *110918.106

    -
    -

    BXD211

    -
    -

    Male

    -
    -

    404

    -
    -

    Eyeball

    -
    -

    30

    -
    -

    E289

    -
    -

    *110918.105

    -
    -

    BXD211

    -
    -

    Female

    -
    -

    404

    -
    -

    Eyeball

    -
    -

    31

    -
    -

    E290

    -
    -

    *100218.04

    -
    -

    BXD44

    -
    -

    Female

    -
    -

    530

    -
    -

    Eyeball

    -
    -

    32

    -
    -

    E291

    -
    -

    *100218.05

    -
    -

    BXD44

    -
    -

    Male

    -
    -

    530

    -
    -

    Eyeball

    -
    -

    33

    -
    -

    E292

    -
    -

    *100218.18

    -
    -

    BXD68

    -
    -

    Female

    -
    -

    516

    -
    -

    Eyeball

    -
    -

    34

    -
    -

    E293

    -
    -

    *100218.20

    -
    -

    BXD68

    -
    -

    Male

    -
    -

    516

    -
    -

    Eyeball

    -
    -

    35

    -
    -

    E294

    -
    -

    *100218.36

    -
    -

    BXD84

    -
    -

    Female

    -
    -

    516

    -
    -

    Eyeball

    -
    -

    36

    -
    -

    E298

    -
    -

    *100218.73

    -
    -

    BXD184

    -
    -

    Female

    -
    -

    512

    -
    -

    Eyeball

    -
    -

    37

    -
    -

    E299

    -
    -

    *100218.74

    -
    -

    BXD184

    -
    -

    Male

    -
    -

    512

    -
    -

    Eyeball

    -
    -

    38

    -
    -

    E303

    -
    -

    AGE061218.98

    -
    -

    BXD177

    -
    -

    Female

    -
    -

    364

    -
    -

    Eyeball

    -
    -

    39

    -
    -

    E304

    -
    -

    AGE061218.108

    -
    -

    BXD195

    -
    -

    Male

    -
    -

    386

    -
    -

    Eyeball

    -
    -

    40

    -
    -

    E306

    -
    -

    AGE061218.107

    -
    -

    BXD195

    -
    -

    Female

    -
    -

    386

    -
    -

    Eyeball

    -
    -

    41

    -
    -

    E308

    -
    -

    AGE061218.99

    -
    -

    BXD177

    -
    -

    Male

    -
    -

    364

    -
    -

    Eyeball

    -
    -

    42

    -
    -

    E310

    -
    -

    AGE061218.90

    -
    -

    BXD168

    -
    -

    Male

    -
    -

    538

    -
    -

    Eyeball

    -
    -

    43

    -
    -

    E311

    -
    -

    AGE061218.85

    -
    -

    BXD160

    -
    -

    Male

    -
    -

    390

    -
    -

    Eyeball

    -
    -

    44

    -
    -

    E312

    -
    -

    AGE061218.71

    -
    -

    BXD150

    -
    -

    Male

    -
    -

    398

    -
    -

    Eyeball

    -
    -

    45

    -
    -

    E313

    -
    -

    AGE061218.22

    -
    -

    BXD34

    -
    -

    Male

    -
    -

    369

    -
    -

    Eyeball

    -
    -

    46

    -
    -

    E314

    -
    -

    AGE061218.21

    -
    -

    BXD34

    -
    -

    Female

    -
    -

    369

    -
    -

    Eyeball

    -
    -

    47

    -
    -

    E331

    -
    -

    *110918.07

    -
    -

    BXD28

    -
    -

    Male

    -
    -

    366

    -
    -

    Eyeball

    -
    -

    48

    -
    -

    E334

    -
    -

    *110918.02

    -
    -

    BXD18

    -
    -

    Male

    -
    -

    452

    -
    -

    Eyeball

    -
    -

    49

    -
    -

    E335

    -
    -

    *110918.01

    -
    -

    BXD18

    -
    -

    Female

    -
    -

    452

    -
    -

    Eyeball

    -
    -

    50

    -
    -

    E340

    -
    -

    *110918.51

    -
    -

    BXD98

    -
    -

    Male

    -
    -

    359

    -
    -

    Eyeball

    -
    -

    51

    -
    -

    E341

    -
    -

    *110918.50

    -
    -

    BXD98

    -
    -

    Female

    -
    -

    359

    -
    -

    Eyeball

    -
    -

    52

    -
    -

    E344

    -
    -

    *083019.05

    -
    -

    BXD9

    -
    -

    Female

    -
    -

    373

    -
    -

    Eyeball

    -
    -

    53

    -
    -

    E345

    -
    -

    *083019.06

    -
    -

    BXD9

    -
    -

    Male

    -
    -

    373

    -
    -

    Eyeball

    -
    -

    54

    -
    -

    E346

    -
    -

    *083019.22

    -
    -

    BXD31

    -
    -

    Male

    -
    -

    391

    -
    -

    Eyeball

    -
    -

    55

    -
    -

    E347

    -
    -

    *083019.23

    -
    -

    BXD43

    -
    -

    Female

    -
    -

    391

    -
    -

    Eyeball

    -
    -

    56

    -
    -

    E349

    -
    -

    *083019.26

    -
    -

    BXD43

    -
    -

    Male

    -
    -

    367

    -
    -

    Eyeball

    -
    -

    57

    -
    -

    E350

    -
    -

    *083019.30

    -
    -

    BXD50

    -
    -

    Female

    -
    -

    408

    -
    -

    Eyeball

    -
    -

    58

    -
    -

    E351

    -
    -

    *083019.31

    -
    -

    BXD50

    -
    -

    Female

    -
    -

    408

    -
    -

    Eyeball

    -
    -

    59

    -
    -

    E352

    -
    -

    *083019.33

    -
    -

    BXD51

    -
    -

    Female

    -
    -

    368

    -
    -

    Eyeball

    -
    -

    60

    -
    -

    E353

    -
    -

    *083019.34

    -
    -

    BXD51

    -
    -

    Male

    -
    -

    368

    -
    -

    Eyeball

    -
    -

    61

    -
    -

    E354

    -
    -

    *083019.38

    -
    -

    BXD66

    -
    -

    Male

    -
    -

    430

    -
    -

    Eyeball

    -
    -

    62

    -
    -

    E355

    -
    -

    *083019.39

    -
    -

    BXD66

    -
    -

    Male

    -
    -

    430

    -
    -

    Eyeball

    -
    -

    63

    -
    -

    E356

    -
    -

    *083019.45

    -
    -

    BXD73

    -
    -

    Female

    -
    -

    451

    -
    -

    Eyeball

    -
    -

    64

    -
    -

    E357

    -
    -

    *083019.46

    -
    -

    BXD73

    -
    -

    Male

    -
    -

    451

    -
    -

    Eyeball

    -
    -

    65

    -
    -

    E358

    -
    -

    *083019.48

    -
    -

    BXD75

    -
    -

    Female

    -
    -

    369

    -
    -

    Eyeball

    -
    -

    66

    -
    -

    E359

    -
    -

    *083019.49

    -
    -

    BXD75

    -
    -

    Male

    -
    -

    369

    -
    -

    Eyeball

    -
    -

    67

    -
    -

    E360

    -
    -

    *083019.50

    -
    -

    BXD78

    -
    -

    Female

    -
    -

    432

    -
    -

    Eyeball

    -
    -

    68

    -
    -

    E361

    -
    -

    *083019.51

    -
    -

    BXD78

    -
    -

    Male

    -
    -

    432

    -
    -

    Eyeball

    -
    -

    69

    -
    -

    E363

    -
    -

    *083019.55

    -
    -

    BXD87

    -
    -

    Female

    -
    -

    444

    -
    -

    Eyeball

    -
    -

    70

    -
    -

    E364

    -
    -

    *083019.56

    -
    -

    BXD87

    -
    -

    Male

    -
    -

    444

    -
    -

    Eyeball

    -
    -

    71

    -
    -

    E365

    -
    -

    *083019.57

    -
    -

    BXD89

    -
    -

    Female

    -
    -

    446

    -
    -

    Eyeball

    -
    -

    72

    -
    -

    E366

    -
    -

    *083019.66

    -
    -

    BXD113

    -
    -

    Female

    -
    -

    366

    -
    -

    Eyeball

    -
    -

    73

    -
    -

    E367

    -
    -

    *083019.67

    -
    -

    BXD113

    -
    -

    Male

    -
    -

    366

    -
    -

    Eyeball

    -
    -

    74

    -
    -

    E368

    -
    -

    *090119.04

    -
    -

    BXD123

    -
    -

    Female

    -
    -

    441

    -
    -

    Eyeball

    -
    -

    75

    -
    -

    E369

    -
    -

    *090119.05

    -
    -

    BXD123

    -
    -

    Male

    -
    -

    441

    -
    -

    Eyeball

    -
    -

    76

    -
    -

    E370

    -
    -

    *090119.09

    -
    -

    BXD141

    -
    -

    Female

    -
    -

    370

    -
    -

    Eyeball

    -
    -

    77

    -
    -

    E371

    -
    -

    *090119.11

    -
    -

    BXD141

    -
    -

    Male

    -
    -

    370

    -
    -

    Eyeball

    -
    -

    78

    -
    -

    E372

    -
    -

    *090119.15

    -
    -

    BXD151

    -
    -

    Female

    -
    -

    439

    -
    -

    Eyeball

    -
    -

    79

    -
    -

    E373

    -
    -

    *090119.16

    -
    -

    BXD151

    -
    -

    Male

    -
    -

    439

    -
    -

    Eyeball

    -
    -

    80

    -
    -

    E374

    -
    -

    *090119.18

    -
    -

    BXD152

    -
    -

    Female

    -
    -

    374

    -
    -

    Eyeball

    -
    -

    81

    -
    -

    E375

    -
    -

    *090119.19

    -
    -

    BXD152

    -
    -

    Male

    -
    -

    374

    -
    -

    Eyeball

    -
    -

    82

    -
    -

    E376

    -
    -

    *090119.20

    -
    -

    BXD154

    -
    -

    Female

    -
    -

    370

    -
    -

    Eyeball

    -
    -

    83

    -
    -

    E377

    -
    -

    *090119.22

    -
    -

    BXD154

    -
    -

    Male

    -
    -

    370

    -
    -

    Eyeball

    -
    -

    84

    -
    -

    E378

    -
    -

    *090119.24

    -
    -

    BXD155

    -
    -

    Female

    -
    -

    379

    -
    -

    Eyeball

    -
    -

    85

    -
    -

    E379

    -
    -

    *090119.25

    -
    -

    BXD155

    -
    -

    Male

    -
    -

    379

    -
    -

    Eyeball

    -
    -

    86

    -
    -

    E380

    -
    -

    *090119.27

    -
    -

    BXD161

    -
    -

    Female

    -
    -

    376

    -
    -

    Eyeball

    -
    -

    87

    -
    -

    E381

    -
    -

    *090119.28

    -
    -

    BXD161

    -
    -

    Male

    -
    -

    376

    -
    -

    Eyeball

    -
    -

    88

    -
    -

    E382

    -
    -

    *090119.34

    -
    -

    BXD170

    -
    -

    Male

    -
    -

    438

    -
    -

    Eyeball

    -
    -

    89

    -
    -

    E383

    -
    -

    *090119.36

    -
    -

    BXD171

    -
    -

    Female

    -
    -

    370

    -
    -

    Eyeball

    -
    -

    90

    -
    -

    E384

    -
    -

    *090119.37

    -
    -

    BXD171

    -
    -

    Male

    -
    -

    370

    -
    -

    Eyeball

    -
    -

    91

    -
    -

    E385

    -
    -

    *090119.41

    -
    -

    BXD178

    -
    -

    Female

    -
    -

    493

    -
    -

    Eyeball

    -
    -

    92

    -
    -

    E386

    -
    -

    *090119.42

    -
    -

    BXD178

    -
    -

    Female

    -
    -

    493

    -
    -

    Eyeball

    -
    -

    93

    -
    -

    E387

    -
    -

    *090119.44

    -
    -

    BXD180

    -
    -

    Female

    -
    -

    375

    -
    -

    Eyeball

    -
    -

    94

    -
    -

    E390

    -
    -

    *090119.48

    -
    -

    BXD190

    -
    -

    Male

    -
    -

    374

    -
    -

    Eyeball

    -
    -

    95

    -
    -

    E391

    -
    -

    *090119.52

    -
    -

    BXD197

    -
    -

    Female

    -
    -

    433

    -
    -

    Eyeball

    -
    -

    96

    -
    -

    E392

    -
    -

    *090119.53

    -
    -

    BXD197

    -
    -

    Male

    -
    -

    433

    -
    -

    Eyeball

    -
    -

    97

    -
    -

    E395

    -
    -

    *090119.57

    -
    -

    BXD202

    -
    -

    Female

    -
    -

    427

    -
    -

    Eyeball

    -
    -

    98

    -
    -

    E399

    -
    -

    *090119.67

    -
    -

    BXD218

    -
    -

    Female

    -
    -

    412

    -
    -

    Eyeball

    -
    -

    99

    -
    -

    E400

    -
    -

    *090119.68

    -
    -

    BXD218

    -
    -

    Male

    -
    -

    412

    -
    -

    Eyeball

    -
    -

    100

    -
    -

    E448

    -
    -

    *100819.101

    -
    -

    BXD111

    -
    -

    Female

    -
    -

    373

    -
    -

    Eyeball

    -
    -

    101

    -
    -

    E449

    -
    -

    *100819.102

    -
    -

    BXD111

    -
    -

    Male

    -
    -

    373

    -
    -

    Eyeball

    -
    -

    102

    -
    -

    E450

    -
    -

    *100819.104

    -
    -

    BXD122

    -
    -

    Female

    -
    -

    383

    -
    -

    Eyeball

    -
    -

    103

    -
    -

    E451

    -
    -

    *100819.105

    -
    -

    BXD122

    -
    -

    Male

    -
    -

    383

    -
    -

    Eyeball

    -
    -

    104

    -
    -

    E452

    -
    -

    *100819.107

    -
    -

    BXD124

    -
    -

    Female

    -
    -

    366

    -
    -

    Eyeball

    -
    -

    105

    -
    -

    E453

    -
    -

    *100819.108

    -
    -

    BXD124

    -
    -

    Male

    -
    -

    366

    -
    -

    Eyeball

    -
    -

    106

    -
    -

    E454

    -
    -

    *100819.110

    -
    -

    BXD125

    -
    -

    Female

    -
    -

    376

    -
    -

    Eyeball

    -
    -

    107

    -
    -

    E455

    -
    -

    *100819.111

    -
    -

    BXD125

    -
    -

    Male

    -
    -

    376

    -
    -

    Eyeball

    -
    -

    108

    -
    -

    E459

    -
    -

    *100819.131

    -
    -

    BXD172

    -
    -

    Female

    -
    -

    375

    -
    -

    Eyeball

    -
    -

    109

    -
    -

    E460

    -
    -

    *100819.132

    -
    -

    BXD172

    -
    -

    Male

    -
    -

    375

    -
    -

    Eyeball

    -
    -

    110

    -
    -

    E482

    -
    -

    *052220.14

    -
    -

    BXD71

    -
    -

    Female

    -
    -

    396

    -
    -

    Eyeball

    -
    -

    111

    -
    -

    E483

    -
    -

    *052220.10

    -
    -

    BXD11

    -
    -

    Female

    -
    -

    379

    -
    -

    Eyeball

    -
    -

    112

    -
    -

    E484

    -
    -

    *052220.07

    -
    -

    BXD65

    -
    -

    Male

    -
    -

    528

    -
    -

    Eyeball

    -
    -

    113

    -
    -

    E485

    -
    -

    *052220.03

    -
    -

    BXD194

    -
    -

    Male

    -
    -

    396

    -
    -

    Eyeball

    -
    -

    114

    -
    -

    E486

    -
    -

    *052220.19

    -
    -

    BXD15

    -
    -

    Female

    -
    -

    415

    -
    -

    Eyeball

    -
    -

    115

    -
    -

    E487

    -
    -

    *052220.02

    -
    -

    BXD194

    -
    -

    Female

    -
    -

    396

    -
    -

    Eyeball

    -
    -

    116

    -
    -

    E488

    -
    -

    *052220.12

    -
    -

    BXD1

    -
    -

    Female

    -
    -

    429

    -
    -

    Eyeball

    -
    -

    117

    -
    -

    E489

    -
    -

    *052220.18

    -
    -

    BXD216

    -
    -

    Male

    -
    -

    401

    -
    -

    Eyeball

    -
    -

    118

    -
    -

    E490

    -
    -

    *052220.13

    -
    -

    BXD1

    -
    -

    Male

    -
    -

    429

    -
    -

    Eyeball

    -
    -

    119

    -
    -

    E494

    -
    -

    *052220.15

    -
    -

    BXD71

    -
    -

    Male

    -
    -

    396

    -
    -

    Eyeball

    -
    -

    120

    -
    -

    E496

    -
    -

    *052220.08

    -
    -

    BXD170

    -
    -

    Male

    -
    -

    360

    -
    -

    Eyeball

    -
    -

    121

    -
    -

    E498

    -
    -

    *052220.06

    -
    -

    BXD65

    -
    -

    Female

    -
    -

    528

    -
    -

    Eyeball

    -
    -

    122

    -
    -

    E499

    -
    -

    *052220.05

    -
    -

    C57BL/6J

    -
    -

    Male

    -
    -

    424

    -
    -

    Eyeball

    -
    -

    123

    -
    -

    E501

    -
    -

    *052220.21

    -
    -

    BXD73a

    -
    -

    Female

    -
    -

    408

    -
    -

    Eyeball

    -
    -

    124

    -
    -

    E502

    -
    -

    *052220.11

    -
    -

    BXD11

    -
    -

    Male

    -
    -

    379

    -
    -

    Eyeball

    -
    -

    125

    -
    -

    E503

    -
    -

    *052220.22

    -
    -

    DBA/2J-Gpnmb

    -
    -

    Female

    -
    -

    439

    -
    -

    Eyeball

    -
    -

    126

    -
    -

    E504

    -
    -

    *052220.20

    -
    -

    BXD15

    -
    -

    Male

    -
    -

    415

    -
    -

    Eyeball

    -
    -

    127

    -
    -

    E541

    -
    -

    042915.08

    -
    -

    BXD29

    -
    -

    Female

    -
    -

    478

    -
    -

    Eyeball

    -
    -

    128

    -
    -

    E542

    -
    -

    050115.01

    -
    -

    BXD65b

    -
    -

    Female

    -
    -

    415

    -
    -

    Eyeball

    -
    -

    129

    -
    -

    E543

    -
    -

    042915.07

    -
    -

    BXD29

    -
    -

    Female

    -
    -

    431

    -
    -

    Eyeball

    -
    -

    130

    -
    -

    E544

    -
    -

    042314.12

    -
    -

    B6D2F1

    -
    -

    Female

    -
    -

    364

    -
    -

    Eyeball

    -
    -

    131

    -
    -

    E548

    -
    -

    *061119.02

    -
    -

    C57BL/6J

    -
    -

    Female

    -
    -

    392

    -
    -

    Eyeball

    -
    -

    132

    -
    -

    E549

    -
    -

    *061119.03

    -
    -

    C57BL/6J

    -
    -

    Male

    -
    -

    392

    -
    -

    Eyeball

    -
    -

    133

    -
    -

    E551

    -
    -

    *061119.11

    -
    -

    DBA/2J

    -
    -

    Female

    -
    -

    392

    -
    -

    Eyeball

    -
    -

    134

    -
    -

    E552

    -
    -

    *061119.12

    -
    -

    DBA/2J

    -
    -

    Male

    -
    -

    392

    -
    -

    Eyeball

    -
    -

    135

    -
    -

    E554

    -
    -

    *061119.15

    -
    -

    DBA/2J

    -
    -

    Male

    -
    -

    392

    -
    -

    Eyeball

    -
    -

    136

    -
    -

    E556

    -
    -

    *061119.22

    -
    -

    DBA/2J

    -
    -

    Male

    -
    -

    380

    -
    -

    Eyeball

    -
    -

    137

    -
    -

    E561

    -
    -

    *061219.12

    -
    -

    BXD27

    -
    -

    Female

    -
    -

    494

    -
    -

    Eyeball

    -
    -

    138

    -
    -

    E564

    -
    -

    *061219.14

    -
    -

    BXD27

    -
    -

    Male

    -
    -

    494

    -
    -

    Eyeball

    -
    -

    139

    -
    -

    E565

    -
    -

    *060419.04

    -
    -

    BXD32

    -
    -

    Female

    -
    -

    425

    -
    -

    Eyeball

    -
    -

    140

    -
    -

    E566

    -
    -

    *060419.05

    -
    -

    BXD32

    -
    -

    Male

    -
    -

    425

    -
    -

    Eyeball

    -
    -

    141

    -
    -

    E567

    -
    -

    *070919.01

    -
    -

    BXD86

    -
    -

    Female

    -
    -

    381

    -
    -

    Eyeball

    -
    -

    142

    -
    -

    E569

    -
    -

    *070919.03

    -
    -

    BXD86

    -
    -

    Male

    -
    -

    381

    -
    -

    Eyeball

    -
    -

    143

    -
    -

    E576

    -
    -

    *072519.11

    -
    -

    BXD191

    -
    -

    Male

    -
    -

    477

    -
    -

    Eyeball

    -
    -

    144

    -
    -

    E577

    -
    -

    *072519.09

    -
    -

    BXD190

    -
    -

    Male

    -
    -

    434

    -
    -

    Eyeball

    -
    -

    145

    -
    -

    E582

    -
    -

    *073019.16

    -
    -

    BXD216

    -
    -

    Male

    -
    -

    459

    -
    -

    Eyeball

    -
    -

    146

    -
    -

    E591

    -
    -

    *061319.04

    -
    -

    BXD48

    -
    -

    Female

    -
    -

    425

    -
    -

    Eyeball

    -
    -

    147

    -
    -

    E592

    -
    -

    *061319.05

    -
    -

    BXD48

    -
    -

    Male

    -
    -

    425

    -
    -

    Eyeball

    -
    -

    148

    -
    -

    E593

    -
    -

    *061319.21

    -
    -

    BXD61

    -
    -

    Male

    -
    -

    459

    -
    -

    Eyeball

    -
    -

    149

    -
    -

    E600

    -
    -

    *050318.10

    -
    -

    BXD69

    -
    -

    Female

    -
    -

    387

    -
    -

    Eyeball

    -
    -

    150

    -
    -

    E601

    -
    -

    *013020.53

    -
    -

    BXD102

    -
    -

    Male

    -
    -

    416

    -
    -

    Eyeball

    -
    -

    151

    -
    -

    E603

    -
    -

    *013020.25

    -
    -

    BXD65b

    -
    -

    Male

    -
    -

    505

    -
    -

    Eyeball

    -
    -

    152

    -
    -

    E605

    -
    -

    *013020.54

    -
    -

    BXD102

    -
    -

    Female

    -
    -

    416

    -
    -

    Eyeball

    -
    -

    153

    -
    -

    E620

    -
    -

    *012420.26

    -
    -

    BXD128a

    -
    -

    Male

    -
    -

    366

    -
    -

    Eyeball

    -
    -

    154

    -
    -

    E625

    -
    -

    *110918.54

    -
    -

    BXD101

    -
    -

    Male

    -
    -

    361

    -
    -

    Eyeball

    -
    -

    155

    -
    -

    E626

    -
    -

    *110918.53

    -
    -

    BXD101

    -
    -

    Female

    -
    -

    361

    -
    -

    Eyeball

    -
    -

    156

    -
    -

    E631

    -
    -

    *083019.14

    -
    -

    BXD16

    -
    -

    Female

    -
    -

    363

    -
    -

    Eyeball

    -
    -

    157

    -
    -

    E635

    -
    -

    *083019.35

    -
    -

    BXD61

    -
    -

    Male

    -
    -

    364

    -
    -

    Eyeball

    -
    -

    158

    -
    -

    E638

    -
    -

    *083019.60

    -
    -

    BXD90

    -
    -

    Female

    -
    -

    378

    -
    -

    Eyeball

    -
    -

    159

    -
    -

    E639

    -
    -

    *083019.62

    -
    -

    BXD90

    -
    -

    Male

    -
    -

    378

    -
    -

    Eyeball

    -
    -

    160

    -
    -

    E662

    -
    -

    *100819.153

    -
    -

    BXD202

    -
    -

    Male

    -
    -

    410

    -
    -

    Eyeball

    -
    -

    161

    -
    -

    E663

    -
    -

    *100819.157

    -
    -

    BXD205

    -
    -

    Female

    -
    -

    371

    -
    -

    Eyeball

    -
    -

    162

    -
    -

    E664

    -
    -

    *100819.158

    -
    -

    BXD205

    -
    -

    Male

    -
    -

    372

    -
    -

    Eyeball

    -
    -

    163

    -
    -

    E665

    -
    -

    *100819.163

    -
    -

    BXD213

    -
    -

    Female

    -
    -

    396

    -
    -

    Eyeball

    -
    -

    164

    -
    -

    E666

    -
    -

    *100819.164

    -
    -

    BXD213

    -
    -

    Male

    -
    -

    397

    -
    -

    Eyeball

    -
    -

    165

    -
    -

    E667

    -
    -

    *100819.168

    -
    -

    BXD223

    -
    -

    Female

    -
    -

    419

    -
    -

    Eyeball

    -
    -

    166

    -
    -

    E668

    -
    -

    *100819.169

    -
    -

    BXD223

    -
    -

    Male

    -
    -

    420

    -
    -

    Eyeball

    -
    -

    167

    -
    -

    E672

    -
    -

    *052920.10

    -
    -

    BXD83

    -
    -

    Male

    -
    -

    380

    -
    -

    Eyeball

    -
    -

    168

    -
    -

    E675

    -
    -

    *052920.13

    -
    -

    DBA/2J-Gpnmb

    -
    -

    Female

    -
    -

    452

    -
    -

    Eyeball

    -
    -

    169

    -
    -

    E679

    -
    -

    *052920.12

    -
    -

    DBA/2J-Gpnmb

    -
    -

    Female

    -
    -

    458

    -
    -

    Eyeball

    -
    -

    170

    -
    -

    E680

    -
    -

    *052920.01

    -
    -

    BXD43

    -
    -

    Female

    -
    -

    465

    -
    -

    Eyeball

    -
    -

    171

    -
    -

    E682

    -
    -

    *052920.02

    -
    -

    C57BL/6J

    -
    -

    Female

    -
    -

    433

    -
    -

    Eyeball

    -
    -

    172

    -
    -

    E685

    -
    -

    *052920.09

    -
    -

    BXD83

    -
    -

    Female

    -
    -

    379

    -
    -

    Eyeball

    -
    -

    173

    -
    -

    E699

    -
    -

    *072120.14

    -
    -

    BXD40

    -
    -

    Male

    -
    -

    458

    -
    -

    Eyeball

    -
    -

    174

    -
    -

    E709

    -
    -

    *072120.24

    -
    -

    BXD150

    -
    -

    Female

    -
    -

    433

    -
    -

    Eyeball

    -
    -

    175

    -
    -

    E712

    -
    -

    *072120.27

    -
    -

    BXD160

    -
    -

    Female

    -
    -

    367

    -
    -

    Eyeball

    -
    -

    176

    -
    -

    E726

    -
    -

    *072120.41

    -
    -

    BXD16

    -
    -

    Female

    -
    -

    367

    -
    -

    Eyeball

    -
    -

    177

    -
    -

    E733

    -
    -

    *072120.48

    -
    -

    BXD60

    -
    -

    Female

    -
    -

    558

    -
    -

    Eyeball

    -
    -

    178

    -
    -

    E735

    -
    -

    *072120.50

    -
    -

    BXD180

    -
    -

    Male

    -
    -

    473

    -
    -

    Eyeball

    -
    -

    179

    -
    -

    E738

    -
    -

    *072120.53

    -
    -

    BXD128a

    -
    -

    Female

    -
    -

    387

    -
    -

    Eyeball

    -
    -

    180

    -
    -

    E745

    -
    -

    *072120.60

    -
    -

    BXD199

    -
    -

    Female

    -
    -

    457

    -
    -

    Eyeball

    -
    -

    181

    -
    -

    E746

    -
    -

    *072120.61

    -
    -

    BXD199

    -
    -

    Male

    -
    -

    457

    -
    -

    Eyeball

    -
    -

    182

    -
    -

    E749

    -
    -

    *072120.64

    -
    -

    BXD2

    -
    -

    Female

    -
    -

    399

    -
    -

    Eyeball

    -
    -

    183

    -
    -

    E750

    -
    -

    *072120.65

    -
    -

    BXD2

    -
    -

    Male

    -
    -

    399

    -
    -

    Eyeball

    -
    -

    184

    -
    -

    E753

    -
    -

    *072120.68

    -
    -

    BXD169

    -
    -

    Female

    -
    -

    441

    -
    -

    Eyeball

    -
    -

    185

    -
    -

    E754

    -
    -

    *072120.69

    -
    -

    BXD169

    -
    -

    Male

    -
    -

    441

    -
    -

    Eyeball

    -
    -

    186

    -
    -

    E759

    -
    -

    *072120.72

    -
    -

    BXD187

    -
    -

    Female

    -
    -

    354

    -
    -

    Eyeball

    -
    -

    187

    -
    -

    E760

    -
    -

    *072120.73

    -
    -

    BXD187

    -
    -

    Male

    -
    -

    354

    -
    -

    Eyeball

    -
    - -

     

    diff --git a/general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/experiment-design.rtf b/general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/experiment-design.rtf deleted file mode 100644 index e7afcee..0000000 --- a/general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    RNA Extraction

    - -

    Total RNA was extracted using MIRNEASY MINI KIT (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.  according to the manufacturer’s instructions. Approximately 30 mg of PFC tissue was added into a 2 ml tube containing 700ul QIAzol Lysis Reagent and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 minutes in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 r followed by incubating for 5 minutes.140 µl chloroform was added into the homogenate, shaken vigorously for 15 seconds, and centrifuged for 15 minutes at 12,000 x g at 4 â„ƒ. 280 µl upper aqueous was then transferred into a new collection tube containing 500 µl 100% ethanol. The mixture was loaded into a RNeasy mini‐spin column (Qiagen, Valencia, CA, USA), once with Buffer RWT and twice with Buffer RPE purification. All RNA had been verified by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA with OD260/280 > 1.8 and RIN > 7.0 were used for library preparation

    diff --git a/general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/notes.rtf b/general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/notes.rtf deleted file mode 100644 index d622df7..0000000 --- a/general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/notes.rtf +++ /dev/null @@ -1 +0,0 @@ -

    UTHSC BXD Young Aged Eye RNA-Seq (Apr22) DESeq2 rlog2

    diff --git a/general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/processing.rtf b/general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/processing.rtf deleted file mode 100644 index 7ddb89f..0000000 --- a/general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/processing.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

    Generation of RNA-seq data

    - -

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    - -

     

    - -

    Read mapping and normalization

    - -

    Mus musculus (mouse) reference genome (mm11 Mus_musculus.GRCm39, release 104) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Rows with no gene symbol name were deleted. Indices of the reference genome were  built using STAR version 2.5.2b and paired-end reads were aligned to the reference genome. FeatureCount from package RsubRead, version 1.32.4, was used to count the number of read mapped to each gene. Raw counts were then normalized and log2 transformed using function rlogTransformation from the DESeq2 package (version 1.16.1) and an increment was added to the normalized values to make all values positive.

    diff --git a/general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/specifics.rtf b/general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/specifics.rtf deleted file mode 100644 index 2e5de4e..0000000 --- a/general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -UTHSC BXD Old Aged Eye RNA-Seq (Apr22) DESeq2 rlog2 \ No newline at end of file diff --git a/general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/tissue.rtf b/general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/tissue.rtf deleted file mode 100644 index 126ab9f..0000000 --- a/general/datasets/UTHSC_BXDOldEyeRNAseq_DESeq2_rlog2_0422/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Tissue Harvest 

    - -

    The animals were sacrificed under saturated isoflurane. Eyeballs from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/UTHSC_BXDYgEyeRNAseq_DESeq2_rlog2_0422/cases.rtf b/general/datasets/UTHSC_BXDYgEyeRNAseq_DESeq2_rlog2_0422/cases.rtf deleted file mode 100644 index 9fbf83b..0000000 --- a/general/datasets/UTHSC_BXDYgEyeRNAseq_DESeq2_rlog2_0422/cases.rtf +++ /dev/null @@ -1,4336 +0,0 @@ -

    The study included 187 mice (12~18 month) from B6, D2, D2-Gpmnb, B6D2F1, D2B6F1, and 87 advanced intercross BXD strains (about 2 mice per strain). All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    - -

     

    - -

    The table of samples that are finally used for this study.

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -

    Index

    -
    -

    RNA ID

    -
    -

    case ID

    -
    -

    DA_corrected_strain

    -
    -

    Corrected Sex

    -
    -

    AgeAtDeath days

    -
    -

    Tissue

    -
    -

    1

    -
    -

    E18

    -
    -

    050115.16

    -
    -

    BXD75

    -
    -

    Female

    -
    -

    460

    -
    -

    Eyeball

    -
    -

    2

    -
    -

    E19

    -
    -

    050115.17

    -
    -

    BXD75

    -
    -

    Female

    -
    -

    460

    -
    -

    Eyeball

    -
    -

    3

    -
    -

    E21

    -
    -

    042715.10

    -
    -

    D2B6F1

    -
    -

    Female

    -
    -

    500

    -
    -

    Eyeball

    -
    -

    4

    -
    -

    E22

    -
    -

    050115.19

    -
    -

    BXD79

    -
    -

    Female

    -
    -

    468

    -
    -

    Eyeball

    -
    -

    5

    -
    -

    E31

    -
    -

    121515.13

    -
    -

    BXD45

    -
    -

    Female

    -
    -

    507

    -
    -

    Eyeball

    -
    -

    6

    -
    -

    E33

    -
    -

    012615.10

    -
    -

    BXD45

    -
    -

    Female

    -
    -

    384

    -
    -

    Eyeball

    -
    -

    7

    -
    -

    E34

    -
    -

    012615.04

    -
    -

    BXD62

    -
    -

    Female

    -
    -

    376

    -
    -

    Eyeball

    -
    -

    8

    -
    -

    E40

    -
    -

    021213.21

    -
    -

    BXD79

    -
    -

    Female

    -
    -

    378

    -
    -

    Eyeball

    -
    -

    9

    -
    -

    E49

    -
    -

    021213.13

    -
    -

    BXD60

    -
    -

    Female

    -
    -

    530

    -
    -

    Eyeball

    -
    -

    10

    -
    -

    E60

    -
    -

    101713.01

    -
    -

    BXD60

    -
    -

    Female

    -
    -

    374

    -
    -

    Eyeball

    -
    -

    11

    -
    -

    E62

    -
    -

    090612.07

    -
    -

    BXD73b

    -
    -

    Female

    -
    -

    377

    -
    -

    Eyeball

    -
    -

    12

    -
    -

    E63

    -
    -

    090612.08

    -
    -

    BXD73b

    -
    -

    Female

    -
    -

    377

    -
    -

    Eyeball

    -
    -

    13

    -
    -

    E65

    -
    -

    050912.04

    -
    -

    BXD34

    -
    -

    Female

    -
    -

    419

    -
    -

    Eyeball

    -
    -

    14

    -
    -

    E67

    -
    -

    42214.08

    -
    -

    BXD40

    -
    -

    Female

    -
    -

    362

    -
    -

    Eyeball

    -
    -

    15

    -
    -

    E72

    -
    -

    42214.04

    -
    -

    BXD24

    -
    -

    Female

    -
    -

    377

    -
    -

    Eyeball

    -
    -

    16

    -
    -

    E75

    -
    -

    42214.03

    -
    -

    BXD24

    -
    -

    Female

    -
    -

    377

    -
    -

    Eyeball

    -
    -

    17

    -
    -

    E78

    -
    -

    42314.1

    -
    -

    B6D2F1

    -
    -

    Male

    -
    -

    364

    -
    -

    Eyeball

    -
    -

    18

    -
    -

    E82

    -
    -

    121615.05

    -
    -

    BXD62

    -
    -

    Female

    -
    -

    525

    -
    -

    Eyeball

    -
    -

    19

    -
    -

    E87

    -
    -

    101014.10

    -
    -

    BXD95

    -
    -

    Female

    -
    -

    536

    -
    -

    Eyeball

    -
    -

    20

    -
    -

    E89

    -
    -

    121615.22

    -
    -

    BXD89

    -
    -

    Female

    -
    -

    444

    -
    -

    Eyeball

    -
    -

    21

    -
    -

    E90

    -
    -

    101014.09

    -
    -

    BXD95

    -
    -

    Female

    -
    -

    536

    -
    -

    Eyeball

    -
    -

    22

    -
    -

    E99

    -
    -

    121214.15

    -
    -

    BXD70

    -
    -

    Female

    -
    -

    357

    -
    -

    Eyeball

    -
    -

    23

    -
    -

    E100

    -
    -

    121214.16

    -
    -

    BXD70

    -
    -

    Female

    -
    -

    357

    -
    -

    Eyeball

    -
    -

    24

    -
    -

    E124

    -
    -

    042214.18

    -
    -

    D2B6F1

    -
    -

    Male

    -
    -

    397

    -
    -

    Eyeball

    -
    -

    25

    -
    -

    E152

    -
    -

    050912.04

    -
    -

    BXD48a

    -
    -

    Female

    -
    -

    419

    -
    -

    Eyeball

    -
    -

    26

    -
    -

    E158

    -
    -

    101713.02

    -
    -

    BXD100

    -
    -

    Female

    -
    -

    374

    -
    -

    Eyeball

    -
    -

    27

    -
    -

    E224

    -
    -

    021313.26

    -
    -

    BXD84

    -
    -

    Female

    -
    -

    385

    -
    -

    Eyeball

    -
    -

    28

    -
    -

    E264

    -
    -

    *050318.12

    -
    -

    BXD69

    -
    -

    Male

    -
    -

    387

    -
    -

    Eyeball

    -
    -

    29

    -
    -

    E288

    -
    -

    *110918.106

    -
    -

    BXD211

    -
    -

    Male

    -
    -

    404

    -
    -

    Eyeball

    -
    -

    30

    -
    -

    E289

    -
    -

    *110918.105

    -
    -

    BXD211

    -
    -

    Female

    -
    -

    404

    -
    -

    Eyeball

    -
    -

    31

    -
    -

    E290

    -
    -

    *100218.04

    -
    -

    BXD44

    -
    -

    Female

    -
    -

    530

    -
    -

    Eyeball

    -
    -

    32

    -
    -

    E291

    -
    -

    *100218.05

    -
    -

    BXD44

    -
    -

    Male

    -
    -

    530

    -
    -

    Eyeball

    -
    -

    33

    -
    -

    E292

    -
    -

    *100218.18

    -
    -

    BXD68

    -
    -

    Female

    -
    -

    516

    -
    -

    Eyeball

    -
    -

    34

    -
    -

    E293

    -
    -

    *100218.20

    -
    -

    BXD68

    -
    -

    Male

    -
    -

    516

    -
    -

    Eyeball

    -
    -

    35

    -
    -

    E294

    -
    -

    *100218.36

    -
    -

    BXD84

    -
    -

    Female

    -
    -

    516

    -
    -

    Eyeball

    -
    -

    36

    -
    -

    E298

    -
    -

    *100218.73

    -
    -

    BXD184

    -
    -

    Female

    -
    -

    512

    -
    -

    Eyeball

    -
    -

    37

    -
    -

    E299

    -
    -

    *100218.74

    -
    -

    BXD184

    -
    -

    Male

    -
    -

    512

    -
    -

    Eyeball

    -
    -

    38

    -
    -

    E303

    -
    -

    AGE061218.98

    -
    -

    BXD177

    -
    -

    Female

    -
    -

    364

    -
    -

    Eyeball

    -
    -

    39

    -
    -

    E304

    -
    -

    AGE061218.108

    -
    -

    BXD195

    -
    -

    Male

    -
    -

    386

    -
    -

    Eyeball

    -
    -

    40

    -
    -

    E306

    -
    -

    AGE061218.107

    -
    -

    BXD195

    -
    -

    Female

    -
    -

    386

    -
    -

    Eyeball

    -
    -

    41

    -
    -

    E308

    -
    -

    AGE061218.99

    -
    -

    BXD177

    -
    -

    Male

    -
    -

    364

    -
    -

    Eyeball

    -
    -

    42

    -
    -

    E310

    -
    -

    AGE061218.90

    -
    -

    BXD168

    -
    -

    Male

    -
    -

    538

    -
    -

    Eyeball

    -
    -

    43

    -
    -

    E311

    -
    -

    AGE061218.85

    -
    -

    BXD160

    -
    -

    Male

    -
    -

    390

    -
    -

    Eyeball

    -
    -

    44

    -
    -

    E312

    -
    -

    AGE061218.71

    -
    -

    BXD150

    -
    -

    Male

    -
    -

    398

    -
    -

    Eyeball

    -
    -

    45

    -
    -

    E313

    -
    -

    AGE061218.22

    -
    -

    BXD34

    -
    -

    Male

    -
    -

    369

    -
    -

    Eyeball

    -
    -

    46

    -
    -

    E314

    -
    -

    AGE061218.21

    -
    -

    BXD34

    -
    -

    Female

    -
    -

    369

    -
    -

    Eyeball

    -
    -

    47

    -
    -

    E331

    -
    -

    *110918.07

    -
    -

    BXD28

    -
    -

    Male

    -
    -

    366

    -
    -

    Eyeball

    -
    -

    48

    -
    -

    E334

    -
    -

    *110918.02

    -
    -

    BXD18

    -
    -

    Male

    -
    -

    452

    -
    -

    Eyeball

    -
    -

    49

    -
    -

    E335

    -
    -

    *110918.01

    -
    -

    BXD18

    -
    -

    Female

    -
    -

    452

    -
    -

    Eyeball

    -
    -

    50

    -
    -

    E340

    -
    -

    *110918.51

    -
    -

    BXD98

    -
    -

    Male

    -
    -

    359

    -
    -

    Eyeball

    -
    -

    51

    -
    -

    E341

    -
    -

    *110918.50

    -
    -

    BXD98

    -
    -

    Female

    -
    -

    359

    -
    -

    Eyeball

    -
    -

    52

    -
    -

    E344

    -
    -

    *083019.05

    -
    -

    BXD9

    -
    -

    Female

    -
    -

    373

    -
    -

    Eyeball

    -
    -

    53

    -
    -

    E345

    -
    -

    *083019.06

    -
    -

    BXD9

    -
    -

    Male

    -
    -

    373

    -
    -

    Eyeball

    -
    -

    54

    -
    -

    E346

    -
    -

    *083019.22

    -
    -

    BXD31

    -
    -

    Male

    -
    -

    391

    -
    -

    Eyeball

    -
    -

    55

    -
    -

    E347

    -
    -

    *083019.23

    -
    -

    BXD43

    -
    -

    Female

    -
    -

    391

    -
    -

    Eyeball

    -
    -

    56

    -
    -

    E349

    -
    -

    *083019.26

    -
    -

    BXD43

    -
    -

    Male

    -
    -

    367

    -
    -

    Eyeball

    -
    -

    57

    -
    -

    E350

    -
    -

    *083019.30

    -
    -

    BXD50

    -
    -

    Female

    -
    -

    408

    -
    -

    Eyeball

    -
    -

    58

    -
    -

    E351

    -
    -

    *083019.31

    -
    -

    BXD50

    -
    -

    Female

    -
    -

    408

    -
    -

    Eyeball

    -
    -

    59

    -
    -

    E352

    -
    -

    *083019.33

    -
    -

    BXD51

    -
    -

    Female

    -
    -

    368

    -
    -

    Eyeball

    -
    -

    60

    -
    -

    E353

    -
    -

    *083019.34

    -
    -

    BXD51

    -
    -

    Male

    -
    -

    368

    -
    -

    Eyeball

    -
    -

    61

    -
    -

    E354

    -
    -

    *083019.38

    -
    -

    BXD66

    -
    -

    Male

    -
    -

    430

    -
    -

    Eyeball

    -
    -

    62

    -
    -

    E355

    -
    -

    *083019.39

    -
    -

    BXD66

    -
    -

    Male

    -
    -

    430

    -
    -

    Eyeball

    -
    -

    63

    -
    -

    E356

    -
    -

    *083019.45

    -
    -

    BXD73

    -
    -

    Female

    -
    -

    451

    -
    -

    Eyeball

    -
    -

    64

    -
    -

    E357

    -
    -

    *083019.46

    -
    -

    BXD73

    -
    -

    Male

    -
    -

    451

    -
    -

    Eyeball

    -
    -

    65

    -
    -

    E358

    -
    -

    *083019.48

    -
    -

    BXD75

    -
    -

    Female

    -
    -

    369

    -
    -

    Eyeball

    -
    -

    66

    -
    -

    E359

    -
    -

    *083019.49

    -
    -

    BXD75

    -
    -

    Male

    -
    -

    369

    -
    -

    Eyeball

    -
    -

    67

    -
    -

    E360

    -
    -

    *083019.50

    -
    -

    BXD78

    -
    -

    Female

    -
    -

    432

    -
    -

    Eyeball

    -
    -

    68

    -
    -

    E361

    -
    -

    *083019.51

    -
    -

    BXD78

    -
    -

    Male

    -
    -

    432

    -
    -

    Eyeball

    -
    -

    69

    -
    -

    E363

    -
    -

    *083019.55

    -
    -

    BXD87

    -
    -

    Female

    -
    -

    444

    -
    -

    Eyeball

    -
    -

    70

    -
    -

    E364

    -
    -

    *083019.56

    -
    -

    BXD87

    -
    -

    Male

    -
    -

    444

    -
    -

    Eyeball

    -
    -

    71

    -
    -

    E365

    -
    -

    *083019.57

    -
    -

    BXD89

    -
    -

    Female

    -
    -

    446

    -
    -

    Eyeball

    -
    -

    72

    -
    -

    E366

    -
    -

    *083019.66

    -
    -

    BXD113

    -
    -

    Female

    -
    -

    366

    -
    -

    Eyeball

    -
    -

    73

    -
    -

    E367

    -
    -

    *083019.67

    -
    -

    BXD113

    -
    -

    Male

    -
    -

    366

    -
    -

    Eyeball

    -
    -

    74

    -
    -

    E368

    -
    -

    *090119.04

    -
    -

    BXD123

    -
    -

    Female

    -
    -

    441

    -
    -

    Eyeball

    -
    -

    75

    -
    -

    E369

    -
    -

    *090119.05

    -
    -

    BXD123

    -
    -

    Male

    -
    -

    441

    -
    -

    Eyeball

    -
    -

    76

    -
    -

    E370

    -
    -

    *090119.09

    -
    -

    BXD141

    -
    -

    Female

    -
    -

    370

    -
    -

    Eyeball

    -
    -

    77

    -
    -

    E371

    -
    -

    *090119.11

    -
    -

    BXD141

    -
    -

    Male

    -
    -

    370

    -
    -

    Eyeball

    -
    -

    78

    -
    -

    E372

    -
    -

    *090119.15

    -
    -

    BXD151

    -
    -

    Female

    -
    -

    439

    -
    -

    Eyeball

    -
    -

    79

    -
    -

    E373

    -
    -

    *090119.16

    -
    -

    BXD151

    -
    -

    Male

    -
    -

    439

    -
    -

    Eyeball

    -
    -

    80

    -
    -

    E374

    -
    -

    *090119.18

    -
    -

    BXD152

    -
    -

    Female

    -
    -

    374

    -
    -

    Eyeball

    -
    -

    81

    -
    -

    E375

    -
    -

    *090119.19

    -
    -

    BXD152

    -
    -

    Male

    -
    -

    374

    -
    -

    Eyeball

    -
    -

    82

    -
    -

    E376

    -
    -

    *090119.20

    -
    -

    BXD154

    -
    -

    Female

    -
    -

    370

    -
    -

    Eyeball

    -
    -

    83

    -
    -

    E377

    -
    -

    *090119.22

    -
    -

    BXD154

    -
    -

    Male

    -
    -

    370

    -
    -

    Eyeball

    -
    -

    84

    -
    -

    E378

    -
    -

    *090119.24

    -
    -

    BXD155

    -
    -

    Female

    -
    -

    379

    -
    -

    Eyeball

    -
    -

    85

    -
    -

    E379

    -
    -

    *090119.25

    -
    -

    BXD155

    -
    -

    Male

    -
    -

    379

    -
    -

    Eyeball

    -
    -

    86

    -
    -

    E380

    -
    -

    *090119.27

    -
    -

    BXD161

    -
    -

    Female

    -
    -

    376

    -
    -

    Eyeball

    -
    -

    87

    -
    -

    E381

    -
    -

    *090119.28

    -
    -

    BXD161

    -
    -

    Male

    -
    -

    376

    -
    -

    Eyeball

    -
    -

    88

    -
    -

    E382

    -
    -

    *090119.34

    -
    -

    BXD170

    -
    -

    Male

    -
    -

    438

    -
    -

    Eyeball

    -
    -

    89

    -
    -

    E383

    -
    -

    *090119.36

    -
    -

    BXD171

    -
    -

    Female

    -
    -

    370

    -
    -

    Eyeball

    -
    -

    90

    -
    -

    E384

    -
    -

    *090119.37

    -
    -

    BXD171

    -
    -

    Male

    -
    -

    370

    -
    -

    Eyeball

    -
    -

    91

    -
    -

    E385

    -
    -

    *090119.41

    -
    -

    BXD178

    -
    -

    Female

    -
    -

    493

    -
    -

    Eyeball

    -
    -

    92

    -
    -

    E386

    -
    -

    *090119.42

    -
    -

    BXD178

    -
    -

    Female

    -
    -

    493

    -
    -

    Eyeball

    -
    -

    93

    -
    -

    E387

    -
    -

    *090119.44

    -
    -

    BXD180

    -
    -

    Female

    -
    -

    375

    -
    -

    Eyeball

    -
    -

    94

    -
    -

    E390

    -
    -

    *090119.48

    -
    -

    BXD190

    -
    -

    Male

    -
    -

    374

    -
    -

    Eyeball

    -
    -

    95

    -
    -

    E391

    -
    -

    *090119.52

    -
    -

    BXD197

    -
    -

    Female

    -
    -

    433

    -
    -

    Eyeball

    -
    -

    96

    -
    -

    E392

    -
    -

    *090119.53

    -
    -

    BXD197

    -
    -

    Male

    -
    -

    433

    -
    -

    Eyeball

    -
    -

    97

    -
    -

    E395

    -
    -

    *090119.57

    -
    -

    BXD202

    -
    -

    Female

    -
    -

    427

    -
    -

    Eyeball

    -
    -

    98

    -
    -

    E399

    -
    -

    *090119.67

    -
    -

    BXD218

    -
    -

    Female

    -
    -

    412

    -
    -

    Eyeball

    -
    -

    99

    -
    -

    E400

    -
    -

    *090119.68

    -
    -

    BXD218

    -
    -

    Male

    -
    -

    412

    -
    -

    Eyeball

    -
    -

    100

    -
    -

    E448

    -
    -

    *100819.101

    -
    -

    BXD111

    -
    -

    Female

    -
    -

    373

    -
    -

    Eyeball

    -
    -

    101

    -
    -

    E449

    -
    -

    *100819.102

    -
    -

    BXD111

    -
    -

    Male

    -
    -

    373

    -
    -

    Eyeball

    -
    -

    102

    -
    -

    E450

    -
    -

    *100819.104

    -
    -

    BXD122

    -
    -

    Female

    -
    -

    383

    -
    -

    Eyeball

    -
    -

    103

    -
    -

    E451

    -
    -

    *100819.105

    -
    -

    BXD122

    -
    -

    Male

    -
    -

    383

    -
    -

    Eyeball

    -
    -

    104

    -
    -

    E452

    -
    -

    *100819.107

    -
    -

    BXD124

    -
    -

    Female

    -
    -

    366

    -
    -

    Eyeball

    -
    -

    105

    -
    -

    E453

    -
    -

    *100819.108

    -
    -

    BXD124

    -
    -

    Male

    -
    -

    366

    -
    -

    Eyeball

    -
    -

    106

    -
    -

    E454

    -
    -

    *100819.110

    -
    -

    BXD125

    -
    -

    Female

    -
    -

    376

    -
    -

    Eyeball

    -
    -

    107

    -
    -

    E455

    -
    -

    *100819.111

    -
    -

    BXD125

    -
    -

    Male

    -
    -

    376

    -
    -

    Eyeball

    -
    -

    108

    -
    -

    E459

    -
    -

    *100819.131

    -
    -

    BXD172

    -
    -

    Female

    -
    -

    375

    -
    -

    Eyeball

    -
    -

    109

    -
    -

    E460

    -
    -

    *100819.132

    -
    -

    BXD172

    -
    -

    Male

    -
    -

    375

    -
    -

    Eyeball

    -
    -

    110

    -
    -

    E482

    -
    -

    *052220.14

    -
    -

    BXD71

    -
    -

    Female

    -
    -

    396

    -
    -

    Eyeball

    -
    -

    111

    -
    -

    E483

    -
    -

    *052220.10

    -
    -

    BXD11

    -
    -

    Female

    -
    -

    379

    -
    -

    Eyeball

    -
    -

    112

    -
    -

    E484

    -
    -

    *052220.07

    -
    -

    BXD65

    -
    -

    Male

    -
    -

    528

    -
    -

    Eyeball

    -
    -

    113

    -
    -

    E485

    -
    -

    *052220.03

    -
    -

    BXD194

    -
    -

    Male

    -
    -

    396

    -
    -

    Eyeball

    -
    -

    114

    -
    -

    E486

    -
    -

    *052220.19

    -
    -

    BXD15

    -
    -

    Female

    -
    -

    415

    -
    -

    Eyeball

    -
    -

    115

    -
    -

    E487

    -
    -

    *052220.02

    -
    -

    BXD194

    -
    -

    Female

    -
    -

    396

    -
    -

    Eyeball

    -
    -

    116

    -
    -

    E488

    -
    -

    *052220.12

    -
    -

    BXD1

    -
    -

    Female

    -
    -

    429

    -
    -

    Eyeball

    -
    -

    117

    -
    -

    E489

    -
    -

    *052220.18

    -
    -

    BXD216

    -
    -

    Male

    -
    -

    401

    -
    -

    Eyeball

    -
    -

    118

    -
    -

    E490

    -
    -

    *052220.13

    -
    -

    BXD1

    -
    -

    Male

    -
    -

    429

    -
    -

    Eyeball

    -
    -

    119

    -
    -

    E494

    -
    -

    *052220.15

    -
    -

    BXD71

    -
    -

    Male

    -
    -

    396

    -
    -

    Eyeball

    -
    -

    120

    -
    -

    E496

    -
    -

    *052220.08

    -
    -

    BXD170

    -
    -

    Male

    -
    -

    360

    -
    -

    Eyeball

    -
    -

    121

    -
    -

    E498

    -
    -

    *052220.06

    -
    -

    BXD65

    -
    -

    Female

    -
    -

    528

    -
    -

    Eyeball

    -
    -

    122

    -
    -

    E499

    -
    -

    *052220.05

    -
    -

    C57BL/6J

    -
    -

    Male

    -
    -

    424

    -
    -

    Eyeball

    -
    -

    123

    -
    -

    E501

    -
    -

    *052220.21

    -
    -

    BXD73a

    -
    -

    Female

    -
    -

    408

    -
    -

    Eyeball

    -
    -

    124

    -
    -

    E502

    -
    -

    *052220.11

    -
    -

    BXD11

    -
    -

    Male

    -
    -

    379

    -
    -

    Eyeball

    -
    -

    125

    -
    -

    E503

    -
    -

    *052220.22

    -
    -

    DBA/2J-Gpnmb

    -
    -

    Female

    -
    -

    439

    -
    -

    Eyeball

    -
    -

    126

    -
    -

    E504

    -
    -

    *052220.20

    -
    -

    BXD15

    -
    -

    Male

    -
    -

    415

    -
    -

    Eyeball

    -
    -

    127

    -
    -

    E541

    -
    -

    042915.08

    -
    -

    BXD29

    -
    -

    Female

    -
    -

    478

    -
    -

    Eyeball

    -
    -

    128

    -
    -

    E542

    -
    -

    050115.01

    -
    -

    BXD65b

    -
    -

    Female

    -
    -

    415

    -
    -

    Eyeball

    -
    -

    129

    -
    -

    E543

    -
    -

    042915.07

    -
    -

    BXD29

    -
    -

    Female

    -
    -

    431

    -
    -

    Eyeball

    -
    -

    130

    -
    -

    E544

    -
    -

    042314.12

    -
    -

    B6D2F1

    -
    -

    Female

    -
    -

    364

    -
    -

    Eyeball

    -
    -

    131

    -
    -

    E548

    -
    -

    *061119.02

    -
    -

    C57BL/6J

    -
    -

    Female

    -
    -

    392

    -
    -

    Eyeball

    -
    -

    132

    -
    -

    E549

    -
    -

    *061119.03

    -
    -

    C57BL/6J

    -
    -

    Male

    -
    -

    392

    -
    -

    Eyeball

    -
    -

    133

    -
    -

    E551

    -
    -

    *061119.11

    -
    -

    DBA/2J

    -
    -

    Female

    -
    -

    392

    -
    -

    Eyeball

    -
    -

    134

    -
    -

    E552

    -
    -

    *061119.12

    -
    -

    DBA/2J

    -
    -

    Male

    -
    -

    392

    -
    -

    Eyeball

    -
    -

    135

    -
    -

    E554

    -
    -

    *061119.15

    -
    -

    DBA/2J

    -
    -

    Male

    -
    -

    392

    -
    -

    Eyeball

    -
    -

    136

    -
    -

    E556

    -
    -

    *061119.22

    -
    -

    DBA/2J

    -
    -

    Male

    -
    -

    380

    -
    -

    Eyeball

    -
    -

    137

    -
    -

    E561

    -
    -

    *061219.12

    -
    -

    BXD27

    -
    -

    Female

    -
    -

    494

    -
    -

    Eyeball

    -
    -

    138

    -
    -

    E564

    -
    -

    *061219.14

    -
    -

    BXD27

    -
    -

    Male

    -
    -

    494

    -
    -

    Eyeball

    -
    -

    139

    -
    -

    E565

    -
    -

    *060419.04

    -
    -

    BXD32

    -
    -

    Female

    -
    -

    425

    -
    -

    Eyeball

    -
    -

    140

    -
    -

    E566

    -
    -

    *060419.05

    -
    -

    BXD32

    -
    -

    Male

    -
    -

    425

    -
    -

    Eyeball

    -
    -

    141

    -
    -

    E567

    -
    -

    *070919.01

    -
    -

    BXD86

    -
    -

    Female

    -
    -

    381

    -
    -

    Eyeball

    -
    -

    142

    -
    -

    E569

    -
    -

    *070919.03

    -
    -

    BXD86

    -
    -

    Male

    -
    -

    381

    -
    -

    Eyeball

    -
    -

    143

    -
    -

    E576

    -
    -

    *072519.11

    -
    -

    BXD191

    -
    -

    Male

    -
    -

    477

    -
    -

    Eyeball

    -
    -

    144

    -
    -

    E577

    -
    -

    *072519.09

    -
    -

    BXD190

    -
    -

    Male

    -
    -

    434

    -
    -

    Eyeball

    -
    -

    145

    -
    -

    E582

    -
    -

    *073019.16

    -
    -

    BXD216

    -
    -

    Male

    -
    -

    459

    -
    -

    Eyeball

    -
    -

    146

    -
    -

    E591

    -
    -

    *061319.04

    -
    -

    BXD48

    -
    -

    Female

    -
    -

    425

    -
    -

    Eyeball

    -
    -

    147

    -
    -

    E592

    -
    -

    *061319.05

    -
    -

    BXD48

    -
    -

    Male

    -
    -

    425

    -
    -

    Eyeball

    -
    -

    148

    -
    -

    E593

    -
    -

    *061319.21

    -
    -

    BXD61

    -
    -

    Male

    -
    -

    459

    -
    -

    Eyeball

    -
    -

    149

    -
    -

    E600

    -
    -

    *050318.10

    -
    -

    BXD69

    -
    -

    Female

    -
    -

    387

    -
    -

    Eyeball

    -
    -

    150

    -
    -

    E601

    -
    -

    *013020.53

    -
    -

    BXD102

    -
    -

    Male

    -
    -

    416

    -
    -

    Eyeball

    -
    -

    151

    -
    -

    E603

    -
    -

    *013020.25

    -
    -

    BXD65b

    -
    -

    Male

    -
    -

    505

    -
    -

    Eyeball

    -
    -

    152

    -
    -

    E605

    -
    -

    *013020.54

    -
    -

    BXD102

    -
    -

    Female

    -
    -

    416

    -
    -

    Eyeball

    -
    -

    153

    -
    -

    E620

    -
    -

    *012420.26

    -
    -

    BXD128a

    -
    -

    Male

    -
    -

    366

    -
    -

    Eyeball

    -
    -

    154

    -
    -

    E625

    -
    -

    *110918.54

    -
    -

    BXD101

    -
    -

    Male

    -
    -

    361

    -
    -

    Eyeball

    -
    -

    155

    -
    -

    E626

    -
    -

    *110918.53

    -
    -

    BXD101

    -
    -

    Female

    -
    -

    361

    -
    -

    Eyeball

    -
    -

    156

    -
    -

    E631

    -
    -

    *083019.14

    -
    -

    BXD16

    -
    -

    Female

    -
    -

    363

    -
    -

    Eyeball

    -
    -

    157

    -
    -

    E635

    -
    -

    *083019.35

    -
    -

    BXD61

    -
    -

    Male

    -
    -

    364

    -
    -

    Eyeball

    -
    -

    158

    -
    -

    E638

    -
    -

    *083019.60

    -
    -

    BXD90

    -
    -

    Female

    -
    -

    378

    -
    -

    Eyeball

    -
    -

    159

    -
    -

    E639

    -
    -

    *083019.62

    -
    -

    BXD90

    -
    -

    Male

    -
    -

    378

    -
    -

    Eyeball

    -
    -

    160

    -
    -

    E662

    -
    -

    *100819.153

    -
    -

    BXD202

    -
    -

    Male

    -
    -

    410

    -
    -

    Eyeball

    -
    -

    161

    -
    -

    E663

    -
    -

    *100819.157

    -
    -

    BXD205

    -
    -

    Female

    -
    -

    371

    -
    -

    Eyeball

    -
    -

    162

    -
    -

    E664

    -
    -

    *100819.158

    -
    -

    BXD205

    -
    -

    Male

    -
    -

    372

    -
    -

    Eyeball

    -
    -

    163

    -
    -

    E665

    -
    -

    *100819.163

    -
    -

    BXD213

    -
    -

    Female

    -
    -

    396

    -
    -

    Eyeball

    -
    -

    164

    -
    -

    E666

    -
    -

    *100819.164

    -
    -

    BXD213

    -
    -

    Male

    -
    -

    397

    -
    -

    Eyeball

    -
    -

    165

    -
    -

    E667

    -
    -

    *100819.168

    -
    -

    BXD223

    -
    -

    Female

    -
    -

    419

    -
    -

    Eyeball

    -
    -

    166

    -
    -

    E668

    -
    -

    *100819.169

    -
    -

    BXD223

    -
    -

    Male

    -
    -

    420

    -
    -

    Eyeball

    -
    -

    167

    -
    -

    E672

    -
    -

    *052920.10

    -
    -

    BXD83

    -
    -

    Male

    -
    -

    380

    -
    -

    Eyeball

    -
    -

    168

    -
    -

    E675

    -
    -

    *052920.13

    -
    -

    DBA/2J-Gpnmb

    -
    -

    Female

    -
    -

    452

    -
    -

    Eyeball

    -
    -

    169

    -
    -

    E679

    -
    -

    *052920.12

    -
    -

    DBA/2J-Gpnmb

    -
    -

    Female

    -
    -

    458

    -
    -

    Eyeball

    -
    -

    170

    -
    -

    E680

    -
    -

    *052920.01

    -
    -

    BXD43

    -
    -

    Female

    -
    -

    465

    -
    -

    Eyeball

    -
    -

    171

    -
    -

    E682

    -
    -

    *052920.02

    -
    -

    C57BL/6J

    -
    -

    Female

    -
    -

    433

    -
    -

    Eyeball

    -
    -

    172

    -
    -

    E685

    -
    -

    *052920.09

    -
    -

    BXD83

    -
    -

    Female

    -
    -

    379

    -
    -

    Eyeball

    -
    -

    173

    -
    -

    E699

    -
    -

    *072120.14

    -
    -

    BXD40

    -
    -

    Male

    -
    -

    458

    -
    -

    Eyeball

    -
    -

    174

    -
    -

    E709

    -
    -

    *072120.24

    -
    -

    BXD150

    -
    -

    Female

    -
    -

    433

    -
    -

    Eyeball

    -
    -

    175

    -
    -

    E712

    -
    -

    *072120.27

    -
    -

    BXD160

    -
    -

    Female

    -
    -

    367

    -
    -

    Eyeball

    -
    -

    176

    -
    -

    E726

    -
    -

    *072120.41

    -
    -

    BXD16

    -
    -

    Female

    -
    -

    367

    -
    -

    Eyeball

    -
    -

    177

    -
    -

    E733

    -
    -

    *072120.48

    -
    -

    BXD60

    -
    -

    Female

    -
    -

    558

    -
    -

    Eyeball

    -
    -

    178

    -
    -

    E735

    -
    -

    *072120.50

    -
    -

    BXD180

    -
    -

    Male

    -
    -

    473

    -
    -

    Eyeball

    -
    -

    179

    -
    -

    E738

    -
    -

    *072120.53

    -
    -

    BXD128a

    -
    -

    Female

    -
    -

    387

    -
    -

    Eyeball

    -
    -

    180

    -
    -

    E745

    -
    -

    *072120.60

    -
    -

    BXD199

    -
    -

    Female

    -
    -

    457

    -
    -

    Eyeball

    -
    -

    181

    -
    -

    E746

    -
    -

    *072120.61

    -
    -

    BXD199

    -
    -

    Male

    -
    -

    457

    -
    -

    Eyeball

    -
    -

    182

    -
    -

    E749

    -
    -

    *072120.64

    -
    -

    BXD2

    -
    -

    Female

    -
    -

    399

    -
    -

    Eyeball

    -
    -

    183

    -
    -

    E750

    -
    -

    *072120.65

    -
    -

    BXD2

    -
    -

    Male

    -
    -

    399

    -
    -

    Eyeball

    -
    -

    184

    -
    -

    E753

    -
    -

    *072120.68

    -
    -

    BXD169

    -
    -

    Female

    -
    -

    441

    -
    -

    Eyeball

    -
    -

    185

    -
    -

    E754

    -
    -

    *072120.69

    -
    -

    BXD169

    -
    -

    Male

    -
    -

    441

    -
    -

    Eyeball

    -
    -

    186

    -
    -

    E759

    -
    -

    *072120.72

    -
    -

    BXD187

    -
    -

    Female

    -
    -

    354

    -
    -

    Eyeball

    -
    -

    187

    -
    -

    E760

    -
    -

    *072120.73

    -
    -

    BXD187

    -
    -

    Male

    -
    -

    354

    -
    -

    Eyeball

    -
    - -

     

    diff --git a/general/datasets/UTHSC_BXDYgEyeRNAseq_DESeq2_rlog2_0422/experiment-design.rtf b/general/datasets/UTHSC_BXDYgEyeRNAseq_DESeq2_rlog2_0422/experiment-design.rtf deleted file mode 100644 index e7afcee..0000000 --- a/general/datasets/UTHSC_BXDYgEyeRNAseq_DESeq2_rlog2_0422/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    RNA Extraction

    - -

    Total RNA was extracted using MIRNEASY MINI KIT (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.  according to the manufacturer’s instructions. Approximately 30 mg of PFC tissue was added into a 2 ml tube containing 700ul QIAzol Lysis Reagent and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 minutes in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 r followed by incubating for 5 minutes.140 µl chloroform was added into the homogenate, shaken vigorously for 15 seconds, and centrifuged for 15 minutes at 12,000 x g at 4 â„ƒ. 280 µl upper aqueous was then transferred into a new collection tube containing 500 µl 100% ethanol. The mixture was loaded into a RNeasy mini‐spin column (Qiagen, Valencia, CA, USA), once with Buffer RWT and twice with Buffer RPE purification. All RNA had been verified by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA with OD260/280 > 1.8 and RIN > 7.0 were used for library preparation

    diff --git a/general/datasets/UTHSC_BXDYgEyeRNAseq_DESeq2_rlog2_0422/notes.rtf b/general/datasets/UTHSC_BXDYgEyeRNAseq_DESeq2_rlog2_0422/notes.rtf deleted file mode 100644 index d622df7..0000000 --- a/general/datasets/UTHSC_BXDYgEyeRNAseq_DESeq2_rlog2_0422/notes.rtf +++ /dev/null @@ -1 +0,0 @@ -

    UTHSC BXD Young Aged Eye RNA-Seq (Apr22) DESeq2 rlog2

    diff --git a/general/datasets/UTHSC_BXDYgEyeRNAseq_DESeq2_rlog2_0422/processing.rtf b/general/datasets/UTHSC_BXDYgEyeRNAseq_DESeq2_rlog2_0422/processing.rtf deleted file mode 100644 index 7ddb89f..0000000 --- a/general/datasets/UTHSC_BXDYgEyeRNAseq_DESeq2_rlog2_0422/processing.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

    Generation of RNA-seq data

    - -

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    - -

     

    - -

    Read mapping and normalization

    - -

    Mus musculus (mouse) reference genome (mm11 Mus_musculus.GRCm39, release 104) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Rows with no gene symbol name were deleted. Indices of the reference genome were  built using STAR version 2.5.2b and paired-end reads were aligned to the reference genome. FeatureCount from package RsubRead, version 1.32.4, was used to count the number of read mapped to each gene. Raw counts were then normalized and log2 transformed using function rlogTransformation from the DESeq2 package (version 1.16.1) and an increment was added to the normalized values to make all values positive.

    diff --git a/general/datasets/UTHSC_BXDYgEyeRNAseq_DESeq2_rlog2_0422/tissue.rtf b/general/datasets/UTHSC_BXDYgEyeRNAseq_DESeq2_rlog2_0422/tissue.rtf deleted file mode 100644 index 126ab9f..0000000 --- a/general/datasets/UTHSC_BXDYgEyeRNAseq_DESeq2_rlog2_0422/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Tissue Harvest 

    - -

    The animals were sacrificed under saturated isoflurane. Eyeballs from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/UTHSC_BXD_AgeHipp0515/cases.rtf b/general/datasets/UTHSC_BXD_AgeHipp0515/cases.rtf deleted file mode 100644 index 2b37c95..0000000 --- a/general/datasets/UTHSC_BXD_AgeHipp0515/cases.rtf +++ /dev/null @@ -1,1258 +0,0 @@ -

    The study includes 137 mice (11~25 months old) from 73 strains (B6, D2, DBF1, and 70 BXD strains). All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    - -

    The table of samples that are finally used for this study:

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexStrainSexRNA IDAgePhaseTissue
    1BXD1FR7281H448IIHippocampus
    2BXD1MR7276H323IIHippocampus
    3BXD2MR7261H394IHippocampus
    4BXD2FR7256H456IHippocampus
    5BXD6MR7223H526IHippocampus
    6BXD8MR7203H471IHippocampus
    7BXD8FR7200H460IHippocampus
    8BXD8FR7198H433IHippocampus
    9BXD9FR7294H456IIHippocampus
    10BXD11MR7300H457IIHippocampus
    11BXD11FR7227H536IHippocampus
    12BXD12FR7183H506IHippocampus
    13BXD12FR7233H561IHippocampus
    14BXD12MR7234H606IHippocampus
    15BXD14FR7238H605IHippocampus
    16BXD14MR7235H605IHippocampus
    17BXD16FR7236H561IHippocampus
    18BXD16MR7239H475IHippocampus
    19BXD18FR7229H493IHippocampus
    20BXD19FR7267H551IHippocampus
    21BXD19MR7268H492IHippocampus
    22BXD20MR7232H506IHippocampus
    23BXD20MR7263H489IHippocampus
    24BXD21FR7230H537IHippocampus
    25BXD22FR7260H502IHippocampus
    26BXD22MR7262H596IHippocampus
    27BXD23FR7258H502IHippocampus
    28BXD23MR7257H462IHippocampus
    29BXD24MR7231H470IHippocampus
    30BXD24FR7228H415IHippocampus
    31BXD24FR7255H456IHippocampus
    32BXD25FR7252H454IHippocampus
    33BXD27FR7286H472IIHippocampus
    34BXD27FR7170H472IHippocampus
    35BXD28MR7254H493IHippocampus
    36BXD28FR7251H543IHippocampus
    37BXD29FR7259H483IHippocampus
    38BXD33MR7253H464IHippocampus
    39BXD33FR7174H471IHippocampus
    40BXD33FR7244H448IHippocampus
    41BXD33MR7270H662IHippocampus
    42BXD38FR7242H464IHippocampus
    43BXD38MR7247H446IHippocampus
    44BXD39MR7250H536IHippocampus
    45BXD39FR7173H500IHippocampus
    46BXD39MR7175H500IHippocampus
    47BXD40FR7288H451IIHippocampus
    48BXD40MR7210H470IHippocampus
    49BXD40MR7197H614IHippocampus
    50BXD42FR7280H518IIHippocampus
    51BXD42MR7246H446IHippocampus
    52BXD42FR7266H486IHippocampus
    53BXD43FR7249H454IHippocampus
    54BXD43MR7248H462IHippocampus
    55BXD44MR7241H415IHippocampus
    56BXD44MR7279H419IIHippocampus
    57BXD44FR7243H438IHippocampus
    58BXD45FR7176H451IHippocampus
    59BXD48FR7245H499IHippocampus
    60BXD48MR7220H526IHippocampus
    61BXD48aFR7299H479IIHippocampus
    62BXD48aMR7297H479IIHippocampus
    63BXD50FR7224H530IHippocampus
    64BXD50MR7221H530IHippocampus
    65BXD51FR7177H487IHippocampus
    66BXD51MR7290H407IIHippocampus
    67BXD55MR7222H528IHippocampus
    68BXD55FR7225H587IHippocampus
    69BXD56MR7178H501IHippocampus
    70BXD62MR7291H439IIHippocampus
    71BXD63MR7218H438IHippocampus
    72BXD63FR7215H475IHippocampus
    73BXD64MR7219H528IHippocampus
    74BXD64FR7216H587IHippocampus
    75BXD65FR7217H425IHippocampus
    76BXD65aFR7273H389IIHippocampus
    77BXD65aMR7277H715IIHippocampus
    78BXD65bMR7271H483IIHippocampus
    79BXD66MR7214H463IHippocampus
    80BXD66FR7302H446IIIHippocampus
    81BXD67FR7240H499IHippocampus
    82BXD67MR7213H425IHippocampus
    83BXD67FR7278H415IIHippocampus
    84BXD68MR7212H421IHippocampus
    85BXD68FR7211H415IHippocampus
    86BXD69FR7305H504IIIHippocampus
    87BXD70FR7207H458IHippocampus
    88BXD70MR7204H460IHippocampus
    89BXD71MR7205H471IHippocampus
    90BXD71FR7208H474IHippocampus
    91BXD73FR7209H470IHippocampus
    92BXD73MR7206H464IHippocampus
    93BXD73aFR7181H443IHippocampus
    94BXD73aMR7182H614IHippocampus
    95BXD76MR7179H579IHippocampus
    96BXD76FR7188H408IHippocampus
    97BXD76MR7187H564IHippocampus
    98BXD77MR7292H347IIHippocampus
    99BXD77FR7201H454IHippocampus
    100BXD79MR7202H485IHippocampus
    101BXD79FR7199H515IHippocampus
    102BXD79MR7298H704IIHippocampus
    103BXD81MR7196H515IHippocampus
    104BXD81FR7190H458IHippocampus
    105BXD83MR7184H441IHippocampus
    106BXD84MR7195H474IHippocampus
    107BXD84MR7296H484IIHippocampus
    108BXD84FR7192H522IHippocampus
    109BXD85MR7272H425IIHippocampus
    110BXD85FR7193H506IHippocampus
    111BXD86MR7191H425IHippocampus
    112BXD87FR7194H425IHippocampus
    113BXD87MR7303H478IIIHippocampus
    114BXD87MR7186H442IHippocampus
    115BXD89FR7295H446IIHippocampus
    116BXD90MR7287H434IIHippocampus
    117BXD90MR7293H558IIHippocampus
    118BXD95FR7180H467IHippocampus
    119BXD95MR7169H467IHippocampus
    120BXD98MR7237H605IHippocampus
    121BXD98FR7171H639IHippocampus
    122BXD98FR7275H488IIHippocampus
    123BXD99MR7189H524IHippocampus
    124BXD99FR7172H471IHippocampus
    125BXD100FR7282H463IIHippocampus
    126BXD100MR7283H507IIHippocampus
    127BXD100MR7274H577IIHippocampus
    128BXD100FR7226H464IHippocampus
    129BXD101FR7284H490IIHippocampus
    130BXD101MR7285H408IIHippocampus
    131C57BL/6JMR7264H489IHippocampus
    132C57BL/6JMR7289H756IIHippocampus
    133D2B6F1MR7265H492IHippocampus
    134D2B6F1FR7304H495IIIHippocampus
    135DBA/2JFR7185H433IHippocampus
    136DBA/2JMR7269H367IHippocampus
    137DBA/2JFR7301H566IIIHippocampus
    diff --git a/general/datasets/UTHSC_BXD_AgeHipp0515/experiment-design.rtf b/general/datasets/UTHSC_BXD_AgeHipp0515/experiment-design.rtf deleted file mode 100644 index d6b2d5b..0000000 --- a/general/datasets/UTHSC_BXD_AgeHipp0515/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    RNA Extraction

    - -

    RNA was extracted using the RNeasy mini kit (Qiagen, Valencia, CA, USA) according to the manufactures’ procedure. 2100 BioAnalyzer (Agilent Technologies) was used to evaluate RNA integrity and quality. Samples with RNA Integrity Numbers (RIN values) > 8.0 were run on Affy MoGene1.0 ST at the UTHSC

    diff --git a/general/datasets/UTHSC_BXD_AgeHipp0515/processing.rtf b/general/datasets/UTHSC_BXD_AgeHipp0515/processing.rtf deleted file mode 100644 index e951515..0000000 --- a/general/datasets/UTHSC_BXD_AgeHipp0515/processing.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    About data processing:

    - -

    Raw microarray data were normalized using the Robust Multichip Array (RMA) method. The expression data were then re-normalized using a modified Z score.

    diff --git a/general/datasets/UTHSC_BXD_AgeHipp0515/specifics.rtf b/general/datasets/UTHSC_BXD_AgeHipp0515/specifics.rtf deleted file mode 100644 index 3d4ba9a..0000000 --- a/general/datasets/UTHSC_BXD_AgeHipp0515/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -UTHSC BXD Aged Hippocampus Affy MoGene1.0 ST (May15) RMA Gene Level ** \ No newline at end of file diff --git a/general/datasets/UTHSC_BXD_AgeHipp0515/tissue.rtf b/general/datasets/UTHSC_BXD_AgeHipp0515/tissue.rtf deleted file mode 100644 index 3166717..0000000 --- a/general/datasets/UTHSC_BXD_AgeHipp0515/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Tissue Harvest 

    - -

    The animals were sacrificed under saturated isoflurane. Hippocampus from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/UTHSC_BXD_Aged_Eye_RNAseq_TPM_Log2_1120/experiment-design.rtf b/general/datasets/UTHSC_BXD_Aged_Eye_RNAseq_TPM_Log2_1120/experiment-design.rtf deleted file mode 100644 index 2f8cedc..0000000 --- a/general/datasets/UTHSC_BXD_Aged_Eye_RNAseq_TPM_Log2_1120/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Total RNA was extracted using Trizol® reagent (Invitrogen, Grand Island, NY, USA) according to the manufacturer’s instructions. Approximately 30 mg of PFC tissue was added into a 2 ml tube containing 700ul QIAzol Lysis Reagent and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 minutes in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 r followed by incubating for 5 minutes.140 µl chloroform was added into the homogenate, shaken vigorously for 15 seconds, and centrifuged for 15 minutes at 12,000 x g at 4 â„ƒ. 280 µl upper aqueous was then transferred into a new collection tube containing 500 µl 100% ethanol. The mixture was loaded into a RNeasy mini‐spin column (Qiagen, Valencia, CA, USA), once with Buffer RWT and twice with Buffer RPE purification. All RNA had been treated with DNase to avoid DNA contamination, and verified by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA with OD260/280 > 1.8 and RIN > 8.0 were used for library preparation

    diff --git a/general/datasets/UTHSC_BXD_Aged_Eye_RNAseq_TPM_Log2_1120/processing.rtf b/general/datasets/UTHSC_BXD_Aged_Eye_RNAseq_TPM_Log2_1120/processing.rtf deleted file mode 100644 index 8e460ff..0000000 --- a/general/datasets/UTHSC_BXD_Aged_Eye_RNAseq_TPM_Log2_1120/processing.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

    Generation of RNA-seq data

    - -

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    - -

     

    - -

    Read mapping and normalization

    - -

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/UTHSC_BXD_Aged_Eye_RNAseq_TPM_Log2_1120/specifics.rtf b/general/datasets/UTHSC_BXD_Aged_Eye_RNAseq_TPM_Log2_1120/specifics.rtf deleted file mode 100644 index 4d2bd9f..0000000 --- a/general/datasets/UTHSC_BXD_Aged_Eye_RNAseq_TPM_Log2_1120/specifics.rtf +++ /dev/null @@ -1,4332 +0,0 @@ -

    BXD Eye (12~18 Month) RNA-Seq (Oct30) TPM Log2

    - -

    The table of samples that are finally used for this study.

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -

    Index

    -
    -

    RNA ID

    -
    -

    case ID

    -
    -

    DA_corrected_strain

    -
    -

    Corrected Sex

    -
    -

    AgeAtDeath days

    -
    -

    Tissue

    -
    -

    1

    -
    -

    E18

    -
    -

    050115.16

    -
    -

    BXD75

    -
    -

    Female

    -
    -

    460

    -
    -

    Eyeball

    -
    -

    2

    -
    -

    E19

    -
    -

    050115.17

    -
    -

    BXD75

    -
    -

    Female

    -
    -

    460

    -
    -

    Eyeball

    -
    -

    3

    -
    -

    E21

    -
    -

    042715.10

    -
    -

    D2B6F1

    -
    -

    Female

    -
    -

    500

    -
    -

    Eyeball

    -
    -

    4

    -
    -

    E22

    -
    -

    050115.19

    -
    -

    BXD79

    -
    -

    Female

    -
    -

    468

    -
    -

    Eyeball

    -
    -

    5

    -
    -

    E31

    -
    -

    121515.13

    -
    -

    BXD45

    -
    -

    Female

    -
    -

    507

    -
    -

    Eyeball

    -
    -

    6

    -
    -

    E33

    -
    -

    012615.10

    -
    -

    BXD45

    -
    -

    Female

    -
    -

    384

    -
    -

    Eyeball

    -
    -

    7

    -
    -

    E34

    -
    -

    012615.04

    -
    -

    BXD62

    -
    -

    Female

    -
    -

    376

    -
    -

    Eyeball

    -
    -

    8

    -
    -

    E40

    -
    -

    021213.21

    -
    -

    BXD79

    -
    -

    Female

    -
    -

    378

    -
    -

    Eyeball

    -
    -

    9

    -
    -

    E49

    -
    -

    021213.13

    -
    -

    BXD60

    -
    -

    Female

    -
    -

    530

    -
    -

    Eyeball

    -
    -

    10

    -
    -

    E60

    -
    -

    101713.01

    -
    -

    BXD60

    -
    -

    Female

    -
    -

    374

    -
    -

    Eyeball

    -
    -

    11

    -
    -

    E62

    -
    -

    090612.07

    -
    -

    BXD73b

    -
    -

    Female

    -
    -

    377

    -
    -

    Eyeball

    -
    -

    12

    -
    -

    E63

    -
    -

    090612.08

    -
    -

    BXD73b

    -
    -

    Female

    -
    -

    377

    -
    -

    Eyeball

    -
    -

    13

    -
    -

    E65

    -
    -

    050912.04

    -
    -

    BXD34

    -
    -

    Female

    -
    -

    419

    -
    -

    Eyeball

    -
    -

    14

    -
    -

    E67

    -
    -

    42214.08

    -
    -

    BXD40

    -
    -

    Female

    -
    -

    362

    -
    -

    Eyeball

    -
    -

    15

    -
    -

    E72

    -
    -

    42214.04

    -
    -

    BXD24

    -
    -

    Female

    -
    -

    377

    -
    -

    Eyeball

    -
    -

    16

    -
    -

    E75

    -
    -

    42214.03

    -
    -

    BXD24

    -
    -

    Female

    -
    -

    377

    -
    -

    Eyeball

    -
    -

    17

    -
    -

    E78

    -
    -

    42314.1

    -
    -

    B6D2F1

    -
    -

    Male

    -
    -

    364

    -
    -

    Eyeball

    -
    -

    18

    -
    -

    E82

    -
    -

    121615.05

    -
    -

    BXD62

    -
    -

    Female

    -
    -

    525

    -
    -

    Eyeball

    -
    -

    19

    -
    -

    E87

    -
    -

    101014.10

    -
    -

    BXD95

    -
    -

    Female

    -
    -

    536

    -
    -

    Eyeball

    -
    -

    20

    -
    -

    E89

    -
    -

    121615.22

    -
    -

    BXD89

    -
    -

    Female

    -
    -

    444

    -
    -

    Eyeball

    -
    -

    21

    -
    -

    E90

    -
    -

    101014.09

    -
    -

    BXD95

    -
    -

    Female

    -
    -

    536

    -
    -

    Eyeball

    -
    -

    22

    -
    -

    E99

    -
    -

    121214.15

    -
    -

    BXD70

    -
    -

    Female

    -
    -

    357

    -
    -

    Eyeball

    -
    -

    23

    -
    -

    E100

    -
    -

    121214.16

    -
    -

    BXD70

    -
    -

    Female

    -
    -

    357

    -
    -

    Eyeball

    -
    -

    24

    -
    -

    E124

    -
    -

    042214.18

    -
    -

    D2B6F1

    -
    -

    Male

    -
    -

    397

    -
    -

    Eyeball

    -
    -

    25

    -
    -

    E152

    -
    -

    050912.04

    -
    -

    BXD48a

    -
    -

    Female

    -
    -

    419

    -
    -

    Eyeball

    -
    -

    26

    -
    -

    E158

    -
    -

    101713.02

    -
    -

    BXD100

    -
    -

    Female

    -
    -

    374

    -
    -

    Eyeball

    -
    -

    27

    -
    -

    E224

    -
    -

    021313.26

    -
    -

    BXD84

    -
    -

    Female

    -
    -

    385

    -
    -

    Eyeball

    -
    -

    28

    -
    -

    E264

    -
    -

    *050318.12

    -
    -

    BXD69

    -
    -

    Male

    -
    -

    387

    -
    -

    Eyeball

    -
    -

    29

    -
    -

    E288

    -
    -

    *110918.106

    -
    -

    BXD211

    -
    -

    Male

    -
    -

    404

    -
    -

    Eyeball

    -
    -

    30

    -
    -

    E289

    -
    -

    *110918.105

    -
    -

    BXD211

    -
    -

    Female

    -
    -

    404

    -
    -

    Eyeball

    -
    -

    31

    -
    -

    E290

    -
    -

    *100218.04

    -
    -

    BXD44

    -
    -

    Female

    -
    -

    530

    -
    -

    Eyeball

    -
    -

    32

    -
    -

    E291

    -
    -

    *100218.05

    -
    -

    BXD44

    -
    -

    Male

    -
    -

    530

    -
    -

    Eyeball

    -
    -

    33

    -
    -

    E292

    -
    -

    *100218.18

    -
    -

    BXD68

    -
    -

    Female

    -
    -

    516

    -
    -

    Eyeball

    -
    -

    34

    -
    -

    E293

    -
    -

    *100218.20

    -
    -

    BXD68

    -
    -

    Male

    -
    -

    516

    -
    -

    Eyeball

    -
    -

    35

    -
    -

    E294

    -
    -

    *100218.36

    -
    -

    BXD84

    -
    -

    Female

    -
    -

    516

    -
    -

    Eyeball

    -
    -

    36

    -
    -

    E298

    -
    -

    *100218.73

    -
    -

    BXD184

    -
    -

    Female

    -
    -

    512

    -
    -

    Eyeball

    -
    -

    37

    -
    -

    E299

    -
    -

    *100218.74

    -
    -

    BXD184

    -
    -

    Male

    -
    -

    512

    -
    -

    Eyeball

    -
    -

    38

    -
    -

    E303

    -
    -

    AGE061218.98

    -
    -

    BXD177

    -
    -

    Female

    -
    -

    364

    -
    -

    Eyeball

    -
    -

    39

    -
    -

    E304

    -
    -

    AGE061218.108

    -
    -

    BXD195

    -
    -

    Male

    -
    -

    386

    -
    -

    Eyeball

    -
    -

    40

    -
    -

    E306

    -
    -

    AGE061218.107

    -
    -

    BXD195

    -
    -

    Female

    -
    -

    386

    -
    -

    Eyeball

    -
    -

    41

    -
    -

    E308

    -
    -

    AGE061218.99

    -
    -

    BXD177

    -
    -

    Male

    -
    -

    364

    -
    -

    Eyeball

    -
    -

    42

    -
    -

    E310

    -
    -

    AGE061218.90

    -
    -

    BXD168

    -
    -

    Male

    -
    -

    538

    -
    -

    Eyeball

    -
    -

    43

    -
    -

    E311

    -
    -

    AGE061218.85

    -
    -

    BXD160

    -
    -

    Male

    -
    -

    390

    -
    -

    Eyeball

    -
    -

    44

    -
    -

    E312

    -
    -

    AGE061218.71

    -
    -

    BXD150

    -
    -

    Male

    -
    -

    398

    -
    -

    Eyeball

    -
    -

    45

    -
    -

    E313

    -
    -

    AGE061218.22

    -
    -

    BXD34

    -
    -

    Male

    -
    -

    369

    -
    -

    Eyeball

    -
    -

    46

    -
    -

    E314

    -
    -

    AGE061218.21

    -
    -

    BXD34

    -
    -

    Female

    -
    -

    369

    -
    -

    Eyeball

    -
    -

    47

    -
    -

    E331

    -
    -

    *110918.07

    -
    -

    BXD28

    -
    -

    Male

    -
    -

    366

    -
    -

    Eyeball

    -
    -

    48

    -
    -

    E334

    -
    -

    *110918.02

    -
    -

    BXD18

    -
    -

    Male

    -
    -

    452

    -
    -

    Eyeball

    -
    -

    49

    -
    -

    E335

    -
    -

    *110918.01

    -
    -

    BXD18

    -
    -

    Female

    -
    -

    452

    -
    -

    Eyeball

    -
    -

    50

    -
    -

    E340

    -
    -

    *110918.51

    -
    -

    BXD98

    -
    -

    Male

    -
    -

    359

    -
    -

    Eyeball

    -
    -

    51

    -
    -

    E341

    -
    -

    *110918.50

    -
    -

    BXD98

    -
    -

    Female

    -
    -

    359

    -
    -

    Eyeball

    -
    -

    52

    -
    -

    E344

    -
    -

    *083019.05

    -
    -

    BXD9

    -
    -

    Female

    -
    -

    373

    -
    -

    Eyeball

    -
    -

    53

    -
    -

    E345

    -
    -

    *083019.06

    -
    -

    BXD9

    -
    -

    Male

    -
    -

    373

    -
    -

    Eyeball

    -
    -

    54

    -
    -

    E346

    -
    -

    *083019.22

    -
    -

    BXD31

    -
    -

    Male

    -
    -

    391

    -
    -

    Eyeball

    -
    -

    55

    -
    -

    E347

    -
    -

    *083019.23

    -
    -

    BXD43

    -
    -

    Female

    -
    -

    391

    -
    -

    Eyeball

    -
    -

    56

    -
    -

    E349

    -
    -

    *083019.26

    -
    -

    BXD43

    -
    -

    Male

    -
    -

    367

    -
    -

    Eyeball

    -
    -

    57

    -
    -

    E350

    -
    -

    *083019.30

    -
    -

    BXD50

    -
    -

    Female

    -
    -

    408

    -
    -

    Eyeball

    -
    -

    58

    -
    -

    E351

    -
    -

    *083019.31

    -
    -

    BXD50

    -
    -

    Female

    -
    -

    408

    -
    -

    Eyeball

    -
    -

    59

    -
    -

    E352

    -
    -

    *083019.33

    -
    -

    BXD51

    -
    -

    Female

    -
    -

    368

    -
    -

    Eyeball

    -
    -

    60

    -
    -

    E353

    -
    -

    *083019.34

    -
    -

    BXD51

    -
    -

    Male

    -
    -

    368

    -
    -

    Eyeball

    -
    -

    61

    -
    -

    E354

    -
    -

    *083019.38

    -
    -

    BXD66

    -
    -

    Male

    -
    -

    430

    -
    -

    Eyeball

    -
    -

    62

    -
    -

    E355

    -
    -

    *083019.39

    -
    -

    BXD66

    -
    -

    Male

    -
    -

    430

    -
    -

    Eyeball

    -
    -

    63

    -
    -

    E356

    -
    -

    *083019.45

    -
    -

    BXD73

    -
    -

    Female

    -
    -

    451

    -
    -

    Eyeball

    -
    -

    64

    -
    -

    E357

    -
    -

    *083019.46

    -
    -

    BXD73

    -
    -

    Male

    -
    -

    451

    -
    -

    Eyeball

    -
    -

    65

    -
    -

    E358

    -
    -

    *083019.48

    -
    -

    BXD75

    -
    -

    Female

    -
    -

    369

    -
    -

    Eyeball

    -
    -

    66

    -
    -

    E359

    -
    -

    *083019.49

    -
    -

    BXD75

    -
    -

    Male

    -
    -

    369

    -
    -

    Eyeball

    -
    -

    67

    -
    -

    E360

    -
    -

    *083019.50

    -
    -

    BXD78

    -
    -

    Female

    -
    -

    432

    -
    -

    Eyeball

    -
    -

    68

    -
    -

    E361

    -
    -

    *083019.51

    -
    -

    BXD78

    -
    -

    Male

    -
    -

    432

    -
    -

    Eyeball

    -
    -

    69

    -
    -

    E363

    -
    -

    *083019.55

    -
    -

    BXD87

    -
    -

    Female

    -
    -

    444

    -
    -

    Eyeball

    -
    -

    70

    -
    -

    E364

    -
    -

    *083019.56

    -
    -

    BXD87

    -
    -

    Male

    -
    -

    444

    -
    -

    Eyeball

    -
    -

    71

    -
    -

    E365

    -
    -

    *083019.57

    -
    -

    BXD89

    -
    -

    Female

    -
    -

    446

    -
    -

    Eyeball

    -
    -

    72

    -
    -

    E366

    -
    -

    *083019.66

    -
    -

    BXD113

    -
    -

    Female

    -
    -

    366

    -
    -

    Eyeball

    -
    -

    73

    -
    -

    E367

    -
    -

    *083019.67

    -
    -

    BXD113

    -
    -

    Male

    -
    -

    366

    -
    -

    Eyeball

    -
    -

    74

    -
    -

    E368

    -
    -

    *090119.04

    -
    -

    BXD123

    -
    -

    Female

    -
    -

    441

    -
    -

    Eyeball

    -
    -

    75

    -
    -

    E369

    -
    -

    *090119.05

    -
    -

    BXD123

    -
    -

    Male

    -
    -

    441

    -
    -

    Eyeball

    -
    -

    76

    -
    -

    E370

    -
    -

    *090119.09

    -
    -

    BXD141

    -
    -

    Female

    -
    -

    370

    -
    -

    Eyeball

    -
    -

    77

    -
    -

    E371

    -
    -

    *090119.11

    -
    -

    BXD141

    -
    -

    Male

    -
    -

    370

    -
    -

    Eyeball

    -
    -

    78

    -
    -

    E372

    -
    -

    *090119.15

    -
    -

    BXD151

    -
    -

    Female

    -
    -

    439

    -
    -

    Eyeball

    -
    -

    79

    -
    -

    E373

    -
    -

    *090119.16

    -
    -

    BXD151

    -
    -

    Male

    -
    -

    439

    -
    -

    Eyeball

    -
    -

    80

    -
    -

    E374

    -
    -

    *090119.18

    -
    -

    BXD152

    -
    -

    Female

    -
    -

    374

    -
    -

    Eyeball

    -
    -

    81

    -
    -

    E375

    -
    -

    *090119.19

    -
    -

    BXD152

    -
    -

    Male

    -
    -

    374

    -
    -

    Eyeball

    -
    -

    82

    -
    -

    E376

    -
    -

    *090119.20

    -
    -

    BXD154

    -
    -

    Female

    -
    -

    370

    -
    -

    Eyeball

    -
    -

    83

    -
    -

    E377

    -
    -

    *090119.22

    -
    -

    BXD154

    -
    -

    Male

    -
    -

    370

    -
    -

    Eyeball

    -
    -

    84

    -
    -

    E378

    -
    -

    *090119.24

    -
    -

    BXD155

    -
    -

    Female

    -
    -

    379

    -
    -

    Eyeball

    -
    -

    85

    -
    -

    E379

    -
    -

    *090119.25

    -
    -

    BXD155

    -
    -

    Male

    -
    -

    379

    -
    -

    Eyeball

    -
    -

    86

    -
    -

    E380

    -
    -

    *090119.27

    -
    -

    BXD161

    -
    -

    Female

    -
    -

    376

    -
    -

    Eyeball

    -
    -

    87

    -
    -

    E381

    -
    -

    *090119.28

    -
    -

    BXD161

    -
    -

    Male

    -
    -

    376

    -
    -

    Eyeball

    -
    -

    88

    -
    -

    E382

    -
    -

    *090119.34

    -
    -

    BXD170

    -
    -

    Male

    -
    -

    438

    -
    -

    Eyeball

    -
    -

    89

    -
    -

    E383

    -
    -

    *090119.36

    -
    -

    BXD171

    -
    -

    Female

    -
    -

    370

    -
    -

    Eyeball

    -
    -

    90

    -
    -

    E384

    -
    -

    *090119.37

    -
    -

    BXD171

    -
    -

    Male

    -
    -

    370

    -
    -

    Eyeball

    -
    -

    91

    -
    -

    E385

    -
    -

    *090119.41

    -
    -

    BXD178

    -
    -

    Female

    -
    -

    493

    -
    -

    Eyeball

    -
    -

    92

    -
    -

    E386

    -
    -

    *090119.42

    -
    -

    BXD178

    -
    -

    Female

    -
    -

    493

    -
    -

    Eyeball

    -
    -

    93

    -
    -

    E387

    -
    -

    *090119.44

    -
    -

    BXD180

    -
    -

    Female

    -
    -

    375

    -
    -

    Eyeball

    -
    -

    94

    -
    -

    E390

    -
    -

    *090119.48

    -
    -

    BXD190

    -
    -

    Male

    -
    -

    374

    -
    -

    Eyeball

    -
    -

    95

    -
    -

    E391

    -
    -

    *090119.52

    -
    -

    BXD197

    -
    -

    Female

    -
    -

    433

    -
    -

    Eyeball

    -
    -

    96

    -
    -

    E392

    -
    -

    *090119.53

    -
    -

    BXD197

    -
    -

    Male

    -
    -

    433

    -
    -

    Eyeball

    -
    -

    97

    -
    -

    E395

    -
    -

    *090119.57

    -
    -

    BXD202

    -
    -

    Female

    -
    -

    427

    -
    -

    Eyeball

    -
    -

    98

    -
    -

    E399

    -
    -

    *090119.67

    -
    -

    BXD218

    -
    -

    Female

    -
    -

    412

    -
    -

    Eyeball

    -
    -

    99

    -
    -

    E400

    -
    -

    *090119.68

    -
    -

    BXD218

    -
    -

    Male

    -
    -

    412

    -
    -

    Eyeball

    -
    -

    100

    -
    -

    E448

    -
    -

    *100819.101

    -
    -

    BXD111

    -
    -

    Female

    -
    -

    373

    -
    -

    Eyeball

    -
    -

    101

    -
    -

    E449

    -
    -

    *100819.102

    -
    -

    BXD111

    -
    -

    Male

    -
    -

    373

    -
    -

    Eyeball

    -
    -

    102

    -
    -

    E450

    -
    -

    *100819.104

    -
    -

    BXD122

    -
    -

    Female

    -
    -

    383

    -
    -

    Eyeball

    -
    -

    103

    -
    -

    E451

    -
    -

    *100819.105

    -
    -

    BXD122

    -
    -

    Male

    -
    -

    383

    -
    -

    Eyeball

    -
    -

    104

    -
    -

    E452

    -
    -

    *100819.107

    -
    -

    BXD124

    -
    -

    Female

    -
    -

    366

    -
    -

    Eyeball

    -
    -

    105

    -
    -

    E453

    -
    -

    *100819.108

    -
    -

    BXD124

    -
    -

    Male

    -
    -

    366

    -
    -

    Eyeball

    -
    -

    106

    -
    -

    E454

    -
    -

    *100819.110

    -
    -

    BXD125

    -
    -

    Female

    -
    -

    376

    -
    -

    Eyeball

    -
    -

    107

    -
    -

    E455

    -
    -

    *100819.111

    -
    -

    BXD125

    -
    -

    Male

    -
    -

    376

    -
    -

    Eyeball

    -
    -

    108

    -
    -

    E459

    -
    -

    *100819.131

    -
    -

    BXD172

    -
    -

    Female

    -
    -

    375

    -
    -

    Eyeball

    -
    -

    109

    -
    -

    E460

    -
    -

    *100819.132

    -
    -

    BXD172

    -
    -

    Male

    -
    -

    375

    -
    -

    Eyeball

    -
    -

    110

    -
    -

    E482

    -
    -

    *052220.14

    -
    -

    BXD71

    -
    -

    Female

    -
    -

    396

    -
    -

    Eyeball

    -
    -

    111

    -
    -

    E483

    -
    -

    *052220.10

    -
    -

    BXD11

    -
    -

    Female

    -
    -

    379

    -
    -

    Eyeball

    -
    -

    112

    -
    -

    E484

    -
    -

    *052220.07

    -
    -

    BXD65

    -
    -

    Male

    -
    -

    528

    -
    -

    Eyeball

    -
    -

    113

    -
    -

    E485

    -
    -

    *052220.03

    -
    -

    BXD194

    -
    -

    Male

    -
    -

    396

    -
    -

    Eyeball

    -
    -

    114

    -
    -

    E486

    -
    -

    *052220.19

    -
    -

    BXD15

    -
    -

    Female

    -
    -

    415

    -
    -

    Eyeball

    -
    -

    115

    -
    -

    E487

    -
    -

    *052220.02

    -
    -

    BXD194

    -
    -

    Female

    -
    -

    396

    -
    -

    Eyeball

    -
    -

    116

    -
    -

    E488

    -
    -

    *052220.12

    -
    -

    BXD1

    -
    -

    Female

    -
    -

    429

    -
    -

    Eyeball

    -
    -

    117

    -
    -

    E489

    -
    -

    *052220.18

    -
    -

    BXD216

    -
    -

    Male

    -
    -

    401

    -
    -

    Eyeball

    -
    -

    118

    -
    -

    E490

    -
    -

    *052220.13

    -
    -

    BXD1

    -
    -

    Male

    -
    -

    429

    -
    -

    Eyeball

    -
    -

    119

    -
    -

    E494

    -
    -

    *052220.15

    -
    -

    BXD71

    -
    -

    Male

    -
    -

    396

    -
    -

    Eyeball

    -
    -

    120

    -
    -

    E496

    -
    -

    *052220.08

    -
    -

    BXD170

    -
    -

    Male

    -
    -

    360

    -
    -

    Eyeball

    -
    -

    121

    -
    -

    E498

    -
    -

    *052220.06

    -
    -

    BXD65

    -
    -

    Female

    -
    -

    528

    -
    -

    Eyeball

    -
    -

    122

    -
    -

    E499

    -
    -

    *052220.05

    -
    -

    C57BL/6J

    -
    -

    Male

    -
    -

    424

    -
    -

    Eyeball

    -
    -

    123

    -
    -

    E501

    -
    -

    *052220.21

    -
    -

    BXD73a

    -
    -

    Female

    -
    -

    408

    -
    -

    Eyeball

    -
    -

    124

    -
    -

    E502

    -
    -

    *052220.11

    -
    -

    BXD11

    -
    -

    Male

    -
    -

    379

    -
    -

    Eyeball

    -
    -

    125

    -
    -

    E503

    -
    -

    *052220.22

    -
    -

    DBA/2J-Gpnmb

    -
    -

    Female

    -
    -

    439

    -
    -

    Eyeball

    -
    -

    126

    -
    -

    E504

    -
    -

    *052220.20

    -
    -

    BXD15

    -
    -

    Male

    -
    -

    415

    -
    -

    Eyeball

    -
    -

    127

    -
    -

    E541

    -
    -

    042915.08

    -
    -

    BXD29

    -
    -

    Female

    -
    -

    478

    -
    -

    Eyeball

    -
    -

    128

    -
    -

    E542

    -
    -

    050115.01

    -
    -

    BXD65b

    -
    -

    Female

    -
    -

    415

    -
    -

    Eyeball

    -
    -

    129

    -
    -

    E543

    -
    -

    042915.07

    -
    -

    BXD29

    -
    -

    Female

    -
    -

    431

    -
    -

    Eyeball

    -
    -

    130

    -
    -

    E544

    -
    -

    042314.12

    -
    -

    B6D2F1

    -
    -

    Female

    -
    -

    364

    -
    -

    Eyeball

    -
    -

    131

    -
    -

    E548

    -
    -

    *061119.02

    -
    -

    C57BL/6J

    -
    -

    Female

    -
    -

    392

    -
    -

    Eyeball

    -
    -

    132

    -
    -

    E549

    -
    -

    *061119.03

    -
    -

    C57BL/6J

    -
    -

    Male

    -
    -

    392

    -
    -

    Eyeball

    -
    -

    133

    -
    -

    E551

    -
    -

    *061119.11

    -
    -

    DBA/2J

    -
    -

    Female

    -
    -

    392

    -
    -

    Eyeball

    -
    -

    134

    -
    -

    E552

    -
    -

    *061119.12

    -
    -

    DBA/2J

    -
    -

    Male

    -
    -

    392

    -
    -

    Eyeball

    -
    -

    135

    -
    -

    E554

    -
    -

    *061119.15

    -
    -

    DBA/2J

    -
    -

    Male

    -
    -

    392

    -
    -

    Eyeball

    -
    -

    136

    -
    -

    E556

    -
    -

    *061119.22

    -
    -

    DBA/2J

    -
    -

    Male

    -
    -

    380

    -
    -

    Eyeball

    -
    -

    137

    -
    -

    E561

    -
    -

    *061219.12

    -
    -

    BXD27

    -
    -

    Female

    -
    -

    494

    -
    -

    Eyeball

    -
    -

    138

    -
    -

    E564

    -
    -

    *061219.14

    -
    -

    BXD27

    -
    -

    Male

    -
    -

    494

    -
    -

    Eyeball

    -
    -

    139

    -
    -

    E565

    -
    -

    *060419.04

    -
    -

    BXD32

    -
    -

    Female

    -
    -

    425

    -
    -

    Eyeball

    -
    -

    140

    -
    -

    E566

    -
    -

    *060419.05

    -
    -

    BXD32

    -
    -

    Male

    -
    -

    425

    -
    -

    Eyeball

    -
    -

    141

    -
    -

    E567

    -
    -

    *070919.01

    -
    -

    BXD86

    -
    -

    Female

    -
    -

    381

    -
    -

    Eyeball

    -
    -

    142

    -
    -

    E569

    -
    -

    *070919.03

    -
    -

    BXD86

    -
    -

    Male

    -
    -

    381

    -
    -

    Eyeball

    -
    -

    143

    -
    -

    E576

    -
    -

    *072519.11

    -
    -

    BXD191

    -
    -

    Male

    -
    -

    477

    -
    -

    Eyeball

    -
    -

    144

    -
    -

    E577

    -
    -

    *072519.09

    -
    -

    BXD190

    -
    -

    Male

    -
    -

    434

    -
    -

    Eyeball

    -
    -

    145

    -
    -

    E582

    -
    -

    *073019.16

    -
    -

    BXD216

    -
    -

    Male

    -
    -

    459

    -
    -

    Eyeball

    -
    -

    146

    -
    -

    E591

    -
    -

    *061319.04

    -
    -

    BXD48

    -
    -

    Female

    -
    -

    425

    -
    -

    Eyeball

    -
    -

    147

    -
    -

    E592

    -
    -

    *061319.05

    -
    -

    BXD48

    -
    -

    Male

    -
    -

    425

    -
    -

    Eyeball

    -
    -

    148

    -
    -

    E593

    -
    -

    *061319.21

    -
    -

    BXD61

    -
    -

    Male

    -
    -

    459

    -
    -

    Eyeball

    -
    -

    149

    -
    -

    E600

    -
    -

    *050318.10

    -
    -

    BXD69

    -
    -

    Female

    -
    -

    387

    -
    -

    Eyeball

    -
    -

    150

    -
    -

    E601

    -
    -

    *013020.53

    -
    -

    BXD102

    -
    -

    Male

    -
    -

    416

    -
    -

    Eyeball

    -
    -

    151

    -
    -

    E603

    -
    -

    *013020.25

    -
    -

    BXD65b

    -
    -

    Male

    -
    -

    505

    -
    -

    Eyeball

    -
    -

    152

    -
    -

    E605

    -
    -

    *013020.54

    -
    -

    BXD102

    -
    -

    Female

    -
    -

    416

    -
    -

    Eyeball

    -
    -

    153

    -
    -

    E620

    -
    -

    *012420.26

    -
    -

    BXD128a

    -
    -

    Male

    -
    -

    366

    -
    -

    Eyeball

    -
    -

    154

    -
    -

    E625

    -
    -

    *110918.54

    -
    -

    BXD101

    -
    -

    Male

    -
    -

    361

    -
    -

    Eyeball

    -
    -

    155

    -
    -

    E626

    -
    -

    *110918.53

    -
    -

    BXD101

    -
    -

    Female

    -
    -

    361

    -
    -

    Eyeball

    -
    -

    156

    -
    -

    E631

    -
    -

    *083019.14

    -
    -

    BXD16

    -
    -

    Female

    -
    -

    363

    -
    -

    Eyeball

    -
    -

    157

    -
    -

    E635

    -
    -

    *083019.35

    -
    -

    BXD61

    -
    -

    Male

    -
    -

    364

    -
    -

    Eyeball

    -
    -

    158

    -
    -

    E638

    -
    -

    *083019.60

    -
    -

    BXD90

    -
    -

    Female

    -
    -

    378

    -
    -

    Eyeball

    -
    -

    159

    -
    -

    E639

    -
    -

    *083019.62

    -
    -

    BXD90

    -
    -

    Male

    -
    -

    378

    -
    -

    Eyeball

    -
    -

    160

    -
    -

    E662

    -
    -

    *100819.153

    -
    -

    BXD202

    -
    -

    Male

    -
    -

    410

    -
    -

    Eyeball

    -
    -

    161

    -
    -

    E663

    -
    -

    *100819.157

    -
    -

    BXD205

    -
    -

    Female

    -
    -

    371

    -
    -

    Eyeball

    -
    -

    162

    -
    -

    E664

    -
    -

    *100819.158

    -
    -

    BXD205

    -
    -

    Male

    -
    -

    372

    -
    -

    Eyeball

    -
    -

    163

    -
    -

    E665

    -
    -

    *100819.163

    -
    -

    BXD213

    -
    -

    Female

    -
    -

    396

    -
    -

    Eyeball

    -
    -

    164

    -
    -

    E666

    -
    -

    *100819.164

    -
    -

    BXD213

    -
    -

    Male

    -
    -

    397

    -
    -

    Eyeball

    -
    -

    165

    -
    -

    E667

    -
    -

    *100819.168

    -
    -

    BXD223

    -
    -

    Female

    -
    -

    419

    -
    -

    Eyeball

    -
    -

    166

    -
    -

    E668

    -
    -

    *100819.169

    -
    -

    BXD223

    -
    -

    Male

    -
    -

    420

    -
    -

    Eyeball

    -
    -

    167

    -
    -

    E672

    -
    -

    *052920.10

    -
    -

    BXD83

    -
    -

    Male

    -
    -

    380

    -
    -

    Eyeball

    -
    -

    168

    -
    -

    E675

    -
    -

    *052920.13

    -
    -

    DBA/2J-Gpnmb

    -
    -

    Female

    -
    -

    452

    -
    -

    Eyeball

    -
    -

    169

    -
    -

    E679

    -
    -

    *052920.12

    -
    -

    DBA/2J-Gpnmb

    -
    -

    Female

    -
    -

    458

    -
    -

    Eyeball

    -
    -

    170

    -
    -

    E680

    -
    -

    *052920.01

    -
    -

    BXD43

    -
    -

    Female

    -
    -

    465

    -
    -

    Eyeball

    -
    -

    171

    -
    -

    E682

    -
    -

    *052920.02

    -
    -

    C57BL/6J

    -
    -

    Female

    -
    -

    433

    -
    -

    Eyeball

    -
    -

    172

    -
    -

    E685

    -
    -

    *052920.09

    -
    -

    BXD83

    -
    -

    Female

    -
    -

    379

    -
    -

    Eyeball

    -
    -

    173

    -
    -

    E699

    -
    -

    *072120.14

    -
    -

    BXD40

    -
    -

    Male

    -
    -

    458

    -
    -

    Eyeball

    -
    -

    174

    -
    -

    E709

    -
    -

    *072120.24

    -
    -

    BXD150

    -
    -

    Female

    -
    -

    433

    -
    -

    Eyeball

    -
    -

    175

    -
    -

    E712

    -
    -

    *072120.27

    -
    -

    BXD160

    -
    -

    Female

    -
    -

    367

    -
    -

    Eyeball

    -
    -

    176

    -
    -

    E726

    -
    -

    *072120.41

    -
    -

    BXD16

    -
    -

    Female

    -
    -

    367

    -
    -

    Eyeball

    -
    -

    177

    -
    -

    E733

    -
    -

    *072120.48

    -
    -

    BXD60

    -
    -

    Female

    -
    -

    558

    -
    -

    Eyeball

    -
    -

    178

    -
    -

    E735

    -
    -

    *072120.50

    -
    -

    BXD180

    -
    -

    Male

    -
    -

    473

    -
    -

    Eyeball

    -
    -

    179

    -
    -

    E738

    -
    -

    *072120.53

    -
    -

    BXD128a

    -
    -

    Female

    -
    -

    387

    -
    -

    Eyeball

    -
    -

    180

    -
    -

    E745

    -
    -

    *072120.60

    -
    -

    BXD199

    -
    -

    Female

    -
    -

    457

    -
    -

    Eyeball

    -
    -

    181

    -
    -

    E746

    -
    -

    *072120.61

    -
    -

    BXD199

    -
    -

    Male

    -
    -

    457

    -
    -

    Eyeball

    -
    -

    182

    -
    -

    E749

    -
    -

    *072120.64

    -
    -

    BXD2

    -
    -

    Female

    -
    -

    399

    -
    -

    Eyeball

    -
    -

    183

    -
    -

    E750

    -
    -

    *072120.65

    -
    -

    BXD2

    -
    -

    Male

    -
    -

    399

    -
    -

    Eyeball

    -
    -

    184

    -
    -

    E753

    -
    -

    *072120.68

    -
    -

    BXD169

    -
    -

    Female

    -
    -

    441

    -
    -

    Eyeball

    -
    -

    185

    -
    -

    E754

    -
    -

    *072120.69

    -
    -

    BXD169

    -
    -

    Male

    -
    -

    441

    -
    -

    Eyeball

    -
    -

    186

    -
    -

    E759

    -
    -

    *072120.72

    -
    -

    BXD187

    -
    -

    Female

    -
    -

    354

    -
    -

    Eyeball

    -
    -

    187

    -
    -

    E760

    -
    -

    *072120.73

    -
    -

    BXD187

    -
    -

    Male

    -
    -

    354

    -
    -

    Eyeball

    -
    diff --git a/general/datasets/UTHSC_BXD_Aged_Eye_RNAseq_TPM_Log2_1120/tissue.rtf b/general/datasets/UTHSC_BXD_Aged_Eye_RNAseq_TPM_Log2_1120/tissue.rtf deleted file mode 100644 index bbfb410..0000000 --- a/general/datasets/UTHSC_BXD_Aged_Eye_RNAseq_TPM_Log2_1120/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The animals were sacrificed under saturated isoflurane. Eyeballs from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/UTHSC_BXD_All_Ages_Eye_RNAseq_TPM_Log/experiment-design.rtf b/general/datasets/UTHSC_BXD_All_Ages_Eye_RNAseq_TPM_Log/experiment-design.rtf deleted file mode 100644 index 2f8cedc..0000000 --- a/general/datasets/UTHSC_BXD_All_Ages_Eye_RNAseq_TPM_Log/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Total RNA was extracted using Trizol® reagent (Invitrogen, Grand Island, NY, USA) according to the manufacturer’s instructions. Approximately 30 mg of PFC tissue was added into a 2 ml tube containing 700ul QIAzol Lysis Reagent and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 minutes in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 r followed by incubating for 5 minutes.140 µl chloroform was added into the homogenate, shaken vigorously for 15 seconds, and centrifuged for 15 minutes at 12,000 x g at 4 â„ƒ. 280 µl upper aqueous was then transferred into a new collection tube containing 500 µl 100% ethanol. The mixture was loaded into a RNeasy mini‐spin column (Qiagen, Valencia, CA, USA), once with Buffer RWT and twice with Buffer RPE purification. All RNA had been treated with DNase to avoid DNA contamination, and verified by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA with OD260/280 > 1.8 and RIN > 8.0 were used for library preparation

    diff --git a/general/datasets/UTHSC_BXD_All_Ages_Eye_RNAseq_TPM_Log/processing.rtf b/general/datasets/UTHSC_BXD_All_Ages_Eye_RNAseq_TPM_Log/processing.rtf deleted file mode 100644 index 8e460ff..0000000 --- a/general/datasets/UTHSC_BXD_All_Ages_Eye_RNAseq_TPM_Log/processing.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

    Generation of RNA-seq data

    - -

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    - -

     

    - -

    Read mapping and normalization

    - -

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/UTHSC_BXD_All_Ages_Eye_RNAseq_TPM_Log/specifics.rtf b/general/datasets/UTHSC_BXD_All_Ages_Eye_RNAseq_TPM_Log/specifics.rtf deleted file mode 100644 index 8b003fb..0000000 --- a/general/datasets/UTHSC_BXD_All_Ages_Eye_RNAseq_TPM_Log/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -UTHSC BXD All Ages Eye RNA-Seq (Nov20) TPM Log2 \ No newline at end of file diff --git a/general/datasets/UTHSC_BXD_All_Ages_Eye_RNAseq_TPM_Log/tissue.rtf b/general/datasets/UTHSC_BXD_All_Ages_Eye_RNAseq_TPM_Log/tissue.rtf deleted file mode 100644 index bbfb410..0000000 --- a/general/datasets/UTHSC_BXD_All_Ages_Eye_RNAseq_TPM_Log/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The animals were sacrificed under saturated isoflurane. Eyeballs from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/UTHSC_BXD_H_0912/cases.rtf b/general/datasets/UTHSC_BXD_H_0912/cases.rtf deleted file mode 100644 index 2b37c95..0000000 --- a/general/datasets/UTHSC_BXD_H_0912/cases.rtf +++ /dev/null @@ -1,1258 +0,0 @@ -

    The study includes 137 mice (11~25 months old) from 73 strains (B6, D2, DBF1, and 70 BXD strains). All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    - -

    The table of samples that are finally used for this study:

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexStrainSexRNA IDAgePhaseTissue
    1BXD1FR7281H448IIHippocampus
    2BXD1MR7276H323IIHippocampus
    3BXD2MR7261H394IHippocampus
    4BXD2FR7256H456IHippocampus
    5BXD6MR7223H526IHippocampus
    6BXD8MR7203H471IHippocampus
    7BXD8FR7200H460IHippocampus
    8BXD8FR7198H433IHippocampus
    9BXD9FR7294H456IIHippocampus
    10BXD11MR7300H457IIHippocampus
    11BXD11FR7227H536IHippocampus
    12BXD12FR7183H506IHippocampus
    13BXD12FR7233H561IHippocampus
    14BXD12MR7234H606IHippocampus
    15BXD14FR7238H605IHippocampus
    16BXD14MR7235H605IHippocampus
    17BXD16FR7236H561IHippocampus
    18BXD16MR7239H475IHippocampus
    19BXD18FR7229H493IHippocampus
    20BXD19FR7267H551IHippocampus
    21BXD19MR7268H492IHippocampus
    22BXD20MR7232H506IHippocampus
    23BXD20MR7263H489IHippocampus
    24BXD21FR7230H537IHippocampus
    25BXD22FR7260H502IHippocampus
    26BXD22MR7262H596IHippocampus
    27BXD23FR7258H502IHippocampus
    28BXD23MR7257H462IHippocampus
    29BXD24MR7231H470IHippocampus
    30BXD24FR7228H415IHippocampus
    31BXD24FR7255H456IHippocampus
    32BXD25FR7252H454IHippocampus
    33BXD27FR7286H472IIHippocampus
    34BXD27FR7170H472IHippocampus
    35BXD28MR7254H493IHippocampus
    36BXD28FR7251H543IHippocampus
    37BXD29FR7259H483IHippocampus
    38BXD33MR7253H464IHippocampus
    39BXD33FR7174H471IHippocampus
    40BXD33FR7244H448IHippocampus
    41BXD33MR7270H662IHippocampus
    42BXD38FR7242H464IHippocampus
    43BXD38MR7247H446IHippocampus
    44BXD39MR7250H536IHippocampus
    45BXD39FR7173H500IHippocampus
    46BXD39MR7175H500IHippocampus
    47BXD40FR7288H451IIHippocampus
    48BXD40MR7210H470IHippocampus
    49BXD40MR7197H614IHippocampus
    50BXD42FR7280H518IIHippocampus
    51BXD42MR7246H446IHippocampus
    52BXD42FR7266H486IHippocampus
    53BXD43FR7249H454IHippocampus
    54BXD43MR7248H462IHippocampus
    55BXD44MR7241H415IHippocampus
    56BXD44MR7279H419IIHippocampus
    57BXD44FR7243H438IHippocampus
    58BXD45FR7176H451IHippocampus
    59BXD48FR7245H499IHippocampus
    60BXD48MR7220H526IHippocampus
    61BXD48aFR7299H479IIHippocampus
    62BXD48aMR7297H479IIHippocampus
    63BXD50FR7224H530IHippocampus
    64BXD50MR7221H530IHippocampus
    65BXD51FR7177H487IHippocampus
    66BXD51MR7290H407IIHippocampus
    67BXD55MR7222H528IHippocampus
    68BXD55FR7225H587IHippocampus
    69BXD56MR7178H501IHippocampus
    70BXD62MR7291H439IIHippocampus
    71BXD63MR7218H438IHippocampus
    72BXD63FR7215H475IHippocampus
    73BXD64MR7219H528IHippocampus
    74BXD64FR7216H587IHippocampus
    75BXD65FR7217H425IHippocampus
    76BXD65aFR7273H389IIHippocampus
    77BXD65aMR7277H715IIHippocampus
    78BXD65bMR7271H483IIHippocampus
    79BXD66MR7214H463IHippocampus
    80BXD66FR7302H446IIIHippocampus
    81BXD67FR7240H499IHippocampus
    82BXD67MR7213H425IHippocampus
    83BXD67FR7278H415IIHippocampus
    84BXD68MR7212H421IHippocampus
    85BXD68FR7211H415IHippocampus
    86BXD69FR7305H504IIIHippocampus
    87BXD70FR7207H458IHippocampus
    88BXD70MR7204H460IHippocampus
    89BXD71MR7205H471IHippocampus
    90BXD71FR7208H474IHippocampus
    91BXD73FR7209H470IHippocampus
    92BXD73MR7206H464IHippocampus
    93BXD73aFR7181H443IHippocampus
    94BXD73aMR7182H614IHippocampus
    95BXD76MR7179H579IHippocampus
    96BXD76FR7188H408IHippocampus
    97BXD76MR7187H564IHippocampus
    98BXD77MR7292H347IIHippocampus
    99BXD77FR7201H454IHippocampus
    100BXD79MR7202H485IHippocampus
    101BXD79FR7199H515IHippocampus
    102BXD79MR7298H704IIHippocampus
    103BXD81MR7196H515IHippocampus
    104BXD81FR7190H458IHippocampus
    105BXD83MR7184H441IHippocampus
    106BXD84MR7195H474IHippocampus
    107BXD84MR7296H484IIHippocampus
    108BXD84FR7192H522IHippocampus
    109BXD85MR7272H425IIHippocampus
    110BXD85FR7193H506IHippocampus
    111BXD86MR7191H425IHippocampus
    112BXD87FR7194H425IHippocampus
    113BXD87MR7303H478IIIHippocampus
    114BXD87MR7186H442IHippocampus
    115BXD89FR7295H446IIHippocampus
    116BXD90MR7287H434IIHippocampus
    117BXD90MR7293H558IIHippocampus
    118BXD95FR7180H467IHippocampus
    119BXD95MR7169H467IHippocampus
    120BXD98MR7237H605IHippocampus
    121BXD98FR7171H639IHippocampus
    122BXD98FR7275H488IIHippocampus
    123BXD99MR7189H524IHippocampus
    124BXD99FR7172H471IHippocampus
    125BXD100FR7282H463IIHippocampus
    126BXD100MR7283H507IIHippocampus
    127BXD100MR7274H577IIHippocampus
    128BXD100FR7226H464IHippocampus
    129BXD101FR7284H490IIHippocampus
    130BXD101MR7285H408IIHippocampus
    131C57BL/6JMR7264H489IHippocampus
    132C57BL/6JMR7289H756IIHippocampus
    133D2B6F1MR7265H492IHippocampus
    134D2B6F1FR7304H495IIIHippocampus
    135DBA/2JFR7185H433IHippocampus
    136DBA/2JMR7269H367IHippocampus
    137DBA/2JFR7301H566IIIHippocampus
    diff --git a/general/datasets/UTHSC_BXD_H_0912/experiment-design.rtf b/general/datasets/UTHSC_BXD_H_0912/experiment-design.rtf deleted file mode 100644 index d6b2d5b..0000000 --- a/general/datasets/UTHSC_BXD_H_0912/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    RNA Extraction

    - -

    RNA was extracted using the RNeasy mini kit (Qiagen, Valencia, CA, USA) according to the manufactures’ procedure. 2100 BioAnalyzer (Agilent Technologies) was used to evaluate RNA integrity and quality. Samples with RNA Integrity Numbers (RIN values) > 8.0 were run on Affy MoGene1.0 ST at the UTHSC

    diff --git a/general/datasets/UTHSC_BXD_H_0912/processing.rtf b/general/datasets/UTHSC_BXD_H_0912/processing.rtf deleted file mode 100644 index e951515..0000000 --- a/general/datasets/UTHSC_BXD_H_0912/processing.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    About data processing:

    - -

    Raw microarray data were normalized using the Robust Multichip Array (RMA) method. The expression data were then re-normalized using a modified Z score.

    diff --git a/general/datasets/UTHSC_BXD_H_0912/specifics.rtf b/general/datasets/UTHSC_BXD_H_0912/specifics.rtf deleted file mode 100644 index 0888a16..0000000 --- a/general/datasets/UTHSC_BXD_H_0912/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Exon Level Data \ No newline at end of file diff --git a/general/datasets/UTHSC_BXD_H_0912/tissue.rtf b/general/datasets/UTHSC_BXD_H_0912/tissue.rtf deleted file mode 100644 index 3166717..0000000 --- a/general/datasets/UTHSC_BXD_H_0912/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Tissue Harvest 

    - -

    The animals were sacrificed under saturated isoflurane. Hippocampus from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/UTHSC_BXD_Harv_Liv_0118/cases.rtf b/general/datasets/UTHSC_BXD_Harv_Liv_0118/cases.rtf deleted file mode 100644 index 18fdd1d..0000000 --- a/general/datasets/UTHSC_BXD_Harv_Liv_0118/cases.rtf +++ /dev/null @@ -1,1371 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    CaseIDStrainDietSexAgeEarTag CurrentGN-SampleID
    062013.09C57BL/6JHFF544514H0514
    091914.09C57BL/6JCDF5371103H1103
    012615.26C57BL/6JCDM3611590H1590
    102414.06C57BL/6JHFF1821681H1681
    062013.12D2B6F1CDF545646H0646
    062013.13D2B6F1HFF540642H0642
    101713.20D2B6F1HFF2141150H1150
    101713.18D2B6F1CDF2101154H1154
    083016.07DBA/2JCDF7641818H1818
    091914.05DBA/2JHFF5491142H1142
    091914.07DBA/2JHFM5441140H1140
    101713.10DBA/2JCDF2121147H1147
    101713.11DBA/2JHFF2121144H1144
    121214.29B6D2F1CDF6401227H1227
    012615.07B6D2F1CDF5521569H1569
    102616.04B6D2F1HFF5472288H2288
    102616.05B6D2F1HFF5472290H2290
    101713.13B6D2F1CDF2161223H1223
    101713.15B6D2F1HFF2161302H1302
    082214.11BXD9CDF5481006H1006
    082214.09BXD9HFF5481009H1009
    102616.12BXD9CDF2452577H2577
    083016.08BXD24HFF6882259H2259
    012615.19BXD24CDF2051792H1792
    012615.08BXD29CDF7241044H1044
    111314.10BXD29HFF6301037H1037
    061913.04BXD29HFF577669H0669
    111314.11BXD29CDF5741040H1040
    061913.01BXD29CDF572742H0742
    121515.05BXD29HFF1822349H2349
    101014.02BXD32HFF5391137H1137
    083016.01BXD32CDF3862494H2494
    042015.22BXD32CDF2002034H2034
    042015.20BXD32HFF2002030H2030
    101513.05BXD34CDF554765H0765
    101014.05BXD34HFF5371052H1052
    101513.02BXD34CDF2011054H1054
    101513.04BXD34HFF1971056H1056
    010614.06BXD39CDF730673H0673
    102414.02BXD39CDF5501322H1322
    121214.22BXD39HFF3501474H1474
    121214.21BXD39HFF3501473H1473
    061913.06BXD40CDF578680H0680
    121214.13BXD40HFF3581593H1593
    111314.05BXD40HFF2911488H1488
    102414.08BXD40CDF1801691H1691
    102414.12BXD44HFF7151687H1687
    012615.15BXD44CDF3791505H1505
    012615.12BXD44HFF3791501H1501
    042015.07BXD44CDF2401822H1822
    042015.10BXD44HFF2401825H1825
    121515.12BXD45CDF5071826H1826
    121515.15BXD45HFF5031940H1940
    012615.11BXD45CDF3841762H1762
    042915.13BXD48HFF5951377H1377
    121515.18BXD48CDF5181835H1835
    042015.24BXD48HFF1892046H2046
    042015.27BXD48CDF1882054H2054
    062013.06BXD48aHFF543699H0699
    051112.05BXD48aCDF233209H0209
    051112.04BXD48aHFF233210H0210
    010614.07BXD53HFF713833H0833
    062013.16BXD53CDF571848H0848
    021213.14BXD60CDF530171H0171
    050912.08BXD60CDF235235H0235
    121515.23BXD61CDF5241841H1841
    121515.25BXD61HFF5241843H1843
    111414.02BXD61CDF1881770H1770
    111414.03BXD61HFF1881922H1922
    111414.04BXD61HFF1881722H1722
    082214.10BXD62HFF5481315H1315
    042915.19BXD62HFF4881434H1434
    121214.20BXD62CDF3531436H1436
    042015.05BXD62CDF2531847H1847
    102616.17BXD63HFF7522091H2091
    083016.03BXD63CDF7511872H1872
    121214.24BXD63CDF3441414H1414
    121214.26BXD63HFF3441416H1416
    090412.08BXD63CDF218818H0818
    111414.09BXD63HFF1861715H1715
    121615.09BXD65CDF5411787H1787
    121615.06BXD65HFF5411784H1784
    051012.01BXD65HFF230458H0458
    042015.13BXD65CDF2222098H2098
    121615.12BXD65bCDF5271793H1793
    121615.11BXD65bHFF5271790H1790
    111414.05BXD65bCDF1871766H1766
    102414.18BXD65bHFF1741713H1713
    121214.04BXD66HFF3671560H1560
    121214.19BXD66CDF3541558H1558
    042415.08BXD66CDF1842128H2128
    042415.05BXD66HFF1842124H2124
    082214.02BXD68CDF5451080H1080
    082214.08BXD68HFF5451290H1290
    101613.05BXD68CDF2011068H1068
    101613.08BXD68HFF2011071H1071
    061913.13BXD69CDF558591H0591
    121214.23BXD69HFF5281328H1328
    101613.09BXD69HFF2101087H1087
    042415.23BXD69CDF1572142H2142
    121615.14BXD70HFF5781728H1728
    121214.16BXD70CDF3571512H1512
    050115.06BXD70CDF2611855H1855
    051012.08BXD70HFF239188H0188
    121615.17BXD73CDF5391906H1906
    121214.10BXD73CDF3611451H1451
    121214.11BXD73HFF3611447H1447
    042015.18BXD73HFF2062071H2071
    050115.15BXD73bCDF4971466H1466
    050115.12BXD73bHFF4741545H1545
    051112.12BXD73bCDF238184H0184
    051112.14BXD73bHFF237183H0183
    121615.19BXD77HFF5111866H1866
    050115.17BXD77CDF4601398H1398
    061913.18BXD79HFF571583H0583
    050115.19BXD79CDF4681555H1555
    090412.10BXD79CDF217825H0825
    061913.19BXD87CDF581296H0296
    121615.21BXD87HFF5121945H1945
    051012.14BXD87HFF241243H0243
    090612.10BXD87CDF200550H0550
    101014.04BXD89HFF5391321H1321
    051112.01BXD89HFF243176H0176
    090612.14BXD89CDF193555H0555
    062013.03BXD90HFF570736H0736
    062013.02BXD90CDF549756H0756
    101613.19BXD90HFF2181093H1093
    102414.03BXD90CDF1881702H1702
    062013.17BXD91CDF562883H0883
    062013.19BXD91HFF562881H0881
    102414.20BXD95HFF5501273H1273
    101014.10BXD95CDF5361742H1742
    101613.21BXD95HFF2131275H1275
    012615.17BXD98CDF3841769H1769
    012615.16BXD98CDF3841524H1524
    111414.14BXD99CDF5351354H1354
    050914.05BXD99HFF1821355H1355
    111314.15BXD100CDF5671190H1190
    050914.04BXD100HFF5371187H1187
    051112.07BXD100CDF223247H0247
    051112.08BXD100CDF223248H0248
    042415.12BXD100HFF1762085H2085
    102616.20BXD101CDF7562114H2114
    042715.19BXD101HFF4931422H1422
    111414.20BXD101CDF3491425H1425
    051112.09BXD101CDF223468H0468
    042915.01BXD102CDF5011499H1499
    121214.07BXD102HFF3661498H1498
    053014.01BXD102CDF1831363H1363
    052814.04BXD102HFF1831361H1361
    diff --git a/general/datasets/UTHSC_BXD_Harv_Liv_0118/processing.rtf b/general/datasets/UTHSC_BXD_Harv_Liv_0118/processing.rtf deleted file mode 100644 index 4504c49..0000000 --- a/general/datasets/UTHSC_BXD_Harv_Liv_0118/processing.rtf +++ /dev/null @@ -1,26883 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    150 UTHSC Aging Liver RNA Selected for Novogene Submission                                                                                                                                                        
    All Samples approximately 110ng/ul with a total of approximately 3ug RNA                                                                                                                                                       
    File last updated by A.Centeno 1-3-18                                                                                                                                                           
    Pearson Product-Moment Correlation                                                                                                                                                           
    No Selector     TissueLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiver   
           Age216552640223223567223349756183501205572574724200386201554550730180578240379384507188518233571235530188524253353218344751222541187527184354201545157558261357361539238497460217468200581193245548188549562536384384535361537210545212764216547547176537493183366688182577630200539197537350350291358240379715503189595233543713188188524488548186344752230541174527184367201545210528239578206361237474511571241512243539548218570562213550182544182214540212544549   
           SexFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFMFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFMF   
           JI-ID307151136268269923117179832701632993141412591311701802761682892852641571452812602752530810451132324257178293134133107322320313112113271741144120719720321398253255272916286310230733043112127714618227816227330029867121306279296254772902841951403172951192613182832921292042802022581581443032632382392871431283233162423021251231352652123153212621225971581092662942241969725631924232626728231229727432528823630530923530129116181190   
           CaseID101713.13012615.07121214.29051112.07051112.08111314.15051112.09111414.20102616.20053014.01042915.01012615.19061913.01111314.11012615.08042015.22083016.01101513.02101513.05102414.02010614.06102414.08061913.06042015.07012615.15012615.11121515.12042015.27121515.18051112.05062013.16050912.08021213.14111414.02121515.23042015.05121214.20090412.08121214.24083016.03042015.13121615.09111414.05121615.12042415.08121214.19101613.05082214.02042415.23061913.13050115.06121214.16121214.10121615.17051112.12050115.15050115.17090412.10050115.19090612.10061913.19090612.14102616.12082214.11102414.03062013.02062013.17101014.10012615.17012615.16111414.14012615.26091914.09101713.18062013.12101713.10083016.07101713.15102616.04102616.05042415.12050914.04042715.19052814.04121214.07083016.08121515.05061913.04111314.10042015.20101014.02101513.04101014.05121214.22121214.21111314.05121214.13042015.10012615.12102414.12121515.15042015.24042915.13051112.04062013.06010614.07111414.03111414.04121515.25042915.19082214.10111414.09121214.26102616.17051012.01121615.06102414.18121615.11042415.05121214.04101613.08082214.08101613.09121214.23051012.08121615.14042015.18121214.11051112.14050115.12121615.19061913.18051012.14121615.21051112.01101014.04082214.09101613.19062013.03062013.19101613.21102414.20050914.05062013.09102414.06101713.20062013.13101713.11091914.07091914.05   
           DietCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHF   
           StrainB6D2F1B6D2F1B6D2F1BXD100BXD100BXD100BXD101BXD101BXD101BXD102BXD102BXD24BXD29BXD29BXD29BXD32BXD32BXD34BXD34BXD39BXD39BXD40BXD40BXD44BXD44BXD45BXD45BXD48BXD48BXD48aBXD53BXD60BXD60BXD61BXD61BXD62BXD62BXD63BXD63BXD63BXD65BXD65BXD65bBXD65bBXD66BXD66BXD68BXD68BXD69BXD69BXD70BXD70BXD73BXD73BXD73bBXD73bBXD77BXD79BXD79BXD87BXD87BXD89BXD9BXD9BXD90BXD90BXD91BXD95BXD98BXD98BXD99C57BL/6JC57BL/6JD2B6F1D2B6F1DBA/2JDBA/2JB6D2F1B6D2F1B6D2F1BXD100BXD100BXD101BXD102BXD102BXD24BXD29BXD29BXD29BXD32BXD32BXD34BXD34BXD39BXD39BXD40BXD40BXD44BXD44BXD44BXD45BXD48BXD48BXD48aBXD48aBXD53BXD61BXD61BXD61BXD62BXD62BXD63BXD63BXD63BXD65BXD65BXD65bBXD65bBXD66BXD66BXD68BXD68BXD69BXD69BXD70BXD70BXD73BXD73BXD73bBXD73bBXD77BXD79BXD87BXD87BXD89BXD89BXD9BXD90BXD90BXD91BXD95BXD95BXD99C57BL/6JC57BL/6JD2B6F1D2B6F1DBA/2JDBA/2JDBA/2J   
    TissueAgeSexJI-IDCaseIDDietStrainEarTagH1223H1569H1227H0247H0248H1190H0468H1425H2114H1363H1499H1792H0742H1040H1044H2034H2494H1054H0765H1322H0673H1691H0680H1822H1505H1762H1826H2054H1835H0209H0848H0235H0171H1770H1841H1847H1436H0818H1414H1872H2098H1787H1766H1793H2128H1558H1068H1080H2142H0591H1855H1512H1451H1906H0184H1466H1398H0825H1555H0550H0296H0555H2577H1006H1702H0756H0883H1742H1769H1524H1354H1590H1103H1154H0646H1147H1818H1302H2288H2290H2085H1187H1422H1361H1498H2259H2349H0669H1037H2030H1137H1056H1052H1474H1473H1488H1593H1825H1501H1687H1940H2046H1377H0210H0699H0833H1922H1722H1843H1434H1315H1715H1416H2091H0458H1784H1713H1790H2124H1560H1071H1290H1087H1328H0188H1728H2071H1447H0183H1545H1866H0583H0243H1945H0176H1321H1009H1093H0736H0881H1275H1273H1355H0514H1681H1150H0642H1144H1140H1142 minAverage
    Liver216F307101713.13CDB6D2F1H122310.9190.9210.9920.9830.9850.9920.960.8770.9880.9760.9870.9820.9890.970.9830.9710.9570.9840.9860.9790.9930.990.9920.9820.9720.9730.9740.9890.990.9890.9870.9460.9760.9850.9750.9290.990.9820.9840.9860.9850.9850.990.9830.940.9840.9820.9890.9820.9890.9610.9770.980.9890.990.9790.980.9890.9850.9790.9680.9840.8970.9870.9850.9720.9880.9660.9390.9820.9350.9890.9920.9830.9850.9710.9940.9890.990.9860.9880.9750.9820.9850.9590.990.9910.970.9850.9820.9840.9830.9790.9790.9880.9840.9710.9780.9760.9870.9830.970.9790.9820.990.980.9880.9870.9840.9510.9720.9820.9640.9860.9720.9870.9840.9860.9860.9860.9750.9850.9650.9860.9890.9880.9680.9820.9860.9860.9840.9840.9820.9860.980.9870.9850.9830.9880.9880.9250.990.9840.9880.990.9840.9350.9690.932 0.8770.98
    Liver552F151012615.07CDB6D2F1H15690.91910.9970.930.9390.9450.9160.9350.9620.9280.9450.9340.9320.9230.9520.9380.9430.9350.9410.9360.9230.9250.9220.9260.930.9510.9520.9430.9430.9270.9190.9280.950.9220.920.9560.9440.9240.9320.9230.9310.9260.9210.9270.9290.950.9220.9360.9250.9350.9290.9350.9480.9430.9290.9270.9430.9140.9350.9310.9320.9420.9320.9430.9190.920.9550.9280.9460.9310.9390.9310.9320.9160.9210.9310.9420.9230.9380.9320.9270.9310.9440.9270.9330.9490.9230.9240.9340.9270.9230.9430.9460.9410.940.9330.9420.9410.950.9390.9440.9370.960.9410.9430.9150.9220.9220.920.9480.9320.9220.9250.9430.9270.9550.920.9350.9230.9270.930.950.9270.9570.9360.9290.930.9450.9350.9390.9220.9480.9420.9150.9210.9460.9320.9220.9410.9280.9290.950.9220.9330.9340.9270.9170.9310.9350.949 0.9140.93
    Liver640F136121214.29CDB6D2F1H12270.9210.99710.9310.9410.9450.9180.9330.9590.9290.9470.9350.9330.9250.9520.9380.9420.9330.9430.9380.9230.9260.9240.9280.9310.950.9520.9420.9450.9290.9210.9280.9530.9230.9220.9560.9410.9260.9330.9250.9310.9280.9230.9280.9290.9480.9240.9370.9270.9370.930.9350.9480.9440.9310.9290.9430.9140.9370.9320.9350.9450.9320.9450.9210.9230.9560.930.9450.930.940.9290.9330.9180.9210.9320.9420.9260.940.9340.9270.9330.9470.9280.9330.9490.9250.9260.9320.9280.9250.9450.9480.9410.9410.9340.9450.940.9520.940.9460.9380.960.9410.9440.9170.9240.9240.9240.9490.9340.9220.9260.9420.9290.9560.9220.9380.9230.930.9310.9510.9280.9570.9380.930.9310.9450.9360.940.9240.9490.9450.9170.9230.9480.9360.9240.9430.9310.9310.950.9240.9360.9350.9280.9170.9290.9370.946 0.9140.94
    Liver223F268051112.07CDBXD100H02470.9920.930.93110.9850.9890.9870.9660.8940.9850.9810.9840.9830.9850.970.9820.9720.9580.9850.9880.9810.990.9860.9890.980.9740.9750.9750.9910.9870.9880.9870.9520.9740.9840.9790.9330.9870.9820.9820.9850.9840.9830.9880.9840.9460.9790.9820.9850.9790.990.9610.9780.980.9860.9870.9780.980.9890.9830.9740.9690.9830.9060.9840.9820.9750.9870.9650.9390.980.9350.9910.9870.9820.9830.9710.9890.9890.9880.9850.9890.9770.9850.9850.9620.9860.9890.9720.9810.980.9860.9850.9810.9810.9860.9840.9720.9790.9760.9880.9830.9740.980.9860.9880.980.9860.9830.9860.9520.9690.980.9690.9810.9750.9820.9830.9850.9830.9830.9760.9830.9660.9840.9880.9870.970.9830.9850.9860.9860.9840.9760.9820.9840.9850.980.9830.9860.9840.9350.9850.9830.9890.9880.9820.9350.9670.938 0.8940.98
    Liver223F269051112.08CDBXD100H02480.9830.9390.9410.98510.9850.9850.9590.9070.9830.9780.9780.9810.9790.9780.9760.9650.9530.9760.9790.970.980.9860.9840.9740.9740.9750.9690.9850.9830.9780.9820.9550.9730.970.9780.9430.9790.9720.9680.9750.9770.9710.9820.9760.9570.9870.9820.9810.9840.9790.9630.9750.9860.9840.9830.9740.9660.9790.9760.9840.970.9730.9150.9760.980.9720.9780.9670.9420.9790.9420.9810.9850.9760.9760.9690.9870.9810.980.9850.9850.9810.9760.980.9580.980.9820.9640.9750.9680.9770.9770.9710.9710.9830.9760.9670.980.970.9820.9770.9780.9830.9850.9780.9670.9740.9720.980.960.9650.9670.9710.9870.9720.9740.980.9750.9840.9820.9820.9790.9750.9820.980.9790.9690.9740.9820.9730.980.9760.9680.9830.9810.9790.9850.9830.9810.980.9410.980.9780.9820.980.9760.9420.9610.948 0.9070.97
    Liver567F92111314.15CDBXD100H11900.9850.9450.9450.9890.98510.9810.9650.9130.9830.9840.9850.9830.9820.9810.9880.9720.9650.9860.9870.9850.9870.9840.9860.9770.9770.9770.9760.9890.9880.9830.9870.9620.9710.9770.9820.9390.9830.9760.9770.9850.9840.9760.9860.9810.9570.9770.9840.9830.9790.9880.960.9780.9830.9850.9880.9770.9810.990.9780.9810.9740.9790.9240.9820.980.9770.9830.9690.9380.980.940.9890.9810.9820.9780.9710.9840.9880.9870.9840.9870.9830.9850.9840.9680.9810.9860.9730.9840.980.9860.9870.9810.980.9850.9830.9710.9810.9740.9890.9820.9760.9810.9880.9830.9750.9830.9790.9850.9590.9660.9770.9750.9790.9770.9780.9840.9850.9830.9820.9850.9820.9730.9810.9870.9890.970.9840.9850.9830.9850.9830.9760.9780.9880.9840.9790.9830.9840.9820.9510.9810.9820.9880.9850.9830.940.9690.949 0.9130.98
    Liver223F3051112.09CDBXD101H04680.9920.9160.9180.9870.9850.98110.9610.8770.9870.9710.9820.980.9840.9690.9770.9670.9580.9780.9780.9770.9870.990.9880.9790.9720.9720.9710.9850.9860.9870.9860.940.9790.980.9720.9320.9880.980.980.9830.9820.9810.9880.9810.9450.9890.9830.9850.9830.9840.9610.9720.9790.9850.9860.9760.9780.9820.9840.9760.9620.9810.8930.980.9810.970.9830.9640.9440.9810.9380.98710.9850.9840.9680.9930.9860.9870.9880.9860.9730.9810.9850.9570.9880.9880.970.9840.9770.9780.9780.9750.9740.9860.9770.9690.9790.9720.980.9820.970.980.9810.9880.9760.9840.9780.980.9510.9740.9790.9690.9880.970.9850.9810.9830.9880.9880.9730.9850.9660.9850.9850.9820.9680.9760.9820.9810.980.9770.9770.9870.9750.9810.9880.9820.9840.9850.9210.9880.9810.9870.9890.9860.9380.9660.94 0.8770.98
    Liver349F117111414.20CDBXD101H14250.960.9350.9330.9660.9590.9650.96110.9220.960.9490.9710.9520.9570.9630.9590.9780.9720.9620.9660.9620.9660.9630.9650.9760.9770.9760.9830.9680.9620.9660.9670.9190.9740.9780.9770.9680.9690.9820.9730.9690.9620.9680.9640.9770.9650.9460.960.9640.9660.9690.9790.9790.9580.9640.9620.9760.9640.970.9750.9420.9310.9720.8790.9530.9510.9680.9650.9730.9660.9750.9640.9620.9610.9740.9750.980.9560.9660.9660.9660.9560.9440.9560.9720.9660.9640.9640.9830.9650.960.9650.9690.9810.9810.9640.9650.9810.9660.9780.9580.9720.970.9680.9560.9630.970.960.950.9720.9140.9790.9770.9720.9620.9680.9640.950.9660.9580.9580.9480.9620.9550.9740.9690.9650.9820.970.9740.9680.9720.9650.9650.9540.9550.9490.9610.9730.9550.970.9080.9580.9490.9660.9630.970.9640.9640.965 0.8790.96
    Liver756F179102616.20CDBXD101H21140.8770.9620.9590.8940.9070.9130.8770.92210.8940.9170.8970.8970.8870.9260.9020.9220.9090.9050.9030.8850.8860.8840.8890.9020.9280.9280.9150.9070.8910.8830.8940.9190.8930.8910.9330.9390.8840.9010.8880.8930.8880.8880.8870.8970.9320.8830.9030.8840.90.8930.9160.9230.910.8920.8910.9140.8780.9010.8980.8940.9010.8950.9180.8820.8840.9250.8930.9290.9180.9090.9220.8940.8770.890.8980.920.8810.9010.8950.890.8920.9170.8920.8980.9260.8870.8860.9140.8870.8880.9080.9130.9110.9110.8960.9040.9190.9190.9140.9050.8990.9320.910.9070.8780.8910.8820.880.9160.8960.8950.8920.9220.8890.9250.880.8950.8850.8890.8940.9190.8920.9260.9010.8920.8920.9260.9040.9060.8890.9160.9040.8790.880.9180.8890.8840.910.8880.8920.9390.880.8940.8950.8890.8820.9220.9030.941 0.8770.90
    Liver183F83053014.01CDBXD102H13630.9880.9280.9290.9850.9830.9830.9870.960.89410.9790.9810.9820.9850.9730.9790.9720.960.9790.9810.9710.9850.9850.9870.9810.9760.9760.9710.9850.9830.9810.9820.9510.9760.9760.9750.9350.9820.9750.9760.9840.9820.9820.9850.9790.9450.9830.9830.980.9770.9830.9590.9760.9810.9810.9830.9770.9740.9830.9820.9760.9690.9770.9060.9840.980.9750.9820.9730.9480.9810.9430.9850.9870.9760.9820.970.9870.9840.9850.9840.9850.9760.9880.9870.9640.9860.9840.9710.9810.9770.980.9790.9740.9740.9850.9770.9690.980.9720.9820.9780.9760.9770.9790.9810.9780.9810.9760.9810.9530.970.9750.9650.9830.9750.980.9810.9830.9870.9850.9760.9820.970.9790.9810.980.9670.9750.9790.9770.9810.9770.9740.9810.9770.980.9810.9820.9790.980.9320.9820.9790.9850.9830.9760.9430.9680.94 0.8940.98
    Liver501F270042915.01CDBXD102H14990.9760.9450.9470.9810.9780.9840.9710.9490.9170.97910.970.9770.9710.9680.9780.9630.9490.9780.980.9690.9740.9690.9740.9610.9690.970.9620.9820.9750.970.9730.970.9590.9620.9760.9210.9710.9620.9660.9740.9750.9690.9790.9670.9380.9730.9780.9730.9680.9750.9410.9680.9770.9730.9750.9650.9630.9760.9690.9690.9740.9650.9270.9720.9680.970.9720.9560.9270.9680.9220.9820.9710.9610.9690.9610.9770.9820.9790.9730.980.9850.9830.9770.9570.9720.9740.9570.970.970.9780.9770.9680.9670.9740.9790.9530.9710.9580.9850.9730.970.970.9840.970.9680.9760.9720.9770.960.950.9630.9660.9670.970.9680.9780.9730.9750.9720.980.9710.9650.9710.9740.9750.9580.9710.9720.9710.9770.9790.9590.9660.9830.9790.9650.9720.9770.9680.9550.9730.9820.9770.9750.9630.9220.960.932 0.9170.97
    Liver205F163012615.19CDBXD24H17920.9870.9340.9350.9840.9780.9850.9820.9710.8970.9810.9710.9780.9820.9780.9870.9740.9710.9820.9830.9790.9890.9860.9890.9860.9780.9780.9840.9830.9860.9850.9830.9470.9770.9850.9820.9460.9870.9850.9830.9870.9810.9790.9850.9860.9560.9730.9770.9880.9810.9890.9720.9830.9740.9860.9860.9820.9810.9880.9820.9760.9620.9880.8990.9830.9770.9760.9840.9750.9510.9850.9540.9830.9820.9850.9820.9770.9840.9870.9870.9810.9790.9690.9770.9850.9710.9840.9860.9780.9860.9780.9830.9830.9820.9810.9850.9830.9810.9820.9840.9810.9860.970.9780.9770.9840.9760.9850.9810.9840.9470.9760.9830.970.9820.9760.9850.9760.9840.980.9790.9710.980.9680.9860.9890.9870.9750.9820.9880.9820.9840.9830.9840.9790.9750.980.9820.9840.9830.9880.9280.9820.9770.9870.9860.9850.9540.9770.949 0.8970.98
    Liver572F299061913.01CDBXD29H07420.9820.9320.9330.9830.9810.9830.980.9520.8970.9820.9770.97810.9880.9720.9770.9650.9530.9790.9820.9730.980.9840.9840.9730.970.970.9630.9850.9820.980.980.960.9710.9730.9730.9250.9770.9680.9690.980.980.9750.9830.9770.9430.9770.980.9760.970.9840.9530.9730.980.9830.9820.9690.9720.9830.9710.9790.9670.9760.9120.9850.9840.9740.9830.9660.9350.9750.9340.9850.980.9760.9710.9650.9830.9860.9840.9730.9790.9750.9810.9760.9630.9850.9870.9710.9710.9740.9790.9790.9690.9680.9850.9750.9610.9770.9650.9840.9730.9690.9760.9850.9790.9730.980.980.9760.9640.9590.9670.9640.9770.9740.9740.9790.9780.9820.9790.9760.9730.9670.9770.9820.980.9630.9740.9790.9770.9760.9750.9670.9770.9780.9790.9770.9810.9820.9770.9440.9780.980.9840.9790.9750.9340.9610.938 0.8970.97
    Liver574F314111314.11CDBXD29H10400.9890.9230.9250.9850.9790.9820.9840.9570.8870.9850.9710.9820.98810.9720.9780.970.9550.9820.9840.9730.9860.9860.9880.9830.9690.9690.9680.9860.9850.9830.9840.9490.9730.9810.9730.930.9810.9760.9780.9830.980.980.9830.9780.9390.9770.980.9790.9740.9860.9570.9750.980.9850.9850.9760.9740.9870.9780.9780.9650.9810.9040.9860.9840.9730.9870.970.940.9790.9380.9840.9840.9790.9780.9690.9860.9870.9860.9790.9830.9740.9790.9810.9630.990.9910.9770.9770.9780.9820.9820.9750.9750.9870.9780.9690.9780.9730.9830.9760.9720.9760.9790.9820.9780.9830.9850.9820.9560.9680.9760.960.9820.9730.980.9810.9810.9820.9840.9740.9820.9650.9810.9850.9820.9660.9780.9830.9830.9820.9780.9750.9810.9760.9820.9810.9810.9830.9820.9320.9810.980.9850.9830.9780.9380.9660.935 0.8870.97
    Liver724F141012615.08CDBXD29H10440.970.9520.9520.970.9780.9810.9690.9630.9260.9730.9680.9780.9720.97210.9760.9670.9620.9710.9770.9670.9720.9740.9750.9740.9740.9740.9740.9780.9770.970.9730.9580.9640.9660.9780.9530.9710.970.9650.9740.9710.9620.9730.9710.9620.9680.9730.9710.9760.9740.9640.9770.9760.9720.9770.9760.9660.9740.9690.9760.9670.9680.9190.9690.9690.9750.9720.9760.9530.980.9520.9750.9690.9720.9690.9690.9710.9740.9730.9740.9720.9720.9680.9740.9690.9720.9750.970.9730.9640.9730.9740.9730.9720.9740.9740.9720.9780.9740.9740.9780.9760.9720.9750.9680.9630.9670.9630.9770.9480.9610.9670.9720.9740.9750.9640.9730.9690.9710.9710.9770.9710.9770.9730.9730.9750.970.9710.9760.9670.9770.9740.9680.9670.9750.9680.9730.9770.970.9720.9420.9680.9670.9760.9730.970.9520.9640.957 0.9190.97
    Liver200F259042015.22CDBXD32H20340.9830.9380.9380.9820.9760.9880.9770.9590.9020.9790.9780.9870.9770.9780.97610.9730.9660.9820.9820.9810.9860.9780.9820.9760.9710.9710.9740.9820.9850.9790.9840.9540.9650.9740.9780.9310.980.9750.9750.9830.9760.9730.9810.9770.9480.9720.9770.9830.9750.9860.9540.9740.9750.9810.9850.9720.9810.9880.9770.9770.9670.9790.9130.9810.9740.9690.980.9670.9340.9750.9370.9810.9770.9780.9770.9670.9810.9850.9840.9760.9770.9760.9780.9780.9620.9770.9810.9690.9880.980.9830.9830.9760.9750.9790.9790.9680.9750.9720.9830.9810.9670.9760.980.9790.9690.980.9780.9810.9520.9630.9750.9680.9750.9690.9780.9750.9810.9760.9770.9770.980.9660.9780.9850.9870.9630.9810.9820.9780.9810.9790.9790.9730.9820.980.9760.9760.980.9810.9420.9760.9770.9830.9840.980.9370.970.942 0.9020.97
    Liver386F131083016.01CDBXD32H24940.9710.9430.9420.9720.9650.9720.9670.9780.9220.9720.9630.9740.9650.970.9670.97310.9690.9770.9730.9570.9720.9690.9720.9790.9790.9790.9780.9760.9670.9710.9690.9380.9790.9810.9850.9590.9720.9820.9760.9730.9710.9780.9710.9750.9540.960.970.9690.9670.9740.9720.9820.9710.9740.9670.9790.9670.9820.9830.9590.9520.9780.8960.9680.9690.9770.9710.9780.9590.9750.9580.9680.9670.9720.9830.9890.9680.9760.9750.9640.9630.9560.9680.9720.9750.9720.970.9830.9690.9750.9790.9810.9810.9810.9730.9730.9770.9760.9760.970.9710.9780.9710.9650.9690.9780.9690.9660.9780.9280.9790.9770.9690.9670.9770.970.9620.9680.9660.9710.9630.9680.9620.9770.9730.970.9820.9780.9780.9750.9780.9730.9740.9650.9690.9640.9670.9810.9640.9730.9210.9670.9610.9680.9690.9670.9580.9730.959 0.8960.97
    Liver201F170101513.02CDBXD34H10540.9570.9350.9330.9580.9530.9650.9580.9720.9090.960.9490.9710.9530.9550.9620.9660.96910.9670.9590.9630.9640.960.9650.9730.9710.970.9760.9630.960.9580.9640.9290.960.9680.9730.950.9620.9690.9640.9710.9590.9580.9630.9720.9570.9470.9560.9610.960.9670.9640.9740.9510.960.960.9720.9680.9670.9660.9490.9410.9710.880.9560.950.9730.9630.9690.9580.970.9620.9590.9580.9690.9660.9690.9560.9690.9690.9590.9580.950.9620.9740.9730.9620.9620.9720.9720.9690.9680.9720.9670.9650.9680.9650.9730.9680.9720.9590.9690.9660.9640.9560.9550.960.9640.9520.9670.9260.9610.9670.9670.9620.9730.9620.9570.970.9640.9610.9510.9640.9590.9680.9690.9640.970.9640.9690.9620.9670.9650.9630.9560.9580.9560.9620.9740.9540.9650.9140.9570.9520.9650.9660.9650.9620.990.972 0.880.96
    Liver554F180101513.05CDBXD34H07650.9840.9410.9430.9850.9760.9860.9780.9620.9050.9790.9780.9820.9790.9820.9710.9820.9770.96710.9840.9750.9830.9790.9840.9780.9730.9730.9740.9860.980.9810.9790.9580.9720.9810.9810.9360.980.9790.9820.9820.9810.9790.9830.9770.9450.9760.9830.9810.9750.9850.960.9780.9770.9830.980.9760.9770.9880.9790.9750.9720.9810.9150.980.9790.9820.9830.9660.9390.9760.9390.9840.9780.9770.9790.9740.9830.9890.9890.9760.9840.9770.9820.980.9750.9810.9850.9750.9790.9860.9970.9970.9810.9810.9840.9850.9720.9840.9760.9860.980.9760.9770.9820.9810.980.9850.9850.9860.9560.9690.980.970.9760.9820.9810.9840.980.9810.9840.9820.9790.9690.9830.9860.9840.9710.9830.9840.9850.9860.9850.9790.9750.9820.9870.9770.9840.9840.980.940.9830.9840.9820.9840.9770.9390.9770.944 0.9050.98
    Liver550F276102414.02CDBXD39H13220.9860.9360.9380.9880.9790.9870.9780.9660.9030.9810.980.9830.9820.9840.9770.9820.9730.9590.98410.9810.9860.9830.9850.9790.9750.9750.9760.9890.9850.9830.9820.9570.9730.9810.9790.9360.9840.980.980.9830.9840.980.9850.9790.9470.9740.9810.9820.9770.9870.9610.980.9820.9840.9850.9770.9780.9880.980.9760.9710.9790.9130.9830.9790.9750.9850.9670.9390.9810.9350.9870.9780.9790.980.9750.9830.9860.9850.9790.9830.9730.9820.9810.9660.9840.9860.9730.9780.980.9850.9850.9840.9840.9810.9840.9710.9780.9750.9850.9810.9730.9760.9820.9820.980.9820.9810.9830.9520.9680.9780.9680.9750.9750.9770.9790.9810.9790.9760.9760.9760.9660.9810.9860.9850.970.9830.9840.9840.9830.9840.9760.9740.980.9820.9750.9820.9830.9810.9380.9820.9790.9840.9830.9780.9350.9680.938 0.9030.98
    Liver730F168010614.06CDBXD39H06730.9790.9230.9230.9810.970.9850.9770.9620.8850.9710.9690.9790.9730.9730.9670.9810.9570.9630.9750.98110.9820.9770.9780.970.9650.9640.9710.9790.9810.9790.9840.9440.9610.9720.9680.9230.980.9720.9760.9790.9740.9660.9790.9780.9470.9660.9720.9770.9710.9830.950.9660.9660.9760.9810.9670.9810.980.9690.9670.9540.9760.8960.9720.9660.9640.9770.9550.9280.9690.9280.9820.9770.9810.9690.9570.9780.9830.9810.9790.9770.9690.9770.9780.9540.9760.9830.9680.9840.9750.9760.9770.9790.9780.9760.9740.9660.970.9690.9790.9810.960.9740.980.9790.9670.980.9720.9770.9470.960.9780.9710.9710.9640.9740.9730.9840.9750.9730.9690.9780.9590.9760.9840.9860.9580.9770.9770.980.9770.9740.9710.9690.9760.9760.9720.970.980.9790.9320.9750.9750.9850.9850.9860.9280.960.94 0.8850.97
    Liver180F289102414.08CDBXD40H16910.9930.9250.9260.990.980.9870.9870.9660.8860.9850.9740.9890.980.9860.9720.9860.9720.9640.9830.9860.98210.990.990.9840.9740.9740.9780.9870.9890.9870.9880.9460.9750.9850.9760.9350.9890.9830.9840.9880.9830.9830.9880.9830.9460.9770.9790.9880.980.990.9630.9780.9780.9860.9890.980.9830.990.9830.9770.9660.9860.90.9860.980.9720.9880.9680.9410.9820.9410.9880.9870.9830.9830.9720.9890.9880.9880.9840.9860.9740.9810.9850.9620.9880.9890.9740.9870.9810.9840.9830.9820.9810.9890.9860.9750.9780.9790.9850.9840.9710.9790.9790.9870.980.9870.9840.9840.9490.9730.9830.9660.9840.9720.9860.9810.9880.9830.9820.9730.9850.9650.9850.990.9890.9690.9830.9860.9850.9840.9860.9830.9830.9790.9850.9830.9820.9850.9880.9280.9860.9810.9890.9880.9850.9410.9710.938 0.8860.98
    Liver578F285061913.06CDBXD40H06800.990.9220.9240.9860.9860.9840.990.9630.8840.9850.9690.9860.9840.9860.9740.9780.9690.960.9790.9830.9770.9910.9910.9820.9740.9740.9730.9850.9880.9880.9850.9440.9790.9840.9740.9370.9880.9810.980.9840.9840.980.9880.9840.9510.9830.9820.9860.9840.9880.9670.9780.9810.9890.9880.9760.9780.9860.9810.9820.9640.9840.8990.9850.9860.9740.9860.9670.9430.9830.9450.9860.990.9880.9810.9720.990.9870.9880.9840.9840.9710.980.9830.9630.9870.9910.9730.9820.9780.980.980.9770.9760.9910.9820.9720.980.9760.9810.9810.9690.980.9820.9870.9770.9830.9810.9790.9530.9740.9790.9680.9890.9740.9840.980.9840.9870.9830.9730.9810.9690.9870.9890.9850.9710.9790.9860.9830.9790.9820.980.9860.9760.9820.9880.9870.9850.9870.9260.9870.980.9870.9870.9870.9450.9680.942 0.8840.98
    Liver240F264042015.07CDBXD44H18220.9920.9260.9280.9890.9840.9860.9880.9650.8890.9870.9740.9890.9840.9880.9750.9820.9720.9650.9840.9850.9780.990.99110.990.9750.9760.9770.9870.9890.9850.9870.9470.9770.9850.9790.9380.9870.9820.9820.9860.9820.9810.9880.9860.9490.9810.9810.9860.9820.990.9650.9820.9810.9880.9890.980.9780.9880.9820.980.9650.9870.8990.9860.9830.9760.9890.9730.9460.9850.9460.9860.9880.9840.9820.9750.9890.9890.9890.9850.9860.9740.9820.9880.9670.9890.990.9750.9840.980.9840.9840.9790.9780.9910.9830.9790.9840.9830.9850.9830.9740.980.9810.9850.9790.9860.9840.9830.9530.9730.9810.9680.9880.9760.9840.9820.9870.9870.9860.9750.9850.9690.9870.990.9870.9730.980.9880.9830.9830.9830.980.9850.9790.9830.9860.9860.9840.9860.9290.9860.980.9880.9870.9830.9460.9730.945 0.8890.98
    Liver379F157012615.15CDBXD44H15050.9820.930.9310.980.9740.9770.9790.9760.9020.9810.9610.9860.9730.9830.9740.9760.9790.9730.9780.9790.970.9840.9820.9910.9790.9790.9830.9790.9790.9790.9810.9340.9760.9860.9810.9560.980.9850.980.9820.9730.9770.9780.9850.9560.9670.9730.9780.9770.9840.9760.9860.9710.980.9790.9850.9730.9840.9810.9670.9510.9870.890.9770.9730.9780.9830.9840.9660.9860.9640.9760.9790.9830.9810.9810.9770.9820.9820.9770.9750.9610.9720.9840.9730.9840.9810.9830.9780.9730.980.9810.980.9790.9850.9760.9890.9830.990.9740.980.9770.9770.9690.9770.9750.9770.9750.9810.9380.9770.9810.9660.9810.9780.9770.970.980.9770.980.9640.9810.9670.9840.9840.9780.980.9760.9850.9780.9810.9760.9770.9760.9680.970.9790.9830.9730.9810.9190.9740.9680.9810.9790.9780.9640.9770.96 0.890.97
    Liver384F145012615.11CDBXD45H17620.9720.9510.950.9740.9740.9770.9720.9770.9280.9760.9690.9780.970.9690.9740.9710.9790.9710.9730.9750.9650.9740.9740.9750.97910.9970.9830.980.9730.9720.9710.9440.9780.9760.9860.9680.9780.9790.9710.9750.9750.9730.9790.9810.970.9680.9760.9740.9790.9760.9810.9880.9730.9730.9730.9850.9640.9770.980.960.9560.9760.9030.9690.9660.9790.9710.9820.9730.9840.9670.9750.9720.9740.980.9830.9720.9760.9750.9750.9690.9620.970.9820.9680.9790.9730.9750.9710.9660.9740.9770.9770.9760.9760.9740.9810.9780.9810.9770.9780.9780.9770.9720.9690.9710.9710.960.9770.9380.9750.9730.9720.9730.9790.9690.9660.9740.9730.9690.9670.9690.9690.9780.9760.9710.9860.9710.980.9690.9770.9740.9680.9660.970.9650.970.9840.9670.9750.9280.970.9670.9760.9710.970.9670.9710.968 0.9030.97
    Liver507F281121515.12CDBXD45H18260.9730.9520.9520.9750.9750.9770.9720.9760.9280.9760.970.9780.970.9690.9740.9710.9790.970.9730.9750.9640.9740.9740.9760.9790.99710.9830.9810.9730.9720.9710.9450.9780.9770.9860.9680.9780.980.9720.9750.9760.9740.9790.9810.9690.9690.9760.9750.980.9760.9820.9890.9740.9730.9730.9850.9640.9770.9810.9610.9570.9760.9040.970.9670.9790.9720.9820.9730.9850.9670.9750.9720.9740.9810.9840.9730.9760.9760.9750.970.9630.9710.9820.9680.9790.9730.9740.9710.9670.9750.9770.9770.9760.9760.9750.9810.9780.9810.9780.9780.9790.9770.9720.970.9720.9720.9610.9780.9390.9750.9740.9720.9740.9790.970.9660.9740.9740.9690.9680.9690.9690.9790.9760.9710.9860.9710.980.9690.9780.9750.9690.9670.970.9660.970.9840.9680.9750.9280.9710.9680.9750.9710.9690.9670.9720.967 0.9040.97
    Liver188F260042015.27CDBXD48H20540.9740.9430.9420.9750.9690.9760.9710.9830.9150.9710.9620.9840.9630.9680.9740.9740.9780.9760.9740.9760.9710.9780.9730.9770.9830.9830.98310.9810.9730.9740.9740.9330.9730.980.9830.9650.9810.9860.9810.9810.970.9740.9760.9830.9650.960.9670.9780.9780.9780.9820.9870.9640.9750.9730.9860.9710.9790.9790.9590.9480.9850.890.9680.9620.9770.9740.980.970.9830.9690.9730.9710.9780.9790.980.970.9770.9760.9750.9680.9560.9670.9830.9680.9760.9730.9790.9790.9680.9750.9770.9840.9840.9740.9780.9850.9760.9850.970.9880.9780.9780.9690.9710.9720.9740.9640.9780.9290.9760.9820.9710.9730.9770.9750.9630.9760.9690.9690.9590.9710.9630.9820.9780.9760.9840.9750.9830.9740.9780.9780.9750.9680.9660.9660.9720.9810.9690.980.920.9720.9640.9780.9730.9740.9690.9770.963 0.890.97
    Liver518F275121515.18CDBXD48H18350.9890.9430.9450.9910.9850.9890.9850.9680.9070.9850.9820.9830.9850.9860.9780.9820.9760.9630.9860.9890.9790.9870.9850.9870.9790.980.9810.98110.9850.9850.9840.9590.9770.9820.9830.9430.9860.9810.9810.9860.9870.9840.9890.9820.9550.9810.9840.9840.9830.9870.9670.9830.9840.9860.9850.9830.9770.9890.9840.9780.9730.9820.9160.9830.9820.980.9870.9720.9490.9840.9430.990.9850.9810.9840.9770.9880.9890.9880.9850.9860.9770.9840.9860.9680.9880.9880.9740.9810.9810.9870.9870.9830.9820.9850.9850.9740.9820.9770.9890.9880.9820.9840.9890.9850.9810.9850.9810.9860.9570.9710.980.9720.9810.980.980.9840.9840.9840.9830.9790.9790.9720.9840.9860.9850.9760.9820.9860.9850.9860.9850.9760.980.9830.9850.980.9860.9840.9830.9410.9850.9830.9870.9840.9790.9430.9710.948 0.9070.98
    Liver233F25051112.05CDBXD48aH02090.990.9270.9290.9870.9830.9880.9860.9620.8910.9830.9750.9860.9820.9850.9770.9850.9670.960.980.9850.9810.9890.9880.9890.9790.9730.9730.9730.98510.9840.9880.9510.9730.9790.9750.9370.9870.9790.9790.9830.9820.9770.9860.9810.9490.980.9820.9870.9830.9880.9630.980.9850.9910.9760.980.9880.9810.9810.9670.9790.9050.9820.980.970.9860.9670.940.9820.9380.9860.9860.9830.9810.9710.9880.9870.9870.9860.9850.9760.9790.9820.960.9840.9880.9710.9860.9780.9810.9810.9790.9780.9840.980.9720.9780.9760.9850.9820.9690.9780.9820.9840.9750.9820.980.9830.9540.970.9790.970.9830.970.9810.980.9850.9830.9810.9780.9840.970.9830.9890.9910.970.9850.990.9820.9830.980.980.9810.980.9820.9830.9810.9850.9850.9330.9840.980.9870.9870.9850.9380.9660.94 0.8910.98
    Liver571F308062013.16CDBXD53H08480.9890.9190.9210.9880.9780.9830.9870.9660.8830.9810.970.9850.980.9830.970.9790.9710.9580.9810.9830.9790.9870.9880.9850.9790.9720.9720.9740.9850.98410.9840.9430.9780.9860.9750.9320.9870.9840.9840.9850.9840.9830.9870.9830.9460.9760.9780.9860.9790.9870.9640.9740.9750.9880.9840.9740.9810.9860.980.9750.9610.9830.8950.9830.9840.9730.9840.9640.9390.9780.9410.9880.9870.9890.980.970.9880.9870.9890.980.9830.9680.9810.980.9640.9830.9880.9760.9790.9790.9820.9810.9790.9790.9830.9790.970.9790.9750.9820.9820.9650.9780.9810.9970.9790.9850.9830.9810.9470.9750.9830.970.9820.9730.9870.9780.9820.9820.980.9690.980.9640.9850.9880.9850.9690.9820.9840.9870.9810.9790.9820.9810.9760.980.9850.9830.9880.9870.9240.9850.9830.9860.9880.9890.9410.9660.936 0.8830.98
    Liver235F104050912.08CDBXD60H02350.9870.9280.9280.9870.9820.9870.9860.9670.8940.9820.9730.9830.980.9840.9730.9840.9690.9640.9790.9820.9840.9880.9850.9870.9810.9710.9710.9740.9840.9880.98410.9470.9720.9810.9760.9380.9820.9770.9770.9840.9780.9760.9830.9830.950.9760.980.9820.9790.9870.9590.9750.9780.9840.9880.9740.9810.9860.9790.9750.960.9820.9020.9780.9740.970.9850.9670.9420.9790.940.9840.9860.9840.9790.9680.9840.9860.9850.9840.9830.9760.9790.9830.960.9840.9870.9750.9860.9780.980.9810.9780.9770.9850.9780.9730.9760.9760.9830.980.9740.9810.9820.9840.9740.9820.9780.9830.950.9670.9790.9690.9830.970.980.9790.9870.9830.9850.9770.9880.9680.9820.9870.9870.9680.9820.9840.9820.9830.9780.9730.980.980.980.9810.9780.9820.9830.9340.980.9770.9890.9870.9850.940.9650.947 0.8940.98
    Liver530F51021213.14CDBXD60H01710.9460.950.9530.9520.9550.9620.940.9190.9190.9510.970.9470.960.9490.9580.9540.9380.9290.9580.9570.9440.9460.9440.9470.9340.9440.9450.9330.9590.9510.9430.94710.9320.9320.9530.9040.9420.9330.9370.950.9540.9390.9510.940.9230.9490.960.9440.9420.9510.9150.9450.9610.9480.9510.9410.9360.9510.9410.9580.9730.9380.9430.9490.950.9580.9510.9370.9010.9460.90.9590.940.9330.9410.9390.9510.9590.9550.9450.9580.970.9550.9450.9530.9450.9490.9340.9410.9470.9590.9580.9430.9430.9520.9590.9280.9560.9320.9630.9460.9520.9450.9650.9430.9440.950.9510.9570.970.9220.9350.9470.9410.9580.9380.9650.9460.9530.9490.9710.9440.960.9460.9490.9510.9320.9470.9490.9440.9570.9590.9330.9410.9660.9610.940.9510.9570.9430.9640.9480.9640.9530.950.9350.90.940.915 0.90.95
    Liver188F132111414.02CDBXD61H17700.9760.9220.9230.9740.9730.9710.9790.9740.8930.9760.9590.9770.9710.9730.9640.9650.9790.960.9720.9730.9610.9750.9790.9770.9760.9780.9780.9730.9770.9730.9780.9720.93210.9860.9760.9480.9810.9830.9790.9770.9810.9860.9810.980.9510.9730.9760.9780.9730.9750.9740.9780.9740.9770.9730.9750.9720.9780.9850.9610.9490.9760.8840.9730.9750.9710.9750.9680.9540.9790.9530.9730.9790.9780.9850.9820.9770.9750.9770.9770.9690.9540.9690.9770.9640.9780.9750.9780.9710.9740.9730.9740.980.980.9750.9720.9710.9750.9720.9670.9730.9690.9720.9660.9760.9860.9780.9680.9730.9320.9860.980.970.9760.9710.9790.9650.9740.9760.9710.9610.9670.9590.9790.9760.9710.9780.9740.9780.9750.9730.9720.9780.9720.960.9660.9770.9820.970.980.9090.9770.9650.9740.9720.9750.9530.9650.944 0.8840.97
    Liver524F324121515.23CDBXD61H18410.9850.920.9220.9840.970.9770.980.9780.8910.9760.9620.9850.9730.9810.9660.9740.9810.9680.9810.9810.9720.9850.9840.9850.9860.9760.9770.980.9820.9790.9860.9810.9320.98610.9790.9460.9830.9880.9860.9830.9810.9860.9830.9860.9490.9660.9730.9810.9760.9860.9750.9830.9690.9830.9790.9820.9790.9870.9830.9630.9510.9870.8830.9790.9780.9740.9850.9720.9530.9820.9540.9790.980.9860.9830.9820.980.9840.9860.9760.9760.9580.9730.9810.9690.9840.9850.9830.9770.9820.9820.9830.9840.9840.9820.9790.980.9760.9830.9760.9790.9680.9750.970.9850.9870.9850.9820.980.9320.980.9860.9660.9780.9740.9840.970.9820.9770.9750.9610.9760.9570.9850.9860.980.9790.9820.9850.9880.980.9790.9840.9740.9690.9740.9780.9840.9780.9850.9130.980.9720.980.9810.9820.9540.9740.947 0.8830.97
    Liver253F257042015.05CDBXD62H18470.9750.9560.9560.9790.9780.9820.9720.9770.9330.9750.9760.9820.9730.9730.9780.9780.9850.9730.9810.9790.9680.9760.9740.9790.9810.9860.9860.9830.9830.9750.9750.9760.9530.9760.97910.9660.9770.9820.9750.9790.9750.9750.9790.9820.9650.9690.9760.9770.9770.980.9750.9880.9770.9790.9750.9850.9690.9830.9810.9660.9620.9810.910.9710.970.9830.9760.980.9620.9840.9610.9770.9720.9750.9810.9840.9740.9820.980.9730.9720.9710.9730.9810.9750.9770.9760.9780.9740.9730.9830.9840.9810.980.980.980.9810.9820.9820.980.980.9830.9790.9780.9720.9750.9760.970.9860.9480.9720.9760.9770.9750.9830.9730.9720.9760.9750.9760.9750.9740.9710.9830.9790.9760.9850.9790.9840.9760.9860.980.9710.970.9780.9730.9720.9860.9730.9770.9380.9740.9720.9790.9760.9710.9610.9770.967 0.910.98
    Liver353F178121214.20CDBXD62H14360.9290.9440.9410.9330.9430.9390.9320.9680.9390.9350.9210.9460.9250.930.9530.9310.9590.950.9360.9360.9230.9350.9370.9380.9560.9680.9680.9650.9430.9370.9320.9380.9040.9480.9460.96610.9390.9560.940.9360.9310.9360.9320.9490.9690.9290.9380.9340.9540.9350.980.9680.9430.9390.9370.9630.9240.9410.9510.9280.9110.9460.8750.920.9240.9520.9350.9710.9770.960.9760.9280.9320.9420.9510.9670.9290.9360.9340.940.9270.9230.9210.9460.9490.940.9340.9560.9370.9260.9390.9440.9530.9530.9380.9370.9740.9530.9690.9290.9440.9620.950.9280.9270.9380.9250.9190.9550.9020.9550.9440.9490.9440.9520.9310.9230.9320.9340.9380.9350.9380.9490.9510.9380.9340.9750.9420.9510.9320.9550.9370.9350.9320.9280.9220.9370.9530.9250.9440.8930.9310.9190.9360.9320.9350.9760.9440.975 0.8750.94
    Liver218F293090412.08CDBXD63H08180.990.9240.9260.9870.9790.9830.9880.9690.8840.9820.9710.9870.9770.9810.9710.980.9720.9620.980.9840.980.9890.9880.9870.980.9780.9780.9810.9860.9870.9870.9820.9420.9810.9830.9770.93910.990.990.9850.9830.9830.9890.9840.9480.980.9820.990.9830.9870.970.980.9770.9860.9870.980.9790.9850.9870.9730.9610.9840.8960.9810.9790.9720.9830.9660.9470.9840.9440.9870.9880.9850.9870.9760.9890.9850.9870.9870.9820.9660.9790.9850.960.9870.9860.9740.9840.9770.9810.9810.9840.9830.9820.9830.9740.9780.9770.980.9870.9680.9780.9780.9870.980.9860.9780.9810.9470.9830.990.9750.9820.9720.9860.9760.9840.9810.9790.970.9790.9630.9870.9880.9850.9750.980.9860.9840.9810.9830.9830.9810.9730.9810.9830.9830.9840.9870.9220.9880.9810.9860.9860.9860.9440.970.938 0.8840.98
    Liver344F134121214.24CDBXD63H14140.9820.9320.9330.9820.9720.9760.980.9820.9010.9750.9620.9850.9680.9760.970.9750.9820.9690.9790.980.9720.9830.9810.9820.9850.9790.980.9860.9810.9790.9840.9770.9330.9830.9880.9820.9560.9910.9910.9810.9780.9830.980.9830.9560.9670.9740.9840.980.9830.9810.9840.9710.9840.9790.9830.9760.9840.9860.9650.9510.9870.890.9720.9730.9750.9790.9730.9590.9830.960.9780.980.9850.9860.9840.9790.9810.9830.9770.9730.9570.970.980.970.980.980.9830.9780.9760.980.9810.9890.9880.9780.9810.9830.9790.9850.9730.9840.9730.9770.9710.9820.980.9780.9740.9820.9340.9890.9910.9760.9780.9750.9840.9680.9760.9730.9750.9630.9760.9630.9880.9850.980.9830.9830.9870.9840.9820.9810.9830.9750.9680.9730.9790.9830.9780.9850.9160.9790.9720.980.9810.9830.960.9750.951 0.890.98
    Liver751F133083016.03CDBXD63H18720.9840.9230.9250.9820.9680.9770.980.9730.8880.9760.9660.9830.9690.9780.9650.9750.9760.9640.9820.980.9760.9840.980.9820.980.9710.9720.9810.9810.9790.9840.9770.9370.9790.9860.9750.940.990.99110.9840.980.9850.9820.9790.9410.9690.9740.9840.9770.9830.9670.9780.970.9830.9790.9780.9780.9840.9840.9660.9550.9840.890.9750.9750.9730.9810.9660.9470.9790.9450.980.980.980.9840.9770.9830.9840.9860.9810.9790.9620.9750.9820.9670.9810.9820.9790.9820.9820.9820.9820.9890.9890.9790.9850.9770.9770.980.9750.9870.9680.9730.9710.9830.9850.9860.980.9830.9380.9860.9960.9730.9760.9730.9870.9730.9810.9760.9760.9630.9780.960.9860.9850.9830.9760.9830.9850.9870.9830.9850.9870.9750.9690.9780.9790.9790.9820.9850.9170.9840.9780.9820.9840.9810.9450.9730.937 0.8880.97
    Liver222F107042015.13CDBXD65H20980.9860.9310.9310.9850.9750.9850.9830.9690.8930.9840.9740.9870.980.9830.9740.9830.9730.9710.9820.9830.9790.9880.9840.9860.9820.9750.9750.9810.9860.9830.9850.9840.950.9770.9830.9790.9360.9850.9810.98410.9870.9860.9890.9840.9480.9720.9770.9850.9750.9880.9620.9790.9740.9830.9830.9790.9860.9870.9820.9710.9660.9850.90.9840.9780.9810.9860.9710.9460.9810.9460.9870.9830.9810.9820.9710.9840.9880.9870.9820.9830.9710.9840.9880.9710.9840.9850.9780.9860.9830.9830.9830.9810.9810.9840.9840.9740.980.9760.9830.9860.9730.9760.980.9840.9820.9890.980.9820.9470.9720.9840.970.9810.9810.9860.9830.9880.9840.9810.970.980.9680.9810.9850.9850.9710.980.9830.9830.9820.9840.9810.9790.9780.980.980.9830.9810.9840.9320.9820.9780.9890.9840.980.9460.9770.942 0.8930.98
    Liver541F322121615.09CDBXD65H17870.9850.9260.9280.9840.9770.9840.9820.9620.8880.9820.9750.9810.980.980.9710.9760.9710.9590.9810.9840.9740.9830.9840.9820.9730.9750.9760.970.9870.9820.9840.9780.9540.9810.9810.9750.9310.9830.9780.980.98710.9870.9920.980.9430.9780.9810.9820.9760.9840.960.9760.9790.9820.9820.9740.980.9840.9810.9750.970.9730.8990.9830.9830.9770.9810.9620.9370.9790.9340.9860.9820.9780.9810.9740.9860.9840.9850.9810.9840.9710.9820.9820.9650.9840.9850.9720.9770.9840.9820.9810.9790.9790.9820.9830.9640.9760.9680.9820.9790.9690.9730.9810.9840.9850.9850.9760.9780.9490.9710.9790.970.9790.9770.9820.9840.9830.9850.9750.9720.9730.9640.9790.9830.9810.9680.9790.9790.9840.9780.9830.980.9750.9760.980.9780.9840.9820.9790.9270.9850.9790.9820.9820.9790.9340.9690.935 0.8880.97
    Liver187F320111414.05CDBXD65bH17660.9850.9210.9230.9830.9710.9760.9810.9680.8880.9820.9690.9790.9750.980.9620.9730.9780.9580.9790.980.9660.9830.980.9810.9770.9730.9740.9740.9840.9770.9830.9760.9390.9860.9860.9750.9360.9830.9830.9850.9860.98710.9870.9780.940.9720.9760.9820.9730.980.9650.9770.9750.9820.9770.9750.9760.9850.9840.9640.9590.9790.8920.9820.9810.9740.980.9660.9450.9760.9440.980.9810.9760.9840.9770.9830.9810.9840.9770.9770.9620.9770.9790.9640.9820.9810.9760.9750.9810.980.980.9810.9810.9780.9790.9680.9750.9720.9760.9780.9680.9730.970.9830.9870.9840.9790.9780.9390.980.9820.9630.9780.9740.9870.9740.9780.9780.9750.9640.9720.9570.980.980.9770.9730.9790.980.9820.9780.9790.9820.9760.9680.9770.9780.9820.9780.9810.9160.9810.9750.9780.9770.9740.9440.9690.932 0.8880.97
    Liver527F313121615.12CDBXD65bH17930.990.9270.9280.9880.9820.9860.9880.9640.8870.9850.9790.9850.9830.9830.9730.9810.9710.9630.9830.9850.9790.9880.9880.9880.9780.9790.9790.9760.9890.9860.9870.9830.9510.9810.9830.9790.9320.9890.980.9820.9890.9920.98710.9850.9470.9820.9840.9880.9820.9870.9620.980.9810.9850.9860.9780.980.9870.9840.9740.9670.9810.90.9850.9820.9780.9840.9660.9430.9830.9390.9890.9880.9830.9840.9740.990.9880.9890.9870.9850.9740.9850.9880.9630.9880.9880.9720.9830.9820.9840.9830.9790.9790.9870.9850.9680.9790.9730.9850.9850.9710.9780.9840.9870.9820.9890.980.980.9520.9740.9810.9720.9850.9780.9870.9840.9880.9870.980.9750.9790.9660.9840.9870.9850.9720.9780.9850.9830.980.9850.980.9810.9790.9840.9830.9860.9850.9840.9290.9880.9840.9880.9860.9830.9390.9710.939 0.8870.98
    Liver184F112042415.08CDBXD66H21280.9830.9290.9290.9840.9760.9810.9810.9770.8970.9790.9670.9860.9770.9780.9710.9770.9750.9720.9770.9790.9780.9830.9840.9860.9850.9810.9810.9830.9820.9810.9830.9830.940.980.9860.9820.9490.9840.9830.9790.9840.980.9780.98510.9610.970.9780.980.9780.9870.9730.9840.9710.9810.9810.9820.9790.9840.9820.9660.9520.9850.8890.9780.9730.9780.9820.9740.9570.9830.9540.9810.9810.9870.9820.9790.9790.9840.9840.980.9760.9640.9770.9860.9670.9840.9840.9810.980.9760.9790.980.9790.9780.9850.9780.9790.9780.9810.9780.9820.9730.9780.9790.9810.9770.9820.9720.9790.9420.9750.9810.9730.980.9780.9780.9740.9890.9850.9770.9670.9780.9660.9840.9860.9820.9780.9760.9850.9810.9790.9780.9750.9750.9730.9720.9790.9850.9760.9820.9240.9790.9720.9840.9810.9850.9540.9720.957 0.8890.98
    Liver354F113121214.19CDBXD66H15580.940.950.9480.9460.9570.9570.9450.9650.9320.9450.9380.9560.9430.9390.9620.9480.9540.9570.9450.9470.9470.9460.9510.9490.9560.970.9690.9650.9550.9490.9460.950.9230.9510.9490.9650.9690.9480.9560.9410.9480.9430.940.9470.96110.9420.9490.9460.9580.9480.9690.9670.9530.9490.9490.9620.9410.9510.9530.9440.9310.9520.90.9390.9390.9590.9460.9660.9580.9610.960.9460.9450.9570.9530.9610.9420.9490.9470.950.940.940.9390.9540.9510.9470.9470.9560.9480.9360.9480.9520.9540.9530.950.9440.9660.9590.9630.9460.9530.960.960.9490.9430.9390.9370.9290.9560.9210.9520.9460.9610.9530.9590.940.9390.9480.9490.9460.9490.9450.9590.9550.950.9480.9670.9480.9580.9410.9560.9440.9410.9440.9470.9360.950.9610.940.9540.9170.940.9340.9510.9450.9530.960.9460.973 0.90.95
    Liver201F271101613.05CDBXD68H10680.9840.9220.9240.9790.9870.9770.9890.9460.8830.9830.9730.9730.9770.9770.9680.9720.960.9470.9760.9740.9660.9770.9830.9810.9670.9680.9690.960.9810.980.9760.9760.9490.9730.9660.9690.9290.980.9670.9690.9720.9780.9720.9820.970.94210.9870.9780.980.9750.9520.9670.9840.9790.980.9680.9670.9750.9780.980.9680.9680.9050.9740.9770.9640.9740.9580.9340.9770.9270.9810.9890.9710.9780.9630.9890.9770.9780.9830.9810.9750.9750.9770.9510.9810.980.9560.9760.9710.9770.9760.9660.9650.9790.9720.9570.9740.9620.9770.9730.9680.9750.9790.9760.970.9760.970.9750.9590.9640.9670.9650.9820.9640.9730.9780.9730.9840.9860.9820.9770.9670.9770.9760.9750.9610.9680.9740.970.9750.9720.9690.9820.9740.9790.980.9770.9780.9760.9290.9850.9760.9780.9790.9730.9270.9580.933 0.8830.97
    Liver545F74082214.02CDBXD68H10800.9820.9360.9370.9820.9820.9840.9830.960.9030.9830.9780.9770.980.980.9730.9770.970.9560.9830.9810.9720.9790.9820.9810.9730.9760.9760.9670.9840.9820.9780.980.960.9760.9730.9760.9380.9820.9740.9740.9770.9810.9760.9840.9780.9490.98710.9780.9770.980.960.9740.9840.980.9820.9720.970.9810.9810.9760.9670.9720.9210.9760.9760.9730.9820.9660.9420.9810.9350.9830.9830.9760.9810.9720.9830.9820.9820.9830.9810.9750.980.9790.9630.9820.9820.970.9770.9750.9840.9840.9740.9730.980.9760.9650.9770.9670.980.9750.9740.9770.9820.9770.9760.9780.9730.980.9640.970.9740.9730.9770.9730.9730.9790.9780.9820.9840.9860.9780.9710.980.9810.9790.9680.9740.980.9770.980.9760.970.9750.9770.9790.9760.9780.9780.9770.9420.9820.9790.9810.9790.9760.9350.9620.942 0.9030.97
    Liver157F114042415.23CDBXD69H21420.9890.9250.9270.9850.9810.9830.9850.9640.8840.980.9730.9880.9760.9790.9710.9830.9690.9610.9810.9820.9770.9880.9860.9860.9780.9740.9750.9780.9840.9870.9860.9820.9440.9780.9810.9770.9340.990.9840.9840.9850.9820.9820.9880.980.9460.9780.97810.9890.9850.9660.9780.9780.9880.9870.9770.9780.9860.9840.9760.9630.9830.8970.9820.980.9710.9820.9630.940.9820.9420.9840.9850.9820.9840.9720.9880.9840.9860.9840.9820.9690.9770.9820.960.9820.9840.9680.9840.9780.9810.980.980.980.9810.9830.9710.9780.9760.9820.9860.9660.9770.9780.9850.9770.9860.9810.980.9470.9740.9820.9690.9820.9710.9870.9760.9810.980.9770.9710.9820.9680.9860.9870.9870.9720.9810.9870.9820.980.9830.9850.9820.9750.9830.9840.9820.9860.9880.9240.9870.980.9840.9840.9830.9420.9720.935 0.8840.98
    Liver558F41061913.13CDBXD69H05910.9820.9350.9370.9790.9840.9790.9830.9660.90.9770.9680.9810.970.9740.9760.9750.9670.960.9750.9770.9710.980.9840.9820.9770.9790.980.9780.9830.9830.9790.9790.9420.9730.9760.9770.9540.9830.980.9770.9750.9760.9730.9820.9780.9580.980.9770.98910.9770.9740.9810.980.9830.9830.9810.9670.9790.980.9760.9590.9760.9010.970.9730.9710.9760.9680.9540.9860.950.9770.9830.9780.980.9750.9830.9780.9790.9850.9790.9690.9690.9810.9590.980.980.9650.9790.970.9760.9760.9780.9770.9780.9780.9770.9790.980.9780.9830.9730.9780.9760.9780.9690.9760.9710.9790.9480.9710.9760.970.9830.9710.9770.9740.9750.980.9770.9730.9820.9760.9840.980.980.9770.9750.9840.9750.9790.9780.9740.9780.9720.9770.9810.9810.980.9820.9240.9830.9740.9790.980.9780.950.9680.952 0.90.97
    Liver261F207050115.06CDBXD70H18550.9890.9290.930.990.9790.9880.9840.9690.8930.9830.9750.9890.9840.9860.9740.9860.9740.9670.9850.9870.9830.990.9880.990.9840.9760.9760.9780.9870.9880.9870.9870.9510.9750.9860.980.9350.9870.9830.9830.9880.9840.980.9870.9870.9480.9750.980.9850.97710.9670.9810.9770.9870.9880.9790.9840.990.9810.9760.9660.9860.9010.9850.9810.9760.9880.970.9420.9830.9410.9880.9840.9860.9810.9750.9850.990.9890.9810.9830.9720.9830.9850.9680.9860.9890.9790.9840.9820.9860.9860.9820.9810.9870.9840.9740.9790.9780.9860.9840.9710.9780.9830.9870.9790.9860.9820.9840.950.9720.9830.9710.980.9760.9820.980.9870.9820.9820.9740.9820.9670.9880.9940.990.9710.9840.9880.9860.9840.9840.9810.980.9820.9810.980.9840.9840.9860.9340.9840.980.9890.9880.9860.9410.9720.943 0.8930.98
    Liver357F197121214.16CDBXD70H15120.9610.9350.9350.9610.9630.960.9610.9790.9160.9590.9410.9720.9530.9570.9640.9540.9720.9640.960.9610.950.9630.9670.9650.9760.9810.9820.9820.9670.9630.9640.9590.9150.9740.9750.9750.980.970.9810.9670.9620.960.9650.9620.9730.9690.9520.960.9660.9740.96710.9840.9590.9670.9630.980.9530.9660.9730.9490.9320.9720.8770.9540.9560.9680.9620.9780.9780.9790.9760.9570.9610.9720.9730.9810.9590.9620.9630.9630.9530.9380.9490.9680.9620.9670.9620.9730.960.9540.9620.9650.9730.9720.9630.960.9850.970.9830.9540.9680.9660.970.9510.960.9610.9560.950.9670.9170.9760.970.9630.9670.9680.9630.9470.9580.9570.9570.9480.9570.9580.9780.9690.9610.9870.9640.9740.9620.9670.960.9650.960.9480.9490.9650.9750.9550.970.8990.960.9470.9610.9590.9650.9760.9650.969 0.8770.96
    Liver361F203121214.10CDBXD73H14510.9770.9480.9480.9780.9750.9780.9720.9790.9230.9760.9680.9830.9730.9750.9770.9740.9820.9740.9780.980.9660.9780.9780.9820.9860.9880.9890.9870.9830.980.9740.9750.9450.9780.9830.9880.9680.980.9840.9780.9790.9760.9770.980.9840.9670.9670.9740.9780.9810.9810.98410.9790.9810.980.9880.9680.9830.9820.9650.9560.9830.9010.9730.9710.9820.9790.9840.9710.9870.9670.9750.9720.9770.9820.9880.9740.9810.9790.9750.9720.9620.9710.9830.9740.9810.9780.980.9740.9720.9790.9810.9810.9810.980.980.9860.980.9870.9770.980.980.9770.9710.9720.9780.9760.9690.9810.9390.9760.9780.9710.9760.9820.9720.9680.9770.9750.9720.9670.9720.9710.9830.9810.9790.9920.9790.9880.9750.9810.980.9740.9710.9710.9690.9730.9870.9710.9780.9270.9740.9680.9780.9730.9710.9670.9770.968 0.9010.98
    Liver539F213121615.17CDBXD73H19060.980.9430.9440.980.9860.9830.9790.9580.910.9810.9770.9740.980.980.9760.9750.9710.9510.9770.9820.9660.9780.9810.9810.9710.9730.9740.9640.9840.9850.9750.9780.9610.9740.9690.9770.9430.9770.9710.970.9740.9790.9750.9810.9710.9530.9840.9840.9780.980.9770.9590.97910.9840.9850.9730.9660.9820.9790.9810.9730.9690.9240.9750.9790.9720.9780.9660.9380.9790.9350.980.9790.9710.9790.9750.9830.980.9780.9790.980.9770.9730.9750.9620.9790.9810.9670.9720.9710.9780.9790.9730.9740.9790.9760.9640.9780.9660.9810.9720.9770.9760.980.9740.9740.9720.9720.980.9610.9670.9680.970.9790.9720.970.9780.9730.980.980.9830.9760.9750.9780.9780.980.9720.9780.9830.9730.980.9760.9690.9780.9780.9780.9770.9810.9780.9770.9420.9790.9750.9780.9750.9710.9350.9590.943 0.910.97
    Liver238F98051112.12CDBXD73bH01840.9890.9290.9310.9860.9840.9850.9850.9640.8920.9810.9730.9860.9830.9850.9720.9810.9740.960.9830.9840.9760.9860.9890.9880.980.9730.9730.9750.9860.990.9880.9840.9480.9770.9830.9790.9390.9860.9840.9830.9830.9820.9820.9850.9810.9490.9790.980.9880.9830.9870.9670.9810.98410.990.9760.9780.9890.9820.9820.9640.9840.9020.9830.9850.9740.9850.9660.9390.9790.9430.9840.9850.9850.9820.9750.9890.9880.9890.980.9820.9710.9790.980.9650.9830.990.9750.9810.9810.9840.9830.9810.980.9860.9830.9720.9810.9760.9840.9810.9710.9810.9820.9880.9790.9830.9850.9830.9530.9740.9810.970.9850.9740.9860.9780.9810.9830.9830.9750.9810.9690.9890.9890.9910.9760.990.9920.9870.9830.9830.9820.9860.9780.9830.9870.9860.9880.9890.930.9860.9810.9860.9870.9850.9430.970.941 0.8920.98
    Liver497F253050115.15CDBXD73bH14660.990.9270.9290.9870.9830.9880.9860.9620.8910.9830.9750.9860.9820.9850.9770.9850.9670.960.980.9850.9810.9890.9880.9890.9790.9730.9730.9730.98510.9840.9880.9510.9730.9790.9750.9370.9870.9790.9790.9830.9820.9770.9860.9810.9490.980.9820.9870.9830.9880.9630.980.9850.9910.9760.980.9880.9810.9810.9670.9790.9050.9820.980.970.9860.9670.940.9820.9380.9860.9860.9830.9810.9710.9880.9870.9870.9860.9850.9760.9790.9820.960.9840.9880.9710.9860.9780.9810.9810.9790.9780.9840.980.9720.9780.9760.9850.9820.9690.9780.9820.9840.9750.9820.980.9830.9540.970.9790.970.9830.970.9810.980.9850.9830.9810.9780.9840.970.9830.9890.9910.970.9850.990.9820.9830.980.980.9810.980.9820.9830.9810.9850.9850.9330.9840.980.9870.9870.9850.9380.9660.94 0.8910.98
    Liver460F255050115.17CDBXD77H13980.9790.9430.9430.9780.9740.9770.9760.9760.9140.9770.9650.9820.9690.9760.9760.9720.9790.9720.9760.9770.9670.980.9760.980.9850.9850.9850.9860.9830.9760.9740.9740.9410.9750.9820.9850.9630.980.9830.9780.9790.9740.9750.9780.9820.9620.9680.9720.9770.9810.9790.980.9880.9730.9760.97610.9670.980.9830.9630.9590.9820.8980.9720.9690.980.9790.9830.970.9870.9610.9760.9760.9750.9830.9830.9750.980.9780.9780.9740.9640.9680.9840.970.9840.9770.9760.9760.9710.9780.9790.9810.980.9790.9780.9850.9780.9850.9770.9820.980.9770.970.9720.9750.9770.9690.9820.9370.9740.9780.9690.9760.980.9730.9720.9770.9750.9750.9660.9750.9690.9820.9780.9750.9840.9740.9820.9790.9820.9780.9750.9730.9720.970.9740.9840.970.9790.9240.9740.9670.9780.9740.9720.9610.9770.963 0.8980.97
    Liver217F272090412.10CDBXD79H08250.980.9140.9140.980.9660.9810.9780.9640.8780.9740.9630.9810.9720.9740.9660.9810.9670.9680.9770.9780.9810.9830.9780.9780.9730.9640.9640.9710.9770.980.9810.9810.9360.9720.9790.9690.9240.9790.9760.9780.9860.980.9760.980.9790.9410.9670.970.9780.9670.9840.9530.9680.9660.9780.980.96710.9850.9740.9670.9570.9760.8850.9780.9720.9650.9770.9570.9310.9710.9350.980.9780.9830.9740.9620.9780.9790.9810.9730.9750.9620.9770.9780.9610.9760.980.9730.9840.9830.9780.9780.9770.9760.9760.9750.9640.9690.9670.9740.9780.9590.9690.9740.9810.9760.980.9710.9750.9360.9670.9790.9680.970.9650.9770.9720.9810.9750.9730.9640.9740.9540.9730.9820.9830.9610.9810.9760.9810.9750.9750.9820.970.9710.9720.9730.9740.9750.9780.9190.9760.9690.9810.9830.9840.9350.9690.934 0.8780.97
    Liver468F91050115.19CDBXD79H15550.9890.9350.9370.9890.9790.990.9820.970.9010.9830.9760.9880.9830.9870.9740.9880.9820.9670.9880.9880.980.990.9860.9880.9840.9770.9770.9790.9890.9880.9860.9860.9510.9780.9870.9830.9410.9850.9840.9840.9870.9840.9850.9870.9840.9510.9750.9810.9860.9790.990.9660.9830.9820.9890.9880.980.98510.9860.9770.9670.9850.9080.9860.9830.9780.9860.9730.9440.9810.9450.9860.9820.9830.9860.9790.9860.990.990.980.9830.9730.9810.9830.970.9860.9890.9790.9840.9850.9890.9890.9850.9840.9850.9840.9770.9810.980.9860.9830.9760.980.9810.9850.9830.9860.9850.9870.9490.9750.9830.9690.980.9780.9840.980.9850.9820.9820.9770.9820.9680.9850.990.990.9760.9880.990.9870.9870.9840.9850.9780.9810.9830.9810.9850.9840.9860.9340.9830.980.9860.9860.9830.9450.9740.945 0.9010.98
    Liver200F6090612.10CDBXD87H05500.9850.9310.9320.9830.9760.9780.9840.9750.8980.9820.9690.9820.9710.9780.9690.9770.9830.9660.9790.980.9690.9830.9810.9820.9810.980.9810.9790.9840.9810.980.9790.9410.9850.9830.9810.9510.9870.9860.9840.9820.9810.9840.9840.9820.9530.9780.9810.9840.980.9810.9730.9820.9790.9820.9810.9830.9740.98610.9670.9590.980.8960.9760.9750.9740.9790.9730.9570.9850.9460.9780.9840.97810.9850.9830.9820.9830.9830.9770.9650.9750.9830.9650.9840.9810.9770.9820.9780.980.9810.9840.9830.9790.9790.9760.9780.9780.9770.9820.9770.9750.9720.9790.9830.980.9720.9830.940.9840.9840.9720.9770.9740.980.9730.9790.980.9790.970.9790.9670.9840.9820.9790.980.9790.9840.980.9830.9790.980.9760.9710.9750.9790.9830.9760.9820.9180.9830.970.9780.9790.9770.9460.9730.949 0.8960.98
    Liver581F286061913.19CDBXD87H02960.9790.9320.9350.9740.9840.9810.9760.9420.8940.9760.9690.9760.9790.9780.9760.9770.9590.9490.9750.9760.9670.9770.9820.980.9670.960.9610.9590.9780.9810.9750.9750.9580.9610.9630.9660.9280.9730.9650.9660.9710.9750.9640.9740.9660.9440.980.9760.9760.9760.9760.9490.9650.9810.9820.9810.9630.9670.9770.96710.9720.9670.9150.9760.980.9650.9750.9580.9250.9710.9320.9760.9760.9710.9670.9610.9820.9770.9780.9740.980.9770.9710.9690.9590.9720.980.9580.9730.9710.9760.9740.9660.9660.9790.9740.9580.9760.9630.9770.9710.9660.9730.9790.9750.9630.970.9750.9750.9630.9570.9630.9630.980.9650.9710.9780.9690.9790.9770.980.9740.9720.9760.9770.980.9560.9730.9770.9720.9750.9740.9730.980.9770.9790.9810.9760.980.9770.9410.9780.9750.9760.9780.9740.9320.9590.934 0.8940.97
    Liver193F310090612.14CDBXD89H05550.9680.9420.9450.9690.970.9740.9620.9310.9010.9690.9740.9620.9670.9650.9670.9670.9520.9410.9720.9710.9540.9660.9640.9650.9510.9560.9570.9480.9730.9670.9610.960.9730.9490.9510.9620.9110.9610.9510.9550.9660.970.9590.9670.9520.9310.9680.9670.9630.9590.9660.9320.9560.9730.9640.9670.9590.9570.9670.9590.97210.9530.9390.970.9690.9670.9640.9460.9110.960.9110.9720.9620.950.9590.9510.9720.970.9680.9620.9740.9750.9680.9620.9580.9630.9660.9430.9620.9640.9730.9710.9580.9580.9670.9730.9420.9670.9470.9760.9610.9620.9570.9710.9610.9590.9650.9650.9690.9560.940.9510.950.9610.9670.9590.980.9610.9680.9640.9760.9590.9620.960.9630.9650.9440.9630.9620.960.9690.9730.9570.9660.980.9760.960.9680.970.9620.9470.9680.9710.9660.9670.9510.9110.9570.919 0.9010.96
    Liver245F230102616.12CDBXD9H25770.9840.9320.9320.9830.9730.9790.9810.9720.8950.9770.9650.9880.9760.9810.9680.9790.9780.9710.9810.9790.9760.9860.9840.9870.9870.9760.9760.9850.9820.9790.9830.9820.9380.9760.9870.9810.9460.9840.9870.9840.9850.9730.9790.9810.9850.9520.9680.9720.9830.9760.9860.9720.9830.9690.9840.9790.9820.9760.9850.980.9670.95310.8930.9790.9740.9790.9830.9740.9550.980.9590.980.9810.9840.980.9760.980.9870.9860.9750.9750.9620.9750.9820.9710.9830.9830.980.980.9750.9820.9830.9810.980.9860.9810.9810.9810.9830.9770.9830.9720.980.9740.9820.9750.9830.9820.9820.9420.9760.9840.9670.9820.9790.9850.9720.9820.9770.9810.9640.9790.9640.9870.9860.9820.9770.9790.9870.9810.9820.9810.9780.980.9720.980.9810.9830.980.9860.9230.9790.9760.9860.9840.9810.9590.9770.952 0.8930.98
    Liver548F73082214.11CDBXD9H10060.8970.9430.9450.9060.9150.9240.8930.8790.9180.9060.9270.8990.9120.9040.9190.9130.8960.880.9150.9130.8960.90.8990.8990.890.9030.9040.890.9160.9050.8950.9020.9430.8840.8830.910.8750.8960.890.890.90.8990.8920.90.8890.90.9050.9210.8970.9010.9010.8770.9010.9240.9020.9050.8980.8850.9080.8960.9150.9390.89310.90.9020.9170.9050.8990.8630.9010.8630.9110.8930.8890.8960.8950.9020.910.9030.90.9120.9290.9060.8970.9120.8960.9010.8890.8960.8960.9160.9160.90.90.9060.9110.8880.9150.890.9180.8990.9160.9040.9190.8940.8920.8960.90.9150.9260.880.8890.9050.8950.9170.8890.920.8940.9020.9060.9370.8990.9260.8980.90.9030.8910.9030.9040.8950.9150.9110.8830.8960.9270.9180.8920.9020.9070.8970.9520.8990.9150.9060.9010.8880.8630.8880.883 0.8630.90
    Liver188F304102414.03CDBXD90H17020.9870.9190.9210.9840.9760.9820.980.9530.8820.9840.9720.9830.9850.9860.9690.9810.9680.9560.980.9830.9720.9860.9850.9860.9770.9690.970.9680.9830.9820.9830.9780.9490.9730.9790.9710.920.9810.9720.9750.9840.9830.9820.9850.9780.9390.9740.9760.9820.970.9850.9540.9730.9750.9830.9820.9720.9780.9860.9760.9760.970.9790.910.990.9710.9840.9660.9320.9730.9350.9840.980.9770.9760.9670.9840.9840.9840.9740.9790.9690.9810.9770.960.9850.9850.9680.9760.9790.9810.9790.970.970.9840.9770.9620.9740.9670.9820.9760.9620.9720.9770.9830.9770.9840.9830.9740.9520.9640.9730.9580.9780.9710.9810.9780.9810.9810.9760.9690.9720.9580.9770.9830.9820.9620.9760.980.980.9740.9770.9790.980.9770.9790.9820.9840.9810.9820.930.9790.9770.9820.980.9760.9350.9670.929 0.8820.97
    Liver549F311062013.02CDBXD90H07560.9850.920.9230.9820.980.980.9810.9510.8840.980.9680.9770.9840.9840.9690.9740.9690.950.9790.9790.9660.980.9860.9830.9730.9660.9670.9620.9820.980.9840.9740.950.9750.9780.970.9240.9790.9730.9750.9780.9830.9810.9820.9730.9390.9770.9760.980.9730.9810.9560.9710.9790.9850.980.9690.9720.9830.9750.980.9690.9740.9020.9910.9710.9810.9630.930.9730.9350.9820.9810.9780.9750.9690.9850.9810.9830.9740.9780.9690.9780.9720.9620.9810.9850.9680.970.9780.980.9780.9710.970.9830.9750.960.9780.9660.9790.9720.9640.9730.9770.9840.9770.9790.9830.9750.9540.9670.9720.9610.980.9710.980.9780.9740.980.9760.9710.9710.9630.9780.980.9790.9630.9760.9790.9810.9750.9750.9790.9810.9750.9790.9850.9860.9830.980.9290.9810.9780.9770.9790.9760.9350.9630.929 0.8840.97
    Liver562F21062013.17CDBXD91H08830.9720.9550.9560.9750.9720.9770.970.9680.9250.9750.970.9760.9740.9730.9750.9690.9770.9730.9820.9750.9640.9720.9740.9760.9780.9790.9790.9770.980.970.9730.970.9580.9710.9740.9830.9520.9720.9750.9730.9810.9770.9740.9780.9780.9590.9640.9730.9710.9710.9760.9680.9820.9720.9740.970.980.9650.9780.9740.9650.9670.9790.9170.9710.97110.9760.9750.9590.9780.9570.9770.970.9720.9740.9760.9730.9830.9820.970.9760.9690.9750.980.9850.9760.9760.9770.9690.9730.9830.9840.9760.9760.9810.9810.9760.9870.9780.9780.9770.9840.9750.9760.970.9730.9760.9720.9810.9520.9680.9730.9710.97610.9750.9830.9750.9780.9740.9710.9710.980.9790.9760.9720.9780.9730.980.9720.9810.9810.9660.970.9750.9740.9730.9870.9740.9740.9410.9730.9750.9780.9740.9680.9570.9790.963 0.9170.97
    Liver536F277101014.10CDBXD95H17420.9880.9280.930.9870.9780.9830.9830.9650.8930.9820.9720.9840.9830.9870.9720.980.9710.9630.9830.9850.9770.9880.9860.9890.9830.9710.9720.9740.9870.9860.9840.9850.9510.9750.9850.9760.9350.9830.9790.9810.9860.9810.980.9840.9820.9460.9740.9820.9820.9760.9880.9620.9790.9780.9850.9860.9790.9770.9860.9790.9750.9640.9830.9050.9840.9810.97610.9710.9420.9830.940.9860.9830.9820.9790.9720.9840.9880.9870.980.9830.9720.980.9830.9680.9860.9880.9760.980.9810.9840.9840.9780.9770.9860.9820.9720.9770.9760.9830.980.9710.9760.9790.9830.9820.9860.9850.9820.9560.9690.980.9660.9790.9760.9790.980.9850.9820.9820.9730.980.9660.9830.9880.9850.970.9790.9850.9850.9820.9820.9770.980.9790.9810.980.9820.9820.9860.9370.9830.9790.9860.9840.9810.940.970.941 0.8930.98
    Liver384F146012615.17CDBXD98H17690.9660.9460.9450.9650.9670.9690.9640.9730.9290.9730.9560.9750.9660.970.9760.9670.9780.9690.9660.9670.9550.9680.9670.9730.9840.9820.9820.980.9720.9670.9640.9670.9370.9680.9720.980.9710.9660.9730.9660.9710.9620.9660.9660.9740.9660.9580.9660.9630.9680.970.9780.9840.9660.9660.9670.9830.9570.9730.9730.9580.9460.9740.8990.9660.9630.9750.97110.980.980.9740.9650.9640.9680.9730.9780.9620.9710.9690.9650.960.9580.960.9750.970.9730.9670.9780.9660.960.9680.9710.970.9690.9730.9630.9830.9750.9820.9650.970.9780.9710.960.9610.9640.9620.9580.9750.9340.9690.9680.9640.970.9750.9620.9590.9650.9650.9680.9610.9680.9680.9720.970.9650.9790.9640.9740.9630.9750.9630.9660.9620.9620.9550.9660.9760.9580.970.9250.9580.9550.9690.9640.9630.9740.9690.971 0.8990.97
    Liver384F182012615.16CDBXD98H15240.9390.9310.930.9390.9420.9380.9440.9660.9180.9480.9270.9510.9350.940.9530.9340.9590.9580.9390.9390.9280.9410.9430.9460.9660.9730.9730.970.9490.940.9390.9420.9010.9540.9530.9620.9770.9470.9590.9470.9460.9370.9450.9430.9570.9580.9340.9420.940.9540.9420.9780.9710.9380.9390.940.970.9310.9440.9570.9250.9110.9550.8630.9320.930.9590.9420.9810.9660.9760.9370.9440.9480.9570.9640.9380.9430.9440.9470.9350.9250.9340.9580.9520.9530.9390.960.9450.9320.9410.9460.9520.9520.9470.940.9750.9550.9720.9350.9550.9630.9520.9310.9340.9430.9380.9250.9530.8980.9570.9510.9460.9490.9590.9410.9310.9410.9420.9430.9290.9450.9490.9540.9430.9350.9740.9390.9520.9370.9530.940.940.9380.9290.9260.9430.9570.9290.9460.8860.9360.9270.9440.9380.9380.9760.9540.972 0.8630.95
    Liver535F278111414.14CDBXD99H13540.9820.9390.940.980.9790.980.9810.9750.9090.9810.9680.9850.9750.9790.980.9750.9750.970.9760.9810.9690.9820.9830.9850.9860.9840.9850.9830.9840.9820.9780.9790.9460.9790.9820.9840.960.9840.9830.9790.9810.9790.9760.9830.9830.9610.9770.9810.9820.9860.9830.9790.9870.9790.9790.9820.9870.9710.9810.9850.9710.960.980.9010.9730.9730.9780.9830.980.96610.9580.9790.9810.980.9850.9840.980.9810.9810.9840.9780.9670.9720.9860.9690.9860.9810.9770.9790.9720.9780.9790.980.980.9820.980.9820.9790.9840.9770.9830.980.9760.9730.9760.9770.9790.970.9810.9460.9760.9790.9730.9810.9780.9750.9740.980.9810.9780.9720.9780.9720.9850.9830.9770.9820.9740.9840.9760.9810.980.9750.9760.9720.9730.9770.9840.9740.9810.9250.9830.9710.9810.9780.9760.9580.9740.959 0.9010.98
    Liver361M162012615.26CDC57BL/6JH15900.9350.9310.9290.9350.9420.940.9380.9640.9220.9430.9220.9540.9340.9380.9520.9370.9580.9620.9390.9350.9280.9410.9450.9460.9640.9670.9670.9690.9430.9380.9410.940.90.9530.9540.9610.9760.9440.960.9450.9460.9340.9440.9390.9540.960.9270.9350.9420.950.9410.9760.9670.9350.9430.9380.9610.9350.9450.9460.9320.9110.9590.8630.9350.9350.9570.940.9740.9760.95810.9360.9380.9520.9460.960.9350.9420.9440.940.930.9230.9310.950.9550.9450.9390.9620.9420.9320.9420.9470.9510.950.9480.9390.9730.9580.970.9310.950.9550.9530.930.9360.9390.9360.9310.9490.9030.9580.9490.9450.9530.9570.9460.9260.9380.9380.940.9280.9410.9450.9540.9450.9370.970.9420.9540.9360.9490.9390.9450.9410.9270.9270.9480.9590.9330.9510.890.9320.930.9440.9410.94310.9570.968 0.8630.94
    Liver537F273091914.09CDC57BL/6JH11030.9890.9320.9330.9910.9810.9890.9870.9620.8940.9850.9820.9830.9850.9840.9750.9810.9680.9590.9840.9870.9820.9880.9860.9860.9760.9750.9750.9730.990.9860.9880.9840.9590.9730.9790.9770.9280.9870.9780.980.9870.9860.980.9890.9810.9460.9810.9830.9840.9770.9880.9570.9750.980.9840.9860.9760.980.9860.9780.9760.9720.980.9110.9840.9820.9770.9860.9650.9370.9790.93610.9870.9820.9780.9650.9890.9890.9890.9830.9870.9780.9880.9840.9640.9850.9880.9720.9810.9790.9840.9840.9780.9770.9860.9840.9660.9790.970.9890.9840.9710.9790.9870.9890.9790.9870.9820.9840.9590.9670.9790.9720.980.9770.9810.9850.9850.9840.9830.9780.9810.9680.9820.9860.9860.9670.980.9820.9840.9840.9840.9760.980.9850.9850.980.9830.9870.9830.9410.9860.9890.9930.9880.9830.9360.9660.935 0.8940.98
    Liver210F300101713.18CDD2B6F1H11540.9920.9160.9180.9870.9850.98110.9610.8770.9870.9710.9820.980.9840.9690.9770.9670.9580.9780.9780.9770.9870.990.9880.9790.9720.9720.9710.9850.9860.9870.9860.940.9790.980.9720.9320.9880.980.980.9830.9820.9810.9880.9810.9450.9890.9830.9850.9830.9840.9610.9720.9790.9850.9860.9760.9780.9820.9840.9760.9620.9810.8930.980.9810.970.9830.9640.9440.9810.9380.98710.9850.9840.9680.9930.9860.9870.9880.9860.9730.9810.9850.9570.9880.9880.970.9840.9770.9780.9780.9750.9740.9860.9770.9690.9790.9720.980.9820.970.980.9810.9880.9760.9840.9780.980.9510.9740.9790.9690.9880.970.9850.9810.9830.9880.9880.9730.9850.9660.9850.9850.9820.9680.9760.9820.9810.980.9770.9770.9870.9750.9810.9880.9820.9840.9850.9210.9880.9810.9870.9890.9860.9380.9660.94 0.8770.98
    Liver545F298062013.12CDD2B6F1H06460.9830.9210.9210.9820.9760.9820.9850.9740.890.9760.9610.9850.9760.9790.9720.9780.9720.9690.9770.9790.9810.9830.9880.9840.9830.9740.9740.9780.9810.9830.9890.9840.9330.9780.9860.9750.9420.9850.9850.980.9810.9780.9760.9830.9870.9570.9710.9760.9820.9780.9860.9720.9770.9710.9850.9830.9750.9830.9830.9780.9710.950.9840.8890.9770.9780.9720.9820.9680.9480.980.9520.9820.98510.9780.9730.9820.9840.9860.9790.9760.9610.9760.980.9660.980.9860.9810.980.9760.9780.980.9790.9780.9830.9730.9760.9780.9780.9740.980.9640.9790.9790.9880.9730.9780.9740.9770.9420.9770.9820.9750.9820.9720.9820.970.9810.9780.9780.9660.9790.9630.9850.9880.9830.9730.980.9850.9840.9770.9730.9790.9780.9710.9720.9840.9830.980.9850.9220.9790.9740.9830.9870.9940.9520.9680.953 0.8890.97
    Liver212F67101713.10CDDBA/2JH11470.9850.9310.9320.9830.9760.9780.9840.9750.8980.9820.9690.9820.9710.9780.9690.9770.9830.9660.9790.980.9690.9830.9810.9820.9810.980.9810.9790.9840.9810.980.9790.9410.9850.9830.9810.9510.9870.9860.9840.9820.9810.9840.9840.9820.9530.9780.9810.9840.980.9810.9730.9820.9790.9820.9810.9830.9740.98610.9670.9590.980.8960.9760.9750.9740.9790.9730.9570.9850.9460.9780.9840.97810.9850.9830.9820.9830.9830.9770.9650.9750.9830.9650.9840.9810.9770.9820.9780.980.9810.9840.9830.9790.9790.9760.9780.9780.9770.9820.9770.9750.9720.9790.9830.980.9720.9830.940.9840.9840.9720.9770.9740.980.9730.9790.980.9790.970.9790.9670.9840.9820.9790.980.9790.9840.980.9830.9790.980.9760.9710.9750.9790.9830.9760.9820.9180.9830.970.9780.9790.9770.9460.9730.949 0.8960.98
    Liver764F121083016.07CDDBA/2JH18180.9710.9420.9420.9710.9690.9710.9680.980.920.970.9610.9770.9650.9690.9690.9670.9890.9690.9740.9750.9570.9720.9720.9750.9810.9830.9840.980.9770.9710.970.9680.9390.9820.9820.9840.9670.9760.9840.9770.9710.9740.9770.9740.9790.9610.9630.9720.9720.9750.9750.9810.9880.9750.9750.9710.9830.9620.9790.9850.9610.9510.9760.8950.9670.9690.9760.9720.9780.9640.9840.960.9650.9680.9730.98510.9690.9740.9740.9690.9640.9540.9620.9750.9730.9750.9720.980.9680.9720.9760.9780.9820.9820.9730.9750.980.9750.980.9680.9720.9770.9710.9640.9670.9780.9680.9630.9760.9310.9820.9780.970.9710.9760.9690.9610.9690.9690.9670.9630.9650.9630.980.9760.9690.9870.9750.9820.9730.9760.9750.9730.9650.9640.9630.9690.9840.9650.9740.9160.970.9590.9660.9670.9680.960.9740.963 0.8950.97
    Liver216F306101713.15HFB6D2F1H13020.9940.9230.9260.9890.9870.9840.9930.9560.8810.9870.9770.9840.9830.9860.9710.9810.9680.9560.9830.9830.9780.9890.990.9890.9770.9720.9730.970.9880.9880.9880.9840.9510.9770.980.9740.9290.9890.9790.9830.9840.9860.9830.990.9790.9420.9890.9830.9880.9830.9850.9590.9740.9830.9890.9880.9750.9780.9860.9830.9820.9720.980.9020.9840.9850.9730.9840.9620.9380.980.9350.9890.9930.9820.9830.96910.9890.9910.9870.9890.9780.9840.9850.960.9880.9890.9680.9850.9810.9830.9820.9770.9770.9870.9840.9670.9820.9730.9860.9840.970.9810.9840.9880.9790.9880.9850.9840.9570.9720.980.9680.9880.9730.9880.9860.9840.9890.9860.9780.9840.9690.9850.9870.9860.9680.9810.9850.9840.9840.9840.9810.9880.980.9880.9880.9850.990.9870.9290.9910.9860.9880.9910.9840.9350.9690.934 0.8810.98
    Liver547F279102616.04HFB6D2F1H22880.9890.9380.940.9890.9810.9880.9860.9660.9010.9840.9820.9870.9860.9870.9740.9850.9760.9690.9890.9860.9830.9880.9870.9890.9820.9760.9760.9770.9890.9870.9870.9860.9590.9750.9840.9820.9360.9850.9810.9840.9880.9840.9810.9880.9840.9490.9770.9820.9840.9780.990.9620.9810.980.9880.9870.980.9790.990.9820.9770.970.9870.910.9840.9810.9830.9880.9710.9430.9810.9420.9890.9860.9840.9820.9740.98910.9960.9820.9870.980.9860.9870.9730.9870.9910.9790.9840.9850.9890.9890.9830.9820.9910.9870.9740.9840.9780.990.9850.9770.9820.9870.9870.9820.990.9880.9880.9590.9720.9830.9740.9830.9830.9850.9850.9880.9860.9850.9790.9840.9730.9880.9920.9880.9730.9840.9890.9880.9880.9870.9790.9820.9850.9870.9830.9870.9890.9870.9420.9850.9880.9910.990.9840.9420.9760.948 0.9010.98
    Liver547F296102616.05HFB6D2F1H22900.990.9320.9340.9880.980.9870.9870.9660.8950.9850.9790.9870.9840.9860.9730.9840.9750.9690.9890.9850.9810.9880.9880.9890.9820.9750.9760.9760.9880.9870.9890.9850.9550.9770.9860.980.9340.9870.9830.9860.9870.9850.9840.9890.9840.9470.9780.9820.9860.9790.9890.9630.9790.9780.9890.9870.9780.9810.990.9830.9780.9680.9860.9030.9840.9830.9820.9870.9690.9440.9810.9440.9890.9870.9860.9830.9740.9910.99610.9830.9880.9780.9880.9860.9730.9860.9910.980.9850.9870.9890.9890.9830.9820.990.9870.9750.9850.9790.9880.9850.9740.9820.9850.9890.9830.990.9890.9870.9560.9750.9850.9730.9850.9820.9890.9850.9880.9880.9840.9760.9840.9710.9890.9920.9880.9730.9850.9890.9890.9870.9870.9830.9820.9820.9870.9870.9880.990.9880.9350.9880.9890.9890.9920.9870.9440.9780.946 0.8950.98
    Liver176F254042415.12HFBXD100H20850.9860.9270.9270.9850.9850.9840.9880.9660.890.9840.9730.9810.9730.9790.9740.9760.9640.9590.9760.9790.9790.9840.9840.9850.9770.9750.9750.9750.9850.9860.980.9840.9450.9770.9760.9730.940.9870.9770.9810.9820.9810.9770.9870.980.950.9830.9830.9840.9850.9810.9630.9750.9790.980.9860.9780.9730.980.9830.9740.9620.9750.90.9740.9740.970.980.9650.9470.9840.940.9830.9880.9790.9830.9690.9870.9820.98310.9880.9740.9790.9890.9580.9850.9830.9680.9850.9740.9760.9770.980.980.9820.9810.9720.9760.9740.9790.9860.9740.9780.9790.980.9770.9830.9720.9810.950.9750.9810.9720.9830.970.9790.9790.9850.9850.980.9750.9820.9690.9820.9820.9820.9710.9740.9820.9770.9810.9810.9750.980.9740.9790.9830.980.9790.9820.9260.9860.9780.9860.9820.980.940.9650.942 0.890.97
    Liver537F77050914.04HFBXD100H11870.9880.9310.9330.9890.9850.9870.9860.9560.8920.9850.980.9790.9790.9830.9720.9770.9630.9580.9840.9830.9770.9860.9840.9860.9750.9690.970.9680.9860.9850.9830.9830.9580.9690.9760.9720.9270.9820.9730.9790.9830.9840.9770.9850.9760.940.9810.9810.9820.9790.9830.9530.9720.980.9820.9850.9740.9750.9830.9770.980.9740.9750.9120.9790.9780.9760.9830.960.9350.9780.930.9870.9860.9760.9770.9640.9890.9870.9880.98810.9840.9830.9860.9640.9830.9860.9660.9830.9810.9840.9830.9780.9770.9850.9850.9660.980.9710.9860.9810.9750.9760.9840.9820.9780.9850.9820.9840.9580.9640.9760.9670.9820.9760.9810.9890.9840.9880.9820.9790.9830.9720.9810.9840.9840.9650.9790.9810.9820.9840.9850.9740.9810.9830.9870.9820.9810.9860.9810.940.9870.9860.9860.9860.9780.930.9690.935 0.8920.98
    Liver493F290042715.19HFBXD101H14220.9750.9440.9470.9770.9810.9830.9730.9440.9170.9760.9850.9690.9750.9740.9720.9760.9560.950.9770.9730.9690.9740.9710.9740.9610.9620.9630.9560.9770.9760.9680.9760.970.9540.9580.9710.9230.9660.9570.9620.9710.9710.9620.9740.9640.940.9750.9750.9690.9690.9720.9380.9620.9770.9710.9760.9640.9620.9730.9650.9770.9750.9620.9290.9690.9690.9690.9720.9580.9250.9670.9230.9780.9730.9610.9650.9540.9780.980.9780.9740.98410.9750.9740.9580.9710.9740.9550.9730.9710.9770.9770.9640.9640.9770.9750.9550.9740.960.9830.970.9730.970.9830.9680.9630.9730.9720.9780.9680.9470.9590.9660.9730.9690.9670.9840.9720.9780.9760.9850.9770.9720.970.9730.9750.9540.9690.9710.9690.9780.9750.9610.9710.9850.9810.9710.9710.9780.9690.960.9720.9810.9770.9770.9650.9230.960.938 0.9170.97
    Liver183F284052814.04HFBXD102H13610.9820.9270.9280.9850.9760.9850.9810.9560.8920.9880.9830.9770.9810.9790.9680.9780.9680.9620.9820.9820.9770.9810.980.9820.9720.970.9710.9670.9840.9790.9810.9790.9550.9690.9730.9730.9210.9790.970.9750.9840.9820.9770.9850.9770.9390.9750.980.9770.9690.9830.9490.9710.9730.9790.9790.9680.9770.9810.9750.9710.9680.9750.9060.9810.9780.9750.980.960.9340.9720.9310.9880.9810.9760.9750.9620.9840.9860.9880.9790.9830.97510.9850.9650.980.9830.970.9790.9810.9820.9820.9730.9720.9830.980.9610.9780.9650.9840.9780.9690.9740.9830.9820.9770.9840.9780.9780.9540.9620.9740.9660.9750.9750.9780.9810.9850.9840.980.9740.9780.9650.9760.9810.9820.9630.9770.9770.9790.9780.980.9710.9750.980.9820.9760.980.9810.9770.9380.9820.9830.9850.9830.9760.9310.9680.936 0.8920.97
    Liver366F195121214.07HFBXD102H14980.9850.9330.9330.9850.980.9840.9850.9720.8980.9870.9770.9850.9760.9810.9740.9780.9720.9740.980.9810.9780.9850.9830.9880.9840.9820.9820.9830.9860.9820.980.9830.9450.9770.9810.9810.9460.9850.980.9820.9880.9820.9790.9880.9860.9540.9770.9790.9820.9810.9850.9680.9830.9750.980.9820.9840.9780.9830.9830.9690.9620.9820.8970.9770.9720.980.9830.9750.9580.9860.950.9840.9850.980.9830.9750.9850.9870.9860.9890.9860.9740.98510.9680.9880.9840.9760.9870.9790.9810.9820.9810.980.9870.9840.9780.9790.980.9830.9870.9790.9790.9790.9790.980.9870.9740.9830.9450.9730.9820.9710.9830.980.9810.9810.990.9870.9820.9720.9830.970.9830.9850.9820.9780.9760.9840.9790.9830.9840.9770.9790.9770.9790.980.9850.9780.9820.9280.9830.9770.9880.9830.9790.950.9780.954 0.8970.98
    Liver688F140083016.08HFBXD24H22590.9590.9490.9490.9620.9580.9680.9570.9660.9260.9640.9570.9710.9630.9630.9690.9620.9750.9730.9750.9660.9540.9620.9630.9670.9730.9680.9680.9680.9680.960.9640.960.9530.9640.9690.9750.9490.960.970.9670.9710.9650.9640.9630.9670.9510.9510.9630.960.9590.9680.9620.9740.9620.9650.960.970.9610.970.9650.9590.9580.9710.9120.960.9620.9850.9680.970.9520.9690.9550.9640.9570.9660.9650.9730.960.9730.9730.9580.9640.9580.9650.96810.9620.9650.9770.9610.9710.9770.9790.9720.9710.9710.9720.9720.9790.9720.9630.9660.9730.9640.9630.9610.9680.9650.9630.9730.9440.9640.9680.9650.9620.9850.9640.9690.9640.9660.9650.9620.9610.9720.970.9680.9640.9710.9690.9710.9670.9730.9720.9640.9580.9630.9640.9630.9760.9640.9650.9330.9610.9630.9660.9660.9610.9550.9760.958 0.9120.96
    Liver182F317121515.05HFBXD29H23490.990.9230.9250.9860.980.9810.9880.9640.8870.9860.9720.9840.9850.990.9720.9770.9720.9620.9810.9840.9760.9880.9870.9890.9840.9790.9790.9760.9880.9840.9830.9840.9450.9780.9840.9770.940.9870.980.9810.9840.9840.9820.9880.9840.9470.9810.9820.9820.980.9860.9670.9810.9790.9830.9840.9840.9760.9860.9840.9720.9630.9830.8960.9850.9810.9760.9860.9730.9530.9860.9450.9850.9880.980.9840.9750.9880.9870.9860.9850.9830.9710.980.9880.96210.9910.9760.9820.9790.9820.9820.9780.9770.9880.980.9750.9770.9790.9830.9820.9740.9780.9780.9820.9820.9870.9790.9810.950.9730.980.9660.9840.9760.9810.980.9860.9860.9830.9720.9810.9640.9840.9860.9820.9740.9750.9840.9830.9810.980.9780.9810.9750.980.9810.9850.9810.9830.9240.9850.9790.9860.9830.980.9450.9710.943 0.8870.98
    Liver577F295061913.04HFBXD29H06690.9910.9240.9260.9890.9820.9860.9880.9640.8860.9840.9740.9860.9870.9910.9750.9810.970.9620.9850.9860.9830.9890.9910.990.9810.9730.9730.9730.9880.9880.9880.9870.9490.9750.9850.9760.9340.9860.980.9820.9850.9850.9810.9880.9840.9470.980.9820.9840.980.9890.9620.9780.9810.990.9880.9770.980.9890.9810.980.9660.9830.9010.9850.9850.9760.9880.9670.9390.9810.9390.9880.9880.9860.9810.9720.9890.9910.9910.9830.9860.9740.9830.9840.9650.99110.9790.9830.9820.9860.9860.980.980.9890.9820.9720.9810.9770.9860.9820.9710.980.9840.9880.9810.9870.9870.9840.9550.9720.9810.9680.9850.9760.9850.9830.9870.9870.9840.9760.9830.9670.9870.9910.9890.9710.9830.9880.9880.9840.9820.980.9830.980.9850.9860.9870.9880.9880.9310.9880.9840.9880.990.9870.9390.970.94 0.8860.98
    Liver630F119111314.10HFBXD29H10370.970.9340.9320.9720.9640.9730.970.9830.9140.9710.9570.9780.9710.9770.970.9690.9830.9720.9750.9730.9680.9740.9730.9750.9830.9750.9740.9790.9740.9710.9760.9750.9340.9780.9830.9780.9560.9740.9830.9790.9780.9720.9760.9720.9810.9560.9560.970.9680.9650.9790.9730.980.9670.9750.9710.9760.9730.9790.9770.9580.9430.980.8890.9680.9680.9770.9760.9780.960.9770.9620.9720.970.9810.9770.980.9680.9790.980.9680.9660.9550.970.9760.9770.9760.97910.970.9730.9760.9790.9830.9830.9770.9720.980.9770.9790.9680.9740.9740.9730.9680.9730.9790.9720.9680.9780.9330.9810.9820.9730.970.9770.9730.9640.9740.970.9720.960.9720.9630.9790.9790.9740.980.9780.980.9790.9780.9720.9750.9650.9650.9620.9710.980.9680.9770.9220.9670.9640.9760.9740.9780.9620.9690.96 0.8890.97
    Liver200F261042015.20HFBXD32H20300.9850.9270.9280.9810.9750.9840.9840.9650.8870.9810.970.9860.9710.9770.9730.9880.9690.9720.9790.9780.9840.9870.9820.9840.9780.9710.9710.9790.9810.9860.9790.9860.9410.9710.9770.9740.9370.9840.9780.9820.9860.9770.9750.9830.980.9480.9760.9770.9840.9790.9840.960.9740.9720.9810.9860.9760.9840.9840.9820.9730.9620.980.8960.9760.970.9690.980.9660.9450.9790.9420.9810.9840.980.9820.9680.9850.9840.9850.9850.9830.9730.9790.9870.9610.9820.9830.9710.9830.9790.980.9810.980.9820.9810.9730.9750.9760.980.9870.970.9760.9760.9790.9760.9840.9750.9830.9430.970.9830.970.9810.9690.9820.9770.9880.9820.9810.9730.9850.9670.980.9850.9870.9690.9810.9820.980.9830.9810.9820.9790.9760.980.9810.9770.9780.9840.9270.9820.9740.9860.9860.9830.9420.9750.946 0.8870.97
    Liver539F318101014.02HFBXD32H11370.9820.9230.9250.980.9680.980.9770.960.8880.9770.970.9780.9740.9780.9640.980.9750.9690.9860.980.9750.9810.9780.980.9730.9660.9670.9680.9810.9780.9790.9780.9470.9740.9820.9730.9260.9770.9760.9820.9830.9840.9810.9820.9760.9360.9710.9750.9780.970.9820.9540.9720.9710.9810.9780.9710.9830.9850.9780.9710.9640.9750.8960.9790.9780.9730.9810.960.9320.9720.9320.9790.9770.9760.9780.9720.9810.9850.9870.9740.9810.9710.9810.9790.9710.9790.9820.9730.98310.9870.9860.980.9790.980.9810.9660.9750.970.980.9760.9680.970.9750.9790.9850.9850.980.9790.9460.9680.980.9660.9720.9730.9790.9790.9830.9820.9770.970.9770.9620.9770.9830.9820.9670.9830.9790.9860.9790.9810.9830.9730.9760.9820.9750.980.9790.9770.9280.9820.9760.9770.9820.9770.9320.9780.939 0.8880.97
    Liver197F283101513.04HFBXD34H10560.9840.9430.9450.9860.9770.9860.9780.9650.9080.980.9780.9830.9790.9820.9730.9830.9790.9680.9970.9850.9760.9840.980.9840.980.9740.9750.9750.9870.9810.9820.980.9590.9730.9820.9830.9390.9810.980.9820.9830.9820.980.9840.9790.9480.9770.9840.9810.9760.9860.9620.9790.9780.9840.9810.9780.9780.9890.980.9760.9730.9820.9160.9810.980.9830.9840.9680.9410.9780.9420.9840.9780.9780.980.9760.9830.9890.9890.9760.9840.9770.9820.9810.9770.9820.9860.9760.9790.98710.9970.9830.9820.9840.9860.9740.9850.9770.9860.9810.9780.9780.9830.9810.9810.9850.9850.9870.9560.9710.9810.9710.9770.9830.9810.9840.9810.9810.9850.9820.980.9710.9840.9870.9840.9730.9840.9850.9860.9870.9860.9790.9760.9830.9870.9780.9850.9840.9810.9420.9830.9840.9830.9840.9780.9420.9780.947 0.9080.98
    Liver537F292101014.05HFBXD34H10520.9830.9460.9480.9850.9770.9870.9780.9690.9130.9790.9770.9830.9790.9820.9740.9830.9810.9720.9970.9850.9770.9830.980.9840.9810.9770.9770.9770.9870.9810.9810.9810.9580.9740.9830.9840.9440.9810.9810.9820.9830.9810.980.9830.980.9520.9760.9840.980.9760.9860.9650.9810.9790.9830.9810.9790.9780.9890.9810.9740.9710.9830.9160.9790.9780.9840.9840.9710.9460.9790.9470.9840.9780.980.9810.9780.9820.9890.9890.9770.9830.9770.9820.9820.9790.9820.9860.9790.980.9860.99710.9840.9830.9840.9850.9760.9860.9790.9850.9810.980.9790.9820.980.9810.9840.9830.9880.9550.9720.9810.9740.9770.9840.980.9820.9810.9810.9850.9820.980.9720.9850.9870.9840.9760.9840.9860.9860.9880.9850.9790.9750.9830.9850.9780.9860.9820.9810.9420.9820.9820.9830.9840.9790.9470.9790.953 0.9130.98
    Liver350F129121214.22HFBXD39H14740.9790.9410.9410.9810.9710.9810.9750.9810.9110.9740.9680.9820.9690.9750.9730.9760.9810.9670.9810.9840.9790.9820.9770.9790.980.9770.9770.9840.9830.9790.9790.9780.9430.980.9840.9810.9530.9840.9890.9890.9810.9790.9810.9790.9790.9540.9660.9740.980.9780.9820.9730.9810.9730.9810.9790.9810.9770.9850.9840.9660.9580.9810.90.970.9710.9760.9780.970.9520.980.9510.9780.9750.9790.9840.9820.9770.9830.9830.980.9780.9640.9730.9810.9720.9780.980.9830.9810.980.9830.98410.9970.9760.9840.9810.980.9820.9770.9860.9770.9760.9730.9780.9830.9790.9730.9840.9360.9840.990.9760.9740.9760.980.9720.9790.9740.9730.9690.9760.9660.9830.9830.9820.980.9860.9850.9840.9840.9840.9820.970.9730.9750.9750.980.9780.9830.9260.9790.9730.9810.9810.980.9510.9710.949 0.90.98
    Liver350F204121214.21HFBXD39H14730.9790.940.9410.9810.9710.980.9740.9810.9110.9740.9670.9810.9680.9750.9720.9750.9810.9650.9810.9840.9780.9810.9760.9780.9790.9760.9760.9840.9820.9780.9790.9770.9430.980.9840.980.9530.9830.9880.9890.9810.9790.9810.9790.9780.9530.9650.9730.980.9770.9810.9720.9810.9740.980.9780.980.9760.9840.9830.9660.9580.980.90.970.970.9760.9770.9690.9520.980.950.9770.9740.9780.9830.9820.9770.9820.9820.980.9770.9640.9720.980.9710.9770.980.9830.980.9790.9820.9830.99710.9750.9840.980.9790.9810.9760.9850.9770.9760.9730.9770.9840.9780.9730.9840.9350.9840.9890.9750.9730.9760.980.9720.9780.9730.9720.9680.9750.9660.9830.9820.9810.980.9860.9850.9830.9840.9840.9820.970.9720.9740.9740.980.9770.9820.9250.9790.9720.980.980.9780.950.9710.948 0.90.97
    Liver291F280111314.05HFBXD40H14880.9880.9330.9340.9860.9830.9850.9860.9640.8960.9850.9740.9850.9850.9870.9740.9790.9730.9680.9840.9810.9760.9890.9910.9910.9850.9760.9760.9740.9850.9840.9830.9850.9520.9750.9820.980.9380.9820.9780.9790.9840.9820.9780.9870.9850.950.9790.980.9810.9780.9870.9630.980.9790.9860.9840.9790.9760.9850.9790.9790.9670.9860.9060.9840.9830.9810.9860.9730.9470.9820.9480.9860.9860.9830.9790.9730.9870.9910.990.9820.9850.9770.9830.9870.9710.9880.9890.9770.9820.980.9840.9840.9760.97510.9860.9740.9830.9780.9850.980.9780.980.9830.9820.9780.9850.9840.9830.9570.970.9780.970.9880.9810.9830.9850.9860.9880.9860.9760.9840.9720.9860.9880.9840.9720.9780.9850.9820.9830.9860.9760.9850.9810.9840.9860.9880.9830.9840.9360.9830.9820.9880.9870.9820.9480.9740.951 0.8960.98
    Liver358F202121214.13HFBXD40H15930.9840.9420.9450.9840.9760.9830.9770.9650.9040.9770.9790.9830.9750.9780.9740.9790.9730.9650.9850.9840.9740.9860.9820.9830.9760.9740.9750.9780.9850.980.9790.9780.9590.9720.9790.980.9370.9830.9810.9850.9840.9830.9790.9850.9780.9440.9720.9760.9830.9780.9840.960.980.9760.9830.980.9780.9750.9840.9790.9740.9730.9810.9110.9770.9750.9810.9820.9630.940.980.9390.9840.9770.9730.9790.9750.9840.9870.9870.9810.9850.9750.980.9840.9720.980.9820.9720.9810.9810.9860.9850.9840.9840.98610.9710.980.9750.9850.9860.9760.9750.9810.9780.9820.9860.9810.9840.950.970.9820.9690.9770.9810.9820.9830.9830.9810.9760.9740.9760.9690.9830.9840.9830.9730.9820.9850.9820.98410.9780.9760.9810.9870.9770.9850.9830.9820.9380.9860.9830.9850.9840.9740.9390.9770.941 0.9040.98
    Liver240F258042015.10HFBXD44H18250.9710.9410.940.9720.9670.9710.9690.9810.9190.9690.9530.9810.9610.9690.9720.9680.9770.9730.9720.9710.9660.9750.9720.9790.9890.9810.9810.9850.9740.9720.970.9730.9280.9710.980.9810.9740.9740.9830.9770.9740.9640.9680.9680.9790.9660.9570.9650.9710.9770.9740.9850.9860.9640.9720.9720.9850.9640.9770.9760.9580.9420.9810.8880.9620.960.9760.9720.9830.9750.9820.9730.9660.9690.9760.9760.980.9670.9740.9750.9720.9660.9550.9610.9780.9720.9750.9720.980.9730.9660.9740.9760.9810.980.9740.97110.9810.9970.9670.9780.9760.9750.9610.9670.9690.9690.9640.980.9280.9760.9790.9660.9740.9760.9710.9620.9710.9670.970.9590.9740.9670.980.9770.9730.9860.9740.9810.9710.980.9710.9710.9650.9610.9610.970.9780.9660.9760.9150.9670.9590.9730.9730.9730.9730.9730.971 0.8880.97
    Liver379F158012615.12HFBXD44H15010.9780.950.9520.9790.980.9810.9790.9660.9190.980.9710.9820.9770.9780.9780.9750.9760.9680.9840.9780.970.9780.980.9840.9830.9780.9780.9760.9820.9780.9790.9760.9560.9750.9760.9820.9530.9780.9790.9770.980.9760.9750.9790.9780.9590.9740.9770.9780.9790.9790.970.980.9780.9810.9780.9780.9690.9810.9780.9760.9670.9810.9150.9740.9780.9870.9770.9750.9550.9790.9580.9790.9790.9780.9780.9750.9820.9840.9850.9760.980.9740.9780.9790.9790.9770.9810.9770.9750.9750.9850.9860.980.9790.9830.980.98110.9830.980.9790.9810.980.980.9770.9730.9770.9770.9850.9570.9740.9770.9730.9810.9870.9790.9810.9740.9810.9810.9780.9780.9820.9840.980.9780.9770.9780.9830.9760.9850.980.9740.9770.9760.9790.9810.9860.9820.9810.9390.980.9790.9810.9820.9760.9580.9750.96 0.9150.98
    Liver715F144102414.12HFBXD44H16870.9760.9390.940.9760.970.9740.9720.9780.9140.9720.9580.9840.9650.9730.9740.9720.9760.9720.9760.9750.9690.9790.9760.9830.990.9810.9810.9850.9770.9760.9750.9760.9320.9720.9830.9820.9690.9770.9850.980.9760.9680.9720.9730.9810.9630.9620.9670.9760.980.9780.9830.9870.9660.9760.9760.9850.9670.980.9780.9630.9470.9830.890.9670.9660.9780.9760.9820.9720.9840.970.970.9720.9780.9780.980.9730.9780.9790.9740.9710.960.9650.980.9720.9790.9770.9790.9760.970.9770.9790.9820.9810.9780.9750.9970.98310.9720.9810.9760.9770.9650.9720.9710.9740.970.9820.9320.9760.9810.9660.9770.9780.9750.9670.9750.9720.9730.9620.9770.9690.9830.980.9760.9850.9760.9830.9750.9820.9750.9750.9690.9650.9680.9740.980.9720.980.9170.9720.9650.9760.9770.9750.970.9760.967 0.890.97
    Liver503F303121515.15HFBXD45H19400.9870.9440.9460.9880.9820.9890.980.9580.9050.9820.9850.9810.9840.9830.9740.9830.970.9590.9860.9850.9790.9850.9810.9850.9740.9770.9780.970.9890.9850.9820.9830.9630.9670.9760.980.9290.980.9730.9750.9830.9820.9760.9850.9780.9460.9770.980.9820.9780.9860.9540.9770.9810.9840.9850.9770.9740.9860.9770.9770.9760.9770.9180.9820.9790.9780.9830.9650.9350.9770.9310.9890.980.9740.9770.9680.9860.990.9880.9790.9860.9830.9840.9830.9630.9830.9860.9680.980.980.9860.9850.9770.9760.9850.9850.9670.980.97210.9810.9770.9780.9880.9820.9760.9840.9820.9850.9580.9610.9740.9670.9780.9780.9780.9860.9830.9830.9810.9820.9810.9730.980.9860.9860.9680.9820.9830.9820.9850.9850.9720.9780.9890.9860.9770.9820.9860.9810.9480.9810.9850.9880.9840.9760.9310.9690.941 0.9050.98
    Liver189F263042015.24HFBXD48H20460.9830.9370.9380.9830.9770.9820.9820.9720.8990.9780.9730.9860.9730.9760.9780.9810.9710.9690.980.9810.9810.9840.9810.9830.980.9780.9780.9880.9880.9820.9820.980.9460.9730.9790.980.9440.9870.9840.9870.9860.9790.9780.9850.9820.9530.9730.9750.9860.9830.9840.9680.980.9720.9810.9820.9820.9780.9830.9820.9710.9610.9830.8990.9760.9720.9770.980.970.9550.9830.950.9840.9820.980.9820.9720.9840.9850.9850.9860.9810.970.9780.9870.9660.9820.9820.9740.9870.9760.9810.9810.9860.9850.980.9860.9780.9790.9810.98110.9760.9790.9810.9810.9760.9850.9750.9830.9440.9750.9860.9730.980.9770.9840.9770.9840.9790.9770.9690.980.9690.9850.9840.9850.9760.9790.9850.980.9830.9860.9810.9760.9750.9790.9810.9820.9810.9860.9280.9830.9790.9870.9850.9810.950.9750.948 0.8990.98
    Liver595F238042915.13HFBXD48H13770.970.960.960.9740.9780.9760.970.970.9320.9760.970.970.9690.9720.9760.9670.9780.9660.9760.9730.960.9710.9690.9740.9770.9780.9790.9780.9820.9690.9650.9740.9520.9690.9680.9830.9620.9680.9730.9680.9730.9690.9680.9710.9730.960.9680.9740.9660.9730.9710.9660.980.9770.9710.9690.980.9590.9760.9770.9660.9620.9720.9160.9620.9640.9840.9710.9780.9630.980.9550.9710.970.9640.9770.9770.970.9770.9740.9740.9750.9730.9690.9790.9730.9740.9710.9740.970.9680.9780.980.9770.9770.9780.9760.9760.9810.9760.9770.97610.9780.9760.9630.970.9660.9630.9830.9470.9670.9680.9710.9760.9840.9650.9760.970.9760.9770.9750.9750.9790.9770.9710.9690.9780.9710.9770.9670.9830.9760.9610.9690.9750.970.970.980.9660.9710.9390.9680.9680.9760.9690.9620.9550.970.966 0.9160.97
    Liver233F239051112.04HFBXD48aH02100.9790.9410.9410.980.9830.9810.980.9680.910.9770.970.9780.9760.9760.9720.9760.9710.9640.9770.9760.9740.9790.980.980.9770.9770.9770.9780.9840.9780.9780.9810.9450.9720.9750.9790.950.9780.9770.9730.9760.9730.9730.9780.9780.960.9750.9770.9770.9780.9780.970.9770.9760.9810.9780.9770.9690.980.9750.9730.9570.980.9040.9720.9730.9750.9760.9710.9520.9760.9530.9790.980.9790.9750.9710.9810.9820.9820.9780.9760.970.9740.9790.9640.9780.980.9730.9760.970.9780.9790.9760.9760.980.9750.9750.980.9770.9780.9790.97810.9820.9770.9680.9740.9730.9820.9510.9710.9740.970.9830.9750.9770.9730.9760.9770.9790.9740.9770.970.9840.980.9790.9740.9770.9820.9760.9820.9750.9690.9770.9740.9740.9820.9810.9780.9810.9330.9750.9750.9820.980.9790.9530.9670.957 0.9040.97
    Liver543F287062013.06HFBXD48aH06990.9820.9430.9440.9860.9850.9880.9810.9560.9070.9790.9840.9770.9850.9790.9750.980.9650.9560.9820.9820.980.9790.9820.9810.9690.9720.9720.9690.9890.9820.9810.9820.9650.9660.970.9780.9280.9780.9710.9710.980.9810.970.9840.9790.9490.9790.9820.9780.9760.9830.9510.9710.980.9820.9820.970.9740.9810.9720.9790.9710.9740.9190.9770.9770.9760.9790.960.9310.9730.930.9870.9810.9790.9720.9640.9840.9870.9850.9790.9840.9830.9830.9790.9630.9780.9840.9680.9760.9750.9830.9820.9730.9730.9830.9810.9610.980.9650.9880.9810.9760.98210.9810.9690.9790.9760.9810.9650.9590.970.9740.9780.9760.9750.9840.980.9830.9810.9830.9780.9720.9790.9830.9830.9640.9770.980.980.9810.9810.9660.9760.9860.9820.9780.9810.9850.9780.9520.980.9850.9860.9840.980.930.9630.943 0.9070.97
    Liver713F143010614.07HFBXD53H08330.990.9150.9170.9880.9780.9830.9880.9630.8780.9810.970.9840.9790.9820.9680.9790.9690.9550.9810.9820.9790.9870.9870.9850.9770.9690.970.9710.9850.9840.9970.9840.9430.9760.9850.9720.9270.9870.9820.9830.9840.9840.9830.9870.9810.9430.9760.9770.9850.9780.9870.960.9720.9740.9880.9840.9720.9810.9850.9790.9750.9610.9820.8940.9830.9840.970.9830.9610.9340.9760.9360.9890.9880.9880.9790.9670.9880.9870.9890.980.9820.9680.9820.9790.9610.9820.9880.9730.9790.9790.9810.980.9780.9770.9820.9780.9670.9770.9720.9820.9810.9630.9770.98110.9780.9840.9840.9810.9470.9720.9820.9680.9810.970.9860.9780.9820.9820.980.9690.980.9620.9830.9870.9860.9650.9820.9830.9870.9810.9780.9820.9810.9760.9810.9840.9810.9880.9860.9230.9850.9830.9860.9880.9880.9360.9630.931 0.8780.97
    Liver188F128111414.03HFBXD61H19220.980.9220.9240.980.9670.9750.9760.970.8910.9780.9680.9760.9730.9780.9630.9690.9780.960.980.980.9670.980.9770.9790.9750.9710.9720.9720.9810.9750.9790.9740.9440.9860.9870.9750.9380.980.980.9850.9820.9850.9870.9820.9770.9390.970.9760.9770.9690.9790.9610.9780.9740.9790.9750.9750.9760.9830.9830.9630.9590.9750.8920.9770.9770.9730.9820.9640.9430.9770.9390.9790.9760.9730.9830.9780.9790.9820.9830.9770.9780.9630.9770.980.9680.9820.9810.9790.9760.9850.9810.9810.9830.9840.9780.9820.9690.9730.9710.9760.9760.970.9680.9690.97810.9860.9790.9790.9380.9780.9830.9660.9710.9730.9780.9730.9810.9790.9720.9640.970.9580.9780.980.9770.9740.980.980.9840.9790.9820.9820.970.9680.9750.9720.9810.9750.9790.920.9810.9730.9770.9760.9720.9390.970.934 0.8910.97
    Liver188F323111414.04HFBXD61H17220.9880.9220.9240.9860.9740.9830.9840.960.8820.9810.9760.9850.980.9830.9670.980.9690.9640.9850.9820.980.9870.9830.9860.9770.9710.9720.9740.9850.9820.9850.9820.950.9780.9850.9760.9250.9860.9780.9860.9890.9850.9840.9890.9820.9370.9760.9780.9860.9760.9860.9560.9760.9720.9830.9820.9770.980.9860.980.970.9650.9830.8960.9840.9790.9760.9860.9620.9380.9790.9360.9870.9840.9780.980.9680.9880.990.990.9830.9850.9730.9840.9870.9650.9870.9870.9720.9840.9850.9850.9840.9790.9780.9850.9860.9690.9770.9740.9840.9850.9660.9740.9790.9840.98610.9880.9810.9520.9690.9840.9660.9780.9760.9870.9820.9890.9860.980.970.980.9620.9810.9860.9840.9690.9780.9820.9860.9810.9860.9810.9790.9770.9860.980.9820.9860.9840.9290.9880.9850.9880.9860.9790.9360.9760.933 0.8820.98
    Liver524F316121515.25HFBXD61H18430.9870.920.9240.9830.9720.9790.9780.950.880.9760.9720.9810.980.9850.9630.9780.9660.9520.9850.9810.9720.9840.9810.9840.9750.960.9610.9640.9810.980.9830.9780.9510.9680.9820.970.9190.9780.9740.980.980.9760.9790.980.9720.9290.970.9730.9810.9710.9820.950.9690.9720.9850.980.9690.9710.9850.9720.9750.9650.9820.90.9830.9830.9720.9850.9580.9250.970.9310.9820.9780.9740.9720.9630.9850.9880.9890.9720.9820.9720.9780.9740.9630.9790.9870.9680.9750.980.9850.9830.9730.9730.9840.9810.9640.9770.970.9820.9750.9630.9730.9760.9840.9790.98810.9810.9560.9620.9760.9550.9780.9720.9840.980.9780.9780.9780.9690.9770.960.9810.9840.9830.960.9790.9820.9860.9810.9810.9770.980.9760.9870.980.9780.9880.9840.9320.9830.9850.9820.9840.9750.9310.9690.924 0.880.97
    Liver488F242042915.19HFBXD62H14340.9840.9480.9490.9860.980.9850.980.9720.9160.9810.9770.9840.9760.9820.9770.9810.9780.9670.9860.9830.9770.9840.9790.9830.9810.9770.9780.9780.9860.9830.9810.9830.9570.9730.980.9860.9550.9810.9820.9830.9820.9780.9780.980.9790.9560.9750.980.980.9790.9840.9670.9810.980.9830.9830.9820.9750.9870.9830.9750.9690.9820.9150.9740.9750.9810.9820.9750.9530.9810.9490.9840.980.9770.9830.9760.9840.9880.9870.9810.9840.9780.9780.9830.9730.9810.9840.9780.9830.9790.9870.9880.9840.9840.9830.9840.980.9850.9820.9850.9830.9830.9820.9810.9810.9790.9810.98110.9560.9730.9820.9740.980.9810.980.9820.980.980.9830.980.9840.9750.9850.9850.9840.9770.9850.9860.98310.9840.9770.9770.9820.9830.9780.9830.9820.9840.940.9810.9810.9860.9860.9780.9490.9740.955 0.9150.98
    Liver548F302082214.10HFBXD62H13150.9510.9320.9340.9520.960.9590.9510.9140.8960.9530.960.9470.9640.9560.9480.9520.9280.9260.9560.9520.9470.9490.9530.9530.9380.9380.9390.9290.9570.9540.9470.950.970.9320.9320.9480.9020.9470.9340.9380.9470.9490.9390.9520.9420.9210.9590.9640.9470.9480.950.9170.9390.9610.9530.9540.9370.9360.9490.940.9630.9560.9420.9260.9520.9540.9520.9560.9340.8980.9460.9030.9590.9510.9420.940.9310.9570.9590.9560.950.9580.9680.9540.9450.9440.950.9550.9330.9430.9460.9560.9550.9360.9350.9570.950.9280.9570.9320.9580.9440.9470.9510.9650.9470.9380.9520.9560.95610.9240.9360.9470.9520.9520.9440.9640.9480.9580.9580.9690.9520.9580.9520.9530.9510.9280.9410.950.9460.9560.950.9320.9530.9580.9610.9510.950.9630.9480.9540.9530.9690.9570.9550.9440.9030.9350.913 0.8960.95
    Liver186F125111414.09HFBXD63H17150.9720.9220.9220.9690.9650.9660.9740.9790.8950.970.950.9760.9590.9680.9610.9630.9790.9610.9690.9680.960.9730.9740.9730.9770.9750.9750.9760.9710.970.9750.9670.9220.9860.980.9720.9550.9830.9890.9860.9720.9710.980.9740.9750.9520.9640.970.9740.9710.9720.9760.9760.9670.9740.970.9740.9670.9750.9840.9570.940.9760.880.9640.9670.9680.9690.9690.9570.9760.9580.9670.9740.9770.9840.9820.9720.9720.9750.9750.9640.9470.9620.9730.9640.9730.9720.9810.970.9680.9710.9720.9840.9840.970.970.9760.9740.9760.9610.9750.9670.9710.9590.9720.9780.9690.9620.9730.92410.9880.9730.9730.9680.9780.9580.9690.9680.9670.9550.9670.9560.980.9750.970.9790.9740.9790.9730.9730.970.980.9670.9540.9610.9750.9770.9670.9780.9010.9720.9620.9710.9710.9760.9580.9640.946 0.880.97
    Liver344F123121214.26HFBXD63H14160.9820.9250.9260.980.9670.9770.9790.9770.8920.9750.9630.9830.9670.9760.9670.9750.9770.9670.980.9780.9780.9830.9790.9810.9810.9730.9740.9820.980.9790.9830.9790.9350.980.9860.9760.9440.990.9910.9960.9840.9790.9820.9810.9810.9460.9670.9740.9820.9760.9830.970.9780.9680.9810.9790.9780.9790.9830.9840.9630.9510.9840.8890.9730.9720.9730.980.9680.9510.9790.9490.9790.9790.9820.9840.9780.980.9830.9850.9810.9760.9590.9740.9820.9680.980.9810.9820.9830.980.9810.9810.990.9890.9780.9820.9790.9770.9810.9740.9860.9680.9740.970.9820.9830.9840.9760.9820.9360.98810.9760.9740.9730.9850.9710.9820.9750.9760.9630.9780.9610.9850.9850.9820.9770.9820.9840.9860.9820.9820.9860.9730.9680.9750.9780.9790.9790.9840.9170.9810.9750.9820.9830.9830.9490.9720.943 0.8890.97
    Liver752F135102616.17HFBXD63H20910.9640.9430.9420.9690.9710.9750.9690.9720.9220.9650.9660.970.9640.960.9720.9680.9690.9670.970.9680.9710.9660.9680.9680.9660.9720.9720.9710.9720.970.970.9690.9470.970.9660.9770.9490.9750.9760.9730.970.970.9630.9720.9730.9610.9650.9730.9690.970.9710.9630.9710.970.970.970.9690.9680.9690.9720.9630.950.9670.9050.9580.9610.9710.9660.9640.9460.9730.9450.9720.9690.9750.9720.970.9680.9740.9730.9720.9670.9660.9660.9710.9650.9660.9680.9730.970.9660.9710.9740.9760.9750.970.9690.9660.9730.9660.9670.9730.9710.970.9740.9680.9660.9660.9550.9740.9470.9730.97610.9660.9710.9640.9670.9680.9690.9670.970.9680.9690.9740.9720.9710.9710.9710.9740.9710.9740.9690.9670.9620.9710.9630.9680.9730.9680.970.9360.9680.9670.9730.9710.9760.9450.9610.959 0.9050.97
    Liver230F265051012.01HFBXD65H04580.9860.9270.9290.9810.9870.9790.9880.9620.8890.9830.9670.9820.9770.9820.9740.9750.9670.9620.9760.9750.9710.9840.9890.9880.9810.9730.9740.9730.9810.9830.9820.9830.9410.9760.9780.9750.9440.9820.9780.9760.9810.9790.9780.9850.980.9530.9820.9770.9820.9830.980.9670.9760.9790.9850.9830.9760.970.980.9770.980.9610.9820.8950.9780.980.9760.9790.970.9490.9810.9530.980.9880.9820.9770.9710.9880.9830.9850.9830.9820.9730.9750.9830.9620.9840.9850.970.9810.9720.9770.9770.9740.9730.9880.9770.9740.9810.9770.9780.980.9760.9830.9780.9810.9710.9780.9780.980.9520.9730.9740.96610.9760.9860.9810.9790.9850.9830.9730.9830.9710.9870.9840.980.9710.9750.9840.9770.980.9770.9750.9880.9730.9790.9910.9850.9820.9850.9230.9810.9780.9840.9840.9810.9530.9690.949 0.8890.97
    Liver541F212121615.06HFBXD65H17840.9720.9550.9560.9750.9720.9770.970.9680.9250.9750.970.9760.9740.9730.9750.9690.9770.9730.9820.9750.9640.9720.9740.9760.9780.9790.9790.9770.980.970.9730.970.9580.9710.9740.9830.9520.9720.9750.9730.9810.9770.9740.9780.9780.9590.9640.9730.9710.9710.9760.9680.9820.9720.9740.970.980.9650.9780.9740.9650.9670.9790.9170.9710.97110.9760.9750.9590.9780.9570.9770.970.9720.9740.9760.9730.9830.9820.970.9760.9690.9750.980.9850.9760.9760.9770.9690.9730.9830.9840.9760.9760.9810.9810.9760.9870.9780.9780.9770.9840.9750.9760.970.9730.9760.9720.9810.9520.9680.9730.9710.97610.9750.9830.9750.9780.9740.9710.9710.980.9790.9760.9720.9780.9730.980.9720.9810.9810.9660.970.9750.9740.9730.9870.9740.9740.9410.9730.9750.9780.9740.9680.9570.9790.963 0.9170.97
    Liver174F315102414.18HFBXD65bH17130.9870.920.9220.9820.9740.9780.9850.9640.880.980.9680.9850.9740.980.9640.9780.970.9620.9810.9770.9740.9860.9840.9840.9770.9690.970.9750.980.9810.9870.980.9380.9790.9840.9730.9310.9860.9840.9870.9860.9820.9870.9870.9780.940.9730.9730.9870.9770.9820.9630.9720.970.9860.9810.9730.9770.9840.980.9710.9590.9850.8890.9810.980.9750.9790.9620.9410.9750.9460.9810.9850.9820.980.9690.9880.9850.9890.9790.9810.9670.9780.9810.9640.9810.9850.9730.9820.9790.9810.980.980.980.9830.9820.9710.9790.9750.9780.9840.9650.9770.9750.9860.9780.9870.9840.980.9440.9780.9850.9640.9860.97510.9780.9810.9810.9780.9650.9790.9610.9870.9860.9830.9690.9820.9840.9840.980.9820.9840.9830.970.9820.9870.9830.9870.9890.9190.9850.9830.9840.9880.9830.9460.9740.933 0.880.97
    Liver527F321121615.11HFBXD65bH17900.9840.9350.9380.9830.980.9840.9810.950.8950.9810.9780.9760.9790.9810.9730.9750.9620.9570.9840.9790.9730.9810.980.9820.970.9660.9660.9630.9840.980.9780.9790.9650.9650.970.9720.9230.9760.9680.9730.9830.9840.9740.9840.9740.9390.9780.9790.9760.9740.980.9470.9680.9780.9780.980.9720.9720.980.9730.9780.980.9720.920.9780.9780.9830.980.9590.9310.9740.9260.9850.9810.970.9730.9610.9860.9850.9850.9790.9890.9840.9810.9810.9690.980.9830.9640.9770.9790.9840.9820.9720.9720.9850.9830.9620.9810.9670.9860.9770.9760.9730.9840.9780.9730.9820.980.9820.9640.9580.9710.9670.9810.9830.97810.980.9860.9810.9810.980.9760.9760.9810.9790.9590.9750.9760.9780.9820.9830.9690.9780.9840.9860.9780.980.9840.9760.9440.9820.9850.9840.9830.9730.9260.9680.935 0.8950.97
    Liver184F262042415.05HFBXD66H21240.9860.9230.9230.9850.9750.9850.9830.9660.8850.9830.9730.9840.9780.9810.9690.9810.9680.970.980.9810.9840.9880.9840.9870.980.9740.9740.9760.9840.9850.9820.9870.9460.9740.9820.9760.9320.9840.9760.9810.9880.9830.9780.9880.9890.9480.9730.9780.9810.9750.9870.9580.9770.9730.9810.9850.9770.9810.9850.9790.9690.9610.9820.8940.9810.9740.9750.9850.9650.9410.980.9380.9850.9830.9810.9790.9690.9840.9880.9880.9850.9840.9720.9850.990.9640.9860.9870.9740.9880.9830.9810.9810.9790.9780.9860.9830.9710.9740.9750.9830.9840.970.9760.980.9820.9810.9890.9780.980.9480.9690.9820.9680.9790.9750.9810.9810.990.980.9710.9820.9640.980.9870.9850.9690.9780.9830.9820.980.9830.9770.9770.9770.9810.980.9820.9790.9820.9280.9840.9790.9890.9850.9820.9380.9730.943 0.8850.98
    Liver367F122121214.04HFBXD66H15600.9860.9270.930.9830.9840.9830.9880.9580.8890.9870.9750.980.9820.9820.9710.9760.9660.9640.9810.9790.9750.9830.9870.9870.9770.9730.9740.9690.9840.9830.9820.9830.9530.9760.9770.9750.9340.9810.9730.9760.9840.9850.9780.9870.9850.9490.9840.9820.980.980.9820.9570.9750.980.9830.9830.9750.9750.9820.980.9790.9680.9770.9020.9810.980.9780.9820.9650.9420.9810.9380.9840.9880.9780.980.9690.9890.9860.9880.9850.9880.9780.9840.9870.9660.9860.9870.970.9820.9820.9810.9810.9740.9730.9880.9810.9670.9810.9720.9830.9790.9760.9770.9830.9820.9790.9860.9780.980.9580.9680.9750.9690.9850.9780.9810.9860.9910.9850.9770.9820.9720.9820.9840.9810.9680.9750.9810.9790.980.9810.9740.9830.9780.9830.9840.9860.9830.9820.9320.9870.9820.9860.9850.9790.9380.9720.944 0.8890.98
    Liver201F59101613.08HFBXD68H10710.9860.930.9310.9830.9820.9820.9880.9580.8940.9850.9720.9790.9790.9840.9710.9770.9710.9610.9840.9760.9730.9820.9830.9860.980.9690.9690.9690.9830.9810.980.9850.9490.9710.9750.9760.9380.9790.9750.9760.9810.9750.9750.980.9770.9460.9860.9840.9770.9770.9820.9570.9720.980.9830.9810.9750.9730.9820.9790.9770.9640.9810.9060.9760.9760.9740.9820.9680.9430.9780.940.9830.9880.9780.9790.9670.9860.9850.9840.980.9820.9760.980.9820.9650.9830.9840.9720.9810.9770.9850.9850.9730.9720.9860.9760.970.9810.9730.9810.9770.9770.9790.9810.980.9720.980.9780.9830.9580.9670.9760.9670.9830.9740.9780.9810.980.98510.9810.9880.9720.9820.9810.980.9680.9770.980.9780.9830.9760.9710.9850.9790.9810.9820.9790.980.9810.9350.9830.9780.9850.9850.9780.940.9680.947 0.8940.97
    Liver545F71082214.08HFBXD68H12900.9750.950.9510.9760.9820.9850.9730.9480.9190.9760.980.9710.9760.9740.9770.9770.9630.9510.9820.9760.9690.9730.9730.9750.9640.9670.9680.9590.9790.9780.9690.9770.9710.9610.9610.9750.9350.970.9630.9630.970.9720.9640.9750.9670.9490.9820.9860.9710.9730.9740.9480.9670.9830.9750.9780.9660.9640.9770.970.980.9760.9640.9370.9690.9710.9710.9730.9610.9290.9720.9280.9780.9730.9660.970.9630.9780.9790.9760.9750.9790.9850.9740.9720.9620.9720.9760.960.9730.970.9820.9820.9690.9680.9760.9740.9590.9780.9620.9820.9690.9750.9740.9830.9690.9640.970.9690.980.9690.9550.9630.970.9730.9710.9650.9810.9710.9770.98110.9760.9780.9730.9750.9760.9590.9720.9740.9690.980.9740.9620.9710.9840.980.9710.9730.9760.970.9590.9740.9770.9770.9760.9680.9280.9580.944 0.9190.97
    Liver210F58101613.09HFBXD69H10870.9850.9270.9280.9830.9790.9820.9850.9620.8920.9820.9710.980.9730.9820.9710.980.9680.9640.9790.9760.9780.9850.9810.9850.9810.9690.9690.9710.9790.9840.980.9880.9440.9670.9760.9740.9380.9790.9760.9780.980.9730.9720.9790.9780.9450.9770.9780.9820.9820.9820.9570.9720.9760.9810.9840.9750.9740.9820.9790.9740.9590.9790.8990.9720.9710.9710.980.9680.9450.9780.9410.9810.9850.9790.9790.9650.9840.9840.9840.9820.9830.9770.9780.9830.9610.9810.9830.9720.9850.9770.980.980.9760.9750.9840.9760.9740.9780.9770.9810.980.9750.9770.9780.980.970.980.9770.9840.9520.9670.9780.9680.9830.9710.9790.980.9820.9820.9880.97610.9750.9830.9840.9830.9670.9780.9810.980.9840.9760.9730.980.9780.980.9810.9760.9810.9810.9310.9790.9780.9850.9870.9810.9410.9680.947 0.8920.97
    Liver528F109121214.23HFBXD69H13280.9650.9570.9570.9660.9750.9730.9660.9550.9260.970.9650.9680.9670.9650.9770.9660.9620.9590.9690.9660.9590.9650.9690.9690.9670.9690.9690.9630.9720.970.9640.9680.960.9590.9570.9710.9490.9630.9630.960.9680.9640.9570.9660.9660.9590.9670.9710.9680.9760.9670.9580.9710.9750.9690.970.9690.9540.9680.9670.9720.9620.9640.9260.9580.9630.980.9660.9680.9490.9720.9450.9680.9660.9630.9670.9630.9690.9730.9710.9690.9720.9720.9650.970.9720.9640.9670.9630.9670.9620.9710.9720.9660.9660.9720.9690.9670.9820.9690.9730.9690.9790.970.9720.9620.9580.9620.960.9750.9580.9560.9610.9690.9710.980.9610.9760.9640.9720.9720.9780.97510.9710.9680.9690.9660.9660.9720.960.9750.9690.9570.9670.9720.9680.9690.9720.9680.9680.9470.9660.9680.9720.9680.9630.9450.9630.958 0.9260.97
    Liver239F266051012.08HFBXD70H01880.9860.9360.9380.9840.9820.9810.9850.9740.9010.9790.9710.9860.9770.9810.9730.9780.9770.9680.9830.9810.9760.9850.9870.9870.9840.9780.9790.9820.9840.9830.9850.9820.9460.9790.9850.9830.9510.9870.9880.9860.9810.9790.980.9840.9840.9550.9770.980.9860.9840.9880.9780.9830.9780.9890.9830.9820.9730.9850.9840.9760.960.9870.8980.9770.9780.9790.9830.9720.9540.9850.9540.9820.9850.9850.9840.980.9850.9880.9890.9820.9810.970.9760.9830.970.9840.9870.9790.980.9770.9840.9850.9830.9830.9860.9830.980.9840.9830.980.9850.9770.9840.9790.9830.9780.9810.9810.9850.9520.980.9850.9740.9870.9790.9870.9760.980.9820.9820.9730.9830.97110.9920.9850.980.9830.990.9850.9850.9830.980.9830.9760.980.9870.9870.9860.990.9290.9850.9820.9850.9870.9850.9540.9760.952 0.8980.98
    Liver578F294121615.14HFBXD70H17280.9890.9290.930.9880.980.9870.9850.9690.8920.9810.9740.9890.9820.9850.9730.9850.9730.9690.9860.9860.9840.990.9890.990.9840.9760.9760.9780.9860.9890.9880.9870.9490.9760.9860.9790.9380.9880.9850.9850.9850.9830.980.9870.9860.950.9760.9810.9870.980.9940.9690.9810.9780.9890.9890.9780.9820.990.9820.9770.9630.9860.90.9830.980.9760.9880.970.9430.9830.9450.9860.9850.9880.9820.9760.9870.9920.9920.9820.9840.9730.9810.9850.9680.9860.9910.9790.9850.9830.9870.9870.9830.9820.9880.9840.9770.980.980.9860.9840.9710.980.9830.9870.980.9860.9840.9850.9530.9750.9850.9720.9840.9760.9860.9810.9870.9840.9810.9750.9840.9680.99210.990.9730.9850.990.9880.9850.9840.9830.9810.9810.9830.9840.9860.9880.9890.9330.9850.9840.9880.9910.9890.9450.9740.945 0.8920.98
    Liver206F224042015.18HFBXD73H20710.9880.930.9310.9870.9790.9890.9820.9650.8920.980.9750.9870.980.9820.9750.9870.970.9640.9840.9850.9860.9890.9850.9870.9780.9710.9710.9760.9850.9910.9850.9870.9510.9710.980.9760.9340.9850.980.9830.9850.9810.9770.9850.9820.9480.9750.9790.9870.980.990.9610.9790.980.9910.9910.9750.9830.990.9790.980.9650.9820.9030.9820.9790.9720.9850.9650.9350.9770.9370.9860.9820.9830.9790.9690.9860.9880.9880.9820.9840.9750.9820.9820.9640.9820.9890.9740.9870.9820.9840.9840.9820.9810.9840.9830.9730.9780.9760.9860.9850.9690.9790.9830.9860.9770.9840.9830.9840.9510.970.9820.9710.980.9720.9830.9790.9850.9810.980.9760.9830.9690.9850.9910.9720.9890.990.9860.9840.9830.9820.980.9820.9830.9830.9810.9860.9880.9360.9840.980.9890.9880.9870.9370.9690.94 0.8920.98
    Liver361F196121214.11HFBXD73H14470.9680.9450.9450.970.9690.970.9680.9820.9260.9670.9580.9750.9630.9660.970.9630.9820.970.9710.970.9580.9690.9710.9730.980.9860.9860.9840.9760.970.9690.9680.9320.9780.9790.9850.9750.9750.9830.9760.9710.9680.9730.9720.9780.9670.9610.9680.9720.9770.9710.9870.9920.9720.9760.970.9840.9610.9760.980.9560.9440.9770.8910.9620.9630.9780.970.9790.9740.9820.970.9670.9680.9730.980.9870.9680.9730.9730.9710.9650.9540.9630.9780.9710.9740.9710.980.9690.9670.9730.9760.980.980.9720.9730.9860.9770.9850.9680.9760.9780.9740.9640.9650.9740.9690.960.9770.9280.9790.9770.9710.9710.9780.9690.9590.9690.9680.9680.9590.9670.9660.980.9730.97210.9760.9840.9710.9770.9730.970.9650.9620.9620.9690.9830.9640.9740.9170.9690.960.970.9660.9670.970.9730.97 0.8910.97
    Liver237F97051112.14HFBXD73bH01830.9820.9350.9360.9830.9740.9840.9760.970.9040.9750.9710.9820.9740.9780.9710.9810.9780.9640.9830.9830.9770.9830.9790.980.9760.9710.9710.9750.9820.9850.9820.9820.9470.9740.9820.9790.9420.980.9830.9830.980.9790.9790.9780.9760.9480.9680.9740.9810.9750.9840.9640.9790.9780.990.9850.9740.9810.9880.9790.9730.9630.9790.9030.9760.9760.9730.9790.9640.9390.9740.9420.980.9760.980.9790.9750.9810.9840.9850.9740.9790.9690.9770.9760.9690.9750.9830.9780.9810.9830.9840.9840.9860.9860.9780.9820.9740.9780.9760.9820.9790.9710.9770.9770.9820.980.9780.9790.9850.9410.9740.9820.9710.9750.9730.9820.9750.9780.9750.9770.9720.9780.9660.9830.9850.9890.97610.9880.9870.9850.9820.9810.9750.9780.9790.9780.9810.9820.9840.9320.9790.9750.9820.9840.9820.9420.9710.943 0.9030.97
    Liver474F256050115.12HFBXD73bH15450.9860.9390.940.9850.9820.9850.9820.9740.9060.9790.9720.9880.9790.9830.9760.9820.9780.9690.9840.9840.9770.9860.9860.9880.9850.980.980.9830.9860.990.9840.9840.9490.9780.9850.9840.9510.9860.9870.9850.9830.9790.980.9850.9850.9580.9740.980.9870.9840.9880.9740.9880.9830.9920.990.9820.9760.990.9840.9770.9620.9870.9040.980.9790.980.9850.9740.9520.9840.9540.9820.9820.9850.9840.9820.9850.9890.9890.9820.9810.9710.9770.9840.9710.9840.9880.980.9820.9790.9850.9860.9850.9850.9850.9850.9810.9830.9830.9830.9850.9770.9820.980.9830.980.9820.9820.9860.950.9790.9840.9740.9840.980.9840.9760.9830.9810.980.9740.9810.9720.990.990.990.9840.98810.9850.9860.9850.9820.9810.9780.980.9850.9880.9840.9890.9330.9830.9790.9860.9850.9840.9540.9750.953 0.9040.98
    Liver511F319121615.19HFBXD77H18660.9860.9220.9240.9860.9730.9830.9810.9680.8890.9770.9710.9820.9770.9830.9670.9780.9750.9620.9850.9840.980.9850.9830.9830.9780.9690.9690.9740.9850.9820.9870.9820.9440.9750.9880.9760.9320.9840.9840.9870.9830.9840.9820.9830.9810.9410.970.9770.9820.9750.9860.9620.9750.9730.9870.9820.9790.9810.9870.980.9720.960.9810.8950.980.9810.9720.9850.9630.9370.9760.9360.9840.9810.9840.980.9730.9840.9880.9890.9770.9820.9690.9790.9790.9670.9830.9880.9790.980.9860.9860.9860.9840.9830.9820.9820.9710.9760.9750.9820.980.9670.9760.980.9870.9840.9860.9860.9830.9460.9730.9860.9710.9770.9720.9840.9780.9820.9790.9780.9690.980.960.9850.9880.9860.9710.9870.98510.9830.9820.9830.9770.9770.9810.980.9810.9850.9840.9280.9830.9810.9820.9850.9850.9360.9710.937 0.8890.98
    Liver571F24061913.18HFBXD79H05830.9840.9480.9490.9860.980.9850.980.9720.9160.9810.9770.9840.9760.9820.9770.9810.9780.9670.9860.9830.9770.9840.9790.9830.9810.9770.9780.9780.9860.9830.9810.9830.9570.9730.980.9860.9550.9810.9820.9830.9820.9780.9780.980.9790.9560.9750.980.980.9790.9840.9670.9810.980.9830.9830.9820.9750.9870.9830.9750.9690.9820.9150.9740.9750.9810.9820.9750.9530.9810.9490.9840.980.9770.9830.9760.9840.9880.9870.9810.9840.9780.9780.9830.9730.9810.9840.9780.9830.9790.9870.9880.9840.9840.9830.9840.980.9850.9820.9850.9830.9830.9820.9810.9810.9790.9810.98110.9560.9730.9820.9740.980.9810.980.9820.980.980.9830.980.9840.9750.9850.9850.9840.9770.9850.9860.98310.9840.9770.9770.9820.9830.9780.9830.9820.9840.940.9810.9810.9860.9860.9780.9490.9740.955 0.9150.98
    Liver241F2051012.14HFBXD87H02430.9840.9420.9450.9840.9760.9830.9770.9650.9040.9770.9790.9830.9750.9780.9740.9790.9730.9650.9850.9840.9740.9860.9820.9830.9760.9740.9750.9780.9850.980.9790.9780.9590.9720.9790.980.9370.9830.9810.9850.9840.9830.9790.9850.9780.9440.9720.9760.9830.9780.9840.960.980.9760.9830.980.9780.9750.9840.9790.9740.9730.9810.9110.9770.9750.9810.9820.9630.940.980.9390.9840.9770.9730.9790.9750.9840.9870.9870.9810.9850.9750.980.9840.9720.980.9820.9720.9810.9810.9860.9850.9840.9840.98610.9710.980.9750.9850.9860.9760.9750.9810.9780.9820.9860.9810.9840.950.970.9820.9690.9770.9810.9820.9830.9830.9810.9760.9740.9760.9690.9830.9840.9830.9730.9820.9850.9820.98410.9780.9760.9810.9870.9770.9850.9830.9820.9380.9860.9830.9850.9840.9740.9390.9770.941 0.9040.98
    Liver512F326121615.21HFBXD87H19450.9820.9150.9170.9760.9680.9760.9770.9650.8790.9740.9590.9840.9670.9750.9680.9790.9740.9630.9790.9760.9710.9830.980.980.9770.9680.9690.9750.9760.980.9820.9730.9330.9780.9840.9710.9350.9830.9830.9870.9810.980.9820.980.9750.9410.9690.970.9850.9740.9810.9650.9740.9690.9820.980.9750.9820.9850.980.9730.9570.9780.8830.9790.9790.9660.9770.9660.940.9750.9450.9760.9770.9790.980.9730.9810.9790.9830.9750.9740.9610.9710.9770.9640.9780.980.9750.9820.9830.9790.9790.9820.9820.9760.9780.9710.9740.9750.9720.9810.9610.9690.9660.9820.9820.9810.9770.9770.9320.980.9860.9670.9750.9660.9840.9690.9770.9740.9710.9620.9730.9570.980.9830.9820.970.9810.9820.9830.9770.97810.9740.9670.9740.980.9790.9770.9840.9110.980.9710.9760.980.9810.9450.9720.933 0.8790.97
    Liver243F267051112.01HFBXD89H01760.9860.9210.9230.9820.9830.9780.9870.9540.880.9810.9660.9790.9770.9810.9670.9730.9650.9560.9750.9740.9690.9830.9860.9850.9760.9660.9670.9680.980.9810.9810.980.9410.9720.9740.970.9320.9810.9750.9750.9790.9750.9760.9810.9750.9440.9820.9750.9820.9780.980.960.9710.9780.9860.9810.9730.970.9780.9760.980.9660.980.8960.980.9810.970.980.9620.9380.9760.9410.980.9870.9780.9760.9650.9880.9820.9820.980.9810.9710.9750.9790.9580.9810.9830.9650.9790.9730.9760.9750.970.970.9850.9760.9650.9770.9690.9780.9760.9690.9770.9760.9810.970.9790.980.9770.9530.9670.9730.9620.9880.970.9830.9780.9770.9830.9850.9710.980.9670.9830.9810.980.9650.9750.9810.9770.9770.9760.97410.9770.980.9880.9820.9820.9860.9260.9840.9760.9830.9820.9780.9410.9670.939 0.880.97
    Liver539F282101014.04HFBXD89H13210.980.9460.9480.9840.9810.9880.9750.9550.9180.9770.9830.9750.9780.9760.9750.9820.9690.9580.9820.980.9760.9790.9760.9790.9680.970.970.9660.9830.980.9760.980.9660.960.9690.9780.9280.9730.9680.9690.9780.9760.9680.9790.9730.9470.9740.9770.9750.9720.9820.9480.9710.9780.9780.980.9720.9710.9810.9710.9770.980.9720.9270.9770.9750.9750.9790.9620.9290.9720.9270.9850.9750.9710.9710.9640.980.9850.9820.9740.9830.9850.980.9770.9630.9750.980.9650.9760.9760.9830.9830.9730.9720.9810.9810.9610.9760.9650.9890.9750.9750.9740.9860.9760.9680.9770.9760.9820.9580.9540.9680.9710.9730.9750.970.9840.9770.9780.9790.9840.9780.9720.9760.9810.9820.9620.9780.9780.9770.9820.9810.9670.97710.9830.9730.9790.980.9760.960.9770.980.9820.9810.9730.9270.9660.944 0.9180.97
    Liver548F312082214.09HFBXD9H10090.9870.9320.9360.9850.9790.9840.9810.9490.8890.980.9790.980.9790.9820.9680.980.9640.9560.9870.9820.9760.9850.9820.9830.970.9650.9660.9660.9850.9820.980.980.9610.9660.9740.9730.9220.9810.9730.9780.980.980.9770.9840.9720.9360.9790.9790.9830.9770.9810.9490.9690.9780.9830.9820.970.9720.9830.9750.9790.9760.980.9180.9790.9790.9740.9810.9550.9260.9730.9270.9850.9810.9720.9750.9630.9880.9870.9870.9790.9870.9810.9820.9790.9640.980.9850.9620.980.9820.9870.9850.9750.9740.9840.9870.9610.9790.9680.9860.9790.970.9740.9820.9810.9750.9860.9870.9830.9610.9610.9750.9630.9790.9740.9820.9860.9810.9830.9810.980.980.9680.980.9830.9830.9620.9790.980.9810.9830.9870.9740.980.98310.9790.9790.9870.980.9410.9870.9870.9840.9850.9750.9270.9710.93 0.8890.97
    Liver218F297101613.19HFBXD90H10930.9850.9220.9240.980.9850.9790.9880.9610.8840.9810.9650.9820.9770.9810.9730.9760.9670.9620.9770.9750.9720.9830.9880.9860.9790.970.970.9720.980.9830.9850.9810.940.9770.9780.9720.9370.9830.9790.9790.980.9780.9780.9830.9790.950.980.9760.9840.9810.980.9650.9730.9770.9870.9830.9740.9730.9810.9790.9810.960.9810.8920.9820.9850.9730.980.9660.9430.9770.9480.980.9880.9840.9790.9690.9880.9830.9870.9830.9820.9710.9760.980.9630.9810.9860.9710.9810.9750.9780.9780.9750.9740.9860.9770.970.9810.9740.9770.9810.970.9820.9780.9840.9720.980.980.9780.9510.9750.9780.9680.9910.9730.9870.9780.980.9840.9820.9710.9810.9690.9870.9840.9830.9690.9780.9850.980.9780.9770.980.9880.9730.97910.9870.9850.9880.9230.9830.9790.9830.9850.9850.9480.970.944 0.8840.97
    Liver570F274062013.03HFBXD90H07360.9830.9410.9430.9830.9830.9830.9820.9730.910.9820.9720.9840.9810.9810.9770.9760.9810.9740.9840.9820.970.9820.9870.9860.9830.9840.9840.9810.9860.9810.9830.9780.9510.9820.9840.9860.9530.9830.9830.9790.9830.9840.9820.9860.9850.9610.9770.9780.9820.9810.9840.9750.9870.9810.9860.9810.9840.9740.9850.9830.9760.9680.9830.9020.9840.9860.9870.9820.9760.9570.9840.9590.9830.9820.9830.9830.9840.9850.9870.9880.980.9810.9710.980.9850.9760.9850.9870.980.9770.980.9850.9860.980.980.9880.9850.9780.9860.980.9820.9820.980.9810.9810.9810.9810.9820.9780.9830.950.9770.9790.9730.9850.9870.9830.980.9820.9860.9790.9730.9760.9720.9870.9860.9810.9830.9810.9880.9810.9830.9850.9790.9820.9790.9790.98710.9820.9860.9310.9830.9790.9830.9830.980.9590.9810.96 0.9020.98
    Liver562F325062013.19HFBXD91H08810.9880.9280.9310.9860.9810.9840.9840.9550.8880.9790.9770.9830.9820.9830.970.980.9640.9540.9840.9830.980.9850.9850.9840.9730.9670.9680.9690.9840.9850.9880.9820.9570.970.9780.9730.9250.9840.9780.9820.9810.9820.9780.9850.9760.940.9780.9780.9860.980.9840.9550.9710.9780.9880.9850.970.9750.9840.9760.980.970.980.9070.9810.9830.9740.9820.9580.9290.9740.9330.9870.9840.980.9760.9650.990.9890.990.9790.9860.9780.9810.9780.9640.9810.9880.9680.9780.9790.9840.9820.9780.9770.9830.9830.9660.9820.9720.9860.9810.9660.9780.9850.9880.9750.9860.9880.9820.9630.9670.9790.9680.9820.9740.9870.9840.9790.9830.980.9760.9810.9680.9860.9880.9860.9640.9820.9840.9850.9820.9830.9770.9820.980.9870.9850.98210.9880.9380.9870.9910.9870.990.9840.9330.9670.931 0.8880.98
    Liver213F288101613.21HFBXD95H12750.9880.9290.9310.9840.980.9820.9850.970.8920.980.9680.9880.9770.9820.9720.9810.9730.9650.980.9810.9790.9880.9870.9860.9810.9750.9750.980.9830.9850.9870.9830.9430.980.9850.9770.9440.9870.9850.9850.9840.9790.9810.9840.9820.9540.9760.9770.9880.9820.9860.970.9780.9770.9890.9850.9790.9780.9860.9820.9770.9620.9860.8970.9820.980.9740.9860.970.9460.9810.9510.9830.9850.9850.9820.9740.9870.9870.9880.9820.9810.9690.9770.9820.9650.9830.9880.9770.9840.9770.9810.9810.9830.9820.9840.9820.9760.9810.980.9810.9860.9710.9810.9780.9860.9790.9840.9840.9840.9480.9780.9840.970.9850.9740.9890.9760.9820.9820.9810.970.9810.9680.990.9890.9880.9740.9840.9890.9840.9840.9820.9840.9860.9760.980.9880.9860.98810.9290.9850.980.9870.9880.9870.9510.9720.944 0.8920.98
    Liver550F236102414.20HFBXD95H12730.9250.950.950.9350.9410.9510.9210.9080.9390.9320.9550.9280.9440.9320.9420.9420.9210.9140.940.9380.9320.9280.9260.9290.9190.9280.9280.920.9410.9330.9240.9340.9640.9090.9130.9380.8930.9220.9160.9170.9320.9270.9160.9290.9240.9170.9290.9420.9240.9240.9340.8990.9270.9420.930.9330.9240.9190.9340.9180.9410.9470.9230.9520.930.9290.9410.9370.9250.8860.9250.890.9410.9210.9220.9180.9160.9290.9420.9350.9260.940.960.9380.9280.9330.9240.9310.9220.9270.9280.9420.9420.9260.9250.9360.9380.9150.9390.9170.9480.9280.9390.9330.9520.9230.920.9290.9320.940.9540.9010.9170.9360.9230.9410.9190.9440.9280.9320.9350.9590.9310.9470.9290.9330.9360.9170.9320.9330.9280.940.9380.9110.9260.960.9410.9230.9310.9380.92910.9260.9450.9390.9330.9230.890.9180.913 0.8860.93
    Liver182F305050914.05HFBXD99H13550.990.9220.9240.9850.980.9810.9880.9580.880.9820.9730.9820.9780.9810.9680.9760.9670.9570.9830.9820.9750.9860.9870.9860.9740.970.9710.9720.9850.9840.9850.980.9480.9770.980.9740.9310.9880.9790.9840.9820.9850.9810.9880.9790.940.9850.9820.9870.9830.9840.960.9740.9790.9860.9840.9740.9760.9830.9830.9780.9680.9790.8990.9790.9810.9730.9830.9580.9360.9830.9320.9860.9880.9790.9830.970.9910.9850.9880.9860.9870.9720.9820.9830.9610.9850.9880.9670.9820.9820.9830.9820.9790.9790.9830.9860.9670.980.9720.9810.9830.9680.9750.980.9850.9810.9880.9830.9810.9530.9720.9810.9680.9810.9730.9850.9820.9840.9870.9830.9740.9790.9660.9850.9850.9840.9690.9790.9830.9830.9810.9860.980.9840.9770.9870.9830.9830.9870.9850.92610.9840.9840.9860.9810.9320.970.933 0.880.98
    Liver544F309062013.09HFC57BL/6JH05140.9840.9330.9360.9830.9780.9820.9810.9490.8940.9790.9820.9770.980.980.9670.9770.9610.9520.9840.9790.9750.9810.980.980.9680.9670.9680.9640.9830.980.9830.9770.9640.9650.9720.9720.9190.9810.9720.9780.9780.9790.9750.9840.9720.9340.9760.9790.980.9740.980.9470.9680.9750.9810.980.9670.9690.980.970.9750.9710.9760.9150.9770.9780.9750.9790.9550.9270.9710.930.9890.9810.9740.970.9590.9860.9880.9890.9780.9860.9810.9830.9770.9630.9790.9840.9640.9740.9760.9840.9820.9730.9720.9820.9830.9590.9790.9650.9850.9790.9680.9750.9850.9830.9730.9850.9850.9810.9690.9620.9750.9670.9780.9750.9830.9850.9790.9820.9780.9770.9780.9680.9820.9840.980.960.9750.9790.9810.9810.9830.9710.9760.980.9870.9790.9790.9910.980.9450.98410.9860.9860.9760.930.9650.926 0.8940.97
    Liver182F235102414.06HFC57BL/6JH16810.9880.9340.9350.9890.9820.9880.9870.9660.8950.9850.9770.9870.9840.9850.9760.9830.9680.9650.9820.9840.9850.9890.9870.9880.9810.9760.9750.9780.9870.9870.9860.9890.9530.9740.980.9790.9360.9860.980.9820.9890.9820.9780.9880.9840.9510.9780.9810.9840.9790.9890.9610.9780.9780.9860.9870.9780.9810.9860.9780.9760.9660.9860.9060.9820.9770.9780.9860.9690.9440.9810.9440.9930.9870.9830.9780.9660.9880.9910.9890.9860.9860.9770.9850.9880.9660.9860.9880.9760.9860.9770.9830.9830.9810.980.9880.9850.9730.9810.9760.9880.9870.9760.9820.9860.9860.9770.9880.9820.9860.9570.9710.9820.9730.9840.9780.9840.9840.9890.9860.9850.9770.9850.9720.9850.9880.9890.970.9820.9860.9820.9860.9850.9760.9830.9820.9840.9830.9830.9870.9870.9390.9840.98610.9890.9850.9440.9690.943 0.8950.98
    Liver214F301101713.20HFD2B6F1H11500.990.9270.9280.9880.980.9850.9890.9630.8890.9830.9750.9860.9790.9830.9730.9840.9690.9660.9840.9830.9850.9880.9870.9870.9790.9710.9710.9730.9840.9870.9880.9870.950.9720.9810.9760.9320.9860.9810.9840.9840.9820.9770.9860.9810.9450.9790.9790.9840.980.9880.9590.9730.9750.9870.9870.9740.9830.9860.9790.9780.9670.9840.9010.980.9790.9740.9840.9640.9380.9780.9410.9880.9890.9870.9790.9670.9910.990.9920.9820.9860.9770.9830.9830.9660.9830.990.9740.9860.9820.9840.9840.9810.980.9870.9840.9730.9820.9770.9840.9850.9690.980.9840.9880.9760.9860.9840.9860.9550.9710.9830.9710.9840.9740.9880.9830.9850.9850.9850.9760.9870.9680.9870.9910.9880.9660.9840.9850.9850.9860.9840.980.9820.9810.9850.9850.9830.990.9880.9330.9860.9860.98910.9890.9410.9720.941 0.8890.98
    Liver540F291062013.13HFD2B6F1H06420.9840.9170.9170.9820.9760.9830.9860.970.8820.9760.9630.9850.9750.9780.970.980.9670.9650.9770.9780.9860.9850.9870.9830.9780.970.9690.9740.9790.9850.9890.9850.9350.9750.9820.9710.9350.9860.9830.9810.980.9790.9740.9830.9850.9530.9730.9760.9830.9780.9860.9650.9710.9710.9850.9850.9720.9840.9830.9770.9740.9510.9810.8880.9760.9760.9680.9810.9630.9380.9760.9430.9830.9860.9940.9770.9680.9840.9840.9870.980.9780.9650.9760.9790.9610.980.9870.9780.9830.9770.9780.9790.980.9780.9820.9740.9730.9760.9750.9760.9810.9620.9790.980.9880.9720.9790.9750.9780.9440.9760.9830.9760.9810.9680.9830.9730.9820.9790.9780.9680.9810.9630.9850.9890.9870.9670.9820.9840.9850.9780.9740.9810.9780.9730.9750.9850.980.9840.9870.9230.9810.9760.9850.98910.9430.9640.945 0.8820.97
    Liver212F16101713.11HFDBA/2JH11440.9350.9310.9290.9350.9420.940.9380.9640.9220.9430.9220.9540.9340.9380.9520.9370.9580.9620.9390.9350.9280.9410.9450.9460.9640.9670.9670.9690.9430.9380.9410.940.90.9530.9540.9610.9760.9440.960.9450.9460.9340.9440.9390.9540.960.9270.9350.9420.950.9410.9760.9670.9350.9430.9380.9610.9350.9450.9460.9320.9110.9590.8630.9350.9350.9570.940.9740.9760.95810.9360.9380.9520.9460.960.9350.9420.9440.940.930.9230.9310.950.9550.9450.9390.9620.9420.9320.9420.9470.9510.950.9480.9390.9730.9580.970.9310.950.9550.9530.930.9360.9390.9360.9310.9490.9030.9580.9490.9450.9530.9570.9460.9260.9380.9380.940.9280.9410.9450.9540.9450.9370.970.9420.9540.9360.9490.9390.9450.9410.9270.9270.9480.9590.9330.9510.890.9320.930.9440.9410.94310.9570.968 0.8630.94
    Liver544M181091914.07HFDBA/2JH11400.9690.9350.9370.9670.9610.9690.9660.9640.9030.9680.960.9770.9610.9660.9640.970.9730.990.9770.9680.960.9710.9680.9730.9770.9710.9720.9770.9710.9660.9660.9650.940.9650.9740.9770.9440.970.9750.9730.9770.9690.9690.9710.9720.9460.9580.9620.9720.9680.9720.9650.9770.9590.970.9660.9770.9690.9740.9730.9590.9570.9770.8880.9670.9630.9790.970.9690.9540.9740.9570.9660.9660.9680.9730.9740.9690.9760.9780.9650.9690.960.9680.9780.9760.9710.970.9690.9750.9780.9780.9790.9710.9710.9740.9770.9730.9750.9760.9690.9750.970.9670.9630.9630.970.9760.9690.9740.9350.9640.9720.9610.9690.9790.9740.9680.9730.9720.9680.9580.9680.9630.9760.9740.9690.9730.9710.9750.9710.9740.9770.9720.9670.9660.9710.970.9810.9670.9720.9180.970.9650.9690.9720.9640.95710.957 0.8880.97
    Liver549F190091914.05HFDBA/2JH11420.9320.9490.9460.9380.9480.9490.940.9650.9410.940.9320.9490.9380.9350.9570.9420.9590.9720.9440.9380.940.9380.9420.9450.960.9680.9670.9630.9480.940.9360.9470.9150.9440.9470.9670.9750.9380.9510.9370.9420.9350.9320.9390.9570.9730.9330.9420.9350.9520.9430.9690.9680.9430.9410.940.9630.9340.9450.9490.9340.9190.9520.8830.9290.9290.9630.9410.9710.9720.9590.9680.9350.940.9530.9490.9630.9340.9480.9460.9420.9350.9380.9360.9540.9580.9430.940.960.9460.9390.9470.9530.9490.9480.9510.9410.9710.960.9670.9410.9480.9660.9570.9430.9310.9340.9330.9240.9550.9130.9460.9430.9590.9490.9630.9330.9350.9430.9440.9470.9440.9470.9580.9520.9450.940.970.9430.9530.9370.9550.9410.9330.9390.9440.930.9440.960.9310.9440.9130.9330.9260.9430.9410.9450.9680.9571 0.8830.95
                                                                                                                                                                     
           Min0.8770.9140.9140.8940.9070.9130.8770.8790.8770.8940.9170.8970.8970.8870.9190.9020.8960.880.9050.9030.8850.8860.8840.8890.890.9030.9040.890.9070.8910.8830.8940.90.8840.8830.910.8750.8840.890.8880.8930.8880.8880.8870.8890.90.8830.9030.8840.90.8930.8770.9010.910.8920.8910.8980.8780.9010.8960.8940.9010.8930.8630.8820.8840.9170.8930.8990.8630.9010.8630.8940.8770.8890.8960.8950.8810.9010.8950.890.8920.9170.8920.8970.9120.8870.8860.8890.8870.8880.9080.9130.90.90.8960.9040.8880.9150.890.9050.8990.9160.9040.9070.8780.8910.8820.880.9150.8960.880.8890.9050.8890.9170.880.8950.8850.8890.8940.9190.8920.9260.8980.8920.8920.8910.9030.9040.8890.9150.9040.8790.880.9180.8890.8840.9020.8880.8920.8860.880.8940.8950.8890.8820.8630.8880.883 minaverage
           Average0.977560.934660.935720.9775066670.9739733330.9779466670.9754933330.9634866670.902620.975140.9681733330.977620.9724133330.9746733330.9698866670.9736866670.9696133330.9615933330.9764866670.9759066670.969640.977620.9769533330.9783666670.9748066670.9722066670.9725666670.9722333330.979080.976660.975760.975580.9466133330.97030.974760.975260.9413733330.976840.9752666670.97450.9769333330.9745333330.97290.9775333330.9754933330.94970.96980.9738266670.9757733330.9737466670.977960.9623266670.9751533330.97280.9774266670.976660.9740066670.9696733330.9788733330.9753133330.9688266670.9598666670.9756133330.903480.9724533330.9715933330.9731733330.976140.9668533330.9453066670.9759466670.944460.976980.9754933330.9745066670.9753133330.9703266670.97730.9797466670.9796733330.974760.9753866670.9675733330.97280.9771666670.964680.9765733330.977960.9706533330.9746866670.9725066670.9774666670.9779866670.9751666670.9745866670.9778333330.9760266670.9701933330.9760333330.9727466670.97610.9762933330.9709133330.9734866670.9741133330.9746866670.971980.9756466670.971860.977940.9465533330.9677266670.974220.9669933330.9749266670.9731733330.9744466670.973080.9753466670.9756333330.974480.9696666670.97390.966080.9781533330.978680.9768266670.9699866670.974680.978940.975160.977940.9760266670.9714266670.9723066670.9724666670.9737733330.974520.9784666670.9752333330.9771666670.9305066670.9753533330.97270.9781133330.97720.9738266670.944460.9674733330.946173333 0.902620.970757511
    diff --git a/general/datasets/UTHSC_BXD_Harv_Liv_0118/specifics.rtf b/general/datasets/UTHSC_BXD_Harv_Liv_0118/specifics.rtf deleted file mode 100644 index e492142..0000000 --- a/general/datasets/UTHSC_BXD_Harv_Liv_0118/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -RNA-Seq Log2 \ No newline at end of file diff --git a/general/datasets/UTHSC_BXD_Harv_Liv_0118/summary.rtf b/general/datasets/UTHSC_BXD_Harv_Liv_0118/summary.rtf deleted file mode 100644 index 153d98d..0000000 --- a/general/datasets/UTHSC_BXD_Harv_Liv_0118/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    In working progress...

    diff --git a/general/datasets/UTHSC_BXD_Harv_Liv_1019/cases.rtf b/general/datasets/UTHSC_BXD_Harv_Liv_1019/cases.rtf deleted file mode 100644 index 18fdd1d..0000000 --- a/general/datasets/UTHSC_BXD_Harv_Liv_1019/cases.rtf +++ /dev/null @@ -1,1371 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    CaseIDStrainDietSexAgeEarTag CurrentGN-SampleID
    062013.09C57BL/6JHFF544514H0514
    091914.09C57BL/6JCDF5371103H1103
    012615.26C57BL/6JCDM3611590H1590
    102414.06C57BL/6JHFF1821681H1681
    062013.12D2B6F1CDF545646H0646
    062013.13D2B6F1HFF540642H0642
    101713.20D2B6F1HFF2141150H1150
    101713.18D2B6F1CDF2101154H1154
    083016.07DBA/2JCDF7641818H1818
    091914.05DBA/2JHFF5491142H1142
    091914.07DBA/2JHFM5441140H1140
    101713.10DBA/2JCDF2121147H1147
    101713.11DBA/2JHFF2121144H1144
    121214.29B6D2F1CDF6401227H1227
    012615.07B6D2F1CDF5521569H1569
    102616.04B6D2F1HFF5472288H2288
    102616.05B6D2F1HFF5472290H2290
    101713.13B6D2F1CDF2161223H1223
    101713.15B6D2F1HFF2161302H1302
    082214.11BXD9CDF5481006H1006
    082214.09BXD9HFF5481009H1009
    102616.12BXD9CDF2452577H2577
    083016.08BXD24HFF6882259H2259
    012615.19BXD24CDF2051792H1792
    012615.08BXD29CDF7241044H1044
    111314.10BXD29HFF6301037H1037
    061913.04BXD29HFF577669H0669
    111314.11BXD29CDF5741040H1040
    061913.01BXD29CDF572742H0742
    121515.05BXD29HFF1822349H2349
    101014.02BXD32HFF5391137H1137
    083016.01BXD32CDF3862494H2494
    042015.22BXD32CDF2002034H2034
    042015.20BXD32HFF2002030H2030
    101513.05BXD34CDF554765H0765
    101014.05BXD34HFF5371052H1052
    101513.02BXD34CDF2011054H1054
    101513.04BXD34HFF1971056H1056
    010614.06BXD39CDF730673H0673
    102414.02BXD39CDF5501322H1322
    121214.22BXD39HFF3501474H1474
    121214.21BXD39HFF3501473H1473
    061913.06BXD40CDF578680H0680
    121214.13BXD40HFF3581593H1593
    111314.05BXD40HFF2911488H1488
    102414.08BXD40CDF1801691H1691
    102414.12BXD44HFF7151687H1687
    012615.15BXD44CDF3791505H1505
    012615.12BXD44HFF3791501H1501
    042015.07BXD44CDF2401822H1822
    042015.10BXD44HFF2401825H1825
    121515.12BXD45CDF5071826H1826
    121515.15BXD45HFF5031940H1940
    012615.11BXD45CDF3841762H1762
    042915.13BXD48HFF5951377H1377
    121515.18BXD48CDF5181835H1835
    042015.24BXD48HFF1892046H2046
    042015.27BXD48CDF1882054H2054
    062013.06BXD48aHFF543699H0699
    051112.05BXD48aCDF233209H0209
    051112.04BXD48aHFF233210H0210
    010614.07BXD53HFF713833H0833
    062013.16BXD53CDF571848H0848
    021213.14BXD60CDF530171H0171
    050912.08BXD60CDF235235H0235
    121515.23BXD61CDF5241841H1841
    121515.25BXD61HFF5241843H1843
    111414.02BXD61CDF1881770H1770
    111414.03BXD61HFF1881922H1922
    111414.04BXD61HFF1881722H1722
    082214.10BXD62HFF5481315H1315
    042915.19BXD62HFF4881434H1434
    121214.20BXD62CDF3531436H1436
    042015.05BXD62CDF2531847H1847
    102616.17BXD63HFF7522091H2091
    083016.03BXD63CDF7511872H1872
    121214.24BXD63CDF3441414H1414
    121214.26BXD63HFF3441416H1416
    090412.08BXD63CDF218818H0818
    111414.09BXD63HFF1861715H1715
    121615.09BXD65CDF5411787H1787
    121615.06BXD65HFF5411784H1784
    051012.01BXD65HFF230458H0458
    042015.13BXD65CDF2222098H2098
    121615.12BXD65bCDF5271793H1793
    121615.11BXD65bHFF5271790H1790
    111414.05BXD65bCDF1871766H1766
    102414.18BXD65bHFF1741713H1713
    121214.04BXD66HFF3671560H1560
    121214.19BXD66CDF3541558H1558
    042415.08BXD66CDF1842128H2128
    042415.05BXD66HFF1842124H2124
    082214.02BXD68CDF5451080H1080
    082214.08BXD68HFF5451290H1290
    101613.05BXD68CDF2011068H1068
    101613.08BXD68HFF2011071H1071
    061913.13BXD69CDF558591H0591
    121214.23BXD69HFF5281328H1328
    101613.09BXD69HFF2101087H1087
    042415.23BXD69CDF1572142H2142
    121615.14BXD70HFF5781728H1728
    121214.16BXD70CDF3571512H1512
    050115.06BXD70CDF2611855H1855
    051012.08BXD70HFF239188H0188
    121615.17BXD73CDF5391906H1906
    121214.10BXD73CDF3611451H1451
    121214.11BXD73HFF3611447H1447
    042015.18BXD73HFF2062071H2071
    050115.15BXD73bCDF4971466H1466
    050115.12BXD73bHFF4741545H1545
    051112.12BXD73bCDF238184H0184
    051112.14BXD73bHFF237183H0183
    121615.19BXD77HFF5111866H1866
    050115.17BXD77CDF4601398H1398
    061913.18BXD79HFF571583H0583
    050115.19BXD79CDF4681555H1555
    090412.10BXD79CDF217825H0825
    061913.19BXD87CDF581296H0296
    121615.21BXD87HFF5121945H1945
    051012.14BXD87HFF241243H0243
    090612.10BXD87CDF200550H0550
    101014.04BXD89HFF5391321H1321
    051112.01BXD89HFF243176H0176
    090612.14BXD89CDF193555H0555
    062013.03BXD90HFF570736H0736
    062013.02BXD90CDF549756H0756
    101613.19BXD90HFF2181093H1093
    102414.03BXD90CDF1881702H1702
    062013.17BXD91CDF562883H0883
    062013.19BXD91HFF562881H0881
    102414.20BXD95HFF5501273H1273
    101014.10BXD95CDF5361742H1742
    101613.21BXD95HFF2131275H1275
    012615.17BXD98CDF3841769H1769
    012615.16BXD98CDF3841524H1524
    111414.14BXD99CDF5351354H1354
    050914.05BXD99HFF1821355H1355
    111314.15BXD100CDF5671190H1190
    050914.04BXD100HFF5371187H1187
    051112.07BXD100CDF223247H0247
    051112.08BXD100CDF223248H0248
    042415.12BXD100HFF1762085H2085
    102616.20BXD101CDF7562114H2114
    042715.19BXD101HFF4931422H1422
    111414.20BXD101CDF3491425H1425
    051112.09BXD101CDF223468H0468
    042915.01BXD102CDF5011499H1499
    121214.07BXD102HFF3661498H1498
    053014.01BXD102CDF1831363H1363
    052814.04BXD102HFF1831361H1361
    diff --git a/general/datasets/UTHSC_BXD_Harv_Liv_1019/processing.rtf b/general/datasets/UTHSC_BXD_Harv_Liv_1019/processing.rtf deleted file mode 100644 index 4504c49..0000000 --- a/general/datasets/UTHSC_BXD_Harv_Liv_1019/processing.rtf +++ /dev/null @@ -1,26883 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    150 UTHSC Aging Liver RNA Selected for Novogene Submission                                                                                                                                                        
    All Samples approximately 110ng/ul with a total of approximately 3ug RNA                                                                                                                                                       
    File last updated by A.Centeno 1-3-18                                                                                                                                                           
    Pearson Product-Moment Correlation                                                                                                                                                           
    No Selector     TissueLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiver   
           Age216552640223223567223349756183501205572574724200386201554550730180578240379384507188518233571235530188524253353218344751222541187527184354201545157558261357361539238497460217468200581193245548188549562536384384535361537210545212764216547547176537493183366688182577630200539197537350350291358240379715503189595233543713188188524488548186344752230541174527184367201545210528239578206361237474511571241512243539548218570562213550182544182214540212544549   
           SexFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFMFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFMF   
           JI-ID307151136268269923117179832701632993141412591311701802761682892852641571452812602752530810451132324257178293134133107322320313112113271741144120719720321398253255272916286310230733043112127714618227816227330029867121306279296254772902841951403172951192613182832921292042802022581581443032632382392871431283233162423021251231352652123153212621225971581092662942241969725631924232626728231229727432528823630530923530129116181190   
           CaseID101713.13012615.07121214.29051112.07051112.08111314.15051112.09111414.20102616.20053014.01042915.01012615.19061913.01111314.11012615.08042015.22083016.01101513.02101513.05102414.02010614.06102414.08061913.06042015.07012615.15012615.11121515.12042015.27121515.18051112.05062013.16050912.08021213.14111414.02121515.23042015.05121214.20090412.08121214.24083016.03042015.13121615.09111414.05121615.12042415.08121214.19101613.05082214.02042415.23061913.13050115.06121214.16121214.10121615.17051112.12050115.15050115.17090412.10050115.19090612.10061913.19090612.14102616.12082214.11102414.03062013.02062013.17101014.10012615.17012615.16111414.14012615.26091914.09101713.18062013.12101713.10083016.07101713.15102616.04102616.05042415.12050914.04042715.19052814.04121214.07083016.08121515.05061913.04111314.10042015.20101014.02101513.04101014.05121214.22121214.21111314.05121214.13042015.10012615.12102414.12121515.15042015.24042915.13051112.04062013.06010614.07111414.03111414.04121515.25042915.19082214.10111414.09121214.26102616.17051012.01121615.06102414.18121615.11042415.05121214.04101613.08082214.08101613.09121214.23051012.08121615.14042015.18121214.11051112.14050115.12121615.19061913.18051012.14121615.21051112.01101014.04082214.09101613.19062013.03062013.19101613.21102414.20050914.05062013.09102414.06101713.20062013.13101713.11091914.07091914.05   
           DietCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHF   
           StrainB6D2F1B6D2F1B6D2F1BXD100BXD100BXD100BXD101BXD101BXD101BXD102BXD102BXD24BXD29BXD29BXD29BXD32BXD32BXD34BXD34BXD39BXD39BXD40BXD40BXD44BXD44BXD45BXD45BXD48BXD48BXD48aBXD53BXD60BXD60BXD61BXD61BXD62BXD62BXD63BXD63BXD63BXD65BXD65BXD65bBXD65bBXD66BXD66BXD68BXD68BXD69BXD69BXD70BXD70BXD73BXD73BXD73bBXD73bBXD77BXD79BXD79BXD87BXD87BXD89BXD9BXD9BXD90BXD90BXD91BXD95BXD98BXD98BXD99C57BL/6JC57BL/6JD2B6F1D2B6F1DBA/2JDBA/2JB6D2F1B6D2F1B6D2F1BXD100BXD100BXD101BXD102BXD102BXD24BXD29BXD29BXD29BXD32BXD32BXD34BXD34BXD39BXD39BXD40BXD40BXD44BXD44BXD44BXD45BXD48BXD48BXD48aBXD48aBXD53BXD61BXD61BXD61BXD62BXD62BXD63BXD63BXD63BXD65BXD65BXD65bBXD65bBXD66BXD66BXD68BXD68BXD69BXD69BXD70BXD70BXD73BXD73BXD73bBXD73bBXD77BXD79BXD87BXD87BXD89BXD89BXD9BXD90BXD90BXD91BXD95BXD95BXD99C57BL/6JC57BL/6JD2B6F1D2B6F1DBA/2JDBA/2JDBA/2J   
    TissueAgeSexJI-IDCaseIDDietStrainEarTagH1223H1569H1227H0247H0248H1190H0468H1425H2114H1363H1499H1792H0742H1040H1044H2034H2494H1054H0765H1322H0673H1691H0680H1822H1505H1762H1826H2054H1835H0209H0848H0235H0171H1770H1841H1847H1436H0818H1414H1872H2098H1787H1766H1793H2128H1558H1068H1080H2142H0591H1855H1512H1451H1906H0184H1466H1398H0825H1555H0550H0296H0555H2577H1006H1702H0756H0883H1742H1769H1524H1354H1590H1103H1154H0646H1147H1818H1302H2288H2290H2085H1187H1422H1361H1498H2259H2349H0669H1037H2030H1137H1056H1052H1474H1473H1488H1593H1825H1501H1687H1940H2046H1377H0210H0699H0833H1922H1722H1843H1434H1315H1715H1416H2091H0458H1784H1713H1790H2124H1560H1071H1290H1087H1328H0188H1728H2071H1447H0183H1545H1866H0583H0243H1945H0176H1321H1009H1093H0736H0881H1275H1273H1355H0514H1681H1150H0642H1144H1140H1142 minAverage
    Liver216F307101713.13CDB6D2F1H122310.9190.9210.9920.9830.9850.9920.960.8770.9880.9760.9870.9820.9890.970.9830.9710.9570.9840.9860.9790.9930.990.9920.9820.9720.9730.9740.9890.990.9890.9870.9460.9760.9850.9750.9290.990.9820.9840.9860.9850.9850.990.9830.940.9840.9820.9890.9820.9890.9610.9770.980.9890.990.9790.980.9890.9850.9790.9680.9840.8970.9870.9850.9720.9880.9660.9390.9820.9350.9890.9920.9830.9850.9710.9940.9890.990.9860.9880.9750.9820.9850.9590.990.9910.970.9850.9820.9840.9830.9790.9790.9880.9840.9710.9780.9760.9870.9830.970.9790.9820.990.980.9880.9870.9840.9510.9720.9820.9640.9860.9720.9870.9840.9860.9860.9860.9750.9850.9650.9860.9890.9880.9680.9820.9860.9860.9840.9840.9820.9860.980.9870.9850.9830.9880.9880.9250.990.9840.9880.990.9840.9350.9690.932 0.8770.98
    Liver552F151012615.07CDB6D2F1H15690.91910.9970.930.9390.9450.9160.9350.9620.9280.9450.9340.9320.9230.9520.9380.9430.9350.9410.9360.9230.9250.9220.9260.930.9510.9520.9430.9430.9270.9190.9280.950.9220.920.9560.9440.9240.9320.9230.9310.9260.9210.9270.9290.950.9220.9360.9250.9350.9290.9350.9480.9430.9290.9270.9430.9140.9350.9310.9320.9420.9320.9430.9190.920.9550.9280.9460.9310.9390.9310.9320.9160.9210.9310.9420.9230.9380.9320.9270.9310.9440.9270.9330.9490.9230.9240.9340.9270.9230.9430.9460.9410.940.9330.9420.9410.950.9390.9440.9370.960.9410.9430.9150.9220.9220.920.9480.9320.9220.9250.9430.9270.9550.920.9350.9230.9270.930.950.9270.9570.9360.9290.930.9450.9350.9390.9220.9480.9420.9150.9210.9460.9320.9220.9410.9280.9290.950.9220.9330.9340.9270.9170.9310.9350.949 0.9140.93
    Liver640F136121214.29CDB6D2F1H12270.9210.99710.9310.9410.9450.9180.9330.9590.9290.9470.9350.9330.9250.9520.9380.9420.9330.9430.9380.9230.9260.9240.9280.9310.950.9520.9420.9450.9290.9210.9280.9530.9230.9220.9560.9410.9260.9330.9250.9310.9280.9230.9280.9290.9480.9240.9370.9270.9370.930.9350.9480.9440.9310.9290.9430.9140.9370.9320.9350.9450.9320.9450.9210.9230.9560.930.9450.930.940.9290.9330.9180.9210.9320.9420.9260.940.9340.9270.9330.9470.9280.9330.9490.9250.9260.9320.9280.9250.9450.9480.9410.9410.9340.9450.940.9520.940.9460.9380.960.9410.9440.9170.9240.9240.9240.9490.9340.9220.9260.9420.9290.9560.9220.9380.9230.930.9310.9510.9280.9570.9380.930.9310.9450.9360.940.9240.9490.9450.9170.9230.9480.9360.9240.9430.9310.9310.950.9240.9360.9350.9280.9170.9290.9370.946 0.9140.94
    Liver223F268051112.07CDBXD100H02470.9920.930.93110.9850.9890.9870.9660.8940.9850.9810.9840.9830.9850.970.9820.9720.9580.9850.9880.9810.990.9860.9890.980.9740.9750.9750.9910.9870.9880.9870.9520.9740.9840.9790.9330.9870.9820.9820.9850.9840.9830.9880.9840.9460.9790.9820.9850.9790.990.9610.9780.980.9860.9870.9780.980.9890.9830.9740.9690.9830.9060.9840.9820.9750.9870.9650.9390.980.9350.9910.9870.9820.9830.9710.9890.9890.9880.9850.9890.9770.9850.9850.9620.9860.9890.9720.9810.980.9860.9850.9810.9810.9860.9840.9720.9790.9760.9880.9830.9740.980.9860.9880.980.9860.9830.9860.9520.9690.980.9690.9810.9750.9820.9830.9850.9830.9830.9760.9830.9660.9840.9880.9870.970.9830.9850.9860.9860.9840.9760.9820.9840.9850.980.9830.9860.9840.9350.9850.9830.9890.9880.9820.9350.9670.938 0.8940.98
    Liver223F269051112.08CDBXD100H02480.9830.9390.9410.98510.9850.9850.9590.9070.9830.9780.9780.9810.9790.9780.9760.9650.9530.9760.9790.970.980.9860.9840.9740.9740.9750.9690.9850.9830.9780.9820.9550.9730.970.9780.9430.9790.9720.9680.9750.9770.9710.9820.9760.9570.9870.9820.9810.9840.9790.9630.9750.9860.9840.9830.9740.9660.9790.9760.9840.970.9730.9150.9760.980.9720.9780.9670.9420.9790.9420.9810.9850.9760.9760.9690.9870.9810.980.9850.9850.9810.9760.980.9580.980.9820.9640.9750.9680.9770.9770.9710.9710.9830.9760.9670.980.970.9820.9770.9780.9830.9850.9780.9670.9740.9720.980.960.9650.9670.9710.9870.9720.9740.980.9750.9840.9820.9820.9790.9750.9820.980.9790.9690.9740.9820.9730.980.9760.9680.9830.9810.9790.9850.9830.9810.980.9410.980.9780.9820.980.9760.9420.9610.948 0.9070.97
    Liver567F92111314.15CDBXD100H11900.9850.9450.9450.9890.98510.9810.9650.9130.9830.9840.9850.9830.9820.9810.9880.9720.9650.9860.9870.9850.9870.9840.9860.9770.9770.9770.9760.9890.9880.9830.9870.9620.9710.9770.9820.9390.9830.9760.9770.9850.9840.9760.9860.9810.9570.9770.9840.9830.9790.9880.960.9780.9830.9850.9880.9770.9810.990.9780.9810.9740.9790.9240.9820.980.9770.9830.9690.9380.980.940.9890.9810.9820.9780.9710.9840.9880.9870.9840.9870.9830.9850.9840.9680.9810.9860.9730.9840.980.9860.9870.9810.980.9850.9830.9710.9810.9740.9890.9820.9760.9810.9880.9830.9750.9830.9790.9850.9590.9660.9770.9750.9790.9770.9780.9840.9850.9830.9820.9850.9820.9730.9810.9870.9890.970.9840.9850.9830.9850.9830.9760.9780.9880.9840.9790.9830.9840.9820.9510.9810.9820.9880.9850.9830.940.9690.949 0.9130.98
    Liver223F3051112.09CDBXD101H04680.9920.9160.9180.9870.9850.98110.9610.8770.9870.9710.9820.980.9840.9690.9770.9670.9580.9780.9780.9770.9870.990.9880.9790.9720.9720.9710.9850.9860.9870.9860.940.9790.980.9720.9320.9880.980.980.9830.9820.9810.9880.9810.9450.9890.9830.9850.9830.9840.9610.9720.9790.9850.9860.9760.9780.9820.9840.9760.9620.9810.8930.980.9810.970.9830.9640.9440.9810.9380.98710.9850.9840.9680.9930.9860.9870.9880.9860.9730.9810.9850.9570.9880.9880.970.9840.9770.9780.9780.9750.9740.9860.9770.9690.9790.9720.980.9820.970.980.9810.9880.9760.9840.9780.980.9510.9740.9790.9690.9880.970.9850.9810.9830.9880.9880.9730.9850.9660.9850.9850.9820.9680.9760.9820.9810.980.9770.9770.9870.9750.9810.9880.9820.9840.9850.9210.9880.9810.9870.9890.9860.9380.9660.94 0.8770.98
    Liver349F117111414.20CDBXD101H14250.960.9350.9330.9660.9590.9650.96110.9220.960.9490.9710.9520.9570.9630.9590.9780.9720.9620.9660.9620.9660.9630.9650.9760.9770.9760.9830.9680.9620.9660.9670.9190.9740.9780.9770.9680.9690.9820.9730.9690.9620.9680.9640.9770.9650.9460.960.9640.9660.9690.9790.9790.9580.9640.9620.9760.9640.970.9750.9420.9310.9720.8790.9530.9510.9680.9650.9730.9660.9750.9640.9620.9610.9740.9750.980.9560.9660.9660.9660.9560.9440.9560.9720.9660.9640.9640.9830.9650.960.9650.9690.9810.9810.9640.9650.9810.9660.9780.9580.9720.970.9680.9560.9630.970.960.950.9720.9140.9790.9770.9720.9620.9680.9640.950.9660.9580.9580.9480.9620.9550.9740.9690.9650.9820.970.9740.9680.9720.9650.9650.9540.9550.9490.9610.9730.9550.970.9080.9580.9490.9660.9630.970.9640.9640.965 0.8790.96
    Liver756F179102616.20CDBXD101H21140.8770.9620.9590.8940.9070.9130.8770.92210.8940.9170.8970.8970.8870.9260.9020.9220.9090.9050.9030.8850.8860.8840.8890.9020.9280.9280.9150.9070.8910.8830.8940.9190.8930.8910.9330.9390.8840.9010.8880.8930.8880.8880.8870.8970.9320.8830.9030.8840.90.8930.9160.9230.910.8920.8910.9140.8780.9010.8980.8940.9010.8950.9180.8820.8840.9250.8930.9290.9180.9090.9220.8940.8770.890.8980.920.8810.9010.8950.890.8920.9170.8920.8980.9260.8870.8860.9140.8870.8880.9080.9130.9110.9110.8960.9040.9190.9190.9140.9050.8990.9320.910.9070.8780.8910.8820.880.9160.8960.8950.8920.9220.8890.9250.880.8950.8850.8890.8940.9190.8920.9260.9010.8920.8920.9260.9040.9060.8890.9160.9040.8790.880.9180.8890.8840.910.8880.8920.9390.880.8940.8950.8890.8820.9220.9030.941 0.8770.90
    Liver183F83053014.01CDBXD102H13630.9880.9280.9290.9850.9830.9830.9870.960.89410.9790.9810.9820.9850.9730.9790.9720.960.9790.9810.9710.9850.9850.9870.9810.9760.9760.9710.9850.9830.9810.9820.9510.9760.9760.9750.9350.9820.9750.9760.9840.9820.9820.9850.9790.9450.9830.9830.980.9770.9830.9590.9760.9810.9810.9830.9770.9740.9830.9820.9760.9690.9770.9060.9840.980.9750.9820.9730.9480.9810.9430.9850.9870.9760.9820.970.9870.9840.9850.9840.9850.9760.9880.9870.9640.9860.9840.9710.9810.9770.980.9790.9740.9740.9850.9770.9690.980.9720.9820.9780.9760.9770.9790.9810.9780.9810.9760.9810.9530.970.9750.9650.9830.9750.980.9810.9830.9870.9850.9760.9820.970.9790.9810.980.9670.9750.9790.9770.9810.9770.9740.9810.9770.980.9810.9820.9790.980.9320.9820.9790.9850.9830.9760.9430.9680.94 0.8940.98
    Liver501F270042915.01CDBXD102H14990.9760.9450.9470.9810.9780.9840.9710.9490.9170.97910.970.9770.9710.9680.9780.9630.9490.9780.980.9690.9740.9690.9740.9610.9690.970.9620.9820.9750.970.9730.970.9590.9620.9760.9210.9710.9620.9660.9740.9750.9690.9790.9670.9380.9730.9780.9730.9680.9750.9410.9680.9770.9730.9750.9650.9630.9760.9690.9690.9740.9650.9270.9720.9680.970.9720.9560.9270.9680.9220.9820.9710.9610.9690.9610.9770.9820.9790.9730.980.9850.9830.9770.9570.9720.9740.9570.970.970.9780.9770.9680.9670.9740.9790.9530.9710.9580.9850.9730.970.970.9840.970.9680.9760.9720.9770.960.950.9630.9660.9670.970.9680.9780.9730.9750.9720.980.9710.9650.9710.9740.9750.9580.9710.9720.9710.9770.9790.9590.9660.9830.9790.9650.9720.9770.9680.9550.9730.9820.9770.9750.9630.9220.960.932 0.9170.97
    Liver205F163012615.19CDBXD24H17920.9870.9340.9350.9840.9780.9850.9820.9710.8970.9810.9710.9780.9820.9780.9870.9740.9710.9820.9830.9790.9890.9860.9890.9860.9780.9780.9840.9830.9860.9850.9830.9470.9770.9850.9820.9460.9870.9850.9830.9870.9810.9790.9850.9860.9560.9730.9770.9880.9810.9890.9720.9830.9740.9860.9860.9820.9810.9880.9820.9760.9620.9880.8990.9830.9770.9760.9840.9750.9510.9850.9540.9830.9820.9850.9820.9770.9840.9870.9870.9810.9790.9690.9770.9850.9710.9840.9860.9780.9860.9780.9830.9830.9820.9810.9850.9830.9810.9820.9840.9810.9860.970.9780.9770.9840.9760.9850.9810.9840.9470.9760.9830.970.9820.9760.9850.9760.9840.980.9790.9710.980.9680.9860.9890.9870.9750.9820.9880.9820.9840.9830.9840.9790.9750.980.9820.9840.9830.9880.9280.9820.9770.9870.9860.9850.9540.9770.949 0.8970.98
    Liver572F299061913.01CDBXD29H07420.9820.9320.9330.9830.9810.9830.980.9520.8970.9820.9770.97810.9880.9720.9770.9650.9530.9790.9820.9730.980.9840.9840.9730.970.970.9630.9850.9820.980.980.960.9710.9730.9730.9250.9770.9680.9690.980.980.9750.9830.9770.9430.9770.980.9760.970.9840.9530.9730.980.9830.9820.9690.9720.9830.9710.9790.9670.9760.9120.9850.9840.9740.9830.9660.9350.9750.9340.9850.980.9760.9710.9650.9830.9860.9840.9730.9790.9750.9810.9760.9630.9850.9870.9710.9710.9740.9790.9790.9690.9680.9850.9750.9610.9770.9650.9840.9730.9690.9760.9850.9790.9730.980.980.9760.9640.9590.9670.9640.9770.9740.9740.9790.9780.9820.9790.9760.9730.9670.9770.9820.980.9630.9740.9790.9770.9760.9750.9670.9770.9780.9790.9770.9810.9820.9770.9440.9780.980.9840.9790.9750.9340.9610.938 0.8970.97
    Liver574F314111314.11CDBXD29H10400.9890.9230.9250.9850.9790.9820.9840.9570.8870.9850.9710.9820.98810.9720.9780.970.9550.9820.9840.9730.9860.9860.9880.9830.9690.9690.9680.9860.9850.9830.9840.9490.9730.9810.9730.930.9810.9760.9780.9830.980.980.9830.9780.9390.9770.980.9790.9740.9860.9570.9750.980.9850.9850.9760.9740.9870.9780.9780.9650.9810.9040.9860.9840.9730.9870.970.940.9790.9380.9840.9840.9790.9780.9690.9860.9870.9860.9790.9830.9740.9790.9810.9630.990.9910.9770.9770.9780.9820.9820.9750.9750.9870.9780.9690.9780.9730.9830.9760.9720.9760.9790.9820.9780.9830.9850.9820.9560.9680.9760.960.9820.9730.980.9810.9810.9820.9840.9740.9820.9650.9810.9850.9820.9660.9780.9830.9830.9820.9780.9750.9810.9760.9820.9810.9810.9830.9820.9320.9810.980.9850.9830.9780.9380.9660.935 0.8870.97
    Liver724F141012615.08CDBXD29H10440.970.9520.9520.970.9780.9810.9690.9630.9260.9730.9680.9780.9720.97210.9760.9670.9620.9710.9770.9670.9720.9740.9750.9740.9740.9740.9740.9780.9770.970.9730.9580.9640.9660.9780.9530.9710.970.9650.9740.9710.9620.9730.9710.9620.9680.9730.9710.9760.9740.9640.9770.9760.9720.9770.9760.9660.9740.9690.9760.9670.9680.9190.9690.9690.9750.9720.9760.9530.980.9520.9750.9690.9720.9690.9690.9710.9740.9730.9740.9720.9720.9680.9740.9690.9720.9750.970.9730.9640.9730.9740.9730.9720.9740.9740.9720.9780.9740.9740.9780.9760.9720.9750.9680.9630.9670.9630.9770.9480.9610.9670.9720.9740.9750.9640.9730.9690.9710.9710.9770.9710.9770.9730.9730.9750.970.9710.9760.9670.9770.9740.9680.9670.9750.9680.9730.9770.970.9720.9420.9680.9670.9760.9730.970.9520.9640.957 0.9190.97
    Liver200F259042015.22CDBXD32H20340.9830.9380.9380.9820.9760.9880.9770.9590.9020.9790.9780.9870.9770.9780.97610.9730.9660.9820.9820.9810.9860.9780.9820.9760.9710.9710.9740.9820.9850.9790.9840.9540.9650.9740.9780.9310.980.9750.9750.9830.9760.9730.9810.9770.9480.9720.9770.9830.9750.9860.9540.9740.9750.9810.9850.9720.9810.9880.9770.9770.9670.9790.9130.9810.9740.9690.980.9670.9340.9750.9370.9810.9770.9780.9770.9670.9810.9850.9840.9760.9770.9760.9780.9780.9620.9770.9810.9690.9880.980.9830.9830.9760.9750.9790.9790.9680.9750.9720.9830.9810.9670.9760.980.9790.9690.980.9780.9810.9520.9630.9750.9680.9750.9690.9780.9750.9810.9760.9770.9770.980.9660.9780.9850.9870.9630.9810.9820.9780.9810.9790.9790.9730.9820.980.9760.9760.980.9810.9420.9760.9770.9830.9840.980.9370.970.942 0.9020.97
    Liver386F131083016.01CDBXD32H24940.9710.9430.9420.9720.9650.9720.9670.9780.9220.9720.9630.9740.9650.970.9670.97310.9690.9770.9730.9570.9720.9690.9720.9790.9790.9790.9780.9760.9670.9710.9690.9380.9790.9810.9850.9590.9720.9820.9760.9730.9710.9780.9710.9750.9540.960.970.9690.9670.9740.9720.9820.9710.9740.9670.9790.9670.9820.9830.9590.9520.9780.8960.9680.9690.9770.9710.9780.9590.9750.9580.9680.9670.9720.9830.9890.9680.9760.9750.9640.9630.9560.9680.9720.9750.9720.970.9830.9690.9750.9790.9810.9810.9810.9730.9730.9770.9760.9760.970.9710.9780.9710.9650.9690.9780.9690.9660.9780.9280.9790.9770.9690.9670.9770.970.9620.9680.9660.9710.9630.9680.9620.9770.9730.970.9820.9780.9780.9750.9780.9730.9740.9650.9690.9640.9670.9810.9640.9730.9210.9670.9610.9680.9690.9670.9580.9730.959 0.8960.97
    Liver201F170101513.02CDBXD34H10540.9570.9350.9330.9580.9530.9650.9580.9720.9090.960.9490.9710.9530.9550.9620.9660.96910.9670.9590.9630.9640.960.9650.9730.9710.970.9760.9630.960.9580.9640.9290.960.9680.9730.950.9620.9690.9640.9710.9590.9580.9630.9720.9570.9470.9560.9610.960.9670.9640.9740.9510.960.960.9720.9680.9670.9660.9490.9410.9710.880.9560.950.9730.9630.9690.9580.970.9620.9590.9580.9690.9660.9690.9560.9690.9690.9590.9580.950.9620.9740.9730.9620.9620.9720.9720.9690.9680.9720.9670.9650.9680.9650.9730.9680.9720.9590.9690.9660.9640.9560.9550.960.9640.9520.9670.9260.9610.9670.9670.9620.9730.9620.9570.970.9640.9610.9510.9640.9590.9680.9690.9640.970.9640.9690.9620.9670.9650.9630.9560.9580.9560.9620.9740.9540.9650.9140.9570.9520.9650.9660.9650.9620.990.972 0.880.96
    Liver554F180101513.05CDBXD34H07650.9840.9410.9430.9850.9760.9860.9780.9620.9050.9790.9780.9820.9790.9820.9710.9820.9770.96710.9840.9750.9830.9790.9840.9780.9730.9730.9740.9860.980.9810.9790.9580.9720.9810.9810.9360.980.9790.9820.9820.9810.9790.9830.9770.9450.9760.9830.9810.9750.9850.960.9780.9770.9830.980.9760.9770.9880.9790.9750.9720.9810.9150.980.9790.9820.9830.9660.9390.9760.9390.9840.9780.9770.9790.9740.9830.9890.9890.9760.9840.9770.9820.980.9750.9810.9850.9750.9790.9860.9970.9970.9810.9810.9840.9850.9720.9840.9760.9860.980.9760.9770.9820.9810.980.9850.9850.9860.9560.9690.980.970.9760.9820.9810.9840.980.9810.9840.9820.9790.9690.9830.9860.9840.9710.9830.9840.9850.9860.9850.9790.9750.9820.9870.9770.9840.9840.980.940.9830.9840.9820.9840.9770.9390.9770.944 0.9050.98
    Liver550F276102414.02CDBXD39H13220.9860.9360.9380.9880.9790.9870.9780.9660.9030.9810.980.9830.9820.9840.9770.9820.9730.9590.98410.9810.9860.9830.9850.9790.9750.9750.9760.9890.9850.9830.9820.9570.9730.9810.9790.9360.9840.980.980.9830.9840.980.9850.9790.9470.9740.9810.9820.9770.9870.9610.980.9820.9840.9850.9770.9780.9880.980.9760.9710.9790.9130.9830.9790.9750.9850.9670.9390.9810.9350.9870.9780.9790.980.9750.9830.9860.9850.9790.9830.9730.9820.9810.9660.9840.9860.9730.9780.980.9850.9850.9840.9840.9810.9840.9710.9780.9750.9850.9810.9730.9760.9820.9820.980.9820.9810.9830.9520.9680.9780.9680.9750.9750.9770.9790.9810.9790.9760.9760.9760.9660.9810.9860.9850.970.9830.9840.9840.9830.9840.9760.9740.980.9820.9750.9820.9830.9810.9380.9820.9790.9840.9830.9780.9350.9680.938 0.9030.98
    Liver730F168010614.06CDBXD39H06730.9790.9230.9230.9810.970.9850.9770.9620.8850.9710.9690.9790.9730.9730.9670.9810.9570.9630.9750.98110.9820.9770.9780.970.9650.9640.9710.9790.9810.9790.9840.9440.9610.9720.9680.9230.980.9720.9760.9790.9740.9660.9790.9780.9470.9660.9720.9770.9710.9830.950.9660.9660.9760.9810.9670.9810.980.9690.9670.9540.9760.8960.9720.9660.9640.9770.9550.9280.9690.9280.9820.9770.9810.9690.9570.9780.9830.9810.9790.9770.9690.9770.9780.9540.9760.9830.9680.9840.9750.9760.9770.9790.9780.9760.9740.9660.970.9690.9790.9810.960.9740.980.9790.9670.980.9720.9770.9470.960.9780.9710.9710.9640.9740.9730.9840.9750.9730.9690.9780.9590.9760.9840.9860.9580.9770.9770.980.9770.9740.9710.9690.9760.9760.9720.970.980.9790.9320.9750.9750.9850.9850.9860.9280.960.94 0.8850.97
    Liver180F289102414.08CDBXD40H16910.9930.9250.9260.990.980.9870.9870.9660.8860.9850.9740.9890.980.9860.9720.9860.9720.9640.9830.9860.98210.990.990.9840.9740.9740.9780.9870.9890.9870.9880.9460.9750.9850.9760.9350.9890.9830.9840.9880.9830.9830.9880.9830.9460.9770.9790.9880.980.990.9630.9780.9780.9860.9890.980.9830.990.9830.9770.9660.9860.90.9860.980.9720.9880.9680.9410.9820.9410.9880.9870.9830.9830.9720.9890.9880.9880.9840.9860.9740.9810.9850.9620.9880.9890.9740.9870.9810.9840.9830.9820.9810.9890.9860.9750.9780.9790.9850.9840.9710.9790.9790.9870.980.9870.9840.9840.9490.9730.9830.9660.9840.9720.9860.9810.9880.9830.9820.9730.9850.9650.9850.990.9890.9690.9830.9860.9850.9840.9860.9830.9830.9790.9850.9830.9820.9850.9880.9280.9860.9810.9890.9880.9850.9410.9710.938 0.8860.98
    Liver578F285061913.06CDBXD40H06800.990.9220.9240.9860.9860.9840.990.9630.8840.9850.9690.9860.9840.9860.9740.9780.9690.960.9790.9830.9770.9910.9910.9820.9740.9740.9730.9850.9880.9880.9850.9440.9790.9840.9740.9370.9880.9810.980.9840.9840.980.9880.9840.9510.9830.9820.9860.9840.9880.9670.9780.9810.9890.9880.9760.9780.9860.9810.9820.9640.9840.8990.9850.9860.9740.9860.9670.9430.9830.9450.9860.990.9880.9810.9720.990.9870.9880.9840.9840.9710.980.9830.9630.9870.9910.9730.9820.9780.980.980.9770.9760.9910.9820.9720.980.9760.9810.9810.9690.980.9820.9870.9770.9830.9810.9790.9530.9740.9790.9680.9890.9740.9840.980.9840.9870.9830.9730.9810.9690.9870.9890.9850.9710.9790.9860.9830.9790.9820.980.9860.9760.9820.9880.9870.9850.9870.9260.9870.980.9870.9870.9870.9450.9680.942 0.8840.98
    Liver240F264042015.07CDBXD44H18220.9920.9260.9280.9890.9840.9860.9880.9650.8890.9870.9740.9890.9840.9880.9750.9820.9720.9650.9840.9850.9780.990.99110.990.9750.9760.9770.9870.9890.9850.9870.9470.9770.9850.9790.9380.9870.9820.9820.9860.9820.9810.9880.9860.9490.9810.9810.9860.9820.990.9650.9820.9810.9880.9890.980.9780.9880.9820.980.9650.9870.8990.9860.9830.9760.9890.9730.9460.9850.9460.9860.9880.9840.9820.9750.9890.9890.9890.9850.9860.9740.9820.9880.9670.9890.990.9750.9840.980.9840.9840.9790.9780.9910.9830.9790.9840.9830.9850.9830.9740.980.9810.9850.9790.9860.9840.9830.9530.9730.9810.9680.9880.9760.9840.9820.9870.9870.9860.9750.9850.9690.9870.990.9870.9730.980.9880.9830.9830.9830.980.9850.9790.9830.9860.9860.9840.9860.9290.9860.980.9880.9870.9830.9460.9730.945 0.8890.98
    Liver379F157012615.15CDBXD44H15050.9820.930.9310.980.9740.9770.9790.9760.9020.9810.9610.9860.9730.9830.9740.9760.9790.9730.9780.9790.970.9840.9820.9910.9790.9790.9830.9790.9790.9790.9810.9340.9760.9860.9810.9560.980.9850.980.9820.9730.9770.9780.9850.9560.9670.9730.9780.9770.9840.9760.9860.9710.980.9790.9850.9730.9840.9810.9670.9510.9870.890.9770.9730.9780.9830.9840.9660.9860.9640.9760.9790.9830.9810.9810.9770.9820.9820.9770.9750.9610.9720.9840.9730.9840.9810.9830.9780.9730.980.9810.980.9790.9850.9760.9890.9830.990.9740.980.9770.9770.9690.9770.9750.9770.9750.9810.9380.9770.9810.9660.9810.9780.9770.970.980.9770.980.9640.9810.9670.9840.9840.9780.980.9760.9850.9780.9810.9760.9770.9760.9680.970.9790.9830.9730.9810.9190.9740.9680.9810.9790.9780.9640.9770.96 0.890.97
    Liver384F145012615.11CDBXD45H17620.9720.9510.950.9740.9740.9770.9720.9770.9280.9760.9690.9780.970.9690.9740.9710.9790.9710.9730.9750.9650.9740.9740.9750.97910.9970.9830.980.9730.9720.9710.9440.9780.9760.9860.9680.9780.9790.9710.9750.9750.9730.9790.9810.970.9680.9760.9740.9790.9760.9810.9880.9730.9730.9730.9850.9640.9770.980.960.9560.9760.9030.9690.9660.9790.9710.9820.9730.9840.9670.9750.9720.9740.980.9830.9720.9760.9750.9750.9690.9620.970.9820.9680.9790.9730.9750.9710.9660.9740.9770.9770.9760.9760.9740.9810.9780.9810.9770.9780.9780.9770.9720.9690.9710.9710.960.9770.9380.9750.9730.9720.9730.9790.9690.9660.9740.9730.9690.9670.9690.9690.9780.9760.9710.9860.9710.980.9690.9770.9740.9680.9660.970.9650.970.9840.9670.9750.9280.970.9670.9760.9710.970.9670.9710.968 0.9030.97
    Liver507F281121515.12CDBXD45H18260.9730.9520.9520.9750.9750.9770.9720.9760.9280.9760.970.9780.970.9690.9740.9710.9790.970.9730.9750.9640.9740.9740.9760.9790.99710.9830.9810.9730.9720.9710.9450.9780.9770.9860.9680.9780.980.9720.9750.9760.9740.9790.9810.9690.9690.9760.9750.980.9760.9820.9890.9740.9730.9730.9850.9640.9770.9810.9610.9570.9760.9040.970.9670.9790.9720.9820.9730.9850.9670.9750.9720.9740.9810.9840.9730.9760.9760.9750.970.9630.9710.9820.9680.9790.9730.9740.9710.9670.9750.9770.9770.9760.9760.9750.9810.9780.9810.9780.9780.9790.9770.9720.970.9720.9720.9610.9780.9390.9750.9740.9720.9740.9790.970.9660.9740.9740.9690.9680.9690.9690.9790.9760.9710.9860.9710.980.9690.9780.9750.9690.9670.970.9660.970.9840.9680.9750.9280.9710.9680.9750.9710.9690.9670.9720.967 0.9040.97
    Liver188F260042015.27CDBXD48H20540.9740.9430.9420.9750.9690.9760.9710.9830.9150.9710.9620.9840.9630.9680.9740.9740.9780.9760.9740.9760.9710.9780.9730.9770.9830.9830.98310.9810.9730.9740.9740.9330.9730.980.9830.9650.9810.9860.9810.9810.970.9740.9760.9830.9650.960.9670.9780.9780.9780.9820.9870.9640.9750.9730.9860.9710.9790.9790.9590.9480.9850.890.9680.9620.9770.9740.980.970.9830.9690.9730.9710.9780.9790.980.970.9770.9760.9750.9680.9560.9670.9830.9680.9760.9730.9790.9790.9680.9750.9770.9840.9840.9740.9780.9850.9760.9850.970.9880.9780.9780.9690.9710.9720.9740.9640.9780.9290.9760.9820.9710.9730.9770.9750.9630.9760.9690.9690.9590.9710.9630.9820.9780.9760.9840.9750.9830.9740.9780.9780.9750.9680.9660.9660.9720.9810.9690.980.920.9720.9640.9780.9730.9740.9690.9770.963 0.890.97
    Liver518F275121515.18CDBXD48H18350.9890.9430.9450.9910.9850.9890.9850.9680.9070.9850.9820.9830.9850.9860.9780.9820.9760.9630.9860.9890.9790.9870.9850.9870.9790.980.9810.98110.9850.9850.9840.9590.9770.9820.9830.9430.9860.9810.9810.9860.9870.9840.9890.9820.9550.9810.9840.9840.9830.9870.9670.9830.9840.9860.9850.9830.9770.9890.9840.9780.9730.9820.9160.9830.9820.980.9870.9720.9490.9840.9430.990.9850.9810.9840.9770.9880.9890.9880.9850.9860.9770.9840.9860.9680.9880.9880.9740.9810.9810.9870.9870.9830.9820.9850.9850.9740.9820.9770.9890.9880.9820.9840.9890.9850.9810.9850.9810.9860.9570.9710.980.9720.9810.980.980.9840.9840.9840.9830.9790.9790.9720.9840.9860.9850.9760.9820.9860.9850.9860.9850.9760.980.9830.9850.980.9860.9840.9830.9410.9850.9830.9870.9840.9790.9430.9710.948 0.9070.98
    Liver233F25051112.05CDBXD48aH02090.990.9270.9290.9870.9830.9880.9860.9620.8910.9830.9750.9860.9820.9850.9770.9850.9670.960.980.9850.9810.9890.9880.9890.9790.9730.9730.9730.98510.9840.9880.9510.9730.9790.9750.9370.9870.9790.9790.9830.9820.9770.9860.9810.9490.980.9820.9870.9830.9880.9630.980.9850.9910.9760.980.9880.9810.9810.9670.9790.9050.9820.980.970.9860.9670.940.9820.9380.9860.9860.9830.9810.9710.9880.9870.9870.9860.9850.9760.9790.9820.960.9840.9880.9710.9860.9780.9810.9810.9790.9780.9840.980.9720.9780.9760.9850.9820.9690.9780.9820.9840.9750.9820.980.9830.9540.970.9790.970.9830.970.9810.980.9850.9830.9810.9780.9840.970.9830.9890.9910.970.9850.990.9820.9830.980.980.9810.980.9820.9830.9810.9850.9850.9330.9840.980.9870.9870.9850.9380.9660.94 0.8910.98
    Liver571F308062013.16CDBXD53H08480.9890.9190.9210.9880.9780.9830.9870.9660.8830.9810.970.9850.980.9830.970.9790.9710.9580.9810.9830.9790.9870.9880.9850.9790.9720.9720.9740.9850.98410.9840.9430.9780.9860.9750.9320.9870.9840.9840.9850.9840.9830.9870.9830.9460.9760.9780.9860.9790.9870.9640.9740.9750.9880.9840.9740.9810.9860.980.9750.9610.9830.8950.9830.9840.9730.9840.9640.9390.9780.9410.9880.9870.9890.980.970.9880.9870.9890.980.9830.9680.9810.980.9640.9830.9880.9760.9790.9790.9820.9810.9790.9790.9830.9790.970.9790.9750.9820.9820.9650.9780.9810.9970.9790.9850.9830.9810.9470.9750.9830.970.9820.9730.9870.9780.9820.9820.980.9690.980.9640.9850.9880.9850.9690.9820.9840.9870.9810.9790.9820.9810.9760.980.9850.9830.9880.9870.9240.9850.9830.9860.9880.9890.9410.9660.936 0.8830.98
    Liver235F104050912.08CDBXD60H02350.9870.9280.9280.9870.9820.9870.9860.9670.8940.9820.9730.9830.980.9840.9730.9840.9690.9640.9790.9820.9840.9880.9850.9870.9810.9710.9710.9740.9840.9880.98410.9470.9720.9810.9760.9380.9820.9770.9770.9840.9780.9760.9830.9830.950.9760.980.9820.9790.9870.9590.9750.9780.9840.9880.9740.9810.9860.9790.9750.960.9820.9020.9780.9740.970.9850.9670.9420.9790.940.9840.9860.9840.9790.9680.9840.9860.9850.9840.9830.9760.9790.9830.960.9840.9870.9750.9860.9780.980.9810.9780.9770.9850.9780.9730.9760.9760.9830.980.9740.9810.9820.9840.9740.9820.9780.9830.950.9670.9790.9690.9830.970.980.9790.9870.9830.9850.9770.9880.9680.9820.9870.9870.9680.9820.9840.9820.9830.9780.9730.980.980.980.9810.9780.9820.9830.9340.980.9770.9890.9870.9850.940.9650.947 0.8940.98
    Liver530F51021213.14CDBXD60H01710.9460.950.9530.9520.9550.9620.940.9190.9190.9510.970.9470.960.9490.9580.9540.9380.9290.9580.9570.9440.9460.9440.9470.9340.9440.9450.9330.9590.9510.9430.94710.9320.9320.9530.9040.9420.9330.9370.950.9540.9390.9510.940.9230.9490.960.9440.9420.9510.9150.9450.9610.9480.9510.9410.9360.9510.9410.9580.9730.9380.9430.9490.950.9580.9510.9370.9010.9460.90.9590.940.9330.9410.9390.9510.9590.9550.9450.9580.970.9550.9450.9530.9450.9490.9340.9410.9470.9590.9580.9430.9430.9520.9590.9280.9560.9320.9630.9460.9520.9450.9650.9430.9440.950.9510.9570.970.9220.9350.9470.9410.9580.9380.9650.9460.9530.9490.9710.9440.960.9460.9490.9510.9320.9470.9490.9440.9570.9590.9330.9410.9660.9610.940.9510.9570.9430.9640.9480.9640.9530.950.9350.90.940.915 0.90.95
    Liver188F132111414.02CDBXD61H17700.9760.9220.9230.9740.9730.9710.9790.9740.8930.9760.9590.9770.9710.9730.9640.9650.9790.960.9720.9730.9610.9750.9790.9770.9760.9780.9780.9730.9770.9730.9780.9720.93210.9860.9760.9480.9810.9830.9790.9770.9810.9860.9810.980.9510.9730.9760.9780.9730.9750.9740.9780.9740.9770.9730.9750.9720.9780.9850.9610.9490.9760.8840.9730.9750.9710.9750.9680.9540.9790.9530.9730.9790.9780.9850.9820.9770.9750.9770.9770.9690.9540.9690.9770.9640.9780.9750.9780.9710.9740.9730.9740.980.980.9750.9720.9710.9750.9720.9670.9730.9690.9720.9660.9760.9860.9780.9680.9730.9320.9860.980.970.9760.9710.9790.9650.9740.9760.9710.9610.9670.9590.9790.9760.9710.9780.9740.9780.9750.9730.9720.9780.9720.960.9660.9770.9820.970.980.9090.9770.9650.9740.9720.9750.9530.9650.944 0.8840.97
    Liver524F324121515.23CDBXD61H18410.9850.920.9220.9840.970.9770.980.9780.8910.9760.9620.9850.9730.9810.9660.9740.9810.9680.9810.9810.9720.9850.9840.9850.9860.9760.9770.980.9820.9790.9860.9810.9320.98610.9790.9460.9830.9880.9860.9830.9810.9860.9830.9860.9490.9660.9730.9810.9760.9860.9750.9830.9690.9830.9790.9820.9790.9870.9830.9630.9510.9870.8830.9790.9780.9740.9850.9720.9530.9820.9540.9790.980.9860.9830.9820.980.9840.9860.9760.9760.9580.9730.9810.9690.9840.9850.9830.9770.9820.9820.9830.9840.9840.9820.9790.980.9760.9830.9760.9790.9680.9750.970.9850.9870.9850.9820.980.9320.980.9860.9660.9780.9740.9840.970.9820.9770.9750.9610.9760.9570.9850.9860.980.9790.9820.9850.9880.980.9790.9840.9740.9690.9740.9780.9840.9780.9850.9130.980.9720.980.9810.9820.9540.9740.947 0.8830.97
    Liver253F257042015.05CDBXD62H18470.9750.9560.9560.9790.9780.9820.9720.9770.9330.9750.9760.9820.9730.9730.9780.9780.9850.9730.9810.9790.9680.9760.9740.9790.9810.9860.9860.9830.9830.9750.9750.9760.9530.9760.97910.9660.9770.9820.9750.9790.9750.9750.9790.9820.9650.9690.9760.9770.9770.980.9750.9880.9770.9790.9750.9850.9690.9830.9810.9660.9620.9810.910.9710.970.9830.9760.980.9620.9840.9610.9770.9720.9750.9810.9840.9740.9820.980.9730.9720.9710.9730.9810.9750.9770.9760.9780.9740.9730.9830.9840.9810.980.980.980.9810.9820.9820.980.980.9830.9790.9780.9720.9750.9760.970.9860.9480.9720.9760.9770.9750.9830.9730.9720.9760.9750.9760.9750.9740.9710.9830.9790.9760.9850.9790.9840.9760.9860.980.9710.970.9780.9730.9720.9860.9730.9770.9380.9740.9720.9790.9760.9710.9610.9770.967 0.910.98
    Liver353F178121214.20CDBXD62H14360.9290.9440.9410.9330.9430.9390.9320.9680.9390.9350.9210.9460.9250.930.9530.9310.9590.950.9360.9360.9230.9350.9370.9380.9560.9680.9680.9650.9430.9370.9320.9380.9040.9480.9460.96610.9390.9560.940.9360.9310.9360.9320.9490.9690.9290.9380.9340.9540.9350.980.9680.9430.9390.9370.9630.9240.9410.9510.9280.9110.9460.8750.920.9240.9520.9350.9710.9770.960.9760.9280.9320.9420.9510.9670.9290.9360.9340.940.9270.9230.9210.9460.9490.940.9340.9560.9370.9260.9390.9440.9530.9530.9380.9370.9740.9530.9690.9290.9440.9620.950.9280.9270.9380.9250.9190.9550.9020.9550.9440.9490.9440.9520.9310.9230.9320.9340.9380.9350.9380.9490.9510.9380.9340.9750.9420.9510.9320.9550.9370.9350.9320.9280.9220.9370.9530.9250.9440.8930.9310.9190.9360.9320.9350.9760.9440.975 0.8750.94
    Liver218F293090412.08CDBXD63H08180.990.9240.9260.9870.9790.9830.9880.9690.8840.9820.9710.9870.9770.9810.9710.980.9720.9620.980.9840.980.9890.9880.9870.980.9780.9780.9810.9860.9870.9870.9820.9420.9810.9830.9770.93910.990.990.9850.9830.9830.9890.9840.9480.980.9820.990.9830.9870.970.980.9770.9860.9870.980.9790.9850.9870.9730.9610.9840.8960.9810.9790.9720.9830.9660.9470.9840.9440.9870.9880.9850.9870.9760.9890.9850.9870.9870.9820.9660.9790.9850.960.9870.9860.9740.9840.9770.9810.9810.9840.9830.9820.9830.9740.9780.9770.980.9870.9680.9780.9780.9870.980.9860.9780.9810.9470.9830.990.9750.9820.9720.9860.9760.9840.9810.9790.970.9790.9630.9870.9880.9850.9750.980.9860.9840.9810.9830.9830.9810.9730.9810.9830.9830.9840.9870.9220.9880.9810.9860.9860.9860.9440.970.938 0.8840.98
    Liver344F134121214.24CDBXD63H14140.9820.9320.9330.9820.9720.9760.980.9820.9010.9750.9620.9850.9680.9760.970.9750.9820.9690.9790.980.9720.9830.9810.9820.9850.9790.980.9860.9810.9790.9840.9770.9330.9830.9880.9820.9560.9910.9910.9810.9780.9830.980.9830.9560.9670.9740.9840.980.9830.9810.9840.9710.9840.9790.9830.9760.9840.9860.9650.9510.9870.890.9720.9730.9750.9790.9730.9590.9830.960.9780.980.9850.9860.9840.9790.9810.9830.9770.9730.9570.970.980.970.980.980.9830.9780.9760.980.9810.9890.9880.9780.9810.9830.9790.9850.9730.9840.9730.9770.9710.9820.980.9780.9740.9820.9340.9890.9910.9760.9780.9750.9840.9680.9760.9730.9750.9630.9760.9630.9880.9850.980.9830.9830.9870.9840.9820.9810.9830.9750.9680.9730.9790.9830.9780.9850.9160.9790.9720.980.9810.9830.960.9750.951 0.890.98
    Liver751F133083016.03CDBXD63H18720.9840.9230.9250.9820.9680.9770.980.9730.8880.9760.9660.9830.9690.9780.9650.9750.9760.9640.9820.980.9760.9840.980.9820.980.9710.9720.9810.9810.9790.9840.9770.9370.9790.9860.9750.940.990.99110.9840.980.9850.9820.9790.9410.9690.9740.9840.9770.9830.9670.9780.970.9830.9790.9780.9780.9840.9840.9660.9550.9840.890.9750.9750.9730.9810.9660.9470.9790.9450.980.980.980.9840.9770.9830.9840.9860.9810.9790.9620.9750.9820.9670.9810.9820.9790.9820.9820.9820.9820.9890.9890.9790.9850.9770.9770.980.9750.9870.9680.9730.9710.9830.9850.9860.980.9830.9380.9860.9960.9730.9760.9730.9870.9730.9810.9760.9760.9630.9780.960.9860.9850.9830.9760.9830.9850.9870.9830.9850.9870.9750.9690.9780.9790.9790.9820.9850.9170.9840.9780.9820.9840.9810.9450.9730.937 0.8880.97
    Liver222F107042015.13CDBXD65H20980.9860.9310.9310.9850.9750.9850.9830.9690.8930.9840.9740.9870.980.9830.9740.9830.9730.9710.9820.9830.9790.9880.9840.9860.9820.9750.9750.9810.9860.9830.9850.9840.950.9770.9830.9790.9360.9850.9810.98410.9870.9860.9890.9840.9480.9720.9770.9850.9750.9880.9620.9790.9740.9830.9830.9790.9860.9870.9820.9710.9660.9850.90.9840.9780.9810.9860.9710.9460.9810.9460.9870.9830.9810.9820.9710.9840.9880.9870.9820.9830.9710.9840.9880.9710.9840.9850.9780.9860.9830.9830.9830.9810.9810.9840.9840.9740.980.9760.9830.9860.9730.9760.980.9840.9820.9890.980.9820.9470.9720.9840.970.9810.9810.9860.9830.9880.9840.9810.970.980.9680.9810.9850.9850.9710.980.9830.9830.9820.9840.9810.9790.9780.980.980.9830.9810.9840.9320.9820.9780.9890.9840.980.9460.9770.942 0.8930.98
    Liver541F322121615.09CDBXD65H17870.9850.9260.9280.9840.9770.9840.9820.9620.8880.9820.9750.9810.980.980.9710.9760.9710.9590.9810.9840.9740.9830.9840.9820.9730.9750.9760.970.9870.9820.9840.9780.9540.9810.9810.9750.9310.9830.9780.980.98710.9870.9920.980.9430.9780.9810.9820.9760.9840.960.9760.9790.9820.9820.9740.980.9840.9810.9750.970.9730.8990.9830.9830.9770.9810.9620.9370.9790.9340.9860.9820.9780.9810.9740.9860.9840.9850.9810.9840.9710.9820.9820.9650.9840.9850.9720.9770.9840.9820.9810.9790.9790.9820.9830.9640.9760.9680.9820.9790.9690.9730.9810.9840.9850.9850.9760.9780.9490.9710.9790.970.9790.9770.9820.9840.9830.9850.9750.9720.9730.9640.9790.9830.9810.9680.9790.9790.9840.9780.9830.980.9750.9760.980.9780.9840.9820.9790.9270.9850.9790.9820.9820.9790.9340.9690.935 0.8880.97
    Liver187F320111414.05CDBXD65bH17660.9850.9210.9230.9830.9710.9760.9810.9680.8880.9820.9690.9790.9750.980.9620.9730.9780.9580.9790.980.9660.9830.980.9810.9770.9730.9740.9740.9840.9770.9830.9760.9390.9860.9860.9750.9360.9830.9830.9850.9860.98710.9870.9780.940.9720.9760.9820.9730.980.9650.9770.9750.9820.9770.9750.9760.9850.9840.9640.9590.9790.8920.9820.9810.9740.980.9660.9450.9760.9440.980.9810.9760.9840.9770.9830.9810.9840.9770.9770.9620.9770.9790.9640.9820.9810.9760.9750.9810.980.980.9810.9810.9780.9790.9680.9750.9720.9760.9780.9680.9730.970.9830.9870.9840.9790.9780.9390.980.9820.9630.9780.9740.9870.9740.9780.9780.9750.9640.9720.9570.980.980.9770.9730.9790.980.9820.9780.9790.9820.9760.9680.9770.9780.9820.9780.9810.9160.9810.9750.9780.9770.9740.9440.9690.932 0.8880.97
    Liver527F313121615.12CDBXD65bH17930.990.9270.9280.9880.9820.9860.9880.9640.8870.9850.9790.9850.9830.9830.9730.9810.9710.9630.9830.9850.9790.9880.9880.9880.9780.9790.9790.9760.9890.9860.9870.9830.9510.9810.9830.9790.9320.9890.980.9820.9890.9920.98710.9850.9470.9820.9840.9880.9820.9870.9620.980.9810.9850.9860.9780.980.9870.9840.9740.9670.9810.90.9850.9820.9780.9840.9660.9430.9830.9390.9890.9880.9830.9840.9740.990.9880.9890.9870.9850.9740.9850.9880.9630.9880.9880.9720.9830.9820.9840.9830.9790.9790.9870.9850.9680.9790.9730.9850.9850.9710.9780.9840.9870.9820.9890.980.980.9520.9740.9810.9720.9850.9780.9870.9840.9880.9870.980.9750.9790.9660.9840.9870.9850.9720.9780.9850.9830.980.9850.980.9810.9790.9840.9830.9860.9850.9840.9290.9880.9840.9880.9860.9830.9390.9710.939 0.8870.98
    Liver184F112042415.08CDBXD66H21280.9830.9290.9290.9840.9760.9810.9810.9770.8970.9790.9670.9860.9770.9780.9710.9770.9750.9720.9770.9790.9780.9830.9840.9860.9850.9810.9810.9830.9820.9810.9830.9830.940.980.9860.9820.9490.9840.9830.9790.9840.980.9780.98510.9610.970.9780.980.9780.9870.9730.9840.9710.9810.9810.9820.9790.9840.9820.9660.9520.9850.8890.9780.9730.9780.9820.9740.9570.9830.9540.9810.9810.9870.9820.9790.9790.9840.9840.980.9760.9640.9770.9860.9670.9840.9840.9810.980.9760.9790.980.9790.9780.9850.9780.9790.9780.9810.9780.9820.9730.9780.9790.9810.9770.9820.9720.9790.9420.9750.9810.9730.980.9780.9780.9740.9890.9850.9770.9670.9780.9660.9840.9860.9820.9780.9760.9850.9810.9790.9780.9750.9750.9730.9720.9790.9850.9760.9820.9240.9790.9720.9840.9810.9850.9540.9720.957 0.8890.98
    Liver354F113121214.19CDBXD66H15580.940.950.9480.9460.9570.9570.9450.9650.9320.9450.9380.9560.9430.9390.9620.9480.9540.9570.9450.9470.9470.9460.9510.9490.9560.970.9690.9650.9550.9490.9460.950.9230.9510.9490.9650.9690.9480.9560.9410.9480.9430.940.9470.96110.9420.9490.9460.9580.9480.9690.9670.9530.9490.9490.9620.9410.9510.9530.9440.9310.9520.90.9390.9390.9590.9460.9660.9580.9610.960.9460.9450.9570.9530.9610.9420.9490.9470.950.940.940.9390.9540.9510.9470.9470.9560.9480.9360.9480.9520.9540.9530.950.9440.9660.9590.9630.9460.9530.960.960.9490.9430.9390.9370.9290.9560.9210.9520.9460.9610.9530.9590.940.9390.9480.9490.9460.9490.9450.9590.9550.950.9480.9670.9480.9580.9410.9560.9440.9410.9440.9470.9360.950.9610.940.9540.9170.940.9340.9510.9450.9530.960.9460.973 0.90.95
    Liver201F271101613.05CDBXD68H10680.9840.9220.9240.9790.9870.9770.9890.9460.8830.9830.9730.9730.9770.9770.9680.9720.960.9470.9760.9740.9660.9770.9830.9810.9670.9680.9690.960.9810.980.9760.9760.9490.9730.9660.9690.9290.980.9670.9690.9720.9780.9720.9820.970.94210.9870.9780.980.9750.9520.9670.9840.9790.980.9680.9670.9750.9780.980.9680.9680.9050.9740.9770.9640.9740.9580.9340.9770.9270.9810.9890.9710.9780.9630.9890.9770.9780.9830.9810.9750.9750.9770.9510.9810.980.9560.9760.9710.9770.9760.9660.9650.9790.9720.9570.9740.9620.9770.9730.9680.9750.9790.9760.970.9760.970.9750.9590.9640.9670.9650.9820.9640.9730.9780.9730.9840.9860.9820.9770.9670.9770.9760.9750.9610.9680.9740.970.9750.9720.9690.9820.9740.9790.980.9770.9780.9760.9290.9850.9760.9780.9790.9730.9270.9580.933 0.8830.97
    Liver545F74082214.02CDBXD68H10800.9820.9360.9370.9820.9820.9840.9830.960.9030.9830.9780.9770.980.980.9730.9770.970.9560.9830.9810.9720.9790.9820.9810.9730.9760.9760.9670.9840.9820.9780.980.960.9760.9730.9760.9380.9820.9740.9740.9770.9810.9760.9840.9780.9490.98710.9780.9770.980.960.9740.9840.980.9820.9720.970.9810.9810.9760.9670.9720.9210.9760.9760.9730.9820.9660.9420.9810.9350.9830.9830.9760.9810.9720.9830.9820.9820.9830.9810.9750.980.9790.9630.9820.9820.970.9770.9750.9840.9840.9740.9730.980.9760.9650.9770.9670.980.9750.9740.9770.9820.9770.9760.9780.9730.980.9640.970.9740.9730.9770.9730.9730.9790.9780.9820.9840.9860.9780.9710.980.9810.9790.9680.9740.980.9770.980.9760.970.9750.9770.9790.9760.9780.9780.9770.9420.9820.9790.9810.9790.9760.9350.9620.942 0.9030.97
    Liver157F114042415.23CDBXD69H21420.9890.9250.9270.9850.9810.9830.9850.9640.8840.980.9730.9880.9760.9790.9710.9830.9690.9610.9810.9820.9770.9880.9860.9860.9780.9740.9750.9780.9840.9870.9860.9820.9440.9780.9810.9770.9340.990.9840.9840.9850.9820.9820.9880.980.9460.9780.97810.9890.9850.9660.9780.9780.9880.9870.9770.9780.9860.9840.9760.9630.9830.8970.9820.980.9710.9820.9630.940.9820.9420.9840.9850.9820.9840.9720.9880.9840.9860.9840.9820.9690.9770.9820.960.9820.9840.9680.9840.9780.9810.980.980.980.9810.9830.9710.9780.9760.9820.9860.9660.9770.9780.9850.9770.9860.9810.980.9470.9740.9820.9690.9820.9710.9870.9760.9810.980.9770.9710.9820.9680.9860.9870.9870.9720.9810.9870.9820.980.9830.9850.9820.9750.9830.9840.9820.9860.9880.9240.9870.980.9840.9840.9830.9420.9720.935 0.8840.98
    Liver558F41061913.13CDBXD69H05910.9820.9350.9370.9790.9840.9790.9830.9660.90.9770.9680.9810.970.9740.9760.9750.9670.960.9750.9770.9710.980.9840.9820.9770.9790.980.9780.9830.9830.9790.9790.9420.9730.9760.9770.9540.9830.980.9770.9750.9760.9730.9820.9780.9580.980.9770.98910.9770.9740.9810.980.9830.9830.9810.9670.9790.980.9760.9590.9760.9010.970.9730.9710.9760.9680.9540.9860.950.9770.9830.9780.980.9750.9830.9780.9790.9850.9790.9690.9690.9810.9590.980.980.9650.9790.970.9760.9760.9780.9770.9780.9780.9770.9790.980.9780.9830.9730.9780.9760.9780.9690.9760.9710.9790.9480.9710.9760.970.9830.9710.9770.9740.9750.980.9770.9730.9820.9760.9840.980.980.9770.9750.9840.9750.9790.9780.9740.9780.9720.9770.9810.9810.980.9820.9240.9830.9740.9790.980.9780.950.9680.952 0.90.97
    Liver261F207050115.06CDBXD70H18550.9890.9290.930.990.9790.9880.9840.9690.8930.9830.9750.9890.9840.9860.9740.9860.9740.9670.9850.9870.9830.990.9880.990.9840.9760.9760.9780.9870.9880.9870.9870.9510.9750.9860.980.9350.9870.9830.9830.9880.9840.980.9870.9870.9480.9750.980.9850.97710.9670.9810.9770.9870.9880.9790.9840.990.9810.9760.9660.9860.9010.9850.9810.9760.9880.970.9420.9830.9410.9880.9840.9860.9810.9750.9850.990.9890.9810.9830.9720.9830.9850.9680.9860.9890.9790.9840.9820.9860.9860.9820.9810.9870.9840.9740.9790.9780.9860.9840.9710.9780.9830.9870.9790.9860.9820.9840.950.9720.9830.9710.980.9760.9820.980.9870.9820.9820.9740.9820.9670.9880.9940.990.9710.9840.9880.9860.9840.9840.9810.980.9820.9810.980.9840.9840.9860.9340.9840.980.9890.9880.9860.9410.9720.943 0.8930.98
    Liver357F197121214.16CDBXD70H15120.9610.9350.9350.9610.9630.960.9610.9790.9160.9590.9410.9720.9530.9570.9640.9540.9720.9640.960.9610.950.9630.9670.9650.9760.9810.9820.9820.9670.9630.9640.9590.9150.9740.9750.9750.980.970.9810.9670.9620.960.9650.9620.9730.9690.9520.960.9660.9740.96710.9840.9590.9670.9630.980.9530.9660.9730.9490.9320.9720.8770.9540.9560.9680.9620.9780.9780.9790.9760.9570.9610.9720.9730.9810.9590.9620.9630.9630.9530.9380.9490.9680.9620.9670.9620.9730.960.9540.9620.9650.9730.9720.9630.960.9850.970.9830.9540.9680.9660.970.9510.960.9610.9560.950.9670.9170.9760.970.9630.9670.9680.9630.9470.9580.9570.9570.9480.9570.9580.9780.9690.9610.9870.9640.9740.9620.9670.960.9650.960.9480.9490.9650.9750.9550.970.8990.960.9470.9610.9590.9650.9760.9650.969 0.8770.96
    Liver361F203121214.10CDBXD73H14510.9770.9480.9480.9780.9750.9780.9720.9790.9230.9760.9680.9830.9730.9750.9770.9740.9820.9740.9780.980.9660.9780.9780.9820.9860.9880.9890.9870.9830.980.9740.9750.9450.9780.9830.9880.9680.980.9840.9780.9790.9760.9770.980.9840.9670.9670.9740.9780.9810.9810.98410.9790.9810.980.9880.9680.9830.9820.9650.9560.9830.9010.9730.9710.9820.9790.9840.9710.9870.9670.9750.9720.9770.9820.9880.9740.9810.9790.9750.9720.9620.9710.9830.9740.9810.9780.980.9740.9720.9790.9810.9810.9810.980.980.9860.980.9870.9770.980.980.9770.9710.9720.9780.9760.9690.9810.9390.9760.9780.9710.9760.9820.9720.9680.9770.9750.9720.9670.9720.9710.9830.9810.9790.9920.9790.9880.9750.9810.980.9740.9710.9710.9690.9730.9870.9710.9780.9270.9740.9680.9780.9730.9710.9670.9770.968 0.9010.98
    Liver539F213121615.17CDBXD73H19060.980.9430.9440.980.9860.9830.9790.9580.910.9810.9770.9740.980.980.9760.9750.9710.9510.9770.9820.9660.9780.9810.9810.9710.9730.9740.9640.9840.9850.9750.9780.9610.9740.9690.9770.9430.9770.9710.970.9740.9790.9750.9810.9710.9530.9840.9840.9780.980.9770.9590.97910.9840.9850.9730.9660.9820.9790.9810.9730.9690.9240.9750.9790.9720.9780.9660.9380.9790.9350.980.9790.9710.9790.9750.9830.980.9780.9790.980.9770.9730.9750.9620.9790.9810.9670.9720.9710.9780.9790.9730.9740.9790.9760.9640.9780.9660.9810.9720.9770.9760.980.9740.9740.9720.9720.980.9610.9670.9680.970.9790.9720.970.9780.9730.980.980.9830.9760.9750.9780.9780.980.9720.9780.9830.9730.980.9760.9690.9780.9780.9780.9770.9810.9780.9770.9420.9790.9750.9780.9750.9710.9350.9590.943 0.910.97
    Liver238F98051112.12CDBXD73bH01840.9890.9290.9310.9860.9840.9850.9850.9640.8920.9810.9730.9860.9830.9850.9720.9810.9740.960.9830.9840.9760.9860.9890.9880.980.9730.9730.9750.9860.990.9880.9840.9480.9770.9830.9790.9390.9860.9840.9830.9830.9820.9820.9850.9810.9490.9790.980.9880.9830.9870.9670.9810.98410.990.9760.9780.9890.9820.9820.9640.9840.9020.9830.9850.9740.9850.9660.9390.9790.9430.9840.9850.9850.9820.9750.9890.9880.9890.980.9820.9710.9790.980.9650.9830.990.9750.9810.9810.9840.9830.9810.980.9860.9830.9720.9810.9760.9840.9810.9710.9810.9820.9880.9790.9830.9850.9830.9530.9740.9810.970.9850.9740.9860.9780.9810.9830.9830.9750.9810.9690.9890.9890.9910.9760.990.9920.9870.9830.9830.9820.9860.9780.9830.9870.9860.9880.9890.930.9860.9810.9860.9870.9850.9430.970.941 0.8920.98
    Liver497F253050115.15CDBXD73bH14660.990.9270.9290.9870.9830.9880.9860.9620.8910.9830.9750.9860.9820.9850.9770.9850.9670.960.980.9850.9810.9890.9880.9890.9790.9730.9730.9730.98510.9840.9880.9510.9730.9790.9750.9370.9870.9790.9790.9830.9820.9770.9860.9810.9490.980.9820.9870.9830.9880.9630.980.9850.9910.9760.980.9880.9810.9810.9670.9790.9050.9820.980.970.9860.9670.940.9820.9380.9860.9860.9830.9810.9710.9880.9870.9870.9860.9850.9760.9790.9820.960.9840.9880.9710.9860.9780.9810.9810.9790.9780.9840.980.9720.9780.9760.9850.9820.9690.9780.9820.9840.9750.9820.980.9830.9540.970.9790.970.9830.970.9810.980.9850.9830.9810.9780.9840.970.9830.9890.9910.970.9850.990.9820.9830.980.980.9810.980.9820.9830.9810.9850.9850.9330.9840.980.9870.9870.9850.9380.9660.94 0.8910.98
    Liver460F255050115.17CDBXD77H13980.9790.9430.9430.9780.9740.9770.9760.9760.9140.9770.9650.9820.9690.9760.9760.9720.9790.9720.9760.9770.9670.980.9760.980.9850.9850.9850.9860.9830.9760.9740.9740.9410.9750.9820.9850.9630.980.9830.9780.9790.9740.9750.9780.9820.9620.9680.9720.9770.9810.9790.980.9880.9730.9760.97610.9670.980.9830.9630.9590.9820.8980.9720.9690.980.9790.9830.970.9870.9610.9760.9760.9750.9830.9830.9750.980.9780.9780.9740.9640.9680.9840.970.9840.9770.9760.9760.9710.9780.9790.9810.980.9790.9780.9850.9780.9850.9770.9820.980.9770.970.9720.9750.9770.9690.9820.9370.9740.9780.9690.9760.980.9730.9720.9770.9750.9750.9660.9750.9690.9820.9780.9750.9840.9740.9820.9790.9820.9780.9750.9730.9720.970.9740.9840.970.9790.9240.9740.9670.9780.9740.9720.9610.9770.963 0.8980.97
    Liver217F272090412.10CDBXD79H08250.980.9140.9140.980.9660.9810.9780.9640.8780.9740.9630.9810.9720.9740.9660.9810.9670.9680.9770.9780.9810.9830.9780.9780.9730.9640.9640.9710.9770.980.9810.9810.9360.9720.9790.9690.9240.9790.9760.9780.9860.980.9760.980.9790.9410.9670.970.9780.9670.9840.9530.9680.9660.9780.980.96710.9850.9740.9670.9570.9760.8850.9780.9720.9650.9770.9570.9310.9710.9350.980.9780.9830.9740.9620.9780.9790.9810.9730.9750.9620.9770.9780.9610.9760.980.9730.9840.9830.9780.9780.9770.9760.9760.9750.9640.9690.9670.9740.9780.9590.9690.9740.9810.9760.980.9710.9750.9360.9670.9790.9680.970.9650.9770.9720.9810.9750.9730.9640.9740.9540.9730.9820.9830.9610.9810.9760.9810.9750.9750.9820.970.9710.9720.9730.9740.9750.9780.9190.9760.9690.9810.9830.9840.9350.9690.934 0.8780.97
    Liver468F91050115.19CDBXD79H15550.9890.9350.9370.9890.9790.990.9820.970.9010.9830.9760.9880.9830.9870.9740.9880.9820.9670.9880.9880.980.990.9860.9880.9840.9770.9770.9790.9890.9880.9860.9860.9510.9780.9870.9830.9410.9850.9840.9840.9870.9840.9850.9870.9840.9510.9750.9810.9860.9790.990.9660.9830.9820.9890.9880.980.98510.9860.9770.9670.9850.9080.9860.9830.9780.9860.9730.9440.9810.9450.9860.9820.9830.9860.9790.9860.990.990.980.9830.9730.9810.9830.970.9860.9890.9790.9840.9850.9890.9890.9850.9840.9850.9840.9770.9810.980.9860.9830.9760.980.9810.9850.9830.9860.9850.9870.9490.9750.9830.9690.980.9780.9840.980.9850.9820.9820.9770.9820.9680.9850.990.990.9760.9880.990.9870.9870.9840.9850.9780.9810.9830.9810.9850.9840.9860.9340.9830.980.9860.9860.9830.9450.9740.945 0.9010.98
    Liver200F6090612.10CDBXD87H05500.9850.9310.9320.9830.9760.9780.9840.9750.8980.9820.9690.9820.9710.9780.9690.9770.9830.9660.9790.980.9690.9830.9810.9820.9810.980.9810.9790.9840.9810.980.9790.9410.9850.9830.9810.9510.9870.9860.9840.9820.9810.9840.9840.9820.9530.9780.9810.9840.980.9810.9730.9820.9790.9820.9810.9830.9740.98610.9670.9590.980.8960.9760.9750.9740.9790.9730.9570.9850.9460.9780.9840.97810.9850.9830.9820.9830.9830.9770.9650.9750.9830.9650.9840.9810.9770.9820.9780.980.9810.9840.9830.9790.9790.9760.9780.9780.9770.9820.9770.9750.9720.9790.9830.980.9720.9830.940.9840.9840.9720.9770.9740.980.9730.9790.980.9790.970.9790.9670.9840.9820.9790.980.9790.9840.980.9830.9790.980.9760.9710.9750.9790.9830.9760.9820.9180.9830.970.9780.9790.9770.9460.9730.949 0.8960.98
    Liver581F286061913.19CDBXD87H02960.9790.9320.9350.9740.9840.9810.9760.9420.8940.9760.9690.9760.9790.9780.9760.9770.9590.9490.9750.9760.9670.9770.9820.980.9670.960.9610.9590.9780.9810.9750.9750.9580.9610.9630.9660.9280.9730.9650.9660.9710.9750.9640.9740.9660.9440.980.9760.9760.9760.9760.9490.9650.9810.9820.9810.9630.9670.9770.96710.9720.9670.9150.9760.980.9650.9750.9580.9250.9710.9320.9760.9760.9710.9670.9610.9820.9770.9780.9740.980.9770.9710.9690.9590.9720.980.9580.9730.9710.9760.9740.9660.9660.9790.9740.9580.9760.9630.9770.9710.9660.9730.9790.9750.9630.970.9750.9750.9630.9570.9630.9630.980.9650.9710.9780.9690.9790.9770.980.9740.9720.9760.9770.980.9560.9730.9770.9720.9750.9740.9730.980.9770.9790.9810.9760.980.9770.9410.9780.9750.9760.9780.9740.9320.9590.934 0.8940.97
    Liver193F310090612.14CDBXD89H05550.9680.9420.9450.9690.970.9740.9620.9310.9010.9690.9740.9620.9670.9650.9670.9670.9520.9410.9720.9710.9540.9660.9640.9650.9510.9560.9570.9480.9730.9670.9610.960.9730.9490.9510.9620.9110.9610.9510.9550.9660.970.9590.9670.9520.9310.9680.9670.9630.9590.9660.9320.9560.9730.9640.9670.9590.9570.9670.9590.97210.9530.9390.970.9690.9670.9640.9460.9110.960.9110.9720.9620.950.9590.9510.9720.970.9680.9620.9740.9750.9680.9620.9580.9630.9660.9430.9620.9640.9730.9710.9580.9580.9670.9730.9420.9670.9470.9760.9610.9620.9570.9710.9610.9590.9650.9650.9690.9560.940.9510.950.9610.9670.9590.980.9610.9680.9640.9760.9590.9620.960.9630.9650.9440.9630.9620.960.9690.9730.9570.9660.980.9760.960.9680.970.9620.9470.9680.9710.9660.9670.9510.9110.9570.919 0.9010.96
    Liver245F230102616.12CDBXD9H25770.9840.9320.9320.9830.9730.9790.9810.9720.8950.9770.9650.9880.9760.9810.9680.9790.9780.9710.9810.9790.9760.9860.9840.9870.9870.9760.9760.9850.9820.9790.9830.9820.9380.9760.9870.9810.9460.9840.9870.9840.9850.9730.9790.9810.9850.9520.9680.9720.9830.9760.9860.9720.9830.9690.9840.9790.9820.9760.9850.980.9670.95310.8930.9790.9740.9790.9830.9740.9550.980.9590.980.9810.9840.980.9760.980.9870.9860.9750.9750.9620.9750.9820.9710.9830.9830.980.980.9750.9820.9830.9810.980.9860.9810.9810.9810.9830.9770.9830.9720.980.9740.9820.9750.9830.9820.9820.9420.9760.9840.9670.9820.9790.9850.9720.9820.9770.9810.9640.9790.9640.9870.9860.9820.9770.9790.9870.9810.9820.9810.9780.980.9720.980.9810.9830.980.9860.9230.9790.9760.9860.9840.9810.9590.9770.952 0.8930.98
    Liver548F73082214.11CDBXD9H10060.8970.9430.9450.9060.9150.9240.8930.8790.9180.9060.9270.8990.9120.9040.9190.9130.8960.880.9150.9130.8960.90.8990.8990.890.9030.9040.890.9160.9050.8950.9020.9430.8840.8830.910.8750.8960.890.890.90.8990.8920.90.8890.90.9050.9210.8970.9010.9010.8770.9010.9240.9020.9050.8980.8850.9080.8960.9150.9390.89310.90.9020.9170.9050.8990.8630.9010.8630.9110.8930.8890.8960.8950.9020.910.9030.90.9120.9290.9060.8970.9120.8960.9010.8890.8960.8960.9160.9160.90.90.9060.9110.8880.9150.890.9180.8990.9160.9040.9190.8940.8920.8960.90.9150.9260.880.8890.9050.8950.9170.8890.920.8940.9020.9060.9370.8990.9260.8980.90.9030.8910.9030.9040.8950.9150.9110.8830.8960.9270.9180.8920.9020.9070.8970.9520.8990.9150.9060.9010.8880.8630.8880.883 0.8630.90
    Liver188F304102414.03CDBXD90H17020.9870.9190.9210.9840.9760.9820.980.9530.8820.9840.9720.9830.9850.9860.9690.9810.9680.9560.980.9830.9720.9860.9850.9860.9770.9690.970.9680.9830.9820.9830.9780.9490.9730.9790.9710.920.9810.9720.9750.9840.9830.9820.9850.9780.9390.9740.9760.9820.970.9850.9540.9730.9750.9830.9820.9720.9780.9860.9760.9760.970.9790.910.990.9710.9840.9660.9320.9730.9350.9840.980.9770.9760.9670.9840.9840.9840.9740.9790.9690.9810.9770.960.9850.9850.9680.9760.9790.9810.9790.970.970.9840.9770.9620.9740.9670.9820.9760.9620.9720.9770.9830.9770.9840.9830.9740.9520.9640.9730.9580.9780.9710.9810.9780.9810.9810.9760.9690.9720.9580.9770.9830.9820.9620.9760.980.980.9740.9770.9790.980.9770.9790.9820.9840.9810.9820.930.9790.9770.9820.980.9760.9350.9670.929 0.8820.97
    Liver549F311062013.02CDBXD90H07560.9850.920.9230.9820.980.980.9810.9510.8840.980.9680.9770.9840.9840.9690.9740.9690.950.9790.9790.9660.980.9860.9830.9730.9660.9670.9620.9820.980.9840.9740.950.9750.9780.970.9240.9790.9730.9750.9780.9830.9810.9820.9730.9390.9770.9760.980.9730.9810.9560.9710.9790.9850.980.9690.9720.9830.9750.980.9690.9740.9020.9910.9710.9810.9630.930.9730.9350.9820.9810.9780.9750.9690.9850.9810.9830.9740.9780.9690.9780.9720.9620.9810.9850.9680.970.9780.980.9780.9710.970.9830.9750.960.9780.9660.9790.9720.9640.9730.9770.9840.9770.9790.9830.9750.9540.9670.9720.9610.980.9710.980.9780.9740.980.9760.9710.9710.9630.9780.980.9790.9630.9760.9790.9810.9750.9750.9790.9810.9750.9790.9850.9860.9830.980.9290.9810.9780.9770.9790.9760.9350.9630.929 0.8840.97
    Liver562F21062013.17CDBXD91H08830.9720.9550.9560.9750.9720.9770.970.9680.9250.9750.970.9760.9740.9730.9750.9690.9770.9730.9820.9750.9640.9720.9740.9760.9780.9790.9790.9770.980.970.9730.970.9580.9710.9740.9830.9520.9720.9750.9730.9810.9770.9740.9780.9780.9590.9640.9730.9710.9710.9760.9680.9820.9720.9740.970.980.9650.9780.9740.9650.9670.9790.9170.9710.97110.9760.9750.9590.9780.9570.9770.970.9720.9740.9760.9730.9830.9820.970.9760.9690.9750.980.9850.9760.9760.9770.9690.9730.9830.9840.9760.9760.9810.9810.9760.9870.9780.9780.9770.9840.9750.9760.970.9730.9760.9720.9810.9520.9680.9730.9710.97610.9750.9830.9750.9780.9740.9710.9710.980.9790.9760.9720.9780.9730.980.9720.9810.9810.9660.970.9750.9740.9730.9870.9740.9740.9410.9730.9750.9780.9740.9680.9570.9790.963 0.9170.97
    Liver536F277101014.10CDBXD95H17420.9880.9280.930.9870.9780.9830.9830.9650.8930.9820.9720.9840.9830.9870.9720.980.9710.9630.9830.9850.9770.9880.9860.9890.9830.9710.9720.9740.9870.9860.9840.9850.9510.9750.9850.9760.9350.9830.9790.9810.9860.9810.980.9840.9820.9460.9740.9820.9820.9760.9880.9620.9790.9780.9850.9860.9790.9770.9860.9790.9750.9640.9830.9050.9840.9810.97610.9710.9420.9830.940.9860.9830.9820.9790.9720.9840.9880.9870.980.9830.9720.980.9830.9680.9860.9880.9760.980.9810.9840.9840.9780.9770.9860.9820.9720.9770.9760.9830.980.9710.9760.9790.9830.9820.9860.9850.9820.9560.9690.980.9660.9790.9760.9790.980.9850.9820.9820.9730.980.9660.9830.9880.9850.970.9790.9850.9850.9820.9820.9770.980.9790.9810.980.9820.9820.9860.9370.9830.9790.9860.9840.9810.940.970.941 0.8930.98
    Liver384F146012615.17CDBXD98H17690.9660.9460.9450.9650.9670.9690.9640.9730.9290.9730.9560.9750.9660.970.9760.9670.9780.9690.9660.9670.9550.9680.9670.9730.9840.9820.9820.980.9720.9670.9640.9670.9370.9680.9720.980.9710.9660.9730.9660.9710.9620.9660.9660.9740.9660.9580.9660.9630.9680.970.9780.9840.9660.9660.9670.9830.9570.9730.9730.9580.9460.9740.8990.9660.9630.9750.97110.980.980.9740.9650.9640.9680.9730.9780.9620.9710.9690.9650.960.9580.960.9750.970.9730.9670.9780.9660.960.9680.9710.970.9690.9730.9630.9830.9750.9820.9650.970.9780.9710.960.9610.9640.9620.9580.9750.9340.9690.9680.9640.970.9750.9620.9590.9650.9650.9680.9610.9680.9680.9720.970.9650.9790.9640.9740.9630.9750.9630.9660.9620.9620.9550.9660.9760.9580.970.9250.9580.9550.9690.9640.9630.9740.9690.971 0.8990.97
    Liver384F182012615.16CDBXD98H15240.9390.9310.930.9390.9420.9380.9440.9660.9180.9480.9270.9510.9350.940.9530.9340.9590.9580.9390.9390.9280.9410.9430.9460.9660.9730.9730.970.9490.940.9390.9420.9010.9540.9530.9620.9770.9470.9590.9470.9460.9370.9450.9430.9570.9580.9340.9420.940.9540.9420.9780.9710.9380.9390.940.970.9310.9440.9570.9250.9110.9550.8630.9320.930.9590.9420.9810.9660.9760.9370.9440.9480.9570.9640.9380.9430.9440.9470.9350.9250.9340.9580.9520.9530.9390.960.9450.9320.9410.9460.9520.9520.9470.940.9750.9550.9720.9350.9550.9630.9520.9310.9340.9430.9380.9250.9530.8980.9570.9510.9460.9490.9590.9410.9310.9410.9420.9430.9290.9450.9490.9540.9430.9350.9740.9390.9520.9370.9530.940.940.9380.9290.9260.9430.9570.9290.9460.8860.9360.9270.9440.9380.9380.9760.9540.972 0.8630.95
    Liver535F278111414.14CDBXD99H13540.9820.9390.940.980.9790.980.9810.9750.9090.9810.9680.9850.9750.9790.980.9750.9750.970.9760.9810.9690.9820.9830.9850.9860.9840.9850.9830.9840.9820.9780.9790.9460.9790.9820.9840.960.9840.9830.9790.9810.9790.9760.9830.9830.9610.9770.9810.9820.9860.9830.9790.9870.9790.9790.9820.9870.9710.9810.9850.9710.960.980.9010.9730.9730.9780.9830.980.96610.9580.9790.9810.980.9850.9840.980.9810.9810.9840.9780.9670.9720.9860.9690.9860.9810.9770.9790.9720.9780.9790.980.980.9820.980.9820.9790.9840.9770.9830.980.9760.9730.9760.9770.9790.970.9810.9460.9760.9790.9730.9810.9780.9750.9740.980.9810.9780.9720.9780.9720.9850.9830.9770.9820.9740.9840.9760.9810.980.9750.9760.9720.9730.9770.9840.9740.9810.9250.9830.9710.9810.9780.9760.9580.9740.959 0.9010.98
    Liver361M162012615.26CDC57BL/6JH15900.9350.9310.9290.9350.9420.940.9380.9640.9220.9430.9220.9540.9340.9380.9520.9370.9580.9620.9390.9350.9280.9410.9450.9460.9640.9670.9670.9690.9430.9380.9410.940.90.9530.9540.9610.9760.9440.960.9450.9460.9340.9440.9390.9540.960.9270.9350.9420.950.9410.9760.9670.9350.9430.9380.9610.9350.9450.9460.9320.9110.9590.8630.9350.9350.9570.940.9740.9760.95810.9360.9380.9520.9460.960.9350.9420.9440.940.930.9230.9310.950.9550.9450.9390.9620.9420.9320.9420.9470.9510.950.9480.9390.9730.9580.970.9310.950.9550.9530.930.9360.9390.9360.9310.9490.9030.9580.9490.9450.9530.9570.9460.9260.9380.9380.940.9280.9410.9450.9540.9450.9370.970.9420.9540.9360.9490.9390.9450.9410.9270.9270.9480.9590.9330.9510.890.9320.930.9440.9410.94310.9570.968 0.8630.94
    Liver537F273091914.09CDC57BL/6JH11030.9890.9320.9330.9910.9810.9890.9870.9620.8940.9850.9820.9830.9850.9840.9750.9810.9680.9590.9840.9870.9820.9880.9860.9860.9760.9750.9750.9730.990.9860.9880.9840.9590.9730.9790.9770.9280.9870.9780.980.9870.9860.980.9890.9810.9460.9810.9830.9840.9770.9880.9570.9750.980.9840.9860.9760.980.9860.9780.9760.9720.980.9110.9840.9820.9770.9860.9650.9370.9790.93610.9870.9820.9780.9650.9890.9890.9890.9830.9870.9780.9880.9840.9640.9850.9880.9720.9810.9790.9840.9840.9780.9770.9860.9840.9660.9790.970.9890.9840.9710.9790.9870.9890.9790.9870.9820.9840.9590.9670.9790.9720.980.9770.9810.9850.9850.9840.9830.9780.9810.9680.9820.9860.9860.9670.980.9820.9840.9840.9840.9760.980.9850.9850.980.9830.9870.9830.9410.9860.9890.9930.9880.9830.9360.9660.935 0.8940.98
    Liver210F300101713.18CDD2B6F1H11540.9920.9160.9180.9870.9850.98110.9610.8770.9870.9710.9820.980.9840.9690.9770.9670.9580.9780.9780.9770.9870.990.9880.9790.9720.9720.9710.9850.9860.9870.9860.940.9790.980.9720.9320.9880.980.980.9830.9820.9810.9880.9810.9450.9890.9830.9850.9830.9840.9610.9720.9790.9850.9860.9760.9780.9820.9840.9760.9620.9810.8930.980.9810.970.9830.9640.9440.9810.9380.98710.9850.9840.9680.9930.9860.9870.9880.9860.9730.9810.9850.9570.9880.9880.970.9840.9770.9780.9780.9750.9740.9860.9770.9690.9790.9720.980.9820.970.980.9810.9880.9760.9840.9780.980.9510.9740.9790.9690.9880.970.9850.9810.9830.9880.9880.9730.9850.9660.9850.9850.9820.9680.9760.9820.9810.980.9770.9770.9870.9750.9810.9880.9820.9840.9850.9210.9880.9810.9870.9890.9860.9380.9660.94 0.8770.98
    Liver545F298062013.12CDD2B6F1H06460.9830.9210.9210.9820.9760.9820.9850.9740.890.9760.9610.9850.9760.9790.9720.9780.9720.9690.9770.9790.9810.9830.9880.9840.9830.9740.9740.9780.9810.9830.9890.9840.9330.9780.9860.9750.9420.9850.9850.980.9810.9780.9760.9830.9870.9570.9710.9760.9820.9780.9860.9720.9770.9710.9850.9830.9750.9830.9830.9780.9710.950.9840.8890.9770.9780.9720.9820.9680.9480.980.9520.9820.98510.9780.9730.9820.9840.9860.9790.9760.9610.9760.980.9660.980.9860.9810.980.9760.9780.980.9790.9780.9830.9730.9760.9780.9780.9740.980.9640.9790.9790.9880.9730.9780.9740.9770.9420.9770.9820.9750.9820.9720.9820.970.9810.9780.9780.9660.9790.9630.9850.9880.9830.9730.980.9850.9840.9770.9730.9790.9780.9710.9720.9840.9830.980.9850.9220.9790.9740.9830.9870.9940.9520.9680.953 0.8890.97
    Liver212F67101713.10CDDBA/2JH11470.9850.9310.9320.9830.9760.9780.9840.9750.8980.9820.9690.9820.9710.9780.9690.9770.9830.9660.9790.980.9690.9830.9810.9820.9810.980.9810.9790.9840.9810.980.9790.9410.9850.9830.9810.9510.9870.9860.9840.9820.9810.9840.9840.9820.9530.9780.9810.9840.980.9810.9730.9820.9790.9820.9810.9830.9740.98610.9670.9590.980.8960.9760.9750.9740.9790.9730.9570.9850.9460.9780.9840.97810.9850.9830.9820.9830.9830.9770.9650.9750.9830.9650.9840.9810.9770.9820.9780.980.9810.9840.9830.9790.9790.9760.9780.9780.9770.9820.9770.9750.9720.9790.9830.980.9720.9830.940.9840.9840.9720.9770.9740.980.9730.9790.980.9790.970.9790.9670.9840.9820.9790.980.9790.9840.980.9830.9790.980.9760.9710.9750.9790.9830.9760.9820.9180.9830.970.9780.9790.9770.9460.9730.949 0.8960.98
    Liver764F121083016.07CDDBA/2JH18180.9710.9420.9420.9710.9690.9710.9680.980.920.970.9610.9770.9650.9690.9690.9670.9890.9690.9740.9750.9570.9720.9720.9750.9810.9830.9840.980.9770.9710.970.9680.9390.9820.9820.9840.9670.9760.9840.9770.9710.9740.9770.9740.9790.9610.9630.9720.9720.9750.9750.9810.9880.9750.9750.9710.9830.9620.9790.9850.9610.9510.9760.8950.9670.9690.9760.9720.9780.9640.9840.960.9650.9680.9730.98510.9690.9740.9740.9690.9640.9540.9620.9750.9730.9750.9720.980.9680.9720.9760.9780.9820.9820.9730.9750.980.9750.980.9680.9720.9770.9710.9640.9670.9780.9680.9630.9760.9310.9820.9780.970.9710.9760.9690.9610.9690.9690.9670.9630.9650.9630.980.9760.9690.9870.9750.9820.9730.9760.9750.9730.9650.9640.9630.9690.9840.9650.9740.9160.970.9590.9660.9670.9680.960.9740.963 0.8950.97
    Liver216F306101713.15HFB6D2F1H13020.9940.9230.9260.9890.9870.9840.9930.9560.8810.9870.9770.9840.9830.9860.9710.9810.9680.9560.9830.9830.9780.9890.990.9890.9770.9720.9730.970.9880.9880.9880.9840.9510.9770.980.9740.9290.9890.9790.9830.9840.9860.9830.990.9790.9420.9890.9830.9880.9830.9850.9590.9740.9830.9890.9880.9750.9780.9860.9830.9820.9720.980.9020.9840.9850.9730.9840.9620.9380.980.9350.9890.9930.9820.9830.96910.9890.9910.9870.9890.9780.9840.9850.960.9880.9890.9680.9850.9810.9830.9820.9770.9770.9870.9840.9670.9820.9730.9860.9840.970.9810.9840.9880.9790.9880.9850.9840.9570.9720.980.9680.9880.9730.9880.9860.9840.9890.9860.9780.9840.9690.9850.9870.9860.9680.9810.9850.9840.9840.9840.9810.9880.980.9880.9880.9850.990.9870.9290.9910.9860.9880.9910.9840.9350.9690.934 0.8810.98
    Liver547F279102616.04HFB6D2F1H22880.9890.9380.940.9890.9810.9880.9860.9660.9010.9840.9820.9870.9860.9870.9740.9850.9760.9690.9890.9860.9830.9880.9870.9890.9820.9760.9760.9770.9890.9870.9870.9860.9590.9750.9840.9820.9360.9850.9810.9840.9880.9840.9810.9880.9840.9490.9770.9820.9840.9780.990.9620.9810.980.9880.9870.980.9790.990.9820.9770.970.9870.910.9840.9810.9830.9880.9710.9430.9810.9420.9890.9860.9840.9820.9740.98910.9960.9820.9870.980.9860.9870.9730.9870.9910.9790.9840.9850.9890.9890.9830.9820.9910.9870.9740.9840.9780.990.9850.9770.9820.9870.9870.9820.990.9880.9880.9590.9720.9830.9740.9830.9830.9850.9850.9880.9860.9850.9790.9840.9730.9880.9920.9880.9730.9840.9890.9880.9880.9870.9790.9820.9850.9870.9830.9870.9890.9870.9420.9850.9880.9910.990.9840.9420.9760.948 0.9010.98
    Liver547F296102616.05HFB6D2F1H22900.990.9320.9340.9880.980.9870.9870.9660.8950.9850.9790.9870.9840.9860.9730.9840.9750.9690.9890.9850.9810.9880.9880.9890.9820.9750.9760.9760.9880.9870.9890.9850.9550.9770.9860.980.9340.9870.9830.9860.9870.9850.9840.9890.9840.9470.9780.9820.9860.9790.9890.9630.9790.9780.9890.9870.9780.9810.990.9830.9780.9680.9860.9030.9840.9830.9820.9870.9690.9440.9810.9440.9890.9870.9860.9830.9740.9910.99610.9830.9880.9780.9880.9860.9730.9860.9910.980.9850.9870.9890.9890.9830.9820.990.9870.9750.9850.9790.9880.9850.9740.9820.9850.9890.9830.990.9890.9870.9560.9750.9850.9730.9850.9820.9890.9850.9880.9880.9840.9760.9840.9710.9890.9920.9880.9730.9850.9890.9890.9870.9870.9830.9820.9820.9870.9870.9880.990.9880.9350.9880.9890.9890.9920.9870.9440.9780.946 0.8950.98
    Liver176F254042415.12HFBXD100H20850.9860.9270.9270.9850.9850.9840.9880.9660.890.9840.9730.9810.9730.9790.9740.9760.9640.9590.9760.9790.9790.9840.9840.9850.9770.9750.9750.9750.9850.9860.980.9840.9450.9770.9760.9730.940.9870.9770.9810.9820.9810.9770.9870.980.950.9830.9830.9840.9850.9810.9630.9750.9790.980.9860.9780.9730.980.9830.9740.9620.9750.90.9740.9740.970.980.9650.9470.9840.940.9830.9880.9790.9830.9690.9870.9820.98310.9880.9740.9790.9890.9580.9850.9830.9680.9850.9740.9760.9770.980.980.9820.9810.9720.9760.9740.9790.9860.9740.9780.9790.980.9770.9830.9720.9810.950.9750.9810.9720.9830.970.9790.9790.9850.9850.980.9750.9820.9690.9820.9820.9820.9710.9740.9820.9770.9810.9810.9750.980.9740.9790.9830.980.9790.9820.9260.9860.9780.9860.9820.980.940.9650.942 0.890.97
    Liver537F77050914.04HFBXD100H11870.9880.9310.9330.9890.9850.9870.9860.9560.8920.9850.980.9790.9790.9830.9720.9770.9630.9580.9840.9830.9770.9860.9840.9860.9750.9690.970.9680.9860.9850.9830.9830.9580.9690.9760.9720.9270.9820.9730.9790.9830.9840.9770.9850.9760.940.9810.9810.9820.9790.9830.9530.9720.980.9820.9850.9740.9750.9830.9770.980.9740.9750.9120.9790.9780.9760.9830.960.9350.9780.930.9870.9860.9760.9770.9640.9890.9870.9880.98810.9840.9830.9860.9640.9830.9860.9660.9830.9810.9840.9830.9780.9770.9850.9850.9660.980.9710.9860.9810.9750.9760.9840.9820.9780.9850.9820.9840.9580.9640.9760.9670.9820.9760.9810.9890.9840.9880.9820.9790.9830.9720.9810.9840.9840.9650.9790.9810.9820.9840.9850.9740.9810.9830.9870.9820.9810.9860.9810.940.9870.9860.9860.9860.9780.930.9690.935 0.8920.98
    Liver493F290042715.19HFBXD101H14220.9750.9440.9470.9770.9810.9830.9730.9440.9170.9760.9850.9690.9750.9740.9720.9760.9560.950.9770.9730.9690.9740.9710.9740.9610.9620.9630.9560.9770.9760.9680.9760.970.9540.9580.9710.9230.9660.9570.9620.9710.9710.9620.9740.9640.940.9750.9750.9690.9690.9720.9380.9620.9770.9710.9760.9640.9620.9730.9650.9770.9750.9620.9290.9690.9690.9690.9720.9580.9250.9670.9230.9780.9730.9610.9650.9540.9780.980.9780.9740.98410.9750.9740.9580.9710.9740.9550.9730.9710.9770.9770.9640.9640.9770.9750.9550.9740.960.9830.970.9730.970.9830.9680.9630.9730.9720.9780.9680.9470.9590.9660.9730.9690.9670.9840.9720.9780.9760.9850.9770.9720.970.9730.9750.9540.9690.9710.9690.9780.9750.9610.9710.9850.9810.9710.9710.9780.9690.960.9720.9810.9770.9770.9650.9230.960.938 0.9170.97
    Liver183F284052814.04HFBXD102H13610.9820.9270.9280.9850.9760.9850.9810.9560.8920.9880.9830.9770.9810.9790.9680.9780.9680.9620.9820.9820.9770.9810.980.9820.9720.970.9710.9670.9840.9790.9810.9790.9550.9690.9730.9730.9210.9790.970.9750.9840.9820.9770.9850.9770.9390.9750.980.9770.9690.9830.9490.9710.9730.9790.9790.9680.9770.9810.9750.9710.9680.9750.9060.9810.9780.9750.980.960.9340.9720.9310.9880.9810.9760.9750.9620.9840.9860.9880.9790.9830.97510.9850.9650.980.9830.970.9790.9810.9820.9820.9730.9720.9830.980.9610.9780.9650.9840.9780.9690.9740.9830.9820.9770.9840.9780.9780.9540.9620.9740.9660.9750.9750.9780.9810.9850.9840.980.9740.9780.9650.9760.9810.9820.9630.9770.9770.9790.9780.980.9710.9750.980.9820.9760.980.9810.9770.9380.9820.9830.9850.9830.9760.9310.9680.936 0.8920.97
    Liver366F195121214.07HFBXD102H14980.9850.9330.9330.9850.980.9840.9850.9720.8980.9870.9770.9850.9760.9810.9740.9780.9720.9740.980.9810.9780.9850.9830.9880.9840.9820.9820.9830.9860.9820.980.9830.9450.9770.9810.9810.9460.9850.980.9820.9880.9820.9790.9880.9860.9540.9770.9790.9820.9810.9850.9680.9830.9750.980.9820.9840.9780.9830.9830.9690.9620.9820.8970.9770.9720.980.9830.9750.9580.9860.950.9840.9850.980.9830.9750.9850.9870.9860.9890.9860.9740.98510.9680.9880.9840.9760.9870.9790.9810.9820.9810.980.9870.9840.9780.9790.980.9830.9870.9790.9790.9790.9790.980.9870.9740.9830.9450.9730.9820.9710.9830.980.9810.9810.990.9870.9820.9720.9830.970.9830.9850.9820.9780.9760.9840.9790.9830.9840.9770.9790.9770.9790.980.9850.9780.9820.9280.9830.9770.9880.9830.9790.950.9780.954 0.8970.98
    Liver688F140083016.08HFBXD24H22590.9590.9490.9490.9620.9580.9680.9570.9660.9260.9640.9570.9710.9630.9630.9690.9620.9750.9730.9750.9660.9540.9620.9630.9670.9730.9680.9680.9680.9680.960.9640.960.9530.9640.9690.9750.9490.960.970.9670.9710.9650.9640.9630.9670.9510.9510.9630.960.9590.9680.9620.9740.9620.9650.960.970.9610.970.9650.9590.9580.9710.9120.960.9620.9850.9680.970.9520.9690.9550.9640.9570.9660.9650.9730.960.9730.9730.9580.9640.9580.9650.96810.9620.9650.9770.9610.9710.9770.9790.9720.9710.9710.9720.9720.9790.9720.9630.9660.9730.9640.9630.9610.9680.9650.9630.9730.9440.9640.9680.9650.9620.9850.9640.9690.9640.9660.9650.9620.9610.9720.970.9680.9640.9710.9690.9710.9670.9730.9720.9640.9580.9630.9640.9630.9760.9640.9650.9330.9610.9630.9660.9660.9610.9550.9760.958 0.9120.96
    Liver182F317121515.05HFBXD29H23490.990.9230.9250.9860.980.9810.9880.9640.8870.9860.9720.9840.9850.990.9720.9770.9720.9620.9810.9840.9760.9880.9870.9890.9840.9790.9790.9760.9880.9840.9830.9840.9450.9780.9840.9770.940.9870.980.9810.9840.9840.9820.9880.9840.9470.9810.9820.9820.980.9860.9670.9810.9790.9830.9840.9840.9760.9860.9840.9720.9630.9830.8960.9850.9810.9760.9860.9730.9530.9860.9450.9850.9880.980.9840.9750.9880.9870.9860.9850.9830.9710.980.9880.96210.9910.9760.9820.9790.9820.9820.9780.9770.9880.980.9750.9770.9790.9830.9820.9740.9780.9780.9820.9820.9870.9790.9810.950.9730.980.9660.9840.9760.9810.980.9860.9860.9830.9720.9810.9640.9840.9860.9820.9740.9750.9840.9830.9810.980.9780.9810.9750.980.9810.9850.9810.9830.9240.9850.9790.9860.9830.980.9450.9710.943 0.8870.98
    Liver577F295061913.04HFBXD29H06690.9910.9240.9260.9890.9820.9860.9880.9640.8860.9840.9740.9860.9870.9910.9750.9810.970.9620.9850.9860.9830.9890.9910.990.9810.9730.9730.9730.9880.9880.9880.9870.9490.9750.9850.9760.9340.9860.980.9820.9850.9850.9810.9880.9840.9470.980.9820.9840.980.9890.9620.9780.9810.990.9880.9770.980.9890.9810.980.9660.9830.9010.9850.9850.9760.9880.9670.9390.9810.9390.9880.9880.9860.9810.9720.9890.9910.9910.9830.9860.9740.9830.9840.9650.99110.9790.9830.9820.9860.9860.980.980.9890.9820.9720.9810.9770.9860.9820.9710.980.9840.9880.9810.9870.9870.9840.9550.9720.9810.9680.9850.9760.9850.9830.9870.9870.9840.9760.9830.9670.9870.9910.9890.9710.9830.9880.9880.9840.9820.980.9830.980.9850.9860.9870.9880.9880.9310.9880.9840.9880.990.9870.9390.970.94 0.8860.98
    Liver630F119111314.10HFBXD29H10370.970.9340.9320.9720.9640.9730.970.9830.9140.9710.9570.9780.9710.9770.970.9690.9830.9720.9750.9730.9680.9740.9730.9750.9830.9750.9740.9790.9740.9710.9760.9750.9340.9780.9830.9780.9560.9740.9830.9790.9780.9720.9760.9720.9810.9560.9560.970.9680.9650.9790.9730.980.9670.9750.9710.9760.9730.9790.9770.9580.9430.980.8890.9680.9680.9770.9760.9780.960.9770.9620.9720.970.9810.9770.980.9680.9790.980.9680.9660.9550.970.9760.9770.9760.97910.970.9730.9760.9790.9830.9830.9770.9720.980.9770.9790.9680.9740.9740.9730.9680.9730.9790.9720.9680.9780.9330.9810.9820.9730.970.9770.9730.9640.9740.970.9720.960.9720.9630.9790.9790.9740.980.9780.980.9790.9780.9720.9750.9650.9650.9620.9710.980.9680.9770.9220.9670.9640.9760.9740.9780.9620.9690.96 0.8890.97
    Liver200F261042015.20HFBXD32H20300.9850.9270.9280.9810.9750.9840.9840.9650.8870.9810.970.9860.9710.9770.9730.9880.9690.9720.9790.9780.9840.9870.9820.9840.9780.9710.9710.9790.9810.9860.9790.9860.9410.9710.9770.9740.9370.9840.9780.9820.9860.9770.9750.9830.980.9480.9760.9770.9840.9790.9840.960.9740.9720.9810.9860.9760.9840.9840.9820.9730.9620.980.8960.9760.970.9690.980.9660.9450.9790.9420.9810.9840.980.9820.9680.9850.9840.9850.9850.9830.9730.9790.9870.9610.9820.9830.9710.9830.9790.980.9810.980.9820.9810.9730.9750.9760.980.9870.970.9760.9760.9790.9760.9840.9750.9830.9430.970.9830.970.9810.9690.9820.9770.9880.9820.9810.9730.9850.9670.980.9850.9870.9690.9810.9820.980.9830.9810.9820.9790.9760.980.9810.9770.9780.9840.9270.9820.9740.9860.9860.9830.9420.9750.946 0.8870.97
    Liver539F318101014.02HFBXD32H11370.9820.9230.9250.980.9680.980.9770.960.8880.9770.970.9780.9740.9780.9640.980.9750.9690.9860.980.9750.9810.9780.980.9730.9660.9670.9680.9810.9780.9790.9780.9470.9740.9820.9730.9260.9770.9760.9820.9830.9840.9810.9820.9760.9360.9710.9750.9780.970.9820.9540.9720.9710.9810.9780.9710.9830.9850.9780.9710.9640.9750.8960.9790.9780.9730.9810.960.9320.9720.9320.9790.9770.9760.9780.9720.9810.9850.9870.9740.9810.9710.9810.9790.9710.9790.9820.9730.98310.9870.9860.980.9790.980.9810.9660.9750.970.980.9760.9680.970.9750.9790.9850.9850.980.9790.9460.9680.980.9660.9720.9730.9790.9790.9830.9820.9770.970.9770.9620.9770.9830.9820.9670.9830.9790.9860.9790.9810.9830.9730.9760.9820.9750.980.9790.9770.9280.9820.9760.9770.9820.9770.9320.9780.939 0.8880.97
    Liver197F283101513.04HFBXD34H10560.9840.9430.9450.9860.9770.9860.9780.9650.9080.980.9780.9830.9790.9820.9730.9830.9790.9680.9970.9850.9760.9840.980.9840.980.9740.9750.9750.9870.9810.9820.980.9590.9730.9820.9830.9390.9810.980.9820.9830.9820.980.9840.9790.9480.9770.9840.9810.9760.9860.9620.9790.9780.9840.9810.9780.9780.9890.980.9760.9730.9820.9160.9810.980.9830.9840.9680.9410.9780.9420.9840.9780.9780.980.9760.9830.9890.9890.9760.9840.9770.9820.9810.9770.9820.9860.9760.9790.98710.9970.9830.9820.9840.9860.9740.9850.9770.9860.9810.9780.9780.9830.9810.9810.9850.9850.9870.9560.9710.9810.9710.9770.9830.9810.9840.9810.9810.9850.9820.980.9710.9840.9870.9840.9730.9840.9850.9860.9870.9860.9790.9760.9830.9870.9780.9850.9840.9810.9420.9830.9840.9830.9840.9780.9420.9780.947 0.9080.98
    Liver537F292101014.05HFBXD34H10520.9830.9460.9480.9850.9770.9870.9780.9690.9130.9790.9770.9830.9790.9820.9740.9830.9810.9720.9970.9850.9770.9830.980.9840.9810.9770.9770.9770.9870.9810.9810.9810.9580.9740.9830.9840.9440.9810.9810.9820.9830.9810.980.9830.980.9520.9760.9840.980.9760.9860.9650.9810.9790.9830.9810.9790.9780.9890.9810.9740.9710.9830.9160.9790.9780.9840.9840.9710.9460.9790.9470.9840.9780.980.9810.9780.9820.9890.9890.9770.9830.9770.9820.9820.9790.9820.9860.9790.980.9860.99710.9840.9830.9840.9850.9760.9860.9790.9850.9810.980.9790.9820.980.9810.9840.9830.9880.9550.9720.9810.9740.9770.9840.980.9820.9810.9810.9850.9820.980.9720.9850.9870.9840.9760.9840.9860.9860.9880.9850.9790.9750.9830.9850.9780.9860.9820.9810.9420.9820.9820.9830.9840.9790.9470.9790.953 0.9130.98
    Liver350F129121214.22HFBXD39H14740.9790.9410.9410.9810.9710.9810.9750.9810.9110.9740.9680.9820.9690.9750.9730.9760.9810.9670.9810.9840.9790.9820.9770.9790.980.9770.9770.9840.9830.9790.9790.9780.9430.980.9840.9810.9530.9840.9890.9890.9810.9790.9810.9790.9790.9540.9660.9740.980.9780.9820.9730.9810.9730.9810.9790.9810.9770.9850.9840.9660.9580.9810.90.970.9710.9760.9780.970.9520.980.9510.9780.9750.9790.9840.9820.9770.9830.9830.980.9780.9640.9730.9810.9720.9780.980.9830.9810.980.9830.98410.9970.9760.9840.9810.980.9820.9770.9860.9770.9760.9730.9780.9830.9790.9730.9840.9360.9840.990.9760.9740.9760.980.9720.9790.9740.9730.9690.9760.9660.9830.9830.9820.980.9860.9850.9840.9840.9840.9820.970.9730.9750.9750.980.9780.9830.9260.9790.9730.9810.9810.980.9510.9710.949 0.90.98
    Liver350F204121214.21HFBXD39H14730.9790.940.9410.9810.9710.980.9740.9810.9110.9740.9670.9810.9680.9750.9720.9750.9810.9650.9810.9840.9780.9810.9760.9780.9790.9760.9760.9840.9820.9780.9790.9770.9430.980.9840.980.9530.9830.9880.9890.9810.9790.9810.9790.9780.9530.9650.9730.980.9770.9810.9720.9810.9740.980.9780.980.9760.9840.9830.9660.9580.980.90.970.970.9760.9770.9690.9520.980.950.9770.9740.9780.9830.9820.9770.9820.9820.980.9770.9640.9720.980.9710.9770.980.9830.980.9790.9820.9830.99710.9750.9840.980.9790.9810.9760.9850.9770.9760.9730.9770.9840.9780.9730.9840.9350.9840.9890.9750.9730.9760.980.9720.9780.9730.9720.9680.9750.9660.9830.9820.9810.980.9860.9850.9830.9840.9840.9820.970.9720.9740.9740.980.9770.9820.9250.9790.9720.980.980.9780.950.9710.948 0.90.97
    Liver291F280111314.05HFBXD40H14880.9880.9330.9340.9860.9830.9850.9860.9640.8960.9850.9740.9850.9850.9870.9740.9790.9730.9680.9840.9810.9760.9890.9910.9910.9850.9760.9760.9740.9850.9840.9830.9850.9520.9750.9820.980.9380.9820.9780.9790.9840.9820.9780.9870.9850.950.9790.980.9810.9780.9870.9630.980.9790.9860.9840.9790.9760.9850.9790.9790.9670.9860.9060.9840.9830.9810.9860.9730.9470.9820.9480.9860.9860.9830.9790.9730.9870.9910.990.9820.9850.9770.9830.9870.9710.9880.9890.9770.9820.980.9840.9840.9760.97510.9860.9740.9830.9780.9850.980.9780.980.9830.9820.9780.9850.9840.9830.9570.970.9780.970.9880.9810.9830.9850.9860.9880.9860.9760.9840.9720.9860.9880.9840.9720.9780.9850.9820.9830.9860.9760.9850.9810.9840.9860.9880.9830.9840.9360.9830.9820.9880.9870.9820.9480.9740.951 0.8960.98
    Liver358F202121214.13HFBXD40H15930.9840.9420.9450.9840.9760.9830.9770.9650.9040.9770.9790.9830.9750.9780.9740.9790.9730.9650.9850.9840.9740.9860.9820.9830.9760.9740.9750.9780.9850.980.9790.9780.9590.9720.9790.980.9370.9830.9810.9850.9840.9830.9790.9850.9780.9440.9720.9760.9830.9780.9840.960.980.9760.9830.980.9780.9750.9840.9790.9740.9730.9810.9110.9770.9750.9810.9820.9630.940.980.9390.9840.9770.9730.9790.9750.9840.9870.9870.9810.9850.9750.980.9840.9720.980.9820.9720.9810.9810.9860.9850.9840.9840.98610.9710.980.9750.9850.9860.9760.9750.9810.9780.9820.9860.9810.9840.950.970.9820.9690.9770.9810.9820.9830.9830.9810.9760.9740.9760.9690.9830.9840.9830.9730.9820.9850.9820.98410.9780.9760.9810.9870.9770.9850.9830.9820.9380.9860.9830.9850.9840.9740.9390.9770.941 0.9040.98
    Liver240F258042015.10HFBXD44H18250.9710.9410.940.9720.9670.9710.9690.9810.9190.9690.9530.9810.9610.9690.9720.9680.9770.9730.9720.9710.9660.9750.9720.9790.9890.9810.9810.9850.9740.9720.970.9730.9280.9710.980.9810.9740.9740.9830.9770.9740.9640.9680.9680.9790.9660.9570.9650.9710.9770.9740.9850.9860.9640.9720.9720.9850.9640.9770.9760.9580.9420.9810.8880.9620.960.9760.9720.9830.9750.9820.9730.9660.9690.9760.9760.980.9670.9740.9750.9720.9660.9550.9610.9780.9720.9750.9720.980.9730.9660.9740.9760.9810.980.9740.97110.9810.9970.9670.9780.9760.9750.9610.9670.9690.9690.9640.980.9280.9760.9790.9660.9740.9760.9710.9620.9710.9670.970.9590.9740.9670.980.9770.9730.9860.9740.9810.9710.980.9710.9710.9650.9610.9610.970.9780.9660.9760.9150.9670.9590.9730.9730.9730.9730.9730.971 0.8880.97
    Liver379F158012615.12HFBXD44H15010.9780.950.9520.9790.980.9810.9790.9660.9190.980.9710.9820.9770.9780.9780.9750.9760.9680.9840.9780.970.9780.980.9840.9830.9780.9780.9760.9820.9780.9790.9760.9560.9750.9760.9820.9530.9780.9790.9770.980.9760.9750.9790.9780.9590.9740.9770.9780.9790.9790.970.980.9780.9810.9780.9780.9690.9810.9780.9760.9670.9810.9150.9740.9780.9870.9770.9750.9550.9790.9580.9790.9790.9780.9780.9750.9820.9840.9850.9760.980.9740.9780.9790.9790.9770.9810.9770.9750.9750.9850.9860.980.9790.9830.980.98110.9830.980.9790.9810.980.980.9770.9730.9770.9770.9850.9570.9740.9770.9730.9810.9870.9790.9810.9740.9810.9810.9780.9780.9820.9840.980.9780.9770.9780.9830.9760.9850.980.9740.9770.9760.9790.9810.9860.9820.9810.9390.980.9790.9810.9820.9760.9580.9750.96 0.9150.98
    Liver715F144102414.12HFBXD44H16870.9760.9390.940.9760.970.9740.9720.9780.9140.9720.9580.9840.9650.9730.9740.9720.9760.9720.9760.9750.9690.9790.9760.9830.990.9810.9810.9850.9770.9760.9750.9760.9320.9720.9830.9820.9690.9770.9850.980.9760.9680.9720.9730.9810.9630.9620.9670.9760.980.9780.9830.9870.9660.9760.9760.9850.9670.980.9780.9630.9470.9830.890.9670.9660.9780.9760.9820.9720.9840.970.970.9720.9780.9780.980.9730.9780.9790.9740.9710.960.9650.980.9720.9790.9770.9790.9760.970.9770.9790.9820.9810.9780.9750.9970.98310.9720.9810.9760.9770.9650.9720.9710.9740.970.9820.9320.9760.9810.9660.9770.9780.9750.9670.9750.9720.9730.9620.9770.9690.9830.980.9760.9850.9760.9830.9750.9820.9750.9750.9690.9650.9680.9740.980.9720.980.9170.9720.9650.9760.9770.9750.970.9760.967 0.890.97
    Liver503F303121515.15HFBXD45H19400.9870.9440.9460.9880.9820.9890.980.9580.9050.9820.9850.9810.9840.9830.9740.9830.970.9590.9860.9850.9790.9850.9810.9850.9740.9770.9780.970.9890.9850.9820.9830.9630.9670.9760.980.9290.980.9730.9750.9830.9820.9760.9850.9780.9460.9770.980.9820.9780.9860.9540.9770.9810.9840.9850.9770.9740.9860.9770.9770.9760.9770.9180.9820.9790.9780.9830.9650.9350.9770.9310.9890.980.9740.9770.9680.9860.990.9880.9790.9860.9830.9840.9830.9630.9830.9860.9680.980.980.9860.9850.9770.9760.9850.9850.9670.980.97210.9810.9770.9780.9880.9820.9760.9840.9820.9850.9580.9610.9740.9670.9780.9780.9780.9860.9830.9830.9810.9820.9810.9730.980.9860.9860.9680.9820.9830.9820.9850.9850.9720.9780.9890.9860.9770.9820.9860.9810.9480.9810.9850.9880.9840.9760.9310.9690.941 0.9050.98
    Liver189F263042015.24HFBXD48H20460.9830.9370.9380.9830.9770.9820.9820.9720.8990.9780.9730.9860.9730.9760.9780.9810.9710.9690.980.9810.9810.9840.9810.9830.980.9780.9780.9880.9880.9820.9820.980.9460.9730.9790.980.9440.9870.9840.9870.9860.9790.9780.9850.9820.9530.9730.9750.9860.9830.9840.9680.980.9720.9810.9820.9820.9780.9830.9820.9710.9610.9830.8990.9760.9720.9770.980.970.9550.9830.950.9840.9820.980.9820.9720.9840.9850.9850.9860.9810.970.9780.9870.9660.9820.9820.9740.9870.9760.9810.9810.9860.9850.980.9860.9780.9790.9810.98110.9760.9790.9810.9810.9760.9850.9750.9830.9440.9750.9860.9730.980.9770.9840.9770.9840.9790.9770.9690.980.9690.9850.9840.9850.9760.9790.9850.980.9830.9860.9810.9760.9750.9790.9810.9820.9810.9860.9280.9830.9790.9870.9850.9810.950.9750.948 0.8990.98
    Liver595F238042915.13HFBXD48H13770.970.960.960.9740.9780.9760.970.970.9320.9760.970.970.9690.9720.9760.9670.9780.9660.9760.9730.960.9710.9690.9740.9770.9780.9790.9780.9820.9690.9650.9740.9520.9690.9680.9830.9620.9680.9730.9680.9730.9690.9680.9710.9730.960.9680.9740.9660.9730.9710.9660.980.9770.9710.9690.980.9590.9760.9770.9660.9620.9720.9160.9620.9640.9840.9710.9780.9630.980.9550.9710.970.9640.9770.9770.970.9770.9740.9740.9750.9730.9690.9790.9730.9740.9710.9740.970.9680.9780.980.9770.9770.9780.9760.9760.9810.9760.9770.97610.9780.9760.9630.970.9660.9630.9830.9470.9670.9680.9710.9760.9840.9650.9760.970.9760.9770.9750.9750.9790.9770.9710.9690.9780.9710.9770.9670.9830.9760.9610.9690.9750.970.970.980.9660.9710.9390.9680.9680.9760.9690.9620.9550.970.966 0.9160.97
    Liver233F239051112.04HFBXD48aH02100.9790.9410.9410.980.9830.9810.980.9680.910.9770.970.9780.9760.9760.9720.9760.9710.9640.9770.9760.9740.9790.980.980.9770.9770.9770.9780.9840.9780.9780.9810.9450.9720.9750.9790.950.9780.9770.9730.9760.9730.9730.9780.9780.960.9750.9770.9770.9780.9780.970.9770.9760.9810.9780.9770.9690.980.9750.9730.9570.980.9040.9720.9730.9750.9760.9710.9520.9760.9530.9790.980.9790.9750.9710.9810.9820.9820.9780.9760.970.9740.9790.9640.9780.980.9730.9760.970.9780.9790.9760.9760.980.9750.9750.980.9770.9780.9790.97810.9820.9770.9680.9740.9730.9820.9510.9710.9740.970.9830.9750.9770.9730.9760.9770.9790.9740.9770.970.9840.980.9790.9740.9770.9820.9760.9820.9750.9690.9770.9740.9740.9820.9810.9780.9810.9330.9750.9750.9820.980.9790.9530.9670.957 0.9040.97
    Liver543F287062013.06HFBXD48aH06990.9820.9430.9440.9860.9850.9880.9810.9560.9070.9790.9840.9770.9850.9790.9750.980.9650.9560.9820.9820.980.9790.9820.9810.9690.9720.9720.9690.9890.9820.9810.9820.9650.9660.970.9780.9280.9780.9710.9710.980.9810.970.9840.9790.9490.9790.9820.9780.9760.9830.9510.9710.980.9820.9820.970.9740.9810.9720.9790.9710.9740.9190.9770.9770.9760.9790.960.9310.9730.930.9870.9810.9790.9720.9640.9840.9870.9850.9790.9840.9830.9830.9790.9630.9780.9840.9680.9760.9750.9830.9820.9730.9730.9830.9810.9610.980.9650.9880.9810.9760.98210.9810.9690.9790.9760.9810.9650.9590.970.9740.9780.9760.9750.9840.980.9830.9810.9830.9780.9720.9790.9830.9830.9640.9770.980.980.9810.9810.9660.9760.9860.9820.9780.9810.9850.9780.9520.980.9850.9860.9840.980.930.9630.943 0.9070.97
    Liver713F143010614.07HFBXD53H08330.990.9150.9170.9880.9780.9830.9880.9630.8780.9810.970.9840.9790.9820.9680.9790.9690.9550.9810.9820.9790.9870.9870.9850.9770.9690.970.9710.9850.9840.9970.9840.9430.9760.9850.9720.9270.9870.9820.9830.9840.9840.9830.9870.9810.9430.9760.9770.9850.9780.9870.960.9720.9740.9880.9840.9720.9810.9850.9790.9750.9610.9820.8940.9830.9840.970.9830.9610.9340.9760.9360.9890.9880.9880.9790.9670.9880.9870.9890.980.9820.9680.9820.9790.9610.9820.9880.9730.9790.9790.9810.980.9780.9770.9820.9780.9670.9770.9720.9820.9810.9630.9770.98110.9780.9840.9840.9810.9470.9720.9820.9680.9810.970.9860.9780.9820.9820.980.9690.980.9620.9830.9870.9860.9650.9820.9830.9870.9810.9780.9820.9810.9760.9810.9840.9810.9880.9860.9230.9850.9830.9860.9880.9880.9360.9630.931 0.8780.97
    Liver188F128111414.03HFBXD61H19220.980.9220.9240.980.9670.9750.9760.970.8910.9780.9680.9760.9730.9780.9630.9690.9780.960.980.980.9670.980.9770.9790.9750.9710.9720.9720.9810.9750.9790.9740.9440.9860.9870.9750.9380.980.980.9850.9820.9850.9870.9820.9770.9390.970.9760.9770.9690.9790.9610.9780.9740.9790.9750.9750.9760.9830.9830.9630.9590.9750.8920.9770.9770.9730.9820.9640.9430.9770.9390.9790.9760.9730.9830.9780.9790.9820.9830.9770.9780.9630.9770.980.9680.9820.9810.9790.9760.9850.9810.9810.9830.9840.9780.9820.9690.9730.9710.9760.9760.970.9680.9690.97810.9860.9790.9790.9380.9780.9830.9660.9710.9730.9780.9730.9810.9790.9720.9640.970.9580.9780.980.9770.9740.980.980.9840.9790.9820.9820.970.9680.9750.9720.9810.9750.9790.920.9810.9730.9770.9760.9720.9390.970.934 0.8910.97
    Liver188F323111414.04HFBXD61H17220.9880.9220.9240.9860.9740.9830.9840.960.8820.9810.9760.9850.980.9830.9670.980.9690.9640.9850.9820.980.9870.9830.9860.9770.9710.9720.9740.9850.9820.9850.9820.950.9780.9850.9760.9250.9860.9780.9860.9890.9850.9840.9890.9820.9370.9760.9780.9860.9760.9860.9560.9760.9720.9830.9820.9770.980.9860.980.970.9650.9830.8960.9840.9790.9760.9860.9620.9380.9790.9360.9870.9840.9780.980.9680.9880.990.990.9830.9850.9730.9840.9870.9650.9870.9870.9720.9840.9850.9850.9840.9790.9780.9850.9860.9690.9770.9740.9840.9850.9660.9740.9790.9840.98610.9880.9810.9520.9690.9840.9660.9780.9760.9870.9820.9890.9860.980.970.980.9620.9810.9860.9840.9690.9780.9820.9860.9810.9860.9810.9790.9770.9860.980.9820.9860.9840.9290.9880.9850.9880.9860.9790.9360.9760.933 0.8820.98
    Liver524F316121515.25HFBXD61H18430.9870.920.9240.9830.9720.9790.9780.950.880.9760.9720.9810.980.9850.9630.9780.9660.9520.9850.9810.9720.9840.9810.9840.9750.960.9610.9640.9810.980.9830.9780.9510.9680.9820.970.9190.9780.9740.980.980.9760.9790.980.9720.9290.970.9730.9810.9710.9820.950.9690.9720.9850.980.9690.9710.9850.9720.9750.9650.9820.90.9830.9830.9720.9850.9580.9250.970.9310.9820.9780.9740.9720.9630.9850.9880.9890.9720.9820.9720.9780.9740.9630.9790.9870.9680.9750.980.9850.9830.9730.9730.9840.9810.9640.9770.970.9820.9750.9630.9730.9760.9840.9790.98810.9810.9560.9620.9760.9550.9780.9720.9840.980.9780.9780.9780.9690.9770.960.9810.9840.9830.960.9790.9820.9860.9810.9810.9770.980.9760.9870.980.9780.9880.9840.9320.9830.9850.9820.9840.9750.9310.9690.924 0.880.97
    Liver488F242042915.19HFBXD62H14340.9840.9480.9490.9860.980.9850.980.9720.9160.9810.9770.9840.9760.9820.9770.9810.9780.9670.9860.9830.9770.9840.9790.9830.9810.9770.9780.9780.9860.9830.9810.9830.9570.9730.980.9860.9550.9810.9820.9830.9820.9780.9780.980.9790.9560.9750.980.980.9790.9840.9670.9810.980.9830.9830.9820.9750.9870.9830.9750.9690.9820.9150.9740.9750.9810.9820.9750.9530.9810.9490.9840.980.9770.9830.9760.9840.9880.9870.9810.9840.9780.9780.9830.9730.9810.9840.9780.9830.9790.9870.9880.9840.9840.9830.9840.980.9850.9820.9850.9830.9830.9820.9810.9810.9790.9810.98110.9560.9730.9820.9740.980.9810.980.9820.980.980.9830.980.9840.9750.9850.9850.9840.9770.9850.9860.98310.9840.9770.9770.9820.9830.9780.9830.9820.9840.940.9810.9810.9860.9860.9780.9490.9740.955 0.9150.98
    Liver548F302082214.10HFBXD62H13150.9510.9320.9340.9520.960.9590.9510.9140.8960.9530.960.9470.9640.9560.9480.9520.9280.9260.9560.9520.9470.9490.9530.9530.9380.9380.9390.9290.9570.9540.9470.950.970.9320.9320.9480.9020.9470.9340.9380.9470.9490.9390.9520.9420.9210.9590.9640.9470.9480.950.9170.9390.9610.9530.9540.9370.9360.9490.940.9630.9560.9420.9260.9520.9540.9520.9560.9340.8980.9460.9030.9590.9510.9420.940.9310.9570.9590.9560.950.9580.9680.9540.9450.9440.950.9550.9330.9430.9460.9560.9550.9360.9350.9570.950.9280.9570.9320.9580.9440.9470.9510.9650.9470.9380.9520.9560.95610.9240.9360.9470.9520.9520.9440.9640.9480.9580.9580.9690.9520.9580.9520.9530.9510.9280.9410.950.9460.9560.950.9320.9530.9580.9610.9510.950.9630.9480.9540.9530.9690.9570.9550.9440.9030.9350.913 0.8960.95
    Liver186F125111414.09HFBXD63H17150.9720.9220.9220.9690.9650.9660.9740.9790.8950.970.950.9760.9590.9680.9610.9630.9790.9610.9690.9680.960.9730.9740.9730.9770.9750.9750.9760.9710.970.9750.9670.9220.9860.980.9720.9550.9830.9890.9860.9720.9710.980.9740.9750.9520.9640.970.9740.9710.9720.9760.9760.9670.9740.970.9740.9670.9750.9840.9570.940.9760.880.9640.9670.9680.9690.9690.9570.9760.9580.9670.9740.9770.9840.9820.9720.9720.9750.9750.9640.9470.9620.9730.9640.9730.9720.9810.970.9680.9710.9720.9840.9840.970.970.9760.9740.9760.9610.9750.9670.9710.9590.9720.9780.9690.9620.9730.92410.9880.9730.9730.9680.9780.9580.9690.9680.9670.9550.9670.9560.980.9750.970.9790.9740.9790.9730.9730.970.980.9670.9540.9610.9750.9770.9670.9780.9010.9720.9620.9710.9710.9760.9580.9640.946 0.880.97
    Liver344F123121214.26HFBXD63H14160.9820.9250.9260.980.9670.9770.9790.9770.8920.9750.9630.9830.9670.9760.9670.9750.9770.9670.980.9780.9780.9830.9790.9810.9810.9730.9740.9820.980.9790.9830.9790.9350.980.9860.9760.9440.990.9910.9960.9840.9790.9820.9810.9810.9460.9670.9740.9820.9760.9830.970.9780.9680.9810.9790.9780.9790.9830.9840.9630.9510.9840.8890.9730.9720.9730.980.9680.9510.9790.9490.9790.9790.9820.9840.9780.980.9830.9850.9810.9760.9590.9740.9820.9680.980.9810.9820.9830.980.9810.9810.990.9890.9780.9820.9790.9770.9810.9740.9860.9680.9740.970.9820.9830.9840.9760.9820.9360.98810.9760.9740.9730.9850.9710.9820.9750.9760.9630.9780.9610.9850.9850.9820.9770.9820.9840.9860.9820.9820.9860.9730.9680.9750.9780.9790.9790.9840.9170.9810.9750.9820.9830.9830.9490.9720.943 0.8890.97
    Liver752F135102616.17HFBXD63H20910.9640.9430.9420.9690.9710.9750.9690.9720.9220.9650.9660.970.9640.960.9720.9680.9690.9670.970.9680.9710.9660.9680.9680.9660.9720.9720.9710.9720.970.970.9690.9470.970.9660.9770.9490.9750.9760.9730.970.970.9630.9720.9730.9610.9650.9730.9690.970.9710.9630.9710.970.970.970.9690.9680.9690.9720.9630.950.9670.9050.9580.9610.9710.9660.9640.9460.9730.9450.9720.9690.9750.9720.970.9680.9740.9730.9720.9670.9660.9660.9710.9650.9660.9680.9730.970.9660.9710.9740.9760.9750.970.9690.9660.9730.9660.9670.9730.9710.970.9740.9680.9660.9660.9550.9740.9470.9730.97610.9660.9710.9640.9670.9680.9690.9670.970.9680.9690.9740.9720.9710.9710.9710.9740.9710.9740.9690.9670.9620.9710.9630.9680.9730.9680.970.9360.9680.9670.9730.9710.9760.9450.9610.959 0.9050.97
    Liver230F265051012.01HFBXD65H04580.9860.9270.9290.9810.9870.9790.9880.9620.8890.9830.9670.9820.9770.9820.9740.9750.9670.9620.9760.9750.9710.9840.9890.9880.9810.9730.9740.9730.9810.9830.9820.9830.9410.9760.9780.9750.9440.9820.9780.9760.9810.9790.9780.9850.980.9530.9820.9770.9820.9830.980.9670.9760.9790.9850.9830.9760.970.980.9770.980.9610.9820.8950.9780.980.9760.9790.970.9490.9810.9530.980.9880.9820.9770.9710.9880.9830.9850.9830.9820.9730.9750.9830.9620.9840.9850.970.9810.9720.9770.9770.9740.9730.9880.9770.9740.9810.9770.9780.980.9760.9830.9780.9810.9710.9780.9780.980.9520.9730.9740.96610.9760.9860.9810.9790.9850.9830.9730.9830.9710.9870.9840.980.9710.9750.9840.9770.980.9770.9750.9880.9730.9790.9910.9850.9820.9850.9230.9810.9780.9840.9840.9810.9530.9690.949 0.8890.97
    Liver541F212121615.06HFBXD65H17840.9720.9550.9560.9750.9720.9770.970.9680.9250.9750.970.9760.9740.9730.9750.9690.9770.9730.9820.9750.9640.9720.9740.9760.9780.9790.9790.9770.980.970.9730.970.9580.9710.9740.9830.9520.9720.9750.9730.9810.9770.9740.9780.9780.9590.9640.9730.9710.9710.9760.9680.9820.9720.9740.970.980.9650.9780.9740.9650.9670.9790.9170.9710.97110.9760.9750.9590.9780.9570.9770.970.9720.9740.9760.9730.9830.9820.970.9760.9690.9750.980.9850.9760.9760.9770.9690.9730.9830.9840.9760.9760.9810.9810.9760.9870.9780.9780.9770.9840.9750.9760.970.9730.9760.9720.9810.9520.9680.9730.9710.97610.9750.9830.9750.9780.9740.9710.9710.980.9790.9760.9720.9780.9730.980.9720.9810.9810.9660.970.9750.9740.9730.9870.9740.9740.9410.9730.9750.9780.9740.9680.9570.9790.963 0.9170.97
    Liver174F315102414.18HFBXD65bH17130.9870.920.9220.9820.9740.9780.9850.9640.880.980.9680.9850.9740.980.9640.9780.970.9620.9810.9770.9740.9860.9840.9840.9770.9690.970.9750.980.9810.9870.980.9380.9790.9840.9730.9310.9860.9840.9870.9860.9820.9870.9870.9780.940.9730.9730.9870.9770.9820.9630.9720.970.9860.9810.9730.9770.9840.980.9710.9590.9850.8890.9810.980.9750.9790.9620.9410.9750.9460.9810.9850.9820.980.9690.9880.9850.9890.9790.9810.9670.9780.9810.9640.9810.9850.9730.9820.9790.9810.980.980.980.9830.9820.9710.9790.9750.9780.9840.9650.9770.9750.9860.9780.9870.9840.980.9440.9780.9850.9640.9860.97510.9780.9810.9810.9780.9650.9790.9610.9870.9860.9830.9690.9820.9840.9840.980.9820.9840.9830.970.9820.9870.9830.9870.9890.9190.9850.9830.9840.9880.9830.9460.9740.933 0.880.97
    Liver527F321121615.11HFBXD65bH17900.9840.9350.9380.9830.980.9840.9810.950.8950.9810.9780.9760.9790.9810.9730.9750.9620.9570.9840.9790.9730.9810.980.9820.970.9660.9660.9630.9840.980.9780.9790.9650.9650.970.9720.9230.9760.9680.9730.9830.9840.9740.9840.9740.9390.9780.9790.9760.9740.980.9470.9680.9780.9780.980.9720.9720.980.9730.9780.980.9720.920.9780.9780.9830.980.9590.9310.9740.9260.9850.9810.970.9730.9610.9860.9850.9850.9790.9890.9840.9810.9810.9690.980.9830.9640.9770.9790.9840.9820.9720.9720.9850.9830.9620.9810.9670.9860.9770.9760.9730.9840.9780.9730.9820.980.9820.9640.9580.9710.9670.9810.9830.97810.980.9860.9810.9810.980.9760.9760.9810.9790.9590.9750.9760.9780.9820.9830.9690.9780.9840.9860.9780.980.9840.9760.9440.9820.9850.9840.9830.9730.9260.9680.935 0.8950.97
    Liver184F262042415.05HFBXD66H21240.9860.9230.9230.9850.9750.9850.9830.9660.8850.9830.9730.9840.9780.9810.9690.9810.9680.970.980.9810.9840.9880.9840.9870.980.9740.9740.9760.9840.9850.9820.9870.9460.9740.9820.9760.9320.9840.9760.9810.9880.9830.9780.9880.9890.9480.9730.9780.9810.9750.9870.9580.9770.9730.9810.9850.9770.9810.9850.9790.9690.9610.9820.8940.9810.9740.9750.9850.9650.9410.980.9380.9850.9830.9810.9790.9690.9840.9880.9880.9850.9840.9720.9850.990.9640.9860.9870.9740.9880.9830.9810.9810.9790.9780.9860.9830.9710.9740.9750.9830.9840.970.9760.980.9820.9810.9890.9780.980.9480.9690.9820.9680.9790.9750.9810.9810.990.980.9710.9820.9640.980.9870.9850.9690.9780.9830.9820.980.9830.9770.9770.9770.9810.980.9820.9790.9820.9280.9840.9790.9890.9850.9820.9380.9730.943 0.8850.98
    Liver367F122121214.04HFBXD66H15600.9860.9270.930.9830.9840.9830.9880.9580.8890.9870.9750.980.9820.9820.9710.9760.9660.9640.9810.9790.9750.9830.9870.9870.9770.9730.9740.9690.9840.9830.9820.9830.9530.9760.9770.9750.9340.9810.9730.9760.9840.9850.9780.9870.9850.9490.9840.9820.980.980.9820.9570.9750.980.9830.9830.9750.9750.9820.980.9790.9680.9770.9020.9810.980.9780.9820.9650.9420.9810.9380.9840.9880.9780.980.9690.9890.9860.9880.9850.9880.9780.9840.9870.9660.9860.9870.970.9820.9820.9810.9810.9740.9730.9880.9810.9670.9810.9720.9830.9790.9760.9770.9830.9820.9790.9860.9780.980.9580.9680.9750.9690.9850.9780.9810.9860.9910.9850.9770.9820.9720.9820.9840.9810.9680.9750.9810.9790.980.9810.9740.9830.9780.9830.9840.9860.9830.9820.9320.9870.9820.9860.9850.9790.9380.9720.944 0.8890.98
    Liver201F59101613.08HFBXD68H10710.9860.930.9310.9830.9820.9820.9880.9580.8940.9850.9720.9790.9790.9840.9710.9770.9710.9610.9840.9760.9730.9820.9830.9860.980.9690.9690.9690.9830.9810.980.9850.9490.9710.9750.9760.9380.9790.9750.9760.9810.9750.9750.980.9770.9460.9860.9840.9770.9770.9820.9570.9720.980.9830.9810.9750.9730.9820.9790.9770.9640.9810.9060.9760.9760.9740.9820.9680.9430.9780.940.9830.9880.9780.9790.9670.9860.9850.9840.980.9820.9760.980.9820.9650.9830.9840.9720.9810.9770.9850.9850.9730.9720.9860.9760.970.9810.9730.9810.9770.9770.9790.9810.980.9720.980.9780.9830.9580.9670.9760.9670.9830.9740.9780.9810.980.98510.9810.9880.9720.9820.9810.980.9680.9770.980.9780.9830.9760.9710.9850.9790.9810.9820.9790.980.9810.9350.9830.9780.9850.9850.9780.940.9680.947 0.8940.97
    Liver545F71082214.08HFBXD68H12900.9750.950.9510.9760.9820.9850.9730.9480.9190.9760.980.9710.9760.9740.9770.9770.9630.9510.9820.9760.9690.9730.9730.9750.9640.9670.9680.9590.9790.9780.9690.9770.9710.9610.9610.9750.9350.970.9630.9630.970.9720.9640.9750.9670.9490.9820.9860.9710.9730.9740.9480.9670.9830.9750.9780.9660.9640.9770.970.980.9760.9640.9370.9690.9710.9710.9730.9610.9290.9720.9280.9780.9730.9660.970.9630.9780.9790.9760.9750.9790.9850.9740.9720.9620.9720.9760.960.9730.970.9820.9820.9690.9680.9760.9740.9590.9780.9620.9820.9690.9750.9740.9830.9690.9640.970.9690.980.9690.9550.9630.970.9730.9710.9650.9810.9710.9770.98110.9760.9780.9730.9750.9760.9590.9720.9740.9690.980.9740.9620.9710.9840.980.9710.9730.9760.970.9590.9740.9770.9770.9760.9680.9280.9580.944 0.9190.97
    Liver210F58101613.09HFBXD69H10870.9850.9270.9280.9830.9790.9820.9850.9620.8920.9820.9710.980.9730.9820.9710.980.9680.9640.9790.9760.9780.9850.9810.9850.9810.9690.9690.9710.9790.9840.980.9880.9440.9670.9760.9740.9380.9790.9760.9780.980.9730.9720.9790.9780.9450.9770.9780.9820.9820.9820.9570.9720.9760.9810.9840.9750.9740.9820.9790.9740.9590.9790.8990.9720.9710.9710.980.9680.9450.9780.9410.9810.9850.9790.9790.9650.9840.9840.9840.9820.9830.9770.9780.9830.9610.9810.9830.9720.9850.9770.980.980.9760.9750.9840.9760.9740.9780.9770.9810.980.9750.9770.9780.980.970.980.9770.9840.9520.9670.9780.9680.9830.9710.9790.980.9820.9820.9880.97610.9750.9830.9840.9830.9670.9780.9810.980.9840.9760.9730.980.9780.980.9810.9760.9810.9810.9310.9790.9780.9850.9870.9810.9410.9680.947 0.8920.97
    Liver528F109121214.23HFBXD69H13280.9650.9570.9570.9660.9750.9730.9660.9550.9260.970.9650.9680.9670.9650.9770.9660.9620.9590.9690.9660.9590.9650.9690.9690.9670.9690.9690.9630.9720.970.9640.9680.960.9590.9570.9710.9490.9630.9630.960.9680.9640.9570.9660.9660.9590.9670.9710.9680.9760.9670.9580.9710.9750.9690.970.9690.9540.9680.9670.9720.9620.9640.9260.9580.9630.980.9660.9680.9490.9720.9450.9680.9660.9630.9670.9630.9690.9730.9710.9690.9720.9720.9650.970.9720.9640.9670.9630.9670.9620.9710.9720.9660.9660.9720.9690.9670.9820.9690.9730.9690.9790.970.9720.9620.9580.9620.960.9750.9580.9560.9610.9690.9710.980.9610.9760.9640.9720.9720.9780.97510.9710.9680.9690.9660.9660.9720.960.9750.9690.9570.9670.9720.9680.9690.9720.9680.9680.9470.9660.9680.9720.9680.9630.9450.9630.958 0.9260.97
    Liver239F266051012.08HFBXD70H01880.9860.9360.9380.9840.9820.9810.9850.9740.9010.9790.9710.9860.9770.9810.9730.9780.9770.9680.9830.9810.9760.9850.9870.9870.9840.9780.9790.9820.9840.9830.9850.9820.9460.9790.9850.9830.9510.9870.9880.9860.9810.9790.980.9840.9840.9550.9770.980.9860.9840.9880.9780.9830.9780.9890.9830.9820.9730.9850.9840.9760.960.9870.8980.9770.9780.9790.9830.9720.9540.9850.9540.9820.9850.9850.9840.980.9850.9880.9890.9820.9810.970.9760.9830.970.9840.9870.9790.980.9770.9840.9850.9830.9830.9860.9830.980.9840.9830.980.9850.9770.9840.9790.9830.9780.9810.9810.9850.9520.980.9850.9740.9870.9790.9870.9760.980.9820.9820.9730.9830.97110.9920.9850.980.9830.990.9850.9850.9830.980.9830.9760.980.9870.9870.9860.990.9290.9850.9820.9850.9870.9850.9540.9760.952 0.8980.98
    Liver578F294121615.14HFBXD70H17280.9890.9290.930.9880.980.9870.9850.9690.8920.9810.9740.9890.9820.9850.9730.9850.9730.9690.9860.9860.9840.990.9890.990.9840.9760.9760.9780.9860.9890.9880.9870.9490.9760.9860.9790.9380.9880.9850.9850.9850.9830.980.9870.9860.950.9760.9810.9870.980.9940.9690.9810.9780.9890.9890.9780.9820.990.9820.9770.9630.9860.90.9830.980.9760.9880.970.9430.9830.9450.9860.9850.9880.9820.9760.9870.9920.9920.9820.9840.9730.9810.9850.9680.9860.9910.9790.9850.9830.9870.9870.9830.9820.9880.9840.9770.980.980.9860.9840.9710.980.9830.9870.980.9860.9840.9850.9530.9750.9850.9720.9840.9760.9860.9810.9870.9840.9810.9750.9840.9680.99210.990.9730.9850.990.9880.9850.9840.9830.9810.9810.9830.9840.9860.9880.9890.9330.9850.9840.9880.9910.9890.9450.9740.945 0.8920.98
    Liver206F224042015.18HFBXD73H20710.9880.930.9310.9870.9790.9890.9820.9650.8920.980.9750.9870.980.9820.9750.9870.970.9640.9840.9850.9860.9890.9850.9870.9780.9710.9710.9760.9850.9910.9850.9870.9510.9710.980.9760.9340.9850.980.9830.9850.9810.9770.9850.9820.9480.9750.9790.9870.980.990.9610.9790.980.9910.9910.9750.9830.990.9790.980.9650.9820.9030.9820.9790.9720.9850.9650.9350.9770.9370.9860.9820.9830.9790.9690.9860.9880.9880.9820.9840.9750.9820.9820.9640.9820.9890.9740.9870.9820.9840.9840.9820.9810.9840.9830.9730.9780.9760.9860.9850.9690.9790.9830.9860.9770.9840.9830.9840.9510.970.9820.9710.980.9720.9830.9790.9850.9810.980.9760.9830.9690.9850.9910.9720.9890.990.9860.9840.9830.9820.980.9820.9830.9830.9810.9860.9880.9360.9840.980.9890.9880.9870.9370.9690.94 0.8920.98
    Liver361F196121214.11HFBXD73H14470.9680.9450.9450.970.9690.970.9680.9820.9260.9670.9580.9750.9630.9660.970.9630.9820.970.9710.970.9580.9690.9710.9730.980.9860.9860.9840.9760.970.9690.9680.9320.9780.9790.9850.9750.9750.9830.9760.9710.9680.9730.9720.9780.9670.9610.9680.9720.9770.9710.9870.9920.9720.9760.970.9840.9610.9760.980.9560.9440.9770.8910.9620.9630.9780.970.9790.9740.9820.970.9670.9680.9730.980.9870.9680.9730.9730.9710.9650.9540.9630.9780.9710.9740.9710.980.9690.9670.9730.9760.980.980.9720.9730.9860.9770.9850.9680.9760.9780.9740.9640.9650.9740.9690.960.9770.9280.9790.9770.9710.9710.9780.9690.9590.9690.9680.9680.9590.9670.9660.980.9730.97210.9760.9840.9710.9770.9730.970.9650.9620.9620.9690.9830.9640.9740.9170.9690.960.970.9660.9670.970.9730.97 0.8910.97
    Liver237F97051112.14HFBXD73bH01830.9820.9350.9360.9830.9740.9840.9760.970.9040.9750.9710.9820.9740.9780.9710.9810.9780.9640.9830.9830.9770.9830.9790.980.9760.9710.9710.9750.9820.9850.9820.9820.9470.9740.9820.9790.9420.980.9830.9830.980.9790.9790.9780.9760.9480.9680.9740.9810.9750.9840.9640.9790.9780.990.9850.9740.9810.9880.9790.9730.9630.9790.9030.9760.9760.9730.9790.9640.9390.9740.9420.980.9760.980.9790.9750.9810.9840.9850.9740.9790.9690.9770.9760.9690.9750.9830.9780.9810.9830.9840.9840.9860.9860.9780.9820.9740.9780.9760.9820.9790.9710.9770.9770.9820.980.9780.9790.9850.9410.9740.9820.9710.9750.9730.9820.9750.9780.9750.9770.9720.9780.9660.9830.9850.9890.97610.9880.9870.9850.9820.9810.9750.9780.9790.9780.9810.9820.9840.9320.9790.9750.9820.9840.9820.9420.9710.943 0.9030.97
    Liver474F256050115.12HFBXD73bH15450.9860.9390.940.9850.9820.9850.9820.9740.9060.9790.9720.9880.9790.9830.9760.9820.9780.9690.9840.9840.9770.9860.9860.9880.9850.980.980.9830.9860.990.9840.9840.9490.9780.9850.9840.9510.9860.9870.9850.9830.9790.980.9850.9850.9580.9740.980.9870.9840.9880.9740.9880.9830.9920.990.9820.9760.990.9840.9770.9620.9870.9040.980.9790.980.9850.9740.9520.9840.9540.9820.9820.9850.9840.9820.9850.9890.9890.9820.9810.9710.9770.9840.9710.9840.9880.980.9820.9790.9850.9860.9850.9850.9850.9850.9810.9830.9830.9830.9850.9770.9820.980.9830.980.9820.9820.9860.950.9790.9840.9740.9840.980.9840.9760.9830.9810.980.9740.9810.9720.990.990.990.9840.98810.9850.9860.9850.9820.9810.9780.980.9850.9880.9840.9890.9330.9830.9790.9860.9850.9840.9540.9750.953 0.9040.98
    Liver511F319121615.19HFBXD77H18660.9860.9220.9240.9860.9730.9830.9810.9680.8890.9770.9710.9820.9770.9830.9670.9780.9750.9620.9850.9840.980.9850.9830.9830.9780.9690.9690.9740.9850.9820.9870.9820.9440.9750.9880.9760.9320.9840.9840.9870.9830.9840.9820.9830.9810.9410.970.9770.9820.9750.9860.9620.9750.9730.9870.9820.9790.9810.9870.980.9720.960.9810.8950.980.9810.9720.9850.9630.9370.9760.9360.9840.9810.9840.980.9730.9840.9880.9890.9770.9820.9690.9790.9790.9670.9830.9880.9790.980.9860.9860.9860.9840.9830.9820.9820.9710.9760.9750.9820.980.9670.9760.980.9870.9840.9860.9860.9830.9460.9730.9860.9710.9770.9720.9840.9780.9820.9790.9780.9690.980.960.9850.9880.9860.9710.9870.98510.9830.9820.9830.9770.9770.9810.980.9810.9850.9840.9280.9830.9810.9820.9850.9850.9360.9710.937 0.8890.98
    Liver571F24061913.18HFBXD79H05830.9840.9480.9490.9860.980.9850.980.9720.9160.9810.9770.9840.9760.9820.9770.9810.9780.9670.9860.9830.9770.9840.9790.9830.9810.9770.9780.9780.9860.9830.9810.9830.9570.9730.980.9860.9550.9810.9820.9830.9820.9780.9780.980.9790.9560.9750.980.980.9790.9840.9670.9810.980.9830.9830.9820.9750.9870.9830.9750.9690.9820.9150.9740.9750.9810.9820.9750.9530.9810.9490.9840.980.9770.9830.9760.9840.9880.9870.9810.9840.9780.9780.9830.9730.9810.9840.9780.9830.9790.9870.9880.9840.9840.9830.9840.980.9850.9820.9850.9830.9830.9820.9810.9810.9790.9810.98110.9560.9730.9820.9740.980.9810.980.9820.980.980.9830.980.9840.9750.9850.9850.9840.9770.9850.9860.98310.9840.9770.9770.9820.9830.9780.9830.9820.9840.940.9810.9810.9860.9860.9780.9490.9740.955 0.9150.98
    Liver241F2051012.14HFBXD87H02430.9840.9420.9450.9840.9760.9830.9770.9650.9040.9770.9790.9830.9750.9780.9740.9790.9730.9650.9850.9840.9740.9860.9820.9830.9760.9740.9750.9780.9850.980.9790.9780.9590.9720.9790.980.9370.9830.9810.9850.9840.9830.9790.9850.9780.9440.9720.9760.9830.9780.9840.960.980.9760.9830.980.9780.9750.9840.9790.9740.9730.9810.9110.9770.9750.9810.9820.9630.940.980.9390.9840.9770.9730.9790.9750.9840.9870.9870.9810.9850.9750.980.9840.9720.980.9820.9720.9810.9810.9860.9850.9840.9840.98610.9710.980.9750.9850.9860.9760.9750.9810.9780.9820.9860.9810.9840.950.970.9820.9690.9770.9810.9820.9830.9830.9810.9760.9740.9760.9690.9830.9840.9830.9730.9820.9850.9820.98410.9780.9760.9810.9870.9770.9850.9830.9820.9380.9860.9830.9850.9840.9740.9390.9770.941 0.9040.98
    Liver512F326121615.21HFBXD87H19450.9820.9150.9170.9760.9680.9760.9770.9650.8790.9740.9590.9840.9670.9750.9680.9790.9740.9630.9790.9760.9710.9830.980.980.9770.9680.9690.9750.9760.980.9820.9730.9330.9780.9840.9710.9350.9830.9830.9870.9810.980.9820.980.9750.9410.9690.970.9850.9740.9810.9650.9740.9690.9820.980.9750.9820.9850.980.9730.9570.9780.8830.9790.9790.9660.9770.9660.940.9750.9450.9760.9770.9790.980.9730.9810.9790.9830.9750.9740.9610.9710.9770.9640.9780.980.9750.9820.9830.9790.9790.9820.9820.9760.9780.9710.9740.9750.9720.9810.9610.9690.9660.9820.9820.9810.9770.9770.9320.980.9860.9670.9750.9660.9840.9690.9770.9740.9710.9620.9730.9570.980.9830.9820.970.9810.9820.9830.9770.97810.9740.9670.9740.980.9790.9770.9840.9110.980.9710.9760.980.9810.9450.9720.933 0.8790.97
    Liver243F267051112.01HFBXD89H01760.9860.9210.9230.9820.9830.9780.9870.9540.880.9810.9660.9790.9770.9810.9670.9730.9650.9560.9750.9740.9690.9830.9860.9850.9760.9660.9670.9680.980.9810.9810.980.9410.9720.9740.970.9320.9810.9750.9750.9790.9750.9760.9810.9750.9440.9820.9750.9820.9780.980.960.9710.9780.9860.9810.9730.970.9780.9760.980.9660.980.8960.980.9810.970.980.9620.9380.9760.9410.980.9870.9780.9760.9650.9880.9820.9820.980.9810.9710.9750.9790.9580.9810.9830.9650.9790.9730.9760.9750.970.970.9850.9760.9650.9770.9690.9780.9760.9690.9770.9760.9810.970.9790.980.9770.9530.9670.9730.9620.9880.970.9830.9780.9770.9830.9850.9710.980.9670.9830.9810.980.9650.9750.9810.9770.9770.9760.97410.9770.980.9880.9820.9820.9860.9260.9840.9760.9830.9820.9780.9410.9670.939 0.880.97
    Liver539F282101014.04HFBXD89H13210.980.9460.9480.9840.9810.9880.9750.9550.9180.9770.9830.9750.9780.9760.9750.9820.9690.9580.9820.980.9760.9790.9760.9790.9680.970.970.9660.9830.980.9760.980.9660.960.9690.9780.9280.9730.9680.9690.9780.9760.9680.9790.9730.9470.9740.9770.9750.9720.9820.9480.9710.9780.9780.980.9720.9710.9810.9710.9770.980.9720.9270.9770.9750.9750.9790.9620.9290.9720.9270.9850.9750.9710.9710.9640.980.9850.9820.9740.9830.9850.980.9770.9630.9750.980.9650.9760.9760.9830.9830.9730.9720.9810.9810.9610.9760.9650.9890.9750.9750.9740.9860.9760.9680.9770.9760.9820.9580.9540.9680.9710.9730.9750.970.9840.9770.9780.9790.9840.9780.9720.9760.9810.9820.9620.9780.9780.9770.9820.9810.9670.97710.9830.9730.9790.980.9760.960.9770.980.9820.9810.9730.9270.9660.944 0.9180.97
    Liver548F312082214.09HFBXD9H10090.9870.9320.9360.9850.9790.9840.9810.9490.8890.980.9790.980.9790.9820.9680.980.9640.9560.9870.9820.9760.9850.9820.9830.970.9650.9660.9660.9850.9820.980.980.9610.9660.9740.9730.9220.9810.9730.9780.980.980.9770.9840.9720.9360.9790.9790.9830.9770.9810.9490.9690.9780.9830.9820.970.9720.9830.9750.9790.9760.980.9180.9790.9790.9740.9810.9550.9260.9730.9270.9850.9810.9720.9750.9630.9880.9870.9870.9790.9870.9810.9820.9790.9640.980.9850.9620.980.9820.9870.9850.9750.9740.9840.9870.9610.9790.9680.9860.9790.970.9740.9820.9810.9750.9860.9870.9830.9610.9610.9750.9630.9790.9740.9820.9860.9810.9830.9810.980.980.9680.980.9830.9830.9620.9790.980.9810.9830.9870.9740.980.98310.9790.9790.9870.980.9410.9870.9870.9840.9850.9750.9270.9710.93 0.8890.97
    Liver218F297101613.19HFBXD90H10930.9850.9220.9240.980.9850.9790.9880.9610.8840.9810.9650.9820.9770.9810.9730.9760.9670.9620.9770.9750.9720.9830.9880.9860.9790.970.970.9720.980.9830.9850.9810.940.9770.9780.9720.9370.9830.9790.9790.980.9780.9780.9830.9790.950.980.9760.9840.9810.980.9650.9730.9770.9870.9830.9740.9730.9810.9790.9810.960.9810.8920.9820.9850.9730.980.9660.9430.9770.9480.980.9880.9840.9790.9690.9880.9830.9870.9830.9820.9710.9760.980.9630.9810.9860.9710.9810.9750.9780.9780.9750.9740.9860.9770.970.9810.9740.9770.9810.970.9820.9780.9840.9720.980.980.9780.9510.9750.9780.9680.9910.9730.9870.9780.980.9840.9820.9710.9810.9690.9870.9840.9830.9690.9780.9850.980.9780.9770.980.9880.9730.97910.9870.9850.9880.9230.9830.9790.9830.9850.9850.9480.970.944 0.8840.97
    Liver570F274062013.03HFBXD90H07360.9830.9410.9430.9830.9830.9830.9820.9730.910.9820.9720.9840.9810.9810.9770.9760.9810.9740.9840.9820.970.9820.9870.9860.9830.9840.9840.9810.9860.9810.9830.9780.9510.9820.9840.9860.9530.9830.9830.9790.9830.9840.9820.9860.9850.9610.9770.9780.9820.9810.9840.9750.9870.9810.9860.9810.9840.9740.9850.9830.9760.9680.9830.9020.9840.9860.9870.9820.9760.9570.9840.9590.9830.9820.9830.9830.9840.9850.9870.9880.980.9810.9710.980.9850.9760.9850.9870.980.9770.980.9850.9860.980.980.9880.9850.9780.9860.980.9820.9820.980.9810.9810.9810.9810.9820.9780.9830.950.9770.9790.9730.9850.9870.9830.980.9820.9860.9790.9730.9760.9720.9870.9860.9810.9830.9810.9880.9810.9830.9850.9790.9820.9790.9790.98710.9820.9860.9310.9830.9790.9830.9830.980.9590.9810.96 0.9020.98
    Liver562F325062013.19HFBXD91H08810.9880.9280.9310.9860.9810.9840.9840.9550.8880.9790.9770.9830.9820.9830.970.980.9640.9540.9840.9830.980.9850.9850.9840.9730.9670.9680.9690.9840.9850.9880.9820.9570.970.9780.9730.9250.9840.9780.9820.9810.9820.9780.9850.9760.940.9780.9780.9860.980.9840.9550.9710.9780.9880.9850.970.9750.9840.9760.980.970.980.9070.9810.9830.9740.9820.9580.9290.9740.9330.9870.9840.980.9760.9650.990.9890.990.9790.9860.9780.9810.9780.9640.9810.9880.9680.9780.9790.9840.9820.9780.9770.9830.9830.9660.9820.9720.9860.9810.9660.9780.9850.9880.9750.9860.9880.9820.9630.9670.9790.9680.9820.9740.9870.9840.9790.9830.980.9760.9810.9680.9860.9880.9860.9640.9820.9840.9850.9820.9830.9770.9820.980.9870.9850.98210.9880.9380.9870.9910.9870.990.9840.9330.9670.931 0.8880.98
    Liver213F288101613.21HFBXD95H12750.9880.9290.9310.9840.980.9820.9850.970.8920.980.9680.9880.9770.9820.9720.9810.9730.9650.980.9810.9790.9880.9870.9860.9810.9750.9750.980.9830.9850.9870.9830.9430.980.9850.9770.9440.9870.9850.9850.9840.9790.9810.9840.9820.9540.9760.9770.9880.9820.9860.970.9780.9770.9890.9850.9790.9780.9860.9820.9770.9620.9860.8970.9820.980.9740.9860.970.9460.9810.9510.9830.9850.9850.9820.9740.9870.9870.9880.9820.9810.9690.9770.9820.9650.9830.9880.9770.9840.9770.9810.9810.9830.9820.9840.9820.9760.9810.980.9810.9860.9710.9810.9780.9860.9790.9840.9840.9840.9480.9780.9840.970.9850.9740.9890.9760.9820.9820.9810.970.9810.9680.990.9890.9880.9740.9840.9890.9840.9840.9820.9840.9860.9760.980.9880.9860.98810.9290.9850.980.9870.9880.9870.9510.9720.944 0.8920.98
    Liver550F236102414.20HFBXD95H12730.9250.950.950.9350.9410.9510.9210.9080.9390.9320.9550.9280.9440.9320.9420.9420.9210.9140.940.9380.9320.9280.9260.9290.9190.9280.9280.920.9410.9330.9240.9340.9640.9090.9130.9380.8930.9220.9160.9170.9320.9270.9160.9290.9240.9170.9290.9420.9240.9240.9340.8990.9270.9420.930.9330.9240.9190.9340.9180.9410.9470.9230.9520.930.9290.9410.9370.9250.8860.9250.890.9410.9210.9220.9180.9160.9290.9420.9350.9260.940.960.9380.9280.9330.9240.9310.9220.9270.9280.9420.9420.9260.9250.9360.9380.9150.9390.9170.9480.9280.9390.9330.9520.9230.920.9290.9320.940.9540.9010.9170.9360.9230.9410.9190.9440.9280.9320.9350.9590.9310.9470.9290.9330.9360.9170.9320.9330.9280.940.9380.9110.9260.960.9410.9230.9310.9380.92910.9260.9450.9390.9330.9230.890.9180.913 0.8860.93
    Liver182F305050914.05HFBXD99H13550.990.9220.9240.9850.980.9810.9880.9580.880.9820.9730.9820.9780.9810.9680.9760.9670.9570.9830.9820.9750.9860.9870.9860.9740.970.9710.9720.9850.9840.9850.980.9480.9770.980.9740.9310.9880.9790.9840.9820.9850.9810.9880.9790.940.9850.9820.9870.9830.9840.960.9740.9790.9860.9840.9740.9760.9830.9830.9780.9680.9790.8990.9790.9810.9730.9830.9580.9360.9830.9320.9860.9880.9790.9830.970.9910.9850.9880.9860.9870.9720.9820.9830.9610.9850.9880.9670.9820.9820.9830.9820.9790.9790.9830.9860.9670.980.9720.9810.9830.9680.9750.980.9850.9810.9880.9830.9810.9530.9720.9810.9680.9810.9730.9850.9820.9840.9870.9830.9740.9790.9660.9850.9850.9840.9690.9790.9830.9830.9810.9860.980.9840.9770.9870.9830.9830.9870.9850.92610.9840.9840.9860.9810.9320.970.933 0.880.98
    Liver544F309062013.09HFC57BL/6JH05140.9840.9330.9360.9830.9780.9820.9810.9490.8940.9790.9820.9770.980.980.9670.9770.9610.9520.9840.9790.9750.9810.980.980.9680.9670.9680.9640.9830.980.9830.9770.9640.9650.9720.9720.9190.9810.9720.9780.9780.9790.9750.9840.9720.9340.9760.9790.980.9740.980.9470.9680.9750.9810.980.9670.9690.980.970.9750.9710.9760.9150.9770.9780.9750.9790.9550.9270.9710.930.9890.9810.9740.970.9590.9860.9880.9890.9780.9860.9810.9830.9770.9630.9790.9840.9640.9740.9760.9840.9820.9730.9720.9820.9830.9590.9790.9650.9850.9790.9680.9750.9850.9830.9730.9850.9850.9810.9690.9620.9750.9670.9780.9750.9830.9850.9790.9820.9780.9770.9780.9680.9820.9840.980.960.9750.9790.9810.9810.9830.9710.9760.980.9870.9790.9790.9910.980.9450.98410.9860.9860.9760.930.9650.926 0.8940.97
    Liver182F235102414.06HFC57BL/6JH16810.9880.9340.9350.9890.9820.9880.9870.9660.8950.9850.9770.9870.9840.9850.9760.9830.9680.9650.9820.9840.9850.9890.9870.9880.9810.9760.9750.9780.9870.9870.9860.9890.9530.9740.980.9790.9360.9860.980.9820.9890.9820.9780.9880.9840.9510.9780.9810.9840.9790.9890.9610.9780.9780.9860.9870.9780.9810.9860.9780.9760.9660.9860.9060.9820.9770.9780.9860.9690.9440.9810.9440.9930.9870.9830.9780.9660.9880.9910.9890.9860.9860.9770.9850.9880.9660.9860.9880.9760.9860.9770.9830.9830.9810.980.9880.9850.9730.9810.9760.9880.9870.9760.9820.9860.9860.9770.9880.9820.9860.9570.9710.9820.9730.9840.9780.9840.9840.9890.9860.9850.9770.9850.9720.9850.9880.9890.970.9820.9860.9820.9860.9850.9760.9830.9820.9840.9830.9830.9870.9870.9390.9840.98610.9890.9850.9440.9690.943 0.8950.98
    Liver214F301101713.20HFD2B6F1H11500.990.9270.9280.9880.980.9850.9890.9630.8890.9830.9750.9860.9790.9830.9730.9840.9690.9660.9840.9830.9850.9880.9870.9870.9790.9710.9710.9730.9840.9870.9880.9870.950.9720.9810.9760.9320.9860.9810.9840.9840.9820.9770.9860.9810.9450.9790.9790.9840.980.9880.9590.9730.9750.9870.9870.9740.9830.9860.9790.9780.9670.9840.9010.980.9790.9740.9840.9640.9380.9780.9410.9880.9890.9870.9790.9670.9910.990.9920.9820.9860.9770.9830.9830.9660.9830.990.9740.9860.9820.9840.9840.9810.980.9870.9840.9730.9820.9770.9840.9850.9690.980.9840.9880.9760.9860.9840.9860.9550.9710.9830.9710.9840.9740.9880.9830.9850.9850.9850.9760.9870.9680.9870.9910.9880.9660.9840.9850.9850.9860.9840.980.9820.9810.9850.9850.9830.990.9880.9330.9860.9860.98910.9890.9410.9720.941 0.8890.98
    Liver540F291062013.13HFD2B6F1H06420.9840.9170.9170.9820.9760.9830.9860.970.8820.9760.9630.9850.9750.9780.970.980.9670.9650.9770.9780.9860.9850.9870.9830.9780.970.9690.9740.9790.9850.9890.9850.9350.9750.9820.9710.9350.9860.9830.9810.980.9790.9740.9830.9850.9530.9730.9760.9830.9780.9860.9650.9710.9710.9850.9850.9720.9840.9830.9770.9740.9510.9810.8880.9760.9760.9680.9810.9630.9380.9760.9430.9830.9860.9940.9770.9680.9840.9840.9870.980.9780.9650.9760.9790.9610.980.9870.9780.9830.9770.9780.9790.980.9780.9820.9740.9730.9760.9750.9760.9810.9620.9790.980.9880.9720.9790.9750.9780.9440.9760.9830.9760.9810.9680.9830.9730.9820.9790.9780.9680.9810.9630.9850.9890.9870.9670.9820.9840.9850.9780.9740.9810.9780.9730.9750.9850.980.9840.9870.9230.9810.9760.9850.98910.9430.9640.945 0.8820.97
    Liver212F16101713.11HFDBA/2JH11440.9350.9310.9290.9350.9420.940.9380.9640.9220.9430.9220.9540.9340.9380.9520.9370.9580.9620.9390.9350.9280.9410.9450.9460.9640.9670.9670.9690.9430.9380.9410.940.90.9530.9540.9610.9760.9440.960.9450.9460.9340.9440.9390.9540.960.9270.9350.9420.950.9410.9760.9670.9350.9430.9380.9610.9350.9450.9460.9320.9110.9590.8630.9350.9350.9570.940.9740.9760.95810.9360.9380.9520.9460.960.9350.9420.9440.940.930.9230.9310.950.9550.9450.9390.9620.9420.9320.9420.9470.9510.950.9480.9390.9730.9580.970.9310.950.9550.9530.930.9360.9390.9360.9310.9490.9030.9580.9490.9450.9530.9570.9460.9260.9380.9380.940.9280.9410.9450.9540.9450.9370.970.9420.9540.9360.9490.9390.9450.9410.9270.9270.9480.9590.9330.9510.890.9320.930.9440.9410.94310.9570.968 0.8630.94
    Liver544M181091914.07HFDBA/2JH11400.9690.9350.9370.9670.9610.9690.9660.9640.9030.9680.960.9770.9610.9660.9640.970.9730.990.9770.9680.960.9710.9680.9730.9770.9710.9720.9770.9710.9660.9660.9650.940.9650.9740.9770.9440.970.9750.9730.9770.9690.9690.9710.9720.9460.9580.9620.9720.9680.9720.9650.9770.9590.970.9660.9770.9690.9740.9730.9590.9570.9770.8880.9670.9630.9790.970.9690.9540.9740.9570.9660.9660.9680.9730.9740.9690.9760.9780.9650.9690.960.9680.9780.9760.9710.970.9690.9750.9780.9780.9790.9710.9710.9740.9770.9730.9750.9760.9690.9750.970.9670.9630.9630.970.9760.9690.9740.9350.9640.9720.9610.9690.9790.9740.9680.9730.9720.9680.9580.9680.9630.9760.9740.9690.9730.9710.9750.9710.9740.9770.9720.9670.9660.9710.970.9810.9670.9720.9180.970.9650.9690.9720.9640.95710.957 0.8880.97
    Liver549F190091914.05HFDBA/2JH11420.9320.9490.9460.9380.9480.9490.940.9650.9410.940.9320.9490.9380.9350.9570.9420.9590.9720.9440.9380.940.9380.9420.9450.960.9680.9670.9630.9480.940.9360.9470.9150.9440.9470.9670.9750.9380.9510.9370.9420.9350.9320.9390.9570.9730.9330.9420.9350.9520.9430.9690.9680.9430.9410.940.9630.9340.9450.9490.9340.9190.9520.8830.9290.9290.9630.9410.9710.9720.9590.9680.9350.940.9530.9490.9630.9340.9480.9460.9420.9350.9380.9360.9540.9580.9430.940.960.9460.9390.9470.9530.9490.9480.9510.9410.9710.960.9670.9410.9480.9660.9570.9430.9310.9340.9330.9240.9550.9130.9460.9430.9590.9490.9630.9330.9350.9430.9440.9470.9440.9470.9580.9520.9450.940.970.9430.9530.9370.9550.9410.9330.9390.9440.930.9440.960.9310.9440.9130.9330.9260.9430.9410.9450.9680.9571 0.8830.95
                                                                                                                                                                     
           Min0.8770.9140.9140.8940.9070.9130.8770.8790.8770.8940.9170.8970.8970.8870.9190.9020.8960.880.9050.9030.8850.8860.8840.8890.890.9030.9040.890.9070.8910.8830.8940.90.8840.8830.910.8750.8840.890.8880.8930.8880.8880.8870.8890.90.8830.9030.8840.90.8930.8770.9010.910.8920.8910.8980.8780.9010.8960.8940.9010.8930.8630.8820.8840.9170.8930.8990.8630.9010.8630.8940.8770.8890.8960.8950.8810.9010.8950.890.8920.9170.8920.8970.9120.8870.8860.8890.8870.8880.9080.9130.90.90.8960.9040.8880.9150.890.9050.8990.9160.9040.9070.8780.8910.8820.880.9150.8960.880.8890.9050.8890.9170.880.8950.8850.8890.8940.9190.8920.9260.8980.8920.8920.8910.9030.9040.8890.9150.9040.8790.880.9180.8890.8840.9020.8880.8920.8860.880.8940.8950.8890.8820.8630.8880.883 minaverage
           Average0.977560.934660.935720.9775066670.9739733330.9779466670.9754933330.9634866670.902620.975140.9681733330.977620.9724133330.9746733330.9698866670.9736866670.9696133330.9615933330.9764866670.9759066670.969640.977620.9769533330.9783666670.9748066670.9722066670.9725666670.9722333330.979080.976660.975760.975580.9466133330.97030.974760.975260.9413733330.976840.9752666670.97450.9769333330.9745333330.97290.9775333330.9754933330.94970.96980.9738266670.9757733330.9737466670.977960.9623266670.9751533330.97280.9774266670.976660.9740066670.9696733330.9788733330.9753133330.9688266670.9598666670.9756133330.903480.9724533330.9715933330.9731733330.976140.9668533330.9453066670.9759466670.944460.976980.9754933330.9745066670.9753133330.9703266670.97730.9797466670.9796733330.974760.9753866670.9675733330.97280.9771666670.964680.9765733330.977960.9706533330.9746866670.9725066670.9774666670.9779866670.9751666670.9745866670.9778333330.9760266670.9701933330.9760333330.9727466670.97610.9762933330.9709133330.9734866670.9741133330.9746866670.971980.9756466670.971860.977940.9465533330.9677266670.974220.9669933330.9749266670.9731733330.9744466670.973080.9753466670.9756333330.974480.9696666670.97390.966080.9781533330.978680.9768266670.9699866670.974680.978940.975160.977940.9760266670.9714266670.9723066670.9724666670.9737733330.974520.9784666670.9752333330.9771666670.9305066670.9753533330.97270.9781133330.97720.9738266670.944460.9674733330.946173333 0.902620.970757511
    diff --git a/general/datasets/UTHSC_BXD_Harv_Liv_1019/specifics.rtf b/general/datasets/UTHSC_BXD_Harv_Liv_1019/specifics.rtf deleted file mode 100644 index 402ed9c..0000000 --- a/general/datasets/UTHSC_BXD_Harv_Liv_1019/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -TPM Log2 \ No newline at end of file diff --git a/general/datasets/UTHSC_BXD_Harv_Liv_1019/summary.rtf b/general/datasets/UTHSC_BXD_Harv_Liv_1019/summary.rtf deleted file mode 100644 index 153d98d..0000000 --- a/general/datasets/UTHSC_BXD_Harv_Liv_1019/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    In working progress...

    diff --git a/general/datasets/UTHSC_BXD_Harv_Liv_TPM_log2_1019/specifics.rtf b/general/datasets/UTHSC_BXD_Harv_Liv_TPM_log2_1019/specifics.rtf deleted file mode 100644 index a316cd4..0000000 --- a/general/datasets/UTHSC_BXD_Harv_Liv_TPM_log2_1019/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -UTHSC BXD Liver RNA-Seq Avg (Oct19) TPM Log2 \ No newline at end of file diff --git a/general/datasets/UTHSC_BXD_Harv_Liv_TPM_log2_1019/summary.rtf b/general/datasets/UTHSC_BXD_Harv_Liv_TPM_log2_1019/summary.rtf deleted file mode 100644 index 3ef9ac2..0000000 --- a/general/datasets/UTHSC_BXD_Harv_Liv_TPM_log2_1019/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    UTHSC BXD Liver RNA-Seq Avg (Oct19) TPM Log2

    diff --git a/general/datasets/UTHSC_BXD_Hip_PostD7CtrlBS_1121/specifics.rtf b/general/datasets/UTHSC_BXD_Hip_PostD7CtrlBS_1121/specifics.rtf deleted file mode 100644 index 2a8ed1d..0000000 --- a/general/datasets/UTHSC_BXD_Hip_PostD7CtrlBS_1121/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -

    BXD Hippocampus Postnatal Day 7 Control Both Sexes

    diff --git a/general/datasets/UTHSC_BXD_Hip_PostD7CtrlBS_1121/summary.rtf b/general/datasets/UTHSC_BXD_Hip_PostD7CtrlBS_1121/summary.rtf deleted file mode 100644 index 739e3b7..0000000 --- a/general/datasets/UTHSC_BXD_Hip_PostD7CtrlBS_1121/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The Affymetrix Genechip Mouse Clariom S was used to examine gene expression (Affymetrix, California, United States). Two hundred nanograms of DNased total RNA was amplified, labeled, and fragmented using Ambion Whole Transcript (WT) Expression Kit according to manufacturer’s protocol (Thermo Fisher Scientific, Santa Clara, California United States). Briefly, samples are hybridized overnight according to manufacturer’s protocols; samples are then washed and stained on Affymetrix GeneChip Fluidics Station 450 (Affymetrix, California, United States). Samples were then scanned using the GeneChip Scanner 3000 (Applied Biosystems, California, United States).  Data was normalized and analyzed for quality control in Affymetrix Expression Console Software using RMA-sketch normalization (Affymetrix, California, United States). After normalization and quality control, a total number of 22,203 probe sets were used for subsequent data analysis. A total of 128 samples were used—4 samples per treatment (control, ethanol), sex (male, female), and strain (B6, D2, BXD2, BXD48a, BXD60, BXD71, BXD73, BXD100).

    diff --git a/general/datasets/UTHSC_BXD_Hip_PostD7EtohBS_1121/specifics.rtf b/general/datasets/UTHSC_BXD_Hip_PostD7EtohBS_1121/specifics.rtf deleted file mode 100644 index ebc4e0d..0000000 --- a/general/datasets/UTHSC_BXD_Hip_PostD7EtohBS_1121/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -

    BXD Hippocampus Postnatal Day 7 Ethanol Both Sexes

    diff --git a/general/datasets/UTHSC_BXD_Hip_PostD7EtohBS_1121/summary.rtf b/general/datasets/UTHSC_BXD_Hip_PostD7EtohBS_1121/summary.rtf deleted file mode 100644 index 739e3b7..0000000 --- a/general/datasets/UTHSC_BXD_Hip_PostD7EtohBS_1121/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The Affymetrix Genechip Mouse Clariom S was used to examine gene expression (Affymetrix, California, United States). Two hundred nanograms of DNased total RNA was amplified, labeled, and fragmented using Ambion Whole Transcript (WT) Expression Kit according to manufacturer’s protocol (Thermo Fisher Scientific, Santa Clara, California United States). Briefly, samples are hybridized overnight according to manufacturer’s protocols; samples are then washed and stained on Affymetrix GeneChip Fluidics Station 450 (Affymetrix, California, United States). Samples were then scanned using the GeneChip Scanner 3000 (Applied Biosystems, California, United States).  Data was normalized and analyzed for quality control in Affymetrix Expression Console Software using RMA-sketch normalization (Affymetrix, California, United States). After normalization and quality control, a total number of 22,203 probe sets were used for subsequent data analysis. A total of 128 samples were used—4 samples per treatment (control, ethanol), sex (male, female), and strain (B6, D2, BXD2, BXD48a, BXD60, BXD71, BXD73, BXD100).

    diff --git a/general/datasets/UTHSC_BXD_Hip_miRNASeq0214/specifics.rtf b/general/datasets/UTHSC_BXD_Hip_miRNASeq0214/specifics.rtf deleted file mode 100644 index 280762b..0000000 --- a/general/datasets/UTHSC_BXD_Hip_miRNASeq0214/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -NA \ No newline at end of file diff --git a/general/datasets/UTHSC_BXD_Hip_miRNASeq0214/summary.rtf b/general/datasets/UTHSC_BXD_Hip_miRNASeq0214/summary.rtf deleted file mode 100644 index 1a4d656..0000000 --- a/general/datasets/UTHSC_BXD_Hip_miRNASeq0214/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This group of datasets is confidential

    diff --git a/general/datasets/UTHSC_BXD_LivCDNAm_1119/experiment-design.rtf b/general/datasets/UTHSC_BXD_LivCDNAm_1119/experiment-design.rtf deleted file mode 100644 index 5c63e07..0000000 --- a/general/datasets/UTHSC_BXD_LivCDNAm_1119/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Aging

    diff --git a/general/datasets/UTHSC_BXD_LivCDNAm_1119/platform.rtf b/general/datasets/UTHSC_BXD_LivCDNAm_1119/platform.rtf deleted file mode 100644 index 01ea9ea..0000000 --- a/general/datasets/UTHSC_BXD_LivCDNAm_1119/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Pan-Mammalian DNAm Infinium array; this is a custom array

    diff --git a/general/datasets/UTHSC_BXD_LivCDNAm_1119/processing.rtf b/general/datasets/UTHSC_BXD_LivCDNAm_1119/processing.rtf deleted file mode 100644 index 5dc0f7f..0000000 --- a/general/datasets/UTHSC_BXD_LivCDNAm_1119/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Beta-values after normalization

    diff --git a/general/datasets/UTHSC_BXD_LivCDNAm_1119/specifics.rtf b/general/datasets/UTHSC_BXD_LivCDNAm_1119/specifics.rtf deleted file mode 100644 index cf79575..0000000 --- a/general/datasets/UTHSC_BXD_LivCDNAm_1119/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -NIA-UTHSC BXD Liver CD DNAm (Nov20) Sesame \ No newline at end of file diff --git a/general/datasets/UTHSC_BXD_LivCDNAm_1119/summary.rtf b/general/datasets/UTHSC_BXD_LivCDNAm_1119/summary.rtf deleted file mode 100644 index 0961144..0000000 --- a/general/datasets/UTHSC_BXD_LivCDNAm_1119/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    DNA from liver tissue profiled on the Illumina Pan-Mammalian Infinium microarray. This array was designed and developed by Steve Horvath at UCLA. Array hybridization, initial data QC, and normalization done at UCLA. 

    diff --git a/general/datasets/UTHSC_BXD_LivDNAm_1119/experiment-design.rtf b/general/datasets/UTHSC_BXD_LivDNAm_1119/experiment-design.rtf deleted file mode 100644 index 5c63e07..0000000 --- a/general/datasets/UTHSC_BXD_LivDNAm_1119/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Aging

    diff --git a/general/datasets/UTHSC_BXD_LivDNAm_1119/platform.rtf b/general/datasets/UTHSC_BXD_LivDNAm_1119/platform.rtf deleted file mode 100644 index 01ea9ea..0000000 --- a/general/datasets/UTHSC_BXD_LivDNAm_1119/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Pan-Mammalian DNAm Infinium array; this is a custom array

    diff --git a/general/datasets/UTHSC_BXD_LivDNAm_1119/processing.rtf b/general/datasets/UTHSC_BXD_LivDNAm_1119/processing.rtf deleted file mode 100644 index 5dc0f7f..0000000 --- a/general/datasets/UTHSC_BXD_LivDNAm_1119/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Beta-values after normalization

    diff --git a/general/datasets/UTHSC_BXD_LivDNAm_1119/specifics.rtf b/general/datasets/UTHSC_BXD_LivDNAm_1119/specifics.rtf deleted file mode 100644 index 06c93b7..0000000 --- a/general/datasets/UTHSC_BXD_LivDNAm_1119/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -NIA-UTHSC BXD Liver CD-HFD DNAm (Nov20) Sesame \ No newline at end of file diff --git a/general/datasets/UTHSC_BXD_LivDNAm_1119/summary.rtf b/general/datasets/UTHSC_BXD_LivDNAm_1119/summary.rtf deleted file mode 100644 index 0961144..0000000 --- a/general/datasets/UTHSC_BXD_LivDNAm_1119/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    DNA from liver tissue profiled on the Illumina Pan-Mammalian Infinium microarray. This array was designed and developed by Steve Horvath at UCLA. Array hybridization, initial data QC, and normalization done at UCLA. 

    diff --git a/general/datasets/UTHSC_BXD_LivHFDNAm_1119/experiment-design.rtf b/general/datasets/UTHSC_BXD_LivHFDNAm_1119/experiment-design.rtf deleted file mode 100644 index 5c63e07..0000000 --- a/general/datasets/UTHSC_BXD_LivHFDNAm_1119/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Aging

    diff --git a/general/datasets/UTHSC_BXD_LivHFDNAm_1119/platform.rtf b/general/datasets/UTHSC_BXD_LivHFDNAm_1119/platform.rtf deleted file mode 100644 index 01ea9ea..0000000 --- a/general/datasets/UTHSC_BXD_LivHFDNAm_1119/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Pan-Mammalian DNAm Infinium array; this is a custom array

    diff --git a/general/datasets/UTHSC_BXD_LivHFDNAm_1119/processing.rtf b/general/datasets/UTHSC_BXD_LivHFDNAm_1119/processing.rtf deleted file mode 100644 index 5dc0f7f..0000000 --- a/general/datasets/UTHSC_BXD_LivHFDNAm_1119/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Beta-values after normalization

    diff --git a/general/datasets/UTHSC_BXD_LivHFDNAm_1119/specifics.rtf b/general/datasets/UTHSC_BXD_LivHFDNAm_1119/specifics.rtf deleted file mode 100644 index b8b1955..0000000 --- a/general/datasets/UTHSC_BXD_LivHFDNAm_1119/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -NIA-UTHSC BXD Liver HFD DNAm (Nov20) Sesame \ No newline at end of file diff --git a/general/datasets/UTHSC_BXD_LivHFDNAm_1119/summary.rtf b/general/datasets/UTHSC_BXD_LivHFDNAm_1119/summary.rtf deleted file mode 100644 index 0961144..0000000 --- a/general/datasets/UTHSC_BXD_LivHFDNAm_1119/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    DNA from liver tissue profiled on the Illumina Pan-Mammalian Infinium microarray. This array was designed and developed by Steve Horvath at UCLA. Array hybridization, initial data QC, and normalization done at UCLA. 

    diff --git a/general/datasets/UTHSC_BXD_Liv_0818/specifics.rtf b/general/datasets/UTHSC_BXD_Liv_0818/specifics.rtf deleted file mode 100644 index 342d36e..0000000 --- a/general/datasets/UTHSC_BXD_Liv_0818/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -2nd set \ No newline at end of file diff --git a/general/datasets/UTHSC_BXD_Liv_0818/summary.rtf b/general/datasets/UTHSC_BXD_Liv_0818/summary.rtf deleted file mode 100644 index 790afd7..0000000 --- a/general/datasets/UTHSC_BXD_Liv_0818/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    In working progress

    diff --git a/general/datasets/UTHSC_BXD_Liv_0917/specifics.rtf b/general/datasets/UTHSC_BXD_Liv_0917/specifics.rtf deleted file mode 100644 index 0b70afe..0000000 --- a/general/datasets/UTHSC_BXD_Liv_0917/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Gene Level \ No newline at end of file diff --git a/general/datasets/UTHSC_BXD_Liv_0917/summary.rtf b/general/datasets/UTHSC_BXD_Liv_0917/summary.rtf deleted file mode 100644 index 790afd7..0000000 --- a/general/datasets/UTHSC_BXD_Liv_0917/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    In working progress

    diff --git a/general/datasets/UTHSC_BXD_MamGland_ca_0322/specifics.rtf b/general/datasets/UTHSC_BXD_MamGland_ca_0322/specifics.rtf deleted file mode 100644 index 81e1218..0000000 --- a/general/datasets/UTHSC_BXD_MamGland_ca_0322/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -UTHSC BXD Triple Negative Breast Cancer Model RNA-Seq (Mar22) Count All Samples \ No newline at end of file diff --git a/general/datasets/UTHSC_BXD_MamGland_ca_0322/summary.rtf b/general/datasets/UTHSC_BXD_MamGland_ca_0322/summary.rtf deleted file mode 100644 index 4e4269c..0000000 --- a/general/datasets/UTHSC_BXD_MamGland_ca_0322/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This dataset is currently unpublished. Please refer to the contact information above if you want to use this data.

    diff --git a/general/datasets/UTHSC_BXD_MamGland_cpmNtum_0322/specifics.rtf b/general/datasets/UTHSC_BXD_MamGland_cpmNtum_0322/specifics.rtf deleted file mode 100644 index 4d79eab..0000000 --- a/general/datasets/UTHSC_BXD_MamGland_cpmNtum_0322/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -UTHSC BXD Triple Negative Breast Cancer Model RNA-Seq (Mar22) CPM Norm Tumor Only \ No newline at end of file diff --git a/general/datasets/UTHSC_BXD_MamGland_cpmNtum_0322/summary.rtf b/general/datasets/UTHSC_BXD_MamGland_cpmNtum_0322/summary.rtf deleted file mode 100644 index 4e4269c..0000000 --- a/general/datasets/UTHSC_BXD_MamGland_cpmNtum_0322/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This dataset is currently unpublished. Please refer to the contact information above if you want to use this data.

    diff --git a/general/datasets/UTHSC_BXD_MamGland_cpm_0322/specifics.rtf b/general/datasets/UTHSC_BXD_MamGland_cpm_0322/specifics.rtf deleted file mode 100644 index 3b28a0d..0000000 --- a/general/datasets/UTHSC_BXD_MamGland_cpm_0322/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -UTHSC BXD Triple Negative Breast Cancer Model RNA-Seq (Mar22) CPM Norm All Samples \ No newline at end of file diff --git a/general/datasets/UTHSC_BXD_MamGland_cpm_0322/summary.rtf b/general/datasets/UTHSC_BXD_MamGland_cpm_0322/summary.rtf deleted file mode 100644 index 4e4269c..0000000 --- a/general/datasets/UTHSC_BXD_MamGland_cpm_0322/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This dataset is currently unpublished. Please refer to the contact information above if you want to use this data.

    diff --git a/general/datasets/UTHSC_BXD_MamGland_tum_0322/specifics.rtf b/general/datasets/UTHSC_BXD_MamGland_tum_0322/specifics.rtf deleted file mode 100644 index bc15cdf..0000000 --- a/general/datasets/UTHSC_BXD_MamGland_tum_0322/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -UTHSC BXD Triple Negative Breast Cancer Model RNA-Seq (Mar22) Counts Tumor Only \ No newline at end of file diff --git a/general/datasets/UTHSC_BXD_MamGland_tum_0322/summary.rtf b/general/datasets/UTHSC_BXD_MamGland_tum_0322/summary.rtf deleted file mode 100644 index 4e4269c..0000000 --- a/general/datasets/UTHSC_BXD_MamGland_tum_0322/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This dataset is currently unpublished. Please refer to the contact information above if you want to use this data.

    diff --git a/general/datasets/UTHSC_BXD_WB_RNASeqtrim1112/cases.rtf b/general/datasets/UTHSC_BXD_WB_RNASeqtrim1112/cases.rtf deleted file mode 100644 index 2f0fdc0..0000000 --- a/general/datasets/UTHSC_BXD_WB_RNASeqtrim1112/cases.rtf +++ /dev/null @@ -1,245 +0,0 @@ -
    - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexOriginal StrainCorrected StrainSexAge
    1BXD13_batch2BXD18M67
    2BXD15_batch2BXD15F62
    3BXD18_batch2BXD19F65
    4BXD24_batch2BXD24F63
    5BXD36_batch2BXD45 removedM67
    6BXD39_batch2BXD39F60
    7BXD42_batch2BXD43F67
    8BXD43_batch2BXD42F60
    9BXD45_batch2BXD45F60
    10BXD50_batch2BXD50F57
    11BXD51_batch2BXD55F59
    12BXD55_batch2BXD51F61
    13BXD56_batch2BXD56F67
    14BXD6_batch2BXD6F59
    15BXD8_batch2BXD9F62
    16BXD9_batch2BXD8M70
    17BXD14_batch3BXD40F76
    18BXD16_batch3BXD19M74
    19BXD32_batch3BXD32M54
    20BXD38_batch3BXD38F102
    21BXD40_batch3BXD14M81
    22BXD48_batch3BXD48M68
    23BXD60_batch3BXD60F64
    24BXD66_batch3BXD66M61
    25BXD69_batch3BXD69F66
    26BXD70_batch3BXD70M72
    27BXD29m_batch4BXD1F60
    28BXD29n_batch4BXD29F344
    29BXD34_batch4BXD34F108
    30BXD49_batch4BXD49M76
    31BXD65_batch4BXD29F58
    32BXD22_batch6BXD22F67
    -
    -
    diff --git a/general/datasets/UTHSC_BXD_WB_RNASeqtrim1112/notes.rtf b/general/datasets/UTHSC_BXD_WB_RNASeqtrim1112/notes.rtf deleted file mode 100644 index c16bd50..0000000 --- a/general/datasets/UTHSC_BXD_WB_RNASeqtrim1112/notes.rtf +++ /dev/null @@ -1,23 +0,0 @@ -

    RNA sequencing for BXD strains on SOLiD by David Li.
    -All Bam files alignment done by Xusheng Wang
    -Aligned files were uploaded to Partek Genomic Suite 6.5 (version 6.10.0810) and processed by K Mozhui
    -Normalization: RPKM (reads per kilobase per million mapped reads)
    -Batch effect due to low exonic reads for batch 2

    - -

    Revision 1.6 Untrimmed (current) LRS=(23 999) ->350 records
    -Max LRS = 102.6 Record Id:uthsc_nr_015498, Gene Symbol:1500004A13Rik **Note: 1 sample BXD45 and BXD34 removed. BXD41 switched to BXD1 as a second posible candidate.

    - -

    Revision 1.5 Untrimmed LRS=(23 999) ->268 records
    -Max LRS = 80.0 Record Id:uthsc_nm_001039533, Gene Symbol:Pdxdc1 **Note: 1 sample BXD45 removed. BXD41 switched to BXD1 as a second posible candidate.

    - -

    Revision 1.4 Untrimmed LRS=(23 999) ->246 records
    -Max LRS = 80.0 Record Id:uthsc_nm_001039533, Gene Symbol:Pdxdc1 **Note: 1 sample BXD45 removed and keep BXD41

    - -

    Revision 1.3 Untrimmed LRS=(23 999) ->233 records
    -Max LRS = 80.7 Record Id:uthsc_nm_001039533, Gene Symbol:Pdxdc1

    - -

    Revision 1.2 Untrimmed LRS=(23 999) ->190 records
    -Max LRS = 56.9 Record Id:uthsc_nr_003513, Gene Symbol:Neat1

    - -

    Revision 1 Untrimmed LRS=(23 999) ->126 records
    -Max LRS = 35.3 Record Id:uthsc_nm_001113412, Gene Symbol:Fggy

    diff --git a/general/datasets/UTHSC_BXD_WB_RNASeqtrim1112/summary.rtf b/general/datasets/UTHSC_BXD_WB_RNASeqtrim1112/summary.rtf deleted file mode 100644 index 82080d4..0000000 --- a/general/datasets/UTHSC_BXD_WB_RNASeqtrim1112/summary.rtf +++ /dev/null @@ -1,4 +0,0 @@ - diff --git a/general/datasets/UTHSC_BXD_WB_RNASeqtrim1_1112/cases.rtf b/general/datasets/UTHSC_BXD_WB_RNASeqtrim1_1112/cases.rtf deleted file mode 100644 index 2f0fdc0..0000000 --- a/general/datasets/UTHSC_BXD_WB_RNASeqtrim1_1112/cases.rtf +++ /dev/null @@ -1,245 +0,0 @@ -
    - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexOriginal StrainCorrected StrainSexAge
    1BXD13_batch2BXD18M67
    2BXD15_batch2BXD15F62
    3BXD18_batch2BXD19F65
    4BXD24_batch2BXD24F63
    5BXD36_batch2BXD45 removedM67
    6BXD39_batch2BXD39F60
    7BXD42_batch2BXD43F67
    8BXD43_batch2BXD42F60
    9BXD45_batch2BXD45F60
    10BXD50_batch2BXD50F57
    11BXD51_batch2BXD55F59
    12BXD55_batch2BXD51F61
    13BXD56_batch2BXD56F67
    14BXD6_batch2BXD6F59
    15BXD8_batch2BXD9F62
    16BXD9_batch2BXD8M70
    17BXD14_batch3BXD40F76
    18BXD16_batch3BXD19M74
    19BXD32_batch3BXD32M54
    20BXD38_batch3BXD38F102
    21BXD40_batch3BXD14M81
    22BXD48_batch3BXD48M68
    23BXD60_batch3BXD60F64
    24BXD66_batch3BXD66M61
    25BXD69_batch3BXD69F66
    26BXD70_batch3BXD70M72
    27BXD29m_batch4BXD1F60
    28BXD29n_batch4BXD29F344
    29BXD34_batch4BXD34F108
    30BXD49_batch4BXD49M76
    31BXD65_batch4BXD29F58
    32BXD22_batch6BXD22F67
    -
    -
    diff --git a/general/datasets/UTHSC_BXD_WB_RNASeqtrim1_1112/notes.rtf b/general/datasets/UTHSC_BXD_WB_RNASeqtrim1_1112/notes.rtf deleted file mode 100644 index c16bd50..0000000 --- a/general/datasets/UTHSC_BXD_WB_RNASeqtrim1_1112/notes.rtf +++ /dev/null @@ -1,23 +0,0 @@ -

    RNA sequencing for BXD strains on SOLiD by David Li.
    -All Bam files alignment done by Xusheng Wang
    -Aligned files were uploaded to Partek Genomic Suite 6.5 (version 6.10.0810) and processed by K Mozhui
    -Normalization: RPKM (reads per kilobase per million mapped reads)
    -Batch effect due to low exonic reads for batch 2

    - -

    Revision 1.6 Untrimmed (current) LRS=(23 999) ->350 records
    -Max LRS = 102.6 Record Id:uthsc_nr_015498, Gene Symbol:1500004A13Rik **Note: 1 sample BXD45 and BXD34 removed. BXD41 switched to BXD1 as a second posible candidate.

    - -

    Revision 1.5 Untrimmed LRS=(23 999) ->268 records
    -Max LRS = 80.0 Record Id:uthsc_nm_001039533, Gene Symbol:Pdxdc1 **Note: 1 sample BXD45 removed. BXD41 switched to BXD1 as a second posible candidate.

    - -

    Revision 1.4 Untrimmed LRS=(23 999) ->246 records
    -Max LRS = 80.0 Record Id:uthsc_nm_001039533, Gene Symbol:Pdxdc1 **Note: 1 sample BXD45 removed and keep BXD41

    - -

    Revision 1.3 Untrimmed LRS=(23 999) ->233 records
    -Max LRS = 80.7 Record Id:uthsc_nm_001039533, Gene Symbol:Pdxdc1

    - -

    Revision 1.2 Untrimmed LRS=(23 999) ->190 records
    -Max LRS = 56.9 Record Id:uthsc_nr_003513, Gene Symbol:Neat1

    - -

    Revision 1 Untrimmed LRS=(23 999) ->126 records
    -Max LRS = 35.3 Record Id:uthsc_nm_001113412, Gene Symbol:Fggy

    diff --git a/general/datasets/UTHSC_BXD_WB_RNASeqtrim1_1112/summary.rtf b/general/datasets/UTHSC_BXD_WB_RNASeqtrim1_1112/summary.rtf deleted file mode 100644 index 82080d4..0000000 --- a/general/datasets/UTHSC_BXD_WB_RNASeqtrim1_1112/summary.rtf +++ /dev/null @@ -1,4 +0,0 @@ - diff --git a/general/datasets/UTHSC_BXD_Young_Adult_Eye_RNAseq_TPM_Log/experiment-design.rtf b/general/datasets/UTHSC_BXD_Young_Adult_Eye_RNAseq_TPM_Log/experiment-design.rtf deleted file mode 100644 index 2f8cedc..0000000 --- a/general/datasets/UTHSC_BXD_Young_Adult_Eye_RNAseq_TPM_Log/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Total RNA was extracted using Trizol® reagent (Invitrogen, Grand Island, NY, USA) according to the manufacturer’s instructions. Approximately 30 mg of PFC tissue was added into a 2 ml tube containing 700ul QIAzol Lysis Reagent and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 minutes in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 r followed by incubating for 5 minutes.140 µl chloroform was added into the homogenate, shaken vigorously for 15 seconds, and centrifuged for 15 minutes at 12,000 x g at 4 â„ƒ. 280 µl upper aqueous was then transferred into a new collection tube containing 500 µl 100% ethanol. The mixture was loaded into a RNeasy mini‐spin column (Qiagen, Valencia, CA, USA), once with Buffer RWT and twice with Buffer RPE purification. All RNA had been treated with DNase to avoid DNA contamination, and verified by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA with OD260/280 > 1.8 and RIN > 8.0 were used for library preparation

    diff --git a/general/datasets/UTHSC_BXD_Young_Adult_Eye_RNAseq_TPM_Log/processing.rtf b/general/datasets/UTHSC_BXD_Young_Adult_Eye_RNAseq_TPM_Log/processing.rtf deleted file mode 100644 index 8e460ff..0000000 --- a/general/datasets/UTHSC_BXD_Young_Adult_Eye_RNAseq_TPM_Log/processing.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

    Generation of RNA-seq data

    - -

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    - -

     

    - -

    Read mapping and normalization

    - -

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/UTHSC_BXD_Young_Adult_Eye_RNAseq_TPM_Log/specifics.rtf b/general/datasets/UTHSC_BXD_Young_Adult_Eye_RNAseq_TPM_Log/specifics.rtf deleted file mode 100644 index 7e44a00..0000000 --- a/general/datasets/UTHSC_BXD_Young_Adult_Eye_RNAseq_TPM_Log/specifics.rtf +++ /dev/null @@ -1,3644 +0,0 @@ -

    BXD Eye (2~6 Month) RNA-Seq (Oct30) TPM Log2

    - -

    The table of samples that are finally used for this study.

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -

    Index

    -
    -

    RNA ID

    -
    -

    case ID

    -
    -

    DA_corrected_strain

    -
    -

    Fuyi_corrected_Sex

    -
    -

    Age (day)

    -
    -

    Tissue

    -
    -

    1

    -
    -

    E508

    -
    -

    *060619.13

    -
    -

    BXD170

    -
    -

    Female

    -
    -

    76

    -
    -

    Eyeball

    -
    -

    2

    -
    -

    E509

    -
    -

    *060619.14

    -
    -

    BXD170

    -
    -

    Male

    -
    -

    76

    -
    -

    Eyeball

    -
    -

    3

    -
    -

    E510

    -
    -

    *060619.16

    -
    -

    BXD194

    -
    -

    Female

    -
    -

    94

    -
    -

    Eyeball

    -
    -

    4

    -
    -

    E511

    -
    -

    *060619.17

    -
    -

    BXD194

    -
    -

    Male

    -
    -

    94

    -
    -

    Eyeball

    -
    -

    5

    -
    -

    E512

    -
    -

    *060619.19

    -
    -

    BXD213

    -
    -

    Female

    -
    -

    78

    -
    -

    Eyeball

    -
    -

    6

    -
    -

    E513

    -
    -

    *060619.20

    -
    -

    BXD213

    -
    -

    Male

    -
    -

    78

    -
    -

    Eyeball

    -
    -

    7

    -
    -

    E514

    -
    -

    *060619.22

    -
    -

    BXD214

    -
    -

    Female

    -
    -

    107

    -
    -

    Eyeball

    -
    -

    8

    -
    -

    E515

    -
    -

    *060619.23

    -
    -

    BXD214

    -
    -

    Male

    -
    -

    107

    -
    -

    Eyeball

    -
    -

    9

    -
    -

    E516

    -
    -

    *060619.02

    -
    -

    BXD125

    -
    -

    Female

    -
    -

    100

    -
    -

    Eyeball

    -
    -

    10

    -
    -

    E517

    -
    -

    *060619.03

    -
    -

    BXD125

    -
    -

    Male

    -
    -

    100

    -
    -

    Eyeball

    -
    -

    11

    -
    -

    E518

    -
    -

    *060619.05

    -
    -

    BXD151

    -
    -

    Female

    -
    -

    97

    -
    -

    Eyeball

    -
    -

    12

    -
    -

    E519

    -
    -

    *060619.06

    -
    -

    BXD151

    -
    -

    Male

    -
    -

    97

    -
    -

    Eyeball

    -
    -

    13

    -
    -

    E520

    -
    -

    *060619.08

    -
    -

    BXD154

    -
    -

    Female

    -
    -

    102

    -
    -

    Eyeball

    -
    -

    14

    -
    -

    E521

    -
    -

    *060619.09

    -
    -

    BXD154

    -
    -

    Male

    -
    -

    102

    -
    -

    Eyeball

    -
    -

    15

    -
    -

    E522

    -
    -

    *060519.06

    -
    -

    BXD27

    -
    -

    Female

    -
    -

    94

    -
    -

    Eyeball

    -
    -

    16

    -
    -

    E523

    -
    -

    *060519.07

    -
    -

    BXD27

    -
    -

    Female

    -
    -

    94

    -
    -

    Eyeball

    -
    -

    17

    -
    -

    E524

    -
    -

    *060519.09

    -
    -

    BXD60

    -
    -

    Female

    -
    -

    82

    -
    -

    Eyeball

    -
    -

    18

    -
    -

    E525

    -
    -

    *060519.10

    -
    -

    BXD60

    -
    -

    Male

    -
    -

    82

    -
    -

    Eyeball

    -
    -

    19

    -
    -

    E526

    -
    -

    *060519.11

    -
    -

    BXD66

    -
    -

    Female

    -
    -

    104

    -
    -

    Eyeball

    -
    -

    20

    -
    -

    E527

    -
    -

    *060519.12

    -
    -

    BXD66

    -
    -

    Male

    -
    -

    104

    -
    -

    Eyeball

    -
    -

    21

    -
    -

    E528

    -
    -

    *060519.13

    -
    -

    BXD68

    -
    -

    Female

    -
    -

    91

    -
    -

    Eyeball

    -
    -

    22

    -
    -

    E529

    -
    -

    *060519.16

    -
    -

    BXD73a

    -
    -

    Female

    -
    -

    134

    -
    -

    Eyeball

    -
    -

    23

    -
    -

    E530

    -
    -

    *060519.15

    -
    -

    BXD68

    -
    -

    Male

    -
    -

    91

    -
    -

    Eyeball

    -
    -

    24

    -
    -

    E531

    -
    -

    *060519.19

    -
    -

    BXD78

    -
    -

    Female

    -
    -

    107

    -
    -

    Eyeball

    -
    -

    25

    -
    -

    E532

    -
    -

    *060519.21

    -
    -

    BXD79

    -
    -

    Female

    -
    -

    108

    -
    -

    Eyeball

    -
    -

    26

    -
    -

    E533

    -
    -

    *060519.20

    -
    -

    BXD78

    -
    -

    Male

    -
    -

    107

    -
    -

    Eyeball

    -
    -

    27

    -
    -

    E534

    -
    -

    *060519.23

    -
    -

    BXD79

    -
    -

    Male

    -
    -

    108

    -
    -

    Eyeball

    -
    -

    28

    -
    -

    E535

    -
    -

    *060519.24

    -
    -

    BXD124

    -
    -

    Female

    -
    -

    95

    -
    -

    Eyeball

    -
    -

    29

    -
    -

    E536

    -
    -

    *060519.26

    -
    -

    BXD124

    -
    -

    Male

    -
    -

    95

    -
    -

    Eyeball

    -
    -

    30

    -
    -

    E537

    -
    -

    *051119.05

    -
    -

    BXD216

    -
    -

    Female

    -
    -

    60

    -
    -

    Eyeball

    -
    -

    31

    -
    -

    E538

    -
    -

    *051119.06

    -
    -

    BXD216

    -
    -

    Male

    -
    -

    60

    -
    -

    Eyeball

    -
    -

    32

    -
    -

    E539

    -
    -

    42415.13

    -
    -

    BXD100

    -
    -

    Female

    -
    -

    176

    -
    -

    Eyeball

    -
    -

    33

    -
    -

    E550

    -
    -

    *061119.09

    -
    -

    DBA/2J

    -
    -

    Male

    -
    -

    172

    -
    -

    Eyeball

    -
    -

    34

    -
    -

    E597

    -
    -

    *050118.27

    -
    -

    DBA/2J

    -
    -

    Female

    -
    -

    167

    -
    -

    Eyeball

    -
    -

    35

    -
    -

    E598

    -
    -

    *050118.28

    -
    -

    DBA/2J

    -
    -

    Female

    -
    -

    167

    -
    -

    Eyeball

    -
    -

    36

    -
    -

    E599

    -
    -

    *050118.29

    -
    -

    DBA/2J

    -
    -

    Male

    -
    -

    167

    -
    -

    Eyeball

    -
    -

    37

    -
    -

    E619

    -
    -

    *012420.07

    -
    -

    BXD75

    -
    -

    Female

    -
    -

    95

    -
    -

    Eyeball

    -
    -

    38

    -
    -

    E622

    -
    -

    *012420.50

    -
    -

    BXD197

    -
    -

    Female

    -
    -

    128

    -
    -

    Eyeball

    -
    -

    39

    -
    -

    E624

    -
    -

    *110918.11

    -
    -

    BXD32

    -
    -

    Female

    -
    -

    153

    -
    -

    Eyeball

    -
    -

    40

    -
    -

    E660

    -
    -

    *100819.150

    -
    -

    BXD199

    -
    -

    Female

    -
    -

    116

    -
    -

    Eyeball

    -
    -

    41

    -
    -

    E661

    -
    -

    *100819.151

    -
    -

    BXD199

    -
    -

    Male

    -
    -

    117

    -
    -

    Eyeball

    -
    -

    42

    -
    -

    E673

    -
    -

    *052920.03

    -
    -

    C57BL/6J

    -
    -

    Female

    -
    -

    121

    -
    -

    Eyeball

    -
    -

    43

    -
    -

    E681

    -
    -

    *052920.04

    -
    -

    BXD73a

    -
    -

    Female

    -
    -

    180

    -
    -

    Eyeball

    -
    -

    44

    -
    -

    E683

    -
    -

    *052920.07

    -
    -

    BXD9

    -
    -

    Female

    -
    -

    185

    -
    -

    Eyeball

    -
    -

    45

    -
    -

    E684

    -
    -

    *052920.08

    -
    -

    BXD9

    -
    -

    Male

    -
    -

    186

    -
    -

    Eyeball

    -
    -

    46

    -
    -

    E691

    -
    -

    *072120.06

    -
    -

    BXD83

    -
    -

    Female

    -
    -

    132

    -
    -

    Eyeball

    -
    -

    47

    -
    -

    E692

    -
    -

    *072120.07

    -
    -

    BXD83

    -
    -

    Male

    -
    -

    132

    -
    -

    Eyeball

    -
    -

    48

    -
    -

    E693

    -
    -

    *072120.08

    -
    -

    BXD122

    -
    -

    Female

    -
    -

    73

    -
    -

    Eyeball

    -
    -

    49

    -
    -

    E695

    -
    -

    *072120.11

    -
    -

    BXD178

    -
    -

    Female

    -
    -

    172

    -
    -

    Eyeball

    -
    -

    50

    -
    -

    E696

    -
    -

    *072120.10

    -
    -

    BXD178

    -
    -

    Female

    -
    -

    172

    -
    -

    Eyeball

    -
    -

    51

    -
    -

    E697

    -
    -

    *072120.12

    -
    -

    BXD1

    -
    -

    Female

    -
    -

    133

    -
    -

    Eyeball

    -
    -

    52

    -
    -

    E698

    -
    -

    *072120.13

    -
    -

    BXD1

    -
    -

    Male

    -
    -

    133

    -
    -

    Eyeball

    -
    -

    53

    -
    -

    E700

    -
    -

    *072120.15

    -
    -

    BXD40

    -
    -

    Female

    -
    -

    118

    -
    -

    Eyeball

    -
    -

    54

    -
    -

    E701

    -
    -

    *072120.16

    -
    -

    BXD40

    -
    -

    Female

    -
    -

    118

    -
    -

    Eyeball

    -
    -

    55

    -
    -

    E702

    -
    -

    *072120.17

    -
    -

    BXD43

    -
    -

    Female

    -
    -

    102

    -
    -

    Eyeball

    -
    -

    56

    -
    -

    E703

    -
    -

    *072120.18

    -
    -

    BXD43

    -
    -

    Male

    -
    -

    102

    -
    -

    Eyeball

    -
    -

    57

    -
    -

    E704

    -
    -

    *072120.20

    -
    -

    BXD51

    -
    -

    Male

    -
    -

    135

    -
    -

    Eyeball

    -
    -

    58

    -
    -

    E705

    -
    -

    *072120.19

    -
    -

    BXD51

    -
    -

    Female

    -
    -

    135

    -
    -

    Eyeball

    -
    -

    59

    -
    -

    E707

    -
    -

    *072120.22

    -
    -

    BXD113

    -
    -

    Female

    -
    -

    180

    -
    -

    Eyeball

    -
    -

    60

    -
    -

    E708

    -
    -

    *072120.23

    -
    -

    BXD113

    -
    -

    Male

    -
    -

    180

    -
    -

    Eyeball

    -
    -

    61

    -
    -

    E710

    -
    -

    *072120.25

    -
    -

    BXD150

    -
    -

    Female

    -
    -

    173

    -
    -

    Eyeball

    -
    -

    62

    -
    -

    E711

    -
    -

    *072120.26

    -
    -

    BXD150

    -
    -

    Male

    -
    -

    173

    -
    -

    Eyeball

    -
    -

    63

    -
    -

    E714

    -
    -

    *072120.29

    -
    -

    BXD160

    -
    -

    Female

    -
    -

    144

    -
    -

    Eyeball

    -
    -

    64

    -
    -

    E715

    -
    -

    *072120.30

    -
    -

    BXD160

    -
    -

    Male

    -
    -

    144

    -
    -

    Eyeball

    -
    -

    65

    -
    -

    E716

    -
    -

    *072120.31

    -
    -

    BXD161

    -
    -

    Female

    -
    -

    71

    -
    -

    Eyeball

    -
    -

    66

    -
    -

    E717

    -
    -

    *072120.32

    -
    -

    BXD161

    -
    -

    Male

    -
    -

    71

    -
    -

    Eyeball

    -
    -

    67

    -
    -

    E719

    -
    -

    *072120.34

    -
    -

    BXD197

    -
    -

    Male

    -
    -

    153

    -
    -

    Eyeball

    -
    -

    68

    -
    -

    E720

    -
    -

    *072120.35

    -
    -

    DBA/2J-Gpnmb

    -
    -

    Female

    -
    -

    97

    -
    -

    Eyeball

    -
    -

    69

    -
    -

    E721

    -
    -

    *072120.36

    -
    -

    DBA/2J-Gpnmb

    -
    -

    Male

    -
    -

    97

    -
    -

    Eyeball

    -
    -

    70

    -
    -

    E724

    -
    -

    *072120.39

    -
    -

    BXD11

    -
    -

    Female

    -
    -

    131

    -
    -

    Eyeball

    -
    -

    71

    -
    -

    E725

    -
    -

    *072120.40

    -
    -

    BXD11

    -
    -

    Male

    -
    -

    131

    -
    -

    Eyeball

    -
    -

    72

    -
    -

    E729

    -
    -

    *072120.44

    -
    -

    BXD34

    -
    -

    Female

    -
    -

    166

    -
    -

    Eyeball

    -
    -

    73

    -
    -

    E730

    -
    -

    *072120.45

    -
    -

    BXD34

    -
    -

    Female

    -
    -

    166

    -
    -

    Eyeball

    -
    -

    74

    -
    -

    E731

    -
    -

    *072120.46

    -
    -

    BXD50

    -
    -

    Female

    -
    -

    177

    -
    -

    Eyeball

    -
    -

    75

    -
    -

    E732

    -
    -

    *072120.47

    -
    -

    BXD50

    -
    -

    Male

    -
    -

    177

    -
    -

    Eyeball

    -
    -

    76

    -
    -

    E736

    -
    -

    *072120.51

    -
    -

    BXD180

    -
    -

    Female

    -
    -

    92

    -
    -

    Eyeball

    -
    -

    77

    -
    -

    E743

    -
    -

    *072120.58

    -
    -

    BXD191

    -
    -

    Female

    -
    -

    134

    -
    -

    Eyeball

    -
    -

    78

    -
    -

    E744

    -
    -

    *072120.59

    -
    -

    BXD191

    -
    -

    Male

    -
    -

    134

    -
    -

    Eyeball

    -
    -

    79

    -
    -

    E747

    -
    -

    *072120.62

    -
    -

    B6D2F1

    -
    -

    Female

    -
    -

    129

    -
    -

    Eyeball

    -
    -

    80

    -
    -

    E748

    -
    -

    *072120.63

    -
    -

    B6D2F1

    -
    -

    Male

    -
    -

    125

    -
    -

    Eyeball

    -
    -

    81

    -
    -

    E751

    -
    -

    *072120.66

    -
    -

    BXD2

    -
    -

    Female

    -
    -

    115

    -
    -

    Eyeball

    -
    -

    82

    -
    -

    E752

    -
    -

    *072120.67

    -
    -

    BXD2

    -
    -

    Male

    -
    -

    115

    -
    -

    Eyeball

    -
    -

    83

    -
    -

    E755

    -
    -

    *072120.74

    -
    -

    BXD187

    -
    -

    Female

    -
    -

    133

    -
    -

    Eyeball

    -
    -

    84

    -
    -

    E756

    -
    -

    *072120.75

    -
    -

    BXD187

    -
    -

    Male

    -
    -

    133

    -
    -

    Eyeball

    -
    -

    85

    -
    -

    E757

    -
    -

    *072120.71

    -
    -

    BXD169

    -
    -

    Male

    -
    -

    136

    -
    -

    Eyeball

    -
    -

    86

    -
    -

    E758

    -
    -

    *072120.70

    -
    -

    BXD169

    -
    -

    Female

    -
    -

    136

    -
    -

    Eyeball

    -
    -

    87

    -
    -

    E761

    -
    -

    *081420.01

    -
    -

    BXD128a

    -
    -

    Female

    -
    -

    144

    -
    -

    Eyeball

    -
    -

    88

    -
    -

    E762

    -
    -

    *081420.02

    -
    -

    BXD128a

    -
    -

    Male

    -
    -

    144

    -
    -

    Eyeball

    -
    -

    89

    -
    -

    E763

    -
    -

    *081420.03

    -
    -

    BXD48a

    -
    -

    Female

    -
    -

    71

    -
    -

    Eyeball

    -
    -

    90

    -
    -

    E764

    -
    -

    *081420.04

    -
    -

    BXD48a

    -
    -

    Male

    -
    -

    71

    -
    -

    Eyeball

    -
    -

    91

    -
    -

    E316

    -
    -

    *012420.49

    -
    -

    BXD190

    -
    -

    Male

    -
    -

    148

    -
    -

    Eyeball

    -
    -

    92

    -
    -

    E317

    -
    -

    *012420.14

    -
    -

    BXD87

    -
    -

    Male

    -
    -

    120

    -
    -

    Eyeball

    -
    -

    93

    -
    -

    E319

    -
    -

    *012420.45

    -
    -

    BXD180

    -
    -

    Male

    -
    -

    109

    -
    -

    Eyeball

    -
    -

    94

    -
    -

    E321

    -
    -

    *012420.34

    -
    -

    BXD152

    -
    -

    Female

    -
    -

    131

    -
    -

    Eyeball

    -
    -

    95

    -
    -

    E322

    -
    -

    *012420.36

    -
    -

    BXD152

    -
    -

    Male

    -
    -

    131

    -
    -

    Eyeball

    -
    -

    96

    -
    -

    E323

    -
    -

    *012420.13

    -
    -

    BXD87

    -
    -

    Female

    -
    -

    120

    -
    -

    Eyeball

    -
    -

    97

    -
    -

    E325

    -
    -

    *012420.48

    -
    -

    BXD190

    -
    -

    Female

    -
    -

    148

    -
    -

    Eyeball

    -
    -

    98

    -
    -

    E326

    -
    -

    *012420.09

    -
    -

    BXD75

    -
    -

    Male

    -
    -

    95

    -
    -

    Eyeball

    -
    -

    99

    -
    -

    E336

    -
    -

    *110918.13

    -
    -

    BXD32

    -
    -

    Male

    -
    -

    153

    -
    -

    Eyeball

    -
    -

    100

    -
    -

    E338

    -
    -

    *110918.36

    -
    -

    BXD71

    -
    -

    Male

    -
    -

    174

    -
    -

    Eyeball

    -
    -

    101

    -
    -

    E339

    -
    -

    *110918.35

    -
    -

    BXD71

    -
    -

    Female

    -
    -

    174

    -
    -

    Eyeball

    -
    -

    102

    -
    -

    E401

    -
    -

    *100819.01

    -
    -

    C57BL/6J

    -
    -

    Female

    -
    -

    110

    -
    -

    Eyeball

    -
    -

    103

    -
    -

    E402

    -
    -

    *100819.02

    -
    -

    C57BL/6J

    -
    -

    Female

    -
    -

    110

    -
    -

    Eyeball

    -
    -

    104

    -
    -

    E403

    -
    -

    *100819.03

    -
    -

    C57BL/6J

    -
    -

    Male

    -
    -

    110

    -
    -

    Eyeball

    -
    -

    105

    -
    -

    E410

    -
    -

    *100819.14

    -
    -

    BXD15

    -
    -

    Female

    -
    -

    94

    -
    -

    Eyeball

    -
    -

    106

    -
    -

    E411

    -
    -

    *100819.15

    -
    -

    BXD15

    -
    -

    Female

    -
    -

    94

    -
    -

    Eyeball

    -
    -

    107

    -
    -

    E412

    -
    -

    *100819.28

    -
    -

    BXD29

    -
    -

    Female

    -
    -

    68

    -
    -

    Eyeball

    -
    -

    108

    -
    -

    E413

    -
    -

    *100819.29

    -
    -

    BXD29

    -
    -

    Male

    -
    -

    68

    -
    -

    Eyeball

    -
    -

    109

    -
    -

    E420

    -
    -

    *100819.44

    -
    -

    BXD44

    -
    -

    Female

    -
    -

    152

    -
    -

    Eyeball

    -
    -

    110

    -
    -

    E421

    -
    -

    *100819.45

    -
    -

    BXD44

    -
    -

    Male

    -
    -

    152

    -
    -

    Eyeball

    -
    -

    111

    -
    -

    E424

    -
    -

    *100819.55

    -
    -

    BXD61

    -
    -

    Female

    -
    -

    120

    -
    -

    Eyeball

    -
    -

    112

    -
    -

    E425

    -
    -

    *100819.56

    -
    -

    BXD61

    -
    -

    Male

    -
    -

    120

    -
    -

    Eyeball

    -
    -

    113

    -
    -

    E426

    -
    -

    *100819.58

    -
    -

    BXD62

    -
    -

    Female

    -
    -

    99

    -
    -

    Eyeball

    -
    -

    114

    -
    -

    E427

    -
    -

    *100819.59

    -
    -

    BXD62

    -
    -

    Male

    -
    -

    99

    -
    -

    Eyeball

    -
    -

    115

    -
    -

    E428

    -
    -

    *100819.63

    -
    -

    BXD65

    -
    -

    Female

    -
    -

    121

    -
    -

    Eyeball

    -
    -

    116

    -
    -

    E429

    -
    -

    *100819.64

    -
    -

    BXD65

    -
    -

    Male

    -
    -

    121

    -
    -

    Eyeball

    -
    -

    117

    -
    -

    E432

    -
    -

    *100819.74

    -
    -

    BXD73

    -
    -

    Female

    -
    -

    154

    -
    -

    Eyeball

    -
    -

    118

    -
    -

    E433

    -
    -

    *100819.75

    -
    -

    BXD73

    -
    -

    Male

    -
    -

    154

    -
    -

    Eyeball

    -
    -

    119

    -
    -

    E434

    -
    -

    *100819.77

    -
    -

    BXD73b

    -
    -

    Female

    -
    -

    153

    -
    -

    Eyeball

    -
    -

    120

    -
    -

    E435

    -
    -

    *100819.78

    -
    -

    BXD73b

    -
    -

    Male

    -
    -

    153

    -
    -

    Eyeball

    -
    -

    121

    -
    -

    E436

    -
    -

    *100819.79

    -
    -

    BXD75

    -
    -

    Female

    -
    -

    93

    -
    -

    Eyeball

    -
    -

    122

    -
    -

    E437

    -
    -

    *100819.80

    -
    -

    BXD75

    -
    -

    Male

    -
    -

    93

    -
    -

    Eyeball

    -
    -

    123

    -
    -

    E438

    -
    -

    *100819.86

    -
    -

    BXD86

    -
    -

    Female

    -
    -

    75

    -
    -

    Eyeball

    -
    -

    124

    -
    -

    E439

    -
    -

    *100819.87

    -
    -

    BXD86

    -
    -

    Male

    -
    -

    75

    -
    -

    Eyeball

    -
    -

    125

    -
    -

    E440

    -
    -

    *100819.90

    -
    -

    BXD89

    -
    -

    Female

    -
    -

    112

    -
    -

    Eyeball

    -
    -

    126

    -
    -

    E441

    -
    -

    *100819.91

    -
    -

    BXD89

    -
    -

    Male

    -
    -

    112

    -
    -

    Eyeball

    -
    -

    127

    -
    -

    E442

    -
    -

    *100819.92

    -
    -

    BXD90

    -
    -

    Female

    -
    -

    123

    -
    -

    Eyeball

    -
    -

    128

    -
    -

    E443

    -
    -

    *100819.93

    -
    -

    BXD90

    -
    -

    Male

    -
    -

    123

    -
    -

    Eyeball

    -
    -

    129

    -
    -

    E444

    -
    -

    *100819.95

    -
    -

    BXD101

    -
    -

    Female

    -
    -

    118

    -
    -

    Eyeball

    -
    -

    130

    -
    -

    E445

    -
    -

    *100819.96

    -
    -

    BXD101

    -
    -

    Male

    -
    -

    118

    -
    -

    Eyeball

    -
    -

    131

    -
    -

    E446

    -
    -

    *100819.98

    -
    -

    BXD102

    -
    -

    Female

    -
    -

    121

    -
    -

    Eyeball

    -
    -

    132

    -
    -

    E447

    -
    -

    *100819.99

    -
    -

    BXD102

    -
    -

    Male

    -
    -

    121

    -
    -

    Eyeball

    -
    -

    133

    -
    -

    E457

    -
    -

    *100819.122

    -
    -

    BXD155

    -
    -

    Female

    -
    -

    86

    -
    -

    Eyeball

    -
    -

    134

    -
    -

    E458

    -
    -

    *100819.123

    -
    -

    BXD155

    -
    -

    Male

    -
    -

    86

    -
    -

    Eyeball

    -
    -

    135

    -
    -

    E461

    -
    -

    *052220.38

    -
    -

    BXD84

    -
    -

    Female

    -
    -

    133

    -
    -

    Eyeball

    -
    -

    136

    -
    -

    E462

    -
    -

    *052220.47

    -
    -

    BXD195

    -
    -

    Male

    -
    -

    93

    -
    -

    Eyeball

    -
    -

    137

    -
    -

    E463

    -
    -

    *052220.46

    -
    -

    BXD195

    -
    -

    Female

    -
    -

    93

    -
    -

    Eyeball

    -
    -

    138

    -
    -

    E464

    -
    -

    *052220.39

    -
    -

    BXD84

    -
    -

    Male

    -
    -

    133

    -
    -

    Eyeball

    -
    -

    139

    -
    -

    E465

    -
    -

    *052220.42

    -
    -

    BXD31

    -
    -

    Female

    -
    -

    111

    -
    -

    Eyeball

    -
    -

    140

    -
    -

    E466

    -
    -

    *052220.43

    -
    -

    BXD31

    -
    -

    Male

    -
    -

    111

    -
    -

    Eyeball

    -
    -

    141

    -
    -

    E467

    -
    -

    *052220.26

    -
    -

    BXD24

    -
    -

    Female

    -
    -

    155

    -
    -

    Eyeball

    -
    -

    142

    -
    -

    E468

    -
    -

    *052220.27

    -
    -

    BXD24

    -
    -

    Male

    -
    -

    155

    -
    -

    Eyeball

    -
    -

    143

    -
    -

    E469

    -
    -

    *052220.49

    -
    -

    BXD218

    -
    -

    Male

    -
    -

    109

    -
    -

    Eyeball

    -
    -

    144

    -
    -

    E470

    -
    -

    *052220.36

    -
    -

    BXD65b

    -
    -

    Female

    -
    -

    110

    -
    -

    Eyeball

    -
    -

    145

    -
    -

    E471

    -
    -

    *052220.40

    -
    -

    BXD202

    -
    -

    Female

    -
    -

    92

    -
    -

    Eyeball

    -
    -

    146

    -
    -

    E472

    -
    -

    *052220.45

    -
    -

    BXD122

    -
    -

    Male

    -
    -

    87

    -
    -

    Eyeball

    -
    -

    147

    -
    -

    E474

    -
    -

    *052220.41

    -
    -

    BXD202

    -
    -

    Male

    -
    -

    92

    -
    -

    Eyeball

    -
    -

    148

    -
    -

    E475

    -
    -

    *052220.37

    -
    -

    BXD65b

    -
    -

    Male

    -
    -

    110

    -
    -

    Eyeball

    -
    -

    149

    -
    -

    E476

    -
    -

    *052220.33

    -
    -

    BXD171

    -
    -

    Male

    -
    -

    74

    -
    -

    Eyeball

    -
    -

    150

    -
    -

    E477

    -
    -

    *052220.34

    -
    -

    BXD123

    -
    -

    Female

    -
    -

    127

    -
    -

    Eyeball

    -
    -

    151

    -
    -

    E479

    -
    -

    *052220.32

    -
    -

    BXD171

    -
    -

    Female

    -
    -

    74

    -
    -

    Eyeball

    -
    -

    152

    -
    -

    E480

    -
    -

    *052220.35

    -
    -

    BXD123

    -
    -

    Male

    -
    -

    127

    -
    -

    Eyeball

    -
    -

    153

    -
    -

    E481

    -
    -

    *052220.30

    -
    -

    BXD172

    -
    -

    Female

    -
    -

    104

    -
    -

    Eyeball

    -
    -

    154

    -
    -

    E491

    -
    -

    *052220.28

    -
    -

    BXD70

    -
    -

    Female

    -
    -

    118

    -
    -

    Eyeball

    -
    -

    155

    -
    -

    E492

    -
    -

    *052220.29

    -
    -

    BXD70

    -
    -

    Male

    -
    -

    118

    -
    -

    Eyeball

    -
    -

    156

    -
    -

    E505

    -
    -

    *052220.31

    -
    -

    BXD172

    -
    -

    Male

    -
    -

    104

    -
    -

    Eyeball

    -
    -

    157

    -
    -

    E507

    -
    -

    *052220.48

    -
    -

    BXD218

    -
    -

    Female

    -
    -

    109

    -
    -

    Eyeball

    -
    - -

     

    diff --git a/general/datasets/UTHSC_BXD_Young_Adult_Eye_RNAseq_TPM_Log/tissue.rtf b/general/datasets/UTHSC_BXD_Young_Adult_Eye_RNAseq_TPM_Log/tissue.rtf deleted file mode 100644 index bbfb410..0000000 --- a/general/datasets/UTHSC_BXD_Young_Adult_Eye_RNAseq_TPM_Log/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The animals were sacrificed under saturated isoflurane. Eyeballs from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/UTHSC_EMSR_All_AffyMTA1_Mar17/specifics.rtf b/general/datasets/UTHSC_EMSR_All_AffyMTA1_Mar17/specifics.rtf deleted file mode 100644 index 4f2baa1..0000000 --- a/general/datasets/UTHSC_EMSR_All_AffyMTA1_Mar17/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -All Treatments \ No newline at end of file diff --git a/general/datasets/UTHSC_EMSR_All_AffyMTA1_Mar17/summary.rtf b/general/datasets/UTHSC_EMSR_All_AffyMTA1_Mar17/summary.rtf deleted file mode 100644 index e320185..0000000 --- a/general/datasets/UTHSC_EMSR_All_AffyMTA1_Mar17/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Info File in progress.

    diff --git a/general/datasets/UTHSC_EMSR_EtSt_AffyMTA1_Mar17/specifics.rtf b/general/datasets/UTHSC_EMSR_EtSt_AffyMTA1_Mar17/specifics.rtf deleted file mode 100644 index 1c7602b..0000000 --- a/general/datasets/UTHSC_EMSR_EtSt_AffyMTA1_Mar17/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Ethanol-Stress Treatment \ No newline at end of file diff --git a/general/datasets/UTHSC_EMSR_EtSt_AffyMTA1_Mar17/summary.rtf b/general/datasets/UTHSC_EMSR_EtSt_AffyMTA1_Mar17/summary.rtf deleted file mode 100644 index e320185..0000000 --- a/general/datasets/UTHSC_EMSR_EtSt_AffyMTA1_Mar17/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Info File in progress.

    diff --git a/general/datasets/UTHSC_EMSR_Et_AffyMTA1_Mar17/specifics.rtf b/general/datasets/UTHSC_EMSR_Et_AffyMTA1_Mar17/specifics.rtf deleted file mode 100644 index 971c8e2..0000000 --- a/general/datasets/UTHSC_EMSR_Et_AffyMTA1_Mar17/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Ethanol Treatment \ No newline at end of file diff --git a/general/datasets/UTHSC_EMSR_Et_AffyMTA1_Mar17/summary.rtf b/general/datasets/UTHSC_EMSR_Et_AffyMTA1_Mar17/summary.rtf deleted file mode 100644 index e320185..0000000 --- a/general/datasets/UTHSC_EMSR_Et_AffyMTA1_Mar17/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Info File in progress.

    diff --git a/general/datasets/UTHSC_EMSR_Sal_AffyMTA1_Mar17/specifics.rtf b/general/datasets/UTHSC_EMSR_Sal_AffyMTA1_Mar17/specifics.rtf deleted file mode 100644 index 84f5f30..0000000 --- a/general/datasets/UTHSC_EMSR_Sal_AffyMTA1_Mar17/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Saline Treatment \ No newline at end of file diff --git a/general/datasets/UTHSC_EMSR_Sal_AffyMTA1_Mar17/summary.rtf b/general/datasets/UTHSC_EMSR_Sal_AffyMTA1_Mar17/summary.rtf deleted file mode 100644 index e320185..0000000 --- a/general/datasets/UTHSC_EMSR_Sal_AffyMTA1_Mar17/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Info File in progress.

    diff --git a/general/datasets/UTHSC_EMSR_St_AffyMTA1_Mar17/specifics.rtf b/general/datasets/UTHSC_EMSR_St_AffyMTA1_Mar17/specifics.rtf deleted file mode 100644 index 78e1f39..0000000 --- a/general/datasets/UTHSC_EMSR_St_AffyMTA1_Mar17/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Stress Treatment \ No newline at end of file diff --git a/general/datasets/UTHSC_EMSR_St_AffyMTA1_Mar17/summary.rtf b/general/datasets/UTHSC_EMSR_St_AffyMTA1_Mar17/summary.rtf deleted file mode 100644 index e320185..0000000 --- a/general/datasets/UTHSC_EMSR_St_AffyMTA1_Mar17/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Info File in progress.

    diff --git a/general/datasets/UTHSC_GutExL_0414/cases.rtf b/general/datasets/UTHSC_GutExL_0414/cases.rtf deleted file mode 100644 index e3e9e26..0000000 --- a/general/datasets/UTHSC_GutExL_0414/cases.rtf +++ /dev/null @@ -1,1696 +0,0 @@ -
    - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexCaseIDStrainSexCoat ColorDate of BirthGenerationSacrifice DateAgeRNA
    - conc.(ug/ul)
    RNA Purity
    - 260/280
    RNA Integrity Number RINRun ChipNotes
    1081910.14B6D2F1Mblack06/10/2010 08/18/2010690.52.008.40y 
    2081910.17B6D2F1Mblack06/10/2010 08/18/2010690.92.008.60  
    3081910.18B6D2F1Fblack06/10/2010 08/18/2010690.31.809.30y 
    4081910.09D2B6F1Fblack06/02/2010 08/18/2010770.72.009.00y 
    5081910.23D2B6F1Mblack06/02/2010 08/18/20107710.22.028.50y 
    6081910.12C57BL/6JFblack06/02/2010 08/18/2010770.61.90n/ay 
    7081910.25C57BL/6JMblack06/02/2010 08/18/2010773.42.03 y 
    8081910.39C57BL/6JFblack06/02/2010 08/18/2010772.301.998.50y 
    9081910.41C57BL/6JMblack06/18/2010 08/18/2010612.202.028.60y 
    10081910.29DBA/2JFdilute brown DBA06/02/2010 08/18/2010772.92.038.50yneed one more female
    11081910.31DBA/2JMdilute brown DBA06/11/2010 08/18/2010688.62.068.00y 
    12081910.43DBA/2JMdilute brown DBA05/06/2010 08/18/20101042.302.019.30y 
    13081810.08BXD1Mdilute brown DBA05/24/201014208/17/2010850.61.928.50y 
    14081810.13BXD1Fdilute brown DBA06/07/201013908/17/2010710.7 9.00y 
    15081710.91BXD11Mblack06/02/201013708/17/2010760.71.938.20y 
    16081710.97BXD11Fblack05/22/201013608/17/2010871.01.958.90y 
    17081810.23BXD12Mgray06/01/201012208/17/2010770.92.008.00y 
    18081810.44BXD12Fgray06/01/201012208/18/2010780.81.938.30y 
    19081810.33BXD14Fblack05/29/201014208/17/2010801.21.978.10y 
    20081810.52BXD14Mblack05/29/201014208/18/2010810.41.909.00y 
    21081810.19BXD24Fbrown05/24/20109008/17/2010850.31.909.10yThis strain comes from UTHSC colony since 2008. So they are probably blind.
    22081810.42BXD24Mbrown05/24/20109008/17/2010850.72.008.50yThis strain comes from UTHSC colony since 2008. So they are probably blind.
    23081710.99BXD27Mdilute brown DBA06/05/201016208/17/2010731.31.958.40yneed one more female
    24081810.04BXD29Mgray06/07/20102508/17/2010710.51.918.40y 
    25081810.10BXD29Fgray06/07/20102508/17/2010710.61.978.70y 
    26081810.18BXD31Mblack06/05/201013008/17/2010730.51.888.70y 
    27081810.40BXD31Fblack06/05/201013008/17/2010731.12.007.00y 
    28081610.76BXD32Fblack05/29/201011608/18/2010813.82.059.10yneed one more male
    29081810.26BXD34Mblack06/02/20106308/17/2010761.31.988.20y 
    30081810.29BXD34Mblack06/02/20106308/17/2010760.71.938.50  
    31081810.46BXD34Fblack06/02/20106308/18/2010771.02.007.10y 
    32081810.36BXD39Mgray05/31/20106808/17/2010780.61.948.20y 
    33081810.55BXD39Fgray05/31/20106808/18/2010790.81.968.40y 
    34081910.03BXD40Fgray05/25/20105808/18/2010851.22.008.80y 
    35081910.06BXD40Mgray05/25/20105808/18/2010850.71.908.80y 
    36081810.31BXD42Fblack05/23/20106408/17/2010860.91.958.30y 
    37081810.48BXD42Mblack05/23/20106408/18/2010870.81.938.90y 
    38081710.47BXD43Mblack05/28/20104408/17/2010811.21.958.10y 
    39081710.48BXD43Fblack05/28/20104408/17/2010811.71.968.90y 
    40081710.49BXD43Fblack05/28/20104408/17/2010811.21.958.50  
    41081710.23BXD44Fbrown05/26/20104108/17/2010831.11.968.30y 
    42081710.24BXD44Fbrown05/26/20104108/17/2010830.91.928.70  
    43081710.30BXD44Mdilute brown DBA05/26/20104108/17/2010831.31.978.20y 
    44081710.31BXD44Mdilute brown DBA05/26/20104108/17/2010831.61.988.30  
    45081710.32BXD44Mdilute brown DBA05/26/20104108/17/2010830.81.958.80  
    46081710.51BXD45Mdilute brown DBA06/01/20103908/17/2010771.21.947.80y 
    47081710.54BXD45Fdilute brown DBA06/01/20103908/17/2010771.01.947.30y 
    48081610.14BXD48Fblack06/03/20104008/18/2010762.22.019.50y 
    49081610.17BXD48Mblack06/03/20104008/18/2010763.32.058.20y 
    50081710.29BXD49Mgray05/25/20104908/17/2010841.61.977.10y 
    51081710.34BXD49Fgray05/25/20102408/17/2010841.01.958.50y 
    52081610.29BXD50Fblack06/02/20103508/18/2010773.32.058.40y 
    53081610.32BXD50Mblack06/02/20103508/18/2010779.12.038.40y 
    54081610.36BXD56Mblack06/02/20103408/18/2010771.92.029.60y 
    55081610.77BXD56Fblack05/26/20103408/18/2010843.42.058.20y 
    56081610.80BXD56Fblack05/26/20103308/18/2010843.22.058.50  
    57081710.67BXD60Mbrown06/08/20104308/17/2010700.91.918.40yneed one more female
    58081810.83BXD62Mbrown05/27/20104108/18/2010830.51.958.10yneed one more female
    59081610.22BXD63Mdilute brown DBA06/02/20103108/18/2010776.92.078.50y 
    60081610.25BXD63Fdilute brown DBA06/02/20103108/18/2010772.22.008.70y 
    61081610.03BXD65Mbrown05/26/20103208/18/20108411.22.038.70y 
    62081610.11BXD65Fbrown05/26/20103208/18/2010843.12.039.10y 
    63081610.96BXD68Fbrown06/03/20103308/18/2010764.02.038.20y 
    64081610.99BXD68Mbrown06/03/20103308/18/2010763.42.097.80y 
    65081710.71BXD69Mdilute brown DBA05/29/20104108/17/2010801.31.967.90y 
    66081710.78BXD69Fdilute brown DBA06/09/20104208/17/2010690.81.908.50y 
    67081610.85BXD70Mdilute brown DBA06/03/20103608/18/2010764.61.999.40y 
    68081610.92BXD70Fdilute brown DBA06/03/20103608/18/2010763.12.078.50y 
    69081910.33BXD71Fdilute brown DBA06/03/20103508/18/2010762.82.058.00y 
    70081910.38BXD71Mdilute brown DBA06/03/20103508/18/2010764.62.028.30y 
    71081710.81BXD73Fdilute brown DBA05/26/20104408/17/2010830.81.908.60y 
    72081710.83BXD73Mdilute brown DBA05/26/20104108/17/2010830.81.918.40y 
    73081810.58BXD75Mdilute brown DBA06/03/20103908/18/2010760.81.958.70y 
    74081810.73BXD75Fdilute brown DBA06/03/20103908/18/2010760.71.929.30y 
    75081710.06BXD79Fgray05/23/20102408/18/2010872.92.048.60y 
    76081710.08BXD79Mgray05/23/20102408/18/2010872.12.019.40y 
    77081710.87BXD80Fdilute brown DBA06/05/20103308/17/2010731.21.958.20y 
    78081710.88BXD80Mdilute brown DBA06/05/20103308/17/2010730.81.918.00y 
    79081610.64BXD83Mdilute brown DBA05/29/20103208/18/2010812.52.048.50y 
    80081610.69BXD83Fdilute brown DBA05/29/20103208/18/2010812.72.058.20y 
    81081810.80BXD84Fdilute brown DBA06/03/20103108/18/2010760.91.968.80yneed one more male
    82081710.10BXD85Fdilute brown DBA06/05/20104008/18/2010743.72.047.90y 
    83081710.13BXD85Mdilute brown DBA06/05/20104008/18/2010742.92.068.40y 
    84081610.60BXD87Mblack05/27/20103508/18/2010833.42.048.30y 
    85081610.63BXD87Fblack05/27/20103508/18/2010833.12.058.40y 
    86081610.40BXD89Mdilute brown DBA05/28/20103608/18/2010822.62.058.50yneed one more female
    87081610.53BXD90Fdilute brown DBA05/28/20103908/18/2010829.12.068.60y 
    88081610.57BXD90Mdilute brown DBA05/28/20103908/18/2010822.12.029.40y 
    89081610.87BXD92AFbrown05/24/20104208/18/2010862.62.058.60y 
    90081610.93BXD92AMbrown05/21/20104208/18/2010898.52.078.80y 
    91081910.32BXD95Mdilute brown DBA06/03/20102508/18/2010762.72.059.20y 
    92081610.81BXD95Fdilute brown DBA06/03/20102508/18/2010763.22.078.70y 
    93081610.84BXD95Mdilute brown DBA06/03/20102508/18/20107613.31.977.70  
    94081610.47BXD97Fbrown06/08/20103508/18/2010712.32.009.10yneed one more male
    95081610.06BXD99Fdilute brown DBA06/02/20102808/18/2010774.22.019.00y 
    96081610.20BXD99Mdilute brown DBA06/02/20102808/18/2010772.22.008.90y 
    97081810.63BXD100Mblack05/27/20103008/18/2010830.71.908.60y 
    98081810.75BXD100Fblack05/27/20103008/18/2010830.91.958.10y 
    99081710.14BXD101Mgray05/21/20102708/18/2010892.92.058.90y 
    100081710.19BXD101Fgray05/21/20102708/18/2010893.22.068.30y 
    101081710.41BXD102Fbrown05/21/20102508/17/2010881.51.957.70y 
    102081710.45BXD102Mbrown05/21/20102508/17/2010881.21.977.70y 
    103081710.58BXD103Mdilute brown DBA05/31/20102108/17/2010781.11.948.40y 
    104081710.62BXD103Fdilute brown DBA05/31/20102108/17/2010780.61.918.40y 
    -
    -
    diff --git a/general/datasets/UTHSC_GutExL_0414/platform.rtf b/general/datasets/UTHSC_GutExL_0414/platform.rtf deleted file mode 100644 index 79244c6..0000000 --- a/general/datasets/UTHSC_GutExL_0414/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version]

    diff --git a/general/datasets/UTHSC_GutExL_0414/processing.rtf b/general/datasets/UTHSC_GutExL_0414/processing.rtf deleted file mode 100644 index ebfa292..0000000 --- a/general/datasets/UTHSC_GutExL_0414/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This dataset includes Gene and Exon level RMA normalization.

    diff --git a/general/datasets/UTHSC_GutExL_0414/specifics.rtf b/general/datasets/UTHSC_GutExL_0414/specifics.rtf deleted file mode 100644 index 2400c03..0000000 --- a/general/datasets/UTHSC_GutExL_0414/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Exon Level

    diff --git a/general/datasets/UTHSC_GutExL_0414/tissue.rtf b/general/datasets/UTHSC_GutExL_0414/tissue.rtf deleted file mode 100644 index 5653e30..0000000 --- a/general/datasets/UTHSC_GutExL_0414/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Approximately two equal-sized segments of the small intestine were pooled per animal: one taken from the proximal jejunum and one from the distal ileum. We did generate a second data set (not in GeneNetwork) for different segments of the the GI tract from stomach to distal colon for C57BL/6J and DBA/2J parental strains. These additional data are available upon request from Drs. Dennis Black and Lu Lu.

    diff --git a/general/datasets/UTHSC_GutGL_0414/cases.rtf b/general/datasets/UTHSC_GutGL_0414/cases.rtf deleted file mode 100644 index e3e9e26..0000000 --- a/general/datasets/UTHSC_GutGL_0414/cases.rtf +++ /dev/null @@ -1,1696 +0,0 @@ -
    - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexCaseIDStrainSexCoat ColorDate of BirthGenerationSacrifice DateAgeRNA
    - conc.(ug/ul)
    RNA Purity
    - 260/280
    RNA Integrity Number RINRun ChipNotes
    1081910.14B6D2F1Mblack06/10/2010 08/18/2010690.52.008.40y 
    2081910.17B6D2F1Mblack06/10/2010 08/18/2010690.92.008.60  
    3081910.18B6D2F1Fblack06/10/2010 08/18/2010690.31.809.30y 
    4081910.09D2B6F1Fblack06/02/2010 08/18/2010770.72.009.00y 
    5081910.23D2B6F1Mblack06/02/2010 08/18/20107710.22.028.50y 
    6081910.12C57BL/6JFblack06/02/2010 08/18/2010770.61.90n/ay 
    7081910.25C57BL/6JMblack06/02/2010 08/18/2010773.42.03 y 
    8081910.39C57BL/6JFblack06/02/2010 08/18/2010772.301.998.50y 
    9081910.41C57BL/6JMblack06/18/2010 08/18/2010612.202.028.60y 
    10081910.29DBA/2JFdilute brown DBA06/02/2010 08/18/2010772.92.038.50yneed one more female
    11081910.31DBA/2JMdilute brown DBA06/11/2010 08/18/2010688.62.068.00y 
    12081910.43DBA/2JMdilute brown DBA05/06/2010 08/18/20101042.302.019.30y 
    13081810.08BXD1Mdilute brown DBA05/24/201014208/17/2010850.61.928.50y 
    14081810.13BXD1Fdilute brown DBA06/07/201013908/17/2010710.7 9.00y 
    15081710.91BXD11Mblack06/02/201013708/17/2010760.71.938.20y 
    16081710.97BXD11Fblack05/22/201013608/17/2010871.01.958.90y 
    17081810.23BXD12Mgray06/01/201012208/17/2010770.92.008.00y 
    18081810.44BXD12Fgray06/01/201012208/18/2010780.81.938.30y 
    19081810.33BXD14Fblack05/29/201014208/17/2010801.21.978.10y 
    20081810.52BXD14Mblack05/29/201014208/18/2010810.41.909.00y 
    21081810.19BXD24Fbrown05/24/20109008/17/2010850.31.909.10yThis strain comes from UTHSC colony since 2008. So they are probably blind.
    22081810.42BXD24Mbrown05/24/20109008/17/2010850.72.008.50yThis strain comes from UTHSC colony since 2008. So they are probably blind.
    23081710.99BXD27Mdilute brown DBA06/05/201016208/17/2010731.31.958.40yneed one more female
    24081810.04BXD29Mgray06/07/20102508/17/2010710.51.918.40y 
    25081810.10BXD29Fgray06/07/20102508/17/2010710.61.978.70y 
    26081810.18BXD31Mblack06/05/201013008/17/2010730.51.888.70y 
    27081810.40BXD31Fblack06/05/201013008/17/2010731.12.007.00y 
    28081610.76BXD32Fblack05/29/201011608/18/2010813.82.059.10yneed one more male
    29081810.26BXD34Mblack06/02/20106308/17/2010761.31.988.20y 
    30081810.29BXD34Mblack06/02/20106308/17/2010760.71.938.50  
    31081810.46BXD34Fblack06/02/20106308/18/2010771.02.007.10y 
    32081810.36BXD39Mgray05/31/20106808/17/2010780.61.948.20y 
    33081810.55BXD39Fgray05/31/20106808/18/2010790.81.968.40y 
    34081910.03BXD40Fgray05/25/20105808/18/2010851.22.008.80y 
    35081910.06BXD40Mgray05/25/20105808/18/2010850.71.908.80y 
    36081810.31BXD42Fblack05/23/20106408/17/2010860.91.958.30y 
    37081810.48BXD42Mblack05/23/20106408/18/2010870.81.938.90y 
    38081710.47BXD43Mblack05/28/20104408/17/2010811.21.958.10y 
    39081710.48BXD43Fblack05/28/20104408/17/2010811.71.968.90y 
    40081710.49BXD43Fblack05/28/20104408/17/2010811.21.958.50  
    41081710.23BXD44Fbrown05/26/20104108/17/2010831.11.968.30y 
    42081710.24BXD44Fbrown05/26/20104108/17/2010830.91.928.70  
    43081710.30BXD44Mdilute brown DBA05/26/20104108/17/2010831.31.978.20y 
    44081710.31BXD44Mdilute brown DBA05/26/20104108/17/2010831.61.988.30  
    45081710.32BXD44Mdilute brown DBA05/26/20104108/17/2010830.81.958.80  
    46081710.51BXD45Mdilute brown DBA06/01/20103908/17/2010771.21.947.80y 
    47081710.54BXD45Fdilute brown DBA06/01/20103908/17/2010771.01.947.30y 
    48081610.14BXD48Fblack06/03/20104008/18/2010762.22.019.50y 
    49081610.17BXD48Mblack06/03/20104008/18/2010763.32.058.20y 
    50081710.29BXD49Mgray05/25/20104908/17/2010841.61.977.10y 
    51081710.34BXD49Fgray05/25/20102408/17/2010841.01.958.50y 
    52081610.29BXD50Fblack06/02/20103508/18/2010773.32.058.40y 
    53081610.32BXD50Mblack06/02/20103508/18/2010779.12.038.40y 
    54081610.36BXD56Mblack06/02/20103408/18/2010771.92.029.60y 
    55081610.77BXD56Fblack05/26/20103408/18/2010843.42.058.20y 
    56081610.80BXD56Fblack05/26/20103308/18/2010843.22.058.50  
    57081710.67BXD60Mbrown06/08/20104308/17/2010700.91.918.40yneed one more female
    58081810.83BXD62Mbrown05/27/20104108/18/2010830.51.958.10yneed one more female
    59081610.22BXD63Mdilute brown DBA06/02/20103108/18/2010776.92.078.50y 
    60081610.25BXD63Fdilute brown DBA06/02/20103108/18/2010772.22.008.70y 
    61081610.03BXD65Mbrown05/26/20103208/18/20108411.22.038.70y 
    62081610.11BXD65Fbrown05/26/20103208/18/2010843.12.039.10y 
    63081610.96BXD68Fbrown06/03/20103308/18/2010764.02.038.20y 
    64081610.99BXD68Mbrown06/03/20103308/18/2010763.42.097.80y 
    65081710.71BXD69Mdilute brown DBA05/29/20104108/17/2010801.31.967.90y 
    66081710.78BXD69Fdilute brown DBA06/09/20104208/17/2010690.81.908.50y 
    67081610.85BXD70Mdilute brown DBA06/03/20103608/18/2010764.61.999.40y 
    68081610.92BXD70Fdilute brown DBA06/03/20103608/18/2010763.12.078.50y 
    69081910.33BXD71Fdilute brown DBA06/03/20103508/18/2010762.82.058.00y 
    70081910.38BXD71Mdilute brown DBA06/03/20103508/18/2010764.62.028.30y 
    71081710.81BXD73Fdilute brown DBA05/26/20104408/17/2010830.81.908.60y 
    72081710.83BXD73Mdilute brown DBA05/26/20104108/17/2010830.81.918.40y 
    73081810.58BXD75Mdilute brown DBA06/03/20103908/18/2010760.81.958.70y 
    74081810.73BXD75Fdilute brown DBA06/03/20103908/18/2010760.71.929.30y 
    75081710.06BXD79Fgray05/23/20102408/18/2010872.92.048.60y 
    76081710.08BXD79Mgray05/23/20102408/18/2010872.12.019.40y 
    77081710.87BXD80Fdilute brown DBA06/05/20103308/17/2010731.21.958.20y 
    78081710.88BXD80Mdilute brown DBA06/05/20103308/17/2010730.81.918.00y 
    79081610.64BXD83Mdilute brown DBA05/29/20103208/18/2010812.52.048.50y 
    80081610.69BXD83Fdilute brown DBA05/29/20103208/18/2010812.72.058.20y 
    81081810.80BXD84Fdilute brown DBA06/03/20103108/18/2010760.91.968.80yneed one more male
    82081710.10BXD85Fdilute brown DBA06/05/20104008/18/2010743.72.047.90y 
    83081710.13BXD85Mdilute brown DBA06/05/20104008/18/2010742.92.068.40y 
    84081610.60BXD87Mblack05/27/20103508/18/2010833.42.048.30y 
    85081610.63BXD87Fblack05/27/20103508/18/2010833.12.058.40y 
    86081610.40BXD89Mdilute brown DBA05/28/20103608/18/2010822.62.058.50yneed one more female
    87081610.53BXD90Fdilute brown DBA05/28/20103908/18/2010829.12.068.60y 
    88081610.57BXD90Mdilute brown DBA05/28/20103908/18/2010822.12.029.40y 
    89081610.87BXD92AFbrown05/24/20104208/18/2010862.62.058.60y 
    90081610.93BXD92AMbrown05/21/20104208/18/2010898.52.078.80y 
    91081910.32BXD95Mdilute brown DBA06/03/20102508/18/2010762.72.059.20y 
    92081610.81BXD95Fdilute brown DBA06/03/20102508/18/2010763.22.078.70y 
    93081610.84BXD95Mdilute brown DBA06/03/20102508/18/20107613.31.977.70  
    94081610.47BXD97Fbrown06/08/20103508/18/2010712.32.009.10yneed one more male
    95081610.06BXD99Fdilute brown DBA06/02/20102808/18/2010774.22.019.00y 
    96081610.20BXD99Mdilute brown DBA06/02/20102808/18/2010772.22.008.90y 
    97081810.63BXD100Mblack05/27/20103008/18/2010830.71.908.60y 
    98081810.75BXD100Fblack05/27/20103008/18/2010830.91.958.10y 
    99081710.14BXD101Mgray05/21/20102708/18/2010892.92.058.90y 
    100081710.19BXD101Fgray05/21/20102708/18/2010893.22.068.30y 
    101081710.41BXD102Fbrown05/21/20102508/17/2010881.51.957.70y 
    102081710.45BXD102Mbrown05/21/20102508/17/2010881.21.977.70y 
    103081710.58BXD103Mdilute brown DBA05/31/20102108/17/2010781.11.948.40y 
    104081710.62BXD103Fdilute brown DBA05/31/20102108/17/2010780.61.918.40y 
    -
    -
    diff --git a/general/datasets/UTHSC_GutGL_0414/platform.rtf b/general/datasets/UTHSC_GutGL_0414/platform.rtf deleted file mode 100644 index 79244c6..0000000 --- a/general/datasets/UTHSC_GutGL_0414/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version]

    diff --git a/general/datasets/UTHSC_GutGL_0414/processing.rtf b/general/datasets/UTHSC_GutGL_0414/processing.rtf deleted file mode 100644 index ebfa292..0000000 --- a/general/datasets/UTHSC_GutGL_0414/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This dataset includes Gene and Exon level RMA normalization.

    diff --git a/general/datasets/UTHSC_GutGL_0414/specifics.rtf b/general/datasets/UTHSC_GutGL_0414/specifics.rtf deleted file mode 100644 index d877bcf..0000000 --- a/general/datasets/UTHSC_GutGL_0414/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Gene Level

    diff --git a/general/datasets/UTHSC_GutGL_0414/tissue.rtf b/general/datasets/UTHSC_GutGL_0414/tissue.rtf deleted file mode 100644 index 5653e30..0000000 --- a/general/datasets/UTHSC_GutGL_0414/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Approximately two equal-sized segments of the small intestine were pooled per animal: one taken from the proximal jejunum and one from the distal ileum. We did generate a second data set (not in GeneNetwork) for different segments of the the GI tract from stomach to distal colon for C57BL/6J and DBA/2J parental strains. These additional data are available upon request from Drs. Dennis Black and Lu Lu.

    diff --git a/general/datasets/UTHSC_HuIslets_Mar17/platform.rtf b/general/datasets/UTHSC_HuIslets_Mar17/platform.rtf deleted file mode 100644 index 10c6122..0000000 --- a/general/datasets/UTHSC_HuIslets_Mar17/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Affymetrix Human Gene 2.0 ST Array

    diff --git a/general/datasets/UTHSC_HuIslets_Mar17/summary.rtf b/general/datasets/UTHSC_HuIslets_Mar17/summary.rtf deleted file mode 100644 index e59b6f7..0000000 --- a/general/datasets/UTHSC_HuIslets_Mar17/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Info file in progress...

    diff --git a/general/datasets/UTHSC_ILM_BXD_hipp_NOEb_0216/notes.rtf b/general/datasets/UTHSC_ILM_BXD_hipp_NOEb_0216/notes.rtf deleted file mode 100644 index 35247b6..0000000 --- a/general/datasets/UTHSC_ILM_BXD_hipp_NOEb_0216/notes.rtf +++ /dev/null @@ -1,23 +0,0 @@ -

    Hippocampus 5 Conditions
    -Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    -Batch and Outlier Analysis on Partek Genomic Suite 6.6
    -ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    -K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    -Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    -Number of samples = 284
    -Number of probes = 46643

    - -
      -
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      - ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. -
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      - ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. -
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      - ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. -
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      - ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. -
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      - ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. -
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      - ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. -
    diff --git a/general/datasets/UTHSC_ILM_BXD_hipp_NOEb_0216/summary.rtf b/general/datasets/UTHSC_ILM_BXD_hipp_NOEb_0216/summary.rtf deleted file mode 100644 index 5aeb69c..0000000 --- a/general/datasets/UTHSC_ILM_BXD_hipp_NOEb_0216/summary.rtf +++ /dev/null @@ -1,39 +0,0 @@ -

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    - -

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    - -

    Restraint Stress Protocol

    - -
      -
    1. Weigh animals all animals to be tested and record body weight.
    2. -
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. -
    5. Place animals in immobilization tubes for 15 minutes.
    6. -
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. -
    9. Place each animal into zero-maze for 10 minutes.
    10. -
    11. Return animal to home cage.
    12. -
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. -
    - -

    Ethanol and saline injections
    -Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    - -

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    - -

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    - -

    Quality Control Data
    -Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    - -
      -
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. -
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. -
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. -
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. -
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. -
    - -

    Entered by Arthur Centeno, September 20, 2010.

    - -

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    - -

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/UTHSC_ILM_BXD_hipp_NOEb_0217/notes.rtf b/general/datasets/UTHSC_ILM_BXD_hipp_NOEb_0217/notes.rtf deleted file mode 100644 index 35247b6..0000000 --- a/general/datasets/UTHSC_ILM_BXD_hipp_NOEb_0217/notes.rtf +++ /dev/null @@ -1,23 +0,0 @@ -

    Hippocampus 5 Conditions
    -Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    -Batch and Outlier Analysis on Partek Genomic Suite 6.6
    -ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    -K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    -Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    -Number of samples = 284
    -Number of probes = 46643

    - -
      -
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      - ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. -
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      - ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. -
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      - ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. -
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      - ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. -
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      - ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. -
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      - ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. -
    diff --git a/general/datasets/UTHSC_ILM_BXD_hipp_NOEb_0217/specifics.rtf b/general/datasets/UTHSC_ILM_BXD_hipp_NOEb_0217/specifics.rtf deleted file mode 100644 index 340fc0e..0000000 --- a/general/datasets/UTHSC_ILM_BXD_hipp_NOEb_0217/specifics.rtf +++ /dev/null @@ -1,392 +0,0 @@ -

    NOE = No restraint stress and given an ethanol injection prior to sacrifice.

    - -
    - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Index Array ID Condition Strain Sex Age
    14060001078_DNOEBXD34F75
    24060001088_ANOEBXD43F67
    34207851040_CNOEBXD43F65
    44207851040_DNOEBXD45F71
    54207851041_CNOEBXD45M68
    64068846016_DNOEBXD51F73
    74207851035_DNOEBXD51M85
    84060001003_CNOEBXD55F79
    94068846016_CNOEBXD55M68
    104060001071_ANOEBXD60F76
    114068846016_ANOEBXD60M67
    124060001003_DNOEBXD61M67
    134207851041_ANOEBXD61F70
    144060001075_FNOEBXD62M68
    154207851041_BNOEBXD62F67
    164207851035_ANOEBXD66F73
    174256265071_CNOEBXD66M63
    184207851035_BNOEBXD68M66
    194256265026_ENOEBXD68F67
    204060001010_FNOEBXD70M87
    214207851045_BNOEBXD70F69
    224256265057_ANOEBXD71F76
    234256265087_CNOEBXD71M75
    244256265042_BNOEBXD73F66
    254060001010_ENOEBXD75F70
    264256265042_CNOEBXD75M69
    274060001083_ANOEBXD83M69
    284256265071_DNOEBXD83F80
    294256265045_CNOEBXD84F68
    304207851058_ANOEBXD87F63
    314256265080_CNOEBXD87M65
    324207851058_BNOEBXD89M68
    334256265024_ANOEBXD89F71
    344256265024_BNOEBXD90F68
    354256265052_ANOEBXD90M74
    364256265023_ANOEBXD96M68
    374256265023_FNOEBXD96F68
    384256265044_ANOEBXD96M68
    394068846017_BNOEBXD97M67
    404068846017_ANOEBXD98F74
    414207851052_FNOEBXD98M71
    424068846021_FNOEBXD99M70
    434060001088_ENOEBXD100F61
    444060001088_DNOEBXD101M71
    454060001030_DNOEDBA/2JF79
    464256265069_FNOEDBA/2JF79
    -
    -
    diff --git a/general/datasets/UTHSC_ILM_BXD_hipp_NOEb_0217/summary.rtf b/general/datasets/UTHSC_ILM_BXD_hipp_NOEb_0217/summary.rtf deleted file mode 100644 index 5aeb69c..0000000 --- a/general/datasets/UTHSC_ILM_BXD_hipp_NOEb_0217/summary.rtf +++ /dev/null @@ -1,39 +0,0 @@ -

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    - -

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    - -

    Restraint Stress Protocol

    - -
      -
    1. Weigh animals all animals to be tested and record body weight.
    2. -
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. -
    5. Place animals in immobilization tubes for 15 minutes.
    6. -
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. -
    9. Place each animal into zero-maze for 10 minutes.
    10. -
    11. Return animal to home cage.
    12. -
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. -
    - -

    Ethanol and saline injections
    -Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    - -

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    - -

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    - -

    Quality Control Data
    -Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    - -
      -
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. -
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. -
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. -
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. -
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. -
    - -

    Entered by Arthur Centeno, September 20, 2010.

    - -

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    - -

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/UTHSC_ILM_BXD_hipp_NOSb_0217/notes.rtf b/general/datasets/UTHSC_ILM_BXD_hipp_NOSb_0217/notes.rtf deleted file mode 100644 index 35247b6..0000000 --- a/general/datasets/UTHSC_ILM_BXD_hipp_NOSb_0217/notes.rtf +++ /dev/null @@ -1,23 +0,0 @@ -

    Hippocampus 5 Conditions
    -Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    -Batch and Outlier Analysis on Partek Genomic Suite 6.6
    -ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    -K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    -Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    -Number of samples = 284
    -Number of probes = 46643

    - -
      -
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      - ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. -
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      - ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. -
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      - ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. -
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      - ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. -
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      - ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. -
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      - ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. -
    diff --git a/general/datasets/UTHSC_ILM_BXD_hipp_NOSb_0217/specifics.rtf b/general/datasets/UTHSC_ILM_BXD_hipp_NOSb_0217/specifics.rtf deleted file mode 100644 index e60e427..0000000 --- a/general/datasets/UTHSC_ILM_BXD_hipp_NOSb_0217/specifics.rtf +++ /dev/null @@ -1,408 +0,0 @@ -

    NOS = No restraint stress and given only saline injections prior to sacrifice.

    - -
    - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Index Array ID Condition Strain Sex Age
    14207851040_BNOSBXD34M67
    24207851045_ENOSBXD43F75
    34256265009_DNOSBXD43M64
    44060001010_ANOSBXD45F81
    54068846016_ENOSBXD45M65
    64060001011_ANOSBXD51F85
    74060001082_BNOSBXD51M75
    84060001082_FNOSBXD55F62
    94256265070_BNOSBXD55M76
    104207851041_FNOSBXD60F76
    114256265071_BNOSBXD60M77
    124060001069_ANOSBXD61F78
    134207851051_CNOSBXD61M78
    144207851053_DNOSBXD62F67
    154256265043_ANOSBXD62M68
    164207851051_ENOSBXD66M63
    174256265074_CNOSBXD66F69
    184207851038_BNOSBXD68F69
    194256265044_CNOSBXD68M66
    204256265070_ANOSBXD70F61
    214256265083_DNOSBXD70M67
    224060001096_BNOSBXD71M83
    234256265071_ANOSBXD71F0
    244256265057_ENOSBXD73F66
    254256265074_ANOSBXD73M69
    264060001078_BNOSBXD75M70
    274207851058_ENOSBXD75F68
    284207851051_ANOSBXD83M67
    294256265023_BNOSBXD83F70
    304256265083_CNOSBXD84M69
    314256265085_FNOSBXD84M67
    324207851045_FNOSBXD87M68
    334068846021_BNOSBXD89F69
    344256265073_FNOSBXD89M69
    354256265080_ENOSBXD90M73
    364256265085_ENOSBXD90F73
    374060001010_BNOSBXD96M68
    384060001071_DNOSBXD96F69
    394207851052_CNOSBXD96M69
    404060001011_BNOSBXD97M68
    414060001082_ANOSBXD98F72
    424256265058_FNOSBXD98M70
    434256265051_FNOSBXD99M70
    444060001075_ENOSBXD100F63
    454207851035_ENOSBXD100M72
    464060001075_DNOSBXD101M78
    474060001030_FNOSDBA/2JM63
    484060001012_BNOSDBA/2JF81
    -
    -
    diff --git a/general/datasets/UTHSC_ILM_BXD_hipp_NOSb_0217/summary.rtf b/general/datasets/UTHSC_ILM_BXD_hipp_NOSb_0217/summary.rtf deleted file mode 100644 index 5aeb69c..0000000 --- a/general/datasets/UTHSC_ILM_BXD_hipp_NOSb_0217/summary.rtf +++ /dev/null @@ -1,39 +0,0 @@ -

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    - -

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    - -

    Restraint Stress Protocol

    - -
      -
    1. Weigh animals all animals to be tested and record body weight.
    2. -
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. -
    5. Place animals in immobilization tubes for 15 minutes.
    6. -
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. -
    9. Place each animal into zero-maze for 10 minutes.
    10. -
    11. Return animal to home cage.
    12. -
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. -
    - -

    Ethanol and saline injections
    -Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    - -

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    - -

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    - -

    Quality Control Data
    -Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    - -
      -
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. -
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. -
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. -
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. -
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. -
    - -

    Entered by Arthur Centeno, September 20, 2010.

    - -

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    - -

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/UTHSC_ILM_BXD_hipp_RSEb_0216/notes.rtf b/general/datasets/UTHSC_ILM_BXD_hipp_RSEb_0216/notes.rtf deleted file mode 100644 index 35247b6..0000000 --- a/general/datasets/UTHSC_ILM_BXD_hipp_RSEb_0216/notes.rtf +++ /dev/null @@ -1,23 +0,0 @@ -

    Hippocampus 5 Conditions
    -Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    -Batch and Outlier Analysis on Partek Genomic Suite 6.6
    -ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    -K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    -Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    -Number of samples = 284
    -Number of probes = 46643

    - -
      -
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      - ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. -
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      - ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. -
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      - ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. -
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      - ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. -
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      - ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. -
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      - ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. -
    diff --git a/general/datasets/UTHSC_ILM_BXD_hipp_RSEb_0216/summary.rtf b/general/datasets/UTHSC_ILM_BXD_hipp_RSEb_0216/summary.rtf deleted file mode 100644 index 5aeb69c..0000000 --- a/general/datasets/UTHSC_ILM_BXD_hipp_RSEb_0216/summary.rtf +++ /dev/null @@ -1,39 +0,0 @@ -

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    - -

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    - -

    Restraint Stress Protocol

    - -
      -
    1. Weigh animals all animals to be tested and record body weight.
    2. -
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. -
    5. Place animals in immobilization tubes for 15 minutes.
    6. -
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. -
    9. Place each animal into zero-maze for 10 minutes.
    10. -
    11. Return animal to home cage.
    12. -
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. -
    - -

    Ethanol and saline injections
    -Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    - -

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    - -

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    - -

    Quality Control Data
    -Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    - -
      -
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. -
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. -
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. -
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. -
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. -
    - -

    Entered by Arthur Centeno, September 20, 2010.

    - -

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    - -

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/UTHSC_ILM_BXD_hipp_RSEb_0217/notes.rtf b/general/datasets/UTHSC_ILM_BXD_hipp_RSEb_0217/notes.rtf deleted file mode 100644 index 35247b6..0000000 --- a/general/datasets/UTHSC_ILM_BXD_hipp_RSEb_0217/notes.rtf +++ /dev/null @@ -1,23 +0,0 @@ -

    Hippocampus 5 Conditions
    -Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    -Batch and Outlier Analysis on Partek Genomic Suite 6.6
    -ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    -K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    -Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    -Number of samples = 284
    -Number of probes = 46643

    - -
      -
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      - ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. -
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      - ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. -
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      - ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. -
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      - ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. -
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      - ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. -
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      - ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. -
    diff --git a/general/datasets/UTHSC_ILM_BXD_hipp_RSEb_0217/specifics.rtf b/general/datasets/UTHSC_ILM_BXD_hipp_RSEb_0217/specifics.rtf deleted file mode 100644 index 01586d5..0000000 --- a/general/datasets/UTHSC_ILM_BXD_hipp_RSEb_0217/specifics.rtf +++ /dev/null @@ -1,408 +0,0 @@ -

    RSE = Restraint stress followed by an ethanol injection.

    - -
    - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Index Array ID Condition Strain Sex Age
    14060001088_BRSEBXD34M71
    24256265042_ERSEBXD43M72
    34256265052_BRSEBXD43F73
    44256265051_ARSEBXD45F60
    54256265070_FRSEBXD45M67
    64207851041_DRSEBXD51F66
    74207851058_CRSEBXD51M85
    84207851035_FRSEBXD55M62
    94207851041_ERSEBXD55M62
    104060001082_DRSEBXD60F76
    114256265043_DRSEBXD60M67
    124256265043_ERSEBXD61F70
    134256265087_ERSEBXD61M70
    144060001010_CRSEBXD62F69
    154207851027_ARSEBXD62M67
    164207851027_CRSEBXD66M74
    174060001011_CRSEBXD66F79
    184207851049_DRSEBXD68F73
    194256265071_FRSEBXD68M62
    204060001011_DRSEBXD70M82
    214256265044_DRSEBXD70F69
    224060001078_FRSEBXD71M70
    234207851027_DRSEBXD71F76
    244060001075_ARSEBXD73M69
    254256265073_CRSEBXD73F68
    264256265063_ARSEBXD75F66
    274256265083_FRSEBXD75M69
    284256265083_ERSEBXD83F87
    294256265085_BRSEBXD83M73
    304256265071_ERSEBXD84F51
    314256265086_DRSEBXD84M68
    324256265085_ARSEBXD87F64
    334256265086_ERSEBXD87M69
    344256265026_ARSEBXD89F74
    354256265057_DRSEBXD89M68
    364060001075_BRSEBXD90F72
    374256265086_FRSEBXD90M70
    384207851014_ERSEBXD96F67
    394256265063_DRSEBXD96M64
    404060001096_CRSEBXD97M65
    414256265062_DRSEBXD97M65
    424256265023_ERSEBXD98M75
    434256265063_FRSEBXD98M71
    444256265058_ARSEBXD99M76
    454256265026_BRSEBXD100M95
    464207851040_ARSEBXD101F69
    474060001031_FRSEDBA/2JM76
    484256265069_CRSEDBA/2JF86
    -
    -
    diff --git a/general/datasets/UTHSC_ILM_BXD_hipp_RSEb_0217/summary.rtf b/general/datasets/UTHSC_ILM_BXD_hipp_RSEb_0217/summary.rtf deleted file mode 100644 index 5aeb69c..0000000 --- a/general/datasets/UTHSC_ILM_BXD_hipp_RSEb_0217/summary.rtf +++ /dev/null @@ -1,39 +0,0 @@ -

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    - -

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    - -

    Restraint Stress Protocol

    - -
      -
    1. Weigh animals all animals to be tested and record body weight.
    2. -
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. -
    5. Place animals in immobilization tubes for 15 minutes.
    6. -
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. -
    9. Place each animal into zero-maze for 10 minutes.
    10. -
    11. Return animal to home cage.
    12. -
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. -
    - -

    Ethanol and saline injections
    -Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    - -

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    - -

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    - -

    Quality Control Data
    -Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    - -
      -
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. -
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. -
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. -
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. -
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. -
    - -

    Entered by Arthur Centeno, September 20, 2010.

    - -

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    - -

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/UTHSC_ILM_BXD_hipp_RSSb_0216/notes.rtf b/general/datasets/UTHSC_ILM_BXD_hipp_RSSb_0216/notes.rtf deleted file mode 100644 index 35247b6..0000000 --- a/general/datasets/UTHSC_ILM_BXD_hipp_RSSb_0216/notes.rtf +++ /dev/null @@ -1,23 +0,0 @@ -

    Hippocampus 5 Conditions
    -Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    -Batch and Outlier Analysis on Partek Genomic Suite 6.6
    -ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    -K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    -Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    -Number of samples = 284
    -Number of probes = 46643

    - -
      -
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      - ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. -
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      - ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. -
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      - ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. -
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      - ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. -
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      - ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. -
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      - ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. -
    diff --git a/general/datasets/UTHSC_ILM_BXD_hipp_RSSb_0216/summary.rtf b/general/datasets/UTHSC_ILM_BXD_hipp_RSSb_0216/summary.rtf deleted file mode 100644 index 5aeb69c..0000000 --- a/general/datasets/UTHSC_ILM_BXD_hipp_RSSb_0216/summary.rtf +++ /dev/null @@ -1,39 +0,0 @@ -

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    - -

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    - -

    Restraint Stress Protocol

    - -
      -
    1. Weigh animals all animals to be tested and record body weight.
    2. -
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. -
    5. Place animals in immobilization tubes for 15 minutes.
    6. -
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. -
    9. Place each animal into zero-maze for 10 minutes.
    10. -
    11. Return animal to home cage.
    12. -
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. -
    - -

    Ethanol and saline injections
    -Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    - -

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    - -

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    - -

    Quality Control Data
    -Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    - -
      -
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. -
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. -
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. -
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. -
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. -
    - -

    Entered by Arthur Centeno, September 20, 2010.

    - -

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    - -

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/UTHSC_ILM_BXD_hipp_RSSb_0217/notes.rtf b/general/datasets/UTHSC_ILM_BXD_hipp_RSSb_0217/notes.rtf deleted file mode 100644 index 35247b6..0000000 --- a/general/datasets/UTHSC_ILM_BXD_hipp_RSSb_0217/notes.rtf +++ /dev/null @@ -1,23 +0,0 @@ -

    Hippocampus 5 Conditions
    -Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    -Batch and Outlier Analysis on Partek Genomic Suite 6.6
    -ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    -K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    -Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    -Number of samples = 284
    -Number of probes = 46643

    - -
      -
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      - ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. -
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      - ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. -
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      - ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. -
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      - ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. -
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      - ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. -
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      - ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. -
    diff --git a/general/datasets/UTHSC_ILM_BXD_hipp_RSSb_0217/specifics.rtf b/general/datasets/UTHSC_ILM_BXD_hipp_RSSb_0217/specifics.rtf deleted file mode 100644 index 6036ccb..0000000 --- a/general/datasets/UTHSC_ILM_BXD_hipp_RSSb_0217/specifics.rtf +++ /dev/null @@ -1,400 +0,0 @@ -

    RSS = short restraint stress (1 episode) followed by a saline injection.

    - -
    - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Index Array ID Condition Strain Sex Age
    14207851045_DRSSBXD34M71
    24060001083_BRSSBXD43M72
    34068846017_CRSSBXD43F73
    44060001083_FRSSBXD45F67
    54256265070_DRSSBXD45M79
    64060001096_FRSSBXD51M75
    74256265045_ERSSBXD51F88
    84256265043_BRSSBXD55F67
    94256265024_DRSSBXD60M76
    104256265045_FRSSBXD60F72
    114207851058_DRSSBXD61F70
    124256265083_BRSSBXD61M82
    134068846017_ERSSBXD62F61
    144256265080_FRSSBXD62M67
    154207851052_ARSSBXD66M74
    164256265044_BRSSBXD66F69
    174060001003_ERSSBXD68F77
    184060001075_CRSSBXD68M64
    194068846021_ERSSBXD70M68
    204207851038_CRSSBXD70F69
    214060001003_FRSSBXD71M78
    224060001011_ERSSBXD71F76
    234207851014_ARSSBXD73F68
    244207851014_DRSSBXD73M67
    254051964017_ARSSBXD75F73
    264256265058_BRSSBXD75F69
    274256265058_CRSSBXD83F75
    284256265074_FRSSBXD83M69
    294256265062_BRSSBXD84F73
    304256265086_BRSSBXD84M69
    314207851051_FRSSBXD87M69
    324256265083_ARSSBXD89F59
    334256265073_ARSSBXD90F68
    344256265087_FRSSBXD90M68
    354207851051_BRSSBXD96M69
    364256265085_CRSSBXD96F76
    374060001079_FRSSBXD97F65
    384256265080_ARSSBXD97M70
    394060001011_FRSSBXD98M72
    404256265086_ARSSBXD98F72
    414207851014_CRSSBXD99M73
    424256265086_CRSSBXD99F86
    434060001068_FRSSBXD100M79
    444207851051_DRSSBXD100F68
    454207851045_CRSSBXD101F66
    464060001012_FRSSDBA/2JF70
    474060001031_DRSSDBA/2JF70
    -
    -
    diff --git a/general/datasets/UTHSC_ILM_BXD_hipp_RSSb_0217/summary.rtf b/general/datasets/UTHSC_ILM_BXD_hipp_RSSb_0217/summary.rtf deleted file mode 100644 index 5aeb69c..0000000 --- a/general/datasets/UTHSC_ILM_BXD_hipp_RSSb_0217/summary.rtf +++ /dev/null @@ -1,39 +0,0 @@ -

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    - -

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    - -

    Restraint Stress Protocol

    - -
      -
    1. Weigh animals all animals to be tested and record body weight.
    2. -
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. -
    5. Place animals in immobilization tubes for 15 minutes.
    6. -
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. -
    9. Place each animal into zero-maze for 10 minutes.
    10. -
    11. Return animal to home cage.
    12. -
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. -
    - -

    Ethanol and saline injections
    -Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    - -

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    - -

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    - -

    Quality Control Data
    -Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    - -
      -
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. -
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. -
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. -
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. -
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. -
    - -

    Entered by Arthur Centeno, September 20, 2010.

    - -

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    - -

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/UTHSC_Neut_1014/experiment-design.rtf b/general/datasets/UTHSC_Neut_1014/experiment-design.rtf deleted file mode 100644 index eed4905..0000000 --- a/general/datasets/UTHSC_Neut_1014/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Normal young adults of either sex between 40 and 100 days of age.

    diff --git a/general/datasets/UTHSC_Neut_1014/summary.rtf b/general/datasets/UTHSC_Neut_1014/summary.rtf deleted file mode 100644 index edd0ac2..0000000 --- a/general/datasets/UTHSC_Neut_1014/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The data set represents gene expression data from peritoneal neutrophils. Cells were collected four hours after injection of sterile thioglycollate. Purity was assessed by cytospin and nuclear morphology. Usually 4 to 6 animals were used  to generate sufficient material for RNA expression analysis.

    diff --git a/general/datasets/UTHSC_Neut_EL_1014/experiment-design.rtf b/general/datasets/UTHSC_Neut_EL_1014/experiment-design.rtf deleted file mode 100644 index eed4905..0000000 --- a/general/datasets/UTHSC_Neut_EL_1014/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Normal young adults of either sex between 40 and 100 days of age.

    diff --git a/general/datasets/UTHSC_Neut_EL_1014/summary.rtf b/general/datasets/UTHSC_Neut_EL_1014/summary.rtf deleted file mode 100644 index edd0ac2..0000000 --- a/general/datasets/UTHSC_Neut_EL_1014/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The data set represents gene expression data from peritoneal neutrophils. Cells were collected four hours after injection of sterile thioglycollate. Purity was assessed by cytospin and nuclear morphology. Usually 4 to 6 animals were used  to generate sufficient material for RNA expression analysis.

    diff --git a/general/datasets/UTHSC_SPL_RMAEx_1210/cases.rtf b/general/datasets/UTHSC_SPL_RMAEx_1210/cases.rtf deleted file mode 100644 index 7fa108f..0000000 --- a/general/datasets/UTHSC_SPL_RMAEx_1210/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Cases. A total of 111 strains, including 81 BXD strains, both parental strains (C57BL/6J and DBA/2J) and both reciprocal F1 hybrids (B6D2F1 and D2B6F1), and 26 other common inbred strains were quantified. In most cases, two arrays were processed per strain--one for males and one for females. All tissue and RNA was extracted by Lu Lu and colleagues. Samples were pooled by sex and usually include at least two cases per sex and strain.

    - -

    Sex Balance. XX strains have matched male and female samples. XX strains have male only samples (BXDX, XX, XX, XXX and XXX). XX strains have only female samples (BXDXX, XX, and XX.) Please review the expression data for Xist probe set 10606178. This non-coding RNA is expressed highly only in females and can be used to check the sex of a sample or pool of tissue. Ddx3y probe set 10608138 can also be used. This is a Y chromosome gene that is expressed abundantly in male samples and at background levels in female samples.

    diff --git a/general/datasets/UTHSC_SPL_RMAEx_1210/experiment-design.rtf b/general/datasets/UTHSC_SPL_RMAEx_1210/experiment-design.rtf deleted file mode 100644 index a0aeba6..0000000 --- a/general/datasets/UTHSC_SPL_RMAEx_1210/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    RNA Processing. Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    - -

    Array Processing: All arrays were processed by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. The spleen was dissected by both Dr. Lu Lu and colleagues and Dr. Abdeltawab and colleagues. All arrays were run together (interleaved) as a single large batch.

    diff --git a/general/datasets/UTHSC_SPL_RMAEx_1210/notes.rtf b/general/datasets/UTHSC_SPL_RMAEx_1210/notes.rtf deleted file mode 100644 index c7bb873..0000000 --- a/general/datasets/UTHSC_SPL_RMAEx_1210/notes.rtf +++ /dev/null @@ -1,4 +0,0 @@ -

    Data Status and Use. This is a provisional release that will soon be replaced by a final corrected data set. In the interim this data set is open for exploration and use for focused analysis of single genes. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data regarding the best citation.
    -This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please see the GeneNetwork data sharing policy for more background on data use.

    - -

    Contact. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data.

    diff --git a/general/datasets/UTHSC_SPL_RMAEx_1210/processing.rtf b/general/datasets/UTHSC_SPL_RMAEx_1210/processing.rtf deleted file mode 100644 index deaf264..0000000 --- a/general/datasets/UTHSC_SPL_RMAEx_1210/processing.rtf +++ /dev/null @@ -1,1932 +0,0 @@ -

    Data Processing. Array data sets were generated by the vendors GCOS system. Expression values were logged and then were further normalized and rescaled so that the mean value for each array data set is 8 units with a standard deviation of 2 units. Data were processed by Arthur Centeno.

    - -

    Batch Effects. This data set required some correction for batch effects and the data in this initial release incorporate any additional corrections. There are several additional confounder-like factors that should be considered:

    - -
      -
    1. Sex imbalance in the sample: use probe sets for Xist as correction in partial correlation
    2. -
    3. Background noise factors: examine and use probe sets with very low expression using the search "mean=(3.900 4.135)". This will extract the probe sets with the lowest expression. (Note that the number 54 is less than the total number of cases in this data set; important in computing principal components.) Add these probe sets to your collection window and then compute the correlation matrix. Use the first few principal components as surrogates for nuisance factors in partial correlation analysis. The first principal component of the lowest probe sets in this spleen data set accounts of XX% of the the variance. Mapping of this noise trait can be used to evaluate the effects of shared noise on QTL results. The first principal component in the spleen data set can be mapped as a trait.
    4. -
    - -

    Data Release. This data set was first uploaded into GeneNetwork by Arthur Centeno, October 11, 2010 and made accessible without a password to all users on November 1, 2010. The initial data release had numerous strain identification errors that have now largely been fixed. Based on an analysis of the top 20 Mendelian loci, the following 21 strains were likely to have been incorrectly identified or assigned in the current release:

    - -
      -
    1. BXD8, e.g., Probe set 10450161, 1036098. 10338684
    2. -
    3. BXD13, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10342568,
    4. -
    5. BXD21 (may be ok, only one probe set 10338684 is problematic)
    6. -
    7. BXD23 (may be ok, only two probe sets 10421128, 10419465 is problematic)
    8. -
    9. BXD36 (may be ok, only one probe set 10421128 is problematic)
    10. -
    11. BXD40, e.g., Probe set 10341070
    12. -
    13. BXD43, e.g., Probe set 10450161, 1036098, 10338684
    14. -
    15. BXD48, e.g., Probe set 1036098, 10402390, 10514896, 10592493, 10357381, 10342568, 10571444, 10419465
    16. -
    17. BXD62, e.g., Probe set 1036098, 1036098, 10402390, 10514896, 10592493, 10421128, 10571444
    18. -
    19. BXD68 (may be ok, only one probe set 10338684 is problematic)
    20. -
    21. BXD69, e.g., Probe set 10450161
    22. -
    23. BXD73, e.g., Probe set 10341070, 1036098, 10402390, 10514896, 10587633, 10342568, 10421128
    24. -
    25. BXD74, e.g., Probe set 10402390
    26. -
    27. BXD80, e.g., Probe set 10341070, 1036098, 10592493, 10400109, 10338684, 10342568, 10421128, 10419465
    28. -
    29. BXD83, e.g., Probe set 10450161, 10338684
    30. -
    31. BXD87 (may be ok, only one probe set 10421128 is problematic)
    32. -
    33. BXD89, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10357381, 10419465
    34. -
    35. BXD93, e.g., Probe set 10402390, 10357381
    36. -
    37. BALB/cByJ, e.g., Probe set 10388042, 1036098, 10587633, 10357381, 10342568, 10421128
    38. -
    39. LP/J, e.g., Probe set 10592493
    40. -
    41. DBA/2J, e.g., Probe set 10592493
    42. -
    - -

    Data Evaluation Summary

    - -
      -
    1. Before correction: eQLTs with LOD >10 (LRS>46.1): n = 638
    2. -
    3. After strain assignment correction: eQLTs with LOD >10 (LRS>46.1): n = 820
    4. -
    5. Before correction: eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 237.9
    6. -
    7. After correction: eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 278.1
    8. -
    9. Lowest mean value: Trait ID 10344361, mean = 3.998
    10. -
    11. Highest mean value: Trait ID 10598025, mean = 14.475 (MT-ND1)
    12. -
    13. Greatest sex difference: Trait ID: 10606178 (Xist)
    14. -
    15. Great variation within and among strains: Trait ID 10454192 (Ttr -

      Table 1 (please confirm that these assignments are after correction)

      - -
      - - - - - - -
      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      IndexArray IDPhaseStrainAgeSex
      1R5583S1129P3/J65F
      2R5584S1129P3/J66M
      3R5585S1129S1/SvImJ66F
      4R5586S1129S1/SvImJ66M
      5R5587S1129X1/SvJ65F
      6R5588S1129X1/SvJ66M
      7R6348S3B6D2F167F
      8R6347S3B6D2F162F
      9R5590S1B6D2F179M
      10R5662S1BALB/cByJ59F
      11R5664S1BALB/cByJ59M
      12R5591S1BALB/cJ51F
      13R5592S1BALB/cJ51M
      14R6154S2BTBR T+ tf/J60F
      15R6516S3BXD182F
      16R6584S3BXD195M
      17R5759S1BXD2N/AF
      18R5837S1BXD2106M
      19R5874S2BXD586F
      20R6554S3BXD560M
      21R6359S3BXD672F
      22R5777S1BXD6149M
      23R6364S3BXD876F
      24R5637S1BXD871F
      25R6365S3BXD876M
      26R5746S1BXD970F
      27R5981S2BXD967M
      28R5980S2BXD967M
      29R6182S2BXD1184F
      30R6486S3BXD1158M
      31R6711S24BXD1271F
      32R6608S3BXD1248F
      33R5885S2BXD1244M
      34R5755S1BXD13160F
      35R5887S2BXD1353M
      36R6180S2BXD1470F
      37R5669S1BXD1491M
      38R6456S3BXD1560F
      39R6622S3BXD1560F
      40R6626S3BXD1560M
      41R6181S2BXD1674F
      42R6515S3BXD1664M
      43R5673S1BXD1880F
      44R5674S1BXD1865M
      45R6553S3BXD19158F
      46R6551S3BXD1960M
      47R6643S44BXD2059F
      48R6595S3BXD2060M
      49R5735S1BXD2164F
      50R5892S2BXD2199M
      51R5896S2BXD2260F
      52R6414S3BXD2273M
      53R6550S3BXD2374F
      54R6586S3BXD23102F
      55R5630S1BXD2471F
      56R6356S3BXD2457M
      57R6162S2BXD2567F
      58R6625S3BXD2567F
      59R6642S44BXD2558M
      60R5761S1BXD27N/AF
      61R5763S1BXD2790M
      62R6621S3BXD28113F
      63R6548S3BXD2860M
      64R6547S3BXD2960F
      65R6453S3BXD3148F
      66R6452S3BXD3148M
      67R6583S3BXD3260F
      68R5765S1BXD3271M
      69R5689S1BXD3365F
      70R6450S3BXD3355M
      71R5767S1BXD3472F
      72R5900S2BXD3470M
      73R6588S3BXD3661F
      74R6490S3BXD3663M
      75R6417S3BXD3864F
      76R6439S3BXD3872M
      77R5769S1BXD39N/AF
      78R5771S1BXD3974M
      79R5773S1BXD40N/AF
      80R5775S1BXD40N/AM
      81R6494S3BXD4172F
      82R5910S2BXD4279F
      83R6493S3BXD4269M
      84R6341S3BXD4359F
      85R6401S3BXD4399M
      86R5916S2BXD4379M
      87R5839S1BXD44141F
      88R5779S1BXD44124M
      89R6405S3BXD4558F
      90R6610S3BXD4555M
      91R5922S2BXD4864F
      92R5925S2BXD4860M
      93R6719S14BXD4958F
      94R6485S3BXD4979M
      95R5781S1BXD5061F
      96R6464S3BXD5165F
      97R6585S3BXD5163M
      98R6500S3BXD5558F
      99R5938S2BXD5593M
      100R6504S3BXD5658F
      101R6503S3BXD5658M
      102R5783S1BXD60111F
      103R5784S1BXD6085M
      104R5786S1BXD6186F
      105R6449S3BXD6165M
      106R6716S14BXD6254F
      107R5790S1BXD62115M
      108R6519S3BXD6354F
      109R6717S14BXD6370M
      110R5792S1BXD64167F
      111R6641S44BXD6468M
      112R6630S3BXD6468M
      113R6477S3BXD6558F
      114R6628S3BXD6570M
      115R6511S3BXD6670F
      116R6448S3BXD6661M
      117R5794S1BXD66144M
      118R6502S3BXD6766F
      119R6545S3BXD6761M
      120R6337S3BXD6856F
      121R6594S3BXD6864M
      122R5796S1BXD6985F
      123R5798S1BXD6998M
      124R6402S3BXD7093F
      125R5841S1BXD70121F
      126R6592S3BXD7059M
      127R6328S3BXD7187F
      128R5967S2BXD7164M
      129R5969S2BXD7364F
      130R5800S1BXD73120M
      131R6646S3BXD7440F
      132R6524S3BXD7472M
      133R6445S3BXD7585F
      134R5843S1BXD75103F
      135R5845S1BXD75103M
      136R6604S3BXD7764F
      137R6513S3BXD7772M
      138R6582S3BXD78144F
      139R6563S3BXD7895M
      140R6645S44BXD7966F
      141R5806S1BXD7978M
      142R5847S1BXD8089F
      143R5852S1BXD8079M
      144R6562S3BXD8199F
      145R6468S3BXD8165M
      146R6560S3BXD8285F
      147R6512S3BXD8368F
      148R5810S1BXD83139M
      149R6510S3BXD8487F
      150R5970S2BXD84107F
      151R6603S3BXD8499M
      152R6517S3BXD8558F
      153R6718S14BXD8586M
      154R5812S1BXD8661F
      155R5814S1BXD8659M
      156R5816S1BXD87112F
      157R6488S3BXD87137M
      158R6580S3BXD88125F
      159R5977S2BXD8968F
      160R5979S2BXD8979M
      161R5978S2BXD8979M
      162R5818S1BXD90106F
      163R5820S1BXD90131M
      164R6343S3BXD9262F
      165R5984S2BXD9255M
      166R6581S3BXD93173M
      167R6557S3BXD93126M
      168R6509S3BXD9559F
      169R5822S1BXD9589M
      170R6640S44BXD9670F
      171R6514S3BXD9664M
      172R6506S3BXD9778F
      173R5849S1BXD97130F
      174R6591S3BXD97122M
      175R5990S2BXD9865F
      176R6596S3BXD9867M
      177R5993S2BXD9974F
      178R5995S2BXD9950M
      179R6607S3BXD10075F
      180R6411S3BXD100104M
      181R6508S3BXD10159F
      182R5593S1BXD10159M
      183R6523S3BXD10260F
      184R6466S3BXD10250M
      185R6404S3BXD10372F
      186R6609S3BXD10357M
      187R6555S3C57BL/10J73M
      188R5596S1C57BL/10J73M
      189R5597S1C57BL/6ByJ51F
      190R5598S1C57BL/6ByJ69M
      191R5600S1C57BL/6J79F
      192R5599S1C57BL/6J60F
      193R6451S3C57BL/6J77M
      194R6410S3C57BL/6J85M
      195R5603S1C57BLKS/J66F
      196R5604S1C57BLKS/J66M
      197R5996S2CBA/CaJ66F
      198R6349S3CBA/CaJ66M
      199R6458S3D2B6F164F
      200R6353S3D2B6F160M
      201R5605S1DBA/2J79F
      202R6446S3DBA/2J83M
      203R6597S3FVB/NJ60F
      204R5643S1FVB/NJ60F
      205R6598S3FVB/NJ60M
      206R5606S1ILS74F
      207R5607S1ILS74M
      208R5610S1ISS97M
      209R6627S3KK/HlJ64F
      210R6444S3KK/HlJ65M
      211R5702S1KK/HlJ61M
      212R5613S1LG/J63F
      213R5704S1LG/J65M
      214R5614S1LP/J65F
      215R5615S1LP/J65M
      216R6599S3MOLF/EiJ60F
      217R6606S3MOLF/EiJ60M
      218R6544S3NOD/LtJ77F
      219R5709S1NOD/LtJ58M
      220R6601S3NZB/BlNJ61F
      221R5711S1NZB/BlNJ61F
      222R6427S3NZB/BlNJ58M
      223R6150S2NZO/HlLtJ71F
      224R6155S2NZW/LacJ65F
      225R5654S1NZW/LacJ60M
      226R5721S1PL/J59M
      227R5616S1PWD/PhJ60M
      228R5725S1PWK/PhJ121M
      229R6174S2SJL/J63F
      230R6350S3SJL/J65M
      231R6419S3WSB/EiJ60F
      232R5620S1WSB/EiJ60M
      -
      -
      - -
        -
      -
    16. -
    diff --git a/general/datasets/UTHSC_SPL_RMAEx_1210/summary.rtf b/general/datasets/UTHSC_SPL_RMAEx_1210/summary.rtf deleted file mode 100644 index d9478f8..0000000 --- a/general/datasets/UTHSC_SPL_RMAEx_1210/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    This is a near final release of a spleen gene expression data set generated by a DOD-funded consortium (Byrne, Kotb, Williams, and Lu). Please contact Lu Lu or Robert Williams regarding status of this data set. The initial data enterted in 2010 had many errors described below. The data set is much improved and has no known errors of strain assignment.

    - -

    Animals were generated at UTHSC by Lu Lu and colleagues. The spleen of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna").

    diff --git a/general/datasets/UTHSC_SPLs1_RMA_1210/cases.rtf b/general/datasets/UTHSC_SPLs1_RMA_1210/cases.rtf deleted file mode 100644 index 7fa108f..0000000 --- a/general/datasets/UTHSC_SPLs1_RMA_1210/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Cases. A total of 111 strains, including 81 BXD strains, both parental strains (C57BL/6J and DBA/2J) and both reciprocal F1 hybrids (B6D2F1 and D2B6F1), and 26 other common inbred strains were quantified. In most cases, two arrays were processed per strain--one for males and one for females. All tissue and RNA was extracted by Lu Lu and colleagues. Samples were pooled by sex and usually include at least two cases per sex and strain.

    - -

    Sex Balance. XX strains have matched male and female samples. XX strains have male only samples (BXDX, XX, XX, XXX and XXX). XX strains have only female samples (BXDXX, XX, and XX.) Please review the expression data for Xist probe set 10606178. This non-coding RNA is expressed highly only in females and can be used to check the sex of a sample or pool of tissue. Ddx3y probe set 10608138 can also be used. This is a Y chromosome gene that is expressed abundantly in male samples and at background levels in female samples.

    diff --git a/general/datasets/UTHSC_SPLs1_RMA_1210/experiment-design.rtf b/general/datasets/UTHSC_SPLs1_RMA_1210/experiment-design.rtf deleted file mode 100644 index a0aeba6..0000000 --- a/general/datasets/UTHSC_SPLs1_RMA_1210/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    RNA Processing. Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    - -

    Array Processing: All arrays were processed by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. The spleen was dissected by both Dr. Lu Lu and colleagues and Dr. Abdeltawab and colleagues. All arrays were run together (interleaved) as a single large batch.

    diff --git a/general/datasets/UTHSC_SPLs1_RMA_1210/notes.rtf b/general/datasets/UTHSC_SPLs1_RMA_1210/notes.rtf deleted file mode 100644 index c7bb873..0000000 --- a/general/datasets/UTHSC_SPLs1_RMA_1210/notes.rtf +++ /dev/null @@ -1,4 +0,0 @@ -

    Data Status and Use. This is a provisional release that will soon be replaced by a final corrected data set. In the interim this data set is open for exploration and use for focused analysis of single genes. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data regarding the best citation.
    -This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please see the GeneNetwork data sharing policy for more background on data use.

    - -

    Contact. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data.

    diff --git a/general/datasets/UTHSC_SPLs1_RMA_1210/processing.rtf b/general/datasets/UTHSC_SPLs1_RMA_1210/processing.rtf deleted file mode 100644 index deaf264..0000000 --- a/general/datasets/UTHSC_SPLs1_RMA_1210/processing.rtf +++ /dev/null @@ -1,1932 +0,0 @@ -

    Data Processing. Array data sets were generated by the vendors GCOS system. Expression values were logged and then were further normalized and rescaled so that the mean value for each array data set is 8 units with a standard deviation of 2 units. Data were processed by Arthur Centeno.

    - -

    Batch Effects. This data set required some correction for batch effects and the data in this initial release incorporate any additional corrections. There are several additional confounder-like factors that should be considered:

    - -
      -
    1. Sex imbalance in the sample: use probe sets for Xist as correction in partial correlation
    2. -
    3. Background noise factors: examine and use probe sets with very low expression using the search "mean=(3.900 4.135)". This will extract the probe sets with the lowest expression. (Note that the number 54 is less than the total number of cases in this data set; important in computing principal components.) Add these probe sets to your collection window and then compute the correlation matrix. Use the first few principal components as surrogates for nuisance factors in partial correlation analysis. The first principal component of the lowest probe sets in this spleen data set accounts of XX% of the the variance. Mapping of this noise trait can be used to evaluate the effects of shared noise on QTL results. The first principal component in the spleen data set can be mapped as a trait.
    4. -
    - -

    Data Release. This data set was first uploaded into GeneNetwork by Arthur Centeno, October 11, 2010 and made accessible without a password to all users on November 1, 2010. The initial data release had numerous strain identification errors that have now largely been fixed. Based on an analysis of the top 20 Mendelian loci, the following 21 strains were likely to have been incorrectly identified or assigned in the current release:

    - -
      -
    1. BXD8, e.g., Probe set 10450161, 1036098. 10338684
    2. -
    3. BXD13, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10342568,
    4. -
    5. BXD21 (may be ok, only one probe set 10338684 is problematic)
    6. -
    7. BXD23 (may be ok, only two probe sets 10421128, 10419465 is problematic)
    8. -
    9. BXD36 (may be ok, only one probe set 10421128 is problematic)
    10. -
    11. BXD40, e.g., Probe set 10341070
    12. -
    13. BXD43, e.g., Probe set 10450161, 1036098, 10338684
    14. -
    15. BXD48, e.g., Probe set 1036098, 10402390, 10514896, 10592493, 10357381, 10342568, 10571444, 10419465
    16. -
    17. BXD62, e.g., Probe set 1036098, 1036098, 10402390, 10514896, 10592493, 10421128, 10571444
    18. -
    19. BXD68 (may be ok, only one probe set 10338684 is problematic)
    20. -
    21. BXD69, e.g., Probe set 10450161
    22. -
    23. BXD73, e.g., Probe set 10341070, 1036098, 10402390, 10514896, 10587633, 10342568, 10421128
    24. -
    25. BXD74, e.g., Probe set 10402390
    26. -
    27. BXD80, e.g., Probe set 10341070, 1036098, 10592493, 10400109, 10338684, 10342568, 10421128, 10419465
    28. -
    29. BXD83, e.g., Probe set 10450161, 10338684
    30. -
    31. BXD87 (may be ok, only one probe set 10421128 is problematic)
    32. -
    33. BXD89, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10357381, 10419465
    34. -
    35. BXD93, e.g., Probe set 10402390, 10357381
    36. -
    37. BALB/cByJ, e.g., Probe set 10388042, 1036098, 10587633, 10357381, 10342568, 10421128
    38. -
    39. LP/J, e.g., Probe set 10592493
    40. -
    41. DBA/2J, e.g., Probe set 10592493
    42. -
    - -

    Data Evaluation Summary

    - -
      -
    1. Before correction: eQLTs with LOD >10 (LRS>46.1): n = 638
    2. -
    3. After strain assignment correction: eQLTs with LOD >10 (LRS>46.1): n = 820
    4. -
    5. Before correction: eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 237.9
    6. -
    7. After correction: eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 278.1
    8. -
    9. Lowest mean value: Trait ID 10344361, mean = 3.998
    10. -
    11. Highest mean value: Trait ID 10598025, mean = 14.475 (MT-ND1)
    12. -
    13. Greatest sex difference: Trait ID: 10606178 (Xist)
    14. -
    15. Great variation within and among strains: Trait ID 10454192 (Ttr -

      Table 1 (please confirm that these assignments are after correction)

      - -
      - - - - - - -
      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      IndexArray IDPhaseStrainAgeSex
      1R5583S1129P3/J65F
      2R5584S1129P3/J66M
      3R5585S1129S1/SvImJ66F
      4R5586S1129S1/SvImJ66M
      5R5587S1129X1/SvJ65F
      6R5588S1129X1/SvJ66M
      7R6348S3B6D2F167F
      8R6347S3B6D2F162F
      9R5590S1B6D2F179M
      10R5662S1BALB/cByJ59F
      11R5664S1BALB/cByJ59M
      12R5591S1BALB/cJ51F
      13R5592S1BALB/cJ51M
      14R6154S2BTBR T+ tf/J60F
      15R6516S3BXD182F
      16R6584S3BXD195M
      17R5759S1BXD2N/AF
      18R5837S1BXD2106M
      19R5874S2BXD586F
      20R6554S3BXD560M
      21R6359S3BXD672F
      22R5777S1BXD6149M
      23R6364S3BXD876F
      24R5637S1BXD871F
      25R6365S3BXD876M
      26R5746S1BXD970F
      27R5981S2BXD967M
      28R5980S2BXD967M
      29R6182S2BXD1184F
      30R6486S3BXD1158M
      31R6711S24BXD1271F
      32R6608S3BXD1248F
      33R5885S2BXD1244M
      34R5755S1BXD13160F
      35R5887S2BXD1353M
      36R6180S2BXD1470F
      37R5669S1BXD1491M
      38R6456S3BXD1560F
      39R6622S3BXD1560F
      40R6626S3BXD1560M
      41R6181S2BXD1674F
      42R6515S3BXD1664M
      43R5673S1BXD1880F
      44R5674S1BXD1865M
      45R6553S3BXD19158F
      46R6551S3BXD1960M
      47R6643S44BXD2059F
      48R6595S3BXD2060M
      49R5735S1BXD2164F
      50R5892S2BXD2199M
      51R5896S2BXD2260F
      52R6414S3BXD2273M
      53R6550S3BXD2374F
      54R6586S3BXD23102F
      55R5630S1BXD2471F
      56R6356S3BXD2457M
      57R6162S2BXD2567F
      58R6625S3BXD2567F
      59R6642S44BXD2558M
      60R5761S1BXD27N/AF
      61R5763S1BXD2790M
      62R6621S3BXD28113F
      63R6548S3BXD2860M
      64R6547S3BXD2960F
      65R6453S3BXD3148F
      66R6452S3BXD3148M
      67R6583S3BXD3260F
      68R5765S1BXD3271M
      69R5689S1BXD3365F
      70R6450S3BXD3355M
      71R5767S1BXD3472F
      72R5900S2BXD3470M
      73R6588S3BXD3661F
      74R6490S3BXD3663M
      75R6417S3BXD3864F
      76R6439S3BXD3872M
      77R5769S1BXD39N/AF
      78R5771S1BXD3974M
      79R5773S1BXD40N/AF
      80R5775S1BXD40N/AM
      81R6494S3BXD4172F
      82R5910S2BXD4279F
      83R6493S3BXD4269M
      84R6341S3BXD4359F
      85R6401S3BXD4399M
      86R5916S2BXD4379M
      87R5839S1BXD44141F
      88R5779S1BXD44124M
      89R6405S3BXD4558F
      90R6610S3BXD4555M
      91R5922S2BXD4864F
      92R5925S2BXD4860M
      93R6719S14BXD4958F
      94R6485S3BXD4979M
      95R5781S1BXD5061F
      96R6464S3BXD5165F
      97R6585S3BXD5163M
      98R6500S3BXD5558F
      99R5938S2BXD5593M
      100R6504S3BXD5658F
      101R6503S3BXD5658M
      102R5783S1BXD60111F
      103R5784S1BXD6085M
      104R5786S1BXD6186F
      105R6449S3BXD6165M
      106R6716S14BXD6254F
      107R5790S1BXD62115M
      108R6519S3BXD6354F
      109R6717S14BXD6370M
      110R5792S1BXD64167F
      111R6641S44BXD6468M
      112R6630S3BXD6468M
      113R6477S3BXD6558F
      114R6628S3BXD6570M
      115R6511S3BXD6670F
      116R6448S3BXD6661M
      117R5794S1BXD66144M
      118R6502S3BXD6766F
      119R6545S3BXD6761M
      120R6337S3BXD6856F
      121R6594S3BXD6864M
      122R5796S1BXD6985F
      123R5798S1BXD6998M
      124R6402S3BXD7093F
      125R5841S1BXD70121F
      126R6592S3BXD7059M
      127R6328S3BXD7187F
      128R5967S2BXD7164M
      129R5969S2BXD7364F
      130R5800S1BXD73120M
      131R6646S3BXD7440F
      132R6524S3BXD7472M
      133R6445S3BXD7585F
      134R5843S1BXD75103F
      135R5845S1BXD75103M
      136R6604S3BXD7764F
      137R6513S3BXD7772M
      138R6582S3BXD78144F
      139R6563S3BXD7895M
      140R6645S44BXD7966F
      141R5806S1BXD7978M
      142R5847S1BXD8089F
      143R5852S1BXD8079M
      144R6562S3BXD8199F
      145R6468S3BXD8165M
      146R6560S3BXD8285F
      147R6512S3BXD8368F
      148R5810S1BXD83139M
      149R6510S3BXD8487F
      150R5970S2BXD84107F
      151R6603S3BXD8499M
      152R6517S3BXD8558F
      153R6718S14BXD8586M
      154R5812S1BXD8661F
      155R5814S1BXD8659M
      156R5816S1BXD87112F
      157R6488S3BXD87137M
      158R6580S3BXD88125F
      159R5977S2BXD8968F
      160R5979S2BXD8979M
      161R5978S2BXD8979M
      162R5818S1BXD90106F
      163R5820S1BXD90131M
      164R6343S3BXD9262F
      165R5984S2BXD9255M
      166R6581S3BXD93173M
      167R6557S3BXD93126M
      168R6509S3BXD9559F
      169R5822S1BXD9589M
      170R6640S44BXD9670F
      171R6514S3BXD9664M
      172R6506S3BXD9778F
      173R5849S1BXD97130F
      174R6591S3BXD97122M
      175R5990S2BXD9865F
      176R6596S3BXD9867M
      177R5993S2BXD9974F
      178R5995S2BXD9950M
      179R6607S3BXD10075F
      180R6411S3BXD100104M
      181R6508S3BXD10159F
      182R5593S1BXD10159M
      183R6523S3BXD10260F
      184R6466S3BXD10250M
      185R6404S3BXD10372F
      186R6609S3BXD10357M
      187R6555S3C57BL/10J73M
      188R5596S1C57BL/10J73M
      189R5597S1C57BL/6ByJ51F
      190R5598S1C57BL/6ByJ69M
      191R5600S1C57BL/6J79F
      192R5599S1C57BL/6J60F
      193R6451S3C57BL/6J77M
      194R6410S3C57BL/6J85M
      195R5603S1C57BLKS/J66F
      196R5604S1C57BLKS/J66M
      197R5996S2CBA/CaJ66F
      198R6349S3CBA/CaJ66M
      199R6458S3D2B6F164F
      200R6353S3D2B6F160M
      201R5605S1DBA/2J79F
      202R6446S3DBA/2J83M
      203R6597S3FVB/NJ60F
      204R5643S1FVB/NJ60F
      205R6598S3FVB/NJ60M
      206R5606S1ILS74F
      207R5607S1ILS74M
      208R5610S1ISS97M
      209R6627S3KK/HlJ64F
      210R6444S3KK/HlJ65M
      211R5702S1KK/HlJ61M
      212R5613S1LG/J63F
      213R5704S1LG/J65M
      214R5614S1LP/J65F
      215R5615S1LP/J65M
      216R6599S3MOLF/EiJ60F
      217R6606S3MOLF/EiJ60M
      218R6544S3NOD/LtJ77F
      219R5709S1NOD/LtJ58M
      220R6601S3NZB/BlNJ61F
      221R5711S1NZB/BlNJ61F
      222R6427S3NZB/BlNJ58M
      223R6150S2NZO/HlLtJ71F
      224R6155S2NZW/LacJ65F
      225R5654S1NZW/LacJ60M
      226R5721S1PL/J59M
      227R5616S1PWD/PhJ60M
      228R5725S1PWK/PhJ121M
      229R6174S2SJL/J63F
      230R6350S3SJL/J65M
      231R6419S3WSB/EiJ60F
      232R5620S1WSB/EiJ60M
      -
      -
      - -
        -
      -
    16. -
    diff --git a/general/datasets/UTHSC_SPLs1_RMA_1210/summary.rtf b/general/datasets/UTHSC_SPLs1_RMA_1210/summary.rtf deleted file mode 100644 index d9478f8..0000000 --- a/general/datasets/UTHSC_SPLs1_RMA_1210/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    This is a near final release of a spleen gene expression data set generated by a DOD-funded consortium (Byrne, Kotb, Williams, and Lu). Please contact Lu Lu or Robert Williams regarding status of this data set. The initial data enterted in 2010 had many errors described below. The data set is much improved and has no known errors of strain assignment.

    - -

    Animals were generated at UTHSC by Lu Lu and colleagues. The spleen of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna").

    diff --git a/general/datasets/UTHSC_SPLs2_RMA_1210/cases.rtf b/general/datasets/UTHSC_SPLs2_RMA_1210/cases.rtf deleted file mode 100644 index 7fa108f..0000000 --- a/general/datasets/UTHSC_SPLs2_RMA_1210/cases.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Cases. A total of 111 strains, including 81 BXD strains, both parental strains (C57BL/6J and DBA/2J) and both reciprocal F1 hybrids (B6D2F1 and D2B6F1), and 26 other common inbred strains were quantified. In most cases, two arrays were processed per strain--one for males and one for females. All tissue and RNA was extracted by Lu Lu and colleagues. Samples were pooled by sex and usually include at least two cases per sex and strain.

    - -

    Sex Balance. XX strains have matched male and female samples. XX strains have male only samples (BXDX, XX, XX, XXX and XXX). XX strains have only female samples (BXDXX, XX, and XX.) Please review the expression data for Xist probe set 10606178. This non-coding RNA is expressed highly only in females and can be used to check the sex of a sample or pool of tissue. Ddx3y probe set 10608138 can also be used. This is a Y chromosome gene that is expressed abundantly in male samples and at background levels in female samples.

    diff --git a/general/datasets/UTHSC_SPLs2_RMA_1210/experiment-design.rtf b/general/datasets/UTHSC_SPLs2_RMA_1210/experiment-design.rtf deleted file mode 100644 index a0aeba6..0000000 --- a/general/datasets/UTHSC_SPLs2_RMA_1210/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    RNA Processing. Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    - -

    Array Processing: All arrays were processed by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. The spleen was dissected by both Dr. Lu Lu and colleagues and Dr. Abdeltawab and colleagues. All arrays were run together (interleaved) as a single large batch.

    diff --git a/general/datasets/UTHSC_SPLs2_RMA_1210/notes.rtf b/general/datasets/UTHSC_SPLs2_RMA_1210/notes.rtf deleted file mode 100644 index c7bb873..0000000 --- a/general/datasets/UTHSC_SPLs2_RMA_1210/notes.rtf +++ /dev/null @@ -1,4 +0,0 @@ -

    Data Status and Use. This is a provisional release that will soon be replaced by a final corrected data set. In the interim this data set is open for exploration and use for focused analysis of single genes. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data regarding the best citation.
    -This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please see the GeneNetwork data sharing policy for more background on data use.

    - -

    Contact. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data.

    diff --git a/general/datasets/UTHSC_SPLs2_RMA_1210/processing.rtf b/general/datasets/UTHSC_SPLs2_RMA_1210/processing.rtf deleted file mode 100644 index deaf264..0000000 --- a/general/datasets/UTHSC_SPLs2_RMA_1210/processing.rtf +++ /dev/null @@ -1,1932 +0,0 @@ -

    Data Processing. Array data sets were generated by the vendors GCOS system. Expression values were logged and then were further normalized and rescaled so that the mean value for each array data set is 8 units with a standard deviation of 2 units. Data were processed by Arthur Centeno.

    - -

    Batch Effects. This data set required some correction for batch effects and the data in this initial release incorporate any additional corrections. There are several additional confounder-like factors that should be considered:

    - -
      -
    1. Sex imbalance in the sample: use probe sets for Xist as correction in partial correlation
    2. -
    3. Background noise factors: examine and use probe sets with very low expression using the search "mean=(3.900 4.135)". This will extract the probe sets with the lowest expression. (Note that the number 54 is less than the total number of cases in this data set; important in computing principal components.) Add these probe sets to your collection window and then compute the correlation matrix. Use the first few principal components as surrogates for nuisance factors in partial correlation analysis. The first principal component of the lowest probe sets in this spleen data set accounts of XX% of the the variance. Mapping of this noise trait can be used to evaluate the effects of shared noise on QTL results. The first principal component in the spleen data set can be mapped as a trait.
    4. -
    - -

    Data Release. This data set was first uploaded into GeneNetwork by Arthur Centeno, October 11, 2010 and made accessible without a password to all users on November 1, 2010. The initial data release had numerous strain identification errors that have now largely been fixed. Based on an analysis of the top 20 Mendelian loci, the following 21 strains were likely to have been incorrectly identified or assigned in the current release:

    - -
      -
    1. BXD8, e.g., Probe set 10450161, 1036098. 10338684
    2. -
    3. BXD13, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10342568,
    4. -
    5. BXD21 (may be ok, only one probe set 10338684 is problematic)
    6. -
    7. BXD23 (may be ok, only two probe sets 10421128, 10419465 is problematic)
    8. -
    9. BXD36 (may be ok, only one probe set 10421128 is problematic)
    10. -
    11. BXD40, e.g., Probe set 10341070
    12. -
    13. BXD43, e.g., Probe set 10450161, 1036098, 10338684
    14. -
    15. BXD48, e.g., Probe set 1036098, 10402390, 10514896, 10592493, 10357381, 10342568, 10571444, 10419465
    16. -
    17. BXD62, e.g., Probe set 1036098, 1036098, 10402390, 10514896, 10592493, 10421128, 10571444
    18. -
    19. BXD68 (may be ok, only one probe set 10338684 is problematic)
    20. -
    21. BXD69, e.g., Probe set 10450161
    22. -
    23. BXD73, e.g., Probe set 10341070, 1036098, 10402390, 10514896, 10587633, 10342568, 10421128
    24. -
    25. BXD74, e.g., Probe set 10402390
    26. -
    27. BXD80, e.g., Probe set 10341070, 1036098, 10592493, 10400109, 10338684, 10342568, 10421128, 10419465
    28. -
    29. BXD83, e.g., Probe set 10450161, 10338684
    30. -
    31. BXD87 (may be ok, only one probe set 10421128 is problematic)
    32. -
    33. BXD89, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10357381, 10419465
    34. -
    35. BXD93, e.g., Probe set 10402390, 10357381
    36. -
    37. BALB/cByJ, e.g., Probe set 10388042, 1036098, 10587633, 10357381, 10342568, 10421128
    38. -
    39. LP/J, e.g., Probe set 10592493
    40. -
    41. DBA/2J, e.g., Probe set 10592493
    42. -
    - -

    Data Evaluation Summary

    - -
      -
    1. Before correction: eQLTs with LOD >10 (LRS>46.1): n = 638
    2. -
    3. After strain assignment correction: eQLTs with LOD >10 (LRS>46.1): n = 820
    4. -
    5. Before correction: eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 237.9
    6. -
    7. After correction: eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 278.1
    8. -
    9. Lowest mean value: Trait ID 10344361, mean = 3.998
    10. -
    11. Highest mean value: Trait ID 10598025, mean = 14.475 (MT-ND1)
    12. -
    13. Greatest sex difference: Trait ID: 10606178 (Xist)
    14. -
    15. Great variation within and among strains: Trait ID 10454192 (Ttr -

      Table 1 (please confirm that these assignments are after correction)

      - -
      - - - - - - -
      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      IndexArray IDPhaseStrainAgeSex
      1R5583S1129P3/J65F
      2R5584S1129P3/J66M
      3R5585S1129S1/SvImJ66F
      4R5586S1129S1/SvImJ66M
      5R5587S1129X1/SvJ65F
      6R5588S1129X1/SvJ66M
      7R6348S3B6D2F167F
      8R6347S3B6D2F162F
      9R5590S1B6D2F179M
      10R5662S1BALB/cByJ59F
      11R5664S1BALB/cByJ59M
      12R5591S1BALB/cJ51F
      13R5592S1BALB/cJ51M
      14R6154S2BTBR T+ tf/J60F
      15R6516S3BXD182F
      16R6584S3BXD195M
      17R5759S1BXD2N/AF
      18R5837S1BXD2106M
      19R5874S2BXD586F
      20R6554S3BXD560M
      21R6359S3BXD672F
      22R5777S1BXD6149M
      23R6364S3BXD876F
      24R5637S1BXD871F
      25R6365S3BXD876M
      26R5746S1BXD970F
      27R5981S2BXD967M
      28R5980S2BXD967M
      29R6182S2BXD1184F
      30R6486S3BXD1158M
      31R6711S24BXD1271F
      32R6608S3BXD1248F
      33R5885S2BXD1244M
      34R5755S1BXD13160F
      35R5887S2BXD1353M
      36R6180S2BXD1470F
      37R5669S1BXD1491M
      38R6456S3BXD1560F
      39R6622S3BXD1560F
      40R6626S3BXD1560M
      41R6181S2BXD1674F
      42R6515S3BXD1664M
      43R5673S1BXD1880F
      44R5674S1BXD1865M
      45R6553S3BXD19158F
      46R6551S3BXD1960M
      47R6643S44BXD2059F
      48R6595S3BXD2060M
      49R5735S1BXD2164F
      50R5892S2BXD2199M
      51R5896S2BXD2260F
      52R6414S3BXD2273M
      53R6550S3BXD2374F
      54R6586S3BXD23102F
      55R5630S1BXD2471F
      56R6356S3BXD2457M
      57R6162S2BXD2567F
      58R6625S3BXD2567F
      59R6642S44BXD2558M
      60R5761S1BXD27N/AF
      61R5763S1BXD2790M
      62R6621S3BXD28113F
      63R6548S3BXD2860M
      64R6547S3BXD2960F
      65R6453S3BXD3148F
      66R6452S3BXD3148M
      67R6583S3BXD3260F
      68R5765S1BXD3271M
      69R5689S1BXD3365F
      70R6450S3BXD3355M
      71R5767S1BXD3472F
      72R5900S2BXD3470M
      73R6588S3BXD3661F
      74R6490S3BXD3663M
      75R6417S3BXD3864F
      76R6439S3BXD3872M
      77R5769S1BXD39N/AF
      78R5771S1BXD3974M
      79R5773S1BXD40N/AF
      80R5775S1BXD40N/AM
      81R6494S3BXD4172F
      82R5910S2BXD4279F
      83R6493S3BXD4269M
      84R6341S3BXD4359F
      85R6401S3BXD4399M
      86R5916S2BXD4379M
      87R5839S1BXD44141F
      88R5779S1BXD44124M
      89R6405S3BXD4558F
      90R6610S3BXD4555M
      91R5922S2BXD4864F
      92R5925S2BXD4860M
      93R6719S14BXD4958F
      94R6485S3BXD4979M
      95R5781S1BXD5061F
      96R6464S3BXD5165F
      97R6585S3BXD5163M
      98R6500S3BXD5558F
      99R5938S2BXD5593M
      100R6504S3BXD5658F
      101R6503S3BXD5658M
      102R5783S1BXD60111F
      103R5784S1BXD6085M
      104R5786S1BXD6186F
      105R6449S3BXD6165M
      106R6716S14BXD6254F
      107R5790S1BXD62115M
      108R6519S3BXD6354F
      109R6717S14BXD6370M
      110R5792S1BXD64167F
      111R6641S44BXD6468M
      112R6630S3BXD6468M
      113R6477S3BXD6558F
      114R6628S3BXD6570M
      115R6511S3BXD6670F
      116R6448S3BXD6661M
      117R5794S1BXD66144M
      118R6502S3BXD6766F
      119R6545S3BXD6761M
      120R6337S3BXD6856F
      121R6594S3BXD6864M
      122R5796S1BXD6985F
      123R5798S1BXD6998M
      124R6402S3BXD7093F
      125R5841S1BXD70121F
      126R6592S3BXD7059M
      127R6328S3BXD7187F
      128R5967S2BXD7164M
      129R5969S2BXD7364F
      130R5800S1BXD73120M
      131R6646S3BXD7440F
      132R6524S3BXD7472M
      133R6445S3BXD7585F
      134R5843S1BXD75103F
      135R5845S1BXD75103M
      136R6604S3BXD7764F
      137R6513S3BXD7772M
      138R6582S3BXD78144F
      139R6563S3BXD7895M
      140R6645S44BXD7966F
      141R5806S1BXD7978M
      142R5847S1BXD8089F
      143R5852S1BXD8079M
      144R6562S3BXD8199F
      145R6468S3BXD8165M
      146R6560S3BXD8285F
      147R6512S3BXD8368F
      148R5810S1BXD83139M
      149R6510S3BXD8487F
      150R5970S2BXD84107F
      151R6603S3BXD8499M
      152R6517S3BXD8558F
      153R6718S14BXD8586M
      154R5812S1BXD8661F
      155R5814S1BXD8659M
      156R5816S1BXD87112F
      157R6488S3BXD87137M
      158R6580S3BXD88125F
      159R5977S2BXD8968F
      160R5979S2BXD8979M
      161R5978S2BXD8979M
      162R5818S1BXD90106F
      163R5820S1BXD90131M
      164R6343S3BXD9262F
      165R5984S2BXD9255M
      166R6581S3BXD93173M
      167R6557S3BXD93126M
      168R6509S3BXD9559F
      169R5822S1BXD9589M
      170R6640S44BXD9670F
      171R6514S3BXD9664M
      172R6506S3BXD9778F
      173R5849S1BXD97130F
      174R6591S3BXD97122M
      175R5990S2BXD9865F
      176R6596S3BXD9867M
      177R5993S2BXD9974F
      178R5995S2BXD9950M
      179R6607S3BXD10075F
      180R6411S3BXD100104M
      181R6508S3BXD10159F
      182R5593S1BXD10159M
      183R6523S3BXD10260F
      184R6466S3BXD10250M
      185R6404S3BXD10372F
      186R6609S3BXD10357M
      187R6555S3C57BL/10J73M
      188R5596S1C57BL/10J73M
      189R5597S1C57BL/6ByJ51F
      190R5598S1C57BL/6ByJ69M
      191R5600S1C57BL/6J79F
      192R5599S1C57BL/6J60F
      193R6451S3C57BL/6J77M
      194R6410S3C57BL/6J85M
      195R5603S1C57BLKS/J66F
      196R5604S1C57BLKS/J66M
      197R5996S2CBA/CaJ66F
      198R6349S3CBA/CaJ66M
      199R6458S3D2B6F164F
      200R6353S3D2B6F160M
      201R5605S1DBA/2J79F
      202R6446S3DBA/2J83M
      203R6597S3FVB/NJ60F
      204R5643S1FVB/NJ60F
      205R6598S3FVB/NJ60M
      206R5606S1ILS74F
      207R5607S1ILS74M
      208R5610S1ISS97M
      209R6627S3KK/HlJ64F
      210R6444S3KK/HlJ65M
      211R5702S1KK/HlJ61M
      212R5613S1LG/J63F
      213R5704S1LG/J65M
      214R5614S1LP/J65F
      215R5615S1LP/J65M
      216R6599S3MOLF/EiJ60F
      217R6606S3MOLF/EiJ60M
      218R6544S3NOD/LtJ77F
      219R5709S1NOD/LtJ58M
      220R6601S3NZB/BlNJ61F
      221R5711S1NZB/BlNJ61F
      222R6427S3NZB/BlNJ58M
      223R6150S2NZO/HlLtJ71F
      224R6155S2NZW/LacJ65F
      225R5654S1NZW/LacJ60M
      226R5721S1PL/J59M
      227R5616S1PWD/PhJ60M
      228R5725S1PWK/PhJ121M
      229R6174S2SJL/J63F
      230R6350S3SJL/J65M
      231R6419S3WSB/EiJ60F
      232R5620S1WSB/EiJ60M
      -
      -
      - -
        -
      -
    16. -
    diff --git a/general/datasets/UTHSC_SPLs2_RMA_1210/summary.rtf b/general/datasets/UTHSC_SPLs2_RMA_1210/summary.rtf deleted file mode 100644 index d9478f8..0000000 --- a/general/datasets/UTHSC_SPLs2_RMA_1210/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    This is a near final release of a spleen gene expression data set generated by a DOD-funded consortium (Byrne, Kotb, Williams, and Lu). Please contact Lu Lu or Robert Williams regarding status of this data set. The initial data enterted in 2010 had many errors described below. The data set is much improved and has no known errors of strain assignment.

    - -

    Animals were generated at UTHSC by Lu Lu and colleagues. The spleen of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna").

    diff --git a/general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/acknowledgment.rtf b/general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/acknowledgment.rtf deleted file mode 100644 index 1853348..0000000 --- a/general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    We thank Varigenix and Charle River Laboratory for their donation of BXD cyropreserved hepatcytes. We thank Jesse Ingels for preparing RNA samples. We thank Lorne Rose and the UTHSC Molecular Resource Center for processing RNA samples and generating array data. We thank Arthur Centeno for data entry. We thank the UTHSC CITG and the UT-ORNL Governor's chair for support of microarray analysis.

    diff --git a/general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/cases.rtf b/general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/cases.rtf deleted file mode 100644 index e06c56f..0000000 --- a/general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/cases.rtf +++ /dev/null @@ -1,266 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Sample IDVarigenix StrainSexRNA Concentrations
    - ng/ul
    260/280260/230Agilent
    - Concentration(ng/ul)
    RIN
    V1BXD32M1414.82.092.213,0629.3
    V2BXD1M1608.92.112.243,1029.3
    V3BXD5M1263.912.12.092,4608.5
    V4BXD31M1793.952.12.223,3878.5
    V5BXD8M1193.212.12.172,2939.3
    V6BXD18M1041.052.132.172,1159.2
    V7BXD42M398.281.992.281,5198.3
    V8BXD29M477.372.022.241,3018.1
    V9BXD21M414.622.271,1748.3
    V10BXD27M438.612.022.271,1008.1
    V11BXD16M436.212.012.278688.5
    V12BXD19M489.122.012.261,2778
    V13BXD22M1032.892.092.222,0607.8
    V14BXD38M510.242.012.221,2138
    V15BXD34M1021.262.092.241,5148.2
    V16BXD20M330.8522.279018.1
    V17BXD15M1220.542.12.211,9098.1
    V18BXD6M1001.042.092.21,5238.3
    V19BXD13M1241.882.12.211,7708.2
    V20BXD40M1032.042.082.221,9858.2
    V21BXD14M881.622.112.194818.7
    V22BXD2M1069.092.082.221,5368.2
    V23BXD28M452.622.262,5677.9
    V24BXD11M930.722.072.219998.5
    V25BXD39M1177.272.072.238388.7
    diff --git a/general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/experiment-design.rtf b/general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/experiment-design.rtf deleted file mode 100644 index 323648a..0000000 --- a/general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Control hepatocyte mRNA expression data prior to any treatment for young adult male BXD strains. This is esssentially the mRNA state of frozen hepatocytes.

    - -

     

    diff --git a/general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/platform.rtf b/general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/platform.rtf deleted file mode 100644 index 61c48c5..0000000 --- a/general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Affy Mouse Gene 1.0 ST (GPL6246)

    diff --git a/general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/processing.rtf b/general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/processing.rtf deleted file mode 100644 index 662571f..0000000 --- a/general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Standard 2z+8 of log2 data. RMA data were log2 transformed (adding an olffset of 1 to avoid negative values). Variance was stablized (i.e. each array was converted to a set of Z scores). Z scores were then multipled by 2.  Mean Z  was then shifted from 0 to to 8 units per array.

    diff --git a/general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/summary.rtf b/general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/summary.rtf deleted file mode 100644 index 8e4cabf..0000000 --- a/general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    mRNA levels in cryopreserved BXD strain hepatotcytes (males at 60 days of age) immediately after thawing to 4 deg C. This is the "frozen state" mRNA status.

    diff --git a/general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/tissue.rtf b/general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/tissue.rtf deleted file mode 100644 index 94ad98a..0000000 --- a/general/datasets/UTHSC_VGX_MmBXDHepatocytesRMA1014/tissue.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

     

    - -

    Hepatocytes prepared by Rob Kaiser at CRL Piedmont in Spring of 2011. Held in liquid nitrogen (vapor phase) until use Fall 2014 at UTHSC.

    - -

    One vial of hepatocytes in 1 ml of freeze media was wiped with 70% ETOH, quick thawed by swift agitation in a 37 degree C water bath until a small amount of ice remained in the vial. Contents of the vial were removed with a sterile 1000 ul pipette tip and added to a 5 ml sterile polypropylene tube on ice containing 3 ml of ice-cold sterile 1x PBS. sitting in ice. One ml of sterile ice-cold 1x PBS was added to the original vial to remove any remaining cells and added to the 5 ml tube on ice. This process was quickly repeated with three more vials of cells. Four 5 ml tubes were centrifuged at 8,000 rpm at 4 degrees C for 4 minutes to pellet hepatocytes. PBS diluted freeze media was completely removed from the cell pellet. Entire process for sets of vials took about 7 minutes until RNA lysis buffer was added. 

    - -

    The QIAgen AllPrep DNA/RNA mini kit was used in conjunction with the QIAcube for purification of DNA and RNA from the hepatocytes. 600 ul of kit lysis buffer was added to pelleted cells, along with one 5 mm sterile stainless steel bead and cells were completely disrupted using the TissueLyser. The QIAcube protocol was used first for DNA extraction (held at -80 deg C for future use) and the flow-through containing total RNA was then used for the second purification.

    - -

    Any residual DNA was removed from the RNA before Agilent quantification of concentration and RIN, using the QIAgen DNase I reagent, followed by ethanol precipitation and resuspension of DNA-free total  RNA in 50 ul RNAse free water.

    diff --git a/general/datasets/UTHSC_mm10_B6D2_Ret_miRNA_1116/experiment-design.rtf b/general/datasets/UTHSC_mm10_B6D2_Ret_miRNA_1116/experiment-design.rtf deleted file mode 100644 index ad9776a..0000000 --- a/general/datasets/UTHSC_mm10_B6D2_Ret_miRNA_1116/experiment-design.rtf +++ /dev/null @@ -1,980 +0,0 @@ -
    - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexSample IDCase IDStrainSexDOBSac dateAge groupAge (days)Age (month)EarTag NumberTube IDAgilent RNA concentration (ng/ul)RINNanodrop RNA concentration (ng/ul)260/280260/230Batch IDNotes
    1B6.01071515.08C57BL/6JM06/15/1507/15/151~2301.0 R1117310.00181.222.092.122best
    2B6.02071515.09C57BL/6JM06/15/1507/15/151~2301.0 R12121N/A148.522.101.692best
    3B6.03052314.01C57BL/6JF03/23/1405/23/142~4612.0 Ret 326810.048.532.021.931 
    4B6.04062514.01C57BL/6JM04/10/1406/25/142~4762.5 Ret 21819.0168.72.061.971 
    5B6.05040816.03C57BL/6JM02/04/1604/08/162~4642.1 R7438510.00448.161.982.122 
    6B6.06040816.04C57BL/6JM02/04/1604/08/162~4642.1 R752268.70167.312.042.132 
    7B6.07041014.19C57BL/6JF10/20/1304/10/145~71725.7 Ret 102210.036.972.220.0511 
    8B6.08101813.27C57BL/6JM05/06/1310/18/135~71655.5 Ret 73810.054.472.080.0941 
    9B6.09050214.03C57BL/6JF08/14/1305/02/147~92618.7 Ret 272010.054.452.111.141 
    10B6.10041014.24C57BL/6JM09/02/1304/10/147~92207.3 Ret 12389.5058.972.082.141 
    11B6.11101813.17C57BL/6JF12/07/1210/18/1310~1231510.5 Ret 2599.4083.862.171.871 
    12B6.12052116.01C57BL/6JM05/19/1505/22/1610~1236912.3 R1022938.30179.692.062.112 
    13B6.13052116.02C57BL/6JM05/19/1505/22/1610~1236912.3 R1032558.40194.242.041.822 
    14B6.14042114.19C57BL/6JF03/11/1304/21/1413~1540613.51252Ret 262810.039.952.221.711 
    15B6.15050214.07C57BL/6JM03/20/1305/02/1413~1540813.6 Ret 283010.051.812.062.071 
    16B6.16041714.02C57BL/6JM09/18/1204/17/1419~2157619.21117Ret 172510.051.552.131.131 
    17B6.17041714.03C57BL/6JM09/18/1204/17/1419~2157619.21116Ret 182810.065.112.012.161 
    18D2.01030116.02DBA/2JM01/29/1603/01/161~2321.1 R631078.80119.022.051.792 
    19D2.02030116.04DBA/2JM01/29/1603/01/161~2321.1 R652029.10250.382.031.672 
    20D2.03062714.02DBA/2JF03/23/1406/27/142~41043.5 Ret 20a  189.31.951.811No Agilent as of 6/27/2014
    21D2.04062714.01DBA/2JM03/19/1406/27/142~41003.3 Ret 19a  1542.051.891No Agilent as of 6/27/2014
    22D2.05032316.03DBA/2JM01/23/1603/23/162~4602.0 R70999.3099.172.041.632 
    23D2.06032316.04DBA/2JM01/23/1603/23/162~4602.0 R712059.10124.332.031.242 
    24D2.07050214.11DBA/2JF12/07/1305/02/145~71464.9 Ret 2910010.086.472.141.91 
    25D2.08101813.08DBA/2JM03/21/1310/18/135~72117.0 Ret 1529.986.982.112.121 
    26D2.09041014.23DBA/2JF08/24/1304/10/147~92297.6 Ret 11219.944.392.171.151 
    27D2.10050214.15DBA/2JF07/27/1305/02/147~92799.3 Ret 303710.043.572.132.041 
    28D2.11101813.23DBA/2JF11/29/1210/18/1310~1232310.8 Ret 6779.7105.022.062.141 
    29D2.12101813.19DBA/2JM12/08/1210/18/1310~1231410.5 Ret 3469.965.72.131.711 
    30D2.13042114.18DBA/2JF03/19/1304/21/1413~1539813.31148Ret 25269.965.532.172.431 
    31D2.14042114.17DBA/2JM03/19/1304/21/1413~1539813.31130Ret 24409.436.982.070.81 
    32D2.15041014.06DBA/2JM9/6/201204/10/1419~2158119.41123Ret 8359.952.992.120.0911 
    33D2.16041014.07DBA/2JF9/6/201204/10/1419~2158119.41124Ret 9309.552.442.190.081 
    34D2GP.01041416.15DBA-Gpmnb(wp)F03/15/1604/14/161~2301.0 R923349.10135.791.872.232 
    35D2GP.02120715.02DBA-Gpmnb(wp)M11/05/1512/07/151~2321.1 R31859.20106.062.042.062 
    36D2GP.03041416.04DBA-Gpmnb(wp)F02/02/1604/14/162~4722.4 R811129.4094.791.942.192 
    37D2GP.04120815.04DBA-Gpmnb(wp)M10/08/1512/08/152~4612.0 R3989N/A118.842.051.972 
    38D2GP.05101813.21DBA-Gpmnb(wp)F04/09/1310/18/135~71926.4 Ret 4539.974.132.142.281 
    39D2GP.06101813.22DBA-Gpmnb(wp)M04/09/1310/18/135~71926.4 Ret 55410.081.322.12.191 
    40D2GP.07041014.27DBA-Gpmnb(wp)F08/29/1304/10/147~92247.5 Ret 151410.037.032.061.441 
    41D2GP.08041014.28DBA-Gpmnb(wp)M08/29/1304/10/147~92247.5 Ret 16299.963.832.032.081 
    42D2GP.09041014.25DBA-Gpmnb(wp)F06/12/1304/10/1410~1230210.1 Ret 13319.860.732.072.121 
    43D2GP.10041014.26DBA-Gpmnb(wp)M06/12/1304/10/1410~1230210.1 Ret 142410.065.12.061.091 
    44D2GP.11042114.08DBA-Gpmnb(wp)F01/14/1304/21/1413~1546215.41021Ret 22879.0150.692.092.021 
    45D2GP.12042114.09DBA-Gpmnb(wp)F01/14/1304/21/1413~1546215.41022Ret 231810.044.162.110.0691 
    -
    -
    diff --git a/general/datasets/UTHSC_mm10_B6D2_Ret_miRNA_1116/specifics.rtf b/general/datasets/UTHSC_mm10_B6D2_Ret_miRNA_1116/specifics.rtf deleted file mode 100644 index 69b4147..0000000 --- a/general/datasets/UTHSC_mm10_B6D2_Ret_miRNA_1116/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -micro RNA \ No newline at end of file diff --git a/general/datasets/UTHSC_mm10_B6D2_Ret_miRNA_1116/summary.rtf b/general/datasets/UTHSC_mm10_B6D2_Ret_miRNA_1116/summary.rtf deleted file mode 100644 index 1d95169..0000000 --- a/general/datasets/UTHSC_mm10_B6D2_Ret_miRNA_1116/summary.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

    This is a microRNA data set generated using the Affymetrix Genechip miRNA 4.0 array (see http://media.affymetrix.com/support/technical/datasheets/miRNA_4-0_and_4-1_datasheet.pdf).

    - -

    The data set provides 3222 estimates of expression (mainly for mi-RNAs) for 45 retinas from C57BL/6J (B6 cases B6.01 to B6.17), DBA/2J (cases D2.01 to D2.16), and DBA/2J with a wildtype Gpnmb allele (D2GP.01 to D2GP.12). Cases range in age from 30 to 576 days and include both sexes.

    - -

    We are using this data set in combination with the conventional Mouse Gene 1.0ST array to study normal and glaucomatous changes in gene expression as a function of age. 

    - -

    Please contact Lu Lu (lulu@uthsc.edu), Robert W. Williams  (rwilliams@uthsc.edu), or Junming Yue (jyue@uthsc.edu).

    - -

    Supported in part by Research to Prevent Blindness.

    diff --git a/general/datasets/UTHSC_mm9_B6D2_RetEx_0916/cases.rtf b/general/datasets/UTHSC_mm9_B6D2_RetEx_0916/cases.rtf deleted file mode 100644 index ad9776a..0000000 --- a/general/datasets/UTHSC_mm9_B6D2_RetEx_0916/cases.rtf +++ /dev/null @@ -1,980 +0,0 @@ -
    - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexSample IDCase IDStrainSexDOBSac dateAge groupAge (days)Age (month)EarTag NumberTube IDAgilent RNA concentration (ng/ul)RINNanodrop RNA concentration (ng/ul)260/280260/230Batch IDNotes
    1B6.01071515.08C57BL/6JM06/15/1507/15/151~2301.0 R1117310.00181.222.092.122best
    2B6.02071515.09C57BL/6JM06/15/1507/15/151~2301.0 R12121N/A148.522.101.692best
    3B6.03052314.01C57BL/6JF03/23/1405/23/142~4612.0 Ret 326810.048.532.021.931 
    4B6.04062514.01C57BL/6JM04/10/1406/25/142~4762.5 Ret 21819.0168.72.061.971 
    5B6.05040816.03C57BL/6JM02/04/1604/08/162~4642.1 R7438510.00448.161.982.122 
    6B6.06040816.04C57BL/6JM02/04/1604/08/162~4642.1 R752268.70167.312.042.132 
    7B6.07041014.19C57BL/6JF10/20/1304/10/145~71725.7 Ret 102210.036.972.220.0511 
    8B6.08101813.27C57BL/6JM05/06/1310/18/135~71655.5 Ret 73810.054.472.080.0941 
    9B6.09050214.03C57BL/6JF08/14/1305/02/147~92618.7 Ret 272010.054.452.111.141 
    10B6.10041014.24C57BL/6JM09/02/1304/10/147~92207.3 Ret 12389.5058.972.082.141 
    11B6.11101813.17C57BL/6JF12/07/1210/18/1310~1231510.5 Ret 2599.4083.862.171.871 
    12B6.12052116.01C57BL/6JM05/19/1505/22/1610~1236912.3 R1022938.30179.692.062.112 
    13B6.13052116.02C57BL/6JM05/19/1505/22/1610~1236912.3 R1032558.40194.242.041.822 
    14B6.14042114.19C57BL/6JF03/11/1304/21/1413~1540613.51252Ret 262810.039.952.221.711 
    15B6.15050214.07C57BL/6JM03/20/1305/02/1413~1540813.6 Ret 283010.051.812.062.071 
    16B6.16041714.02C57BL/6JM09/18/1204/17/1419~2157619.21117Ret 172510.051.552.131.131 
    17B6.17041714.03C57BL/6JM09/18/1204/17/1419~2157619.21116Ret 182810.065.112.012.161 
    18D2.01030116.02DBA/2JM01/29/1603/01/161~2321.1 R631078.80119.022.051.792 
    19D2.02030116.04DBA/2JM01/29/1603/01/161~2321.1 R652029.10250.382.031.672 
    20D2.03062714.02DBA/2JF03/23/1406/27/142~41043.5 Ret 20a  189.31.951.811No Agilent as of 6/27/2014
    21D2.04062714.01DBA/2JM03/19/1406/27/142~41003.3 Ret 19a  1542.051.891No Agilent as of 6/27/2014
    22D2.05032316.03DBA/2JM01/23/1603/23/162~4602.0 R70999.3099.172.041.632 
    23D2.06032316.04DBA/2JM01/23/1603/23/162~4602.0 R712059.10124.332.031.242 
    24D2.07050214.11DBA/2JF12/07/1305/02/145~71464.9 Ret 2910010.086.472.141.91 
    25D2.08101813.08DBA/2JM03/21/1310/18/135~72117.0 Ret 1529.986.982.112.121 
    26D2.09041014.23DBA/2JF08/24/1304/10/147~92297.6 Ret 11219.944.392.171.151 
    27D2.10050214.15DBA/2JF07/27/1305/02/147~92799.3 Ret 303710.043.572.132.041 
    28D2.11101813.23DBA/2JF11/29/1210/18/1310~1232310.8 Ret 6779.7105.022.062.141 
    29D2.12101813.19DBA/2JM12/08/1210/18/1310~1231410.5 Ret 3469.965.72.131.711 
    30D2.13042114.18DBA/2JF03/19/1304/21/1413~1539813.31148Ret 25269.965.532.172.431 
    31D2.14042114.17DBA/2JM03/19/1304/21/1413~1539813.31130Ret 24409.436.982.070.81 
    32D2.15041014.06DBA/2JM9/6/201204/10/1419~2158119.41123Ret 8359.952.992.120.0911 
    33D2.16041014.07DBA/2JF9/6/201204/10/1419~2158119.41124Ret 9309.552.442.190.081 
    34D2GP.01041416.15DBA-Gpmnb(wp)F03/15/1604/14/161~2301.0 R923349.10135.791.872.232 
    35D2GP.02120715.02DBA-Gpmnb(wp)M11/05/1512/07/151~2321.1 R31859.20106.062.042.062 
    36D2GP.03041416.04DBA-Gpmnb(wp)F02/02/1604/14/162~4722.4 R811129.4094.791.942.192 
    37D2GP.04120815.04DBA-Gpmnb(wp)M10/08/1512/08/152~4612.0 R3989N/A118.842.051.972 
    38D2GP.05101813.21DBA-Gpmnb(wp)F04/09/1310/18/135~71926.4 Ret 4539.974.132.142.281 
    39D2GP.06101813.22DBA-Gpmnb(wp)M04/09/1310/18/135~71926.4 Ret 55410.081.322.12.191 
    40D2GP.07041014.27DBA-Gpmnb(wp)F08/29/1304/10/147~92247.5 Ret 151410.037.032.061.441 
    41D2GP.08041014.28DBA-Gpmnb(wp)M08/29/1304/10/147~92247.5 Ret 16299.963.832.032.081 
    42D2GP.09041014.25DBA-Gpmnb(wp)F06/12/1304/10/1410~1230210.1 Ret 13319.860.732.072.121 
    43D2GP.10041014.26DBA-Gpmnb(wp)M06/12/1304/10/1410~1230210.1 Ret 142410.065.12.061.091 
    44D2GP.11042114.08DBA-Gpmnb(wp)F01/14/1304/21/1413~1546215.41021Ret 22879.0150.692.092.021 
    45D2GP.12042114.09DBA-Gpmnb(wp)F01/14/1304/21/1413~1546215.41022Ret 231810.044.162.110.0691 
    -
    -
    diff --git a/general/datasets/UTHSC_mm9_B6D2_RetEx_0916/specifics.rtf b/general/datasets/UTHSC_mm9_B6D2_RetEx_0916/specifics.rtf deleted file mode 100644 index 7c1a914..0000000 --- a/general/datasets/UTHSC_mm9_B6D2_RetEx_0916/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Exon Level \ No newline at end of file diff --git a/general/datasets/UTHSC_mm9_B6D2_RetEx_0916/summary.rtf b/general/datasets/UTHSC_mm9_B6D2_RetEx_0916/summary.rtf deleted file mode 100644 index de58298..0000000 --- a/general/datasets/UTHSC_mm9_B6D2_RetEx_0916/summary.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

    This is an array data set generated using the Affymetrix Genechip Mouse 1.0 ST array. Please see the companion microRNA (miRNA) data set.

    - -

    All of these data sets provides estimates of expression for 45 retinas from C57BL/6J (B6 cases B6.01 to B6.17), DBA/2J (cases D2.01 to D2.16), and DBA/2J with a wildtype Gpnmb allele (D2GP.01 to D2GP.12). Cases range in age from 30 to 576 days and include both sexes.

    - -

    We are using these data in combination with the micro RNA array 4.0 to study normal and glaucomatous changes in gene expression as a function of age. 

    - -

    Please contact Lu Lu (lulu@uthsc.edu), Robert W. Williams  (rwilliams@uthsc.edu), or Junming Yue (jyue@uthsc.edu).

    - -

    Supported in part by Research to Prevent Blindness.

    diff --git a/general/datasets/UTHSC_mm9_B6D2_Ret_0916/cases.rtf b/general/datasets/UTHSC_mm9_B6D2_Ret_0916/cases.rtf deleted file mode 100644 index ad9776a..0000000 --- a/general/datasets/UTHSC_mm9_B6D2_Ret_0916/cases.rtf +++ /dev/null @@ -1,980 +0,0 @@ -
    - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexSample IDCase IDStrainSexDOBSac dateAge groupAge (days)Age (month)EarTag NumberTube IDAgilent RNA concentration (ng/ul)RINNanodrop RNA concentration (ng/ul)260/280260/230Batch IDNotes
    1B6.01071515.08C57BL/6JM06/15/1507/15/151~2301.0 R1117310.00181.222.092.122best
    2B6.02071515.09C57BL/6JM06/15/1507/15/151~2301.0 R12121N/A148.522.101.692best
    3B6.03052314.01C57BL/6JF03/23/1405/23/142~4612.0 Ret 326810.048.532.021.931 
    4B6.04062514.01C57BL/6JM04/10/1406/25/142~4762.5 Ret 21819.0168.72.061.971 
    5B6.05040816.03C57BL/6JM02/04/1604/08/162~4642.1 R7438510.00448.161.982.122 
    6B6.06040816.04C57BL/6JM02/04/1604/08/162~4642.1 R752268.70167.312.042.132 
    7B6.07041014.19C57BL/6JF10/20/1304/10/145~71725.7 Ret 102210.036.972.220.0511 
    8B6.08101813.27C57BL/6JM05/06/1310/18/135~71655.5 Ret 73810.054.472.080.0941 
    9B6.09050214.03C57BL/6JF08/14/1305/02/147~92618.7 Ret 272010.054.452.111.141 
    10B6.10041014.24C57BL/6JM09/02/1304/10/147~92207.3 Ret 12389.5058.972.082.141 
    11B6.11101813.17C57BL/6JF12/07/1210/18/1310~1231510.5 Ret 2599.4083.862.171.871 
    12B6.12052116.01C57BL/6JM05/19/1505/22/1610~1236912.3 R1022938.30179.692.062.112 
    13B6.13052116.02C57BL/6JM05/19/1505/22/1610~1236912.3 R1032558.40194.242.041.822 
    14B6.14042114.19C57BL/6JF03/11/1304/21/1413~1540613.51252Ret 262810.039.952.221.711 
    15B6.15050214.07C57BL/6JM03/20/1305/02/1413~1540813.6 Ret 283010.051.812.062.071 
    16B6.16041714.02C57BL/6JM09/18/1204/17/1419~2157619.21117Ret 172510.051.552.131.131 
    17B6.17041714.03C57BL/6JM09/18/1204/17/1419~2157619.21116Ret 182810.065.112.012.161 
    18D2.01030116.02DBA/2JM01/29/1603/01/161~2321.1 R631078.80119.022.051.792 
    19D2.02030116.04DBA/2JM01/29/1603/01/161~2321.1 R652029.10250.382.031.672 
    20D2.03062714.02DBA/2JF03/23/1406/27/142~41043.5 Ret 20a  189.31.951.811No Agilent as of 6/27/2014
    21D2.04062714.01DBA/2JM03/19/1406/27/142~41003.3 Ret 19a  1542.051.891No Agilent as of 6/27/2014
    22D2.05032316.03DBA/2JM01/23/1603/23/162~4602.0 R70999.3099.172.041.632 
    23D2.06032316.04DBA/2JM01/23/1603/23/162~4602.0 R712059.10124.332.031.242 
    24D2.07050214.11DBA/2JF12/07/1305/02/145~71464.9 Ret 2910010.086.472.141.91 
    25D2.08101813.08DBA/2JM03/21/1310/18/135~72117.0 Ret 1529.986.982.112.121 
    26D2.09041014.23DBA/2JF08/24/1304/10/147~92297.6 Ret 11219.944.392.171.151 
    27D2.10050214.15DBA/2JF07/27/1305/02/147~92799.3 Ret 303710.043.572.132.041 
    28D2.11101813.23DBA/2JF11/29/1210/18/1310~1232310.8 Ret 6779.7105.022.062.141 
    29D2.12101813.19DBA/2JM12/08/1210/18/1310~1231410.5 Ret 3469.965.72.131.711 
    30D2.13042114.18DBA/2JF03/19/1304/21/1413~1539813.31148Ret 25269.965.532.172.431 
    31D2.14042114.17DBA/2JM03/19/1304/21/1413~1539813.31130Ret 24409.436.982.070.81 
    32D2.15041014.06DBA/2JM9/6/201204/10/1419~2158119.41123Ret 8359.952.992.120.0911 
    33D2.16041014.07DBA/2JF9/6/201204/10/1419~2158119.41124Ret 9309.552.442.190.081 
    34D2GP.01041416.15DBA-Gpmnb(wp)F03/15/1604/14/161~2301.0 R923349.10135.791.872.232 
    35D2GP.02120715.02DBA-Gpmnb(wp)M11/05/1512/07/151~2321.1 R31859.20106.062.042.062 
    36D2GP.03041416.04DBA-Gpmnb(wp)F02/02/1604/14/162~4722.4 R811129.4094.791.942.192 
    37D2GP.04120815.04DBA-Gpmnb(wp)M10/08/1512/08/152~4612.0 R3989N/A118.842.051.972 
    38D2GP.05101813.21DBA-Gpmnb(wp)F04/09/1310/18/135~71926.4 Ret 4539.974.132.142.281 
    39D2GP.06101813.22DBA-Gpmnb(wp)M04/09/1310/18/135~71926.4 Ret 55410.081.322.12.191 
    40D2GP.07041014.27DBA-Gpmnb(wp)F08/29/1304/10/147~92247.5 Ret 151410.037.032.061.441 
    41D2GP.08041014.28DBA-Gpmnb(wp)M08/29/1304/10/147~92247.5 Ret 16299.963.832.032.081 
    42D2GP.09041014.25DBA-Gpmnb(wp)F06/12/1304/10/1410~1230210.1 Ret 13319.860.732.072.121 
    43D2GP.10041014.26DBA-Gpmnb(wp)M06/12/1304/10/1410~1230210.1 Ret 142410.065.12.061.091 
    44D2GP.11042114.08DBA-Gpmnb(wp)F01/14/1304/21/1413~1546215.41021Ret 22879.0150.692.092.021 
    45D2GP.12042114.09DBA-Gpmnb(wp)F01/14/1304/21/1413~1546215.41022Ret 231810.044.162.110.0691 
    -
    -
    diff --git a/general/datasets/UTHSC_mm9_B6D2_Ret_0916/summary.rtf b/general/datasets/UTHSC_mm9_B6D2_Ret_0916/summary.rtf deleted file mode 100644 index de58298..0000000 --- a/general/datasets/UTHSC_mm9_B6D2_Ret_0916/summary.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

    This is an array data set generated using the Affymetrix Genechip Mouse 1.0 ST array. Please see the companion microRNA (miRNA) data set.

    - -

    All of these data sets provides estimates of expression for 45 retinas from C57BL/6J (B6 cases B6.01 to B6.17), DBA/2J (cases D2.01 to D2.16), and DBA/2J with a wildtype Gpnmb allele (D2GP.01 to D2GP.12). Cases range in age from 30 to 576 days and include both sexes.

    - -

    We are using these data in combination with the micro RNA array 4.0 to study normal and glaucomatous changes in gene expression as a function of age. 

    - -

    Please contact Lu Lu (lulu@uthsc.edu), Robert W. Williams  (rwilliams@uthsc.edu), or Junming Yue (jyue@uthsc.edu).

    - -

    Supported in part by Research to Prevent Blindness.

    diff --git a/general/datasets/UT_ILM_BXD_hipp_NOE_1112/notes.rtf b/general/datasets/UT_ILM_BXD_hipp_NOE_1112/notes.rtf deleted file mode 100644 index 35247b6..0000000 --- a/general/datasets/UT_ILM_BXD_hipp_NOE_1112/notes.rtf +++ /dev/null @@ -1,23 +0,0 @@ -

    Hippocampus 5 Conditions
    -Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    -Batch and Outlier Analysis on Partek Genomic Suite 6.6
    -ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    -K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    -Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    -Number of samples = 284
    -Number of probes = 46643

    - -
      -
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      - ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. -
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      - ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. -
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      - ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. -
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      - ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. -
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      - ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. -
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      - ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. -
    diff --git a/general/datasets/UT_ILM_BXD_hipp_NOE_1112/summary.rtf b/general/datasets/UT_ILM_BXD_hipp_NOE_1112/summary.rtf deleted file mode 100644 index 5aeb69c..0000000 --- a/general/datasets/UT_ILM_BXD_hipp_NOE_1112/summary.rtf +++ /dev/null @@ -1,39 +0,0 @@ -

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    - -

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    - -

    Restraint Stress Protocol

    - -
      -
    1. Weigh animals all animals to be tested and record body weight.
    2. -
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. -
    5. Place animals in immobilization tubes for 15 minutes.
    6. -
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. -
    9. Place each animal into zero-maze for 10 minutes.
    10. -
    11. Return animal to home cage.
    12. -
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. -
    - -

    Ethanol and saline injections
    -Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    - -

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    - -

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    - -

    Quality Control Data
    -Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    - -
      -
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. -
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. -
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. -
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. -
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. -
    - -

    Entered by Arthur Centeno, September 20, 2010.

    - -

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    - -

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/UT_ILM_BXD_hipp_RSS_1112/notes.rtf b/general/datasets/UT_ILM_BXD_hipp_RSS_1112/notes.rtf deleted file mode 100644 index 35247b6..0000000 --- a/general/datasets/UT_ILM_BXD_hipp_RSS_1112/notes.rtf +++ /dev/null @@ -1,23 +0,0 @@ -

    Hippocampus 5 Conditions
    -Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    -Batch and Outlier Analysis on Partek Genomic Suite 6.6
    -ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    -K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    -Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    -Number of samples = 284
    -Number of probes = 46643

    - -
      -
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      - ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. -
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      - ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. -
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      - ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. -
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      - ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. -
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      - ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. -
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      - ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. -
    diff --git a/general/datasets/UT_ILM_BXD_hipp_RSS_1112/summary.rtf b/general/datasets/UT_ILM_BXD_hipp_RSS_1112/summary.rtf deleted file mode 100644 index 5aeb69c..0000000 --- a/general/datasets/UT_ILM_BXD_hipp_RSS_1112/summary.rtf +++ /dev/null @@ -1,39 +0,0 @@ -

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    - -

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    - -

    Restraint Stress Protocol

    - -
      -
    1. Weigh animals all animals to be tested and record body weight.
    2. -
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. -
    5. Place animals in immobilization tubes for 15 minutes.
    6. -
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. -
    9. Place each animal into zero-maze for 10 minutes.
    10. -
    11. Return animal to home cage.
    12. -
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. -
    - -

    Ethanol and saline injections
    -Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    - -

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    - -

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    - -

    Quality Control Data
    -Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    - -
      -
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. -
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. -
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. -
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. -
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. -
    - -

    Entered by Arthur Centeno, September 20, 2010.

    - -

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    - -

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/UT_VGX_HEL1014/acknowledgment.rtf b/general/datasets/UT_VGX_HEL1014/acknowledgment.rtf deleted file mode 100644 index 1853348..0000000 --- a/general/datasets/UT_VGX_HEL1014/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    We thank Varigenix and Charle River Laboratory for their donation of BXD cyropreserved hepatcytes. We thank Jesse Ingels for preparing RNA samples. We thank Lorne Rose and the UTHSC Molecular Resource Center for processing RNA samples and generating array data. We thank Arthur Centeno for data entry. We thank the UTHSC CITG and the UT-ORNL Governor's chair for support of microarray analysis.

    diff --git a/general/datasets/UT_VGX_HEL1014/cases.rtf b/general/datasets/UT_VGX_HEL1014/cases.rtf deleted file mode 100644 index e06c56f..0000000 --- a/general/datasets/UT_VGX_HEL1014/cases.rtf +++ /dev/null @@ -1,266 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Sample IDVarigenix StrainSexRNA Concentrations
    - ng/ul
    260/280260/230Agilent
    - Concentration(ng/ul)
    RIN
    V1BXD32M1414.82.092.213,0629.3
    V2BXD1M1608.92.112.243,1029.3
    V3BXD5M1263.912.12.092,4608.5
    V4BXD31M1793.952.12.223,3878.5
    V5BXD8M1193.212.12.172,2939.3
    V6BXD18M1041.052.132.172,1159.2
    V7BXD42M398.281.992.281,5198.3
    V8BXD29M477.372.022.241,3018.1
    V9BXD21M414.622.271,1748.3
    V10BXD27M438.612.022.271,1008.1
    V11BXD16M436.212.012.278688.5
    V12BXD19M489.122.012.261,2778
    V13BXD22M1032.892.092.222,0607.8
    V14BXD38M510.242.012.221,2138
    V15BXD34M1021.262.092.241,5148.2
    V16BXD20M330.8522.279018.1
    V17BXD15M1220.542.12.211,9098.1
    V18BXD6M1001.042.092.21,5238.3
    V19BXD13M1241.882.12.211,7708.2
    V20BXD40M1032.042.082.221,9858.2
    V21BXD14M881.622.112.194818.7
    V22BXD2M1069.092.082.221,5368.2
    V23BXD28M452.622.262,5677.9
    V24BXD11M930.722.072.219998.5
    V25BXD39M1177.272.072.238388.7
    diff --git a/general/datasets/UT_VGX_HEL1014/experiment-design.rtf b/general/datasets/UT_VGX_HEL1014/experiment-design.rtf deleted file mode 100644 index 323648a..0000000 --- a/general/datasets/UT_VGX_HEL1014/experiment-design.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Control hepatocyte mRNA expression data prior to any treatment for young adult male BXD strains. This is esssentially the mRNA state of frozen hepatocytes.

    - -

     

    diff --git a/general/datasets/UT_VGX_HEL1014/platform.rtf b/general/datasets/UT_VGX_HEL1014/platform.rtf deleted file mode 100644 index 61c48c5..0000000 --- a/general/datasets/UT_VGX_HEL1014/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Affy Mouse Gene 1.0 ST (GPL6246)

    diff --git a/general/datasets/UT_VGX_HEL1014/processing.rtf b/general/datasets/UT_VGX_HEL1014/processing.rtf deleted file mode 100644 index 662571f..0000000 --- a/general/datasets/UT_VGX_HEL1014/processing.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Standard 2z+8 of log2 data. RMA data were log2 transformed (adding an olffset of 1 to avoid negative values). Variance was stablized (i.e. each array was converted to a set of Z scores). Z scores were then multipled by 2.  Mean Z  was then shifted from 0 to to 8 units per array.

    diff --git a/general/datasets/UT_VGX_HEL1014/summary.rtf b/general/datasets/UT_VGX_HEL1014/summary.rtf deleted file mode 100644 index 8e4cabf..0000000 --- a/general/datasets/UT_VGX_HEL1014/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    mRNA levels in cryopreserved BXD strain hepatotcytes (males at 60 days of age) immediately after thawing to 4 deg C. This is the "frozen state" mRNA status.

    diff --git a/general/datasets/UT_VGX_HEL1014/tissue.rtf b/general/datasets/UT_VGX_HEL1014/tissue.rtf deleted file mode 100644 index 94ad98a..0000000 --- a/general/datasets/UT_VGX_HEL1014/tissue.rtf +++ /dev/null @@ -1,9 +0,0 @@ -

     

    - -

    Hepatocytes prepared by Rob Kaiser at CRL Piedmont in Spring of 2011. Held in liquid nitrogen (vapor phase) until use Fall 2014 at UTHSC.

    - -

    One vial of hepatocytes in 1 ml of freeze media was wiped with 70% ETOH, quick thawed by swift agitation in a 37 degree C water bath until a small amount of ice remained in the vial. Contents of the vial were removed with a sterile 1000 ul pipette tip and added to a 5 ml sterile polypropylene tube on ice containing 3 ml of ice-cold sterile 1x PBS. sitting in ice. One ml of sterile ice-cold 1x PBS was added to the original vial to remove any remaining cells and added to the 5 ml tube on ice. This process was quickly repeated with three more vials of cells. Four 5 ml tubes were centrifuged at 8,000 rpm at 4 degrees C for 4 minutes to pellet hepatocytes. PBS diluted freeze media was completely removed from the cell pellet. Entire process for sets of vials took about 7 minutes until RNA lysis buffer was added. 

    - -

    The QIAgen AllPrep DNA/RNA mini kit was used in conjunction with the QIAcube for purification of DNA and RNA from the hepatocytes. 600 ul of kit lysis buffer was added to pelleted cells, along with one 5 mm sterile stainless steel bead and cells were completely disrupted using the TissueLyser. The QIAcube protocol was used first for DNA extraction (held at -80 deg C for future use) and the flow-through containing total RNA was then used for the second purification.

    - -

    Any residual DNA was removed from the RNA before Agilent quantification of concentration and RIN, using the QIAgen DNase I reagent, followed by ethanol precipitation and resuspension of DNA-free total  RNA in 50 ul RNAse free water.

    diff --git a/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/acknowledgment.rtf b/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/acknowledgment.rtf deleted file mode 100644 index 2349291..0000000 --- a/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    We thank Drs. David L. Bronson and Louaine L. Spriggs for their excellent editing of this manuscript.

    diff --git a/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/cases.rtf b/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/cases.rtf deleted file mode 100644 index a9015ee..0000000 --- a/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The Animal Care and Use Committee of both the Seton Hall University and University of Virginia approved this study. Adult male HIV-1Tg rats and F344 background control rats (n = 12 per group) were purchased from Harlan Inc. (Indianapolis, IN). All rats were double housed in standard plastic cages and maintained in a temperature-controlled environment with a 12 h light/dark cycle and fed a standard rat diet and water ad libitum. The animals were monitored daily, and their cage bedding was changed twice a week. All animals were participants in a previously reported behavioral study [31]. All experimental procedures were conducted during the light cycle in accordance with the Animal Care and Use Committees of both participating institutions.

    diff --git a/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/experiment-design.rtf b/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/experiment-design.rtf deleted file mode 100644 index a31cc4a..0000000 --- a/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    144 RNA samples (2 strains, 2 treatments, 3 regions, and 12 animals per group) were analyzed.

    diff --git a/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/notes.rtf b/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/notes.rtf deleted file mode 100644 index da785f4..0000000 --- a/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/notes.rtf +++ /dev/null @@ -1 +0,0 @@ -

    https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0059582

    diff --git a/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/platform.rtf b/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/platform.rtf deleted file mode 100644 index d55c8e4..0000000 --- a/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    GPL14844Illumina HiSeq 2000 (Rattus norvegicus)

    diff --git a/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/processing.rtf b/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/processing.rtf deleted file mode 100644 index b0cb37b..0000000 --- a/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/processing.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    The extraction of 50-bp length paired-end reads was achieved using CASAVA (Illumina Pipeline v1.38). For each sample, reads with a quality score of ≥Q30 that passed filtering were used to generate a complete FASTQ file, which was then mapped to UCSC Rat reference [build Rn4] (ftp://ftp.cbcb.umd.edu/pub/data/bowtie_indexes/rn4.ebwt.zip) using TopHat with the default parameter setting of 40 alignments per read and up to 2 mismatches per alignment. The sequence alignment files (BAM) were analyzed using RSeQC package [36] for quality control analysis, which includes the mRNA fragment insert size, base quality distribution, reads mapping distribution, and splicing distribution analysis.

    - -

    - -

    The resulting aligned reads were then analyzed with Cufflinks suite (http://cufflinks.cbcb.umd.edu[37], which assembles the aligned reads into transcripts and measures their relative abundance. The expression of each transcript was quantified as the number of reads mapping to a gene divided by the gene length in kilobases and the total number of mapped reads in millions, which is called fragments per kilobase of exon per million fragments mapped (FPKM). All the junctions identified by Cufflink were compared on the basis of the junction and splicing site provided by reference transcript annotation GTF files to identify known and novel junctions. Then, Cuffcompare merged all the transcripts from different samples to a final transcript annotation GTF file, reported changes in the relative abundance of transcripts sharing a common transcription start site, and indicated the relative abundance of the primary transcripts of each gene crossing all the samples.

    diff --git a/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/specifics.rtf b/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/specifics.rtf deleted file mode 100644 index 421629b..0000000 --- a/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Hippocampus. rlog normalization \ No newline at end of file diff --git a/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/summary.rtf b/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/summary.rtf deleted file mode 100644 index 7bfa259..0000000 --- a/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Purpose: The study was designed to determine expression differences in brain regions of F344 and HIV-1 Transgenic rats by using RNA-sq analysis. Methods: 144 RNA samples (2 strains, 2 treatments, 3 regions, and 12 animals per group) were analyzed. Following deep-sequencing analysis of 50-bp paired-end reads of RNA-Seq, we used Bowtie/Tophat/Cufflinks suites to align these reads into transcripts based on the Rn4 rat reference genome and to measure the relative abundance of each transcript. MATLAB was used to conduct all statistical analysis. qRT–PCR validation was performed using TaqMan and SYBR Green assays fo soem representative genes. Results: Statistical and bioinformatic analyses on each brain region in the two strains revealed that immune response- and neurotransmission-related pathways were altered in the HIV-1Tg rats, with brain region differences. Other neuronal survival-related pathways, including those encoding myelin proteins, growth factors, and translation regulators, were altered in the HIV-1Tg rats in a brain region-dependent manner. After nicotine expousure, 20% of the altered genes in the HIV-1Tg rat were affected by nicotine in each brain region, with the expression of most restored. Analysis of the restored genes showed distinct pathways corrected by nicotine in different brain regions of HIV-1Tg rats.

    - -

    Conclusions: The abnormal gene expression pattern discovered in HIV-1Tg rats suggest mechanisms underlying the deficits in learning and memory and vulnerability to drug addiction and other psychiatric disorders observed in HIV positive patients. The gene expression pattern in the HIV-1Tg rats after nicotine exposure indicate that cholinergic modulators such as nicotine may have beneficial effects on HIV-1-induced neurologic deficits.

    diff --git a/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/tissue.rtf b/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/tissue.rtf deleted file mode 100644 index b65b5d6..0000000 --- a/general/datasets/UVA_HIV_1Tg_Hip_rlog_0720/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Using a rat brain matrix, slices of approximately 1 mm were taken from each brain, and the slices that contained the PFC, HIP, and dorsal STR were identified according to a rat brain atlas [35]. Tissues from specific regions of interest were collected bilaterally from each brain using a 3.00-mm Harris Micro-Punch (GE Healthcare Life Sciences, Piscataway, NJ, USA) and stored at −80°C until use.

    diff --git a/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/acknowledgment.rtf b/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/acknowledgment.rtf deleted file mode 100644 index 2349291..0000000 --- a/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    We thank Drs. David L. Bronson and Louaine L. Spriggs for their excellent editing of this manuscript.

    diff --git a/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/cases.rtf b/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/cases.rtf deleted file mode 100644 index a9015ee..0000000 --- a/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The Animal Care and Use Committee of both the Seton Hall University and University of Virginia approved this study. Adult male HIV-1Tg rats and F344 background control rats (n = 12 per group) were purchased from Harlan Inc. (Indianapolis, IN). All rats were double housed in standard plastic cages and maintained in a temperature-controlled environment with a 12 h light/dark cycle and fed a standard rat diet and water ad libitum. The animals were monitored daily, and their cage bedding was changed twice a week. All animals were participants in a previously reported behavioral study [31]. All experimental procedures were conducted during the light cycle in accordance with the Animal Care and Use Committees of both participating institutions.

    diff --git a/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/experiment-design.rtf b/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/experiment-design.rtf deleted file mode 100644 index a31cc4a..0000000 --- a/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    144 RNA samples (2 strains, 2 treatments, 3 regions, and 12 animals per group) were analyzed.

    diff --git a/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/notes.rtf b/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/notes.rtf deleted file mode 100644 index da785f4..0000000 --- a/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/notes.rtf +++ /dev/null @@ -1 +0,0 @@ -

    https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0059582

    diff --git a/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/platform.rtf b/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/platform.rtf deleted file mode 100644 index d55c8e4..0000000 --- a/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    GPL14844Illumina HiSeq 2000 (Rattus norvegicus)

    diff --git a/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/processing.rtf b/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/processing.rtf deleted file mode 100644 index b0cb37b..0000000 --- a/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/processing.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    The extraction of 50-bp length paired-end reads was achieved using CASAVA (Illumina Pipeline v1.38). For each sample, reads with a quality score of ≥Q30 that passed filtering were used to generate a complete FASTQ file, which was then mapped to UCSC Rat reference [build Rn4] (ftp://ftp.cbcb.umd.edu/pub/data/bowtie_indexes/rn4.ebwt.zip) using TopHat with the default parameter setting of 40 alignments per read and up to 2 mismatches per alignment. The sequence alignment files (BAM) were analyzed using RSeQC package [36] for quality control analysis, which includes the mRNA fragment insert size, base quality distribution, reads mapping distribution, and splicing distribution analysis.

    - -

    - -

    The resulting aligned reads were then analyzed with Cufflinks suite (http://cufflinks.cbcb.umd.edu[37], which assembles the aligned reads into transcripts and measures their relative abundance. The expression of each transcript was quantified as the number of reads mapping to a gene divided by the gene length in kilobases and the total number of mapped reads in millions, which is called fragments per kilobase of exon per million fragments mapped (FPKM). All the junctions identified by Cufflink were compared on the basis of the junction and splicing site provided by reference transcript annotation GTF files to identify known and novel junctions. Then, Cuffcompare merged all the transcripts from different samples to a final transcript annotation GTF file, reported changes in the relative abundance of transcripts sharing a common transcription start site, and indicated the relative abundance of the primary transcripts of each gene crossing all the samples.

    diff --git a/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/specifics.rtf b/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/specifics.rtf deleted file mode 100644 index d27a33b..0000000 --- a/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Prefrontal Cortex. rlog normalization \ No newline at end of file diff --git a/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/summary.rtf b/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/summary.rtf deleted file mode 100644 index 7bfa259..0000000 --- a/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Purpose: The study was designed to determine expression differences in brain regions of F344 and HIV-1 Transgenic rats by using RNA-sq analysis. Methods: 144 RNA samples (2 strains, 2 treatments, 3 regions, and 12 animals per group) were analyzed. Following deep-sequencing analysis of 50-bp paired-end reads of RNA-Seq, we used Bowtie/Tophat/Cufflinks suites to align these reads into transcripts based on the Rn4 rat reference genome and to measure the relative abundance of each transcript. MATLAB was used to conduct all statistical analysis. qRT–PCR validation was performed using TaqMan and SYBR Green assays fo soem representative genes. Results: Statistical and bioinformatic analyses on each brain region in the two strains revealed that immune response- and neurotransmission-related pathways were altered in the HIV-1Tg rats, with brain region differences. Other neuronal survival-related pathways, including those encoding myelin proteins, growth factors, and translation regulators, were altered in the HIV-1Tg rats in a brain region-dependent manner. After nicotine expousure, 20% of the altered genes in the HIV-1Tg rat were affected by nicotine in each brain region, with the expression of most restored. Analysis of the restored genes showed distinct pathways corrected by nicotine in different brain regions of HIV-1Tg rats.

    - -

    Conclusions: The abnormal gene expression pattern discovered in HIV-1Tg rats suggest mechanisms underlying the deficits in learning and memory and vulnerability to drug addiction and other psychiatric disorders observed in HIV positive patients. The gene expression pattern in the HIV-1Tg rats after nicotine exposure indicate that cholinergic modulators such as nicotine may have beneficial effects on HIV-1-induced neurologic deficits.

    diff --git a/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/tissue.rtf b/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/tissue.rtf deleted file mode 100644 index b65b5d6..0000000 --- a/general/datasets/UVA_HIV_1Tg_PFC_rlog_0720/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Using a rat brain matrix, slices of approximately 1 mm were taken from each brain, and the slices that contained the PFC, HIP, and dorsal STR were identified according to a rat brain atlas [35]. Tissues from specific regions of interest were collected bilaterally from each brain using a 3.00-mm Harris Micro-Punch (GE Healthcare Life Sciences, Piscataway, NJ, USA) and stored at −80°C until use.

    diff --git a/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/acknowledgment.rtf b/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/acknowledgment.rtf deleted file mode 100644 index 2349291..0000000 --- a/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    We thank Drs. David L. Bronson and Louaine L. Spriggs for their excellent editing of this manuscript.

    diff --git a/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/cases.rtf b/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/cases.rtf deleted file mode 100644 index a9015ee..0000000 --- a/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

    The Animal Care and Use Committee of both the Seton Hall University and University of Virginia approved this study. Adult male HIV-1Tg rats and F344 background control rats (n = 12 per group) were purchased from Harlan Inc. (Indianapolis, IN). All rats were double housed in standard plastic cages and maintained in a temperature-controlled environment with a 12 h light/dark cycle and fed a standard rat diet and water ad libitum. The animals were monitored daily, and their cage bedding was changed twice a week. All animals were participants in a previously reported behavioral study [31]. All experimental procedures were conducted during the light cycle in accordance with the Animal Care and Use Committees of both participating institutions.

    diff --git a/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/experiment-design.rtf b/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/experiment-design.rtf deleted file mode 100644 index a31cc4a..0000000 --- a/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    144 RNA samples (2 strains, 2 treatments, 3 regions, and 12 animals per group) were analyzed.

    diff --git a/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/notes.rtf b/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/notes.rtf deleted file mode 100644 index da785f4..0000000 --- a/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/notes.rtf +++ /dev/null @@ -1 +0,0 @@ -

    https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0059582

    diff --git a/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/platform.rtf b/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/platform.rtf deleted file mode 100644 index d55c8e4..0000000 --- a/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    GPL14844Illumina HiSeq 2000 (Rattus norvegicus)

    diff --git a/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/processing.rtf b/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/processing.rtf deleted file mode 100644 index b0cb37b..0000000 --- a/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/processing.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    The extraction of 50-bp length paired-end reads was achieved using CASAVA (Illumina Pipeline v1.38). For each sample, reads with a quality score of ≥Q30 that passed filtering were used to generate a complete FASTQ file, which was then mapped to UCSC Rat reference [build Rn4] (ftp://ftp.cbcb.umd.edu/pub/data/bowtie_indexes/rn4.ebwt.zip) using TopHat with the default parameter setting of 40 alignments per read and up to 2 mismatches per alignment. The sequence alignment files (BAM) were analyzed using RSeQC package [36] for quality control analysis, which includes the mRNA fragment insert size, base quality distribution, reads mapping distribution, and splicing distribution analysis.

    - -

    - -

    The resulting aligned reads were then analyzed with Cufflinks suite (http://cufflinks.cbcb.umd.edu[37], which assembles the aligned reads into transcripts and measures their relative abundance. The expression of each transcript was quantified as the number of reads mapping to a gene divided by the gene length in kilobases and the total number of mapped reads in millions, which is called fragments per kilobase of exon per million fragments mapped (FPKM). All the junctions identified by Cufflink were compared on the basis of the junction and splicing site provided by reference transcript annotation GTF files to identify known and novel junctions. Then, Cuffcompare merged all the transcripts from different samples to a final transcript annotation GTF file, reported changes in the relative abundance of transcripts sharing a common transcription start site, and indicated the relative abundance of the primary transcripts of each gene crossing all the samples.

    diff --git a/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/specifics.rtf b/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/specifics.rtf deleted file mode 100644 index 2a10692..0000000 --- a/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/specifics.rtf +++ /dev/null @@ -1 +0,0 @@ -Striatum. rlog normalization \ No newline at end of file diff --git a/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/summary.rtf b/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/summary.rtf deleted file mode 100644 index 7bfa259..0000000 --- a/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/summary.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Purpose: The study was designed to determine expression differences in brain regions of F344 and HIV-1 Transgenic rats by using RNA-sq analysis. Methods: 144 RNA samples (2 strains, 2 treatments, 3 regions, and 12 animals per group) were analyzed. Following deep-sequencing analysis of 50-bp paired-end reads of RNA-Seq, we used Bowtie/Tophat/Cufflinks suites to align these reads into transcripts based on the Rn4 rat reference genome and to measure the relative abundance of each transcript. MATLAB was used to conduct all statistical analysis. qRT–PCR validation was performed using TaqMan and SYBR Green assays fo soem representative genes. Results: Statistical and bioinformatic analyses on each brain region in the two strains revealed that immune response- and neurotransmission-related pathways were altered in the HIV-1Tg rats, with brain region differences. Other neuronal survival-related pathways, including those encoding myelin proteins, growth factors, and translation regulators, were altered in the HIV-1Tg rats in a brain region-dependent manner. After nicotine expousure, 20% of the altered genes in the HIV-1Tg rat were affected by nicotine in each brain region, with the expression of most restored. Analysis of the restored genes showed distinct pathways corrected by nicotine in different brain regions of HIV-1Tg rats.

    - -

    Conclusions: The abnormal gene expression pattern discovered in HIV-1Tg rats suggest mechanisms underlying the deficits in learning and memory and vulnerability to drug addiction and other psychiatric disorders observed in HIV positive patients. The gene expression pattern in the HIV-1Tg rats after nicotine exposure indicate that cholinergic modulators such as nicotine may have beneficial effects on HIV-1-induced neurologic deficits.

    diff --git a/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/tissue.rtf b/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/tissue.rtf deleted file mode 100644 index b65b5d6..0000000 --- a/general/datasets/UVA_HIV_1Tg_Str_rlog_0720/tissue.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Using a rat brain matrix, slices of approximately 1 mm were taken from each brain, and the slices that contained the PFC, HIP, and dorsal STR were identified according to a rat brain atlas [35]. Tissues from specific regions of interest were collected bilaterally from each brain using a 3.00-mm Harris Micro-Punch (GE Healthcare Life Sciences, Piscataway, NJ, USA) and stored at −80°C until use.

    diff --git a/general/datasets/Uab_droswb_lc_rma_1009/citation.rtf b/general/datasets/Uab_droswb_lc_rma_1009/citation.rtf new file mode 100644 index 0000000..db3c29c --- /dev/null +++ b/general/datasets/Uab_droswb_lc_rma_1009/citation.rtf @@ -0,0 +1 @@ +

    Ruden DM, et al. Genetical toxicogenomics in Drosophila identifies master-modulatory loci that are regulated by developmental exposure to lead, Neurotoxicology (2009), doi:10.1016/j.neuro.2009.08.011

    diff --git a/general/datasets/Uab_droswb_lc_rma_1009/contributors.rtf b/general/datasets/Uab_droswb_lc_rma_1009/contributors.rtf new file mode 100644 index 0000000..f78c41d --- /dev/null +++ b/general/datasets/Uab_droswb_lc_rma_1009/contributors.rtf @@ -0,0 +1 @@ +

    Douglas M. Ruden a,*, Lang Chen b, Debra Possidente c, Bernard Possidente d, Parsa Rasouli a, Luan Wanga, Xiangyi Lu a, Mark D. Garfinkel e, Helmut V.B. Hirsch d, Grier P. Page f a Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States b Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States c Department of Biological Sciences, University at Albany, SUNY, Albany, NY, United States d Department of Biology, Skidmore College, Saratoga Springs, NY, United States e Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, United States f Statistics and Epidemiology Unit, RTI International, Atlanta, GA, United States

    diff --git a/general/datasets/Uab_droswb_lc_rma_1009/platform.rtf b/general/datasets/Uab_droswb_lc_rma_1009/platform.rtf new file mode 100644 index 0000000..2a01b87 --- /dev/null +++ b/general/datasets/Uab_droswb_lc_rma_1009/platform.rtf @@ -0,0 +1 @@ +

    Affymetrix Drosophila Genome 2.0 Array GEO_GPL1322

    diff --git a/general/datasets/Uab_droswb_lc_rma_1009/summary.rtf b/general/datasets/Uab_droswb_lc_rma_1009/summary.rtf new file mode 100644 index 0000000..ef884bc --- /dev/null +++ b/general/datasets/Uab_droswb_lc_rma_1009/summary.rtf @@ -0,0 +1 @@ +

    The genetics of gene expression in recombinant inbred lines (RILs) can be mapped as expression quantitative trait loci (eQTLs). So-called "genetical genomics" studies have identified locally acting eQTLs (cis-eQTLs) for genes that show differences in steady-state RNA levels. These studies have also identified distantly acting master-modulatory trans-eQTLs that regulate tens or hundreds of transcripts (hotspots or transbands). We expand on these studies by performing genetical genomics experiments in two environments in order to identify trans-eQTL thatmight be regulated by developmental exposure to the neurotoxin lead. Flies from each of 75 RIL were raised from eggs to adults on either control food (made with 250 mM sodium acetate), or lead-treated food (made with 250 mM lead acetate, PbAc). RNA expression analyses of whole adult male flies (5–10 days old) were performed with Affymetrix DrosII whole genome arrays (18,952 probesets). Among the 1389 genes with cis-eQTL, there were 405 genes unique to control flies and 544 genes unique to lead-treated ones (440 genes had the same cis-eQTLs in both samples). There are 2396 genes with trans-eQTL which mapped to 12major transbands with greater than 95 genes. Permutation analyses of the strain labels but not the expression data suggests that the total number of eQTL and the number of transbands are more important criteria for validation than the size of the transband. Two transbands, one located on the 2nd chromosome and one on the 3rd chromosome, co-regulate 33 lead-induced genes, many of which are involved in neurodevelopmental processes. For these 33 genes, rather than allelic variation at one locus exerting differential effects in two environments, we found that variation at two different loci are required for optimal effects on lead-induced expression.

    diff --git a/general/datasets/Uab_droswb_le_rma_1009/citation.rtf b/general/datasets/Uab_droswb_le_rma_1009/citation.rtf new file mode 100644 index 0000000..db3c29c --- /dev/null +++ b/general/datasets/Uab_droswb_le_rma_1009/citation.rtf @@ -0,0 +1 @@ +

    Ruden DM, et al. Genetical toxicogenomics in Drosophila identifies master-modulatory loci that are regulated by developmental exposure to lead, Neurotoxicology (2009), doi:10.1016/j.neuro.2009.08.011

    diff --git a/general/datasets/Uab_droswb_le_rma_1009/contributors.rtf b/general/datasets/Uab_droswb_le_rma_1009/contributors.rtf new file mode 100644 index 0000000..f78c41d --- /dev/null +++ b/general/datasets/Uab_droswb_le_rma_1009/contributors.rtf @@ -0,0 +1 @@ +

    Douglas M. Ruden a,*, Lang Chen b, Debra Possidente c, Bernard Possidente d, Parsa Rasouli a, Luan Wanga, Xiangyi Lu a, Mark D. Garfinkel e, Helmut V.B. Hirsch d, Grier P. Page f a Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States b Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States c Department of Biological Sciences, University at Albany, SUNY, Albany, NY, United States d Department of Biology, Skidmore College, Saratoga Springs, NY, United States e Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, United States f Statistics and Epidemiology Unit, RTI International, Atlanta, GA, United States

    diff --git a/general/datasets/Uab_droswb_le_rma_1009/platform.rtf b/general/datasets/Uab_droswb_le_rma_1009/platform.rtf new file mode 100644 index 0000000..2a01b87 --- /dev/null +++ b/general/datasets/Uab_droswb_le_rma_1009/platform.rtf @@ -0,0 +1 @@ +

    Affymetrix Drosophila Genome 2.0 Array GEO_GPL1322

    diff --git a/general/datasets/Uab_droswb_le_rma_1009/summary.rtf b/general/datasets/Uab_droswb_le_rma_1009/summary.rtf new file mode 100644 index 0000000..ef884bc --- /dev/null +++ b/general/datasets/Uab_droswb_le_rma_1009/summary.rtf @@ -0,0 +1 @@ +

    The genetics of gene expression in recombinant inbred lines (RILs) can be mapped as expression quantitative trait loci (eQTLs). So-called "genetical genomics" studies have identified locally acting eQTLs (cis-eQTLs) for genes that show differences in steady-state RNA levels. These studies have also identified distantly acting master-modulatory trans-eQTLs that regulate tens or hundreds of transcripts (hotspots or transbands). We expand on these studies by performing genetical genomics experiments in two environments in order to identify trans-eQTL thatmight be regulated by developmental exposure to the neurotoxin lead. Flies from each of 75 RIL were raised from eggs to adults on either control food (made with 250 mM sodium acetate), or lead-treated food (made with 250 mM lead acetate, PbAc). RNA expression analyses of whole adult male flies (5–10 days old) were performed with Affymetrix DrosII whole genome arrays (18,952 probesets). Among the 1389 genes with cis-eQTL, there were 405 genes unique to control flies and 544 genes unique to lead-treated ones (440 genes had the same cis-eQTLs in both samples). There are 2396 genes with trans-eQTL which mapped to 12major transbands with greater than 95 genes. Permutation analyses of the strain labels but not the expression data suggests that the total number of eQTL and the number of transbands are more important criteria for validation than the size of the transband. Two transbands, one located on the 2nd chromosome and one on the 3rd chromosome, co-regulate 33 lead-induced genes, many of which are involved in neurodevelopmental processes. For these 33 genes, rather than allelic variation at one locus exerting differential effects in two environments, we found that variation at two different loci are required for optimal effects on lead-induced expression.

    diff --git a/general/datasets/Ubc_gse23529hlt0613/citation.rtf b/general/datasets/Ubc_gse23529hlt0613/citation.rtf new file mode 100644 index 0000000..2aafa46 --- /dev/null +++ b/general/datasets/Ubc_gse23529hlt0613/citation.rtf @@ -0,0 +1 @@ +

    Bossé Y, Postma DS, Sin DD, Lamontagne M et al. Molecular signature of smoking in human lung tissues. Cancer Res 2012 Aug 1;72(15):3753-63. PMID: 22659451

    diff --git a/general/datasets/Ubc_gse23529hlt0613/contributors.rtf b/general/datasets/Ubc_gse23529hlt0613/contributors.rtf new file mode 100644 index 0000000..a22a4a5 --- /dev/null +++ b/general/datasets/Ubc_gse23529hlt0613/contributors.rtf @@ -0,0 +1 @@ +

    Bossé Y, Laviolette M

    diff --git a/general/datasets/Ubc_gse23529hlt0613/summary.rtf b/general/datasets/Ubc_gse23529hlt0613/summary.rtf new file mode 100644 index 0000000..9cb9538 --- /dev/null +++ b/general/datasets/Ubc_gse23529hlt0613/summary.rtf @@ -0,0 +1,15 @@ +

    This SuperSeries is composed of the following SubSeries:

    + + + + + + + + + + + + + +
    GSE23352 Whole-genome gene expression profiles of non-tumorous human lung tissues: Laval set
    GSE23529 Whole-genome gene expression profiles of non-tumorous human lung tissues: UBC set
    GSE23545 Whole-genome gene expression profiles of non-tumorous human lung tissues: GRNG set
    diff --git a/general/datasets/Ucamc_lxsbretoh_rna_seq_0216/citation.rtf b/general/datasets/Ucamc_lxsbretoh_rna_seq_0216/citation.rtf new file mode 100644 index 0000000..574c7ce --- /dev/null +++ b/general/datasets/Ucamc_lxsbretoh_rna_seq_0216/citation.rtf @@ -0,0 +1,6 @@ +

    Anders S, Pyl PT, Huber W (2015) HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166-169.
    +Bennett B, Larson C, Richmond PA, Odell AT, Saba LM, Tabakoff B, Dowell R, Radcliffe RA (2015) Quantitative Trait Locus Mapping of Acute Functional Tolerance in the LXS Recombinant Inbred Strains. Alcoholism: Clinical and Experimental Research 39:611-620. Darlington TM, Ehringer MA, Larson C, Phang TL, Radcliffe RA (2013) Transcriptome analysis of Inbred Long Sleep and Inbred Short Sleep mice. Genes Brain Behav 12:263-274.
    +Radcliffe RA, Floyd KL, Lee MJ (2006) Rapid ethanol tolerance mediated by adaptations in acute tolerance in inbred mouse strains. Pharmacol Biochem Behav 84:524-534.
    +Radcliffe RA, Larson C, Bennett B (2013) Genetic studies of acute tolerance, rapid tolerance, and drinking in the dark in the LXS recombinant inbred strains. Alcohol Clin Exp Res 37:2019-2028.
    +Saba LM, Bennett B, Hoffman PL, Barcomb K, Ishii T, Kechris K, Tabakoff B (2011) A systems genetic analysis of alcohol drinking by mice, rats and men: influence of brain GABAergic transmission. Neuropharmacology 60:1269-1280.
    +Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105-1111.

    diff --git a/general/datasets/Ucamc_lxsbretoh_rna_seq_0216/specifics.rtf b/general/datasets/Ucamc_lxsbretoh_rna_seq_0216/specifics.rtf new file mode 100644 index 0000000..ecd3498 --- /dev/null +++ b/general/datasets/Ucamc_lxsbretoh_rna_seq_0216/specifics.rtf @@ -0,0 +1,5 @@ +

    Summary: RNA-seq in the LXS RI Panel Following an Intraperitoneal Injection of Ethanol

    + +

    RNA-seq-derived gene expression was determined from the LXS recombinant inbred strains and the two parental strains (ILS/Ibg and ISS/Ibg) that had been treated with 5 g/kg ethanol (20% v/v in normal saline, ip) 8 hours before being sacrificed. (This is a companion to a similar dataset in which the same strains were treated with normal saline [ip] and sacrificed at 8 hours). Breeders were obtained from the Jackson Laboratory and experimental mice were bred in-house at the University of Colorado Anschutz Medical Campus. All samples were from whole brain (minus cerebellum and olfactory bulbs) of male mice at an average age of 80 days (SEM: +/- 0.4; range: 56-106; median: 81). The rationale for the dosing and the implicit overall rationale for this experiment can be found in Radcliffe et al. (2006); Radcliffe et al. (2013); Darlington et al. (2013); and Bennett et al. (2015).

    + +

    A total of 396 mice representing 44 LXS RI strains and the ILS and ISS were used. Following total RNA isolation, an equal amount of RNA from three mice of each strain was quantitatively pooled and then the samples were enriched for poly-A RNA using the Dynabeads mRNA Purification kit (Invitrogen) as directed by the manufacturer. Paired-end (2x100, expected size of 300 bp), strand-specific, cluster-ready libraries were prepared from the poly-A enriched RNA using the ScriptSeq RNA-Seq Library Preparation Kit v2 (Illumina). Three libraries per strain were prepared, 132 in total. Due to poor quality or other technical difficulties, 5 libraries were eliminated leaving a total of 44 strains (including ILS and ISS) comprised of 40 strains with n=3, 3 strains with n=2 and 1 strains with n=1. Tophat (Trapnell et al., 2009) was used to map reads to RI-specific genomes; i.e., the ILS and ISS were sequenced (see Bennett et al., 2015) and with the use of genotype data from the LXS (see Saba et al., 2011), a genome was created for each RI strain. Mapped reads were then quantified at the gene level using HTSeq (Anders et al., 2015) with Ensembl full gene annotations and then converted to FPKM using the formula FPKM=fragments/kb exon/million mapped reads/2 (note that this assumes that both reads of a pair were successfully mapped; for a small percentage of the reads this was not the case and these were treated separately and added in). FPKM values were converted to log2 (FPKM+1) which gives a value of 0 for FPKM=0, 1 for FPKM=1, 2 for FPKM=3, 3 for FPKM=7, 4 for FPKM=15, and so on.

    diff --git a/general/datasets/Ucamc_lxsbrsal_rna_seq_0216/citation.rtf b/general/datasets/Ucamc_lxsbrsal_rna_seq_0216/citation.rtf new file mode 100644 index 0000000..574c7ce --- /dev/null +++ b/general/datasets/Ucamc_lxsbrsal_rna_seq_0216/citation.rtf @@ -0,0 +1,6 @@ +

    Anders S, Pyl PT, Huber W (2015) HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166-169.
    +Bennett B, Larson C, Richmond PA, Odell AT, Saba LM, Tabakoff B, Dowell R, Radcliffe RA (2015) Quantitative Trait Locus Mapping of Acute Functional Tolerance in the LXS Recombinant Inbred Strains. Alcoholism: Clinical and Experimental Research 39:611-620. Darlington TM, Ehringer MA, Larson C, Phang TL, Radcliffe RA (2013) Transcriptome analysis of Inbred Long Sleep and Inbred Short Sleep mice. Genes Brain Behav 12:263-274.
    +Radcliffe RA, Floyd KL, Lee MJ (2006) Rapid ethanol tolerance mediated by adaptations in acute tolerance in inbred mouse strains. Pharmacol Biochem Behav 84:524-534.
    +Radcliffe RA, Larson C, Bennett B (2013) Genetic studies of acute tolerance, rapid tolerance, and drinking in the dark in the LXS recombinant inbred strains. Alcohol Clin Exp Res 37:2019-2028.
    +Saba LM, Bennett B, Hoffman PL, Barcomb K, Ishii T, Kechris K, Tabakoff B (2011) A systems genetic analysis of alcohol drinking by mice, rats and men: influence of brain GABAergic transmission. Neuropharmacology 60:1269-1280.
    +Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105-1111.

    diff --git a/general/datasets/Ucamc_lxsbrsal_rna_seq_0216/specifics.rtf b/general/datasets/Ucamc_lxsbrsal_rna_seq_0216/specifics.rtf new file mode 100644 index 0000000..89ef78d --- /dev/null +++ b/general/datasets/Ucamc_lxsbrsal_rna_seq_0216/specifics.rtf @@ -0,0 +1,5 @@ +

    Summary: RNA-seq in the LXS RI Panel Following an Intraperitoneal Injection of Saline

    + +

    RNA-seq-derived gene expression was determined from the LXS recombinant inbred strains and the two parental strains (ILS/Ibg and ISS/Ibg) that had been treated with normal saline (ip) 8 hours before being sacrificed. (This is a companion to a similar dataset in which the same strains were treated with 5 g/kg ethanol [20% v/v in normal saline, ip] and sacrificed at 8 hours). Breeders were obtained from the Jackson Laboratory and experimental mice were bred in-house at the University of Colorado Anschutz Medical Campus. All samples were from whole brain (minus cerebellum and olfactory bulbs) of male mice at an average age of 80 days (SEM: +/- 0.3; range: 58-106; median: 82). The rationale for the dosing and the implicit overall rationale for this experiment can be found in Radcliffe et al. (2006); Radcliffe et al. (2013); Darlington et al. (2013); and Bennett et al. (2015).

    + +

    A total of 396 mice representing 43 LXS RI strains and the ILS and ISS were used. Following total RNA isolation, an equal amount of RNA from three mice of each strain was quantitatively pooled and then the samples were enriched for poly-A RNA using the Dynabeads mRNA Purification kit (Invitrogen) as directed by the manufacturer. Paired-end (2x100, expected size of 300 bp), strand-specific, cluster-ready libraries were prepared from the poly-A enriched RNA using the ScriptSeq RNA-Seq Library Preparation Kit v2 (Illumina). Three libraries per strain were prepared, 132 in total. Due to poor quality or other technical difficulties, 9 libraries were eliminated leaving a total of 41 strains (including ILS and ISS) comprised of 36 strains with n=3, 3 strains with n=2 and 2 strains with n=1. Tophat (Trapnell et al., 2009) was used to map reads to RI-specific genomes; i.e., the ILS and ISS were sequenced (see Bennett et al., 2015) and with the use of genotype data from the LXS (see Saba et al., 2011), a genome was created for each RI strain. Mapped reads were then quantified at the gene level using HTSeq (Anders et al., 2015) with Ensembl full gene annotations and then converted to FPKM using the formula FPKM=fragments/kb exon/million mapped reads/2 (note that this assumes that both reads of a pair were successfully mapped; for a small percentage of the reads this was not the case and these were treated separately and added in). FPKM values were converted to log2 (FPKM+1) which gives a value of 0 for FPKM=0, 1 for FPKM=1, 2 for FPKM=3, 3 for FPKM=7, 4 for FPKM=15, and so on.

    diff --git a/general/datasets/Uci_ec_0913/citation.rtf b/general/datasets/Uci_ec_0913/citation.rtf new file mode 100644 index 0000000..f3ba04a --- /dev/null +++ b/general/datasets/Uci_ec_0913/citation.rtf @@ -0,0 +1 @@ +

    Berchtold NC, Cribbs DH, Coleman PD, Rogers J et al. Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc Natl Acad Sci U S A 2008 Oct 7;105(40):15605-10. PMID: 18832152

    diff --git a/general/datasets/Uci_ec_0913/contributors.rtf b/general/datasets/Uci_ec_0913/contributors.rtf new file mode 100644 index 0000000..fd462e2 --- /dev/null +++ b/general/datasets/Uci_ec_0913/contributors.rtf @@ -0,0 +1 @@ +

    Berchtold NC, Cribbs DH, Coleman PD, Rogers J, Head E, Kim R, Beach T, Miller C, Troncoso J, Trojanowski JQ, Zielke HR, Cotman CW

    diff --git a/general/datasets/Uci_ec_0913/experiment-design.rtf b/general/datasets/Uci_ec_0913/experiment-design.rtf new file mode 100644 index 0000000..f6a3038 --- /dev/null +++ b/general/datasets/Uci_ec_0913/experiment-design.rtf @@ -0,0 +1 @@ +

    Postmortem brain tissue was collected from ADRC brain banks. Cases were preferentially selected where 3 or more brain regions were available.

    diff --git a/general/datasets/Uci_ec_0913/summary.rtf b/general/datasets/Uci_ec_0913/summary.rtf new file mode 100644 index 0000000..fea08e6 --- /dev/null +++ b/general/datasets/Uci_ec_0913/summary.rtf @@ -0,0 +1 @@ +

    Gene expression profiles were assessed in the hippocampus (HC), entorhinal cortex (EC), superior frontal gyrus (SG), and postcentral gyrus (PCG) across the lifespan of 63 cognitively intact individuals from 20-99 years old. New perspectives on the global gene changes that are associated with brain aging emerged, revealing two overarching concepts. First, different regions of the forebrain exhibited substantially different gene profile changes with age. For example, comparing equally powered groups, 5,029 probe sets were significantly altered with age (20-59 vs. 60-99) in the superior frontal gyrus, compared with 1,110 in the entorhinal cortex. Prominent change occurred in the 6th-7th decades across cortical regions, suggesting that this period is a critical transition point in brain aging, particularly in males. Second, clear gender differences in brain aging were evident across the lifespan, suggesting that the brain undergoes sexually dimorphic changes in gene expression not only in development but also in later life. Globally across all brain regions, males showed more gene change than females. Further, Gene Ontology analysis revealed that different categories of genes were predominantly affected in males vs. females. Notably, the male brain was characterized by global decreased catabolic and anabolic capacity with aging, with downregulated genes heavily enriched in energy production and protein synthesis/transport categories. Increased immune activation was a prominent feature of aging in both sexes, with more widespread activation in the female brain. These data open new opportunities to explore age-dependent changes in gene expression that set the balance between neurodegeneration and compensatory mechanisms in the brain, and suggest that this balance is set differently in males and females, an intriguing and novel idea. HgU133plus2.0 microarray chips were used to profile gene expression in 4 brain regions of cognitively intact humans, across the adult lifespan (ages 20-99).

    diff --git a/general/datasets/Uci_hc_0913/citation.rtf b/general/datasets/Uci_hc_0913/citation.rtf new file mode 100644 index 0000000..f3ba04a --- /dev/null +++ b/general/datasets/Uci_hc_0913/citation.rtf @@ -0,0 +1 @@ +

    Berchtold NC, Cribbs DH, Coleman PD, Rogers J et al. Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc Natl Acad Sci U S A 2008 Oct 7;105(40):15605-10. PMID: 18832152

    diff --git a/general/datasets/Uci_hc_0913/contributors.rtf b/general/datasets/Uci_hc_0913/contributors.rtf new file mode 100644 index 0000000..fd462e2 --- /dev/null +++ b/general/datasets/Uci_hc_0913/contributors.rtf @@ -0,0 +1 @@ +

    Berchtold NC, Cribbs DH, Coleman PD, Rogers J, Head E, Kim R, Beach T, Miller C, Troncoso J, Trojanowski JQ, Zielke HR, Cotman CW

    diff --git a/general/datasets/Uci_hc_0913/experiment-design.rtf b/general/datasets/Uci_hc_0913/experiment-design.rtf new file mode 100644 index 0000000..f6a3038 --- /dev/null +++ b/general/datasets/Uci_hc_0913/experiment-design.rtf @@ -0,0 +1 @@ +

    Postmortem brain tissue was collected from ADRC brain banks. Cases were preferentially selected where 3 or more brain regions were available.

    diff --git a/general/datasets/Uci_hc_0913/summary.rtf b/general/datasets/Uci_hc_0913/summary.rtf new file mode 100644 index 0000000..fea08e6 --- /dev/null +++ b/general/datasets/Uci_hc_0913/summary.rtf @@ -0,0 +1 @@ +

    Gene expression profiles were assessed in the hippocampus (HC), entorhinal cortex (EC), superior frontal gyrus (SG), and postcentral gyrus (PCG) across the lifespan of 63 cognitively intact individuals from 20-99 years old. New perspectives on the global gene changes that are associated with brain aging emerged, revealing two overarching concepts. First, different regions of the forebrain exhibited substantially different gene profile changes with age. For example, comparing equally powered groups, 5,029 probe sets were significantly altered with age (20-59 vs. 60-99) in the superior frontal gyrus, compared with 1,110 in the entorhinal cortex. Prominent change occurred in the 6th-7th decades across cortical regions, suggesting that this period is a critical transition point in brain aging, particularly in males. Second, clear gender differences in brain aging were evident across the lifespan, suggesting that the brain undergoes sexually dimorphic changes in gene expression not only in development but also in later life. Globally across all brain regions, males showed more gene change than females. Further, Gene Ontology analysis revealed that different categories of genes were predominantly affected in males vs. females. Notably, the male brain was characterized by global decreased catabolic and anabolic capacity with aging, with downregulated genes heavily enriched in energy production and protein synthesis/transport categories. Increased immune activation was a prominent feature of aging in both sexes, with more widespread activation in the female brain. These data open new opportunities to explore age-dependent changes in gene expression that set the balance between neurodegeneration and compensatory mechanisms in the brain, and suggest that this balance is set differently in males and females, an intriguing and novel idea. HgU133plus2.0 microarray chips were used to profile gene expression in 4 brain regions of cognitively intact humans, across the adult lifespan (ages 20-99).

    diff --git a/general/datasets/Uci_pcg_0913/citation.rtf b/general/datasets/Uci_pcg_0913/citation.rtf new file mode 100644 index 0000000..f3ba04a --- /dev/null +++ b/general/datasets/Uci_pcg_0913/citation.rtf @@ -0,0 +1 @@ +

    Berchtold NC, Cribbs DH, Coleman PD, Rogers J et al. Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc Natl Acad Sci U S A 2008 Oct 7;105(40):15605-10. PMID: 18832152

    diff --git a/general/datasets/Uci_pcg_0913/contributors.rtf b/general/datasets/Uci_pcg_0913/contributors.rtf new file mode 100644 index 0000000..fd462e2 --- /dev/null +++ b/general/datasets/Uci_pcg_0913/contributors.rtf @@ -0,0 +1 @@ +

    Berchtold NC, Cribbs DH, Coleman PD, Rogers J, Head E, Kim R, Beach T, Miller C, Troncoso J, Trojanowski JQ, Zielke HR, Cotman CW

    diff --git a/general/datasets/Uci_pcg_0913/experiment-design.rtf b/general/datasets/Uci_pcg_0913/experiment-design.rtf new file mode 100644 index 0000000..f6a3038 --- /dev/null +++ b/general/datasets/Uci_pcg_0913/experiment-design.rtf @@ -0,0 +1 @@ +

    Postmortem brain tissue was collected from ADRC brain banks. Cases were preferentially selected where 3 or more brain regions were available.

    diff --git a/general/datasets/Uci_pcg_0913/summary.rtf b/general/datasets/Uci_pcg_0913/summary.rtf new file mode 100644 index 0000000..fea08e6 --- /dev/null +++ b/general/datasets/Uci_pcg_0913/summary.rtf @@ -0,0 +1 @@ +

    Gene expression profiles were assessed in the hippocampus (HC), entorhinal cortex (EC), superior frontal gyrus (SG), and postcentral gyrus (PCG) across the lifespan of 63 cognitively intact individuals from 20-99 years old. New perspectives on the global gene changes that are associated with brain aging emerged, revealing two overarching concepts. First, different regions of the forebrain exhibited substantially different gene profile changes with age. For example, comparing equally powered groups, 5,029 probe sets were significantly altered with age (20-59 vs. 60-99) in the superior frontal gyrus, compared with 1,110 in the entorhinal cortex. Prominent change occurred in the 6th-7th decades across cortical regions, suggesting that this period is a critical transition point in brain aging, particularly in males. Second, clear gender differences in brain aging were evident across the lifespan, suggesting that the brain undergoes sexually dimorphic changes in gene expression not only in development but also in later life. Globally across all brain regions, males showed more gene change than females. Further, Gene Ontology analysis revealed that different categories of genes were predominantly affected in males vs. females. Notably, the male brain was characterized by global decreased catabolic and anabolic capacity with aging, with downregulated genes heavily enriched in energy production and protein synthesis/transport categories. Increased immune activation was a prominent feature of aging in both sexes, with more widespread activation in the female brain. These data open new opportunities to explore age-dependent changes in gene expression that set the balance between neurodegeneration and compensatory mechanisms in the brain, and suggest that this balance is set differently in males and females, an intriguing and novel idea. HgU133plus2.0 microarray chips were used to profile gene expression in 4 brain regions of cognitively intact humans, across the adult lifespan (ages 20-99).

    diff --git a/general/datasets/Uci_sg_0913/citation.rtf b/general/datasets/Uci_sg_0913/citation.rtf new file mode 100644 index 0000000..f3ba04a --- /dev/null +++ b/general/datasets/Uci_sg_0913/citation.rtf @@ -0,0 +1 @@ +

    Berchtold NC, Cribbs DH, Coleman PD, Rogers J et al. Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc Natl Acad Sci U S A 2008 Oct 7;105(40):15605-10. PMID: 18832152

    diff --git a/general/datasets/Uci_sg_0913/contributors.rtf b/general/datasets/Uci_sg_0913/contributors.rtf new file mode 100644 index 0000000..fd462e2 --- /dev/null +++ b/general/datasets/Uci_sg_0913/contributors.rtf @@ -0,0 +1 @@ +

    Berchtold NC, Cribbs DH, Coleman PD, Rogers J, Head E, Kim R, Beach T, Miller C, Troncoso J, Trojanowski JQ, Zielke HR, Cotman CW

    diff --git a/general/datasets/Uci_sg_0913/experiment-design.rtf b/general/datasets/Uci_sg_0913/experiment-design.rtf new file mode 100644 index 0000000..f6a3038 --- /dev/null +++ b/general/datasets/Uci_sg_0913/experiment-design.rtf @@ -0,0 +1 @@ +

    Postmortem brain tissue was collected from ADRC brain banks. Cases were preferentially selected where 3 or more brain regions were available.

    diff --git a/general/datasets/Uci_sg_0913/summary.rtf b/general/datasets/Uci_sg_0913/summary.rtf new file mode 100644 index 0000000..fea08e6 --- /dev/null +++ b/general/datasets/Uci_sg_0913/summary.rtf @@ -0,0 +1 @@ +

    Gene expression profiles were assessed in the hippocampus (HC), entorhinal cortex (EC), superior frontal gyrus (SG), and postcentral gyrus (PCG) across the lifespan of 63 cognitively intact individuals from 20-99 years old. New perspectives on the global gene changes that are associated with brain aging emerged, revealing two overarching concepts. First, different regions of the forebrain exhibited substantially different gene profile changes with age. For example, comparing equally powered groups, 5,029 probe sets were significantly altered with age (20-59 vs. 60-99) in the superior frontal gyrus, compared with 1,110 in the entorhinal cortex. Prominent change occurred in the 6th-7th decades across cortical regions, suggesting that this period is a critical transition point in brain aging, particularly in males. Second, clear gender differences in brain aging were evident across the lifespan, suggesting that the brain undergoes sexually dimorphic changes in gene expression not only in development but also in later life. Globally across all brain regions, males showed more gene change than females. Further, Gene Ontology analysis revealed that different categories of genes were predominantly affected in males vs. females. Notably, the male brain was characterized by global decreased catabolic and anabolic capacity with aging, with downregulated genes heavily enriched in energy production and protein synthesis/transport categories. Increased immune activation was a prominent feature of aging in both sexes, with more widespread activation in the female brain. These data open new opportunities to explore age-dependent changes in gene expression that set the balance between neurodegeneration and compensatory mechanisms in the brain, and suggest that this balance is set differently in males and females, an intriguing and novel idea. HgU133plus2.0 microarray chips were used to profile gene expression in 4 brain regions of cognitively intact humans, across the adult lifespan (ages 20-99).

    diff --git a/general/datasets/Ucla_axb_bxa_aor_jan16/citation.rtf b/general/datasets/Ucla_axb_bxa_aor_jan16/citation.rtf new file mode 100644 index 0000000..6d383f0 --- /dev/null +++ b/general/datasets/Ucla_axb_bxa_aor_jan16/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Ucla_axb_bxa_aor_jan16/contributors.rtf b/general/datasets/Ucla_axb_bxa_aor_jan16/contributors.rtf new file mode 100644 index 0000000..8450813 --- /dev/null +++ b/general/datasets/Ucla_axb_bxa_aor_jan16/contributors.rtf @@ -0,0 +1 @@ +

    Lusis AJBennett BDavis R

    diff --git a/general/datasets/Ucla_axb_bxa_aor_jan16/experiment-design.rtf b/general/datasets/Ucla_axb_bxa_aor_jan16/experiment-design.rtf new file mode 100644 index 0000000..1113b37 --- /dev/null +++ b/general/datasets/Ucla_axb_bxa_aor_jan16/experiment-design.rtf @@ -0,0 +1 @@ +

    GWAS for expression in aortas of F1 offspring of inbred strains crossed with C57BL/6J carrying ApoE-Leiden and CETP transgenes fed chow diet for 8 weeks followed by Western diet for 16 weeks

    diff --git a/general/datasets/Ucla_axb_bxa_aor_jan16/platform.rtf b/general/datasets/Ucla_axb_bxa_aor_jan16/platform.rtf new file mode 100644 index 0000000..41439e8 --- /dev/null +++ b/general/datasets/Ucla_axb_bxa_aor_jan16/platform.rtf @@ -0,0 +1 @@ +

    GPL11180 HT_MG-430_PM] Affymetrix HT MG-430 PM Array Plate

    diff --git a/general/datasets/Ucla_axb_bxa_aor_jan16/specifics.rtf b/general/datasets/Ucla_axb_bxa_aor_jan16/specifics.rtf new file mode 100644 index 0000000..8cdd2b9 --- /dev/null +++ b/general/datasets/Ucla_axb_bxa_aor_jan16/specifics.rtf @@ -0,0 +1 @@ +Group AXB/BXA \ No newline at end of file diff --git a/general/datasets/Ucla_axb_bxa_aor_jan16/summary.rtf b/general/datasets/Ucla_axb_bxa_aor_jan16/summary.rtf new file mode 100644 index 0000000..59e49a1 --- /dev/null +++ b/general/datasets/Ucla_axb_bxa_aor_jan16/summary.rtf @@ -0,0 +1 @@ +

    Identify genes in the aorta whose expression is under genetic regulation in the Hybrid Mouse Diversity Panel (HMDP). The HMDP comprises classical inbred and recombinant inbred wild type mice. 104 of these strains were bred onto a C57BL/6J background carrying transgenes for both ApoE-Leiden and cholesteryl ester transfer protein (CETP). The RMA values of genes were used for genome wide association as described in Davis et al PLOS Genetics 2015. These data are used to identify candidate genes at loci associated with atherosclerotic lesion size.

    diff --git a/general/datasets/Ucla_axb_bxa_femur_0113_rsn/experiment-type.rtf b/general/datasets/Ucla_axb_bxa_femur_0113_rsn/experiment-type.rtf new file mode 100644 index 0000000..c29a175 --- /dev/null +++ b/general/datasets/Ucla_axb_bxa_femur_0113_rsn/experiment-type.rtf @@ -0,0 +1 @@ +RNA from cortical bone (femoral diaphysis free of marrow) were profiled from 99 Hybrid Mouse Diversity Panel strains were profiled. Sixteen-week old male mice were used in this study. A total of 1-3 mice per strain were arrayed. \ No newline at end of file diff --git a/general/datasets/Ucla_axb_bxa_femur_0113_rsn/summary.rtf b/general/datasets/Ucla_axb_bxa_femur_0113_rsn/summary.rtf new file mode 100644 index 0000000..aaa3dd1 --- /dev/null +++ b/general/datasets/Ucla_axb_bxa_femur_0113_rsn/summary.rtf @@ -0,0 +1,15 @@ +

    Summary of DatasetId 163, Name: UCLA GSE27483 AXB/BXA Bone Femur ILM Mouse WG-6 v1, v1.1 (Jan13)

    + +

     2009 Jan;24(1):105-16. doi: 10.1359/jbmr.080908.

    + +

    An integrative genetics approach to identify candidate genes regulating BMD: combining linkage, gene expression, and association

    + +

    Farber CRvan Nas AGhazalpour AAten JEDoss SSos BSchadt EEIngram-Drake LDavis RCHorvath SSmith DJDrake TALusis AJ

    + +

    Abstract

    + +

    Numerous quantitative trait loci (QTLs) affecting bone traits have been identified in the mouse; however, few of the underlying genes have been discovered. To improve the process of transitioning from QTL to gene, we describe an integrative genetics approach, which combines linkage analysis, expression QTL (eQTL) mapping, causality modeling, and genetic association in outbred mice. In C57BL/6J x C3H/HeJ (BXH) F(2) mice, nine QTLs regulating femoral BMD were identified. To select candidate genes from within each QTL region, microarray gene expression profiles from individual F(2) mice were used to identify 148 genes whose expression was correlated with BMD and regulated by local eQTLs. Many of the genes that were the most highly correlated with BMD have been previously shown to modulate bonemass or skeletal development. Candidates were further prioritized by determining whether their expression was predicted to underlie variation in BMD. Using network edge orienting (NEO), a causality modeling algorithm, 18 of the 148 candidates were predicted to be causally related to differences in BMD. To fine-map QTLs, markers in outbred MF1 mice were tested for association with BMD. Three chromosome 11 SNPs were identified that were associated with BMD within the Bmd11 QTL. Finally, our approach provides strong support for Wnt9a, Rasd1, or both underlying Bmd11. Integration of multiple genetic and genomic data sets can substantially improve the efficiency of QTL fine-mapping and candidate gene identification.

    + +
    +
    PMID:18767929, PMCID: PMC2661539, DOI:10.1359/jbmr.080908
    +
    diff --git a/general/datasets/Ucla_axb_bxa_liv_jan16/citation.rtf b/general/datasets/Ucla_axb_bxa_liv_jan16/citation.rtf new file mode 100644 index 0000000..6d383f0 --- /dev/null +++ b/general/datasets/Ucla_axb_bxa_liv_jan16/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Ucla_axb_bxa_liv_jan16/contributors.rtf b/general/datasets/Ucla_axb_bxa_liv_jan16/contributors.rtf new file mode 100644 index 0000000..8450813 --- /dev/null +++ b/general/datasets/Ucla_axb_bxa_liv_jan16/contributors.rtf @@ -0,0 +1 @@ +

    Lusis AJBennett BDavis R

    diff --git a/general/datasets/Ucla_axb_bxa_liv_jan16/experiment-design.rtf b/general/datasets/Ucla_axb_bxa_liv_jan16/experiment-design.rtf new file mode 100644 index 0000000..715a1a3 --- /dev/null +++ b/general/datasets/Ucla_axb_bxa_liv_jan16/experiment-design.rtf @@ -0,0 +1 @@ +

    GWAS for expression in livers of F1 offspring of inbred strains crossed with C57BL/6J carrying ApoE-Leiden and CETP transgenes fed chow diet for 8 weeks followed by Western diet for 16 weeks

    diff --git a/general/datasets/Ucla_axb_bxa_liv_jan16/platform.rtf b/general/datasets/Ucla_axb_bxa_liv_jan16/platform.rtf new file mode 100644 index 0000000..7659aeb --- /dev/null +++ b/general/datasets/Ucla_axb_bxa_liv_jan16/platform.rtf @@ -0,0 +1 @@ +

    GPL11180 HT_MG-430_PM] Affymetrix HT MG-430 PM Array Plate

    diff --git a/general/datasets/Ucla_axb_bxa_liv_jan16/specifics.rtf b/general/datasets/Ucla_axb_bxa_liv_jan16/specifics.rtf new file mode 100644 index 0000000..8cdd2b9 --- /dev/null +++ b/general/datasets/Ucla_axb_bxa_liv_jan16/specifics.rtf @@ -0,0 +1 @@ +Group AXB/BXA \ No newline at end of file diff --git a/general/datasets/Ucla_axb_bxa_liv_jan16/summary.rtf b/general/datasets/Ucla_axb_bxa_liv_jan16/summary.rtf new file mode 100644 index 0000000..9ffc1be --- /dev/null +++ b/general/datasets/Ucla_axb_bxa_liv_jan16/summary.rtf @@ -0,0 +1 @@ +

    Identify genes in the liver whose expression is under genetic regulation in the Hybrid Mouse Diversity Panel (HMDP). The HMDP comprises classical inbred and recombinant inbred wild type mice. 104 of these strains were bred onto a C57BL/6J background carrying transgenes for both ApoE-Leiden and cholesteryl ester transfer protein (CETP). The RMA values of genes were used for genome wide association as described in Davis et al PLOS Genetics 2015. These data are used to identify candidate genes at loci associated with atherosclerotic lesion size.

    diff --git a/general/datasets/Ucla_bdf2_liver_1999/citation.rtf b/general/datasets/Ucla_bdf2_liver_1999/citation.rtf new file mode 100644 index 0000000..0f615b3 --- /dev/null +++ b/general/datasets/Ucla_bdf2_liver_1999/citation.rtf @@ -0,0 +1,8 @@ + diff --git a/general/datasets/Ucla_bdf2_liver_1999/experiment-design.rtf b/general/datasets/Ucla_bdf2_liver_1999/experiment-design.rtf new file mode 100644 index 0000000..592d9aa --- /dev/null +++ b/general/datasets/Ucla_bdf2_liver_1999/experiment-design.rtf @@ -0,0 +1 @@ +

    Livers from 311 F2 female and male mice (animals fed a high fat "Western" diet from 8-24 weeks of age.) derived from C57BL/6J and C3H/HeJ parental strains with both on ApoE null backgrounds. All samples were compared to a common pool created from equal portions of RNA from each of the samples. Keywords=Genetics of Gene Expression Keywords=C57BL/6J Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bdf2_liver_1999/summary.rtf b/general/datasets/Ucla_bdf2_liver_1999/summary.rtf new file mode 100644 index 0000000..c5cf6bd --- /dev/null +++ b/general/datasets/Ucla_bdf2_liver_1999/summary.rtf @@ -0,0 +1 @@ +

    The (C57BL/6J X C3H/HeJ)F2 intercross consists of 334 animals of both sexes. All are ApoE null and received a high fat Western diet from 8-24 weeks of age.

    diff --git a/general/datasets/Ucla_bhf2_adipose_0605/citation.rtf b/general/datasets/Ucla_bhf2_adipose_0605/citation.rtf new file mode 100644 index 0000000..879b304 --- /dev/null +++ b/general/datasets/Ucla_bhf2_adipose_0605/citation.rtf @@ -0,0 +1,5 @@ + diff --git a/general/datasets/Ucla_bhf2_adipose_0605/contributors.rtf b/general/datasets/Ucla_bhf2_adipose_0605/contributors.rtf new file mode 100644 index 0000000..b570034 --- /dev/null +++ b/general/datasets/Ucla_bhf2_adipose_0605/contributors.rtf @@ -0,0 +1 @@ +

    Yang XSchadt EEWang SWang HArnold APIngram-Drake LDrake TALusis AJ

    diff --git a/general/datasets/Ucla_bhf2_adipose_0605/experiment-design.rtf b/general/datasets/Ucla_bhf2_adipose_0605/experiment-design.rtf new file mode 100644 index 0000000..54a15e7 --- /dev/null +++ b/general/datasets/Ucla_bhf2_adipose_0605/experiment-design.rtf @@ -0,0 +1 @@ +

    Adipose from 295 F2 female and male mice (animals fed a high fat "Western" diet from 8-24 weeks of age.) derived from C57BL/6J and C3H/HeJ parental strains with both on ApoE null backgrounds. All samples were compared to a common pool created from equal portions of RNA from each of the samples. Keywords=Genetics of Gene Expression Keywords=C57BL/6J Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bhf2_adipose_0605/summary.rtf b/general/datasets/Ucla_bhf2_adipose_0605/summary.rtf new file mode 100644 index 0000000..c5cf6bd --- /dev/null +++ b/general/datasets/Ucla_bhf2_adipose_0605/summary.rtf @@ -0,0 +1 @@ +

    The (C57BL/6J X C3H/HeJ)F2 intercross consists of 334 animals of both sexes. All are ApoE null and received a high fat Western diet from 8-24 weeks of age.

    diff --git a/general/datasets/Ucla_bhf2_adipose_female/citation.rtf b/general/datasets/Ucla_bhf2_adipose_female/citation.rtf new file mode 100644 index 0000000..879b304 --- /dev/null +++ b/general/datasets/Ucla_bhf2_adipose_female/citation.rtf @@ -0,0 +1,5 @@ + diff --git a/general/datasets/Ucla_bhf2_adipose_female/contributors.rtf b/general/datasets/Ucla_bhf2_adipose_female/contributors.rtf new file mode 100644 index 0000000..b570034 --- /dev/null +++ b/general/datasets/Ucla_bhf2_adipose_female/contributors.rtf @@ -0,0 +1 @@ +

    Yang XSchadt EEWang SWang HArnold APIngram-Drake LDrake TALusis AJ

    diff --git a/general/datasets/Ucla_bhf2_adipose_female/experiment-design.rtf b/general/datasets/Ucla_bhf2_adipose_female/experiment-design.rtf new file mode 100644 index 0000000..54a15e7 --- /dev/null +++ b/general/datasets/Ucla_bhf2_adipose_female/experiment-design.rtf @@ -0,0 +1 @@ +

    Adipose from 295 F2 female and male mice (animals fed a high fat "Western" diet from 8-24 weeks of age.) derived from C57BL/6J and C3H/HeJ parental strains with both on ApoE null backgrounds. All samples were compared to a common pool created from equal portions of RNA from each of the samples. Keywords=Genetics of Gene Expression Keywords=C57BL/6J Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bhf2_adipose_female/specifics.rtf b/general/datasets/Ucla_bhf2_adipose_female/specifics.rtf new file mode 100644 index 0000000..3a8cf6f --- /dev/null +++ b/general/datasets/Ucla_bhf2_adipose_female/specifics.rtf @@ -0,0 +1 @@ +

    Females only

    diff --git a/general/datasets/Ucla_bhf2_adipose_female/summary.rtf b/general/datasets/Ucla_bhf2_adipose_female/summary.rtf new file mode 100644 index 0000000..c5cf6bd --- /dev/null +++ b/general/datasets/Ucla_bhf2_adipose_female/summary.rtf @@ -0,0 +1 @@ +

    The (C57BL/6J X C3H/HeJ)F2 intercross consists of 334 animals of both sexes. All are ApoE null and received a high fat Western diet from 8-24 weeks of age.

    diff --git a/general/datasets/Ucla_bhf2_adipose_male/citation.rtf b/general/datasets/Ucla_bhf2_adipose_male/citation.rtf new file mode 100644 index 0000000..879b304 --- /dev/null +++ b/general/datasets/Ucla_bhf2_adipose_male/citation.rtf @@ -0,0 +1,5 @@ + diff --git a/general/datasets/Ucla_bhf2_adipose_male/contributors.rtf b/general/datasets/Ucla_bhf2_adipose_male/contributors.rtf new file mode 100644 index 0000000..b570034 --- /dev/null +++ b/general/datasets/Ucla_bhf2_adipose_male/contributors.rtf @@ -0,0 +1 @@ +

    Yang XSchadt EEWang SWang HArnold APIngram-Drake LDrake TALusis AJ

    diff --git a/general/datasets/Ucla_bhf2_adipose_male/experiment-design.rtf b/general/datasets/Ucla_bhf2_adipose_male/experiment-design.rtf new file mode 100644 index 0000000..54a15e7 --- /dev/null +++ b/general/datasets/Ucla_bhf2_adipose_male/experiment-design.rtf @@ -0,0 +1 @@ +

    Adipose from 295 F2 female and male mice (animals fed a high fat "Western" diet from 8-24 weeks of age.) derived from C57BL/6J and C3H/HeJ parental strains with both on ApoE null backgrounds. All samples were compared to a common pool created from equal portions of RNA from each of the samples. Keywords=Genetics of Gene Expression Keywords=C57BL/6J Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bhf2_adipose_male/specifics.rtf b/general/datasets/Ucla_bhf2_adipose_male/specifics.rtf new file mode 100644 index 0000000..6b7200b --- /dev/null +++ b/general/datasets/Ucla_bhf2_adipose_male/specifics.rtf @@ -0,0 +1 @@ +

    Males only

    diff --git a/general/datasets/Ucla_bhf2_adipose_male/summary.rtf b/general/datasets/Ucla_bhf2_adipose_male/summary.rtf new file mode 100644 index 0000000..c5cf6bd --- /dev/null +++ b/general/datasets/Ucla_bhf2_adipose_male/summary.rtf @@ -0,0 +1 @@ +

    The (C57BL/6J X C3H/HeJ)F2 intercross consists of 334 animals of both sexes. All are ApoE null and received a high fat Western diet from 8-24 weeks of age.

    diff --git a/general/datasets/Ucla_bhf2_brain_0605/citation.rtf b/general/datasets/Ucla_bhf2_brain_0605/citation.rtf new file mode 100644 index 0000000..fdcaa84 --- /dev/null +++ b/general/datasets/Ucla_bhf2_brain_0605/citation.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Ucla_bhf2_brain_0605/contributors.rtf b/general/datasets/Ucla_bhf2_brain_0605/contributors.rtf new file mode 100644 index 0000000..b570034 --- /dev/null +++ b/general/datasets/Ucla_bhf2_brain_0605/contributors.rtf @@ -0,0 +1 @@ +

    Yang XSchadt EEWang SWang HArnold APIngram-Drake LDrake TALusis AJ

    diff --git a/general/datasets/Ucla_bhf2_brain_0605/experiment-design.rtf b/general/datasets/Ucla_bhf2_brain_0605/experiment-design.rtf new file mode 100644 index 0000000..171d4d8 --- /dev/null +++ b/general/datasets/Ucla_bhf2_brain_0605/experiment-design.rtf @@ -0,0 +1 @@ +

    Brain from 249 F2 female and male mice (animals fed a high fat "Western" diet from 8-24 weeks of age.) derived from C57BL/6J and C3H/HeJ parental strains with both on ApoE null backgrounds. All samples were compared to a common pool created from equal portions of RNA from each of the samples. Keywords=Genetics of Gene Expression Keywords=C57BL/6J Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bhf2_brain_0605/summary.rtf b/general/datasets/Ucla_bhf2_brain_0605/summary.rtf new file mode 100644 index 0000000..c5cf6bd --- /dev/null +++ b/general/datasets/Ucla_bhf2_brain_0605/summary.rtf @@ -0,0 +1 @@ +

    The (C57BL/6J X C3H/HeJ)F2 intercross consists of 334 animals of both sexes. All are ApoE null and received a high fat Western diet from 8-24 weeks of age.

    diff --git a/general/datasets/Ucla_bhf2_brain_female/citation.rtf b/general/datasets/Ucla_bhf2_brain_female/citation.rtf new file mode 100644 index 0000000..fdcaa84 --- /dev/null +++ b/general/datasets/Ucla_bhf2_brain_female/citation.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Ucla_bhf2_brain_female/contributors.rtf b/general/datasets/Ucla_bhf2_brain_female/contributors.rtf new file mode 100644 index 0000000..b570034 --- /dev/null +++ b/general/datasets/Ucla_bhf2_brain_female/contributors.rtf @@ -0,0 +1 @@ +

    Yang XSchadt EEWang SWang HArnold APIngram-Drake LDrake TALusis AJ

    diff --git a/general/datasets/Ucla_bhf2_brain_female/experiment-design.rtf b/general/datasets/Ucla_bhf2_brain_female/experiment-design.rtf new file mode 100644 index 0000000..171d4d8 --- /dev/null +++ b/general/datasets/Ucla_bhf2_brain_female/experiment-design.rtf @@ -0,0 +1 @@ +

    Brain from 249 F2 female and male mice (animals fed a high fat "Western" diet from 8-24 weeks of age.) derived from C57BL/6J and C3H/HeJ parental strains with both on ApoE null backgrounds. All samples were compared to a common pool created from equal portions of RNA from each of the samples. Keywords=Genetics of Gene Expression Keywords=C57BL/6J Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bhf2_brain_female/specifics.rtf b/general/datasets/Ucla_bhf2_brain_female/specifics.rtf new file mode 100644 index 0000000..3a8cf6f --- /dev/null +++ b/general/datasets/Ucla_bhf2_brain_female/specifics.rtf @@ -0,0 +1 @@ +

    Females only

    diff --git a/general/datasets/Ucla_bhf2_brain_female/summary.rtf b/general/datasets/Ucla_bhf2_brain_female/summary.rtf new file mode 100644 index 0000000..c5cf6bd --- /dev/null +++ b/general/datasets/Ucla_bhf2_brain_female/summary.rtf @@ -0,0 +1 @@ +

    The (C57BL/6J X C3H/HeJ)F2 intercross consists of 334 animals of both sexes. All are ApoE null and received a high fat Western diet from 8-24 weeks of age.

    diff --git a/general/datasets/Ucla_bhf2_brain_male/citation.rtf b/general/datasets/Ucla_bhf2_brain_male/citation.rtf new file mode 100644 index 0000000..fdcaa84 --- /dev/null +++ b/general/datasets/Ucla_bhf2_brain_male/citation.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Ucla_bhf2_brain_male/contributors.rtf b/general/datasets/Ucla_bhf2_brain_male/contributors.rtf new file mode 100644 index 0000000..b570034 --- /dev/null +++ b/general/datasets/Ucla_bhf2_brain_male/contributors.rtf @@ -0,0 +1 @@ +

    Yang XSchadt EEWang SWang HArnold APIngram-Drake LDrake TALusis AJ

    diff --git a/general/datasets/Ucla_bhf2_brain_male/experiment-design.rtf b/general/datasets/Ucla_bhf2_brain_male/experiment-design.rtf new file mode 100644 index 0000000..171d4d8 --- /dev/null +++ b/general/datasets/Ucla_bhf2_brain_male/experiment-design.rtf @@ -0,0 +1 @@ +

    Brain from 249 F2 female and male mice (animals fed a high fat "Western" diet from 8-24 weeks of age.) derived from C57BL/6J and C3H/HeJ parental strains with both on ApoE null backgrounds. All samples were compared to a common pool created from equal portions of RNA from each of the samples. Keywords=Genetics of Gene Expression Keywords=C57BL/6J Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bhf2_brain_male/specifics.rtf b/general/datasets/Ucla_bhf2_brain_male/specifics.rtf new file mode 100644 index 0000000..6b7200b --- /dev/null +++ b/general/datasets/Ucla_bhf2_brain_male/specifics.rtf @@ -0,0 +1 @@ +

    Males only

    diff --git a/general/datasets/Ucla_bhf2_brain_male/summary.rtf b/general/datasets/Ucla_bhf2_brain_male/summary.rtf new file mode 100644 index 0000000..c5cf6bd --- /dev/null +++ b/general/datasets/Ucla_bhf2_brain_male/summary.rtf @@ -0,0 +1 @@ +

    The (C57BL/6J X C3H/HeJ)F2 intercross consists of 334 animals of both sexes. All are ApoE null and received a high fat Western diet from 8-24 weeks of age.

    diff --git a/general/datasets/Ucla_bhf2_liver_0605/citation.rtf b/general/datasets/Ucla_bhf2_liver_0605/citation.rtf new file mode 100644 index 0000000..0f615b3 --- /dev/null +++ b/general/datasets/Ucla_bhf2_liver_0605/citation.rtf @@ -0,0 +1,8 @@ + diff --git a/general/datasets/Ucla_bhf2_liver_0605/experiment-design.rtf b/general/datasets/Ucla_bhf2_liver_0605/experiment-design.rtf new file mode 100644 index 0000000..592d9aa --- /dev/null +++ b/general/datasets/Ucla_bhf2_liver_0605/experiment-design.rtf @@ -0,0 +1 @@ +

    Livers from 311 F2 female and male mice (animals fed a high fat "Western" diet from 8-24 weeks of age.) derived from C57BL/6J and C3H/HeJ parental strains with both on ApoE null backgrounds. All samples were compared to a common pool created from equal portions of RNA from each of the samples. Keywords=Genetics of Gene Expression Keywords=C57BL/6J Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bhf2_liver_0605/summary.rtf b/general/datasets/Ucla_bhf2_liver_0605/summary.rtf new file mode 100644 index 0000000..c5cf6bd --- /dev/null +++ b/general/datasets/Ucla_bhf2_liver_0605/summary.rtf @@ -0,0 +1 @@ +

    The (C57BL/6J X C3H/HeJ)F2 intercross consists of 334 animals of both sexes. All are ApoE null and received a high fat Western diet from 8-24 weeks of age.

    diff --git a/general/datasets/Ucla_bhf2_liver_female/citation.rtf b/general/datasets/Ucla_bhf2_liver_female/citation.rtf new file mode 100644 index 0000000..0f615b3 --- /dev/null +++ b/general/datasets/Ucla_bhf2_liver_female/citation.rtf @@ -0,0 +1,8 @@ + diff --git a/general/datasets/Ucla_bhf2_liver_female/experiment-design.rtf b/general/datasets/Ucla_bhf2_liver_female/experiment-design.rtf new file mode 100644 index 0000000..592d9aa --- /dev/null +++ b/general/datasets/Ucla_bhf2_liver_female/experiment-design.rtf @@ -0,0 +1 @@ +

    Livers from 311 F2 female and male mice (animals fed a high fat "Western" diet from 8-24 weeks of age.) derived from C57BL/6J and C3H/HeJ parental strains with both on ApoE null backgrounds. All samples were compared to a common pool created from equal portions of RNA from each of the samples. Keywords=Genetics of Gene Expression Keywords=C57BL/6J Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bhf2_liver_female/specifics.rtf b/general/datasets/Ucla_bhf2_liver_female/specifics.rtf new file mode 100644 index 0000000..3a8cf6f --- /dev/null +++ b/general/datasets/Ucla_bhf2_liver_female/specifics.rtf @@ -0,0 +1 @@ +

    Females only

    diff --git a/general/datasets/Ucla_bhf2_liver_female/summary.rtf b/general/datasets/Ucla_bhf2_liver_female/summary.rtf new file mode 100644 index 0000000..c5cf6bd --- /dev/null +++ b/general/datasets/Ucla_bhf2_liver_female/summary.rtf @@ -0,0 +1 @@ +

    The (C57BL/6J X C3H/HeJ)F2 intercross consists of 334 animals of both sexes. All are ApoE null and received a high fat Western diet from 8-24 weeks of age.

    diff --git a/general/datasets/Ucla_bhf2_liver_male/citation.rtf b/general/datasets/Ucla_bhf2_liver_male/citation.rtf new file mode 100644 index 0000000..0f615b3 --- /dev/null +++ b/general/datasets/Ucla_bhf2_liver_male/citation.rtf @@ -0,0 +1,8 @@ + diff --git a/general/datasets/Ucla_bhf2_liver_male/experiment-design.rtf b/general/datasets/Ucla_bhf2_liver_male/experiment-design.rtf new file mode 100644 index 0000000..592d9aa --- /dev/null +++ b/general/datasets/Ucla_bhf2_liver_male/experiment-design.rtf @@ -0,0 +1 @@ +

    Livers from 311 F2 female and male mice (animals fed a high fat "Western" diet from 8-24 weeks of age.) derived from C57BL/6J and C3H/HeJ parental strains with both on ApoE null backgrounds. All samples were compared to a common pool created from equal portions of RNA from each of the samples. Keywords=Genetics of Gene Expression Keywords=C57BL/6J Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bhf2_liver_male/specifics.rtf b/general/datasets/Ucla_bhf2_liver_male/specifics.rtf new file mode 100644 index 0000000..6b7200b --- /dev/null +++ b/general/datasets/Ucla_bhf2_liver_male/specifics.rtf @@ -0,0 +1 @@ +

    Males only

    diff --git a/general/datasets/Ucla_bhf2_liver_male/summary.rtf b/general/datasets/Ucla_bhf2_liver_male/summary.rtf new file mode 100644 index 0000000..c5cf6bd --- /dev/null +++ b/general/datasets/Ucla_bhf2_liver_male/summary.rtf @@ -0,0 +1 @@ +

    The (C57BL/6J X C3H/HeJ)F2 intercross consists of 334 animals of both sexes. All are ApoE null and received a high fat Western diet from 8-24 weeks of age.

    diff --git a/general/datasets/Ucla_bhf2_muscle_0605/citation.rtf b/general/datasets/Ucla_bhf2_muscle_0605/citation.rtf new file mode 100644 index 0000000..fdcaa84 --- /dev/null +++ b/general/datasets/Ucla_bhf2_muscle_0605/citation.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Ucla_bhf2_muscle_0605/contributors.rtf b/general/datasets/Ucla_bhf2_muscle_0605/contributors.rtf new file mode 100644 index 0000000..b570034 --- /dev/null +++ b/general/datasets/Ucla_bhf2_muscle_0605/contributors.rtf @@ -0,0 +1 @@ +

    Yang XSchadt EEWang SWang HArnold APIngram-Drake LDrake TALusis AJ

    diff --git a/general/datasets/Ucla_bhf2_muscle_0605/experiment-design.rtf b/general/datasets/Ucla_bhf2_muscle_0605/experiment-design.rtf new file mode 100644 index 0000000..fda46c2 --- /dev/null +++ b/general/datasets/Ucla_bhf2_muscle_0605/experiment-design.rtf @@ -0,0 +1 @@ +

    Muscle from 319 F2 female and male mice (animals fed a high fat "Western" diet from 8-24 weeks of age.) derived from C57BL/6J and C3H/HeJ parental strains with both on ApoE null backgrounds. All samples were compared to a common pool created from equal portions of RNA from each of the samples. Keywords=Genetics of Gene Expression Keywords=C57BL/6J Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bhf2_muscle_0605/summary.rtf b/general/datasets/Ucla_bhf2_muscle_0605/summary.rtf new file mode 100644 index 0000000..c5cf6bd --- /dev/null +++ b/general/datasets/Ucla_bhf2_muscle_0605/summary.rtf @@ -0,0 +1 @@ +

    The (C57BL/6J X C3H/HeJ)F2 intercross consists of 334 animals of both sexes. All are ApoE null and received a high fat Western diet from 8-24 weeks of age.

    diff --git a/general/datasets/Ucla_bhf2_muscle_female/citation.rtf b/general/datasets/Ucla_bhf2_muscle_female/citation.rtf new file mode 100644 index 0000000..fdcaa84 --- /dev/null +++ b/general/datasets/Ucla_bhf2_muscle_female/citation.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Ucla_bhf2_muscle_female/contributors.rtf b/general/datasets/Ucla_bhf2_muscle_female/contributors.rtf new file mode 100644 index 0000000..b570034 --- /dev/null +++ b/general/datasets/Ucla_bhf2_muscle_female/contributors.rtf @@ -0,0 +1 @@ +

    Yang XSchadt EEWang SWang HArnold APIngram-Drake LDrake TALusis AJ

    diff --git a/general/datasets/Ucla_bhf2_muscle_female/experiment-design.rtf b/general/datasets/Ucla_bhf2_muscle_female/experiment-design.rtf new file mode 100644 index 0000000..fda46c2 --- /dev/null +++ b/general/datasets/Ucla_bhf2_muscle_female/experiment-design.rtf @@ -0,0 +1 @@ +

    Muscle from 319 F2 female and male mice (animals fed a high fat "Western" diet from 8-24 weeks of age.) derived from C57BL/6J and C3H/HeJ parental strains with both on ApoE null backgrounds. All samples were compared to a common pool created from equal portions of RNA from each of the samples. Keywords=Genetics of Gene Expression Keywords=C57BL/6J Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bhf2_muscle_female/specifics.rtf b/general/datasets/Ucla_bhf2_muscle_female/specifics.rtf new file mode 100644 index 0000000..3a8cf6f --- /dev/null +++ b/general/datasets/Ucla_bhf2_muscle_female/specifics.rtf @@ -0,0 +1 @@ +

    Females only

    diff --git a/general/datasets/Ucla_bhf2_muscle_female/summary.rtf b/general/datasets/Ucla_bhf2_muscle_female/summary.rtf new file mode 100644 index 0000000..c5cf6bd --- /dev/null +++ b/general/datasets/Ucla_bhf2_muscle_female/summary.rtf @@ -0,0 +1 @@ +

    The (C57BL/6J X C3H/HeJ)F2 intercross consists of 334 animals of both sexes. All are ApoE null and received a high fat Western diet from 8-24 weeks of age.

    diff --git a/general/datasets/Ucla_bhf2_muscle_male/citation.rtf b/general/datasets/Ucla_bhf2_muscle_male/citation.rtf new file mode 100644 index 0000000..fdcaa84 --- /dev/null +++ b/general/datasets/Ucla_bhf2_muscle_male/citation.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Ucla_bhf2_muscle_male/contributors.rtf b/general/datasets/Ucla_bhf2_muscle_male/contributors.rtf new file mode 100644 index 0000000..b570034 --- /dev/null +++ b/general/datasets/Ucla_bhf2_muscle_male/contributors.rtf @@ -0,0 +1 @@ +

    Yang XSchadt EEWang SWang HArnold APIngram-Drake LDrake TALusis AJ

    diff --git a/general/datasets/Ucla_bhf2_muscle_male/experiment-design.rtf b/general/datasets/Ucla_bhf2_muscle_male/experiment-design.rtf new file mode 100644 index 0000000..fda46c2 --- /dev/null +++ b/general/datasets/Ucla_bhf2_muscle_male/experiment-design.rtf @@ -0,0 +1 @@ +

    Muscle from 319 F2 female and male mice (animals fed a high fat "Western" diet from 8-24 weeks of age.) derived from C57BL/6J and C3H/HeJ parental strains with both on ApoE null backgrounds. All samples were compared to a common pool created from equal portions of RNA from each of the samples. Keywords=Genetics of Gene Expression Keywords=C57BL/6J Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bhf2_muscle_male/specifics.rtf b/general/datasets/Ucla_bhf2_muscle_male/specifics.rtf new file mode 100644 index 0000000..6b7200b --- /dev/null +++ b/general/datasets/Ucla_bhf2_muscle_male/specifics.rtf @@ -0,0 +1 @@ +

    Males only

    diff --git a/general/datasets/Ucla_bhf2_muscle_male/summary.rtf b/general/datasets/Ucla_bhf2_muscle_male/summary.rtf new file mode 100644 index 0000000..c5cf6bd --- /dev/null +++ b/general/datasets/Ucla_bhf2_muscle_male/summary.rtf @@ -0,0 +1 @@ +

    The (C57BL/6J X C3H/HeJ)F2 intercross consists of 334 animals of both sexes. All are ApoE null and received a high fat Western diet from 8-24 weeks of age.

    diff --git a/general/datasets/Ucla_bhhbf2_adipose_2005/citation.rtf b/general/datasets/Ucla_bhhbf2_adipose_2005/citation.rtf new file mode 100644 index 0000000..b80d79e --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_adipose_2005/citation.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Ucla_bhhbf2_adipose_2005/contributors.rtf b/general/datasets/Ucla_bhhbf2_adipose_2005/contributors.rtf new file mode 100644 index 0000000..66e613d --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_adipose_2005/contributors.rtf @@ -0,0 +1 @@ +

    Lusis AJSchadt EE

    diff --git a/general/datasets/Ucla_bhhbf2_adipose_2005/experiment-design.rtf b/general/datasets/Ucla_bhhbf2_adipose_2005/experiment-design.rtf new file mode 100644 index 0000000..6df1de9 --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_adipose_2005/experiment-design.rtf @@ -0,0 +1 @@ +

    Adipose from 295 F2 female and male mice were generated by intercrossing F1 mice. Mice were fed chow diet containing 4% fat (Ralston-Purina Co., St. Louis, MO) until 8 weeks of age and then were placed on a high-fat "Western" diet containing 42% fat and 0.15% cholesterol (Teklad 88137, Harlan Teklad, Madison WI) for 12 weeks. At 20 weeks mice were sacrificed, after a 12-hour fast adipose tissues were dissected and flash frozen in LN2 and stored at -80°C. Keywords=Genetics of Gene Expression Keywords Keywords=C57B1/J6 Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bhhbf2_adipose_2005/summary.rtf b/general/datasets/Ucla_bhhbf2_adipose_2005/summary.rtf new file mode 100644 index 0000000..e7144bf --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_adipose_2005/summary.rtf @@ -0,0 +1 @@ +

    The purpose of this experiment was to determine the expression traits in animals from F2 intercross of inbred strains C57BL/6J, C3H/HeJ. (N=309, 164 males and 145 females).

    diff --git a/general/datasets/Ucla_bhhbf2_adipose_female/citation.rtf b/general/datasets/Ucla_bhhbf2_adipose_female/citation.rtf new file mode 100644 index 0000000..b80d79e --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_adipose_female/citation.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Ucla_bhhbf2_adipose_female/contributors.rtf b/general/datasets/Ucla_bhhbf2_adipose_female/contributors.rtf new file mode 100644 index 0000000..66e613d --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_adipose_female/contributors.rtf @@ -0,0 +1 @@ +

    Lusis AJSchadt EE

    diff --git a/general/datasets/Ucla_bhhbf2_adipose_female/experiment-design.rtf b/general/datasets/Ucla_bhhbf2_adipose_female/experiment-design.rtf new file mode 100644 index 0000000..6df1de9 --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_adipose_female/experiment-design.rtf @@ -0,0 +1 @@ +

    Adipose from 295 F2 female and male mice were generated by intercrossing F1 mice. Mice were fed chow diet containing 4% fat (Ralston-Purina Co., St. Louis, MO) until 8 weeks of age and then were placed on a high-fat "Western" diet containing 42% fat and 0.15% cholesterol (Teklad 88137, Harlan Teklad, Madison WI) for 12 weeks. At 20 weeks mice were sacrificed, after a 12-hour fast adipose tissues were dissected and flash frozen in LN2 and stored at -80°C. Keywords=Genetics of Gene Expression Keywords Keywords=C57B1/J6 Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bhhbf2_adipose_female/specifics.rtf b/general/datasets/Ucla_bhhbf2_adipose_female/specifics.rtf new file mode 100644 index 0000000..3a8cf6f --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_adipose_female/specifics.rtf @@ -0,0 +1 @@ +

    Females only

    diff --git a/general/datasets/Ucla_bhhbf2_adipose_female/summary.rtf b/general/datasets/Ucla_bhhbf2_adipose_female/summary.rtf new file mode 100644 index 0000000..e7144bf --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_adipose_female/summary.rtf @@ -0,0 +1 @@ +

    The purpose of this experiment was to determine the expression traits in animals from F2 intercross of inbred strains C57BL/6J, C3H/HeJ. (N=309, 164 males and 145 females).

    diff --git a/general/datasets/Ucla_bhhbf2_adipose_male/citation.rtf b/general/datasets/Ucla_bhhbf2_adipose_male/citation.rtf new file mode 100644 index 0000000..b80d79e --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_adipose_male/citation.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Ucla_bhhbf2_adipose_male/contributors.rtf b/general/datasets/Ucla_bhhbf2_adipose_male/contributors.rtf new file mode 100644 index 0000000..66e613d --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_adipose_male/contributors.rtf @@ -0,0 +1 @@ +

    Lusis AJSchadt EE

    diff --git a/general/datasets/Ucla_bhhbf2_adipose_male/experiment-design.rtf b/general/datasets/Ucla_bhhbf2_adipose_male/experiment-design.rtf new file mode 100644 index 0000000..6df1de9 --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_adipose_male/experiment-design.rtf @@ -0,0 +1 @@ +

    Adipose from 295 F2 female and male mice were generated by intercrossing F1 mice. Mice were fed chow diet containing 4% fat (Ralston-Purina Co., St. Louis, MO) until 8 weeks of age and then were placed on a high-fat "Western" diet containing 42% fat and 0.15% cholesterol (Teklad 88137, Harlan Teklad, Madison WI) for 12 weeks. At 20 weeks mice were sacrificed, after a 12-hour fast adipose tissues were dissected and flash frozen in LN2 and stored at -80°C. Keywords=Genetics of Gene Expression Keywords Keywords=C57B1/J6 Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bhhbf2_adipose_male/specifics.rtf b/general/datasets/Ucla_bhhbf2_adipose_male/specifics.rtf new file mode 100644 index 0000000..6b7200b --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_adipose_male/specifics.rtf @@ -0,0 +1 @@ +

    Males only

    diff --git a/general/datasets/Ucla_bhhbf2_adipose_male/summary.rtf b/general/datasets/Ucla_bhhbf2_adipose_male/summary.rtf new file mode 100644 index 0000000..e7144bf --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_adipose_male/summary.rtf @@ -0,0 +1 @@ +

    The purpose of this experiment was to determine the expression traits in animals from F2 intercross of inbred strains C57BL/6J, C3H/HeJ. (N=309, 164 males and 145 females).

    diff --git a/general/datasets/Ucla_bhhbf2_brain_2005/citation.rtf b/general/datasets/Ucla_bhhbf2_brain_2005/citation.rtf new file mode 100644 index 0000000..b80d79e --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_brain_2005/citation.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Ucla_bhhbf2_brain_2005/experiment-design.rtf b/general/datasets/Ucla_bhhbf2_brain_2005/experiment-design.rtf new file mode 100644 index 0000000..b1ce841 --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_brain_2005/experiment-design.rtf @@ -0,0 +1 @@ +

    Brain from 292 F2 female and male mice were generated by intercrossing F1 mice. Mice were fed chow diet containing 4% fat (Ralston-Purina Co., St. Louis, MO) until 8 weeks of age and then were placed on a high-fat "Western" diet containing 42% fat and 0.15%cholesterol (Teklad 88137, Harlan Teklad, Madison WI) for 12 weeks. At 20 weeks mice were sacrificed, after a 12-hour fast Brain tissues were dissected and flash frozen in LN2 and stored at -80°C.

    diff --git a/general/datasets/Ucla_bhhbf2_brain_2005/summary.rtf b/general/datasets/Ucla_bhhbf2_brain_2005/summary.rtf new file mode 100644 index 0000000..e7144bf --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_brain_2005/summary.rtf @@ -0,0 +1 @@ +

    The purpose of this experiment was to determine the expression traits in animals from F2 intercross of inbred strains C57BL/6J, C3H/HeJ. (N=309, 164 males and 145 females).

    diff --git a/general/datasets/Ucla_bhhbf2_brain_female/citation.rtf b/general/datasets/Ucla_bhhbf2_brain_female/citation.rtf new file mode 100644 index 0000000..b80d79e --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_brain_female/citation.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Ucla_bhhbf2_brain_female/experiment-design.rtf b/general/datasets/Ucla_bhhbf2_brain_female/experiment-design.rtf new file mode 100644 index 0000000..b1ce841 --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_brain_female/experiment-design.rtf @@ -0,0 +1 @@ +

    Brain from 292 F2 female and male mice were generated by intercrossing F1 mice. Mice were fed chow diet containing 4% fat (Ralston-Purina Co., St. Louis, MO) until 8 weeks of age and then were placed on a high-fat "Western" diet containing 42% fat and 0.15%cholesterol (Teklad 88137, Harlan Teklad, Madison WI) for 12 weeks. At 20 weeks mice were sacrificed, after a 12-hour fast Brain tissues were dissected and flash frozen in LN2 and stored at -80°C.

    diff --git a/general/datasets/Ucla_bhhbf2_brain_female/specifics.rtf b/general/datasets/Ucla_bhhbf2_brain_female/specifics.rtf new file mode 100644 index 0000000..3a8cf6f --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_brain_female/specifics.rtf @@ -0,0 +1 @@ +

    Females only

    diff --git a/general/datasets/Ucla_bhhbf2_brain_female/summary.rtf b/general/datasets/Ucla_bhhbf2_brain_female/summary.rtf new file mode 100644 index 0000000..e7144bf --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_brain_female/summary.rtf @@ -0,0 +1 @@ +

    The purpose of this experiment was to determine the expression traits in animals from F2 intercross of inbred strains C57BL/6J, C3H/HeJ. (N=309, 164 males and 145 females).

    diff --git a/general/datasets/Ucla_bhhbf2_brain_male/citation.rtf b/general/datasets/Ucla_bhhbf2_brain_male/citation.rtf new file mode 100644 index 0000000..b80d79e --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_brain_male/citation.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Ucla_bhhbf2_brain_male/experiment-design.rtf b/general/datasets/Ucla_bhhbf2_brain_male/experiment-design.rtf new file mode 100644 index 0000000..b1ce841 --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_brain_male/experiment-design.rtf @@ -0,0 +1 @@ +

    Brain from 292 F2 female and male mice were generated by intercrossing F1 mice. Mice were fed chow diet containing 4% fat (Ralston-Purina Co., St. Louis, MO) until 8 weeks of age and then were placed on a high-fat "Western" diet containing 42% fat and 0.15%cholesterol (Teklad 88137, Harlan Teklad, Madison WI) for 12 weeks. At 20 weeks mice were sacrificed, after a 12-hour fast Brain tissues were dissected and flash frozen in LN2 and stored at -80°C.

    diff --git a/general/datasets/Ucla_bhhbf2_brain_male/specifics.rtf b/general/datasets/Ucla_bhhbf2_brain_male/specifics.rtf new file mode 100644 index 0000000..6b7200b --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_brain_male/specifics.rtf @@ -0,0 +1 @@ +

    Males only

    diff --git a/general/datasets/Ucla_bhhbf2_brain_male/summary.rtf b/general/datasets/Ucla_bhhbf2_brain_male/summary.rtf new file mode 100644 index 0000000..e7144bf --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_brain_male/summary.rtf @@ -0,0 +1 @@ +

    The purpose of this experiment was to determine the expression traits in animals from F2 intercross of inbred strains C57BL/6J, C3H/HeJ. (N=309, 164 males and 145 females).

    diff --git a/general/datasets/Ucla_bhhbf2_liver_2005/citation.rtf b/general/datasets/Ucla_bhhbf2_liver_2005/citation.rtf new file mode 100644 index 0000000..b80d79e --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_liver_2005/citation.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Ucla_bhhbf2_liver_2005/experiment-design.rtf b/general/datasets/Ucla_bhhbf2_liver_2005/experiment-design.rtf new file mode 100644 index 0000000..dad76ff --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_liver_2005/experiment-design.rtf @@ -0,0 +1 @@ +

    Liver from 302 F2 female and male mice were generated by intercrossing F1 mice. Mice were fed chow diet containing 4% fat (Ralston-Purina Co., St. Louis, MO) until 8 weeks of age and then were placed on a high-fat "Western" diet containing 42% fat and 0.15% cholesterol (Teklad 88137, Harlan Teklad, Madison WI) for 12 weeks. At 20 weeks mice were sacrificed, after a 12-hour fast liver tissues were dissected and flash frozen in LN2 and stored at -80°C. Keywords=Genetics of Gene Expression Keywords Keywords=C57B1/J6 Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bhhbf2_liver_2005/summary.rtf b/general/datasets/Ucla_bhhbf2_liver_2005/summary.rtf new file mode 100644 index 0000000..e7144bf --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_liver_2005/summary.rtf @@ -0,0 +1 @@ +

    The purpose of this experiment was to determine the expression traits in animals from F2 intercross of inbred strains C57BL/6J, C3H/HeJ. (N=309, 164 males and 145 females).

    diff --git a/general/datasets/Ucla_bhhbf2_liver_female/citation.rtf b/general/datasets/Ucla_bhhbf2_liver_female/citation.rtf new file mode 100644 index 0000000..b80d79e --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_liver_female/citation.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Ucla_bhhbf2_liver_female/experiment-design.rtf b/general/datasets/Ucla_bhhbf2_liver_female/experiment-design.rtf new file mode 100644 index 0000000..dad76ff --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_liver_female/experiment-design.rtf @@ -0,0 +1 @@ +

    Liver from 302 F2 female and male mice were generated by intercrossing F1 mice. Mice were fed chow diet containing 4% fat (Ralston-Purina Co., St. Louis, MO) until 8 weeks of age and then were placed on a high-fat "Western" diet containing 42% fat and 0.15% cholesterol (Teklad 88137, Harlan Teklad, Madison WI) for 12 weeks. At 20 weeks mice were sacrificed, after a 12-hour fast liver tissues were dissected and flash frozen in LN2 and stored at -80°C. Keywords=Genetics of Gene Expression Keywords Keywords=C57B1/J6 Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bhhbf2_liver_female/specifics.rtf b/general/datasets/Ucla_bhhbf2_liver_female/specifics.rtf new file mode 100644 index 0000000..3a8cf6f --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_liver_female/specifics.rtf @@ -0,0 +1 @@ +

    Females only

    diff --git a/general/datasets/Ucla_bhhbf2_liver_female/summary.rtf b/general/datasets/Ucla_bhhbf2_liver_female/summary.rtf new file mode 100644 index 0000000..e7144bf --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_liver_female/summary.rtf @@ -0,0 +1 @@ +

    The purpose of this experiment was to determine the expression traits in animals from F2 intercross of inbred strains C57BL/6J, C3H/HeJ. (N=309, 164 males and 145 females).

    diff --git a/general/datasets/Ucla_bhhbf2_liver_male/citation.rtf b/general/datasets/Ucla_bhhbf2_liver_male/citation.rtf new file mode 100644 index 0000000..b80d79e --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_liver_male/citation.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Ucla_bhhbf2_liver_male/experiment-design.rtf b/general/datasets/Ucla_bhhbf2_liver_male/experiment-design.rtf new file mode 100644 index 0000000..dad76ff --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_liver_male/experiment-design.rtf @@ -0,0 +1 @@ +

    Liver from 302 F2 female and male mice were generated by intercrossing F1 mice. Mice were fed chow diet containing 4% fat (Ralston-Purina Co., St. Louis, MO) until 8 weeks of age and then were placed on a high-fat "Western" diet containing 42% fat and 0.15% cholesterol (Teklad 88137, Harlan Teklad, Madison WI) for 12 weeks. At 20 weeks mice were sacrificed, after a 12-hour fast liver tissues were dissected and flash frozen in LN2 and stored at -80°C. Keywords=Genetics of Gene Expression Keywords Keywords=C57B1/J6 Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bhhbf2_liver_male/specifics.rtf b/general/datasets/Ucla_bhhbf2_liver_male/specifics.rtf new file mode 100644 index 0000000..6b7200b --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_liver_male/specifics.rtf @@ -0,0 +1 @@ +

    Males only

    diff --git a/general/datasets/Ucla_bhhbf2_liver_male/summary.rtf b/general/datasets/Ucla_bhhbf2_liver_male/summary.rtf new file mode 100644 index 0000000..e7144bf --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_liver_male/summary.rtf @@ -0,0 +1 @@ +

    The purpose of this experiment was to determine the expression traits in animals from F2 intercross of inbred strains C57BL/6J, C3H/HeJ. (N=309, 164 males and 145 females).

    diff --git a/general/datasets/Ucla_bhhbf2_muscle_2005/citation.rtf b/general/datasets/Ucla_bhhbf2_muscle_2005/citation.rtf new file mode 100644 index 0000000..b80d79e --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_muscle_2005/citation.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Ucla_bhhbf2_muscle_2005/experiment-design.rtf b/general/datasets/Ucla_bhhbf2_muscle_2005/experiment-design.rtf new file mode 100644 index 0000000..fa6a257 --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_muscle_2005/experiment-design.rtf @@ -0,0 +1 @@ +

    Muscle from 285 F2 female and male mice were generated by intercrossing F1 mice. Mice were fed chow diet containing 4% fat (Ralston-Purina Co., St. Louis, MO) until 8 weeks of age and then were placed on a high-fat "Western" diet containing 42% fat and 0.15% cholesterol (Teklad 88137, Harlan Teklad, Madison WI) for 12 weeks. At 20 weeks mice were sacrificed, after a 12-hour fast Muscle tissues were dissected and flash frozen in LN2 and stored at -80°C. Keywords=Genetics of Gene Expression Keywords Keywords=C57B1/J6 Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bhhbf2_muscle_2005/summary.rtf b/general/datasets/Ucla_bhhbf2_muscle_2005/summary.rtf new file mode 100644 index 0000000..e7144bf --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_muscle_2005/summary.rtf @@ -0,0 +1 @@ +

    The purpose of this experiment was to determine the expression traits in animals from F2 intercross of inbred strains C57BL/6J, C3H/HeJ. (N=309, 164 males and 145 females).

    diff --git a/general/datasets/Ucla_bhhbf2_muscle_female/citation.rtf b/general/datasets/Ucla_bhhbf2_muscle_female/citation.rtf new file mode 100644 index 0000000..b80d79e --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_muscle_female/citation.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Ucla_bhhbf2_muscle_female/experiment-design.rtf b/general/datasets/Ucla_bhhbf2_muscle_female/experiment-design.rtf new file mode 100644 index 0000000..fa6a257 --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_muscle_female/experiment-design.rtf @@ -0,0 +1 @@ +

    Muscle from 285 F2 female and male mice were generated by intercrossing F1 mice. Mice were fed chow diet containing 4% fat (Ralston-Purina Co., St. Louis, MO) until 8 weeks of age and then were placed on a high-fat "Western" diet containing 42% fat and 0.15% cholesterol (Teklad 88137, Harlan Teklad, Madison WI) for 12 weeks. At 20 weeks mice were sacrificed, after a 12-hour fast Muscle tissues were dissected and flash frozen in LN2 and stored at -80°C. Keywords=Genetics of Gene Expression Keywords Keywords=C57B1/J6 Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bhhbf2_muscle_female/specifics.rtf b/general/datasets/Ucla_bhhbf2_muscle_female/specifics.rtf new file mode 100644 index 0000000..3a8cf6f --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_muscle_female/specifics.rtf @@ -0,0 +1 @@ +

    Females only

    diff --git a/general/datasets/Ucla_bhhbf2_muscle_female/summary.rtf b/general/datasets/Ucla_bhhbf2_muscle_female/summary.rtf new file mode 100644 index 0000000..e7144bf --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_muscle_female/summary.rtf @@ -0,0 +1 @@ +

    The purpose of this experiment was to determine the expression traits in animals from F2 intercross of inbred strains C57BL/6J, C3H/HeJ. (N=309, 164 males and 145 females).

    diff --git a/general/datasets/Ucla_bhhbf2_muscle_male/citation.rtf b/general/datasets/Ucla_bhhbf2_muscle_male/citation.rtf new file mode 100644 index 0000000..b80d79e --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_muscle_male/citation.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Ucla_bhhbf2_muscle_male/experiment-design.rtf b/general/datasets/Ucla_bhhbf2_muscle_male/experiment-design.rtf new file mode 100644 index 0000000..fa6a257 --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_muscle_male/experiment-design.rtf @@ -0,0 +1 @@ +

    Muscle from 285 F2 female and male mice were generated by intercrossing F1 mice. Mice were fed chow diet containing 4% fat (Ralston-Purina Co., St. Louis, MO) until 8 weeks of age and then were placed on a high-fat "Western" diet containing 42% fat and 0.15% cholesterol (Teklad 88137, Harlan Teklad, Madison WI) for 12 weeks. At 20 weeks mice were sacrificed, after a 12-hour fast Muscle tissues were dissected and flash frozen in LN2 and stored at -80°C. Keywords=Genetics of Gene Expression Keywords Keywords=C57B1/J6 Keywords=C3H/HeJ

    diff --git a/general/datasets/Ucla_bhhbf2_muscle_male/specifics.rtf b/general/datasets/Ucla_bhhbf2_muscle_male/specifics.rtf new file mode 100644 index 0000000..6b7200b --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_muscle_male/specifics.rtf @@ -0,0 +1 @@ +

    Males only

    diff --git a/general/datasets/Ucla_bhhbf2_muscle_male/summary.rtf b/general/datasets/Ucla_bhhbf2_muscle_male/summary.rtf new file mode 100644 index 0000000..e7144bf --- /dev/null +++ b/general/datasets/Ucla_bhhbf2_muscle_male/summary.rtf @@ -0,0 +1 @@ +

    The purpose of this experiment was to determine the expression traits in animals from F2 intercross of inbred strains C57BL/6J, C3H/HeJ. (N=309, 164 males and 145 females).

    diff --git a/general/datasets/Ucla_bxd_aor_jan16/citation.rtf b/general/datasets/Ucla_bxd_aor_jan16/citation.rtf new file mode 100644 index 0000000..6d383f0 --- /dev/null +++ b/general/datasets/Ucla_bxd_aor_jan16/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Ucla_bxd_aor_jan16/contributors.rtf b/general/datasets/Ucla_bxd_aor_jan16/contributors.rtf new file mode 100644 index 0000000..8450813 --- /dev/null +++ b/general/datasets/Ucla_bxd_aor_jan16/contributors.rtf @@ -0,0 +1 @@ +

    Lusis AJBennett BDavis R

    diff --git a/general/datasets/Ucla_bxd_aor_jan16/experiment-design.rtf b/general/datasets/Ucla_bxd_aor_jan16/experiment-design.rtf new file mode 100644 index 0000000..1113b37 --- /dev/null +++ b/general/datasets/Ucla_bxd_aor_jan16/experiment-design.rtf @@ -0,0 +1 @@ +

    GWAS for expression in aortas of F1 offspring of inbred strains crossed with C57BL/6J carrying ApoE-Leiden and CETP transgenes fed chow diet for 8 weeks followed by Western diet for 16 weeks

    diff --git a/general/datasets/Ucla_bxd_aor_jan16/platform.rtf b/general/datasets/Ucla_bxd_aor_jan16/platform.rtf new file mode 100644 index 0000000..41439e8 --- /dev/null +++ b/general/datasets/Ucla_bxd_aor_jan16/platform.rtf @@ -0,0 +1 @@ +

    GPL11180 HT_MG-430_PM] Affymetrix HT MG-430 PM Array Plate

    diff --git a/general/datasets/Ucla_bxd_aor_jan16/specifics.rtf b/general/datasets/Ucla_bxd_aor_jan16/specifics.rtf new file mode 100644 index 0000000..3864d15 --- /dev/null +++ b/general/datasets/Ucla_bxd_aor_jan16/specifics.rtf @@ -0,0 +1 @@ +Group BXD \ No newline at end of file diff --git a/general/datasets/Ucla_bxd_aor_jan16/summary.rtf b/general/datasets/Ucla_bxd_aor_jan16/summary.rtf new file mode 100644 index 0000000..59e49a1 --- /dev/null +++ b/general/datasets/Ucla_bxd_aor_jan16/summary.rtf @@ -0,0 +1 @@ +

    Identify genes in the aorta whose expression is under genetic regulation in the Hybrid Mouse Diversity Panel (HMDP). The HMDP comprises classical inbred and recombinant inbred wild type mice. 104 of these strains were bred onto a C57BL/6J background carrying transgenes for both ApoE-Leiden and cholesteryl ester transfer protein (CETP). The RMA values of genes were used for genome wide association as described in Davis et al PLOS Genetics 2015. These data are used to identify candidate genes at loci associated with atherosclerotic lesion size.

    diff --git a/general/datasets/Ucla_bxd_cartilage/experiment-design.rtf b/general/datasets/Ucla_bxd_cartilage/experiment-design.rtf new file mode 100644 index 0000000..93735b8 --- /dev/null +++ b/general/datasets/Ucla_bxd_cartilage/experiment-design.rtf @@ -0,0 +1,10 @@ +

     

    + +

    +
    +
    +
    +   +
     
    +
     
    +
    diff --git a/general/datasets/Ucla_bxd_cartilage/summary.rtf b/general/datasets/Ucla_bxd_cartilage/summary.rtf new file mode 100644 index 0000000..fbd364b --- /dev/null +++ b/general/datasets/Ucla_bxd_cartilage/summary.rtf @@ -0,0 +1,11 @@ +

    Summary of DatasetId 59, Name: UCLA BXD and BXH Cartilage

    + +

    ​ 2011 Apr;26(4):747-60. doi: 10.1002/jbmr.271.

    + +

    Systems genetics analysis of mouse chondrocyte differentiation.

    + +

    Suwanwela JFarber CRHaung BLSong BPan CLyons KMLusis AJ

    + +

    One of the goals of systems genetics is the reconstruction of gene networks that underlie key processes in development and disease. To identify cartilage gene networks that play an important role in bone development, we used a systems genetics approach that integrated microarray gene expression profiles from cartilage and bone phenotypic data from two sets of recombinant inbred strains. Microarray profiles generated from isolated chondrocytes were used to generate weighted gene coexpression networks. This analysis resulted in the identification of subnetworks (modules) of coexpressed genes that then were examined for relationships with bone geometry and density. One module exhibited significant correlation with femur length (r = 0.416), anteroposterior diameter (r = 0.418), mediolateral diameter (r = 0.576), and bone mineral density (r = 0.475). Highly connected genes (n = 28) from this and other modules were tested in vitro using prechondrocyte ATDC5 cells and RNA interference. Five of the 28 genes were found to play a role in chondrocyte differentiation. Two of these, Hspd1 and Cdkn1a, were known previously to function in chondrocyte development, whereas the other three, Bhlhb9, Cugbp1, and Spcs3, are novel genes. Our integrative analysis provided a systems-level view of cartilage development and identified genes that may be involved in bone development.

    + +

    PMID:20954177,  PMCID:PMC3179327,  DOI:10.1002/jbmr.271

    diff --git a/general/datasets/Ucla_bxd_femur_0113_rsn/acknowledgment.rtf b/general/datasets/Ucla_bxd_femur_0113_rsn/acknowledgment.rtf new file mode 100644 index 0000000..841713a --- /dev/null +++ b/general/datasets/Ucla_bxd_femur_0113_rsn/acknowledgment.rtf @@ -0,0 +1 @@ +

    Calabrese G, Bennett BJ, Orozco L, Kang HM, Eskin E, Dombret C, De Backer O, Lusis AJ, Farber CR.

    diff --git a/general/datasets/Ucla_bxd_femur_0113_rsn/citation.rtf b/general/datasets/Ucla_bxd_femur_0113_rsn/citation.rtf new file mode 100644 index 0000000..a3b7aa6 --- /dev/null +++ b/general/datasets/Ucla_bxd_femur_0113_rsn/citation.rtf @@ -0,0 +1 @@ +

    Farber CR, Bennett BJ, Orozco L, Zou W et al. Mouse genome-wide association and systems genetics identify Asxl2 as a regulator of bone mineral density and osteoclastogenesis. PLoS Genet 2011 Apr;7(4):e1002038. PMID: 21490954 Calabrese G, Bennett BJ, Orozco L, Kang HM et al. Systems genetic analysis of osteoblast-lineage cells. PLoS Genet 2012 Dec;8(12):e1003150. PMID: 23300464.

    diff --git a/general/datasets/Ucla_bxd_femur_0113_rsn/experiment-design.rtf b/general/datasets/Ucla_bxd_femur_0113_rsn/experiment-design.rtf new file mode 100644 index 0000000..6a72392 --- /dev/null +++ b/general/datasets/Ucla_bxd_femur_0113_rsn/experiment-design.rtf @@ -0,0 +1 @@ +

    RNA from cortical bone (femoral diaphysis free of marrow) were profiled from 99 Hybrid Mouse Diversity Panel strains were profiled. Sixteen-week old male mice were used in this study. A total of 1-3 mice per strain were arrayed.

    diff --git a/general/datasets/Ucla_bxd_femur_0113_rsn/experiment-type.rtf b/general/datasets/Ucla_bxd_femur_0113_rsn/experiment-type.rtf new file mode 100644 index 0000000..c29a175 --- /dev/null +++ b/general/datasets/Ucla_bxd_femur_0113_rsn/experiment-type.rtf @@ -0,0 +1 @@ +RNA from cortical bone (femoral diaphysis free of marrow) were profiled from 99 Hybrid Mouse Diversity Panel strains were profiled. Sixteen-week old male mice were used in this study. A total of 1-3 mice per strain were arrayed. \ No newline at end of file diff --git a/general/datasets/Ucla_bxd_femur_0113_rsn/platform.rtf b/general/datasets/Ucla_bxd_femur_0113_rsn/platform.rtf new file mode 100644 index 0000000..578985c --- /dev/null +++ b/general/datasets/Ucla_bxd_femur_0113_rsn/platform.rtf @@ -0,0 +1 @@ +

    Illumina mouse-6 v1.1 expression beadchip

    diff --git a/general/datasets/Ucla_bxd_femur_0113_rsn/processing.rtf b/general/datasets/Ucla_bxd_femur_0113_rsn/processing.rtf new file mode 100644 index 0000000..9f66d05 --- /dev/null +++ b/general/datasets/Ucla_bxd_femur_0113_rsn/processing.rtf @@ -0,0 +1 @@ +

    The expression values were transformed using the Variance Stabilizing Transformation (VST), and normalized with the Robust Spline Normalization (RSN) algorithm using the LumiR R package. After normalization, the ComBat software was used to adjust for batch effects using an empirical Bayes method.

    diff --git a/general/datasets/Ucla_bxd_femur_0113_rsn/summary.rtf b/general/datasets/Ucla_bxd_femur_0113_rsn/summary.rtf new file mode 100644 index 0000000..df75fa6 --- /dev/null +++ b/general/datasets/Ucla_bxd_femur_0113_rsn/summary.rtf @@ -0,0 +1 @@ +

    Significant advances have been made in the discovery of genes affecting bone mineral density (BMD); however, our understanding of its genetic basis remains incomplete. In the current study, genome-wide association (GWA) and co-expression network analysis was used in the recently described Hybrid Mouse Diversity Panel (HMDP) to identify and functionally characterize novel BMD genes. In the HMDP, a GWA of total body, spinal and femoral BMD revealed four significant associations (-log10P > 5.39) affecting at least one BMD trait on chromosomes (Chrs.) 7, 11, 12 and 17. The associations implicated a total of 163 genes with each association harboring between 14 and 112 genes. This list was reduced to 26 functional candidates by identifying those genes that were regulated by local eQTL in bone or harbored potentially functional non-synonymous (NS) SNPs. This analysis revealed that the most significant BMD SNP on Chr. 12 was a NS SNP in the additional sex combs like-2 (Asxl2) gene that was predicted to be functional. The involvement of Asxl2 in the regulation of bone mass was confirmed by the observation that Asxl2 knockout mice had reduced BMD. To begin to unravel the mechanism though which Asxl2 influenced BMD, a gene co-expression network was created using cortical bone gene expression microarray data from the HMDP strains. Asxl2 was identified as a member of a co-expression gene module enriched for genes involved in the differentiation of myeloid cells. In bone, osteoclasts are bone-resorbing cell of myeloid origin, suggesting that Asxl2 may play a role in osteoclast differentiation. In agreement, the knockdown of Asxl2 in bone marrow macrophages impaired their ability to form osteoclasts. This study identifies a new regulator of BMD and osteoclastogenesis and highlights the power of GWA and systems genetics in the mouse for dissecting complex genetic traits.

    diff --git a/general/datasets/Ucla_bxd_liv_jan16/citation.rtf b/general/datasets/Ucla_bxd_liv_jan16/citation.rtf new file mode 100644 index 0000000..6d383f0 --- /dev/null +++ b/general/datasets/Ucla_bxd_liv_jan16/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Ucla_bxd_liv_jan16/contributors.rtf b/general/datasets/Ucla_bxd_liv_jan16/contributors.rtf new file mode 100644 index 0000000..8450813 --- /dev/null +++ b/general/datasets/Ucla_bxd_liv_jan16/contributors.rtf @@ -0,0 +1 @@ +

    Lusis AJBennett BDavis R

    diff --git a/general/datasets/Ucla_bxd_liv_jan16/experiment-design.rtf b/general/datasets/Ucla_bxd_liv_jan16/experiment-design.rtf new file mode 100644 index 0000000..715a1a3 --- /dev/null +++ b/general/datasets/Ucla_bxd_liv_jan16/experiment-design.rtf @@ -0,0 +1 @@ +

    GWAS for expression in livers of F1 offspring of inbred strains crossed with C57BL/6J carrying ApoE-Leiden and CETP transgenes fed chow diet for 8 weeks followed by Western diet for 16 weeks

    diff --git a/general/datasets/Ucla_bxd_liv_jan16/platform.rtf b/general/datasets/Ucla_bxd_liv_jan16/platform.rtf new file mode 100644 index 0000000..7659aeb --- /dev/null +++ b/general/datasets/Ucla_bxd_liv_jan16/platform.rtf @@ -0,0 +1 @@ +

    GPL11180 HT_MG-430_PM] Affymetrix HT MG-430 PM Array Plate

    diff --git a/general/datasets/Ucla_bxd_liv_jan16/summary.rtf b/general/datasets/Ucla_bxd_liv_jan16/summary.rtf new file mode 100644 index 0000000..9ffc1be --- /dev/null +++ b/general/datasets/Ucla_bxd_liv_jan16/summary.rtf @@ -0,0 +1 @@ +

    Identify genes in the liver whose expression is under genetic regulation in the Hybrid Mouse Diversity Panel (HMDP). The HMDP comprises classical inbred and recombinant inbred wild type mice. 104 of these strains were bred onto a C57BL/6J background carrying transgenes for both ApoE-Leiden and cholesteryl ester transfer protein (CETP). The RMA values of genes were used for genome wide association as described in Davis et al PLOS Genetics 2015. These data are used to identify candidate genes at loci associated with atherosclerotic lesion size.

    diff --git a/general/datasets/Ucla_bxd_on_femur_0113_rsn/acknowledgment.rtf b/general/datasets/Ucla_bxd_on_femur_0113_rsn/acknowledgment.rtf new file mode 100644 index 0000000..841713a --- /dev/null +++ b/general/datasets/Ucla_bxd_on_femur_0113_rsn/acknowledgment.rtf @@ -0,0 +1 @@ +

    Calabrese G, Bennett BJ, Orozco L, Kang HM, Eskin E, Dombret C, De Backer O, Lusis AJ, Farber CR.

    diff --git a/general/datasets/Ucla_bxd_on_femur_0113_rsn/citation.rtf b/general/datasets/Ucla_bxd_on_femur_0113_rsn/citation.rtf new file mode 100644 index 0000000..a3b7aa6 --- /dev/null +++ b/general/datasets/Ucla_bxd_on_femur_0113_rsn/citation.rtf @@ -0,0 +1 @@ +

    Farber CR, Bennett BJ, Orozco L, Zou W et al. Mouse genome-wide association and systems genetics identify Asxl2 as a regulator of bone mineral density and osteoclastogenesis. PLoS Genet 2011 Apr;7(4):e1002038. PMID: 21490954 Calabrese G, Bennett BJ, Orozco L, Kang HM et al. Systems genetic analysis of osteoblast-lineage cells. PLoS Genet 2012 Dec;8(12):e1003150. PMID: 23300464.

    diff --git a/general/datasets/Ucla_bxd_on_femur_0113_rsn/experiment-design.rtf b/general/datasets/Ucla_bxd_on_femur_0113_rsn/experiment-design.rtf new file mode 100644 index 0000000..6a72392 --- /dev/null +++ b/general/datasets/Ucla_bxd_on_femur_0113_rsn/experiment-design.rtf @@ -0,0 +1 @@ +

    RNA from cortical bone (femoral diaphysis free of marrow) were profiled from 99 Hybrid Mouse Diversity Panel strains were profiled. Sixteen-week old male mice were used in this study. A total of 1-3 mice per strain were arrayed.

    diff --git a/general/datasets/Ucla_bxd_on_femur_0113_rsn/experiment-type.rtf b/general/datasets/Ucla_bxd_on_femur_0113_rsn/experiment-type.rtf new file mode 100644 index 0000000..c29a175 --- /dev/null +++ b/general/datasets/Ucla_bxd_on_femur_0113_rsn/experiment-type.rtf @@ -0,0 +1 @@ +RNA from cortical bone (femoral diaphysis free of marrow) were profiled from 99 Hybrid Mouse Diversity Panel strains were profiled. Sixteen-week old male mice were used in this study. A total of 1-3 mice per strain were arrayed. \ No newline at end of file diff --git a/general/datasets/Ucla_bxd_on_femur_0113_rsn/platform.rtf b/general/datasets/Ucla_bxd_on_femur_0113_rsn/platform.rtf new file mode 100644 index 0000000..578985c --- /dev/null +++ b/general/datasets/Ucla_bxd_on_femur_0113_rsn/platform.rtf @@ -0,0 +1 @@ +

    Illumina mouse-6 v1.1 expression beadchip

    diff --git a/general/datasets/Ucla_bxd_on_femur_0113_rsn/processing.rtf b/general/datasets/Ucla_bxd_on_femur_0113_rsn/processing.rtf new file mode 100644 index 0000000..9f66d05 --- /dev/null +++ b/general/datasets/Ucla_bxd_on_femur_0113_rsn/processing.rtf @@ -0,0 +1 @@ +

    The expression values were transformed using the Variance Stabilizing Transformation (VST), and normalized with the Robust Spline Normalization (RSN) algorithm using the LumiR R package. After normalization, the ComBat software was used to adjust for batch effects using an empirical Bayes method.

    diff --git a/general/datasets/Ucla_bxd_on_femur_0113_rsn/summary.rtf b/general/datasets/Ucla_bxd_on_femur_0113_rsn/summary.rtf new file mode 100644 index 0000000..df75fa6 --- /dev/null +++ b/general/datasets/Ucla_bxd_on_femur_0113_rsn/summary.rtf @@ -0,0 +1 @@ +

    Significant advances have been made in the discovery of genes affecting bone mineral density (BMD); however, our understanding of its genetic basis remains incomplete. In the current study, genome-wide association (GWA) and co-expression network analysis was used in the recently described Hybrid Mouse Diversity Panel (HMDP) to identify and functionally characterize novel BMD genes. In the HMDP, a GWA of total body, spinal and femoral BMD revealed four significant associations (-log10P > 5.39) affecting at least one BMD trait on chromosomes (Chrs.) 7, 11, 12 and 17. The associations implicated a total of 163 genes with each association harboring between 14 and 112 genes. This list was reduced to 26 functional candidates by identifying those genes that were regulated by local eQTL in bone or harbored potentially functional non-synonymous (NS) SNPs. This analysis revealed that the most significant BMD SNP on Chr. 12 was a NS SNP in the additional sex combs like-2 (Asxl2) gene that was predicted to be functional. The involvement of Asxl2 in the regulation of bone mass was confirmed by the observation that Asxl2 knockout mice had reduced BMD. To begin to unravel the mechanism though which Asxl2 influenced BMD, a gene co-expression network was created using cortical bone gene expression microarray data from the HMDP strains. Asxl2 was identified as a member of a co-expression gene module enriched for genes involved in the differentiation of myeloid cells. In bone, osteoclasts are bone-resorbing cell of myeloid origin, suggesting that Asxl2 may play a role in osteoclast differentiation. In agreement, the knockdown of Asxl2 in bone marrow macrophages impaired their ability to form osteoclasts. This study identifies a new regulator of BMD and osteoclastogenesis and highlights the power of GWA and systems genetics in the mouse for dissecting complex genetic traits.

    diff --git a/general/datasets/Ucla_bxdbxh_cartilage/experiment-design.rtf b/general/datasets/Ucla_bxdbxh_cartilage/experiment-design.rtf new file mode 100644 index 0000000..93735b8 --- /dev/null +++ b/general/datasets/Ucla_bxdbxh_cartilage/experiment-design.rtf @@ -0,0 +1,10 @@ +

     

    + +

    +
    +
    +
    +   +
     
    +
     
    +
    diff --git a/general/datasets/Ucla_bxdbxh_cartilage/summary.rtf b/general/datasets/Ucla_bxdbxh_cartilage/summary.rtf new file mode 100644 index 0000000..fbd364b --- /dev/null +++ b/general/datasets/Ucla_bxdbxh_cartilage/summary.rtf @@ -0,0 +1,11 @@ +

    Summary of DatasetId 59, Name: UCLA BXD and BXH Cartilage

    + +

    ​ 2011 Apr;26(4):747-60. doi: 10.1002/jbmr.271.

    + +

    Systems genetics analysis of mouse chondrocyte differentiation.

    + +

    Suwanwela JFarber CRHaung BLSong BPan CLyons KMLusis AJ

    + +

    One of the goals of systems genetics is the reconstruction of gene networks that underlie key processes in development and disease. To identify cartilage gene networks that play an important role in bone development, we used a systems genetics approach that integrated microarray gene expression profiles from cartilage and bone phenotypic data from two sets of recombinant inbred strains. Microarray profiles generated from isolated chondrocytes were used to generate weighted gene coexpression networks. This analysis resulted in the identification of subnetworks (modules) of coexpressed genes that then were examined for relationships with bone geometry and density. One module exhibited significant correlation with femur length (r = 0.416), anteroposterior diameter (r = 0.418), mediolateral diameter (r = 0.576), and bone mineral density (r = 0.475). Highly connected genes (n = 28) from this and other modules were tested in vitro using prechondrocyte ATDC5 cells and RNA interference. Five of the 28 genes were found to play a role in chondrocyte differentiation. Two of these, Hspd1 and Cdkn1a, were known previously to function in chondrocyte development, whereas the other three, Bhlhb9, Cugbp1, and Spcs3, are novel genes. Our integrative analysis provided a systems-level view of cartilage development and identified genes that may be involved in bone development.

    + +

    PMID:20954177,  PMCID:PMC3179327,  DOI:10.1002/jbmr.271

    diff --git a/general/datasets/Ucla_bxdbxh_cartilage_v2/experiment-design.rtf b/general/datasets/Ucla_bxdbxh_cartilage_v2/experiment-design.rtf new file mode 100644 index 0000000..93735b8 --- /dev/null +++ b/general/datasets/Ucla_bxdbxh_cartilage_v2/experiment-design.rtf @@ -0,0 +1,10 @@ +

     

    + +

    +
    +
    +
    +   +
     
    +
     
    +
    diff --git a/general/datasets/Ucla_bxdbxh_cartilage_v2/summary.rtf b/general/datasets/Ucla_bxdbxh_cartilage_v2/summary.rtf new file mode 100644 index 0000000..fbd364b --- /dev/null +++ b/general/datasets/Ucla_bxdbxh_cartilage_v2/summary.rtf @@ -0,0 +1,11 @@ +

    Summary of DatasetId 59, Name: UCLA BXD and BXH Cartilage

    + +

    ​ 2011 Apr;26(4):747-60. doi: 10.1002/jbmr.271.

    + +

    Systems genetics analysis of mouse chondrocyte differentiation.

    + +

    Suwanwela JFarber CRHaung BLSong BPan CLyons KMLusis AJ

    + +

    One of the goals of systems genetics is the reconstruction of gene networks that underlie key processes in development and disease. To identify cartilage gene networks that play an important role in bone development, we used a systems genetics approach that integrated microarray gene expression profiles from cartilage and bone phenotypic data from two sets of recombinant inbred strains. Microarray profiles generated from isolated chondrocytes were used to generate weighted gene coexpression networks. This analysis resulted in the identification of subnetworks (modules) of coexpressed genes that then were examined for relationships with bone geometry and density. One module exhibited significant correlation with femur length (r = 0.416), anteroposterior diameter (r = 0.418), mediolateral diameter (r = 0.576), and bone mineral density (r = 0.475). Highly connected genes (n = 28) from this and other modules were tested in vitro using prechondrocyte ATDC5 cells and RNA interference. Five of the 28 genes were found to play a role in chondrocyte differentiation. Two of these, Hspd1 and Cdkn1a, were known previously to function in chondrocyte development, whereas the other three, Bhlhb9, Cugbp1, and Spcs3, are novel genes. Our integrative analysis provided a systems-level view of cartilage development and identified genes that may be involved in bone development.

    + +

    PMID:20954177,  PMCID:PMC3179327,  DOI:10.1002/jbmr.271

    diff --git a/general/datasets/Ucla_bxh_cartilage/experiment-design.rtf b/general/datasets/Ucla_bxh_cartilage/experiment-design.rtf new file mode 100644 index 0000000..93735b8 --- /dev/null +++ b/general/datasets/Ucla_bxh_cartilage/experiment-design.rtf @@ -0,0 +1,10 @@ +

     

    + +

    +
    +
    +
    +   +
     
    +
     
    +
    diff --git a/general/datasets/Ucla_bxh_cartilage/summary.rtf b/general/datasets/Ucla_bxh_cartilage/summary.rtf new file mode 100644 index 0000000..fbd364b --- /dev/null +++ b/general/datasets/Ucla_bxh_cartilage/summary.rtf @@ -0,0 +1,11 @@ +

    Summary of DatasetId 59, Name: UCLA BXD and BXH Cartilage

    + +

    ​ 2011 Apr;26(4):747-60. doi: 10.1002/jbmr.271.

    + +

    Systems genetics analysis of mouse chondrocyte differentiation.

    + +

    Suwanwela JFarber CRHaung BLSong BPan CLyons KMLusis AJ

    + +

    One of the goals of systems genetics is the reconstruction of gene networks that underlie key processes in development and disease. To identify cartilage gene networks that play an important role in bone development, we used a systems genetics approach that integrated microarray gene expression profiles from cartilage and bone phenotypic data from two sets of recombinant inbred strains. Microarray profiles generated from isolated chondrocytes were used to generate weighted gene coexpression networks. This analysis resulted in the identification of subnetworks (modules) of coexpressed genes that then were examined for relationships with bone geometry and density. One module exhibited significant correlation with femur length (r = 0.416), anteroposterior diameter (r = 0.418), mediolateral diameter (r = 0.576), and bone mineral density (r = 0.475). Highly connected genes (n = 28) from this and other modules were tested in vitro using prechondrocyte ATDC5 cells and RNA interference. Five of the 28 genes were found to play a role in chondrocyte differentiation. Two of these, Hspd1 and Cdkn1a, were known previously to function in chondrocyte development, whereas the other three, Bhlhb9, Cugbp1, and Spcs3, are novel genes. Our integrative analysis provided a systems-level view of cartilage development and identified genes that may be involved in bone development.

    + +

    PMID:20954177,  PMCID:PMC3179327,  DOI:10.1002/jbmr.271

    diff --git a/general/datasets/Ucla_bxh_femur_0113_rsn/experiment-type.rtf b/general/datasets/Ucla_bxh_femur_0113_rsn/experiment-type.rtf new file mode 100644 index 0000000..c29a175 --- /dev/null +++ b/general/datasets/Ucla_bxh_femur_0113_rsn/experiment-type.rtf @@ -0,0 +1 @@ +RNA from cortical bone (femoral diaphysis free of marrow) were profiled from 99 Hybrid Mouse Diversity Panel strains were profiled. Sixteen-week old male mice were used in this study. A total of 1-3 mice per strain were arrayed. \ No newline at end of file diff --git a/general/datasets/Ucla_bxh_femur_0113_rsn/summary.rtf b/general/datasets/Ucla_bxh_femur_0113_rsn/summary.rtf new file mode 100644 index 0000000..b5cf311 --- /dev/null +++ b/general/datasets/Ucla_bxh_femur_0113_rsn/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 164, Name: UCLA GSE27483 BXH Bone Femur ILM Mouse WG-6 v1, v1.1 (Jan13) \ No newline at end of file diff --git a/general/datasets/Ucla_bxhbxd_cartilage/experiment-design.rtf b/general/datasets/Ucla_bxhbxd_cartilage/experiment-design.rtf new file mode 100644 index 0000000..93735b8 --- /dev/null +++ b/general/datasets/Ucla_bxhbxd_cartilage/experiment-design.rtf @@ -0,0 +1,10 @@ +

     

    + +

    +
    +
    +
    +   +
     
    +
     
    +
    diff --git a/general/datasets/Ucla_bxhbxd_cartilage/summary.rtf b/general/datasets/Ucla_bxhbxd_cartilage/summary.rtf new file mode 100644 index 0000000..fbd364b --- /dev/null +++ b/general/datasets/Ucla_bxhbxd_cartilage/summary.rtf @@ -0,0 +1,11 @@ +

    Summary of DatasetId 59, Name: UCLA BXD and BXH Cartilage

    + +

    ​ 2011 Apr;26(4):747-60. doi: 10.1002/jbmr.271.

    + +

    Systems genetics analysis of mouse chondrocyte differentiation.

    + +

    Suwanwela JFarber CRHaung BLSong BPan CLyons KMLusis AJ

    + +

    One of the goals of systems genetics is the reconstruction of gene networks that underlie key processes in development and disease. To identify cartilage gene networks that play an important role in bone development, we used a systems genetics approach that integrated microarray gene expression profiles from cartilage and bone phenotypic data from two sets of recombinant inbred strains. Microarray profiles generated from isolated chondrocytes were used to generate weighted gene coexpression networks. This analysis resulted in the identification of subnetworks (modules) of coexpressed genes that then were examined for relationships with bone geometry and density. One module exhibited significant correlation with femur length (r = 0.416), anteroposterior diameter (r = 0.418), mediolateral diameter (r = 0.576), and bone mineral density (r = 0.475). Highly connected genes (n = 28) from this and other modules were tested in vitro using prechondrocyte ATDC5 cells and RNA interference. Five of the 28 genes were found to play a role in chondrocyte differentiation. Two of these, Hspd1 and Cdkn1a, were known previously to function in chondrocyte development, whereas the other three, Bhlhb9, Cugbp1, and Spcs3, are novel genes. Our integrative analysis provided a systems-level view of cartilage development and identified genes that may be involved in bone development.

    + +

    PMID:20954177,  PMCID:PMC3179327,  DOI:10.1002/jbmr.271

    diff --git a/general/datasets/Ucla_bxhbxd_cartilage_v2/experiment-design.rtf b/general/datasets/Ucla_bxhbxd_cartilage_v2/experiment-design.rtf new file mode 100644 index 0000000..93735b8 --- /dev/null +++ b/general/datasets/Ucla_bxhbxd_cartilage_v2/experiment-design.rtf @@ -0,0 +1,10 @@ +

     

    + +

    +
    +
    +
    +   +
     
    +
     
    +
    diff --git a/general/datasets/Ucla_bxhbxd_cartilage_v2/summary.rtf b/general/datasets/Ucla_bxhbxd_cartilage_v2/summary.rtf new file mode 100644 index 0000000..fbd364b --- /dev/null +++ b/general/datasets/Ucla_bxhbxd_cartilage_v2/summary.rtf @@ -0,0 +1,11 @@ +

    Summary of DatasetId 59, Name: UCLA BXD and BXH Cartilage

    + +

    ​ 2011 Apr;26(4):747-60. doi: 10.1002/jbmr.271.

    + +

    Systems genetics analysis of mouse chondrocyte differentiation.

    + +

    Suwanwela JFarber CRHaung BLSong BPan CLyons KMLusis AJ

    + +

    One of the goals of systems genetics is the reconstruction of gene networks that underlie key processes in development and disease. To identify cartilage gene networks that play an important role in bone development, we used a systems genetics approach that integrated microarray gene expression profiles from cartilage and bone phenotypic data from two sets of recombinant inbred strains. Microarray profiles generated from isolated chondrocytes were used to generate weighted gene coexpression networks. This analysis resulted in the identification of subnetworks (modules) of coexpressed genes that then were examined for relationships with bone geometry and density. One module exhibited significant correlation with femur length (r = 0.416), anteroposterior diameter (r = 0.418), mediolateral diameter (r = 0.576), and bone mineral density (r = 0.475). Highly connected genes (n = 28) from this and other modules were tested in vitro using prechondrocyte ATDC5 cells and RNA interference. Five of the 28 genes were found to play a role in chondrocyte differentiation. Two of these, Hspd1 and Cdkn1a, were known previously to function in chondrocyte development, whereas the other three, Bhlhb9, Cugbp1, and Spcs3, are novel genes. Our integrative analysis provided a systems-level view of cartilage development and identified genes that may be involved in bone development.

    + +

    PMID:20954177,  PMCID:PMC3179327,  DOI:10.1002/jbmr.271

    diff --git a/general/datasets/Ucla_ctb6b6ctf2_adipose_2005/summary.rtf b/general/datasets/Ucla_ctb6b6ctf2_adipose_2005/summary.rtf new file mode 100644 index 0000000..5cbfe56 --- /dev/null +++ b/general/datasets/Ucla_ctb6b6ctf2_adipose_2005/summary.rtf @@ -0,0 +1 @@ +

    Summary of DatasetId 51, Name: UCLA CTB6B6CTF2 Adipose mlratio

    diff --git a/general/datasets/Ucla_ctb6b6ctf2_adipose_female/summary.rtf b/general/datasets/Ucla_ctb6b6ctf2_adipose_female/summary.rtf new file mode 100644 index 0000000..5cbfe56 --- /dev/null +++ b/general/datasets/Ucla_ctb6b6ctf2_adipose_female/summary.rtf @@ -0,0 +1 @@ +

    Summary of DatasetId 51, Name: UCLA CTB6B6CTF2 Adipose mlratio

    diff --git a/general/datasets/Ucla_ctb6b6ctf2_adipose_male/summary.rtf b/general/datasets/Ucla_ctb6b6ctf2_adipose_male/summary.rtf new file mode 100644 index 0000000..5cbfe56 --- /dev/null +++ b/general/datasets/Ucla_ctb6b6ctf2_adipose_male/summary.rtf @@ -0,0 +1 @@ +

    Summary of DatasetId 51, Name: UCLA CTB6B6CTF2 Adipose mlratio

    diff --git a/general/datasets/Ucla_ctb6b6ctf2_brain_2005/summary.rtf b/general/datasets/Ucla_ctb6b6ctf2_brain_2005/summary.rtf new file mode 100644 index 0000000..9d8eb19 --- /dev/null +++ b/general/datasets/Ucla_ctb6b6ctf2_brain_2005/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 52, Name: UCLA CTB6/B6CTF2 Brain (2005) mlratio \ No newline at end of file diff --git a/general/datasets/Ucla_ctb6b6ctf2_brain_female/summary.rtf b/general/datasets/Ucla_ctb6b6ctf2_brain_female/summary.rtf new file mode 100644 index 0000000..9d8eb19 --- /dev/null +++ b/general/datasets/Ucla_ctb6b6ctf2_brain_female/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 52, Name: UCLA CTB6/B6CTF2 Brain (2005) mlratio \ No newline at end of file diff --git a/general/datasets/Ucla_ctb6b6ctf2_brain_male/summary.rtf b/general/datasets/Ucla_ctb6b6ctf2_brain_male/summary.rtf new file mode 100644 index 0000000..9d8eb19 --- /dev/null +++ b/general/datasets/Ucla_ctb6b6ctf2_brain_male/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 52, Name: UCLA CTB6/B6CTF2 Brain (2005) mlratio \ No newline at end of file diff --git a/general/datasets/Ucla_ctb6b6ctf2_liver_2005/summary.rtf b/general/datasets/Ucla_ctb6b6ctf2_liver_2005/summary.rtf new file mode 100644 index 0000000..fdd0e9f --- /dev/null +++ b/general/datasets/Ucla_ctb6b6ctf2_liver_2005/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 53, Name: UCLA CTB6B6CTF2 Liver Female mlratio ** \ No newline at end of file diff --git a/general/datasets/Ucla_ctb6b6ctf2_liver_female/summary.rtf b/general/datasets/Ucla_ctb6b6ctf2_liver_female/summary.rtf new file mode 100644 index 0000000..fdd0e9f --- /dev/null +++ b/general/datasets/Ucla_ctb6b6ctf2_liver_female/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 53, Name: UCLA CTB6B6CTF2 Liver Female mlratio ** \ No newline at end of file diff --git a/general/datasets/Ucla_ctb6b6ctf2_liver_male/summary.rtf b/general/datasets/Ucla_ctb6b6ctf2_liver_male/summary.rtf new file mode 100644 index 0000000..fdd0e9f --- /dev/null +++ b/general/datasets/Ucla_ctb6b6ctf2_liver_male/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 53, Name: UCLA CTB6B6CTF2 Liver Female mlratio ** \ No newline at end of file diff --git a/general/datasets/Ucla_ctb6b6ctf2_muscle_2005/summary.rtf b/general/datasets/Ucla_ctb6b6ctf2_muscle_2005/summary.rtf new file mode 100644 index 0000000..f1e6b81 --- /dev/null +++ b/general/datasets/Ucla_ctb6b6ctf2_muscle_2005/summary.rtf @@ -0,0 +1 @@ +

    Summary of DatasetId 54, Name: UCLA CTB6B6CTF2 Muscle Female mlratio **

    diff --git a/general/datasets/Ucla_ctb6b6ctf2_muscle_female/summary.rtf b/general/datasets/Ucla_ctb6b6ctf2_muscle_female/summary.rtf new file mode 100644 index 0000000..f1e6b81 --- /dev/null +++ b/general/datasets/Ucla_ctb6b6ctf2_muscle_female/summary.rtf @@ -0,0 +1 @@ +

    Summary of DatasetId 54, Name: UCLA CTB6B6CTF2 Muscle Female mlratio **

    diff --git a/general/datasets/Ucla_ctb6b6ctf2_muscle_male/summary.rtf b/general/datasets/Ucla_ctb6b6ctf2_muscle_male/summary.rtf new file mode 100644 index 0000000..f1e6b81 --- /dev/null +++ b/general/datasets/Ucla_ctb6b6ctf2_muscle_male/summary.rtf @@ -0,0 +1 @@ +

    Summary of DatasetId 54, Name: UCLA CTB6B6CTF2 Muscle Female mlratio **

    diff --git a/general/datasets/Ucla_cxb_aor_jan16/citation.rtf b/general/datasets/Ucla_cxb_aor_jan16/citation.rtf new file mode 100644 index 0000000..6d383f0 --- /dev/null +++ b/general/datasets/Ucla_cxb_aor_jan16/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Ucla_cxb_aor_jan16/contributors.rtf b/general/datasets/Ucla_cxb_aor_jan16/contributors.rtf new file mode 100644 index 0000000..8450813 --- /dev/null +++ b/general/datasets/Ucla_cxb_aor_jan16/contributors.rtf @@ -0,0 +1 @@ +

    Lusis AJBennett BDavis R

    diff --git a/general/datasets/Ucla_cxb_aor_jan16/experiment-design.rtf b/general/datasets/Ucla_cxb_aor_jan16/experiment-design.rtf new file mode 100644 index 0000000..1113b37 --- /dev/null +++ b/general/datasets/Ucla_cxb_aor_jan16/experiment-design.rtf @@ -0,0 +1 @@ +

    GWAS for expression in aortas of F1 offspring of inbred strains crossed with C57BL/6J carrying ApoE-Leiden and CETP transgenes fed chow diet for 8 weeks followed by Western diet for 16 weeks

    diff --git a/general/datasets/Ucla_cxb_aor_jan16/platform.rtf b/general/datasets/Ucla_cxb_aor_jan16/platform.rtf new file mode 100644 index 0000000..41439e8 --- /dev/null +++ b/general/datasets/Ucla_cxb_aor_jan16/platform.rtf @@ -0,0 +1 @@ +

    GPL11180 HT_MG-430_PM] Affymetrix HT MG-430 PM Array Plate

    diff --git a/general/datasets/Ucla_cxb_aor_jan16/specifics.rtf b/general/datasets/Ucla_cxb_aor_jan16/specifics.rtf new file mode 100644 index 0000000..20dd05b --- /dev/null +++ b/general/datasets/Ucla_cxb_aor_jan16/specifics.rtf @@ -0,0 +1 @@ +Group CXB \ No newline at end of file diff --git a/general/datasets/Ucla_cxb_aor_jan16/summary.rtf b/general/datasets/Ucla_cxb_aor_jan16/summary.rtf new file mode 100644 index 0000000..59e49a1 --- /dev/null +++ b/general/datasets/Ucla_cxb_aor_jan16/summary.rtf @@ -0,0 +1 @@ +

    Identify genes in the aorta whose expression is under genetic regulation in the Hybrid Mouse Diversity Panel (HMDP). The HMDP comprises classical inbred and recombinant inbred wild type mice. 104 of these strains were bred onto a C57BL/6J background carrying transgenes for both ApoE-Leiden and cholesteryl ester transfer protein (CETP). The RMA values of genes were used for genome wide association as described in Davis et al PLOS Genetics 2015. These data are used to identify candidate genes at loci associated with atherosclerotic lesion size.

    diff --git a/general/datasets/Ucla_cxb_liv_jan16/citation.rtf b/general/datasets/Ucla_cxb_liv_jan16/citation.rtf new file mode 100644 index 0000000..6d383f0 --- /dev/null +++ b/general/datasets/Ucla_cxb_liv_jan16/citation.rtf @@ -0,0 +1,3 @@ + diff --git a/general/datasets/Ucla_cxb_liv_jan16/contributors.rtf b/general/datasets/Ucla_cxb_liv_jan16/contributors.rtf new file mode 100644 index 0000000..8450813 --- /dev/null +++ b/general/datasets/Ucla_cxb_liv_jan16/contributors.rtf @@ -0,0 +1 @@ +

    Lusis AJBennett BDavis R

    diff --git a/general/datasets/Ucla_cxb_liv_jan16/experiment-design.rtf b/general/datasets/Ucla_cxb_liv_jan16/experiment-design.rtf new file mode 100644 index 0000000..715a1a3 --- /dev/null +++ b/general/datasets/Ucla_cxb_liv_jan16/experiment-design.rtf @@ -0,0 +1 @@ +

    GWAS for expression in livers of F1 offspring of inbred strains crossed with C57BL/6J carrying ApoE-Leiden and CETP transgenes fed chow diet for 8 weeks followed by Western diet for 16 weeks

    diff --git a/general/datasets/Ucla_cxb_liv_jan16/platform.rtf b/general/datasets/Ucla_cxb_liv_jan16/platform.rtf new file mode 100644 index 0000000..7659aeb --- /dev/null +++ b/general/datasets/Ucla_cxb_liv_jan16/platform.rtf @@ -0,0 +1 @@ +

    GPL11180 HT_MG-430_PM] Affymetrix HT MG-430 PM Array Plate

    diff --git a/general/datasets/Ucla_cxb_liv_jan16/specifics.rtf b/general/datasets/Ucla_cxb_liv_jan16/specifics.rtf new file mode 100644 index 0000000..20dd05b --- /dev/null +++ b/general/datasets/Ucla_cxb_liv_jan16/specifics.rtf @@ -0,0 +1 @@ +Group CXB \ No newline at end of file diff --git a/general/datasets/Ucla_cxb_liv_jan16/summary.rtf b/general/datasets/Ucla_cxb_liv_jan16/summary.rtf new file mode 100644 index 0000000..9ffc1be --- /dev/null +++ b/general/datasets/Ucla_cxb_liv_jan16/summary.rtf @@ -0,0 +1 @@ +

    Identify genes in the liver whose expression is under genetic regulation in the Hybrid Mouse Diversity Panel (HMDP). The HMDP comprises classical inbred and recombinant inbred wild type mice. 104 of these strains were bred onto a C57BL/6J background carrying transgenes for both ApoE-Leiden and cholesteryl ester transfer protein (CETP). The RMA values of genes were used for genome wide association as described in Davis et al PLOS Genetics 2015. These data are used to identify candidate genes at loci associated with atherosclerotic lesion size.

    diff --git a/general/datasets/Ucla_mdp_femur_0113_rsn/acknowledgment.rtf b/general/datasets/Ucla_mdp_femur_0113_rsn/acknowledgment.rtf new file mode 100644 index 0000000..841713a --- /dev/null +++ b/general/datasets/Ucla_mdp_femur_0113_rsn/acknowledgment.rtf @@ -0,0 +1 @@ +

    Calabrese G, Bennett BJ, Orozco L, Kang HM, Eskin E, Dombret C, De Backer O, Lusis AJ, Farber CR.

    diff --git a/general/datasets/Ucla_mdp_femur_0113_rsn/citation.rtf b/general/datasets/Ucla_mdp_femur_0113_rsn/citation.rtf new file mode 100644 index 0000000..a3b7aa6 --- /dev/null +++ b/general/datasets/Ucla_mdp_femur_0113_rsn/citation.rtf @@ -0,0 +1 @@ +

    Farber CR, Bennett BJ, Orozco L, Zou W et al. Mouse genome-wide association and systems genetics identify Asxl2 as a regulator of bone mineral density and osteoclastogenesis. PLoS Genet 2011 Apr;7(4):e1002038. PMID: 21490954 Calabrese G, Bennett BJ, Orozco L, Kang HM et al. Systems genetic analysis of osteoblast-lineage cells. PLoS Genet 2012 Dec;8(12):e1003150. PMID: 23300464.

    diff --git a/general/datasets/Ucla_mdp_femur_0113_rsn/experiment-design.rtf b/general/datasets/Ucla_mdp_femur_0113_rsn/experiment-design.rtf new file mode 100644 index 0000000..6a72392 --- /dev/null +++ b/general/datasets/Ucla_mdp_femur_0113_rsn/experiment-design.rtf @@ -0,0 +1 @@ +

    RNA from cortical bone (femoral diaphysis free of marrow) were profiled from 99 Hybrid Mouse Diversity Panel strains were profiled. Sixteen-week old male mice were used in this study. A total of 1-3 mice per strain were arrayed.

    diff --git a/general/datasets/Ucla_mdp_femur_0113_rsn/experiment-type.rtf b/general/datasets/Ucla_mdp_femur_0113_rsn/experiment-type.rtf new file mode 100644 index 0000000..c29a175 --- /dev/null +++ b/general/datasets/Ucla_mdp_femur_0113_rsn/experiment-type.rtf @@ -0,0 +1 @@ +RNA from cortical bone (femoral diaphysis free of marrow) were profiled from 99 Hybrid Mouse Diversity Panel strains were profiled. Sixteen-week old male mice were used in this study. A total of 1-3 mice per strain were arrayed. \ No newline at end of file diff --git a/general/datasets/Ucla_mdp_femur_0113_rsn/platform.rtf b/general/datasets/Ucla_mdp_femur_0113_rsn/platform.rtf new file mode 100644 index 0000000..578985c --- /dev/null +++ b/general/datasets/Ucla_mdp_femur_0113_rsn/platform.rtf @@ -0,0 +1 @@ +

    Illumina mouse-6 v1.1 expression beadchip

    diff --git a/general/datasets/Ucla_mdp_femur_0113_rsn/processing.rtf b/general/datasets/Ucla_mdp_femur_0113_rsn/processing.rtf new file mode 100644 index 0000000..9f66d05 --- /dev/null +++ b/general/datasets/Ucla_mdp_femur_0113_rsn/processing.rtf @@ -0,0 +1 @@ +

    The expression values were transformed using the Variance Stabilizing Transformation (VST), and normalized with the Robust Spline Normalization (RSN) algorithm using the LumiR R package. After normalization, the ComBat software was used to adjust for batch effects using an empirical Bayes method.

    diff --git a/general/datasets/Ucla_mdp_femur_0113_rsn/summary.rtf b/general/datasets/Ucla_mdp_femur_0113_rsn/summary.rtf new file mode 100644 index 0000000..df75fa6 --- /dev/null +++ b/general/datasets/Ucla_mdp_femur_0113_rsn/summary.rtf @@ -0,0 +1 @@ +

    Significant advances have been made in the discovery of genes affecting bone mineral density (BMD); however, our understanding of its genetic basis remains incomplete. In the current study, genome-wide association (GWA) and co-expression network analysis was used in the recently described Hybrid Mouse Diversity Panel (HMDP) to identify and functionally characterize novel BMD genes. In the HMDP, a GWA of total body, spinal and femoral BMD revealed four significant associations (-log10P > 5.39) affecting at least one BMD trait on chromosomes (Chrs.) 7, 11, 12 and 17. The associations implicated a total of 163 genes with each association harboring between 14 and 112 genes. This list was reduced to 26 functional candidates by identifying those genes that were regulated by local eQTL in bone or harbored potentially functional non-synonymous (NS) SNPs. This analysis revealed that the most significant BMD SNP on Chr. 12 was a NS SNP in the additional sex combs like-2 (Asxl2) gene that was predicted to be functional. The involvement of Asxl2 in the regulation of bone mass was confirmed by the observation that Asxl2 knockout mice had reduced BMD. To begin to unravel the mechanism though which Asxl2 influenced BMD, a gene co-expression network was created using cortical bone gene expression microarray data from the HMDP strains. Asxl2 was identified as a member of a co-expression gene module enriched for genes involved in the differentiation of myeloid cells. In bone, osteoclasts are bone-resorbing cell of myeloid origin, suggesting that Asxl2 may play a role in osteoclast differentiation. In agreement, the knockdown of Asxl2 in bone marrow macrophages impaired their ability to form osteoclasts. This study identifies a new regulator of BMD and osteoclastogenesis and highlights the power of GWA and systems genetics in the mouse for dissecting complex genetic traits.

    diff --git a/general/datasets/Uconn_rgc_rseq_log2_0918/specifics.rtf b/general/datasets/Uconn_rgc_rseq_log2_0918/specifics.rtf new file mode 100644 index 0000000..843d470 --- /dev/null +++ b/general/datasets/Uconn_rgc_rseq_log2_0918/specifics.rtf @@ -0,0 +1 @@ +Log2 \ No newline at end of file diff --git a/general/datasets/Uconn_rgc_rseq_log2_0918/summary.rtf b/general/datasets/Uconn_rgc_rseq_log2_0918/summary.rtf new file mode 100644 index 0000000..aab94b8 --- /dev/null +++ b/general/datasets/Uconn_rgc_rseq_log2_0918/summary.rtf @@ -0,0 +1,3 @@ +

    Retinal ganglion cells (RGCs) convey the major output of information collected from the eye to the brain. Thirty subtypes of RGCs have been identified to date. Here, we analyze 6225 RGCs (average of 5000 genes per cell) from right and left eyes by single-cell RNA-seq and classify them into 40 subtypes using clustering algorithms. We identify additional subtypes and markers, as well as transcription factors predicted to cooperate in specifying RGC subtypes. Zic1, a marker of the right eye-enriched subtype, is validated by immunostaining in situ. Runx1 and Fst, the markers of other subtypes, are validated in purified RGCs by fluorescent in situ hybridization (FISH) and immunostaining. We show the extent of gene expression variability needed for subtype segregation, and we show a hierarchy in diversification from a cell-type population to subtypes. Finally, we present a website for comparing the gene expression of RGC subtypes.

    + +

    https://www.nature.com/articles/s41467-018-05134-3

    diff --git a/general/datasets/Uconn_rgc_rseq_r_0918/specifics.rtf b/general/datasets/Uconn_rgc_rseq_r_0918/specifics.rtf new file mode 100644 index 0000000..8c82808 --- /dev/null +++ b/general/datasets/Uconn_rgc_rseq_r_0918/specifics.rtf @@ -0,0 +1 @@ +Raw data \ No newline at end of file diff --git a/general/datasets/Uconn_rgc_rseq_r_0918/summary.rtf b/general/datasets/Uconn_rgc_rseq_r_0918/summary.rtf new file mode 100644 index 0000000..aab94b8 --- /dev/null +++ b/general/datasets/Uconn_rgc_rseq_r_0918/summary.rtf @@ -0,0 +1,3 @@ +

    Retinal ganglion cells (RGCs) convey the major output of information collected from the eye to the brain. Thirty subtypes of RGCs have been identified to date. Here, we analyze 6225 RGCs (average of 5000 genes per cell) from right and left eyes by single-cell RNA-seq and classify them into 40 subtypes using clustering algorithms. We identify additional subtypes and markers, as well as transcription factors predicted to cooperate in specifying RGC subtypes. Zic1, a marker of the right eye-enriched subtype, is validated by immunostaining in situ. Runx1 and Fst, the markers of other subtypes, are validated in purified RGCs by fluorescent in situ hybridization (FISH) and immunostaining. We show the extent of gene expression variability needed for subtype segregation, and we show a hierarchy in diversification from a cell-type population to subtypes. Finally, we present a website for comparing the gene expression of RGC subtypes.

    + +

    https://www.nature.com/articles/s41467-018-05134-3

    diff --git a/general/datasets/Uconn_rgc_rseq_s_0918/specifics.rtf b/general/datasets/Uconn_rgc_rseq_s_0918/specifics.rtf new file mode 100644 index 0000000..394e70a --- /dev/null +++ b/general/datasets/Uconn_rgc_rseq_s_0918/specifics.rtf @@ -0,0 +1 @@ +Siamak normalization mapped to our DB \ No newline at end of file diff --git a/general/datasets/Uconn_rgc_rseq_s_0918/summary.rtf b/general/datasets/Uconn_rgc_rseq_s_0918/summary.rtf new file mode 100644 index 0000000..aab94b8 --- /dev/null +++ b/general/datasets/Uconn_rgc_rseq_s_0918/summary.rtf @@ -0,0 +1,3 @@ +

    Retinal ganglion cells (RGCs) convey the major output of information collected from the eye to the brain. Thirty subtypes of RGCs have been identified to date. Here, we analyze 6225 RGCs (average of 5000 genes per cell) from right and left eyes by single-cell RNA-seq and classify them into 40 subtypes using clustering algorithms. We identify additional subtypes and markers, as well as transcription factors predicted to cooperate in specifying RGC subtypes. Zic1, a marker of the right eye-enriched subtype, is validated by immunostaining in situ. Runx1 and Fst, the markers of other subtypes, are validated in purified RGCs by fluorescent in situ hybridization (FISH) and immunostaining. We show the extent of gene expression variability needed for subtype segregation, and we show a hierarchy in diversification from a cell-type population to subtypes. Finally, we present a website for comparing the gene expression of RGC subtypes.

    + +

    https://www.nature.com/articles/s41467-018-05134-3

    diff --git a/general/datasets/Ucsd_ail_hip_rna_seq_0418/citation.rtf b/general/datasets/Ucsd_ail_hip_rna_seq_0418/citation.rtf new file mode 100644 index 0000000..d31add6 --- /dev/null +++ b/general/datasets/Ucsd_ail_hip_rna_seq_0418/citation.rtf @@ -0,0 +1 @@ +

    Genome wide association study of behavioral, physiological and gene expression traits in a multigenerational mouse intercross

    diff --git a/general/datasets/Ucsd_ail_hip_rna_seq_0418/contributors.rtf b/general/datasets/Ucsd_ail_hip_rna_seq_0418/contributors.rtf new file mode 100644 index 0000000..77f2c40 --- /dev/null +++ b/general/datasets/Ucsd_ail_hip_rna_seq_0418/contributors.rtf @@ -0,0 +1 @@ +

    Natalia M. Gonzales, Jungkyun Seo, Ana Isabel Hernandez-Cordero, Celine L. St. Pierre, Jennifer S. Gregory, Margaret G. Distler, Mark Abney, Stefan Canzar, Arimantas Lionikas, Abraham A. Palmer

    diff --git a/general/datasets/Ucsd_ail_hip_rna_seq_0418/specifics.rtf b/general/datasets/Ucsd_ail_hip_rna_seq_0418/specifics.rtf new file mode 100644 index 0000000..f3a4dfd --- /dev/null +++ b/general/datasets/Ucsd_ail_hip_rna_seq_0418/specifics.rtf @@ -0,0 +1 @@ +Hippocampus \ No newline at end of file diff --git a/general/datasets/Ucsd_ail_hip_rna_seq_0418/summary.rtf b/general/datasets/Ucsd_ail_hip_rna_seq_0418/summary.rtf new file mode 100644 index 0000000..37e2d16 --- /dev/null +++ b/general/datasets/Ucsd_ail_hip_rna_seq_0418/summary.rtf @@ -0,0 +1 @@ +

    Genome wide association analyses (GWAS) in model organisms have numerous advantages compared to human GWAS, including the ability to use populations with well-defined genetic diversity, the ability to collect tissue for gene expression analysis and the ability to perform experimental manipulations. We examined behavioral, physiological, and gene expression traits in 1,063 male and female mice from a 50-generation intercross between two inbred strains (LG/J and SM/J). We used genotyping by sequencing in conjunction with whole genome sequence data from the two founder strains to obtain genotypes at 4.3 million SNPs. As expected, all alleles were common (mean MAF=0.35) and linkage disequilibrium degraded rapidly, providing excellent power and sub-megabase mapping precision. We identified 126 genome-wide significant loci for 50 traits and integrated this information with 7,081 cis-eQTLs and 1,476 trans-eQTLs identified in hippocampus, striatum and prefrontal cortex. We replicated several loci that were identified using an earlier generation of this intercross, including an association between locomotor activity and a locus containing a single gene, Csmd1. We also showed that Csmd1 mutant mice recapitulated the locomotor phenotype. Our results demonstrate the utility of this population, identify numerous novel associations, and provide examples of replication in an independent cohort, which is customary in human genetics, and replication by experimental manipulation, which is a unique advantage of model organisms.

    diff --git a/general/datasets/Ucsd_ail_hip_rna_seq_log2_0418/citation.rtf b/general/datasets/Ucsd_ail_hip_rna_seq_log2_0418/citation.rtf new file mode 100644 index 0000000..d31add6 --- /dev/null +++ b/general/datasets/Ucsd_ail_hip_rna_seq_log2_0418/citation.rtf @@ -0,0 +1 @@ +

    Genome wide association study of behavioral, physiological and gene expression traits in a multigenerational mouse intercross

    diff --git a/general/datasets/Ucsd_ail_hip_rna_seq_log2_0418/contributors.rtf b/general/datasets/Ucsd_ail_hip_rna_seq_log2_0418/contributors.rtf new file mode 100644 index 0000000..77f2c40 --- /dev/null +++ b/general/datasets/Ucsd_ail_hip_rna_seq_log2_0418/contributors.rtf @@ -0,0 +1 @@ +

    Natalia M. Gonzales, Jungkyun Seo, Ana Isabel Hernandez-Cordero, Celine L. St. Pierre, Jennifer S. Gregory, Margaret G. Distler, Mark Abney, Stefan Canzar, Arimantas Lionikas, Abraham A. Palmer

    diff --git a/general/datasets/Ucsd_ail_hip_rna_seq_log2_0418/specifics.rtf b/general/datasets/Ucsd_ail_hip_rna_seq_log2_0418/specifics.rtf new file mode 100644 index 0000000..843d470 --- /dev/null +++ b/general/datasets/Ucsd_ail_hip_rna_seq_log2_0418/specifics.rtf @@ -0,0 +1 @@ +Log2 \ No newline at end of file diff --git a/general/datasets/Ucsd_ail_hip_rna_seq_log2_0418/summary.rtf b/general/datasets/Ucsd_ail_hip_rna_seq_log2_0418/summary.rtf new file mode 100644 index 0000000..37e2d16 --- /dev/null +++ b/general/datasets/Ucsd_ail_hip_rna_seq_log2_0418/summary.rtf @@ -0,0 +1 @@ +

    Genome wide association analyses (GWAS) in model organisms have numerous advantages compared to human GWAS, including the ability to use populations with well-defined genetic diversity, the ability to collect tissue for gene expression analysis and the ability to perform experimental manipulations. We examined behavioral, physiological, and gene expression traits in 1,063 male and female mice from a 50-generation intercross between two inbred strains (LG/J and SM/J). We used genotyping by sequencing in conjunction with whole genome sequence data from the two founder strains to obtain genotypes at 4.3 million SNPs. As expected, all alleles were common (mean MAF=0.35) and linkage disequilibrium degraded rapidly, providing excellent power and sub-megabase mapping precision. We identified 126 genome-wide significant loci for 50 traits and integrated this information with 7,081 cis-eQTLs and 1,476 trans-eQTLs identified in hippocampus, striatum and prefrontal cortex. We replicated several loci that were identified using an earlier generation of this intercross, including an association between locomotor activity and a locus containing a single gene, Csmd1. We also showed that Csmd1 mutant mice recapitulated the locomotor phenotype. Our results demonstrate the utility of this population, identify numerous novel associations, and provide examples of replication in an independent cohort, which is customary in human genetics, and replication by experimental manipulation, which is a unique advantage of model organisms.

    diff --git a/general/datasets/Ucsd_ail_pfc_rna_seq_0418/citation.rtf b/general/datasets/Ucsd_ail_pfc_rna_seq_0418/citation.rtf new file mode 100644 index 0000000..d31add6 --- /dev/null +++ b/general/datasets/Ucsd_ail_pfc_rna_seq_0418/citation.rtf @@ -0,0 +1 @@ +

    Genome wide association study of behavioral, physiological and gene expression traits in a multigenerational mouse intercross

    diff --git a/general/datasets/Ucsd_ail_pfc_rna_seq_0418/contributors.rtf b/general/datasets/Ucsd_ail_pfc_rna_seq_0418/contributors.rtf new file mode 100644 index 0000000..77f2c40 --- /dev/null +++ b/general/datasets/Ucsd_ail_pfc_rna_seq_0418/contributors.rtf @@ -0,0 +1 @@ +

    Natalia M. Gonzales, Jungkyun Seo, Ana Isabel Hernandez-Cordero, Celine L. St. Pierre, Jennifer S. Gregory, Margaret G. Distler, Mark Abney, Stefan Canzar, Arimantas Lionikas, Abraham A. Palmer

    diff --git a/general/datasets/Ucsd_ail_pfc_rna_seq_0418/specifics.rtf b/general/datasets/Ucsd_ail_pfc_rna_seq_0418/specifics.rtf new file mode 100644 index 0000000..30656c6 --- /dev/null +++ b/general/datasets/Ucsd_ail_pfc_rna_seq_0418/specifics.rtf @@ -0,0 +1 @@ +Prefrontal Cortex \ No newline at end of file diff --git a/general/datasets/Ucsd_ail_pfc_rna_seq_0418/summary.rtf b/general/datasets/Ucsd_ail_pfc_rna_seq_0418/summary.rtf new file mode 100644 index 0000000..37e2d16 --- /dev/null +++ b/general/datasets/Ucsd_ail_pfc_rna_seq_0418/summary.rtf @@ -0,0 +1 @@ +

    Genome wide association analyses (GWAS) in model organisms have numerous advantages compared to human GWAS, including the ability to use populations with well-defined genetic diversity, the ability to collect tissue for gene expression analysis and the ability to perform experimental manipulations. We examined behavioral, physiological, and gene expression traits in 1,063 male and female mice from a 50-generation intercross between two inbred strains (LG/J and SM/J). We used genotyping by sequencing in conjunction with whole genome sequence data from the two founder strains to obtain genotypes at 4.3 million SNPs. As expected, all alleles were common (mean MAF=0.35) and linkage disequilibrium degraded rapidly, providing excellent power and sub-megabase mapping precision. We identified 126 genome-wide significant loci for 50 traits and integrated this information with 7,081 cis-eQTLs and 1,476 trans-eQTLs identified in hippocampus, striatum and prefrontal cortex. We replicated several loci that were identified using an earlier generation of this intercross, including an association between locomotor activity and a locus containing a single gene, Csmd1. We also showed that Csmd1 mutant mice recapitulated the locomotor phenotype. Our results demonstrate the utility of this population, identify numerous novel associations, and provide examples of replication in an independent cohort, which is customary in human genetics, and replication by experimental manipulation, which is a unique advantage of model organisms.

    diff --git a/general/datasets/Ucsd_ail_pfc_rna_seq_log2_0418/citation.rtf b/general/datasets/Ucsd_ail_pfc_rna_seq_log2_0418/citation.rtf new file mode 100644 index 0000000..d31add6 --- /dev/null +++ b/general/datasets/Ucsd_ail_pfc_rna_seq_log2_0418/citation.rtf @@ -0,0 +1 @@ +

    Genome wide association study of behavioral, physiological and gene expression traits in a multigenerational mouse intercross

    diff --git a/general/datasets/Ucsd_ail_pfc_rna_seq_log2_0418/contributors.rtf b/general/datasets/Ucsd_ail_pfc_rna_seq_log2_0418/contributors.rtf new file mode 100644 index 0000000..77f2c40 --- /dev/null +++ b/general/datasets/Ucsd_ail_pfc_rna_seq_log2_0418/contributors.rtf @@ -0,0 +1 @@ +

    Natalia M. Gonzales, Jungkyun Seo, Ana Isabel Hernandez-Cordero, Celine L. St. Pierre, Jennifer S. Gregory, Margaret G. Distler, Mark Abney, Stefan Canzar, Arimantas Lionikas, Abraham A. Palmer

    diff --git a/general/datasets/Ucsd_ail_pfc_rna_seq_log2_0418/specifics.rtf b/general/datasets/Ucsd_ail_pfc_rna_seq_log2_0418/specifics.rtf new file mode 100644 index 0000000..843d470 --- /dev/null +++ b/general/datasets/Ucsd_ail_pfc_rna_seq_log2_0418/specifics.rtf @@ -0,0 +1 @@ +Log2 \ No newline at end of file diff --git a/general/datasets/Ucsd_ail_pfc_rna_seq_log2_0418/summary.rtf b/general/datasets/Ucsd_ail_pfc_rna_seq_log2_0418/summary.rtf new file mode 100644 index 0000000..37e2d16 --- /dev/null +++ b/general/datasets/Ucsd_ail_pfc_rna_seq_log2_0418/summary.rtf @@ -0,0 +1 @@ +

    Genome wide association analyses (GWAS) in model organisms have numerous advantages compared to human GWAS, including the ability to use populations with well-defined genetic diversity, the ability to collect tissue for gene expression analysis and the ability to perform experimental manipulations. We examined behavioral, physiological, and gene expression traits in 1,063 male and female mice from a 50-generation intercross between two inbred strains (LG/J and SM/J). We used genotyping by sequencing in conjunction with whole genome sequence data from the two founder strains to obtain genotypes at 4.3 million SNPs. As expected, all alleles were common (mean MAF=0.35) and linkage disequilibrium degraded rapidly, providing excellent power and sub-megabase mapping precision. We identified 126 genome-wide significant loci for 50 traits and integrated this information with 7,081 cis-eQTLs and 1,476 trans-eQTLs identified in hippocampus, striatum and prefrontal cortex. We replicated several loci that were identified using an earlier generation of this intercross, including an association between locomotor activity and a locus containing a single gene, Csmd1. We also showed that Csmd1 mutant mice recapitulated the locomotor phenotype. Our results demonstrate the utility of this population, identify numerous novel associations, and provide examples of replication in an independent cohort, which is customary in human genetics, and replication by experimental manipulation, which is a unique advantage of model organisms.

    diff --git a/general/datasets/Ucsd_ail_str_rna_seq_0418/citation.rtf b/general/datasets/Ucsd_ail_str_rna_seq_0418/citation.rtf new file mode 100644 index 0000000..d31add6 --- /dev/null +++ b/general/datasets/Ucsd_ail_str_rna_seq_0418/citation.rtf @@ -0,0 +1 @@ +

    Genome wide association study of behavioral, physiological and gene expression traits in a multigenerational mouse intercross

    diff --git a/general/datasets/Ucsd_ail_str_rna_seq_0418/contributors.rtf b/general/datasets/Ucsd_ail_str_rna_seq_0418/contributors.rtf new file mode 100644 index 0000000..77f2c40 --- /dev/null +++ b/general/datasets/Ucsd_ail_str_rna_seq_0418/contributors.rtf @@ -0,0 +1 @@ +

    Natalia M. Gonzales, Jungkyun Seo, Ana Isabel Hernandez-Cordero, Celine L. St. Pierre, Jennifer S. Gregory, Margaret G. Distler, Mark Abney, Stefan Canzar, Arimantas Lionikas, Abraham A. Palmer

    diff --git a/general/datasets/Ucsd_ail_str_rna_seq_0418/specifics.rtf b/general/datasets/Ucsd_ail_str_rna_seq_0418/specifics.rtf new file mode 100644 index 0000000..fe51d98 --- /dev/null +++ b/general/datasets/Ucsd_ail_str_rna_seq_0418/specifics.rtf @@ -0,0 +1 @@ +Striatum \ No newline at end of file diff --git a/general/datasets/Ucsd_ail_str_rna_seq_0418/summary.rtf b/general/datasets/Ucsd_ail_str_rna_seq_0418/summary.rtf new file mode 100644 index 0000000..37e2d16 --- /dev/null +++ b/general/datasets/Ucsd_ail_str_rna_seq_0418/summary.rtf @@ -0,0 +1 @@ +

    Genome wide association analyses (GWAS) in model organisms have numerous advantages compared to human GWAS, including the ability to use populations with well-defined genetic diversity, the ability to collect tissue for gene expression analysis and the ability to perform experimental manipulations. We examined behavioral, physiological, and gene expression traits in 1,063 male and female mice from a 50-generation intercross between two inbred strains (LG/J and SM/J). We used genotyping by sequencing in conjunction with whole genome sequence data from the two founder strains to obtain genotypes at 4.3 million SNPs. As expected, all alleles were common (mean MAF=0.35) and linkage disequilibrium degraded rapidly, providing excellent power and sub-megabase mapping precision. We identified 126 genome-wide significant loci for 50 traits and integrated this information with 7,081 cis-eQTLs and 1,476 trans-eQTLs identified in hippocampus, striatum and prefrontal cortex. We replicated several loci that were identified using an earlier generation of this intercross, including an association between locomotor activity and a locus containing a single gene, Csmd1. We also showed that Csmd1 mutant mice recapitulated the locomotor phenotype. Our results demonstrate the utility of this population, identify numerous novel associations, and provide examples of replication in an independent cohort, which is customary in human genetics, and replication by experimental manipulation, which is a unique advantage of model organisms.

    diff --git a/general/datasets/Ucsd_ail_str_rna_seq_log2_0418/citation.rtf b/general/datasets/Ucsd_ail_str_rna_seq_log2_0418/citation.rtf new file mode 100644 index 0000000..d31add6 --- /dev/null +++ b/general/datasets/Ucsd_ail_str_rna_seq_log2_0418/citation.rtf @@ -0,0 +1 @@ +

    Genome wide association study of behavioral, physiological and gene expression traits in a multigenerational mouse intercross

    diff --git a/general/datasets/Ucsd_ail_str_rna_seq_log2_0418/contributors.rtf b/general/datasets/Ucsd_ail_str_rna_seq_log2_0418/contributors.rtf new file mode 100644 index 0000000..77f2c40 --- /dev/null +++ b/general/datasets/Ucsd_ail_str_rna_seq_log2_0418/contributors.rtf @@ -0,0 +1 @@ +

    Natalia M. Gonzales, Jungkyun Seo, Ana Isabel Hernandez-Cordero, Celine L. St. Pierre, Jennifer S. Gregory, Margaret G. Distler, Mark Abney, Stefan Canzar, Arimantas Lionikas, Abraham A. Palmer

    diff --git a/general/datasets/Ucsd_ail_str_rna_seq_log2_0418/specifics.rtf b/general/datasets/Ucsd_ail_str_rna_seq_log2_0418/specifics.rtf new file mode 100644 index 0000000..843d470 --- /dev/null +++ b/general/datasets/Ucsd_ail_str_rna_seq_log2_0418/specifics.rtf @@ -0,0 +1 @@ +Log2 \ No newline at end of file diff --git a/general/datasets/Ucsd_ail_str_rna_seq_log2_0418/summary.rtf b/general/datasets/Ucsd_ail_str_rna_seq_log2_0418/summary.rtf new file mode 100644 index 0000000..37e2d16 --- /dev/null +++ b/general/datasets/Ucsd_ail_str_rna_seq_log2_0418/summary.rtf @@ -0,0 +1 @@ +

    Genome wide association analyses (GWAS) in model organisms have numerous advantages compared to human GWAS, including the ability to use populations with well-defined genetic diversity, the ability to collect tissue for gene expression analysis and the ability to perform experimental manipulations. We examined behavioral, physiological, and gene expression traits in 1,063 male and female mice from a 50-generation intercross between two inbred strains (LG/J and SM/J). We used genotyping by sequencing in conjunction with whole genome sequence data from the two founder strains to obtain genotypes at 4.3 million SNPs. As expected, all alleles were common (mean MAF=0.35) and linkage disequilibrium degraded rapidly, providing excellent power and sub-megabase mapping precision. We identified 126 genome-wide significant loci for 50 traits and integrated this information with 7,081 cis-eQTLs and 1,476 trans-eQTLs identified in hippocampus, striatum and prefrontal cortex. We replicated several loci that were identified using an earlier generation of this intercross, including an association between locomotor activity and a locus containing a single gene, Csmd1. We also showed that Csmd1 mutant mice recapitulated the locomotor phenotype. Our results demonstrate the utility of this population, identify numerous novel associations, and provide examples of replication in an independent cohort, which is customary in human genetics, and replication by experimental manipulation, which is a unique advantage of model organisms.

    diff --git a/general/datasets/Ucsd_cfw_hip_rna_seq_0117/acknowledgment.rtf b/general/datasets/Ucsd_cfw_hip_rna_seq_0117/acknowledgment.rtf new file mode 100644 index 0000000..24f8c40 --- /dev/null +++ b/general/datasets/Ucsd_cfw_hip_rna_seq_0117/acknowledgment.rtf @@ -0,0 +1 @@ +

    The authors wish to acknowledge technical assistance from: D. Godfrey, S. Lionikaite, V. Lionikaite, A.S. Lionikiene and J. Zekos as well as technical and intellectual input from M. Abney, J. Borevitz, K. Broman, N. Cai, R. Cheng, N. Cox, R. Davies, J. Flint, L. Goodstadt, P. Grabowski, B. Harr, E. Leffler, R. Mott, J. Nicod, J. Novembre, A. Price, M. Stephens, D. Weeks and X. Zhou. This project was funded by NIH R01GM097737 and P50DA037844 (A.A.P.), NIH T32DA07255 (C.C.P.), NIH T32GM07197 (N.M.G.), NIH R01AR056280 (D.A.B.), NIH R01AR060234 (C.L.A.-B.), the Fellowship from the Human Frontiers Science Program (P.C.) and the Howard Hughes Medical Institute (J.K.P.).

    diff --git a/general/datasets/Ucsd_cfw_hip_rna_seq_0117/cases.rtf b/general/datasets/Ucsd_cfw_hip_rna_seq_0117/cases.rtf new file mode 100644 index 0000000..97eed8a --- /dev/null +++ b/general/datasets/Ucsd_cfw_hip_rna_seq_0117/cases.rtf @@ -0,0 +1,3 @@ +

    Phenotype, genotype and RNA-seq gene expression data is available at

    + +

    http://datadryad.org/resource/doi:10.5061/dryad.2rs41

    diff --git a/general/datasets/Ucsd_cfw_hip_rna_seq_0117/contributors.rtf b/general/datasets/Ucsd_cfw_hip_rna_seq_0117/contributors.rtf new file mode 100644 index 0000000..24e5cd6 --- /dev/null +++ b/general/datasets/Ucsd_cfw_hip_rna_seq_0117/contributors.rtf @@ -0,0 +1 @@ +

    A.A.P. conceived the study. C.C.P. and A.A.P. supervised the project. S.G. and P.C. designed and implemented the statistical and bioinformatics analyses with contributions from C.C.P., J.K.P. and A.A.P. N.M.G. designed and executed the RNA-seq and GBS protocols with assistance from E.A. and J.D. C.C.P. performed the behavioral phenotyping with assistance from E.L. and Y.J.P. A.L. performed the muscle and bone phenotyping with input from D.A.B. C.L.A.-B. performed the BMD phenotyping. C.C.P., S.G., P.C. and A.A.P. wrote the manuscript, with input from all co-authors.

    diff --git a/general/datasets/Ucsd_cfw_hip_rna_seq_0117/processing.rtf b/general/datasets/Ucsd_cfw_hip_rna_seq_0117/processing.rtf new file mode 100644 index 0000000..9c368fa --- /dev/null +++ b/general/datasets/Ucsd_cfw_hip_rna_seq_0117/processing.rtf @@ -0,0 +1 @@ +

    FPKM data were quantitle normalized for each ENSEMBL gene (mRNA) model (Identifiers such as ENSMUSG00000093778). Every gene/mRNA therefore has a mean expression value of 0 and a perfectly normal distribution, even if the original distribution was bimodal. The QQ plots is GN will be straight lines. There is no data at all on expression level in this original data set downloaded from http://dx.doi.org/10.5061/dryad.2rs41

    diff --git a/general/datasets/Ucsd_cfw_hip_rna_seq_0117/specifics.rtf b/general/datasets/Ucsd_cfw_hip_rna_seq_0117/specifics.rtf new file mode 100644 index 0000000..780e837 --- /dev/null +++ b/general/datasets/Ucsd_cfw_hip_rna_seq_0117/specifics.rtf @@ -0,0 +1 @@ +

    Hippocampus

    quantitle normalized

    \ No newline at end of file diff --git a/general/datasets/Ucsd_cfw_hip_rna_seq_0117/summary.rtf b/general/datasets/Ucsd_cfw_hip_rna_seq_0117/summary.rtf new file mode 100644 index 0000000..0639fe7 --- /dev/null +++ b/general/datasets/Ucsd_cfw_hip_rna_seq_0117/summary.rtf @@ -0,0 +1 @@ +

    Although mice are the most widely used mammalian model organism, genetic studies have suffered from limited mapping resolution due to extensive linkage disequilibrium (LD) that is characteristic of crosses among inbred strains. Carworth Farms White (CFW) mice are a commercially available outbred mouse population that exhibit rapid LD decay in comparison to other available mouse populations. We performed a genome-wide association study (GWAS) of behavioral, physiological and gene expression phenotypes using 1,200 male CFW mice. We used genotyping by sequencing (GBS) to obtain genotypes at 92,734 SNPs. We also measured gene expression using RNA sequencing in three brain regions. Our study identified numerous behavioral, physiological and expression quantitative trait loci (QTLs). We integrated the behavioral QTL and eQTL results to implicate specific genes, including Azi2 in sensitivity to methamphetamine and Zmynd11 in anxiety-like behavior. The combination of CFW mice, GBS and RNA sequencing constitutes a powerful approach to GWAS in mice. Full article available here.

    diff --git a/general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/acknowledgment.rtf b/general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/acknowledgment.rtf new file mode 100644 index 0000000..24f8c40 --- /dev/null +++ b/general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/acknowledgment.rtf @@ -0,0 +1 @@ +

    The authors wish to acknowledge technical assistance from: D. Godfrey, S. Lionikaite, V. Lionikaite, A.S. Lionikiene and J. Zekos as well as technical and intellectual input from M. Abney, J. Borevitz, K. Broman, N. Cai, R. Cheng, N. Cox, R. Davies, J. Flint, L. Goodstadt, P. Grabowski, B. Harr, E. Leffler, R. Mott, J. Nicod, J. Novembre, A. Price, M. Stephens, D. Weeks and X. Zhou. This project was funded by NIH R01GM097737 and P50DA037844 (A.A.P.), NIH T32DA07255 (C.C.P.), NIH T32GM07197 (N.M.G.), NIH R01AR056280 (D.A.B.), NIH R01AR060234 (C.L.A.-B.), the Fellowship from the Human Frontiers Science Program (P.C.) and the Howard Hughes Medical Institute (J.K.P.).

    diff --git a/general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/cases.rtf b/general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/cases.rtf new file mode 100644 index 0000000..97eed8a --- /dev/null +++ b/general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/cases.rtf @@ -0,0 +1,3 @@ +

    Phenotype, genotype and RNA-seq gene expression data is available at

    + +

    http://datadryad.org/resource/doi:10.5061/dryad.2rs41

    diff --git a/general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/contributors.rtf b/general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/contributors.rtf new file mode 100644 index 0000000..24e5cd6 --- /dev/null +++ b/general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/contributors.rtf @@ -0,0 +1 @@ +

    A.A.P. conceived the study. C.C.P. and A.A.P. supervised the project. S.G. and P.C. designed and implemented the statistical and bioinformatics analyses with contributions from C.C.P., J.K.P. and A.A.P. N.M.G. designed and executed the RNA-seq and GBS protocols with assistance from E.A. and J.D. C.C.P. performed the behavioral phenotyping with assistance from E.L. and Y.J.P. A.L. performed the muscle and bone phenotyping with input from D.A.B. C.L.A.-B. performed the BMD phenotyping. C.C.P., S.G., P.C. and A.A.P. wrote the manuscript, with input from all co-authors.

    diff --git a/general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/processing.rtf b/general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/processing.rtf new file mode 100644 index 0000000..9c368fa --- /dev/null +++ b/general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/processing.rtf @@ -0,0 +1 @@ +

    FPKM data were quantitle normalized for each ENSEMBL gene (mRNA) model (Identifiers such as ENSMUSG00000093778). Every gene/mRNA therefore has a mean expression value of 0 and a perfectly normal distribution, even if the original distribution was bimodal. The QQ plots is GN will be straight lines. There is no data at all on expression level in this original data set downloaded from http://dx.doi.org/10.5061/dryad.2rs41

    diff --git a/general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/specifics.rtf b/general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/specifics.rtf new file mode 100644 index 0000000..0ef5311 --- /dev/null +++ b/general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/specifics.rtf @@ -0,0 +1,5 @@ +

    Notes: We took the raw fpkm values provided by Apurva from file GN811-UCSD_CFW_RNA-Seq_HIP_raw_FPKM.txt.zip (11M) and transformed to log2 Z-scored. (GN811-UCSD_CFW_RNA-Seq_HIP_log2_ZScore.txt.zip (4.0M))

    + +

    RNA-Seq Log2 Z-score

    + +

    In general, the array data that we put in GeneNetwork has been logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having a standard deviation of 2 units (what we call 2Z + 8 normalized data).  This removes negative values from the tables.

    diff --git a/general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/summary.rtf b/general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/summary.rtf new file mode 100644 index 0000000..0639fe7 --- /dev/null +++ b/general/datasets/Ucsd_cfw_hip_rna_seq_log2_0117/summary.rtf @@ -0,0 +1 @@ +

    Although mice are the most widely used mammalian model organism, genetic studies have suffered from limited mapping resolution due to extensive linkage disequilibrium (LD) that is characteristic of crosses among inbred strains. Carworth Farms White (CFW) mice are a commercially available outbred mouse population that exhibit rapid LD decay in comparison to other available mouse populations. We performed a genome-wide association study (GWAS) of behavioral, physiological and gene expression phenotypes using 1,200 male CFW mice. We used genotyping by sequencing (GBS) to obtain genotypes at 92,734 SNPs. We also measured gene expression using RNA sequencing in three brain regions. Our study identified numerous behavioral, physiological and expression quantitative trait loci (QTLs). We integrated the behavioral QTL and eQTL results to implicate specific genes, including Azi2 in sensitivity to methamphetamine and Zmynd11 in anxiety-like behavior. The combination of CFW mice, GBS and RNA sequencing constitutes a powerful approach to GWAS in mice. Full article available here.

    diff --git a/general/datasets/Ucsd_cfw_pfc_rna_seq_0117/acknowledgment.rtf b/general/datasets/Ucsd_cfw_pfc_rna_seq_0117/acknowledgment.rtf new file mode 100644 index 0000000..24f8c40 --- /dev/null +++ b/general/datasets/Ucsd_cfw_pfc_rna_seq_0117/acknowledgment.rtf @@ -0,0 +1 @@ +

    The authors wish to acknowledge technical assistance from: D. Godfrey, S. Lionikaite, V. Lionikaite, A.S. Lionikiene and J. Zekos as well as technical and intellectual input from M. Abney, J. Borevitz, K. Broman, N. Cai, R. Cheng, N. Cox, R. Davies, J. Flint, L. Goodstadt, P. Grabowski, B. Harr, E. Leffler, R. Mott, J. Nicod, J. Novembre, A. Price, M. Stephens, D. Weeks and X. Zhou. This project was funded by NIH R01GM097737 and P50DA037844 (A.A.P.), NIH T32DA07255 (C.C.P.), NIH T32GM07197 (N.M.G.), NIH R01AR056280 (D.A.B.), NIH R01AR060234 (C.L.A.-B.), the Fellowship from the Human Frontiers Science Program (P.C.) and the Howard Hughes Medical Institute (J.K.P.).

    diff --git a/general/datasets/Ucsd_cfw_pfc_rna_seq_0117/cases.rtf b/general/datasets/Ucsd_cfw_pfc_rna_seq_0117/cases.rtf new file mode 100644 index 0000000..97eed8a --- /dev/null +++ b/general/datasets/Ucsd_cfw_pfc_rna_seq_0117/cases.rtf @@ -0,0 +1,3 @@ +

    Phenotype, genotype and RNA-seq gene expression data is available at

    + +

    http://datadryad.org/resource/doi:10.5061/dryad.2rs41

    diff --git a/general/datasets/Ucsd_cfw_pfc_rna_seq_0117/contributors.rtf b/general/datasets/Ucsd_cfw_pfc_rna_seq_0117/contributors.rtf new file mode 100644 index 0000000..24e5cd6 --- /dev/null +++ b/general/datasets/Ucsd_cfw_pfc_rna_seq_0117/contributors.rtf @@ -0,0 +1 @@ +

    A.A.P. conceived the study. C.C.P. and A.A.P. supervised the project. S.G. and P.C. designed and implemented the statistical and bioinformatics analyses with contributions from C.C.P., J.K.P. and A.A.P. N.M.G. designed and executed the RNA-seq and GBS protocols with assistance from E.A. and J.D. C.C.P. performed the behavioral phenotyping with assistance from E.L. and Y.J.P. A.L. performed the muscle and bone phenotyping with input from D.A.B. C.L.A.-B. performed the BMD phenotyping. C.C.P., S.G., P.C. and A.A.P. wrote the manuscript, with input from all co-authors.

    diff --git a/general/datasets/Ucsd_cfw_pfc_rna_seq_0117/processing.rtf b/general/datasets/Ucsd_cfw_pfc_rna_seq_0117/processing.rtf new file mode 100644 index 0000000..9c368fa --- /dev/null +++ b/general/datasets/Ucsd_cfw_pfc_rna_seq_0117/processing.rtf @@ -0,0 +1 @@ +

    FPKM data were quantitle normalized for each ENSEMBL gene (mRNA) model (Identifiers such as ENSMUSG00000093778). Every gene/mRNA therefore has a mean expression value of 0 and a perfectly normal distribution, even if the original distribution was bimodal. The QQ plots is GN will be straight lines. There is no data at all on expression level in this original data set downloaded from http://dx.doi.org/10.5061/dryad.2rs41

    diff --git a/general/datasets/Ucsd_cfw_pfc_rna_seq_0117/specifics.rtf b/general/datasets/Ucsd_cfw_pfc_rna_seq_0117/specifics.rtf new file mode 100644 index 0000000..30656c6 --- /dev/null +++ b/general/datasets/Ucsd_cfw_pfc_rna_seq_0117/specifics.rtf @@ -0,0 +1 @@ +Prefrontal Cortex \ No newline at end of file diff --git a/general/datasets/Ucsd_cfw_pfc_rna_seq_0117/summary.rtf b/general/datasets/Ucsd_cfw_pfc_rna_seq_0117/summary.rtf new file mode 100644 index 0000000..0639fe7 --- /dev/null +++ b/general/datasets/Ucsd_cfw_pfc_rna_seq_0117/summary.rtf @@ -0,0 +1 @@ +

    Although mice are the most widely used mammalian model organism, genetic studies have suffered from limited mapping resolution due to extensive linkage disequilibrium (LD) that is characteristic of crosses among inbred strains. Carworth Farms White (CFW) mice are a commercially available outbred mouse population that exhibit rapid LD decay in comparison to other available mouse populations. We performed a genome-wide association study (GWAS) of behavioral, physiological and gene expression phenotypes using 1,200 male CFW mice. We used genotyping by sequencing (GBS) to obtain genotypes at 92,734 SNPs. We also measured gene expression using RNA sequencing in three brain regions. Our study identified numerous behavioral, physiological and expression quantitative trait loci (QTLs). We integrated the behavioral QTL and eQTL results to implicate specific genes, including Azi2 in sensitivity to methamphetamine and Zmynd11 in anxiety-like behavior. The combination of CFW mice, GBS and RNA sequencing constitutes a powerful approach to GWAS in mice. Full article available here.

    diff --git a/general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/acknowledgment.rtf b/general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/acknowledgment.rtf new file mode 100644 index 0000000..24f8c40 --- /dev/null +++ b/general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/acknowledgment.rtf @@ -0,0 +1 @@ +

    The authors wish to acknowledge technical assistance from: D. Godfrey, S. Lionikaite, V. Lionikaite, A.S. Lionikiene and J. Zekos as well as technical and intellectual input from M. Abney, J. Borevitz, K. Broman, N. Cai, R. Cheng, N. Cox, R. Davies, J. Flint, L. Goodstadt, P. Grabowski, B. Harr, E. Leffler, R. Mott, J. Nicod, J. Novembre, A. Price, M. Stephens, D. Weeks and X. Zhou. This project was funded by NIH R01GM097737 and P50DA037844 (A.A.P.), NIH T32DA07255 (C.C.P.), NIH T32GM07197 (N.M.G.), NIH R01AR056280 (D.A.B.), NIH R01AR060234 (C.L.A.-B.), the Fellowship from the Human Frontiers Science Program (P.C.) and the Howard Hughes Medical Institute (J.K.P.).

    diff --git a/general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/cases.rtf b/general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/cases.rtf new file mode 100644 index 0000000..97eed8a --- /dev/null +++ b/general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/cases.rtf @@ -0,0 +1,3 @@ +

    Phenotype, genotype and RNA-seq gene expression data is available at

    + +

    http://datadryad.org/resource/doi:10.5061/dryad.2rs41

    diff --git a/general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/contributors.rtf b/general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/contributors.rtf new file mode 100644 index 0000000..24e5cd6 --- /dev/null +++ b/general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/contributors.rtf @@ -0,0 +1 @@ +

    A.A.P. conceived the study. C.C.P. and A.A.P. supervised the project. S.G. and P.C. designed and implemented the statistical and bioinformatics analyses with contributions from C.C.P., J.K.P. and A.A.P. N.M.G. designed and executed the RNA-seq and GBS protocols with assistance from E.A. and J.D. C.C.P. performed the behavioral phenotyping with assistance from E.L. and Y.J.P. A.L. performed the muscle and bone phenotyping with input from D.A.B. C.L.A.-B. performed the BMD phenotyping. C.C.P., S.G., P.C. and A.A.P. wrote the manuscript, with input from all co-authors.

    diff --git a/general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/processing.rtf b/general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/processing.rtf new file mode 100644 index 0000000..9c368fa --- /dev/null +++ b/general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/processing.rtf @@ -0,0 +1 @@ +

    FPKM data were quantitle normalized for each ENSEMBL gene (mRNA) model (Identifiers such as ENSMUSG00000093778). Every gene/mRNA therefore has a mean expression value of 0 and a perfectly normal distribution, even if the original distribution was bimodal. The QQ plots is GN will be straight lines. There is no data at all on expression level in this original data set downloaded from http://dx.doi.org/10.5061/dryad.2rs41

    diff --git a/general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/specifics.rtf b/general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/specifics.rtf new file mode 100644 index 0000000..6077f41 --- /dev/null +++ b/general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/specifics.rtf @@ -0,0 +1,3 @@ +

    RNA-Seq Log2 Z-score

    + +

    In general, the array data that we put in GeneNetwork has been logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data).  This removes negative values from the tables.

    diff --git a/general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/summary.rtf b/general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/summary.rtf new file mode 100644 index 0000000..0639fe7 --- /dev/null +++ b/general/datasets/Ucsd_cfw_pfc_rna_seq_log2_0117/summary.rtf @@ -0,0 +1 @@ +

    Although mice are the most widely used mammalian model organism, genetic studies have suffered from limited mapping resolution due to extensive linkage disequilibrium (LD) that is characteristic of crosses among inbred strains. Carworth Farms White (CFW) mice are a commercially available outbred mouse population that exhibit rapid LD decay in comparison to other available mouse populations. We performed a genome-wide association study (GWAS) of behavioral, physiological and gene expression phenotypes using 1,200 male CFW mice. We used genotyping by sequencing (GBS) to obtain genotypes at 92,734 SNPs. We also measured gene expression using RNA sequencing in three brain regions. Our study identified numerous behavioral, physiological and expression quantitative trait loci (QTLs). We integrated the behavioral QTL and eQTL results to implicate specific genes, including Azi2 in sensitivity to methamphetamine and Zmynd11 in anxiety-like behavior. The combination of CFW mice, GBS and RNA sequencing constitutes a powerful approach to GWAS in mice. Full article available here.

    diff --git a/general/datasets/Ucsd_cfw_spl_rna_seq_0117/acknowledgment.rtf b/general/datasets/Ucsd_cfw_spl_rna_seq_0117/acknowledgment.rtf new file mode 100644 index 0000000..24f8c40 --- /dev/null +++ b/general/datasets/Ucsd_cfw_spl_rna_seq_0117/acknowledgment.rtf @@ -0,0 +1 @@ +

    The authors wish to acknowledge technical assistance from: D. Godfrey, S. Lionikaite, V. Lionikaite, A.S. Lionikiene and J. Zekos as well as technical and intellectual input from M. Abney, J. Borevitz, K. Broman, N. Cai, R. Cheng, N. Cox, R. Davies, J. Flint, L. Goodstadt, P. Grabowski, B. Harr, E. Leffler, R. Mott, J. Nicod, J. Novembre, A. Price, M. Stephens, D. Weeks and X. Zhou. This project was funded by NIH R01GM097737 and P50DA037844 (A.A.P.), NIH T32DA07255 (C.C.P.), NIH T32GM07197 (N.M.G.), NIH R01AR056280 (D.A.B.), NIH R01AR060234 (C.L.A.-B.), the Fellowship from the Human Frontiers Science Program (P.C.) and the Howard Hughes Medical Institute (J.K.P.).

    diff --git a/general/datasets/Ucsd_cfw_spl_rna_seq_0117/cases.rtf b/general/datasets/Ucsd_cfw_spl_rna_seq_0117/cases.rtf new file mode 100644 index 0000000..97eed8a --- /dev/null +++ b/general/datasets/Ucsd_cfw_spl_rna_seq_0117/cases.rtf @@ -0,0 +1,3 @@ +

    Phenotype, genotype and RNA-seq gene expression data is available at

    + +

    http://datadryad.org/resource/doi:10.5061/dryad.2rs41

    diff --git a/general/datasets/Ucsd_cfw_spl_rna_seq_0117/contributors.rtf b/general/datasets/Ucsd_cfw_spl_rna_seq_0117/contributors.rtf new file mode 100644 index 0000000..24e5cd6 --- /dev/null +++ b/general/datasets/Ucsd_cfw_spl_rna_seq_0117/contributors.rtf @@ -0,0 +1 @@ +

    A.A.P. conceived the study. C.C.P. and A.A.P. supervised the project. S.G. and P.C. designed and implemented the statistical and bioinformatics analyses with contributions from C.C.P., J.K.P. and A.A.P. N.M.G. designed and executed the RNA-seq and GBS protocols with assistance from E.A. and J.D. C.C.P. performed the behavioral phenotyping with assistance from E.L. and Y.J.P. A.L. performed the muscle and bone phenotyping with input from D.A.B. C.L.A.-B. performed the BMD phenotyping. C.C.P., S.G., P.C. and A.A.P. wrote the manuscript, with input from all co-authors.

    diff --git a/general/datasets/Ucsd_cfw_spl_rna_seq_0117/processing.rtf b/general/datasets/Ucsd_cfw_spl_rna_seq_0117/processing.rtf new file mode 100644 index 0000000..9c368fa --- /dev/null +++ b/general/datasets/Ucsd_cfw_spl_rna_seq_0117/processing.rtf @@ -0,0 +1 @@ +

    FPKM data were quantitle normalized for each ENSEMBL gene (mRNA) model (Identifiers such as ENSMUSG00000093778). Every gene/mRNA therefore has a mean expression value of 0 and a perfectly normal distribution, even if the original distribution was bimodal. The QQ plots is GN will be straight lines. There is no data at all on expression level in this original data set downloaded from http://dx.doi.org/10.5061/dryad.2rs41

    diff --git a/general/datasets/Ucsd_cfw_spl_rna_seq_0117/specifics.rtf b/general/datasets/Ucsd_cfw_spl_rna_seq_0117/specifics.rtf new file mode 100644 index 0000000..0e70b6c --- /dev/null +++ b/general/datasets/Ucsd_cfw_spl_rna_seq_0117/specifics.rtf @@ -0,0 +1 @@ +

    Striatum

    diff --git a/general/datasets/Ucsd_cfw_spl_rna_seq_0117/summary.rtf b/general/datasets/Ucsd_cfw_spl_rna_seq_0117/summary.rtf new file mode 100644 index 0000000..0639fe7 --- /dev/null +++ b/general/datasets/Ucsd_cfw_spl_rna_seq_0117/summary.rtf @@ -0,0 +1 @@ +

    Although mice are the most widely used mammalian model organism, genetic studies have suffered from limited mapping resolution due to extensive linkage disequilibrium (LD) that is characteristic of crosses among inbred strains. Carworth Farms White (CFW) mice are a commercially available outbred mouse population that exhibit rapid LD decay in comparison to other available mouse populations. We performed a genome-wide association study (GWAS) of behavioral, physiological and gene expression phenotypes using 1,200 male CFW mice. We used genotyping by sequencing (GBS) to obtain genotypes at 92,734 SNPs. We also measured gene expression using RNA sequencing in three brain regions. Our study identified numerous behavioral, physiological and expression quantitative trait loci (QTLs). We integrated the behavioral QTL and eQTL results to implicate specific genes, including Azi2 in sensitivity to methamphetamine and Zmynd11 in anxiety-like behavior. The combination of CFW mice, GBS and RNA sequencing constitutes a powerful approach to GWAS in mice. Full article available here.

    diff --git a/general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/acknowledgment.rtf b/general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/acknowledgment.rtf new file mode 100644 index 0000000..24f8c40 --- /dev/null +++ b/general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/acknowledgment.rtf @@ -0,0 +1 @@ +

    The authors wish to acknowledge technical assistance from: D. Godfrey, S. Lionikaite, V. Lionikaite, A.S. Lionikiene and J. Zekos as well as technical and intellectual input from M. Abney, J. Borevitz, K. Broman, N. Cai, R. Cheng, N. Cox, R. Davies, J. Flint, L. Goodstadt, P. Grabowski, B. Harr, E. Leffler, R. Mott, J. Nicod, J. Novembre, A. Price, M. Stephens, D. Weeks and X. Zhou. This project was funded by NIH R01GM097737 and P50DA037844 (A.A.P.), NIH T32DA07255 (C.C.P.), NIH T32GM07197 (N.M.G.), NIH R01AR056280 (D.A.B.), NIH R01AR060234 (C.L.A.-B.), the Fellowship from the Human Frontiers Science Program (P.C.) and the Howard Hughes Medical Institute (J.K.P.).

    diff --git a/general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/cases.rtf b/general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/cases.rtf new file mode 100644 index 0000000..97eed8a --- /dev/null +++ b/general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/cases.rtf @@ -0,0 +1,3 @@ +

    Phenotype, genotype and RNA-seq gene expression data is available at

    + +

    http://datadryad.org/resource/doi:10.5061/dryad.2rs41

    diff --git a/general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/contributors.rtf b/general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/contributors.rtf new file mode 100644 index 0000000..24e5cd6 --- /dev/null +++ b/general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/contributors.rtf @@ -0,0 +1 @@ +

    A.A.P. conceived the study. C.C.P. and A.A.P. supervised the project. S.G. and P.C. designed and implemented the statistical and bioinformatics analyses with contributions from C.C.P., J.K.P. and A.A.P. N.M.G. designed and executed the RNA-seq and GBS protocols with assistance from E.A. and J.D. C.C.P. performed the behavioral phenotyping with assistance from E.L. and Y.J.P. A.L. performed the muscle and bone phenotyping with input from D.A.B. C.L.A.-B. performed the BMD phenotyping. C.C.P., S.G., P.C. and A.A.P. wrote the manuscript, with input from all co-authors.

    diff --git a/general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/processing.rtf b/general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/processing.rtf new file mode 100644 index 0000000..9c368fa --- /dev/null +++ b/general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/processing.rtf @@ -0,0 +1 @@ +

    FPKM data were quantitle normalized for each ENSEMBL gene (mRNA) model (Identifiers such as ENSMUSG00000093778). Every gene/mRNA therefore has a mean expression value of 0 and a perfectly normal distribution, even if the original distribution was bimodal. The QQ plots is GN will be straight lines. There is no data at all on expression level in this original data set downloaded from http://dx.doi.org/10.5061/dryad.2rs41

    diff --git a/general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/specifics.rtf b/general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/specifics.rtf new file mode 100644 index 0000000..6077f41 --- /dev/null +++ b/general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/specifics.rtf @@ -0,0 +1,3 @@ +

    RNA-Seq Log2 Z-score

    + +

    In general, the array data that we put in GeneNetwork has been logged and then z normalized, but instead of leaving the mean at 0 and the standard deviation of 1 unit, we shift up to a mean of 8 units and increase the spread by having an standard deviation of 2 units (what we call 2Z + 8 normalized data).  This removes negative values from the tables.

    diff --git a/general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/summary.rtf b/general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/summary.rtf new file mode 100644 index 0000000..0639fe7 --- /dev/null +++ b/general/datasets/Ucsd_cfw_str_rna_seq_log2_0117/summary.rtf @@ -0,0 +1 @@ +

    Although mice are the most widely used mammalian model organism, genetic studies have suffered from limited mapping resolution due to extensive linkage disequilibrium (LD) that is characteristic of crosses among inbred strains. Carworth Farms White (CFW) mice are a commercially available outbred mouse population that exhibit rapid LD decay in comparison to other available mouse populations. We performed a genome-wide association study (GWAS) of behavioral, physiological and gene expression phenotypes using 1,200 male CFW mice. We used genotyping by sequencing (GBS) to obtain genotypes at 92,734 SNPs. We also measured gene expression using RNA sequencing in three brain regions. Our study identified numerous behavioral, physiological and expression quantitative trait loci (QTLs). We integrated the behavioral QTL and eQTL results to implicate specific genes, including Azi2 in sensitivity to methamphetamine and Zmynd11 in anxiety-like behavior. The combination of CFW mice, GBS and RNA sequencing constitutes a powerful approach to GWAS in mice. Full article available here.

    diff --git a/general/datasets/Ufl_mdp_hipp0814/summary.rtf b/general/datasets/Ufl_mdp_hipp0814/summary.rtf new file mode 100644 index 0000000..5bf7963 --- /dev/null +++ b/general/datasets/Ufl_mdp_hipp0814/summary.rtf @@ -0,0 +1 @@ +

    Information regarding of this data set will become available soon

    diff --git a/general/datasets/Uiowa_eye_rma_0906/summary.rtf b/general/datasets/Uiowa_eye_rma_0906/summary.rtf new file mode 100644 index 0000000..7815ecc --- /dev/null +++ b/general/datasets/Uiowa_eye_rma_0906/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 73, Name: UIOWA Eye mRNA RAE230v2 (Sep06) \ No newline at end of file diff --git a/general/datasets/Umcg_0907_eryth/summary.rtf b/general/datasets/Umcg_0907_eryth/summary.rtf new file mode 100644 index 0000000..9afd234 --- /dev/null +++ b/general/datasets/Umcg_0907_eryth/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 38, Name: UMCG Myeloid Cells ILM6v1.1 (Apr09) \ No newline at end of file diff --git a/general/datasets/Umcg_0907_eryth_ori/summary.rtf b/general/datasets/Umcg_0907_eryth_ori/summary.rtf new file mode 100644 index 0000000..9afd234 --- /dev/null +++ b/general/datasets/Umcg_0907_eryth_ori/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 38, Name: UMCG Myeloid Cells ILM6v1.1 (Apr09) \ No newline at end of file diff --git a/general/datasets/Umcg_0907_hemastem/summary.rtf b/general/datasets/Umcg_0907_hemastem/summary.rtf new file mode 100644 index 0000000..9afd234 --- /dev/null +++ b/general/datasets/Umcg_0907_hemastem/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 38, Name: UMCG Myeloid Cells ILM6v1.1 (Apr09) \ No newline at end of file diff --git a/general/datasets/Umcg_0907_hemastem_ori/summary.rtf b/general/datasets/Umcg_0907_hemastem_ori/summary.rtf new file mode 100644 index 0000000..9afd234 --- /dev/null +++ b/general/datasets/Umcg_0907_hemastem_ori/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 38, Name: UMCG Myeloid Cells ILM6v1.1 (Apr09) \ No newline at end of file diff --git a/general/datasets/Umcg_0907_myeloid/summary.rtf b/general/datasets/Umcg_0907_myeloid/summary.rtf new file mode 100644 index 0000000..9afd234 --- /dev/null +++ b/general/datasets/Umcg_0907_myeloid/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 38, Name: UMCG Myeloid Cells ILM6v1.1 (Apr09) \ No newline at end of file diff --git a/general/datasets/Umcg_0907_myeloid_ori/summary.rtf b/general/datasets/Umcg_0907_myeloid_ori/summary.rtf new file mode 100644 index 0000000..9afd234 --- /dev/null +++ b/general/datasets/Umcg_0907_myeloid_ori/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 38, Name: UMCG Myeloid Cells ILM6v1.1 (Apr09) \ No newline at end of file diff --git a/general/datasets/Umcg_0907_pro/summary.rtf b/general/datasets/Umcg_0907_pro/summary.rtf new file mode 100644 index 0000000..9afd234 --- /dev/null +++ b/general/datasets/Umcg_0907_pro/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 38, Name: UMCG Myeloid Cells ILM6v1.1 (Apr09) \ No newline at end of file diff --git a/general/datasets/Umcg_0907_pro_ori/summary.rtf b/general/datasets/Umcg_0907_pro_ori/summary.rtf new file mode 100644 index 0000000..9afd234 --- /dev/null +++ b/general/datasets/Umcg_0907_pro_ori/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 38, Name: UMCG Myeloid Cells ILM6v1.1 (Apr09) \ No newline at end of file diff --git a/general/datasets/Umutaffyexon_0209_rma/acknowledgment.rtf b/general/datasets/Umutaffyexon_0209_rma/acknowledgment.rtf new file mode 100644 index 0000000..9f0655d --- /dev/null +++ b/general/datasets/Umutaffyexon_0209_rma/acknowledgment.rtf @@ -0,0 +1 @@ +

    We thank Affymetrix Inc. for their generous support of this project and array data set.

    diff --git a/general/datasets/Umutaffyexon_0209_rma/cases.rtf b/general/datasets/Umutaffyexon_0209_rma/cases.rtf new file mode 100644 index 0000000..35ae421 --- /dev/null +++ b/general/datasets/Umutaffyexon_0209_rma/cases.rtf @@ -0,0 +1,1182 @@ + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexOriginal CELTube IDStrainAgeSexSource
    1JR3551H.CELjr3551hC57BL/6J60FUTM RW
    2JR3552H.CELjr3552hreC57BL/6J60FUTM RW
    3R0572H.CELr0572hC57BL/6J69F 
    4R2137H.CELr2137hC57BL/6J55FJAX
    5R3552H.CELr3552hC57BL/6J60FGlenn
    6JR3549H.CELjr3549hC57BL/6J60MUTM RW
    7JR3550H.CELjr3550hreC57BL/6J60MUTM RW
    8R0574H.CELr0574hC57BL/6J69M 
    9R2136H.CELr2136hC57BL/6J55MJAX
    10R3549H.CELr3549hC57BL/6J60MGlenn
    11JR3557H.CELjr3557hDBA/2J60FUTM RW
    12JR3558H.CELjr3558hreDBA/2J60FUTM RW
    13R3558H.CELr3558hDBA/2J60FGlenn
    14JR3555H.CELjr3555hDBA/2J60MUTM RW
    15JR3556H.CELjr3556hDBA/2J60MUTM RW
    16R3555H.CELr3555hDBA/2J60MGlenn
    17R3497H.CELr3497hB6D2F158FGlenn
    18R3500H.CELr3500hB6D2F158MGlenn
    19R1374H.CELr1374hD2B6F158FUTM RW
    20R1382H.CELr1382hD2B6F159MUTM RW
    21R3532H.CELr3532h129S1/SvImJ60FGlenn
    22R3512H.CELr3512h129S1/SvImJ59MGlenn
    23R3520H.CELr3520hA/J59FGlenn
    24R3523H.CELr3523hA/J59MGlenn
    25R3514H.CELr3514hAKR/J59FGlenn
    26R3515H.CELr3515hAKR/J59MGlenn
    27R3508H.CELr3508hBALB/cByJ59FGlenn
    28R3505H.CELr3505hBALB/cByJ59MGlenn
    29R3524H.CELr3524hBTBR T+ tf/J60FGlenn
    30R3509H.CELr3509hBTBR T+ tf/J60MGlenn
    31R1542H.CELr1542hBXD159FGlenn
    32R1520H.CELr1520hBXD256FGlenn
    33R1694H.CELr1694hBXD558MGlenn
    34R3454H.CELr3454hBXD658MGlenn
    35R3457H.CELr3457hBXD861FGlenn
    36R3455H.CELr3455hBXD960MGlenn
    37R3462H.CELr3462hBXD1159MGlenn
    38R3464H.CELr3464hBXD1259FGlenn
    39R2315H.CELr2315hBXD1384MUTM RW
    40R3480H.CELr3480hBXD1460FGlenn
    41R3478H.CELr3478hBXD1560MGlenn
    42R3482H.CELr3482hBXD1659FGlenn
    43R3488H.CELr3488hBXD1859MGlenn
    44R3471H.CELr3471hBXD1960MGlenn
    45R2506H.CELr2506hBXD2060MGlenn
    46R3490H.CELr3490hBXD2160FGlenn
    47R3492H.CELr3492hBXD2260FGlenn
    48R3486H.CELr3486hBXD2360FGlenn
    49R1547H.CELr1547hBXD2459MGlenn
    50R2892H.CELr2892hBXD2567FUTM RW
    51R3485H.CELr3485hBXD2760MGlenn
    52R3477H.CELr3477hBXD2860FGlenn
    53R3475H.CELr3475hBXD2960FGlenn
    54R3456H.CELr3456hBXD3160MGlenn
    55R3570H.CELr3570hBXD3266F 
    56R3571H.CELr3571hBXD3258M 
    57R3467H.CELr3467hBXD3359MGlenn
    58R3466H.CELr3466hBXD3460FGlenn
    59R3463H.CELr3463hBXD3661FGlenn
    60R3458H.CELr3458hBXD3855MGlenn
    61JR4433H.CELjr4433saBXD3963FUTM RW
    62R1535H.CELr1535hBXD3960FGlenn
    63R3459H.CELr3459hBXD4060MGlenn
    64R1541H.CELr1541hBXD4258FGlenn
    65R1279H.CELr1279hBXD4357MUTM RW
    66R1472H.CELr1472hBXD4565MUTM RW
    67R1586H.CELr1586hBXD4859FUTM RW
    68R2936H.CELr2936hBXD5061FUTM RW
    69R1313H.CELr1313hBXD5162MUTM RW
    70JR2680H.CELjr2680hBXD5565MUTM RW
    71R1340H.CELr1340hBXD6064FUTM RW
    72R1856H.CELr1856hBXD6194MUTM RW
    73R1317H.CELr1317hBXD6259FUTM RW
    74R1945H.CELr1945hBXD63107FUTM RW
    75R2615H.CELr2615hBXD6468FUTM RW
    76R3567H.CELr3567hBXD6560FUTRW
    77R1949H.CELr1949hBXD6696MUTM RW
    78R2060H.CELr2060hBXD6754FUTM RW
    79R2902H.CELr2902hBXD6857MUTM RW
    80R1466H.CELr1466hBXD6959FUTM RW
    81R2063H.CELr2063hBXD7055MUTM RW
    82R1269H.CELr1269hBXD7372MUTM RW
    83JR2316H.CELjr2316hreBXD74193MUTM RW
    84R1871H.CELr1871hBXD7561FUTM RW
    85JR1948H.CELjr1948hBXD7681FUTM RW
    86R1427H.CELr1427hBXD7761MUTM RW
    87JR4434H.CELjr4434sareBXD7963FUTM RW
    88R3568H.CELr3568hBXD8066MUTRW
    89R2959H.CELr2959hBXD8358FUTM RW
    90R2898H.CELr2898hBXD8467MUTM RW
    91R3566H.CELr3566hBXD8565MUTRW
    92R1556H.CELr1556hBXD8657FUTM RW
    93R1710H.CELr1710hBXD8784MUTM RW
    94JR4079H.CELjr4079hreBXD8963MUTM RW
    95R2058H.CELr2058hBXD9061FUTM RW
    96R1284H.CELr1284hBXD9258MUTM RW
    97JR2057H.CELjr2057hBXD9392FUTM RW
    98JR2313H.CELjr2313h-reBXD9459FUTM RW
    99R1915H.CELr1915hBXD9665FUTM RW
    100R2648H.CELr2648hBXD9774FUTM RW
    101R1942H.CELr1942hBXD9862FUTM RW
    102R1369H.CELr1369hBXD9976MUMemphis
    103R2889H.CELr2889hBXSB/MpJ61FGlenn
    104R2887H.CELr2887hBXSB/MpJ61MGlenn
    105R3501H.CELr3501hC3H/HeJ60FGlenn
    106R3504H.CELr3504hC3H/HeJ60MGlenn
    107R3564H.CELr3564hCAST/EiJ57FGlenn
    108R3565H.CELr3565hCAST/EiJ61MGlenn
    109R3493H.CELr3493hFVB/NJ60FGlenn
    110R3496H.CELr3496hFVB/NJ60MGlenn
    111JR1683H.CELjr1683hKK/HlJ72FUTM RW
    112JR3542H.CELjr3542hreKK/HlJ61MUTM RW
    113JR2046H.CELjr2046hreLG/J63FUTM RW
    114JR2047H.CELjr2047hLG/J63MUTM RW
    115R3541H.CELr3541hMOLF/EiJ60FGlenn
    116R3553H.CELr3553hMOLF/EiJ60MGlenn
    117R3516H.CELr3516hNOD/LtJ58FGlenn
    118R3519H.CELr3519hNOD/LtJ58MGlenn
    119R3554H.CELr3554hNZB/BlNJ61FGlenn
    120R3513H.CELr3513hNZB/BlNJ58MGlenn
    121R3539H.CELr3539hNZO/HlLtJ60FGlenn
    122R3536H.CELr3536hNZO/HlLtJ60MGlenn
    123R3540H.CELr3540hNZW/LacJ65FGlenn
    124R3535H.CELr3535hNZW/LacJ60MGlenn
    125R3527H.CELr3527hPWD/PhJ60FGlenn
    126R3526H.CELr3526hPWD/PhJ60MGlenn
    127R3531H.CELr3531hPWK/PhJ60MGlenn
    128R3561H.CELr3561hWSB/EiJ60FGlenn
    129R3525H.CELr3525hWSB/EiJ60MGlenn
    +
    diff --git a/general/datasets/Umutaffyexon_0209_rma/experiment-type.rtf b/general/datasets/Umutaffyexon_0209_rma/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Umutaffyexon_0209_rma/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Umutaffyexon_0209_rma/processing.rtf b/general/datasets/Umutaffyexon_0209_rma/processing.rtf new file mode 100644 index 0000000..6e4dc8e --- /dev/null +++ b/general/datasets/Umutaffyexon_0209_rma/processing.rtf @@ -0,0 +1,9 @@ +

    The following steps were applied to refine the data by M. Jagalur in RWW lab:

    + +
      +
    1. Strain correction: In this step the strong probe level cis-QTLs were identified and using an expectation maximization (EM)-like method, the genotypes of each marker was re-assigned. This set of reassigned markers was compared to existing list genotypes of BXD strains and the maximal match was identified as the correct strain.
    2. +
    3. Sex correction: In this step probes that are highly correlated to sex were identified and using an EM-like method we detected and corrected the sex of single array data sets.
    4. +
    5. Data exclusion criteria: In this step individual arrays were evaluated. Arrays were systematically excluded from the data set (drop one out) and the number of cis-QTLs was recomputed. If excluding an array resulted in s significantly higher number of cis-QTLs then that array was considered to be of poor quality and was excluded from the final data set This step was repeated across all arrays in multiple cycles until there was no improvement in number of cis-QTLs.
    6. +
    7. Tissue correction: In this step probes that are highly correlated to tissue type were identified and EM-like method was used to identify correct tissue.
    8. +
    9. Noise Removal: A noise component was calculated using the expression of "unhybridized"probes (those with the lowest signal) and was removed from the data.
    10. +
    diff --git a/general/datasets/Umutaffyexon_0209_rma/summary.rtf b/general/datasets/Umutaffyexon_0209_rma/summary.rtf new file mode 100644 index 0000000..a1fe16a --- /dev/null +++ b/general/datasets/Umutaffyexon_0209_rma/summary.rtf @@ -0,0 +1,3 @@ +

    Data generated by RW Williams, Lu Lu, Manjunatha Jagalur, and David Kulp. All arrays run at the VA Medical Center, Memphis, by Yan Jiao.

    + +

    Data entered by Arthur Centeno and Manju Jagalur, Feb 27, 2009. This data set modified data for two BXD strains. Data were added for BXD79 that had been incorrectly included as a striatum sample (this data set was therefore deleted from the Exon 1.0ST striatum data set). We also changed data for BXD39. As expected, this addition and correction improved QTL mapping values. For example, for Kcnj9 probe set 4519178 the LRS values increased from 103.3 in the Aug08 data to 115.7 for these Feb09 data. Rob is concerned about the high error term of BXD39.

    diff --git a/general/datasets/Umutaffyexon_0209_rma_mdp/experiment-type.rtf b/general/datasets/Umutaffyexon_0209_rma_mdp/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Umutaffyexon_0209_rma_mdp/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Umutaffyexon_0209_rma_mdp/summary.rtf b/general/datasets/Umutaffyexon_0209_rma_mdp/summary.rtf new file mode 100644 index 0000000..afe9391 --- /dev/null +++ b/general/datasets/Umutaffyexon_0209_rma_mdp/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 98, Name: UMUTAffy Hippocampus Exon (Feb09) \ No newline at end of file diff --git a/general/datasets/Und_nida_hxb_bxh_indbp_log2z8_0321/cases.rtf b/general/datasets/Und_nida_hxb_bxh_indbp_log2z8_0321/cases.rtf new file mode 100644 index 0000000..ce39718 --- /dev/null +++ b/general/datasets/Und_nida_hxb_bxh_indbp_log2z8_0321/cases.rtf @@ -0,0 +1,1075 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Index

    +
    +

    Strain

    +
    +

    Sex

    +
    +

    TMT Batch

    +
    +

    TMT Channel

    +
    +

    1

    +
    +

    SHR

    +
    +

    M

    +
    +

    1

    +
    +

    sig127C

    +
    +

    2

    +
    +

    SHR

    +
    +

    F

    +
    +

    1

    +
    +

    sig128N

    +
    +

    3

    +
    +

    BN.Lx

    +
    +

    M

    +
    +

    1

    +
    +

    sig129C

    +
    +

    4

    +
    +

    BN.Lx

    +
    +

    F

    +
    +

    1

    +
    +

    sig131N

    +
    +

    5

    +
    +

    HXB18

    +
    +

    F

    +
    +

    1

    +
    +

    sig126

    +
    +

    6

    +
    +

    HXB18

    +
    +

    M

    +
    +

    1

    +
    +

    sig127N

    +
    +

    7

    +
    +

    BXH3

    +
    +

    M

    +
    +

    1

    +
    +

    sig131C

    +
    +

    8

    +
    +

    BXH3

    +
    +

    F

    +
    +

    1

    +
    +

    sig132N

    +
    +

    9

    +
    +

    BXH12

    +
    +

    M

    +
    +

    1

    +
    +

    sig132C

    +
    +

    10

    +
    +

    BXH12

    +
    +

    F

    +
    +

    1

    +
    +

    sig133N

    +
    +

    11

    +
    +

    BXH13

    +
    +

    M

    +
    +

    1

    +
    +

    sig133C

    +
    +

    12

    +
    +

    BXH13

    +
    +

    F

    +
    +

    1

    +
    +

    sig134N

    +
    +

    13

    +
    +

    BXH6

    +
    +

    M

    +
    +

    2

    +
    +

    sig127N

    +
    +

    14

    +
    +

    BXH6

    +
    +

    F

    +
    +

    2

    +
    +

    sig127C

    +
    +

    15

    +
    +

    BXH8

    +
    +

    M

    +
    +

    2

    +
    +

    sig128N

    +
    +

    16

    +
    +

    BXH8

    +
    +

    F

    +
    +

    2

    +
    +

    sig128C

    +
    +

    17

    +
    +

    HXB1

    +
    +

    M

    +
    +

    2

    +
    +

    sig129N

    +
    +

    18

    +
    +

    HXB1

    +
    +

    F

    +
    +

    2

    +
    +

    sig129C

    +
    +

    19

    +
    +

    HXB10

    +
    +

    M

    +
    +

    2

    +
    +

    sig130N

    +
    +

    20

    +
    +

    HXB10

    +
    +

    F

    +
    +

    2

    +
    +

    sig130C

    +
    +

    21

    +
    +

    HXB13

    +
    +

    M

    +
    +

    2

    +
    +

    sig131N

    +
    +

    22

    +
    +

    HXB13

    +
    +

    F

    +
    +

    2

    +
    +

    sig131C

    +
    +

    23

    +
    +

    HXB15

    +
    +

    M

    +
    +

    2

    +
    +

    sig132N

    +
    +

    24

    +
    +

    HXB15

    +
    +

    F

    +
    +

    2

    +
    +

    sig132C

    +
    +

    25

    +
    +

    HXB17

    +
    +

    M

    +
    +

    2

    +
    +

    sig133N

    +
    +

    26

    +
    +

    HXB17

    +
    +

    F

    +
    +

    2

    +
    +

    sig133C

    +
    +

    27

    +
    +

    HXB4

    +
    +

    M

    +
    +

    2

    +
    +

    sig134N

    +
    +

    28

    +
    +

    HXB4

    +
    +

    F

    +
    +

    3

    +
    +

    sig127N

    +
    +

    29

    +
    +

    HXB2

    +
    +

    M

    +
    +

    3

    +
    +

    sig127C

    +
    +

    30

    +
    +

    HXB2

    +
    +

    F

    +
    +

    3

    +
    +

    sig128N

    +
    +

    31

    +
    +

    HXB20

    +
    +

    M

    +
    +

    3

    +
    +

    sig128C

    +
    +

    32

    +
    +

    HXB20

    +
    +

    F

    +
    +

    3

    +
    +

    sig129N

    +
    +

    33

    +
    +

    HXB22

    +
    +

    M

    +
    +

    3

    +
    +

    sig129C

    +
    +

    34

    +
    +

    HXB22

    +
    +

    F

    +
    +

    3

    +
    +

    sig130N

    +
    +

    35

    +
    +

    HXB29

    +
    +

    M

    +
    +

    3

    +
    +

    sig130C

    +
    +

    36

    +
    +

    HXB29

    +
    +

    F

    +
    +

    3

    +
    +

    sig131N

    +
    +

    37

    +
    +

    HXB3

    +
    +

    M

    +
    +

    3

    +
    +

    sig131C

    +
    +

    38

    +
    +

    HXB3

    +
    +

    F

    +
    +

    3

    +
    +

    sig132N

    +
    +

    39

    +
    +

    HXB31

    +
    +

    M

    +
    +

    3

    +
    +

    sig132C

    +
    +

    40

    +
    +

    HXB31

    +
    +

    F

    +
    +

    3

    +
    +

    sig133N

    +
    +

    41

    +
    +

    HXB7

    +
    +

    M

    +
    +

    3

    +
    +

    sig133C

    +
    +

    42

    +
    +

    HXB7

    +
    +

    F

    +
    +

    3

    +
    +

    sig134N

    +
    +

    43

    +
    +

    BXH5

    +
    +

    F

    +
    +

    4

    +
    +

    sig126

    +
    +

    44

    +
    +

    BXH5

    +
    +

    M

    +
    +

    4

    +
    +

    sig127N

    +
    +

    45

    +
    +

    BXH9

    +
    +

    F

    +
    +

    4

    +
    +

    sig127C

    +
    +

    46

    +
    +

    BXH9

    +
    +

    M

    +
    +

    4

    +
    +

    sig128N

    +
    +

    47

    +
    +

    BXH10

    +
    +

    F

    +
    +

    4

    +
    +

    sig128C

    +
    +

    48

    +
    +

    BXH10

    +
    +

    M

    +
    +

    4

    +
    +

    sig129N

    +
    +

    49

    +
    +

    BXH11

    +
    +

    F

    +
    +

    4

    +
    +

    sig129C

    +
    +

    50

    +
    +

    BXH11

    +
    +

    M

    +
    +

    4

    +
    +

    sig130N

    +
    +

    51

    +
    +

    HXB5

    +
    +

    F

    +
    +

    4

    +
    +

    sig130C

    +
    +

    52

    +
    +

    HXB5

    +
    +

    M

    +
    +

    4

    +
    +

    sig131N

    +
    +

    53

    +
    +

    HXB21

    +
    +

    F

    +
    +

    5

    +
    +

    sig126

    +
    +

    54

    +
    +

    HXB21

    +
    +

    M

    +
    +

    5

    +
    +

    sig127N

    +
    +

    55

    +
    +

    HXB23

    +
    +

    F

    +
    +

    5

    +
    +

    sig127C

    +
    +

    56

    +
    +

    HXB23

    +
    +

    M

    +
    +

    5

    +
    +

    sig128N

    +
    +

    57

    +
    +

    HXB24

    +
    +

    F

    +
    +

    5

    +
    +

    sig128C

    +
    +

    58

    +
    +

    HXB24

    +
    +

    M

    +
    +

    5

    +
    +

    sig129N

    +
    +

    59

    +
    +

    HXB25

    +
    +

    F

    +
    +

    5

    +
    +

    sig129C

    +
    +

    60

    +
    +

    HXB25

    +
    +

    M

    +
    +

    5

    +
    +

    sig130N

    +
    +

    61

    +
    +

    HXB27

    +
    +

    F

    +
    +

    5

    +
    +

    sig130C

    +
    +

    62

    +
    +

    HXB27

    +
    +

    M

    +
    +

    5

    +
    +

    sig131N

    +
    diff --git a/general/datasets/Und_nida_hxb_bxh_indbp_log2z8_0321/processing.rtf b/general/datasets/Und_nida_hxb_bxh_indbp_log2z8_0321/processing.rtf new file mode 100644 index 0000000..c05f172 --- /dev/null +++ b/general/datasets/Und_nida_hxb_bxh_indbp_log2z8_0321/processing.rtf @@ -0,0 +1,5 @@ +

    Sample processing protocol: The proteomic data were generated with 3 batches of 16-plex and 2 batches of 11-plex TMT experiments. The rat brain samples from 31 HXB/BXH strains with replicates (i.e., male and female) were lysed, digested, and labeled with either 11 or 16 different TMT tags. The TMT-labeled peptides were pooled with an equal amount of each and fractionated into 42 fractions in a concatenated fashion on an RP-HPLC column (4.6 mm x 250 mm) under basic pH conditions. each fraction was run sequentially on a column (75 μm x 20 cm for the whole proteome, 50 μm x ∼30 cm for phosphoproteome, 1.9 μm C18 resin from Dr. Maisch GmbH, 65°C to reduce backpressure) interfaced with a Q Exactive HF Orbitrap or Fusion MS (Thermo Fisher). Peptides were eluted by a 2-3 hr gradient (buffer A: 0.2% formic acid, 5% DMSO; buffer B: buffer A plus 65% acetonitrile). MS settings included the MS1 scan (410-1600 m/z, 60,000 or 120,000 resolution, 1 × 106 AGC and 50 ms maximal ion time) and 20 data-dependent MS2 scans (fixed first mass of 120 m/z, 60,000 resolution, 1 × 105 AGC, 100-150 ms maximal ion time, HCD, 35%–38% normalized collision energy, ∼1.0 m/z isolation window). 

    + +

    Data processing protocol: The MS/MS raw files are processed using the JUMP searching engine against the UniProt mouse database.  Searches were performed using 8 ppm mass tolerance for precursor ions due to JUMP’s auto mass correction function and 15 ppm for fragment ions, allowing up to two missed trypsin cleavage sites. TMT tags on lysine residues and peptide N termini (+229.162932 Da) were used for static modifications and the dynamic modifications include oxidation of methionine residues (+15.99492 Da). The assigned peptides are filtered by minimal peptide length, maximum miscleavages, mass-to-charge accuracy and matching scores. The peptides are then divided into groups according to peptide length, trypticity, modification, miscleavage, and charge and then further filtered by matching scores to reduce protein or phosphopeptide FDR to below 1%. Proteins or phosphopeptides were quantified by summing reporter ion counts across all matched PSMs using our in-house software.

    + +

    Protein quantification: We first extracted the TMT reporter ion intensities of each PSM and corrected the raw intensities based on the isotopic distribution of each labeling reagent. We discarded PSMs with low intensities (i.e., the minimum intensity of 1,000 and the median intensity of 5,000). After normalizing abundance with the trimmed median intensity of all PSMs, we calculated the mean-centered intensities across samples (e.g., relative intensities between each sample and the mean) and summarized protein relative intensities by averaging related PSMs. Finally, we derived protein absolute intensities by multiplying the relative intensities by the grand mean of the three most highly abundant PSMs. We first used the internal standard to normalize 3 batches of 16-plex experiments and 2 batches of 11-plex experiments. We then used the LIMMA batch removal function to normalize all five batches of TMT experiments.  

    diff --git a/general/datasets/Und_nida_hxb_bxh_indbp_log2z8_0321/specifics.rtf b/general/datasets/Und_nida_hxb_bxh_indbp_log2z8_0321/specifics.rtf new file mode 100644 index 0000000..2fa1f25 --- /dev/null +++ b/general/datasets/Und_nida_hxb_bxh_indbp_log2z8_0321/specifics.rtf @@ -0,0 +1 @@ +Brain Proteome Individual (protein level) \ No newline at end of file diff --git a/general/datasets/Und_nida_hxb_bxh_indbp_log2z8_0321/summary.rtf b/general/datasets/Und_nida_hxb_bxh_indbp_log2z8_0321/summary.rtf new file mode 100644 index 0000000..94c8e6e --- /dev/null +++ b/general/datasets/Und_nida_hxb_bxh_indbp_log2z8_0321/summary.rtf @@ -0,0 +1,3 @@ +

    Brain proteome data. Deep proteome data were generated using whole brain tissue from both parents and 29 members of the HXB family, one male and one female per strain. Proteins in these samples were identified and quantified using the tandem-mass-tag (TMT) labeling strategy coupled with two-dimensional liquid chromatography-tandem mass spectrometry (LC/LC-MS/MS).

    + +

    This rat whole brain proteome data provide protein expression of 31 HXB/BXH strains, including 29 RI strains, and two parental strains, SHR/OlaIpcv and BN-Lx/Cub. A total of 8,124 proteins were quantified across all 31 strains.

    diff --git a/general/datasets/Und_nida_hxb_bxh_indbpep_log2z8_0321/cases.rtf b/general/datasets/Und_nida_hxb_bxh_indbpep_log2z8_0321/cases.rtf new file mode 100644 index 0000000..ce39718 --- /dev/null +++ b/general/datasets/Und_nida_hxb_bxh_indbpep_log2z8_0321/cases.rtf @@ -0,0 +1,1075 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Index

    +
    +

    Strain

    +
    +

    Sex

    +
    +

    TMT Batch

    +
    +

    TMT Channel

    +
    +

    1

    +
    +

    SHR

    +
    +

    M

    +
    +

    1

    +
    +

    sig127C

    +
    +

    2

    +
    +

    SHR

    +
    +

    F

    +
    +

    1

    +
    +

    sig128N

    +
    +

    3

    +
    +

    BN.Lx

    +
    +

    M

    +
    +

    1

    +
    +

    sig129C

    +
    +

    4

    +
    +

    BN.Lx

    +
    +

    F

    +
    +

    1

    +
    +

    sig131N

    +
    +

    5

    +
    +

    HXB18

    +
    +

    F

    +
    +

    1

    +
    +

    sig126

    +
    +

    6

    +
    +

    HXB18

    +
    +

    M

    +
    +

    1

    +
    +

    sig127N

    +
    +

    7

    +
    +

    BXH3

    +
    +

    M

    +
    +

    1

    +
    +

    sig131C

    +
    +

    8

    +
    +

    BXH3

    +
    +

    F

    +
    +

    1

    +
    +

    sig132N

    +
    +

    9

    +
    +

    BXH12

    +
    +

    M

    +
    +

    1

    +
    +

    sig132C

    +
    +

    10

    +
    +

    BXH12

    +
    +

    F

    +
    +

    1

    +
    +

    sig133N

    +
    +

    11

    +
    +

    BXH13

    +
    +

    M

    +
    +

    1

    +
    +

    sig133C

    +
    +

    12

    +
    +

    BXH13

    +
    +

    F

    +
    +

    1

    +
    +

    sig134N

    +
    +

    13

    +
    +

    BXH6

    +
    +

    M

    +
    +

    2

    +
    +

    sig127N

    +
    +

    14

    +
    +

    BXH6

    +
    +

    F

    +
    +

    2

    +
    +

    sig127C

    +
    +

    15

    +
    +

    BXH8

    +
    +

    M

    +
    +

    2

    +
    +

    sig128N

    +
    +

    16

    +
    +

    BXH8

    +
    +

    F

    +
    +

    2

    +
    +

    sig128C

    +
    +

    17

    +
    +

    HXB1

    +
    +

    M

    +
    +

    2

    +
    +

    sig129N

    +
    +

    18

    +
    +

    HXB1

    +
    +

    F

    +
    +

    2

    +
    +

    sig129C

    +
    +

    19

    +
    +

    HXB10

    +
    +

    M

    +
    +

    2

    +
    +

    sig130N

    +
    +

    20

    +
    +

    HXB10

    +
    +

    F

    +
    +

    2

    +
    +

    sig130C

    +
    +

    21

    +
    +

    HXB13

    +
    +

    M

    +
    +

    2

    +
    +

    sig131N

    +
    +

    22

    +
    +

    HXB13

    +
    +

    F

    +
    +

    2

    +
    +

    sig131C

    +
    +

    23

    +
    +

    HXB15

    +
    +

    M

    +
    +

    2

    +
    +

    sig132N

    +
    +

    24

    +
    +

    HXB15

    +
    +

    F

    +
    +

    2

    +
    +

    sig132C

    +
    +

    25

    +
    +

    HXB17

    +
    +

    M

    +
    +

    2

    +
    +

    sig133N

    +
    +

    26

    +
    +

    HXB17

    +
    +

    F

    +
    +

    2

    +
    +

    sig133C

    +
    +

    27

    +
    +

    HXB4

    +
    +

    M

    +
    +

    2

    +
    +

    sig134N

    +
    +

    28

    +
    +

    HXB4

    +
    +

    F

    +
    +

    3

    +
    +

    sig127N

    +
    +

    29

    +
    +

    HXB2

    +
    +

    M

    +
    +

    3

    +
    +

    sig127C

    +
    +

    30

    +
    +

    HXB2

    +
    +

    F

    +
    +

    3

    +
    +

    sig128N

    +
    +

    31

    +
    +

    HXB20

    +
    +

    M

    +
    +

    3

    +
    +

    sig128C

    +
    +

    32

    +
    +

    HXB20

    +
    +

    F

    +
    +

    3

    +
    +

    sig129N

    +
    +

    33

    +
    +

    HXB22

    +
    +

    M

    +
    +

    3

    +
    +

    sig129C

    +
    +

    34

    +
    +

    HXB22

    +
    +

    F

    +
    +

    3

    +
    +

    sig130N

    +
    +

    35

    +
    +

    HXB29

    +
    +

    M

    +
    +

    3

    +
    +

    sig130C

    +
    +

    36

    +
    +

    HXB29

    +
    +

    F

    +
    +

    3

    +
    +

    sig131N

    +
    +

    37

    +
    +

    HXB3

    +
    +

    M

    +
    +

    3

    +
    +

    sig131C

    +
    +

    38

    +
    +

    HXB3

    +
    +

    F

    +
    +

    3

    +
    +

    sig132N

    +
    +

    39

    +
    +

    HXB31

    +
    +

    M

    +
    +

    3

    +
    +

    sig132C

    +
    +

    40

    +
    +

    HXB31

    +
    +

    F

    +
    +

    3

    +
    +

    sig133N

    +
    +

    41

    +
    +

    HXB7

    +
    +

    M

    +
    +

    3

    +
    +

    sig133C

    +
    +

    42

    +
    +

    HXB7

    +
    +

    F

    +
    +

    3

    +
    +

    sig134N

    +
    +

    43

    +
    +

    BXH5

    +
    +

    F

    +
    +

    4

    +
    +

    sig126

    +
    +

    44

    +
    +

    BXH5

    +
    +

    M

    +
    +

    4

    +
    +

    sig127N

    +
    +

    45

    +
    +

    BXH9

    +
    +

    F

    +
    +

    4

    +
    +

    sig127C

    +
    +

    46

    +
    +

    BXH9

    +
    +

    M

    +
    +

    4

    +
    +

    sig128N

    +
    +

    47

    +
    +

    BXH10

    +
    +

    F

    +
    +

    4

    +
    +

    sig128C

    +
    +

    48

    +
    +

    BXH10

    +
    +

    M

    +
    +

    4

    +
    +

    sig129N

    +
    +

    49

    +
    +

    BXH11

    +
    +

    F

    +
    +

    4

    +
    +

    sig129C

    +
    +

    50

    +
    +

    BXH11

    +
    +

    M

    +
    +

    4

    +
    +

    sig130N

    +
    +

    51

    +
    +

    HXB5

    +
    +

    F

    +
    +

    4

    +
    +

    sig130C

    +
    +

    52

    +
    +

    HXB5

    +
    +

    M

    +
    +

    4

    +
    +

    sig131N

    +
    +

    53

    +
    +

    HXB21

    +
    +

    F

    +
    +

    5

    +
    +

    sig126

    +
    +

    54

    +
    +

    HXB21

    +
    +

    M

    +
    +

    5

    +
    +

    sig127N

    +
    +

    55

    +
    +

    HXB23

    +
    +

    F

    +
    +

    5

    +
    +

    sig127C

    +
    +

    56

    +
    +

    HXB23

    +
    +

    M

    +
    +

    5

    +
    +

    sig128N

    +
    +

    57

    +
    +

    HXB24

    +
    +

    F

    +
    +

    5

    +
    +

    sig128C

    +
    +

    58

    +
    +

    HXB24

    +
    +

    M

    +
    +

    5

    +
    +

    sig129N

    +
    +

    59

    +
    +

    HXB25

    +
    +

    F

    +
    +

    5

    +
    +

    sig129C

    +
    +

    60

    +
    +

    HXB25

    +
    +

    M

    +
    +

    5

    +
    +

    sig130N

    +
    +

    61

    +
    +

    HXB27

    +
    +

    F

    +
    +

    5

    +
    +

    sig130C

    +
    +

    62

    +
    +

    HXB27

    +
    +

    M

    +
    +

    5

    +
    +

    sig131N

    +
    diff --git a/general/datasets/Und_nida_hxb_bxh_indbpep_log2z8_0321/processing.rtf b/general/datasets/Und_nida_hxb_bxh_indbpep_log2z8_0321/processing.rtf new file mode 100644 index 0000000..c05f172 --- /dev/null +++ b/general/datasets/Und_nida_hxb_bxh_indbpep_log2z8_0321/processing.rtf @@ -0,0 +1,5 @@ +

    Sample processing protocol: The proteomic data were generated with 3 batches of 16-plex and 2 batches of 11-plex TMT experiments. The rat brain samples from 31 HXB/BXH strains with replicates (i.e., male and female) were lysed, digested, and labeled with either 11 or 16 different TMT tags. The TMT-labeled peptides were pooled with an equal amount of each and fractionated into 42 fractions in a concatenated fashion on an RP-HPLC column (4.6 mm x 250 mm) under basic pH conditions. each fraction was run sequentially on a column (75 μm x 20 cm for the whole proteome, 50 μm x ∼30 cm for phosphoproteome, 1.9 μm C18 resin from Dr. Maisch GmbH, 65°C to reduce backpressure) interfaced with a Q Exactive HF Orbitrap or Fusion MS (Thermo Fisher). Peptides were eluted by a 2-3 hr gradient (buffer A: 0.2% formic acid, 5% DMSO; buffer B: buffer A plus 65% acetonitrile). MS settings included the MS1 scan (410-1600 m/z, 60,000 or 120,000 resolution, 1 × 106 AGC and 50 ms maximal ion time) and 20 data-dependent MS2 scans (fixed first mass of 120 m/z, 60,000 resolution, 1 × 105 AGC, 100-150 ms maximal ion time, HCD, 35%–38% normalized collision energy, ∼1.0 m/z isolation window). 

    + +

    Data processing protocol: The MS/MS raw files are processed using the JUMP searching engine against the UniProt mouse database.  Searches were performed using 8 ppm mass tolerance for precursor ions due to JUMP’s auto mass correction function and 15 ppm for fragment ions, allowing up to two missed trypsin cleavage sites. TMT tags on lysine residues and peptide N termini (+229.162932 Da) were used for static modifications and the dynamic modifications include oxidation of methionine residues (+15.99492 Da). The assigned peptides are filtered by minimal peptide length, maximum miscleavages, mass-to-charge accuracy and matching scores. The peptides are then divided into groups according to peptide length, trypticity, modification, miscleavage, and charge and then further filtered by matching scores to reduce protein or phosphopeptide FDR to below 1%. Proteins or phosphopeptides were quantified by summing reporter ion counts across all matched PSMs using our in-house software.

    + +

    Protein quantification: We first extracted the TMT reporter ion intensities of each PSM and corrected the raw intensities based on the isotopic distribution of each labeling reagent. We discarded PSMs with low intensities (i.e., the minimum intensity of 1,000 and the median intensity of 5,000). After normalizing abundance with the trimmed median intensity of all PSMs, we calculated the mean-centered intensities across samples (e.g., relative intensities between each sample and the mean) and summarized protein relative intensities by averaging related PSMs. Finally, we derived protein absolute intensities by multiplying the relative intensities by the grand mean of the three most highly abundant PSMs. We first used the internal standard to normalize 3 batches of 16-plex experiments and 2 batches of 11-plex experiments. We then used the LIMMA batch removal function to normalize all five batches of TMT experiments.  

    diff --git a/general/datasets/Und_nida_hxb_bxh_indbpep_log2z8_0321/specifics.rtf b/general/datasets/Und_nida_hxb_bxh_indbpep_log2z8_0321/specifics.rtf new file mode 100644 index 0000000..f255583 --- /dev/null +++ b/general/datasets/Und_nida_hxb_bxh_indbpep_log2z8_0321/specifics.rtf @@ -0,0 +1 @@ +UND NIDA Brain Proteome Individual (peptide-level) log2z+8 (Mar21) \ No newline at end of file diff --git a/general/datasets/Und_nida_hxb_bxh_indbpep_log2z8_0321/summary.rtf b/general/datasets/Und_nida_hxb_bxh_indbpep_log2z8_0321/summary.rtf new file mode 100644 index 0000000..94c8e6e --- /dev/null +++ b/general/datasets/Und_nida_hxb_bxh_indbpep_log2z8_0321/summary.rtf @@ -0,0 +1,3 @@ +

    Brain proteome data. Deep proteome data were generated using whole brain tissue from both parents and 29 members of the HXB family, one male and one female per strain. Proteins in these samples were identified and quantified using the tandem-mass-tag (TMT) labeling strategy coupled with two-dimensional liquid chromatography-tandem mass spectrometry (LC/LC-MS/MS).

    + +

    This rat whole brain proteome data provide protein expression of 31 HXB/BXH strains, including 29 RI strains, and two parental strains, SHR/OlaIpcv and BN-Lx/Cub. A total of 8,124 proteins were quantified across all 31 strains.

    diff --git a/general/datasets/Ut_ceph_rankinv0909/acknowledgment.rtf b/general/datasets/Ut_ceph_rankinv0909/acknowledgment.rtf new file mode 100644 index 0000000..7d66250 --- /dev/null +++ b/general/datasets/Ut_ceph_rankinv0909/acknowledgment.rtf @@ -0,0 +1 @@ +

    Financial support for this project was provided by Dr. Barrett Haik and the Hamilton Eye Institute, by NIH grant support to Malak Kotb, Robert W. Williams, Rita G. Kasal and colleagues, and by the UT Center for Integrative and Translational Genomics.

    diff --git a/general/datasets/Ut_ceph_rankinv0909/cases.rtf b/general/datasets/Ut_ceph_rankinv0909/cases.rtf new file mode 100644 index 0000000..f4f6663 --- /dev/null +++ b/general/datasets/Ut_ceph_rankinv0909/cases.rtf @@ -0,0 +1,2009 @@ +

    About the CEPH/UTAH families used to generate this data set:

    + +

    The CEPH/UTAH families used in this data set are part of CEPH repository linkage families of National Institute of General Medical Sciences (NIGMS) human genetic cell repository. These are immortalized human B-lymphocytes (EBV-transformed) from Caucasian donors of UTAH/Mormon ethnicity. The CEPH/UTAH families contain 48 families; the present data set includes 14 of these families with available DNA/genotypes for each member of these pedigrees. There are five families common with the published Monks et al (2004), namely families: 1346, 1362, 1418, 1421, and 1424.

    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexRepository
    + Number
    Case IDGenderFamily IDFamily Member IDSentrix IDSentrix
    + Position
    Batch ID
    1GM070381333001Male133314256249060A5
    2GM069871333002Female133324158260019B4
    3GM070041333003Male133334256249103A7
    4GM070521333004Male133344256249051A6
    5GM069821333005Male133354158260009F3
    6GM070111333006Female133364158260012C3
    7GM070091333007Male133374256249101F6
    8GM076781333008Male133384158260005B4
    9GM070261333009Male133394158260026C3
    10GM076791333010Male1333104158260030C3
    11GM070491333011Male1333114256249059A5
    12GM070021333012Female1333124158260001B4
    13GM070171333013Male1333134158260027B5
    14GM073411333014Female1333144256249042A6
    15GM118201333015Female1333154256249104E7
    16GM070481341001Male134114256249103B7
    17GM069911341002Female134124158260027A5
    18GM073431341003Female134134256249095C7
    19GM070441341004Female134144158260002C4
    20GM070121341005Female134154158260026D3
    21GM073441341006Female134164158260030B3
    22GM070211341007Male134174256249097B7
    23GM070061341008Female134184158260001C4
    24GM070101341009Female1341941582600011A2
    25GM070201341010Male1341104158260007A1
    26GM070341341011Male1341114158260007B1
    27GM070551341012Female1341124158260012E3
    28GM069931341013Male1341134256249059C5
    29GM069851341014Female1341144158260007C1
    30GM108521346002Female134624256249098D7
    31GM120351346003Male134634158260007D1
    32GM120361346004Male134644256249047A6
    33GM120371346005Male134654158260027E5
    34GM120381346006Male134664158260001E4
    35GM120391346007Male134674256249097C7
    36GM120411346009Female134694256249099B7
    37GM120421346010Female13461041582600011D2
    38GM120431346011Male1346114158260007E1
    39GM120441346012Female1346124256249096F7
    40GM120461346014Female1346144158260007F1
    41GM108581347001Male134714158260030A3
    42GM108591347002Female134724158260027C5
    43GM118701347003Female134734158260018C2
    44GM118711347004Male134744256249060B5
    45GM118721347005Male134754256249097A7
    46GM118731347006Male134764158260001A4
    47GM118751347008Female134784256249095E7
    48GM118761347009Male134794256249059E5
    49GM118771347010Male1347104158260021A2
    50GM118781347011Male1347114158260008A1
    51GM118791347012Male1347124158260019D4
    52GM118801347013Female1347134158260008B1
    53GM118811347014Male1347144256249101C6
    54GM118821347015Female1347154158260008C1
    55GM118831347016Male13471641582600011B2
    56GM108601362001Male136214256249097E7
    57GM108611362002Female136224158260027D5
    58GM119821362003Female136234158260019F4
    59GM119831362004Female136244158260030D3
    60GM119841362005Male136254158260008D1
    61GM119851362006Female136264158260002F4
    62GM119861362007Female136274256249060C5
    63GM119871362008Male136284158260005F4
    64GM119881362009Female136294256249042B6
    65GM119891362010Female1362104158260001F4
    66GM119901362011Male1362114256249094A6
    67GM119911362012Female1362124158260018E2
    68GM119921362013Male1362134256249059B5
    69GM119931362014Female1362144256249059F5
    70GM119941362015Male1362154158260008E1
    71GM119951362016Female1362164158260008F1
    72GM119961362017Male1362174158260021C2
    73GM108351416001Male141614256249060F5
    74GM108341416002Female141624158260018A2
    75GM122401416003Male141634158260019E4
    76GM122411416004Male141644256249059D5
    77GM122431416006Male141664256249096C7
    78GM122441416007Female141674256249047B6
    79GM122451416008Male1416841582600011E2
    80GM122461416009Female141694158260026E3
    81GM122471416010Female1416104158260021D2
    82GM122481416011Male1416114256249094B6
    83GM122491416012Female1416124256249041A6
    84GM122501416013Male1416134256249044F7
    85GM122511416014Female1416144158260005D4
    86GM122521416015Female1416154158260009E3
    87GM122531416016Female1416164158260027F5
    88GM108361418002Female141824158260018B2
    89GM123281418003Female141834256249047C6
    90GM122661418005Female1418541582600011F2
    91GM122671418006Male141864158260009D3
    92GM122701418009Female141894158260001D4
    93GM122711418010Female1418104158260012D3
    94GM122721418011Male1418114256249060E5
    95GM122731418012Female1418124158260002D4
    96GM122741418013Male1418134256249101A6
    97GM122751418014Female1418144158260005C4
    98GM108411421001Male142114158260030E3
    99GM108401421002Female142124256249098C7
    100GM122761421003Female142134158260012F3
    101GM122781421005Female142154256249042C6
    102GM122801421007Female142174256249041B6
    103GM122811421008Male142184256249047D6
    104GM122821421009Male142194158260026F3
    105GM122831421010Female1421104256249101B6
    106GM122841421011Male1421114256249094C6
    107GM122851421012Male1421124256249104B7
    108GM122871421014Female1421144256249051B6
    109GM119101423004Female142344256249103D7
    110GM119111423005Female142354256249096E7
    111GM119121423006Male142364158260009C3
    112GM119131423007Male142374256249044D7
    113GM119141423008Female142384256249098A7
    114GM119151423009Female1423941582600011C2
    115GM119161423010Male1423104158260018D2
    116GM119171423011Male1423114256249097F7
    117GM119191423013Male1423134256249104F7
    118GM119201423014Female1423144256249095D7
    119GM119211423015Female1423154256249099A7
    120GM108451424001Male142414256249104C7
    121GM108441424002Female142424256249103F7
    122GM119221424003Male142434256249044A7
    123GM119231424004Male142444256249097D7
    124GM119241424005Female142454256249096A7
    125GM119251424006Male142464158260021B2
    126GM119261424007Female142474256249051C6
    127GM119271424008Male142484256249042D6
    128GM119281424009Male142494256249098B7
    129GM119291424010Male1424104256249094D6
    130GM119301424011Male1424114256249041C6
    131GM119311424012Female1424124158260002A4
    132GM119321424013Male1424134256249095A7
    133GM119331424014Female1424144158260005E4
    134GM127521447001Male144714158260021E2
    135GM127541447003Female144734256249044E7
    136GM127561447005Male144754256249098F7
    137GM127581447007Female144774256249099D7
    138GM127591447008Female144784158260002E4
    139GM127601447009Male144794256249103E7
    140GM127611447010Female1447104158260009A3
    141GM127621447011Male1447114158260018F2
    142GM127631447012Female1447124158260012A3
    143GM127641447013Male1447134256249042E6
    144GM127651447014Male1447144158260026A3
    145GM127661451001Male145114158260009B3
    146GM127671451002Female145124158260012B3
    147GM127681451003Male145134256249041D6
    148GM127691451004Female145144158260021F2
    149GM127701451005Female145154158260005A4
    150GM127711451006Male145164256249047E6
    151GM127721451007Female145174158260019A4
    152GM127731451008Female145184158260002B4
    153GM128481451009Female145194256249051D6
    154GM127741451010Male1451104158260030F3
    155GM127761451012Female1451124256249099E7
    156GM127771451013Male1451134256249060D5
    157GM128011454001Male145414256249103C7
    158GM128031454003Female145434158260019C4
    159GM128041454004Female145444256249101D6
    160GM128051454005Male145454256249095F7
    161GM128061454006Male145464256249098E7
    162GM128081454008Female145484256249099C7
    163GM128091454009Female145494256249051E6
    164GM128101454010Male1454104256249104A7
    165GM128111454011Male1454114256249044B7
    166GM128121454012Male1454124256249042F6
    167GM128131454013Female1454134256249094E6
    168GM128141454014Male1454144256249096D7
    169GM128151454015Female1454154256249041E6
    170GM128161454016Male1454164256249047F6
    171GM128171456001Male145614256249051F6
    172GM128181456002Female145624256249101E6
    173GM128191456003Male145634256249095B7
    174GM128211456005Female145654256249044C7
    175GM128221456006Male145664256249094F6
    176GM128231456007Male145674256249096B7
    177GM128241456008Female145684256249104D7
    178GM128251456009Male145694158260026B3
    179GM128261456010Female1456104256249041F6
    180GM128281456012Female1456124256249099F7
    +
    diff --git a/general/datasets/Ut_ceph_rankinv0909/contributors.rtf b/general/datasets/Ut_ceph_rankinv0909/contributors.rtf new file mode 100644 index 0000000..507f2f7 --- /dev/null +++ b/general/datasets/Ut_ceph_rankinv0909/contributors.rtf @@ -0,0 +1,3 @@ +

    Eldon Geisert, Barrett Haik, Malak Kotb, Lu Lu, Roel Ophoff, Robert Williams.

    + +

    NIGMS Human Genetic Cell Repository

    diff --git a/general/datasets/Ut_ceph_rankinv0909/experiment-design.rtf b/general/datasets/Ut_ceph_rankinv0909/experiment-design.rtf new file mode 100644 index 0000000..d525b2e --- /dev/null +++ b/general/datasets/Ut_ceph_rankinv0909/experiment-design.rtf @@ -0,0 +1,13 @@ +

    Experimental Design and Batch Structure:

    + +

    This data set consists of arrays processed in seven groups. Groups consisted of 2, 3, 4, 4, 3, 6, and then 8 beadchips at a time, batch IDs are indicated in table 1. Samples from same family were scattered among array groups, with samples from six different families were run on one chip. This was done to ensure balance and to minimize batch effects and group-by-family statistical confounds in normalization. This was done with the exception of the first two chips, which were run with 3 generations of the same family on one chip. A single operator, Yan Jiao, processed all arrays using illumina protocol for hybridization, washing and scanning. All samples in a group were labeled on one day, hybridization station accommodates up to 24 samples, or 4 beadchips. Chips were scanned using BeadArray Reader in sets of three.

    + +

    About the processing of cell lines:

    + +

    CEPH/UTAH families cell lines were purchased from Coriell repository of cell lines part of NIGMS. Upon arrival from the Coriell institute, we incubated the cell lines in 25ml flasks upright overnight at 37 ºC humidified incubator, with 5% carbon dioxide. We maintained the cells at a density of 5 X 105 cells/ml. The composition of the media used was RPMI-1640, 15% fetal bovine serum (FBS) and 2mM L-Glutamine; all FBS used was from the same lot. At 48 hours or when cell counts were ≥ 8 x 106 cells total, we harvested the cells and tested each cell line for mycoplasma contamination using e-Myco Mycoplasma PCR detection kit (iNtRON Biotechnology) according to manufacturer protocol. Cell lysates free of mycoplasma were used for RNA extraction as detailed below. We froze duplicates of each cell line at a concentration of ~2–6 x106 cells/ml according to standard procedures and stored in liquid nitrogen.

    + +

    About RNA processing:

    + +

    Two hundred and five cell lines were used for isolation of RNA. Ms. Sarah Rowe Hasty performed initial RNA isolation, purification and re-precipitation from 205 cell lines in Dr. Malak Kotb laboratory at VAMC. After initial RNA isolation, Ms. Nourtan Abdeltawab treated all samples for removal of contaminating DNA, along with further purification and re-precipitation of all samples. RNA samples that passed quality control were used to generate cRNA samples, those that didn't pass QC were re-extracted as we had duplicates of all cell lines lysates. RNA Extraction details: We used Qiagen RNeasy Mini purification of total RNA from tissues and cells spin protocol. RNA was isolated from 7.5 X 105 cells in duplicates. We froze cell lysates in RLT buffer and ß-mercaptoethanol at -80 ºC in 96 well plates until processed at a later time. We thawed samples, one 96 well plate at a time, and proceeded with RNA isolation steps and resuspended the pellets in RNase-free water. We then treated RNA to remove any DNA contamination using DNase digestion with RNase-free DNase kit (Qiagen) according to manufacturer protocol. RNA was finally purified by re-precipitation using ethanol precipitation using Purescript RNA purification kit (Gentra). Final purified RNA was resuspended in RNase-free water. RNA quality control: RNA samples were checked for RNA purity and integrity. RNA purity was evaluated using the 260/280 and 260/230 absorbance ratios. We used RNA samples with 260/280 ratio values ≥ 1.8 and 260/230 of ≥1.7. In cases were RNA samples did not meet these ratios, the RNA was purified by re-precipitation as above. RNA integrity was assessed using 1% RNA denaturing agrose gels. We required clear sharp bands of 18S and 28S rRNA for all samples compared to a control RNA sample to ensure intactness of rRNA.

    + +

    All RNA samples were processed by Yan Jiao at Dr. Weikuan Gu’s microarray core facility at VA medical center, Memphis, TN. We used only RNA samples that passed quality control as detailed above and of concentration ≥ 50ng/ul for cRNA synthesis using Illumina TotalPrep RNA amplification kit (Ambion) according to manufacturer protocol. The basic outline of the procedure involves reverse transcription of RNA to synthesize cDNA using oligo (dT) primer, followed by in vitro transcription of purified dsDNA to synthesize amplified biotinylated cRNA (aRNA). We evaluated purified labeled cRNA using same methods as mentioned above for RNA samples. cRNA samples of good quality (passing QC), were then used to hybridize to Illumina Human-6WG v2.0 according to Illumina standard protocols.

    diff --git a/general/datasets/Ut_ceph_rankinv0909/experiment-type.rtf b/general/datasets/Ut_ceph_rankinv0909/experiment-type.rtf new file mode 100644 index 0000000..0ef1518 --- /dev/null +++ b/general/datasets/Ut_ceph_rankinv0909/experiment-type.rtf @@ -0,0 +1,6 @@ +Experimental Design and Batch Structure:

    +

    This data set consists of arrays processed in seven groups. Groups consisted of 2, 3, 4, 4, 3, 6, and then 8 beadchips at a time, batch IDs are indicated in table 1. Samples from same family were scattered among array groups, with samples from six different families were run on one chip. This was done to ensure balance and to minimize batch effects and group-by-family statistical confounds in normalization. This was done with the exception of the first two chips, which were run with 3 generations of the same family on one chip. A single operator, Yan Jiao, processed all arrays using illumina protocol for hybridization, washing and scanning. All samples in a group were labeled on one day, hybridization station accommodates up to 24 samples, or 4 beadchips. Chips were scanned using BeadArray Reader in sets of three.

    +About the processing of cell lines:

    +

    CEPH/UTAH families cell lines were purchased from Coriell repository of cell lines part of NIGMS. Upon arrival from the Coriell institute, we incubated the cell lines in 25ml flasks upright overnight at 37 ºC humidified incubator, with 5% carbon dioxide. We maintained the cells at a density of 5 X 105 cells/ml. The composition of the media used was RPMI-1640, 15% fetal bovine serum (FBS) and 2mM L-Glutamine; all FBS used was from the same lot. At 48 hours or when cell counts were ≥ 8 x 106 cells total, we harvested the cells and tested each cell line for mycoplasma contamination using e-Myco Mycoplasma PCR detection kit (iNtRON Biotechnology) according to manufacturer protocol. Cell lysates free of mycoplasma were used for RNA extraction as detailed below. We froze duplicates of each cell line at a concentration of ~2–6 x106 cells/ml according to standard procedures and stored in liquid nitrogen.

    +

    About RNA processing:

    +

    Two hundred and five cell lines were used for isolation of RNA. Ms. Sarah Rowe Hasty performed initial RNA isolation, purification and re-precipitation from 205 cell lines in Dr. Malak Kotb laboratory at VAMC. After initial RNA isolation, Ms. Nourtan Abdeltawab treated all samples for removal of contaminating DNA, along with further purification and re-precipitation of all samples. RNA samples that passed quality control were used to generate cRNA samples, those that didn't pass QC were re-extracted as we had duplicates of all cell lines lysates. RNA Extraction details: We used Qiagen RNeasy Mini purification of total RNA from tissues and cells spin protocol. RNA was isolated from 7.5 X 105 cells in duplicates. We froze cell lysates in RLT buffer and ß-mercaptoethanol at -80 ºC in 96 well plates until processed at a later time. We thawed samples, one 96 well plate at a time, and proceeded with RNA isolation steps and resuspended the pellets in RNase-free water. We then treated RNA to remove any DNA contamination using DNase digestion with RNase-free DNase kit (Qiagen) according to manufacturer protocol. RNA was finally purified by re-precipitation using ethanol precipitation using Purescript RNA purification kit (Gentra). Final purified RNA was resuspended in RNase-free water. RNA quality control: RNA samples were checked for RNA purity and integrity. RNA purity was evaluated using the 260/280 and 260/230 absorbance ratios. We used RNA samples with 260/280 ratio values ≥ 1.8 and 260/230 of ≥1.7. In cases were RNA samples did not meet these ratios, the RNA was purified by re-precipitation as above. RNA integrity was assessed using 1% RNA denaturing agrose gels. We required clear sharp bands of 18S and 28S rRNA for all samples compared to a control RNA sample to ensure intactness of rRNA.

    \ No newline at end of file diff --git a/general/datasets/Ut_ceph_rankinv0909/platform.rtf b/general/datasets/Ut_ceph_rankinv0909/platform.rtf new file mode 100644 index 0000000..a7a8769 --- /dev/null +++ b/general/datasets/Ut_ceph_rankinv0909/platform.rtf @@ -0,0 +1 @@ +

    Illumina HumanGW-6 v2.0 BeadChip: The Human-6 v2 beadchip simultaneously assays six samples, therefore, known as ‘array of arrays’. Each chip has ~1.8 million beads, beads have several hundred thousands copies of optimized 50-mer gene-specific probes. These probes cover more than 48,000 transcripts per sample, targeting genes and known alternative splice variants from the RefSeq database release 17 and UniGene build 188.

    diff --git a/general/datasets/Ut_ceph_rankinv0909/processing.rtf b/general/datasets/Ut_ceph_rankinv0909/processing.rtf new file mode 100644 index 0000000..d144cac --- /dev/null +++ b/general/datasets/Ut_ceph_rankinv0909/processing.rtf @@ -0,0 +1,3 @@ +

    About array data processing and analysis:

    + +

    RNA samples (n = 180) were processed using a total of 30 Illumina HumanWG-6 BeadChips, each beadchip analyses six samples covering 48,000 transcripts per sample. All chips passed quality control and error checking. This data set was extracted and processed using the Bead Studio 3. We applied Rank-invariant normalization to all the samples and the resulting expression values along with gene ID were exported in GeneSpring format. Dr. Rita Kansal performed the normalization steps.

    diff --git a/general/datasets/Ut_ceph_rankinv0909/summary.rtf b/general/datasets/Ut_ceph_rankinv0909/summary.rtf new file mode 100644 index 0000000..4394cb5 --- /dev/null +++ b/general/datasets/Ut_ceph_rankinv0909/summary.rtf @@ -0,0 +1,7 @@ +

    The Illumina Human Whole Genome 6 v2.0 Rank Invariant data for CEPH lymphoblastoid cell lines obtained from the Coriell Institute for Medical Research. All cell lines were processed in Memphis in the UTHSC laboratory of Dr. Malak Kotb (2007-2009), by Dr. Rita G. Kasal, Nourtan Abdeltawab, and colleagues.

    + +

    Selection of CEPH families and members was done by Dr. Roel Ophoff (Utrecht and UCLA).

    + +

    Array data were generated at microarray core facility in laboratory of Dr. Weikuan Gu at VA medical center, Memphis, TN.

    + +

    Analysis by Mark Reimers, Stephanie Santorico, and Roel Ophoff

    diff --git a/general/datasets/Ut_hippratex_rma_0709/acknowledgment.rtf b/general/datasets/Ut_hippratex_rma_0709/acknowledgment.rtf new file mode 100644 index 0000000..ded4315 --- /dev/null +++ b/general/datasets/Ut_hippratex_rma_0709/acknowledgment.rtf @@ -0,0 +1 @@ +

    Data were generated with NIAAA grants U01AA13499 to Robert W. Williams and a grant to Gerd Kempermann, Genomics of Regeneration in the Central Nervous System, Center for Regenerative Therapies, Dresden.

    diff --git a/general/datasets/Ut_hippratex_rma_0709/cases.rtf b/general/datasets/Ut_hippratex_rma_0709/cases.rtf new file mode 100644 index 0000000..85b4b4b --- /dev/null +++ b/general/datasets/Ut_hippratex_rma_0709/cases.rtf @@ -0,0 +1,1392 @@ + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Indexrun ordercase IDstrainRNA IDTube IDtissueout IDBORNSEXagefromExtractedRIN260:280260:230ng/ul8ug
    11100908.03BN.LxR5448HR5448H1hippoBN.Lx12/25/10female 16 weeksPravence's lab3/14/13 2.032.21042.148
    216100908.02BN.LxR5446HR5446H1hippoBN.Lx12/25/10male 26 weeksPravence's lab3/14/13 2.022.24392.6420
    357100908.04BN.LxR5450HR5450H1hippoBN.Lx12/25/10female 26 weeksPravence's lab3/14/13 2.062.181233.456
    468100908.01BN.LxR5444HR5444H1hippoBN.Lx12/25/10male 16 weeksPravence's lab3/14/13 2.052.05640.5612
    53101308.03BXH10R5390HR5390H1hippoRI 10C6/8/11female 16 weeksPravence's lab3/4/13 1.972.26444.3518
    666101308.01BXH10R5386HR5386H1hippoRI 10C2/6/11male 16 weeksPravence's lab3/4/13 2.042.25746.611
    75110608.19BXH11R5380HR5380H1hippoRI 11C5/25/11female 16 weeksPravence's lab3/4/13 1.972.35269.5830
    864110608.17BXH11R5378HR5378H1hippoRI 11C5/25/11male 16 weeksPravence's lab3/4/13 2.042.28811.0210
    97110608.23BXH12R5384HR5384H1hippoRI 12C3/26/11female 16 weeksPravence's lab3/4/13 2.062.28923.139
    1062110608.21BXH12R5382HR5382H1hippoRI 12C3/26/11male 16 weeksPravence's lab3/4/13 1.962.33260.3931
    119101508.19BXH13R5438HR5438H1hippoRI 13C4/20/11female 16 weeksPravence's lab3/10/13 1.982.33274.0429
    1260101508.17BXH13R5436HR5436H1hippoRI 13C4/20/11male 16 weeksPravence's lab3/10/13 1.982.26334.9224
    1311110608.27BXH2R5462HR5462H1hippoRI 2C4/1/11female 16 weeksPravence's lab3/14/13 2.062.31050.298
    1458110608.25BXH2R5464HR5464H1hippoRI 2C4/1/11male 16 weeksPravence's lab3/14/13 2.042.29804.7710
    1556100908.05BXH3R5452HR5452H1hippoRI 3C1/14/11male 16 weeksPravence's lab3/5/13 1.972.36306.0126
    1659100908.08BXH3R5394HR5394H1hippoRI 3C1/14/11female 26 weeksPravence's lab3/5/13 1.972.28409.7820
    1713110608.31BXH5R5368HR5368H1hippoRI 5C4/1/11female 16 weeksPravence's lab3/3/13 2.072.31235.026
    1854110608.29BXH5R5366HR5366H1hippoRI 5C4/1/11male 16 weeksPravence's lab3/3/13 2.042.289059
    1915110608.11BXH6R5372HR5372H1hippoRI 6C6/4/11female 16 weeksPravence's lab3/3/13 2.051.95692.6312
    2052110608.09BXH6R5370HR5370H1hippoRI 6C6/4/11male 16 weeksPravence's lab3/3/138.12.062.08954.858
    2117112008.07BXH8R5360HR5360H1hippoRI 8C4/17/11female 16 weeksPravence's lab2/28/139.12.072.271127.867
    2250112008.05BXH8R5358HR5358H1hippoRI 8C4/17/11male 16 weeksPravence's lab2/28/139.12.082.2682.512
    2319110608.15BXH9R5376HR5376H1hippoRI 9C6/16/11female 16 weeksPravence's lab3/3/139.52.082.24736.9311
    2448110608.13BXH9R5374HR5374H1hippoRI 9C6/16/11male 16 weeksPravence's lab3/3/138.91.982.25434.5118
    2521110608.03HXB1R5422HR5422H1hippoRI 13/13/11female 16 weeksPravence's lab3/10/13 1.992.22401.8320
    2646110608.01HXB1R5420HR5420H1hippoRI 13/13/11male 16 weeksPravence's lab3/10/13 1.972.29351.0123
    2723112008.51HXB10R5470HR5470H1hippoRI 103/30/11female 16 weeksPravence's lab3/17/13 2.042.26743.2711
    2844112008.49HXB10R5472HR5472H1hippoRI 103/30/11male 16 weeksPravence's lab3/17/13 2.052.21958.078
    2925112008.55HXB13R5352HR5352H1hippoRI 133/3/11female 16 weeksPravence's lab2/28/13 2.062.13306.0126
    3042112008.53HXB13R5350HR5350H1hippoRI 133/3/11male 16 weeksPravence's lab2/28/139.12.092.24965.018
    3127112008.11HXB15R5414HR5414H1hippoRI 151/22/11female 16 weeksPravence's lab3/6/138.72.032.31788.0810
    3240112008.09HXB15R5412HR5412H1hippoRI 151/22/11male 16 weeksPravence's lab3/6/13 2.052.31041.668
    3329112008.47HXB17R5474HR5474H1hippoRI 174/13/11female 16 weeksPravence's lab3/17/13 2.032.28758.4211
    3438112008.45HXB17R5476HR5476H1hippoRI 174/13/11male 16 weeksPravence's lab3/17/13 2.052.271112.557
    3514112008.22HXB18R5409HR5409H1hippoRI 182/2/11male 16 weeksPravence's lab3/6/13 2.062.271281.266
    3631112008.23HXB18R5410HR5410H1hippoRI 182/2/11female 16 weeksPravence's lab3/6/138.91.982.29356.5622
    3736112008.13HXB2R5416HR5416H1hippoRI 21/10/11male 16 weeksPravence's lab3/6/138.22.062.31471.725
    3867112008.15HXB2R5418HR5418H1hippoRI 21/10/11female16 weeksPravence's lab3/6/13 2.012.29690.6512
    3933112008.19HXB20R5406HR5406H1hippoRI 205/24/11female 16 weeksPravence's lab3/6/13 2.072.241386.526
    4034112008.17HXB20R5404HR5404H1hippoRI 202/16/11male 16 weeksPravence's lab3/6/138.62.052.261072.817
    4112101508.02HXB21R5458HR5458H1hippoRI 212/3/11male 26 weeksPravence's lab3/14/13 22.23791.410
    4235101508.04HXB21R5460HR5460H1hippoRI 212/3/11female 16 weeksPravence's lab3/14/13 1.972.29413.1919
    4332112008.33HXB22R5484HR5484H1hippoRI 224/5/11male 16 weeksPravence's lab3/18/13 2.082.16755.6111
    4437112008.35HXB22R5482HR5482H1hippoRI 224/5/11female 16 weeksPravence's lab3/18/13 2.022.3978.868
    4510101508.06HXB23R5454HR5454H1hippoRI 233/15/11male 26 weeksPravence's lab3/14/13 2.052.31052.188
    4661101508.08HXB23R5456HR5456H1hippoRI 233/15/11female 26 weeksPravence's lab3/14/13 2.062.271281.266
    4730100908.09HXB24R5396HR5396H1hippoRI 242/6/11male 16 weeksPravence's lab3/5/138.42.081.74764.6810
    4839100908.11HXB24R5400HR5400H1hippoRI 242/15/11female 16 weeksPravence's lab3/5/138.82.042.26906.159
    4928101508.09HXB25R5428HR5428H1hippoRI 253/1/11male 16 weeksPravence's lab3/10/138.52.052.3966.928
    5041101508.11HXB25R5430HR5430H1hippoRI 253/1/11female 16 weeksPravence's lab3/10/13 2.032.3811.6410
    518101508.22HXB27R5441HR5441H1hippoRI 274/19/11male 16 weeksPravence's lab3/10/13 2.022.24428.6119
    5243101508.23HXB27R5442HR5442H1hippoRI 274/19/11female 16 weeksPravence's lab3/10/13 2.022.27767.3210
    536112008.26HXB29R5364HR5364H1hippoRI 292/13/11male 26 weeksPravence's lab3/3/13 2.062.299618
    5463112008.28HXB29R5362HR5362H1hippoRI 292/13/11female 26 weeksPravence's lab3/3/138.82.072.26830.1510
    5526112008.37HXB3R5480HR5480H1hippoRI 33/16/11male 16 weeksPravence's lab3/18/138.72.052.261169.977
    5645112008.39HXB3R5478HR5478H1hippoRI 33/16/11female 16 weeksPravence's lab3/18/13 2.012.18864.529
    574112008.30HXB31R5347HR5347H1hippoRI 313/27/11male 26 weeksPravence's lab2/28/13 2.12.29881.399
    5847112008.31HXB31R5348HR5348H1hippoRI 313/27/11female 16 weeksPravence's lab2/28/13 1.962.37194.2341
    5924101508.13HXB4R5432HR5432H1hippoRI 42/25/11male 16 weeksPravence's lab3/10/138.42.062.291345.876
    6049101508.15HXB4R5434HR5434H1hippoRI 42/25/11female 16 weeksPravence's lab3/10/13 2.052.21663.412
    6122112008.41HXB5R5468HR5468H1hippoRI 54/20/11male 16 weeksPravence's lab3/17/13 2.052.26961.628
    6251112008.43HXB5R5466HR5466H1hippoRI 54/20/11female 16 weeksPravence's lab3/17/13 1.992.32349.4723
    6320110608.05HXB7R5424HR5424H1hippoRI 71/19/11male 16 weeksPravence's lab3/10/138.52.042.29911.719
    6453110608.07HXB7R5426HR5426H1hippoRI 73/28/11female 16 weeksPravence's lab3/10/13 1.972.28423.4519
    652112008.02SHRR5355HR5355H1hippoSHR12/25/10male 26 weeksPravence's lab2/28/13 2.082.24684.6712
    6618112008.01SHRR5354HR5354H1hippoSHR12/25/10male 16 weeksPravence's lab2/28/13 2.072.29728.5811
    6755112008.03SHRR5356HR5356H1hippoSHR12/25/10female 16 weeksPravence's lab2/28/13 1.972.36265.6630
    6865112008.04SHRR5357HR5357H1hippoSHR12/25/10female 26 weeksPravence's lab2/28/13 2.052.29967.248
    +
    diff --git a/general/datasets/Ut_hippratex_rma_0709/summary.rtf b/general/datasets/Ut_hippratex_rma_0709/summary.rtf new file mode 100644 index 0000000..8ea4a28 --- /dev/null +++ b/general/datasets/Ut_hippratex_rma_0709/summary.rtf @@ -0,0 +1 @@ +

    The HXB/BXH data provides estimates of Hippocampus mRNA expression. Affymetrix Rat Exon 1.0ST microarrays were used for hybridization using standard procedures. Total of 68 samples come from 30 BXH/HXB strain (one male and one female) and 2 parental strains (two males and two females).

    diff --git a/general/datasets/Ut_ilm_bxd_hipp_5t_1112/notes.rtf b/general/datasets/Ut_ilm_bxd_hipp_5t_1112/notes.rtf new file mode 100644 index 0000000..35247b6 --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_5t_1112/notes.rtf @@ -0,0 +1,23 @@ +

    Hippocampus 5 Conditions
    +Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    +Batch and Outlier Analysis on Partek Genomic Suite 6.6
    +ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    +K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    +Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    +Number of samples = 284
    +Number of probes = 46643

    + +
      +
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. +
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. +
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. +
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      + ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. +
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      + ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. +
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. +
    diff --git a/general/datasets/Ut_ilm_bxd_hipp_5t_1112/summary.rtf b/general/datasets/Ut_ilm_bxd_hipp_5t_1112/summary.rtf new file mode 100644 index 0000000..5aeb69c --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_5t_1112/summary.rtf @@ -0,0 +1,39 @@ +

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    + +

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    + +

    Restraint Stress Protocol

    + +
      +
    1. Weigh animals all animals to be tested and record body weight.
    2. +
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. +
    5. Place animals in immobilization tubes for 15 minutes.
    6. +
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. +
    9. Place each animal into zero-maze for 10 minutes.
    10. +
    11. Return animal to home cage.
    12. +
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. +
    + +

    Ethanol and saline injections
    +Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    + +

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    + +

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    + +

    Quality Control Data
    +Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    + +
      +
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. +
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. +
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. +
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. +
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. +
    + +

    Entered by Arthur Centeno, September 20, 2010.

    + +

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    + +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/Ut_ilm_bxd_hipp_noe_0909/notes.rtf b/general/datasets/Ut_ilm_bxd_hipp_noe_0909/notes.rtf new file mode 100644 index 0000000..35247b6 --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_noe_0909/notes.rtf @@ -0,0 +1,23 @@ +

    Hippocampus 5 Conditions
    +Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    +Batch and Outlier Analysis on Partek Genomic Suite 6.6
    +ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    +K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    +Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    +Number of samples = 284
    +Number of probes = 46643

    + +
      +
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. +
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. +
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. +
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      + ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. +
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      + ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. +
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. +
    diff --git a/general/datasets/Ut_ilm_bxd_hipp_noe_0909/summary.rtf b/general/datasets/Ut_ilm_bxd_hipp_noe_0909/summary.rtf new file mode 100644 index 0000000..5aeb69c --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_noe_0909/summary.rtf @@ -0,0 +1,39 @@ +

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    + +

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    + +

    Restraint Stress Protocol

    + +
      +
    1. Weigh animals all animals to be tested and record body weight.
    2. +
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. +
    5. Place animals in immobilization tubes for 15 minutes.
    6. +
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. +
    9. Place each animal into zero-maze for 10 minutes.
    10. +
    11. Return animal to home cage.
    12. +
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. +
    + +

    Ethanol and saline injections
    +Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    + +

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    + +

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    + +

    Quality Control Data
    +Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    + +
      +
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. +
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. +
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. +
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. +
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. +
    + +

    Entered by Arthur Centeno, September 20, 2010.

    + +

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    + +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/Ut_ilm_bxd_hipp_noe_1112/notes.rtf b/general/datasets/Ut_ilm_bxd_hipp_noe_1112/notes.rtf new file mode 100644 index 0000000..35247b6 --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_noe_1112/notes.rtf @@ -0,0 +1,23 @@ +

    Hippocampus 5 Conditions
    +Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    +Batch and Outlier Analysis on Partek Genomic Suite 6.6
    +ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    +K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    +Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    +Number of samples = 284
    +Number of probes = 46643

    + +
      +
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. +
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. +
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. +
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      + ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. +
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      + ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. +
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. +
    diff --git a/general/datasets/Ut_ilm_bxd_hipp_noe_1112/summary.rtf b/general/datasets/Ut_ilm_bxd_hipp_noe_1112/summary.rtf new file mode 100644 index 0000000..5aeb69c --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_noe_1112/summary.rtf @@ -0,0 +1,39 @@ +

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    + +

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    + +

    Restraint Stress Protocol

    + +
      +
    1. Weigh animals all animals to be tested and record body weight.
    2. +
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. +
    5. Place animals in immobilization tubes for 15 minutes.
    6. +
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. +
    9. Place each animal into zero-maze for 10 minutes.
    10. +
    11. Return animal to home cage.
    12. +
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. +
    + +

    Ethanol and saline injections
    +Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    + +

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    + +

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    + +

    Quality Control Data
    +Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    + +
      +
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. +
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. +
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. +
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. +
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. +
    + +

    Entered by Arthur Centeno, September 20, 2010.

    + +

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    + +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/Ut_ilm_bxd_hipp_non_0909/experiment-type.rtf b/general/datasets/Ut_ilm_bxd_hipp_non_0909/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_non_0909/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Ut_ilm_bxd_hipp_non_0909/notes.rtf b/general/datasets/Ut_ilm_bxd_hipp_non_0909/notes.rtf new file mode 100644 index 0000000..35247b6 --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_non_0909/notes.rtf @@ -0,0 +1,23 @@ +

    Hippocampus 5 Conditions
    +Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    +Batch and Outlier Analysis on Partek Genomic Suite 6.6
    +ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    +K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    +Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    +Number of samples = 284
    +Number of probes = 46643

    + +
      +
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. +
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. +
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. +
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      + ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. +
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      + ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. +
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. +
    diff --git a/general/datasets/Ut_ilm_bxd_hipp_non_0909/summary.rtf b/general/datasets/Ut_ilm_bxd_hipp_non_0909/summary.rtf new file mode 100644 index 0000000..5aeb69c --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_non_0909/summary.rtf @@ -0,0 +1,39 @@ +

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    + +

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    + +

    Restraint Stress Protocol

    + +
      +
    1. Weigh animals all animals to be tested and record body weight.
    2. +
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. +
    5. Place animals in immobilization tubes for 15 minutes.
    6. +
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. +
    9. Place each animal into zero-maze for 10 minutes.
    10. +
    11. Return animal to home cage.
    12. +
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. +
    + +

    Ethanol and saline injections
    +Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    + +

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    + +

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    + +

    Quality Control Data
    +Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    + +
      +
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. +
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. +
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. +
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. +
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. +
    + +

    Entered by Arthur Centeno, September 20, 2010.

    + +

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    + +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/Ut_ilm_bxd_hipp_non_1112/notes.rtf b/general/datasets/Ut_ilm_bxd_hipp_non_1112/notes.rtf new file mode 100644 index 0000000..35247b6 --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_non_1112/notes.rtf @@ -0,0 +1,23 @@ +

    Hippocampus 5 Conditions
    +Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    +Batch and Outlier Analysis on Partek Genomic Suite 6.6
    +ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    +K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    +Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    +Number of samples = 284
    +Number of probes = 46643

    + +
      +
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. +
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. +
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. +
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      + ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. +
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      + ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. +
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. +
    diff --git a/general/datasets/Ut_ilm_bxd_hipp_non_1112/summary.rtf b/general/datasets/Ut_ilm_bxd_hipp_non_1112/summary.rtf new file mode 100644 index 0000000..5aeb69c --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_non_1112/summary.rtf @@ -0,0 +1,39 @@ +

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    + +

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    + +

    Restraint Stress Protocol

    + +
      +
    1. Weigh animals all animals to be tested and record body weight.
    2. +
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. +
    5. Place animals in immobilization tubes for 15 minutes.
    6. +
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. +
    9. Place each animal into zero-maze for 10 minutes.
    10. +
    11. Return animal to home cage.
    12. +
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. +
    + +

    Ethanol and saline injections
    +Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    + +

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    + +

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    + +

    Quality Control Data
    +Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    + +
      +
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. +
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. +
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. +
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. +
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. +
    + +

    Entered by Arthur Centeno, September 20, 2010.

    + +

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    + +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/Ut_ilm_bxd_hipp_nos_0909/notes.rtf b/general/datasets/Ut_ilm_bxd_hipp_nos_0909/notes.rtf new file mode 100644 index 0000000..35247b6 --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_nos_0909/notes.rtf @@ -0,0 +1,23 @@ +

    Hippocampus 5 Conditions
    +Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    +Batch and Outlier Analysis on Partek Genomic Suite 6.6
    +ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    +K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    +Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    +Number of samples = 284
    +Number of probes = 46643

    + +
      +
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. +
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. +
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. +
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      + ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. +
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      + ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. +
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. +
    diff --git a/general/datasets/Ut_ilm_bxd_hipp_nos_0909/summary.rtf b/general/datasets/Ut_ilm_bxd_hipp_nos_0909/summary.rtf new file mode 100644 index 0000000..5aeb69c --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_nos_0909/summary.rtf @@ -0,0 +1,39 @@ +

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    + +

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    + +

    Restraint Stress Protocol

    + +
      +
    1. Weigh animals all animals to be tested and record body weight.
    2. +
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. +
    5. Place animals in immobilization tubes for 15 minutes.
    6. +
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. +
    9. Place each animal into zero-maze for 10 minutes.
    10. +
    11. Return animal to home cage.
    12. +
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. +
    + +

    Ethanol and saline injections
    +Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    + +

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    + +

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    + +

    Quality Control Data
    +Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    + +
      +
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. +
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. +
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. +
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. +
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. +
    + +

    Entered by Arthur Centeno, September 20, 2010.

    + +

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    + +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/Ut_ilm_bxd_hipp_nos_1112/notes.rtf b/general/datasets/Ut_ilm_bxd_hipp_nos_1112/notes.rtf new file mode 100644 index 0000000..35247b6 --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_nos_1112/notes.rtf @@ -0,0 +1,23 @@ +

    Hippocampus 5 Conditions
    +Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    +Batch and Outlier Analysis on Partek Genomic Suite 6.6
    +ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    +K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    +Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    +Number of samples = 284
    +Number of probes = 46643

    + +
      +
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. +
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. +
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. +
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      + ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. +
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      + ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. +
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. +
    diff --git a/general/datasets/Ut_ilm_bxd_hipp_nos_1112/summary.rtf b/general/datasets/Ut_ilm_bxd_hipp_nos_1112/summary.rtf new file mode 100644 index 0000000..5aeb69c --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_nos_1112/summary.rtf @@ -0,0 +1,39 @@ +

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    + +

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    + +

    Restraint Stress Protocol

    + +
      +
    1. Weigh animals all animals to be tested and record body weight.
    2. +
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. +
    5. Place animals in immobilization tubes for 15 minutes.
    6. +
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. +
    9. Place each animal into zero-maze for 10 minutes.
    10. +
    11. Return animal to home cage.
    12. +
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. +
    + +

    Ethanol and saline injections
    +Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    + +

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    + +

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    + +

    Quality Control Data
    +Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    + +
      +
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. +
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. +
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. +
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. +
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. +
    + +

    Entered by Arthur Centeno, September 20, 2010.

    + +

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    + +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/Ut_ilm_bxd_hipp_rse_0909/notes.rtf b/general/datasets/Ut_ilm_bxd_hipp_rse_0909/notes.rtf new file mode 100644 index 0000000..35247b6 --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_rse_0909/notes.rtf @@ -0,0 +1,23 @@ +

    Hippocampus 5 Conditions
    +Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    +Batch and Outlier Analysis on Partek Genomic Suite 6.6
    +ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    +K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    +Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    +Number of samples = 284
    +Number of probes = 46643

    + +
      +
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. +
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. +
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. +
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      + ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. +
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      + ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. +
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. +
    diff --git a/general/datasets/Ut_ilm_bxd_hipp_rse_0909/summary.rtf b/general/datasets/Ut_ilm_bxd_hipp_rse_0909/summary.rtf new file mode 100644 index 0000000..5aeb69c --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_rse_0909/summary.rtf @@ -0,0 +1,39 @@ +

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    + +

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    + +

    Restraint Stress Protocol

    + +
      +
    1. Weigh animals all animals to be tested and record body weight.
    2. +
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. +
    5. Place animals in immobilization tubes for 15 minutes.
    6. +
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. +
    9. Place each animal into zero-maze for 10 minutes.
    10. +
    11. Return animal to home cage.
    12. +
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. +
    + +

    Ethanol and saline injections
    +Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    + +

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    + +

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    + +

    Quality Control Data
    +Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    + +
      +
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. +
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. +
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. +
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. +
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. +
    + +

    Entered by Arthur Centeno, September 20, 2010.

    + +

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    + +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/Ut_ilm_bxd_hipp_rse_1112/notes.rtf b/general/datasets/Ut_ilm_bxd_hipp_rse_1112/notes.rtf new file mode 100644 index 0000000..35247b6 --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_rse_1112/notes.rtf @@ -0,0 +1,23 @@ +

    Hippocampus 5 Conditions
    +Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    +Batch and Outlier Analysis on Partek Genomic Suite 6.6
    +ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    +K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    +Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    +Number of samples = 284
    +Number of probes = 46643

    + +
      +
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. +
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. +
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. +
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      + ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. +
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      + ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. +
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. +
    diff --git a/general/datasets/Ut_ilm_bxd_hipp_rse_1112/summary.rtf b/general/datasets/Ut_ilm_bxd_hipp_rse_1112/summary.rtf new file mode 100644 index 0000000..5aeb69c --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_rse_1112/summary.rtf @@ -0,0 +1,39 @@ +

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    + +

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    + +

    Restraint Stress Protocol

    + +
      +
    1. Weigh animals all animals to be tested and record body weight.
    2. +
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. +
    5. Place animals in immobilization tubes for 15 minutes.
    6. +
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. +
    9. Place each animal into zero-maze for 10 minutes.
    10. +
    11. Return animal to home cage.
    12. +
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. +
    + +

    Ethanol and saline injections
    +Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    + +

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    + +

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    + +

    Quality Control Data
    +Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    + +
      +
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. +
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. +
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. +
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. +
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. +
    + +

    Entered by Arthur Centeno, September 20, 2010.

    + +

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    + +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/Ut_ilm_bxd_hipp_rss_0909/notes.rtf b/general/datasets/Ut_ilm_bxd_hipp_rss_0909/notes.rtf new file mode 100644 index 0000000..35247b6 --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_rss_0909/notes.rtf @@ -0,0 +1,23 @@ +

    Hippocampus 5 Conditions
    +Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    +Batch and Outlier Analysis on Partek Genomic Suite 6.6
    +ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    +K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    +Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    +Number of samples = 284
    +Number of probes = 46643

    + +
      +
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. +
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. +
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. +
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      + ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. +
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      + ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. +
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. +
    diff --git a/general/datasets/Ut_ilm_bxd_hipp_rss_0909/summary.rtf b/general/datasets/Ut_ilm_bxd_hipp_rss_0909/summary.rtf new file mode 100644 index 0000000..5aeb69c --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_rss_0909/summary.rtf @@ -0,0 +1,39 @@ +

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    + +

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    + +

    Restraint Stress Protocol

    + +
      +
    1. Weigh animals all animals to be tested and record body weight.
    2. +
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. +
    5. Place animals in immobilization tubes for 15 minutes.
    6. +
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. +
    9. Place each animal into zero-maze for 10 minutes.
    10. +
    11. Return animal to home cage.
    12. +
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. +
    + +

    Ethanol and saline injections
    +Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    + +

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    + +

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    + +

    Quality Control Data
    +Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    + +
      +
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. +
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. +
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. +
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. +
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. +
    + +

    Entered by Arthur Centeno, September 20, 2010.

    + +

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    + +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/Ut_ilm_bxd_hipp_rss_1112/notes.rtf b/general/datasets/Ut_ilm_bxd_hipp_rss_1112/notes.rtf new file mode 100644 index 0000000..35247b6 --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_rss_1112/notes.rtf @@ -0,0 +1,23 @@ +

    Hippocampus 5 Conditions
    +Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    +Batch and Outlier Analysis on Partek Genomic Suite 6.6
    +ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    +K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    +Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    +Number of samples = 284
    +Number of probes = 46643

    + +
      +
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. +
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. +
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. +
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      + ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. +
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      + ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. +
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. +
    diff --git a/general/datasets/Ut_ilm_bxd_hipp_rss_1112/summary.rtf b/general/datasets/Ut_ilm_bxd_hipp_rss_1112/summary.rtf new file mode 100644 index 0000000..5aeb69c --- /dev/null +++ b/general/datasets/Ut_ilm_bxd_hipp_rss_1112/summary.rtf @@ -0,0 +1,39 @@ +

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    + +

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    + +

    Restraint Stress Protocol

    + +
      +
    1. Weigh animals all animals to be tested and record body weight.
    2. +
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. +
    5. Place animals in immobilization tubes for 15 minutes.
    6. +
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. +
    9. Place each animal into zero-maze for 10 minutes.
    10. +
    11. Return animal to home cage.
    12. +
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. +
    + +

    Ethanol and saline injections
    +Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    + +

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    + +

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    + +

    Quality Control Data
    +Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    + +
      +
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. +
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. +
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. +
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. +
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. +
    + +

    Entered by Arthur Centeno, September 20, 2010.

    + +

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    + +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/Ut_vgx_hel1014/acknowledgment.rtf b/general/datasets/Ut_vgx_hel1014/acknowledgment.rtf new file mode 100644 index 0000000..1853348 --- /dev/null +++ b/general/datasets/Ut_vgx_hel1014/acknowledgment.rtf @@ -0,0 +1 @@ +

    We thank Varigenix and Charle River Laboratory for their donation of BXD cyropreserved hepatcytes. We thank Jesse Ingels for preparing RNA samples. We thank Lorne Rose and the UTHSC Molecular Resource Center for processing RNA samples and generating array data. We thank Arthur Centeno for data entry. We thank the UTHSC CITG and the UT-ORNL Governor's chair for support of microarray analysis.

    diff --git a/general/datasets/Ut_vgx_hel1014/cases.rtf b/general/datasets/Ut_vgx_hel1014/cases.rtf new file mode 100644 index 0000000..e06c56f --- /dev/null +++ b/general/datasets/Ut_vgx_hel1014/cases.rtf @@ -0,0 +1,266 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Sample IDVarigenix StrainSexRNA Concentrations
    + ng/ul
    260/280260/230Agilent
    + Concentration(ng/ul)
    RIN
    V1BXD32M1414.82.092.213,0629.3
    V2BXD1M1608.92.112.243,1029.3
    V3BXD5M1263.912.12.092,4608.5
    V4BXD31M1793.952.12.223,3878.5
    V5BXD8M1193.212.12.172,2939.3
    V6BXD18M1041.052.132.172,1159.2
    V7BXD42M398.281.992.281,5198.3
    V8BXD29M477.372.022.241,3018.1
    V9BXD21M414.622.271,1748.3
    V10BXD27M438.612.022.271,1008.1
    V11BXD16M436.212.012.278688.5
    V12BXD19M489.122.012.261,2778
    V13BXD22M1032.892.092.222,0607.8
    V14BXD38M510.242.012.221,2138
    V15BXD34M1021.262.092.241,5148.2
    V16BXD20M330.8522.279018.1
    V17BXD15M1220.542.12.211,9098.1
    V18BXD6M1001.042.092.21,5238.3
    V19BXD13M1241.882.12.211,7708.2
    V20BXD40M1032.042.082.221,9858.2
    V21BXD14M881.622.112.194818.7
    V22BXD2M1069.092.082.221,5368.2
    V23BXD28M452.622.262,5677.9
    V24BXD11M930.722.072.219998.5
    V25BXD39M1177.272.072.238388.7
    diff --git a/general/datasets/Ut_vgx_hel1014/citation.rtf b/general/datasets/Ut_vgx_hel1014/citation.rtf new file mode 100644 index 0000000..09eb6d1 --- /dev/null +++ b/general/datasets/Ut_vgx_hel1014/citation.rtf @@ -0,0 +1 @@ +

    In progress. 

    diff --git a/general/datasets/Ut_vgx_hel1014/contributors.rtf b/general/datasets/Ut_vgx_hel1014/contributors.rtf new file mode 100644 index 0000000..bfa5fbf --- /dev/null +++ b/general/datasets/Ut_vgx_hel1014/contributors.rtf @@ -0,0 +1 @@ +

    Robert W. Williams, Roberrt E. Scott and colleagues. Cells were donated to Williams group by Varigenix Inc. and CRL Inc.

    diff --git a/general/datasets/Ut_vgx_hel1014/experiment-design.rtf b/general/datasets/Ut_vgx_hel1014/experiment-design.rtf new file mode 100644 index 0000000..323648a --- /dev/null +++ b/general/datasets/Ut_vgx_hel1014/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Control hepatocyte mRNA expression data prior to any treatment for young adult male BXD strains. This is esssentially the mRNA state of frozen hepatocytes.

    + +

     

    diff --git a/general/datasets/Ut_vgx_hel1014/platform.rtf b/general/datasets/Ut_vgx_hel1014/platform.rtf new file mode 100644 index 0000000..61c48c5 --- /dev/null +++ b/general/datasets/Ut_vgx_hel1014/platform.rtf @@ -0,0 +1 @@ +

    Affy Mouse Gene 1.0 ST (GPL6246)

    diff --git a/general/datasets/Ut_vgx_hel1014/processing.rtf b/general/datasets/Ut_vgx_hel1014/processing.rtf new file mode 100644 index 0000000..662571f --- /dev/null +++ b/general/datasets/Ut_vgx_hel1014/processing.rtf @@ -0,0 +1 @@ +

    Standard 2z+8 of log2 data. RMA data were log2 transformed (adding an olffset of 1 to avoid negative values). Variance was stablized (i.e. each array was converted to a set of Z scores). Z scores were then multipled by 2.  Mean Z  was then shifted from 0 to to 8 units per array.

    diff --git a/general/datasets/Ut_vgx_hel1014/summary.rtf b/general/datasets/Ut_vgx_hel1014/summary.rtf new file mode 100644 index 0000000..8e4cabf --- /dev/null +++ b/general/datasets/Ut_vgx_hel1014/summary.rtf @@ -0,0 +1 @@ +

    mRNA levels in cryopreserved BXD strain hepatotcytes (males at 60 days of age) immediately after thawing to 4 deg C. This is the "frozen state" mRNA status.

    diff --git a/general/datasets/Ut_vgx_hel1014/tissue.rtf b/general/datasets/Ut_vgx_hel1014/tissue.rtf new file mode 100644 index 0000000..94ad98a --- /dev/null +++ b/general/datasets/Ut_vgx_hel1014/tissue.rtf @@ -0,0 +1,9 @@ +

     

    + +

    Hepatocytes prepared by Rob Kaiser at CRL Piedmont in Spring of 2011. Held in liquid nitrogen (vapor phase) until use Fall 2014 at UTHSC.

    + +

    One vial of hepatocytes in 1 ml of freeze media was wiped with 70% ETOH, quick thawed by swift agitation in a 37 degree C water bath until a small amount of ice remained in the vial. Contents of the vial were removed with a sterile 1000 ul pipette tip and added to a 5 ml sterile polypropylene tube on ice containing 3 ml of ice-cold sterile 1x PBS. sitting in ice. One ml of sterile ice-cold 1x PBS was added to the original vial to remove any remaining cells and added to the 5 ml tube on ice. This process was quickly repeated with three more vials of cells. Four 5 ml tubes were centrifuged at 8,000 rpm at 4 degrees C for 4 minutes to pellet hepatocytes. PBS diluted freeze media was completely removed from the cell pellet. Entire process for sets of vials took about 7 minutes until RNA lysis buffer was added. 

    + +

    The QIAgen AllPrep DNA/RNA mini kit was used in conjunction with the QIAcube for purification of DNA and RNA from the hepatocytes. 600 ul of kit lysis buffer was added to pelleted cells, along with one 5 mm sterile stainless steel bead and cells were completely disrupted using the TissueLyser. The QIAcube protocol was used first for DNA extraction (held at -80 deg C for future use) and the flow-through containing total RNA was then used for the second purification.

    + +

    Any residual DNA was removed from the RNA before Agilent quantification of concentration and RIN, using the QIAgen DNase I reagent, followed by ethanol precipitation and resuspension of DNA-free total  RNA in 50 ul RNAse free water.

    diff --git a/general/datasets/Uthsc_1107_rankinv/summary.rtf b/general/datasets/Uthsc_1107_rankinv/summary.rtf new file mode 100644 index 0000000..cc6ac0f --- /dev/null +++ b/general/datasets/Uthsc_1107_rankinv/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 42, Name: HQF BXD Striatum ILM6.1 (Dec10) \ No newline at end of file diff --git a/general/datasets/Uthsc_b6d2ri_h_0912/summary.rtf b/general/datasets/Uthsc_b6d2ri_h_0912/summary.rtf new file mode 100644 index 0000000..a0fc73e --- /dev/null +++ b/general/datasets/Uthsc_b6d2ri_h_0912/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 155, Name: UTHSC B6D2RI Aged Hippocampus Affy Mouse Gene 1.0 ST (Sep12) \ No newline at end of file diff --git a/general/datasets/Uthsc_bxd_aged_eye_rnaseq_tpm_log2_1120/experiment-design.rtf b/general/datasets/Uthsc_bxd_aged_eye_rnaseq_tpm_log2_1120/experiment-design.rtf new file mode 100644 index 0000000..2f8cedc --- /dev/null +++ b/general/datasets/Uthsc_bxd_aged_eye_rnaseq_tpm_log2_1120/experiment-design.rtf @@ -0,0 +1 @@ +

    Total RNA was extracted using Trizol® reagent (Invitrogen, Grand Island, NY, USA) according to the manufacturer’s instructions. Approximately 30 mg of PFC tissue was added into a 2 ml tube containing 700ul QIAzol Lysis Reagent and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 minutes in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 r followed by incubating for 5 minutes.140 µl chloroform was added into the homogenate, shaken vigorously for 15 seconds, and centrifuged for 15 minutes at 12,000 x g at 4 â„ƒ. 280 µl upper aqueous was then transferred into a new collection tube containing 500 µl 100% ethanol. The mixture was loaded into a RNeasy mini‐spin column (Qiagen, Valencia, CA, USA), once with Buffer RWT and twice with Buffer RPE purification. All RNA had been treated with DNase to avoid DNA contamination, and verified by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA with OD260/280 > 1.8 and RIN > 8.0 were used for library preparation

    diff --git a/general/datasets/Uthsc_bxd_aged_eye_rnaseq_tpm_log2_1120/processing.rtf b/general/datasets/Uthsc_bxd_aged_eye_rnaseq_tpm_log2_1120/processing.rtf new file mode 100644 index 0000000..8e460ff --- /dev/null +++ b/general/datasets/Uthsc_bxd_aged_eye_rnaseq_tpm_log2_1120/processing.rtf @@ -0,0 +1,9 @@ +

    Generation of RNA-seq data

    + +

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    + +

     

    + +

    Read mapping and normalization

    + +

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/Uthsc_bxd_aged_eye_rnaseq_tpm_log2_1120/specifics.rtf b/general/datasets/Uthsc_bxd_aged_eye_rnaseq_tpm_log2_1120/specifics.rtf new file mode 100644 index 0000000..4d2bd9f --- /dev/null +++ b/general/datasets/Uthsc_bxd_aged_eye_rnaseq_tpm_log2_1120/specifics.rtf @@ -0,0 +1,4332 @@ +

    BXD Eye (12~18 Month) RNA-Seq (Oct30) TPM Log2

    + +

    The table of samples that are finally used for this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Index

    +
    +

    RNA ID

    +
    +

    case ID

    +
    +

    DA_corrected_strain

    +
    +

    Corrected Sex

    +
    +

    AgeAtDeath days

    +
    +

    Tissue

    +
    +

    1

    +
    +

    E18

    +
    +

    050115.16

    +
    +

    BXD75

    +
    +

    Female

    +
    +

    460

    +
    +

    Eyeball

    +
    +

    2

    +
    +

    E19

    +
    +

    050115.17

    +
    +

    BXD75

    +
    +

    Female

    +
    +

    460

    +
    +

    Eyeball

    +
    +

    3

    +
    +

    E21

    +
    +

    042715.10

    +
    +

    D2B6F1

    +
    +

    Female

    +
    +

    500

    +
    +

    Eyeball

    +
    +

    4

    +
    +

    E22

    +
    +

    050115.19

    +
    +

    BXD79

    +
    +

    Female

    +
    +

    468

    +
    +

    Eyeball

    +
    +

    5

    +
    +

    E31

    +
    +

    121515.13

    +
    +

    BXD45

    +
    +

    Female

    +
    +

    507

    +
    +

    Eyeball

    +
    +

    6

    +
    +

    E33

    +
    +

    012615.10

    +
    +

    BXD45

    +
    +

    Female

    +
    +

    384

    +
    +

    Eyeball

    +
    +

    7

    +
    +

    E34

    +
    +

    012615.04

    +
    +

    BXD62

    +
    +

    Female

    +
    +

    376

    +
    +

    Eyeball

    +
    +

    8

    +
    +

    E40

    +
    +

    021213.21

    +
    +

    BXD79

    +
    +

    Female

    +
    +

    378

    +
    +

    Eyeball

    +
    +

    9

    +
    +

    E49

    +
    +

    021213.13

    +
    +

    BXD60

    +
    +

    Female

    +
    +

    530

    +
    +

    Eyeball

    +
    +

    10

    +
    +

    E60

    +
    +

    101713.01

    +
    +

    BXD60

    +
    +

    Female

    +
    +

    374

    +
    +

    Eyeball

    +
    +

    11

    +
    +

    E62

    +
    +

    090612.07

    +
    +

    BXD73b

    +
    +

    Female

    +
    +

    377

    +
    +

    Eyeball

    +
    +

    12

    +
    +

    E63

    +
    +

    090612.08

    +
    +

    BXD73b

    +
    +

    Female

    +
    +

    377

    +
    +

    Eyeball

    +
    +

    13

    +
    +

    E65

    +
    +

    050912.04

    +
    +

    BXD34

    +
    +

    Female

    +
    +

    419

    +
    +

    Eyeball

    +
    +

    14

    +
    +

    E67

    +
    +

    42214.08

    +
    +

    BXD40

    +
    +

    Female

    +
    +

    362

    +
    +

    Eyeball

    +
    +

    15

    +
    +

    E72

    +
    +

    42214.04

    +
    +

    BXD24

    +
    +

    Female

    +
    +

    377

    +
    +

    Eyeball

    +
    +

    16

    +
    +

    E75

    +
    +

    42214.03

    +
    +

    BXD24

    +
    +

    Female

    +
    +

    377

    +
    +

    Eyeball

    +
    +

    17

    +
    +

    E78

    +
    +

    42314.1

    +
    +

    B6D2F1

    +
    +

    Male

    +
    +

    364

    +
    +

    Eyeball

    +
    +

    18

    +
    +

    E82

    +
    +

    121615.05

    +
    +

    BXD62

    +
    +

    Female

    +
    +

    525

    +
    +

    Eyeball

    +
    +

    19

    +
    +

    E87

    +
    +

    101014.10

    +
    +

    BXD95

    +
    +

    Female

    +
    +

    536

    +
    +

    Eyeball

    +
    +

    20

    +
    +

    E89

    +
    +

    121615.22

    +
    +

    BXD89

    +
    +

    Female

    +
    +

    444

    +
    +

    Eyeball

    +
    +

    21

    +
    +

    E90

    +
    +

    101014.09

    +
    +

    BXD95

    +
    +

    Female

    +
    +

    536

    +
    +

    Eyeball

    +
    +

    22

    +
    +

    E99

    +
    +

    121214.15

    +
    +

    BXD70

    +
    +

    Female

    +
    +

    357

    +
    +

    Eyeball

    +
    +

    23

    +
    +

    E100

    +
    +

    121214.16

    +
    +

    BXD70

    +
    +

    Female

    +
    +

    357

    +
    +

    Eyeball

    +
    +

    24

    +
    +

    E124

    +
    +

    042214.18

    +
    +

    D2B6F1

    +
    +

    Male

    +
    +

    397

    +
    +

    Eyeball

    +
    +

    25

    +
    +

    E152

    +
    +

    050912.04

    +
    +

    BXD48a

    +
    +

    Female

    +
    +

    419

    +
    +

    Eyeball

    +
    +

    26

    +
    +

    E158

    +
    +

    101713.02

    +
    +

    BXD100

    +
    +

    Female

    +
    +

    374

    +
    +

    Eyeball

    +
    +

    27

    +
    +

    E224

    +
    +

    021313.26

    +
    +

    BXD84

    +
    +

    Female

    +
    +

    385

    +
    +

    Eyeball

    +
    +

    28

    +
    +

    E264

    +
    +

    *050318.12

    +
    +

    BXD69

    +
    +

    Male

    +
    +

    387

    +
    +

    Eyeball

    +
    +

    29

    +
    +

    E288

    +
    +

    *110918.106

    +
    +

    BXD211

    +
    +

    Male

    +
    +

    404

    +
    +

    Eyeball

    +
    +

    30

    +
    +

    E289

    +
    +

    *110918.105

    +
    +

    BXD211

    +
    +

    Female

    +
    +

    404

    +
    +

    Eyeball

    +
    +

    31

    +
    +

    E290

    +
    +

    *100218.04

    +
    +

    BXD44

    +
    +

    Female

    +
    +

    530

    +
    +

    Eyeball

    +
    +

    32

    +
    +

    E291

    +
    +

    *100218.05

    +
    +

    BXD44

    +
    +

    Male

    +
    +

    530

    +
    +

    Eyeball

    +
    +

    33

    +
    +

    E292

    +
    +

    *100218.18

    +
    +

    BXD68

    +
    +

    Female

    +
    +

    516

    +
    +

    Eyeball

    +
    +

    34

    +
    +

    E293

    +
    +

    *100218.20

    +
    +

    BXD68

    +
    +

    Male

    +
    +

    516

    +
    +

    Eyeball

    +
    +

    35

    +
    +

    E294

    +
    +

    *100218.36

    +
    +

    BXD84

    +
    +

    Female

    +
    +

    516

    +
    +

    Eyeball

    +
    +

    36

    +
    +

    E298

    +
    +

    *100218.73

    +
    +

    BXD184

    +
    +

    Female

    +
    +

    512

    +
    +

    Eyeball

    +
    +

    37

    +
    +

    E299

    +
    +

    *100218.74

    +
    +

    BXD184

    +
    +

    Male

    +
    +

    512

    +
    +

    Eyeball

    +
    +

    38

    +
    +

    E303

    +
    +

    AGE061218.98

    +
    +

    BXD177

    +
    +

    Female

    +
    +

    364

    +
    +

    Eyeball

    +
    +

    39

    +
    +

    E304

    +
    +

    AGE061218.108

    +
    +

    BXD195

    +
    +

    Male

    +
    +

    386

    +
    +

    Eyeball

    +
    +

    40

    +
    +

    E306

    +
    +

    AGE061218.107

    +
    +

    BXD195

    +
    +

    Female

    +
    +

    386

    +
    +

    Eyeball

    +
    +

    41

    +
    +

    E308

    +
    +

    AGE061218.99

    +
    +

    BXD177

    +
    +

    Male

    +
    +

    364

    +
    +

    Eyeball

    +
    +

    42

    +
    +

    E310

    +
    +

    AGE061218.90

    +
    +

    BXD168

    +
    +

    Male

    +
    +

    538

    +
    +

    Eyeball

    +
    +

    43

    +
    +

    E311

    +
    +

    AGE061218.85

    +
    +

    BXD160

    +
    +

    Male

    +
    +

    390

    +
    +

    Eyeball

    +
    +

    44

    +
    +

    E312

    +
    +

    AGE061218.71

    +
    +

    BXD150

    +
    +

    Male

    +
    +

    398

    +
    +

    Eyeball

    +
    +

    45

    +
    +

    E313

    +
    +

    AGE061218.22

    +
    +

    BXD34

    +
    +

    Male

    +
    +

    369

    +
    +

    Eyeball

    +
    +

    46

    +
    +

    E314

    +
    +

    AGE061218.21

    +
    +

    BXD34

    +
    +

    Female

    +
    +

    369

    +
    +

    Eyeball

    +
    +

    47

    +
    +

    E331

    +
    +

    *110918.07

    +
    +

    BXD28

    +
    +

    Male

    +
    +

    366

    +
    +

    Eyeball

    +
    +

    48

    +
    +

    E334

    +
    +

    *110918.02

    +
    +

    BXD18

    +
    +

    Male

    +
    +

    452

    +
    +

    Eyeball

    +
    +

    49

    +
    +

    E335

    +
    +

    *110918.01

    +
    +

    BXD18

    +
    +

    Female

    +
    +

    452

    +
    +

    Eyeball

    +
    +

    50

    +
    +

    E340

    +
    +

    *110918.51

    +
    +

    BXD98

    +
    +

    Male

    +
    +

    359

    +
    +

    Eyeball

    +
    +

    51

    +
    +

    E341

    +
    +

    *110918.50

    +
    +

    BXD98

    +
    +

    Female

    +
    +

    359

    +
    +

    Eyeball

    +
    +

    52

    +
    +

    E344

    +
    +

    *083019.05

    +
    +

    BXD9

    +
    +

    Female

    +
    +

    373

    +
    +

    Eyeball

    +
    +

    53

    +
    +

    E345

    +
    +

    *083019.06

    +
    +

    BXD9

    +
    +

    Male

    +
    +

    373

    +
    +

    Eyeball

    +
    +

    54

    +
    +

    E346

    +
    +

    *083019.22

    +
    +

    BXD31

    +
    +

    Male

    +
    +

    391

    +
    +

    Eyeball

    +
    +

    55

    +
    +

    E347

    +
    +

    *083019.23

    +
    +

    BXD43

    +
    +

    Female

    +
    +

    391

    +
    +

    Eyeball

    +
    +

    56

    +
    +

    E349

    +
    +

    *083019.26

    +
    +

    BXD43

    +
    +

    Male

    +
    +

    367

    +
    +

    Eyeball

    +
    +

    57

    +
    +

    E350

    +
    +

    *083019.30

    +
    +

    BXD50

    +
    +

    Female

    +
    +

    408

    +
    +

    Eyeball

    +
    +

    58

    +
    +

    E351

    +
    +

    *083019.31

    +
    +

    BXD50

    +
    +

    Female

    +
    +

    408

    +
    +

    Eyeball

    +
    +

    59

    +
    +

    E352

    +
    +

    *083019.33

    +
    +

    BXD51

    +
    +

    Female

    +
    +

    368

    +
    +

    Eyeball

    +
    +

    60

    +
    +

    E353

    +
    +

    *083019.34

    +
    +

    BXD51

    +
    +

    Male

    +
    +

    368

    +
    +

    Eyeball

    +
    +

    61

    +
    +

    E354

    +
    +

    *083019.38

    +
    +

    BXD66

    +
    +

    Male

    +
    +

    430

    +
    +

    Eyeball

    +
    +

    62

    +
    +

    E355

    +
    +

    *083019.39

    +
    +

    BXD66

    +
    +

    Male

    +
    +

    430

    +
    +

    Eyeball

    +
    +

    63

    +
    +

    E356

    +
    +

    *083019.45

    +
    +

    BXD73

    +
    +

    Female

    +
    +

    451

    +
    +

    Eyeball

    +
    +

    64

    +
    +

    E357

    +
    +

    *083019.46

    +
    +

    BXD73

    +
    +

    Male

    +
    +

    451

    +
    +

    Eyeball

    +
    +

    65

    +
    +

    E358

    +
    +

    *083019.48

    +
    +

    BXD75

    +
    +

    Female

    +
    +

    369

    +
    +

    Eyeball

    +
    +

    66

    +
    +

    E359

    +
    +

    *083019.49

    +
    +

    BXD75

    +
    +

    Male

    +
    +

    369

    +
    +

    Eyeball

    +
    +

    67

    +
    +

    E360

    +
    +

    *083019.50

    +
    +

    BXD78

    +
    +

    Female

    +
    +

    432

    +
    +

    Eyeball

    +
    +

    68

    +
    +

    E361

    +
    +

    *083019.51

    +
    +

    BXD78

    +
    +

    Male

    +
    +

    432

    +
    +

    Eyeball

    +
    +

    69

    +
    +

    E363

    +
    +

    *083019.55

    +
    +

    BXD87

    +
    +

    Female

    +
    +

    444

    +
    +

    Eyeball

    +
    +

    70

    +
    +

    E364

    +
    +

    *083019.56

    +
    +

    BXD87

    +
    +

    Male

    +
    +

    444

    +
    +

    Eyeball

    +
    +

    71

    +
    +

    E365

    +
    +

    *083019.57

    +
    +

    BXD89

    +
    +

    Female

    +
    +

    446

    +
    +

    Eyeball

    +
    +

    72

    +
    +

    E366

    +
    +

    *083019.66

    +
    +

    BXD113

    +
    +

    Female

    +
    +

    366

    +
    +

    Eyeball

    +
    +

    73

    +
    +

    E367

    +
    +

    *083019.67

    +
    +

    BXD113

    +
    +

    Male

    +
    +

    366

    +
    +

    Eyeball

    +
    +

    74

    +
    +

    E368

    +
    +

    *090119.04

    +
    +

    BXD123

    +
    +

    Female

    +
    +

    441

    +
    +

    Eyeball

    +
    +

    75

    +
    +

    E369

    +
    +

    *090119.05

    +
    +

    BXD123

    +
    +

    Male

    +
    +

    441

    +
    +

    Eyeball

    +
    +

    76

    +
    +

    E370

    +
    +

    *090119.09

    +
    +

    BXD141

    +
    +

    Female

    +
    +

    370

    +
    +

    Eyeball

    +
    +

    77

    +
    +

    E371

    +
    +

    *090119.11

    +
    +

    BXD141

    +
    +

    Male

    +
    +

    370

    +
    +

    Eyeball

    +
    +

    78

    +
    +

    E372

    +
    +

    *090119.15

    +
    +

    BXD151

    +
    +

    Female

    +
    +

    439

    +
    +

    Eyeball

    +
    +

    79

    +
    +

    E373

    +
    +

    *090119.16

    +
    +

    BXD151

    +
    +

    Male

    +
    +

    439

    +
    +

    Eyeball

    +
    +

    80

    +
    +

    E374

    +
    +

    *090119.18

    +
    +

    BXD152

    +
    +

    Female

    +
    +

    374

    +
    +

    Eyeball

    +
    +

    81

    +
    +

    E375

    +
    +

    *090119.19

    +
    +

    BXD152

    +
    +

    Male

    +
    +

    374

    +
    +

    Eyeball

    +
    +

    82

    +
    +

    E376

    +
    +

    *090119.20

    +
    +

    BXD154

    +
    +

    Female

    +
    +

    370

    +
    +

    Eyeball

    +
    +

    83

    +
    +

    E377

    +
    +

    *090119.22

    +
    +

    BXD154

    +
    +

    Male

    +
    +

    370

    +
    +

    Eyeball

    +
    +

    84

    +
    +

    E378

    +
    +

    *090119.24

    +
    +

    BXD155

    +
    +

    Female

    +
    +

    379

    +
    +

    Eyeball

    +
    +

    85

    +
    +

    E379

    +
    +

    *090119.25

    +
    +

    BXD155

    +
    +

    Male

    +
    +

    379

    +
    +

    Eyeball

    +
    +

    86

    +
    +

    E380

    +
    +

    *090119.27

    +
    +

    BXD161

    +
    +

    Female

    +
    +

    376

    +
    +

    Eyeball

    +
    +

    87

    +
    +

    E381

    +
    +

    *090119.28

    +
    +

    BXD161

    +
    +

    Male

    +
    +

    376

    +
    +

    Eyeball

    +
    +

    88

    +
    +

    E382

    +
    +

    *090119.34

    +
    +

    BXD170

    +
    +

    Male

    +
    +

    438

    +
    +

    Eyeball

    +
    +

    89

    +
    +

    E383

    +
    +

    *090119.36

    +
    +

    BXD171

    +
    +

    Female

    +
    +

    370

    +
    +

    Eyeball

    +
    +

    90

    +
    +

    E384

    +
    +

    *090119.37

    +
    +

    BXD171

    +
    +

    Male

    +
    +

    370

    +
    +

    Eyeball

    +
    +

    91

    +
    +

    E385

    +
    +

    *090119.41

    +
    +

    BXD178

    +
    +

    Female

    +
    +

    493

    +
    +

    Eyeball

    +
    +

    92

    +
    +

    E386

    +
    +

    *090119.42

    +
    +

    BXD178

    +
    +

    Female

    +
    +

    493

    +
    +

    Eyeball

    +
    +

    93

    +
    +

    E387

    +
    +

    *090119.44

    +
    +

    BXD180

    +
    +

    Female

    +
    +

    375

    +
    +

    Eyeball

    +
    +

    94

    +
    +

    E390

    +
    +

    *090119.48

    +
    +

    BXD190

    +
    +

    Male

    +
    +

    374

    +
    +

    Eyeball

    +
    +

    95

    +
    +

    E391

    +
    +

    *090119.52

    +
    +

    BXD197

    +
    +

    Female

    +
    +

    433

    +
    +

    Eyeball

    +
    +

    96

    +
    +

    E392

    +
    +

    *090119.53

    +
    +

    BXD197

    +
    +

    Male

    +
    +

    433

    +
    +

    Eyeball

    +
    +

    97

    +
    +

    E395

    +
    +

    *090119.57

    +
    +

    BXD202

    +
    +

    Female

    +
    +

    427

    +
    +

    Eyeball

    +
    +

    98

    +
    +

    E399

    +
    +

    *090119.67

    +
    +

    BXD218

    +
    +

    Female

    +
    +

    412

    +
    +

    Eyeball

    +
    +

    99

    +
    +

    E400

    +
    +

    *090119.68

    +
    +

    BXD218

    +
    +

    Male

    +
    +

    412

    +
    +

    Eyeball

    +
    +

    100

    +
    +

    E448

    +
    +

    *100819.101

    +
    +

    BXD111

    +
    +

    Female

    +
    +

    373

    +
    +

    Eyeball

    +
    +

    101

    +
    +

    E449

    +
    +

    *100819.102

    +
    +

    BXD111

    +
    +

    Male

    +
    +

    373

    +
    +

    Eyeball

    +
    +

    102

    +
    +

    E450

    +
    +

    *100819.104

    +
    +

    BXD122

    +
    +

    Female

    +
    +

    383

    +
    +

    Eyeball

    +
    +

    103

    +
    +

    E451

    +
    +

    *100819.105

    +
    +

    BXD122

    +
    +

    Male

    +
    +

    383

    +
    +

    Eyeball

    +
    +

    104

    +
    +

    E452

    +
    +

    *100819.107

    +
    +

    BXD124

    +
    +

    Female

    +
    +

    366

    +
    +

    Eyeball

    +
    +

    105

    +
    +

    E453

    +
    +

    *100819.108

    +
    +

    BXD124

    +
    +

    Male

    +
    +

    366

    +
    +

    Eyeball

    +
    +

    106

    +
    +

    E454

    +
    +

    *100819.110

    +
    +

    BXD125

    +
    +

    Female

    +
    +

    376

    +
    +

    Eyeball

    +
    +

    107

    +
    +

    E455

    +
    +

    *100819.111

    +
    +

    BXD125

    +
    +

    Male

    +
    +

    376

    +
    +

    Eyeball

    +
    +

    108

    +
    +

    E459

    +
    +

    *100819.131

    +
    +

    BXD172

    +
    +

    Female

    +
    +

    375

    +
    +

    Eyeball

    +
    +

    109

    +
    +

    E460

    +
    +

    *100819.132

    +
    +

    BXD172

    +
    +

    Male

    +
    +

    375

    +
    +

    Eyeball

    +
    +

    110

    +
    +

    E482

    +
    +

    *052220.14

    +
    +

    BXD71

    +
    +

    Female

    +
    +

    396

    +
    +

    Eyeball

    +
    +

    111

    +
    +

    E483

    +
    +

    *052220.10

    +
    +

    BXD11

    +
    +

    Female

    +
    +

    379

    +
    +

    Eyeball

    +
    +

    112

    +
    +

    E484

    +
    +

    *052220.07

    +
    +

    BXD65

    +
    +

    Male

    +
    +

    528

    +
    +

    Eyeball

    +
    +

    113

    +
    +

    E485

    +
    +

    *052220.03

    +
    +

    BXD194

    +
    +

    Male

    +
    +

    396

    +
    +

    Eyeball

    +
    +

    114

    +
    +

    E486

    +
    +

    *052220.19

    +
    +

    BXD15

    +
    +

    Female

    +
    +

    415

    +
    +

    Eyeball

    +
    +

    115

    +
    +

    E487

    +
    +

    *052220.02

    +
    +

    BXD194

    +
    +

    Female

    +
    +

    396

    +
    +

    Eyeball

    +
    +

    116

    +
    +

    E488

    +
    +

    *052220.12

    +
    +

    BXD1

    +
    +

    Female

    +
    +

    429

    +
    +

    Eyeball

    +
    +

    117

    +
    +

    E489

    +
    +

    *052220.18

    +
    +

    BXD216

    +
    +

    Male

    +
    +

    401

    +
    +

    Eyeball

    +
    +

    118

    +
    +

    E490

    +
    +

    *052220.13

    +
    +

    BXD1

    +
    +

    Male

    +
    +

    429

    +
    +

    Eyeball

    +
    +

    119

    +
    +

    E494

    +
    +

    *052220.15

    +
    +

    BXD71

    +
    +

    Male

    +
    +

    396

    +
    +

    Eyeball

    +
    +

    120

    +
    +

    E496

    +
    +

    *052220.08

    +
    +

    BXD170

    +
    +

    Male

    +
    +

    360

    +
    +

    Eyeball

    +
    +

    121

    +
    +

    E498

    +
    +

    *052220.06

    +
    +

    BXD65

    +
    +

    Female

    +
    +

    528

    +
    +

    Eyeball

    +
    +

    122

    +
    +

    E499

    +
    +

    *052220.05

    +
    +

    C57BL/6J

    +
    +

    Male

    +
    +

    424

    +
    +

    Eyeball

    +
    +

    123

    +
    +

    E501

    +
    +

    *052220.21

    +
    +

    BXD73a

    +
    +

    Female

    +
    +

    408

    +
    +

    Eyeball

    +
    +

    124

    +
    +

    E502

    +
    +

    *052220.11

    +
    +

    BXD11

    +
    +

    Male

    +
    +

    379

    +
    +

    Eyeball

    +
    +

    125

    +
    +

    E503

    +
    +

    *052220.22

    +
    +

    DBA/2J-Gpnmb

    +
    +

    Female

    +
    +

    439

    +
    +

    Eyeball

    +
    +

    126

    +
    +

    E504

    +
    +

    *052220.20

    +
    +

    BXD15

    +
    +

    Male

    +
    +

    415

    +
    +

    Eyeball

    +
    +

    127

    +
    +

    E541

    +
    +

    042915.08

    +
    +

    BXD29

    +
    +

    Female

    +
    +

    478

    +
    +

    Eyeball

    +
    +

    128

    +
    +

    E542

    +
    +

    050115.01

    +
    +

    BXD65b

    +
    +

    Female

    +
    +

    415

    +
    +

    Eyeball

    +
    +

    129

    +
    +

    E543

    +
    +

    042915.07

    +
    +

    BXD29

    +
    +

    Female

    +
    +

    431

    +
    +

    Eyeball

    +
    +

    130

    +
    +

    E544

    +
    +

    042314.12

    +
    +

    B6D2F1

    +
    +

    Female

    +
    +

    364

    +
    +

    Eyeball

    +
    +

    131

    +
    +

    E548

    +
    +

    *061119.02

    +
    +

    C57BL/6J

    +
    +

    Female

    +
    +

    392

    +
    +

    Eyeball

    +
    +

    132

    +
    +

    E549

    +
    +

    *061119.03

    +
    +

    C57BL/6J

    +
    +

    Male

    +
    +

    392

    +
    +

    Eyeball

    +
    +

    133

    +
    +

    E551

    +
    +

    *061119.11

    +
    +

    DBA/2J

    +
    +

    Female

    +
    +

    392

    +
    +

    Eyeball

    +
    +

    134

    +
    +

    E552

    +
    +

    *061119.12

    +
    +

    DBA/2J

    +
    +

    Male

    +
    +

    392

    +
    +

    Eyeball

    +
    +

    135

    +
    +

    E554

    +
    +

    *061119.15

    +
    +

    DBA/2J

    +
    +

    Male

    +
    +

    392

    +
    +

    Eyeball

    +
    +

    136

    +
    +

    E556

    +
    +

    *061119.22

    +
    +

    DBA/2J

    +
    +

    Male

    +
    +

    380

    +
    +

    Eyeball

    +
    +

    137

    +
    +

    E561

    +
    +

    *061219.12

    +
    +

    BXD27

    +
    +

    Female

    +
    +

    494

    +
    +

    Eyeball

    +
    +

    138

    +
    +

    E564

    +
    +

    *061219.14

    +
    +

    BXD27

    +
    +

    Male

    +
    +

    494

    +
    +

    Eyeball

    +
    +

    139

    +
    +

    E565

    +
    +

    *060419.04

    +
    +

    BXD32

    +
    +

    Female

    +
    +

    425

    +
    +

    Eyeball

    +
    +

    140

    +
    +

    E566

    +
    +

    *060419.05

    +
    +

    BXD32

    +
    +

    Male

    +
    +

    425

    +
    +

    Eyeball

    +
    +

    141

    +
    +

    E567

    +
    +

    *070919.01

    +
    +

    BXD86

    +
    +

    Female

    +
    +

    381

    +
    +

    Eyeball

    +
    +

    142

    +
    +

    E569

    +
    +

    *070919.03

    +
    +

    BXD86

    +
    +

    Male

    +
    +

    381

    +
    +

    Eyeball

    +
    +

    143

    +
    +

    E576

    +
    +

    *072519.11

    +
    +

    BXD191

    +
    +

    Male

    +
    +

    477

    +
    +

    Eyeball

    +
    +

    144

    +
    +

    E577

    +
    +

    *072519.09

    +
    +

    BXD190

    +
    +

    Male

    +
    +

    434

    +
    +

    Eyeball

    +
    +

    145

    +
    +

    E582

    +
    +

    *073019.16

    +
    +

    BXD216

    +
    +

    Male

    +
    +

    459

    +
    +

    Eyeball

    +
    +

    146

    +
    +

    E591

    +
    +

    *061319.04

    +
    +

    BXD48

    +
    +

    Female

    +
    +

    425

    +
    +

    Eyeball

    +
    +

    147

    +
    +

    E592

    +
    +

    *061319.05

    +
    +

    BXD48

    +
    +

    Male

    +
    +

    425

    +
    +

    Eyeball

    +
    +

    148

    +
    +

    E593

    +
    +

    *061319.21

    +
    +

    BXD61

    +
    +

    Male

    +
    +

    459

    +
    +

    Eyeball

    +
    +

    149

    +
    +

    E600

    +
    +

    *050318.10

    +
    +

    BXD69

    +
    +

    Female

    +
    +

    387

    +
    +

    Eyeball

    +
    +

    150

    +
    +

    E601

    +
    +

    *013020.53

    +
    +

    BXD102

    +
    +

    Male

    +
    +

    416

    +
    +

    Eyeball

    +
    +

    151

    +
    +

    E603

    +
    +

    *013020.25

    +
    +

    BXD65b

    +
    +

    Male

    +
    +

    505

    +
    +

    Eyeball

    +
    +

    152

    +
    +

    E605

    +
    +

    *013020.54

    +
    +

    BXD102

    +
    +

    Female

    +
    +

    416

    +
    +

    Eyeball

    +
    +

    153

    +
    +

    E620

    +
    +

    *012420.26

    +
    +

    BXD128a

    +
    +

    Male

    +
    +

    366

    +
    +

    Eyeball

    +
    +

    154

    +
    +

    E625

    +
    +

    *110918.54

    +
    +

    BXD101

    +
    +

    Male

    +
    +

    361

    +
    +

    Eyeball

    +
    +

    155

    +
    +

    E626

    +
    +

    *110918.53

    +
    +

    BXD101

    +
    +

    Female

    +
    +

    361

    +
    +

    Eyeball

    +
    +

    156

    +
    +

    E631

    +
    +

    *083019.14

    +
    +

    BXD16

    +
    +

    Female

    +
    +

    363

    +
    +

    Eyeball

    +
    +

    157

    +
    +

    E635

    +
    +

    *083019.35

    +
    +

    BXD61

    +
    +

    Male

    +
    +

    364

    +
    +

    Eyeball

    +
    +

    158

    +
    +

    E638

    +
    +

    *083019.60

    +
    +

    BXD90

    +
    +

    Female

    +
    +

    378

    +
    +

    Eyeball

    +
    +

    159

    +
    +

    E639

    +
    +

    *083019.62

    +
    +

    BXD90

    +
    +

    Male

    +
    +

    378

    +
    +

    Eyeball

    +
    +

    160

    +
    +

    E662

    +
    +

    *100819.153

    +
    +

    BXD202

    +
    +

    Male

    +
    +

    410

    +
    +

    Eyeball

    +
    +

    161

    +
    +

    E663

    +
    +

    *100819.157

    +
    +

    BXD205

    +
    +

    Female

    +
    +

    371

    +
    +

    Eyeball

    +
    +

    162

    +
    +

    E664

    +
    +

    *100819.158

    +
    +

    BXD205

    +
    +

    Male

    +
    +

    372

    +
    +

    Eyeball

    +
    +

    163

    +
    +

    E665

    +
    +

    *100819.163

    +
    +

    BXD213

    +
    +

    Female

    +
    +

    396

    +
    +

    Eyeball

    +
    +

    164

    +
    +

    E666

    +
    +

    *100819.164

    +
    +

    BXD213

    +
    +

    Male

    +
    +

    397

    +
    +

    Eyeball

    +
    +

    165

    +
    +

    E667

    +
    +

    *100819.168

    +
    +

    BXD223

    +
    +

    Female

    +
    +

    419

    +
    +

    Eyeball

    +
    +

    166

    +
    +

    E668

    +
    +

    *100819.169

    +
    +

    BXD223

    +
    +

    Male

    +
    +

    420

    +
    +

    Eyeball

    +
    +

    167

    +
    +

    E672

    +
    +

    *052920.10

    +
    +

    BXD83

    +
    +

    Male

    +
    +

    380

    +
    +

    Eyeball

    +
    +

    168

    +
    +

    E675

    +
    +

    *052920.13

    +
    +

    DBA/2J-Gpnmb

    +
    +

    Female

    +
    +

    452

    +
    +

    Eyeball

    +
    +

    169

    +
    +

    E679

    +
    +

    *052920.12

    +
    +

    DBA/2J-Gpnmb

    +
    +

    Female

    +
    +

    458

    +
    +

    Eyeball

    +
    +

    170

    +
    +

    E680

    +
    +

    *052920.01

    +
    +

    BXD43

    +
    +

    Female

    +
    +

    465

    +
    +

    Eyeball

    +
    +

    171

    +
    +

    E682

    +
    +

    *052920.02

    +
    +

    C57BL/6J

    +
    +

    Female

    +
    +

    433

    +
    +

    Eyeball

    +
    +

    172

    +
    +

    E685

    +
    +

    *052920.09

    +
    +

    BXD83

    +
    +

    Female

    +
    +

    379

    +
    +

    Eyeball

    +
    +

    173

    +
    +

    E699

    +
    +

    *072120.14

    +
    +

    BXD40

    +
    +

    Male

    +
    +

    458

    +
    +

    Eyeball

    +
    +

    174

    +
    +

    E709

    +
    +

    *072120.24

    +
    +

    BXD150

    +
    +

    Female

    +
    +

    433

    +
    +

    Eyeball

    +
    +

    175

    +
    +

    E712

    +
    +

    *072120.27

    +
    +

    BXD160

    +
    +

    Female

    +
    +

    367

    +
    +

    Eyeball

    +
    +

    176

    +
    +

    E726

    +
    +

    *072120.41

    +
    +

    BXD16

    +
    +

    Female

    +
    +

    367

    +
    +

    Eyeball

    +
    +

    177

    +
    +

    E733

    +
    +

    *072120.48

    +
    +

    BXD60

    +
    +

    Female

    +
    +

    558

    +
    +

    Eyeball

    +
    +

    178

    +
    +

    E735

    +
    +

    *072120.50

    +
    +

    BXD180

    +
    +

    Male

    +
    +

    473

    +
    +

    Eyeball

    +
    +

    179

    +
    +

    E738

    +
    +

    *072120.53

    +
    +

    BXD128a

    +
    +

    Female

    +
    +

    387

    +
    +

    Eyeball

    +
    +

    180

    +
    +

    E745

    +
    +

    *072120.60

    +
    +

    BXD199

    +
    +

    Female

    +
    +

    457

    +
    +

    Eyeball

    +
    +

    181

    +
    +

    E746

    +
    +

    *072120.61

    +
    +

    BXD199

    +
    +

    Male

    +
    +

    457

    +
    +

    Eyeball

    +
    +

    182

    +
    +

    E749

    +
    +

    *072120.64

    +
    +

    BXD2

    +
    +

    Female

    +
    +

    399

    +
    +

    Eyeball

    +
    +

    183

    +
    +

    E750

    +
    +

    *072120.65

    +
    +

    BXD2

    +
    +

    Male

    +
    +

    399

    +
    +

    Eyeball

    +
    +

    184

    +
    +

    E753

    +
    +

    *072120.68

    +
    +

    BXD169

    +
    +

    Female

    +
    +

    441

    +
    +

    Eyeball

    +
    +

    185

    +
    +

    E754

    +
    +

    *072120.69

    +
    +

    BXD169

    +
    +

    Male

    +
    +

    441

    +
    +

    Eyeball

    +
    +

    186

    +
    +

    E759

    +
    +

    *072120.72

    +
    +

    BXD187

    +
    +

    Female

    +
    +

    354

    +
    +

    Eyeball

    +
    +

    187

    +
    +

    E760

    +
    +

    *072120.73

    +
    +

    BXD187

    +
    +

    Male

    +
    +

    354

    +
    +

    Eyeball

    +
    diff --git a/general/datasets/Uthsc_bxd_aged_eye_rnaseq_tpm_log2_1120/tissue.rtf b/general/datasets/Uthsc_bxd_aged_eye_rnaseq_tpm_log2_1120/tissue.rtf new file mode 100644 index 0000000..bbfb410 --- /dev/null +++ b/general/datasets/Uthsc_bxd_aged_eye_rnaseq_tpm_log2_1120/tissue.rtf @@ -0,0 +1 @@ +

    The animals were sacrificed under saturated isoflurane. Eyeballs from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/Uthsc_bxd_agehipp0515/cases.rtf b/general/datasets/Uthsc_bxd_agehipp0515/cases.rtf new file mode 100644 index 0000000..2b37c95 --- /dev/null +++ b/general/datasets/Uthsc_bxd_agehipp0515/cases.rtf @@ -0,0 +1,1258 @@ +

    The study includes 137 mice (11~25 months old) from 73 strains (B6, D2, DBF1, and 70 BXD strains). All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    + +

    The table of samples that are finally used for this study:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexStrainSexRNA IDAgePhaseTissue
    1BXD1FR7281H448IIHippocampus
    2BXD1MR7276H323IIHippocampus
    3BXD2MR7261H394IHippocampus
    4BXD2FR7256H456IHippocampus
    5BXD6MR7223H526IHippocampus
    6BXD8MR7203H471IHippocampus
    7BXD8FR7200H460IHippocampus
    8BXD8FR7198H433IHippocampus
    9BXD9FR7294H456IIHippocampus
    10BXD11MR7300H457IIHippocampus
    11BXD11FR7227H536IHippocampus
    12BXD12FR7183H506IHippocampus
    13BXD12FR7233H561IHippocampus
    14BXD12MR7234H606IHippocampus
    15BXD14FR7238H605IHippocampus
    16BXD14MR7235H605IHippocampus
    17BXD16FR7236H561IHippocampus
    18BXD16MR7239H475IHippocampus
    19BXD18FR7229H493IHippocampus
    20BXD19FR7267H551IHippocampus
    21BXD19MR7268H492IHippocampus
    22BXD20MR7232H506IHippocampus
    23BXD20MR7263H489IHippocampus
    24BXD21FR7230H537IHippocampus
    25BXD22FR7260H502IHippocampus
    26BXD22MR7262H596IHippocampus
    27BXD23FR7258H502IHippocampus
    28BXD23MR7257H462IHippocampus
    29BXD24MR7231H470IHippocampus
    30BXD24FR7228H415IHippocampus
    31BXD24FR7255H456IHippocampus
    32BXD25FR7252H454IHippocampus
    33BXD27FR7286H472IIHippocampus
    34BXD27FR7170H472IHippocampus
    35BXD28MR7254H493IHippocampus
    36BXD28FR7251H543IHippocampus
    37BXD29FR7259H483IHippocampus
    38BXD33MR7253H464IHippocampus
    39BXD33FR7174H471IHippocampus
    40BXD33FR7244H448IHippocampus
    41BXD33MR7270H662IHippocampus
    42BXD38FR7242H464IHippocampus
    43BXD38MR7247H446IHippocampus
    44BXD39MR7250H536IHippocampus
    45BXD39FR7173H500IHippocampus
    46BXD39MR7175H500IHippocampus
    47BXD40FR7288H451IIHippocampus
    48BXD40MR7210H470IHippocampus
    49BXD40MR7197H614IHippocampus
    50BXD42FR7280H518IIHippocampus
    51BXD42MR7246H446IHippocampus
    52BXD42FR7266H486IHippocampus
    53BXD43FR7249H454IHippocampus
    54BXD43MR7248H462IHippocampus
    55BXD44MR7241H415IHippocampus
    56BXD44MR7279H419IIHippocampus
    57BXD44FR7243H438IHippocampus
    58BXD45FR7176H451IHippocampus
    59BXD48FR7245H499IHippocampus
    60BXD48MR7220H526IHippocampus
    61BXD48aFR7299H479IIHippocampus
    62BXD48aMR7297H479IIHippocampus
    63BXD50FR7224H530IHippocampus
    64BXD50MR7221H530IHippocampus
    65BXD51FR7177H487IHippocampus
    66BXD51MR7290H407IIHippocampus
    67BXD55MR7222H528IHippocampus
    68BXD55FR7225H587IHippocampus
    69BXD56MR7178H501IHippocampus
    70BXD62MR7291H439IIHippocampus
    71BXD63MR7218H438IHippocampus
    72BXD63FR7215H475IHippocampus
    73BXD64MR7219H528IHippocampus
    74BXD64FR7216H587IHippocampus
    75BXD65FR7217H425IHippocampus
    76BXD65aFR7273H389IIHippocampus
    77BXD65aMR7277H715IIHippocampus
    78BXD65bMR7271H483IIHippocampus
    79BXD66MR7214H463IHippocampus
    80BXD66FR7302H446IIIHippocampus
    81BXD67FR7240H499IHippocampus
    82BXD67MR7213H425IHippocampus
    83BXD67FR7278H415IIHippocampus
    84BXD68MR7212H421IHippocampus
    85BXD68FR7211H415IHippocampus
    86BXD69FR7305H504IIIHippocampus
    87BXD70FR7207H458IHippocampus
    88BXD70MR7204H460IHippocampus
    89BXD71MR7205H471IHippocampus
    90BXD71FR7208H474IHippocampus
    91BXD73FR7209H470IHippocampus
    92BXD73MR7206H464IHippocampus
    93BXD73aFR7181H443IHippocampus
    94BXD73aMR7182H614IHippocampus
    95BXD76MR7179H579IHippocampus
    96BXD76FR7188H408IHippocampus
    97BXD76MR7187H564IHippocampus
    98BXD77MR7292H347IIHippocampus
    99BXD77FR7201H454IHippocampus
    100BXD79MR7202H485IHippocampus
    101BXD79FR7199H515IHippocampus
    102BXD79MR7298H704IIHippocampus
    103BXD81MR7196H515IHippocampus
    104BXD81FR7190H458IHippocampus
    105BXD83MR7184H441IHippocampus
    106BXD84MR7195H474IHippocampus
    107BXD84MR7296H484IIHippocampus
    108BXD84FR7192H522IHippocampus
    109BXD85MR7272H425IIHippocampus
    110BXD85FR7193H506IHippocampus
    111BXD86MR7191H425IHippocampus
    112BXD87FR7194H425IHippocampus
    113BXD87MR7303H478IIIHippocampus
    114BXD87MR7186H442IHippocampus
    115BXD89FR7295H446IIHippocampus
    116BXD90MR7287H434IIHippocampus
    117BXD90MR7293H558IIHippocampus
    118BXD95FR7180H467IHippocampus
    119BXD95MR7169H467IHippocampus
    120BXD98MR7237H605IHippocampus
    121BXD98FR7171H639IHippocampus
    122BXD98FR7275H488IIHippocampus
    123BXD99MR7189H524IHippocampus
    124BXD99FR7172H471IHippocampus
    125BXD100FR7282H463IIHippocampus
    126BXD100MR7283H507IIHippocampus
    127BXD100MR7274H577IIHippocampus
    128BXD100FR7226H464IHippocampus
    129BXD101FR7284H490IIHippocampus
    130BXD101MR7285H408IIHippocampus
    131C57BL/6JMR7264H489IHippocampus
    132C57BL/6JMR7289H756IIHippocampus
    133D2B6F1MR7265H492IHippocampus
    134D2B6F1FR7304H495IIIHippocampus
    135DBA/2JFR7185H433IHippocampus
    136DBA/2JMR7269H367IHippocampus
    137DBA/2JFR7301H566IIIHippocampus
    diff --git a/general/datasets/Uthsc_bxd_agehipp0515/experiment-design.rtf b/general/datasets/Uthsc_bxd_agehipp0515/experiment-design.rtf new file mode 100644 index 0000000..d6b2d5b --- /dev/null +++ b/general/datasets/Uthsc_bxd_agehipp0515/experiment-design.rtf @@ -0,0 +1,3 @@ +

    RNA Extraction

    + +

    RNA was extracted using the RNeasy mini kit (Qiagen, Valencia, CA, USA) according to the manufactures’ procedure. 2100 BioAnalyzer (Agilent Technologies) was used to evaluate RNA integrity and quality. Samples with RNA Integrity Numbers (RIN values) > 8.0 were run on Affy MoGene1.0 ST at the UTHSC

    diff --git a/general/datasets/Uthsc_bxd_agehipp0515/processing.rtf b/general/datasets/Uthsc_bxd_agehipp0515/processing.rtf new file mode 100644 index 0000000..e951515 --- /dev/null +++ b/general/datasets/Uthsc_bxd_agehipp0515/processing.rtf @@ -0,0 +1,3 @@ +

    About data processing:

    + +

    Raw microarray data were normalized using the Robust Multichip Array (RMA) method. The expression data were then re-normalized using a modified Z score.

    diff --git a/general/datasets/Uthsc_bxd_agehipp0515/specifics.rtf b/general/datasets/Uthsc_bxd_agehipp0515/specifics.rtf new file mode 100644 index 0000000..3d4ba9a --- /dev/null +++ b/general/datasets/Uthsc_bxd_agehipp0515/specifics.rtf @@ -0,0 +1 @@ +UTHSC BXD Aged Hippocampus Affy MoGene1.0 ST (May15) RMA Gene Level ** \ No newline at end of file diff --git a/general/datasets/Uthsc_bxd_agehipp0515/tissue.rtf b/general/datasets/Uthsc_bxd_agehipp0515/tissue.rtf new file mode 100644 index 0000000..3166717 --- /dev/null +++ b/general/datasets/Uthsc_bxd_agehipp0515/tissue.rtf @@ -0,0 +1,3 @@ +

    Tissue Harvest 

    + +

    The animals were sacrificed under saturated isoflurane. Hippocampus from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/Uthsc_bxd_all_ages_eye_rnaseq_tpm_log/experiment-design.rtf b/general/datasets/Uthsc_bxd_all_ages_eye_rnaseq_tpm_log/experiment-design.rtf new file mode 100644 index 0000000..2f8cedc --- /dev/null +++ b/general/datasets/Uthsc_bxd_all_ages_eye_rnaseq_tpm_log/experiment-design.rtf @@ -0,0 +1 @@ +

    Total RNA was extracted using Trizol® reagent (Invitrogen, Grand Island, NY, USA) according to the manufacturer’s instructions. Approximately 30 mg of PFC tissue was added into a 2 ml tube containing 700ul QIAzol Lysis Reagent and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 minutes in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 r followed by incubating for 5 minutes.140 µl chloroform was added into the homogenate, shaken vigorously for 15 seconds, and centrifuged for 15 minutes at 12,000 x g at 4 â„ƒ. 280 µl upper aqueous was then transferred into a new collection tube containing 500 µl 100% ethanol. The mixture was loaded into a RNeasy mini‐spin column (Qiagen, Valencia, CA, USA), once with Buffer RWT and twice with Buffer RPE purification. All RNA had been treated with DNase to avoid DNA contamination, and verified by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA with OD260/280 > 1.8 and RIN > 8.0 were used for library preparation

    diff --git a/general/datasets/Uthsc_bxd_all_ages_eye_rnaseq_tpm_log/processing.rtf b/general/datasets/Uthsc_bxd_all_ages_eye_rnaseq_tpm_log/processing.rtf new file mode 100644 index 0000000..8e460ff --- /dev/null +++ b/general/datasets/Uthsc_bxd_all_ages_eye_rnaseq_tpm_log/processing.rtf @@ -0,0 +1,9 @@ +

    Generation of RNA-seq data

    + +

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    + +

     

    + +

    Read mapping and normalization

    + +

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/Uthsc_bxd_all_ages_eye_rnaseq_tpm_log/specifics.rtf b/general/datasets/Uthsc_bxd_all_ages_eye_rnaseq_tpm_log/specifics.rtf new file mode 100644 index 0000000..8b003fb --- /dev/null +++ b/general/datasets/Uthsc_bxd_all_ages_eye_rnaseq_tpm_log/specifics.rtf @@ -0,0 +1 @@ +UTHSC BXD All Ages Eye RNA-Seq (Nov20) TPM Log2 \ No newline at end of file diff --git a/general/datasets/Uthsc_bxd_all_ages_eye_rnaseq_tpm_log/tissue.rtf b/general/datasets/Uthsc_bxd_all_ages_eye_rnaseq_tpm_log/tissue.rtf new file mode 100644 index 0000000..bbfb410 --- /dev/null +++ b/general/datasets/Uthsc_bxd_all_ages_eye_rnaseq_tpm_log/tissue.rtf @@ -0,0 +1 @@ +

    The animals were sacrificed under saturated isoflurane. Eyeballs from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/Uthsc_bxd_h_0912/cases.rtf b/general/datasets/Uthsc_bxd_h_0912/cases.rtf new file mode 100644 index 0000000..2b37c95 --- /dev/null +++ b/general/datasets/Uthsc_bxd_h_0912/cases.rtf @@ -0,0 +1,1258 @@ +

    The study includes 137 mice (11~25 months old) from 73 strains (B6, D2, DBF1, and 70 BXD strains). All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    + +

    The table of samples that are finally used for this study:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexStrainSexRNA IDAgePhaseTissue
    1BXD1FR7281H448IIHippocampus
    2BXD1MR7276H323IIHippocampus
    3BXD2MR7261H394IHippocampus
    4BXD2FR7256H456IHippocampus
    5BXD6MR7223H526IHippocampus
    6BXD8MR7203H471IHippocampus
    7BXD8FR7200H460IHippocampus
    8BXD8FR7198H433IHippocampus
    9BXD9FR7294H456IIHippocampus
    10BXD11MR7300H457IIHippocampus
    11BXD11FR7227H536IHippocampus
    12BXD12FR7183H506IHippocampus
    13BXD12FR7233H561IHippocampus
    14BXD12MR7234H606IHippocampus
    15BXD14FR7238H605IHippocampus
    16BXD14MR7235H605IHippocampus
    17BXD16FR7236H561IHippocampus
    18BXD16MR7239H475IHippocampus
    19BXD18FR7229H493IHippocampus
    20BXD19FR7267H551IHippocampus
    21BXD19MR7268H492IHippocampus
    22BXD20MR7232H506IHippocampus
    23BXD20MR7263H489IHippocampus
    24BXD21FR7230H537IHippocampus
    25BXD22FR7260H502IHippocampus
    26BXD22MR7262H596IHippocampus
    27BXD23FR7258H502IHippocampus
    28BXD23MR7257H462IHippocampus
    29BXD24MR7231H470IHippocampus
    30BXD24FR7228H415IHippocampus
    31BXD24FR7255H456IHippocampus
    32BXD25FR7252H454IHippocampus
    33BXD27FR7286H472IIHippocampus
    34BXD27FR7170H472IHippocampus
    35BXD28MR7254H493IHippocampus
    36BXD28FR7251H543IHippocampus
    37BXD29FR7259H483IHippocampus
    38BXD33MR7253H464IHippocampus
    39BXD33FR7174H471IHippocampus
    40BXD33FR7244H448IHippocampus
    41BXD33MR7270H662IHippocampus
    42BXD38FR7242H464IHippocampus
    43BXD38MR7247H446IHippocampus
    44BXD39MR7250H536IHippocampus
    45BXD39FR7173H500IHippocampus
    46BXD39MR7175H500IHippocampus
    47BXD40FR7288H451IIHippocampus
    48BXD40MR7210H470IHippocampus
    49BXD40MR7197H614IHippocampus
    50BXD42FR7280H518IIHippocampus
    51BXD42MR7246H446IHippocampus
    52BXD42FR7266H486IHippocampus
    53BXD43FR7249H454IHippocampus
    54BXD43MR7248H462IHippocampus
    55BXD44MR7241H415IHippocampus
    56BXD44MR7279H419IIHippocampus
    57BXD44FR7243H438IHippocampus
    58BXD45FR7176H451IHippocampus
    59BXD48FR7245H499IHippocampus
    60BXD48MR7220H526IHippocampus
    61BXD48aFR7299H479IIHippocampus
    62BXD48aMR7297H479IIHippocampus
    63BXD50FR7224H530IHippocampus
    64BXD50MR7221H530IHippocampus
    65BXD51FR7177H487IHippocampus
    66BXD51MR7290H407IIHippocampus
    67BXD55MR7222H528IHippocampus
    68BXD55FR7225H587IHippocampus
    69BXD56MR7178H501IHippocampus
    70BXD62MR7291H439IIHippocampus
    71BXD63MR7218H438IHippocampus
    72BXD63FR7215H475IHippocampus
    73BXD64MR7219H528IHippocampus
    74BXD64FR7216H587IHippocampus
    75BXD65FR7217H425IHippocampus
    76BXD65aFR7273H389IIHippocampus
    77BXD65aMR7277H715IIHippocampus
    78BXD65bMR7271H483IIHippocampus
    79BXD66MR7214H463IHippocampus
    80BXD66FR7302H446IIIHippocampus
    81BXD67FR7240H499IHippocampus
    82BXD67MR7213H425IHippocampus
    83BXD67FR7278H415IIHippocampus
    84BXD68MR7212H421IHippocampus
    85BXD68FR7211H415IHippocampus
    86BXD69FR7305H504IIIHippocampus
    87BXD70FR7207H458IHippocampus
    88BXD70MR7204H460IHippocampus
    89BXD71MR7205H471IHippocampus
    90BXD71FR7208H474IHippocampus
    91BXD73FR7209H470IHippocampus
    92BXD73MR7206H464IHippocampus
    93BXD73aFR7181H443IHippocampus
    94BXD73aMR7182H614IHippocampus
    95BXD76MR7179H579IHippocampus
    96BXD76FR7188H408IHippocampus
    97BXD76MR7187H564IHippocampus
    98BXD77MR7292H347IIHippocampus
    99BXD77FR7201H454IHippocampus
    100BXD79MR7202H485IHippocampus
    101BXD79FR7199H515IHippocampus
    102BXD79MR7298H704IIHippocampus
    103BXD81MR7196H515IHippocampus
    104BXD81FR7190H458IHippocampus
    105BXD83MR7184H441IHippocampus
    106BXD84MR7195H474IHippocampus
    107BXD84MR7296H484IIHippocampus
    108BXD84FR7192H522IHippocampus
    109BXD85MR7272H425IIHippocampus
    110BXD85FR7193H506IHippocampus
    111BXD86MR7191H425IHippocampus
    112BXD87FR7194H425IHippocampus
    113BXD87MR7303H478IIIHippocampus
    114BXD87MR7186H442IHippocampus
    115BXD89FR7295H446IIHippocampus
    116BXD90MR7287H434IIHippocampus
    117BXD90MR7293H558IIHippocampus
    118BXD95FR7180H467IHippocampus
    119BXD95MR7169H467IHippocampus
    120BXD98MR7237H605IHippocampus
    121BXD98FR7171H639IHippocampus
    122BXD98FR7275H488IIHippocampus
    123BXD99MR7189H524IHippocampus
    124BXD99FR7172H471IHippocampus
    125BXD100FR7282H463IIHippocampus
    126BXD100MR7283H507IIHippocampus
    127BXD100MR7274H577IIHippocampus
    128BXD100FR7226H464IHippocampus
    129BXD101FR7284H490IIHippocampus
    130BXD101MR7285H408IIHippocampus
    131C57BL/6JMR7264H489IHippocampus
    132C57BL/6JMR7289H756IIHippocampus
    133D2B6F1MR7265H492IHippocampus
    134D2B6F1FR7304H495IIIHippocampus
    135DBA/2JFR7185H433IHippocampus
    136DBA/2JMR7269H367IHippocampus
    137DBA/2JFR7301H566IIIHippocampus
    diff --git a/general/datasets/Uthsc_bxd_h_0912/experiment-design.rtf b/general/datasets/Uthsc_bxd_h_0912/experiment-design.rtf new file mode 100644 index 0000000..d6b2d5b --- /dev/null +++ b/general/datasets/Uthsc_bxd_h_0912/experiment-design.rtf @@ -0,0 +1,3 @@ +

    RNA Extraction

    + +

    RNA was extracted using the RNeasy mini kit (Qiagen, Valencia, CA, USA) according to the manufactures’ procedure. 2100 BioAnalyzer (Agilent Technologies) was used to evaluate RNA integrity and quality. Samples with RNA Integrity Numbers (RIN values) > 8.0 were run on Affy MoGene1.0 ST at the UTHSC

    diff --git a/general/datasets/Uthsc_bxd_h_0912/processing.rtf b/general/datasets/Uthsc_bxd_h_0912/processing.rtf new file mode 100644 index 0000000..e951515 --- /dev/null +++ b/general/datasets/Uthsc_bxd_h_0912/processing.rtf @@ -0,0 +1,3 @@ +

    About data processing:

    + +

    Raw microarray data were normalized using the Robust Multichip Array (RMA) method. The expression data were then re-normalized using a modified Z score.

    diff --git a/general/datasets/Uthsc_bxd_h_0912/specifics.rtf b/general/datasets/Uthsc_bxd_h_0912/specifics.rtf new file mode 100644 index 0000000..0888a16 --- /dev/null +++ b/general/datasets/Uthsc_bxd_h_0912/specifics.rtf @@ -0,0 +1 @@ +Exon Level Data \ No newline at end of file diff --git a/general/datasets/Uthsc_bxd_h_0912/tissue.rtf b/general/datasets/Uthsc_bxd_h_0912/tissue.rtf new file mode 100644 index 0000000..3166717 --- /dev/null +++ b/general/datasets/Uthsc_bxd_h_0912/tissue.rtf @@ -0,0 +1,3 @@ +

    Tissue Harvest 

    + +

    The animals were sacrificed under saturated isoflurane. Hippocampus from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/Uthsc_bxd_harev3_0912/cases.rtf b/general/datasets/Uthsc_bxd_harev3_0912/cases.rtf new file mode 100644 index 0000000..2b37c95 --- /dev/null +++ b/general/datasets/Uthsc_bxd_harev3_0912/cases.rtf @@ -0,0 +1,1258 @@ +

    The study includes 137 mice (11~25 months old) from 73 strains (B6, D2, DBF1, and 70 BXD strains). All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    + +

    The table of samples that are finally used for this study:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexStrainSexRNA IDAgePhaseTissue
    1BXD1FR7281H448IIHippocampus
    2BXD1MR7276H323IIHippocampus
    3BXD2MR7261H394IHippocampus
    4BXD2FR7256H456IHippocampus
    5BXD6MR7223H526IHippocampus
    6BXD8MR7203H471IHippocampus
    7BXD8FR7200H460IHippocampus
    8BXD8FR7198H433IHippocampus
    9BXD9FR7294H456IIHippocampus
    10BXD11MR7300H457IIHippocampus
    11BXD11FR7227H536IHippocampus
    12BXD12FR7183H506IHippocampus
    13BXD12FR7233H561IHippocampus
    14BXD12MR7234H606IHippocampus
    15BXD14FR7238H605IHippocampus
    16BXD14MR7235H605IHippocampus
    17BXD16FR7236H561IHippocampus
    18BXD16MR7239H475IHippocampus
    19BXD18FR7229H493IHippocampus
    20BXD19FR7267H551IHippocampus
    21BXD19MR7268H492IHippocampus
    22BXD20MR7232H506IHippocampus
    23BXD20MR7263H489IHippocampus
    24BXD21FR7230H537IHippocampus
    25BXD22FR7260H502IHippocampus
    26BXD22MR7262H596IHippocampus
    27BXD23FR7258H502IHippocampus
    28BXD23MR7257H462IHippocampus
    29BXD24MR7231H470IHippocampus
    30BXD24FR7228H415IHippocampus
    31BXD24FR7255H456IHippocampus
    32BXD25FR7252H454IHippocampus
    33BXD27FR7286H472IIHippocampus
    34BXD27FR7170H472IHippocampus
    35BXD28MR7254H493IHippocampus
    36BXD28FR7251H543IHippocampus
    37BXD29FR7259H483IHippocampus
    38BXD33MR7253H464IHippocampus
    39BXD33FR7174H471IHippocampus
    40BXD33FR7244H448IHippocampus
    41BXD33MR7270H662IHippocampus
    42BXD38FR7242H464IHippocampus
    43BXD38MR7247H446IHippocampus
    44BXD39MR7250H536IHippocampus
    45BXD39FR7173H500IHippocampus
    46BXD39MR7175H500IHippocampus
    47BXD40FR7288H451IIHippocampus
    48BXD40MR7210H470IHippocampus
    49BXD40MR7197H614IHippocampus
    50BXD42FR7280H518IIHippocampus
    51BXD42MR7246H446IHippocampus
    52BXD42FR7266H486IHippocampus
    53BXD43FR7249H454IHippocampus
    54BXD43MR7248H462IHippocampus
    55BXD44MR7241H415IHippocampus
    56BXD44MR7279H419IIHippocampus
    57BXD44FR7243H438IHippocampus
    58BXD45FR7176H451IHippocampus
    59BXD48FR7245H499IHippocampus
    60BXD48MR7220H526IHippocampus
    61BXD48aFR7299H479IIHippocampus
    62BXD48aMR7297H479IIHippocampus
    63BXD50FR7224H530IHippocampus
    64BXD50MR7221H530IHippocampus
    65BXD51FR7177H487IHippocampus
    66BXD51MR7290H407IIHippocampus
    67BXD55MR7222H528IHippocampus
    68BXD55FR7225H587IHippocampus
    69BXD56MR7178H501IHippocampus
    70BXD62MR7291H439IIHippocampus
    71BXD63MR7218H438IHippocampus
    72BXD63FR7215H475IHippocampus
    73BXD64MR7219H528IHippocampus
    74BXD64FR7216H587IHippocampus
    75BXD65FR7217H425IHippocampus
    76BXD65aFR7273H389IIHippocampus
    77BXD65aMR7277H715IIHippocampus
    78BXD65bMR7271H483IIHippocampus
    79BXD66MR7214H463IHippocampus
    80BXD66FR7302H446IIIHippocampus
    81BXD67FR7240H499IHippocampus
    82BXD67MR7213H425IHippocampus
    83BXD67FR7278H415IIHippocampus
    84BXD68MR7212H421IHippocampus
    85BXD68FR7211H415IHippocampus
    86BXD69FR7305H504IIIHippocampus
    87BXD70FR7207H458IHippocampus
    88BXD70MR7204H460IHippocampus
    89BXD71MR7205H471IHippocampus
    90BXD71FR7208H474IHippocampus
    91BXD73FR7209H470IHippocampus
    92BXD73MR7206H464IHippocampus
    93BXD73aFR7181H443IHippocampus
    94BXD73aMR7182H614IHippocampus
    95BXD76MR7179H579IHippocampus
    96BXD76FR7188H408IHippocampus
    97BXD76MR7187H564IHippocampus
    98BXD77MR7292H347IIHippocampus
    99BXD77FR7201H454IHippocampus
    100BXD79MR7202H485IHippocampus
    101BXD79FR7199H515IHippocampus
    102BXD79MR7298H704IIHippocampus
    103BXD81MR7196H515IHippocampus
    104BXD81FR7190H458IHippocampus
    105BXD83MR7184H441IHippocampus
    106BXD84MR7195H474IHippocampus
    107BXD84MR7296H484IIHippocampus
    108BXD84FR7192H522IHippocampus
    109BXD85MR7272H425IIHippocampus
    110BXD85FR7193H506IHippocampus
    111BXD86MR7191H425IHippocampus
    112BXD87FR7194H425IHippocampus
    113BXD87MR7303H478IIIHippocampus
    114BXD87MR7186H442IHippocampus
    115BXD89FR7295H446IIHippocampus
    116BXD90MR7287H434IIHippocampus
    117BXD90MR7293H558IIHippocampus
    118BXD95FR7180H467IHippocampus
    119BXD95MR7169H467IHippocampus
    120BXD98MR7237H605IHippocampus
    121BXD98FR7171H639IHippocampus
    122BXD98FR7275H488IIHippocampus
    123BXD99MR7189H524IHippocampus
    124BXD99FR7172H471IHippocampus
    125BXD100FR7282H463IIHippocampus
    126BXD100MR7283H507IIHippocampus
    127BXD100MR7274H577IIHippocampus
    128BXD100FR7226H464IHippocampus
    129BXD101FR7284H490IIHippocampus
    130BXD101MR7285H408IIHippocampus
    131C57BL/6JMR7264H489IHippocampus
    132C57BL/6JMR7289H756IIHippocampus
    133D2B6F1MR7265H492IHippocampus
    134D2B6F1FR7304H495IIIHippocampus
    135DBA/2JFR7185H433IHippocampus
    136DBA/2JMR7269H367IHippocampus
    137DBA/2JFR7301H566IIIHippocampus
    diff --git a/general/datasets/Uthsc_bxd_harev3_0912/experiment-design.rtf b/general/datasets/Uthsc_bxd_harev3_0912/experiment-design.rtf new file mode 100644 index 0000000..d6b2d5b --- /dev/null +++ b/general/datasets/Uthsc_bxd_harev3_0912/experiment-design.rtf @@ -0,0 +1,3 @@ +

    RNA Extraction

    + +

    RNA was extracted using the RNeasy mini kit (Qiagen, Valencia, CA, USA) according to the manufactures’ procedure. 2100 BioAnalyzer (Agilent Technologies) was used to evaluate RNA integrity and quality. Samples with RNA Integrity Numbers (RIN values) > 8.0 were run on Affy MoGene1.0 ST at the UTHSC

    diff --git a/general/datasets/Uthsc_bxd_harev3_0912/processing.rtf b/general/datasets/Uthsc_bxd_harev3_0912/processing.rtf new file mode 100644 index 0000000..e951515 --- /dev/null +++ b/general/datasets/Uthsc_bxd_harev3_0912/processing.rtf @@ -0,0 +1,3 @@ +

    About data processing:

    + +

    Raw microarray data were normalized using the Robust Multichip Array (RMA) method. The expression data were then re-normalized using a modified Z score.

    diff --git a/general/datasets/Uthsc_bxd_harev3_0912/tissue.rtf b/general/datasets/Uthsc_bxd_harev3_0912/tissue.rtf new file mode 100644 index 0000000..3166717 --- /dev/null +++ b/general/datasets/Uthsc_bxd_harev3_0912/tissue.rtf @@ -0,0 +1,3 @@ +

    Tissue Harvest 

    + +

    The animals were sacrificed under saturated isoflurane. Hippocampus from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/Uthsc_bxd_harv_liv_0118/cases.rtf b/general/datasets/Uthsc_bxd_harv_liv_0118/cases.rtf new file mode 100644 index 0000000..18fdd1d --- /dev/null +++ b/general/datasets/Uthsc_bxd_harv_liv_0118/cases.rtf @@ -0,0 +1,1371 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    CaseIDStrainDietSexAgeEarTag CurrentGN-SampleID
    062013.09C57BL/6JHFF544514H0514
    091914.09C57BL/6JCDF5371103H1103
    012615.26C57BL/6JCDM3611590H1590
    102414.06C57BL/6JHFF1821681H1681
    062013.12D2B6F1CDF545646H0646
    062013.13D2B6F1HFF540642H0642
    101713.20D2B6F1HFF2141150H1150
    101713.18D2B6F1CDF2101154H1154
    083016.07DBA/2JCDF7641818H1818
    091914.05DBA/2JHFF5491142H1142
    091914.07DBA/2JHFM5441140H1140
    101713.10DBA/2JCDF2121147H1147
    101713.11DBA/2JHFF2121144H1144
    121214.29B6D2F1CDF6401227H1227
    012615.07B6D2F1CDF5521569H1569
    102616.04B6D2F1HFF5472288H2288
    102616.05B6D2F1HFF5472290H2290
    101713.13B6D2F1CDF2161223H1223
    101713.15B6D2F1HFF2161302H1302
    082214.11BXD9CDF5481006H1006
    082214.09BXD9HFF5481009H1009
    102616.12BXD9CDF2452577H2577
    083016.08BXD24HFF6882259H2259
    012615.19BXD24CDF2051792H1792
    012615.08BXD29CDF7241044H1044
    111314.10BXD29HFF6301037H1037
    061913.04BXD29HFF577669H0669
    111314.11BXD29CDF5741040H1040
    061913.01BXD29CDF572742H0742
    121515.05BXD29HFF1822349H2349
    101014.02BXD32HFF5391137H1137
    083016.01BXD32CDF3862494H2494
    042015.22BXD32CDF2002034H2034
    042015.20BXD32HFF2002030H2030
    101513.05BXD34CDF554765H0765
    101014.05BXD34HFF5371052H1052
    101513.02BXD34CDF2011054H1054
    101513.04BXD34HFF1971056H1056
    010614.06BXD39CDF730673H0673
    102414.02BXD39CDF5501322H1322
    121214.22BXD39HFF3501474H1474
    121214.21BXD39HFF3501473H1473
    061913.06BXD40CDF578680H0680
    121214.13BXD40HFF3581593H1593
    111314.05BXD40HFF2911488H1488
    102414.08BXD40CDF1801691H1691
    102414.12BXD44HFF7151687H1687
    012615.15BXD44CDF3791505H1505
    012615.12BXD44HFF3791501H1501
    042015.07BXD44CDF2401822H1822
    042015.10BXD44HFF2401825H1825
    121515.12BXD45CDF5071826H1826
    121515.15BXD45HFF5031940H1940
    012615.11BXD45CDF3841762H1762
    042915.13BXD48HFF5951377H1377
    121515.18BXD48CDF5181835H1835
    042015.24BXD48HFF1892046H2046
    042015.27BXD48CDF1882054H2054
    062013.06BXD48aHFF543699H0699
    051112.05BXD48aCDF233209H0209
    051112.04BXD48aHFF233210H0210
    010614.07BXD53HFF713833H0833
    062013.16BXD53CDF571848H0848
    021213.14BXD60CDF530171H0171
    050912.08BXD60CDF235235H0235
    121515.23BXD61CDF5241841H1841
    121515.25BXD61HFF5241843H1843
    111414.02BXD61CDF1881770H1770
    111414.03BXD61HFF1881922H1922
    111414.04BXD61HFF1881722H1722
    082214.10BXD62HFF5481315H1315
    042915.19BXD62HFF4881434H1434
    121214.20BXD62CDF3531436H1436
    042015.05BXD62CDF2531847H1847
    102616.17BXD63HFF7522091H2091
    083016.03BXD63CDF7511872H1872
    121214.24BXD63CDF3441414H1414
    121214.26BXD63HFF3441416H1416
    090412.08BXD63CDF218818H0818
    111414.09BXD63HFF1861715H1715
    121615.09BXD65CDF5411787H1787
    121615.06BXD65HFF5411784H1784
    051012.01BXD65HFF230458H0458
    042015.13BXD65CDF2222098H2098
    121615.12BXD65bCDF5271793H1793
    121615.11BXD65bHFF5271790H1790
    111414.05BXD65bCDF1871766H1766
    102414.18BXD65bHFF1741713H1713
    121214.04BXD66HFF3671560H1560
    121214.19BXD66CDF3541558H1558
    042415.08BXD66CDF1842128H2128
    042415.05BXD66HFF1842124H2124
    082214.02BXD68CDF5451080H1080
    082214.08BXD68HFF5451290H1290
    101613.05BXD68CDF2011068H1068
    101613.08BXD68HFF2011071H1071
    061913.13BXD69CDF558591H0591
    121214.23BXD69HFF5281328H1328
    101613.09BXD69HFF2101087H1087
    042415.23BXD69CDF1572142H2142
    121615.14BXD70HFF5781728H1728
    121214.16BXD70CDF3571512H1512
    050115.06BXD70CDF2611855H1855
    051012.08BXD70HFF239188H0188
    121615.17BXD73CDF5391906H1906
    121214.10BXD73CDF3611451H1451
    121214.11BXD73HFF3611447H1447
    042015.18BXD73HFF2062071H2071
    050115.15BXD73bCDF4971466H1466
    050115.12BXD73bHFF4741545H1545
    051112.12BXD73bCDF238184H0184
    051112.14BXD73bHFF237183H0183
    121615.19BXD77HFF5111866H1866
    050115.17BXD77CDF4601398H1398
    061913.18BXD79HFF571583H0583
    050115.19BXD79CDF4681555H1555
    090412.10BXD79CDF217825H0825
    061913.19BXD87CDF581296H0296
    121615.21BXD87HFF5121945H1945
    051012.14BXD87HFF241243H0243
    090612.10BXD87CDF200550H0550
    101014.04BXD89HFF5391321H1321
    051112.01BXD89HFF243176H0176
    090612.14BXD89CDF193555H0555
    062013.03BXD90HFF570736H0736
    062013.02BXD90CDF549756H0756
    101613.19BXD90HFF2181093H1093
    102414.03BXD90CDF1881702H1702
    062013.17BXD91CDF562883H0883
    062013.19BXD91HFF562881H0881
    102414.20BXD95HFF5501273H1273
    101014.10BXD95CDF5361742H1742
    101613.21BXD95HFF2131275H1275
    012615.17BXD98CDF3841769H1769
    012615.16BXD98CDF3841524H1524
    111414.14BXD99CDF5351354H1354
    050914.05BXD99HFF1821355H1355
    111314.15BXD100CDF5671190H1190
    050914.04BXD100HFF5371187H1187
    051112.07BXD100CDF223247H0247
    051112.08BXD100CDF223248H0248
    042415.12BXD100HFF1762085H2085
    102616.20BXD101CDF7562114H2114
    042715.19BXD101HFF4931422H1422
    111414.20BXD101CDF3491425H1425
    051112.09BXD101CDF223468H0468
    042915.01BXD102CDF5011499H1499
    121214.07BXD102HFF3661498H1498
    053014.01BXD102CDF1831363H1363
    052814.04BXD102HFF1831361H1361
    diff --git a/general/datasets/Uthsc_bxd_harv_liv_0118/processing.rtf b/general/datasets/Uthsc_bxd_harv_liv_0118/processing.rtf new file mode 100644 index 0000000..4504c49 --- /dev/null +++ b/general/datasets/Uthsc_bxd_harv_liv_0118/processing.rtf @@ -0,0 +1,26883 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    150 UTHSC Aging Liver RNA Selected for Novogene Submission                                                                                                                                                        
    All Samples approximately 110ng/ul with a total of approximately 3ug RNA                                                                                                                                                       
    File last updated by A.Centeno 1-3-18                                                                                                                                                           
    Pearson Product-Moment Correlation                                                                                                                                                           
    No Selector     TissueLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiver   
           Age216552640223223567223349756183501205572574724200386201554550730180578240379384507188518233571235530188524253353218344751222541187527184354201545157558261357361539238497460217468200581193245548188549562536384384535361537210545212764216547547176537493183366688182577630200539197537350350291358240379715503189595233543713188188524488548186344752230541174527184367201545210528239578206361237474511571241512243539548218570562213550182544182214540212544549   
           SexFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFMFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFMF   
           JI-ID307151136268269923117179832701632993141412591311701802761682892852641571452812602752530810451132324257178293134133107322320313112113271741144120719720321398253255272916286310230733043112127714618227816227330029867121306279296254772902841951403172951192613182832921292042802022581581443032632382392871431283233162423021251231352652123153212621225971581092662942241969725631924232626728231229727432528823630530923530129116181190   
           CaseID101713.13012615.07121214.29051112.07051112.08111314.15051112.09111414.20102616.20053014.01042915.01012615.19061913.01111314.11012615.08042015.22083016.01101513.02101513.05102414.02010614.06102414.08061913.06042015.07012615.15012615.11121515.12042015.27121515.18051112.05062013.16050912.08021213.14111414.02121515.23042015.05121214.20090412.08121214.24083016.03042015.13121615.09111414.05121615.12042415.08121214.19101613.05082214.02042415.23061913.13050115.06121214.16121214.10121615.17051112.12050115.15050115.17090412.10050115.19090612.10061913.19090612.14102616.12082214.11102414.03062013.02062013.17101014.10012615.17012615.16111414.14012615.26091914.09101713.18062013.12101713.10083016.07101713.15102616.04102616.05042415.12050914.04042715.19052814.04121214.07083016.08121515.05061913.04111314.10042015.20101014.02101513.04101014.05121214.22121214.21111314.05121214.13042015.10012615.12102414.12121515.15042015.24042915.13051112.04062013.06010614.07111414.03111414.04121515.25042915.19082214.10111414.09121214.26102616.17051012.01121615.06102414.18121615.11042415.05121214.04101613.08082214.08101613.09121214.23051012.08121615.14042015.18121214.11051112.14050115.12121615.19061913.18051012.14121615.21051112.01101014.04082214.09101613.19062013.03062013.19101613.21102414.20050914.05062013.09102414.06101713.20062013.13101713.11091914.07091914.05   
           DietCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHF   
           StrainB6D2F1B6D2F1B6D2F1BXD100BXD100BXD100BXD101BXD101BXD101BXD102BXD102BXD24BXD29BXD29BXD29BXD32BXD32BXD34BXD34BXD39BXD39BXD40BXD40BXD44BXD44BXD45BXD45BXD48BXD48BXD48aBXD53BXD60BXD60BXD61BXD61BXD62BXD62BXD63BXD63BXD63BXD65BXD65BXD65bBXD65bBXD66BXD66BXD68BXD68BXD69BXD69BXD70BXD70BXD73BXD73BXD73bBXD73bBXD77BXD79BXD79BXD87BXD87BXD89BXD9BXD9BXD90BXD90BXD91BXD95BXD98BXD98BXD99C57BL/6JC57BL/6JD2B6F1D2B6F1DBA/2JDBA/2JB6D2F1B6D2F1B6D2F1BXD100BXD100BXD101BXD102BXD102BXD24BXD29BXD29BXD29BXD32BXD32BXD34BXD34BXD39BXD39BXD40BXD40BXD44BXD44BXD44BXD45BXD48BXD48BXD48aBXD48aBXD53BXD61BXD61BXD61BXD62BXD62BXD63BXD63BXD63BXD65BXD65BXD65bBXD65bBXD66BXD66BXD68BXD68BXD69BXD69BXD70BXD70BXD73BXD73BXD73bBXD73bBXD77BXD79BXD87BXD87BXD89BXD89BXD9BXD90BXD90BXD91BXD95BXD95BXD99C57BL/6JC57BL/6JD2B6F1D2B6F1DBA/2JDBA/2JDBA/2J   
    TissueAgeSexJI-IDCaseIDDietStrainEarTagH1223H1569H1227H0247H0248H1190H0468H1425H2114H1363H1499H1792H0742H1040H1044H2034H2494H1054H0765H1322H0673H1691H0680H1822H1505H1762H1826H2054H1835H0209H0848H0235H0171H1770H1841H1847H1436H0818H1414H1872H2098H1787H1766H1793H2128H1558H1068H1080H2142H0591H1855H1512H1451H1906H0184H1466H1398H0825H1555H0550H0296H0555H2577H1006H1702H0756H0883H1742H1769H1524H1354H1590H1103H1154H0646H1147H1818H1302H2288H2290H2085H1187H1422H1361H1498H2259H2349H0669H1037H2030H1137H1056H1052H1474H1473H1488H1593H1825H1501H1687H1940H2046H1377H0210H0699H0833H1922H1722H1843H1434H1315H1715H1416H2091H0458H1784H1713H1790H2124H1560H1071H1290H1087H1328H0188H1728H2071H1447H0183H1545H1866H0583H0243H1945H0176H1321H1009H1093H0736H0881H1275H1273H1355H0514H1681H1150H0642H1144H1140H1142 minAverage
    Liver216F307101713.13CDB6D2F1H122310.9190.9210.9920.9830.9850.9920.960.8770.9880.9760.9870.9820.9890.970.9830.9710.9570.9840.9860.9790.9930.990.9920.9820.9720.9730.9740.9890.990.9890.9870.9460.9760.9850.9750.9290.990.9820.9840.9860.9850.9850.990.9830.940.9840.9820.9890.9820.9890.9610.9770.980.9890.990.9790.980.9890.9850.9790.9680.9840.8970.9870.9850.9720.9880.9660.9390.9820.9350.9890.9920.9830.9850.9710.9940.9890.990.9860.9880.9750.9820.9850.9590.990.9910.970.9850.9820.9840.9830.9790.9790.9880.9840.9710.9780.9760.9870.9830.970.9790.9820.990.980.9880.9870.9840.9510.9720.9820.9640.9860.9720.9870.9840.9860.9860.9860.9750.9850.9650.9860.9890.9880.9680.9820.9860.9860.9840.9840.9820.9860.980.9870.9850.9830.9880.9880.9250.990.9840.9880.990.9840.9350.9690.932 0.8770.98
    Liver552F151012615.07CDB6D2F1H15690.91910.9970.930.9390.9450.9160.9350.9620.9280.9450.9340.9320.9230.9520.9380.9430.9350.9410.9360.9230.9250.9220.9260.930.9510.9520.9430.9430.9270.9190.9280.950.9220.920.9560.9440.9240.9320.9230.9310.9260.9210.9270.9290.950.9220.9360.9250.9350.9290.9350.9480.9430.9290.9270.9430.9140.9350.9310.9320.9420.9320.9430.9190.920.9550.9280.9460.9310.9390.9310.9320.9160.9210.9310.9420.9230.9380.9320.9270.9310.9440.9270.9330.9490.9230.9240.9340.9270.9230.9430.9460.9410.940.9330.9420.9410.950.9390.9440.9370.960.9410.9430.9150.9220.9220.920.9480.9320.9220.9250.9430.9270.9550.920.9350.9230.9270.930.950.9270.9570.9360.9290.930.9450.9350.9390.9220.9480.9420.9150.9210.9460.9320.9220.9410.9280.9290.950.9220.9330.9340.9270.9170.9310.9350.949 0.9140.93
    Liver640F136121214.29CDB6D2F1H12270.9210.99710.9310.9410.9450.9180.9330.9590.9290.9470.9350.9330.9250.9520.9380.9420.9330.9430.9380.9230.9260.9240.9280.9310.950.9520.9420.9450.9290.9210.9280.9530.9230.9220.9560.9410.9260.9330.9250.9310.9280.9230.9280.9290.9480.9240.9370.9270.9370.930.9350.9480.9440.9310.9290.9430.9140.9370.9320.9350.9450.9320.9450.9210.9230.9560.930.9450.930.940.9290.9330.9180.9210.9320.9420.9260.940.9340.9270.9330.9470.9280.9330.9490.9250.9260.9320.9280.9250.9450.9480.9410.9410.9340.9450.940.9520.940.9460.9380.960.9410.9440.9170.9240.9240.9240.9490.9340.9220.9260.9420.9290.9560.9220.9380.9230.930.9310.9510.9280.9570.9380.930.9310.9450.9360.940.9240.9490.9450.9170.9230.9480.9360.9240.9430.9310.9310.950.9240.9360.9350.9280.9170.9290.9370.946 0.9140.94
    Liver223F268051112.07CDBXD100H02470.9920.930.93110.9850.9890.9870.9660.8940.9850.9810.9840.9830.9850.970.9820.9720.9580.9850.9880.9810.990.9860.9890.980.9740.9750.9750.9910.9870.9880.9870.9520.9740.9840.9790.9330.9870.9820.9820.9850.9840.9830.9880.9840.9460.9790.9820.9850.9790.990.9610.9780.980.9860.9870.9780.980.9890.9830.9740.9690.9830.9060.9840.9820.9750.9870.9650.9390.980.9350.9910.9870.9820.9830.9710.9890.9890.9880.9850.9890.9770.9850.9850.9620.9860.9890.9720.9810.980.9860.9850.9810.9810.9860.9840.9720.9790.9760.9880.9830.9740.980.9860.9880.980.9860.9830.9860.9520.9690.980.9690.9810.9750.9820.9830.9850.9830.9830.9760.9830.9660.9840.9880.9870.970.9830.9850.9860.9860.9840.9760.9820.9840.9850.980.9830.9860.9840.9350.9850.9830.9890.9880.9820.9350.9670.938 0.8940.98
    Liver223F269051112.08CDBXD100H02480.9830.9390.9410.98510.9850.9850.9590.9070.9830.9780.9780.9810.9790.9780.9760.9650.9530.9760.9790.970.980.9860.9840.9740.9740.9750.9690.9850.9830.9780.9820.9550.9730.970.9780.9430.9790.9720.9680.9750.9770.9710.9820.9760.9570.9870.9820.9810.9840.9790.9630.9750.9860.9840.9830.9740.9660.9790.9760.9840.970.9730.9150.9760.980.9720.9780.9670.9420.9790.9420.9810.9850.9760.9760.9690.9870.9810.980.9850.9850.9810.9760.980.9580.980.9820.9640.9750.9680.9770.9770.9710.9710.9830.9760.9670.980.970.9820.9770.9780.9830.9850.9780.9670.9740.9720.980.960.9650.9670.9710.9870.9720.9740.980.9750.9840.9820.9820.9790.9750.9820.980.9790.9690.9740.9820.9730.980.9760.9680.9830.9810.9790.9850.9830.9810.980.9410.980.9780.9820.980.9760.9420.9610.948 0.9070.97
    Liver567F92111314.15CDBXD100H11900.9850.9450.9450.9890.98510.9810.9650.9130.9830.9840.9850.9830.9820.9810.9880.9720.9650.9860.9870.9850.9870.9840.9860.9770.9770.9770.9760.9890.9880.9830.9870.9620.9710.9770.9820.9390.9830.9760.9770.9850.9840.9760.9860.9810.9570.9770.9840.9830.9790.9880.960.9780.9830.9850.9880.9770.9810.990.9780.9810.9740.9790.9240.9820.980.9770.9830.9690.9380.980.940.9890.9810.9820.9780.9710.9840.9880.9870.9840.9870.9830.9850.9840.9680.9810.9860.9730.9840.980.9860.9870.9810.980.9850.9830.9710.9810.9740.9890.9820.9760.9810.9880.9830.9750.9830.9790.9850.9590.9660.9770.9750.9790.9770.9780.9840.9850.9830.9820.9850.9820.9730.9810.9870.9890.970.9840.9850.9830.9850.9830.9760.9780.9880.9840.9790.9830.9840.9820.9510.9810.9820.9880.9850.9830.940.9690.949 0.9130.98
    Liver223F3051112.09CDBXD101H04680.9920.9160.9180.9870.9850.98110.9610.8770.9870.9710.9820.980.9840.9690.9770.9670.9580.9780.9780.9770.9870.990.9880.9790.9720.9720.9710.9850.9860.9870.9860.940.9790.980.9720.9320.9880.980.980.9830.9820.9810.9880.9810.9450.9890.9830.9850.9830.9840.9610.9720.9790.9850.9860.9760.9780.9820.9840.9760.9620.9810.8930.980.9810.970.9830.9640.9440.9810.9380.98710.9850.9840.9680.9930.9860.9870.9880.9860.9730.9810.9850.9570.9880.9880.970.9840.9770.9780.9780.9750.9740.9860.9770.9690.9790.9720.980.9820.970.980.9810.9880.9760.9840.9780.980.9510.9740.9790.9690.9880.970.9850.9810.9830.9880.9880.9730.9850.9660.9850.9850.9820.9680.9760.9820.9810.980.9770.9770.9870.9750.9810.9880.9820.9840.9850.9210.9880.9810.9870.9890.9860.9380.9660.94 0.8770.98
    Liver349F117111414.20CDBXD101H14250.960.9350.9330.9660.9590.9650.96110.9220.960.9490.9710.9520.9570.9630.9590.9780.9720.9620.9660.9620.9660.9630.9650.9760.9770.9760.9830.9680.9620.9660.9670.9190.9740.9780.9770.9680.9690.9820.9730.9690.9620.9680.9640.9770.9650.9460.960.9640.9660.9690.9790.9790.9580.9640.9620.9760.9640.970.9750.9420.9310.9720.8790.9530.9510.9680.9650.9730.9660.9750.9640.9620.9610.9740.9750.980.9560.9660.9660.9660.9560.9440.9560.9720.9660.9640.9640.9830.9650.960.9650.9690.9810.9810.9640.9650.9810.9660.9780.9580.9720.970.9680.9560.9630.970.960.950.9720.9140.9790.9770.9720.9620.9680.9640.950.9660.9580.9580.9480.9620.9550.9740.9690.9650.9820.970.9740.9680.9720.9650.9650.9540.9550.9490.9610.9730.9550.970.9080.9580.9490.9660.9630.970.9640.9640.965 0.8790.96
    Liver756F179102616.20CDBXD101H21140.8770.9620.9590.8940.9070.9130.8770.92210.8940.9170.8970.8970.8870.9260.9020.9220.9090.9050.9030.8850.8860.8840.8890.9020.9280.9280.9150.9070.8910.8830.8940.9190.8930.8910.9330.9390.8840.9010.8880.8930.8880.8880.8870.8970.9320.8830.9030.8840.90.8930.9160.9230.910.8920.8910.9140.8780.9010.8980.8940.9010.8950.9180.8820.8840.9250.8930.9290.9180.9090.9220.8940.8770.890.8980.920.8810.9010.8950.890.8920.9170.8920.8980.9260.8870.8860.9140.8870.8880.9080.9130.9110.9110.8960.9040.9190.9190.9140.9050.8990.9320.910.9070.8780.8910.8820.880.9160.8960.8950.8920.9220.8890.9250.880.8950.8850.8890.8940.9190.8920.9260.9010.8920.8920.9260.9040.9060.8890.9160.9040.8790.880.9180.8890.8840.910.8880.8920.9390.880.8940.8950.8890.8820.9220.9030.941 0.8770.90
    Liver183F83053014.01CDBXD102H13630.9880.9280.9290.9850.9830.9830.9870.960.89410.9790.9810.9820.9850.9730.9790.9720.960.9790.9810.9710.9850.9850.9870.9810.9760.9760.9710.9850.9830.9810.9820.9510.9760.9760.9750.9350.9820.9750.9760.9840.9820.9820.9850.9790.9450.9830.9830.980.9770.9830.9590.9760.9810.9810.9830.9770.9740.9830.9820.9760.9690.9770.9060.9840.980.9750.9820.9730.9480.9810.9430.9850.9870.9760.9820.970.9870.9840.9850.9840.9850.9760.9880.9870.9640.9860.9840.9710.9810.9770.980.9790.9740.9740.9850.9770.9690.980.9720.9820.9780.9760.9770.9790.9810.9780.9810.9760.9810.9530.970.9750.9650.9830.9750.980.9810.9830.9870.9850.9760.9820.970.9790.9810.980.9670.9750.9790.9770.9810.9770.9740.9810.9770.980.9810.9820.9790.980.9320.9820.9790.9850.9830.9760.9430.9680.94 0.8940.98
    Liver501F270042915.01CDBXD102H14990.9760.9450.9470.9810.9780.9840.9710.9490.9170.97910.970.9770.9710.9680.9780.9630.9490.9780.980.9690.9740.9690.9740.9610.9690.970.9620.9820.9750.970.9730.970.9590.9620.9760.9210.9710.9620.9660.9740.9750.9690.9790.9670.9380.9730.9780.9730.9680.9750.9410.9680.9770.9730.9750.9650.9630.9760.9690.9690.9740.9650.9270.9720.9680.970.9720.9560.9270.9680.9220.9820.9710.9610.9690.9610.9770.9820.9790.9730.980.9850.9830.9770.9570.9720.9740.9570.970.970.9780.9770.9680.9670.9740.9790.9530.9710.9580.9850.9730.970.970.9840.970.9680.9760.9720.9770.960.950.9630.9660.9670.970.9680.9780.9730.9750.9720.980.9710.9650.9710.9740.9750.9580.9710.9720.9710.9770.9790.9590.9660.9830.9790.9650.9720.9770.9680.9550.9730.9820.9770.9750.9630.9220.960.932 0.9170.97
    Liver205F163012615.19CDBXD24H17920.9870.9340.9350.9840.9780.9850.9820.9710.8970.9810.9710.9780.9820.9780.9870.9740.9710.9820.9830.9790.9890.9860.9890.9860.9780.9780.9840.9830.9860.9850.9830.9470.9770.9850.9820.9460.9870.9850.9830.9870.9810.9790.9850.9860.9560.9730.9770.9880.9810.9890.9720.9830.9740.9860.9860.9820.9810.9880.9820.9760.9620.9880.8990.9830.9770.9760.9840.9750.9510.9850.9540.9830.9820.9850.9820.9770.9840.9870.9870.9810.9790.9690.9770.9850.9710.9840.9860.9780.9860.9780.9830.9830.9820.9810.9850.9830.9810.9820.9840.9810.9860.970.9780.9770.9840.9760.9850.9810.9840.9470.9760.9830.970.9820.9760.9850.9760.9840.980.9790.9710.980.9680.9860.9890.9870.9750.9820.9880.9820.9840.9830.9840.9790.9750.980.9820.9840.9830.9880.9280.9820.9770.9870.9860.9850.9540.9770.949 0.8970.98
    Liver572F299061913.01CDBXD29H07420.9820.9320.9330.9830.9810.9830.980.9520.8970.9820.9770.97810.9880.9720.9770.9650.9530.9790.9820.9730.980.9840.9840.9730.970.970.9630.9850.9820.980.980.960.9710.9730.9730.9250.9770.9680.9690.980.980.9750.9830.9770.9430.9770.980.9760.970.9840.9530.9730.980.9830.9820.9690.9720.9830.9710.9790.9670.9760.9120.9850.9840.9740.9830.9660.9350.9750.9340.9850.980.9760.9710.9650.9830.9860.9840.9730.9790.9750.9810.9760.9630.9850.9870.9710.9710.9740.9790.9790.9690.9680.9850.9750.9610.9770.9650.9840.9730.9690.9760.9850.9790.9730.980.980.9760.9640.9590.9670.9640.9770.9740.9740.9790.9780.9820.9790.9760.9730.9670.9770.9820.980.9630.9740.9790.9770.9760.9750.9670.9770.9780.9790.9770.9810.9820.9770.9440.9780.980.9840.9790.9750.9340.9610.938 0.8970.97
    Liver574F314111314.11CDBXD29H10400.9890.9230.9250.9850.9790.9820.9840.9570.8870.9850.9710.9820.98810.9720.9780.970.9550.9820.9840.9730.9860.9860.9880.9830.9690.9690.9680.9860.9850.9830.9840.9490.9730.9810.9730.930.9810.9760.9780.9830.980.980.9830.9780.9390.9770.980.9790.9740.9860.9570.9750.980.9850.9850.9760.9740.9870.9780.9780.9650.9810.9040.9860.9840.9730.9870.970.940.9790.9380.9840.9840.9790.9780.9690.9860.9870.9860.9790.9830.9740.9790.9810.9630.990.9910.9770.9770.9780.9820.9820.9750.9750.9870.9780.9690.9780.9730.9830.9760.9720.9760.9790.9820.9780.9830.9850.9820.9560.9680.9760.960.9820.9730.980.9810.9810.9820.9840.9740.9820.9650.9810.9850.9820.9660.9780.9830.9830.9820.9780.9750.9810.9760.9820.9810.9810.9830.9820.9320.9810.980.9850.9830.9780.9380.9660.935 0.8870.97
    Liver724F141012615.08CDBXD29H10440.970.9520.9520.970.9780.9810.9690.9630.9260.9730.9680.9780.9720.97210.9760.9670.9620.9710.9770.9670.9720.9740.9750.9740.9740.9740.9740.9780.9770.970.9730.9580.9640.9660.9780.9530.9710.970.9650.9740.9710.9620.9730.9710.9620.9680.9730.9710.9760.9740.9640.9770.9760.9720.9770.9760.9660.9740.9690.9760.9670.9680.9190.9690.9690.9750.9720.9760.9530.980.9520.9750.9690.9720.9690.9690.9710.9740.9730.9740.9720.9720.9680.9740.9690.9720.9750.970.9730.9640.9730.9740.9730.9720.9740.9740.9720.9780.9740.9740.9780.9760.9720.9750.9680.9630.9670.9630.9770.9480.9610.9670.9720.9740.9750.9640.9730.9690.9710.9710.9770.9710.9770.9730.9730.9750.970.9710.9760.9670.9770.9740.9680.9670.9750.9680.9730.9770.970.9720.9420.9680.9670.9760.9730.970.9520.9640.957 0.9190.97
    Liver200F259042015.22CDBXD32H20340.9830.9380.9380.9820.9760.9880.9770.9590.9020.9790.9780.9870.9770.9780.97610.9730.9660.9820.9820.9810.9860.9780.9820.9760.9710.9710.9740.9820.9850.9790.9840.9540.9650.9740.9780.9310.980.9750.9750.9830.9760.9730.9810.9770.9480.9720.9770.9830.9750.9860.9540.9740.9750.9810.9850.9720.9810.9880.9770.9770.9670.9790.9130.9810.9740.9690.980.9670.9340.9750.9370.9810.9770.9780.9770.9670.9810.9850.9840.9760.9770.9760.9780.9780.9620.9770.9810.9690.9880.980.9830.9830.9760.9750.9790.9790.9680.9750.9720.9830.9810.9670.9760.980.9790.9690.980.9780.9810.9520.9630.9750.9680.9750.9690.9780.9750.9810.9760.9770.9770.980.9660.9780.9850.9870.9630.9810.9820.9780.9810.9790.9790.9730.9820.980.9760.9760.980.9810.9420.9760.9770.9830.9840.980.9370.970.942 0.9020.97
    Liver386F131083016.01CDBXD32H24940.9710.9430.9420.9720.9650.9720.9670.9780.9220.9720.9630.9740.9650.970.9670.97310.9690.9770.9730.9570.9720.9690.9720.9790.9790.9790.9780.9760.9670.9710.9690.9380.9790.9810.9850.9590.9720.9820.9760.9730.9710.9780.9710.9750.9540.960.970.9690.9670.9740.9720.9820.9710.9740.9670.9790.9670.9820.9830.9590.9520.9780.8960.9680.9690.9770.9710.9780.9590.9750.9580.9680.9670.9720.9830.9890.9680.9760.9750.9640.9630.9560.9680.9720.9750.9720.970.9830.9690.9750.9790.9810.9810.9810.9730.9730.9770.9760.9760.970.9710.9780.9710.9650.9690.9780.9690.9660.9780.9280.9790.9770.9690.9670.9770.970.9620.9680.9660.9710.9630.9680.9620.9770.9730.970.9820.9780.9780.9750.9780.9730.9740.9650.9690.9640.9670.9810.9640.9730.9210.9670.9610.9680.9690.9670.9580.9730.959 0.8960.97
    Liver201F170101513.02CDBXD34H10540.9570.9350.9330.9580.9530.9650.9580.9720.9090.960.9490.9710.9530.9550.9620.9660.96910.9670.9590.9630.9640.960.9650.9730.9710.970.9760.9630.960.9580.9640.9290.960.9680.9730.950.9620.9690.9640.9710.9590.9580.9630.9720.9570.9470.9560.9610.960.9670.9640.9740.9510.960.960.9720.9680.9670.9660.9490.9410.9710.880.9560.950.9730.9630.9690.9580.970.9620.9590.9580.9690.9660.9690.9560.9690.9690.9590.9580.950.9620.9740.9730.9620.9620.9720.9720.9690.9680.9720.9670.9650.9680.9650.9730.9680.9720.9590.9690.9660.9640.9560.9550.960.9640.9520.9670.9260.9610.9670.9670.9620.9730.9620.9570.970.9640.9610.9510.9640.9590.9680.9690.9640.970.9640.9690.9620.9670.9650.9630.9560.9580.9560.9620.9740.9540.9650.9140.9570.9520.9650.9660.9650.9620.990.972 0.880.96
    Liver554F180101513.05CDBXD34H07650.9840.9410.9430.9850.9760.9860.9780.9620.9050.9790.9780.9820.9790.9820.9710.9820.9770.96710.9840.9750.9830.9790.9840.9780.9730.9730.9740.9860.980.9810.9790.9580.9720.9810.9810.9360.980.9790.9820.9820.9810.9790.9830.9770.9450.9760.9830.9810.9750.9850.960.9780.9770.9830.980.9760.9770.9880.9790.9750.9720.9810.9150.980.9790.9820.9830.9660.9390.9760.9390.9840.9780.9770.9790.9740.9830.9890.9890.9760.9840.9770.9820.980.9750.9810.9850.9750.9790.9860.9970.9970.9810.9810.9840.9850.9720.9840.9760.9860.980.9760.9770.9820.9810.980.9850.9850.9860.9560.9690.980.970.9760.9820.9810.9840.980.9810.9840.9820.9790.9690.9830.9860.9840.9710.9830.9840.9850.9860.9850.9790.9750.9820.9870.9770.9840.9840.980.940.9830.9840.9820.9840.9770.9390.9770.944 0.9050.98
    Liver550F276102414.02CDBXD39H13220.9860.9360.9380.9880.9790.9870.9780.9660.9030.9810.980.9830.9820.9840.9770.9820.9730.9590.98410.9810.9860.9830.9850.9790.9750.9750.9760.9890.9850.9830.9820.9570.9730.9810.9790.9360.9840.980.980.9830.9840.980.9850.9790.9470.9740.9810.9820.9770.9870.9610.980.9820.9840.9850.9770.9780.9880.980.9760.9710.9790.9130.9830.9790.9750.9850.9670.9390.9810.9350.9870.9780.9790.980.9750.9830.9860.9850.9790.9830.9730.9820.9810.9660.9840.9860.9730.9780.980.9850.9850.9840.9840.9810.9840.9710.9780.9750.9850.9810.9730.9760.9820.9820.980.9820.9810.9830.9520.9680.9780.9680.9750.9750.9770.9790.9810.9790.9760.9760.9760.9660.9810.9860.9850.970.9830.9840.9840.9830.9840.9760.9740.980.9820.9750.9820.9830.9810.9380.9820.9790.9840.9830.9780.9350.9680.938 0.9030.98
    Liver730F168010614.06CDBXD39H06730.9790.9230.9230.9810.970.9850.9770.9620.8850.9710.9690.9790.9730.9730.9670.9810.9570.9630.9750.98110.9820.9770.9780.970.9650.9640.9710.9790.9810.9790.9840.9440.9610.9720.9680.9230.980.9720.9760.9790.9740.9660.9790.9780.9470.9660.9720.9770.9710.9830.950.9660.9660.9760.9810.9670.9810.980.9690.9670.9540.9760.8960.9720.9660.9640.9770.9550.9280.9690.9280.9820.9770.9810.9690.9570.9780.9830.9810.9790.9770.9690.9770.9780.9540.9760.9830.9680.9840.9750.9760.9770.9790.9780.9760.9740.9660.970.9690.9790.9810.960.9740.980.9790.9670.980.9720.9770.9470.960.9780.9710.9710.9640.9740.9730.9840.9750.9730.9690.9780.9590.9760.9840.9860.9580.9770.9770.980.9770.9740.9710.9690.9760.9760.9720.970.980.9790.9320.9750.9750.9850.9850.9860.9280.960.94 0.8850.97
    Liver180F289102414.08CDBXD40H16910.9930.9250.9260.990.980.9870.9870.9660.8860.9850.9740.9890.980.9860.9720.9860.9720.9640.9830.9860.98210.990.990.9840.9740.9740.9780.9870.9890.9870.9880.9460.9750.9850.9760.9350.9890.9830.9840.9880.9830.9830.9880.9830.9460.9770.9790.9880.980.990.9630.9780.9780.9860.9890.980.9830.990.9830.9770.9660.9860.90.9860.980.9720.9880.9680.9410.9820.9410.9880.9870.9830.9830.9720.9890.9880.9880.9840.9860.9740.9810.9850.9620.9880.9890.9740.9870.9810.9840.9830.9820.9810.9890.9860.9750.9780.9790.9850.9840.9710.9790.9790.9870.980.9870.9840.9840.9490.9730.9830.9660.9840.9720.9860.9810.9880.9830.9820.9730.9850.9650.9850.990.9890.9690.9830.9860.9850.9840.9860.9830.9830.9790.9850.9830.9820.9850.9880.9280.9860.9810.9890.9880.9850.9410.9710.938 0.8860.98
    Liver578F285061913.06CDBXD40H06800.990.9220.9240.9860.9860.9840.990.9630.8840.9850.9690.9860.9840.9860.9740.9780.9690.960.9790.9830.9770.9910.9910.9820.9740.9740.9730.9850.9880.9880.9850.9440.9790.9840.9740.9370.9880.9810.980.9840.9840.980.9880.9840.9510.9830.9820.9860.9840.9880.9670.9780.9810.9890.9880.9760.9780.9860.9810.9820.9640.9840.8990.9850.9860.9740.9860.9670.9430.9830.9450.9860.990.9880.9810.9720.990.9870.9880.9840.9840.9710.980.9830.9630.9870.9910.9730.9820.9780.980.980.9770.9760.9910.9820.9720.980.9760.9810.9810.9690.980.9820.9870.9770.9830.9810.9790.9530.9740.9790.9680.9890.9740.9840.980.9840.9870.9830.9730.9810.9690.9870.9890.9850.9710.9790.9860.9830.9790.9820.980.9860.9760.9820.9880.9870.9850.9870.9260.9870.980.9870.9870.9870.9450.9680.942 0.8840.98
    Liver240F264042015.07CDBXD44H18220.9920.9260.9280.9890.9840.9860.9880.9650.8890.9870.9740.9890.9840.9880.9750.9820.9720.9650.9840.9850.9780.990.99110.990.9750.9760.9770.9870.9890.9850.9870.9470.9770.9850.9790.9380.9870.9820.9820.9860.9820.9810.9880.9860.9490.9810.9810.9860.9820.990.9650.9820.9810.9880.9890.980.9780.9880.9820.980.9650.9870.8990.9860.9830.9760.9890.9730.9460.9850.9460.9860.9880.9840.9820.9750.9890.9890.9890.9850.9860.9740.9820.9880.9670.9890.990.9750.9840.980.9840.9840.9790.9780.9910.9830.9790.9840.9830.9850.9830.9740.980.9810.9850.9790.9860.9840.9830.9530.9730.9810.9680.9880.9760.9840.9820.9870.9870.9860.9750.9850.9690.9870.990.9870.9730.980.9880.9830.9830.9830.980.9850.9790.9830.9860.9860.9840.9860.9290.9860.980.9880.9870.9830.9460.9730.945 0.8890.98
    Liver379F157012615.15CDBXD44H15050.9820.930.9310.980.9740.9770.9790.9760.9020.9810.9610.9860.9730.9830.9740.9760.9790.9730.9780.9790.970.9840.9820.9910.9790.9790.9830.9790.9790.9790.9810.9340.9760.9860.9810.9560.980.9850.980.9820.9730.9770.9780.9850.9560.9670.9730.9780.9770.9840.9760.9860.9710.980.9790.9850.9730.9840.9810.9670.9510.9870.890.9770.9730.9780.9830.9840.9660.9860.9640.9760.9790.9830.9810.9810.9770.9820.9820.9770.9750.9610.9720.9840.9730.9840.9810.9830.9780.9730.980.9810.980.9790.9850.9760.9890.9830.990.9740.980.9770.9770.9690.9770.9750.9770.9750.9810.9380.9770.9810.9660.9810.9780.9770.970.980.9770.980.9640.9810.9670.9840.9840.9780.980.9760.9850.9780.9810.9760.9770.9760.9680.970.9790.9830.9730.9810.9190.9740.9680.9810.9790.9780.9640.9770.96 0.890.97
    Liver384F145012615.11CDBXD45H17620.9720.9510.950.9740.9740.9770.9720.9770.9280.9760.9690.9780.970.9690.9740.9710.9790.9710.9730.9750.9650.9740.9740.9750.97910.9970.9830.980.9730.9720.9710.9440.9780.9760.9860.9680.9780.9790.9710.9750.9750.9730.9790.9810.970.9680.9760.9740.9790.9760.9810.9880.9730.9730.9730.9850.9640.9770.980.960.9560.9760.9030.9690.9660.9790.9710.9820.9730.9840.9670.9750.9720.9740.980.9830.9720.9760.9750.9750.9690.9620.970.9820.9680.9790.9730.9750.9710.9660.9740.9770.9770.9760.9760.9740.9810.9780.9810.9770.9780.9780.9770.9720.9690.9710.9710.960.9770.9380.9750.9730.9720.9730.9790.9690.9660.9740.9730.9690.9670.9690.9690.9780.9760.9710.9860.9710.980.9690.9770.9740.9680.9660.970.9650.970.9840.9670.9750.9280.970.9670.9760.9710.970.9670.9710.968 0.9030.97
    Liver507F281121515.12CDBXD45H18260.9730.9520.9520.9750.9750.9770.9720.9760.9280.9760.970.9780.970.9690.9740.9710.9790.970.9730.9750.9640.9740.9740.9760.9790.99710.9830.9810.9730.9720.9710.9450.9780.9770.9860.9680.9780.980.9720.9750.9760.9740.9790.9810.9690.9690.9760.9750.980.9760.9820.9890.9740.9730.9730.9850.9640.9770.9810.9610.9570.9760.9040.970.9670.9790.9720.9820.9730.9850.9670.9750.9720.9740.9810.9840.9730.9760.9760.9750.970.9630.9710.9820.9680.9790.9730.9740.9710.9670.9750.9770.9770.9760.9760.9750.9810.9780.9810.9780.9780.9790.9770.9720.970.9720.9720.9610.9780.9390.9750.9740.9720.9740.9790.970.9660.9740.9740.9690.9680.9690.9690.9790.9760.9710.9860.9710.980.9690.9780.9750.9690.9670.970.9660.970.9840.9680.9750.9280.9710.9680.9750.9710.9690.9670.9720.967 0.9040.97
    Liver188F260042015.27CDBXD48H20540.9740.9430.9420.9750.9690.9760.9710.9830.9150.9710.9620.9840.9630.9680.9740.9740.9780.9760.9740.9760.9710.9780.9730.9770.9830.9830.98310.9810.9730.9740.9740.9330.9730.980.9830.9650.9810.9860.9810.9810.970.9740.9760.9830.9650.960.9670.9780.9780.9780.9820.9870.9640.9750.9730.9860.9710.9790.9790.9590.9480.9850.890.9680.9620.9770.9740.980.970.9830.9690.9730.9710.9780.9790.980.970.9770.9760.9750.9680.9560.9670.9830.9680.9760.9730.9790.9790.9680.9750.9770.9840.9840.9740.9780.9850.9760.9850.970.9880.9780.9780.9690.9710.9720.9740.9640.9780.9290.9760.9820.9710.9730.9770.9750.9630.9760.9690.9690.9590.9710.9630.9820.9780.9760.9840.9750.9830.9740.9780.9780.9750.9680.9660.9660.9720.9810.9690.980.920.9720.9640.9780.9730.9740.9690.9770.963 0.890.97
    Liver518F275121515.18CDBXD48H18350.9890.9430.9450.9910.9850.9890.9850.9680.9070.9850.9820.9830.9850.9860.9780.9820.9760.9630.9860.9890.9790.9870.9850.9870.9790.980.9810.98110.9850.9850.9840.9590.9770.9820.9830.9430.9860.9810.9810.9860.9870.9840.9890.9820.9550.9810.9840.9840.9830.9870.9670.9830.9840.9860.9850.9830.9770.9890.9840.9780.9730.9820.9160.9830.9820.980.9870.9720.9490.9840.9430.990.9850.9810.9840.9770.9880.9890.9880.9850.9860.9770.9840.9860.9680.9880.9880.9740.9810.9810.9870.9870.9830.9820.9850.9850.9740.9820.9770.9890.9880.9820.9840.9890.9850.9810.9850.9810.9860.9570.9710.980.9720.9810.980.980.9840.9840.9840.9830.9790.9790.9720.9840.9860.9850.9760.9820.9860.9850.9860.9850.9760.980.9830.9850.980.9860.9840.9830.9410.9850.9830.9870.9840.9790.9430.9710.948 0.9070.98
    Liver233F25051112.05CDBXD48aH02090.990.9270.9290.9870.9830.9880.9860.9620.8910.9830.9750.9860.9820.9850.9770.9850.9670.960.980.9850.9810.9890.9880.9890.9790.9730.9730.9730.98510.9840.9880.9510.9730.9790.9750.9370.9870.9790.9790.9830.9820.9770.9860.9810.9490.980.9820.9870.9830.9880.9630.980.9850.9910.9760.980.9880.9810.9810.9670.9790.9050.9820.980.970.9860.9670.940.9820.9380.9860.9860.9830.9810.9710.9880.9870.9870.9860.9850.9760.9790.9820.960.9840.9880.9710.9860.9780.9810.9810.9790.9780.9840.980.9720.9780.9760.9850.9820.9690.9780.9820.9840.9750.9820.980.9830.9540.970.9790.970.9830.970.9810.980.9850.9830.9810.9780.9840.970.9830.9890.9910.970.9850.990.9820.9830.980.980.9810.980.9820.9830.9810.9850.9850.9330.9840.980.9870.9870.9850.9380.9660.94 0.8910.98
    Liver571F308062013.16CDBXD53H08480.9890.9190.9210.9880.9780.9830.9870.9660.8830.9810.970.9850.980.9830.970.9790.9710.9580.9810.9830.9790.9870.9880.9850.9790.9720.9720.9740.9850.98410.9840.9430.9780.9860.9750.9320.9870.9840.9840.9850.9840.9830.9870.9830.9460.9760.9780.9860.9790.9870.9640.9740.9750.9880.9840.9740.9810.9860.980.9750.9610.9830.8950.9830.9840.9730.9840.9640.9390.9780.9410.9880.9870.9890.980.970.9880.9870.9890.980.9830.9680.9810.980.9640.9830.9880.9760.9790.9790.9820.9810.9790.9790.9830.9790.970.9790.9750.9820.9820.9650.9780.9810.9970.9790.9850.9830.9810.9470.9750.9830.970.9820.9730.9870.9780.9820.9820.980.9690.980.9640.9850.9880.9850.9690.9820.9840.9870.9810.9790.9820.9810.9760.980.9850.9830.9880.9870.9240.9850.9830.9860.9880.9890.9410.9660.936 0.8830.98
    Liver235F104050912.08CDBXD60H02350.9870.9280.9280.9870.9820.9870.9860.9670.8940.9820.9730.9830.980.9840.9730.9840.9690.9640.9790.9820.9840.9880.9850.9870.9810.9710.9710.9740.9840.9880.98410.9470.9720.9810.9760.9380.9820.9770.9770.9840.9780.9760.9830.9830.950.9760.980.9820.9790.9870.9590.9750.9780.9840.9880.9740.9810.9860.9790.9750.960.9820.9020.9780.9740.970.9850.9670.9420.9790.940.9840.9860.9840.9790.9680.9840.9860.9850.9840.9830.9760.9790.9830.960.9840.9870.9750.9860.9780.980.9810.9780.9770.9850.9780.9730.9760.9760.9830.980.9740.9810.9820.9840.9740.9820.9780.9830.950.9670.9790.9690.9830.970.980.9790.9870.9830.9850.9770.9880.9680.9820.9870.9870.9680.9820.9840.9820.9830.9780.9730.980.980.980.9810.9780.9820.9830.9340.980.9770.9890.9870.9850.940.9650.947 0.8940.98
    Liver530F51021213.14CDBXD60H01710.9460.950.9530.9520.9550.9620.940.9190.9190.9510.970.9470.960.9490.9580.9540.9380.9290.9580.9570.9440.9460.9440.9470.9340.9440.9450.9330.9590.9510.9430.94710.9320.9320.9530.9040.9420.9330.9370.950.9540.9390.9510.940.9230.9490.960.9440.9420.9510.9150.9450.9610.9480.9510.9410.9360.9510.9410.9580.9730.9380.9430.9490.950.9580.9510.9370.9010.9460.90.9590.940.9330.9410.9390.9510.9590.9550.9450.9580.970.9550.9450.9530.9450.9490.9340.9410.9470.9590.9580.9430.9430.9520.9590.9280.9560.9320.9630.9460.9520.9450.9650.9430.9440.950.9510.9570.970.9220.9350.9470.9410.9580.9380.9650.9460.9530.9490.9710.9440.960.9460.9490.9510.9320.9470.9490.9440.9570.9590.9330.9410.9660.9610.940.9510.9570.9430.9640.9480.9640.9530.950.9350.90.940.915 0.90.95
    Liver188F132111414.02CDBXD61H17700.9760.9220.9230.9740.9730.9710.9790.9740.8930.9760.9590.9770.9710.9730.9640.9650.9790.960.9720.9730.9610.9750.9790.9770.9760.9780.9780.9730.9770.9730.9780.9720.93210.9860.9760.9480.9810.9830.9790.9770.9810.9860.9810.980.9510.9730.9760.9780.9730.9750.9740.9780.9740.9770.9730.9750.9720.9780.9850.9610.9490.9760.8840.9730.9750.9710.9750.9680.9540.9790.9530.9730.9790.9780.9850.9820.9770.9750.9770.9770.9690.9540.9690.9770.9640.9780.9750.9780.9710.9740.9730.9740.980.980.9750.9720.9710.9750.9720.9670.9730.9690.9720.9660.9760.9860.9780.9680.9730.9320.9860.980.970.9760.9710.9790.9650.9740.9760.9710.9610.9670.9590.9790.9760.9710.9780.9740.9780.9750.9730.9720.9780.9720.960.9660.9770.9820.970.980.9090.9770.9650.9740.9720.9750.9530.9650.944 0.8840.97
    Liver524F324121515.23CDBXD61H18410.9850.920.9220.9840.970.9770.980.9780.8910.9760.9620.9850.9730.9810.9660.9740.9810.9680.9810.9810.9720.9850.9840.9850.9860.9760.9770.980.9820.9790.9860.9810.9320.98610.9790.9460.9830.9880.9860.9830.9810.9860.9830.9860.9490.9660.9730.9810.9760.9860.9750.9830.9690.9830.9790.9820.9790.9870.9830.9630.9510.9870.8830.9790.9780.9740.9850.9720.9530.9820.9540.9790.980.9860.9830.9820.980.9840.9860.9760.9760.9580.9730.9810.9690.9840.9850.9830.9770.9820.9820.9830.9840.9840.9820.9790.980.9760.9830.9760.9790.9680.9750.970.9850.9870.9850.9820.980.9320.980.9860.9660.9780.9740.9840.970.9820.9770.9750.9610.9760.9570.9850.9860.980.9790.9820.9850.9880.980.9790.9840.9740.9690.9740.9780.9840.9780.9850.9130.980.9720.980.9810.9820.9540.9740.947 0.8830.97
    Liver253F257042015.05CDBXD62H18470.9750.9560.9560.9790.9780.9820.9720.9770.9330.9750.9760.9820.9730.9730.9780.9780.9850.9730.9810.9790.9680.9760.9740.9790.9810.9860.9860.9830.9830.9750.9750.9760.9530.9760.97910.9660.9770.9820.9750.9790.9750.9750.9790.9820.9650.9690.9760.9770.9770.980.9750.9880.9770.9790.9750.9850.9690.9830.9810.9660.9620.9810.910.9710.970.9830.9760.980.9620.9840.9610.9770.9720.9750.9810.9840.9740.9820.980.9730.9720.9710.9730.9810.9750.9770.9760.9780.9740.9730.9830.9840.9810.980.980.980.9810.9820.9820.980.980.9830.9790.9780.9720.9750.9760.970.9860.9480.9720.9760.9770.9750.9830.9730.9720.9760.9750.9760.9750.9740.9710.9830.9790.9760.9850.9790.9840.9760.9860.980.9710.970.9780.9730.9720.9860.9730.9770.9380.9740.9720.9790.9760.9710.9610.9770.967 0.910.98
    Liver353F178121214.20CDBXD62H14360.9290.9440.9410.9330.9430.9390.9320.9680.9390.9350.9210.9460.9250.930.9530.9310.9590.950.9360.9360.9230.9350.9370.9380.9560.9680.9680.9650.9430.9370.9320.9380.9040.9480.9460.96610.9390.9560.940.9360.9310.9360.9320.9490.9690.9290.9380.9340.9540.9350.980.9680.9430.9390.9370.9630.9240.9410.9510.9280.9110.9460.8750.920.9240.9520.9350.9710.9770.960.9760.9280.9320.9420.9510.9670.9290.9360.9340.940.9270.9230.9210.9460.9490.940.9340.9560.9370.9260.9390.9440.9530.9530.9380.9370.9740.9530.9690.9290.9440.9620.950.9280.9270.9380.9250.9190.9550.9020.9550.9440.9490.9440.9520.9310.9230.9320.9340.9380.9350.9380.9490.9510.9380.9340.9750.9420.9510.9320.9550.9370.9350.9320.9280.9220.9370.9530.9250.9440.8930.9310.9190.9360.9320.9350.9760.9440.975 0.8750.94
    Liver218F293090412.08CDBXD63H08180.990.9240.9260.9870.9790.9830.9880.9690.8840.9820.9710.9870.9770.9810.9710.980.9720.9620.980.9840.980.9890.9880.9870.980.9780.9780.9810.9860.9870.9870.9820.9420.9810.9830.9770.93910.990.990.9850.9830.9830.9890.9840.9480.980.9820.990.9830.9870.970.980.9770.9860.9870.980.9790.9850.9870.9730.9610.9840.8960.9810.9790.9720.9830.9660.9470.9840.9440.9870.9880.9850.9870.9760.9890.9850.9870.9870.9820.9660.9790.9850.960.9870.9860.9740.9840.9770.9810.9810.9840.9830.9820.9830.9740.9780.9770.980.9870.9680.9780.9780.9870.980.9860.9780.9810.9470.9830.990.9750.9820.9720.9860.9760.9840.9810.9790.970.9790.9630.9870.9880.9850.9750.980.9860.9840.9810.9830.9830.9810.9730.9810.9830.9830.9840.9870.9220.9880.9810.9860.9860.9860.9440.970.938 0.8840.98
    Liver344F134121214.24CDBXD63H14140.9820.9320.9330.9820.9720.9760.980.9820.9010.9750.9620.9850.9680.9760.970.9750.9820.9690.9790.980.9720.9830.9810.9820.9850.9790.980.9860.9810.9790.9840.9770.9330.9830.9880.9820.9560.9910.9910.9810.9780.9830.980.9830.9560.9670.9740.9840.980.9830.9810.9840.9710.9840.9790.9830.9760.9840.9860.9650.9510.9870.890.9720.9730.9750.9790.9730.9590.9830.960.9780.980.9850.9860.9840.9790.9810.9830.9770.9730.9570.970.980.970.980.980.9830.9780.9760.980.9810.9890.9880.9780.9810.9830.9790.9850.9730.9840.9730.9770.9710.9820.980.9780.9740.9820.9340.9890.9910.9760.9780.9750.9840.9680.9760.9730.9750.9630.9760.9630.9880.9850.980.9830.9830.9870.9840.9820.9810.9830.9750.9680.9730.9790.9830.9780.9850.9160.9790.9720.980.9810.9830.960.9750.951 0.890.98
    Liver751F133083016.03CDBXD63H18720.9840.9230.9250.9820.9680.9770.980.9730.8880.9760.9660.9830.9690.9780.9650.9750.9760.9640.9820.980.9760.9840.980.9820.980.9710.9720.9810.9810.9790.9840.9770.9370.9790.9860.9750.940.990.99110.9840.980.9850.9820.9790.9410.9690.9740.9840.9770.9830.9670.9780.970.9830.9790.9780.9780.9840.9840.9660.9550.9840.890.9750.9750.9730.9810.9660.9470.9790.9450.980.980.980.9840.9770.9830.9840.9860.9810.9790.9620.9750.9820.9670.9810.9820.9790.9820.9820.9820.9820.9890.9890.9790.9850.9770.9770.980.9750.9870.9680.9730.9710.9830.9850.9860.980.9830.9380.9860.9960.9730.9760.9730.9870.9730.9810.9760.9760.9630.9780.960.9860.9850.9830.9760.9830.9850.9870.9830.9850.9870.9750.9690.9780.9790.9790.9820.9850.9170.9840.9780.9820.9840.9810.9450.9730.937 0.8880.97
    Liver222F107042015.13CDBXD65H20980.9860.9310.9310.9850.9750.9850.9830.9690.8930.9840.9740.9870.980.9830.9740.9830.9730.9710.9820.9830.9790.9880.9840.9860.9820.9750.9750.9810.9860.9830.9850.9840.950.9770.9830.9790.9360.9850.9810.98410.9870.9860.9890.9840.9480.9720.9770.9850.9750.9880.9620.9790.9740.9830.9830.9790.9860.9870.9820.9710.9660.9850.90.9840.9780.9810.9860.9710.9460.9810.9460.9870.9830.9810.9820.9710.9840.9880.9870.9820.9830.9710.9840.9880.9710.9840.9850.9780.9860.9830.9830.9830.9810.9810.9840.9840.9740.980.9760.9830.9860.9730.9760.980.9840.9820.9890.980.9820.9470.9720.9840.970.9810.9810.9860.9830.9880.9840.9810.970.980.9680.9810.9850.9850.9710.980.9830.9830.9820.9840.9810.9790.9780.980.980.9830.9810.9840.9320.9820.9780.9890.9840.980.9460.9770.942 0.8930.98
    Liver541F322121615.09CDBXD65H17870.9850.9260.9280.9840.9770.9840.9820.9620.8880.9820.9750.9810.980.980.9710.9760.9710.9590.9810.9840.9740.9830.9840.9820.9730.9750.9760.970.9870.9820.9840.9780.9540.9810.9810.9750.9310.9830.9780.980.98710.9870.9920.980.9430.9780.9810.9820.9760.9840.960.9760.9790.9820.9820.9740.980.9840.9810.9750.970.9730.8990.9830.9830.9770.9810.9620.9370.9790.9340.9860.9820.9780.9810.9740.9860.9840.9850.9810.9840.9710.9820.9820.9650.9840.9850.9720.9770.9840.9820.9810.9790.9790.9820.9830.9640.9760.9680.9820.9790.9690.9730.9810.9840.9850.9850.9760.9780.9490.9710.9790.970.9790.9770.9820.9840.9830.9850.9750.9720.9730.9640.9790.9830.9810.9680.9790.9790.9840.9780.9830.980.9750.9760.980.9780.9840.9820.9790.9270.9850.9790.9820.9820.9790.9340.9690.935 0.8880.97
    Liver187F320111414.05CDBXD65bH17660.9850.9210.9230.9830.9710.9760.9810.9680.8880.9820.9690.9790.9750.980.9620.9730.9780.9580.9790.980.9660.9830.980.9810.9770.9730.9740.9740.9840.9770.9830.9760.9390.9860.9860.9750.9360.9830.9830.9850.9860.98710.9870.9780.940.9720.9760.9820.9730.980.9650.9770.9750.9820.9770.9750.9760.9850.9840.9640.9590.9790.8920.9820.9810.9740.980.9660.9450.9760.9440.980.9810.9760.9840.9770.9830.9810.9840.9770.9770.9620.9770.9790.9640.9820.9810.9760.9750.9810.980.980.9810.9810.9780.9790.9680.9750.9720.9760.9780.9680.9730.970.9830.9870.9840.9790.9780.9390.980.9820.9630.9780.9740.9870.9740.9780.9780.9750.9640.9720.9570.980.980.9770.9730.9790.980.9820.9780.9790.9820.9760.9680.9770.9780.9820.9780.9810.9160.9810.9750.9780.9770.9740.9440.9690.932 0.8880.97
    Liver527F313121615.12CDBXD65bH17930.990.9270.9280.9880.9820.9860.9880.9640.8870.9850.9790.9850.9830.9830.9730.9810.9710.9630.9830.9850.9790.9880.9880.9880.9780.9790.9790.9760.9890.9860.9870.9830.9510.9810.9830.9790.9320.9890.980.9820.9890.9920.98710.9850.9470.9820.9840.9880.9820.9870.9620.980.9810.9850.9860.9780.980.9870.9840.9740.9670.9810.90.9850.9820.9780.9840.9660.9430.9830.9390.9890.9880.9830.9840.9740.990.9880.9890.9870.9850.9740.9850.9880.9630.9880.9880.9720.9830.9820.9840.9830.9790.9790.9870.9850.9680.9790.9730.9850.9850.9710.9780.9840.9870.9820.9890.980.980.9520.9740.9810.9720.9850.9780.9870.9840.9880.9870.980.9750.9790.9660.9840.9870.9850.9720.9780.9850.9830.980.9850.980.9810.9790.9840.9830.9860.9850.9840.9290.9880.9840.9880.9860.9830.9390.9710.939 0.8870.98
    Liver184F112042415.08CDBXD66H21280.9830.9290.9290.9840.9760.9810.9810.9770.8970.9790.9670.9860.9770.9780.9710.9770.9750.9720.9770.9790.9780.9830.9840.9860.9850.9810.9810.9830.9820.9810.9830.9830.940.980.9860.9820.9490.9840.9830.9790.9840.980.9780.98510.9610.970.9780.980.9780.9870.9730.9840.9710.9810.9810.9820.9790.9840.9820.9660.9520.9850.8890.9780.9730.9780.9820.9740.9570.9830.9540.9810.9810.9870.9820.9790.9790.9840.9840.980.9760.9640.9770.9860.9670.9840.9840.9810.980.9760.9790.980.9790.9780.9850.9780.9790.9780.9810.9780.9820.9730.9780.9790.9810.9770.9820.9720.9790.9420.9750.9810.9730.980.9780.9780.9740.9890.9850.9770.9670.9780.9660.9840.9860.9820.9780.9760.9850.9810.9790.9780.9750.9750.9730.9720.9790.9850.9760.9820.9240.9790.9720.9840.9810.9850.9540.9720.957 0.8890.98
    Liver354F113121214.19CDBXD66H15580.940.950.9480.9460.9570.9570.9450.9650.9320.9450.9380.9560.9430.9390.9620.9480.9540.9570.9450.9470.9470.9460.9510.9490.9560.970.9690.9650.9550.9490.9460.950.9230.9510.9490.9650.9690.9480.9560.9410.9480.9430.940.9470.96110.9420.9490.9460.9580.9480.9690.9670.9530.9490.9490.9620.9410.9510.9530.9440.9310.9520.90.9390.9390.9590.9460.9660.9580.9610.960.9460.9450.9570.9530.9610.9420.9490.9470.950.940.940.9390.9540.9510.9470.9470.9560.9480.9360.9480.9520.9540.9530.950.9440.9660.9590.9630.9460.9530.960.960.9490.9430.9390.9370.9290.9560.9210.9520.9460.9610.9530.9590.940.9390.9480.9490.9460.9490.9450.9590.9550.950.9480.9670.9480.9580.9410.9560.9440.9410.9440.9470.9360.950.9610.940.9540.9170.940.9340.9510.9450.9530.960.9460.973 0.90.95
    Liver201F271101613.05CDBXD68H10680.9840.9220.9240.9790.9870.9770.9890.9460.8830.9830.9730.9730.9770.9770.9680.9720.960.9470.9760.9740.9660.9770.9830.9810.9670.9680.9690.960.9810.980.9760.9760.9490.9730.9660.9690.9290.980.9670.9690.9720.9780.9720.9820.970.94210.9870.9780.980.9750.9520.9670.9840.9790.980.9680.9670.9750.9780.980.9680.9680.9050.9740.9770.9640.9740.9580.9340.9770.9270.9810.9890.9710.9780.9630.9890.9770.9780.9830.9810.9750.9750.9770.9510.9810.980.9560.9760.9710.9770.9760.9660.9650.9790.9720.9570.9740.9620.9770.9730.9680.9750.9790.9760.970.9760.970.9750.9590.9640.9670.9650.9820.9640.9730.9780.9730.9840.9860.9820.9770.9670.9770.9760.9750.9610.9680.9740.970.9750.9720.9690.9820.9740.9790.980.9770.9780.9760.9290.9850.9760.9780.9790.9730.9270.9580.933 0.8830.97
    Liver545F74082214.02CDBXD68H10800.9820.9360.9370.9820.9820.9840.9830.960.9030.9830.9780.9770.980.980.9730.9770.970.9560.9830.9810.9720.9790.9820.9810.9730.9760.9760.9670.9840.9820.9780.980.960.9760.9730.9760.9380.9820.9740.9740.9770.9810.9760.9840.9780.9490.98710.9780.9770.980.960.9740.9840.980.9820.9720.970.9810.9810.9760.9670.9720.9210.9760.9760.9730.9820.9660.9420.9810.9350.9830.9830.9760.9810.9720.9830.9820.9820.9830.9810.9750.980.9790.9630.9820.9820.970.9770.9750.9840.9840.9740.9730.980.9760.9650.9770.9670.980.9750.9740.9770.9820.9770.9760.9780.9730.980.9640.970.9740.9730.9770.9730.9730.9790.9780.9820.9840.9860.9780.9710.980.9810.9790.9680.9740.980.9770.980.9760.970.9750.9770.9790.9760.9780.9780.9770.9420.9820.9790.9810.9790.9760.9350.9620.942 0.9030.97
    Liver157F114042415.23CDBXD69H21420.9890.9250.9270.9850.9810.9830.9850.9640.8840.980.9730.9880.9760.9790.9710.9830.9690.9610.9810.9820.9770.9880.9860.9860.9780.9740.9750.9780.9840.9870.9860.9820.9440.9780.9810.9770.9340.990.9840.9840.9850.9820.9820.9880.980.9460.9780.97810.9890.9850.9660.9780.9780.9880.9870.9770.9780.9860.9840.9760.9630.9830.8970.9820.980.9710.9820.9630.940.9820.9420.9840.9850.9820.9840.9720.9880.9840.9860.9840.9820.9690.9770.9820.960.9820.9840.9680.9840.9780.9810.980.980.980.9810.9830.9710.9780.9760.9820.9860.9660.9770.9780.9850.9770.9860.9810.980.9470.9740.9820.9690.9820.9710.9870.9760.9810.980.9770.9710.9820.9680.9860.9870.9870.9720.9810.9870.9820.980.9830.9850.9820.9750.9830.9840.9820.9860.9880.9240.9870.980.9840.9840.9830.9420.9720.935 0.8840.98
    Liver558F41061913.13CDBXD69H05910.9820.9350.9370.9790.9840.9790.9830.9660.90.9770.9680.9810.970.9740.9760.9750.9670.960.9750.9770.9710.980.9840.9820.9770.9790.980.9780.9830.9830.9790.9790.9420.9730.9760.9770.9540.9830.980.9770.9750.9760.9730.9820.9780.9580.980.9770.98910.9770.9740.9810.980.9830.9830.9810.9670.9790.980.9760.9590.9760.9010.970.9730.9710.9760.9680.9540.9860.950.9770.9830.9780.980.9750.9830.9780.9790.9850.9790.9690.9690.9810.9590.980.980.9650.9790.970.9760.9760.9780.9770.9780.9780.9770.9790.980.9780.9830.9730.9780.9760.9780.9690.9760.9710.9790.9480.9710.9760.970.9830.9710.9770.9740.9750.980.9770.9730.9820.9760.9840.980.980.9770.9750.9840.9750.9790.9780.9740.9780.9720.9770.9810.9810.980.9820.9240.9830.9740.9790.980.9780.950.9680.952 0.90.97
    Liver261F207050115.06CDBXD70H18550.9890.9290.930.990.9790.9880.9840.9690.8930.9830.9750.9890.9840.9860.9740.9860.9740.9670.9850.9870.9830.990.9880.990.9840.9760.9760.9780.9870.9880.9870.9870.9510.9750.9860.980.9350.9870.9830.9830.9880.9840.980.9870.9870.9480.9750.980.9850.97710.9670.9810.9770.9870.9880.9790.9840.990.9810.9760.9660.9860.9010.9850.9810.9760.9880.970.9420.9830.9410.9880.9840.9860.9810.9750.9850.990.9890.9810.9830.9720.9830.9850.9680.9860.9890.9790.9840.9820.9860.9860.9820.9810.9870.9840.9740.9790.9780.9860.9840.9710.9780.9830.9870.9790.9860.9820.9840.950.9720.9830.9710.980.9760.9820.980.9870.9820.9820.9740.9820.9670.9880.9940.990.9710.9840.9880.9860.9840.9840.9810.980.9820.9810.980.9840.9840.9860.9340.9840.980.9890.9880.9860.9410.9720.943 0.8930.98
    Liver357F197121214.16CDBXD70H15120.9610.9350.9350.9610.9630.960.9610.9790.9160.9590.9410.9720.9530.9570.9640.9540.9720.9640.960.9610.950.9630.9670.9650.9760.9810.9820.9820.9670.9630.9640.9590.9150.9740.9750.9750.980.970.9810.9670.9620.960.9650.9620.9730.9690.9520.960.9660.9740.96710.9840.9590.9670.9630.980.9530.9660.9730.9490.9320.9720.8770.9540.9560.9680.9620.9780.9780.9790.9760.9570.9610.9720.9730.9810.9590.9620.9630.9630.9530.9380.9490.9680.9620.9670.9620.9730.960.9540.9620.9650.9730.9720.9630.960.9850.970.9830.9540.9680.9660.970.9510.960.9610.9560.950.9670.9170.9760.970.9630.9670.9680.9630.9470.9580.9570.9570.9480.9570.9580.9780.9690.9610.9870.9640.9740.9620.9670.960.9650.960.9480.9490.9650.9750.9550.970.8990.960.9470.9610.9590.9650.9760.9650.969 0.8770.96
    Liver361F203121214.10CDBXD73H14510.9770.9480.9480.9780.9750.9780.9720.9790.9230.9760.9680.9830.9730.9750.9770.9740.9820.9740.9780.980.9660.9780.9780.9820.9860.9880.9890.9870.9830.980.9740.9750.9450.9780.9830.9880.9680.980.9840.9780.9790.9760.9770.980.9840.9670.9670.9740.9780.9810.9810.98410.9790.9810.980.9880.9680.9830.9820.9650.9560.9830.9010.9730.9710.9820.9790.9840.9710.9870.9670.9750.9720.9770.9820.9880.9740.9810.9790.9750.9720.9620.9710.9830.9740.9810.9780.980.9740.9720.9790.9810.9810.9810.980.980.9860.980.9870.9770.980.980.9770.9710.9720.9780.9760.9690.9810.9390.9760.9780.9710.9760.9820.9720.9680.9770.9750.9720.9670.9720.9710.9830.9810.9790.9920.9790.9880.9750.9810.980.9740.9710.9710.9690.9730.9870.9710.9780.9270.9740.9680.9780.9730.9710.9670.9770.968 0.9010.98
    Liver539F213121615.17CDBXD73H19060.980.9430.9440.980.9860.9830.9790.9580.910.9810.9770.9740.980.980.9760.9750.9710.9510.9770.9820.9660.9780.9810.9810.9710.9730.9740.9640.9840.9850.9750.9780.9610.9740.9690.9770.9430.9770.9710.970.9740.9790.9750.9810.9710.9530.9840.9840.9780.980.9770.9590.97910.9840.9850.9730.9660.9820.9790.9810.9730.9690.9240.9750.9790.9720.9780.9660.9380.9790.9350.980.9790.9710.9790.9750.9830.980.9780.9790.980.9770.9730.9750.9620.9790.9810.9670.9720.9710.9780.9790.9730.9740.9790.9760.9640.9780.9660.9810.9720.9770.9760.980.9740.9740.9720.9720.980.9610.9670.9680.970.9790.9720.970.9780.9730.980.980.9830.9760.9750.9780.9780.980.9720.9780.9830.9730.980.9760.9690.9780.9780.9780.9770.9810.9780.9770.9420.9790.9750.9780.9750.9710.9350.9590.943 0.910.97
    Liver238F98051112.12CDBXD73bH01840.9890.9290.9310.9860.9840.9850.9850.9640.8920.9810.9730.9860.9830.9850.9720.9810.9740.960.9830.9840.9760.9860.9890.9880.980.9730.9730.9750.9860.990.9880.9840.9480.9770.9830.9790.9390.9860.9840.9830.9830.9820.9820.9850.9810.9490.9790.980.9880.9830.9870.9670.9810.98410.990.9760.9780.9890.9820.9820.9640.9840.9020.9830.9850.9740.9850.9660.9390.9790.9430.9840.9850.9850.9820.9750.9890.9880.9890.980.9820.9710.9790.980.9650.9830.990.9750.9810.9810.9840.9830.9810.980.9860.9830.9720.9810.9760.9840.9810.9710.9810.9820.9880.9790.9830.9850.9830.9530.9740.9810.970.9850.9740.9860.9780.9810.9830.9830.9750.9810.9690.9890.9890.9910.9760.990.9920.9870.9830.9830.9820.9860.9780.9830.9870.9860.9880.9890.930.9860.9810.9860.9870.9850.9430.970.941 0.8920.98
    Liver497F253050115.15CDBXD73bH14660.990.9270.9290.9870.9830.9880.9860.9620.8910.9830.9750.9860.9820.9850.9770.9850.9670.960.980.9850.9810.9890.9880.9890.9790.9730.9730.9730.98510.9840.9880.9510.9730.9790.9750.9370.9870.9790.9790.9830.9820.9770.9860.9810.9490.980.9820.9870.9830.9880.9630.980.9850.9910.9760.980.9880.9810.9810.9670.9790.9050.9820.980.970.9860.9670.940.9820.9380.9860.9860.9830.9810.9710.9880.9870.9870.9860.9850.9760.9790.9820.960.9840.9880.9710.9860.9780.9810.9810.9790.9780.9840.980.9720.9780.9760.9850.9820.9690.9780.9820.9840.9750.9820.980.9830.9540.970.9790.970.9830.970.9810.980.9850.9830.9810.9780.9840.970.9830.9890.9910.970.9850.990.9820.9830.980.980.9810.980.9820.9830.9810.9850.9850.9330.9840.980.9870.9870.9850.9380.9660.94 0.8910.98
    Liver460F255050115.17CDBXD77H13980.9790.9430.9430.9780.9740.9770.9760.9760.9140.9770.9650.9820.9690.9760.9760.9720.9790.9720.9760.9770.9670.980.9760.980.9850.9850.9850.9860.9830.9760.9740.9740.9410.9750.9820.9850.9630.980.9830.9780.9790.9740.9750.9780.9820.9620.9680.9720.9770.9810.9790.980.9880.9730.9760.97610.9670.980.9830.9630.9590.9820.8980.9720.9690.980.9790.9830.970.9870.9610.9760.9760.9750.9830.9830.9750.980.9780.9780.9740.9640.9680.9840.970.9840.9770.9760.9760.9710.9780.9790.9810.980.9790.9780.9850.9780.9850.9770.9820.980.9770.970.9720.9750.9770.9690.9820.9370.9740.9780.9690.9760.980.9730.9720.9770.9750.9750.9660.9750.9690.9820.9780.9750.9840.9740.9820.9790.9820.9780.9750.9730.9720.970.9740.9840.970.9790.9240.9740.9670.9780.9740.9720.9610.9770.963 0.8980.97
    Liver217F272090412.10CDBXD79H08250.980.9140.9140.980.9660.9810.9780.9640.8780.9740.9630.9810.9720.9740.9660.9810.9670.9680.9770.9780.9810.9830.9780.9780.9730.9640.9640.9710.9770.980.9810.9810.9360.9720.9790.9690.9240.9790.9760.9780.9860.980.9760.980.9790.9410.9670.970.9780.9670.9840.9530.9680.9660.9780.980.96710.9850.9740.9670.9570.9760.8850.9780.9720.9650.9770.9570.9310.9710.9350.980.9780.9830.9740.9620.9780.9790.9810.9730.9750.9620.9770.9780.9610.9760.980.9730.9840.9830.9780.9780.9770.9760.9760.9750.9640.9690.9670.9740.9780.9590.9690.9740.9810.9760.980.9710.9750.9360.9670.9790.9680.970.9650.9770.9720.9810.9750.9730.9640.9740.9540.9730.9820.9830.9610.9810.9760.9810.9750.9750.9820.970.9710.9720.9730.9740.9750.9780.9190.9760.9690.9810.9830.9840.9350.9690.934 0.8780.97
    Liver468F91050115.19CDBXD79H15550.9890.9350.9370.9890.9790.990.9820.970.9010.9830.9760.9880.9830.9870.9740.9880.9820.9670.9880.9880.980.990.9860.9880.9840.9770.9770.9790.9890.9880.9860.9860.9510.9780.9870.9830.9410.9850.9840.9840.9870.9840.9850.9870.9840.9510.9750.9810.9860.9790.990.9660.9830.9820.9890.9880.980.98510.9860.9770.9670.9850.9080.9860.9830.9780.9860.9730.9440.9810.9450.9860.9820.9830.9860.9790.9860.990.990.980.9830.9730.9810.9830.970.9860.9890.9790.9840.9850.9890.9890.9850.9840.9850.9840.9770.9810.980.9860.9830.9760.980.9810.9850.9830.9860.9850.9870.9490.9750.9830.9690.980.9780.9840.980.9850.9820.9820.9770.9820.9680.9850.990.990.9760.9880.990.9870.9870.9840.9850.9780.9810.9830.9810.9850.9840.9860.9340.9830.980.9860.9860.9830.9450.9740.945 0.9010.98
    Liver200F6090612.10CDBXD87H05500.9850.9310.9320.9830.9760.9780.9840.9750.8980.9820.9690.9820.9710.9780.9690.9770.9830.9660.9790.980.9690.9830.9810.9820.9810.980.9810.9790.9840.9810.980.9790.9410.9850.9830.9810.9510.9870.9860.9840.9820.9810.9840.9840.9820.9530.9780.9810.9840.980.9810.9730.9820.9790.9820.9810.9830.9740.98610.9670.9590.980.8960.9760.9750.9740.9790.9730.9570.9850.9460.9780.9840.97810.9850.9830.9820.9830.9830.9770.9650.9750.9830.9650.9840.9810.9770.9820.9780.980.9810.9840.9830.9790.9790.9760.9780.9780.9770.9820.9770.9750.9720.9790.9830.980.9720.9830.940.9840.9840.9720.9770.9740.980.9730.9790.980.9790.970.9790.9670.9840.9820.9790.980.9790.9840.980.9830.9790.980.9760.9710.9750.9790.9830.9760.9820.9180.9830.970.9780.9790.9770.9460.9730.949 0.8960.98
    Liver581F286061913.19CDBXD87H02960.9790.9320.9350.9740.9840.9810.9760.9420.8940.9760.9690.9760.9790.9780.9760.9770.9590.9490.9750.9760.9670.9770.9820.980.9670.960.9610.9590.9780.9810.9750.9750.9580.9610.9630.9660.9280.9730.9650.9660.9710.9750.9640.9740.9660.9440.980.9760.9760.9760.9760.9490.9650.9810.9820.9810.9630.9670.9770.96710.9720.9670.9150.9760.980.9650.9750.9580.9250.9710.9320.9760.9760.9710.9670.9610.9820.9770.9780.9740.980.9770.9710.9690.9590.9720.980.9580.9730.9710.9760.9740.9660.9660.9790.9740.9580.9760.9630.9770.9710.9660.9730.9790.9750.9630.970.9750.9750.9630.9570.9630.9630.980.9650.9710.9780.9690.9790.9770.980.9740.9720.9760.9770.980.9560.9730.9770.9720.9750.9740.9730.980.9770.9790.9810.9760.980.9770.9410.9780.9750.9760.9780.9740.9320.9590.934 0.8940.97
    Liver193F310090612.14CDBXD89H05550.9680.9420.9450.9690.970.9740.9620.9310.9010.9690.9740.9620.9670.9650.9670.9670.9520.9410.9720.9710.9540.9660.9640.9650.9510.9560.9570.9480.9730.9670.9610.960.9730.9490.9510.9620.9110.9610.9510.9550.9660.970.9590.9670.9520.9310.9680.9670.9630.9590.9660.9320.9560.9730.9640.9670.9590.9570.9670.9590.97210.9530.9390.970.9690.9670.9640.9460.9110.960.9110.9720.9620.950.9590.9510.9720.970.9680.9620.9740.9750.9680.9620.9580.9630.9660.9430.9620.9640.9730.9710.9580.9580.9670.9730.9420.9670.9470.9760.9610.9620.9570.9710.9610.9590.9650.9650.9690.9560.940.9510.950.9610.9670.9590.980.9610.9680.9640.9760.9590.9620.960.9630.9650.9440.9630.9620.960.9690.9730.9570.9660.980.9760.960.9680.970.9620.9470.9680.9710.9660.9670.9510.9110.9570.919 0.9010.96
    Liver245F230102616.12CDBXD9H25770.9840.9320.9320.9830.9730.9790.9810.9720.8950.9770.9650.9880.9760.9810.9680.9790.9780.9710.9810.9790.9760.9860.9840.9870.9870.9760.9760.9850.9820.9790.9830.9820.9380.9760.9870.9810.9460.9840.9870.9840.9850.9730.9790.9810.9850.9520.9680.9720.9830.9760.9860.9720.9830.9690.9840.9790.9820.9760.9850.980.9670.95310.8930.9790.9740.9790.9830.9740.9550.980.9590.980.9810.9840.980.9760.980.9870.9860.9750.9750.9620.9750.9820.9710.9830.9830.980.980.9750.9820.9830.9810.980.9860.9810.9810.9810.9830.9770.9830.9720.980.9740.9820.9750.9830.9820.9820.9420.9760.9840.9670.9820.9790.9850.9720.9820.9770.9810.9640.9790.9640.9870.9860.9820.9770.9790.9870.9810.9820.9810.9780.980.9720.980.9810.9830.980.9860.9230.9790.9760.9860.9840.9810.9590.9770.952 0.8930.98
    Liver548F73082214.11CDBXD9H10060.8970.9430.9450.9060.9150.9240.8930.8790.9180.9060.9270.8990.9120.9040.9190.9130.8960.880.9150.9130.8960.90.8990.8990.890.9030.9040.890.9160.9050.8950.9020.9430.8840.8830.910.8750.8960.890.890.90.8990.8920.90.8890.90.9050.9210.8970.9010.9010.8770.9010.9240.9020.9050.8980.8850.9080.8960.9150.9390.89310.90.9020.9170.9050.8990.8630.9010.8630.9110.8930.8890.8960.8950.9020.910.9030.90.9120.9290.9060.8970.9120.8960.9010.8890.8960.8960.9160.9160.90.90.9060.9110.8880.9150.890.9180.8990.9160.9040.9190.8940.8920.8960.90.9150.9260.880.8890.9050.8950.9170.8890.920.8940.9020.9060.9370.8990.9260.8980.90.9030.8910.9030.9040.8950.9150.9110.8830.8960.9270.9180.8920.9020.9070.8970.9520.8990.9150.9060.9010.8880.8630.8880.883 0.8630.90
    Liver188F304102414.03CDBXD90H17020.9870.9190.9210.9840.9760.9820.980.9530.8820.9840.9720.9830.9850.9860.9690.9810.9680.9560.980.9830.9720.9860.9850.9860.9770.9690.970.9680.9830.9820.9830.9780.9490.9730.9790.9710.920.9810.9720.9750.9840.9830.9820.9850.9780.9390.9740.9760.9820.970.9850.9540.9730.9750.9830.9820.9720.9780.9860.9760.9760.970.9790.910.990.9710.9840.9660.9320.9730.9350.9840.980.9770.9760.9670.9840.9840.9840.9740.9790.9690.9810.9770.960.9850.9850.9680.9760.9790.9810.9790.970.970.9840.9770.9620.9740.9670.9820.9760.9620.9720.9770.9830.9770.9840.9830.9740.9520.9640.9730.9580.9780.9710.9810.9780.9810.9810.9760.9690.9720.9580.9770.9830.9820.9620.9760.980.980.9740.9770.9790.980.9770.9790.9820.9840.9810.9820.930.9790.9770.9820.980.9760.9350.9670.929 0.8820.97
    Liver549F311062013.02CDBXD90H07560.9850.920.9230.9820.980.980.9810.9510.8840.980.9680.9770.9840.9840.9690.9740.9690.950.9790.9790.9660.980.9860.9830.9730.9660.9670.9620.9820.980.9840.9740.950.9750.9780.970.9240.9790.9730.9750.9780.9830.9810.9820.9730.9390.9770.9760.980.9730.9810.9560.9710.9790.9850.980.9690.9720.9830.9750.980.9690.9740.9020.9910.9710.9810.9630.930.9730.9350.9820.9810.9780.9750.9690.9850.9810.9830.9740.9780.9690.9780.9720.9620.9810.9850.9680.970.9780.980.9780.9710.970.9830.9750.960.9780.9660.9790.9720.9640.9730.9770.9840.9770.9790.9830.9750.9540.9670.9720.9610.980.9710.980.9780.9740.980.9760.9710.9710.9630.9780.980.9790.9630.9760.9790.9810.9750.9750.9790.9810.9750.9790.9850.9860.9830.980.9290.9810.9780.9770.9790.9760.9350.9630.929 0.8840.97
    Liver562F21062013.17CDBXD91H08830.9720.9550.9560.9750.9720.9770.970.9680.9250.9750.970.9760.9740.9730.9750.9690.9770.9730.9820.9750.9640.9720.9740.9760.9780.9790.9790.9770.980.970.9730.970.9580.9710.9740.9830.9520.9720.9750.9730.9810.9770.9740.9780.9780.9590.9640.9730.9710.9710.9760.9680.9820.9720.9740.970.980.9650.9780.9740.9650.9670.9790.9170.9710.97110.9760.9750.9590.9780.9570.9770.970.9720.9740.9760.9730.9830.9820.970.9760.9690.9750.980.9850.9760.9760.9770.9690.9730.9830.9840.9760.9760.9810.9810.9760.9870.9780.9780.9770.9840.9750.9760.970.9730.9760.9720.9810.9520.9680.9730.9710.97610.9750.9830.9750.9780.9740.9710.9710.980.9790.9760.9720.9780.9730.980.9720.9810.9810.9660.970.9750.9740.9730.9870.9740.9740.9410.9730.9750.9780.9740.9680.9570.9790.963 0.9170.97
    Liver536F277101014.10CDBXD95H17420.9880.9280.930.9870.9780.9830.9830.9650.8930.9820.9720.9840.9830.9870.9720.980.9710.9630.9830.9850.9770.9880.9860.9890.9830.9710.9720.9740.9870.9860.9840.9850.9510.9750.9850.9760.9350.9830.9790.9810.9860.9810.980.9840.9820.9460.9740.9820.9820.9760.9880.9620.9790.9780.9850.9860.9790.9770.9860.9790.9750.9640.9830.9050.9840.9810.97610.9710.9420.9830.940.9860.9830.9820.9790.9720.9840.9880.9870.980.9830.9720.980.9830.9680.9860.9880.9760.980.9810.9840.9840.9780.9770.9860.9820.9720.9770.9760.9830.980.9710.9760.9790.9830.9820.9860.9850.9820.9560.9690.980.9660.9790.9760.9790.980.9850.9820.9820.9730.980.9660.9830.9880.9850.970.9790.9850.9850.9820.9820.9770.980.9790.9810.980.9820.9820.9860.9370.9830.9790.9860.9840.9810.940.970.941 0.8930.98
    Liver384F146012615.17CDBXD98H17690.9660.9460.9450.9650.9670.9690.9640.9730.9290.9730.9560.9750.9660.970.9760.9670.9780.9690.9660.9670.9550.9680.9670.9730.9840.9820.9820.980.9720.9670.9640.9670.9370.9680.9720.980.9710.9660.9730.9660.9710.9620.9660.9660.9740.9660.9580.9660.9630.9680.970.9780.9840.9660.9660.9670.9830.9570.9730.9730.9580.9460.9740.8990.9660.9630.9750.97110.980.980.9740.9650.9640.9680.9730.9780.9620.9710.9690.9650.960.9580.960.9750.970.9730.9670.9780.9660.960.9680.9710.970.9690.9730.9630.9830.9750.9820.9650.970.9780.9710.960.9610.9640.9620.9580.9750.9340.9690.9680.9640.970.9750.9620.9590.9650.9650.9680.9610.9680.9680.9720.970.9650.9790.9640.9740.9630.9750.9630.9660.9620.9620.9550.9660.9760.9580.970.9250.9580.9550.9690.9640.9630.9740.9690.971 0.8990.97
    Liver384F182012615.16CDBXD98H15240.9390.9310.930.9390.9420.9380.9440.9660.9180.9480.9270.9510.9350.940.9530.9340.9590.9580.9390.9390.9280.9410.9430.9460.9660.9730.9730.970.9490.940.9390.9420.9010.9540.9530.9620.9770.9470.9590.9470.9460.9370.9450.9430.9570.9580.9340.9420.940.9540.9420.9780.9710.9380.9390.940.970.9310.9440.9570.9250.9110.9550.8630.9320.930.9590.9420.9810.9660.9760.9370.9440.9480.9570.9640.9380.9430.9440.9470.9350.9250.9340.9580.9520.9530.9390.960.9450.9320.9410.9460.9520.9520.9470.940.9750.9550.9720.9350.9550.9630.9520.9310.9340.9430.9380.9250.9530.8980.9570.9510.9460.9490.9590.9410.9310.9410.9420.9430.9290.9450.9490.9540.9430.9350.9740.9390.9520.9370.9530.940.940.9380.9290.9260.9430.9570.9290.9460.8860.9360.9270.9440.9380.9380.9760.9540.972 0.8630.95
    Liver535F278111414.14CDBXD99H13540.9820.9390.940.980.9790.980.9810.9750.9090.9810.9680.9850.9750.9790.980.9750.9750.970.9760.9810.9690.9820.9830.9850.9860.9840.9850.9830.9840.9820.9780.9790.9460.9790.9820.9840.960.9840.9830.9790.9810.9790.9760.9830.9830.9610.9770.9810.9820.9860.9830.9790.9870.9790.9790.9820.9870.9710.9810.9850.9710.960.980.9010.9730.9730.9780.9830.980.96610.9580.9790.9810.980.9850.9840.980.9810.9810.9840.9780.9670.9720.9860.9690.9860.9810.9770.9790.9720.9780.9790.980.980.9820.980.9820.9790.9840.9770.9830.980.9760.9730.9760.9770.9790.970.9810.9460.9760.9790.9730.9810.9780.9750.9740.980.9810.9780.9720.9780.9720.9850.9830.9770.9820.9740.9840.9760.9810.980.9750.9760.9720.9730.9770.9840.9740.9810.9250.9830.9710.9810.9780.9760.9580.9740.959 0.9010.98
    Liver361M162012615.26CDC57BL/6JH15900.9350.9310.9290.9350.9420.940.9380.9640.9220.9430.9220.9540.9340.9380.9520.9370.9580.9620.9390.9350.9280.9410.9450.9460.9640.9670.9670.9690.9430.9380.9410.940.90.9530.9540.9610.9760.9440.960.9450.9460.9340.9440.9390.9540.960.9270.9350.9420.950.9410.9760.9670.9350.9430.9380.9610.9350.9450.9460.9320.9110.9590.8630.9350.9350.9570.940.9740.9760.95810.9360.9380.9520.9460.960.9350.9420.9440.940.930.9230.9310.950.9550.9450.9390.9620.9420.9320.9420.9470.9510.950.9480.9390.9730.9580.970.9310.950.9550.9530.930.9360.9390.9360.9310.9490.9030.9580.9490.9450.9530.9570.9460.9260.9380.9380.940.9280.9410.9450.9540.9450.9370.970.9420.9540.9360.9490.9390.9450.9410.9270.9270.9480.9590.9330.9510.890.9320.930.9440.9410.94310.9570.968 0.8630.94
    Liver537F273091914.09CDC57BL/6JH11030.9890.9320.9330.9910.9810.9890.9870.9620.8940.9850.9820.9830.9850.9840.9750.9810.9680.9590.9840.9870.9820.9880.9860.9860.9760.9750.9750.9730.990.9860.9880.9840.9590.9730.9790.9770.9280.9870.9780.980.9870.9860.980.9890.9810.9460.9810.9830.9840.9770.9880.9570.9750.980.9840.9860.9760.980.9860.9780.9760.9720.980.9110.9840.9820.9770.9860.9650.9370.9790.93610.9870.9820.9780.9650.9890.9890.9890.9830.9870.9780.9880.9840.9640.9850.9880.9720.9810.9790.9840.9840.9780.9770.9860.9840.9660.9790.970.9890.9840.9710.9790.9870.9890.9790.9870.9820.9840.9590.9670.9790.9720.980.9770.9810.9850.9850.9840.9830.9780.9810.9680.9820.9860.9860.9670.980.9820.9840.9840.9840.9760.980.9850.9850.980.9830.9870.9830.9410.9860.9890.9930.9880.9830.9360.9660.935 0.8940.98
    Liver210F300101713.18CDD2B6F1H11540.9920.9160.9180.9870.9850.98110.9610.8770.9870.9710.9820.980.9840.9690.9770.9670.9580.9780.9780.9770.9870.990.9880.9790.9720.9720.9710.9850.9860.9870.9860.940.9790.980.9720.9320.9880.980.980.9830.9820.9810.9880.9810.9450.9890.9830.9850.9830.9840.9610.9720.9790.9850.9860.9760.9780.9820.9840.9760.9620.9810.8930.980.9810.970.9830.9640.9440.9810.9380.98710.9850.9840.9680.9930.9860.9870.9880.9860.9730.9810.9850.9570.9880.9880.970.9840.9770.9780.9780.9750.9740.9860.9770.9690.9790.9720.980.9820.970.980.9810.9880.9760.9840.9780.980.9510.9740.9790.9690.9880.970.9850.9810.9830.9880.9880.9730.9850.9660.9850.9850.9820.9680.9760.9820.9810.980.9770.9770.9870.9750.9810.9880.9820.9840.9850.9210.9880.9810.9870.9890.9860.9380.9660.94 0.8770.98
    Liver545F298062013.12CDD2B6F1H06460.9830.9210.9210.9820.9760.9820.9850.9740.890.9760.9610.9850.9760.9790.9720.9780.9720.9690.9770.9790.9810.9830.9880.9840.9830.9740.9740.9780.9810.9830.9890.9840.9330.9780.9860.9750.9420.9850.9850.980.9810.9780.9760.9830.9870.9570.9710.9760.9820.9780.9860.9720.9770.9710.9850.9830.9750.9830.9830.9780.9710.950.9840.8890.9770.9780.9720.9820.9680.9480.980.9520.9820.98510.9780.9730.9820.9840.9860.9790.9760.9610.9760.980.9660.980.9860.9810.980.9760.9780.980.9790.9780.9830.9730.9760.9780.9780.9740.980.9640.9790.9790.9880.9730.9780.9740.9770.9420.9770.9820.9750.9820.9720.9820.970.9810.9780.9780.9660.9790.9630.9850.9880.9830.9730.980.9850.9840.9770.9730.9790.9780.9710.9720.9840.9830.980.9850.9220.9790.9740.9830.9870.9940.9520.9680.953 0.8890.97
    Liver212F67101713.10CDDBA/2JH11470.9850.9310.9320.9830.9760.9780.9840.9750.8980.9820.9690.9820.9710.9780.9690.9770.9830.9660.9790.980.9690.9830.9810.9820.9810.980.9810.9790.9840.9810.980.9790.9410.9850.9830.9810.9510.9870.9860.9840.9820.9810.9840.9840.9820.9530.9780.9810.9840.980.9810.9730.9820.9790.9820.9810.9830.9740.98610.9670.9590.980.8960.9760.9750.9740.9790.9730.9570.9850.9460.9780.9840.97810.9850.9830.9820.9830.9830.9770.9650.9750.9830.9650.9840.9810.9770.9820.9780.980.9810.9840.9830.9790.9790.9760.9780.9780.9770.9820.9770.9750.9720.9790.9830.980.9720.9830.940.9840.9840.9720.9770.9740.980.9730.9790.980.9790.970.9790.9670.9840.9820.9790.980.9790.9840.980.9830.9790.980.9760.9710.9750.9790.9830.9760.9820.9180.9830.970.9780.9790.9770.9460.9730.949 0.8960.98
    Liver764F121083016.07CDDBA/2JH18180.9710.9420.9420.9710.9690.9710.9680.980.920.970.9610.9770.9650.9690.9690.9670.9890.9690.9740.9750.9570.9720.9720.9750.9810.9830.9840.980.9770.9710.970.9680.9390.9820.9820.9840.9670.9760.9840.9770.9710.9740.9770.9740.9790.9610.9630.9720.9720.9750.9750.9810.9880.9750.9750.9710.9830.9620.9790.9850.9610.9510.9760.8950.9670.9690.9760.9720.9780.9640.9840.960.9650.9680.9730.98510.9690.9740.9740.9690.9640.9540.9620.9750.9730.9750.9720.980.9680.9720.9760.9780.9820.9820.9730.9750.980.9750.980.9680.9720.9770.9710.9640.9670.9780.9680.9630.9760.9310.9820.9780.970.9710.9760.9690.9610.9690.9690.9670.9630.9650.9630.980.9760.9690.9870.9750.9820.9730.9760.9750.9730.9650.9640.9630.9690.9840.9650.9740.9160.970.9590.9660.9670.9680.960.9740.963 0.8950.97
    Liver216F306101713.15HFB6D2F1H13020.9940.9230.9260.9890.9870.9840.9930.9560.8810.9870.9770.9840.9830.9860.9710.9810.9680.9560.9830.9830.9780.9890.990.9890.9770.9720.9730.970.9880.9880.9880.9840.9510.9770.980.9740.9290.9890.9790.9830.9840.9860.9830.990.9790.9420.9890.9830.9880.9830.9850.9590.9740.9830.9890.9880.9750.9780.9860.9830.9820.9720.980.9020.9840.9850.9730.9840.9620.9380.980.9350.9890.9930.9820.9830.96910.9890.9910.9870.9890.9780.9840.9850.960.9880.9890.9680.9850.9810.9830.9820.9770.9770.9870.9840.9670.9820.9730.9860.9840.970.9810.9840.9880.9790.9880.9850.9840.9570.9720.980.9680.9880.9730.9880.9860.9840.9890.9860.9780.9840.9690.9850.9870.9860.9680.9810.9850.9840.9840.9840.9810.9880.980.9880.9880.9850.990.9870.9290.9910.9860.9880.9910.9840.9350.9690.934 0.8810.98
    Liver547F279102616.04HFB6D2F1H22880.9890.9380.940.9890.9810.9880.9860.9660.9010.9840.9820.9870.9860.9870.9740.9850.9760.9690.9890.9860.9830.9880.9870.9890.9820.9760.9760.9770.9890.9870.9870.9860.9590.9750.9840.9820.9360.9850.9810.9840.9880.9840.9810.9880.9840.9490.9770.9820.9840.9780.990.9620.9810.980.9880.9870.980.9790.990.9820.9770.970.9870.910.9840.9810.9830.9880.9710.9430.9810.9420.9890.9860.9840.9820.9740.98910.9960.9820.9870.980.9860.9870.9730.9870.9910.9790.9840.9850.9890.9890.9830.9820.9910.9870.9740.9840.9780.990.9850.9770.9820.9870.9870.9820.990.9880.9880.9590.9720.9830.9740.9830.9830.9850.9850.9880.9860.9850.9790.9840.9730.9880.9920.9880.9730.9840.9890.9880.9880.9870.9790.9820.9850.9870.9830.9870.9890.9870.9420.9850.9880.9910.990.9840.9420.9760.948 0.9010.98
    Liver547F296102616.05HFB6D2F1H22900.990.9320.9340.9880.980.9870.9870.9660.8950.9850.9790.9870.9840.9860.9730.9840.9750.9690.9890.9850.9810.9880.9880.9890.9820.9750.9760.9760.9880.9870.9890.9850.9550.9770.9860.980.9340.9870.9830.9860.9870.9850.9840.9890.9840.9470.9780.9820.9860.9790.9890.9630.9790.9780.9890.9870.9780.9810.990.9830.9780.9680.9860.9030.9840.9830.9820.9870.9690.9440.9810.9440.9890.9870.9860.9830.9740.9910.99610.9830.9880.9780.9880.9860.9730.9860.9910.980.9850.9870.9890.9890.9830.9820.990.9870.9750.9850.9790.9880.9850.9740.9820.9850.9890.9830.990.9890.9870.9560.9750.9850.9730.9850.9820.9890.9850.9880.9880.9840.9760.9840.9710.9890.9920.9880.9730.9850.9890.9890.9870.9870.9830.9820.9820.9870.9870.9880.990.9880.9350.9880.9890.9890.9920.9870.9440.9780.946 0.8950.98
    Liver176F254042415.12HFBXD100H20850.9860.9270.9270.9850.9850.9840.9880.9660.890.9840.9730.9810.9730.9790.9740.9760.9640.9590.9760.9790.9790.9840.9840.9850.9770.9750.9750.9750.9850.9860.980.9840.9450.9770.9760.9730.940.9870.9770.9810.9820.9810.9770.9870.980.950.9830.9830.9840.9850.9810.9630.9750.9790.980.9860.9780.9730.980.9830.9740.9620.9750.90.9740.9740.970.980.9650.9470.9840.940.9830.9880.9790.9830.9690.9870.9820.98310.9880.9740.9790.9890.9580.9850.9830.9680.9850.9740.9760.9770.980.980.9820.9810.9720.9760.9740.9790.9860.9740.9780.9790.980.9770.9830.9720.9810.950.9750.9810.9720.9830.970.9790.9790.9850.9850.980.9750.9820.9690.9820.9820.9820.9710.9740.9820.9770.9810.9810.9750.980.9740.9790.9830.980.9790.9820.9260.9860.9780.9860.9820.980.940.9650.942 0.890.97
    Liver537F77050914.04HFBXD100H11870.9880.9310.9330.9890.9850.9870.9860.9560.8920.9850.980.9790.9790.9830.9720.9770.9630.9580.9840.9830.9770.9860.9840.9860.9750.9690.970.9680.9860.9850.9830.9830.9580.9690.9760.9720.9270.9820.9730.9790.9830.9840.9770.9850.9760.940.9810.9810.9820.9790.9830.9530.9720.980.9820.9850.9740.9750.9830.9770.980.9740.9750.9120.9790.9780.9760.9830.960.9350.9780.930.9870.9860.9760.9770.9640.9890.9870.9880.98810.9840.9830.9860.9640.9830.9860.9660.9830.9810.9840.9830.9780.9770.9850.9850.9660.980.9710.9860.9810.9750.9760.9840.9820.9780.9850.9820.9840.9580.9640.9760.9670.9820.9760.9810.9890.9840.9880.9820.9790.9830.9720.9810.9840.9840.9650.9790.9810.9820.9840.9850.9740.9810.9830.9870.9820.9810.9860.9810.940.9870.9860.9860.9860.9780.930.9690.935 0.8920.98
    Liver493F290042715.19HFBXD101H14220.9750.9440.9470.9770.9810.9830.9730.9440.9170.9760.9850.9690.9750.9740.9720.9760.9560.950.9770.9730.9690.9740.9710.9740.9610.9620.9630.9560.9770.9760.9680.9760.970.9540.9580.9710.9230.9660.9570.9620.9710.9710.9620.9740.9640.940.9750.9750.9690.9690.9720.9380.9620.9770.9710.9760.9640.9620.9730.9650.9770.9750.9620.9290.9690.9690.9690.9720.9580.9250.9670.9230.9780.9730.9610.9650.9540.9780.980.9780.9740.98410.9750.9740.9580.9710.9740.9550.9730.9710.9770.9770.9640.9640.9770.9750.9550.9740.960.9830.970.9730.970.9830.9680.9630.9730.9720.9780.9680.9470.9590.9660.9730.9690.9670.9840.9720.9780.9760.9850.9770.9720.970.9730.9750.9540.9690.9710.9690.9780.9750.9610.9710.9850.9810.9710.9710.9780.9690.960.9720.9810.9770.9770.9650.9230.960.938 0.9170.97
    Liver183F284052814.04HFBXD102H13610.9820.9270.9280.9850.9760.9850.9810.9560.8920.9880.9830.9770.9810.9790.9680.9780.9680.9620.9820.9820.9770.9810.980.9820.9720.970.9710.9670.9840.9790.9810.9790.9550.9690.9730.9730.9210.9790.970.9750.9840.9820.9770.9850.9770.9390.9750.980.9770.9690.9830.9490.9710.9730.9790.9790.9680.9770.9810.9750.9710.9680.9750.9060.9810.9780.9750.980.960.9340.9720.9310.9880.9810.9760.9750.9620.9840.9860.9880.9790.9830.97510.9850.9650.980.9830.970.9790.9810.9820.9820.9730.9720.9830.980.9610.9780.9650.9840.9780.9690.9740.9830.9820.9770.9840.9780.9780.9540.9620.9740.9660.9750.9750.9780.9810.9850.9840.980.9740.9780.9650.9760.9810.9820.9630.9770.9770.9790.9780.980.9710.9750.980.9820.9760.980.9810.9770.9380.9820.9830.9850.9830.9760.9310.9680.936 0.8920.97
    Liver366F195121214.07HFBXD102H14980.9850.9330.9330.9850.980.9840.9850.9720.8980.9870.9770.9850.9760.9810.9740.9780.9720.9740.980.9810.9780.9850.9830.9880.9840.9820.9820.9830.9860.9820.980.9830.9450.9770.9810.9810.9460.9850.980.9820.9880.9820.9790.9880.9860.9540.9770.9790.9820.9810.9850.9680.9830.9750.980.9820.9840.9780.9830.9830.9690.9620.9820.8970.9770.9720.980.9830.9750.9580.9860.950.9840.9850.980.9830.9750.9850.9870.9860.9890.9860.9740.98510.9680.9880.9840.9760.9870.9790.9810.9820.9810.980.9870.9840.9780.9790.980.9830.9870.9790.9790.9790.9790.980.9870.9740.9830.9450.9730.9820.9710.9830.980.9810.9810.990.9870.9820.9720.9830.970.9830.9850.9820.9780.9760.9840.9790.9830.9840.9770.9790.9770.9790.980.9850.9780.9820.9280.9830.9770.9880.9830.9790.950.9780.954 0.8970.98
    Liver688F140083016.08HFBXD24H22590.9590.9490.9490.9620.9580.9680.9570.9660.9260.9640.9570.9710.9630.9630.9690.9620.9750.9730.9750.9660.9540.9620.9630.9670.9730.9680.9680.9680.9680.960.9640.960.9530.9640.9690.9750.9490.960.970.9670.9710.9650.9640.9630.9670.9510.9510.9630.960.9590.9680.9620.9740.9620.9650.960.970.9610.970.9650.9590.9580.9710.9120.960.9620.9850.9680.970.9520.9690.9550.9640.9570.9660.9650.9730.960.9730.9730.9580.9640.9580.9650.96810.9620.9650.9770.9610.9710.9770.9790.9720.9710.9710.9720.9720.9790.9720.9630.9660.9730.9640.9630.9610.9680.9650.9630.9730.9440.9640.9680.9650.9620.9850.9640.9690.9640.9660.9650.9620.9610.9720.970.9680.9640.9710.9690.9710.9670.9730.9720.9640.9580.9630.9640.9630.9760.9640.9650.9330.9610.9630.9660.9660.9610.9550.9760.958 0.9120.96
    Liver182F317121515.05HFBXD29H23490.990.9230.9250.9860.980.9810.9880.9640.8870.9860.9720.9840.9850.990.9720.9770.9720.9620.9810.9840.9760.9880.9870.9890.9840.9790.9790.9760.9880.9840.9830.9840.9450.9780.9840.9770.940.9870.980.9810.9840.9840.9820.9880.9840.9470.9810.9820.9820.980.9860.9670.9810.9790.9830.9840.9840.9760.9860.9840.9720.9630.9830.8960.9850.9810.9760.9860.9730.9530.9860.9450.9850.9880.980.9840.9750.9880.9870.9860.9850.9830.9710.980.9880.96210.9910.9760.9820.9790.9820.9820.9780.9770.9880.980.9750.9770.9790.9830.9820.9740.9780.9780.9820.9820.9870.9790.9810.950.9730.980.9660.9840.9760.9810.980.9860.9860.9830.9720.9810.9640.9840.9860.9820.9740.9750.9840.9830.9810.980.9780.9810.9750.980.9810.9850.9810.9830.9240.9850.9790.9860.9830.980.9450.9710.943 0.8870.98
    Liver577F295061913.04HFBXD29H06690.9910.9240.9260.9890.9820.9860.9880.9640.8860.9840.9740.9860.9870.9910.9750.9810.970.9620.9850.9860.9830.9890.9910.990.9810.9730.9730.9730.9880.9880.9880.9870.9490.9750.9850.9760.9340.9860.980.9820.9850.9850.9810.9880.9840.9470.980.9820.9840.980.9890.9620.9780.9810.990.9880.9770.980.9890.9810.980.9660.9830.9010.9850.9850.9760.9880.9670.9390.9810.9390.9880.9880.9860.9810.9720.9890.9910.9910.9830.9860.9740.9830.9840.9650.99110.9790.9830.9820.9860.9860.980.980.9890.9820.9720.9810.9770.9860.9820.9710.980.9840.9880.9810.9870.9870.9840.9550.9720.9810.9680.9850.9760.9850.9830.9870.9870.9840.9760.9830.9670.9870.9910.9890.9710.9830.9880.9880.9840.9820.980.9830.980.9850.9860.9870.9880.9880.9310.9880.9840.9880.990.9870.9390.970.94 0.8860.98
    Liver630F119111314.10HFBXD29H10370.970.9340.9320.9720.9640.9730.970.9830.9140.9710.9570.9780.9710.9770.970.9690.9830.9720.9750.9730.9680.9740.9730.9750.9830.9750.9740.9790.9740.9710.9760.9750.9340.9780.9830.9780.9560.9740.9830.9790.9780.9720.9760.9720.9810.9560.9560.970.9680.9650.9790.9730.980.9670.9750.9710.9760.9730.9790.9770.9580.9430.980.8890.9680.9680.9770.9760.9780.960.9770.9620.9720.970.9810.9770.980.9680.9790.980.9680.9660.9550.970.9760.9770.9760.97910.970.9730.9760.9790.9830.9830.9770.9720.980.9770.9790.9680.9740.9740.9730.9680.9730.9790.9720.9680.9780.9330.9810.9820.9730.970.9770.9730.9640.9740.970.9720.960.9720.9630.9790.9790.9740.980.9780.980.9790.9780.9720.9750.9650.9650.9620.9710.980.9680.9770.9220.9670.9640.9760.9740.9780.9620.9690.96 0.8890.97
    Liver200F261042015.20HFBXD32H20300.9850.9270.9280.9810.9750.9840.9840.9650.8870.9810.970.9860.9710.9770.9730.9880.9690.9720.9790.9780.9840.9870.9820.9840.9780.9710.9710.9790.9810.9860.9790.9860.9410.9710.9770.9740.9370.9840.9780.9820.9860.9770.9750.9830.980.9480.9760.9770.9840.9790.9840.960.9740.9720.9810.9860.9760.9840.9840.9820.9730.9620.980.8960.9760.970.9690.980.9660.9450.9790.9420.9810.9840.980.9820.9680.9850.9840.9850.9850.9830.9730.9790.9870.9610.9820.9830.9710.9830.9790.980.9810.980.9820.9810.9730.9750.9760.980.9870.970.9760.9760.9790.9760.9840.9750.9830.9430.970.9830.970.9810.9690.9820.9770.9880.9820.9810.9730.9850.9670.980.9850.9870.9690.9810.9820.980.9830.9810.9820.9790.9760.980.9810.9770.9780.9840.9270.9820.9740.9860.9860.9830.9420.9750.946 0.8870.97
    Liver539F318101014.02HFBXD32H11370.9820.9230.9250.980.9680.980.9770.960.8880.9770.970.9780.9740.9780.9640.980.9750.9690.9860.980.9750.9810.9780.980.9730.9660.9670.9680.9810.9780.9790.9780.9470.9740.9820.9730.9260.9770.9760.9820.9830.9840.9810.9820.9760.9360.9710.9750.9780.970.9820.9540.9720.9710.9810.9780.9710.9830.9850.9780.9710.9640.9750.8960.9790.9780.9730.9810.960.9320.9720.9320.9790.9770.9760.9780.9720.9810.9850.9870.9740.9810.9710.9810.9790.9710.9790.9820.9730.98310.9870.9860.980.9790.980.9810.9660.9750.970.980.9760.9680.970.9750.9790.9850.9850.980.9790.9460.9680.980.9660.9720.9730.9790.9790.9830.9820.9770.970.9770.9620.9770.9830.9820.9670.9830.9790.9860.9790.9810.9830.9730.9760.9820.9750.980.9790.9770.9280.9820.9760.9770.9820.9770.9320.9780.939 0.8880.97
    Liver197F283101513.04HFBXD34H10560.9840.9430.9450.9860.9770.9860.9780.9650.9080.980.9780.9830.9790.9820.9730.9830.9790.9680.9970.9850.9760.9840.980.9840.980.9740.9750.9750.9870.9810.9820.980.9590.9730.9820.9830.9390.9810.980.9820.9830.9820.980.9840.9790.9480.9770.9840.9810.9760.9860.9620.9790.9780.9840.9810.9780.9780.9890.980.9760.9730.9820.9160.9810.980.9830.9840.9680.9410.9780.9420.9840.9780.9780.980.9760.9830.9890.9890.9760.9840.9770.9820.9810.9770.9820.9860.9760.9790.98710.9970.9830.9820.9840.9860.9740.9850.9770.9860.9810.9780.9780.9830.9810.9810.9850.9850.9870.9560.9710.9810.9710.9770.9830.9810.9840.9810.9810.9850.9820.980.9710.9840.9870.9840.9730.9840.9850.9860.9870.9860.9790.9760.9830.9870.9780.9850.9840.9810.9420.9830.9840.9830.9840.9780.9420.9780.947 0.9080.98
    Liver537F292101014.05HFBXD34H10520.9830.9460.9480.9850.9770.9870.9780.9690.9130.9790.9770.9830.9790.9820.9740.9830.9810.9720.9970.9850.9770.9830.980.9840.9810.9770.9770.9770.9870.9810.9810.9810.9580.9740.9830.9840.9440.9810.9810.9820.9830.9810.980.9830.980.9520.9760.9840.980.9760.9860.9650.9810.9790.9830.9810.9790.9780.9890.9810.9740.9710.9830.9160.9790.9780.9840.9840.9710.9460.9790.9470.9840.9780.980.9810.9780.9820.9890.9890.9770.9830.9770.9820.9820.9790.9820.9860.9790.980.9860.99710.9840.9830.9840.9850.9760.9860.9790.9850.9810.980.9790.9820.980.9810.9840.9830.9880.9550.9720.9810.9740.9770.9840.980.9820.9810.9810.9850.9820.980.9720.9850.9870.9840.9760.9840.9860.9860.9880.9850.9790.9750.9830.9850.9780.9860.9820.9810.9420.9820.9820.9830.9840.9790.9470.9790.953 0.9130.98
    Liver350F129121214.22HFBXD39H14740.9790.9410.9410.9810.9710.9810.9750.9810.9110.9740.9680.9820.9690.9750.9730.9760.9810.9670.9810.9840.9790.9820.9770.9790.980.9770.9770.9840.9830.9790.9790.9780.9430.980.9840.9810.9530.9840.9890.9890.9810.9790.9810.9790.9790.9540.9660.9740.980.9780.9820.9730.9810.9730.9810.9790.9810.9770.9850.9840.9660.9580.9810.90.970.9710.9760.9780.970.9520.980.9510.9780.9750.9790.9840.9820.9770.9830.9830.980.9780.9640.9730.9810.9720.9780.980.9830.9810.980.9830.98410.9970.9760.9840.9810.980.9820.9770.9860.9770.9760.9730.9780.9830.9790.9730.9840.9360.9840.990.9760.9740.9760.980.9720.9790.9740.9730.9690.9760.9660.9830.9830.9820.980.9860.9850.9840.9840.9840.9820.970.9730.9750.9750.980.9780.9830.9260.9790.9730.9810.9810.980.9510.9710.949 0.90.98
    Liver350F204121214.21HFBXD39H14730.9790.940.9410.9810.9710.980.9740.9810.9110.9740.9670.9810.9680.9750.9720.9750.9810.9650.9810.9840.9780.9810.9760.9780.9790.9760.9760.9840.9820.9780.9790.9770.9430.980.9840.980.9530.9830.9880.9890.9810.9790.9810.9790.9780.9530.9650.9730.980.9770.9810.9720.9810.9740.980.9780.980.9760.9840.9830.9660.9580.980.90.970.970.9760.9770.9690.9520.980.950.9770.9740.9780.9830.9820.9770.9820.9820.980.9770.9640.9720.980.9710.9770.980.9830.980.9790.9820.9830.99710.9750.9840.980.9790.9810.9760.9850.9770.9760.9730.9770.9840.9780.9730.9840.9350.9840.9890.9750.9730.9760.980.9720.9780.9730.9720.9680.9750.9660.9830.9820.9810.980.9860.9850.9830.9840.9840.9820.970.9720.9740.9740.980.9770.9820.9250.9790.9720.980.980.9780.950.9710.948 0.90.97
    Liver291F280111314.05HFBXD40H14880.9880.9330.9340.9860.9830.9850.9860.9640.8960.9850.9740.9850.9850.9870.9740.9790.9730.9680.9840.9810.9760.9890.9910.9910.9850.9760.9760.9740.9850.9840.9830.9850.9520.9750.9820.980.9380.9820.9780.9790.9840.9820.9780.9870.9850.950.9790.980.9810.9780.9870.9630.980.9790.9860.9840.9790.9760.9850.9790.9790.9670.9860.9060.9840.9830.9810.9860.9730.9470.9820.9480.9860.9860.9830.9790.9730.9870.9910.990.9820.9850.9770.9830.9870.9710.9880.9890.9770.9820.980.9840.9840.9760.97510.9860.9740.9830.9780.9850.980.9780.980.9830.9820.9780.9850.9840.9830.9570.970.9780.970.9880.9810.9830.9850.9860.9880.9860.9760.9840.9720.9860.9880.9840.9720.9780.9850.9820.9830.9860.9760.9850.9810.9840.9860.9880.9830.9840.9360.9830.9820.9880.9870.9820.9480.9740.951 0.8960.98
    Liver358F202121214.13HFBXD40H15930.9840.9420.9450.9840.9760.9830.9770.9650.9040.9770.9790.9830.9750.9780.9740.9790.9730.9650.9850.9840.9740.9860.9820.9830.9760.9740.9750.9780.9850.980.9790.9780.9590.9720.9790.980.9370.9830.9810.9850.9840.9830.9790.9850.9780.9440.9720.9760.9830.9780.9840.960.980.9760.9830.980.9780.9750.9840.9790.9740.9730.9810.9110.9770.9750.9810.9820.9630.940.980.9390.9840.9770.9730.9790.9750.9840.9870.9870.9810.9850.9750.980.9840.9720.980.9820.9720.9810.9810.9860.9850.9840.9840.98610.9710.980.9750.9850.9860.9760.9750.9810.9780.9820.9860.9810.9840.950.970.9820.9690.9770.9810.9820.9830.9830.9810.9760.9740.9760.9690.9830.9840.9830.9730.9820.9850.9820.98410.9780.9760.9810.9870.9770.9850.9830.9820.9380.9860.9830.9850.9840.9740.9390.9770.941 0.9040.98
    Liver240F258042015.10HFBXD44H18250.9710.9410.940.9720.9670.9710.9690.9810.9190.9690.9530.9810.9610.9690.9720.9680.9770.9730.9720.9710.9660.9750.9720.9790.9890.9810.9810.9850.9740.9720.970.9730.9280.9710.980.9810.9740.9740.9830.9770.9740.9640.9680.9680.9790.9660.9570.9650.9710.9770.9740.9850.9860.9640.9720.9720.9850.9640.9770.9760.9580.9420.9810.8880.9620.960.9760.9720.9830.9750.9820.9730.9660.9690.9760.9760.980.9670.9740.9750.9720.9660.9550.9610.9780.9720.9750.9720.980.9730.9660.9740.9760.9810.980.9740.97110.9810.9970.9670.9780.9760.9750.9610.9670.9690.9690.9640.980.9280.9760.9790.9660.9740.9760.9710.9620.9710.9670.970.9590.9740.9670.980.9770.9730.9860.9740.9810.9710.980.9710.9710.9650.9610.9610.970.9780.9660.9760.9150.9670.9590.9730.9730.9730.9730.9730.971 0.8880.97
    Liver379F158012615.12HFBXD44H15010.9780.950.9520.9790.980.9810.9790.9660.9190.980.9710.9820.9770.9780.9780.9750.9760.9680.9840.9780.970.9780.980.9840.9830.9780.9780.9760.9820.9780.9790.9760.9560.9750.9760.9820.9530.9780.9790.9770.980.9760.9750.9790.9780.9590.9740.9770.9780.9790.9790.970.980.9780.9810.9780.9780.9690.9810.9780.9760.9670.9810.9150.9740.9780.9870.9770.9750.9550.9790.9580.9790.9790.9780.9780.9750.9820.9840.9850.9760.980.9740.9780.9790.9790.9770.9810.9770.9750.9750.9850.9860.980.9790.9830.980.98110.9830.980.9790.9810.980.980.9770.9730.9770.9770.9850.9570.9740.9770.9730.9810.9870.9790.9810.9740.9810.9810.9780.9780.9820.9840.980.9780.9770.9780.9830.9760.9850.980.9740.9770.9760.9790.9810.9860.9820.9810.9390.980.9790.9810.9820.9760.9580.9750.96 0.9150.98
    Liver715F144102414.12HFBXD44H16870.9760.9390.940.9760.970.9740.9720.9780.9140.9720.9580.9840.9650.9730.9740.9720.9760.9720.9760.9750.9690.9790.9760.9830.990.9810.9810.9850.9770.9760.9750.9760.9320.9720.9830.9820.9690.9770.9850.980.9760.9680.9720.9730.9810.9630.9620.9670.9760.980.9780.9830.9870.9660.9760.9760.9850.9670.980.9780.9630.9470.9830.890.9670.9660.9780.9760.9820.9720.9840.970.970.9720.9780.9780.980.9730.9780.9790.9740.9710.960.9650.980.9720.9790.9770.9790.9760.970.9770.9790.9820.9810.9780.9750.9970.98310.9720.9810.9760.9770.9650.9720.9710.9740.970.9820.9320.9760.9810.9660.9770.9780.9750.9670.9750.9720.9730.9620.9770.9690.9830.980.9760.9850.9760.9830.9750.9820.9750.9750.9690.9650.9680.9740.980.9720.980.9170.9720.9650.9760.9770.9750.970.9760.967 0.890.97
    Liver503F303121515.15HFBXD45H19400.9870.9440.9460.9880.9820.9890.980.9580.9050.9820.9850.9810.9840.9830.9740.9830.970.9590.9860.9850.9790.9850.9810.9850.9740.9770.9780.970.9890.9850.9820.9830.9630.9670.9760.980.9290.980.9730.9750.9830.9820.9760.9850.9780.9460.9770.980.9820.9780.9860.9540.9770.9810.9840.9850.9770.9740.9860.9770.9770.9760.9770.9180.9820.9790.9780.9830.9650.9350.9770.9310.9890.980.9740.9770.9680.9860.990.9880.9790.9860.9830.9840.9830.9630.9830.9860.9680.980.980.9860.9850.9770.9760.9850.9850.9670.980.97210.9810.9770.9780.9880.9820.9760.9840.9820.9850.9580.9610.9740.9670.9780.9780.9780.9860.9830.9830.9810.9820.9810.9730.980.9860.9860.9680.9820.9830.9820.9850.9850.9720.9780.9890.9860.9770.9820.9860.9810.9480.9810.9850.9880.9840.9760.9310.9690.941 0.9050.98
    Liver189F263042015.24HFBXD48H20460.9830.9370.9380.9830.9770.9820.9820.9720.8990.9780.9730.9860.9730.9760.9780.9810.9710.9690.980.9810.9810.9840.9810.9830.980.9780.9780.9880.9880.9820.9820.980.9460.9730.9790.980.9440.9870.9840.9870.9860.9790.9780.9850.9820.9530.9730.9750.9860.9830.9840.9680.980.9720.9810.9820.9820.9780.9830.9820.9710.9610.9830.8990.9760.9720.9770.980.970.9550.9830.950.9840.9820.980.9820.9720.9840.9850.9850.9860.9810.970.9780.9870.9660.9820.9820.9740.9870.9760.9810.9810.9860.9850.980.9860.9780.9790.9810.98110.9760.9790.9810.9810.9760.9850.9750.9830.9440.9750.9860.9730.980.9770.9840.9770.9840.9790.9770.9690.980.9690.9850.9840.9850.9760.9790.9850.980.9830.9860.9810.9760.9750.9790.9810.9820.9810.9860.9280.9830.9790.9870.9850.9810.950.9750.948 0.8990.98
    Liver595F238042915.13HFBXD48H13770.970.960.960.9740.9780.9760.970.970.9320.9760.970.970.9690.9720.9760.9670.9780.9660.9760.9730.960.9710.9690.9740.9770.9780.9790.9780.9820.9690.9650.9740.9520.9690.9680.9830.9620.9680.9730.9680.9730.9690.9680.9710.9730.960.9680.9740.9660.9730.9710.9660.980.9770.9710.9690.980.9590.9760.9770.9660.9620.9720.9160.9620.9640.9840.9710.9780.9630.980.9550.9710.970.9640.9770.9770.970.9770.9740.9740.9750.9730.9690.9790.9730.9740.9710.9740.970.9680.9780.980.9770.9770.9780.9760.9760.9810.9760.9770.97610.9780.9760.9630.970.9660.9630.9830.9470.9670.9680.9710.9760.9840.9650.9760.970.9760.9770.9750.9750.9790.9770.9710.9690.9780.9710.9770.9670.9830.9760.9610.9690.9750.970.970.980.9660.9710.9390.9680.9680.9760.9690.9620.9550.970.966 0.9160.97
    Liver233F239051112.04HFBXD48aH02100.9790.9410.9410.980.9830.9810.980.9680.910.9770.970.9780.9760.9760.9720.9760.9710.9640.9770.9760.9740.9790.980.980.9770.9770.9770.9780.9840.9780.9780.9810.9450.9720.9750.9790.950.9780.9770.9730.9760.9730.9730.9780.9780.960.9750.9770.9770.9780.9780.970.9770.9760.9810.9780.9770.9690.980.9750.9730.9570.980.9040.9720.9730.9750.9760.9710.9520.9760.9530.9790.980.9790.9750.9710.9810.9820.9820.9780.9760.970.9740.9790.9640.9780.980.9730.9760.970.9780.9790.9760.9760.980.9750.9750.980.9770.9780.9790.97810.9820.9770.9680.9740.9730.9820.9510.9710.9740.970.9830.9750.9770.9730.9760.9770.9790.9740.9770.970.9840.980.9790.9740.9770.9820.9760.9820.9750.9690.9770.9740.9740.9820.9810.9780.9810.9330.9750.9750.9820.980.9790.9530.9670.957 0.9040.97
    Liver543F287062013.06HFBXD48aH06990.9820.9430.9440.9860.9850.9880.9810.9560.9070.9790.9840.9770.9850.9790.9750.980.9650.9560.9820.9820.980.9790.9820.9810.9690.9720.9720.9690.9890.9820.9810.9820.9650.9660.970.9780.9280.9780.9710.9710.980.9810.970.9840.9790.9490.9790.9820.9780.9760.9830.9510.9710.980.9820.9820.970.9740.9810.9720.9790.9710.9740.9190.9770.9770.9760.9790.960.9310.9730.930.9870.9810.9790.9720.9640.9840.9870.9850.9790.9840.9830.9830.9790.9630.9780.9840.9680.9760.9750.9830.9820.9730.9730.9830.9810.9610.980.9650.9880.9810.9760.98210.9810.9690.9790.9760.9810.9650.9590.970.9740.9780.9760.9750.9840.980.9830.9810.9830.9780.9720.9790.9830.9830.9640.9770.980.980.9810.9810.9660.9760.9860.9820.9780.9810.9850.9780.9520.980.9850.9860.9840.980.930.9630.943 0.9070.97
    Liver713F143010614.07HFBXD53H08330.990.9150.9170.9880.9780.9830.9880.9630.8780.9810.970.9840.9790.9820.9680.9790.9690.9550.9810.9820.9790.9870.9870.9850.9770.9690.970.9710.9850.9840.9970.9840.9430.9760.9850.9720.9270.9870.9820.9830.9840.9840.9830.9870.9810.9430.9760.9770.9850.9780.9870.960.9720.9740.9880.9840.9720.9810.9850.9790.9750.9610.9820.8940.9830.9840.970.9830.9610.9340.9760.9360.9890.9880.9880.9790.9670.9880.9870.9890.980.9820.9680.9820.9790.9610.9820.9880.9730.9790.9790.9810.980.9780.9770.9820.9780.9670.9770.9720.9820.9810.9630.9770.98110.9780.9840.9840.9810.9470.9720.9820.9680.9810.970.9860.9780.9820.9820.980.9690.980.9620.9830.9870.9860.9650.9820.9830.9870.9810.9780.9820.9810.9760.9810.9840.9810.9880.9860.9230.9850.9830.9860.9880.9880.9360.9630.931 0.8780.97
    Liver188F128111414.03HFBXD61H19220.980.9220.9240.980.9670.9750.9760.970.8910.9780.9680.9760.9730.9780.9630.9690.9780.960.980.980.9670.980.9770.9790.9750.9710.9720.9720.9810.9750.9790.9740.9440.9860.9870.9750.9380.980.980.9850.9820.9850.9870.9820.9770.9390.970.9760.9770.9690.9790.9610.9780.9740.9790.9750.9750.9760.9830.9830.9630.9590.9750.8920.9770.9770.9730.9820.9640.9430.9770.9390.9790.9760.9730.9830.9780.9790.9820.9830.9770.9780.9630.9770.980.9680.9820.9810.9790.9760.9850.9810.9810.9830.9840.9780.9820.9690.9730.9710.9760.9760.970.9680.9690.97810.9860.9790.9790.9380.9780.9830.9660.9710.9730.9780.9730.9810.9790.9720.9640.970.9580.9780.980.9770.9740.980.980.9840.9790.9820.9820.970.9680.9750.9720.9810.9750.9790.920.9810.9730.9770.9760.9720.9390.970.934 0.8910.97
    Liver188F323111414.04HFBXD61H17220.9880.9220.9240.9860.9740.9830.9840.960.8820.9810.9760.9850.980.9830.9670.980.9690.9640.9850.9820.980.9870.9830.9860.9770.9710.9720.9740.9850.9820.9850.9820.950.9780.9850.9760.9250.9860.9780.9860.9890.9850.9840.9890.9820.9370.9760.9780.9860.9760.9860.9560.9760.9720.9830.9820.9770.980.9860.980.970.9650.9830.8960.9840.9790.9760.9860.9620.9380.9790.9360.9870.9840.9780.980.9680.9880.990.990.9830.9850.9730.9840.9870.9650.9870.9870.9720.9840.9850.9850.9840.9790.9780.9850.9860.9690.9770.9740.9840.9850.9660.9740.9790.9840.98610.9880.9810.9520.9690.9840.9660.9780.9760.9870.9820.9890.9860.980.970.980.9620.9810.9860.9840.9690.9780.9820.9860.9810.9860.9810.9790.9770.9860.980.9820.9860.9840.9290.9880.9850.9880.9860.9790.9360.9760.933 0.8820.98
    Liver524F316121515.25HFBXD61H18430.9870.920.9240.9830.9720.9790.9780.950.880.9760.9720.9810.980.9850.9630.9780.9660.9520.9850.9810.9720.9840.9810.9840.9750.960.9610.9640.9810.980.9830.9780.9510.9680.9820.970.9190.9780.9740.980.980.9760.9790.980.9720.9290.970.9730.9810.9710.9820.950.9690.9720.9850.980.9690.9710.9850.9720.9750.9650.9820.90.9830.9830.9720.9850.9580.9250.970.9310.9820.9780.9740.9720.9630.9850.9880.9890.9720.9820.9720.9780.9740.9630.9790.9870.9680.9750.980.9850.9830.9730.9730.9840.9810.9640.9770.970.9820.9750.9630.9730.9760.9840.9790.98810.9810.9560.9620.9760.9550.9780.9720.9840.980.9780.9780.9780.9690.9770.960.9810.9840.9830.960.9790.9820.9860.9810.9810.9770.980.9760.9870.980.9780.9880.9840.9320.9830.9850.9820.9840.9750.9310.9690.924 0.880.97
    Liver488F242042915.19HFBXD62H14340.9840.9480.9490.9860.980.9850.980.9720.9160.9810.9770.9840.9760.9820.9770.9810.9780.9670.9860.9830.9770.9840.9790.9830.9810.9770.9780.9780.9860.9830.9810.9830.9570.9730.980.9860.9550.9810.9820.9830.9820.9780.9780.980.9790.9560.9750.980.980.9790.9840.9670.9810.980.9830.9830.9820.9750.9870.9830.9750.9690.9820.9150.9740.9750.9810.9820.9750.9530.9810.9490.9840.980.9770.9830.9760.9840.9880.9870.9810.9840.9780.9780.9830.9730.9810.9840.9780.9830.9790.9870.9880.9840.9840.9830.9840.980.9850.9820.9850.9830.9830.9820.9810.9810.9790.9810.98110.9560.9730.9820.9740.980.9810.980.9820.980.980.9830.980.9840.9750.9850.9850.9840.9770.9850.9860.98310.9840.9770.9770.9820.9830.9780.9830.9820.9840.940.9810.9810.9860.9860.9780.9490.9740.955 0.9150.98
    Liver548F302082214.10HFBXD62H13150.9510.9320.9340.9520.960.9590.9510.9140.8960.9530.960.9470.9640.9560.9480.9520.9280.9260.9560.9520.9470.9490.9530.9530.9380.9380.9390.9290.9570.9540.9470.950.970.9320.9320.9480.9020.9470.9340.9380.9470.9490.9390.9520.9420.9210.9590.9640.9470.9480.950.9170.9390.9610.9530.9540.9370.9360.9490.940.9630.9560.9420.9260.9520.9540.9520.9560.9340.8980.9460.9030.9590.9510.9420.940.9310.9570.9590.9560.950.9580.9680.9540.9450.9440.950.9550.9330.9430.9460.9560.9550.9360.9350.9570.950.9280.9570.9320.9580.9440.9470.9510.9650.9470.9380.9520.9560.95610.9240.9360.9470.9520.9520.9440.9640.9480.9580.9580.9690.9520.9580.9520.9530.9510.9280.9410.950.9460.9560.950.9320.9530.9580.9610.9510.950.9630.9480.9540.9530.9690.9570.9550.9440.9030.9350.913 0.8960.95
    Liver186F125111414.09HFBXD63H17150.9720.9220.9220.9690.9650.9660.9740.9790.8950.970.950.9760.9590.9680.9610.9630.9790.9610.9690.9680.960.9730.9740.9730.9770.9750.9750.9760.9710.970.9750.9670.9220.9860.980.9720.9550.9830.9890.9860.9720.9710.980.9740.9750.9520.9640.970.9740.9710.9720.9760.9760.9670.9740.970.9740.9670.9750.9840.9570.940.9760.880.9640.9670.9680.9690.9690.9570.9760.9580.9670.9740.9770.9840.9820.9720.9720.9750.9750.9640.9470.9620.9730.9640.9730.9720.9810.970.9680.9710.9720.9840.9840.970.970.9760.9740.9760.9610.9750.9670.9710.9590.9720.9780.9690.9620.9730.92410.9880.9730.9730.9680.9780.9580.9690.9680.9670.9550.9670.9560.980.9750.970.9790.9740.9790.9730.9730.970.980.9670.9540.9610.9750.9770.9670.9780.9010.9720.9620.9710.9710.9760.9580.9640.946 0.880.97
    Liver344F123121214.26HFBXD63H14160.9820.9250.9260.980.9670.9770.9790.9770.8920.9750.9630.9830.9670.9760.9670.9750.9770.9670.980.9780.9780.9830.9790.9810.9810.9730.9740.9820.980.9790.9830.9790.9350.980.9860.9760.9440.990.9910.9960.9840.9790.9820.9810.9810.9460.9670.9740.9820.9760.9830.970.9780.9680.9810.9790.9780.9790.9830.9840.9630.9510.9840.8890.9730.9720.9730.980.9680.9510.9790.9490.9790.9790.9820.9840.9780.980.9830.9850.9810.9760.9590.9740.9820.9680.980.9810.9820.9830.980.9810.9810.990.9890.9780.9820.9790.9770.9810.9740.9860.9680.9740.970.9820.9830.9840.9760.9820.9360.98810.9760.9740.9730.9850.9710.9820.9750.9760.9630.9780.9610.9850.9850.9820.9770.9820.9840.9860.9820.9820.9860.9730.9680.9750.9780.9790.9790.9840.9170.9810.9750.9820.9830.9830.9490.9720.943 0.8890.97
    Liver752F135102616.17HFBXD63H20910.9640.9430.9420.9690.9710.9750.9690.9720.9220.9650.9660.970.9640.960.9720.9680.9690.9670.970.9680.9710.9660.9680.9680.9660.9720.9720.9710.9720.970.970.9690.9470.970.9660.9770.9490.9750.9760.9730.970.970.9630.9720.9730.9610.9650.9730.9690.970.9710.9630.9710.970.970.970.9690.9680.9690.9720.9630.950.9670.9050.9580.9610.9710.9660.9640.9460.9730.9450.9720.9690.9750.9720.970.9680.9740.9730.9720.9670.9660.9660.9710.9650.9660.9680.9730.970.9660.9710.9740.9760.9750.970.9690.9660.9730.9660.9670.9730.9710.970.9740.9680.9660.9660.9550.9740.9470.9730.97610.9660.9710.9640.9670.9680.9690.9670.970.9680.9690.9740.9720.9710.9710.9710.9740.9710.9740.9690.9670.9620.9710.9630.9680.9730.9680.970.9360.9680.9670.9730.9710.9760.9450.9610.959 0.9050.97
    Liver230F265051012.01HFBXD65H04580.9860.9270.9290.9810.9870.9790.9880.9620.8890.9830.9670.9820.9770.9820.9740.9750.9670.9620.9760.9750.9710.9840.9890.9880.9810.9730.9740.9730.9810.9830.9820.9830.9410.9760.9780.9750.9440.9820.9780.9760.9810.9790.9780.9850.980.9530.9820.9770.9820.9830.980.9670.9760.9790.9850.9830.9760.970.980.9770.980.9610.9820.8950.9780.980.9760.9790.970.9490.9810.9530.980.9880.9820.9770.9710.9880.9830.9850.9830.9820.9730.9750.9830.9620.9840.9850.970.9810.9720.9770.9770.9740.9730.9880.9770.9740.9810.9770.9780.980.9760.9830.9780.9810.9710.9780.9780.980.9520.9730.9740.96610.9760.9860.9810.9790.9850.9830.9730.9830.9710.9870.9840.980.9710.9750.9840.9770.980.9770.9750.9880.9730.9790.9910.9850.9820.9850.9230.9810.9780.9840.9840.9810.9530.9690.949 0.8890.97
    Liver541F212121615.06HFBXD65H17840.9720.9550.9560.9750.9720.9770.970.9680.9250.9750.970.9760.9740.9730.9750.9690.9770.9730.9820.9750.9640.9720.9740.9760.9780.9790.9790.9770.980.970.9730.970.9580.9710.9740.9830.9520.9720.9750.9730.9810.9770.9740.9780.9780.9590.9640.9730.9710.9710.9760.9680.9820.9720.9740.970.980.9650.9780.9740.9650.9670.9790.9170.9710.97110.9760.9750.9590.9780.9570.9770.970.9720.9740.9760.9730.9830.9820.970.9760.9690.9750.980.9850.9760.9760.9770.9690.9730.9830.9840.9760.9760.9810.9810.9760.9870.9780.9780.9770.9840.9750.9760.970.9730.9760.9720.9810.9520.9680.9730.9710.97610.9750.9830.9750.9780.9740.9710.9710.980.9790.9760.9720.9780.9730.980.9720.9810.9810.9660.970.9750.9740.9730.9870.9740.9740.9410.9730.9750.9780.9740.9680.9570.9790.963 0.9170.97
    Liver174F315102414.18HFBXD65bH17130.9870.920.9220.9820.9740.9780.9850.9640.880.980.9680.9850.9740.980.9640.9780.970.9620.9810.9770.9740.9860.9840.9840.9770.9690.970.9750.980.9810.9870.980.9380.9790.9840.9730.9310.9860.9840.9870.9860.9820.9870.9870.9780.940.9730.9730.9870.9770.9820.9630.9720.970.9860.9810.9730.9770.9840.980.9710.9590.9850.8890.9810.980.9750.9790.9620.9410.9750.9460.9810.9850.9820.980.9690.9880.9850.9890.9790.9810.9670.9780.9810.9640.9810.9850.9730.9820.9790.9810.980.980.980.9830.9820.9710.9790.9750.9780.9840.9650.9770.9750.9860.9780.9870.9840.980.9440.9780.9850.9640.9860.97510.9780.9810.9810.9780.9650.9790.9610.9870.9860.9830.9690.9820.9840.9840.980.9820.9840.9830.970.9820.9870.9830.9870.9890.9190.9850.9830.9840.9880.9830.9460.9740.933 0.880.97
    Liver527F321121615.11HFBXD65bH17900.9840.9350.9380.9830.980.9840.9810.950.8950.9810.9780.9760.9790.9810.9730.9750.9620.9570.9840.9790.9730.9810.980.9820.970.9660.9660.9630.9840.980.9780.9790.9650.9650.970.9720.9230.9760.9680.9730.9830.9840.9740.9840.9740.9390.9780.9790.9760.9740.980.9470.9680.9780.9780.980.9720.9720.980.9730.9780.980.9720.920.9780.9780.9830.980.9590.9310.9740.9260.9850.9810.970.9730.9610.9860.9850.9850.9790.9890.9840.9810.9810.9690.980.9830.9640.9770.9790.9840.9820.9720.9720.9850.9830.9620.9810.9670.9860.9770.9760.9730.9840.9780.9730.9820.980.9820.9640.9580.9710.9670.9810.9830.97810.980.9860.9810.9810.980.9760.9760.9810.9790.9590.9750.9760.9780.9820.9830.9690.9780.9840.9860.9780.980.9840.9760.9440.9820.9850.9840.9830.9730.9260.9680.935 0.8950.97
    Liver184F262042415.05HFBXD66H21240.9860.9230.9230.9850.9750.9850.9830.9660.8850.9830.9730.9840.9780.9810.9690.9810.9680.970.980.9810.9840.9880.9840.9870.980.9740.9740.9760.9840.9850.9820.9870.9460.9740.9820.9760.9320.9840.9760.9810.9880.9830.9780.9880.9890.9480.9730.9780.9810.9750.9870.9580.9770.9730.9810.9850.9770.9810.9850.9790.9690.9610.9820.8940.9810.9740.9750.9850.9650.9410.980.9380.9850.9830.9810.9790.9690.9840.9880.9880.9850.9840.9720.9850.990.9640.9860.9870.9740.9880.9830.9810.9810.9790.9780.9860.9830.9710.9740.9750.9830.9840.970.9760.980.9820.9810.9890.9780.980.9480.9690.9820.9680.9790.9750.9810.9810.990.980.9710.9820.9640.980.9870.9850.9690.9780.9830.9820.980.9830.9770.9770.9770.9810.980.9820.9790.9820.9280.9840.9790.9890.9850.9820.9380.9730.943 0.8850.98
    Liver367F122121214.04HFBXD66H15600.9860.9270.930.9830.9840.9830.9880.9580.8890.9870.9750.980.9820.9820.9710.9760.9660.9640.9810.9790.9750.9830.9870.9870.9770.9730.9740.9690.9840.9830.9820.9830.9530.9760.9770.9750.9340.9810.9730.9760.9840.9850.9780.9870.9850.9490.9840.9820.980.980.9820.9570.9750.980.9830.9830.9750.9750.9820.980.9790.9680.9770.9020.9810.980.9780.9820.9650.9420.9810.9380.9840.9880.9780.980.9690.9890.9860.9880.9850.9880.9780.9840.9870.9660.9860.9870.970.9820.9820.9810.9810.9740.9730.9880.9810.9670.9810.9720.9830.9790.9760.9770.9830.9820.9790.9860.9780.980.9580.9680.9750.9690.9850.9780.9810.9860.9910.9850.9770.9820.9720.9820.9840.9810.9680.9750.9810.9790.980.9810.9740.9830.9780.9830.9840.9860.9830.9820.9320.9870.9820.9860.9850.9790.9380.9720.944 0.8890.98
    Liver201F59101613.08HFBXD68H10710.9860.930.9310.9830.9820.9820.9880.9580.8940.9850.9720.9790.9790.9840.9710.9770.9710.9610.9840.9760.9730.9820.9830.9860.980.9690.9690.9690.9830.9810.980.9850.9490.9710.9750.9760.9380.9790.9750.9760.9810.9750.9750.980.9770.9460.9860.9840.9770.9770.9820.9570.9720.980.9830.9810.9750.9730.9820.9790.9770.9640.9810.9060.9760.9760.9740.9820.9680.9430.9780.940.9830.9880.9780.9790.9670.9860.9850.9840.980.9820.9760.980.9820.9650.9830.9840.9720.9810.9770.9850.9850.9730.9720.9860.9760.970.9810.9730.9810.9770.9770.9790.9810.980.9720.980.9780.9830.9580.9670.9760.9670.9830.9740.9780.9810.980.98510.9810.9880.9720.9820.9810.980.9680.9770.980.9780.9830.9760.9710.9850.9790.9810.9820.9790.980.9810.9350.9830.9780.9850.9850.9780.940.9680.947 0.8940.97
    Liver545F71082214.08HFBXD68H12900.9750.950.9510.9760.9820.9850.9730.9480.9190.9760.980.9710.9760.9740.9770.9770.9630.9510.9820.9760.9690.9730.9730.9750.9640.9670.9680.9590.9790.9780.9690.9770.9710.9610.9610.9750.9350.970.9630.9630.970.9720.9640.9750.9670.9490.9820.9860.9710.9730.9740.9480.9670.9830.9750.9780.9660.9640.9770.970.980.9760.9640.9370.9690.9710.9710.9730.9610.9290.9720.9280.9780.9730.9660.970.9630.9780.9790.9760.9750.9790.9850.9740.9720.9620.9720.9760.960.9730.970.9820.9820.9690.9680.9760.9740.9590.9780.9620.9820.9690.9750.9740.9830.9690.9640.970.9690.980.9690.9550.9630.970.9730.9710.9650.9810.9710.9770.98110.9760.9780.9730.9750.9760.9590.9720.9740.9690.980.9740.9620.9710.9840.980.9710.9730.9760.970.9590.9740.9770.9770.9760.9680.9280.9580.944 0.9190.97
    Liver210F58101613.09HFBXD69H10870.9850.9270.9280.9830.9790.9820.9850.9620.8920.9820.9710.980.9730.9820.9710.980.9680.9640.9790.9760.9780.9850.9810.9850.9810.9690.9690.9710.9790.9840.980.9880.9440.9670.9760.9740.9380.9790.9760.9780.980.9730.9720.9790.9780.9450.9770.9780.9820.9820.9820.9570.9720.9760.9810.9840.9750.9740.9820.9790.9740.9590.9790.8990.9720.9710.9710.980.9680.9450.9780.9410.9810.9850.9790.9790.9650.9840.9840.9840.9820.9830.9770.9780.9830.9610.9810.9830.9720.9850.9770.980.980.9760.9750.9840.9760.9740.9780.9770.9810.980.9750.9770.9780.980.970.980.9770.9840.9520.9670.9780.9680.9830.9710.9790.980.9820.9820.9880.97610.9750.9830.9840.9830.9670.9780.9810.980.9840.9760.9730.980.9780.980.9810.9760.9810.9810.9310.9790.9780.9850.9870.9810.9410.9680.947 0.8920.97
    Liver528F109121214.23HFBXD69H13280.9650.9570.9570.9660.9750.9730.9660.9550.9260.970.9650.9680.9670.9650.9770.9660.9620.9590.9690.9660.9590.9650.9690.9690.9670.9690.9690.9630.9720.970.9640.9680.960.9590.9570.9710.9490.9630.9630.960.9680.9640.9570.9660.9660.9590.9670.9710.9680.9760.9670.9580.9710.9750.9690.970.9690.9540.9680.9670.9720.9620.9640.9260.9580.9630.980.9660.9680.9490.9720.9450.9680.9660.9630.9670.9630.9690.9730.9710.9690.9720.9720.9650.970.9720.9640.9670.9630.9670.9620.9710.9720.9660.9660.9720.9690.9670.9820.9690.9730.9690.9790.970.9720.9620.9580.9620.960.9750.9580.9560.9610.9690.9710.980.9610.9760.9640.9720.9720.9780.97510.9710.9680.9690.9660.9660.9720.960.9750.9690.9570.9670.9720.9680.9690.9720.9680.9680.9470.9660.9680.9720.9680.9630.9450.9630.958 0.9260.97
    Liver239F266051012.08HFBXD70H01880.9860.9360.9380.9840.9820.9810.9850.9740.9010.9790.9710.9860.9770.9810.9730.9780.9770.9680.9830.9810.9760.9850.9870.9870.9840.9780.9790.9820.9840.9830.9850.9820.9460.9790.9850.9830.9510.9870.9880.9860.9810.9790.980.9840.9840.9550.9770.980.9860.9840.9880.9780.9830.9780.9890.9830.9820.9730.9850.9840.9760.960.9870.8980.9770.9780.9790.9830.9720.9540.9850.9540.9820.9850.9850.9840.980.9850.9880.9890.9820.9810.970.9760.9830.970.9840.9870.9790.980.9770.9840.9850.9830.9830.9860.9830.980.9840.9830.980.9850.9770.9840.9790.9830.9780.9810.9810.9850.9520.980.9850.9740.9870.9790.9870.9760.980.9820.9820.9730.9830.97110.9920.9850.980.9830.990.9850.9850.9830.980.9830.9760.980.9870.9870.9860.990.9290.9850.9820.9850.9870.9850.9540.9760.952 0.8980.98
    Liver578F294121615.14HFBXD70H17280.9890.9290.930.9880.980.9870.9850.9690.8920.9810.9740.9890.9820.9850.9730.9850.9730.9690.9860.9860.9840.990.9890.990.9840.9760.9760.9780.9860.9890.9880.9870.9490.9760.9860.9790.9380.9880.9850.9850.9850.9830.980.9870.9860.950.9760.9810.9870.980.9940.9690.9810.9780.9890.9890.9780.9820.990.9820.9770.9630.9860.90.9830.980.9760.9880.970.9430.9830.9450.9860.9850.9880.9820.9760.9870.9920.9920.9820.9840.9730.9810.9850.9680.9860.9910.9790.9850.9830.9870.9870.9830.9820.9880.9840.9770.980.980.9860.9840.9710.980.9830.9870.980.9860.9840.9850.9530.9750.9850.9720.9840.9760.9860.9810.9870.9840.9810.9750.9840.9680.99210.990.9730.9850.990.9880.9850.9840.9830.9810.9810.9830.9840.9860.9880.9890.9330.9850.9840.9880.9910.9890.9450.9740.945 0.8920.98
    Liver206F224042015.18HFBXD73H20710.9880.930.9310.9870.9790.9890.9820.9650.8920.980.9750.9870.980.9820.9750.9870.970.9640.9840.9850.9860.9890.9850.9870.9780.9710.9710.9760.9850.9910.9850.9870.9510.9710.980.9760.9340.9850.980.9830.9850.9810.9770.9850.9820.9480.9750.9790.9870.980.990.9610.9790.980.9910.9910.9750.9830.990.9790.980.9650.9820.9030.9820.9790.9720.9850.9650.9350.9770.9370.9860.9820.9830.9790.9690.9860.9880.9880.9820.9840.9750.9820.9820.9640.9820.9890.9740.9870.9820.9840.9840.9820.9810.9840.9830.9730.9780.9760.9860.9850.9690.9790.9830.9860.9770.9840.9830.9840.9510.970.9820.9710.980.9720.9830.9790.9850.9810.980.9760.9830.9690.9850.9910.9720.9890.990.9860.9840.9830.9820.980.9820.9830.9830.9810.9860.9880.9360.9840.980.9890.9880.9870.9370.9690.94 0.8920.98
    Liver361F196121214.11HFBXD73H14470.9680.9450.9450.970.9690.970.9680.9820.9260.9670.9580.9750.9630.9660.970.9630.9820.970.9710.970.9580.9690.9710.9730.980.9860.9860.9840.9760.970.9690.9680.9320.9780.9790.9850.9750.9750.9830.9760.9710.9680.9730.9720.9780.9670.9610.9680.9720.9770.9710.9870.9920.9720.9760.970.9840.9610.9760.980.9560.9440.9770.8910.9620.9630.9780.970.9790.9740.9820.970.9670.9680.9730.980.9870.9680.9730.9730.9710.9650.9540.9630.9780.9710.9740.9710.980.9690.9670.9730.9760.980.980.9720.9730.9860.9770.9850.9680.9760.9780.9740.9640.9650.9740.9690.960.9770.9280.9790.9770.9710.9710.9780.9690.9590.9690.9680.9680.9590.9670.9660.980.9730.97210.9760.9840.9710.9770.9730.970.9650.9620.9620.9690.9830.9640.9740.9170.9690.960.970.9660.9670.970.9730.97 0.8910.97
    Liver237F97051112.14HFBXD73bH01830.9820.9350.9360.9830.9740.9840.9760.970.9040.9750.9710.9820.9740.9780.9710.9810.9780.9640.9830.9830.9770.9830.9790.980.9760.9710.9710.9750.9820.9850.9820.9820.9470.9740.9820.9790.9420.980.9830.9830.980.9790.9790.9780.9760.9480.9680.9740.9810.9750.9840.9640.9790.9780.990.9850.9740.9810.9880.9790.9730.9630.9790.9030.9760.9760.9730.9790.9640.9390.9740.9420.980.9760.980.9790.9750.9810.9840.9850.9740.9790.9690.9770.9760.9690.9750.9830.9780.9810.9830.9840.9840.9860.9860.9780.9820.9740.9780.9760.9820.9790.9710.9770.9770.9820.980.9780.9790.9850.9410.9740.9820.9710.9750.9730.9820.9750.9780.9750.9770.9720.9780.9660.9830.9850.9890.97610.9880.9870.9850.9820.9810.9750.9780.9790.9780.9810.9820.9840.9320.9790.9750.9820.9840.9820.9420.9710.943 0.9030.97
    Liver474F256050115.12HFBXD73bH15450.9860.9390.940.9850.9820.9850.9820.9740.9060.9790.9720.9880.9790.9830.9760.9820.9780.9690.9840.9840.9770.9860.9860.9880.9850.980.980.9830.9860.990.9840.9840.9490.9780.9850.9840.9510.9860.9870.9850.9830.9790.980.9850.9850.9580.9740.980.9870.9840.9880.9740.9880.9830.9920.990.9820.9760.990.9840.9770.9620.9870.9040.980.9790.980.9850.9740.9520.9840.9540.9820.9820.9850.9840.9820.9850.9890.9890.9820.9810.9710.9770.9840.9710.9840.9880.980.9820.9790.9850.9860.9850.9850.9850.9850.9810.9830.9830.9830.9850.9770.9820.980.9830.980.9820.9820.9860.950.9790.9840.9740.9840.980.9840.9760.9830.9810.980.9740.9810.9720.990.990.990.9840.98810.9850.9860.9850.9820.9810.9780.980.9850.9880.9840.9890.9330.9830.9790.9860.9850.9840.9540.9750.953 0.9040.98
    Liver511F319121615.19HFBXD77H18660.9860.9220.9240.9860.9730.9830.9810.9680.8890.9770.9710.9820.9770.9830.9670.9780.9750.9620.9850.9840.980.9850.9830.9830.9780.9690.9690.9740.9850.9820.9870.9820.9440.9750.9880.9760.9320.9840.9840.9870.9830.9840.9820.9830.9810.9410.970.9770.9820.9750.9860.9620.9750.9730.9870.9820.9790.9810.9870.980.9720.960.9810.8950.980.9810.9720.9850.9630.9370.9760.9360.9840.9810.9840.980.9730.9840.9880.9890.9770.9820.9690.9790.9790.9670.9830.9880.9790.980.9860.9860.9860.9840.9830.9820.9820.9710.9760.9750.9820.980.9670.9760.980.9870.9840.9860.9860.9830.9460.9730.9860.9710.9770.9720.9840.9780.9820.9790.9780.9690.980.960.9850.9880.9860.9710.9870.98510.9830.9820.9830.9770.9770.9810.980.9810.9850.9840.9280.9830.9810.9820.9850.9850.9360.9710.937 0.8890.98
    Liver571F24061913.18HFBXD79H05830.9840.9480.9490.9860.980.9850.980.9720.9160.9810.9770.9840.9760.9820.9770.9810.9780.9670.9860.9830.9770.9840.9790.9830.9810.9770.9780.9780.9860.9830.9810.9830.9570.9730.980.9860.9550.9810.9820.9830.9820.9780.9780.980.9790.9560.9750.980.980.9790.9840.9670.9810.980.9830.9830.9820.9750.9870.9830.9750.9690.9820.9150.9740.9750.9810.9820.9750.9530.9810.9490.9840.980.9770.9830.9760.9840.9880.9870.9810.9840.9780.9780.9830.9730.9810.9840.9780.9830.9790.9870.9880.9840.9840.9830.9840.980.9850.9820.9850.9830.9830.9820.9810.9810.9790.9810.98110.9560.9730.9820.9740.980.9810.980.9820.980.980.9830.980.9840.9750.9850.9850.9840.9770.9850.9860.98310.9840.9770.9770.9820.9830.9780.9830.9820.9840.940.9810.9810.9860.9860.9780.9490.9740.955 0.9150.98
    Liver241F2051012.14HFBXD87H02430.9840.9420.9450.9840.9760.9830.9770.9650.9040.9770.9790.9830.9750.9780.9740.9790.9730.9650.9850.9840.9740.9860.9820.9830.9760.9740.9750.9780.9850.980.9790.9780.9590.9720.9790.980.9370.9830.9810.9850.9840.9830.9790.9850.9780.9440.9720.9760.9830.9780.9840.960.980.9760.9830.980.9780.9750.9840.9790.9740.9730.9810.9110.9770.9750.9810.9820.9630.940.980.9390.9840.9770.9730.9790.9750.9840.9870.9870.9810.9850.9750.980.9840.9720.980.9820.9720.9810.9810.9860.9850.9840.9840.98610.9710.980.9750.9850.9860.9760.9750.9810.9780.9820.9860.9810.9840.950.970.9820.9690.9770.9810.9820.9830.9830.9810.9760.9740.9760.9690.9830.9840.9830.9730.9820.9850.9820.98410.9780.9760.9810.9870.9770.9850.9830.9820.9380.9860.9830.9850.9840.9740.9390.9770.941 0.9040.98
    Liver512F326121615.21HFBXD87H19450.9820.9150.9170.9760.9680.9760.9770.9650.8790.9740.9590.9840.9670.9750.9680.9790.9740.9630.9790.9760.9710.9830.980.980.9770.9680.9690.9750.9760.980.9820.9730.9330.9780.9840.9710.9350.9830.9830.9870.9810.980.9820.980.9750.9410.9690.970.9850.9740.9810.9650.9740.9690.9820.980.9750.9820.9850.980.9730.9570.9780.8830.9790.9790.9660.9770.9660.940.9750.9450.9760.9770.9790.980.9730.9810.9790.9830.9750.9740.9610.9710.9770.9640.9780.980.9750.9820.9830.9790.9790.9820.9820.9760.9780.9710.9740.9750.9720.9810.9610.9690.9660.9820.9820.9810.9770.9770.9320.980.9860.9670.9750.9660.9840.9690.9770.9740.9710.9620.9730.9570.980.9830.9820.970.9810.9820.9830.9770.97810.9740.9670.9740.980.9790.9770.9840.9110.980.9710.9760.980.9810.9450.9720.933 0.8790.97
    Liver243F267051112.01HFBXD89H01760.9860.9210.9230.9820.9830.9780.9870.9540.880.9810.9660.9790.9770.9810.9670.9730.9650.9560.9750.9740.9690.9830.9860.9850.9760.9660.9670.9680.980.9810.9810.980.9410.9720.9740.970.9320.9810.9750.9750.9790.9750.9760.9810.9750.9440.9820.9750.9820.9780.980.960.9710.9780.9860.9810.9730.970.9780.9760.980.9660.980.8960.980.9810.970.980.9620.9380.9760.9410.980.9870.9780.9760.9650.9880.9820.9820.980.9810.9710.9750.9790.9580.9810.9830.9650.9790.9730.9760.9750.970.970.9850.9760.9650.9770.9690.9780.9760.9690.9770.9760.9810.970.9790.980.9770.9530.9670.9730.9620.9880.970.9830.9780.9770.9830.9850.9710.980.9670.9830.9810.980.9650.9750.9810.9770.9770.9760.97410.9770.980.9880.9820.9820.9860.9260.9840.9760.9830.9820.9780.9410.9670.939 0.880.97
    Liver539F282101014.04HFBXD89H13210.980.9460.9480.9840.9810.9880.9750.9550.9180.9770.9830.9750.9780.9760.9750.9820.9690.9580.9820.980.9760.9790.9760.9790.9680.970.970.9660.9830.980.9760.980.9660.960.9690.9780.9280.9730.9680.9690.9780.9760.9680.9790.9730.9470.9740.9770.9750.9720.9820.9480.9710.9780.9780.980.9720.9710.9810.9710.9770.980.9720.9270.9770.9750.9750.9790.9620.9290.9720.9270.9850.9750.9710.9710.9640.980.9850.9820.9740.9830.9850.980.9770.9630.9750.980.9650.9760.9760.9830.9830.9730.9720.9810.9810.9610.9760.9650.9890.9750.9750.9740.9860.9760.9680.9770.9760.9820.9580.9540.9680.9710.9730.9750.970.9840.9770.9780.9790.9840.9780.9720.9760.9810.9820.9620.9780.9780.9770.9820.9810.9670.97710.9830.9730.9790.980.9760.960.9770.980.9820.9810.9730.9270.9660.944 0.9180.97
    Liver548F312082214.09HFBXD9H10090.9870.9320.9360.9850.9790.9840.9810.9490.8890.980.9790.980.9790.9820.9680.980.9640.9560.9870.9820.9760.9850.9820.9830.970.9650.9660.9660.9850.9820.980.980.9610.9660.9740.9730.9220.9810.9730.9780.980.980.9770.9840.9720.9360.9790.9790.9830.9770.9810.9490.9690.9780.9830.9820.970.9720.9830.9750.9790.9760.980.9180.9790.9790.9740.9810.9550.9260.9730.9270.9850.9810.9720.9750.9630.9880.9870.9870.9790.9870.9810.9820.9790.9640.980.9850.9620.980.9820.9870.9850.9750.9740.9840.9870.9610.9790.9680.9860.9790.970.9740.9820.9810.9750.9860.9870.9830.9610.9610.9750.9630.9790.9740.9820.9860.9810.9830.9810.980.980.9680.980.9830.9830.9620.9790.980.9810.9830.9870.9740.980.98310.9790.9790.9870.980.9410.9870.9870.9840.9850.9750.9270.9710.93 0.8890.97
    Liver218F297101613.19HFBXD90H10930.9850.9220.9240.980.9850.9790.9880.9610.8840.9810.9650.9820.9770.9810.9730.9760.9670.9620.9770.9750.9720.9830.9880.9860.9790.970.970.9720.980.9830.9850.9810.940.9770.9780.9720.9370.9830.9790.9790.980.9780.9780.9830.9790.950.980.9760.9840.9810.980.9650.9730.9770.9870.9830.9740.9730.9810.9790.9810.960.9810.8920.9820.9850.9730.980.9660.9430.9770.9480.980.9880.9840.9790.9690.9880.9830.9870.9830.9820.9710.9760.980.9630.9810.9860.9710.9810.9750.9780.9780.9750.9740.9860.9770.970.9810.9740.9770.9810.970.9820.9780.9840.9720.980.980.9780.9510.9750.9780.9680.9910.9730.9870.9780.980.9840.9820.9710.9810.9690.9870.9840.9830.9690.9780.9850.980.9780.9770.980.9880.9730.97910.9870.9850.9880.9230.9830.9790.9830.9850.9850.9480.970.944 0.8840.97
    Liver570F274062013.03HFBXD90H07360.9830.9410.9430.9830.9830.9830.9820.9730.910.9820.9720.9840.9810.9810.9770.9760.9810.9740.9840.9820.970.9820.9870.9860.9830.9840.9840.9810.9860.9810.9830.9780.9510.9820.9840.9860.9530.9830.9830.9790.9830.9840.9820.9860.9850.9610.9770.9780.9820.9810.9840.9750.9870.9810.9860.9810.9840.9740.9850.9830.9760.9680.9830.9020.9840.9860.9870.9820.9760.9570.9840.9590.9830.9820.9830.9830.9840.9850.9870.9880.980.9810.9710.980.9850.9760.9850.9870.980.9770.980.9850.9860.980.980.9880.9850.9780.9860.980.9820.9820.980.9810.9810.9810.9810.9820.9780.9830.950.9770.9790.9730.9850.9870.9830.980.9820.9860.9790.9730.9760.9720.9870.9860.9810.9830.9810.9880.9810.9830.9850.9790.9820.9790.9790.98710.9820.9860.9310.9830.9790.9830.9830.980.9590.9810.96 0.9020.98
    Liver562F325062013.19HFBXD91H08810.9880.9280.9310.9860.9810.9840.9840.9550.8880.9790.9770.9830.9820.9830.970.980.9640.9540.9840.9830.980.9850.9850.9840.9730.9670.9680.9690.9840.9850.9880.9820.9570.970.9780.9730.9250.9840.9780.9820.9810.9820.9780.9850.9760.940.9780.9780.9860.980.9840.9550.9710.9780.9880.9850.970.9750.9840.9760.980.970.980.9070.9810.9830.9740.9820.9580.9290.9740.9330.9870.9840.980.9760.9650.990.9890.990.9790.9860.9780.9810.9780.9640.9810.9880.9680.9780.9790.9840.9820.9780.9770.9830.9830.9660.9820.9720.9860.9810.9660.9780.9850.9880.9750.9860.9880.9820.9630.9670.9790.9680.9820.9740.9870.9840.9790.9830.980.9760.9810.9680.9860.9880.9860.9640.9820.9840.9850.9820.9830.9770.9820.980.9870.9850.98210.9880.9380.9870.9910.9870.990.9840.9330.9670.931 0.8880.98
    Liver213F288101613.21HFBXD95H12750.9880.9290.9310.9840.980.9820.9850.970.8920.980.9680.9880.9770.9820.9720.9810.9730.9650.980.9810.9790.9880.9870.9860.9810.9750.9750.980.9830.9850.9870.9830.9430.980.9850.9770.9440.9870.9850.9850.9840.9790.9810.9840.9820.9540.9760.9770.9880.9820.9860.970.9780.9770.9890.9850.9790.9780.9860.9820.9770.9620.9860.8970.9820.980.9740.9860.970.9460.9810.9510.9830.9850.9850.9820.9740.9870.9870.9880.9820.9810.9690.9770.9820.9650.9830.9880.9770.9840.9770.9810.9810.9830.9820.9840.9820.9760.9810.980.9810.9860.9710.9810.9780.9860.9790.9840.9840.9840.9480.9780.9840.970.9850.9740.9890.9760.9820.9820.9810.970.9810.9680.990.9890.9880.9740.9840.9890.9840.9840.9820.9840.9860.9760.980.9880.9860.98810.9290.9850.980.9870.9880.9870.9510.9720.944 0.8920.98
    Liver550F236102414.20HFBXD95H12730.9250.950.950.9350.9410.9510.9210.9080.9390.9320.9550.9280.9440.9320.9420.9420.9210.9140.940.9380.9320.9280.9260.9290.9190.9280.9280.920.9410.9330.9240.9340.9640.9090.9130.9380.8930.9220.9160.9170.9320.9270.9160.9290.9240.9170.9290.9420.9240.9240.9340.8990.9270.9420.930.9330.9240.9190.9340.9180.9410.9470.9230.9520.930.9290.9410.9370.9250.8860.9250.890.9410.9210.9220.9180.9160.9290.9420.9350.9260.940.960.9380.9280.9330.9240.9310.9220.9270.9280.9420.9420.9260.9250.9360.9380.9150.9390.9170.9480.9280.9390.9330.9520.9230.920.9290.9320.940.9540.9010.9170.9360.9230.9410.9190.9440.9280.9320.9350.9590.9310.9470.9290.9330.9360.9170.9320.9330.9280.940.9380.9110.9260.960.9410.9230.9310.9380.92910.9260.9450.9390.9330.9230.890.9180.913 0.8860.93
    Liver182F305050914.05HFBXD99H13550.990.9220.9240.9850.980.9810.9880.9580.880.9820.9730.9820.9780.9810.9680.9760.9670.9570.9830.9820.9750.9860.9870.9860.9740.970.9710.9720.9850.9840.9850.980.9480.9770.980.9740.9310.9880.9790.9840.9820.9850.9810.9880.9790.940.9850.9820.9870.9830.9840.960.9740.9790.9860.9840.9740.9760.9830.9830.9780.9680.9790.8990.9790.9810.9730.9830.9580.9360.9830.9320.9860.9880.9790.9830.970.9910.9850.9880.9860.9870.9720.9820.9830.9610.9850.9880.9670.9820.9820.9830.9820.9790.9790.9830.9860.9670.980.9720.9810.9830.9680.9750.980.9850.9810.9880.9830.9810.9530.9720.9810.9680.9810.9730.9850.9820.9840.9870.9830.9740.9790.9660.9850.9850.9840.9690.9790.9830.9830.9810.9860.980.9840.9770.9870.9830.9830.9870.9850.92610.9840.9840.9860.9810.9320.970.933 0.880.98
    Liver544F309062013.09HFC57BL/6JH05140.9840.9330.9360.9830.9780.9820.9810.9490.8940.9790.9820.9770.980.980.9670.9770.9610.9520.9840.9790.9750.9810.980.980.9680.9670.9680.9640.9830.980.9830.9770.9640.9650.9720.9720.9190.9810.9720.9780.9780.9790.9750.9840.9720.9340.9760.9790.980.9740.980.9470.9680.9750.9810.980.9670.9690.980.970.9750.9710.9760.9150.9770.9780.9750.9790.9550.9270.9710.930.9890.9810.9740.970.9590.9860.9880.9890.9780.9860.9810.9830.9770.9630.9790.9840.9640.9740.9760.9840.9820.9730.9720.9820.9830.9590.9790.9650.9850.9790.9680.9750.9850.9830.9730.9850.9850.9810.9690.9620.9750.9670.9780.9750.9830.9850.9790.9820.9780.9770.9780.9680.9820.9840.980.960.9750.9790.9810.9810.9830.9710.9760.980.9870.9790.9790.9910.980.9450.98410.9860.9860.9760.930.9650.926 0.8940.97
    Liver182F235102414.06HFC57BL/6JH16810.9880.9340.9350.9890.9820.9880.9870.9660.8950.9850.9770.9870.9840.9850.9760.9830.9680.9650.9820.9840.9850.9890.9870.9880.9810.9760.9750.9780.9870.9870.9860.9890.9530.9740.980.9790.9360.9860.980.9820.9890.9820.9780.9880.9840.9510.9780.9810.9840.9790.9890.9610.9780.9780.9860.9870.9780.9810.9860.9780.9760.9660.9860.9060.9820.9770.9780.9860.9690.9440.9810.9440.9930.9870.9830.9780.9660.9880.9910.9890.9860.9860.9770.9850.9880.9660.9860.9880.9760.9860.9770.9830.9830.9810.980.9880.9850.9730.9810.9760.9880.9870.9760.9820.9860.9860.9770.9880.9820.9860.9570.9710.9820.9730.9840.9780.9840.9840.9890.9860.9850.9770.9850.9720.9850.9880.9890.970.9820.9860.9820.9860.9850.9760.9830.9820.9840.9830.9830.9870.9870.9390.9840.98610.9890.9850.9440.9690.943 0.8950.98
    Liver214F301101713.20HFD2B6F1H11500.990.9270.9280.9880.980.9850.9890.9630.8890.9830.9750.9860.9790.9830.9730.9840.9690.9660.9840.9830.9850.9880.9870.9870.9790.9710.9710.9730.9840.9870.9880.9870.950.9720.9810.9760.9320.9860.9810.9840.9840.9820.9770.9860.9810.9450.9790.9790.9840.980.9880.9590.9730.9750.9870.9870.9740.9830.9860.9790.9780.9670.9840.9010.980.9790.9740.9840.9640.9380.9780.9410.9880.9890.9870.9790.9670.9910.990.9920.9820.9860.9770.9830.9830.9660.9830.990.9740.9860.9820.9840.9840.9810.980.9870.9840.9730.9820.9770.9840.9850.9690.980.9840.9880.9760.9860.9840.9860.9550.9710.9830.9710.9840.9740.9880.9830.9850.9850.9850.9760.9870.9680.9870.9910.9880.9660.9840.9850.9850.9860.9840.980.9820.9810.9850.9850.9830.990.9880.9330.9860.9860.98910.9890.9410.9720.941 0.8890.98
    Liver540F291062013.13HFD2B6F1H06420.9840.9170.9170.9820.9760.9830.9860.970.8820.9760.9630.9850.9750.9780.970.980.9670.9650.9770.9780.9860.9850.9870.9830.9780.970.9690.9740.9790.9850.9890.9850.9350.9750.9820.9710.9350.9860.9830.9810.980.9790.9740.9830.9850.9530.9730.9760.9830.9780.9860.9650.9710.9710.9850.9850.9720.9840.9830.9770.9740.9510.9810.8880.9760.9760.9680.9810.9630.9380.9760.9430.9830.9860.9940.9770.9680.9840.9840.9870.980.9780.9650.9760.9790.9610.980.9870.9780.9830.9770.9780.9790.980.9780.9820.9740.9730.9760.9750.9760.9810.9620.9790.980.9880.9720.9790.9750.9780.9440.9760.9830.9760.9810.9680.9830.9730.9820.9790.9780.9680.9810.9630.9850.9890.9870.9670.9820.9840.9850.9780.9740.9810.9780.9730.9750.9850.980.9840.9870.9230.9810.9760.9850.98910.9430.9640.945 0.8820.97
    Liver212F16101713.11HFDBA/2JH11440.9350.9310.9290.9350.9420.940.9380.9640.9220.9430.9220.9540.9340.9380.9520.9370.9580.9620.9390.9350.9280.9410.9450.9460.9640.9670.9670.9690.9430.9380.9410.940.90.9530.9540.9610.9760.9440.960.9450.9460.9340.9440.9390.9540.960.9270.9350.9420.950.9410.9760.9670.9350.9430.9380.9610.9350.9450.9460.9320.9110.9590.8630.9350.9350.9570.940.9740.9760.95810.9360.9380.9520.9460.960.9350.9420.9440.940.930.9230.9310.950.9550.9450.9390.9620.9420.9320.9420.9470.9510.950.9480.9390.9730.9580.970.9310.950.9550.9530.930.9360.9390.9360.9310.9490.9030.9580.9490.9450.9530.9570.9460.9260.9380.9380.940.9280.9410.9450.9540.9450.9370.970.9420.9540.9360.9490.9390.9450.9410.9270.9270.9480.9590.9330.9510.890.9320.930.9440.9410.94310.9570.968 0.8630.94
    Liver544M181091914.07HFDBA/2JH11400.9690.9350.9370.9670.9610.9690.9660.9640.9030.9680.960.9770.9610.9660.9640.970.9730.990.9770.9680.960.9710.9680.9730.9770.9710.9720.9770.9710.9660.9660.9650.940.9650.9740.9770.9440.970.9750.9730.9770.9690.9690.9710.9720.9460.9580.9620.9720.9680.9720.9650.9770.9590.970.9660.9770.9690.9740.9730.9590.9570.9770.8880.9670.9630.9790.970.9690.9540.9740.9570.9660.9660.9680.9730.9740.9690.9760.9780.9650.9690.960.9680.9780.9760.9710.970.9690.9750.9780.9780.9790.9710.9710.9740.9770.9730.9750.9760.9690.9750.970.9670.9630.9630.970.9760.9690.9740.9350.9640.9720.9610.9690.9790.9740.9680.9730.9720.9680.9580.9680.9630.9760.9740.9690.9730.9710.9750.9710.9740.9770.9720.9670.9660.9710.970.9810.9670.9720.9180.970.9650.9690.9720.9640.95710.957 0.8880.97
    Liver549F190091914.05HFDBA/2JH11420.9320.9490.9460.9380.9480.9490.940.9650.9410.940.9320.9490.9380.9350.9570.9420.9590.9720.9440.9380.940.9380.9420.9450.960.9680.9670.9630.9480.940.9360.9470.9150.9440.9470.9670.9750.9380.9510.9370.9420.9350.9320.9390.9570.9730.9330.9420.9350.9520.9430.9690.9680.9430.9410.940.9630.9340.9450.9490.9340.9190.9520.8830.9290.9290.9630.9410.9710.9720.9590.9680.9350.940.9530.9490.9630.9340.9480.9460.9420.9350.9380.9360.9540.9580.9430.940.960.9460.9390.9470.9530.9490.9480.9510.9410.9710.960.9670.9410.9480.9660.9570.9430.9310.9340.9330.9240.9550.9130.9460.9430.9590.9490.9630.9330.9350.9430.9440.9470.9440.9470.9580.9520.9450.940.970.9430.9530.9370.9550.9410.9330.9390.9440.930.9440.960.9310.9440.9130.9330.9260.9430.9410.9450.9680.9571 0.8830.95
                                                                                                                                                                     
           Min0.8770.9140.9140.8940.9070.9130.8770.8790.8770.8940.9170.8970.8970.8870.9190.9020.8960.880.9050.9030.8850.8860.8840.8890.890.9030.9040.890.9070.8910.8830.8940.90.8840.8830.910.8750.8840.890.8880.8930.8880.8880.8870.8890.90.8830.9030.8840.90.8930.8770.9010.910.8920.8910.8980.8780.9010.8960.8940.9010.8930.8630.8820.8840.9170.8930.8990.8630.9010.8630.8940.8770.8890.8960.8950.8810.9010.8950.890.8920.9170.8920.8970.9120.8870.8860.8890.8870.8880.9080.9130.90.90.8960.9040.8880.9150.890.9050.8990.9160.9040.9070.8780.8910.8820.880.9150.8960.880.8890.9050.8890.9170.880.8950.8850.8890.8940.9190.8920.9260.8980.8920.8920.8910.9030.9040.8890.9150.9040.8790.880.9180.8890.8840.9020.8880.8920.8860.880.8940.8950.8890.8820.8630.8880.883 minaverage
           Average0.977560.934660.935720.9775066670.9739733330.9779466670.9754933330.9634866670.902620.975140.9681733330.977620.9724133330.9746733330.9698866670.9736866670.9696133330.9615933330.9764866670.9759066670.969640.977620.9769533330.9783666670.9748066670.9722066670.9725666670.9722333330.979080.976660.975760.975580.9466133330.97030.974760.975260.9413733330.976840.9752666670.97450.9769333330.9745333330.97290.9775333330.9754933330.94970.96980.9738266670.9757733330.9737466670.977960.9623266670.9751533330.97280.9774266670.976660.9740066670.9696733330.9788733330.9753133330.9688266670.9598666670.9756133330.903480.9724533330.9715933330.9731733330.976140.9668533330.9453066670.9759466670.944460.976980.9754933330.9745066670.9753133330.9703266670.97730.9797466670.9796733330.974760.9753866670.9675733330.97280.9771666670.964680.9765733330.977960.9706533330.9746866670.9725066670.9774666670.9779866670.9751666670.9745866670.9778333330.9760266670.9701933330.9760333330.9727466670.97610.9762933330.9709133330.9734866670.9741133330.9746866670.971980.9756466670.971860.977940.9465533330.9677266670.974220.9669933330.9749266670.9731733330.9744466670.973080.9753466670.9756333330.974480.9696666670.97390.966080.9781533330.978680.9768266670.9699866670.974680.978940.975160.977940.9760266670.9714266670.9723066670.9724666670.9737733330.974520.9784666670.9752333330.9771666670.9305066670.9753533330.97270.9781133330.97720.9738266670.944460.9674733330.946173333 0.902620.970757511
    diff --git a/general/datasets/Uthsc_bxd_harv_liv_0118/specifics.rtf b/general/datasets/Uthsc_bxd_harv_liv_0118/specifics.rtf new file mode 100644 index 0000000..e492142 --- /dev/null +++ b/general/datasets/Uthsc_bxd_harv_liv_0118/specifics.rtf @@ -0,0 +1 @@ +RNA-Seq Log2 \ No newline at end of file diff --git a/general/datasets/Uthsc_bxd_harv_liv_0118/summary.rtf b/general/datasets/Uthsc_bxd_harv_liv_0118/summary.rtf new file mode 100644 index 0000000..153d98d --- /dev/null +++ b/general/datasets/Uthsc_bxd_harv_liv_0118/summary.rtf @@ -0,0 +1 @@ +

    In working progress...

    diff --git a/general/datasets/Uthsc_bxd_harv_liv_1019/cases.rtf b/general/datasets/Uthsc_bxd_harv_liv_1019/cases.rtf new file mode 100644 index 0000000..18fdd1d --- /dev/null +++ b/general/datasets/Uthsc_bxd_harv_liv_1019/cases.rtf @@ -0,0 +1,1371 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    CaseIDStrainDietSexAgeEarTag CurrentGN-SampleID
    062013.09C57BL/6JHFF544514H0514
    091914.09C57BL/6JCDF5371103H1103
    012615.26C57BL/6JCDM3611590H1590
    102414.06C57BL/6JHFF1821681H1681
    062013.12D2B6F1CDF545646H0646
    062013.13D2B6F1HFF540642H0642
    101713.20D2B6F1HFF2141150H1150
    101713.18D2B6F1CDF2101154H1154
    083016.07DBA/2JCDF7641818H1818
    091914.05DBA/2JHFF5491142H1142
    091914.07DBA/2JHFM5441140H1140
    101713.10DBA/2JCDF2121147H1147
    101713.11DBA/2JHFF2121144H1144
    121214.29B6D2F1CDF6401227H1227
    012615.07B6D2F1CDF5521569H1569
    102616.04B6D2F1HFF5472288H2288
    102616.05B6D2F1HFF5472290H2290
    101713.13B6D2F1CDF2161223H1223
    101713.15B6D2F1HFF2161302H1302
    082214.11BXD9CDF5481006H1006
    082214.09BXD9HFF5481009H1009
    102616.12BXD9CDF2452577H2577
    083016.08BXD24HFF6882259H2259
    012615.19BXD24CDF2051792H1792
    012615.08BXD29CDF7241044H1044
    111314.10BXD29HFF6301037H1037
    061913.04BXD29HFF577669H0669
    111314.11BXD29CDF5741040H1040
    061913.01BXD29CDF572742H0742
    121515.05BXD29HFF1822349H2349
    101014.02BXD32HFF5391137H1137
    083016.01BXD32CDF3862494H2494
    042015.22BXD32CDF2002034H2034
    042015.20BXD32HFF2002030H2030
    101513.05BXD34CDF554765H0765
    101014.05BXD34HFF5371052H1052
    101513.02BXD34CDF2011054H1054
    101513.04BXD34HFF1971056H1056
    010614.06BXD39CDF730673H0673
    102414.02BXD39CDF5501322H1322
    121214.22BXD39HFF3501474H1474
    121214.21BXD39HFF3501473H1473
    061913.06BXD40CDF578680H0680
    121214.13BXD40HFF3581593H1593
    111314.05BXD40HFF2911488H1488
    102414.08BXD40CDF1801691H1691
    102414.12BXD44HFF7151687H1687
    012615.15BXD44CDF3791505H1505
    012615.12BXD44HFF3791501H1501
    042015.07BXD44CDF2401822H1822
    042015.10BXD44HFF2401825H1825
    121515.12BXD45CDF5071826H1826
    121515.15BXD45HFF5031940H1940
    012615.11BXD45CDF3841762H1762
    042915.13BXD48HFF5951377H1377
    121515.18BXD48CDF5181835H1835
    042015.24BXD48HFF1892046H2046
    042015.27BXD48CDF1882054H2054
    062013.06BXD48aHFF543699H0699
    051112.05BXD48aCDF233209H0209
    051112.04BXD48aHFF233210H0210
    010614.07BXD53HFF713833H0833
    062013.16BXD53CDF571848H0848
    021213.14BXD60CDF530171H0171
    050912.08BXD60CDF235235H0235
    121515.23BXD61CDF5241841H1841
    121515.25BXD61HFF5241843H1843
    111414.02BXD61CDF1881770H1770
    111414.03BXD61HFF1881922H1922
    111414.04BXD61HFF1881722H1722
    082214.10BXD62HFF5481315H1315
    042915.19BXD62HFF4881434H1434
    121214.20BXD62CDF3531436H1436
    042015.05BXD62CDF2531847H1847
    102616.17BXD63HFF7522091H2091
    083016.03BXD63CDF7511872H1872
    121214.24BXD63CDF3441414H1414
    121214.26BXD63HFF3441416H1416
    090412.08BXD63CDF218818H0818
    111414.09BXD63HFF1861715H1715
    121615.09BXD65CDF5411787H1787
    121615.06BXD65HFF5411784H1784
    051012.01BXD65HFF230458H0458
    042015.13BXD65CDF2222098H2098
    121615.12BXD65bCDF5271793H1793
    121615.11BXD65bHFF5271790H1790
    111414.05BXD65bCDF1871766H1766
    102414.18BXD65bHFF1741713H1713
    121214.04BXD66HFF3671560H1560
    121214.19BXD66CDF3541558H1558
    042415.08BXD66CDF1842128H2128
    042415.05BXD66HFF1842124H2124
    082214.02BXD68CDF5451080H1080
    082214.08BXD68HFF5451290H1290
    101613.05BXD68CDF2011068H1068
    101613.08BXD68HFF2011071H1071
    061913.13BXD69CDF558591H0591
    121214.23BXD69HFF5281328H1328
    101613.09BXD69HFF2101087H1087
    042415.23BXD69CDF1572142H2142
    121615.14BXD70HFF5781728H1728
    121214.16BXD70CDF3571512H1512
    050115.06BXD70CDF2611855H1855
    051012.08BXD70HFF239188H0188
    121615.17BXD73CDF5391906H1906
    121214.10BXD73CDF3611451H1451
    121214.11BXD73HFF3611447H1447
    042015.18BXD73HFF2062071H2071
    050115.15BXD73bCDF4971466H1466
    050115.12BXD73bHFF4741545H1545
    051112.12BXD73bCDF238184H0184
    051112.14BXD73bHFF237183H0183
    121615.19BXD77HFF5111866H1866
    050115.17BXD77CDF4601398H1398
    061913.18BXD79HFF571583H0583
    050115.19BXD79CDF4681555H1555
    090412.10BXD79CDF217825H0825
    061913.19BXD87CDF581296H0296
    121615.21BXD87HFF5121945H1945
    051012.14BXD87HFF241243H0243
    090612.10BXD87CDF200550H0550
    101014.04BXD89HFF5391321H1321
    051112.01BXD89HFF243176H0176
    090612.14BXD89CDF193555H0555
    062013.03BXD90HFF570736H0736
    062013.02BXD90CDF549756H0756
    101613.19BXD90HFF2181093H1093
    102414.03BXD90CDF1881702H1702
    062013.17BXD91CDF562883H0883
    062013.19BXD91HFF562881H0881
    102414.20BXD95HFF5501273H1273
    101014.10BXD95CDF5361742H1742
    101613.21BXD95HFF2131275H1275
    012615.17BXD98CDF3841769H1769
    012615.16BXD98CDF3841524H1524
    111414.14BXD99CDF5351354H1354
    050914.05BXD99HFF1821355H1355
    111314.15BXD100CDF5671190H1190
    050914.04BXD100HFF5371187H1187
    051112.07BXD100CDF223247H0247
    051112.08BXD100CDF223248H0248
    042415.12BXD100HFF1762085H2085
    102616.20BXD101CDF7562114H2114
    042715.19BXD101HFF4931422H1422
    111414.20BXD101CDF3491425H1425
    051112.09BXD101CDF223468H0468
    042915.01BXD102CDF5011499H1499
    121214.07BXD102HFF3661498H1498
    053014.01BXD102CDF1831363H1363
    052814.04BXD102HFF1831361H1361
    diff --git a/general/datasets/Uthsc_bxd_harv_liv_1019/processing.rtf b/general/datasets/Uthsc_bxd_harv_liv_1019/processing.rtf new file mode 100644 index 0000000..4504c49 --- /dev/null +++ b/general/datasets/Uthsc_bxd_harv_liv_1019/processing.rtf @@ -0,0 +1,26883 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    150 UTHSC Aging Liver RNA Selected for Novogene Submission                                                                                                                                                        
    All Samples approximately 110ng/ul with a total of approximately 3ug RNA                                                                                                                                                       
    File last updated by A.Centeno 1-3-18                                                                                                                                                           
    Pearson Product-Moment Correlation                                                                                                                                                           
    No Selector     TissueLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiverLiver   
           Age216552640223223567223349756183501205572574724200386201554550730180578240379384507188518233571235530188524253353218344751222541187527184354201545157558261357361539238497460217468200581193245548188549562536384384535361537210545212764216547547176537493183366688182577630200539197537350350291358240379715503189595233543713188188524488548186344752230541174527184367201545210528239578206361237474511571241512243539548218570562213550182544182214540212544549   
           SexFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFMFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFMF   
           JI-ID307151136268269923117179832701632993141412591311701802761682892852641571452812602752530810451132324257178293134133107322320313112113271741144120719720321398253255272916286310230733043112127714618227816227330029867121306279296254772902841951403172951192613182832921292042802022581581443032632382392871431283233162423021251231352652123153212621225971581092662942241969725631924232626728231229727432528823630530923530129116181190   
           CaseID101713.13012615.07121214.29051112.07051112.08111314.15051112.09111414.20102616.20053014.01042915.01012615.19061913.01111314.11012615.08042015.22083016.01101513.02101513.05102414.02010614.06102414.08061913.06042015.07012615.15012615.11121515.12042015.27121515.18051112.05062013.16050912.08021213.14111414.02121515.23042015.05121214.20090412.08121214.24083016.03042015.13121615.09111414.05121615.12042415.08121214.19101613.05082214.02042415.23061913.13050115.06121214.16121214.10121615.17051112.12050115.15050115.17090412.10050115.19090612.10061913.19090612.14102616.12082214.11102414.03062013.02062013.17101014.10012615.17012615.16111414.14012615.26091914.09101713.18062013.12101713.10083016.07101713.15102616.04102616.05042415.12050914.04042715.19052814.04121214.07083016.08121515.05061913.04111314.10042015.20101014.02101513.04101014.05121214.22121214.21111314.05121214.13042015.10012615.12102414.12121515.15042015.24042915.13051112.04062013.06010614.07111414.03111414.04121515.25042915.19082214.10111414.09121214.26102616.17051012.01121615.06102414.18121615.11042415.05121214.04101613.08082214.08101613.09121214.23051012.08121615.14042015.18121214.11051112.14050115.12121615.19061913.18051012.14121615.21051112.01101014.04082214.09101613.19062013.03062013.19101613.21102414.20050914.05062013.09102414.06101713.20062013.13101713.11091914.07091914.05   
           DietCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHF   
           StrainB6D2F1B6D2F1B6D2F1BXD100BXD100BXD100BXD101BXD101BXD101BXD102BXD102BXD24BXD29BXD29BXD29BXD32BXD32BXD34BXD34BXD39BXD39BXD40BXD40BXD44BXD44BXD45BXD45BXD48BXD48BXD48aBXD53BXD60BXD60BXD61BXD61BXD62BXD62BXD63BXD63BXD63BXD65BXD65BXD65bBXD65bBXD66BXD66BXD68BXD68BXD69BXD69BXD70BXD70BXD73BXD73BXD73bBXD73bBXD77BXD79BXD79BXD87BXD87BXD89BXD9BXD9BXD90BXD90BXD91BXD95BXD98BXD98BXD99C57BL/6JC57BL/6JD2B6F1D2B6F1DBA/2JDBA/2JB6D2F1B6D2F1B6D2F1BXD100BXD100BXD101BXD102BXD102BXD24BXD29BXD29BXD29BXD32BXD32BXD34BXD34BXD39BXD39BXD40BXD40BXD44BXD44BXD44BXD45BXD48BXD48BXD48aBXD48aBXD53BXD61BXD61BXD61BXD62BXD62BXD63BXD63BXD63BXD65BXD65BXD65bBXD65bBXD66BXD66BXD68BXD68BXD69BXD69BXD70BXD70BXD73BXD73BXD73bBXD73bBXD77BXD79BXD87BXD87BXD89BXD89BXD9BXD90BXD90BXD91BXD95BXD95BXD99C57BL/6JC57BL/6JD2B6F1D2B6F1DBA/2JDBA/2JDBA/2J   
    TissueAgeSexJI-IDCaseIDDietStrainEarTagH1223H1569H1227H0247H0248H1190H0468H1425H2114H1363H1499H1792H0742H1040H1044H2034H2494H1054H0765H1322H0673H1691H0680H1822H1505H1762H1826H2054H1835H0209H0848H0235H0171H1770H1841H1847H1436H0818H1414H1872H2098H1787H1766H1793H2128H1558H1068H1080H2142H0591H1855H1512H1451H1906H0184H1466H1398H0825H1555H0550H0296H0555H2577H1006H1702H0756H0883H1742H1769H1524H1354H1590H1103H1154H0646H1147H1818H1302H2288H2290H2085H1187H1422H1361H1498H2259H2349H0669H1037H2030H1137H1056H1052H1474H1473H1488H1593H1825H1501H1687H1940H2046H1377H0210H0699H0833H1922H1722H1843H1434H1315H1715H1416H2091H0458H1784H1713H1790H2124H1560H1071H1290H1087H1328H0188H1728H2071H1447H0183H1545H1866H0583H0243H1945H0176H1321H1009H1093H0736H0881H1275H1273H1355H0514H1681H1150H0642H1144H1140H1142 minAverage
    Liver216F307101713.13CDB6D2F1H122310.9190.9210.9920.9830.9850.9920.960.8770.9880.9760.9870.9820.9890.970.9830.9710.9570.9840.9860.9790.9930.990.9920.9820.9720.9730.9740.9890.990.9890.9870.9460.9760.9850.9750.9290.990.9820.9840.9860.9850.9850.990.9830.940.9840.9820.9890.9820.9890.9610.9770.980.9890.990.9790.980.9890.9850.9790.9680.9840.8970.9870.9850.9720.9880.9660.9390.9820.9350.9890.9920.9830.9850.9710.9940.9890.990.9860.9880.9750.9820.9850.9590.990.9910.970.9850.9820.9840.9830.9790.9790.9880.9840.9710.9780.9760.9870.9830.970.9790.9820.990.980.9880.9870.9840.9510.9720.9820.9640.9860.9720.9870.9840.9860.9860.9860.9750.9850.9650.9860.9890.9880.9680.9820.9860.9860.9840.9840.9820.9860.980.9870.9850.9830.9880.9880.9250.990.9840.9880.990.9840.9350.9690.932 0.8770.98
    Liver552F151012615.07CDB6D2F1H15690.91910.9970.930.9390.9450.9160.9350.9620.9280.9450.9340.9320.9230.9520.9380.9430.9350.9410.9360.9230.9250.9220.9260.930.9510.9520.9430.9430.9270.9190.9280.950.9220.920.9560.9440.9240.9320.9230.9310.9260.9210.9270.9290.950.9220.9360.9250.9350.9290.9350.9480.9430.9290.9270.9430.9140.9350.9310.9320.9420.9320.9430.9190.920.9550.9280.9460.9310.9390.9310.9320.9160.9210.9310.9420.9230.9380.9320.9270.9310.9440.9270.9330.9490.9230.9240.9340.9270.9230.9430.9460.9410.940.9330.9420.9410.950.9390.9440.9370.960.9410.9430.9150.9220.9220.920.9480.9320.9220.9250.9430.9270.9550.920.9350.9230.9270.930.950.9270.9570.9360.9290.930.9450.9350.9390.9220.9480.9420.9150.9210.9460.9320.9220.9410.9280.9290.950.9220.9330.9340.9270.9170.9310.9350.949 0.9140.93
    Liver640F136121214.29CDB6D2F1H12270.9210.99710.9310.9410.9450.9180.9330.9590.9290.9470.9350.9330.9250.9520.9380.9420.9330.9430.9380.9230.9260.9240.9280.9310.950.9520.9420.9450.9290.9210.9280.9530.9230.9220.9560.9410.9260.9330.9250.9310.9280.9230.9280.9290.9480.9240.9370.9270.9370.930.9350.9480.9440.9310.9290.9430.9140.9370.9320.9350.9450.9320.9450.9210.9230.9560.930.9450.930.940.9290.9330.9180.9210.9320.9420.9260.940.9340.9270.9330.9470.9280.9330.9490.9250.9260.9320.9280.9250.9450.9480.9410.9410.9340.9450.940.9520.940.9460.9380.960.9410.9440.9170.9240.9240.9240.9490.9340.9220.9260.9420.9290.9560.9220.9380.9230.930.9310.9510.9280.9570.9380.930.9310.9450.9360.940.9240.9490.9450.9170.9230.9480.9360.9240.9430.9310.9310.950.9240.9360.9350.9280.9170.9290.9370.946 0.9140.94
    Liver223F268051112.07CDBXD100H02470.9920.930.93110.9850.9890.9870.9660.8940.9850.9810.9840.9830.9850.970.9820.9720.9580.9850.9880.9810.990.9860.9890.980.9740.9750.9750.9910.9870.9880.9870.9520.9740.9840.9790.9330.9870.9820.9820.9850.9840.9830.9880.9840.9460.9790.9820.9850.9790.990.9610.9780.980.9860.9870.9780.980.9890.9830.9740.9690.9830.9060.9840.9820.9750.9870.9650.9390.980.9350.9910.9870.9820.9830.9710.9890.9890.9880.9850.9890.9770.9850.9850.9620.9860.9890.9720.9810.980.9860.9850.9810.9810.9860.9840.9720.9790.9760.9880.9830.9740.980.9860.9880.980.9860.9830.9860.9520.9690.980.9690.9810.9750.9820.9830.9850.9830.9830.9760.9830.9660.9840.9880.9870.970.9830.9850.9860.9860.9840.9760.9820.9840.9850.980.9830.9860.9840.9350.9850.9830.9890.9880.9820.9350.9670.938 0.8940.98
    Liver223F269051112.08CDBXD100H02480.9830.9390.9410.98510.9850.9850.9590.9070.9830.9780.9780.9810.9790.9780.9760.9650.9530.9760.9790.970.980.9860.9840.9740.9740.9750.9690.9850.9830.9780.9820.9550.9730.970.9780.9430.9790.9720.9680.9750.9770.9710.9820.9760.9570.9870.9820.9810.9840.9790.9630.9750.9860.9840.9830.9740.9660.9790.9760.9840.970.9730.9150.9760.980.9720.9780.9670.9420.9790.9420.9810.9850.9760.9760.9690.9870.9810.980.9850.9850.9810.9760.980.9580.980.9820.9640.9750.9680.9770.9770.9710.9710.9830.9760.9670.980.970.9820.9770.9780.9830.9850.9780.9670.9740.9720.980.960.9650.9670.9710.9870.9720.9740.980.9750.9840.9820.9820.9790.9750.9820.980.9790.9690.9740.9820.9730.980.9760.9680.9830.9810.9790.9850.9830.9810.980.9410.980.9780.9820.980.9760.9420.9610.948 0.9070.97
    Liver567F92111314.15CDBXD100H11900.9850.9450.9450.9890.98510.9810.9650.9130.9830.9840.9850.9830.9820.9810.9880.9720.9650.9860.9870.9850.9870.9840.9860.9770.9770.9770.9760.9890.9880.9830.9870.9620.9710.9770.9820.9390.9830.9760.9770.9850.9840.9760.9860.9810.9570.9770.9840.9830.9790.9880.960.9780.9830.9850.9880.9770.9810.990.9780.9810.9740.9790.9240.9820.980.9770.9830.9690.9380.980.940.9890.9810.9820.9780.9710.9840.9880.9870.9840.9870.9830.9850.9840.9680.9810.9860.9730.9840.980.9860.9870.9810.980.9850.9830.9710.9810.9740.9890.9820.9760.9810.9880.9830.9750.9830.9790.9850.9590.9660.9770.9750.9790.9770.9780.9840.9850.9830.9820.9850.9820.9730.9810.9870.9890.970.9840.9850.9830.9850.9830.9760.9780.9880.9840.9790.9830.9840.9820.9510.9810.9820.9880.9850.9830.940.9690.949 0.9130.98
    Liver223F3051112.09CDBXD101H04680.9920.9160.9180.9870.9850.98110.9610.8770.9870.9710.9820.980.9840.9690.9770.9670.9580.9780.9780.9770.9870.990.9880.9790.9720.9720.9710.9850.9860.9870.9860.940.9790.980.9720.9320.9880.980.980.9830.9820.9810.9880.9810.9450.9890.9830.9850.9830.9840.9610.9720.9790.9850.9860.9760.9780.9820.9840.9760.9620.9810.8930.980.9810.970.9830.9640.9440.9810.9380.98710.9850.9840.9680.9930.9860.9870.9880.9860.9730.9810.9850.9570.9880.9880.970.9840.9770.9780.9780.9750.9740.9860.9770.9690.9790.9720.980.9820.970.980.9810.9880.9760.9840.9780.980.9510.9740.9790.9690.9880.970.9850.9810.9830.9880.9880.9730.9850.9660.9850.9850.9820.9680.9760.9820.9810.980.9770.9770.9870.9750.9810.9880.9820.9840.9850.9210.9880.9810.9870.9890.9860.9380.9660.94 0.8770.98
    Liver349F117111414.20CDBXD101H14250.960.9350.9330.9660.9590.9650.96110.9220.960.9490.9710.9520.9570.9630.9590.9780.9720.9620.9660.9620.9660.9630.9650.9760.9770.9760.9830.9680.9620.9660.9670.9190.9740.9780.9770.9680.9690.9820.9730.9690.9620.9680.9640.9770.9650.9460.960.9640.9660.9690.9790.9790.9580.9640.9620.9760.9640.970.9750.9420.9310.9720.8790.9530.9510.9680.9650.9730.9660.9750.9640.9620.9610.9740.9750.980.9560.9660.9660.9660.9560.9440.9560.9720.9660.9640.9640.9830.9650.960.9650.9690.9810.9810.9640.9650.9810.9660.9780.9580.9720.970.9680.9560.9630.970.960.950.9720.9140.9790.9770.9720.9620.9680.9640.950.9660.9580.9580.9480.9620.9550.9740.9690.9650.9820.970.9740.9680.9720.9650.9650.9540.9550.9490.9610.9730.9550.970.9080.9580.9490.9660.9630.970.9640.9640.965 0.8790.96
    Liver756F179102616.20CDBXD101H21140.8770.9620.9590.8940.9070.9130.8770.92210.8940.9170.8970.8970.8870.9260.9020.9220.9090.9050.9030.8850.8860.8840.8890.9020.9280.9280.9150.9070.8910.8830.8940.9190.8930.8910.9330.9390.8840.9010.8880.8930.8880.8880.8870.8970.9320.8830.9030.8840.90.8930.9160.9230.910.8920.8910.9140.8780.9010.8980.8940.9010.8950.9180.8820.8840.9250.8930.9290.9180.9090.9220.8940.8770.890.8980.920.8810.9010.8950.890.8920.9170.8920.8980.9260.8870.8860.9140.8870.8880.9080.9130.9110.9110.8960.9040.9190.9190.9140.9050.8990.9320.910.9070.8780.8910.8820.880.9160.8960.8950.8920.9220.8890.9250.880.8950.8850.8890.8940.9190.8920.9260.9010.8920.8920.9260.9040.9060.8890.9160.9040.8790.880.9180.8890.8840.910.8880.8920.9390.880.8940.8950.8890.8820.9220.9030.941 0.8770.90
    Liver183F83053014.01CDBXD102H13630.9880.9280.9290.9850.9830.9830.9870.960.89410.9790.9810.9820.9850.9730.9790.9720.960.9790.9810.9710.9850.9850.9870.9810.9760.9760.9710.9850.9830.9810.9820.9510.9760.9760.9750.9350.9820.9750.9760.9840.9820.9820.9850.9790.9450.9830.9830.980.9770.9830.9590.9760.9810.9810.9830.9770.9740.9830.9820.9760.9690.9770.9060.9840.980.9750.9820.9730.9480.9810.9430.9850.9870.9760.9820.970.9870.9840.9850.9840.9850.9760.9880.9870.9640.9860.9840.9710.9810.9770.980.9790.9740.9740.9850.9770.9690.980.9720.9820.9780.9760.9770.9790.9810.9780.9810.9760.9810.9530.970.9750.9650.9830.9750.980.9810.9830.9870.9850.9760.9820.970.9790.9810.980.9670.9750.9790.9770.9810.9770.9740.9810.9770.980.9810.9820.9790.980.9320.9820.9790.9850.9830.9760.9430.9680.94 0.8940.98
    Liver501F270042915.01CDBXD102H14990.9760.9450.9470.9810.9780.9840.9710.9490.9170.97910.970.9770.9710.9680.9780.9630.9490.9780.980.9690.9740.9690.9740.9610.9690.970.9620.9820.9750.970.9730.970.9590.9620.9760.9210.9710.9620.9660.9740.9750.9690.9790.9670.9380.9730.9780.9730.9680.9750.9410.9680.9770.9730.9750.9650.9630.9760.9690.9690.9740.9650.9270.9720.9680.970.9720.9560.9270.9680.9220.9820.9710.9610.9690.9610.9770.9820.9790.9730.980.9850.9830.9770.9570.9720.9740.9570.970.970.9780.9770.9680.9670.9740.9790.9530.9710.9580.9850.9730.970.970.9840.970.9680.9760.9720.9770.960.950.9630.9660.9670.970.9680.9780.9730.9750.9720.980.9710.9650.9710.9740.9750.9580.9710.9720.9710.9770.9790.9590.9660.9830.9790.9650.9720.9770.9680.9550.9730.9820.9770.9750.9630.9220.960.932 0.9170.97
    Liver205F163012615.19CDBXD24H17920.9870.9340.9350.9840.9780.9850.9820.9710.8970.9810.9710.9780.9820.9780.9870.9740.9710.9820.9830.9790.9890.9860.9890.9860.9780.9780.9840.9830.9860.9850.9830.9470.9770.9850.9820.9460.9870.9850.9830.9870.9810.9790.9850.9860.9560.9730.9770.9880.9810.9890.9720.9830.9740.9860.9860.9820.9810.9880.9820.9760.9620.9880.8990.9830.9770.9760.9840.9750.9510.9850.9540.9830.9820.9850.9820.9770.9840.9870.9870.9810.9790.9690.9770.9850.9710.9840.9860.9780.9860.9780.9830.9830.9820.9810.9850.9830.9810.9820.9840.9810.9860.970.9780.9770.9840.9760.9850.9810.9840.9470.9760.9830.970.9820.9760.9850.9760.9840.980.9790.9710.980.9680.9860.9890.9870.9750.9820.9880.9820.9840.9830.9840.9790.9750.980.9820.9840.9830.9880.9280.9820.9770.9870.9860.9850.9540.9770.949 0.8970.98
    Liver572F299061913.01CDBXD29H07420.9820.9320.9330.9830.9810.9830.980.9520.8970.9820.9770.97810.9880.9720.9770.9650.9530.9790.9820.9730.980.9840.9840.9730.970.970.9630.9850.9820.980.980.960.9710.9730.9730.9250.9770.9680.9690.980.980.9750.9830.9770.9430.9770.980.9760.970.9840.9530.9730.980.9830.9820.9690.9720.9830.9710.9790.9670.9760.9120.9850.9840.9740.9830.9660.9350.9750.9340.9850.980.9760.9710.9650.9830.9860.9840.9730.9790.9750.9810.9760.9630.9850.9870.9710.9710.9740.9790.9790.9690.9680.9850.9750.9610.9770.9650.9840.9730.9690.9760.9850.9790.9730.980.980.9760.9640.9590.9670.9640.9770.9740.9740.9790.9780.9820.9790.9760.9730.9670.9770.9820.980.9630.9740.9790.9770.9760.9750.9670.9770.9780.9790.9770.9810.9820.9770.9440.9780.980.9840.9790.9750.9340.9610.938 0.8970.97
    Liver574F314111314.11CDBXD29H10400.9890.9230.9250.9850.9790.9820.9840.9570.8870.9850.9710.9820.98810.9720.9780.970.9550.9820.9840.9730.9860.9860.9880.9830.9690.9690.9680.9860.9850.9830.9840.9490.9730.9810.9730.930.9810.9760.9780.9830.980.980.9830.9780.9390.9770.980.9790.9740.9860.9570.9750.980.9850.9850.9760.9740.9870.9780.9780.9650.9810.9040.9860.9840.9730.9870.970.940.9790.9380.9840.9840.9790.9780.9690.9860.9870.9860.9790.9830.9740.9790.9810.9630.990.9910.9770.9770.9780.9820.9820.9750.9750.9870.9780.9690.9780.9730.9830.9760.9720.9760.9790.9820.9780.9830.9850.9820.9560.9680.9760.960.9820.9730.980.9810.9810.9820.9840.9740.9820.9650.9810.9850.9820.9660.9780.9830.9830.9820.9780.9750.9810.9760.9820.9810.9810.9830.9820.9320.9810.980.9850.9830.9780.9380.9660.935 0.8870.97
    Liver724F141012615.08CDBXD29H10440.970.9520.9520.970.9780.9810.9690.9630.9260.9730.9680.9780.9720.97210.9760.9670.9620.9710.9770.9670.9720.9740.9750.9740.9740.9740.9740.9780.9770.970.9730.9580.9640.9660.9780.9530.9710.970.9650.9740.9710.9620.9730.9710.9620.9680.9730.9710.9760.9740.9640.9770.9760.9720.9770.9760.9660.9740.9690.9760.9670.9680.9190.9690.9690.9750.9720.9760.9530.980.9520.9750.9690.9720.9690.9690.9710.9740.9730.9740.9720.9720.9680.9740.9690.9720.9750.970.9730.9640.9730.9740.9730.9720.9740.9740.9720.9780.9740.9740.9780.9760.9720.9750.9680.9630.9670.9630.9770.9480.9610.9670.9720.9740.9750.9640.9730.9690.9710.9710.9770.9710.9770.9730.9730.9750.970.9710.9760.9670.9770.9740.9680.9670.9750.9680.9730.9770.970.9720.9420.9680.9670.9760.9730.970.9520.9640.957 0.9190.97
    Liver200F259042015.22CDBXD32H20340.9830.9380.9380.9820.9760.9880.9770.9590.9020.9790.9780.9870.9770.9780.97610.9730.9660.9820.9820.9810.9860.9780.9820.9760.9710.9710.9740.9820.9850.9790.9840.9540.9650.9740.9780.9310.980.9750.9750.9830.9760.9730.9810.9770.9480.9720.9770.9830.9750.9860.9540.9740.9750.9810.9850.9720.9810.9880.9770.9770.9670.9790.9130.9810.9740.9690.980.9670.9340.9750.9370.9810.9770.9780.9770.9670.9810.9850.9840.9760.9770.9760.9780.9780.9620.9770.9810.9690.9880.980.9830.9830.9760.9750.9790.9790.9680.9750.9720.9830.9810.9670.9760.980.9790.9690.980.9780.9810.9520.9630.9750.9680.9750.9690.9780.9750.9810.9760.9770.9770.980.9660.9780.9850.9870.9630.9810.9820.9780.9810.9790.9790.9730.9820.980.9760.9760.980.9810.9420.9760.9770.9830.9840.980.9370.970.942 0.9020.97
    Liver386F131083016.01CDBXD32H24940.9710.9430.9420.9720.9650.9720.9670.9780.9220.9720.9630.9740.9650.970.9670.97310.9690.9770.9730.9570.9720.9690.9720.9790.9790.9790.9780.9760.9670.9710.9690.9380.9790.9810.9850.9590.9720.9820.9760.9730.9710.9780.9710.9750.9540.960.970.9690.9670.9740.9720.9820.9710.9740.9670.9790.9670.9820.9830.9590.9520.9780.8960.9680.9690.9770.9710.9780.9590.9750.9580.9680.9670.9720.9830.9890.9680.9760.9750.9640.9630.9560.9680.9720.9750.9720.970.9830.9690.9750.9790.9810.9810.9810.9730.9730.9770.9760.9760.970.9710.9780.9710.9650.9690.9780.9690.9660.9780.9280.9790.9770.9690.9670.9770.970.9620.9680.9660.9710.9630.9680.9620.9770.9730.970.9820.9780.9780.9750.9780.9730.9740.9650.9690.9640.9670.9810.9640.9730.9210.9670.9610.9680.9690.9670.9580.9730.959 0.8960.97
    Liver201F170101513.02CDBXD34H10540.9570.9350.9330.9580.9530.9650.9580.9720.9090.960.9490.9710.9530.9550.9620.9660.96910.9670.9590.9630.9640.960.9650.9730.9710.970.9760.9630.960.9580.9640.9290.960.9680.9730.950.9620.9690.9640.9710.9590.9580.9630.9720.9570.9470.9560.9610.960.9670.9640.9740.9510.960.960.9720.9680.9670.9660.9490.9410.9710.880.9560.950.9730.9630.9690.9580.970.9620.9590.9580.9690.9660.9690.9560.9690.9690.9590.9580.950.9620.9740.9730.9620.9620.9720.9720.9690.9680.9720.9670.9650.9680.9650.9730.9680.9720.9590.9690.9660.9640.9560.9550.960.9640.9520.9670.9260.9610.9670.9670.9620.9730.9620.9570.970.9640.9610.9510.9640.9590.9680.9690.9640.970.9640.9690.9620.9670.9650.9630.9560.9580.9560.9620.9740.9540.9650.9140.9570.9520.9650.9660.9650.9620.990.972 0.880.96
    Liver554F180101513.05CDBXD34H07650.9840.9410.9430.9850.9760.9860.9780.9620.9050.9790.9780.9820.9790.9820.9710.9820.9770.96710.9840.9750.9830.9790.9840.9780.9730.9730.9740.9860.980.9810.9790.9580.9720.9810.9810.9360.980.9790.9820.9820.9810.9790.9830.9770.9450.9760.9830.9810.9750.9850.960.9780.9770.9830.980.9760.9770.9880.9790.9750.9720.9810.9150.980.9790.9820.9830.9660.9390.9760.9390.9840.9780.9770.9790.9740.9830.9890.9890.9760.9840.9770.9820.980.9750.9810.9850.9750.9790.9860.9970.9970.9810.9810.9840.9850.9720.9840.9760.9860.980.9760.9770.9820.9810.980.9850.9850.9860.9560.9690.980.970.9760.9820.9810.9840.980.9810.9840.9820.9790.9690.9830.9860.9840.9710.9830.9840.9850.9860.9850.9790.9750.9820.9870.9770.9840.9840.980.940.9830.9840.9820.9840.9770.9390.9770.944 0.9050.98
    Liver550F276102414.02CDBXD39H13220.9860.9360.9380.9880.9790.9870.9780.9660.9030.9810.980.9830.9820.9840.9770.9820.9730.9590.98410.9810.9860.9830.9850.9790.9750.9750.9760.9890.9850.9830.9820.9570.9730.9810.9790.9360.9840.980.980.9830.9840.980.9850.9790.9470.9740.9810.9820.9770.9870.9610.980.9820.9840.9850.9770.9780.9880.980.9760.9710.9790.9130.9830.9790.9750.9850.9670.9390.9810.9350.9870.9780.9790.980.9750.9830.9860.9850.9790.9830.9730.9820.9810.9660.9840.9860.9730.9780.980.9850.9850.9840.9840.9810.9840.9710.9780.9750.9850.9810.9730.9760.9820.9820.980.9820.9810.9830.9520.9680.9780.9680.9750.9750.9770.9790.9810.9790.9760.9760.9760.9660.9810.9860.9850.970.9830.9840.9840.9830.9840.9760.9740.980.9820.9750.9820.9830.9810.9380.9820.9790.9840.9830.9780.9350.9680.938 0.9030.98
    Liver730F168010614.06CDBXD39H06730.9790.9230.9230.9810.970.9850.9770.9620.8850.9710.9690.9790.9730.9730.9670.9810.9570.9630.9750.98110.9820.9770.9780.970.9650.9640.9710.9790.9810.9790.9840.9440.9610.9720.9680.9230.980.9720.9760.9790.9740.9660.9790.9780.9470.9660.9720.9770.9710.9830.950.9660.9660.9760.9810.9670.9810.980.9690.9670.9540.9760.8960.9720.9660.9640.9770.9550.9280.9690.9280.9820.9770.9810.9690.9570.9780.9830.9810.9790.9770.9690.9770.9780.9540.9760.9830.9680.9840.9750.9760.9770.9790.9780.9760.9740.9660.970.9690.9790.9810.960.9740.980.9790.9670.980.9720.9770.9470.960.9780.9710.9710.9640.9740.9730.9840.9750.9730.9690.9780.9590.9760.9840.9860.9580.9770.9770.980.9770.9740.9710.9690.9760.9760.9720.970.980.9790.9320.9750.9750.9850.9850.9860.9280.960.94 0.8850.97
    Liver180F289102414.08CDBXD40H16910.9930.9250.9260.990.980.9870.9870.9660.8860.9850.9740.9890.980.9860.9720.9860.9720.9640.9830.9860.98210.990.990.9840.9740.9740.9780.9870.9890.9870.9880.9460.9750.9850.9760.9350.9890.9830.9840.9880.9830.9830.9880.9830.9460.9770.9790.9880.980.990.9630.9780.9780.9860.9890.980.9830.990.9830.9770.9660.9860.90.9860.980.9720.9880.9680.9410.9820.9410.9880.9870.9830.9830.9720.9890.9880.9880.9840.9860.9740.9810.9850.9620.9880.9890.9740.9870.9810.9840.9830.9820.9810.9890.9860.9750.9780.9790.9850.9840.9710.9790.9790.9870.980.9870.9840.9840.9490.9730.9830.9660.9840.9720.9860.9810.9880.9830.9820.9730.9850.9650.9850.990.9890.9690.9830.9860.9850.9840.9860.9830.9830.9790.9850.9830.9820.9850.9880.9280.9860.9810.9890.9880.9850.9410.9710.938 0.8860.98
    Liver578F285061913.06CDBXD40H06800.990.9220.9240.9860.9860.9840.990.9630.8840.9850.9690.9860.9840.9860.9740.9780.9690.960.9790.9830.9770.9910.9910.9820.9740.9740.9730.9850.9880.9880.9850.9440.9790.9840.9740.9370.9880.9810.980.9840.9840.980.9880.9840.9510.9830.9820.9860.9840.9880.9670.9780.9810.9890.9880.9760.9780.9860.9810.9820.9640.9840.8990.9850.9860.9740.9860.9670.9430.9830.9450.9860.990.9880.9810.9720.990.9870.9880.9840.9840.9710.980.9830.9630.9870.9910.9730.9820.9780.980.980.9770.9760.9910.9820.9720.980.9760.9810.9810.9690.980.9820.9870.9770.9830.9810.9790.9530.9740.9790.9680.9890.9740.9840.980.9840.9870.9830.9730.9810.9690.9870.9890.9850.9710.9790.9860.9830.9790.9820.980.9860.9760.9820.9880.9870.9850.9870.9260.9870.980.9870.9870.9870.9450.9680.942 0.8840.98
    Liver240F264042015.07CDBXD44H18220.9920.9260.9280.9890.9840.9860.9880.9650.8890.9870.9740.9890.9840.9880.9750.9820.9720.9650.9840.9850.9780.990.99110.990.9750.9760.9770.9870.9890.9850.9870.9470.9770.9850.9790.9380.9870.9820.9820.9860.9820.9810.9880.9860.9490.9810.9810.9860.9820.990.9650.9820.9810.9880.9890.980.9780.9880.9820.980.9650.9870.8990.9860.9830.9760.9890.9730.9460.9850.9460.9860.9880.9840.9820.9750.9890.9890.9890.9850.9860.9740.9820.9880.9670.9890.990.9750.9840.980.9840.9840.9790.9780.9910.9830.9790.9840.9830.9850.9830.9740.980.9810.9850.9790.9860.9840.9830.9530.9730.9810.9680.9880.9760.9840.9820.9870.9870.9860.9750.9850.9690.9870.990.9870.9730.980.9880.9830.9830.9830.980.9850.9790.9830.9860.9860.9840.9860.9290.9860.980.9880.9870.9830.9460.9730.945 0.8890.98
    Liver379F157012615.15CDBXD44H15050.9820.930.9310.980.9740.9770.9790.9760.9020.9810.9610.9860.9730.9830.9740.9760.9790.9730.9780.9790.970.9840.9820.9910.9790.9790.9830.9790.9790.9790.9810.9340.9760.9860.9810.9560.980.9850.980.9820.9730.9770.9780.9850.9560.9670.9730.9780.9770.9840.9760.9860.9710.980.9790.9850.9730.9840.9810.9670.9510.9870.890.9770.9730.9780.9830.9840.9660.9860.9640.9760.9790.9830.9810.9810.9770.9820.9820.9770.9750.9610.9720.9840.9730.9840.9810.9830.9780.9730.980.9810.980.9790.9850.9760.9890.9830.990.9740.980.9770.9770.9690.9770.9750.9770.9750.9810.9380.9770.9810.9660.9810.9780.9770.970.980.9770.980.9640.9810.9670.9840.9840.9780.980.9760.9850.9780.9810.9760.9770.9760.9680.970.9790.9830.9730.9810.9190.9740.9680.9810.9790.9780.9640.9770.96 0.890.97
    Liver384F145012615.11CDBXD45H17620.9720.9510.950.9740.9740.9770.9720.9770.9280.9760.9690.9780.970.9690.9740.9710.9790.9710.9730.9750.9650.9740.9740.9750.97910.9970.9830.980.9730.9720.9710.9440.9780.9760.9860.9680.9780.9790.9710.9750.9750.9730.9790.9810.970.9680.9760.9740.9790.9760.9810.9880.9730.9730.9730.9850.9640.9770.980.960.9560.9760.9030.9690.9660.9790.9710.9820.9730.9840.9670.9750.9720.9740.980.9830.9720.9760.9750.9750.9690.9620.970.9820.9680.9790.9730.9750.9710.9660.9740.9770.9770.9760.9760.9740.9810.9780.9810.9770.9780.9780.9770.9720.9690.9710.9710.960.9770.9380.9750.9730.9720.9730.9790.9690.9660.9740.9730.9690.9670.9690.9690.9780.9760.9710.9860.9710.980.9690.9770.9740.9680.9660.970.9650.970.9840.9670.9750.9280.970.9670.9760.9710.970.9670.9710.968 0.9030.97
    Liver507F281121515.12CDBXD45H18260.9730.9520.9520.9750.9750.9770.9720.9760.9280.9760.970.9780.970.9690.9740.9710.9790.970.9730.9750.9640.9740.9740.9760.9790.99710.9830.9810.9730.9720.9710.9450.9780.9770.9860.9680.9780.980.9720.9750.9760.9740.9790.9810.9690.9690.9760.9750.980.9760.9820.9890.9740.9730.9730.9850.9640.9770.9810.9610.9570.9760.9040.970.9670.9790.9720.9820.9730.9850.9670.9750.9720.9740.9810.9840.9730.9760.9760.9750.970.9630.9710.9820.9680.9790.9730.9740.9710.9670.9750.9770.9770.9760.9760.9750.9810.9780.9810.9780.9780.9790.9770.9720.970.9720.9720.9610.9780.9390.9750.9740.9720.9740.9790.970.9660.9740.9740.9690.9680.9690.9690.9790.9760.9710.9860.9710.980.9690.9780.9750.9690.9670.970.9660.970.9840.9680.9750.9280.9710.9680.9750.9710.9690.9670.9720.967 0.9040.97
    Liver188F260042015.27CDBXD48H20540.9740.9430.9420.9750.9690.9760.9710.9830.9150.9710.9620.9840.9630.9680.9740.9740.9780.9760.9740.9760.9710.9780.9730.9770.9830.9830.98310.9810.9730.9740.9740.9330.9730.980.9830.9650.9810.9860.9810.9810.970.9740.9760.9830.9650.960.9670.9780.9780.9780.9820.9870.9640.9750.9730.9860.9710.9790.9790.9590.9480.9850.890.9680.9620.9770.9740.980.970.9830.9690.9730.9710.9780.9790.980.970.9770.9760.9750.9680.9560.9670.9830.9680.9760.9730.9790.9790.9680.9750.9770.9840.9840.9740.9780.9850.9760.9850.970.9880.9780.9780.9690.9710.9720.9740.9640.9780.9290.9760.9820.9710.9730.9770.9750.9630.9760.9690.9690.9590.9710.9630.9820.9780.9760.9840.9750.9830.9740.9780.9780.9750.9680.9660.9660.9720.9810.9690.980.920.9720.9640.9780.9730.9740.9690.9770.963 0.890.97
    Liver518F275121515.18CDBXD48H18350.9890.9430.9450.9910.9850.9890.9850.9680.9070.9850.9820.9830.9850.9860.9780.9820.9760.9630.9860.9890.9790.9870.9850.9870.9790.980.9810.98110.9850.9850.9840.9590.9770.9820.9830.9430.9860.9810.9810.9860.9870.9840.9890.9820.9550.9810.9840.9840.9830.9870.9670.9830.9840.9860.9850.9830.9770.9890.9840.9780.9730.9820.9160.9830.9820.980.9870.9720.9490.9840.9430.990.9850.9810.9840.9770.9880.9890.9880.9850.9860.9770.9840.9860.9680.9880.9880.9740.9810.9810.9870.9870.9830.9820.9850.9850.9740.9820.9770.9890.9880.9820.9840.9890.9850.9810.9850.9810.9860.9570.9710.980.9720.9810.980.980.9840.9840.9840.9830.9790.9790.9720.9840.9860.9850.9760.9820.9860.9850.9860.9850.9760.980.9830.9850.980.9860.9840.9830.9410.9850.9830.9870.9840.9790.9430.9710.948 0.9070.98
    Liver233F25051112.05CDBXD48aH02090.990.9270.9290.9870.9830.9880.9860.9620.8910.9830.9750.9860.9820.9850.9770.9850.9670.960.980.9850.9810.9890.9880.9890.9790.9730.9730.9730.98510.9840.9880.9510.9730.9790.9750.9370.9870.9790.9790.9830.9820.9770.9860.9810.9490.980.9820.9870.9830.9880.9630.980.9850.9910.9760.980.9880.9810.9810.9670.9790.9050.9820.980.970.9860.9670.940.9820.9380.9860.9860.9830.9810.9710.9880.9870.9870.9860.9850.9760.9790.9820.960.9840.9880.9710.9860.9780.9810.9810.9790.9780.9840.980.9720.9780.9760.9850.9820.9690.9780.9820.9840.9750.9820.980.9830.9540.970.9790.970.9830.970.9810.980.9850.9830.9810.9780.9840.970.9830.9890.9910.970.9850.990.9820.9830.980.980.9810.980.9820.9830.9810.9850.9850.9330.9840.980.9870.9870.9850.9380.9660.94 0.8910.98
    Liver571F308062013.16CDBXD53H08480.9890.9190.9210.9880.9780.9830.9870.9660.8830.9810.970.9850.980.9830.970.9790.9710.9580.9810.9830.9790.9870.9880.9850.9790.9720.9720.9740.9850.98410.9840.9430.9780.9860.9750.9320.9870.9840.9840.9850.9840.9830.9870.9830.9460.9760.9780.9860.9790.9870.9640.9740.9750.9880.9840.9740.9810.9860.980.9750.9610.9830.8950.9830.9840.9730.9840.9640.9390.9780.9410.9880.9870.9890.980.970.9880.9870.9890.980.9830.9680.9810.980.9640.9830.9880.9760.9790.9790.9820.9810.9790.9790.9830.9790.970.9790.9750.9820.9820.9650.9780.9810.9970.9790.9850.9830.9810.9470.9750.9830.970.9820.9730.9870.9780.9820.9820.980.9690.980.9640.9850.9880.9850.9690.9820.9840.9870.9810.9790.9820.9810.9760.980.9850.9830.9880.9870.9240.9850.9830.9860.9880.9890.9410.9660.936 0.8830.98
    Liver235F104050912.08CDBXD60H02350.9870.9280.9280.9870.9820.9870.9860.9670.8940.9820.9730.9830.980.9840.9730.9840.9690.9640.9790.9820.9840.9880.9850.9870.9810.9710.9710.9740.9840.9880.98410.9470.9720.9810.9760.9380.9820.9770.9770.9840.9780.9760.9830.9830.950.9760.980.9820.9790.9870.9590.9750.9780.9840.9880.9740.9810.9860.9790.9750.960.9820.9020.9780.9740.970.9850.9670.9420.9790.940.9840.9860.9840.9790.9680.9840.9860.9850.9840.9830.9760.9790.9830.960.9840.9870.9750.9860.9780.980.9810.9780.9770.9850.9780.9730.9760.9760.9830.980.9740.9810.9820.9840.9740.9820.9780.9830.950.9670.9790.9690.9830.970.980.9790.9870.9830.9850.9770.9880.9680.9820.9870.9870.9680.9820.9840.9820.9830.9780.9730.980.980.980.9810.9780.9820.9830.9340.980.9770.9890.9870.9850.940.9650.947 0.8940.98
    Liver530F51021213.14CDBXD60H01710.9460.950.9530.9520.9550.9620.940.9190.9190.9510.970.9470.960.9490.9580.9540.9380.9290.9580.9570.9440.9460.9440.9470.9340.9440.9450.9330.9590.9510.9430.94710.9320.9320.9530.9040.9420.9330.9370.950.9540.9390.9510.940.9230.9490.960.9440.9420.9510.9150.9450.9610.9480.9510.9410.9360.9510.9410.9580.9730.9380.9430.9490.950.9580.9510.9370.9010.9460.90.9590.940.9330.9410.9390.9510.9590.9550.9450.9580.970.9550.9450.9530.9450.9490.9340.9410.9470.9590.9580.9430.9430.9520.9590.9280.9560.9320.9630.9460.9520.9450.9650.9430.9440.950.9510.9570.970.9220.9350.9470.9410.9580.9380.9650.9460.9530.9490.9710.9440.960.9460.9490.9510.9320.9470.9490.9440.9570.9590.9330.9410.9660.9610.940.9510.9570.9430.9640.9480.9640.9530.950.9350.90.940.915 0.90.95
    Liver188F132111414.02CDBXD61H17700.9760.9220.9230.9740.9730.9710.9790.9740.8930.9760.9590.9770.9710.9730.9640.9650.9790.960.9720.9730.9610.9750.9790.9770.9760.9780.9780.9730.9770.9730.9780.9720.93210.9860.9760.9480.9810.9830.9790.9770.9810.9860.9810.980.9510.9730.9760.9780.9730.9750.9740.9780.9740.9770.9730.9750.9720.9780.9850.9610.9490.9760.8840.9730.9750.9710.9750.9680.9540.9790.9530.9730.9790.9780.9850.9820.9770.9750.9770.9770.9690.9540.9690.9770.9640.9780.9750.9780.9710.9740.9730.9740.980.980.9750.9720.9710.9750.9720.9670.9730.9690.9720.9660.9760.9860.9780.9680.9730.9320.9860.980.970.9760.9710.9790.9650.9740.9760.9710.9610.9670.9590.9790.9760.9710.9780.9740.9780.9750.9730.9720.9780.9720.960.9660.9770.9820.970.980.9090.9770.9650.9740.9720.9750.9530.9650.944 0.8840.97
    Liver524F324121515.23CDBXD61H18410.9850.920.9220.9840.970.9770.980.9780.8910.9760.9620.9850.9730.9810.9660.9740.9810.9680.9810.9810.9720.9850.9840.9850.9860.9760.9770.980.9820.9790.9860.9810.9320.98610.9790.9460.9830.9880.9860.9830.9810.9860.9830.9860.9490.9660.9730.9810.9760.9860.9750.9830.9690.9830.9790.9820.9790.9870.9830.9630.9510.9870.8830.9790.9780.9740.9850.9720.9530.9820.9540.9790.980.9860.9830.9820.980.9840.9860.9760.9760.9580.9730.9810.9690.9840.9850.9830.9770.9820.9820.9830.9840.9840.9820.9790.980.9760.9830.9760.9790.9680.9750.970.9850.9870.9850.9820.980.9320.980.9860.9660.9780.9740.9840.970.9820.9770.9750.9610.9760.9570.9850.9860.980.9790.9820.9850.9880.980.9790.9840.9740.9690.9740.9780.9840.9780.9850.9130.980.9720.980.9810.9820.9540.9740.947 0.8830.97
    Liver253F257042015.05CDBXD62H18470.9750.9560.9560.9790.9780.9820.9720.9770.9330.9750.9760.9820.9730.9730.9780.9780.9850.9730.9810.9790.9680.9760.9740.9790.9810.9860.9860.9830.9830.9750.9750.9760.9530.9760.97910.9660.9770.9820.9750.9790.9750.9750.9790.9820.9650.9690.9760.9770.9770.980.9750.9880.9770.9790.9750.9850.9690.9830.9810.9660.9620.9810.910.9710.970.9830.9760.980.9620.9840.9610.9770.9720.9750.9810.9840.9740.9820.980.9730.9720.9710.9730.9810.9750.9770.9760.9780.9740.9730.9830.9840.9810.980.980.980.9810.9820.9820.980.980.9830.9790.9780.9720.9750.9760.970.9860.9480.9720.9760.9770.9750.9830.9730.9720.9760.9750.9760.9750.9740.9710.9830.9790.9760.9850.9790.9840.9760.9860.980.9710.970.9780.9730.9720.9860.9730.9770.9380.9740.9720.9790.9760.9710.9610.9770.967 0.910.98
    Liver353F178121214.20CDBXD62H14360.9290.9440.9410.9330.9430.9390.9320.9680.9390.9350.9210.9460.9250.930.9530.9310.9590.950.9360.9360.9230.9350.9370.9380.9560.9680.9680.9650.9430.9370.9320.9380.9040.9480.9460.96610.9390.9560.940.9360.9310.9360.9320.9490.9690.9290.9380.9340.9540.9350.980.9680.9430.9390.9370.9630.9240.9410.9510.9280.9110.9460.8750.920.9240.9520.9350.9710.9770.960.9760.9280.9320.9420.9510.9670.9290.9360.9340.940.9270.9230.9210.9460.9490.940.9340.9560.9370.9260.9390.9440.9530.9530.9380.9370.9740.9530.9690.9290.9440.9620.950.9280.9270.9380.9250.9190.9550.9020.9550.9440.9490.9440.9520.9310.9230.9320.9340.9380.9350.9380.9490.9510.9380.9340.9750.9420.9510.9320.9550.9370.9350.9320.9280.9220.9370.9530.9250.9440.8930.9310.9190.9360.9320.9350.9760.9440.975 0.8750.94
    Liver218F293090412.08CDBXD63H08180.990.9240.9260.9870.9790.9830.9880.9690.8840.9820.9710.9870.9770.9810.9710.980.9720.9620.980.9840.980.9890.9880.9870.980.9780.9780.9810.9860.9870.9870.9820.9420.9810.9830.9770.93910.990.990.9850.9830.9830.9890.9840.9480.980.9820.990.9830.9870.970.980.9770.9860.9870.980.9790.9850.9870.9730.9610.9840.8960.9810.9790.9720.9830.9660.9470.9840.9440.9870.9880.9850.9870.9760.9890.9850.9870.9870.9820.9660.9790.9850.960.9870.9860.9740.9840.9770.9810.9810.9840.9830.9820.9830.9740.9780.9770.980.9870.9680.9780.9780.9870.980.9860.9780.9810.9470.9830.990.9750.9820.9720.9860.9760.9840.9810.9790.970.9790.9630.9870.9880.9850.9750.980.9860.9840.9810.9830.9830.9810.9730.9810.9830.9830.9840.9870.9220.9880.9810.9860.9860.9860.9440.970.938 0.8840.98
    Liver344F134121214.24CDBXD63H14140.9820.9320.9330.9820.9720.9760.980.9820.9010.9750.9620.9850.9680.9760.970.9750.9820.9690.9790.980.9720.9830.9810.9820.9850.9790.980.9860.9810.9790.9840.9770.9330.9830.9880.9820.9560.9910.9910.9810.9780.9830.980.9830.9560.9670.9740.9840.980.9830.9810.9840.9710.9840.9790.9830.9760.9840.9860.9650.9510.9870.890.9720.9730.9750.9790.9730.9590.9830.960.9780.980.9850.9860.9840.9790.9810.9830.9770.9730.9570.970.980.970.980.980.9830.9780.9760.980.9810.9890.9880.9780.9810.9830.9790.9850.9730.9840.9730.9770.9710.9820.980.9780.9740.9820.9340.9890.9910.9760.9780.9750.9840.9680.9760.9730.9750.9630.9760.9630.9880.9850.980.9830.9830.9870.9840.9820.9810.9830.9750.9680.9730.9790.9830.9780.9850.9160.9790.9720.980.9810.9830.960.9750.951 0.890.98
    Liver751F133083016.03CDBXD63H18720.9840.9230.9250.9820.9680.9770.980.9730.8880.9760.9660.9830.9690.9780.9650.9750.9760.9640.9820.980.9760.9840.980.9820.980.9710.9720.9810.9810.9790.9840.9770.9370.9790.9860.9750.940.990.99110.9840.980.9850.9820.9790.9410.9690.9740.9840.9770.9830.9670.9780.970.9830.9790.9780.9780.9840.9840.9660.9550.9840.890.9750.9750.9730.9810.9660.9470.9790.9450.980.980.980.9840.9770.9830.9840.9860.9810.9790.9620.9750.9820.9670.9810.9820.9790.9820.9820.9820.9820.9890.9890.9790.9850.9770.9770.980.9750.9870.9680.9730.9710.9830.9850.9860.980.9830.9380.9860.9960.9730.9760.9730.9870.9730.9810.9760.9760.9630.9780.960.9860.9850.9830.9760.9830.9850.9870.9830.9850.9870.9750.9690.9780.9790.9790.9820.9850.9170.9840.9780.9820.9840.9810.9450.9730.937 0.8880.97
    Liver222F107042015.13CDBXD65H20980.9860.9310.9310.9850.9750.9850.9830.9690.8930.9840.9740.9870.980.9830.9740.9830.9730.9710.9820.9830.9790.9880.9840.9860.9820.9750.9750.9810.9860.9830.9850.9840.950.9770.9830.9790.9360.9850.9810.98410.9870.9860.9890.9840.9480.9720.9770.9850.9750.9880.9620.9790.9740.9830.9830.9790.9860.9870.9820.9710.9660.9850.90.9840.9780.9810.9860.9710.9460.9810.9460.9870.9830.9810.9820.9710.9840.9880.9870.9820.9830.9710.9840.9880.9710.9840.9850.9780.9860.9830.9830.9830.9810.9810.9840.9840.9740.980.9760.9830.9860.9730.9760.980.9840.9820.9890.980.9820.9470.9720.9840.970.9810.9810.9860.9830.9880.9840.9810.970.980.9680.9810.9850.9850.9710.980.9830.9830.9820.9840.9810.9790.9780.980.980.9830.9810.9840.9320.9820.9780.9890.9840.980.9460.9770.942 0.8930.98
    Liver541F322121615.09CDBXD65H17870.9850.9260.9280.9840.9770.9840.9820.9620.8880.9820.9750.9810.980.980.9710.9760.9710.9590.9810.9840.9740.9830.9840.9820.9730.9750.9760.970.9870.9820.9840.9780.9540.9810.9810.9750.9310.9830.9780.980.98710.9870.9920.980.9430.9780.9810.9820.9760.9840.960.9760.9790.9820.9820.9740.980.9840.9810.9750.970.9730.8990.9830.9830.9770.9810.9620.9370.9790.9340.9860.9820.9780.9810.9740.9860.9840.9850.9810.9840.9710.9820.9820.9650.9840.9850.9720.9770.9840.9820.9810.9790.9790.9820.9830.9640.9760.9680.9820.9790.9690.9730.9810.9840.9850.9850.9760.9780.9490.9710.9790.970.9790.9770.9820.9840.9830.9850.9750.9720.9730.9640.9790.9830.9810.9680.9790.9790.9840.9780.9830.980.9750.9760.980.9780.9840.9820.9790.9270.9850.9790.9820.9820.9790.9340.9690.935 0.8880.97
    Liver187F320111414.05CDBXD65bH17660.9850.9210.9230.9830.9710.9760.9810.9680.8880.9820.9690.9790.9750.980.9620.9730.9780.9580.9790.980.9660.9830.980.9810.9770.9730.9740.9740.9840.9770.9830.9760.9390.9860.9860.9750.9360.9830.9830.9850.9860.98710.9870.9780.940.9720.9760.9820.9730.980.9650.9770.9750.9820.9770.9750.9760.9850.9840.9640.9590.9790.8920.9820.9810.9740.980.9660.9450.9760.9440.980.9810.9760.9840.9770.9830.9810.9840.9770.9770.9620.9770.9790.9640.9820.9810.9760.9750.9810.980.980.9810.9810.9780.9790.9680.9750.9720.9760.9780.9680.9730.970.9830.9870.9840.9790.9780.9390.980.9820.9630.9780.9740.9870.9740.9780.9780.9750.9640.9720.9570.980.980.9770.9730.9790.980.9820.9780.9790.9820.9760.9680.9770.9780.9820.9780.9810.9160.9810.9750.9780.9770.9740.9440.9690.932 0.8880.97
    Liver527F313121615.12CDBXD65bH17930.990.9270.9280.9880.9820.9860.9880.9640.8870.9850.9790.9850.9830.9830.9730.9810.9710.9630.9830.9850.9790.9880.9880.9880.9780.9790.9790.9760.9890.9860.9870.9830.9510.9810.9830.9790.9320.9890.980.9820.9890.9920.98710.9850.9470.9820.9840.9880.9820.9870.9620.980.9810.9850.9860.9780.980.9870.9840.9740.9670.9810.90.9850.9820.9780.9840.9660.9430.9830.9390.9890.9880.9830.9840.9740.990.9880.9890.9870.9850.9740.9850.9880.9630.9880.9880.9720.9830.9820.9840.9830.9790.9790.9870.9850.9680.9790.9730.9850.9850.9710.9780.9840.9870.9820.9890.980.980.9520.9740.9810.9720.9850.9780.9870.9840.9880.9870.980.9750.9790.9660.9840.9870.9850.9720.9780.9850.9830.980.9850.980.9810.9790.9840.9830.9860.9850.9840.9290.9880.9840.9880.9860.9830.9390.9710.939 0.8870.98
    Liver184F112042415.08CDBXD66H21280.9830.9290.9290.9840.9760.9810.9810.9770.8970.9790.9670.9860.9770.9780.9710.9770.9750.9720.9770.9790.9780.9830.9840.9860.9850.9810.9810.9830.9820.9810.9830.9830.940.980.9860.9820.9490.9840.9830.9790.9840.980.9780.98510.9610.970.9780.980.9780.9870.9730.9840.9710.9810.9810.9820.9790.9840.9820.9660.9520.9850.8890.9780.9730.9780.9820.9740.9570.9830.9540.9810.9810.9870.9820.9790.9790.9840.9840.980.9760.9640.9770.9860.9670.9840.9840.9810.980.9760.9790.980.9790.9780.9850.9780.9790.9780.9810.9780.9820.9730.9780.9790.9810.9770.9820.9720.9790.9420.9750.9810.9730.980.9780.9780.9740.9890.9850.9770.9670.9780.9660.9840.9860.9820.9780.9760.9850.9810.9790.9780.9750.9750.9730.9720.9790.9850.9760.9820.9240.9790.9720.9840.9810.9850.9540.9720.957 0.8890.98
    Liver354F113121214.19CDBXD66H15580.940.950.9480.9460.9570.9570.9450.9650.9320.9450.9380.9560.9430.9390.9620.9480.9540.9570.9450.9470.9470.9460.9510.9490.9560.970.9690.9650.9550.9490.9460.950.9230.9510.9490.9650.9690.9480.9560.9410.9480.9430.940.9470.96110.9420.9490.9460.9580.9480.9690.9670.9530.9490.9490.9620.9410.9510.9530.9440.9310.9520.90.9390.9390.9590.9460.9660.9580.9610.960.9460.9450.9570.9530.9610.9420.9490.9470.950.940.940.9390.9540.9510.9470.9470.9560.9480.9360.9480.9520.9540.9530.950.9440.9660.9590.9630.9460.9530.960.960.9490.9430.9390.9370.9290.9560.9210.9520.9460.9610.9530.9590.940.9390.9480.9490.9460.9490.9450.9590.9550.950.9480.9670.9480.9580.9410.9560.9440.9410.9440.9470.9360.950.9610.940.9540.9170.940.9340.9510.9450.9530.960.9460.973 0.90.95
    Liver201F271101613.05CDBXD68H10680.9840.9220.9240.9790.9870.9770.9890.9460.8830.9830.9730.9730.9770.9770.9680.9720.960.9470.9760.9740.9660.9770.9830.9810.9670.9680.9690.960.9810.980.9760.9760.9490.9730.9660.9690.9290.980.9670.9690.9720.9780.9720.9820.970.94210.9870.9780.980.9750.9520.9670.9840.9790.980.9680.9670.9750.9780.980.9680.9680.9050.9740.9770.9640.9740.9580.9340.9770.9270.9810.9890.9710.9780.9630.9890.9770.9780.9830.9810.9750.9750.9770.9510.9810.980.9560.9760.9710.9770.9760.9660.9650.9790.9720.9570.9740.9620.9770.9730.9680.9750.9790.9760.970.9760.970.9750.9590.9640.9670.9650.9820.9640.9730.9780.9730.9840.9860.9820.9770.9670.9770.9760.9750.9610.9680.9740.970.9750.9720.9690.9820.9740.9790.980.9770.9780.9760.9290.9850.9760.9780.9790.9730.9270.9580.933 0.8830.97
    Liver545F74082214.02CDBXD68H10800.9820.9360.9370.9820.9820.9840.9830.960.9030.9830.9780.9770.980.980.9730.9770.970.9560.9830.9810.9720.9790.9820.9810.9730.9760.9760.9670.9840.9820.9780.980.960.9760.9730.9760.9380.9820.9740.9740.9770.9810.9760.9840.9780.9490.98710.9780.9770.980.960.9740.9840.980.9820.9720.970.9810.9810.9760.9670.9720.9210.9760.9760.9730.9820.9660.9420.9810.9350.9830.9830.9760.9810.9720.9830.9820.9820.9830.9810.9750.980.9790.9630.9820.9820.970.9770.9750.9840.9840.9740.9730.980.9760.9650.9770.9670.980.9750.9740.9770.9820.9770.9760.9780.9730.980.9640.970.9740.9730.9770.9730.9730.9790.9780.9820.9840.9860.9780.9710.980.9810.9790.9680.9740.980.9770.980.9760.970.9750.9770.9790.9760.9780.9780.9770.9420.9820.9790.9810.9790.9760.9350.9620.942 0.9030.97
    Liver157F114042415.23CDBXD69H21420.9890.9250.9270.9850.9810.9830.9850.9640.8840.980.9730.9880.9760.9790.9710.9830.9690.9610.9810.9820.9770.9880.9860.9860.9780.9740.9750.9780.9840.9870.9860.9820.9440.9780.9810.9770.9340.990.9840.9840.9850.9820.9820.9880.980.9460.9780.97810.9890.9850.9660.9780.9780.9880.9870.9770.9780.9860.9840.9760.9630.9830.8970.9820.980.9710.9820.9630.940.9820.9420.9840.9850.9820.9840.9720.9880.9840.9860.9840.9820.9690.9770.9820.960.9820.9840.9680.9840.9780.9810.980.980.980.9810.9830.9710.9780.9760.9820.9860.9660.9770.9780.9850.9770.9860.9810.980.9470.9740.9820.9690.9820.9710.9870.9760.9810.980.9770.9710.9820.9680.9860.9870.9870.9720.9810.9870.9820.980.9830.9850.9820.9750.9830.9840.9820.9860.9880.9240.9870.980.9840.9840.9830.9420.9720.935 0.8840.98
    Liver558F41061913.13CDBXD69H05910.9820.9350.9370.9790.9840.9790.9830.9660.90.9770.9680.9810.970.9740.9760.9750.9670.960.9750.9770.9710.980.9840.9820.9770.9790.980.9780.9830.9830.9790.9790.9420.9730.9760.9770.9540.9830.980.9770.9750.9760.9730.9820.9780.9580.980.9770.98910.9770.9740.9810.980.9830.9830.9810.9670.9790.980.9760.9590.9760.9010.970.9730.9710.9760.9680.9540.9860.950.9770.9830.9780.980.9750.9830.9780.9790.9850.9790.9690.9690.9810.9590.980.980.9650.9790.970.9760.9760.9780.9770.9780.9780.9770.9790.980.9780.9830.9730.9780.9760.9780.9690.9760.9710.9790.9480.9710.9760.970.9830.9710.9770.9740.9750.980.9770.9730.9820.9760.9840.980.980.9770.9750.9840.9750.9790.9780.9740.9780.9720.9770.9810.9810.980.9820.9240.9830.9740.9790.980.9780.950.9680.952 0.90.97
    Liver261F207050115.06CDBXD70H18550.9890.9290.930.990.9790.9880.9840.9690.8930.9830.9750.9890.9840.9860.9740.9860.9740.9670.9850.9870.9830.990.9880.990.9840.9760.9760.9780.9870.9880.9870.9870.9510.9750.9860.980.9350.9870.9830.9830.9880.9840.980.9870.9870.9480.9750.980.9850.97710.9670.9810.9770.9870.9880.9790.9840.990.9810.9760.9660.9860.9010.9850.9810.9760.9880.970.9420.9830.9410.9880.9840.9860.9810.9750.9850.990.9890.9810.9830.9720.9830.9850.9680.9860.9890.9790.9840.9820.9860.9860.9820.9810.9870.9840.9740.9790.9780.9860.9840.9710.9780.9830.9870.9790.9860.9820.9840.950.9720.9830.9710.980.9760.9820.980.9870.9820.9820.9740.9820.9670.9880.9940.990.9710.9840.9880.9860.9840.9840.9810.980.9820.9810.980.9840.9840.9860.9340.9840.980.9890.9880.9860.9410.9720.943 0.8930.98
    Liver357F197121214.16CDBXD70H15120.9610.9350.9350.9610.9630.960.9610.9790.9160.9590.9410.9720.9530.9570.9640.9540.9720.9640.960.9610.950.9630.9670.9650.9760.9810.9820.9820.9670.9630.9640.9590.9150.9740.9750.9750.980.970.9810.9670.9620.960.9650.9620.9730.9690.9520.960.9660.9740.96710.9840.9590.9670.9630.980.9530.9660.9730.9490.9320.9720.8770.9540.9560.9680.9620.9780.9780.9790.9760.9570.9610.9720.9730.9810.9590.9620.9630.9630.9530.9380.9490.9680.9620.9670.9620.9730.960.9540.9620.9650.9730.9720.9630.960.9850.970.9830.9540.9680.9660.970.9510.960.9610.9560.950.9670.9170.9760.970.9630.9670.9680.9630.9470.9580.9570.9570.9480.9570.9580.9780.9690.9610.9870.9640.9740.9620.9670.960.9650.960.9480.9490.9650.9750.9550.970.8990.960.9470.9610.9590.9650.9760.9650.969 0.8770.96
    Liver361F203121214.10CDBXD73H14510.9770.9480.9480.9780.9750.9780.9720.9790.9230.9760.9680.9830.9730.9750.9770.9740.9820.9740.9780.980.9660.9780.9780.9820.9860.9880.9890.9870.9830.980.9740.9750.9450.9780.9830.9880.9680.980.9840.9780.9790.9760.9770.980.9840.9670.9670.9740.9780.9810.9810.98410.9790.9810.980.9880.9680.9830.9820.9650.9560.9830.9010.9730.9710.9820.9790.9840.9710.9870.9670.9750.9720.9770.9820.9880.9740.9810.9790.9750.9720.9620.9710.9830.9740.9810.9780.980.9740.9720.9790.9810.9810.9810.980.980.9860.980.9870.9770.980.980.9770.9710.9720.9780.9760.9690.9810.9390.9760.9780.9710.9760.9820.9720.9680.9770.9750.9720.9670.9720.9710.9830.9810.9790.9920.9790.9880.9750.9810.980.9740.9710.9710.9690.9730.9870.9710.9780.9270.9740.9680.9780.9730.9710.9670.9770.968 0.9010.98
    Liver539F213121615.17CDBXD73H19060.980.9430.9440.980.9860.9830.9790.9580.910.9810.9770.9740.980.980.9760.9750.9710.9510.9770.9820.9660.9780.9810.9810.9710.9730.9740.9640.9840.9850.9750.9780.9610.9740.9690.9770.9430.9770.9710.970.9740.9790.9750.9810.9710.9530.9840.9840.9780.980.9770.9590.97910.9840.9850.9730.9660.9820.9790.9810.9730.9690.9240.9750.9790.9720.9780.9660.9380.9790.9350.980.9790.9710.9790.9750.9830.980.9780.9790.980.9770.9730.9750.9620.9790.9810.9670.9720.9710.9780.9790.9730.9740.9790.9760.9640.9780.9660.9810.9720.9770.9760.980.9740.9740.9720.9720.980.9610.9670.9680.970.9790.9720.970.9780.9730.980.980.9830.9760.9750.9780.9780.980.9720.9780.9830.9730.980.9760.9690.9780.9780.9780.9770.9810.9780.9770.9420.9790.9750.9780.9750.9710.9350.9590.943 0.910.97
    Liver238F98051112.12CDBXD73bH01840.9890.9290.9310.9860.9840.9850.9850.9640.8920.9810.9730.9860.9830.9850.9720.9810.9740.960.9830.9840.9760.9860.9890.9880.980.9730.9730.9750.9860.990.9880.9840.9480.9770.9830.9790.9390.9860.9840.9830.9830.9820.9820.9850.9810.9490.9790.980.9880.9830.9870.9670.9810.98410.990.9760.9780.9890.9820.9820.9640.9840.9020.9830.9850.9740.9850.9660.9390.9790.9430.9840.9850.9850.9820.9750.9890.9880.9890.980.9820.9710.9790.980.9650.9830.990.9750.9810.9810.9840.9830.9810.980.9860.9830.9720.9810.9760.9840.9810.9710.9810.9820.9880.9790.9830.9850.9830.9530.9740.9810.970.9850.9740.9860.9780.9810.9830.9830.9750.9810.9690.9890.9890.9910.9760.990.9920.9870.9830.9830.9820.9860.9780.9830.9870.9860.9880.9890.930.9860.9810.9860.9870.9850.9430.970.941 0.8920.98
    Liver497F253050115.15CDBXD73bH14660.990.9270.9290.9870.9830.9880.9860.9620.8910.9830.9750.9860.9820.9850.9770.9850.9670.960.980.9850.9810.9890.9880.9890.9790.9730.9730.9730.98510.9840.9880.9510.9730.9790.9750.9370.9870.9790.9790.9830.9820.9770.9860.9810.9490.980.9820.9870.9830.9880.9630.980.9850.9910.9760.980.9880.9810.9810.9670.9790.9050.9820.980.970.9860.9670.940.9820.9380.9860.9860.9830.9810.9710.9880.9870.9870.9860.9850.9760.9790.9820.960.9840.9880.9710.9860.9780.9810.9810.9790.9780.9840.980.9720.9780.9760.9850.9820.9690.9780.9820.9840.9750.9820.980.9830.9540.970.9790.970.9830.970.9810.980.9850.9830.9810.9780.9840.970.9830.9890.9910.970.9850.990.9820.9830.980.980.9810.980.9820.9830.9810.9850.9850.9330.9840.980.9870.9870.9850.9380.9660.94 0.8910.98
    Liver460F255050115.17CDBXD77H13980.9790.9430.9430.9780.9740.9770.9760.9760.9140.9770.9650.9820.9690.9760.9760.9720.9790.9720.9760.9770.9670.980.9760.980.9850.9850.9850.9860.9830.9760.9740.9740.9410.9750.9820.9850.9630.980.9830.9780.9790.9740.9750.9780.9820.9620.9680.9720.9770.9810.9790.980.9880.9730.9760.97610.9670.980.9830.9630.9590.9820.8980.9720.9690.980.9790.9830.970.9870.9610.9760.9760.9750.9830.9830.9750.980.9780.9780.9740.9640.9680.9840.970.9840.9770.9760.9760.9710.9780.9790.9810.980.9790.9780.9850.9780.9850.9770.9820.980.9770.970.9720.9750.9770.9690.9820.9370.9740.9780.9690.9760.980.9730.9720.9770.9750.9750.9660.9750.9690.9820.9780.9750.9840.9740.9820.9790.9820.9780.9750.9730.9720.970.9740.9840.970.9790.9240.9740.9670.9780.9740.9720.9610.9770.963 0.8980.97
    Liver217F272090412.10CDBXD79H08250.980.9140.9140.980.9660.9810.9780.9640.8780.9740.9630.9810.9720.9740.9660.9810.9670.9680.9770.9780.9810.9830.9780.9780.9730.9640.9640.9710.9770.980.9810.9810.9360.9720.9790.9690.9240.9790.9760.9780.9860.980.9760.980.9790.9410.9670.970.9780.9670.9840.9530.9680.9660.9780.980.96710.9850.9740.9670.9570.9760.8850.9780.9720.9650.9770.9570.9310.9710.9350.980.9780.9830.9740.9620.9780.9790.9810.9730.9750.9620.9770.9780.9610.9760.980.9730.9840.9830.9780.9780.9770.9760.9760.9750.9640.9690.9670.9740.9780.9590.9690.9740.9810.9760.980.9710.9750.9360.9670.9790.9680.970.9650.9770.9720.9810.9750.9730.9640.9740.9540.9730.9820.9830.9610.9810.9760.9810.9750.9750.9820.970.9710.9720.9730.9740.9750.9780.9190.9760.9690.9810.9830.9840.9350.9690.934 0.8780.97
    Liver468F91050115.19CDBXD79H15550.9890.9350.9370.9890.9790.990.9820.970.9010.9830.9760.9880.9830.9870.9740.9880.9820.9670.9880.9880.980.990.9860.9880.9840.9770.9770.9790.9890.9880.9860.9860.9510.9780.9870.9830.9410.9850.9840.9840.9870.9840.9850.9870.9840.9510.9750.9810.9860.9790.990.9660.9830.9820.9890.9880.980.98510.9860.9770.9670.9850.9080.9860.9830.9780.9860.9730.9440.9810.9450.9860.9820.9830.9860.9790.9860.990.990.980.9830.9730.9810.9830.970.9860.9890.9790.9840.9850.9890.9890.9850.9840.9850.9840.9770.9810.980.9860.9830.9760.980.9810.9850.9830.9860.9850.9870.9490.9750.9830.9690.980.9780.9840.980.9850.9820.9820.9770.9820.9680.9850.990.990.9760.9880.990.9870.9870.9840.9850.9780.9810.9830.9810.9850.9840.9860.9340.9830.980.9860.9860.9830.9450.9740.945 0.9010.98
    Liver200F6090612.10CDBXD87H05500.9850.9310.9320.9830.9760.9780.9840.9750.8980.9820.9690.9820.9710.9780.9690.9770.9830.9660.9790.980.9690.9830.9810.9820.9810.980.9810.9790.9840.9810.980.9790.9410.9850.9830.9810.9510.9870.9860.9840.9820.9810.9840.9840.9820.9530.9780.9810.9840.980.9810.9730.9820.9790.9820.9810.9830.9740.98610.9670.9590.980.8960.9760.9750.9740.9790.9730.9570.9850.9460.9780.9840.97810.9850.9830.9820.9830.9830.9770.9650.9750.9830.9650.9840.9810.9770.9820.9780.980.9810.9840.9830.9790.9790.9760.9780.9780.9770.9820.9770.9750.9720.9790.9830.980.9720.9830.940.9840.9840.9720.9770.9740.980.9730.9790.980.9790.970.9790.9670.9840.9820.9790.980.9790.9840.980.9830.9790.980.9760.9710.9750.9790.9830.9760.9820.9180.9830.970.9780.9790.9770.9460.9730.949 0.8960.98
    Liver581F286061913.19CDBXD87H02960.9790.9320.9350.9740.9840.9810.9760.9420.8940.9760.9690.9760.9790.9780.9760.9770.9590.9490.9750.9760.9670.9770.9820.980.9670.960.9610.9590.9780.9810.9750.9750.9580.9610.9630.9660.9280.9730.9650.9660.9710.9750.9640.9740.9660.9440.980.9760.9760.9760.9760.9490.9650.9810.9820.9810.9630.9670.9770.96710.9720.9670.9150.9760.980.9650.9750.9580.9250.9710.9320.9760.9760.9710.9670.9610.9820.9770.9780.9740.980.9770.9710.9690.9590.9720.980.9580.9730.9710.9760.9740.9660.9660.9790.9740.9580.9760.9630.9770.9710.9660.9730.9790.9750.9630.970.9750.9750.9630.9570.9630.9630.980.9650.9710.9780.9690.9790.9770.980.9740.9720.9760.9770.980.9560.9730.9770.9720.9750.9740.9730.980.9770.9790.9810.9760.980.9770.9410.9780.9750.9760.9780.9740.9320.9590.934 0.8940.97
    Liver193F310090612.14CDBXD89H05550.9680.9420.9450.9690.970.9740.9620.9310.9010.9690.9740.9620.9670.9650.9670.9670.9520.9410.9720.9710.9540.9660.9640.9650.9510.9560.9570.9480.9730.9670.9610.960.9730.9490.9510.9620.9110.9610.9510.9550.9660.970.9590.9670.9520.9310.9680.9670.9630.9590.9660.9320.9560.9730.9640.9670.9590.9570.9670.9590.97210.9530.9390.970.9690.9670.9640.9460.9110.960.9110.9720.9620.950.9590.9510.9720.970.9680.9620.9740.9750.9680.9620.9580.9630.9660.9430.9620.9640.9730.9710.9580.9580.9670.9730.9420.9670.9470.9760.9610.9620.9570.9710.9610.9590.9650.9650.9690.9560.940.9510.950.9610.9670.9590.980.9610.9680.9640.9760.9590.9620.960.9630.9650.9440.9630.9620.960.9690.9730.9570.9660.980.9760.960.9680.970.9620.9470.9680.9710.9660.9670.9510.9110.9570.919 0.9010.96
    Liver245F230102616.12CDBXD9H25770.9840.9320.9320.9830.9730.9790.9810.9720.8950.9770.9650.9880.9760.9810.9680.9790.9780.9710.9810.9790.9760.9860.9840.9870.9870.9760.9760.9850.9820.9790.9830.9820.9380.9760.9870.9810.9460.9840.9870.9840.9850.9730.9790.9810.9850.9520.9680.9720.9830.9760.9860.9720.9830.9690.9840.9790.9820.9760.9850.980.9670.95310.8930.9790.9740.9790.9830.9740.9550.980.9590.980.9810.9840.980.9760.980.9870.9860.9750.9750.9620.9750.9820.9710.9830.9830.980.980.9750.9820.9830.9810.980.9860.9810.9810.9810.9830.9770.9830.9720.980.9740.9820.9750.9830.9820.9820.9420.9760.9840.9670.9820.9790.9850.9720.9820.9770.9810.9640.9790.9640.9870.9860.9820.9770.9790.9870.9810.9820.9810.9780.980.9720.980.9810.9830.980.9860.9230.9790.9760.9860.9840.9810.9590.9770.952 0.8930.98
    Liver548F73082214.11CDBXD9H10060.8970.9430.9450.9060.9150.9240.8930.8790.9180.9060.9270.8990.9120.9040.9190.9130.8960.880.9150.9130.8960.90.8990.8990.890.9030.9040.890.9160.9050.8950.9020.9430.8840.8830.910.8750.8960.890.890.90.8990.8920.90.8890.90.9050.9210.8970.9010.9010.8770.9010.9240.9020.9050.8980.8850.9080.8960.9150.9390.89310.90.9020.9170.9050.8990.8630.9010.8630.9110.8930.8890.8960.8950.9020.910.9030.90.9120.9290.9060.8970.9120.8960.9010.8890.8960.8960.9160.9160.90.90.9060.9110.8880.9150.890.9180.8990.9160.9040.9190.8940.8920.8960.90.9150.9260.880.8890.9050.8950.9170.8890.920.8940.9020.9060.9370.8990.9260.8980.90.9030.8910.9030.9040.8950.9150.9110.8830.8960.9270.9180.8920.9020.9070.8970.9520.8990.9150.9060.9010.8880.8630.8880.883 0.8630.90
    Liver188F304102414.03CDBXD90H17020.9870.9190.9210.9840.9760.9820.980.9530.8820.9840.9720.9830.9850.9860.9690.9810.9680.9560.980.9830.9720.9860.9850.9860.9770.9690.970.9680.9830.9820.9830.9780.9490.9730.9790.9710.920.9810.9720.9750.9840.9830.9820.9850.9780.9390.9740.9760.9820.970.9850.9540.9730.9750.9830.9820.9720.9780.9860.9760.9760.970.9790.910.990.9710.9840.9660.9320.9730.9350.9840.980.9770.9760.9670.9840.9840.9840.9740.9790.9690.9810.9770.960.9850.9850.9680.9760.9790.9810.9790.970.970.9840.9770.9620.9740.9670.9820.9760.9620.9720.9770.9830.9770.9840.9830.9740.9520.9640.9730.9580.9780.9710.9810.9780.9810.9810.9760.9690.9720.9580.9770.9830.9820.9620.9760.980.980.9740.9770.9790.980.9770.9790.9820.9840.9810.9820.930.9790.9770.9820.980.9760.9350.9670.929 0.8820.97
    Liver549F311062013.02CDBXD90H07560.9850.920.9230.9820.980.980.9810.9510.8840.980.9680.9770.9840.9840.9690.9740.9690.950.9790.9790.9660.980.9860.9830.9730.9660.9670.9620.9820.980.9840.9740.950.9750.9780.970.9240.9790.9730.9750.9780.9830.9810.9820.9730.9390.9770.9760.980.9730.9810.9560.9710.9790.9850.980.9690.9720.9830.9750.980.9690.9740.9020.9910.9710.9810.9630.930.9730.9350.9820.9810.9780.9750.9690.9850.9810.9830.9740.9780.9690.9780.9720.9620.9810.9850.9680.970.9780.980.9780.9710.970.9830.9750.960.9780.9660.9790.9720.9640.9730.9770.9840.9770.9790.9830.9750.9540.9670.9720.9610.980.9710.980.9780.9740.980.9760.9710.9710.9630.9780.980.9790.9630.9760.9790.9810.9750.9750.9790.9810.9750.9790.9850.9860.9830.980.9290.9810.9780.9770.9790.9760.9350.9630.929 0.8840.97
    Liver562F21062013.17CDBXD91H08830.9720.9550.9560.9750.9720.9770.970.9680.9250.9750.970.9760.9740.9730.9750.9690.9770.9730.9820.9750.9640.9720.9740.9760.9780.9790.9790.9770.980.970.9730.970.9580.9710.9740.9830.9520.9720.9750.9730.9810.9770.9740.9780.9780.9590.9640.9730.9710.9710.9760.9680.9820.9720.9740.970.980.9650.9780.9740.9650.9670.9790.9170.9710.97110.9760.9750.9590.9780.9570.9770.970.9720.9740.9760.9730.9830.9820.970.9760.9690.9750.980.9850.9760.9760.9770.9690.9730.9830.9840.9760.9760.9810.9810.9760.9870.9780.9780.9770.9840.9750.9760.970.9730.9760.9720.9810.9520.9680.9730.9710.97610.9750.9830.9750.9780.9740.9710.9710.980.9790.9760.9720.9780.9730.980.9720.9810.9810.9660.970.9750.9740.9730.9870.9740.9740.9410.9730.9750.9780.9740.9680.9570.9790.963 0.9170.97
    Liver536F277101014.10CDBXD95H17420.9880.9280.930.9870.9780.9830.9830.9650.8930.9820.9720.9840.9830.9870.9720.980.9710.9630.9830.9850.9770.9880.9860.9890.9830.9710.9720.9740.9870.9860.9840.9850.9510.9750.9850.9760.9350.9830.9790.9810.9860.9810.980.9840.9820.9460.9740.9820.9820.9760.9880.9620.9790.9780.9850.9860.9790.9770.9860.9790.9750.9640.9830.9050.9840.9810.97610.9710.9420.9830.940.9860.9830.9820.9790.9720.9840.9880.9870.980.9830.9720.980.9830.9680.9860.9880.9760.980.9810.9840.9840.9780.9770.9860.9820.9720.9770.9760.9830.980.9710.9760.9790.9830.9820.9860.9850.9820.9560.9690.980.9660.9790.9760.9790.980.9850.9820.9820.9730.980.9660.9830.9880.9850.970.9790.9850.9850.9820.9820.9770.980.9790.9810.980.9820.9820.9860.9370.9830.9790.9860.9840.9810.940.970.941 0.8930.98
    Liver384F146012615.17CDBXD98H17690.9660.9460.9450.9650.9670.9690.9640.9730.9290.9730.9560.9750.9660.970.9760.9670.9780.9690.9660.9670.9550.9680.9670.9730.9840.9820.9820.980.9720.9670.9640.9670.9370.9680.9720.980.9710.9660.9730.9660.9710.9620.9660.9660.9740.9660.9580.9660.9630.9680.970.9780.9840.9660.9660.9670.9830.9570.9730.9730.9580.9460.9740.8990.9660.9630.9750.97110.980.980.9740.9650.9640.9680.9730.9780.9620.9710.9690.9650.960.9580.960.9750.970.9730.9670.9780.9660.960.9680.9710.970.9690.9730.9630.9830.9750.9820.9650.970.9780.9710.960.9610.9640.9620.9580.9750.9340.9690.9680.9640.970.9750.9620.9590.9650.9650.9680.9610.9680.9680.9720.970.9650.9790.9640.9740.9630.9750.9630.9660.9620.9620.9550.9660.9760.9580.970.9250.9580.9550.9690.9640.9630.9740.9690.971 0.8990.97
    Liver384F182012615.16CDBXD98H15240.9390.9310.930.9390.9420.9380.9440.9660.9180.9480.9270.9510.9350.940.9530.9340.9590.9580.9390.9390.9280.9410.9430.9460.9660.9730.9730.970.9490.940.9390.9420.9010.9540.9530.9620.9770.9470.9590.9470.9460.9370.9450.9430.9570.9580.9340.9420.940.9540.9420.9780.9710.9380.9390.940.970.9310.9440.9570.9250.9110.9550.8630.9320.930.9590.9420.9810.9660.9760.9370.9440.9480.9570.9640.9380.9430.9440.9470.9350.9250.9340.9580.9520.9530.9390.960.9450.9320.9410.9460.9520.9520.9470.940.9750.9550.9720.9350.9550.9630.9520.9310.9340.9430.9380.9250.9530.8980.9570.9510.9460.9490.9590.9410.9310.9410.9420.9430.9290.9450.9490.9540.9430.9350.9740.9390.9520.9370.9530.940.940.9380.9290.9260.9430.9570.9290.9460.8860.9360.9270.9440.9380.9380.9760.9540.972 0.8630.95
    Liver535F278111414.14CDBXD99H13540.9820.9390.940.980.9790.980.9810.9750.9090.9810.9680.9850.9750.9790.980.9750.9750.970.9760.9810.9690.9820.9830.9850.9860.9840.9850.9830.9840.9820.9780.9790.9460.9790.9820.9840.960.9840.9830.9790.9810.9790.9760.9830.9830.9610.9770.9810.9820.9860.9830.9790.9870.9790.9790.9820.9870.9710.9810.9850.9710.960.980.9010.9730.9730.9780.9830.980.96610.9580.9790.9810.980.9850.9840.980.9810.9810.9840.9780.9670.9720.9860.9690.9860.9810.9770.9790.9720.9780.9790.980.980.9820.980.9820.9790.9840.9770.9830.980.9760.9730.9760.9770.9790.970.9810.9460.9760.9790.9730.9810.9780.9750.9740.980.9810.9780.9720.9780.9720.9850.9830.9770.9820.9740.9840.9760.9810.980.9750.9760.9720.9730.9770.9840.9740.9810.9250.9830.9710.9810.9780.9760.9580.9740.959 0.9010.98
    Liver361M162012615.26CDC57BL/6JH15900.9350.9310.9290.9350.9420.940.9380.9640.9220.9430.9220.9540.9340.9380.9520.9370.9580.9620.9390.9350.9280.9410.9450.9460.9640.9670.9670.9690.9430.9380.9410.940.90.9530.9540.9610.9760.9440.960.9450.9460.9340.9440.9390.9540.960.9270.9350.9420.950.9410.9760.9670.9350.9430.9380.9610.9350.9450.9460.9320.9110.9590.8630.9350.9350.9570.940.9740.9760.95810.9360.9380.9520.9460.960.9350.9420.9440.940.930.9230.9310.950.9550.9450.9390.9620.9420.9320.9420.9470.9510.950.9480.9390.9730.9580.970.9310.950.9550.9530.930.9360.9390.9360.9310.9490.9030.9580.9490.9450.9530.9570.9460.9260.9380.9380.940.9280.9410.9450.9540.9450.9370.970.9420.9540.9360.9490.9390.9450.9410.9270.9270.9480.9590.9330.9510.890.9320.930.9440.9410.94310.9570.968 0.8630.94
    Liver537F273091914.09CDC57BL/6JH11030.9890.9320.9330.9910.9810.9890.9870.9620.8940.9850.9820.9830.9850.9840.9750.9810.9680.9590.9840.9870.9820.9880.9860.9860.9760.9750.9750.9730.990.9860.9880.9840.9590.9730.9790.9770.9280.9870.9780.980.9870.9860.980.9890.9810.9460.9810.9830.9840.9770.9880.9570.9750.980.9840.9860.9760.980.9860.9780.9760.9720.980.9110.9840.9820.9770.9860.9650.9370.9790.93610.9870.9820.9780.9650.9890.9890.9890.9830.9870.9780.9880.9840.9640.9850.9880.9720.9810.9790.9840.9840.9780.9770.9860.9840.9660.9790.970.9890.9840.9710.9790.9870.9890.9790.9870.9820.9840.9590.9670.9790.9720.980.9770.9810.9850.9850.9840.9830.9780.9810.9680.9820.9860.9860.9670.980.9820.9840.9840.9840.9760.980.9850.9850.980.9830.9870.9830.9410.9860.9890.9930.9880.9830.9360.9660.935 0.8940.98
    Liver210F300101713.18CDD2B6F1H11540.9920.9160.9180.9870.9850.98110.9610.8770.9870.9710.9820.980.9840.9690.9770.9670.9580.9780.9780.9770.9870.990.9880.9790.9720.9720.9710.9850.9860.9870.9860.940.9790.980.9720.9320.9880.980.980.9830.9820.9810.9880.9810.9450.9890.9830.9850.9830.9840.9610.9720.9790.9850.9860.9760.9780.9820.9840.9760.9620.9810.8930.980.9810.970.9830.9640.9440.9810.9380.98710.9850.9840.9680.9930.9860.9870.9880.9860.9730.9810.9850.9570.9880.9880.970.9840.9770.9780.9780.9750.9740.9860.9770.9690.9790.9720.980.9820.970.980.9810.9880.9760.9840.9780.980.9510.9740.9790.9690.9880.970.9850.9810.9830.9880.9880.9730.9850.9660.9850.9850.9820.9680.9760.9820.9810.980.9770.9770.9870.9750.9810.9880.9820.9840.9850.9210.9880.9810.9870.9890.9860.9380.9660.94 0.8770.98
    Liver545F298062013.12CDD2B6F1H06460.9830.9210.9210.9820.9760.9820.9850.9740.890.9760.9610.9850.9760.9790.9720.9780.9720.9690.9770.9790.9810.9830.9880.9840.9830.9740.9740.9780.9810.9830.9890.9840.9330.9780.9860.9750.9420.9850.9850.980.9810.9780.9760.9830.9870.9570.9710.9760.9820.9780.9860.9720.9770.9710.9850.9830.9750.9830.9830.9780.9710.950.9840.8890.9770.9780.9720.9820.9680.9480.980.9520.9820.98510.9780.9730.9820.9840.9860.9790.9760.9610.9760.980.9660.980.9860.9810.980.9760.9780.980.9790.9780.9830.9730.9760.9780.9780.9740.980.9640.9790.9790.9880.9730.9780.9740.9770.9420.9770.9820.9750.9820.9720.9820.970.9810.9780.9780.9660.9790.9630.9850.9880.9830.9730.980.9850.9840.9770.9730.9790.9780.9710.9720.9840.9830.980.9850.9220.9790.9740.9830.9870.9940.9520.9680.953 0.8890.97
    Liver212F67101713.10CDDBA/2JH11470.9850.9310.9320.9830.9760.9780.9840.9750.8980.9820.9690.9820.9710.9780.9690.9770.9830.9660.9790.980.9690.9830.9810.9820.9810.980.9810.9790.9840.9810.980.9790.9410.9850.9830.9810.9510.9870.9860.9840.9820.9810.9840.9840.9820.9530.9780.9810.9840.980.9810.9730.9820.9790.9820.9810.9830.9740.98610.9670.9590.980.8960.9760.9750.9740.9790.9730.9570.9850.9460.9780.9840.97810.9850.9830.9820.9830.9830.9770.9650.9750.9830.9650.9840.9810.9770.9820.9780.980.9810.9840.9830.9790.9790.9760.9780.9780.9770.9820.9770.9750.9720.9790.9830.980.9720.9830.940.9840.9840.9720.9770.9740.980.9730.9790.980.9790.970.9790.9670.9840.9820.9790.980.9790.9840.980.9830.9790.980.9760.9710.9750.9790.9830.9760.9820.9180.9830.970.9780.9790.9770.9460.9730.949 0.8960.98
    Liver764F121083016.07CDDBA/2JH18180.9710.9420.9420.9710.9690.9710.9680.980.920.970.9610.9770.9650.9690.9690.9670.9890.9690.9740.9750.9570.9720.9720.9750.9810.9830.9840.980.9770.9710.970.9680.9390.9820.9820.9840.9670.9760.9840.9770.9710.9740.9770.9740.9790.9610.9630.9720.9720.9750.9750.9810.9880.9750.9750.9710.9830.9620.9790.9850.9610.9510.9760.8950.9670.9690.9760.9720.9780.9640.9840.960.9650.9680.9730.98510.9690.9740.9740.9690.9640.9540.9620.9750.9730.9750.9720.980.9680.9720.9760.9780.9820.9820.9730.9750.980.9750.980.9680.9720.9770.9710.9640.9670.9780.9680.9630.9760.9310.9820.9780.970.9710.9760.9690.9610.9690.9690.9670.9630.9650.9630.980.9760.9690.9870.9750.9820.9730.9760.9750.9730.9650.9640.9630.9690.9840.9650.9740.9160.970.9590.9660.9670.9680.960.9740.963 0.8950.97
    Liver216F306101713.15HFB6D2F1H13020.9940.9230.9260.9890.9870.9840.9930.9560.8810.9870.9770.9840.9830.9860.9710.9810.9680.9560.9830.9830.9780.9890.990.9890.9770.9720.9730.970.9880.9880.9880.9840.9510.9770.980.9740.9290.9890.9790.9830.9840.9860.9830.990.9790.9420.9890.9830.9880.9830.9850.9590.9740.9830.9890.9880.9750.9780.9860.9830.9820.9720.980.9020.9840.9850.9730.9840.9620.9380.980.9350.9890.9930.9820.9830.96910.9890.9910.9870.9890.9780.9840.9850.960.9880.9890.9680.9850.9810.9830.9820.9770.9770.9870.9840.9670.9820.9730.9860.9840.970.9810.9840.9880.9790.9880.9850.9840.9570.9720.980.9680.9880.9730.9880.9860.9840.9890.9860.9780.9840.9690.9850.9870.9860.9680.9810.9850.9840.9840.9840.9810.9880.980.9880.9880.9850.990.9870.9290.9910.9860.9880.9910.9840.9350.9690.934 0.8810.98
    Liver547F279102616.04HFB6D2F1H22880.9890.9380.940.9890.9810.9880.9860.9660.9010.9840.9820.9870.9860.9870.9740.9850.9760.9690.9890.9860.9830.9880.9870.9890.9820.9760.9760.9770.9890.9870.9870.9860.9590.9750.9840.9820.9360.9850.9810.9840.9880.9840.9810.9880.9840.9490.9770.9820.9840.9780.990.9620.9810.980.9880.9870.980.9790.990.9820.9770.970.9870.910.9840.9810.9830.9880.9710.9430.9810.9420.9890.9860.9840.9820.9740.98910.9960.9820.9870.980.9860.9870.9730.9870.9910.9790.9840.9850.9890.9890.9830.9820.9910.9870.9740.9840.9780.990.9850.9770.9820.9870.9870.9820.990.9880.9880.9590.9720.9830.9740.9830.9830.9850.9850.9880.9860.9850.9790.9840.9730.9880.9920.9880.9730.9840.9890.9880.9880.9870.9790.9820.9850.9870.9830.9870.9890.9870.9420.9850.9880.9910.990.9840.9420.9760.948 0.9010.98
    Liver547F296102616.05HFB6D2F1H22900.990.9320.9340.9880.980.9870.9870.9660.8950.9850.9790.9870.9840.9860.9730.9840.9750.9690.9890.9850.9810.9880.9880.9890.9820.9750.9760.9760.9880.9870.9890.9850.9550.9770.9860.980.9340.9870.9830.9860.9870.9850.9840.9890.9840.9470.9780.9820.9860.9790.9890.9630.9790.9780.9890.9870.9780.9810.990.9830.9780.9680.9860.9030.9840.9830.9820.9870.9690.9440.9810.9440.9890.9870.9860.9830.9740.9910.99610.9830.9880.9780.9880.9860.9730.9860.9910.980.9850.9870.9890.9890.9830.9820.990.9870.9750.9850.9790.9880.9850.9740.9820.9850.9890.9830.990.9890.9870.9560.9750.9850.9730.9850.9820.9890.9850.9880.9880.9840.9760.9840.9710.9890.9920.9880.9730.9850.9890.9890.9870.9870.9830.9820.9820.9870.9870.9880.990.9880.9350.9880.9890.9890.9920.9870.9440.9780.946 0.8950.98
    Liver176F254042415.12HFBXD100H20850.9860.9270.9270.9850.9850.9840.9880.9660.890.9840.9730.9810.9730.9790.9740.9760.9640.9590.9760.9790.9790.9840.9840.9850.9770.9750.9750.9750.9850.9860.980.9840.9450.9770.9760.9730.940.9870.9770.9810.9820.9810.9770.9870.980.950.9830.9830.9840.9850.9810.9630.9750.9790.980.9860.9780.9730.980.9830.9740.9620.9750.90.9740.9740.970.980.9650.9470.9840.940.9830.9880.9790.9830.9690.9870.9820.98310.9880.9740.9790.9890.9580.9850.9830.9680.9850.9740.9760.9770.980.980.9820.9810.9720.9760.9740.9790.9860.9740.9780.9790.980.9770.9830.9720.9810.950.9750.9810.9720.9830.970.9790.9790.9850.9850.980.9750.9820.9690.9820.9820.9820.9710.9740.9820.9770.9810.9810.9750.980.9740.9790.9830.980.9790.9820.9260.9860.9780.9860.9820.980.940.9650.942 0.890.97
    Liver537F77050914.04HFBXD100H11870.9880.9310.9330.9890.9850.9870.9860.9560.8920.9850.980.9790.9790.9830.9720.9770.9630.9580.9840.9830.9770.9860.9840.9860.9750.9690.970.9680.9860.9850.9830.9830.9580.9690.9760.9720.9270.9820.9730.9790.9830.9840.9770.9850.9760.940.9810.9810.9820.9790.9830.9530.9720.980.9820.9850.9740.9750.9830.9770.980.9740.9750.9120.9790.9780.9760.9830.960.9350.9780.930.9870.9860.9760.9770.9640.9890.9870.9880.98810.9840.9830.9860.9640.9830.9860.9660.9830.9810.9840.9830.9780.9770.9850.9850.9660.980.9710.9860.9810.9750.9760.9840.9820.9780.9850.9820.9840.9580.9640.9760.9670.9820.9760.9810.9890.9840.9880.9820.9790.9830.9720.9810.9840.9840.9650.9790.9810.9820.9840.9850.9740.9810.9830.9870.9820.9810.9860.9810.940.9870.9860.9860.9860.9780.930.9690.935 0.8920.98
    Liver493F290042715.19HFBXD101H14220.9750.9440.9470.9770.9810.9830.9730.9440.9170.9760.9850.9690.9750.9740.9720.9760.9560.950.9770.9730.9690.9740.9710.9740.9610.9620.9630.9560.9770.9760.9680.9760.970.9540.9580.9710.9230.9660.9570.9620.9710.9710.9620.9740.9640.940.9750.9750.9690.9690.9720.9380.9620.9770.9710.9760.9640.9620.9730.9650.9770.9750.9620.9290.9690.9690.9690.9720.9580.9250.9670.9230.9780.9730.9610.9650.9540.9780.980.9780.9740.98410.9750.9740.9580.9710.9740.9550.9730.9710.9770.9770.9640.9640.9770.9750.9550.9740.960.9830.970.9730.970.9830.9680.9630.9730.9720.9780.9680.9470.9590.9660.9730.9690.9670.9840.9720.9780.9760.9850.9770.9720.970.9730.9750.9540.9690.9710.9690.9780.9750.9610.9710.9850.9810.9710.9710.9780.9690.960.9720.9810.9770.9770.9650.9230.960.938 0.9170.97
    Liver183F284052814.04HFBXD102H13610.9820.9270.9280.9850.9760.9850.9810.9560.8920.9880.9830.9770.9810.9790.9680.9780.9680.9620.9820.9820.9770.9810.980.9820.9720.970.9710.9670.9840.9790.9810.9790.9550.9690.9730.9730.9210.9790.970.9750.9840.9820.9770.9850.9770.9390.9750.980.9770.9690.9830.9490.9710.9730.9790.9790.9680.9770.9810.9750.9710.9680.9750.9060.9810.9780.9750.980.960.9340.9720.9310.9880.9810.9760.9750.9620.9840.9860.9880.9790.9830.97510.9850.9650.980.9830.970.9790.9810.9820.9820.9730.9720.9830.980.9610.9780.9650.9840.9780.9690.9740.9830.9820.9770.9840.9780.9780.9540.9620.9740.9660.9750.9750.9780.9810.9850.9840.980.9740.9780.9650.9760.9810.9820.9630.9770.9770.9790.9780.980.9710.9750.980.9820.9760.980.9810.9770.9380.9820.9830.9850.9830.9760.9310.9680.936 0.8920.97
    Liver366F195121214.07HFBXD102H14980.9850.9330.9330.9850.980.9840.9850.9720.8980.9870.9770.9850.9760.9810.9740.9780.9720.9740.980.9810.9780.9850.9830.9880.9840.9820.9820.9830.9860.9820.980.9830.9450.9770.9810.9810.9460.9850.980.9820.9880.9820.9790.9880.9860.9540.9770.9790.9820.9810.9850.9680.9830.9750.980.9820.9840.9780.9830.9830.9690.9620.9820.8970.9770.9720.980.9830.9750.9580.9860.950.9840.9850.980.9830.9750.9850.9870.9860.9890.9860.9740.98510.9680.9880.9840.9760.9870.9790.9810.9820.9810.980.9870.9840.9780.9790.980.9830.9870.9790.9790.9790.9790.980.9870.9740.9830.9450.9730.9820.9710.9830.980.9810.9810.990.9870.9820.9720.9830.970.9830.9850.9820.9780.9760.9840.9790.9830.9840.9770.9790.9770.9790.980.9850.9780.9820.9280.9830.9770.9880.9830.9790.950.9780.954 0.8970.98
    Liver688F140083016.08HFBXD24H22590.9590.9490.9490.9620.9580.9680.9570.9660.9260.9640.9570.9710.9630.9630.9690.9620.9750.9730.9750.9660.9540.9620.9630.9670.9730.9680.9680.9680.9680.960.9640.960.9530.9640.9690.9750.9490.960.970.9670.9710.9650.9640.9630.9670.9510.9510.9630.960.9590.9680.9620.9740.9620.9650.960.970.9610.970.9650.9590.9580.9710.9120.960.9620.9850.9680.970.9520.9690.9550.9640.9570.9660.9650.9730.960.9730.9730.9580.9640.9580.9650.96810.9620.9650.9770.9610.9710.9770.9790.9720.9710.9710.9720.9720.9790.9720.9630.9660.9730.9640.9630.9610.9680.9650.9630.9730.9440.9640.9680.9650.9620.9850.9640.9690.9640.9660.9650.9620.9610.9720.970.9680.9640.9710.9690.9710.9670.9730.9720.9640.9580.9630.9640.9630.9760.9640.9650.9330.9610.9630.9660.9660.9610.9550.9760.958 0.9120.96
    Liver182F317121515.05HFBXD29H23490.990.9230.9250.9860.980.9810.9880.9640.8870.9860.9720.9840.9850.990.9720.9770.9720.9620.9810.9840.9760.9880.9870.9890.9840.9790.9790.9760.9880.9840.9830.9840.9450.9780.9840.9770.940.9870.980.9810.9840.9840.9820.9880.9840.9470.9810.9820.9820.980.9860.9670.9810.9790.9830.9840.9840.9760.9860.9840.9720.9630.9830.8960.9850.9810.9760.9860.9730.9530.9860.9450.9850.9880.980.9840.9750.9880.9870.9860.9850.9830.9710.980.9880.96210.9910.9760.9820.9790.9820.9820.9780.9770.9880.980.9750.9770.9790.9830.9820.9740.9780.9780.9820.9820.9870.9790.9810.950.9730.980.9660.9840.9760.9810.980.9860.9860.9830.9720.9810.9640.9840.9860.9820.9740.9750.9840.9830.9810.980.9780.9810.9750.980.9810.9850.9810.9830.9240.9850.9790.9860.9830.980.9450.9710.943 0.8870.98
    Liver577F295061913.04HFBXD29H06690.9910.9240.9260.9890.9820.9860.9880.9640.8860.9840.9740.9860.9870.9910.9750.9810.970.9620.9850.9860.9830.9890.9910.990.9810.9730.9730.9730.9880.9880.9880.9870.9490.9750.9850.9760.9340.9860.980.9820.9850.9850.9810.9880.9840.9470.980.9820.9840.980.9890.9620.9780.9810.990.9880.9770.980.9890.9810.980.9660.9830.9010.9850.9850.9760.9880.9670.9390.9810.9390.9880.9880.9860.9810.9720.9890.9910.9910.9830.9860.9740.9830.9840.9650.99110.9790.9830.9820.9860.9860.980.980.9890.9820.9720.9810.9770.9860.9820.9710.980.9840.9880.9810.9870.9870.9840.9550.9720.9810.9680.9850.9760.9850.9830.9870.9870.9840.9760.9830.9670.9870.9910.9890.9710.9830.9880.9880.9840.9820.980.9830.980.9850.9860.9870.9880.9880.9310.9880.9840.9880.990.9870.9390.970.94 0.8860.98
    Liver630F119111314.10HFBXD29H10370.970.9340.9320.9720.9640.9730.970.9830.9140.9710.9570.9780.9710.9770.970.9690.9830.9720.9750.9730.9680.9740.9730.9750.9830.9750.9740.9790.9740.9710.9760.9750.9340.9780.9830.9780.9560.9740.9830.9790.9780.9720.9760.9720.9810.9560.9560.970.9680.9650.9790.9730.980.9670.9750.9710.9760.9730.9790.9770.9580.9430.980.8890.9680.9680.9770.9760.9780.960.9770.9620.9720.970.9810.9770.980.9680.9790.980.9680.9660.9550.970.9760.9770.9760.97910.970.9730.9760.9790.9830.9830.9770.9720.980.9770.9790.9680.9740.9740.9730.9680.9730.9790.9720.9680.9780.9330.9810.9820.9730.970.9770.9730.9640.9740.970.9720.960.9720.9630.9790.9790.9740.980.9780.980.9790.9780.9720.9750.9650.9650.9620.9710.980.9680.9770.9220.9670.9640.9760.9740.9780.9620.9690.96 0.8890.97
    Liver200F261042015.20HFBXD32H20300.9850.9270.9280.9810.9750.9840.9840.9650.8870.9810.970.9860.9710.9770.9730.9880.9690.9720.9790.9780.9840.9870.9820.9840.9780.9710.9710.9790.9810.9860.9790.9860.9410.9710.9770.9740.9370.9840.9780.9820.9860.9770.9750.9830.980.9480.9760.9770.9840.9790.9840.960.9740.9720.9810.9860.9760.9840.9840.9820.9730.9620.980.8960.9760.970.9690.980.9660.9450.9790.9420.9810.9840.980.9820.9680.9850.9840.9850.9850.9830.9730.9790.9870.9610.9820.9830.9710.9830.9790.980.9810.980.9820.9810.9730.9750.9760.980.9870.970.9760.9760.9790.9760.9840.9750.9830.9430.970.9830.970.9810.9690.9820.9770.9880.9820.9810.9730.9850.9670.980.9850.9870.9690.9810.9820.980.9830.9810.9820.9790.9760.980.9810.9770.9780.9840.9270.9820.9740.9860.9860.9830.9420.9750.946 0.8870.97
    Liver539F318101014.02HFBXD32H11370.9820.9230.9250.980.9680.980.9770.960.8880.9770.970.9780.9740.9780.9640.980.9750.9690.9860.980.9750.9810.9780.980.9730.9660.9670.9680.9810.9780.9790.9780.9470.9740.9820.9730.9260.9770.9760.9820.9830.9840.9810.9820.9760.9360.9710.9750.9780.970.9820.9540.9720.9710.9810.9780.9710.9830.9850.9780.9710.9640.9750.8960.9790.9780.9730.9810.960.9320.9720.9320.9790.9770.9760.9780.9720.9810.9850.9870.9740.9810.9710.9810.9790.9710.9790.9820.9730.98310.9870.9860.980.9790.980.9810.9660.9750.970.980.9760.9680.970.9750.9790.9850.9850.980.9790.9460.9680.980.9660.9720.9730.9790.9790.9830.9820.9770.970.9770.9620.9770.9830.9820.9670.9830.9790.9860.9790.9810.9830.9730.9760.9820.9750.980.9790.9770.9280.9820.9760.9770.9820.9770.9320.9780.939 0.8880.97
    Liver197F283101513.04HFBXD34H10560.9840.9430.9450.9860.9770.9860.9780.9650.9080.980.9780.9830.9790.9820.9730.9830.9790.9680.9970.9850.9760.9840.980.9840.980.9740.9750.9750.9870.9810.9820.980.9590.9730.9820.9830.9390.9810.980.9820.9830.9820.980.9840.9790.9480.9770.9840.9810.9760.9860.9620.9790.9780.9840.9810.9780.9780.9890.980.9760.9730.9820.9160.9810.980.9830.9840.9680.9410.9780.9420.9840.9780.9780.980.9760.9830.9890.9890.9760.9840.9770.9820.9810.9770.9820.9860.9760.9790.98710.9970.9830.9820.9840.9860.9740.9850.9770.9860.9810.9780.9780.9830.9810.9810.9850.9850.9870.9560.9710.9810.9710.9770.9830.9810.9840.9810.9810.9850.9820.980.9710.9840.9870.9840.9730.9840.9850.9860.9870.9860.9790.9760.9830.9870.9780.9850.9840.9810.9420.9830.9840.9830.9840.9780.9420.9780.947 0.9080.98
    Liver537F292101014.05HFBXD34H10520.9830.9460.9480.9850.9770.9870.9780.9690.9130.9790.9770.9830.9790.9820.9740.9830.9810.9720.9970.9850.9770.9830.980.9840.9810.9770.9770.9770.9870.9810.9810.9810.9580.9740.9830.9840.9440.9810.9810.9820.9830.9810.980.9830.980.9520.9760.9840.980.9760.9860.9650.9810.9790.9830.9810.9790.9780.9890.9810.9740.9710.9830.9160.9790.9780.9840.9840.9710.9460.9790.9470.9840.9780.980.9810.9780.9820.9890.9890.9770.9830.9770.9820.9820.9790.9820.9860.9790.980.9860.99710.9840.9830.9840.9850.9760.9860.9790.9850.9810.980.9790.9820.980.9810.9840.9830.9880.9550.9720.9810.9740.9770.9840.980.9820.9810.9810.9850.9820.980.9720.9850.9870.9840.9760.9840.9860.9860.9880.9850.9790.9750.9830.9850.9780.9860.9820.9810.9420.9820.9820.9830.9840.9790.9470.9790.953 0.9130.98
    Liver350F129121214.22HFBXD39H14740.9790.9410.9410.9810.9710.9810.9750.9810.9110.9740.9680.9820.9690.9750.9730.9760.9810.9670.9810.9840.9790.9820.9770.9790.980.9770.9770.9840.9830.9790.9790.9780.9430.980.9840.9810.9530.9840.9890.9890.9810.9790.9810.9790.9790.9540.9660.9740.980.9780.9820.9730.9810.9730.9810.9790.9810.9770.9850.9840.9660.9580.9810.90.970.9710.9760.9780.970.9520.980.9510.9780.9750.9790.9840.9820.9770.9830.9830.980.9780.9640.9730.9810.9720.9780.980.9830.9810.980.9830.98410.9970.9760.9840.9810.980.9820.9770.9860.9770.9760.9730.9780.9830.9790.9730.9840.9360.9840.990.9760.9740.9760.980.9720.9790.9740.9730.9690.9760.9660.9830.9830.9820.980.9860.9850.9840.9840.9840.9820.970.9730.9750.9750.980.9780.9830.9260.9790.9730.9810.9810.980.9510.9710.949 0.90.98
    Liver350F204121214.21HFBXD39H14730.9790.940.9410.9810.9710.980.9740.9810.9110.9740.9670.9810.9680.9750.9720.9750.9810.9650.9810.9840.9780.9810.9760.9780.9790.9760.9760.9840.9820.9780.9790.9770.9430.980.9840.980.9530.9830.9880.9890.9810.9790.9810.9790.9780.9530.9650.9730.980.9770.9810.9720.9810.9740.980.9780.980.9760.9840.9830.9660.9580.980.90.970.970.9760.9770.9690.9520.980.950.9770.9740.9780.9830.9820.9770.9820.9820.980.9770.9640.9720.980.9710.9770.980.9830.980.9790.9820.9830.99710.9750.9840.980.9790.9810.9760.9850.9770.9760.9730.9770.9840.9780.9730.9840.9350.9840.9890.9750.9730.9760.980.9720.9780.9730.9720.9680.9750.9660.9830.9820.9810.980.9860.9850.9830.9840.9840.9820.970.9720.9740.9740.980.9770.9820.9250.9790.9720.980.980.9780.950.9710.948 0.90.97
    Liver291F280111314.05HFBXD40H14880.9880.9330.9340.9860.9830.9850.9860.9640.8960.9850.9740.9850.9850.9870.9740.9790.9730.9680.9840.9810.9760.9890.9910.9910.9850.9760.9760.9740.9850.9840.9830.9850.9520.9750.9820.980.9380.9820.9780.9790.9840.9820.9780.9870.9850.950.9790.980.9810.9780.9870.9630.980.9790.9860.9840.9790.9760.9850.9790.9790.9670.9860.9060.9840.9830.9810.9860.9730.9470.9820.9480.9860.9860.9830.9790.9730.9870.9910.990.9820.9850.9770.9830.9870.9710.9880.9890.9770.9820.980.9840.9840.9760.97510.9860.9740.9830.9780.9850.980.9780.980.9830.9820.9780.9850.9840.9830.9570.970.9780.970.9880.9810.9830.9850.9860.9880.9860.9760.9840.9720.9860.9880.9840.9720.9780.9850.9820.9830.9860.9760.9850.9810.9840.9860.9880.9830.9840.9360.9830.9820.9880.9870.9820.9480.9740.951 0.8960.98
    Liver358F202121214.13HFBXD40H15930.9840.9420.9450.9840.9760.9830.9770.9650.9040.9770.9790.9830.9750.9780.9740.9790.9730.9650.9850.9840.9740.9860.9820.9830.9760.9740.9750.9780.9850.980.9790.9780.9590.9720.9790.980.9370.9830.9810.9850.9840.9830.9790.9850.9780.9440.9720.9760.9830.9780.9840.960.980.9760.9830.980.9780.9750.9840.9790.9740.9730.9810.9110.9770.9750.9810.9820.9630.940.980.9390.9840.9770.9730.9790.9750.9840.9870.9870.9810.9850.9750.980.9840.9720.980.9820.9720.9810.9810.9860.9850.9840.9840.98610.9710.980.9750.9850.9860.9760.9750.9810.9780.9820.9860.9810.9840.950.970.9820.9690.9770.9810.9820.9830.9830.9810.9760.9740.9760.9690.9830.9840.9830.9730.9820.9850.9820.98410.9780.9760.9810.9870.9770.9850.9830.9820.9380.9860.9830.9850.9840.9740.9390.9770.941 0.9040.98
    Liver240F258042015.10HFBXD44H18250.9710.9410.940.9720.9670.9710.9690.9810.9190.9690.9530.9810.9610.9690.9720.9680.9770.9730.9720.9710.9660.9750.9720.9790.9890.9810.9810.9850.9740.9720.970.9730.9280.9710.980.9810.9740.9740.9830.9770.9740.9640.9680.9680.9790.9660.9570.9650.9710.9770.9740.9850.9860.9640.9720.9720.9850.9640.9770.9760.9580.9420.9810.8880.9620.960.9760.9720.9830.9750.9820.9730.9660.9690.9760.9760.980.9670.9740.9750.9720.9660.9550.9610.9780.9720.9750.9720.980.9730.9660.9740.9760.9810.980.9740.97110.9810.9970.9670.9780.9760.9750.9610.9670.9690.9690.9640.980.9280.9760.9790.9660.9740.9760.9710.9620.9710.9670.970.9590.9740.9670.980.9770.9730.9860.9740.9810.9710.980.9710.9710.9650.9610.9610.970.9780.9660.9760.9150.9670.9590.9730.9730.9730.9730.9730.971 0.8880.97
    Liver379F158012615.12HFBXD44H15010.9780.950.9520.9790.980.9810.9790.9660.9190.980.9710.9820.9770.9780.9780.9750.9760.9680.9840.9780.970.9780.980.9840.9830.9780.9780.9760.9820.9780.9790.9760.9560.9750.9760.9820.9530.9780.9790.9770.980.9760.9750.9790.9780.9590.9740.9770.9780.9790.9790.970.980.9780.9810.9780.9780.9690.9810.9780.9760.9670.9810.9150.9740.9780.9870.9770.9750.9550.9790.9580.9790.9790.9780.9780.9750.9820.9840.9850.9760.980.9740.9780.9790.9790.9770.9810.9770.9750.9750.9850.9860.980.9790.9830.980.98110.9830.980.9790.9810.980.980.9770.9730.9770.9770.9850.9570.9740.9770.9730.9810.9870.9790.9810.9740.9810.9810.9780.9780.9820.9840.980.9780.9770.9780.9830.9760.9850.980.9740.9770.9760.9790.9810.9860.9820.9810.9390.980.9790.9810.9820.9760.9580.9750.96 0.9150.98
    Liver715F144102414.12HFBXD44H16870.9760.9390.940.9760.970.9740.9720.9780.9140.9720.9580.9840.9650.9730.9740.9720.9760.9720.9760.9750.9690.9790.9760.9830.990.9810.9810.9850.9770.9760.9750.9760.9320.9720.9830.9820.9690.9770.9850.980.9760.9680.9720.9730.9810.9630.9620.9670.9760.980.9780.9830.9870.9660.9760.9760.9850.9670.980.9780.9630.9470.9830.890.9670.9660.9780.9760.9820.9720.9840.970.970.9720.9780.9780.980.9730.9780.9790.9740.9710.960.9650.980.9720.9790.9770.9790.9760.970.9770.9790.9820.9810.9780.9750.9970.98310.9720.9810.9760.9770.9650.9720.9710.9740.970.9820.9320.9760.9810.9660.9770.9780.9750.9670.9750.9720.9730.9620.9770.9690.9830.980.9760.9850.9760.9830.9750.9820.9750.9750.9690.9650.9680.9740.980.9720.980.9170.9720.9650.9760.9770.9750.970.9760.967 0.890.97
    Liver503F303121515.15HFBXD45H19400.9870.9440.9460.9880.9820.9890.980.9580.9050.9820.9850.9810.9840.9830.9740.9830.970.9590.9860.9850.9790.9850.9810.9850.9740.9770.9780.970.9890.9850.9820.9830.9630.9670.9760.980.9290.980.9730.9750.9830.9820.9760.9850.9780.9460.9770.980.9820.9780.9860.9540.9770.9810.9840.9850.9770.9740.9860.9770.9770.9760.9770.9180.9820.9790.9780.9830.9650.9350.9770.9310.9890.980.9740.9770.9680.9860.990.9880.9790.9860.9830.9840.9830.9630.9830.9860.9680.980.980.9860.9850.9770.9760.9850.9850.9670.980.97210.9810.9770.9780.9880.9820.9760.9840.9820.9850.9580.9610.9740.9670.9780.9780.9780.9860.9830.9830.9810.9820.9810.9730.980.9860.9860.9680.9820.9830.9820.9850.9850.9720.9780.9890.9860.9770.9820.9860.9810.9480.9810.9850.9880.9840.9760.9310.9690.941 0.9050.98
    Liver189F263042015.24HFBXD48H20460.9830.9370.9380.9830.9770.9820.9820.9720.8990.9780.9730.9860.9730.9760.9780.9810.9710.9690.980.9810.9810.9840.9810.9830.980.9780.9780.9880.9880.9820.9820.980.9460.9730.9790.980.9440.9870.9840.9870.9860.9790.9780.9850.9820.9530.9730.9750.9860.9830.9840.9680.980.9720.9810.9820.9820.9780.9830.9820.9710.9610.9830.8990.9760.9720.9770.980.970.9550.9830.950.9840.9820.980.9820.9720.9840.9850.9850.9860.9810.970.9780.9870.9660.9820.9820.9740.9870.9760.9810.9810.9860.9850.980.9860.9780.9790.9810.98110.9760.9790.9810.9810.9760.9850.9750.9830.9440.9750.9860.9730.980.9770.9840.9770.9840.9790.9770.9690.980.9690.9850.9840.9850.9760.9790.9850.980.9830.9860.9810.9760.9750.9790.9810.9820.9810.9860.9280.9830.9790.9870.9850.9810.950.9750.948 0.8990.98
    Liver595F238042915.13HFBXD48H13770.970.960.960.9740.9780.9760.970.970.9320.9760.970.970.9690.9720.9760.9670.9780.9660.9760.9730.960.9710.9690.9740.9770.9780.9790.9780.9820.9690.9650.9740.9520.9690.9680.9830.9620.9680.9730.9680.9730.9690.9680.9710.9730.960.9680.9740.9660.9730.9710.9660.980.9770.9710.9690.980.9590.9760.9770.9660.9620.9720.9160.9620.9640.9840.9710.9780.9630.980.9550.9710.970.9640.9770.9770.970.9770.9740.9740.9750.9730.9690.9790.9730.9740.9710.9740.970.9680.9780.980.9770.9770.9780.9760.9760.9810.9760.9770.97610.9780.9760.9630.970.9660.9630.9830.9470.9670.9680.9710.9760.9840.9650.9760.970.9760.9770.9750.9750.9790.9770.9710.9690.9780.9710.9770.9670.9830.9760.9610.9690.9750.970.970.980.9660.9710.9390.9680.9680.9760.9690.9620.9550.970.966 0.9160.97
    Liver233F239051112.04HFBXD48aH02100.9790.9410.9410.980.9830.9810.980.9680.910.9770.970.9780.9760.9760.9720.9760.9710.9640.9770.9760.9740.9790.980.980.9770.9770.9770.9780.9840.9780.9780.9810.9450.9720.9750.9790.950.9780.9770.9730.9760.9730.9730.9780.9780.960.9750.9770.9770.9780.9780.970.9770.9760.9810.9780.9770.9690.980.9750.9730.9570.980.9040.9720.9730.9750.9760.9710.9520.9760.9530.9790.980.9790.9750.9710.9810.9820.9820.9780.9760.970.9740.9790.9640.9780.980.9730.9760.970.9780.9790.9760.9760.980.9750.9750.980.9770.9780.9790.97810.9820.9770.9680.9740.9730.9820.9510.9710.9740.970.9830.9750.9770.9730.9760.9770.9790.9740.9770.970.9840.980.9790.9740.9770.9820.9760.9820.9750.9690.9770.9740.9740.9820.9810.9780.9810.9330.9750.9750.9820.980.9790.9530.9670.957 0.9040.97
    Liver543F287062013.06HFBXD48aH06990.9820.9430.9440.9860.9850.9880.9810.9560.9070.9790.9840.9770.9850.9790.9750.980.9650.9560.9820.9820.980.9790.9820.9810.9690.9720.9720.9690.9890.9820.9810.9820.9650.9660.970.9780.9280.9780.9710.9710.980.9810.970.9840.9790.9490.9790.9820.9780.9760.9830.9510.9710.980.9820.9820.970.9740.9810.9720.9790.9710.9740.9190.9770.9770.9760.9790.960.9310.9730.930.9870.9810.9790.9720.9640.9840.9870.9850.9790.9840.9830.9830.9790.9630.9780.9840.9680.9760.9750.9830.9820.9730.9730.9830.9810.9610.980.9650.9880.9810.9760.98210.9810.9690.9790.9760.9810.9650.9590.970.9740.9780.9760.9750.9840.980.9830.9810.9830.9780.9720.9790.9830.9830.9640.9770.980.980.9810.9810.9660.9760.9860.9820.9780.9810.9850.9780.9520.980.9850.9860.9840.980.930.9630.943 0.9070.97
    Liver713F143010614.07HFBXD53H08330.990.9150.9170.9880.9780.9830.9880.9630.8780.9810.970.9840.9790.9820.9680.9790.9690.9550.9810.9820.9790.9870.9870.9850.9770.9690.970.9710.9850.9840.9970.9840.9430.9760.9850.9720.9270.9870.9820.9830.9840.9840.9830.9870.9810.9430.9760.9770.9850.9780.9870.960.9720.9740.9880.9840.9720.9810.9850.9790.9750.9610.9820.8940.9830.9840.970.9830.9610.9340.9760.9360.9890.9880.9880.9790.9670.9880.9870.9890.980.9820.9680.9820.9790.9610.9820.9880.9730.9790.9790.9810.980.9780.9770.9820.9780.9670.9770.9720.9820.9810.9630.9770.98110.9780.9840.9840.9810.9470.9720.9820.9680.9810.970.9860.9780.9820.9820.980.9690.980.9620.9830.9870.9860.9650.9820.9830.9870.9810.9780.9820.9810.9760.9810.9840.9810.9880.9860.9230.9850.9830.9860.9880.9880.9360.9630.931 0.8780.97
    Liver188F128111414.03HFBXD61H19220.980.9220.9240.980.9670.9750.9760.970.8910.9780.9680.9760.9730.9780.9630.9690.9780.960.980.980.9670.980.9770.9790.9750.9710.9720.9720.9810.9750.9790.9740.9440.9860.9870.9750.9380.980.980.9850.9820.9850.9870.9820.9770.9390.970.9760.9770.9690.9790.9610.9780.9740.9790.9750.9750.9760.9830.9830.9630.9590.9750.8920.9770.9770.9730.9820.9640.9430.9770.9390.9790.9760.9730.9830.9780.9790.9820.9830.9770.9780.9630.9770.980.9680.9820.9810.9790.9760.9850.9810.9810.9830.9840.9780.9820.9690.9730.9710.9760.9760.970.9680.9690.97810.9860.9790.9790.9380.9780.9830.9660.9710.9730.9780.9730.9810.9790.9720.9640.970.9580.9780.980.9770.9740.980.980.9840.9790.9820.9820.970.9680.9750.9720.9810.9750.9790.920.9810.9730.9770.9760.9720.9390.970.934 0.8910.97
    Liver188F323111414.04HFBXD61H17220.9880.9220.9240.9860.9740.9830.9840.960.8820.9810.9760.9850.980.9830.9670.980.9690.9640.9850.9820.980.9870.9830.9860.9770.9710.9720.9740.9850.9820.9850.9820.950.9780.9850.9760.9250.9860.9780.9860.9890.9850.9840.9890.9820.9370.9760.9780.9860.9760.9860.9560.9760.9720.9830.9820.9770.980.9860.980.970.9650.9830.8960.9840.9790.9760.9860.9620.9380.9790.9360.9870.9840.9780.980.9680.9880.990.990.9830.9850.9730.9840.9870.9650.9870.9870.9720.9840.9850.9850.9840.9790.9780.9850.9860.9690.9770.9740.9840.9850.9660.9740.9790.9840.98610.9880.9810.9520.9690.9840.9660.9780.9760.9870.9820.9890.9860.980.970.980.9620.9810.9860.9840.9690.9780.9820.9860.9810.9860.9810.9790.9770.9860.980.9820.9860.9840.9290.9880.9850.9880.9860.9790.9360.9760.933 0.8820.98
    Liver524F316121515.25HFBXD61H18430.9870.920.9240.9830.9720.9790.9780.950.880.9760.9720.9810.980.9850.9630.9780.9660.9520.9850.9810.9720.9840.9810.9840.9750.960.9610.9640.9810.980.9830.9780.9510.9680.9820.970.9190.9780.9740.980.980.9760.9790.980.9720.9290.970.9730.9810.9710.9820.950.9690.9720.9850.980.9690.9710.9850.9720.9750.9650.9820.90.9830.9830.9720.9850.9580.9250.970.9310.9820.9780.9740.9720.9630.9850.9880.9890.9720.9820.9720.9780.9740.9630.9790.9870.9680.9750.980.9850.9830.9730.9730.9840.9810.9640.9770.970.9820.9750.9630.9730.9760.9840.9790.98810.9810.9560.9620.9760.9550.9780.9720.9840.980.9780.9780.9780.9690.9770.960.9810.9840.9830.960.9790.9820.9860.9810.9810.9770.980.9760.9870.980.9780.9880.9840.9320.9830.9850.9820.9840.9750.9310.9690.924 0.880.97
    Liver488F242042915.19HFBXD62H14340.9840.9480.9490.9860.980.9850.980.9720.9160.9810.9770.9840.9760.9820.9770.9810.9780.9670.9860.9830.9770.9840.9790.9830.9810.9770.9780.9780.9860.9830.9810.9830.9570.9730.980.9860.9550.9810.9820.9830.9820.9780.9780.980.9790.9560.9750.980.980.9790.9840.9670.9810.980.9830.9830.9820.9750.9870.9830.9750.9690.9820.9150.9740.9750.9810.9820.9750.9530.9810.9490.9840.980.9770.9830.9760.9840.9880.9870.9810.9840.9780.9780.9830.9730.9810.9840.9780.9830.9790.9870.9880.9840.9840.9830.9840.980.9850.9820.9850.9830.9830.9820.9810.9810.9790.9810.98110.9560.9730.9820.9740.980.9810.980.9820.980.980.9830.980.9840.9750.9850.9850.9840.9770.9850.9860.98310.9840.9770.9770.9820.9830.9780.9830.9820.9840.940.9810.9810.9860.9860.9780.9490.9740.955 0.9150.98
    Liver548F302082214.10HFBXD62H13150.9510.9320.9340.9520.960.9590.9510.9140.8960.9530.960.9470.9640.9560.9480.9520.9280.9260.9560.9520.9470.9490.9530.9530.9380.9380.9390.9290.9570.9540.9470.950.970.9320.9320.9480.9020.9470.9340.9380.9470.9490.9390.9520.9420.9210.9590.9640.9470.9480.950.9170.9390.9610.9530.9540.9370.9360.9490.940.9630.9560.9420.9260.9520.9540.9520.9560.9340.8980.9460.9030.9590.9510.9420.940.9310.9570.9590.9560.950.9580.9680.9540.9450.9440.950.9550.9330.9430.9460.9560.9550.9360.9350.9570.950.9280.9570.9320.9580.9440.9470.9510.9650.9470.9380.9520.9560.95610.9240.9360.9470.9520.9520.9440.9640.9480.9580.9580.9690.9520.9580.9520.9530.9510.9280.9410.950.9460.9560.950.9320.9530.9580.9610.9510.950.9630.9480.9540.9530.9690.9570.9550.9440.9030.9350.913 0.8960.95
    Liver186F125111414.09HFBXD63H17150.9720.9220.9220.9690.9650.9660.9740.9790.8950.970.950.9760.9590.9680.9610.9630.9790.9610.9690.9680.960.9730.9740.9730.9770.9750.9750.9760.9710.970.9750.9670.9220.9860.980.9720.9550.9830.9890.9860.9720.9710.980.9740.9750.9520.9640.970.9740.9710.9720.9760.9760.9670.9740.970.9740.9670.9750.9840.9570.940.9760.880.9640.9670.9680.9690.9690.9570.9760.9580.9670.9740.9770.9840.9820.9720.9720.9750.9750.9640.9470.9620.9730.9640.9730.9720.9810.970.9680.9710.9720.9840.9840.970.970.9760.9740.9760.9610.9750.9670.9710.9590.9720.9780.9690.9620.9730.92410.9880.9730.9730.9680.9780.9580.9690.9680.9670.9550.9670.9560.980.9750.970.9790.9740.9790.9730.9730.970.980.9670.9540.9610.9750.9770.9670.9780.9010.9720.9620.9710.9710.9760.9580.9640.946 0.880.97
    Liver344F123121214.26HFBXD63H14160.9820.9250.9260.980.9670.9770.9790.9770.8920.9750.9630.9830.9670.9760.9670.9750.9770.9670.980.9780.9780.9830.9790.9810.9810.9730.9740.9820.980.9790.9830.9790.9350.980.9860.9760.9440.990.9910.9960.9840.9790.9820.9810.9810.9460.9670.9740.9820.9760.9830.970.9780.9680.9810.9790.9780.9790.9830.9840.9630.9510.9840.8890.9730.9720.9730.980.9680.9510.9790.9490.9790.9790.9820.9840.9780.980.9830.9850.9810.9760.9590.9740.9820.9680.980.9810.9820.9830.980.9810.9810.990.9890.9780.9820.9790.9770.9810.9740.9860.9680.9740.970.9820.9830.9840.9760.9820.9360.98810.9760.9740.9730.9850.9710.9820.9750.9760.9630.9780.9610.9850.9850.9820.9770.9820.9840.9860.9820.9820.9860.9730.9680.9750.9780.9790.9790.9840.9170.9810.9750.9820.9830.9830.9490.9720.943 0.8890.97
    Liver752F135102616.17HFBXD63H20910.9640.9430.9420.9690.9710.9750.9690.9720.9220.9650.9660.970.9640.960.9720.9680.9690.9670.970.9680.9710.9660.9680.9680.9660.9720.9720.9710.9720.970.970.9690.9470.970.9660.9770.9490.9750.9760.9730.970.970.9630.9720.9730.9610.9650.9730.9690.970.9710.9630.9710.970.970.970.9690.9680.9690.9720.9630.950.9670.9050.9580.9610.9710.9660.9640.9460.9730.9450.9720.9690.9750.9720.970.9680.9740.9730.9720.9670.9660.9660.9710.9650.9660.9680.9730.970.9660.9710.9740.9760.9750.970.9690.9660.9730.9660.9670.9730.9710.970.9740.9680.9660.9660.9550.9740.9470.9730.97610.9660.9710.9640.9670.9680.9690.9670.970.9680.9690.9740.9720.9710.9710.9710.9740.9710.9740.9690.9670.9620.9710.9630.9680.9730.9680.970.9360.9680.9670.9730.9710.9760.9450.9610.959 0.9050.97
    Liver230F265051012.01HFBXD65H04580.9860.9270.9290.9810.9870.9790.9880.9620.8890.9830.9670.9820.9770.9820.9740.9750.9670.9620.9760.9750.9710.9840.9890.9880.9810.9730.9740.9730.9810.9830.9820.9830.9410.9760.9780.9750.9440.9820.9780.9760.9810.9790.9780.9850.980.9530.9820.9770.9820.9830.980.9670.9760.9790.9850.9830.9760.970.980.9770.980.9610.9820.8950.9780.980.9760.9790.970.9490.9810.9530.980.9880.9820.9770.9710.9880.9830.9850.9830.9820.9730.9750.9830.9620.9840.9850.970.9810.9720.9770.9770.9740.9730.9880.9770.9740.9810.9770.9780.980.9760.9830.9780.9810.9710.9780.9780.980.9520.9730.9740.96610.9760.9860.9810.9790.9850.9830.9730.9830.9710.9870.9840.980.9710.9750.9840.9770.980.9770.9750.9880.9730.9790.9910.9850.9820.9850.9230.9810.9780.9840.9840.9810.9530.9690.949 0.8890.97
    Liver541F212121615.06HFBXD65H17840.9720.9550.9560.9750.9720.9770.970.9680.9250.9750.970.9760.9740.9730.9750.9690.9770.9730.9820.9750.9640.9720.9740.9760.9780.9790.9790.9770.980.970.9730.970.9580.9710.9740.9830.9520.9720.9750.9730.9810.9770.9740.9780.9780.9590.9640.9730.9710.9710.9760.9680.9820.9720.9740.970.980.9650.9780.9740.9650.9670.9790.9170.9710.97110.9760.9750.9590.9780.9570.9770.970.9720.9740.9760.9730.9830.9820.970.9760.9690.9750.980.9850.9760.9760.9770.9690.9730.9830.9840.9760.9760.9810.9810.9760.9870.9780.9780.9770.9840.9750.9760.970.9730.9760.9720.9810.9520.9680.9730.9710.97610.9750.9830.9750.9780.9740.9710.9710.980.9790.9760.9720.9780.9730.980.9720.9810.9810.9660.970.9750.9740.9730.9870.9740.9740.9410.9730.9750.9780.9740.9680.9570.9790.963 0.9170.97
    Liver174F315102414.18HFBXD65bH17130.9870.920.9220.9820.9740.9780.9850.9640.880.980.9680.9850.9740.980.9640.9780.970.9620.9810.9770.9740.9860.9840.9840.9770.9690.970.9750.980.9810.9870.980.9380.9790.9840.9730.9310.9860.9840.9870.9860.9820.9870.9870.9780.940.9730.9730.9870.9770.9820.9630.9720.970.9860.9810.9730.9770.9840.980.9710.9590.9850.8890.9810.980.9750.9790.9620.9410.9750.9460.9810.9850.9820.980.9690.9880.9850.9890.9790.9810.9670.9780.9810.9640.9810.9850.9730.9820.9790.9810.980.980.980.9830.9820.9710.9790.9750.9780.9840.9650.9770.9750.9860.9780.9870.9840.980.9440.9780.9850.9640.9860.97510.9780.9810.9810.9780.9650.9790.9610.9870.9860.9830.9690.9820.9840.9840.980.9820.9840.9830.970.9820.9870.9830.9870.9890.9190.9850.9830.9840.9880.9830.9460.9740.933 0.880.97
    Liver527F321121615.11HFBXD65bH17900.9840.9350.9380.9830.980.9840.9810.950.8950.9810.9780.9760.9790.9810.9730.9750.9620.9570.9840.9790.9730.9810.980.9820.970.9660.9660.9630.9840.980.9780.9790.9650.9650.970.9720.9230.9760.9680.9730.9830.9840.9740.9840.9740.9390.9780.9790.9760.9740.980.9470.9680.9780.9780.980.9720.9720.980.9730.9780.980.9720.920.9780.9780.9830.980.9590.9310.9740.9260.9850.9810.970.9730.9610.9860.9850.9850.9790.9890.9840.9810.9810.9690.980.9830.9640.9770.9790.9840.9820.9720.9720.9850.9830.9620.9810.9670.9860.9770.9760.9730.9840.9780.9730.9820.980.9820.9640.9580.9710.9670.9810.9830.97810.980.9860.9810.9810.980.9760.9760.9810.9790.9590.9750.9760.9780.9820.9830.9690.9780.9840.9860.9780.980.9840.9760.9440.9820.9850.9840.9830.9730.9260.9680.935 0.8950.97
    Liver184F262042415.05HFBXD66H21240.9860.9230.9230.9850.9750.9850.9830.9660.8850.9830.9730.9840.9780.9810.9690.9810.9680.970.980.9810.9840.9880.9840.9870.980.9740.9740.9760.9840.9850.9820.9870.9460.9740.9820.9760.9320.9840.9760.9810.9880.9830.9780.9880.9890.9480.9730.9780.9810.9750.9870.9580.9770.9730.9810.9850.9770.9810.9850.9790.9690.9610.9820.8940.9810.9740.9750.9850.9650.9410.980.9380.9850.9830.9810.9790.9690.9840.9880.9880.9850.9840.9720.9850.990.9640.9860.9870.9740.9880.9830.9810.9810.9790.9780.9860.9830.9710.9740.9750.9830.9840.970.9760.980.9820.9810.9890.9780.980.9480.9690.9820.9680.9790.9750.9810.9810.990.980.9710.9820.9640.980.9870.9850.9690.9780.9830.9820.980.9830.9770.9770.9770.9810.980.9820.9790.9820.9280.9840.9790.9890.9850.9820.9380.9730.943 0.8850.98
    Liver367F122121214.04HFBXD66H15600.9860.9270.930.9830.9840.9830.9880.9580.8890.9870.9750.980.9820.9820.9710.9760.9660.9640.9810.9790.9750.9830.9870.9870.9770.9730.9740.9690.9840.9830.9820.9830.9530.9760.9770.9750.9340.9810.9730.9760.9840.9850.9780.9870.9850.9490.9840.9820.980.980.9820.9570.9750.980.9830.9830.9750.9750.9820.980.9790.9680.9770.9020.9810.980.9780.9820.9650.9420.9810.9380.9840.9880.9780.980.9690.9890.9860.9880.9850.9880.9780.9840.9870.9660.9860.9870.970.9820.9820.9810.9810.9740.9730.9880.9810.9670.9810.9720.9830.9790.9760.9770.9830.9820.9790.9860.9780.980.9580.9680.9750.9690.9850.9780.9810.9860.9910.9850.9770.9820.9720.9820.9840.9810.9680.9750.9810.9790.980.9810.9740.9830.9780.9830.9840.9860.9830.9820.9320.9870.9820.9860.9850.9790.9380.9720.944 0.8890.98
    Liver201F59101613.08HFBXD68H10710.9860.930.9310.9830.9820.9820.9880.9580.8940.9850.9720.9790.9790.9840.9710.9770.9710.9610.9840.9760.9730.9820.9830.9860.980.9690.9690.9690.9830.9810.980.9850.9490.9710.9750.9760.9380.9790.9750.9760.9810.9750.9750.980.9770.9460.9860.9840.9770.9770.9820.9570.9720.980.9830.9810.9750.9730.9820.9790.9770.9640.9810.9060.9760.9760.9740.9820.9680.9430.9780.940.9830.9880.9780.9790.9670.9860.9850.9840.980.9820.9760.980.9820.9650.9830.9840.9720.9810.9770.9850.9850.9730.9720.9860.9760.970.9810.9730.9810.9770.9770.9790.9810.980.9720.980.9780.9830.9580.9670.9760.9670.9830.9740.9780.9810.980.98510.9810.9880.9720.9820.9810.980.9680.9770.980.9780.9830.9760.9710.9850.9790.9810.9820.9790.980.9810.9350.9830.9780.9850.9850.9780.940.9680.947 0.8940.97
    Liver545F71082214.08HFBXD68H12900.9750.950.9510.9760.9820.9850.9730.9480.9190.9760.980.9710.9760.9740.9770.9770.9630.9510.9820.9760.9690.9730.9730.9750.9640.9670.9680.9590.9790.9780.9690.9770.9710.9610.9610.9750.9350.970.9630.9630.970.9720.9640.9750.9670.9490.9820.9860.9710.9730.9740.9480.9670.9830.9750.9780.9660.9640.9770.970.980.9760.9640.9370.9690.9710.9710.9730.9610.9290.9720.9280.9780.9730.9660.970.9630.9780.9790.9760.9750.9790.9850.9740.9720.9620.9720.9760.960.9730.970.9820.9820.9690.9680.9760.9740.9590.9780.9620.9820.9690.9750.9740.9830.9690.9640.970.9690.980.9690.9550.9630.970.9730.9710.9650.9810.9710.9770.98110.9760.9780.9730.9750.9760.9590.9720.9740.9690.980.9740.9620.9710.9840.980.9710.9730.9760.970.9590.9740.9770.9770.9760.9680.9280.9580.944 0.9190.97
    Liver210F58101613.09HFBXD69H10870.9850.9270.9280.9830.9790.9820.9850.9620.8920.9820.9710.980.9730.9820.9710.980.9680.9640.9790.9760.9780.9850.9810.9850.9810.9690.9690.9710.9790.9840.980.9880.9440.9670.9760.9740.9380.9790.9760.9780.980.9730.9720.9790.9780.9450.9770.9780.9820.9820.9820.9570.9720.9760.9810.9840.9750.9740.9820.9790.9740.9590.9790.8990.9720.9710.9710.980.9680.9450.9780.9410.9810.9850.9790.9790.9650.9840.9840.9840.9820.9830.9770.9780.9830.9610.9810.9830.9720.9850.9770.980.980.9760.9750.9840.9760.9740.9780.9770.9810.980.9750.9770.9780.980.970.980.9770.9840.9520.9670.9780.9680.9830.9710.9790.980.9820.9820.9880.97610.9750.9830.9840.9830.9670.9780.9810.980.9840.9760.9730.980.9780.980.9810.9760.9810.9810.9310.9790.9780.9850.9870.9810.9410.9680.947 0.8920.97
    Liver528F109121214.23HFBXD69H13280.9650.9570.9570.9660.9750.9730.9660.9550.9260.970.9650.9680.9670.9650.9770.9660.9620.9590.9690.9660.9590.9650.9690.9690.9670.9690.9690.9630.9720.970.9640.9680.960.9590.9570.9710.9490.9630.9630.960.9680.9640.9570.9660.9660.9590.9670.9710.9680.9760.9670.9580.9710.9750.9690.970.9690.9540.9680.9670.9720.9620.9640.9260.9580.9630.980.9660.9680.9490.9720.9450.9680.9660.9630.9670.9630.9690.9730.9710.9690.9720.9720.9650.970.9720.9640.9670.9630.9670.9620.9710.9720.9660.9660.9720.9690.9670.9820.9690.9730.9690.9790.970.9720.9620.9580.9620.960.9750.9580.9560.9610.9690.9710.980.9610.9760.9640.9720.9720.9780.97510.9710.9680.9690.9660.9660.9720.960.9750.9690.9570.9670.9720.9680.9690.9720.9680.9680.9470.9660.9680.9720.9680.9630.9450.9630.958 0.9260.97
    Liver239F266051012.08HFBXD70H01880.9860.9360.9380.9840.9820.9810.9850.9740.9010.9790.9710.9860.9770.9810.9730.9780.9770.9680.9830.9810.9760.9850.9870.9870.9840.9780.9790.9820.9840.9830.9850.9820.9460.9790.9850.9830.9510.9870.9880.9860.9810.9790.980.9840.9840.9550.9770.980.9860.9840.9880.9780.9830.9780.9890.9830.9820.9730.9850.9840.9760.960.9870.8980.9770.9780.9790.9830.9720.9540.9850.9540.9820.9850.9850.9840.980.9850.9880.9890.9820.9810.970.9760.9830.970.9840.9870.9790.980.9770.9840.9850.9830.9830.9860.9830.980.9840.9830.980.9850.9770.9840.9790.9830.9780.9810.9810.9850.9520.980.9850.9740.9870.9790.9870.9760.980.9820.9820.9730.9830.97110.9920.9850.980.9830.990.9850.9850.9830.980.9830.9760.980.9870.9870.9860.990.9290.9850.9820.9850.9870.9850.9540.9760.952 0.8980.98
    Liver578F294121615.14HFBXD70H17280.9890.9290.930.9880.980.9870.9850.9690.8920.9810.9740.9890.9820.9850.9730.9850.9730.9690.9860.9860.9840.990.9890.990.9840.9760.9760.9780.9860.9890.9880.9870.9490.9760.9860.9790.9380.9880.9850.9850.9850.9830.980.9870.9860.950.9760.9810.9870.980.9940.9690.9810.9780.9890.9890.9780.9820.990.9820.9770.9630.9860.90.9830.980.9760.9880.970.9430.9830.9450.9860.9850.9880.9820.9760.9870.9920.9920.9820.9840.9730.9810.9850.9680.9860.9910.9790.9850.9830.9870.9870.9830.9820.9880.9840.9770.980.980.9860.9840.9710.980.9830.9870.980.9860.9840.9850.9530.9750.9850.9720.9840.9760.9860.9810.9870.9840.9810.9750.9840.9680.99210.990.9730.9850.990.9880.9850.9840.9830.9810.9810.9830.9840.9860.9880.9890.9330.9850.9840.9880.9910.9890.9450.9740.945 0.8920.98
    Liver206F224042015.18HFBXD73H20710.9880.930.9310.9870.9790.9890.9820.9650.8920.980.9750.9870.980.9820.9750.9870.970.9640.9840.9850.9860.9890.9850.9870.9780.9710.9710.9760.9850.9910.9850.9870.9510.9710.980.9760.9340.9850.980.9830.9850.9810.9770.9850.9820.9480.9750.9790.9870.980.990.9610.9790.980.9910.9910.9750.9830.990.9790.980.9650.9820.9030.9820.9790.9720.9850.9650.9350.9770.9370.9860.9820.9830.9790.9690.9860.9880.9880.9820.9840.9750.9820.9820.9640.9820.9890.9740.9870.9820.9840.9840.9820.9810.9840.9830.9730.9780.9760.9860.9850.9690.9790.9830.9860.9770.9840.9830.9840.9510.970.9820.9710.980.9720.9830.9790.9850.9810.980.9760.9830.9690.9850.9910.9720.9890.990.9860.9840.9830.9820.980.9820.9830.9830.9810.9860.9880.9360.9840.980.9890.9880.9870.9370.9690.94 0.8920.98
    Liver361F196121214.11HFBXD73H14470.9680.9450.9450.970.9690.970.9680.9820.9260.9670.9580.9750.9630.9660.970.9630.9820.970.9710.970.9580.9690.9710.9730.980.9860.9860.9840.9760.970.9690.9680.9320.9780.9790.9850.9750.9750.9830.9760.9710.9680.9730.9720.9780.9670.9610.9680.9720.9770.9710.9870.9920.9720.9760.970.9840.9610.9760.980.9560.9440.9770.8910.9620.9630.9780.970.9790.9740.9820.970.9670.9680.9730.980.9870.9680.9730.9730.9710.9650.9540.9630.9780.9710.9740.9710.980.9690.9670.9730.9760.980.980.9720.9730.9860.9770.9850.9680.9760.9780.9740.9640.9650.9740.9690.960.9770.9280.9790.9770.9710.9710.9780.9690.9590.9690.9680.9680.9590.9670.9660.980.9730.97210.9760.9840.9710.9770.9730.970.9650.9620.9620.9690.9830.9640.9740.9170.9690.960.970.9660.9670.970.9730.97 0.8910.97
    Liver237F97051112.14HFBXD73bH01830.9820.9350.9360.9830.9740.9840.9760.970.9040.9750.9710.9820.9740.9780.9710.9810.9780.9640.9830.9830.9770.9830.9790.980.9760.9710.9710.9750.9820.9850.9820.9820.9470.9740.9820.9790.9420.980.9830.9830.980.9790.9790.9780.9760.9480.9680.9740.9810.9750.9840.9640.9790.9780.990.9850.9740.9810.9880.9790.9730.9630.9790.9030.9760.9760.9730.9790.9640.9390.9740.9420.980.9760.980.9790.9750.9810.9840.9850.9740.9790.9690.9770.9760.9690.9750.9830.9780.9810.9830.9840.9840.9860.9860.9780.9820.9740.9780.9760.9820.9790.9710.9770.9770.9820.980.9780.9790.9850.9410.9740.9820.9710.9750.9730.9820.9750.9780.9750.9770.9720.9780.9660.9830.9850.9890.97610.9880.9870.9850.9820.9810.9750.9780.9790.9780.9810.9820.9840.9320.9790.9750.9820.9840.9820.9420.9710.943 0.9030.97
    Liver474F256050115.12HFBXD73bH15450.9860.9390.940.9850.9820.9850.9820.9740.9060.9790.9720.9880.9790.9830.9760.9820.9780.9690.9840.9840.9770.9860.9860.9880.9850.980.980.9830.9860.990.9840.9840.9490.9780.9850.9840.9510.9860.9870.9850.9830.9790.980.9850.9850.9580.9740.980.9870.9840.9880.9740.9880.9830.9920.990.9820.9760.990.9840.9770.9620.9870.9040.980.9790.980.9850.9740.9520.9840.9540.9820.9820.9850.9840.9820.9850.9890.9890.9820.9810.9710.9770.9840.9710.9840.9880.980.9820.9790.9850.9860.9850.9850.9850.9850.9810.9830.9830.9830.9850.9770.9820.980.9830.980.9820.9820.9860.950.9790.9840.9740.9840.980.9840.9760.9830.9810.980.9740.9810.9720.990.990.990.9840.98810.9850.9860.9850.9820.9810.9780.980.9850.9880.9840.9890.9330.9830.9790.9860.9850.9840.9540.9750.953 0.9040.98
    Liver511F319121615.19HFBXD77H18660.9860.9220.9240.9860.9730.9830.9810.9680.8890.9770.9710.9820.9770.9830.9670.9780.9750.9620.9850.9840.980.9850.9830.9830.9780.9690.9690.9740.9850.9820.9870.9820.9440.9750.9880.9760.9320.9840.9840.9870.9830.9840.9820.9830.9810.9410.970.9770.9820.9750.9860.9620.9750.9730.9870.9820.9790.9810.9870.980.9720.960.9810.8950.980.9810.9720.9850.9630.9370.9760.9360.9840.9810.9840.980.9730.9840.9880.9890.9770.9820.9690.9790.9790.9670.9830.9880.9790.980.9860.9860.9860.9840.9830.9820.9820.9710.9760.9750.9820.980.9670.9760.980.9870.9840.9860.9860.9830.9460.9730.9860.9710.9770.9720.9840.9780.9820.9790.9780.9690.980.960.9850.9880.9860.9710.9870.98510.9830.9820.9830.9770.9770.9810.980.9810.9850.9840.9280.9830.9810.9820.9850.9850.9360.9710.937 0.8890.98
    Liver571F24061913.18HFBXD79H05830.9840.9480.9490.9860.980.9850.980.9720.9160.9810.9770.9840.9760.9820.9770.9810.9780.9670.9860.9830.9770.9840.9790.9830.9810.9770.9780.9780.9860.9830.9810.9830.9570.9730.980.9860.9550.9810.9820.9830.9820.9780.9780.980.9790.9560.9750.980.980.9790.9840.9670.9810.980.9830.9830.9820.9750.9870.9830.9750.9690.9820.9150.9740.9750.9810.9820.9750.9530.9810.9490.9840.980.9770.9830.9760.9840.9880.9870.9810.9840.9780.9780.9830.9730.9810.9840.9780.9830.9790.9870.9880.9840.9840.9830.9840.980.9850.9820.9850.9830.9830.9820.9810.9810.9790.9810.98110.9560.9730.9820.9740.980.9810.980.9820.980.980.9830.980.9840.9750.9850.9850.9840.9770.9850.9860.98310.9840.9770.9770.9820.9830.9780.9830.9820.9840.940.9810.9810.9860.9860.9780.9490.9740.955 0.9150.98
    Liver241F2051012.14HFBXD87H02430.9840.9420.9450.9840.9760.9830.9770.9650.9040.9770.9790.9830.9750.9780.9740.9790.9730.9650.9850.9840.9740.9860.9820.9830.9760.9740.9750.9780.9850.980.9790.9780.9590.9720.9790.980.9370.9830.9810.9850.9840.9830.9790.9850.9780.9440.9720.9760.9830.9780.9840.960.980.9760.9830.980.9780.9750.9840.9790.9740.9730.9810.9110.9770.9750.9810.9820.9630.940.980.9390.9840.9770.9730.9790.9750.9840.9870.9870.9810.9850.9750.980.9840.9720.980.9820.9720.9810.9810.9860.9850.9840.9840.98610.9710.980.9750.9850.9860.9760.9750.9810.9780.9820.9860.9810.9840.950.970.9820.9690.9770.9810.9820.9830.9830.9810.9760.9740.9760.9690.9830.9840.9830.9730.9820.9850.9820.98410.9780.9760.9810.9870.9770.9850.9830.9820.9380.9860.9830.9850.9840.9740.9390.9770.941 0.9040.98
    Liver512F326121615.21HFBXD87H19450.9820.9150.9170.9760.9680.9760.9770.9650.8790.9740.9590.9840.9670.9750.9680.9790.9740.9630.9790.9760.9710.9830.980.980.9770.9680.9690.9750.9760.980.9820.9730.9330.9780.9840.9710.9350.9830.9830.9870.9810.980.9820.980.9750.9410.9690.970.9850.9740.9810.9650.9740.9690.9820.980.9750.9820.9850.980.9730.9570.9780.8830.9790.9790.9660.9770.9660.940.9750.9450.9760.9770.9790.980.9730.9810.9790.9830.9750.9740.9610.9710.9770.9640.9780.980.9750.9820.9830.9790.9790.9820.9820.9760.9780.9710.9740.9750.9720.9810.9610.9690.9660.9820.9820.9810.9770.9770.9320.980.9860.9670.9750.9660.9840.9690.9770.9740.9710.9620.9730.9570.980.9830.9820.970.9810.9820.9830.9770.97810.9740.9670.9740.980.9790.9770.9840.9110.980.9710.9760.980.9810.9450.9720.933 0.8790.97
    Liver243F267051112.01HFBXD89H01760.9860.9210.9230.9820.9830.9780.9870.9540.880.9810.9660.9790.9770.9810.9670.9730.9650.9560.9750.9740.9690.9830.9860.9850.9760.9660.9670.9680.980.9810.9810.980.9410.9720.9740.970.9320.9810.9750.9750.9790.9750.9760.9810.9750.9440.9820.9750.9820.9780.980.960.9710.9780.9860.9810.9730.970.9780.9760.980.9660.980.8960.980.9810.970.980.9620.9380.9760.9410.980.9870.9780.9760.9650.9880.9820.9820.980.9810.9710.9750.9790.9580.9810.9830.9650.9790.9730.9760.9750.970.970.9850.9760.9650.9770.9690.9780.9760.9690.9770.9760.9810.970.9790.980.9770.9530.9670.9730.9620.9880.970.9830.9780.9770.9830.9850.9710.980.9670.9830.9810.980.9650.9750.9810.9770.9770.9760.97410.9770.980.9880.9820.9820.9860.9260.9840.9760.9830.9820.9780.9410.9670.939 0.880.97
    Liver539F282101014.04HFBXD89H13210.980.9460.9480.9840.9810.9880.9750.9550.9180.9770.9830.9750.9780.9760.9750.9820.9690.9580.9820.980.9760.9790.9760.9790.9680.970.970.9660.9830.980.9760.980.9660.960.9690.9780.9280.9730.9680.9690.9780.9760.9680.9790.9730.9470.9740.9770.9750.9720.9820.9480.9710.9780.9780.980.9720.9710.9810.9710.9770.980.9720.9270.9770.9750.9750.9790.9620.9290.9720.9270.9850.9750.9710.9710.9640.980.9850.9820.9740.9830.9850.980.9770.9630.9750.980.9650.9760.9760.9830.9830.9730.9720.9810.9810.9610.9760.9650.9890.9750.9750.9740.9860.9760.9680.9770.9760.9820.9580.9540.9680.9710.9730.9750.970.9840.9770.9780.9790.9840.9780.9720.9760.9810.9820.9620.9780.9780.9770.9820.9810.9670.97710.9830.9730.9790.980.9760.960.9770.980.9820.9810.9730.9270.9660.944 0.9180.97
    Liver548F312082214.09HFBXD9H10090.9870.9320.9360.9850.9790.9840.9810.9490.8890.980.9790.980.9790.9820.9680.980.9640.9560.9870.9820.9760.9850.9820.9830.970.9650.9660.9660.9850.9820.980.980.9610.9660.9740.9730.9220.9810.9730.9780.980.980.9770.9840.9720.9360.9790.9790.9830.9770.9810.9490.9690.9780.9830.9820.970.9720.9830.9750.9790.9760.980.9180.9790.9790.9740.9810.9550.9260.9730.9270.9850.9810.9720.9750.9630.9880.9870.9870.9790.9870.9810.9820.9790.9640.980.9850.9620.980.9820.9870.9850.9750.9740.9840.9870.9610.9790.9680.9860.9790.970.9740.9820.9810.9750.9860.9870.9830.9610.9610.9750.9630.9790.9740.9820.9860.9810.9830.9810.980.980.9680.980.9830.9830.9620.9790.980.9810.9830.9870.9740.980.98310.9790.9790.9870.980.9410.9870.9870.9840.9850.9750.9270.9710.93 0.8890.97
    Liver218F297101613.19HFBXD90H10930.9850.9220.9240.980.9850.9790.9880.9610.8840.9810.9650.9820.9770.9810.9730.9760.9670.9620.9770.9750.9720.9830.9880.9860.9790.970.970.9720.980.9830.9850.9810.940.9770.9780.9720.9370.9830.9790.9790.980.9780.9780.9830.9790.950.980.9760.9840.9810.980.9650.9730.9770.9870.9830.9740.9730.9810.9790.9810.960.9810.8920.9820.9850.9730.980.9660.9430.9770.9480.980.9880.9840.9790.9690.9880.9830.9870.9830.9820.9710.9760.980.9630.9810.9860.9710.9810.9750.9780.9780.9750.9740.9860.9770.970.9810.9740.9770.9810.970.9820.9780.9840.9720.980.980.9780.9510.9750.9780.9680.9910.9730.9870.9780.980.9840.9820.9710.9810.9690.9870.9840.9830.9690.9780.9850.980.9780.9770.980.9880.9730.97910.9870.9850.9880.9230.9830.9790.9830.9850.9850.9480.970.944 0.8840.97
    Liver570F274062013.03HFBXD90H07360.9830.9410.9430.9830.9830.9830.9820.9730.910.9820.9720.9840.9810.9810.9770.9760.9810.9740.9840.9820.970.9820.9870.9860.9830.9840.9840.9810.9860.9810.9830.9780.9510.9820.9840.9860.9530.9830.9830.9790.9830.9840.9820.9860.9850.9610.9770.9780.9820.9810.9840.9750.9870.9810.9860.9810.9840.9740.9850.9830.9760.9680.9830.9020.9840.9860.9870.9820.9760.9570.9840.9590.9830.9820.9830.9830.9840.9850.9870.9880.980.9810.9710.980.9850.9760.9850.9870.980.9770.980.9850.9860.980.980.9880.9850.9780.9860.980.9820.9820.980.9810.9810.9810.9810.9820.9780.9830.950.9770.9790.9730.9850.9870.9830.980.9820.9860.9790.9730.9760.9720.9870.9860.9810.9830.9810.9880.9810.9830.9850.9790.9820.9790.9790.98710.9820.9860.9310.9830.9790.9830.9830.980.9590.9810.96 0.9020.98
    Liver562F325062013.19HFBXD91H08810.9880.9280.9310.9860.9810.9840.9840.9550.8880.9790.9770.9830.9820.9830.970.980.9640.9540.9840.9830.980.9850.9850.9840.9730.9670.9680.9690.9840.9850.9880.9820.9570.970.9780.9730.9250.9840.9780.9820.9810.9820.9780.9850.9760.940.9780.9780.9860.980.9840.9550.9710.9780.9880.9850.970.9750.9840.9760.980.970.980.9070.9810.9830.9740.9820.9580.9290.9740.9330.9870.9840.980.9760.9650.990.9890.990.9790.9860.9780.9810.9780.9640.9810.9880.9680.9780.9790.9840.9820.9780.9770.9830.9830.9660.9820.9720.9860.9810.9660.9780.9850.9880.9750.9860.9880.9820.9630.9670.9790.9680.9820.9740.9870.9840.9790.9830.980.9760.9810.9680.9860.9880.9860.9640.9820.9840.9850.9820.9830.9770.9820.980.9870.9850.98210.9880.9380.9870.9910.9870.990.9840.9330.9670.931 0.8880.98
    Liver213F288101613.21HFBXD95H12750.9880.9290.9310.9840.980.9820.9850.970.8920.980.9680.9880.9770.9820.9720.9810.9730.9650.980.9810.9790.9880.9870.9860.9810.9750.9750.980.9830.9850.9870.9830.9430.980.9850.9770.9440.9870.9850.9850.9840.9790.9810.9840.9820.9540.9760.9770.9880.9820.9860.970.9780.9770.9890.9850.9790.9780.9860.9820.9770.9620.9860.8970.9820.980.9740.9860.970.9460.9810.9510.9830.9850.9850.9820.9740.9870.9870.9880.9820.9810.9690.9770.9820.9650.9830.9880.9770.9840.9770.9810.9810.9830.9820.9840.9820.9760.9810.980.9810.9860.9710.9810.9780.9860.9790.9840.9840.9840.9480.9780.9840.970.9850.9740.9890.9760.9820.9820.9810.970.9810.9680.990.9890.9880.9740.9840.9890.9840.9840.9820.9840.9860.9760.980.9880.9860.98810.9290.9850.980.9870.9880.9870.9510.9720.944 0.8920.98
    Liver550F236102414.20HFBXD95H12730.9250.950.950.9350.9410.9510.9210.9080.9390.9320.9550.9280.9440.9320.9420.9420.9210.9140.940.9380.9320.9280.9260.9290.9190.9280.9280.920.9410.9330.9240.9340.9640.9090.9130.9380.8930.9220.9160.9170.9320.9270.9160.9290.9240.9170.9290.9420.9240.9240.9340.8990.9270.9420.930.9330.9240.9190.9340.9180.9410.9470.9230.9520.930.9290.9410.9370.9250.8860.9250.890.9410.9210.9220.9180.9160.9290.9420.9350.9260.940.960.9380.9280.9330.9240.9310.9220.9270.9280.9420.9420.9260.9250.9360.9380.9150.9390.9170.9480.9280.9390.9330.9520.9230.920.9290.9320.940.9540.9010.9170.9360.9230.9410.9190.9440.9280.9320.9350.9590.9310.9470.9290.9330.9360.9170.9320.9330.9280.940.9380.9110.9260.960.9410.9230.9310.9380.92910.9260.9450.9390.9330.9230.890.9180.913 0.8860.93
    Liver182F305050914.05HFBXD99H13550.990.9220.9240.9850.980.9810.9880.9580.880.9820.9730.9820.9780.9810.9680.9760.9670.9570.9830.9820.9750.9860.9870.9860.9740.970.9710.9720.9850.9840.9850.980.9480.9770.980.9740.9310.9880.9790.9840.9820.9850.9810.9880.9790.940.9850.9820.9870.9830.9840.960.9740.9790.9860.9840.9740.9760.9830.9830.9780.9680.9790.8990.9790.9810.9730.9830.9580.9360.9830.9320.9860.9880.9790.9830.970.9910.9850.9880.9860.9870.9720.9820.9830.9610.9850.9880.9670.9820.9820.9830.9820.9790.9790.9830.9860.9670.980.9720.9810.9830.9680.9750.980.9850.9810.9880.9830.9810.9530.9720.9810.9680.9810.9730.9850.9820.9840.9870.9830.9740.9790.9660.9850.9850.9840.9690.9790.9830.9830.9810.9860.980.9840.9770.9870.9830.9830.9870.9850.92610.9840.9840.9860.9810.9320.970.933 0.880.98
    Liver544F309062013.09HFC57BL/6JH05140.9840.9330.9360.9830.9780.9820.9810.9490.8940.9790.9820.9770.980.980.9670.9770.9610.9520.9840.9790.9750.9810.980.980.9680.9670.9680.9640.9830.980.9830.9770.9640.9650.9720.9720.9190.9810.9720.9780.9780.9790.9750.9840.9720.9340.9760.9790.980.9740.980.9470.9680.9750.9810.980.9670.9690.980.970.9750.9710.9760.9150.9770.9780.9750.9790.9550.9270.9710.930.9890.9810.9740.970.9590.9860.9880.9890.9780.9860.9810.9830.9770.9630.9790.9840.9640.9740.9760.9840.9820.9730.9720.9820.9830.9590.9790.9650.9850.9790.9680.9750.9850.9830.9730.9850.9850.9810.9690.9620.9750.9670.9780.9750.9830.9850.9790.9820.9780.9770.9780.9680.9820.9840.980.960.9750.9790.9810.9810.9830.9710.9760.980.9870.9790.9790.9910.980.9450.98410.9860.9860.9760.930.9650.926 0.8940.97
    Liver182F235102414.06HFC57BL/6JH16810.9880.9340.9350.9890.9820.9880.9870.9660.8950.9850.9770.9870.9840.9850.9760.9830.9680.9650.9820.9840.9850.9890.9870.9880.9810.9760.9750.9780.9870.9870.9860.9890.9530.9740.980.9790.9360.9860.980.9820.9890.9820.9780.9880.9840.9510.9780.9810.9840.9790.9890.9610.9780.9780.9860.9870.9780.9810.9860.9780.9760.9660.9860.9060.9820.9770.9780.9860.9690.9440.9810.9440.9930.9870.9830.9780.9660.9880.9910.9890.9860.9860.9770.9850.9880.9660.9860.9880.9760.9860.9770.9830.9830.9810.980.9880.9850.9730.9810.9760.9880.9870.9760.9820.9860.9860.9770.9880.9820.9860.9570.9710.9820.9730.9840.9780.9840.9840.9890.9860.9850.9770.9850.9720.9850.9880.9890.970.9820.9860.9820.9860.9850.9760.9830.9820.9840.9830.9830.9870.9870.9390.9840.98610.9890.9850.9440.9690.943 0.8950.98
    Liver214F301101713.20HFD2B6F1H11500.990.9270.9280.9880.980.9850.9890.9630.8890.9830.9750.9860.9790.9830.9730.9840.9690.9660.9840.9830.9850.9880.9870.9870.9790.9710.9710.9730.9840.9870.9880.9870.950.9720.9810.9760.9320.9860.9810.9840.9840.9820.9770.9860.9810.9450.9790.9790.9840.980.9880.9590.9730.9750.9870.9870.9740.9830.9860.9790.9780.9670.9840.9010.980.9790.9740.9840.9640.9380.9780.9410.9880.9890.9870.9790.9670.9910.990.9920.9820.9860.9770.9830.9830.9660.9830.990.9740.9860.9820.9840.9840.9810.980.9870.9840.9730.9820.9770.9840.9850.9690.980.9840.9880.9760.9860.9840.9860.9550.9710.9830.9710.9840.9740.9880.9830.9850.9850.9850.9760.9870.9680.9870.9910.9880.9660.9840.9850.9850.9860.9840.980.9820.9810.9850.9850.9830.990.9880.9330.9860.9860.98910.9890.9410.9720.941 0.8890.98
    Liver540F291062013.13HFD2B6F1H06420.9840.9170.9170.9820.9760.9830.9860.970.8820.9760.9630.9850.9750.9780.970.980.9670.9650.9770.9780.9860.9850.9870.9830.9780.970.9690.9740.9790.9850.9890.9850.9350.9750.9820.9710.9350.9860.9830.9810.980.9790.9740.9830.9850.9530.9730.9760.9830.9780.9860.9650.9710.9710.9850.9850.9720.9840.9830.9770.9740.9510.9810.8880.9760.9760.9680.9810.9630.9380.9760.9430.9830.9860.9940.9770.9680.9840.9840.9870.980.9780.9650.9760.9790.9610.980.9870.9780.9830.9770.9780.9790.980.9780.9820.9740.9730.9760.9750.9760.9810.9620.9790.980.9880.9720.9790.9750.9780.9440.9760.9830.9760.9810.9680.9830.9730.9820.9790.9780.9680.9810.9630.9850.9890.9870.9670.9820.9840.9850.9780.9740.9810.9780.9730.9750.9850.980.9840.9870.9230.9810.9760.9850.98910.9430.9640.945 0.8820.97
    Liver212F16101713.11HFDBA/2JH11440.9350.9310.9290.9350.9420.940.9380.9640.9220.9430.9220.9540.9340.9380.9520.9370.9580.9620.9390.9350.9280.9410.9450.9460.9640.9670.9670.9690.9430.9380.9410.940.90.9530.9540.9610.9760.9440.960.9450.9460.9340.9440.9390.9540.960.9270.9350.9420.950.9410.9760.9670.9350.9430.9380.9610.9350.9450.9460.9320.9110.9590.8630.9350.9350.9570.940.9740.9760.95810.9360.9380.9520.9460.960.9350.9420.9440.940.930.9230.9310.950.9550.9450.9390.9620.9420.9320.9420.9470.9510.950.9480.9390.9730.9580.970.9310.950.9550.9530.930.9360.9390.9360.9310.9490.9030.9580.9490.9450.9530.9570.9460.9260.9380.9380.940.9280.9410.9450.9540.9450.9370.970.9420.9540.9360.9490.9390.9450.9410.9270.9270.9480.9590.9330.9510.890.9320.930.9440.9410.94310.9570.968 0.8630.94
    Liver544M181091914.07HFDBA/2JH11400.9690.9350.9370.9670.9610.9690.9660.9640.9030.9680.960.9770.9610.9660.9640.970.9730.990.9770.9680.960.9710.9680.9730.9770.9710.9720.9770.9710.9660.9660.9650.940.9650.9740.9770.9440.970.9750.9730.9770.9690.9690.9710.9720.9460.9580.9620.9720.9680.9720.9650.9770.9590.970.9660.9770.9690.9740.9730.9590.9570.9770.8880.9670.9630.9790.970.9690.9540.9740.9570.9660.9660.9680.9730.9740.9690.9760.9780.9650.9690.960.9680.9780.9760.9710.970.9690.9750.9780.9780.9790.9710.9710.9740.9770.9730.9750.9760.9690.9750.970.9670.9630.9630.970.9760.9690.9740.9350.9640.9720.9610.9690.9790.9740.9680.9730.9720.9680.9580.9680.9630.9760.9740.9690.9730.9710.9750.9710.9740.9770.9720.9670.9660.9710.970.9810.9670.9720.9180.970.9650.9690.9720.9640.95710.957 0.8880.97
    Liver549F190091914.05HFDBA/2JH11420.9320.9490.9460.9380.9480.9490.940.9650.9410.940.9320.9490.9380.9350.9570.9420.9590.9720.9440.9380.940.9380.9420.9450.960.9680.9670.9630.9480.940.9360.9470.9150.9440.9470.9670.9750.9380.9510.9370.9420.9350.9320.9390.9570.9730.9330.9420.9350.9520.9430.9690.9680.9430.9410.940.9630.9340.9450.9490.9340.9190.9520.8830.9290.9290.9630.9410.9710.9720.9590.9680.9350.940.9530.9490.9630.9340.9480.9460.9420.9350.9380.9360.9540.9580.9430.940.960.9460.9390.9470.9530.9490.9480.9510.9410.9710.960.9670.9410.9480.9660.9570.9430.9310.9340.9330.9240.9550.9130.9460.9430.9590.9490.9630.9330.9350.9430.9440.9470.9440.9470.9580.9520.9450.940.970.9430.9530.9370.9550.9410.9330.9390.9440.930.9440.960.9310.9440.9130.9330.9260.9430.9410.9450.9680.9571 0.8830.95
                                                                                                                                                                     
           Min0.8770.9140.9140.8940.9070.9130.8770.8790.8770.8940.9170.8970.8970.8870.9190.9020.8960.880.9050.9030.8850.8860.8840.8890.890.9030.9040.890.9070.8910.8830.8940.90.8840.8830.910.8750.8840.890.8880.8930.8880.8880.8870.8890.90.8830.9030.8840.90.8930.8770.9010.910.8920.8910.8980.8780.9010.8960.8940.9010.8930.8630.8820.8840.9170.8930.8990.8630.9010.8630.8940.8770.8890.8960.8950.8810.9010.8950.890.8920.9170.8920.8970.9120.8870.8860.8890.8870.8880.9080.9130.90.90.8960.9040.8880.9150.890.9050.8990.9160.9040.9070.8780.8910.8820.880.9150.8960.880.8890.9050.8890.9170.880.8950.8850.8890.8940.9190.8920.9260.8980.8920.8920.8910.9030.9040.8890.9150.9040.8790.880.9180.8890.8840.9020.8880.8920.8860.880.8940.8950.8890.8820.8630.8880.883 minaverage
           Average0.977560.934660.935720.9775066670.9739733330.9779466670.9754933330.9634866670.902620.975140.9681733330.977620.9724133330.9746733330.9698866670.9736866670.9696133330.9615933330.9764866670.9759066670.969640.977620.9769533330.9783666670.9748066670.9722066670.9725666670.9722333330.979080.976660.975760.975580.9466133330.97030.974760.975260.9413733330.976840.9752666670.97450.9769333330.9745333330.97290.9775333330.9754933330.94970.96980.9738266670.9757733330.9737466670.977960.9623266670.9751533330.97280.9774266670.976660.9740066670.9696733330.9788733330.9753133330.9688266670.9598666670.9756133330.903480.9724533330.9715933330.9731733330.976140.9668533330.9453066670.9759466670.944460.976980.9754933330.9745066670.9753133330.9703266670.97730.9797466670.9796733330.974760.9753866670.9675733330.97280.9771666670.964680.9765733330.977960.9706533330.9746866670.9725066670.9774666670.9779866670.9751666670.9745866670.9778333330.9760266670.9701933330.9760333330.9727466670.97610.9762933330.9709133330.9734866670.9741133330.9746866670.971980.9756466670.971860.977940.9465533330.9677266670.974220.9669933330.9749266670.9731733330.9744466670.973080.9753466670.9756333330.974480.9696666670.97390.966080.9781533330.978680.9768266670.9699866670.974680.978940.975160.977940.9760266670.9714266670.9723066670.9724666670.9737733330.974520.9784666670.9752333330.9771666670.9305066670.9753533330.97270.9781133330.97720.9738266670.944460.9674733330.946173333 0.902620.970757511
    diff --git a/general/datasets/Uthsc_bxd_harv_liv_1019/specifics.rtf b/general/datasets/Uthsc_bxd_harv_liv_1019/specifics.rtf new file mode 100644 index 0000000..402ed9c --- /dev/null +++ b/general/datasets/Uthsc_bxd_harv_liv_1019/specifics.rtf @@ -0,0 +1 @@ +TPM Log2 \ No newline at end of file diff --git a/general/datasets/Uthsc_bxd_harv_liv_1019/summary.rtf b/general/datasets/Uthsc_bxd_harv_liv_1019/summary.rtf new file mode 100644 index 0000000..153d98d --- /dev/null +++ b/general/datasets/Uthsc_bxd_harv_liv_1019/summary.rtf @@ -0,0 +1 @@ +

    In working progress...

    diff --git a/general/datasets/Uthsc_bxd_harv_liv_tpm_log2_1019/specifics.rtf b/general/datasets/Uthsc_bxd_harv_liv_tpm_log2_1019/specifics.rtf new file mode 100644 index 0000000..a316cd4 --- /dev/null +++ b/general/datasets/Uthsc_bxd_harv_liv_tpm_log2_1019/specifics.rtf @@ -0,0 +1 @@ +UTHSC BXD Liver RNA-Seq Avg (Oct19) TPM Log2 \ No newline at end of file diff --git a/general/datasets/Uthsc_bxd_harv_liv_tpm_log2_1019/summary.rtf b/general/datasets/Uthsc_bxd_harv_liv_tpm_log2_1019/summary.rtf new file mode 100644 index 0000000..3ef9ac2 --- /dev/null +++ b/general/datasets/Uthsc_bxd_harv_liv_tpm_log2_1019/summary.rtf @@ -0,0 +1 @@ +

    UTHSC BXD Liver RNA-Seq Avg (Oct19) TPM Log2

    diff --git a/general/datasets/Uthsc_bxd_hip_mirnaseq0214/specifics.rtf b/general/datasets/Uthsc_bxd_hip_mirnaseq0214/specifics.rtf new file mode 100644 index 0000000..280762b --- /dev/null +++ b/general/datasets/Uthsc_bxd_hip_mirnaseq0214/specifics.rtf @@ -0,0 +1 @@ +NA \ No newline at end of file diff --git a/general/datasets/Uthsc_bxd_hip_mirnaseq0214/summary.rtf b/general/datasets/Uthsc_bxd_hip_mirnaseq0214/summary.rtf new file mode 100644 index 0000000..1a4d656 --- /dev/null +++ b/general/datasets/Uthsc_bxd_hip_mirnaseq0214/summary.rtf @@ -0,0 +1 @@ +

    This group of datasets is confidential

    diff --git a/general/datasets/Uthsc_bxd_hip_postd7ctrlbs_1121/specifics.rtf b/general/datasets/Uthsc_bxd_hip_postd7ctrlbs_1121/specifics.rtf new file mode 100644 index 0000000..2a8ed1d --- /dev/null +++ b/general/datasets/Uthsc_bxd_hip_postd7ctrlbs_1121/specifics.rtf @@ -0,0 +1 @@ +

    BXD Hippocampus Postnatal Day 7 Control Both Sexes

    diff --git a/general/datasets/Uthsc_bxd_hip_postd7ctrlbs_1121/summary.rtf b/general/datasets/Uthsc_bxd_hip_postd7ctrlbs_1121/summary.rtf new file mode 100644 index 0000000..739e3b7 --- /dev/null +++ b/general/datasets/Uthsc_bxd_hip_postd7ctrlbs_1121/summary.rtf @@ -0,0 +1 @@ +

    The Affymetrix Genechip Mouse Clariom S was used to examine gene expression (Affymetrix, California, United States). Two hundred nanograms of DNased total RNA was amplified, labeled, and fragmented using Ambion Whole Transcript (WT) Expression Kit according to manufacturer’s protocol (Thermo Fisher Scientific, Santa Clara, California United States). Briefly, samples are hybridized overnight according to manufacturer’s protocols; samples are then washed and stained on Affymetrix GeneChip Fluidics Station 450 (Affymetrix, California, United States). Samples were then scanned using the GeneChip Scanner 3000 (Applied Biosystems, California, United States).  Data was normalized and analyzed for quality control in Affymetrix Expression Console Software using RMA-sketch normalization (Affymetrix, California, United States). After normalization and quality control, a total number of 22,203 probe sets were used for subsequent data analysis. A total of 128 samples were used—4 samples per treatment (control, ethanol), sex (male, female), and strain (B6, D2, BXD2, BXD48a, BXD60, BXD71, BXD73, BXD100).

    diff --git a/general/datasets/Uthsc_bxd_hip_postd7etohbs_1121/specifics.rtf b/general/datasets/Uthsc_bxd_hip_postd7etohbs_1121/specifics.rtf new file mode 100644 index 0000000..ebc4e0d --- /dev/null +++ b/general/datasets/Uthsc_bxd_hip_postd7etohbs_1121/specifics.rtf @@ -0,0 +1 @@ +

    BXD Hippocampus Postnatal Day 7 Ethanol Both Sexes

    diff --git a/general/datasets/Uthsc_bxd_hip_postd7etohbs_1121/summary.rtf b/general/datasets/Uthsc_bxd_hip_postd7etohbs_1121/summary.rtf new file mode 100644 index 0000000..739e3b7 --- /dev/null +++ b/general/datasets/Uthsc_bxd_hip_postd7etohbs_1121/summary.rtf @@ -0,0 +1 @@ +

    The Affymetrix Genechip Mouse Clariom S was used to examine gene expression (Affymetrix, California, United States). Two hundred nanograms of DNased total RNA was amplified, labeled, and fragmented using Ambion Whole Transcript (WT) Expression Kit according to manufacturer’s protocol (Thermo Fisher Scientific, Santa Clara, California United States). Briefly, samples are hybridized overnight according to manufacturer’s protocols; samples are then washed and stained on Affymetrix GeneChip Fluidics Station 450 (Affymetrix, California, United States). Samples were then scanned using the GeneChip Scanner 3000 (Applied Biosystems, California, United States).  Data was normalized and analyzed for quality control in Affymetrix Expression Console Software using RMA-sketch normalization (Affymetrix, California, United States). After normalization and quality control, a total number of 22,203 probe sets were used for subsequent data analysis. A total of 128 samples were used—4 samples per treatment (control, ethanol), sex (male, female), and strain (B6, D2, BXD2, BXD48a, BXD60, BXD71, BXD73, BXD100).

    diff --git a/general/datasets/Uthsc_bxd_liv_0818/specifics.rtf b/general/datasets/Uthsc_bxd_liv_0818/specifics.rtf new file mode 100644 index 0000000..342d36e --- /dev/null +++ b/general/datasets/Uthsc_bxd_liv_0818/specifics.rtf @@ -0,0 +1 @@ +2nd set \ No newline at end of file diff --git a/general/datasets/Uthsc_bxd_liv_0818/summary.rtf b/general/datasets/Uthsc_bxd_liv_0818/summary.rtf new file mode 100644 index 0000000..790afd7 --- /dev/null +++ b/general/datasets/Uthsc_bxd_liv_0818/summary.rtf @@ -0,0 +1 @@ +

    In working progress

    diff --git a/general/datasets/Uthsc_bxd_liv_0917/specifics.rtf b/general/datasets/Uthsc_bxd_liv_0917/specifics.rtf new file mode 100644 index 0000000..0b70afe --- /dev/null +++ b/general/datasets/Uthsc_bxd_liv_0917/specifics.rtf @@ -0,0 +1 @@ +Gene Level \ No newline at end of file diff --git a/general/datasets/Uthsc_bxd_liv_0917/summary.rtf b/general/datasets/Uthsc_bxd_liv_0917/summary.rtf new file mode 100644 index 0000000..790afd7 --- /dev/null +++ b/general/datasets/Uthsc_bxd_liv_0917/summary.rtf @@ -0,0 +1 @@ +

    In working progress

    diff --git a/general/datasets/Uthsc_bxd_livcdnam_1119/experiment-design.rtf b/general/datasets/Uthsc_bxd_livcdnam_1119/experiment-design.rtf new file mode 100644 index 0000000..5c63e07 --- /dev/null +++ b/general/datasets/Uthsc_bxd_livcdnam_1119/experiment-design.rtf @@ -0,0 +1 @@ +

    Aging

    diff --git a/general/datasets/Uthsc_bxd_livcdnam_1119/platform.rtf b/general/datasets/Uthsc_bxd_livcdnam_1119/platform.rtf new file mode 100644 index 0000000..01ea9ea --- /dev/null +++ b/general/datasets/Uthsc_bxd_livcdnam_1119/platform.rtf @@ -0,0 +1 @@ +

    Pan-Mammalian DNAm Infinium array; this is a custom array

    diff --git a/general/datasets/Uthsc_bxd_livcdnam_1119/processing.rtf b/general/datasets/Uthsc_bxd_livcdnam_1119/processing.rtf new file mode 100644 index 0000000..5dc0f7f --- /dev/null +++ b/general/datasets/Uthsc_bxd_livcdnam_1119/processing.rtf @@ -0,0 +1 @@ +

    Beta-values after normalization

    diff --git a/general/datasets/Uthsc_bxd_livcdnam_1119/specifics.rtf b/general/datasets/Uthsc_bxd_livcdnam_1119/specifics.rtf new file mode 100644 index 0000000..cf79575 --- /dev/null +++ b/general/datasets/Uthsc_bxd_livcdnam_1119/specifics.rtf @@ -0,0 +1 @@ +NIA-UTHSC BXD Liver CD DNAm (Nov20) Sesame \ No newline at end of file diff --git a/general/datasets/Uthsc_bxd_livcdnam_1119/summary.rtf b/general/datasets/Uthsc_bxd_livcdnam_1119/summary.rtf new file mode 100644 index 0000000..0961144 --- /dev/null +++ b/general/datasets/Uthsc_bxd_livcdnam_1119/summary.rtf @@ -0,0 +1 @@ +

    DNA from liver tissue profiled on the Illumina Pan-Mammalian Infinium microarray. This array was designed and developed by Steve Horvath at UCLA. Array hybridization, initial data QC, and normalization done at UCLA. 

    diff --git a/general/datasets/Uthsc_bxd_livdnam_1119/experiment-design.rtf b/general/datasets/Uthsc_bxd_livdnam_1119/experiment-design.rtf new file mode 100644 index 0000000..5c63e07 --- /dev/null +++ b/general/datasets/Uthsc_bxd_livdnam_1119/experiment-design.rtf @@ -0,0 +1 @@ +

    Aging

    diff --git a/general/datasets/Uthsc_bxd_livdnam_1119/platform.rtf b/general/datasets/Uthsc_bxd_livdnam_1119/platform.rtf new file mode 100644 index 0000000..01ea9ea --- /dev/null +++ b/general/datasets/Uthsc_bxd_livdnam_1119/platform.rtf @@ -0,0 +1 @@ +

    Pan-Mammalian DNAm Infinium array; this is a custom array

    diff --git a/general/datasets/Uthsc_bxd_livdnam_1119/processing.rtf b/general/datasets/Uthsc_bxd_livdnam_1119/processing.rtf new file mode 100644 index 0000000..5dc0f7f --- /dev/null +++ b/general/datasets/Uthsc_bxd_livdnam_1119/processing.rtf @@ -0,0 +1 @@ +

    Beta-values after normalization

    diff --git a/general/datasets/Uthsc_bxd_livdnam_1119/specifics.rtf b/general/datasets/Uthsc_bxd_livdnam_1119/specifics.rtf new file mode 100644 index 0000000..06c93b7 --- /dev/null +++ b/general/datasets/Uthsc_bxd_livdnam_1119/specifics.rtf @@ -0,0 +1 @@ +NIA-UTHSC BXD Liver CD-HFD DNAm (Nov20) Sesame \ No newline at end of file diff --git a/general/datasets/Uthsc_bxd_livdnam_1119/summary.rtf b/general/datasets/Uthsc_bxd_livdnam_1119/summary.rtf new file mode 100644 index 0000000..0961144 --- /dev/null +++ b/general/datasets/Uthsc_bxd_livdnam_1119/summary.rtf @@ -0,0 +1 @@ +

    DNA from liver tissue profiled on the Illumina Pan-Mammalian Infinium microarray. This array was designed and developed by Steve Horvath at UCLA. Array hybridization, initial data QC, and normalization done at UCLA. 

    diff --git a/general/datasets/Uthsc_bxd_livhfdnam_1119/experiment-design.rtf b/general/datasets/Uthsc_bxd_livhfdnam_1119/experiment-design.rtf new file mode 100644 index 0000000..5c63e07 --- /dev/null +++ b/general/datasets/Uthsc_bxd_livhfdnam_1119/experiment-design.rtf @@ -0,0 +1 @@ +

    Aging

    diff --git a/general/datasets/Uthsc_bxd_livhfdnam_1119/platform.rtf b/general/datasets/Uthsc_bxd_livhfdnam_1119/platform.rtf new file mode 100644 index 0000000..01ea9ea --- /dev/null +++ b/general/datasets/Uthsc_bxd_livhfdnam_1119/platform.rtf @@ -0,0 +1 @@ +

    Pan-Mammalian DNAm Infinium array; this is a custom array

    diff --git a/general/datasets/Uthsc_bxd_livhfdnam_1119/processing.rtf b/general/datasets/Uthsc_bxd_livhfdnam_1119/processing.rtf new file mode 100644 index 0000000..5dc0f7f --- /dev/null +++ b/general/datasets/Uthsc_bxd_livhfdnam_1119/processing.rtf @@ -0,0 +1 @@ +

    Beta-values after normalization

    diff --git a/general/datasets/Uthsc_bxd_livhfdnam_1119/specifics.rtf b/general/datasets/Uthsc_bxd_livhfdnam_1119/specifics.rtf new file mode 100644 index 0000000..b8b1955 --- /dev/null +++ b/general/datasets/Uthsc_bxd_livhfdnam_1119/specifics.rtf @@ -0,0 +1 @@ +NIA-UTHSC BXD Liver HFD DNAm (Nov20) Sesame \ No newline at end of file diff --git a/general/datasets/Uthsc_bxd_livhfdnam_1119/summary.rtf b/general/datasets/Uthsc_bxd_livhfdnam_1119/summary.rtf new file mode 100644 index 0000000..0961144 --- /dev/null +++ b/general/datasets/Uthsc_bxd_livhfdnam_1119/summary.rtf @@ -0,0 +1 @@ +

    DNA from liver tissue profiled on the Illumina Pan-Mammalian Infinium microarray. This array was designed and developed by Steve Horvath at UCLA. Array hybridization, initial data QC, and normalization done at UCLA. 

    diff --git a/general/datasets/Uthsc_bxd_mamgland_ca_0322/specifics.rtf b/general/datasets/Uthsc_bxd_mamgland_ca_0322/specifics.rtf new file mode 100644 index 0000000..81e1218 --- /dev/null +++ b/general/datasets/Uthsc_bxd_mamgland_ca_0322/specifics.rtf @@ -0,0 +1 @@ +UTHSC BXD Triple Negative Breast Cancer Model RNA-Seq (Mar22) Count All Samples \ No newline at end of file diff --git a/general/datasets/Uthsc_bxd_mamgland_ca_0322/summary.rtf b/general/datasets/Uthsc_bxd_mamgland_ca_0322/summary.rtf new file mode 100644 index 0000000..4e4269c --- /dev/null +++ b/general/datasets/Uthsc_bxd_mamgland_ca_0322/summary.rtf @@ -0,0 +1 @@ +

    This dataset is currently unpublished. Please refer to the contact information above if you want to use this data.

    diff --git a/general/datasets/Uthsc_bxd_mamgland_cpm_0322/specifics.rtf b/general/datasets/Uthsc_bxd_mamgland_cpm_0322/specifics.rtf new file mode 100644 index 0000000..3b28a0d --- /dev/null +++ b/general/datasets/Uthsc_bxd_mamgland_cpm_0322/specifics.rtf @@ -0,0 +1 @@ +UTHSC BXD Triple Negative Breast Cancer Model RNA-Seq (Mar22) CPM Norm All Samples \ No newline at end of file diff --git a/general/datasets/Uthsc_bxd_mamgland_cpm_0322/summary.rtf b/general/datasets/Uthsc_bxd_mamgland_cpm_0322/summary.rtf new file mode 100644 index 0000000..4e4269c --- /dev/null +++ b/general/datasets/Uthsc_bxd_mamgland_cpm_0322/summary.rtf @@ -0,0 +1 @@ +

    This dataset is currently unpublished. Please refer to the contact information above if you want to use this data.

    diff --git a/general/datasets/Uthsc_bxd_mamgland_cpmntum_0322/specifics.rtf b/general/datasets/Uthsc_bxd_mamgland_cpmntum_0322/specifics.rtf new file mode 100644 index 0000000..4d79eab --- /dev/null +++ b/general/datasets/Uthsc_bxd_mamgland_cpmntum_0322/specifics.rtf @@ -0,0 +1 @@ +UTHSC BXD Triple Negative Breast Cancer Model RNA-Seq (Mar22) CPM Norm Tumor Only \ No newline at end of file diff --git a/general/datasets/Uthsc_bxd_mamgland_cpmntum_0322/summary.rtf b/general/datasets/Uthsc_bxd_mamgland_cpmntum_0322/summary.rtf new file mode 100644 index 0000000..4e4269c --- /dev/null +++ b/general/datasets/Uthsc_bxd_mamgland_cpmntum_0322/summary.rtf @@ -0,0 +1 @@ +

    This dataset is currently unpublished. Please refer to the contact information above if you want to use this data.

    diff --git a/general/datasets/Uthsc_bxd_mamgland_tum_0322/specifics.rtf b/general/datasets/Uthsc_bxd_mamgland_tum_0322/specifics.rtf new file mode 100644 index 0000000..bc15cdf --- /dev/null +++ b/general/datasets/Uthsc_bxd_mamgland_tum_0322/specifics.rtf @@ -0,0 +1 @@ +UTHSC BXD Triple Negative Breast Cancer Model RNA-Seq (Mar22) Counts Tumor Only \ No newline at end of file diff --git a/general/datasets/Uthsc_bxd_mamgland_tum_0322/summary.rtf b/general/datasets/Uthsc_bxd_mamgland_tum_0322/summary.rtf new file mode 100644 index 0000000..4e4269c --- /dev/null +++ b/general/datasets/Uthsc_bxd_mamgland_tum_0322/summary.rtf @@ -0,0 +1 @@ +

    This dataset is currently unpublished. Please refer to the contact information above if you want to use this data.

    diff --git a/general/datasets/Uthsc_bxd_wb_rnaseq1112/cases.rtf b/general/datasets/Uthsc_bxd_wb_rnaseq1112/cases.rtf new file mode 100644 index 0000000..2f0fdc0 --- /dev/null +++ b/general/datasets/Uthsc_bxd_wb_rnaseq1112/cases.rtf @@ -0,0 +1,245 @@ +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexOriginal StrainCorrected StrainSexAge
    1BXD13_batch2BXD18M67
    2BXD15_batch2BXD15F62
    3BXD18_batch2BXD19F65
    4BXD24_batch2BXD24F63
    5BXD36_batch2BXD45 removedM67
    6BXD39_batch2BXD39F60
    7BXD42_batch2BXD43F67
    8BXD43_batch2BXD42F60
    9BXD45_batch2BXD45F60
    10BXD50_batch2BXD50F57
    11BXD51_batch2BXD55F59
    12BXD55_batch2BXD51F61
    13BXD56_batch2BXD56F67
    14BXD6_batch2BXD6F59
    15BXD8_batch2BXD9F62
    16BXD9_batch2BXD8M70
    17BXD14_batch3BXD40F76
    18BXD16_batch3BXD19M74
    19BXD32_batch3BXD32M54
    20BXD38_batch3BXD38F102
    21BXD40_batch3BXD14M81
    22BXD48_batch3BXD48M68
    23BXD60_batch3BXD60F64
    24BXD66_batch3BXD66M61
    25BXD69_batch3BXD69F66
    26BXD70_batch3BXD70M72
    27BXD29m_batch4BXD1F60
    28BXD29n_batch4BXD29F344
    29BXD34_batch4BXD34F108
    30BXD49_batch4BXD49M76
    31BXD65_batch4BXD29F58
    32BXD22_batch6BXD22F67
    +
    +
    diff --git a/general/datasets/Uthsc_bxd_wb_rnaseq1112/notes.rtf b/general/datasets/Uthsc_bxd_wb_rnaseq1112/notes.rtf new file mode 100644 index 0000000..c16bd50 --- /dev/null +++ b/general/datasets/Uthsc_bxd_wb_rnaseq1112/notes.rtf @@ -0,0 +1,23 @@ +

    RNA sequencing for BXD strains on SOLiD by David Li.
    +All Bam files alignment done by Xusheng Wang
    +Aligned files were uploaded to Partek Genomic Suite 6.5 (version 6.10.0810) and processed by K Mozhui
    +Normalization: RPKM (reads per kilobase per million mapped reads)
    +Batch effect due to low exonic reads for batch 2

    + +

    Revision 1.6 Untrimmed (current) LRS=(23 999) ->350 records
    +Max LRS = 102.6 Record Id:uthsc_nr_015498, Gene Symbol:1500004A13Rik **Note: 1 sample BXD45 and BXD34 removed. BXD41 switched to BXD1 as a second posible candidate.

    + +

    Revision 1.5 Untrimmed LRS=(23 999) ->268 records
    +Max LRS = 80.0 Record Id:uthsc_nm_001039533, Gene Symbol:Pdxdc1 **Note: 1 sample BXD45 removed. BXD41 switched to BXD1 as a second posible candidate.

    + +

    Revision 1.4 Untrimmed LRS=(23 999) ->246 records
    +Max LRS = 80.0 Record Id:uthsc_nm_001039533, Gene Symbol:Pdxdc1 **Note: 1 sample BXD45 removed and keep BXD41

    + +

    Revision 1.3 Untrimmed LRS=(23 999) ->233 records
    +Max LRS = 80.7 Record Id:uthsc_nm_001039533, Gene Symbol:Pdxdc1

    + +

    Revision 1.2 Untrimmed LRS=(23 999) ->190 records
    +Max LRS = 56.9 Record Id:uthsc_nr_003513, Gene Symbol:Neat1

    + +

    Revision 1 Untrimmed LRS=(23 999) ->126 records
    +Max LRS = 35.3 Record Id:uthsc_nm_001113412, Gene Symbol:Fggy

    diff --git a/general/datasets/Uthsc_bxd_wb_rnaseq1112/specifics.rtf b/general/datasets/Uthsc_bxd_wb_rnaseq1112/specifics.rtf new file mode 100644 index 0000000..8e3eb6f --- /dev/null +++ b/general/datasets/Uthsc_bxd_wb_rnaseq1112/specifics.rtf @@ -0,0 +1 @@ +

    Note: March 2019: now actually 449 transcripts/genes with LRS > 23 and peak LRS is still 102.6.

    diff --git a/general/datasets/Uthsc_bxd_wb_rnaseq1112/summary.rtf b/general/datasets/Uthsc_bxd_wb_rnaseq1112/summary.rtf new file mode 100644 index 0000000..82080d4 --- /dev/null +++ b/general/datasets/Uthsc_bxd_wb_rnaseq1112/summary.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Uthsc_bxd_wb_rnaseqex1112/specifics.rtf b/general/datasets/Uthsc_bxd_wb_rnaseqex1112/specifics.rtf new file mode 100644 index 0000000..7c1a914 --- /dev/null +++ b/general/datasets/Uthsc_bxd_wb_rnaseqex1112/specifics.rtf @@ -0,0 +1 @@ +Exon Level \ No newline at end of file diff --git a/general/datasets/Uthsc_bxd_wb_rnaseqex1112/summary.rtf b/general/datasets/Uthsc_bxd_wb_rnaseqex1112/summary.rtf new file mode 100644 index 0000000..0ffc063 --- /dev/null +++ b/general/datasets/Uthsc_bxd_wb_rnaseqex1112/summary.rtf @@ -0,0 +1 @@ +

    UTHSC Mouse BXD Whole Brain RNA Sequence Exon Level (Nov12) RPKM

    diff --git a/general/datasets/Uthsc_bxd_wb_rnaseqtrim1112/cases.rtf b/general/datasets/Uthsc_bxd_wb_rnaseqtrim1112/cases.rtf new file mode 100644 index 0000000..2f0fdc0 --- /dev/null +++ b/general/datasets/Uthsc_bxd_wb_rnaseqtrim1112/cases.rtf @@ -0,0 +1,245 @@ +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexOriginal StrainCorrected StrainSexAge
    1BXD13_batch2BXD18M67
    2BXD15_batch2BXD15F62
    3BXD18_batch2BXD19F65
    4BXD24_batch2BXD24F63
    5BXD36_batch2BXD45 removedM67
    6BXD39_batch2BXD39F60
    7BXD42_batch2BXD43F67
    8BXD43_batch2BXD42F60
    9BXD45_batch2BXD45F60
    10BXD50_batch2BXD50F57
    11BXD51_batch2BXD55F59
    12BXD55_batch2BXD51F61
    13BXD56_batch2BXD56F67
    14BXD6_batch2BXD6F59
    15BXD8_batch2BXD9F62
    16BXD9_batch2BXD8M70
    17BXD14_batch3BXD40F76
    18BXD16_batch3BXD19M74
    19BXD32_batch3BXD32M54
    20BXD38_batch3BXD38F102
    21BXD40_batch3BXD14M81
    22BXD48_batch3BXD48M68
    23BXD60_batch3BXD60F64
    24BXD66_batch3BXD66M61
    25BXD69_batch3BXD69F66
    26BXD70_batch3BXD70M72
    27BXD29m_batch4BXD1F60
    28BXD29n_batch4BXD29F344
    29BXD34_batch4BXD34F108
    30BXD49_batch4BXD49M76
    31BXD65_batch4BXD29F58
    32BXD22_batch6BXD22F67
    +
    +
    diff --git a/general/datasets/Uthsc_bxd_wb_rnaseqtrim1112/notes.rtf b/general/datasets/Uthsc_bxd_wb_rnaseqtrim1112/notes.rtf new file mode 100644 index 0000000..c16bd50 --- /dev/null +++ b/general/datasets/Uthsc_bxd_wb_rnaseqtrim1112/notes.rtf @@ -0,0 +1,23 @@ +

    RNA sequencing for BXD strains on SOLiD by David Li.
    +All Bam files alignment done by Xusheng Wang
    +Aligned files were uploaded to Partek Genomic Suite 6.5 (version 6.10.0810) and processed by K Mozhui
    +Normalization: RPKM (reads per kilobase per million mapped reads)
    +Batch effect due to low exonic reads for batch 2

    + +

    Revision 1.6 Untrimmed (current) LRS=(23 999) ->350 records
    +Max LRS = 102.6 Record Id:uthsc_nr_015498, Gene Symbol:1500004A13Rik **Note: 1 sample BXD45 and BXD34 removed. BXD41 switched to BXD1 as a second posible candidate.

    + +

    Revision 1.5 Untrimmed LRS=(23 999) ->268 records
    +Max LRS = 80.0 Record Id:uthsc_nm_001039533, Gene Symbol:Pdxdc1 **Note: 1 sample BXD45 removed. BXD41 switched to BXD1 as a second posible candidate.

    + +

    Revision 1.4 Untrimmed LRS=(23 999) ->246 records
    +Max LRS = 80.0 Record Id:uthsc_nm_001039533, Gene Symbol:Pdxdc1 **Note: 1 sample BXD45 removed and keep BXD41

    + +

    Revision 1.3 Untrimmed LRS=(23 999) ->233 records
    +Max LRS = 80.7 Record Id:uthsc_nm_001039533, Gene Symbol:Pdxdc1

    + +

    Revision 1.2 Untrimmed LRS=(23 999) ->190 records
    +Max LRS = 56.9 Record Id:uthsc_nr_003513, Gene Symbol:Neat1

    + +

    Revision 1 Untrimmed LRS=(23 999) ->126 records
    +Max LRS = 35.3 Record Id:uthsc_nm_001113412, Gene Symbol:Fggy

    diff --git a/general/datasets/Uthsc_bxd_wb_rnaseqtrim1112/summary.rtf b/general/datasets/Uthsc_bxd_wb_rnaseqtrim1112/summary.rtf new file mode 100644 index 0000000..82080d4 --- /dev/null +++ b/general/datasets/Uthsc_bxd_wb_rnaseqtrim1112/summary.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Uthsc_bxd_wb_rnaseqtrim1_1112/cases.rtf b/general/datasets/Uthsc_bxd_wb_rnaseqtrim1_1112/cases.rtf new file mode 100644 index 0000000..2f0fdc0 --- /dev/null +++ b/general/datasets/Uthsc_bxd_wb_rnaseqtrim1_1112/cases.rtf @@ -0,0 +1,245 @@ +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexOriginal StrainCorrected StrainSexAge
    1BXD13_batch2BXD18M67
    2BXD15_batch2BXD15F62
    3BXD18_batch2BXD19F65
    4BXD24_batch2BXD24F63
    5BXD36_batch2BXD45 removedM67
    6BXD39_batch2BXD39F60
    7BXD42_batch2BXD43F67
    8BXD43_batch2BXD42F60
    9BXD45_batch2BXD45F60
    10BXD50_batch2BXD50F57
    11BXD51_batch2BXD55F59
    12BXD55_batch2BXD51F61
    13BXD56_batch2BXD56F67
    14BXD6_batch2BXD6F59
    15BXD8_batch2BXD9F62
    16BXD9_batch2BXD8M70
    17BXD14_batch3BXD40F76
    18BXD16_batch3BXD19M74
    19BXD32_batch3BXD32M54
    20BXD38_batch3BXD38F102
    21BXD40_batch3BXD14M81
    22BXD48_batch3BXD48M68
    23BXD60_batch3BXD60F64
    24BXD66_batch3BXD66M61
    25BXD69_batch3BXD69F66
    26BXD70_batch3BXD70M72
    27BXD29m_batch4BXD1F60
    28BXD29n_batch4BXD29F344
    29BXD34_batch4BXD34F108
    30BXD49_batch4BXD49M76
    31BXD65_batch4BXD29F58
    32BXD22_batch6BXD22F67
    +
    +
    diff --git a/general/datasets/Uthsc_bxd_wb_rnaseqtrim1_1112/notes.rtf b/general/datasets/Uthsc_bxd_wb_rnaseqtrim1_1112/notes.rtf new file mode 100644 index 0000000..c16bd50 --- /dev/null +++ b/general/datasets/Uthsc_bxd_wb_rnaseqtrim1_1112/notes.rtf @@ -0,0 +1,23 @@ +

    RNA sequencing for BXD strains on SOLiD by David Li.
    +All Bam files alignment done by Xusheng Wang
    +Aligned files were uploaded to Partek Genomic Suite 6.5 (version 6.10.0810) and processed by K Mozhui
    +Normalization: RPKM (reads per kilobase per million mapped reads)
    +Batch effect due to low exonic reads for batch 2

    + +

    Revision 1.6 Untrimmed (current) LRS=(23 999) ->350 records
    +Max LRS = 102.6 Record Id:uthsc_nr_015498, Gene Symbol:1500004A13Rik **Note: 1 sample BXD45 and BXD34 removed. BXD41 switched to BXD1 as a second posible candidate.

    + +

    Revision 1.5 Untrimmed LRS=(23 999) ->268 records
    +Max LRS = 80.0 Record Id:uthsc_nm_001039533, Gene Symbol:Pdxdc1 **Note: 1 sample BXD45 removed. BXD41 switched to BXD1 as a second posible candidate.

    + +

    Revision 1.4 Untrimmed LRS=(23 999) ->246 records
    +Max LRS = 80.0 Record Id:uthsc_nm_001039533, Gene Symbol:Pdxdc1 **Note: 1 sample BXD45 removed and keep BXD41

    + +

    Revision 1.3 Untrimmed LRS=(23 999) ->233 records
    +Max LRS = 80.7 Record Id:uthsc_nm_001039533, Gene Symbol:Pdxdc1

    + +

    Revision 1.2 Untrimmed LRS=(23 999) ->190 records
    +Max LRS = 56.9 Record Id:uthsc_nr_003513, Gene Symbol:Neat1

    + +

    Revision 1 Untrimmed LRS=(23 999) ->126 records
    +Max LRS = 35.3 Record Id:uthsc_nm_001113412, Gene Symbol:Fggy

    diff --git a/general/datasets/Uthsc_bxd_wb_rnaseqtrim1_1112/summary.rtf b/general/datasets/Uthsc_bxd_wb_rnaseqtrim1_1112/summary.rtf new file mode 100644 index 0000000..82080d4 --- /dev/null +++ b/general/datasets/Uthsc_bxd_wb_rnaseqtrim1_1112/summary.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Uthsc_bxd_young_adult_eye_rnaseq_tpm_log/experiment-design.rtf b/general/datasets/Uthsc_bxd_young_adult_eye_rnaseq_tpm_log/experiment-design.rtf new file mode 100644 index 0000000..2f8cedc --- /dev/null +++ b/general/datasets/Uthsc_bxd_young_adult_eye_rnaseq_tpm_log/experiment-design.rtf @@ -0,0 +1 @@ +

    Total RNA was extracted using Trizol® reagent (Invitrogen, Grand Island, NY, USA) according to the manufacturer’s instructions. Approximately 30 mg of PFC tissue was added into a 2 ml tube containing 700ul QIAzol Lysis Reagent and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 minutes in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 r followed by incubating for 5 minutes.140 µl chloroform was added into the homogenate, shaken vigorously for 15 seconds, and centrifuged for 15 minutes at 12,000 x g at 4 â„ƒ. 280 µl upper aqueous was then transferred into a new collection tube containing 500 µl 100% ethanol. The mixture was loaded into a RNeasy mini‐spin column (Qiagen, Valencia, CA, USA), once with Buffer RWT and twice with Buffer RPE purification. All RNA had been treated with DNase to avoid DNA contamination, and verified by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA with OD260/280 > 1.8 and RIN > 8.0 were used for library preparation

    diff --git a/general/datasets/Uthsc_bxd_young_adult_eye_rnaseq_tpm_log/processing.rtf b/general/datasets/Uthsc_bxd_young_adult_eye_rnaseq_tpm_log/processing.rtf new file mode 100644 index 0000000..8e460ff --- /dev/null +++ b/general/datasets/Uthsc_bxd_young_adult_eye_rnaseq_tpm_log/processing.rtf @@ -0,0 +1,9 @@ +

    Generation of RNA-seq data

    + +

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    + +

     

    + +

    Read mapping and normalization

    + +

    Mus musculus (mouse) reference genome (GRCm38) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Indices of the reference genome were  built using STAR v2.5.0a and paired-end reads were aligned to the reference genome. STAR used the method of Maximal Mappable Prefix which can generate a precise mapping result for junction reads. FeatureCount v0.6.1 was used to count the number of read mapped to each gene. Transcripts Per Million (TPM) was calculated for each gene based on the length of the gene and reads mapped to that gene. In this normalization, the sum of all TPMs (genes-level) are equal to 1,000,000. The TPM was further rescaled to log2(TPM+1).

    diff --git a/general/datasets/Uthsc_bxd_young_adult_eye_rnaseq_tpm_log/specifics.rtf b/general/datasets/Uthsc_bxd_young_adult_eye_rnaseq_tpm_log/specifics.rtf new file mode 100644 index 0000000..7e44a00 --- /dev/null +++ b/general/datasets/Uthsc_bxd_young_adult_eye_rnaseq_tpm_log/specifics.rtf @@ -0,0 +1,3644 @@ +

    BXD Eye (2~6 Month) RNA-Seq (Oct30) TPM Log2

    + +

    The table of samples that are finally used for this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Index

    +
    +

    RNA ID

    +
    +

    case ID

    +
    +

    DA_corrected_strain

    +
    +

    Fuyi_corrected_Sex

    +
    +

    Age (day)

    +
    +

    Tissue

    +
    +

    1

    +
    +

    E508

    +
    +

    *060619.13

    +
    +

    BXD170

    +
    +

    Female

    +
    +

    76

    +
    +

    Eyeball

    +
    +

    2

    +
    +

    E509

    +
    +

    *060619.14

    +
    +

    BXD170

    +
    +

    Male

    +
    +

    76

    +
    +

    Eyeball

    +
    +

    3

    +
    +

    E510

    +
    +

    *060619.16

    +
    +

    BXD194

    +
    +

    Female

    +
    +

    94

    +
    +

    Eyeball

    +
    +

    4

    +
    +

    E511

    +
    +

    *060619.17

    +
    +

    BXD194

    +
    +

    Male

    +
    +

    94

    +
    +

    Eyeball

    +
    +

    5

    +
    +

    E512

    +
    +

    *060619.19

    +
    +

    BXD213

    +
    +

    Female

    +
    +

    78

    +
    +

    Eyeball

    +
    +

    6

    +
    +

    E513

    +
    +

    *060619.20

    +
    +

    BXD213

    +
    +

    Male

    +
    +

    78

    +
    +

    Eyeball

    +
    +

    7

    +
    +

    E514

    +
    +

    *060619.22

    +
    +

    BXD214

    +
    +

    Female

    +
    +

    107

    +
    +

    Eyeball

    +
    +

    8

    +
    +

    E515

    +
    +

    *060619.23

    +
    +

    BXD214

    +
    +

    Male

    +
    +

    107

    +
    +

    Eyeball

    +
    +

    9

    +
    +

    E516

    +
    +

    *060619.02

    +
    +

    BXD125

    +
    +

    Female

    +
    +

    100

    +
    +

    Eyeball

    +
    +

    10

    +
    +

    E517

    +
    +

    *060619.03

    +
    +

    BXD125

    +
    +

    Male

    +
    +

    100

    +
    +

    Eyeball

    +
    +

    11

    +
    +

    E518

    +
    +

    *060619.05

    +
    +

    BXD151

    +
    +

    Female

    +
    +

    97

    +
    +

    Eyeball

    +
    +

    12

    +
    +

    E519

    +
    +

    *060619.06

    +
    +

    BXD151

    +
    +

    Male

    +
    +

    97

    +
    +

    Eyeball

    +
    +

    13

    +
    +

    E520

    +
    +

    *060619.08

    +
    +

    BXD154

    +
    +

    Female

    +
    +

    102

    +
    +

    Eyeball

    +
    +

    14

    +
    +

    E521

    +
    +

    *060619.09

    +
    +

    BXD154

    +
    +

    Male

    +
    +

    102

    +
    +

    Eyeball

    +
    +

    15

    +
    +

    E522

    +
    +

    *060519.06

    +
    +

    BXD27

    +
    +

    Female

    +
    +

    94

    +
    +

    Eyeball

    +
    +

    16

    +
    +

    E523

    +
    +

    *060519.07

    +
    +

    BXD27

    +
    +

    Female

    +
    +

    94

    +
    +

    Eyeball

    +
    +

    17

    +
    +

    E524

    +
    +

    *060519.09

    +
    +

    BXD60

    +
    +

    Female

    +
    +

    82

    +
    +

    Eyeball

    +
    +

    18

    +
    +

    E525

    +
    +

    *060519.10

    +
    +

    BXD60

    +
    +

    Male

    +
    +

    82

    +
    +

    Eyeball

    +
    +

    19

    +
    +

    E526

    +
    +

    *060519.11

    +
    +

    BXD66

    +
    +

    Female

    +
    +

    104

    +
    +

    Eyeball

    +
    +

    20

    +
    +

    E527

    +
    +

    *060519.12

    +
    +

    BXD66

    +
    +

    Male

    +
    +

    104

    +
    +

    Eyeball

    +
    +

    21

    +
    +

    E528

    +
    +

    *060519.13

    +
    +

    BXD68

    +
    +

    Female

    +
    +

    91

    +
    +

    Eyeball

    +
    +

    22

    +
    +

    E529

    +
    +

    *060519.16

    +
    +

    BXD73a

    +
    +

    Female

    +
    +

    134

    +
    +

    Eyeball

    +
    +

    23

    +
    +

    E530

    +
    +

    *060519.15

    +
    +

    BXD68

    +
    +

    Male

    +
    +

    91

    +
    +

    Eyeball

    +
    +

    24

    +
    +

    E531

    +
    +

    *060519.19

    +
    +

    BXD78

    +
    +

    Female

    +
    +

    107

    +
    +

    Eyeball

    +
    +

    25

    +
    +

    E532

    +
    +

    *060519.21

    +
    +

    BXD79

    +
    +

    Female

    +
    +

    108

    +
    +

    Eyeball

    +
    +

    26

    +
    +

    E533

    +
    +

    *060519.20

    +
    +

    BXD78

    +
    +

    Male

    +
    +

    107

    +
    +

    Eyeball

    +
    +

    27

    +
    +

    E534

    +
    +

    *060519.23

    +
    +

    BXD79

    +
    +

    Male

    +
    +

    108

    +
    +

    Eyeball

    +
    +

    28

    +
    +

    E535

    +
    +

    *060519.24

    +
    +

    BXD124

    +
    +

    Female

    +
    +

    95

    +
    +

    Eyeball

    +
    +

    29

    +
    +

    E536

    +
    +

    *060519.26

    +
    +

    BXD124

    +
    +

    Male

    +
    +

    95

    +
    +

    Eyeball

    +
    +

    30

    +
    +

    E537

    +
    +

    *051119.05

    +
    +

    BXD216

    +
    +

    Female

    +
    +

    60

    +
    +

    Eyeball

    +
    +

    31

    +
    +

    E538

    +
    +

    *051119.06

    +
    +

    BXD216

    +
    +

    Male

    +
    +

    60

    +
    +

    Eyeball

    +
    +

    32

    +
    +

    E539

    +
    +

    42415.13

    +
    +

    BXD100

    +
    +

    Female

    +
    +

    176

    +
    +

    Eyeball

    +
    +

    33

    +
    +

    E550

    +
    +

    *061119.09

    +
    +

    DBA/2J

    +
    +

    Male

    +
    +

    172

    +
    +

    Eyeball

    +
    +

    34

    +
    +

    E597

    +
    +

    *050118.27

    +
    +

    DBA/2J

    +
    +

    Female

    +
    +

    167

    +
    +

    Eyeball

    +
    +

    35

    +
    +

    E598

    +
    +

    *050118.28

    +
    +

    DBA/2J

    +
    +

    Female

    +
    +

    167

    +
    +

    Eyeball

    +
    +

    36

    +
    +

    E599

    +
    +

    *050118.29

    +
    +

    DBA/2J

    +
    +

    Male

    +
    +

    167

    +
    +

    Eyeball

    +
    +

    37

    +
    +

    E619

    +
    +

    *012420.07

    +
    +

    BXD75

    +
    +

    Female

    +
    +

    95

    +
    +

    Eyeball

    +
    +

    38

    +
    +

    E622

    +
    +

    *012420.50

    +
    +

    BXD197

    +
    +

    Female

    +
    +

    128

    +
    +

    Eyeball

    +
    +

    39

    +
    +

    E624

    +
    +

    *110918.11

    +
    +

    BXD32

    +
    +

    Female

    +
    +

    153

    +
    +

    Eyeball

    +
    +

    40

    +
    +

    E660

    +
    +

    *100819.150

    +
    +

    BXD199

    +
    +

    Female

    +
    +

    116

    +
    +

    Eyeball

    +
    +

    41

    +
    +

    E661

    +
    +

    *100819.151

    +
    +

    BXD199

    +
    +

    Male

    +
    +

    117

    +
    +

    Eyeball

    +
    +

    42

    +
    +

    E673

    +
    +

    *052920.03

    +
    +

    C57BL/6J

    +
    +

    Female

    +
    +

    121

    +
    +

    Eyeball

    +
    +

    43

    +
    +

    E681

    +
    +

    *052920.04

    +
    +

    BXD73a

    +
    +

    Female

    +
    +

    180

    +
    +

    Eyeball

    +
    +

    44

    +
    +

    E683

    +
    +

    *052920.07

    +
    +

    BXD9

    +
    +

    Female

    +
    +

    185

    +
    +

    Eyeball

    +
    +

    45

    +
    +

    E684

    +
    +

    *052920.08

    +
    +

    BXD9

    +
    +

    Male

    +
    +

    186

    +
    +

    Eyeball

    +
    +

    46

    +
    +

    E691

    +
    +

    *072120.06

    +
    +

    BXD83

    +
    +

    Female

    +
    +

    132

    +
    +

    Eyeball

    +
    +

    47

    +
    +

    E692

    +
    +

    *072120.07

    +
    +

    BXD83

    +
    +

    Male

    +
    +

    132

    +
    +

    Eyeball

    +
    +

    48

    +
    +

    E693

    +
    +

    *072120.08

    +
    +

    BXD122

    +
    +

    Female

    +
    +

    73

    +
    +

    Eyeball

    +
    +

    49

    +
    +

    E695

    +
    +

    *072120.11

    +
    +

    BXD178

    +
    +

    Female

    +
    +

    172

    +
    +

    Eyeball

    +
    +

    50

    +
    +

    E696

    +
    +

    *072120.10

    +
    +

    BXD178

    +
    +

    Female

    +
    +

    172

    +
    +

    Eyeball

    +
    +

    51

    +
    +

    E697

    +
    +

    *072120.12

    +
    +

    BXD1

    +
    +

    Female

    +
    +

    133

    +
    +

    Eyeball

    +
    +

    52

    +
    +

    E698

    +
    +

    *072120.13

    +
    +

    BXD1

    +
    +

    Male

    +
    +

    133

    +
    +

    Eyeball

    +
    +

    53

    +
    +

    E700

    +
    +

    *072120.15

    +
    +

    BXD40

    +
    +

    Female

    +
    +

    118

    +
    +

    Eyeball

    +
    +

    54

    +
    +

    E701

    +
    +

    *072120.16

    +
    +

    BXD40

    +
    +

    Female

    +
    +

    118

    +
    +

    Eyeball

    +
    +

    55

    +
    +

    E702

    +
    +

    *072120.17

    +
    +

    BXD43

    +
    +

    Female

    +
    +

    102

    +
    +

    Eyeball

    +
    +

    56

    +
    +

    E703

    +
    +

    *072120.18

    +
    +

    BXD43

    +
    +

    Male

    +
    +

    102

    +
    +

    Eyeball

    +
    +

    57

    +
    +

    E704

    +
    +

    *072120.20

    +
    +

    BXD51

    +
    +

    Male

    +
    +

    135

    +
    +

    Eyeball

    +
    +

    58

    +
    +

    E705

    +
    +

    *072120.19

    +
    +

    BXD51

    +
    +

    Female

    +
    +

    135

    +
    +

    Eyeball

    +
    +

    59

    +
    +

    E707

    +
    +

    *072120.22

    +
    +

    BXD113

    +
    +

    Female

    +
    +

    180

    +
    +

    Eyeball

    +
    +

    60

    +
    +

    E708

    +
    +

    *072120.23

    +
    +

    BXD113

    +
    +

    Male

    +
    +

    180

    +
    +

    Eyeball

    +
    +

    61

    +
    +

    E710

    +
    +

    *072120.25

    +
    +

    BXD150

    +
    +

    Female

    +
    +

    173

    +
    +

    Eyeball

    +
    +

    62

    +
    +

    E711

    +
    +

    *072120.26

    +
    +

    BXD150

    +
    +

    Male

    +
    +

    173

    +
    +

    Eyeball

    +
    +

    63

    +
    +

    E714

    +
    +

    *072120.29

    +
    +

    BXD160

    +
    +

    Female

    +
    +

    144

    +
    +

    Eyeball

    +
    +

    64

    +
    +

    E715

    +
    +

    *072120.30

    +
    +

    BXD160

    +
    +

    Male

    +
    +

    144

    +
    +

    Eyeball

    +
    +

    65

    +
    +

    E716

    +
    +

    *072120.31

    +
    +

    BXD161

    +
    +

    Female

    +
    +

    71

    +
    +

    Eyeball

    +
    +

    66

    +
    +

    E717

    +
    +

    *072120.32

    +
    +

    BXD161

    +
    +

    Male

    +
    +

    71

    +
    +

    Eyeball

    +
    +

    67

    +
    +

    E719

    +
    +

    *072120.34

    +
    +

    BXD197

    +
    +

    Male

    +
    +

    153

    +
    +

    Eyeball

    +
    +

    68

    +
    +

    E720

    +
    +

    *072120.35

    +
    +

    DBA/2J-Gpnmb

    +
    +

    Female

    +
    +

    97

    +
    +

    Eyeball

    +
    +

    69

    +
    +

    E721

    +
    +

    *072120.36

    +
    +

    DBA/2J-Gpnmb

    +
    +

    Male

    +
    +

    97

    +
    +

    Eyeball

    +
    +

    70

    +
    +

    E724

    +
    +

    *072120.39

    +
    +

    BXD11

    +
    +

    Female

    +
    +

    131

    +
    +

    Eyeball

    +
    +

    71

    +
    +

    E725

    +
    +

    *072120.40

    +
    +

    BXD11

    +
    +

    Male

    +
    +

    131

    +
    +

    Eyeball

    +
    +

    72

    +
    +

    E729

    +
    +

    *072120.44

    +
    +

    BXD34

    +
    +

    Female

    +
    +

    166

    +
    +

    Eyeball

    +
    +

    73

    +
    +

    E730

    +
    +

    *072120.45

    +
    +

    BXD34

    +
    +

    Female

    +
    +

    166

    +
    +

    Eyeball

    +
    +

    74

    +
    +

    E731

    +
    +

    *072120.46

    +
    +

    BXD50

    +
    +

    Female

    +
    +

    177

    +
    +

    Eyeball

    +
    +

    75

    +
    +

    E732

    +
    +

    *072120.47

    +
    +

    BXD50

    +
    +

    Male

    +
    +

    177

    +
    +

    Eyeball

    +
    +

    76

    +
    +

    E736

    +
    +

    *072120.51

    +
    +

    BXD180

    +
    +

    Female

    +
    +

    92

    +
    +

    Eyeball

    +
    +

    77

    +
    +

    E743

    +
    +

    *072120.58

    +
    +

    BXD191

    +
    +

    Female

    +
    +

    134

    +
    +

    Eyeball

    +
    +

    78

    +
    +

    E744

    +
    +

    *072120.59

    +
    +

    BXD191

    +
    +

    Male

    +
    +

    134

    +
    +

    Eyeball

    +
    +

    79

    +
    +

    E747

    +
    +

    *072120.62

    +
    +

    B6D2F1

    +
    +

    Female

    +
    +

    129

    +
    +

    Eyeball

    +
    +

    80

    +
    +

    E748

    +
    +

    *072120.63

    +
    +

    B6D2F1

    +
    +

    Male

    +
    +

    125

    +
    +

    Eyeball

    +
    +

    81

    +
    +

    E751

    +
    +

    *072120.66

    +
    +

    BXD2

    +
    +

    Female

    +
    +

    115

    +
    +

    Eyeball

    +
    +

    82

    +
    +

    E752

    +
    +

    *072120.67

    +
    +

    BXD2

    +
    +

    Male

    +
    +

    115

    +
    +

    Eyeball

    +
    +

    83

    +
    +

    E755

    +
    +

    *072120.74

    +
    +

    BXD187

    +
    +

    Female

    +
    +

    133

    +
    +

    Eyeball

    +
    +

    84

    +
    +

    E756

    +
    +

    *072120.75

    +
    +

    BXD187

    +
    +

    Male

    +
    +

    133

    +
    +

    Eyeball

    +
    +

    85

    +
    +

    E757

    +
    +

    *072120.71

    +
    +

    BXD169

    +
    +

    Male

    +
    +

    136

    +
    +

    Eyeball

    +
    +

    86

    +
    +

    E758

    +
    +

    *072120.70

    +
    +

    BXD169

    +
    +

    Female

    +
    +

    136

    +
    +

    Eyeball

    +
    +

    87

    +
    +

    E761

    +
    +

    *081420.01

    +
    +

    BXD128a

    +
    +

    Female

    +
    +

    144

    +
    +

    Eyeball

    +
    +

    88

    +
    +

    E762

    +
    +

    *081420.02

    +
    +

    BXD128a

    +
    +

    Male

    +
    +

    144

    +
    +

    Eyeball

    +
    +

    89

    +
    +

    E763

    +
    +

    *081420.03

    +
    +

    BXD48a

    +
    +

    Female

    +
    +

    71

    +
    +

    Eyeball

    +
    +

    90

    +
    +

    E764

    +
    +

    *081420.04

    +
    +

    BXD48a

    +
    +

    Male

    +
    +

    71

    +
    +

    Eyeball

    +
    +

    91

    +
    +

    E316

    +
    +

    *012420.49

    +
    +

    BXD190

    +
    +

    Male

    +
    +

    148

    +
    +

    Eyeball

    +
    +

    92

    +
    +

    E317

    +
    +

    *012420.14

    +
    +

    BXD87

    +
    +

    Male

    +
    +

    120

    +
    +

    Eyeball

    +
    +

    93

    +
    +

    E319

    +
    +

    *012420.45

    +
    +

    BXD180

    +
    +

    Male

    +
    +

    109

    +
    +

    Eyeball

    +
    +

    94

    +
    +

    E321

    +
    +

    *012420.34

    +
    +

    BXD152

    +
    +

    Female

    +
    +

    131

    +
    +

    Eyeball

    +
    +

    95

    +
    +

    E322

    +
    +

    *012420.36

    +
    +

    BXD152

    +
    +

    Male

    +
    +

    131

    +
    +

    Eyeball

    +
    +

    96

    +
    +

    E323

    +
    +

    *012420.13

    +
    +

    BXD87

    +
    +

    Female

    +
    +

    120

    +
    +

    Eyeball

    +
    +

    97

    +
    +

    E325

    +
    +

    *012420.48

    +
    +

    BXD190

    +
    +

    Female

    +
    +

    148

    +
    +

    Eyeball

    +
    +

    98

    +
    +

    E326

    +
    +

    *012420.09

    +
    +

    BXD75

    +
    +

    Male

    +
    +

    95

    +
    +

    Eyeball

    +
    +

    99

    +
    +

    E336

    +
    +

    *110918.13

    +
    +

    BXD32

    +
    +

    Male

    +
    +

    153

    +
    +

    Eyeball

    +
    +

    100

    +
    +

    E338

    +
    +

    *110918.36

    +
    +

    BXD71

    +
    +

    Male

    +
    +

    174

    +
    +

    Eyeball

    +
    +

    101

    +
    +

    E339

    +
    +

    *110918.35

    +
    +

    BXD71

    +
    +

    Female

    +
    +

    174

    +
    +

    Eyeball

    +
    +

    102

    +
    +

    E401

    +
    +

    *100819.01

    +
    +

    C57BL/6J

    +
    +

    Female

    +
    +

    110

    +
    +

    Eyeball

    +
    +

    103

    +
    +

    E402

    +
    +

    *100819.02

    +
    +

    C57BL/6J

    +
    +

    Female

    +
    +

    110

    +
    +

    Eyeball

    +
    +

    104

    +
    +

    E403

    +
    +

    *100819.03

    +
    +

    C57BL/6J

    +
    +

    Male

    +
    +

    110

    +
    +

    Eyeball

    +
    +

    105

    +
    +

    E410

    +
    +

    *100819.14

    +
    +

    BXD15

    +
    +

    Female

    +
    +

    94

    +
    +

    Eyeball

    +
    +

    106

    +
    +

    E411

    +
    +

    *100819.15

    +
    +

    BXD15

    +
    +

    Female

    +
    +

    94

    +
    +

    Eyeball

    +
    +

    107

    +
    +

    E412

    +
    +

    *100819.28

    +
    +

    BXD29

    +
    +

    Female

    +
    +

    68

    +
    +

    Eyeball

    +
    +

    108

    +
    +

    E413

    +
    +

    *100819.29

    +
    +

    BXD29

    +
    +

    Male

    +
    +

    68

    +
    +

    Eyeball

    +
    +

    109

    +
    +

    E420

    +
    +

    *100819.44

    +
    +

    BXD44

    +
    +

    Female

    +
    +

    152

    +
    +

    Eyeball

    +
    +

    110

    +
    +

    E421

    +
    +

    *100819.45

    +
    +

    BXD44

    +
    +

    Male

    +
    +

    152

    +
    +

    Eyeball

    +
    +

    111

    +
    +

    E424

    +
    +

    *100819.55

    +
    +

    BXD61

    +
    +

    Female

    +
    +

    120

    +
    +

    Eyeball

    +
    +

    112

    +
    +

    E425

    +
    +

    *100819.56

    +
    +

    BXD61

    +
    +

    Male

    +
    +

    120

    +
    +

    Eyeball

    +
    +

    113

    +
    +

    E426

    +
    +

    *100819.58

    +
    +

    BXD62

    +
    +

    Female

    +
    +

    99

    +
    +

    Eyeball

    +
    +

    114

    +
    +

    E427

    +
    +

    *100819.59

    +
    +

    BXD62

    +
    +

    Male

    +
    +

    99

    +
    +

    Eyeball

    +
    +

    115

    +
    +

    E428

    +
    +

    *100819.63

    +
    +

    BXD65

    +
    +

    Female

    +
    +

    121

    +
    +

    Eyeball

    +
    +

    116

    +
    +

    E429

    +
    +

    *100819.64

    +
    +

    BXD65

    +
    +

    Male

    +
    +

    121

    +
    +

    Eyeball

    +
    +

    117

    +
    +

    E432

    +
    +

    *100819.74

    +
    +

    BXD73

    +
    +

    Female

    +
    +

    154

    +
    +

    Eyeball

    +
    +

    118

    +
    +

    E433

    +
    +

    *100819.75

    +
    +

    BXD73

    +
    +

    Male

    +
    +

    154

    +
    +

    Eyeball

    +
    +

    119

    +
    +

    E434

    +
    +

    *100819.77

    +
    +

    BXD73b

    +
    +

    Female

    +
    +

    153

    +
    +

    Eyeball

    +
    +

    120

    +
    +

    E435

    +
    +

    *100819.78

    +
    +

    BXD73b

    +
    +

    Male

    +
    +

    153

    +
    +

    Eyeball

    +
    +

    121

    +
    +

    E436

    +
    +

    *100819.79

    +
    +

    BXD75

    +
    +

    Female

    +
    +

    93

    +
    +

    Eyeball

    +
    +

    122

    +
    +

    E437

    +
    +

    *100819.80

    +
    +

    BXD75

    +
    +

    Male

    +
    +

    93

    +
    +

    Eyeball

    +
    +

    123

    +
    +

    E438

    +
    +

    *100819.86

    +
    +

    BXD86

    +
    +

    Female

    +
    +

    75

    +
    +

    Eyeball

    +
    +

    124

    +
    +

    E439

    +
    +

    *100819.87

    +
    +

    BXD86

    +
    +

    Male

    +
    +

    75

    +
    +

    Eyeball

    +
    +

    125

    +
    +

    E440

    +
    +

    *100819.90

    +
    +

    BXD89

    +
    +

    Female

    +
    +

    112

    +
    +

    Eyeball

    +
    +

    126

    +
    +

    E441

    +
    +

    *100819.91

    +
    +

    BXD89

    +
    +

    Male

    +
    +

    112

    +
    +

    Eyeball

    +
    +

    127

    +
    +

    E442

    +
    +

    *100819.92

    +
    +

    BXD90

    +
    +

    Female

    +
    +

    123

    +
    +

    Eyeball

    +
    +

    128

    +
    +

    E443

    +
    +

    *100819.93

    +
    +

    BXD90

    +
    +

    Male

    +
    +

    123

    +
    +

    Eyeball

    +
    +

    129

    +
    +

    E444

    +
    +

    *100819.95

    +
    +

    BXD101

    +
    +

    Female

    +
    +

    118

    +
    +

    Eyeball

    +
    +

    130

    +
    +

    E445

    +
    +

    *100819.96

    +
    +

    BXD101

    +
    +

    Male

    +
    +

    118

    +
    +

    Eyeball

    +
    +

    131

    +
    +

    E446

    +
    +

    *100819.98

    +
    +

    BXD102

    +
    +

    Female

    +
    +

    121

    +
    +

    Eyeball

    +
    +

    132

    +
    +

    E447

    +
    +

    *100819.99

    +
    +

    BXD102

    +
    +

    Male

    +
    +

    121

    +
    +

    Eyeball

    +
    +

    133

    +
    +

    E457

    +
    +

    *100819.122

    +
    +

    BXD155

    +
    +

    Female

    +
    +

    86

    +
    +

    Eyeball

    +
    +

    134

    +
    +

    E458

    +
    +

    *100819.123

    +
    +

    BXD155

    +
    +

    Male

    +
    +

    86

    +
    +

    Eyeball

    +
    +

    135

    +
    +

    E461

    +
    +

    *052220.38

    +
    +

    BXD84

    +
    +

    Female

    +
    +

    133

    +
    +

    Eyeball

    +
    +

    136

    +
    +

    E462

    +
    +

    *052220.47

    +
    +

    BXD195

    +
    +

    Male

    +
    +

    93

    +
    +

    Eyeball

    +
    +

    137

    +
    +

    E463

    +
    +

    *052220.46

    +
    +

    BXD195

    +
    +

    Female

    +
    +

    93

    +
    +

    Eyeball

    +
    +

    138

    +
    +

    E464

    +
    +

    *052220.39

    +
    +

    BXD84

    +
    +

    Male

    +
    +

    133

    +
    +

    Eyeball

    +
    +

    139

    +
    +

    E465

    +
    +

    *052220.42

    +
    +

    BXD31

    +
    +

    Female

    +
    +

    111

    +
    +

    Eyeball

    +
    +

    140

    +
    +

    E466

    +
    +

    *052220.43

    +
    +

    BXD31

    +
    +

    Male

    +
    +

    111

    +
    +

    Eyeball

    +
    +

    141

    +
    +

    E467

    +
    +

    *052220.26

    +
    +

    BXD24

    +
    +

    Female

    +
    +

    155

    +
    +

    Eyeball

    +
    +

    142

    +
    +

    E468

    +
    +

    *052220.27

    +
    +

    BXD24

    +
    +

    Male

    +
    +

    155

    +
    +

    Eyeball

    +
    +

    143

    +
    +

    E469

    +
    +

    *052220.49

    +
    +

    BXD218

    +
    +

    Male

    +
    +

    109

    +
    +

    Eyeball

    +
    +

    144

    +
    +

    E470

    +
    +

    *052220.36

    +
    +

    BXD65b

    +
    +

    Female

    +
    +

    110

    +
    +

    Eyeball

    +
    +

    145

    +
    +

    E471

    +
    +

    *052220.40

    +
    +

    BXD202

    +
    +

    Female

    +
    +

    92

    +
    +

    Eyeball

    +
    +

    146

    +
    +

    E472

    +
    +

    *052220.45

    +
    +

    BXD122

    +
    +

    Male

    +
    +

    87

    +
    +

    Eyeball

    +
    +

    147

    +
    +

    E474

    +
    +

    *052220.41

    +
    +

    BXD202

    +
    +

    Male

    +
    +

    92

    +
    +

    Eyeball

    +
    +

    148

    +
    +

    E475

    +
    +

    *052220.37

    +
    +

    BXD65b

    +
    +

    Male

    +
    +

    110

    +
    +

    Eyeball

    +
    +

    149

    +
    +

    E476

    +
    +

    *052220.33

    +
    +

    BXD171

    +
    +

    Male

    +
    +

    74

    +
    +

    Eyeball

    +
    +

    150

    +
    +

    E477

    +
    +

    *052220.34

    +
    +

    BXD123

    +
    +

    Female

    +
    +

    127

    +
    +

    Eyeball

    +
    +

    151

    +
    +

    E479

    +
    +

    *052220.32

    +
    +

    BXD171

    +
    +

    Female

    +
    +

    74

    +
    +

    Eyeball

    +
    +

    152

    +
    +

    E480

    +
    +

    *052220.35

    +
    +

    BXD123

    +
    +

    Male

    +
    +

    127

    +
    +

    Eyeball

    +
    +

    153

    +
    +

    E481

    +
    +

    *052220.30

    +
    +

    BXD172

    +
    +

    Female

    +
    +

    104

    +
    +

    Eyeball

    +
    +

    154

    +
    +

    E491

    +
    +

    *052220.28

    +
    +

    BXD70

    +
    +

    Female

    +
    +

    118

    +
    +

    Eyeball

    +
    +

    155

    +
    +

    E492

    +
    +

    *052220.29

    +
    +

    BXD70

    +
    +

    Male

    +
    +

    118

    +
    +

    Eyeball

    +
    +

    156

    +
    +

    E505

    +
    +

    *052220.31

    +
    +

    BXD172

    +
    +

    Male

    +
    +

    104

    +
    +

    Eyeball

    +
    +

    157

    +
    +

    E507

    +
    +

    *052220.48

    +
    +

    BXD218

    +
    +

    Female

    +
    +

    109

    +
    +

    Eyeball

    +
    + +

     

    diff --git a/general/datasets/Uthsc_bxd_young_adult_eye_rnaseq_tpm_log/tissue.rtf b/general/datasets/Uthsc_bxd_young_adult_eye_rnaseq_tpm_log/tissue.rtf new file mode 100644 index 0000000..bbfb410 --- /dev/null +++ b/general/datasets/Uthsc_bxd_young_adult_eye_rnaseq_tpm_log/tissue.rtf @@ -0,0 +1 @@ +

    The animals were sacrificed under saturated isoflurane. Eyeballs from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/Uthsc_bxdaged_0615/cases.rtf b/general/datasets/Uthsc_bxdaged_0615/cases.rtf new file mode 100644 index 0000000..fba3fbb --- /dev/null +++ b/general/datasets/Uthsc_bxdaged_0615/cases.rtf @@ -0,0 +1,1894 @@ +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSampleStrainSexAgeBatch
    1R7264HC57BL/6J_1M4891
    2052008.03C57BL/6J_2F6502
    3R7289HC57BL/6J_3M7561
    4052008.01C57BL/6J_4M7562
    5R7269HDBA/2J_1M3671
    6R7185HDBA/2J_2F4331
    7R7301HDBA/2J_3F5661
    8R7265HD2B6F1_1M4921
    9R7304HD2B6F1_2F4951
    10R7276HBXD1_1M3231
    11R7281HBXD1_2F4481
    12051209.20BXD1_3F4772
    13R7261HBXD2_1M3941
    14R7256HBXD2_2F4561
    15022807.04BXD2_3M4832
    16042909.46BXD2_4M6092
    17042909.47BXD2_5F6092
    18R7223HBXD6_1M5261
    19R7198HBXD8_1F4331
    20R7200HBXD8_2F4601
    21R7203HBXD8_3M4711
    22R7294HBXD9_1F4561
    23052008.17BXD9_2M6312
    24052008.18BXD9_3M6312
    25R7300HBXD11_1M4571
    26R7227HBXD11_2F5361
    27021113.01BXD11_3F7412
    28021113.02BXD11_4F7412
    29R7183HBXD12_1F5061
    30R7233HBXD12_2F5611
    31R7234HBXD12_3M6061
    32020409.01BXD12_4F8502
    33020409.03BXD12_5M8502
    34R7238HBXD14_1F6051
    35R7235HBXD14_2M6051
    36022807.11BXD16_1F4552
    37R7239HBXD16_2M4751
    38R7236HBXD16_3F5611
    39R7229HBXD18_1F4931
    40020409.28BXD18_2F5482
    41R7268HBXD19_1M4921
    42R7267HBXD19_2F5511
    43R7263HBXD20_1M4891
    44R7232HBXD20_2M5061
    45R7230HBXD21_1F5371
    46R7260HBXD22_1F5021
    47R7262HBXD22_2M5961
    48020409.08BXD22_3F6752
    49R7257HBXD23_1M4621
    50R7258HBXD23_2F5021
    51020107.15BXD23_3M5122
    52R7228HBXD24_1F4151
    53R7255HBXD24_2F4561
    54R7231HBXD24_3M4701
    55020409.21BXD24_4F6362
    56020409.29BXD24_5F6392
    57052008.36BXD25_1F4302
    58R7252HBXD25_2F4541
    59052008.115BXD25_3M7092
    60R7286HBXD27_1F4721
    61R7170HBXD27_2F4721
    62R7254HBXD28_1M4931
    63R7251HBXD28_2F5431
    64020107.18BXD28_3M6052
    65R7259HBXD29_1F4831
    66040109.92BXD31_1F4452
    67031407.18BXD31_2F4672
    68020409.31BXD31_3F6482
    69042909.71BXD32_1M5662
    70R7244HBXD33_1F4481
    71R7253HBXD33_2M4641
    72R7174HBXD33_3F4711
    73R7270HBXD33_4M6621
    74040109.79BXD33_5F6832
    75050609.35BXD34_1F4142
    76052008.51BXD34_2F5492
    77101513.06BXD34_3F5542
    78101513.07BXD34_4F7482
    79R7247HBXD38_1M4461
    80R7242HBXD38_3F4641
    81020107.25BXD38_4M5302
    82R7173HBXD39_1F5001
    83R7175HBXD39_2M5001
    84R7250HBXD39_3M5361
    85020409.19BXD39_4F6612
    86R7288HBXD40_1F4511
    87051209.56BXD40_2F4512
    88R7210HBXD40_3M4701
    89R7197HBXD40_4M6141
    90042909.19BXD40_5F6332
    91020409.73BXD40_6F7282
    92R7246HBXD42_1M4461
    93R7266HBXD42_2F4861
    94R7280HBXD42_3F5181
    95R7249HBXD43_1F4541
    96R7248HBXD43_2M4621
    97050609.76BXD43_3M6162
    98R7241HBXD44_1M4151
    99R7279HBXD44_2M4191
    100R7243HBXD44_3F4381
    101042607.13BXD44_4F5642
    102042607.14BXD44_5F5642
    103R7176HBXD45_1F4511
    104040109.88BXD45_2M6312
    105R7245HBXD48_1F4991
    106R7220HBXD48_2M5261
    107051209.29BXD48_3M7402
    108101513.10BXD48_4F7402
    109R7299HBXD48a_1F4791
    110R7297HBXD48a_2M4791
    111051209.01BXD48a_3F4792
    112051209.03BXD48a_4M4792
    113051209.52BXD48a_5F6082
    114051209.65BXD48a_6M7482
    115R7224HBXD50_1F5301
    116R7221HBXD50_2M5301
    117050609.04BXD50_3F7782
    118R7177HBXD51_1F4871
    119R7290HBXD51_2M4071
    120041709.11BXD51_3M6212
    121R7222HBXD55_1M5281
    122R7225HBXD55_2F5871
    123052008.134BXD55_3F7782
    124052008.135BXD55_4F7662
    125R7178HBXD56_1M5011
    126051209.66BXD56_2M6942
    127052008.139BXD56_3F7342
    128042909.52BXD60_1M4572
    129101513.14BXD60_2F7592
    130052008.63BXD61_1M6502
    131020409.14BXD61_2F7022
    132121214.20BXD62_1F3532
    133R7291HBXD62_2M4391
    134040109.91BXD62_3F6992
    135R7218HBXD63_1M4381
    136R7215HBXD63_2F4751
    137050609.28BXD63_3M9722
    138R7219HBXD64_1M5281
    139R7216HBXD64_2F5871
    140R7217HBXD65_1F4251
    141050609.39BXD65_2M6012
    142052008.67BXD65_3F8082
    143R7273HBXD65a_1F3891
    144R7277HBXD65a_2M7151
    145061407.15BXD65a_3F5362
    146061407.16BXD65a_4F5362
    147R7271HBXD65b_1M4831
    148R7302HBXD66_1F4461
    149R7214HBXD66_2M4631
    150042507.19BXD66_3M5572
    151042507.20BXD66_4F5572
    152R7278HBXD67_1F4151
    153R7213HBXD67_2M4251
    154R7240HBXD67_3F4991
    155042607.11BXD67_4F6062
    156052008.71BXD67_5F6492
    157R7211HBXD68_1F4151
    158R7212HBXD68_2M4211
    159042607.27BXD68_3F6232
    160042607.28BXD68_4F6232
    161R7305HBXD69_1F5041
    162061913.13BXD69_2F5582
    163112707.08BXD69_3F6022
    164R7207HBXD70_1F4581
    165R7204HBXD70_2M4601
    166042909.28BXD70_3F7612
    167042909.29BXD70_4F7612
    168R7205HBXD71_1M4711
    169R7208HBXD71_2F4741
    170020409.11BXD71_3F7012
    171020409.49BXD71_4F5822
    172R7209HBXD73_1F4701
    173R7206HBXD73_2M4641
    174011007.16BXD73_3F5442
    175052008.81BXD73_4F6422
    176R7181HBXD73a_1F4431
    177061407.18BXD73a_2F4432
    178R7182HBXD73a_3M6141
    179052008.86BXD73a_4M7102
    180031407.10BXD74_1M8042
    181011107.08BXD75_1F5352
    182R7188HBXD76_1F4081
    183R7187HBXD76_2M5641
    184R7179HBXD76_3M5791
    185R7292HRBXD77_1M3471
    186R7201HBXD77_2F4541
    187052008.83BXD77_3F6592
    188R7202HBXD79_1M4851
    189R7199HBXD79_2F5151
    190R7298HBXD79_3M7041
    191050609.25BXD81_1F4342
    192R7190HBXD81_2F4581
    193R7196HBXD81_3M5151
    194R7184HBXD83_1M4411
    195061307.30BXD83_2F6122
    196121907.10BXD83_3M6172
    197R7195HBXD84_1M4741
    198R7296HBXD84_2M4841
    199R7192HBXD84_3F5221
    200020409.80BXD84_4F5642
    201112707.12BXD84_5F5922
    202R7272HBXD85_1M4251
    203R7193HBXD85_2F5061
    204020409.12BXD85_3F7022
    205020409.13BXD85_4F7022
    206R7191HBXD86_1M4251
    207020409.35BXD86_2F6132
    208020409.36BXD86_3F6132
    209R7194HBXD87_1F4251
    210R7303HRBXD87_2M4781
    211R7186HBXD87_3M4421
    212052008.97BXD87_4F6662
    213052008.98BXD87_5M6662
    214R7295HBXD89_1F4461
    215052008.100BXD89_2M6162
    216R7287HBXD90_1M4341
    217R7293HBXD90_2M5581
    218052008.105BXD90_3F4522
    219R7180HBXD95_1F4671
    220R7169HBXD95_2M4671
    221100914.09BXD95_3F5362
    222R7237HBXD98_1M6051
    223R7171HBXD98_2F6391
    224R7275HBXD98_3F4881
    225R7189HBXD99_1M5241
    226R7172HBXD99_2F4711
    227R7282HBXD100_1F4631
    228R7283HBXD100_2M5071
    229R7274HBXD100_3M5771
    230R7226HBXD100_4F4641
    231051209.62BXD100_5M5772
    232R7284HBXD101_1F4901
    233R7285HBXD101_2M4081
    234051112.10BXD101_3F2232
    +
    +
    diff --git a/general/datasets/Uthsc_bxdaged_0615/specifics.rtf b/general/datasets/Uthsc_bxdaged_0615/specifics.rtf new file mode 100644 index 0000000..d877bcf --- /dev/null +++ b/general/datasets/Uthsc_bxdaged_0615/specifics.rtf @@ -0,0 +1 @@ +

    Gene Level

    diff --git a/general/datasets/Uthsc_bxdaged_0615/summary.rtf b/general/datasets/Uthsc_bxdaged_0615/summary.rtf new file mode 100644 index 0000000..73a0125 --- /dev/null +++ b/general/datasets/Uthsc_bxdaged_0615/summary.rtf @@ -0,0 +1 @@ +

    This dataset is now public.

    diff --git a/general/datasets/Uthsc_bxdagedex_1116/cases.rtf b/general/datasets/Uthsc_bxdagedex_1116/cases.rtf new file mode 100644 index 0000000..fba3fbb --- /dev/null +++ b/general/datasets/Uthsc_bxdagedex_1116/cases.rtf @@ -0,0 +1,1894 @@ +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSampleStrainSexAgeBatch
    1R7264HC57BL/6J_1M4891
    2052008.03C57BL/6J_2F6502
    3R7289HC57BL/6J_3M7561
    4052008.01C57BL/6J_4M7562
    5R7269HDBA/2J_1M3671
    6R7185HDBA/2J_2F4331
    7R7301HDBA/2J_3F5661
    8R7265HD2B6F1_1M4921
    9R7304HD2B6F1_2F4951
    10R7276HBXD1_1M3231
    11R7281HBXD1_2F4481
    12051209.20BXD1_3F4772
    13R7261HBXD2_1M3941
    14R7256HBXD2_2F4561
    15022807.04BXD2_3M4832
    16042909.46BXD2_4M6092
    17042909.47BXD2_5F6092
    18R7223HBXD6_1M5261
    19R7198HBXD8_1F4331
    20R7200HBXD8_2F4601
    21R7203HBXD8_3M4711
    22R7294HBXD9_1F4561
    23052008.17BXD9_2M6312
    24052008.18BXD9_3M6312
    25R7300HBXD11_1M4571
    26R7227HBXD11_2F5361
    27021113.01BXD11_3F7412
    28021113.02BXD11_4F7412
    29R7183HBXD12_1F5061
    30R7233HBXD12_2F5611
    31R7234HBXD12_3M6061
    32020409.01BXD12_4F8502
    33020409.03BXD12_5M8502
    34R7238HBXD14_1F6051
    35R7235HBXD14_2M6051
    36022807.11BXD16_1F4552
    37R7239HBXD16_2M4751
    38R7236HBXD16_3F5611
    39R7229HBXD18_1F4931
    40020409.28BXD18_2F5482
    41R7268HBXD19_1M4921
    42R7267HBXD19_2F5511
    43R7263HBXD20_1M4891
    44R7232HBXD20_2M5061
    45R7230HBXD21_1F5371
    46R7260HBXD22_1F5021
    47R7262HBXD22_2M5961
    48020409.08BXD22_3F6752
    49R7257HBXD23_1M4621
    50R7258HBXD23_2F5021
    51020107.15BXD23_3M5122
    52R7228HBXD24_1F4151
    53R7255HBXD24_2F4561
    54R7231HBXD24_3M4701
    55020409.21BXD24_4F6362
    56020409.29BXD24_5F6392
    57052008.36BXD25_1F4302
    58R7252HBXD25_2F4541
    59052008.115BXD25_3M7092
    60R7286HBXD27_1F4721
    61R7170HBXD27_2F4721
    62R7254HBXD28_1M4931
    63R7251HBXD28_2F5431
    64020107.18BXD28_3M6052
    65R7259HBXD29_1F4831
    66040109.92BXD31_1F4452
    67031407.18BXD31_2F4672
    68020409.31BXD31_3F6482
    69042909.71BXD32_1M5662
    70R7244HBXD33_1F4481
    71R7253HBXD33_2M4641
    72R7174HBXD33_3F4711
    73R7270HBXD33_4M6621
    74040109.79BXD33_5F6832
    75050609.35BXD34_1F4142
    76052008.51BXD34_2F5492
    77101513.06BXD34_3F5542
    78101513.07BXD34_4F7482
    79R7247HBXD38_1M4461
    80R7242HBXD38_3F4641
    81020107.25BXD38_4M5302
    82R7173HBXD39_1F5001
    83R7175HBXD39_2M5001
    84R7250HBXD39_3M5361
    85020409.19BXD39_4F6612
    86R7288HBXD40_1F4511
    87051209.56BXD40_2F4512
    88R7210HBXD40_3M4701
    89R7197HBXD40_4M6141
    90042909.19BXD40_5F6332
    91020409.73BXD40_6F7282
    92R7246HBXD42_1M4461
    93R7266HBXD42_2F4861
    94R7280HBXD42_3F5181
    95R7249HBXD43_1F4541
    96R7248HBXD43_2M4621
    97050609.76BXD43_3M6162
    98R7241HBXD44_1M4151
    99R7279HBXD44_2M4191
    100R7243HBXD44_3F4381
    101042607.13BXD44_4F5642
    102042607.14BXD44_5F5642
    103R7176HBXD45_1F4511
    104040109.88BXD45_2M6312
    105R7245HBXD48_1F4991
    106R7220HBXD48_2M5261
    107051209.29BXD48_3M7402
    108101513.10BXD48_4F7402
    109R7299HBXD48a_1F4791
    110R7297HBXD48a_2M4791
    111051209.01BXD48a_3F4792
    112051209.03BXD48a_4M4792
    113051209.52BXD48a_5F6082
    114051209.65BXD48a_6M7482
    115R7224HBXD50_1F5301
    116R7221HBXD50_2M5301
    117050609.04BXD50_3F7782
    118R7177HBXD51_1F4871
    119R7290HBXD51_2M4071
    120041709.11BXD51_3M6212
    121R7222HBXD55_1M5281
    122R7225HBXD55_2F5871
    123052008.134BXD55_3F7782
    124052008.135BXD55_4F7662
    125R7178HBXD56_1M5011
    126051209.66BXD56_2M6942
    127052008.139BXD56_3F7342
    128042909.52BXD60_1M4572
    129101513.14BXD60_2F7592
    130052008.63BXD61_1M6502
    131020409.14BXD61_2F7022
    132121214.20BXD62_1F3532
    133R7291HBXD62_2M4391
    134040109.91BXD62_3F6992
    135R7218HBXD63_1M4381
    136R7215HBXD63_2F4751
    137050609.28BXD63_3M9722
    138R7219HBXD64_1M5281
    139R7216HBXD64_2F5871
    140R7217HBXD65_1F4251
    141050609.39BXD65_2M6012
    142052008.67BXD65_3F8082
    143R7273HBXD65a_1F3891
    144R7277HBXD65a_2M7151
    145061407.15BXD65a_3F5362
    146061407.16BXD65a_4F5362
    147R7271HBXD65b_1M4831
    148R7302HBXD66_1F4461
    149R7214HBXD66_2M4631
    150042507.19BXD66_3M5572
    151042507.20BXD66_4F5572
    152R7278HBXD67_1F4151
    153R7213HBXD67_2M4251
    154R7240HBXD67_3F4991
    155042607.11BXD67_4F6062
    156052008.71BXD67_5F6492
    157R7211HBXD68_1F4151
    158R7212HBXD68_2M4211
    159042607.27BXD68_3F6232
    160042607.28BXD68_4F6232
    161R7305HBXD69_1F5041
    162061913.13BXD69_2F5582
    163112707.08BXD69_3F6022
    164R7207HBXD70_1F4581
    165R7204HBXD70_2M4601
    166042909.28BXD70_3F7612
    167042909.29BXD70_4F7612
    168R7205HBXD71_1M4711
    169R7208HBXD71_2F4741
    170020409.11BXD71_3F7012
    171020409.49BXD71_4F5822
    172R7209HBXD73_1F4701
    173R7206HBXD73_2M4641
    174011007.16BXD73_3F5442
    175052008.81BXD73_4F6422
    176R7181HBXD73a_1F4431
    177061407.18BXD73a_2F4432
    178R7182HBXD73a_3M6141
    179052008.86BXD73a_4M7102
    180031407.10BXD74_1M8042
    181011107.08BXD75_1F5352
    182R7188HBXD76_1F4081
    183R7187HBXD76_2M5641
    184R7179HBXD76_3M5791
    185R7292HRBXD77_1M3471
    186R7201HBXD77_2F4541
    187052008.83BXD77_3F6592
    188R7202HBXD79_1M4851
    189R7199HBXD79_2F5151
    190R7298HBXD79_3M7041
    191050609.25BXD81_1F4342
    192R7190HBXD81_2F4581
    193R7196HBXD81_3M5151
    194R7184HBXD83_1M4411
    195061307.30BXD83_2F6122
    196121907.10BXD83_3M6172
    197R7195HBXD84_1M4741
    198R7296HBXD84_2M4841
    199R7192HBXD84_3F5221
    200020409.80BXD84_4F5642
    201112707.12BXD84_5F5922
    202R7272HBXD85_1M4251
    203R7193HBXD85_2F5061
    204020409.12BXD85_3F7022
    205020409.13BXD85_4F7022
    206R7191HBXD86_1M4251
    207020409.35BXD86_2F6132
    208020409.36BXD86_3F6132
    209R7194HBXD87_1F4251
    210R7303HRBXD87_2M4781
    211R7186HBXD87_3M4421
    212052008.97BXD87_4F6662
    213052008.98BXD87_5M6662
    214R7295HBXD89_1F4461
    215052008.100BXD89_2M6162
    216R7287HBXD90_1M4341
    217R7293HBXD90_2M5581
    218052008.105BXD90_3F4522
    219R7180HBXD95_1F4671
    220R7169HBXD95_2M4671
    221100914.09BXD95_3F5362
    222R7237HBXD98_1M6051
    223R7171HBXD98_2F6391
    224R7275HBXD98_3F4881
    225R7189HBXD99_1M5241
    226R7172HBXD99_2F4711
    227R7282HBXD100_1F4631
    228R7283HBXD100_2M5071
    229R7274HBXD100_3M5771
    230R7226HBXD100_4F4641
    231051209.62BXD100_5M5772
    232R7284HBXD101_1F4901
    233R7285HBXD101_2M4081
    234051112.10BXD101_3F2232
    +
    +
    diff --git a/general/datasets/Uthsc_bxdagedex_1116/specifics.rtf b/general/datasets/Uthsc_bxdagedex_1116/specifics.rtf new file mode 100644 index 0000000..7c1a914 --- /dev/null +++ b/general/datasets/Uthsc_bxdagedex_1116/specifics.rtf @@ -0,0 +1 @@ +Exon Level \ No newline at end of file diff --git a/general/datasets/Uthsc_bxdagedex_1116/summary.rtf b/general/datasets/Uthsc_bxdagedex_1116/summary.rtf new file mode 100644 index 0000000..73a0125 --- /dev/null +++ b/general/datasets/Uthsc_bxdagedex_1116/summary.rtf @@ -0,0 +1 @@ +

    This dataset is now public.

    diff --git a/general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/cases.rtf b/general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/cases.rtf new file mode 100644 index 0000000..9fbf83b --- /dev/null +++ b/general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/cases.rtf @@ -0,0 +1,4336 @@ +

    The study included 187 mice (12~18 month) from B6, D2, D2-Gpmnb, B6D2F1, D2B6F1, and 87 advanced intercross BXD strains (about 2 mice per strain). All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    + +

     

    + +

    The table of samples that are finally used for this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Index

    +
    +

    RNA ID

    +
    +

    case ID

    +
    +

    DA_corrected_strain

    +
    +

    Corrected Sex

    +
    +

    AgeAtDeath days

    +
    +

    Tissue

    +
    +

    1

    +
    +

    E18

    +
    +

    050115.16

    +
    +

    BXD75

    +
    +

    Female

    +
    +

    460

    +
    +

    Eyeball

    +
    +

    2

    +
    +

    E19

    +
    +

    050115.17

    +
    +

    BXD75

    +
    +

    Female

    +
    +

    460

    +
    +

    Eyeball

    +
    +

    3

    +
    +

    E21

    +
    +

    042715.10

    +
    +

    D2B6F1

    +
    +

    Female

    +
    +

    500

    +
    +

    Eyeball

    +
    +

    4

    +
    +

    E22

    +
    +

    050115.19

    +
    +

    BXD79

    +
    +

    Female

    +
    +

    468

    +
    +

    Eyeball

    +
    +

    5

    +
    +

    E31

    +
    +

    121515.13

    +
    +

    BXD45

    +
    +

    Female

    +
    +

    507

    +
    +

    Eyeball

    +
    +

    6

    +
    +

    E33

    +
    +

    012615.10

    +
    +

    BXD45

    +
    +

    Female

    +
    +

    384

    +
    +

    Eyeball

    +
    +

    7

    +
    +

    E34

    +
    +

    012615.04

    +
    +

    BXD62

    +
    +

    Female

    +
    +

    376

    +
    +

    Eyeball

    +
    +

    8

    +
    +

    E40

    +
    +

    021213.21

    +
    +

    BXD79

    +
    +

    Female

    +
    +

    378

    +
    +

    Eyeball

    +
    +

    9

    +
    +

    E49

    +
    +

    021213.13

    +
    +

    BXD60

    +
    +

    Female

    +
    +

    530

    +
    +

    Eyeball

    +
    +

    10

    +
    +

    E60

    +
    +

    101713.01

    +
    +

    BXD60

    +
    +

    Female

    +
    +

    374

    +
    +

    Eyeball

    +
    +

    11

    +
    +

    E62

    +
    +

    090612.07

    +
    +

    BXD73b

    +
    +

    Female

    +
    +

    377

    +
    +

    Eyeball

    +
    +

    12

    +
    +

    E63

    +
    +

    090612.08

    +
    +

    BXD73b

    +
    +

    Female

    +
    +

    377

    +
    +

    Eyeball

    +
    +

    13

    +
    +

    E65

    +
    +

    050912.04

    +
    +

    BXD34

    +
    +

    Female

    +
    +

    419

    +
    +

    Eyeball

    +
    +

    14

    +
    +

    E67

    +
    +

    42214.08

    +
    +

    BXD40

    +
    +

    Female

    +
    +

    362

    +
    +

    Eyeball

    +
    +

    15

    +
    +

    E72

    +
    +

    42214.04

    +
    +

    BXD24

    +
    +

    Female

    +
    +

    377

    +
    +

    Eyeball

    +
    +

    16

    +
    +

    E75

    +
    +

    42214.03

    +
    +

    BXD24

    +
    +

    Female

    +
    +

    377

    +
    +

    Eyeball

    +
    +

    17

    +
    +

    E78

    +
    +

    42314.1

    +
    +

    B6D2F1

    +
    +

    Male

    +
    +

    364

    +
    +

    Eyeball

    +
    +

    18

    +
    +

    E82

    +
    +

    121615.05

    +
    +

    BXD62

    +
    +

    Female

    +
    +

    525

    +
    +

    Eyeball

    +
    +

    19

    +
    +

    E87

    +
    +

    101014.10

    +
    +

    BXD95

    +
    +

    Female

    +
    +

    536

    +
    +

    Eyeball

    +
    +

    20

    +
    +

    E89

    +
    +

    121615.22

    +
    +

    BXD89

    +
    +

    Female

    +
    +

    444

    +
    +

    Eyeball

    +
    +

    21

    +
    +

    E90

    +
    +

    101014.09

    +
    +

    BXD95

    +
    +

    Female

    +
    +

    536

    +
    +

    Eyeball

    +
    +

    22

    +
    +

    E99

    +
    +

    121214.15

    +
    +

    BXD70

    +
    +

    Female

    +
    +

    357

    +
    +

    Eyeball

    +
    +

    23

    +
    +

    E100

    +
    +

    121214.16

    +
    +

    BXD70

    +
    +

    Female

    +
    +

    357

    +
    +

    Eyeball

    +
    +

    24

    +
    +

    E124

    +
    +

    042214.18

    +
    +

    D2B6F1

    +
    +

    Male

    +
    +

    397

    +
    +

    Eyeball

    +
    +

    25

    +
    +

    E152

    +
    +

    050912.04

    +
    +

    BXD48a

    +
    +

    Female

    +
    +

    419

    +
    +

    Eyeball

    +
    +

    26

    +
    +

    E158

    +
    +

    101713.02

    +
    +

    BXD100

    +
    +

    Female

    +
    +

    374

    +
    +

    Eyeball

    +
    +

    27

    +
    +

    E224

    +
    +

    021313.26

    +
    +

    BXD84

    +
    +

    Female

    +
    +

    385

    +
    +

    Eyeball

    +
    +

    28

    +
    +

    E264

    +
    +

    *050318.12

    +
    +

    BXD69

    +
    +

    Male

    +
    +

    387

    +
    +

    Eyeball

    +
    +

    29

    +
    +

    E288

    +
    +

    *110918.106

    +
    +

    BXD211

    +
    +

    Male

    +
    +

    404

    +
    +

    Eyeball

    +
    +

    30

    +
    +

    E289

    +
    +

    *110918.105

    +
    +

    BXD211

    +
    +

    Female

    +
    +

    404

    +
    +

    Eyeball

    +
    +

    31

    +
    +

    E290

    +
    +

    *100218.04

    +
    +

    BXD44

    +
    +

    Female

    +
    +

    530

    +
    +

    Eyeball

    +
    +

    32

    +
    +

    E291

    +
    +

    *100218.05

    +
    +

    BXD44

    +
    +

    Male

    +
    +

    530

    +
    +

    Eyeball

    +
    +

    33

    +
    +

    E292

    +
    +

    *100218.18

    +
    +

    BXD68

    +
    +

    Female

    +
    +

    516

    +
    +

    Eyeball

    +
    +

    34

    +
    +

    E293

    +
    +

    *100218.20

    +
    +

    BXD68

    +
    +

    Male

    +
    +

    516

    +
    +

    Eyeball

    +
    +

    35

    +
    +

    E294

    +
    +

    *100218.36

    +
    +

    BXD84

    +
    +

    Female

    +
    +

    516

    +
    +

    Eyeball

    +
    +

    36

    +
    +

    E298

    +
    +

    *100218.73

    +
    +

    BXD184

    +
    +

    Female

    +
    +

    512

    +
    +

    Eyeball

    +
    +

    37

    +
    +

    E299

    +
    +

    *100218.74

    +
    +

    BXD184

    +
    +

    Male

    +
    +

    512

    +
    +

    Eyeball

    +
    +

    38

    +
    +

    E303

    +
    +

    AGE061218.98

    +
    +

    BXD177

    +
    +

    Female

    +
    +

    364

    +
    +

    Eyeball

    +
    +

    39

    +
    +

    E304

    +
    +

    AGE061218.108

    +
    +

    BXD195

    +
    +

    Male

    +
    +

    386

    +
    +

    Eyeball

    +
    +

    40

    +
    +

    E306

    +
    +

    AGE061218.107

    +
    +

    BXD195

    +
    +

    Female

    +
    +

    386

    +
    +

    Eyeball

    +
    +

    41

    +
    +

    E308

    +
    +

    AGE061218.99

    +
    +

    BXD177

    +
    +

    Male

    +
    +

    364

    +
    +

    Eyeball

    +
    +

    42

    +
    +

    E310

    +
    +

    AGE061218.90

    +
    +

    BXD168

    +
    +

    Male

    +
    +

    538

    +
    +

    Eyeball

    +
    +

    43

    +
    +

    E311

    +
    +

    AGE061218.85

    +
    +

    BXD160

    +
    +

    Male

    +
    +

    390

    +
    +

    Eyeball

    +
    +

    44

    +
    +

    E312

    +
    +

    AGE061218.71

    +
    +

    BXD150

    +
    +

    Male

    +
    +

    398

    +
    +

    Eyeball

    +
    +

    45

    +
    +

    E313

    +
    +

    AGE061218.22

    +
    +

    BXD34

    +
    +

    Male

    +
    +

    369

    +
    +

    Eyeball

    +
    +

    46

    +
    +

    E314

    +
    +

    AGE061218.21

    +
    +

    BXD34

    +
    +

    Female

    +
    +

    369

    +
    +

    Eyeball

    +
    +

    47

    +
    +

    E331

    +
    +

    *110918.07

    +
    +

    BXD28

    +
    +

    Male

    +
    +

    366

    +
    +

    Eyeball

    +
    +

    48

    +
    +

    E334

    +
    +

    *110918.02

    +
    +

    BXD18

    +
    +

    Male

    +
    +

    452

    +
    +

    Eyeball

    +
    +

    49

    +
    +

    E335

    +
    +

    *110918.01

    +
    +

    BXD18

    +
    +

    Female

    +
    +

    452

    +
    +

    Eyeball

    +
    +

    50

    +
    +

    E340

    +
    +

    *110918.51

    +
    +

    BXD98

    +
    +

    Male

    +
    +

    359

    +
    +

    Eyeball

    +
    +

    51

    +
    +

    E341

    +
    +

    *110918.50

    +
    +

    BXD98

    +
    +

    Female

    +
    +

    359

    +
    +

    Eyeball

    +
    +

    52

    +
    +

    E344

    +
    +

    *083019.05

    +
    +

    BXD9

    +
    +

    Female

    +
    +

    373

    +
    +

    Eyeball

    +
    +

    53

    +
    +

    E345

    +
    +

    *083019.06

    +
    +

    BXD9

    +
    +

    Male

    +
    +

    373

    +
    +

    Eyeball

    +
    +

    54

    +
    +

    E346

    +
    +

    *083019.22

    +
    +

    BXD31

    +
    +

    Male

    +
    +

    391

    +
    +

    Eyeball

    +
    +

    55

    +
    +

    E347

    +
    +

    *083019.23

    +
    +

    BXD43

    +
    +

    Female

    +
    +

    391

    +
    +

    Eyeball

    +
    +

    56

    +
    +

    E349

    +
    +

    *083019.26

    +
    +

    BXD43

    +
    +

    Male

    +
    +

    367

    +
    +

    Eyeball

    +
    +

    57

    +
    +

    E350

    +
    +

    *083019.30

    +
    +

    BXD50

    +
    +

    Female

    +
    +

    408

    +
    +

    Eyeball

    +
    +

    58

    +
    +

    E351

    +
    +

    *083019.31

    +
    +

    BXD50

    +
    +

    Female

    +
    +

    408

    +
    +

    Eyeball

    +
    +

    59

    +
    +

    E352

    +
    +

    *083019.33

    +
    +

    BXD51

    +
    +

    Female

    +
    +

    368

    +
    +

    Eyeball

    +
    +

    60

    +
    +

    E353

    +
    +

    *083019.34

    +
    +

    BXD51

    +
    +

    Male

    +
    +

    368

    +
    +

    Eyeball

    +
    +

    61

    +
    +

    E354

    +
    +

    *083019.38

    +
    +

    BXD66

    +
    +

    Male

    +
    +

    430

    +
    +

    Eyeball

    +
    +

    62

    +
    +

    E355

    +
    +

    *083019.39

    +
    +

    BXD66

    +
    +

    Male

    +
    +

    430

    +
    +

    Eyeball

    +
    +

    63

    +
    +

    E356

    +
    +

    *083019.45

    +
    +

    BXD73

    +
    +

    Female

    +
    +

    451

    +
    +

    Eyeball

    +
    +

    64

    +
    +

    E357

    +
    +

    *083019.46

    +
    +

    BXD73

    +
    +

    Male

    +
    +

    451

    +
    +

    Eyeball

    +
    +

    65

    +
    +

    E358

    +
    +

    *083019.48

    +
    +

    BXD75

    +
    +

    Female

    +
    +

    369

    +
    +

    Eyeball

    +
    +

    66

    +
    +

    E359

    +
    +

    *083019.49

    +
    +

    BXD75

    +
    +

    Male

    +
    +

    369

    +
    +

    Eyeball

    +
    +

    67

    +
    +

    E360

    +
    +

    *083019.50

    +
    +

    BXD78

    +
    +

    Female

    +
    +

    432

    +
    +

    Eyeball

    +
    +

    68

    +
    +

    E361

    +
    +

    *083019.51

    +
    +

    BXD78

    +
    +

    Male

    +
    +

    432

    +
    +

    Eyeball

    +
    +

    69

    +
    +

    E363

    +
    +

    *083019.55

    +
    +

    BXD87

    +
    +

    Female

    +
    +

    444

    +
    +

    Eyeball

    +
    +

    70

    +
    +

    E364

    +
    +

    *083019.56

    +
    +

    BXD87

    +
    +

    Male

    +
    +

    444

    +
    +

    Eyeball

    +
    +

    71

    +
    +

    E365

    +
    +

    *083019.57

    +
    +

    BXD89

    +
    +

    Female

    +
    +

    446

    +
    +

    Eyeball

    +
    +

    72

    +
    +

    E366

    +
    +

    *083019.66

    +
    +

    BXD113

    +
    +

    Female

    +
    +

    366

    +
    +

    Eyeball

    +
    +

    73

    +
    +

    E367

    +
    +

    *083019.67

    +
    +

    BXD113

    +
    +

    Male

    +
    +

    366

    +
    +

    Eyeball

    +
    +

    74

    +
    +

    E368

    +
    +

    *090119.04

    +
    +

    BXD123

    +
    +

    Female

    +
    +

    441

    +
    +

    Eyeball

    +
    +

    75

    +
    +

    E369

    +
    +

    *090119.05

    +
    +

    BXD123

    +
    +

    Male

    +
    +

    441

    +
    +

    Eyeball

    +
    +

    76

    +
    +

    E370

    +
    +

    *090119.09

    +
    +

    BXD141

    +
    +

    Female

    +
    +

    370

    +
    +

    Eyeball

    +
    +

    77

    +
    +

    E371

    +
    +

    *090119.11

    +
    +

    BXD141

    +
    +

    Male

    +
    +

    370

    +
    +

    Eyeball

    +
    +

    78

    +
    +

    E372

    +
    +

    *090119.15

    +
    +

    BXD151

    +
    +

    Female

    +
    +

    439

    +
    +

    Eyeball

    +
    +

    79

    +
    +

    E373

    +
    +

    *090119.16

    +
    +

    BXD151

    +
    +

    Male

    +
    +

    439

    +
    +

    Eyeball

    +
    +

    80

    +
    +

    E374

    +
    +

    *090119.18

    +
    +

    BXD152

    +
    +

    Female

    +
    +

    374

    +
    +

    Eyeball

    +
    +

    81

    +
    +

    E375

    +
    +

    *090119.19

    +
    +

    BXD152

    +
    +

    Male

    +
    +

    374

    +
    +

    Eyeball

    +
    +

    82

    +
    +

    E376

    +
    +

    *090119.20

    +
    +

    BXD154

    +
    +

    Female

    +
    +

    370

    +
    +

    Eyeball

    +
    +

    83

    +
    +

    E377

    +
    +

    *090119.22

    +
    +

    BXD154

    +
    +

    Male

    +
    +

    370

    +
    +

    Eyeball

    +
    +

    84

    +
    +

    E378

    +
    +

    *090119.24

    +
    +

    BXD155

    +
    +

    Female

    +
    +

    379

    +
    +

    Eyeball

    +
    +

    85

    +
    +

    E379

    +
    +

    *090119.25

    +
    +

    BXD155

    +
    +

    Male

    +
    +

    379

    +
    +

    Eyeball

    +
    +

    86

    +
    +

    E380

    +
    +

    *090119.27

    +
    +

    BXD161

    +
    +

    Female

    +
    +

    376

    +
    +

    Eyeball

    +
    +

    87

    +
    +

    E381

    +
    +

    *090119.28

    +
    +

    BXD161

    +
    +

    Male

    +
    +

    376

    +
    +

    Eyeball

    +
    +

    88

    +
    +

    E382

    +
    +

    *090119.34

    +
    +

    BXD170

    +
    +

    Male

    +
    +

    438

    +
    +

    Eyeball

    +
    +

    89

    +
    +

    E383

    +
    +

    *090119.36

    +
    +

    BXD171

    +
    +

    Female

    +
    +

    370

    +
    +

    Eyeball

    +
    +

    90

    +
    +

    E384

    +
    +

    *090119.37

    +
    +

    BXD171

    +
    +

    Male

    +
    +

    370

    +
    +

    Eyeball

    +
    +

    91

    +
    +

    E385

    +
    +

    *090119.41

    +
    +

    BXD178

    +
    +

    Female

    +
    +

    493

    +
    +

    Eyeball

    +
    +

    92

    +
    +

    E386

    +
    +

    *090119.42

    +
    +

    BXD178

    +
    +

    Female

    +
    +

    493

    +
    +

    Eyeball

    +
    +

    93

    +
    +

    E387

    +
    +

    *090119.44

    +
    +

    BXD180

    +
    +

    Female

    +
    +

    375

    +
    +

    Eyeball

    +
    +

    94

    +
    +

    E390

    +
    +

    *090119.48

    +
    +

    BXD190

    +
    +

    Male

    +
    +

    374

    +
    +

    Eyeball

    +
    +

    95

    +
    +

    E391

    +
    +

    *090119.52

    +
    +

    BXD197

    +
    +

    Female

    +
    +

    433

    +
    +

    Eyeball

    +
    +

    96

    +
    +

    E392

    +
    +

    *090119.53

    +
    +

    BXD197

    +
    +

    Male

    +
    +

    433

    +
    +

    Eyeball

    +
    +

    97

    +
    +

    E395

    +
    +

    *090119.57

    +
    +

    BXD202

    +
    +

    Female

    +
    +

    427

    +
    +

    Eyeball

    +
    +

    98

    +
    +

    E399

    +
    +

    *090119.67

    +
    +

    BXD218

    +
    +

    Female

    +
    +

    412

    +
    +

    Eyeball

    +
    +

    99

    +
    +

    E400

    +
    +

    *090119.68

    +
    +

    BXD218

    +
    +

    Male

    +
    +

    412

    +
    +

    Eyeball

    +
    +

    100

    +
    +

    E448

    +
    +

    *100819.101

    +
    +

    BXD111

    +
    +

    Female

    +
    +

    373

    +
    +

    Eyeball

    +
    +

    101

    +
    +

    E449

    +
    +

    *100819.102

    +
    +

    BXD111

    +
    +

    Male

    +
    +

    373

    +
    +

    Eyeball

    +
    +

    102

    +
    +

    E450

    +
    +

    *100819.104

    +
    +

    BXD122

    +
    +

    Female

    +
    +

    383

    +
    +

    Eyeball

    +
    +

    103

    +
    +

    E451

    +
    +

    *100819.105

    +
    +

    BXD122

    +
    +

    Male

    +
    +

    383

    +
    +

    Eyeball

    +
    +

    104

    +
    +

    E452

    +
    +

    *100819.107

    +
    +

    BXD124

    +
    +

    Female

    +
    +

    366

    +
    +

    Eyeball

    +
    +

    105

    +
    +

    E453

    +
    +

    *100819.108

    +
    +

    BXD124

    +
    +

    Male

    +
    +

    366

    +
    +

    Eyeball

    +
    +

    106

    +
    +

    E454

    +
    +

    *100819.110

    +
    +

    BXD125

    +
    +

    Female

    +
    +

    376

    +
    +

    Eyeball

    +
    +

    107

    +
    +

    E455

    +
    +

    *100819.111

    +
    +

    BXD125

    +
    +

    Male

    +
    +

    376

    +
    +

    Eyeball

    +
    +

    108

    +
    +

    E459

    +
    +

    *100819.131

    +
    +

    BXD172

    +
    +

    Female

    +
    +

    375

    +
    +

    Eyeball

    +
    +

    109

    +
    +

    E460

    +
    +

    *100819.132

    +
    +

    BXD172

    +
    +

    Male

    +
    +

    375

    +
    +

    Eyeball

    +
    +

    110

    +
    +

    E482

    +
    +

    *052220.14

    +
    +

    BXD71

    +
    +

    Female

    +
    +

    396

    +
    +

    Eyeball

    +
    +

    111

    +
    +

    E483

    +
    +

    *052220.10

    +
    +

    BXD11

    +
    +

    Female

    +
    +

    379

    +
    +

    Eyeball

    +
    +

    112

    +
    +

    E484

    +
    +

    *052220.07

    +
    +

    BXD65

    +
    +

    Male

    +
    +

    528

    +
    +

    Eyeball

    +
    +

    113

    +
    +

    E485

    +
    +

    *052220.03

    +
    +

    BXD194

    +
    +

    Male

    +
    +

    396

    +
    +

    Eyeball

    +
    +

    114

    +
    +

    E486

    +
    +

    *052220.19

    +
    +

    BXD15

    +
    +

    Female

    +
    +

    415

    +
    +

    Eyeball

    +
    +

    115

    +
    +

    E487

    +
    +

    *052220.02

    +
    +

    BXD194

    +
    +

    Female

    +
    +

    396

    +
    +

    Eyeball

    +
    +

    116

    +
    +

    E488

    +
    +

    *052220.12

    +
    +

    BXD1

    +
    +

    Female

    +
    +

    429

    +
    +

    Eyeball

    +
    +

    117

    +
    +

    E489

    +
    +

    *052220.18

    +
    +

    BXD216

    +
    +

    Male

    +
    +

    401

    +
    +

    Eyeball

    +
    +

    118

    +
    +

    E490

    +
    +

    *052220.13

    +
    +

    BXD1

    +
    +

    Male

    +
    +

    429

    +
    +

    Eyeball

    +
    +

    119

    +
    +

    E494

    +
    +

    *052220.15

    +
    +

    BXD71

    +
    +

    Male

    +
    +

    396

    +
    +

    Eyeball

    +
    +

    120

    +
    +

    E496

    +
    +

    *052220.08

    +
    +

    BXD170

    +
    +

    Male

    +
    +

    360

    +
    +

    Eyeball

    +
    +

    121

    +
    +

    E498

    +
    +

    *052220.06

    +
    +

    BXD65

    +
    +

    Female

    +
    +

    528

    +
    +

    Eyeball

    +
    +

    122

    +
    +

    E499

    +
    +

    *052220.05

    +
    +

    C57BL/6J

    +
    +

    Male

    +
    +

    424

    +
    +

    Eyeball

    +
    +

    123

    +
    +

    E501

    +
    +

    *052220.21

    +
    +

    BXD73a

    +
    +

    Female

    +
    +

    408

    +
    +

    Eyeball

    +
    +

    124

    +
    +

    E502

    +
    +

    *052220.11

    +
    +

    BXD11

    +
    +

    Male

    +
    +

    379

    +
    +

    Eyeball

    +
    +

    125

    +
    +

    E503

    +
    +

    *052220.22

    +
    +

    DBA/2J-Gpnmb

    +
    +

    Female

    +
    +

    439

    +
    +

    Eyeball

    +
    +

    126

    +
    +

    E504

    +
    +

    *052220.20

    +
    +

    BXD15

    +
    +

    Male

    +
    +

    415

    +
    +

    Eyeball

    +
    +

    127

    +
    +

    E541

    +
    +

    042915.08

    +
    +

    BXD29

    +
    +

    Female

    +
    +

    478

    +
    +

    Eyeball

    +
    +

    128

    +
    +

    E542

    +
    +

    050115.01

    +
    +

    BXD65b

    +
    +

    Female

    +
    +

    415

    +
    +

    Eyeball

    +
    +

    129

    +
    +

    E543

    +
    +

    042915.07

    +
    +

    BXD29

    +
    +

    Female

    +
    +

    431

    +
    +

    Eyeball

    +
    +

    130

    +
    +

    E544

    +
    +

    042314.12

    +
    +

    B6D2F1

    +
    +

    Female

    +
    +

    364

    +
    +

    Eyeball

    +
    +

    131

    +
    +

    E548

    +
    +

    *061119.02

    +
    +

    C57BL/6J

    +
    +

    Female

    +
    +

    392

    +
    +

    Eyeball

    +
    +

    132

    +
    +

    E549

    +
    +

    *061119.03

    +
    +

    C57BL/6J

    +
    +

    Male

    +
    +

    392

    +
    +

    Eyeball

    +
    +

    133

    +
    +

    E551

    +
    +

    *061119.11

    +
    +

    DBA/2J

    +
    +

    Female

    +
    +

    392

    +
    +

    Eyeball

    +
    +

    134

    +
    +

    E552

    +
    +

    *061119.12

    +
    +

    DBA/2J

    +
    +

    Male

    +
    +

    392

    +
    +

    Eyeball

    +
    +

    135

    +
    +

    E554

    +
    +

    *061119.15

    +
    +

    DBA/2J

    +
    +

    Male

    +
    +

    392

    +
    +

    Eyeball

    +
    +

    136

    +
    +

    E556

    +
    +

    *061119.22

    +
    +

    DBA/2J

    +
    +

    Male

    +
    +

    380

    +
    +

    Eyeball

    +
    +

    137

    +
    +

    E561

    +
    +

    *061219.12

    +
    +

    BXD27

    +
    +

    Female

    +
    +

    494

    +
    +

    Eyeball

    +
    +

    138

    +
    +

    E564

    +
    +

    *061219.14

    +
    +

    BXD27

    +
    +

    Male

    +
    +

    494

    +
    +

    Eyeball

    +
    +

    139

    +
    +

    E565

    +
    +

    *060419.04

    +
    +

    BXD32

    +
    +

    Female

    +
    +

    425

    +
    +

    Eyeball

    +
    +

    140

    +
    +

    E566

    +
    +

    *060419.05

    +
    +

    BXD32

    +
    +

    Male

    +
    +

    425

    +
    +

    Eyeball

    +
    +

    141

    +
    +

    E567

    +
    +

    *070919.01

    +
    +

    BXD86

    +
    +

    Female

    +
    +

    381

    +
    +

    Eyeball

    +
    +

    142

    +
    +

    E569

    +
    +

    *070919.03

    +
    +

    BXD86

    +
    +

    Male

    +
    +

    381

    +
    +

    Eyeball

    +
    +

    143

    +
    +

    E576

    +
    +

    *072519.11

    +
    +

    BXD191

    +
    +

    Male

    +
    +

    477

    +
    +

    Eyeball

    +
    +

    144

    +
    +

    E577

    +
    +

    *072519.09

    +
    +

    BXD190

    +
    +

    Male

    +
    +

    434

    +
    +

    Eyeball

    +
    +

    145

    +
    +

    E582

    +
    +

    *073019.16

    +
    +

    BXD216

    +
    +

    Male

    +
    +

    459

    +
    +

    Eyeball

    +
    +

    146

    +
    +

    E591

    +
    +

    *061319.04

    +
    +

    BXD48

    +
    +

    Female

    +
    +

    425

    +
    +

    Eyeball

    +
    +

    147

    +
    +

    E592

    +
    +

    *061319.05

    +
    +

    BXD48

    +
    +

    Male

    +
    +

    425

    +
    +

    Eyeball

    +
    +

    148

    +
    +

    E593

    +
    +

    *061319.21

    +
    +

    BXD61

    +
    +

    Male

    +
    +

    459

    +
    +

    Eyeball

    +
    +

    149

    +
    +

    E600

    +
    +

    *050318.10

    +
    +

    BXD69

    +
    +

    Female

    +
    +

    387

    +
    +

    Eyeball

    +
    +

    150

    +
    +

    E601

    +
    +

    *013020.53

    +
    +

    BXD102

    +
    +

    Male

    +
    +

    416

    +
    +

    Eyeball

    +
    +

    151

    +
    +

    E603

    +
    +

    *013020.25

    +
    +

    BXD65b

    +
    +

    Male

    +
    +

    505

    +
    +

    Eyeball

    +
    +

    152

    +
    +

    E605

    +
    +

    *013020.54

    +
    +

    BXD102

    +
    +

    Female

    +
    +

    416

    +
    +

    Eyeball

    +
    +

    153

    +
    +

    E620

    +
    +

    *012420.26

    +
    +

    BXD128a

    +
    +

    Male

    +
    +

    366

    +
    +

    Eyeball

    +
    +

    154

    +
    +

    E625

    +
    +

    *110918.54

    +
    +

    BXD101

    +
    +

    Male

    +
    +

    361

    +
    +

    Eyeball

    +
    +

    155

    +
    +

    E626

    +
    +

    *110918.53

    +
    +

    BXD101

    +
    +

    Female

    +
    +

    361

    +
    +

    Eyeball

    +
    +

    156

    +
    +

    E631

    +
    +

    *083019.14

    +
    +

    BXD16

    +
    +

    Female

    +
    +

    363

    +
    +

    Eyeball

    +
    +

    157

    +
    +

    E635

    +
    +

    *083019.35

    +
    +

    BXD61

    +
    +

    Male

    +
    +

    364

    +
    +

    Eyeball

    +
    +

    158

    +
    +

    E638

    +
    +

    *083019.60

    +
    +

    BXD90

    +
    +

    Female

    +
    +

    378

    +
    +

    Eyeball

    +
    +

    159

    +
    +

    E639

    +
    +

    *083019.62

    +
    +

    BXD90

    +
    +

    Male

    +
    +

    378

    +
    +

    Eyeball

    +
    +

    160

    +
    +

    E662

    +
    +

    *100819.153

    +
    +

    BXD202

    +
    +

    Male

    +
    +

    410

    +
    +

    Eyeball

    +
    +

    161

    +
    +

    E663

    +
    +

    *100819.157

    +
    +

    BXD205

    +
    +

    Female

    +
    +

    371

    +
    +

    Eyeball

    +
    +

    162

    +
    +

    E664

    +
    +

    *100819.158

    +
    +

    BXD205

    +
    +

    Male

    +
    +

    372

    +
    +

    Eyeball

    +
    +

    163

    +
    +

    E665

    +
    +

    *100819.163

    +
    +

    BXD213

    +
    +

    Female

    +
    +

    396

    +
    +

    Eyeball

    +
    +

    164

    +
    +

    E666

    +
    +

    *100819.164

    +
    +

    BXD213

    +
    +

    Male

    +
    +

    397

    +
    +

    Eyeball

    +
    +

    165

    +
    +

    E667

    +
    +

    *100819.168

    +
    +

    BXD223

    +
    +

    Female

    +
    +

    419

    +
    +

    Eyeball

    +
    +

    166

    +
    +

    E668

    +
    +

    *100819.169

    +
    +

    BXD223

    +
    +

    Male

    +
    +

    420

    +
    +

    Eyeball

    +
    +

    167

    +
    +

    E672

    +
    +

    *052920.10

    +
    +

    BXD83

    +
    +

    Male

    +
    +

    380

    +
    +

    Eyeball

    +
    +

    168

    +
    +

    E675

    +
    +

    *052920.13

    +
    +

    DBA/2J-Gpnmb

    +
    +

    Female

    +
    +

    452

    +
    +

    Eyeball

    +
    +

    169

    +
    +

    E679

    +
    +

    *052920.12

    +
    +

    DBA/2J-Gpnmb

    +
    +

    Female

    +
    +

    458

    +
    +

    Eyeball

    +
    +

    170

    +
    +

    E680

    +
    +

    *052920.01

    +
    +

    BXD43

    +
    +

    Female

    +
    +

    465

    +
    +

    Eyeball

    +
    +

    171

    +
    +

    E682

    +
    +

    *052920.02

    +
    +

    C57BL/6J

    +
    +

    Female

    +
    +

    433

    +
    +

    Eyeball

    +
    +

    172

    +
    +

    E685

    +
    +

    *052920.09

    +
    +

    BXD83

    +
    +

    Female

    +
    +

    379

    +
    +

    Eyeball

    +
    +

    173

    +
    +

    E699

    +
    +

    *072120.14

    +
    +

    BXD40

    +
    +

    Male

    +
    +

    458

    +
    +

    Eyeball

    +
    +

    174

    +
    +

    E709

    +
    +

    *072120.24

    +
    +

    BXD150

    +
    +

    Female

    +
    +

    433

    +
    +

    Eyeball

    +
    +

    175

    +
    +

    E712

    +
    +

    *072120.27

    +
    +

    BXD160

    +
    +

    Female

    +
    +

    367

    +
    +

    Eyeball

    +
    +

    176

    +
    +

    E726

    +
    +

    *072120.41

    +
    +

    BXD16

    +
    +

    Female

    +
    +

    367

    +
    +

    Eyeball

    +
    +

    177

    +
    +

    E733

    +
    +

    *072120.48

    +
    +

    BXD60

    +
    +

    Female

    +
    +

    558

    +
    +

    Eyeball

    +
    +

    178

    +
    +

    E735

    +
    +

    *072120.50

    +
    +

    BXD180

    +
    +

    Male

    +
    +

    473

    +
    +

    Eyeball

    +
    +

    179

    +
    +

    E738

    +
    +

    *072120.53

    +
    +

    BXD128a

    +
    +

    Female

    +
    +

    387

    +
    +

    Eyeball

    +
    +

    180

    +
    +

    E745

    +
    +

    *072120.60

    +
    +

    BXD199

    +
    +

    Female

    +
    +

    457

    +
    +

    Eyeball

    +
    +

    181

    +
    +

    E746

    +
    +

    *072120.61

    +
    +

    BXD199

    +
    +

    Male

    +
    +

    457

    +
    +

    Eyeball

    +
    +

    182

    +
    +

    E749

    +
    +

    *072120.64

    +
    +

    BXD2

    +
    +

    Female

    +
    +

    399

    +
    +

    Eyeball

    +
    +

    183

    +
    +

    E750

    +
    +

    *072120.65

    +
    +

    BXD2

    +
    +

    Male

    +
    +

    399

    +
    +

    Eyeball

    +
    +

    184

    +
    +

    E753

    +
    +

    *072120.68

    +
    +

    BXD169

    +
    +

    Female

    +
    +

    441

    +
    +

    Eyeball

    +
    +

    185

    +
    +

    E754

    +
    +

    *072120.69

    +
    +

    BXD169

    +
    +

    Male

    +
    +

    441

    +
    +

    Eyeball

    +
    +

    186

    +
    +

    E759

    +
    +

    *072120.72

    +
    +

    BXD187

    +
    +

    Female

    +
    +

    354

    +
    +

    Eyeball

    +
    +

    187

    +
    +

    E760

    +
    +

    *072120.73

    +
    +

    BXD187

    +
    +

    Male

    +
    +

    354

    +
    +

    Eyeball

    +
    + +

     

    diff --git a/general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/experiment-design.rtf b/general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/experiment-design.rtf new file mode 100644 index 0000000..e7afcee --- /dev/null +++ b/general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/experiment-design.rtf @@ -0,0 +1,3 @@ +

    RNA Extraction

    + +

    Total RNA was extracted using MIRNEASY MINI KIT (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.  according to the manufacturer’s instructions. Approximately 30 mg of PFC tissue was added into a 2 ml tube containing 700ul QIAzol Lysis Reagent and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 minutes in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 r followed by incubating for 5 minutes.140 µl chloroform was added into the homogenate, shaken vigorously for 15 seconds, and centrifuged for 15 minutes at 12,000 x g at 4 â„ƒ. 280 µl upper aqueous was then transferred into a new collection tube containing 500 µl 100% ethanol. The mixture was loaded into a RNeasy mini‐spin column (Qiagen, Valencia, CA, USA), once with Buffer RWT and twice with Buffer RPE purification. All RNA had been verified by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA with OD260/280 > 1.8 and RIN > 7.0 were used for library preparation

    diff --git a/general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/notes.rtf b/general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/notes.rtf new file mode 100644 index 0000000..d622df7 --- /dev/null +++ b/general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/notes.rtf @@ -0,0 +1 @@ +

    UTHSC BXD Young Aged Eye RNA-Seq (Apr22) DESeq2 rlog2

    diff --git a/general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/processing.rtf b/general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/processing.rtf new file mode 100644 index 0000000..7ddb89f --- /dev/null +++ b/general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/processing.rtf @@ -0,0 +1,9 @@ +

    Generation of RNA-seq data

    + +

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    + +

     

    + +

    Read mapping and normalization

    + +

    Mus musculus (mouse) reference genome (mm11 Mus_musculus.GRCm39, release 104) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Rows with no gene symbol name were deleted. Indices of the reference genome were  built using STAR version 2.5.2b and paired-end reads were aligned to the reference genome. FeatureCount from package RsubRead, version 1.32.4, was used to count the number of read mapped to each gene. Raw counts were then normalized and log2 transformed using function rlogTransformation from the DESeq2 package (version 1.16.1) and an increment was added to the normalized values to make all values positive.

    diff --git a/general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/specifics.rtf b/general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/specifics.rtf new file mode 100644 index 0000000..2e5de4e --- /dev/null +++ b/general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/specifics.rtf @@ -0,0 +1 @@ +UTHSC BXD Old Aged Eye RNA-Seq (Apr22) DESeq2 rlog2 \ No newline at end of file diff --git a/general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/tissue.rtf b/general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/tissue.rtf new file mode 100644 index 0000000..126ab9f --- /dev/null +++ b/general/datasets/Uthsc_bxdoldeyernaseq_deseq2_rlog2_0422/tissue.rtf @@ -0,0 +1,3 @@ +

    Tissue Harvest 

    + +

    The animals were sacrificed under saturated isoflurane. Eyeballs from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/Uthsc_bxdygeyernaseq_deseq2_rlog2_0422/cases.rtf b/general/datasets/Uthsc_bxdygeyernaseq_deseq2_rlog2_0422/cases.rtf new file mode 100644 index 0000000..9fbf83b --- /dev/null +++ b/general/datasets/Uthsc_bxdygeyernaseq_deseq2_rlog2_0422/cases.rtf @@ -0,0 +1,4336 @@ +

    The study included 187 mice (12~18 month) from B6, D2, D2-Gpmnb, B6D2F1, D2B6F1, and 87 advanced intercross BXD strains (about 2 mice per strain). All procedures were approved by the UTHSC Institutional Animal Care and Use Committee.

    + +

     

    + +

    The table of samples that are finally used for this study.

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Index

    +
    +

    RNA ID

    +
    +

    case ID

    +
    +

    DA_corrected_strain

    +
    +

    Corrected Sex

    +
    +

    AgeAtDeath days

    +
    +

    Tissue

    +
    +

    1

    +
    +

    E18

    +
    +

    050115.16

    +
    +

    BXD75

    +
    +

    Female

    +
    +

    460

    +
    +

    Eyeball

    +
    +

    2

    +
    +

    E19

    +
    +

    050115.17

    +
    +

    BXD75

    +
    +

    Female

    +
    +

    460

    +
    +

    Eyeball

    +
    +

    3

    +
    +

    E21

    +
    +

    042715.10

    +
    +

    D2B6F1

    +
    +

    Female

    +
    +

    500

    +
    +

    Eyeball

    +
    +

    4

    +
    +

    E22

    +
    +

    050115.19

    +
    +

    BXD79

    +
    +

    Female

    +
    +

    468

    +
    +

    Eyeball

    +
    +

    5

    +
    +

    E31

    +
    +

    121515.13

    +
    +

    BXD45

    +
    +

    Female

    +
    +

    507

    +
    +

    Eyeball

    +
    +

    6

    +
    +

    E33

    +
    +

    012615.10

    +
    +

    BXD45

    +
    +

    Female

    +
    +

    384

    +
    +

    Eyeball

    +
    +

    7

    +
    +

    E34

    +
    +

    012615.04

    +
    +

    BXD62

    +
    +

    Female

    +
    +

    376

    +
    +

    Eyeball

    +
    +

    8

    +
    +

    E40

    +
    +

    021213.21

    +
    +

    BXD79

    +
    +

    Female

    +
    +

    378

    +
    +

    Eyeball

    +
    +

    9

    +
    +

    E49

    +
    +

    021213.13

    +
    +

    BXD60

    +
    +

    Female

    +
    +

    530

    +
    +

    Eyeball

    +
    +

    10

    +
    +

    E60

    +
    +

    101713.01

    +
    +

    BXD60

    +
    +

    Female

    +
    +

    374

    +
    +

    Eyeball

    +
    +

    11

    +
    +

    E62

    +
    +

    090612.07

    +
    +

    BXD73b

    +
    +

    Female

    +
    +

    377

    +
    +

    Eyeball

    +
    +

    12

    +
    +

    E63

    +
    +

    090612.08

    +
    +

    BXD73b

    +
    +

    Female

    +
    +

    377

    +
    +

    Eyeball

    +
    +

    13

    +
    +

    E65

    +
    +

    050912.04

    +
    +

    BXD34

    +
    +

    Female

    +
    +

    419

    +
    +

    Eyeball

    +
    +

    14

    +
    +

    E67

    +
    +

    42214.08

    +
    +

    BXD40

    +
    +

    Female

    +
    +

    362

    +
    +

    Eyeball

    +
    +

    15

    +
    +

    E72

    +
    +

    42214.04

    +
    +

    BXD24

    +
    +

    Female

    +
    +

    377

    +
    +

    Eyeball

    +
    +

    16

    +
    +

    E75

    +
    +

    42214.03

    +
    +

    BXD24

    +
    +

    Female

    +
    +

    377

    +
    +

    Eyeball

    +
    +

    17

    +
    +

    E78

    +
    +

    42314.1

    +
    +

    B6D2F1

    +
    +

    Male

    +
    +

    364

    +
    +

    Eyeball

    +
    +

    18

    +
    +

    E82

    +
    +

    121615.05

    +
    +

    BXD62

    +
    +

    Female

    +
    +

    525

    +
    +

    Eyeball

    +
    +

    19

    +
    +

    E87

    +
    +

    101014.10

    +
    +

    BXD95

    +
    +

    Female

    +
    +

    536

    +
    +

    Eyeball

    +
    +

    20

    +
    +

    E89

    +
    +

    121615.22

    +
    +

    BXD89

    +
    +

    Female

    +
    +

    444

    +
    +

    Eyeball

    +
    +

    21

    +
    +

    E90

    +
    +

    101014.09

    +
    +

    BXD95

    +
    +

    Female

    +
    +

    536

    +
    +

    Eyeball

    +
    +

    22

    +
    +

    E99

    +
    +

    121214.15

    +
    +

    BXD70

    +
    +

    Female

    +
    +

    357

    +
    +

    Eyeball

    +
    +

    23

    +
    +

    E100

    +
    +

    121214.16

    +
    +

    BXD70

    +
    +

    Female

    +
    +

    357

    +
    +

    Eyeball

    +
    +

    24

    +
    +

    E124

    +
    +

    042214.18

    +
    +

    D2B6F1

    +
    +

    Male

    +
    +

    397

    +
    +

    Eyeball

    +
    +

    25

    +
    +

    E152

    +
    +

    050912.04

    +
    +

    BXD48a

    +
    +

    Female

    +
    +

    419

    +
    +

    Eyeball

    +
    +

    26

    +
    +

    E158

    +
    +

    101713.02

    +
    +

    BXD100

    +
    +

    Female

    +
    +

    374

    +
    +

    Eyeball

    +
    +

    27

    +
    +

    E224

    +
    +

    021313.26

    +
    +

    BXD84

    +
    +

    Female

    +
    +

    385

    +
    +

    Eyeball

    +
    +

    28

    +
    +

    E264

    +
    +

    *050318.12

    +
    +

    BXD69

    +
    +

    Male

    +
    +

    387

    +
    +

    Eyeball

    +
    +

    29

    +
    +

    E288

    +
    +

    *110918.106

    +
    +

    BXD211

    +
    +

    Male

    +
    +

    404

    +
    +

    Eyeball

    +
    +

    30

    +
    +

    E289

    +
    +

    *110918.105

    +
    +

    BXD211

    +
    +

    Female

    +
    +

    404

    +
    +

    Eyeball

    +
    +

    31

    +
    +

    E290

    +
    +

    *100218.04

    +
    +

    BXD44

    +
    +

    Female

    +
    +

    530

    +
    +

    Eyeball

    +
    +

    32

    +
    +

    E291

    +
    +

    *100218.05

    +
    +

    BXD44

    +
    +

    Male

    +
    +

    530

    +
    +

    Eyeball

    +
    +

    33

    +
    +

    E292

    +
    +

    *100218.18

    +
    +

    BXD68

    +
    +

    Female

    +
    +

    516

    +
    +

    Eyeball

    +
    +

    34

    +
    +

    E293

    +
    +

    *100218.20

    +
    +

    BXD68

    +
    +

    Male

    +
    +

    516

    +
    +

    Eyeball

    +
    +

    35

    +
    +

    E294

    +
    +

    *100218.36

    +
    +

    BXD84

    +
    +

    Female

    +
    +

    516

    +
    +

    Eyeball

    +
    +

    36

    +
    +

    E298

    +
    +

    *100218.73

    +
    +

    BXD184

    +
    +

    Female

    +
    +

    512

    +
    +

    Eyeball

    +
    +

    37

    +
    +

    E299

    +
    +

    *100218.74

    +
    +

    BXD184

    +
    +

    Male

    +
    +

    512

    +
    +

    Eyeball

    +
    +

    38

    +
    +

    E303

    +
    +

    AGE061218.98

    +
    +

    BXD177

    +
    +

    Female

    +
    +

    364

    +
    +

    Eyeball

    +
    +

    39

    +
    +

    E304

    +
    +

    AGE061218.108

    +
    +

    BXD195

    +
    +

    Male

    +
    +

    386

    +
    +

    Eyeball

    +
    +

    40

    +
    +

    E306

    +
    +

    AGE061218.107

    +
    +

    BXD195

    +
    +

    Female

    +
    +

    386

    +
    +

    Eyeball

    +
    +

    41

    +
    +

    E308

    +
    +

    AGE061218.99

    +
    +

    BXD177

    +
    +

    Male

    +
    +

    364

    +
    +

    Eyeball

    +
    +

    42

    +
    +

    E310

    +
    +

    AGE061218.90

    +
    +

    BXD168

    +
    +

    Male

    +
    +

    538

    +
    +

    Eyeball

    +
    +

    43

    +
    +

    E311

    +
    +

    AGE061218.85

    +
    +

    BXD160

    +
    +

    Male

    +
    +

    390

    +
    +

    Eyeball

    +
    +

    44

    +
    +

    E312

    +
    +

    AGE061218.71

    +
    +

    BXD150

    +
    +

    Male

    +
    +

    398

    +
    +

    Eyeball

    +
    +

    45

    +
    +

    E313

    +
    +

    AGE061218.22

    +
    +

    BXD34

    +
    +

    Male

    +
    +

    369

    +
    +

    Eyeball

    +
    +

    46

    +
    +

    E314

    +
    +

    AGE061218.21

    +
    +

    BXD34

    +
    +

    Female

    +
    +

    369

    +
    +

    Eyeball

    +
    +

    47

    +
    +

    E331

    +
    +

    *110918.07

    +
    +

    BXD28

    +
    +

    Male

    +
    +

    366

    +
    +

    Eyeball

    +
    +

    48

    +
    +

    E334

    +
    +

    *110918.02

    +
    +

    BXD18

    +
    +

    Male

    +
    +

    452

    +
    +

    Eyeball

    +
    +

    49

    +
    +

    E335

    +
    +

    *110918.01

    +
    +

    BXD18

    +
    +

    Female

    +
    +

    452

    +
    +

    Eyeball

    +
    +

    50

    +
    +

    E340

    +
    +

    *110918.51

    +
    +

    BXD98

    +
    +

    Male

    +
    +

    359

    +
    +

    Eyeball

    +
    +

    51

    +
    +

    E341

    +
    +

    *110918.50

    +
    +

    BXD98

    +
    +

    Female

    +
    +

    359

    +
    +

    Eyeball

    +
    +

    52

    +
    +

    E344

    +
    +

    *083019.05

    +
    +

    BXD9

    +
    +

    Female

    +
    +

    373

    +
    +

    Eyeball

    +
    +

    53

    +
    +

    E345

    +
    +

    *083019.06

    +
    +

    BXD9

    +
    +

    Male

    +
    +

    373

    +
    +

    Eyeball

    +
    +

    54

    +
    +

    E346

    +
    +

    *083019.22

    +
    +

    BXD31

    +
    +

    Male

    +
    +

    391

    +
    +

    Eyeball

    +
    +

    55

    +
    +

    E347

    +
    +

    *083019.23

    +
    +

    BXD43

    +
    +

    Female

    +
    +

    391

    +
    +

    Eyeball

    +
    +

    56

    +
    +

    E349

    +
    +

    *083019.26

    +
    +

    BXD43

    +
    +

    Male

    +
    +

    367

    +
    +

    Eyeball

    +
    +

    57

    +
    +

    E350

    +
    +

    *083019.30

    +
    +

    BXD50

    +
    +

    Female

    +
    +

    408

    +
    +

    Eyeball

    +
    +

    58

    +
    +

    E351

    +
    +

    *083019.31

    +
    +

    BXD50

    +
    +

    Female

    +
    +

    408

    +
    +

    Eyeball

    +
    +

    59

    +
    +

    E352

    +
    +

    *083019.33

    +
    +

    BXD51

    +
    +

    Female

    +
    +

    368

    +
    +

    Eyeball

    +
    +

    60

    +
    +

    E353

    +
    +

    *083019.34

    +
    +

    BXD51

    +
    +

    Male

    +
    +

    368

    +
    +

    Eyeball

    +
    +

    61

    +
    +

    E354

    +
    +

    *083019.38

    +
    +

    BXD66

    +
    +

    Male

    +
    +

    430

    +
    +

    Eyeball

    +
    +

    62

    +
    +

    E355

    +
    +

    *083019.39

    +
    +

    BXD66

    +
    +

    Male

    +
    +

    430

    +
    +

    Eyeball

    +
    +

    63

    +
    +

    E356

    +
    +

    *083019.45

    +
    +

    BXD73

    +
    +

    Female

    +
    +

    451

    +
    +

    Eyeball

    +
    +

    64

    +
    +

    E357

    +
    +

    *083019.46

    +
    +

    BXD73

    +
    +

    Male

    +
    +

    451

    +
    +

    Eyeball

    +
    +

    65

    +
    +

    E358

    +
    +

    *083019.48

    +
    +

    BXD75

    +
    +

    Female

    +
    +

    369

    +
    +

    Eyeball

    +
    +

    66

    +
    +

    E359

    +
    +

    *083019.49

    +
    +

    BXD75

    +
    +

    Male

    +
    +

    369

    +
    +

    Eyeball

    +
    +

    67

    +
    +

    E360

    +
    +

    *083019.50

    +
    +

    BXD78

    +
    +

    Female

    +
    +

    432

    +
    +

    Eyeball

    +
    +

    68

    +
    +

    E361

    +
    +

    *083019.51

    +
    +

    BXD78

    +
    +

    Male

    +
    +

    432

    +
    +

    Eyeball

    +
    +

    69

    +
    +

    E363

    +
    +

    *083019.55

    +
    +

    BXD87

    +
    +

    Female

    +
    +

    444

    +
    +

    Eyeball

    +
    +

    70

    +
    +

    E364

    +
    +

    *083019.56

    +
    +

    BXD87

    +
    +

    Male

    +
    +

    444

    +
    +

    Eyeball

    +
    +

    71

    +
    +

    E365

    +
    +

    *083019.57

    +
    +

    BXD89

    +
    +

    Female

    +
    +

    446

    +
    +

    Eyeball

    +
    +

    72

    +
    +

    E366

    +
    +

    *083019.66

    +
    +

    BXD113

    +
    +

    Female

    +
    +

    366

    +
    +

    Eyeball

    +
    +

    73

    +
    +

    E367

    +
    +

    *083019.67

    +
    +

    BXD113

    +
    +

    Male

    +
    +

    366

    +
    +

    Eyeball

    +
    +

    74

    +
    +

    E368

    +
    +

    *090119.04

    +
    +

    BXD123

    +
    +

    Female

    +
    +

    441

    +
    +

    Eyeball

    +
    +

    75

    +
    +

    E369

    +
    +

    *090119.05

    +
    +

    BXD123

    +
    +

    Male

    +
    +

    441

    +
    +

    Eyeball

    +
    +

    76

    +
    +

    E370

    +
    +

    *090119.09

    +
    +

    BXD141

    +
    +

    Female

    +
    +

    370

    +
    +

    Eyeball

    +
    +

    77

    +
    +

    E371

    +
    +

    *090119.11

    +
    +

    BXD141

    +
    +

    Male

    +
    +

    370

    +
    +

    Eyeball

    +
    +

    78

    +
    +

    E372

    +
    +

    *090119.15

    +
    +

    BXD151

    +
    +

    Female

    +
    +

    439

    +
    +

    Eyeball

    +
    +

    79

    +
    +

    E373

    +
    +

    *090119.16

    +
    +

    BXD151

    +
    +

    Male

    +
    +

    439

    +
    +

    Eyeball

    +
    +

    80

    +
    +

    E374

    +
    +

    *090119.18

    +
    +

    BXD152

    +
    +

    Female

    +
    +

    374

    +
    +

    Eyeball

    +
    +

    81

    +
    +

    E375

    +
    +

    *090119.19

    +
    +

    BXD152

    +
    +

    Male

    +
    +

    374

    +
    +

    Eyeball

    +
    +

    82

    +
    +

    E376

    +
    +

    *090119.20

    +
    +

    BXD154

    +
    +

    Female

    +
    +

    370

    +
    +

    Eyeball

    +
    +

    83

    +
    +

    E377

    +
    +

    *090119.22

    +
    +

    BXD154

    +
    +

    Male

    +
    +

    370

    +
    +

    Eyeball

    +
    +

    84

    +
    +

    E378

    +
    +

    *090119.24

    +
    +

    BXD155

    +
    +

    Female

    +
    +

    379

    +
    +

    Eyeball

    +
    +

    85

    +
    +

    E379

    +
    +

    *090119.25

    +
    +

    BXD155

    +
    +

    Male

    +
    +

    379

    +
    +

    Eyeball

    +
    +

    86

    +
    +

    E380

    +
    +

    *090119.27

    +
    +

    BXD161

    +
    +

    Female

    +
    +

    376

    +
    +

    Eyeball

    +
    +

    87

    +
    +

    E381

    +
    +

    *090119.28

    +
    +

    BXD161

    +
    +

    Male

    +
    +

    376

    +
    +

    Eyeball

    +
    +

    88

    +
    +

    E382

    +
    +

    *090119.34

    +
    +

    BXD170

    +
    +

    Male

    +
    +

    438

    +
    +

    Eyeball

    +
    +

    89

    +
    +

    E383

    +
    +

    *090119.36

    +
    +

    BXD171

    +
    +

    Female

    +
    +

    370

    +
    +

    Eyeball

    +
    +

    90

    +
    +

    E384

    +
    +

    *090119.37

    +
    +

    BXD171

    +
    +

    Male

    +
    +

    370

    +
    +

    Eyeball

    +
    +

    91

    +
    +

    E385

    +
    +

    *090119.41

    +
    +

    BXD178

    +
    +

    Female

    +
    +

    493

    +
    +

    Eyeball

    +
    +

    92

    +
    +

    E386

    +
    +

    *090119.42

    +
    +

    BXD178

    +
    +

    Female

    +
    +

    493

    +
    +

    Eyeball

    +
    +

    93

    +
    +

    E387

    +
    +

    *090119.44

    +
    +

    BXD180

    +
    +

    Female

    +
    +

    375

    +
    +

    Eyeball

    +
    +

    94

    +
    +

    E390

    +
    +

    *090119.48

    +
    +

    BXD190

    +
    +

    Male

    +
    +

    374

    +
    +

    Eyeball

    +
    +

    95

    +
    +

    E391

    +
    +

    *090119.52

    +
    +

    BXD197

    +
    +

    Female

    +
    +

    433

    +
    +

    Eyeball

    +
    +

    96

    +
    +

    E392

    +
    +

    *090119.53

    +
    +

    BXD197

    +
    +

    Male

    +
    +

    433

    +
    +

    Eyeball

    +
    +

    97

    +
    +

    E395

    +
    +

    *090119.57

    +
    +

    BXD202

    +
    +

    Female

    +
    +

    427

    +
    +

    Eyeball

    +
    +

    98

    +
    +

    E399

    +
    +

    *090119.67

    +
    +

    BXD218

    +
    +

    Female

    +
    +

    412

    +
    +

    Eyeball

    +
    +

    99

    +
    +

    E400

    +
    +

    *090119.68

    +
    +

    BXD218

    +
    +

    Male

    +
    +

    412

    +
    +

    Eyeball

    +
    +

    100

    +
    +

    E448

    +
    +

    *100819.101

    +
    +

    BXD111

    +
    +

    Female

    +
    +

    373

    +
    +

    Eyeball

    +
    +

    101

    +
    +

    E449

    +
    +

    *100819.102

    +
    +

    BXD111

    +
    +

    Male

    +
    +

    373

    +
    +

    Eyeball

    +
    +

    102

    +
    +

    E450

    +
    +

    *100819.104

    +
    +

    BXD122

    +
    +

    Female

    +
    +

    383

    +
    +

    Eyeball

    +
    +

    103

    +
    +

    E451

    +
    +

    *100819.105

    +
    +

    BXD122

    +
    +

    Male

    +
    +

    383

    +
    +

    Eyeball

    +
    +

    104

    +
    +

    E452

    +
    +

    *100819.107

    +
    +

    BXD124

    +
    +

    Female

    +
    +

    366

    +
    +

    Eyeball

    +
    +

    105

    +
    +

    E453

    +
    +

    *100819.108

    +
    +

    BXD124

    +
    +

    Male

    +
    +

    366

    +
    +

    Eyeball

    +
    +

    106

    +
    +

    E454

    +
    +

    *100819.110

    +
    +

    BXD125

    +
    +

    Female

    +
    +

    376

    +
    +

    Eyeball

    +
    +

    107

    +
    +

    E455

    +
    +

    *100819.111

    +
    +

    BXD125

    +
    +

    Male

    +
    +

    376

    +
    +

    Eyeball

    +
    +

    108

    +
    +

    E459

    +
    +

    *100819.131

    +
    +

    BXD172

    +
    +

    Female

    +
    +

    375

    +
    +

    Eyeball

    +
    +

    109

    +
    +

    E460

    +
    +

    *100819.132

    +
    +

    BXD172

    +
    +

    Male

    +
    +

    375

    +
    +

    Eyeball

    +
    +

    110

    +
    +

    E482

    +
    +

    *052220.14

    +
    +

    BXD71

    +
    +

    Female

    +
    +

    396

    +
    +

    Eyeball

    +
    +

    111

    +
    +

    E483

    +
    +

    *052220.10

    +
    +

    BXD11

    +
    +

    Female

    +
    +

    379

    +
    +

    Eyeball

    +
    +

    112

    +
    +

    E484

    +
    +

    *052220.07

    +
    +

    BXD65

    +
    +

    Male

    +
    +

    528

    +
    +

    Eyeball

    +
    +

    113

    +
    +

    E485

    +
    +

    *052220.03

    +
    +

    BXD194

    +
    +

    Male

    +
    +

    396

    +
    +

    Eyeball

    +
    +

    114

    +
    +

    E486

    +
    +

    *052220.19

    +
    +

    BXD15

    +
    +

    Female

    +
    +

    415

    +
    +

    Eyeball

    +
    +

    115

    +
    +

    E487

    +
    +

    *052220.02

    +
    +

    BXD194

    +
    +

    Female

    +
    +

    396

    +
    +

    Eyeball

    +
    +

    116

    +
    +

    E488

    +
    +

    *052220.12

    +
    +

    BXD1

    +
    +

    Female

    +
    +

    429

    +
    +

    Eyeball

    +
    +

    117

    +
    +

    E489

    +
    +

    *052220.18

    +
    +

    BXD216

    +
    +

    Male

    +
    +

    401

    +
    +

    Eyeball

    +
    +

    118

    +
    +

    E490

    +
    +

    *052220.13

    +
    +

    BXD1

    +
    +

    Male

    +
    +

    429

    +
    +

    Eyeball

    +
    +

    119

    +
    +

    E494

    +
    +

    *052220.15

    +
    +

    BXD71

    +
    +

    Male

    +
    +

    396

    +
    +

    Eyeball

    +
    +

    120

    +
    +

    E496

    +
    +

    *052220.08

    +
    +

    BXD170

    +
    +

    Male

    +
    +

    360

    +
    +

    Eyeball

    +
    +

    121

    +
    +

    E498

    +
    +

    *052220.06

    +
    +

    BXD65

    +
    +

    Female

    +
    +

    528

    +
    +

    Eyeball

    +
    +

    122

    +
    +

    E499

    +
    +

    *052220.05

    +
    +

    C57BL/6J

    +
    +

    Male

    +
    +

    424

    +
    +

    Eyeball

    +
    +

    123

    +
    +

    E501

    +
    +

    *052220.21

    +
    +

    BXD73a

    +
    +

    Female

    +
    +

    408

    +
    +

    Eyeball

    +
    +

    124

    +
    +

    E502

    +
    +

    *052220.11

    +
    +

    BXD11

    +
    +

    Male

    +
    +

    379

    +
    +

    Eyeball

    +
    +

    125

    +
    +

    E503

    +
    +

    *052220.22

    +
    +

    DBA/2J-Gpnmb

    +
    +

    Female

    +
    +

    439

    +
    +

    Eyeball

    +
    +

    126

    +
    +

    E504

    +
    +

    *052220.20

    +
    +

    BXD15

    +
    +

    Male

    +
    +

    415

    +
    +

    Eyeball

    +
    +

    127

    +
    +

    E541

    +
    +

    042915.08

    +
    +

    BXD29

    +
    +

    Female

    +
    +

    478

    +
    +

    Eyeball

    +
    +

    128

    +
    +

    E542

    +
    +

    050115.01

    +
    +

    BXD65b

    +
    +

    Female

    +
    +

    415

    +
    +

    Eyeball

    +
    +

    129

    +
    +

    E543

    +
    +

    042915.07

    +
    +

    BXD29

    +
    +

    Female

    +
    +

    431

    +
    +

    Eyeball

    +
    +

    130

    +
    +

    E544

    +
    +

    042314.12

    +
    +

    B6D2F1

    +
    +

    Female

    +
    +

    364

    +
    +

    Eyeball

    +
    +

    131

    +
    +

    E548

    +
    +

    *061119.02

    +
    +

    C57BL/6J

    +
    +

    Female

    +
    +

    392

    +
    +

    Eyeball

    +
    +

    132

    +
    +

    E549

    +
    +

    *061119.03

    +
    +

    C57BL/6J

    +
    +

    Male

    +
    +

    392

    +
    +

    Eyeball

    +
    +

    133

    +
    +

    E551

    +
    +

    *061119.11

    +
    +

    DBA/2J

    +
    +

    Female

    +
    +

    392

    +
    +

    Eyeball

    +
    +

    134

    +
    +

    E552

    +
    +

    *061119.12

    +
    +

    DBA/2J

    +
    +

    Male

    +
    +

    392

    +
    +

    Eyeball

    +
    +

    135

    +
    +

    E554

    +
    +

    *061119.15

    +
    +

    DBA/2J

    +
    +

    Male

    +
    +

    392

    +
    +

    Eyeball

    +
    +

    136

    +
    +

    E556

    +
    +

    *061119.22

    +
    +

    DBA/2J

    +
    +

    Male

    +
    +

    380

    +
    +

    Eyeball

    +
    +

    137

    +
    +

    E561

    +
    +

    *061219.12

    +
    +

    BXD27

    +
    +

    Female

    +
    +

    494

    +
    +

    Eyeball

    +
    +

    138

    +
    +

    E564

    +
    +

    *061219.14

    +
    +

    BXD27

    +
    +

    Male

    +
    +

    494

    +
    +

    Eyeball

    +
    +

    139

    +
    +

    E565

    +
    +

    *060419.04

    +
    +

    BXD32

    +
    +

    Female

    +
    +

    425

    +
    +

    Eyeball

    +
    +

    140

    +
    +

    E566

    +
    +

    *060419.05

    +
    +

    BXD32

    +
    +

    Male

    +
    +

    425

    +
    +

    Eyeball

    +
    +

    141

    +
    +

    E567

    +
    +

    *070919.01

    +
    +

    BXD86

    +
    +

    Female

    +
    +

    381

    +
    +

    Eyeball

    +
    +

    142

    +
    +

    E569

    +
    +

    *070919.03

    +
    +

    BXD86

    +
    +

    Male

    +
    +

    381

    +
    +

    Eyeball

    +
    +

    143

    +
    +

    E576

    +
    +

    *072519.11

    +
    +

    BXD191

    +
    +

    Male

    +
    +

    477

    +
    +

    Eyeball

    +
    +

    144

    +
    +

    E577

    +
    +

    *072519.09

    +
    +

    BXD190

    +
    +

    Male

    +
    +

    434

    +
    +

    Eyeball

    +
    +

    145

    +
    +

    E582

    +
    +

    *073019.16

    +
    +

    BXD216

    +
    +

    Male

    +
    +

    459

    +
    +

    Eyeball

    +
    +

    146

    +
    +

    E591

    +
    +

    *061319.04

    +
    +

    BXD48

    +
    +

    Female

    +
    +

    425

    +
    +

    Eyeball

    +
    +

    147

    +
    +

    E592

    +
    +

    *061319.05

    +
    +

    BXD48

    +
    +

    Male

    +
    +

    425

    +
    +

    Eyeball

    +
    +

    148

    +
    +

    E593

    +
    +

    *061319.21

    +
    +

    BXD61

    +
    +

    Male

    +
    +

    459

    +
    +

    Eyeball

    +
    +

    149

    +
    +

    E600

    +
    +

    *050318.10

    +
    +

    BXD69

    +
    +

    Female

    +
    +

    387

    +
    +

    Eyeball

    +
    +

    150

    +
    +

    E601

    +
    +

    *013020.53

    +
    +

    BXD102

    +
    +

    Male

    +
    +

    416

    +
    +

    Eyeball

    +
    +

    151

    +
    +

    E603

    +
    +

    *013020.25

    +
    +

    BXD65b

    +
    +

    Male

    +
    +

    505

    +
    +

    Eyeball

    +
    +

    152

    +
    +

    E605

    +
    +

    *013020.54

    +
    +

    BXD102

    +
    +

    Female

    +
    +

    416

    +
    +

    Eyeball

    +
    +

    153

    +
    +

    E620

    +
    +

    *012420.26

    +
    +

    BXD128a

    +
    +

    Male

    +
    +

    366

    +
    +

    Eyeball

    +
    +

    154

    +
    +

    E625

    +
    +

    *110918.54

    +
    +

    BXD101

    +
    +

    Male

    +
    +

    361

    +
    +

    Eyeball

    +
    +

    155

    +
    +

    E626

    +
    +

    *110918.53

    +
    +

    BXD101

    +
    +

    Female

    +
    +

    361

    +
    +

    Eyeball

    +
    +

    156

    +
    +

    E631

    +
    +

    *083019.14

    +
    +

    BXD16

    +
    +

    Female

    +
    +

    363

    +
    +

    Eyeball

    +
    +

    157

    +
    +

    E635

    +
    +

    *083019.35

    +
    +

    BXD61

    +
    +

    Male

    +
    +

    364

    +
    +

    Eyeball

    +
    +

    158

    +
    +

    E638

    +
    +

    *083019.60

    +
    +

    BXD90

    +
    +

    Female

    +
    +

    378

    +
    +

    Eyeball

    +
    +

    159

    +
    +

    E639

    +
    +

    *083019.62

    +
    +

    BXD90

    +
    +

    Male

    +
    +

    378

    +
    +

    Eyeball

    +
    +

    160

    +
    +

    E662

    +
    +

    *100819.153

    +
    +

    BXD202

    +
    +

    Male

    +
    +

    410

    +
    +

    Eyeball

    +
    +

    161

    +
    +

    E663

    +
    +

    *100819.157

    +
    +

    BXD205

    +
    +

    Female

    +
    +

    371

    +
    +

    Eyeball

    +
    +

    162

    +
    +

    E664

    +
    +

    *100819.158

    +
    +

    BXD205

    +
    +

    Male

    +
    +

    372

    +
    +

    Eyeball

    +
    +

    163

    +
    +

    E665

    +
    +

    *100819.163

    +
    +

    BXD213

    +
    +

    Female

    +
    +

    396

    +
    +

    Eyeball

    +
    +

    164

    +
    +

    E666

    +
    +

    *100819.164

    +
    +

    BXD213

    +
    +

    Male

    +
    +

    397

    +
    +

    Eyeball

    +
    +

    165

    +
    +

    E667

    +
    +

    *100819.168

    +
    +

    BXD223

    +
    +

    Female

    +
    +

    419

    +
    +

    Eyeball

    +
    +

    166

    +
    +

    E668

    +
    +

    *100819.169

    +
    +

    BXD223

    +
    +

    Male

    +
    +

    420

    +
    +

    Eyeball

    +
    +

    167

    +
    +

    E672

    +
    +

    *052920.10

    +
    +

    BXD83

    +
    +

    Male

    +
    +

    380

    +
    +

    Eyeball

    +
    +

    168

    +
    +

    E675

    +
    +

    *052920.13

    +
    +

    DBA/2J-Gpnmb

    +
    +

    Female

    +
    +

    452

    +
    +

    Eyeball

    +
    +

    169

    +
    +

    E679

    +
    +

    *052920.12

    +
    +

    DBA/2J-Gpnmb

    +
    +

    Female

    +
    +

    458

    +
    +

    Eyeball

    +
    +

    170

    +
    +

    E680

    +
    +

    *052920.01

    +
    +

    BXD43

    +
    +

    Female

    +
    +

    465

    +
    +

    Eyeball

    +
    +

    171

    +
    +

    E682

    +
    +

    *052920.02

    +
    +

    C57BL/6J

    +
    +

    Female

    +
    +

    433

    +
    +

    Eyeball

    +
    +

    172

    +
    +

    E685

    +
    +

    *052920.09

    +
    +

    BXD83

    +
    +

    Female

    +
    +

    379

    +
    +

    Eyeball

    +
    +

    173

    +
    +

    E699

    +
    +

    *072120.14

    +
    +

    BXD40

    +
    +

    Male

    +
    +

    458

    +
    +

    Eyeball

    +
    +

    174

    +
    +

    E709

    +
    +

    *072120.24

    +
    +

    BXD150

    +
    +

    Female

    +
    +

    433

    +
    +

    Eyeball

    +
    +

    175

    +
    +

    E712

    +
    +

    *072120.27

    +
    +

    BXD160

    +
    +

    Female

    +
    +

    367

    +
    +

    Eyeball

    +
    +

    176

    +
    +

    E726

    +
    +

    *072120.41

    +
    +

    BXD16

    +
    +

    Female

    +
    +

    367

    +
    +

    Eyeball

    +
    +

    177

    +
    +

    E733

    +
    +

    *072120.48

    +
    +

    BXD60

    +
    +

    Female

    +
    +

    558

    +
    +

    Eyeball

    +
    +

    178

    +
    +

    E735

    +
    +

    *072120.50

    +
    +

    BXD180

    +
    +

    Male

    +
    +

    473

    +
    +

    Eyeball

    +
    +

    179

    +
    +

    E738

    +
    +

    *072120.53

    +
    +

    BXD128a

    +
    +

    Female

    +
    +

    387

    +
    +

    Eyeball

    +
    +

    180

    +
    +

    E745

    +
    +

    *072120.60

    +
    +

    BXD199

    +
    +

    Female

    +
    +

    457

    +
    +

    Eyeball

    +
    +

    181

    +
    +

    E746

    +
    +

    *072120.61

    +
    +

    BXD199

    +
    +

    Male

    +
    +

    457

    +
    +

    Eyeball

    +
    +

    182

    +
    +

    E749

    +
    +

    *072120.64

    +
    +

    BXD2

    +
    +

    Female

    +
    +

    399

    +
    +

    Eyeball

    +
    +

    183

    +
    +

    E750

    +
    +

    *072120.65

    +
    +

    BXD2

    +
    +

    Male

    +
    +

    399

    +
    +

    Eyeball

    +
    +

    184

    +
    +

    E753

    +
    +

    *072120.68

    +
    +

    BXD169

    +
    +

    Female

    +
    +

    441

    +
    +

    Eyeball

    +
    +

    185

    +
    +

    E754

    +
    +

    *072120.69

    +
    +

    BXD169

    +
    +

    Male

    +
    +

    441

    +
    +

    Eyeball

    +
    +

    186

    +
    +

    E759

    +
    +

    *072120.72

    +
    +

    BXD187

    +
    +

    Female

    +
    +

    354

    +
    +

    Eyeball

    +
    +

    187

    +
    +

    E760

    +
    +

    *072120.73

    +
    +

    BXD187

    +
    +

    Male

    +
    +

    354

    +
    +

    Eyeball

    +
    + +

     

    diff --git a/general/datasets/Uthsc_bxdygeyernaseq_deseq2_rlog2_0422/experiment-design.rtf b/general/datasets/Uthsc_bxdygeyernaseq_deseq2_rlog2_0422/experiment-design.rtf new file mode 100644 index 0000000..e7afcee --- /dev/null +++ b/general/datasets/Uthsc_bxdygeyernaseq_deseq2_rlog2_0422/experiment-design.rtf @@ -0,0 +1,3 @@ +

    RNA Extraction

    + +

    Total RNA was extracted using MIRNEASY MINI KIT (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.  according to the manufacturer’s instructions. Approximately 30 mg of PFC tissue was added into a 2 ml tube containing 700ul QIAzol Lysis Reagent and one 5 mm stainless steel bead (Qiagen, Hilden, Germany). The tissue was homogenized for 2 minutes in a Tissue Lyser II (Qiagen, Hilden, Germany) with a speed frequency of 30 r followed by incubating for 5 minutes.140 µl chloroform was added into the homogenate, shaken vigorously for 15 seconds, and centrifuged for 15 minutes at 12,000 x g at 4 â„ƒ. 280 µl upper aqueous was then transferred into a new collection tube containing 500 µl 100% ethanol. The mixture was loaded into a RNeasy mini‐spin column (Qiagen, Valencia, CA, USA), once with Buffer RWT and twice with Buffer RPE purification. All RNA had been verified by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA with OD260/280 > 1.8 and RIN > 7.0 were used for library preparation

    diff --git a/general/datasets/Uthsc_bxdygeyernaseq_deseq2_rlog2_0422/notes.rtf b/general/datasets/Uthsc_bxdygeyernaseq_deseq2_rlog2_0422/notes.rtf new file mode 100644 index 0000000..d622df7 --- /dev/null +++ b/general/datasets/Uthsc_bxdygeyernaseq_deseq2_rlog2_0422/notes.rtf @@ -0,0 +1 @@ +

    UTHSC BXD Young Aged Eye RNA-Seq (Apr22) DESeq2 rlog2

    diff --git a/general/datasets/Uthsc_bxdygeyernaseq_deseq2_rlog2_0422/processing.rtf b/general/datasets/Uthsc_bxdygeyernaseq_deseq2_rlog2_0422/processing.rtf new file mode 100644 index 0000000..7ddb89f --- /dev/null +++ b/general/datasets/Uthsc_bxdygeyernaseq_deseq2_rlog2_0422/processing.rtf @@ -0,0 +1,9 @@ +

    Generation of RNA-seq data

    + +

    1 µg of RNA was used for cDNA library construction at Novogene using an NEBNext® Ultra RNA Library Prep Kit for Illumina® (cat# E7420S, New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s protocol. Briefly, mRNA was enriched using oligo(dT) beads followed by two rounds of purification and fragmented randomly by adding fragmentation buffer. The first strand cDNA was synthesized using random hexamers primer, after which a custom second-strand synthesis buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H and DNA polymerase I were added to generate the second strand (ds cDNA). After a series of terminal repair, poly-adenylation, and sequencing adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and quantitative PCR. Size distribution was analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Qualified libraries were sequenced on an Illumina Novaseq Platform (Illumina, San Diego, CA, USA) using a paired-end 150 run (2×150 bases). An average of 40 million raw reads were generated from each library.

    + +

     

    + +

    Read mapping and normalization

    + +

    Mus musculus (mouse) reference genome (mm11 Mus_musculus.GRCm39, release 104) and gene model annotation files were downloaded from the Ensembl genome browser (https://useast.ensembl.org/). Rows with no gene symbol name were deleted. Indices of the reference genome were  built using STAR version 2.5.2b and paired-end reads were aligned to the reference genome. FeatureCount from package RsubRead, version 1.32.4, was used to count the number of read mapped to each gene. Raw counts were then normalized and log2 transformed using function rlogTransformation from the DESeq2 package (version 1.16.1) and an increment was added to the normalized values to make all values positive.

    diff --git a/general/datasets/Uthsc_bxdygeyernaseq_deseq2_rlog2_0422/tissue.rtf b/general/datasets/Uthsc_bxdygeyernaseq_deseq2_rlog2_0422/tissue.rtf new file mode 100644 index 0000000..126ab9f --- /dev/null +++ b/general/datasets/Uthsc_bxdygeyernaseq_deseq2_rlog2_0422/tissue.rtf @@ -0,0 +1,3 @@ +

    Tissue Harvest 

    + +

    The animals were sacrificed under saturated isoflurane. Eyeballs from the animals were dissected and stored at −80°C until RNA extraction. 

    diff --git a/general/datasets/Uthsc_emsr_all_affymta1_mar17/specifics.rtf b/general/datasets/Uthsc_emsr_all_affymta1_mar17/specifics.rtf new file mode 100644 index 0000000..4f2baa1 --- /dev/null +++ b/general/datasets/Uthsc_emsr_all_affymta1_mar17/specifics.rtf @@ -0,0 +1 @@ +All Treatments \ No newline at end of file diff --git a/general/datasets/Uthsc_emsr_all_affymta1_mar17/summary.rtf b/general/datasets/Uthsc_emsr_all_affymta1_mar17/summary.rtf new file mode 100644 index 0000000..e320185 --- /dev/null +++ b/general/datasets/Uthsc_emsr_all_affymta1_mar17/summary.rtf @@ -0,0 +1 @@ +

    Info File in progress.

    diff --git a/general/datasets/Uthsc_emsr_et_affymta1_mar17/specifics.rtf b/general/datasets/Uthsc_emsr_et_affymta1_mar17/specifics.rtf new file mode 100644 index 0000000..971c8e2 --- /dev/null +++ b/general/datasets/Uthsc_emsr_et_affymta1_mar17/specifics.rtf @@ -0,0 +1 @@ +Ethanol Treatment \ No newline at end of file diff --git a/general/datasets/Uthsc_emsr_et_affymta1_mar17/summary.rtf b/general/datasets/Uthsc_emsr_et_affymta1_mar17/summary.rtf new file mode 100644 index 0000000..e320185 --- /dev/null +++ b/general/datasets/Uthsc_emsr_et_affymta1_mar17/summary.rtf @@ -0,0 +1 @@ +

    Info File in progress.

    diff --git a/general/datasets/Uthsc_emsr_etst_affymta1_mar17/specifics.rtf b/general/datasets/Uthsc_emsr_etst_affymta1_mar17/specifics.rtf new file mode 100644 index 0000000..1c7602b --- /dev/null +++ b/general/datasets/Uthsc_emsr_etst_affymta1_mar17/specifics.rtf @@ -0,0 +1 @@ +Ethanol-Stress Treatment \ No newline at end of file diff --git a/general/datasets/Uthsc_emsr_etst_affymta1_mar17/summary.rtf b/general/datasets/Uthsc_emsr_etst_affymta1_mar17/summary.rtf new file mode 100644 index 0000000..e320185 --- /dev/null +++ b/general/datasets/Uthsc_emsr_etst_affymta1_mar17/summary.rtf @@ -0,0 +1 @@ +

    Info File in progress.

    diff --git a/general/datasets/Uthsc_emsr_sal_affymta1_mar17/specifics.rtf b/general/datasets/Uthsc_emsr_sal_affymta1_mar17/specifics.rtf new file mode 100644 index 0000000..84f5f30 --- /dev/null +++ b/general/datasets/Uthsc_emsr_sal_affymta1_mar17/specifics.rtf @@ -0,0 +1 @@ +Saline Treatment \ No newline at end of file diff --git a/general/datasets/Uthsc_emsr_sal_affymta1_mar17/summary.rtf b/general/datasets/Uthsc_emsr_sal_affymta1_mar17/summary.rtf new file mode 100644 index 0000000..e320185 --- /dev/null +++ b/general/datasets/Uthsc_emsr_sal_affymta1_mar17/summary.rtf @@ -0,0 +1 @@ +

    Info File in progress.

    diff --git a/general/datasets/Uthsc_emsr_st_affymta1_mar17/specifics.rtf b/general/datasets/Uthsc_emsr_st_affymta1_mar17/specifics.rtf new file mode 100644 index 0000000..78e1f39 --- /dev/null +++ b/general/datasets/Uthsc_emsr_st_affymta1_mar17/specifics.rtf @@ -0,0 +1 @@ +Stress Treatment \ No newline at end of file diff --git a/general/datasets/Uthsc_emsr_st_affymta1_mar17/summary.rtf b/general/datasets/Uthsc_emsr_st_affymta1_mar17/summary.rtf new file mode 100644 index 0000000..e320185 --- /dev/null +++ b/general/datasets/Uthsc_emsr_st_affymta1_mar17/summary.rtf @@ -0,0 +1 @@ +

    Info File in progress.

    diff --git a/general/datasets/Uthsc_gutexl_0414/cases.rtf b/general/datasets/Uthsc_gutexl_0414/cases.rtf new file mode 100644 index 0000000..e3e9e26 --- /dev/null +++ b/general/datasets/Uthsc_gutexl_0414/cases.rtf @@ -0,0 +1,1696 @@ +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexCaseIDStrainSexCoat ColorDate of BirthGenerationSacrifice DateAgeRNA
    + conc.(ug/ul)
    RNA Purity
    + 260/280
    RNA Integrity Number RINRun ChipNotes
    1081910.14B6D2F1Mblack06/10/2010 08/18/2010690.52.008.40y 
    2081910.17B6D2F1Mblack06/10/2010 08/18/2010690.92.008.60  
    3081910.18B6D2F1Fblack06/10/2010 08/18/2010690.31.809.30y 
    4081910.09D2B6F1Fblack06/02/2010 08/18/2010770.72.009.00y 
    5081910.23D2B6F1Mblack06/02/2010 08/18/20107710.22.028.50y 
    6081910.12C57BL/6JFblack06/02/2010 08/18/2010770.61.90n/ay 
    7081910.25C57BL/6JMblack06/02/2010 08/18/2010773.42.03 y 
    8081910.39C57BL/6JFblack06/02/2010 08/18/2010772.301.998.50y 
    9081910.41C57BL/6JMblack06/18/2010 08/18/2010612.202.028.60y 
    10081910.29DBA/2JFdilute brown DBA06/02/2010 08/18/2010772.92.038.50yneed one more female
    11081910.31DBA/2JMdilute brown DBA06/11/2010 08/18/2010688.62.068.00y 
    12081910.43DBA/2JMdilute brown DBA05/06/2010 08/18/20101042.302.019.30y 
    13081810.08BXD1Mdilute brown DBA05/24/201014208/17/2010850.61.928.50y 
    14081810.13BXD1Fdilute brown DBA06/07/201013908/17/2010710.7 9.00y 
    15081710.91BXD11Mblack06/02/201013708/17/2010760.71.938.20y 
    16081710.97BXD11Fblack05/22/201013608/17/2010871.01.958.90y 
    17081810.23BXD12Mgray06/01/201012208/17/2010770.92.008.00y 
    18081810.44BXD12Fgray06/01/201012208/18/2010780.81.938.30y 
    19081810.33BXD14Fblack05/29/201014208/17/2010801.21.978.10y 
    20081810.52BXD14Mblack05/29/201014208/18/2010810.41.909.00y 
    21081810.19BXD24Fbrown05/24/20109008/17/2010850.31.909.10yThis strain comes from UTHSC colony since 2008. So they are probably blind.
    22081810.42BXD24Mbrown05/24/20109008/17/2010850.72.008.50yThis strain comes from UTHSC colony since 2008. So they are probably blind.
    23081710.99BXD27Mdilute brown DBA06/05/201016208/17/2010731.31.958.40yneed one more female
    24081810.04BXD29Mgray06/07/20102508/17/2010710.51.918.40y 
    25081810.10BXD29Fgray06/07/20102508/17/2010710.61.978.70y 
    26081810.18BXD31Mblack06/05/201013008/17/2010730.51.888.70y 
    27081810.40BXD31Fblack06/05/201013008/17/2010731.12.007.00y 
    28081610.76BXD32Fblack05/29/201011608/18/2010813.82.059.10yneed one more male
    29081810.26BXD34Mblack06/02/20106308/17/2010761.31.988.20y 
    30081810.29BXD34Mblack06/02/20106308/17/2010760.71.938.50  
    31081810.46BXD34Fblack06/02/20106308/18/2010771.02.007.10y 
    32081810.36BXD39Mgray05/31/20106808/17/2010780.61.948.20y 
    33081810.55BXD39Fgray05/31/20106808/18/2010790.81.968.40y 
    34081910.03BXD40Fgray05/25/20105808/18/2010851.22.008.80y 
    35081910.06BXD40Mgray05/25/20105808/18/2010850.71.908.80y 
    36081810.31BXD42Fblack05/23/20106408/17/2010860.91.958.30y 
    37081810.48BXD42Mblack05/23/20106408/18/2010870.81.938.90y 
    38081710.47BXD43Mblack05/28/20104408/17/2010811.21.958.10y 
    39081710.48BXD43Fblack05/28/20104408/17/2010811.71.968.90y 
    40081710.49BXD43Fblack05/28/20104408/17/2010811.21.958.50  
    41081710.23BXD44Fbrown05/26/20104108/17/2010831.11.968.30y 
    42081710.24BXD44Fbrown05/26/20104108/17/2010830.91.928.70  
    43081710.30BXD44Mdilute brown DBA05/26/20104108/17/2010831.31.978.20y 
    44081710.31BXD44Mdilute brown DBA05/26/20104108/17/2010831.61.988.30  
    45081710.32BXD44Mdilute brown DBA05/26/20104108/17/2010830.81.958.80  
    46081710.51BXD45Mdilute brown DBA06/01/20103908/17/2010771.21.947.80y 
    47081710.54BXD45Fdilute brown DBA06/01/20103908/17/2010771.01.947.30y 
    48081610.14BXD48Fblack06/03/20104008/18/2010762.22.019.50y 
    49081610.17BXD48Mblack06/03/20104008/18/2010763.32.058.20y 
    50081710.29BXD49Mgray05/25/20104908/17/2010841.61.977.10y 
    51081710.34BXD49Fgray05/25/20102408/17/2010841.01.958.50y 
    52081610.29BXD50Fblack06/02/20103508/18/2010773.32.058.40y 
    53081610.32BXD50Mblack06/02/20103508/18/2010779.12.038.40y 
    54081610.36BXD56Mblack06/02/20103408/18/2010771.92.029.60y 
    55081610.77BXD56Fblack05/26/20103408/18/2010843.42.058.20y 
    56081610.80BXD56Fblack05/26/20103308/18/2010843.22.058.50  
    57081710.67BXD60Mbrown06/08/20104308/17/2010700.91.918.40yneed one more female
    58081810.83BXD62Mbrown05/27/20104108/18/2010830.51.958.10yneed one more female
    59081610.22BXD63Mdilute brown DBA06/02/20103108/18/2010776.92.078.50y 
    60081610.25BXD63Fdilute brown DBA06/02/20103108/18/2010772.22.008.70y 
    61081610.03BXD65Mbrown05/26/20103208/18/20108411.22.038.70y 
    62081610.11BXD65Fbrown05/26/20103208/18/2010843.12.039.10y 
    63081610.96BXD68Fbrown06/03/20103308/18/2010764.02.038.20y 
    64081610.99BXD68Mbrown06/03/20103308/18/2010763.42.097.80y 
    65081710.71BXD69Mdilute brown DBA05/29/20104108/17/2010801.31.967.90y 
    66081710.78BXD69Fdilute brown DBA06/09/20104208/17/2010690.81.908.50y 
    67081610.85BXD70Mdilute brown DBA06/03/20103608/18/2010764.61.999.40y 
    68081610.92BXD70Fdilute brown DBA06/03/20103608/18/2010763.12.078.50y 
    69081910.33BXD71Fdilute brown DBA06/03/20103508/18/2010762.82.058.00y 
    70081910.38BXD71Mdilute brown DBA06/03/20103508/18/2010764.62.028.30y 
    71081710.81BXD73Fdilute brown DBA05/26/20104408/17/2010830.81.908.60y 
    72081710.83BXD73Mdilute brown DBA05/26/20104108/17/2010830.81.918.40y 
    73081810.58BXD75Mdilute brown DBA06/03/20103908/18/2010760.81.958.70y 
    74081810.73BXD75Fdilute brown DBA06/03/20103908/18/2010760.71.929.30y 
    75081710.06BXD79Fgray05/23/20102408/18/2010872.92.048.60y 
    76081710.08BXD79Mgray05/23/20102408/18/2010872.12.019.40y 
    77081710.87BXD80Fdilute brown DBA06/05/20103308/17/2010731.21.958.20y 
    78081710.88BXD80Mdilute brown DBA06/05/20103308/17/2010730.81.918.00y 
    79081610.64BXD83Mdilute brown DBA05/29/20103208/18/2010812.52.048.50y 
    80081610.69BXD83Fdilute brown DBA05/29/20103208/18/2010812.72.058.20y 
    81081810.80BXD84Fdilute brown DBA06/03/20103108/18/2010760.91.968.80yneed one more male
    82081710.10BXD85Fdilute brown DBA06/05/20104008/18/2010743.72.047.90y 
    83081710.13BXD85Mdilute brown DBA06/05/20104008/18/2010742.92.068.40y 
    84081610.60BXD87Mblack05/27/20103508/18/2010833.42.048.30y 
    85081610.63BXD87Fblack05/27/20103508/18/2010833.12.058.40y 
    86081610.40BXD89Mdilute brown DBA05/28/20103608/18/2010822.62.058.50yneed one more female
    87081610.53BXD90Fdilute brown DBA05/28/20103908/18/2010829.12.068.60y 
    88081610.57BXD90Mdilute brown DBA05/28/20103908/18/2010822.12.029.40y 
    89081610.87BXD92AFbrown05/24/20104208/18/2010862.62.058.60y 
    90081610.93BXD92AMbrown05/21/20104208/18/2010898.52.078.80y 
    91081910.32BXD95Mdilute brown DBA06/03/20102508/18/2010762.72.059.20y 
    92081610.81BXD95Fdilute brown DBA06/03/20102508/18/2010763.22.078.70y 
    93081610.84BXD95Mdilute brown DBA06/03/20102508/18/20107613.31.977.70  
    94081610.47BXD97Fbrown06/08/20103508/18/2010712.32.009.10yneed one more male
    95081610.06BXD99Fdilute brown DBA06/02/20102808/18/2010774.22.019.00y 
    96081610.20BXD99Mdilute brown DBA06/02/20102808/18/2010772.22.008.90y 
    97081810.63BXD100Mblack05/27/20103008/18/2010830.71.908.60y 
    98081810.75BXD100Fblack05/27/20103008/18/2010830.91.958.10y 
    99081710.14BXD101Mgray05/21/20102708/18/2010892.92.058.90y 
    100081710.19BXD101Fgray05/21/20102708/18/2010893.22.068.30y 
    101081710.41BXD102Fbrown05/21/20102508/17/2010881.51.957.70y 
    102081710.45BXD102Mbrown05/21/20102508/17/2010881.21.977.70y 
    103081710.58BXD103Mdilute brown DBA05/31/20102108/17/2010781.11.948.40y 
    104081710.62BXD103Fdilute brown DBA05/31/20102108/17/2010780.61.918.40y 
    +
    +
    diff --git a/general/datasets/Uthsc_gutexl_0414/platform.rtf b/general/datasets/Uthsc_gutexl_0414/platform.rtf new file mode 100644 index 0000000..79244c6 --- /dev/null +++ b/general/datasets/Uthsc_gutexl_0414/platform.rtf @@ -0,0 +1 @@ +

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version]

    diff --git a/general/datasets/Uthsc_gutexl_0414/processing.rtf b/general/datasets/Uthsc_gutexl_0414/processing.rtf new file mode 100644 index 0000000..ebfa292 --- /dev/null +++ b/general/datasets/Uthsc_gutexl_0414/processing.rtf @@ -0,0 +1 @@ +

    This dataset includes Gene and Exon level RMA normalization.

    diff --git a/general/datasets/Uthsc_gutexl_0414/specifics.rtf b/general/datasets/Uthsc_gutexl_0414/specifics.rtf new file mode 100644 index 0000000..2400c03 --- /dev/null +++ b/general/datasets/Uthsc_gutexl_0414/specifics.rtf @@ -0,0 +1 @@ +

    Exon Level

    diff --git a/general/datasets/Uthsc_gutexl_0414/tissue.rtf b/general/datasets/Uthsc_gutexl_0414/tissue.rtf new file mode 100644 index 0000000..5653e30 --- /dev/null +++ b/general/datasets/Uthsc_gutexl_0414/tissue.rtf @@ -0,0 +1 @@ +

    Approximately two equal-sized segments of the small intestine were pooled per animal: one taken from the proximal jejunum and one from the distal ileum. We did generate a second data set (not in GeneNetwork) for different segments of the the GI tract from stomach to distal colon for C57BL/6J and DBA/2J parental strains. These additional data are available upon request from Drs. Dennis Black and Lu Lu.

    diff --git a/general/datasets/Uthsc_gutgl_0414/cases.rtf b/general/datasets/Uthsc_gutgl_0414/cases.rtf new file mode 100644 index 0000000..e3e9e26 --- /dev/null +++ b/general/datasets/Uthsc_gutgl_0414/cases.rtf @@ -0,0 +1,1696 @@ +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexCaseIDStrainSexCoat ColorDate of BirthGenerationSacrifice DateAgeRNA
    + conc.(ug/ul)
    RNA Purity
    + 260/280
    RNA Integrity Number RINRun ChipNotes
    1081910.14B6D2F1Mblack06/10/2010 08/18/2010690.52.008.40y 
    2081910.17B6D2F1Mblack06/10/2010 08/18/2010690.92.008.60  
    3081910.18B6D2F1Fblack06/10/2010 08/18/2010690.31.809.30y 
    4081910.09D2B6F1Fblack06/02/2010 08/18/2010770.72.009.00y 
    5081910.23D2B6F1Mblack06/02/2010 08/18/20107710.22.028.50y 
    6081910.12C57BL/6JFblack06/02/2010 08/18/2010770.61.90n/ay 
    7081910.25C57BL/6JMblack06/02/2010 08/18/2010773.42.03 y 
    8081910.39C57BL/6JFblack06/02/2010 08/18/2010772.301.998.50y 
    9081910.41C57BL/6JMblack06/18/2010 08/18/2010612.202.028.60y 
    10081910.29DBA/2JFdilute brown DBA06/02/2010 08/18/2010772.92.038.50yneed one more female
    11081910.31DBA/2JMdilute brown DBA06/11/2010 08/18/2010688.62.068.00y 
    12081910.43DBA/2JMdilute brown DBA05/06/2010 08/18/20101042.302.019.30y 
    13081810.08BXD1Mdilute brown DBA05/24/201014208/17/2010850.61.928.50y 
    14081810.13BXD1Fdilute brown DBA06/07/201013908/17/2010710.7 9.00y 
    15081710.91BXD11Mblack06/02/201013708/17/2010760.71.938.20y 
    16081710.97BXD11Fblack05/22/201013608/17/2010871.01.958.90y 
    17081810.23BXD12Mgray06/01/201012208/17/2010770.92.008.00y 
    18081810.44BXD12Fgray06/01/201012208/18/2010780.81.938.30y 
    19081810.33BXD14Fblack05/29/201014208/17/2010801.21.978.10y 
    20081810.52BXD14Mblack05/29/201014208/18/2010810.41.909.00y 
    21081810.19BXD24Fbrown05/24/20109008/17/2010850.31.909.10yThis strain comes from UTHSC colony since 2008. So they are probably blind.
    22081810.42BXD24Mbrown05/24/20109008/17/2010850.72.008.50yThis strain comes from UTHSC colony since 2008. So they are probably blind.
    23081710.99BXD27Mdilute brown DBA06/05/201016208/17/2010731.31.958.40yneed one more female
    24081810.04BXD29Mgray06/07/20102508/17/2010710.51.918.40y 
    25081810.10BXD29Fgray06/07/20102508/17/2010710.61.978.70y 
    26081810.18BXD31Mblack06/05/201013008/17/2010730.51.888.70y 
    27081810.40BXD31Fblack06/05/201013008/17/2010731.12.007.00y 
    28081610.76BXD32Fblack05/29/201011608/18/2010813.82.059.10yneed one more male
    29081810.26BXD34Mblack06/02/20106308/17/2010761.31.988.20y 
    30081810.29BXD34Mblack06/02/20106308/17/2010760.71.938.50  
    31081810.46BXD34Fblack06/02/20106308/18/2010771.02.007.10y 
    32081810.36BXD39Mgray05/31/20106808/17/2010780.61.948.20y 
    33081810.55BXD39Fgray05/31/20106808/18/2010790.81.968.40y 
    34081910.03BXD40Fgray05/25/20105808/18/2010851.22.008.80y 
    35081910.06BXD40Mgray05/25/20105808/18/2010850.71.908.80y 
    36081810.31BXD42Fblack05/23/20106408/17/2010860.91.958.30y 
    37081810.48BXD42Mblack05/23/20106408/18/2010870.81.938.90y 
    38081710.47BXD43Mblack05/28/20104408/17/2010811.21.958.10y 
    39081710.48BXD43Fblack05/28/20104408/17/2010811.71.968.90y 
    40081710.49BXD43Fblack05/28/20104408/17/2010811.21.958.50  
    41081710.23BXD44Fbrown05/26/20104108/17/2010831.11.968.30y 
    42081710.24BXD44Fbrown05/26/20104108/17/2010830.91.928.70  
    43081710.30BXD44Mdilute brown DBA05/26/20104108/17/2010831.31.978.20y 
    44081710.31BXD44Mdilute brown DBA05/26/20104108/17/2010831.61.988.30  
    45081710.32BXD44Mdilute brown DBA05/26/20104108/17/2010830.81.958.80  
    46081710.51BXD45Mdilute brown DBA06/01/20103908/17/2010771.21.947.80y 
    47081710.54BXD45Fdilute brown DBA06/01/20103908/17/2010771.01.947.30y 
    48081610.14BXD48Fblack06/03/20104008/18/2010762.22.019.50y 
    49081610.17BXD48Mblack06/03/20104008/18/2010763.32.058.20y 
    50081710.29BXD49Mgray05/25/20104908/17/2010841.61.977.10y 
    51081710.34BXD49Fgray05/25/20102408/17/2010841.01.958.50y 
    52081610.29BXD50Fblack06/02/20103508/18/2010773.32.058.40y 
    53081610.32BXD50Mblack06/02/20103508/18/2010779.12.038.40y 
    54081610.36BXD56Mblack06/02/20103408/18/2010771.92.029.60y 
    55081610.77BXD56Fblack05/26/20103408/18/2010843.42.058.20y 
    56081610.80BXD56Fblack05/26/20103308/18/2010843.22.058.50  
    57081710.67BXD60Mbrown06/08/20104308/17/2010700.91.918.40yneed one more female
    58081810.83BXD62Mbrown05/27/20104108/18/2010830.51.958.10yneed one more female
    59081610.22BXD63Mdilute brown DBA06/02/20103108/18/2010776.92.078.50y 
    60081610.25BXD63Fdilute brown DBA06/02/20103108/18/2010772.22.008.70y 
    61081610.03BXD65Mbrown05/26/20103208/18/20108411.22.038.70y 
    62081610.11BXD65Fbrown05/26/20103208/18/2010843.12.039.10y 
    63081610.96BXD68Fbrown06/03/20103308/18/2010764.02.038.20y 
    64081610.99BXD68Mbrown06/03/20103308/18/2010763.42.097.80y 
    65081710.71BXD69Mdilute brown DBA05/29/20104108/17/2010801.31.967.90y 
    66081710.78BXD69Fdilute brown DBA06/09/20104208/17/2010690.81.908.50y 
    67081610.85BXD70Mdilute brown DBA06/03/20103608/18/2010764.61.999.40y 
    68081610.92BXD70Fdilute brown DBA06/03/20103608/18/2010763.12.078.50y 
    69081910.33BXD71Fdilute brown DBA06/03/20103508/18/2010762.82.058.00y 
    70081910.38BXD71Mdilute brown DBA06/03/20103508/18/2010764.62.028.30y 
    71081710.81BXD73Fdilute brown DBA05/26/20104408/17/2010830.81.908.60y 
    72081710.83BXD73Mdilute brown DBA05/26/20104108/17/2010830.81.918.40y 
    73081810.58BXD75Mdilute brown DBA06/03/20103908/18/2010760.81.958.70y 
    74081810.73BXD75Fdilute brown DBA06/03/20103908/18/2010760.71.929.30y 
    75081710.06BXD79Fgray05/23/20102408/18/2010872.92.048.60y 
    76081710.08BXD79Mgray05/23/20102408/18/2010872.12.019.40y 
    77081710.87BXD80Fdilute brown DBA06/05/20103308/17/2010731.21.958.20y 
    78081710.88BXD80Mdilute brown DBA06/05/20103308/17/2010730.81.918.00y 
    79081610.64BXD83Mdilute brown DBA05/29/20103208/18/2010812.52.048.50y 
    80081610.69BXD83Fdilute brown DBA05/29/20103208/18/2010812.72.058.20y 
    81081810.80BXD84Fdilute brown DBA06/03/20103108/18/2010760.91.968.80yneed one more male
    82081710.10BXD85Fdilute brown DBA06/05/20104008/18/2010743.72.047.90y 
    83081710.13BXD85Mdilute brown DBA06/05/20104008/18/2010742.92.068.40y 
    84081610.60BXD87Mblack05/27/20103508/18/2010833.42.048.30y 
    85081610.63BXD87Fblack05/27/20103508/18/2010833.12.058.40y 
    86081610.40BXD89Mdilute brown DBA05/28/20103608/18/2010822.62.058.50yneed one more female
    87081610.53BXD90Fdilute brown DBA05/28/20103908/18/2010829.12.068.60y 
    88081610.57BXD90Mdilute brown DBA05/28/20103908/18/2010822.12.029.40y 
    89081610.87BXD92AFbrown05/24/20104208/18/2010862.62.058.60y 
    90081610.93BXD92AMbrown05/21/20104208/18/2010898.52.078.80y 
    91081910.32BXD95Mdilute brown DBA06/03/20102508/18/2010762.72.059.20y 
    92081610.81BXD95Fdilute brown DBA06/03/20102508/18/2010763.22.078.70y 
    93081610.84BXD95Mdilute brown DBA06/03/20102508/18/20107613.31.977.70  
    94081610.47BXD97Fbrown06/08/20103508/18/2010712.32.009.10yneed one more male
    95081610.06BXD99Fdilute brown DBA06/02/20102808/18/2010774.22.019.00y 
    96081610.20BXD99Mdilute brown DBA06/02/20102808/18/2010772.22.008.90y 
    97081810.63BXD100Mblack05/27/20103008/18/2010830.71.908.60y 
    98081810.75BXD100Fblack05/27/20103008/18/2010830.91.958.10y 
    99081710.14BXD101Mgray05/21/20102708/18/2010892.92.058.90y 
    100081710.19BXD101Fgray05/21/20102708/18/2010893.22.068.30y 
    101081710.41BXD102Fbrown05/21/20102508/17/2010881.51.957.70y 
    102081710.45BXD102Mbrown05/21/20102508/17/2010881.21.977.70y 
    103081710.58BXD103Mdilute brown DBA05/31/20102108/17/2010781.11.948.40y 
    104081710.62BXD103Fdilute brown DBA05/31/20102108/17/2010780.61.918.40y 
    +
    +
    diff --git a/general/datasets/Uthsc_gutgl_0414/platform.rtf b/general/datasets/Uthsc_gutgl_0414/platform.rtf new file mode 100644 index 0000000..79244c6 --- /dev/null +++ b/general/datasets/Uthsc_gutgl_0414/platform.rtf @@ -0,0 +1 @@ +

    [MoGene-1_0-st] Affymetrix Mouse Gene 1.0 ST Array [transcript (gene) version]

    diff --git a/general/datasets/Uthsc_gutgl_0414/processing.rtf b/general/datasets/Uthsc_gutgl_0414/processing.rtf new file mode 100644 index 0000000..ebfa292 --- /dev/null +++ b/general/datasets/Uthsc_gutgl_0414/processing.rtf @@ -0,0 +1 @@ +

    This dataset includes Gene and Exon level RMA normalization.

    diff --git a/general/datasets/Uthsc_gutgl_0414/specifics.rtf b/general/datasets/Uthsc_gutgl_0414/specifics.rtf new file mode 100644 index 0000000..d877bcf --- /dev/null +++ b/general/datasets/Uthsc_gutgl_0414/specifics.rtf @@ -0,0 +1 @@ +

    Gene Level

    diff --git a/general/datasets/Uthsc_gutgl_0414/tissue.rtf b/general/datasets/Uthsc_gutgl_0414/tissue.rtf new file mode 100644 index 0000000..5653e30 --- /dev/null +++ b/general/datasets/Uthsc_gutgl_0414/tissue.rtf @@ -0,0 +1 @@ +

    Approximately two equal-sized segments of the small intestine were pooled per animal: one taken from the proximal jejunum and one from the distal ileum. We did generate a second data set (not in GeneNetwork) for different segments of the the GI tract from stomach to distal colon for C57BL/6J and DBA/2J parental strains. These additional data are available upon request from Drs. Dennis Black and Lu Lu.

    diff --git a/general/datasets/Uthsc_huislets_mar17/platform.rtf b/general/datasets/Uthsc_huislets_mar17/platform.rtf new file mode 100644 index 0000000..10c6122 --- /dev/null +++ b/general/datasets/Uthsc_huislets_mar17/platform.rtf @@ -0,0 +1 @@ +

    Affymetrix Human Gene 2.0 ST Array

    diff --git a/general/datasets/Uthsc_huislets_mar17/summary.rtf b/general/datasets/Uthsc_huislets_mar17/summary.rtf new file mode 100644 index 0000000..e59b6f7 --- /dev/null +++ b/general/datasets/Uthsc_huislets_mar17/summary.rtf @@ -0,0 +1 @@ +

    Info file in progress...

    diff --git a/general/datasets/Uthsc_ilm_bxd_hipp_noeb_0216/notes.rtf b/general/datasets/Uthsc_ilm_bxd_hipp_noeb_0216/notes.rtf new file mode 100644 index 0000000..35247b6 --- /dev/null +++ b/general/datasets/Uthsc_ilm_bxd_hipp_noeb_0216/notes.rtf @@ -0,0 +1,23 @@ +

    Hippocampus 5 Conditions
    +Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    +Batch and Outlier Analysis on Partek Genomic Suite 6.6
    +ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    +K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    +Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    +Number of samples = 284
    +Number of probes = 46643

    + +
      +
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. +
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. +
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. +
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      + ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. +
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      + ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. +
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. +
    diff --git a/general/datasets/Uthsc_ilm_bxd_hipp_noeb_0216/summary.rtf b/general/datasets/Uthsc_ilm_bxd_hipp_noeb_0216/summary.rtf new file mode 100644 index 0000000..5aeb69c --- /dev/null +++ b/general/datasets/Uthsc_ilm_bxd_hipp_noeb_0216/summary.rtf @@ -0,0 +1,39 @@ +

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    + +

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    + +

    Restraint Stress Protocol

    + +
      +
    1. Weigh animals all animals to be tested and record body weight.
    2. +
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. +
    5. Place animals in immobilization tubes for 15 minutes.
    6. +
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. +
    9. Place each animal into zero-maze for 10 minutes.
    10. +
    11. Return animal to home cage.
    12. +
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. +
    + +

    Ethanol and saline injections
    +Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    + +

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    + +

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    + +

    Quality Control Data
    +Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    + +
      +
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. +
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. +
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. +
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. +
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. +
    + +

    Entered by Arthur Centeno, September 20, 2010.

    + +

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    + +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/Uthsc_ilm_bxd_hipp_noeb_0217/notes.rtf b/general/datasets/Uthsc_ilm_bxd_hipp_noeb_0217/notes.rtf new file mode 100644 index 0000000..35247b6 --- /dev/null +++ b/general/datasets/Uthsc_ilm_bxd_hipp_noeb_0217/notes.rtf @@ -0,0 +1,23 @@ +

    Hippocampus 5 Conditions
    +Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    +Batch and Outlier Analysis on Partek Genomic Suite 6.6
    +ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    +K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    +Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    +Number of samples = 284
    +Number of probes = 46643

    + +
      +
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. +
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. +
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. +
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      + ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. +
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      + ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. +
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. +
    diff --git a/general/datasets/Uthsc_ilm_bxd_hipp_noeb_0217/specifics.rtf b/general/datasets/Uthsc_ilm_bxd_hipp_noeb_0217/specifics.rtf new file mode 100644 index 0000000..340fc0e --- /dev/null +++ b/general/datasets/Uthsc_ilm_bxd_hipp_noeb_0217/specifics.rtf @@ -0,0 +1,392 @@ +

    NOE = No restraint stress and given an ethanol injection prior to sacrifice.

    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Index Array ID Condition Strain Sex Age
    14060001078_DNOEBXD34F75
    24060001088_ANOEBXD43F67
    34207851040_CNOEBXD43F65
    44207851040_DNOEBXD45F71
    54207851041_CNOEBXD45M68
    64068846016_DNOEBXD51F73
    74207851035_DNOEBXD51M85
    84060001003_CNOEBXD55F79
    94068846016_CNOEBXD55M68
    104060001071_ANOEBXD60F76
    114068846016_ANOEBXD60M67
    124060001003_DNOEBXD61M67
    134207851041_ANOEBXD61F70
    144060001075_FNOEBXD62M68
    154207851041_BNOEBXD62F67
    164207851035_ANOEBXD66F73
    174256265071_CNOEBXD66M63
    184207851035_BNOEBXD68M66
    194256265026_ENOEBXD68F67
    204060001010_FNOEBXD70M87
    214207851045_BNOEBXD70F69
    224256265057_ANOEBXD71F76
    234256265087_CNOEBXD71M75
    244256265042_BNOEBXD73F66
    254060001010_ENOEBXD75F70
    264256265042_CNOEBXD75M69
    274060001083_ANOEBXD83M69
    284256265071_DNOEBXD83F80
    294256265045_CNOEBXD84F68
    304207851058_ANOEBXD87F63
    314256265080_CNOEBXD87M65
    324207851058_BNOEBXD89M68
    334256265024_ANOEBXD89F71
    344256265024_BNOEBXD90F68
    354256265052_ANOEBXD90M74
    364256265023_ANOEBXD96M68
    374256265023_FNOEBXD96F68
    384256265044_ANOEBXD96M68
    394068846017_BNOEBXD97M67
    404068846017_ANOEBXD98F74
    414207851052_FNOEBXD98M71
    424068846021_FNOEBXD99M70
    434060001088_ENOEBXD100F61
    444060001088_DNOEBXD101M71
    454060001030_DNOEDBA/2JF79
    464256265069_FNOEDBA/2JF79
    +
    +
    diff --git a/general/datasets/Uthsc_ilm_bxd_hipp_noeb_0217/summary.rtf b/general/datasets/Uthsc_ilm_bxd_hipp_noeb_0217/summary.rtf new file mode 100644 index 0000000..5aeb69c --- /dev/null +++ b/general/datasets/Uthsc_ilm_bxd_hipp_noeb_0217/summary.rtf @@ -0,0 +1,39 @@ +

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    + +

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    + +

    Restraint Stress Protocol

    + +
      +
    1. Weigh animals all animals to be tested and record body weight.
    2. +
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. +
    5. Place animals in immobilization tubes for 15 minutes.
    6. +
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. +
    9. Place each animal into zero-maze for 10 minutes.
    10. +
    11. Return animal to home cage.
    12. +
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. +
    + +

    Ethanol and saline injections
    +Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    + +

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    + +

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    + +

    Quality Control Data
    +Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    + +
      +
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. +
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. +
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. +
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. +
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. +
    + +

    Entered by Arthur Centeno, September 20, 2010.

    + +

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    + +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/Uthsc_ilm_bxd_hipp_nosb_0217/notes.rtf b/general/datasets/Uthsc_ilm_bxd_hipp_nosb_0217/notes.rtf new file mode 100644 index 0000000..35247b6 --- /dev/null +++ b/general/datasets/Uthsc_ilm_bxd_hipp_nosb_0217/notes.rtf @@ -0,0 +1,23 @@ +

    Hippocampus 5 Conditions
    +Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    +Batch and Outlier Analysis on Partek Genomic Suite 6.6
    +ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    +K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    +Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    +Number of samples = 284
    +Number of probes = 46643

    + +
      +
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. +
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. +
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. +
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      + ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. +
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      + ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. +
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. +
    diff --git a/general/datasets/Uthsc_ilm_bxd_hipp_nosb_0217/specifics.rtf b/general/datasets/Uthsc_ilm_bxd_hipp_nosb_0217/specifics.rtf new file mode 100644 index 0000000..e60e427 --- /dev/null +++ b/general/datasets/Uthsc_ilm_bxd_hipp_nosb_0217/specifics.rtf @@ -0,0 +1,408 @@ +

    NOS = No restraint stress and given only saline injections prior to sacrifice.

    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Index Array ID Condition Strain Sex Age
    14207851040_BNOSBXD34M67
    24207851045_ENOSBXD43F75
    34256265009_DNOSBXD43M64
    44060001010_ANOSBXD45F81
    54068846016_ENOSBXD45M65
    64060001011_ANOSBXD51F85
    74060001082_BNOSBXD51M75
    84060001082_FNOSBXD55F62
    94256265070_BNOSBXD55M76
    104207851041_FNOSBXD60F76
    114256265071_BNOSBXD60M77
    124060001069_ANOSBXD61F78
    134207851051_CNOSBXD61M78
    144207851053_DNOSBXD62F67
    154256265043_ANOSBXD62M68
    164207851051_ENOSBXD66M63
    174256265074_CNOSBXD66F69
    184207851038_BNOSBXD68F69
    194256265044_CNOSBXD68M66
    204256265070_ANOSBXD70F61
    214256265083_DNOSBXD70M67
    224060001096_BNOSBXD71M83
    234256265071_ANOSBXD71F0
    244256265057_ENOSBXD73F66
    254256265074_ANOSBXD73M69
    264060001078_BNOSBXD75M70
    274207851058_ENOSBXD75F68
    284207851051_ANOSBXD83M67
    294256265023_BNOSBXD83F70
    304256265083_CNOSBXD84M69
    314256265085_FNOSBXD84M67
    324207851045_FNOSBXD87M68
    334068846021_BNOSBXD89F69
    344256265073_FNOSBXD89M69
    354256265080_ENOSBXD90M73
    364256265085_ENOSBXD90F73
    374060001010_BNOSBXD96M68
    384060001071_DNOSBXD96F69
    394207851052_CNOSBXD96M69
    404060001011_BNOSBXD97M68
    414060001082_ANOSBXD98F72
    424256265058_FNOSBXD98M70
    434256265051_FNOSBXD99M70
    444060001075_ENOSBXD100F63
    454207851035_ENOSBXD100M72
    464060001075_DNOSBXD101M78
    474060001030_FNOSDBA/2JM63
    484060001012_BNOSDBA/2JF81
    +
    +
    diff --git a/general/datasets/Uthsc_ilm_bxd_hipp_nosb_0217/summary.rtf b/general/datasets/Uthsc_ilm_bxd_hipp_nosb_0217/summary.rtf new file mode 100644 index 0000000..5aeb69c --- /dev/null +++ b/general/datasets/Uthsc_ilm_bxd_hipp_nosb_0217/summary.rtf @@ -0,0 +1,39 @@ +

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    + +

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    + +

    Restraint Stress Protocol

    + +
      +
    1. Weigh animals all animals to be tested and record body weight.
    2. +
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. +
    5. Place animals in immobilization tubes for 15 minutes.
    6. +
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. +
    9. Place each animal into zero-maze for 10 minutes.
    10. +
    11. Return animal to home cage.
    12. +
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. +
    + +

    Ethanol and saline injections
    +Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    + +

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    + +

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    + +

    Quality Control Data
    +Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    + +
      +
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. +
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. +
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. +
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. +
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. +
    + +

    Entered by Arthur Centeno, September 20, 2010.

    + +

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    + +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/Uthsc_ilm_bxd_hipp_rseb_0216/notes.rtf b/general/datasets/Uthsc_ilm_bxd_hipp_rseb_0216/notes.rtf new file mode 100644 index 0000000..35247b6 --- /dev/null +++ b/general/datasets/Uthsc_ilm_bxd_hipp_rseb_0216/notes.rtf @@ -0,0 +1,23 @@ +

    Hippocampus 5 Conditions
    +Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    +Batch and Outlier Analysis on Partek Genomic Suite 6.6
    +ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    +K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    +Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    +Number of samples = 284
    +Number of probes = 46643

    + +
      +
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. +
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. +
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. +
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      + ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. +
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      + ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. +
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. +
    diff --git a/general/datasets/Uthsc_ilm_bxd_hipp_rseb_0216/summary.rtf b/general/datasets/Uthsc_ilm_bxd_hipp_rseb_0216/summary.rtf new file mode 100644 index 0000000..5aeb69c --- /dev/null +++ b/general/datasets/Uthsc_ilm_bxd_hipp_rseb_0216/summary.rtf @@ -0,0 +1,39 @@ +

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    + +

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    + +

    Restraint Stress Protocol

    + +
      +
    1. Weigh animals all animals to be tested and record body weight.
    2. +
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. +
    5. Place animals in immobilization tubes for 15 minutes.
    6. +
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. +
    9. Place each animal into zero-maze for 10 minutes.
    10. +
    11. Return animal to home cage.
    12. +
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. +
    + +

    Ethanol and saline injections
    +Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    + +

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    + +

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    + +

    Quality Control Data
    +Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    + +
      +
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. +
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. +
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. +
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. +
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. +
    + +

    Entered by Arthur Centeno, September 20, 2010.

    + +

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    + +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/Uthsc_ilm_bxd_hipp_rseb_0217/notes.rtf b/general/datasets/Uthsc_ilm_bxd_hipp_rseb_0217/notes.rtf new file mode 100644 index 0000000..35247b6 --- /dev/null +++ b/general/datasets/Uthsc_ilm_bxd_hipp_rseb_0217/notes.rtf @@ -0,0 +1,23 @@ +

    Hippocampus 5 Conditions
    +Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    +Batch and Outlier Analysis on Partek Genomic Suite 6.6
    +ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    +K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    +Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    +Number of samples = 284
    +Number of probes = 46643

    + +
      +
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. +
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. +
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. +
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      + ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. +
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      + ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. +
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. +
    diff --git a/general/datasets/Uthsc_ilm_bxd_hipp_rseb_0217/specifics.rtf b/general/datasets/Uthsc_ilm_bxd_hipp_rseb_0217/specifics.rtf new file mode 100644 index 0000000..01586d5 --- /dev/null +++ b/general/datasets/Uthsc_ilm_bxd_hipp_rseb_0217/specifics.rtf @@ -0,0 +1,408 @@ +

    RSE = Restraint stress followed by an ethanol injection.

    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Index Array ID Condition Strain Sex Age
    14060001088_BRSEBXD34M71
    24256265042_ERSEBXD43M72
    34256265052_BRSEBXD43F73
    44256265051_ARSEBXD45F60
    54256265070_FRSEBXD45M67
    64207851041_DRSEBXD51F66
    74207851058_CRSEBXD51M85
    84207851035_FRSEBXD55M62
    94207851041_ERSEBXD55M62
    104060001082_DRSEBXD60F76
    114256265043_DRSEBXD60M67
    124256265043_ERSEBXD61F70
    134256265087_ERSEBXD61M70
    144060001010_CRSEBXD62F69
    154207851027_ARSEBXD62M67
    164207851027_CRSEBXD66M74
    174060001011_CRSEBXD66F79
    184207851049_DRSEBXD68F73
    194256265071_FRSEBXD68M62
    204060001011_DRSEBXD70M82
    214256265044_DRSEBXD70F69
    224060001078_FRSEBXD71M70
    234207851027_DRSEBXD71F76
    244060001075_ARSEBXD73M69
    254256265073_CRSEBXD73F68
    264256265063_ARSEBXD75F66
    274256265083_FRSEBXD75M69
    284256265083_ERSEBXD83F87
    294256265085_BRSEBXD83M73
    304256265071_ERSEBXD84F51
    314256265086_DRSEBXD84M68
    324256265085_ARSEBXD87F64
    334256265086_ERSEBXD87M69
    344256265026_ARSEBXD89F74
    354256265057_DRSEBXD89M68
    364060001075_BRSEBXD90F72
    374256265086_FRSEBXD90M70
    384207851014_ERSEBXD96F67
    394256265063_DRSEBXD96M64
    404060001096_CRSEBXD97M65
    414256265062_DRSEBXD97M65
    424256265023_ERSEBXD98M75
    434256265063_FRSEBXD98M71
    444256265058_ARSEBXD99M76
    454256265026_BRSEBXD100M95
    464207851040_ARSEBXD101F69
    474060001031_FRSEDBA/2JM76
    484256265069_CRSEDBA/2JF86
    +
    +
    diff --git a/general/datasets/Uthsc_ilm_bxd_hipp_rseb_0217/summary.rtf b/general/datasets/Uthsc_ilm_bxd_hipp_rseb_0217/summary.rtf new file mode 100644 index 0000000..5aeb69c --- /dev/null +++ b/general/datasets/Uthsc_ilm_bxd_hipp_rseb_0217/summary.rtf @@ -0,0 +1,39 @@ +

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    + +

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    + +

    Restraint Stress Protocol

    + +
      +
    1. Weigh animals all animals to be tested and record body weight.
    2. +
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. +
    5. Place animals in immobilization tubes for 15 minutes.
    6. +
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. +
    9. Place each animal into zero-maze for 10 minutes.
    10. +
    11. Return animal to home cage.
    12. +
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. +
    + +

    Ethanol and saline injections
    +Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    + +

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    + +

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    + +

    Quality Control Data
    +Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    + +
      +
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. +
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. +
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. +
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. +
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. +
    + +

    Entered by Arthur Centeno, September 20, 2010.

    + +

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    + +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/Uthsc_ilm_bxd_hipp_rssb_0216/notes.rtf b/general/datasets/Uthsc_ilm_bxd_hipp_rssb_0216/notes.rtf new file mode 100644 index 0000000..35247b6 --- /dev/null +++ b/general/datasets/Uthsc_ilm_bxd_hipp_rssb_0216/notes.rtf @@ -0,0 +1,23 @@ +

    Hippocampus 5 Conditions
    +Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    +Batch and Outlier Analysis on Partek Genomic Suite 6.6
    +ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    +K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    +Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    +Number of samples = 284
    +Number of probes = 46643

    + +
      +
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. +
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. +
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. +
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      + ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. +
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      + ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. +
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. +
    diff --git a/general/datasets/Uthsc_ilm_bxd_hipp_rssb_0216/summary.rtf b/general/datasets/Uthsc_ilm_bxd_hipp_rssb_0216/summary.rtf new file mode 100644 index 0000000..5aeb69c --- /dev/null +++ b/general/datasets/Uthsc_ilm_bxd_hipp_rssb_0216/summary.rtf @@ -0,0 +1,39 @@ +

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    + +

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    + +

    Restraint Stress Protocol

    + +
      +
    1. Weigh animals all animals to be tested and record body weight.
    2. +
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. +
    5. Place animals in immobilization tubes for 15 minutes.
    6. +
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. +
    9. Place each animal into zero-maze for 10 minutes.
    10. +
    11. Return animal to home cage.
    12. +
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. +
    + +

    Ethanol and saline injections
    +Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    + +

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    + +

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    + +

    Quality Control Data
    +Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    + +
      +
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. +
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. +
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. +
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. +
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. +
    + +

    Entered by Arthur Centeno, September 20, 2010.

    + +

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    + +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/Uthsc_ilm_bxd_hipp_rssb_0217/notes.rtf b/general/datasets/Uthsc_ilm_bxd_hipp_rssb_0217/notes.rtf new file mode 100644 index 0000000..35247b6 --- /dev/null +++ b/general/datasets/Uthsc_ilm_bxd_hipp_rssb_0217/notes.rtf @@ -0,0 +1,23 @@ +

    Hippocampus 5 Conditions
    +Illumina Rank Invariant Normalized; Log2 Transformed and Z-Scored
    +Batch and Outlier Analysis on Partek Genomic Suite 6.6
    +ANOVA Done with batch (BATCH 1 AND 2); Batch effect removed
    +K MOZHUI (KMOZHUI@UTHSC.EDU) 12-Nov-12
    +Outliers removed are: 4060001003_A, 4060001010_D, 4060001012_A, 4060001012_C, 4060001012_E, AND 4060001078_A
    +Number of samples = 284
    +Number of probes = 46643

    + +
      +
    1. UTHSC Hippocampus Illumina v6.1 5Trt (Nov12) RankInv LRS=(46 999)-> 1331
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=192
    2. +
    3. UTHSC Hippocampus Illumina v6.1 NON (Nov12) RankInv LRS=(46 999)-> 219
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=97.8
    4. +
    5. UTHSC Hippocampus Illumina v6.1 NOS (Nov12) RankInv LRS=(46 999)-> 404
      + ProbeSetID:ILM3440048 Gene:Cdkl2 Max LRS=106.6
    6. +
    7. UTHSC Hippocampus Illumina v6.1 NOE (Nov12) RankInv LRS=(46 999)-> 509
      + ProbeSetID:ILM5270066 Gene:MGC67181 Max LRS=151
    8. +
    9. UTHSC Hippocampus Illumina v6.1 RSS (Nov12) RankInv LRS=(46 999)-> 415
      + ProbeSetID:ILM5720687 Gene:Abhd16a Max LRS=121.7
    10. +
    11. UTHSC Hippocampus Illumina v6.1 RSE (Nov12) RankInv LRS=(46 999)-> 421
      + ProbeSetID:ILM6350725 Gene:C14orf119 Max LRS=144.1
    12. +
    diff --git a/general/datasets/Uthsc_ilm_bxd_hipp_rssb_0217/specifics.rtf b/general/datasets/Uthsc_ilm_bxd_hipp_rssb_0217/specifics.rtf new file mode 100644 index 0000000..6036ccb --- /dev/null +++ b/general/datasets/Uthsc_ilm_bxd_hipp_rssb_0217/specifics.rtf @@ -0,0 +1,400 @@ +

    RSS = short restraint stress (1 episode) followed by a saline injection.

    + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Index Array ID Condition Strain Sex Age
    14207851045_DRSSBXD34M71
    24060001083_BRSSBXD43M72
    34068846017_CRSSBXD43F73
    44060001083_FRSSBXD45F67
    54256265070_DRSSBXD45M79
    64060001096_FRSSBXD51M75
    74256265045_ERSSBXD51F88
    84256265043_BRSSBXD55F67
    94256265024_DRSSBXD60M76
    104256265045_FRSSBXD60F72
    114207851058_DRSSBXD61F70
    124256265083_BRSSBXD61M82
    134068846017_ERSSBXD62F61
    144256265080_FRSSBXD62M67
    154207851052_ARSSBXD66M74
    164256265044_BRSSBXD66F69
    174060001003_ERSSBXD68F77
    184060001075_CRSSBXD68M64
    194068846021_ERSSBXD70M68
    204207851038_CRSSBXD70F69
    214060001003_FRSSBXD71M78
    224060001011_ERSSBXD71F76
    234207851014_ARSSBXD73F68
    244207851014_DRSSBXD73M67
    254051964017_ARSSBXD75F73
    264256265058_BRSSBXD75F69
    274256265058_CRSSBXD83F75
    284256265074_FRSSBXD83M69
    294256265062_BRSSBXD84F73
    304256265086_BRSSBXD84M69
    314207851051_FRSSBXD87M69
    324256265083_ARSSBXD89F59
    334256265073_ARSSBXD90F68
    344256265087_FRSSBXD90M68
    354207851051_BRSSBXD96M69
    364256265085_CRSSBXD96F76
    374060001079_FRSSBXD97F65
    384256265080_ARSSBXD97M70
    394060001011_FRSSBXD98M72
    404256265086_ARSSBXD98F72
    414207851014_CRSSBXD99M73
    424256265086_CRSSBXD99F86
    434060001068_FRSSBXD100M79
    444207851051_DRSSBXD100F68
    454207851045_CRSSBXD101F66
    464060001012_FRSSDBA/2JF70
    474060001031_DRSSDBA/2JF70
    +
    +
    diff --git a/general/datasets/Uthsc_ilm_bxd_hipp_rssb_0217/summary.rtf b/general/datasets/Uthsc_ilm_bxd_hipp_rssb_0217/summary.rtf new file mode 100644 index 0000000..5aeb69c --- /dev/null +++ b/general/datasets/Uthsc_ilm_bxd_hipp_rssb_0217/summary.rtf @@ -0,0 +1,39 @@ +

    This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection.

    + +

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266.

    + +

    Restraint Stress Protocol

    + +
      +
    1. Weigh animals all animals to be tested and record body weight.
    2. +
    3. Bring animals into testing area at least one hour prior to testing. 9 a.m. The following steps will be done for three animals (in parallel) because we have three zero-mazes.
    4. +
    5. Place animals in immobilization tubes for 15 minutes.
    6. +
    7. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group).
    8. +
    9. Place each animal into zero-maze for 10 minutes.
    10. +
    11. Return animal to home cage.
    12. +
    13. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis.
    14. +
    + +

    Ethanol and saline injections
    +Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume).

    + +

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline."

    + +

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex.

    + +

    Quality Control Data
    +Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe

    + +
      +
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195)
    2. +
    3. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047)
    4. +
    5. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047)
    6. +
    7. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524)
    8. +
    9. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577)
    10. +
    + +

    Entered by Arthur Centeno, September 20, 2010.

    + +

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis.

    + +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis.

    diff --git a/general/datasets/Uthsc_mm10_b6d2_ret_mirna_1116/experiment-design.rtf b/general/datasets/Uthsc_mm10_b6d2_ret_mirna_1116/experiment-design.rtf new file mode 100644 index 0000000..ad9776a --- /dev/null +++ b/general/datasets/Uthsc_mm10_b6d2_ret_mirna_1116/experiment-design.rtf @@ -0,0 +1,980 @@ +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDCase IDStrainSexDOBSac dateAge groupAge (days)Age (month)EarTag NumberTube IDAgilent RNA concentration (ng/ul)RINNanodrop RNA concentration (ng/ul)260/280260/230Batch IDNotes
    1B6.01071515.08C57BL/6JM06/15/1507/15/151~2301.0 R1117310.00181.222.092.122best
    2B6.02071515.09C57BL/6JM06/15/1507/15/151~2301.0 R12121N/A148.522.101.692best
    3B6.03052314.01C57BL/6JF03/23/1405/23/142~4612.0 Ret 326810.048.532.021.931 
    4B6.04062514.01C57BL/6JM04/10/1406/25/142~4762.5 Ret 21819.0168.72.061.971 
    5B6.05040816.03C57BL/6JM02/04/1604/08/162~4642.1 R7438510.00448.161.982.122 
    6B6.06040816.04C57BL/6JM02/04/1604/08/162~4642.1 R752268.70167.312.042.132 
    7B6.07041014.19C57BL/6JF10/20/1304/10/145~71725.7 Ret 102210.036.972.220.0511 
    8B6.08101813.27C57BL/6JM05/06/1310/18/135~71655.5 Ret 73810.054.472.080.0941 
    9B6.09050214.03C57BL/6JF08/14/1305/02/147~92618.7 Ret 272010.054.452.111.141 
    10B6.10041014.24C57BL/6JM09/02/1304/10/147~92207.3 Ret 12389.5058.972.082.141 
    11B6.11101813.17C57BL/6JF12/07/1210/18/1310~1231510.5 Ret 2599.4083.862.171.871 
    12B6.12052116.01C57BL/6JM05/19/1505/22/1610~1236912.3 R1022938.30179.692.062.112 
    13B6.13052116.02C57BL/6JM05/19/1505/22/1610~1236912.3 R1032558.40194.242.041.822 
    14B6.14042114.19C57BL/6JF03/11/1304/21/1413~1540613.51252Ret 262810.039.952.221.711 
    15B6.15050214.07C57BL/6JM03/20/1305/02/1413~1540813.6 Ret 283010.051.812.062.071 
    16B6.16041714.02C57BL/6JM09/18/1204/17/1419~2157619.21117Ret 172510.051.552.131.131 
    17B6.17041714.03C57BL/6JM09/18/1204/17/1419~2157619.21116Ret 182810.065.112.012.161 
    18D2.01030116.02DBA/2JM01/29/1603/01/161~2321.1 R631078.80119.022.051.792 
    19D2.02030116.04DBA/2JM01/29/1603/01/161~2321.1 R652029.10250.382.031.672 
    20D2.03062714.02DBA/2JF03/23/1406/27/142~41043.5 Ret 20a  189.31.951.811No Agilent as of 6/27/2014
    21D2.04062714.01DBA/2JM03/19/1406/27/142~41003.3 Ret 19a  1542.051.891No Agilent as of 6/27/2014
    22D2.05032316.03DBA/2JM01/23/1603/23/162~4602.0 R70999.3099.172.041.632 
    23D2.06032316.04DBA/2JM01/23/1603/23/162~4602.0 R712059.10124.332.031.242 
    24D2.07050214.11DBA/2JF12/07/1305/02/145~71464.9 Ret 2910010.086.472.141.91 
    25D2.08101813.08DBA/2JM03/21/1310/18/135~72117.0 Ret 1529.986.982.112.121 
    26D2.09041014.23DBA/2JF08/24/1304/10/147~92297.6 Ret 11219.944.392.171.151 
    27D2.10050214.15DBA/2JF07/27/1305/02/147~92799.3 Ret 303710.043.572.132.041 
    28D2.11101813.23DBA/2JF11/29/1210/18/1310~1232310.8 Ret 6779.7105.022.062.141 
    29D2.12101813.19DBA/2JM12/08/1210/18/1310~1231410.5 Ret 3469.965.72.131.711 
    30D2.13042114.18DBA/2JF03/19/1304/21/1413~1539813.31148Ret 25269.965.532.172.431 
    31D2.14042114.17DBA/2JM03/19/1304/21/1413~1539813.31130Ret 24409.436.982.070.81 
    32D2.15041014.06DBA/2JM9/6/201204/10/1419~2158119.41123Ret 8359.952.992.120.0911 
    33D2.16041014.07DBA/2JF9/6/201204/10/1419~2158119.41124Ret 9309.552.442.190.081 
    34D2GP.01041416.15DBA-Gpmnb(wp)F03/15/1604/14/161~2301.0 R923349.10135.791.872.232 
    35D2GP.02120715.02DBA-Gpmnb(wp)M11/05/1512/07/151~2321.1 R31859.20106.062.042.062 
    36D2GP.03041416.04DBA-Gpmnb(wp)F02/02/1604/14/162~4722.4 R811129.4094.791.942.192 
    37D2GP.04120815.04DBA-Gpmnb(wp)M10/08/1512/08/152~4612.0 R3989N/A118.842.051.972 
    38D2GP.05101813.21DBA-Gpmnb(wp)F04/09/1310/18/135~71926.4 Ret 4539.974.132.142.281 
    39D2GP.06101813.22DBA-Gpmnb(wp)M04/09/1310/18/135~71926.4 Ret 55410.081.322.12.191 
    40D2GP.07041014.27DBA-Gpmnb(wp)F08/29/1304/10/147~92247.5 Ret 151410.037.032.061.441 
    41D2GP.08041014.28DBA-Gpmnb(wp)M08/29/1304/10/147~92247.5 Ret 16299.963.832.032.081 
    42D2GP.09041014.25DBA-Gpmnb(wp)F06/12/1304/10/1410~1230210.1 Ret 13319.860.732.072.121 
    43D2GP.10041014.26DBA-Gpmnb(wp)M06/12/1304/10/1410~1230210.1 Ret 142410.065.12.061.091 
    44D2GP.11042114.08DBA-Gpmnb(wp)F01/14/1304/21/1413~1546215.41021Ret 22879.0150.692.092.021 
    45D2GP.12042114.09DBA-Gpmnb(wp)F01/14/1304/21/1413~1546215.41022Ret 231810.044.162.110.0691 
    +
    +
    diff --git a/general/datasets/Uthsc_mm10_b6d2_ret_mirna_1116/specifics.rtf b/general/datasets/Uthsc_mm10_b6d2_ret_mirna_1116/specifics.rtf new file mode 100644 index 0000000..69b4147 --- /dev/null +++ b/general/datasets/Uthsc_mm10_b6d2_ret_mirna_1116/specifics.rtf @@ -0,0 +1 @@ +micro RNA \ No newline at end of file diff --git a/general/datasets/Uthsc_mm10_b6d2_ret_mirna_1116/summary.rtf b/general/datasets/Uthsc_mm10_b6d2_ret_mirna_1116/summary.rtf new file mode 100644 index 0000000..1d95169 --- /dev/null +++ b/general/datasets/Uthsc_mm10_b6d2_ret_mirna_1116/summary.rtf @@ -0,0 +1,9 @@ +

    This is a microRNA data set generated using the Affymetrix Genechip miRNA 4.0 array (see http://media.affymetrix.com/support/technical/datasheets/miRNA_4-0_and_4-1_datasheet.pdf).

    + +

    The data set provides 3222 estimates of expression (mainly for mi-RNAs) for 45 retinas from C57BL/6J (B6 cases B6.01 to B6.17), DBA/2J (cases D2.01 to D2.16), and DBA/2J with a wildtype Gpnmb allele (D2GP.01 to D2GP.12). Cases range in age from 30 to 576 days and include both sexes.

    + +

    We are using this data set in combination with the conventional Mouse Gene 1.0ST array to study normal and glaucomatous changes in gene expression as a function of age. 

    + +

    Please contact Lu Lu (lulu@uthsc.edu), Robert W. Williams  (rwilliams@uthsc.edu), or Junming Yue (jyue@uthsc.edu).

    + +

    Supported in part by Research to Prevent Blindness.

    diff --git a/general/datasets/Uthsc_mm9_b6d2_ret_0916/cases.rtf b/general/datasets/Uthsc_mm9_b6d2_ret_0916/cases.rtf new file mode 100644 index 0000000..ad9776a --- /dev/null +++ b/general/datasets/Uthsc_mm9_b6d2_ret_0916/cases.rtf @@ -0,0 +1,980 @@ +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDCase IDStrainSexDOBSac dateAge groupAge (days)Age (month)EarTag NumberTube IDAgilent RNA concentration (ng/ul)RINNanodrop RNA concentration (ng/ul)260/280260/230Batch IDNotes
    1B6.01071515.08C57BL/6JM06/15/1507/15/151~2301.0 R1117310.00181.222.092.122best
    2B6.02071515.09C57BL/6JM06/15/1507/15/151~2301.0 R12121N/A148.522.101.692best
    3B6.03052314.01C57BL/6JF03/23/1405/23/142~4612.0 Ret 326810.048.532.021.931 
    4B6.04062514.01C57BL/6JM04/10/1406/25/142~4762.5 Ret 21819.0168.72.061.971 
    5B6.05040816.03C57BL/6JM02/04/1604/08/162~4642.1 R7438510.00448.161.982.122 
    6B6.06040816.04C57BL/6JM02/04/1604/08/162~4642.1 R752268.70167.312.042.132 
    7B6.07041014.19C57BL/6JF10/20/1304/10/145~71725.7 Ret 102210.036.972.220.0511 
    8B6.08101813.27C57BL/6JM05/06/1310/18/135~71655.5 Ret 73810.054.472.080.0941 
    9B6.09050214.03C57BL/6JF08/14/1305/02/147~92618.7 Ret 272010.054.452.111.141 
    10B6.10041014.24C57BL/6JM09/02/1304/10/147~92207.3 Ret 12389.5058.972.082.141 
    11B6.11101813.17C57BL/6JF12/07/1210/18/1310~1231510.5 Ret 2599.4083.862.171.871 
    12B6.12052116.01C57BL/6JM05/19/1505/22/1610~1236912.3 R1022938.30179.692.062.112 
    13B6.13052116.02C57BL/6JM05/19/1505/22/1610~1236912.3 R1032558.40194.242.041.822 
    14B6.14042114.19C57BL/6JF03/11/1304/21/1413~1540613.51252Ret 262810.039.952.221.711 
    15B6.15050214.07C57BL/6JM03/20/1305/02/1413~1540813.6 Ret 283010.051.812.062.071 
    16B6.16041714.02C57BL/6JM09/18/1204/17/1419~2157619.21117Ret 172510.051.552.131.131 
    17B6.17041714.03C57BL/6JM09/18/1204/17/1419~2157619.21116Ret 182810.065.112.012.161 
    18D2.01030116.02DBA/2JM01/29/1603/01/161~2321.1 R631078.80119.022.051.792 
    19D2.02030116.04DBA/2JM01/29/1603/01/161~2321.1 R652029.10250.382.031.672 
    20D2.03062714.02DBA/2JF03/23/1406/27/142~41043.5 Ret 20a  189.31.951.811No Agilent as of 6/27/2014
    21D2.04062714.01DBA/2JM03/19/1406/27/142~41003.3 Ret 19a  1542.051.891No Agilent as of 6/27/2014
    22D2.05032316.03DBA/2JM01/23/1603/23/162~4602.0 R70999.3099.172.041.632 
    23D2.06032316.04DBA/2JM01/23/1603/23/162~4602.0 R712059.10124.332.031.242 
    24D2.07050214.11DBA/2JF12/07/1305/02/145~71464.9 Ret 2910010.086.472.141.91 
    25D2.08101813.08DBA/2JM03/21/1310/18/135~72117.0 Ret 1529.986.982.112.121 
    26D2.09041014.23DBA/2JF08/24/1304/10/147~92297.6 Ret 11219.944.392.171.151 
    27D2.10050214.15DBA/2JF07/27/1305/02/147~92799.3 Ret 303710.043.572.132.041 
    28D2.11101813.23DBA/2JF11/29/1210/18/1310~1232310.8 Ret 6779.7105.022.062.141 
    29D2.12101813.19DBA/2JM12/08/1210/18/1310~1231410.5 Ret 3469.965.72.131.711 
    30D2.13042114.18DBA/2JF03/19/1304/21/1413~1539813.31148Ret 25269.965.532.172.431 
    31D2.14042114.17DBA/2JM03/19/1304/21/1413~1539813.31130Ret 24409.436.982.070.81 
    32D2.15041014.06DBA/2JM9/6/201204/10/1419~2158119.41123Ret 8359.952.992.120.0911 
    33D2.16041014.07DBA/2JF9/6/201204/10/1419~2158119.41124Ret 9309.552.442.190.081 
    34D2GP.01041416.15DBA-Gpmnb(wp)F03/15/1604/14/161~2301.0 R923349.10135.791.872.232 
    35D2GP.02120715.02DBA-Gpmnb(wp)M11/05/1512/07/151~2321.1 R31859.20106.062.042.062 
    36D2GP.03041416.04DBA-Gpmnb(wp)F02/02/1604/14/162~4722.4 R811129.4094.791.942.192 
    37D2GP.04120815.04DBA-Gpmnb(wp)M10/08/1512/08/152~4612.0 R3989N/A118.842.051.972 
    38D2GP.05101813.21DBA-Gpmnb(wp)F04/09/1310/18/135~71926.4 Ret 4539.974.132.142.281 
    39D2GP.06101813.22DBA-Gpmnb(wp)M04/09/1310/18/135~71926.4 Ret 55410.081.322.12.191 
    40D2GP.07041014.27DBA-Gpmnb(wp)F08/29/1304/10/147~92247.5 Ret 151410.037.032.061.441 
    41D2GP.08041014.28DBA-Gpmnb(wp)M08/29/1304/10/147~92247.5 Ret 16299.963.832.032.081 
    42D2GP.09041014.25DBA-Gpmnb(wp)F06/12/1304/10/1410~1230210.1 Ret 13319.860.732.072.121 
    43D2GP.10041014.26DBA-Gpmnb(wp)M06/12/1304/10/1410~1230210.1 Ret 142410.065.12.061.091 
    44D2GP.11042114.08DBA-Gpmnb(wp)F01/14/1304/21/1413~1546215.41021Ret 22879.0150.692.092.021 
    45D2GP.12042114.09DBA-Gpmnb(wp)F01/14/1304/21/1413~1546215.41022Ret 231810.044.162.110.0691 
    +
    +
    diff --git a/general/datasets/Uthsc_mm9_b6d2_ret_0916/summary.rtf b/general/datasets/Uthsc_mm9_b6d2_ret_0916/summary.rtf new file mode 100644 index 0000000..de58298 --- /dev/null +++ b/general/datasets/Uthsc_mm9_b6d2_ret_0916/summary.rtf @@ -0,0 +1,9 @@ +

    This is an array data set generated using the Affymetrix Genechip Mouse 1.0 ST array. Please see the companion microRNA (miRNA) data set.

    + +

    All of these data sets provides estimates of expression for 45 retinas from C57BL/6J (B6 cases B6.01 to B6.17), DBA/2J (cases D2.01 to D2.16), and DBA/2J with a wildtype Gpnmb allele (D2GP.01 to D2GP.12). Cases range in age from 30 to 576 days and include both sexes.

    + +

    We are using these data in combination with the micro RNA array 4.0 to study normal and glaucomatous changes in gene expression as a function of age. 

    + +

    Please contact Lu Lu (lulu@uthsc.edu), Robert W. Williams  (rwilliams@uthsc.edu), or Junming Yue (jyue@uthsc.edu).

    + +

    Supported in part by Research to Prevent Blindness.

    diff --git a/general/datasets/Uthsc_mm9_b6d2_retex_0916/cases.rtf b/general/datasets/Uthsc_mm9_b6d2_retex_0916/cases.rtf new file mode 100644 index 0000000..ad9776a --- /dev/null +++ b/general/datasets/Uthsc_mm9_b6d2_retex_0916/cases.rtf @@ -0,0 +1,980 @@ +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDCase IDStrainSexDOBSac dateAge groupAge (days)Age (month)EarTag NumberTube IDAgilent RNA concentration (ng/ul)RINNanodrop RNA concentration (ng/ul)260/280260/230Batch IDNotes
    1B6.01071515.08C57BL/6JM06/15/1507/15/151~2301.0 R1117310.00181.222.092.122best
    2B6.02071515.09C57BL/6JM06/15/1507/15/151~2301.0 R12121N/A148.522.101.692best
    3B6.03052314.01C57BL/6JF03/23/1405/23/142~4612.0 Ret 326810.048.532.021.931 
    4B6.04062514.01C57BL/6JM04/10/1406/25/142~4762.5 Ret 21819.0168.72.061.971 
    5B6.05040816.03C57BL/6JM02/04/1604/08/162~4642.1 R7438510.00448.161.982.122 
    6B6.06040816.04C57BL/6JM02/04/1604/08/162~4642.1 R752268.70167.312.042.132 
    7B6.07041014.19C57BL/6JF10/20/1304/10/145~71725.7 Ret 102210.036.972.220.0511 
    8B6.08101813.27C57BL/6JM05/06/1310/18/135~71655.5 Ret 73810.054.472.080.0941 
    9B6.09050214.03C57BL/6JF08/14/1305/02/147~92618.7 Ret 272010.054.452.111.141 
    10B6.10041014.24C57BL/6JM09/02/1304/10/147~92207.3 Ret 12389.5058.972.082.141 
    11B6.11101813.17C57BL/6JF12/07/1210/18/1310~1231510.5 Ret 2599.4083.862.171.871 
    12B6.12052116.01C57BL/6JM05/19/1505/22/1610~1236912.3 R1022938.30179.692.062.112 
    13B6.13052116.02C57BL/6JM05/19/1505/22/1610~1236912.3 R1032558.40194.242.041.822 
    14B6.14042114.19C57BL/6JF03/11/1304/21/1413~1540613.51252Ret 262810.039.952.221.711 
    15B6.15050214.07C57BL/6JM03/20/1305/02/1413~1540813.6 Ret 283010.051.812.062.071 
    16B6.16041714.02C57BL/6JM09/18/1204/17/1419~2157619.21117Ret 172510.051.552.131.131 
    17B6.17041714.03C57BL/6JM09/18/1204/17/1419~2157619.21116Ret 182810.065.112.012.161 
    18D2.01030116.02DBA/2JM01/29/1603/01/161~2321.1 R631078.80119.022.051.792 
    19D2.02030116.04DBA/2JM01/29/1603/01/161~2321.1 R652029.10250.382.031.672 
    20D2.03062714.02DBA/2JF03/23/1406/27/142~41043.5 Ret 20a  189.31.951.811No Agilent as of 6/27/2014
    21D2.04062714.01DBA/2JM03/19/1406/27/142~41003.3 Ret 19a  1542.051.891No Agilent as of 6/27/2014
    22D2.05032316.03DBA/2JM01/23/1603/23/162~4602.0 R70999.3099.172.041.632 
    23D2.06032316.04DBA/2JM01/23/1603/23/162~4602.0 R712059.10124.332.031.242 
    24D2.07050214.11DBA/2JF12/07/1305/02/145~71464.9 Ret 2910010.086.472.141.91 
    25D2.08101813.08DBA/2JM03/21/1310/18/135~72117.0 Ret 1529.986.982.112.121 
    26D2.09041014.23DBA/2JF08/24/1304/10/147~92297.6 Ret 11219.944.392.171.151 
    27D2.10050214.15DBA/2JF07/27/1305/02/147~92799.3 Ret 303710.043.572.132.041 
    28D2.11101813.23DBA/2JF11/29/1210/18/1310~1232310.8 Ret 6779.7105.022.062.141 
    29D2.12101813.19DBA/2JM12/08/1210/18/1310~1231410.5 Ret 3469.965.72.131.711 
    30D2.13042114.18DBA/2JF03/19/1304/21/1413~1539813.31148Ret 25269.965.532.172.431 
    31D2.14042114.17DBA/2JM03/19/1304/21/1413~1539813.31130Ret 24409.436.982.070.81 
    32D2.15041014.06DBA/2JM9/6/201204/10/1419~2158119.41123Ret 8359.952.992.120.0911 
    33D2.16041014.07DBA/2JF9/6/201204/10/1419~2158119.41124Ret 9309.552.442.190.081 
    34D2GP.01041416.15DBA-Gpmnb(wp)F03/15/1604/14/161~2301.0 R923349.10135.791.872.232 
    35D2GP.02120715.02DBA-Gpmnb(wp)M11/05/1512/07/151~2321.1 R31859.20106.062.042.062 
    36D2GP.03041416.04DBA-Gpmnb(wp)F02/02/1604/14/162~4722.4 R811129.4094.791.942.192 
    37D2GP.04120815.04DBA-Gpmnb(wp)M10/08/1512/08/152~4612.0 R3989N/A118.842.051.972 
    38D2GP.05101813.21DBA-Gpmnb(wp)F04/09/1310/18/135~71926.4 Ret 4539.974.132.142.281 
    39D2GP.06101813.22DBA-Gpmnb(wp)M04/09/1310/18/135~71926.4 Ret 55410.081.322.12.191 
    40D2GP.07041014.27DBA-Gpmnb(wp)F08/29/1304/10/147~92247.5 Ret 151410.037.032.061.441 
    41D2GP.08041014.28DBA-Gpmnb(wp)M08/29/1304/10/147~92247.5 Ret 16299.963.832.032.081 
    42D2GP.09041014.25DBA-Gpmnb(wp)F06/12/1304/10/1410~1230210.1 Ret 13319.860.732.072.121 
    43D2GP.10041014.26DBA-Gpmnb(wp)M06/12/1304/10/1410~1230210.1 Ret 142410.065.12.061.091 
    44D2GP.11042114.08DBA-Gpmnb(wp)F01/14/1304/21/1413~1546215.41021Ret 22879.0150.692.092.021 
    45D2GP.12042114.09DBA-Gpmnb(wp)F01/14/1304/21/1413~1546215.41022Ret 231810.044.162.110.0691 
    +
    +
    diff --git a/general/datasets/Uthsc_mm9_b6d2_retex_0916/specifics.rtf b/general/datasets/Uthsc_mm9_b6d2_retex_0916/specifics.rtf new file mode 100644 index 0000000..7c1a914 --- /dev/null +++ b/general/datasets/Uthsc_mm9_b6d2_retex_0916/specifics.rtf @@ -0,0 +1 @@ +Exon Level \ No newline at end of file diff --git a/general/datasets/Uthsc_mm9_b6d2_retex_0916/summary.rtf b/general/datasets/Uthsc_mm9_b6d2_retex_0916/summary.rtf new file mode 100644 index 0000000..de58298 --- /dev/null +++ b/general/datasets/Uthsc_mm9_b6d2_retex_0916/summary.rtf @@ -0,0 +1,9 @@ +

    This is an array data set generated using the Affymetrix Genechip Mouse 1.0 ST array. Please see the companion microRNA (miRNA) data set.

    + +

    All of these data sets provides estimates of expression for 45 retinas from C57BL/6J (B6 cases B6.01 to B6.17), DBA/2J (cases D2.01 to D2.16), and DBA/2J with a wildtype Gpnmb allele (D2GP.01 to D2GP.12). Cases range in age from 30 to 576 days and include both sexes.

    + +

    We are using these data in combination with the micro RNA array 4.0 to study normal and glaucomatous changes in gene expression as a function of age. 

    + +

    Please contact Lu Lu (lulu@uthsc.edu), Robert W. Williams  (rwilliams@uthsc.edu), or Junming Yue (jyue@uthsc.edu).

    + +

    Supported in part by Research to Prevent Blindness.

    diff --git a/general/datasets/Uthsc_neut_1014/experiment-design.rtf b/general/datasets/Uthsc_neut_1014/experiment-design.rtf new file mode 100644 index 0000000..eed4905 --- /dev/null +++ b/general/datasets/Uthsc_neut_1014/experiment-design.rtf @@ -0,0 +1 @@ +

    Normal young adults of either sex between 40 and 100 days of age.

    diff --git a/general/datasets/Uthsc_neut_1014/summary.rtf b/general/datasets/Uthsc_neut_1014/summary.rtf new file mode 100644 index 0000000..edd0ac2 --- /dev/null +++ b/general/datasets/Uthsc_neut_1014/summary.rtf @@ -0,0 +1 @@ +

    The data set represents gene expression data from peritoneal neutrophils. Cells were collected four hours after injection of sterile thioglycollate. Purity was assessed by cytospin and nuclear morphology. Usually 4 to 6 animals were used  to generate sufficient material for RNA expression analysis.

    diff --git a/general/datasets/Uthsc_neut_el_1014/experiment-design.rtf b/general/datasets/Uthsc_neut_el_1014/experiment-design.rtf new file mode 100644 index 0000000..eed4905 --- /dev/null +++ b/general/datasets/Uthsc_neut_el_1014/experiment-design.rtf @@ -0,0 +1 @@ +

    Normal young adults of either sex between 40 and 100 days of age.

    diff --git a/general/datasets/Uthsc_neut_el_1014/summary.rtf b/general/datasets/Uthsc_neut_el_1014/summary.rtf new file mode 100644 index 0000000..edd0ac2 --- /dev/null +++ b/general/datasets/Uthsc_neut_el_1014/summary.rtf @@ -0,0 +1 @@ +

    The data set represents gene expression data from peritoneal neutrophils. Cells were collected four hours after injection of sterile thioglycollate. Purity was assessed by cytospin and nuclear morphology. Usually 4 to 6 animals were used  to generate sufficient material for RNA expression analysis.

    diff --git a/general/datasets/Uthsc_spl_rma_1010/cases.rtf b/general/datasets/Uthsc_spl_rma_1010/cases.rtf new file mode 100644 index 0000000..7fa108f --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1010/cases.rtf @@ -0,0 +1,3 @@ +

    Cases. A total of 111 strains, including 81 BXD strains, both parental strains (C57BL/6J and DBA/2J) and both reciprocal F1 hybrids (B6D2F1 and D2B6F1), and 26 other common inbred strains were quantified. In most cases, two arrays were processed per strain--one for males and one for females. All tissue and RNA was extracted by Lu Lu and colleagues. Samples were pooled by sex and usually include at least two cases per sex and strain.

    + +

    Sex Balance. XX strains have matched male and female samples. XX strains have male only samples (BXDX, XX, XX, XXX and XXX). XX strains have only female samples (BXDXX, XX, and XX.) Please review the expression data for Xist probe set 10606178. This non-coding RNA is expressed highly only in females and can be used to check the sex of a sample or pool of tissue. Ddx3y probe set 10608138 can also be used. This is a Y chromosome gene that is expressed abundantly in male samples and at background levels in female samples.

    diff --git a/general/datasets/Uthsc_spl_rma_1010/experiment-design.rtf b/general/datasets/Uthsc_spl_rma_1010/experiment-design.rtf new file mode 100644 index 0000000..a0aeba6 --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1010/experiment-design.rtf @@ -0,0 +1,3 @@ +

    RNA Processing. Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + +

    Array Processing: All arrays were processed by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. The spleen was dissected by both Dr. Lu Lu and colleagues and Dr. Abdeltawab and colleagues. All arrays were run together (interleaved) as a single large batch.

    diff --git a/general/datasets/Uthsc_spl_rma_1010/notes.rtf b/general/datasets/Uthsc_spl_rma_1010/notes.rtf new file mode 100644 index 0000000..c7bb873 --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1010/notes.rtf @@ -0,0 +1,4 @@ +

    Data Status and Use. This is a provisional release that will soon be replaced by a final corrected data set. In the interim this data set is open for exploration and use for focused analysis of single genes. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data regarding the best citation.
    +This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please see the GeneNetwork data sharing policy for more background on data use.

    + +

    Contact. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data.

    diff --git a/general/datasets/Uthsc_spl_rma_1010/processing.rtf b/general/datasets/Uthsc_spl_rma_1010/processing.rtf new file mode 100644 index 0000000..deaf264 --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1010/processing.rtf @@ -0,0 +1,1932 @@ +

    Data Processing. Array data sets were generated by the vendors GCOS system. Expression values were logged and then were further normalized and rescaled so that the mean value for each array data set is 8 units with a standard deviation of 2 units. Data were processed by Arthur Centeno.

    + +

    Batch Effects. This data set required some correction for batch effects and the data in this initial release incorporate any additional corrections. There are several additional confounder-like factors that should be considered:

    + +
      +
    1. Sex imbalance in the sample: use probe sets for Xist as correction in partial correlation
    2. +
    3. Background noise factors: examine and use probe sets with very low expression using the search "mean=(3.900 4.135)". This will extract the probe sets with the lowest expression. (Note that the number 54 is less than the total number of cases in this data set; important in computing principal components.) Add these probe sets to your collection window and then compute the correlation matrix. Use the first few principal components as surrogates for nuisance factors in partial correlation analysis. The first principal component of the lowest probe sets in this spleen data set accounts of XX% of the the variance. Mapping of this noise trait can be used to evaluate the effects of shared noise on QTL results. The first principal component in the spleen data set can be mapped as a trait.
    4. +
    + +

    Data Release. This data set was first uploaded into GeneNetwork by Arthur Centeno, October 11, 2010 and made accessible without a password to all users on November 1, 2010. The initial data release had numerous strain identification errors that have now largely been fixed. Based on an analysis of the top 20 Mendelian loci, the following 21 strains were likely to have been incorrectly identified or assigned in the current release:

    + +
      +
    1. BXD8, e.g., Probe set 10450161, 1036098. 10338684
    2. +
    3. BXD13, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10342568,
    4. +
    5. BXD21 (may be ok, only one probe set 10338684 is problematic)
    6. +
    7. BXD23 (may be ok, only two probe sets 10421128, 10419465 is problematic)
    8. +
    9. BXD36 (may be ok, only one probe set 10421128 is problematic)
    10. +
    11. BXD40, e.g., Probe set 10341070
    12. +
    13. BXD43, e.g., Probe set 10450161, 1036098, 10338684
    14. +
    15. BXD48, e.g., Probe set 1036098, 10402390, 10514896, 10592493, 10357381, 10342568, 10571444, 10419465
    16. +
    17. BXD62, e.g., Probe set 1036098, 1036098, 10402390, 10514896, 10592493, 10421128, 10571444
    18. +
    19. BXD68 (may be ok, only one probe set 10338684 is problematic)
    20. +
    21. BXD69, e.g., Probe set 10450161
    22. +
    23. BXD73, e.g., Probe set 10341070, 1036098, 10402390, 10514896, 10587633, 10342568, 10421128
    24. +
    25. BXD74, e.g., Probe set 10402390
    26. +
    27. BXD80, e.g., Probe set 10341070, 1036098, 10592493, 10400109, 10338684, 10342568, 10421128, 10419465
    28. +
    29. BXD83, e.g., Probe set 10450161, 10338684
    30. +
    31. BXD87 (may be ok, only one probe set 10421128 is problematic)
    32. +
    33. BXD89, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10357381, 10419465
    34. +
    35. BXD93, e.g., Probe set 10402390, 10357381
    36. +
    37. BALB/cByJ, e.g., Probe set 10388042, 1036098, 10587633, 10357381, 10342568, 10421128
    38. +
    39. LP/J, e.g., Probe set 10592493
    40. +
    41. DBA/2J, e.g., Probe set 10592493
    42. +
    + +

    Data Evaluation Summary

    + +
      +
    1. Before correction: eQLTs with LOD >10 (LRS>46.1): n = 638
    2. +
    3. After strain assignment correction: eQLTs with LOD >10 (LRS>46.1): n = 820
    4. +
    5. Before correction: eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 237.9
    6. +
    7. After correction: eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 278.1
    8. +
    9. Lowest mean value: Trait ID 10344361, mean = 3.998
    10. +
    11. Highest mean value: Trait ID 10598025, mean = 14.475 (MT-ND1)
    12. +
    13. Greatest sex difference: Trait ID: 10606178 (Xist)
    14. +
    15. Great variation within and among strains: Trait ID 10454192 (Ttr +

      Table 1 (please confirm that these assignments are after correction)

      + +
      + + + + + + +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      IndexArray IDPhaseStrainAgeSex
      1R5583S1129P3/J65F
      2R5584S1129P3/J66M
      3R5585S1129S1/SvImJ66F
      4R5586S1129S1/SvImJ66M
      5R5587S1129X1/SvJ65F
      6R5588S1129X1/SvJ66M
      7R6348S3B6D2F167F
      8R6347S3B6D2F162F
      9R5590S1B6D2F179M
      10R5662S1BALB/cByJ59F
      11R5664S1BALB/cByJ59M
      12R5591S1BALB/cJ51F
      13R5592S1BALB/cJ51M
      14R6154S2BTBR T+ tf/J60F
      15R6516S3BXD182F
      16R6584S3BXD195M
      17R5759S1BXD2N/AF
      18R5837S1BXD2106M
      19R5874S2BXD586F
      20R6554S3BXD560M
      21R6359S3BXD672F
      22R5777S1BXD6149M
      23R6364S3BXD876F
      24R5637S1BXD871F
      25R6365S3BXD876M
      26R5746S1BXD970F
      27R5981S2BXD967M
      28R5980S2BXD967M
      29R6182S2BXD1184F
      30R6486S3BXD1158M
      31R6711S24BXD1271F
      32R6608S3BXD1248F
      33R5885S2BXD1244M
      34R5755S1BXD13160F
      35R5887S2BXD1353M
      36R6180S2BXD1470F
      37R5669S1BXD1491M
      38R6456S3BXD1560F
      39R6622S3BXD1560F
      40R6626S3BXD1560M
      41R6181S2BXD1674F
      42R6515S3BXD1664M
      43R5673S1BXD1880F
      44R5674S1BXD1865M
      45R6553S3BXD19158F
      46R6551S3BXD1960M
      47R6643S44BXD2059F
      48R6595S3BXD2060M
      49R5735S1BXD2164F
      50R5892S2BXD2199M
      51R5896S2BXD2260F
      52R6414S3BXD2273M
      53R6550S3BXD2374F
      54R6586S3BXD23102F
      55R5630S1BXD2471F
      56R6356S3BXD2457M
      57R6162S2BXD2567F
      58R6625S3BXD2567F
      59R6642S44BXD2558M
      60R5761S1BXD27N/AF
      61R5763S1BXD2790M
      62R6621S3BXD28113F
      63R6548S3BXD2860M
      64R6547S3BXD2960F
      65R6453S3BXD3148F
      66R6452S3BXD3148M
      67R6583S3BXD3260F
      68R5765S1BXD3271M
      69R5689S1BXD3365F
      70R6450S3BXD3355M
      71R5767S1BXD3472F
      72R5900S2BXD3470M
      73R6588S3BXD3661F
      74R6490S3BXD3663M
      75R6417S3BXD3864F
      76R6439S3BXD3872M
      77R5769S1BXD39N/AF
      78R5771S1BXD3974M
      79R5773S1BXD40N/AF
      80R5775S1BXD40N/AM
      81R6494S3BXD4172F
      82R5910S2BXD4279F
      83R6493S3BXD4269M
      84R6341S3BXD4359F
      85R6401S3BXD4399M
      86R5916S2BXD4379M
      87R5839S1BXD44141F
      88R5779S1BXD44124M
      89R6405S3BXD4558F
      90R6610S3BXD4555M
      91R5922S2BXD4864F
      92R5925S2BXD4860M
      93R6719S14BXD4958F
      94R6485S3BXD4979M
      95R5781S1BXD5061F
      96R6464S3BXD5165F
      97R6585S3BXD5163M
      98R6500S3BXD5558F
      99R5938S2BXD5593M
      100R6504S3BXD5658F
      101R6503S3BXD5658M
      102R5783S1BXD60111F
      103R5784S1BXD6085M
      104R5786S1BXD6186F
      105R6449S3BXD6165M
      106R6716S14BXD6254F
      107R5790S1BXD62115M
      108R6519S3BXD6354F
      109R6717S14BXD6370M
      110R5792S1BXD64167F
      111R6641S44BXD6468M
      112R6630S3BXD6468M
      113R6477S3BXD6558F
      114R6628S3BXD6570M
      115R6511S3BXD6670F
      116R6448S3BXD6661M
      117R5794S1BXD66144M
      118R6502S3BXD6766F
      119R6545S3BXD6761M
      120R6337S3BXD6856F
      121R6594S3BXD6864M
      122R5796S1BXD6985F
      123R5798S1BXD6998M
      124R6402S3BXD7093F
      125R5841S1BXD70121F
      126R6592S3BXD7059M
      127R6328S3BXD7187F
      128R5967S2BXD7164M
      129R5969S2BXD7364F
      130R5800S1BXD73120M
      131R6646S3BXD7440F
      132R6524S3BXD7472M
      133R6445S3BXD7585F
      134R5843S1BXD75103F
      135R5845S1BXD75103M
      136R6604S3BXD7764F
      137R6513S3BXD7772M
      138R6582S3BXD78144F
      139R6563S3BXD7895M
      140R6645S44BXD7966F
      141R5806S1BXD7978M
      142R5847S1BXD8089F
      143R5852S1BXD8079M
      144R6562S3BXD8199F
      145R6468S3BXD8165M
      146R6560S3BXD8285F
      147R6512S3BXD8368F
      148R5810S1BXD83139M
      149R6510S3BXD8487F
      150R5970S2BXD84107F
      151R6603S3BXD8499M
      152R6517S3BXD8558F
      153R6718S14BXD8586M
      154R5812S1BXD8661F
      155R5814S1BXD8659M
      156R5816S1BXD87112F
      157R6488S3BXD87137M
      158R6580S3BXD88125F
      159R5977S2BXD8968F
      160R5979S2BXD8979M
      161R5978S2BXD8979M
      162R5818S1BXD90106F
      163R5820S1BXD90131M
      164R6343S3BXD9262F
      165R5984S2BXD9255M
      166R6581S3BXD93173M
      167R6557S3BXD93126M
      168R6509S3BXD9559F
      169R5822S1BXD9589M
      170R6640S44BXD9670F
      171R6514S3BXD9664M
      172R6506S3BXD9778F
      173R5849S1BXD97130F
      174R6591S3BXD97122M
      175R5990S2BXD9865F
      176R6596S3BXD9867M
      177R5993S2BXD9974F
      178R5995S2BXD9950M
      179R6607S3BXD10075F
      180R6411S3BXD100104M
      181R6508S3BXD10159F
      182R5593S1BXD10159M
      183R6523S3BXD10260F
      184R6466S3BXD10250M
      185R6404S3BXD10372F
      186R6609S3BXD10357M
      187R6555S3C57BL/10J73M
      188R5596S1C57BL/10J73M
      189R5597S1C57BL/6ByJ51F
      190R5598S1C57BL/6ByJ69M
      191R5600S1C57BL/6J79F
      192R5599S1C57BL/6J60F
      193R6451S3C57BL/6J77M
      194R6410S3C57BL/6J85M
      195R5603S1C57BLKS/J66F
      196R5604S1C57BLKS/J66M
      197R5996S2CBA/CaJ66F
      198R6349S3CBA/CaJ66M
      199R6458S3D2B6F164F
      200R6353S3D2B6F160M
      201R5605S1DBA/2J79F
      202R6446S3DBA/2J83M
      203R6597S3FVB/NJ60F
      204R5643S1FVB/NJ60F
      205R6598S3FVB/NJ60M
      206R5606S1ILS74F
      207R5607S1ILS74M
      208R5610S1ISS97M
      209R6627S3KK/HlJ64F
      210R6444S3KK/HlJ65M
      211R5702S1KK/HlJ61M
      212R5613S1LG/J63F
      213R5704S1LG/J65M
      214R5614S1LP/J65F
      215R5615S1LP/J65M
      216R6599S3MOLF/EiJ60F
      217R6606S3MOLF/EiJ60M
      218R6544S3NOD/LtJ77F
      219R5709S1NOD/LtJ58M
      220R6601S3NZB/BlNJ61F
      221R5711S1NZB/BlNJ61F
      222R6427S3NZB/BlNJ58M
      223R6150S2NZO/HlLtJ71F
      224R6155S2NZW/LacJ65F
      225R5654S1NZW/LacJ60M
      226R5721S1PL/J59M
      227R5616S1PWD/PhJ60M
      228R5725S1PWK/PhJ121M
      229R6174S2SJL/J63F
      230R6350S3SJL/J65M
      231R6419S3WSB/EiJ60F
      232R5620S1WSB/EiJ60M
      +
      +
      + +
        +
      +
    16. +
    diff --git a/general/datasets/Uthsc_spl_rma_1010/summary.rtf b/general/datasets/Uthsc_spl_rma_1010/summary.rtf new file mode 100644 index 0000000..d9478f8 --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1010/summary.rtf @@ -0,0 +1,3 @@ +

    This is a near final release of a spleen gene expression data set generated by a DOD-funded consortium (Byrne, Kotb, Williams, and Lu). Please contact Lu Lu or Robert Williams regarding status of this data set. The initial data enterted in 2010 had many errors described below. The data set is much improved and has no known errors of strain assignment.

    + +

    Animals were generated at UTHSC by Lu Lu and colleagues. The spleen of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna").

    diff --git a/general/datasets/Uthsc_spl_rma_1210/cases.rtf b/general/datasets/Uthsc_spl_rma_1210/cases.rtf new file mode 100644 index 0000000..7fa108f --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1210/cases.rtf @@ -0,0 +1,3 @@ +

    Cases. A total of 111 strains, including 81 BXD strains, both parental strains (C57BL/6J and DBA/2J) and both reciprocal F1 hybrids (B6D2F1 and D2B6F1), and 26 other common inbred strains were quantified. In most cases, two arrays were processed per strain--one for males and one for females. All tissue and RNA was extracted by Lu Lu and colleagues. Samples were pooled by sex and usually include at least two cases per sex and strain.

    + +

    Sex Balance. XX strains have matched male and female samples. XX strains have male only samples (BXDX, XX, XX, XXX and XXX). XX strains have only female samples (BXDXX, XX, and XX.) Please review the expression data for Xist probe set 10606178. This non-coding RNA is expressed highly only in females and can be used to check the sex of a sample or pool of tissue. Ddx3y probe set 10608138 can also be used. This is a Y chromosome gene that is expressed abundantly in male samples and at background levels in female samples.

    diff --git a/general/datasets/Uthsc_spl_rma_1210/experiment-design.rtf b/general/datasets/Uthsc_spl_rma_1210/experiment-design.rtf new file mode 100644 index 0000000..a0aeba6 --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1210/experiment-design.rtf @@ -0,0 +1,3 @@ +

    RNA Processing. Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + +

    Array Processing: All arrays were processed by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. The spleen was dissected by both Dr. Lu Lu and colleagues and Dr. Abdeltawab and colleagues. All arrays were run together (interleaved) as a single large batch.

    diff --git a/general/datasets/Uthsc_spl_rma_1210/notes.rtf b/general/datasets/Uthsc_spl_rma_1210/notes.rtf new file mode 100644 index 0000000..c7bb873 --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1210/notes.rtf @@ -0,0 +1,4 @@ +

    Data Status and Use. This is a provisional release that will soon be replaced by a final corrected data set. In the interim this data set is open for exploration and use for focused analysis of single genes. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data regarding the best citation.
    +This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please see the GeneNetwork data sharing policy for more background on data use.

    + +

    Contact. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data.

    diff --git a/general/datasets/Uthsc_spl_rma_1210/processing.rtf b/general/datasets/Uthsc_spl_rma_1210/processing.rtf new file mode 100644 index 0000000..deaf264 --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1210/processing.rtf @@ -0,0 +1,1932 @@ +

    Data Processing. Array data sets were generated by the vendors GCOS system. Expression values were logged and then were further normalized and rescaled so that the mean value for each array data set is 8 units with a standard deviation of 2 units. Data were processed by Arthur Centeno.

    + +

    Batch Effects. This data set required some correction for batch effects and the data in this initial release incorporate any additional corrections. There are several additional confounder-like factors that should be considered:

    + +
      +
    1. Sex imbalance in the sample: use probe sets for Xist as correction in partial correlation
    2. +
    3. Background noise factors: examine and use probe sets with very low expression using the search "mean=(3.900 4.135)". This will extract the probe sets with the lowest expression. (Note that the number 54 is less than the total number of cases in this data set; important in computing principal components.) Add these probe sets to your collection window and then compute the correlation matrix. Use the first few principal components as surrogates for nuisance factors in partial correlation analysis. The first principal component of the lowest probe sets in this spleen data set accounts of XX% of the the variance. Mapping of this noise trait can be used to evaluate the effects of shared noise on QTL results. The first principal component in the spleen data set can be mapped as a trait.
    4. +
    + +

    Data Release. This data set was first uploaded into GeneNetwork by Arthur Centeno, October 11, 2010 and made accessible without a password to all users on November 1, 2010. The initial data release had numerous strain identification errors that have now largely been fixed. Based on an analysis of the top 20 Mendelian loci, the following 21 strains were likely to have been incorrectly identified or assigned in the current release:

    + +
      +
    1. BXD8, e.g., Probe set 10450161, 1036098. 10338684
    2. +
    3. BXD13, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10342568,
    4. +
    5. BXD21 (may be ok, only one probe set 10338684 is problematic)
    6. +
    7. BXD23 (may be ok, only two probe sets 10421128, 10419465 is problematic)
    8. +
    9. BXD36 (may be ok, only one probe set 10421128 is problematic)
    10. +
    11. BXD40, e.g., Probe set 10341070
    12. +
    13. BXD43, e.g., Probe set 10450161, 1036098, 10338684
    14. +
    15. BXD48, e.g., Probe set 1036098, 10402390, 10514896, 10592493, 10357381, 10342568, 10571444, 10419465
    16. +
    17. BXD62, e.g., Probe set 1036098, 1036098, 10402390, 10514896, 10592493, 10421128, 10571444
    18. +
    19. BXD68 (may be ok, only one probe set 10338684 is problematic)
    20. +
    21. BXD69, e.g., Probe set 10450161
    22. +
    23. BXD73, e.g., Probe set 10341070, 1036098, 10402390, 10514896, 10587633, 10342568, 10421128
    24. +
    25. BXD74, e.g., Probe set 10402390
    26. +
    27. BXD80, e.g., Probe set 10341070, 1036098, 10592493, 10400109, 10338684, 10342568, 10421128, 10419465
    28. +
    29. BXD83, e.g., Probe set 10450161, 10338684
    30. +
    31. BXD87 (may be ok, only one probe set 10421128 is problematic)
    32. +
    33. BXD89, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10357381, 10419465
    34. +
    35. BXD93, e.g., Probe set 10402390, 10357381
    36. +
    37. BALB/cByJ, e.g., Probe set 10388042, 1036098, 10587633, 10357381, 10342568, 10421128
    38. +
    39. LP/J, e.g., Probe set 10592493
    40. +
    41. DBA/2J, e.g., Probe set 10592493
    42. +
    + +

    Data Evaluation Summary

    + +
      +
    1. Before correction: eQLTs with LOD >10 (LRS>46.1): n = 638
    2. +
    3. After strain assignment correction: eQLTs with LOD >10 (LRS>46.1): n = 820
    4. +
    5. Before correction: eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 237.9
    6. +
    7. After correction: eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 278.1
    8. +
    9. Lowest mean value: Trait ID 10344361, mean = 3.998
    10. +
    11. Highest mean value: Trait ID 10598025, mean = 14.475 (MT-ND1)
    12. +
    13. Greatest sex difference: Trait ID: 10606178 (Xist)
    14. +
    15. Great variation within and among strains: Trait ID 10454192 (Ttr +

      Table 1 (please confirm that these assignments are after correction)

      + +
      + + + + + + +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      IndexArray IDPhaseStrainAgeSex
      1R5583S1129P3/J65F
      2R5584S1129P3/J66M
      3R5585S1129S1/SvImJ66F
      4R5586S1129S1/SvImJ66M
      5R5587S1129X1/SvJ65F
      6R5588S1129X1/SvJ66M
      7R6348S3B6D2F167F
      8R6347S3B6D2F162F
      9R5590S1B6D2F179M
      10R5662S1BALB/cByJ59F
      11R5664S1BALB/cByJ59M
      12R5591S1BALB/cJ51F
      13R5592S1BALB/cJ51M
      14R6154S2BTBR T+ tf/J60F
      15R6516S3BXD182F
      16R6584S3BXD195M
      17R5759S1BXD2N/AF
      18R5837S1BXD2106M
      19R5874S2BXD586F
      20R6554S3BXD560M
      21R6359S3BXD672F
      22R5777S1BXD6149M
      23R6364S3BXD876F
      24R5637S1BXD871F
      25R6365S3BXD876M
      26R5746S1BXD970F
      27R5981S2BXD967M
      28R5980S2BXD967M
      29R6182S2BXD1184F
      30R6486S3BXD1158M
      31R6711S24BXD1271F
      32R6608S3BXD1248F
      33R5885S2BXD1244M
      34R5755S1BXD13160F
      35R5887S2BXD1353M
      36R6180S2BXD1470F
      37R5669S1BXD1491M
      38R6456S3BXD1560F
      39R6622S3BXD1560F
      40R6626S3BXD1560M
      41R6181S2BXD1674F
      42R6515S3BXD1664M
      43R5673S1BXD1880F
      44R5674S1BXD1865M
      45R6553S3BXD19158F
      46R6551S3BXD1960M
      47R6643S44BXD2059F
      48R6595S3BXD2060M
      49R5735S1BXD2164F
      50R5892S2BXD2199M
      51R5896S2BXD2260F
      52R6414S3BXD2273M
      53R6550S3BXD2374F
      54R6586S3BXD23102F
      55R5630S1BXD2471F
      56R6356S3BXD2457M
      57R6162S2BXD2567F
      58R6625S3BXD2567F
      59R6642S44BXD2558M
      60R5761S1BXD27N/AF
      61R5763S1BXD2790M
      62R6621S3BXD28113F
      63R6548S3BXD2860M
      64R6547S3BXD2960F
      65R6453S3BXD3148F
      66R6452S3BXD3148M
      67R6583S3BXD3260F
      68R5765S1BXD3271M
      69R5689S1BXD3365F
      70R6450S3BXD3355M
      71R5767S1BXD3472F
      72R5900S2BXD3470M
      73R6588S3BXD3661F
      74R6490S3BXD3663M
      75R6417S3BXD3864F
      76R6439S3BXD3872M
      77R5769S1BXD39N/AF
      78R5771S1BXD3974M
      79R5773S1BXD40N/AF
      80R5775S1BXD40N/AM
      81R6494S3BXD4172F
      82R5910S2BXD4279F
      83R6493S3BXD4269M
      84R6341S3BXD4359F
      85R6401S3BXD4399M
      86R5916S2BXD4379M
      87R5839S1BXD44141F
      88R5779S1BXD44124M
      89R6405S3BXD4558F
      90R6610S3BXD4555M
      91R5922S2BXD4864F
      92R5925S2BXD4860M
      93R6719S14BXD4958F
      94R6485S3BXD4979M
      95R5781S1BXD5061F
      96R6464S3BXD5165F
      97R6585S3BXD5163M
      98R6500S3BXD5558F
      99R5938S2BXD5593M
      100R6504S3BXD5658F
      101R6503S3BXD5658M
      102R5783S1BXD60111F
      103R5784S1BXD6085M
      104R5786S1BXD6186F
      105R6449S3BXD6165M
      106R6716S14BXD6254F
      107R5790S1BXD62115M
      108R6519S3BXD6354F
      109R6717S14BXD6370M
      110R5792S1BXD64167F
      111R6641S44BXD6468M
      112R6630S3BXD6468M
      113R6477S3BXD6558F
      114R6628S3BXD6570M
      115R6511S3BXD6670F
      116R6448S3BXD6661M
      117R5794S1BXD66144M
      118R6502S3BXD6766F
      119R6545S3BXD6761M
      120R6337S3BXD6856F
      121R6594S3BXD6864M
      122R5796S1BXD6985F
      123R5798S1BXD6998M
      124R6402S3BXD7093F
      125R5841S1BXD70121F
      126R6592S3BXD7059M
      127R6328S3BXD7187F
      128R5967S2BXD7164M
      129R5969S2BXD7364F
      130R5800S1BXD73120M
      131R6646S3BXD7440F
      132R6524S3BXD7472M
      133R6445S3BXD7585F
      134R5843S1BXD75103F
      135R5845S1BXD75103M
      136R6604S3BXD7764F
      137R6513S3BXD7772M
      138R6582S3BXD78144F
      139R6563S3BXD7895M
      140R6645S44BXD7966F
      141R5806S1BXD7978M
      142R5847S1BXD8089F
      143R5852S1BXD8079M
      144R6562S3BXD8199F
      145R6468S3BXD8165M
      146R6560S3BXD8285F
      147R6512S3BXD8368F
      148R5810S1BXD83139M
      149R6510S3BXD8487F
      150R5970S2BXD84107F
      151R6603S3BXD8499M
      152R6517S3BXD8558F
      153R6718S14BXD8586M
      154R5812S1BXD8661F
      155R5814S1BXD8659M
      156R5816S1BXD87112F
      157R6488S3BXD87137M
      158R6580S3BXD88125F
      159R5977S2BXD8968F
      160R5979S2BXD8979M
      161R5978S2BXD8979M
      162R5818S1BXD90106F
      163R5820S1BXD90131M
      164R6343S3BXD9262F
      165R5984S2BXD9255M
      166R6581S3BXD93173M
      167R6557S3BXD93126M
      168R6509S3BXD9559F
      169R5822S1BXD9589M
      170R6640S44BXD9670F
      171R6514S3BXD9664M
      172R6506S3BXD9778F
      173R5849S1BXD97130F
      174R6591S3BXD97122M
      175R5990S2BXD9865F
      176R6596S3BXD9867M
      177R5993S2BXD9974F
      178R5995S2BXD9950M
      179R6607S3BXD10075F
      180R6411S3BXD100104M
      181R6508S3BXD10159F
      182R5593S1BXD10159M
      183R6523S3BXD10260F
      184R6466S3BXD10250M
      185R6404S3BXD10372F
      186R6609S3BXD10357M
      187R6555S3C57BL/10J73M
      188R5596S1C57BL/10J73M
      189R5597S1C57BL/6ByJ51F
      190R5598S1C57BL/6ByJ69M
      191R5600S1C57BL/6J79F
      192R5599S1C57BL/6J60F
      193R6451S3C57BL/6J77M
      194R6410S3C57BL/6J85M
      195R5603S1C57BLKS/J66F
      196R5604S1C57BLKS/J66M
      197R5996S2CBA/CaJ66F
      198R6349S3CBA/CaJ66M
      199R6458S3D2B6F164F
      200R6353S3D2B6F160M
      201R5605S1DBA/2J79F
      202R6446S3DBA/2J83M
      203R6597S3FVB/NJ60F
      204R5643S1FVB/NJ60F
      205R6598S3FVB/NJ60M
      206R5606S1ILS74F
      207R5607S1ILS74M
      208R5610S1ISS97M
      209R6627S3KK/HlJ64F
      210R6444S3KK/HlJ65M
      211R5702S1KK/HlJ61M
      212R5613S1LG/J63F
      213R5704S1LG/J65M
      214R5614S1LP/J65F
      215R5615S1LP/J65M
      216R6599S3MOLF/EiJ60F
      217R6606S3MOLF/EiJ60M
      218R6544S3NOD/LtJ77F
      219R5709S1NOD/LtJ58M
      220R6601S3NZB/BlNJ61F
      221R5711S1NZB/BlNJ61F
      222R6427S3NZB/BlNJ58M
      223R6150S2NZO/HlLtJ71F
      224R6155S2NZW/LacJ65F
      225R5654S1NZW/LacJ60M
      226R5721S1PL/J59M
      227R5616S1PWD/PhJ60M
      228R5725S1PWK/PhJ121M
      229R6174S2SJL/J63F
      230R6350S3SJL/J65M
      231R6419S3WSB/EiJ60F
      232R5620S1WSB/EiJ60M
      +
      +
      + +
        +
      +
    16. +
    diff --git a/general/datasets/Uthsc_spl_rma_1210/summary.rtf b/general/datasets/Uthsc_spl_rma_1210/summary.rtf new file mode 100644 index 0000000..d9478f8 --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1210/summary.rtf @@ -0,0 +1,3 @@ +

    This is a near final release of a spleen gene expression data set generated by a DOD-funded consortium (Byrne, Kotb, Williams, and Lu). Please contact Lu Lu or Robert Williams regarding status of this data set. The initial data enterted in 2010 had many errors described below. The data set is much improved and has no known errors of strain assignment.

    + +

    Animals were generated at UTHSC by Lu Lu and colleagues. The spleen of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna").

    diff --git a/general/datasets/Uthsc_spl_rma_1210f/cases.rtf b/general/datasets/Uthsc_spl_rma_1210f/cases.rtf new file mode 100644 index 0000000..7fa108f --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1210f/cases.rtf @@ -0,0 +1,3 @@ +

    Cases. A total of 111 strains, including 81 BXD strains, both parental strains (C57BL/6J and DBA/2J) and both reciprocal F1 hybrids (B6D2F1 and D2B6F1), and 26 other common inbred strains were quantified. In most cases, two arrays were processed per strain--one for males and one for females. All tissue and RNA was extracted by Lu Lu and colleagues. Samples were pooled by sex and usually include at least two cases per sex and strain.

    + +

    Sex Balance. XX strains have matched male and female samples. XX strains have male only samples (BXDX, XX, XX, XXX and XXX). XX strains have only female samples (BXDXX, XX, and XX.) Please review the expression data for Xist probe set 10606178. This non-coding RNA is expressed highly only in females and can be used to check the sex of a sample or pool of tissue. Ddx3y probe set 10608138 can also be used. This is a Y chromosome gene that is expressed abundantly in male samples and at background levels in female samples.

    diff --git a/general/datasets/Uthsc_spl_rma_1210f/experiment-design.rtf b/general/datasets/Uthsc_spl_rma_1210f/experiment-design.rtf new file mode 100644 index 0000000..a0aeba6 --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1210f/experiment-design.rtf @@ -0,0 +1,3 @@ +

    RNA Processing. Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + +

    Array Processing: All arrays were processed by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. The spleen was dissected by both Dr. Lu Lu and colleagues and Dr. Abdeltawab and colleagues. All arrays were run together (interleaved) as a single large batch.

    diff --git a/general/datasets/Uthsc_spl_rma_1210f/experiment-type.rtf b/general/datasets/Uthsc_spl_rma_1210f/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1210f/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Uthsc_spl_rma_1210f/notes.rtf b/general/datasets/Uthsc_spl_rma_1210f/notes.rtf new file mode 100644 index 0000000..c7bb873 --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1210f/notes.rtf @@ -0,0 +1,4 @@ +

    Data Status and Use. This is a provisional release that will soon be replaced by a final corrected data set. In the interim this data set is open for exploration and use for focused analysis of single genes. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data regarding the best citation.
    +This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please see the GeneNetwork data sharing policy for more background on data use.

    + +

    Contact. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data.

    diff --git a/general/datasets/Uthsc_spl_rma_1210f/processing.rtf b/general/datasets/Uthsc_spl_rma_1210f/processing.rtf new file mode 100644 index 0000000..deaf264 --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1210f/processing.rtf @@ -0,0 +1,1932 @@ +

    Data Processing. Array data sets were generated by the vendors GCOS system. Expression values were logged and then were further normalized and rescaled so that the mean value for each array data set is 8 units with a standard deviation of 2 units. Data were processed by Arthur Centeno.

    + +

    Batch Effects. This data set required some correction for batch effects and the data in this initial release incorporate any additional corrections. There are several additional confounder-like factors that should be considered:

    + +
      +
    1. Sex imbalance in the sample: use probe sets for Xist as correction in partial correlation
    2. +
    3. Background noise factors: examine and use probe sets with very low expression using the search "mean=(3.900 4.135)". This will extract the probe sets with the lowest expression. (Note that the number 54 is less than the total number of cases in this data set; important in computing principal components.) Add these probe sets to your collection window and then compute the correlation matrix. Use the first few principal components as surrogates for nuisance factors in partial correlation analysis. The first principal component of the lowest probe sets in this spleen data set accounts of XX% of the the variance. Mapping of this noise trait can be used to evaluate the effects of shared noise on QTL results. The first principal component in the spleen data set can be mapped as a trait.
    4. +
    + +

    Data Release. This data set was first uploaded into GeneNetwork by Arthur Centeno, October 11, 2010 and made accessible without a password to all users on November 1, 2010. The initial data release had numerous strain identification errors that have now largely been fixed. Based on an analysis of the top 20 Mendelian loci, the following 21 strains were likely to have been incorrectly identified or assigned in the current release:

    + +
      +
    1. BXD8, e.g., Probe set 10450161, 1036098. 10338684
    2. +
    3. BXD13, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10342568,
    4. +
    5. BXD21 (may be ok, only one probe set 10338684 is problematic)
    6. +
    7. BXD23 (may be ok, only two probe sets 10421128, 10419465 is problematic)
    8. +
    9. BXD36 (may be ok, only one probe set 10421128 is problematic)
    10. +
    11. BXD40, e.g., Probe set 10341070
    12. +
    13. BXD43, e.g., Probe set 10450161, 1036098, 10338684
    14. +
    15. BXD48, e.g., Probe set 1036098, 10402390, 10514896, 10592493, 10357381, 10342568, 10571444, 10419465
    16. +
    17. BXD62, e.g., Probe set 1036098, 1036098, 10402390, 10514896, 10592493, 10421128, 10571444
    18. +
    19. BXD68 (may be ok, only one probe set 10338684 is problematic)
    20. +
    21. BXD69, e.g., Probe set 10450161
    22. +
    23. BXD73, e.g., Probe set 10341070, 1036098, 10402390, 10514896, 10587633, 10342568, 10421128
    24. +
    25. BXD74, e.g., Probe set 10402390
    26. +
    27. BXD80, e.g., Probe set 10341070, 1036098, 10592493, 10400109, 10338684, 10342568, 10421128, 10419465
    28. +
    29. BXD83, e.g., Probe set 10450161, 10338684
    30. +
    31. BXD87 (may be ok, only one probe set 10421128 is problematic)
    32. +
    33. BXD89, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10357381, 10419465
    34. +
    35. BXD93, e.g., Probe set 10402390, 10357381
    36. +
    37. BALB/cByJ, e.g., Probe set 10388042, 1036098, 10587633, 10357381, 10342568, 10421128
    38. +
    39. LP/J, e.g., Probe set 10592493
    40. +
    41. DBA/2J, e.g., Probe set 10592493
    42. +
    + +

    Data Evaluation Summary

    + +
      +
    1. Before correction: eQLTs with LOD >10 (LRS>46.1): n = 638
    2. +
    3. After strain assignment correction: eQLTs with LOD >10 (LRS>46.1): n = 820
    4. +
    5. Before correction: eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 237.9
    6. +
    7. After correction: eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 278.1
    8. +
    9. Lowest mean value: Trait ID 10344361, mean = 3.998
    10. +
    11. Highest mean value: Trait ID 10598025, mean = 14.475 (MT-ND1)
    12. +
    13. Greatest sex difference: Trait ID: 10606178 (Xist)
    14. +
    15. Great variation within and among strains: Trait ID 10454192 (Ttr +

      Table 1 (please confirm that these assignments are after correction)

      + +
      + + + + + + +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      IndexArray IDPhaseStrainAgeSex
      1R5583S1129P3/J65F
      2R5584S1129P3/J66M
      3R5585S1129S1/SvImJ66F
      4R5586S1129S1/SvImJ66M
      5R5587S1129X1/SvJ65F
      6R5588S1129X1/SvJ66M
      7R6348S3B6D2F167F
      8R6347S3B6D2F162F
      9R5590S1B6D2F179M
      10R5662S1BALB/cByJ59F
      11R5664S1BALB/cByJ59M
      12R5591S1BALB/cJ51F
      13R5592S1BALB/cJ51M
      14R6154S2BTBR T+ tf/J60F
      15R6516S3BXD182F
      16R6584S3BXD195M
      17R5759S1BXD2N/AF
      18R5837S1BXD2106M
      19R5874S2BXD586F
      20R6554S3BXD560M
      21R6359S3BXD672F
      22R5777S1BXD6149M
      23R6364S3BXD876F
      24R5637S1BXD871F
      25R6365S3BXD876M
      26R5746S1BXD970F
      27R5981S2BXD967M
      28R5980S2BXD967M
      29R6182S2BXD1184F
      30R6486S3BXD1158M
      31R6711S24BXD1271F
      32R6608S3BXD1248F
      33R5885S2BXD1244M
      34R5755S1BXD13160F
      35R5887S2BXD1353M
      36R6180S2BXD1470F
      37R5669S1BXD1491M
      38R6456S3BXD1560F
      39R6622S3BXD1560F
      40R6626S3BXD1560M
      41R6181S2BXD1674F
      42R6515S3BXD1664M
      43R5673S1BXD1880F
      44R5674S1BXD1865M
      45R6553S3BXD19158F
      46R6551S3BXD1960M
      47R6643S44BXD2059F
      48R6595S3BXD2060M
      49R5735S1BXD2164F
      50R5892S2BXD2199M
      51R5896S2BXD2260F
      52R6414S3BXD2273M
      53R6550S3BXD2374F
      54R6586S3BXD23102F
      55R5630S1BXD2471F
      56R6356S3BXD2457M
      57R6162S2BXD2567F
      58R6625S3BXD2567F
      59R6642S44BXD2558M
      60R5761S1BXD27N/AF
      61R5763S1BXD2790M
      62R6621S3BXD28113F
      63R6548S3BXD2860M
      64R6547S3BXD2960F
      65R6453S3BXD3148F
      66R6452S3BXD3148M
      67R6583S3BXD3260F
      68R5765S1BXD3271M
      69R5689S1BXD3365F
      70R6450S3BXD3355M
      71R5767S1BXD3472F
      72R5900S2BXD3470M
      73R6588S3BXD3661F
      74R6490S3BXD3663M
      75R6417S3BXD3864F
      76R6439S3BXD3872M
      77R5769S1BXD39N/AF
      78R5771S1BXD3974M
      79R5773S1BXD40N/AF
      80R5775S1BXD40N/AM
      81R6494S3BXD4172F
      82R5910S2BXD4279F
      83R6493S3BXD4269M
      84R6341S3BXD4359F
      85R6401S3BXD4399M
      86R5916S2BXD4379M
      87R5839S1BXD44141F
      88R5779S1BXD44124M
      89R6405S3BXD4558F
      90R6610S3BXD4555M
      91R5922S2BXD4864F
      92R5925S2BXD4860M
      93R6719S14BXD4958F
      94R6485S3BXD4979M
      95R5781S1BXD5061F
      96R6464S3BXD5165F
      97R6585S3BXD5163M
      98R6500S3BXD5558F
      99R5938S2BXD5593M
      100R6504S3BXD5658F
      101R6503S3BXD5658M
      102R5783S1BXD60111F
      103R5784S1BXD6085M
      104R5786S1BXD6186F
      105R6449S3BXD6165M
      106R6716S14BXD6254F
      107R5790S1BXD62115M
      108R6519S3BXD6354F
      109R6717S14BXD6370M
      110R5792S1BXD64167F
      111R6641S44BXD6468M
      112R6630S3BXD6468M
      113R6477S3BXD6558F
      114R6628S3BXD6570M
      115R6511S3BXD6670F
      116R6448S3BXD6661M
      117R5794S1BXD66144M
      118R6502S3BXD6766F
      119R6545S3BXD6761M
      120R6337S3BXD6856F
      121R6594S3BXD6864M
      122R5796S1BXD6985F
      123R5798S1BXD6998M
      124R6402S3BXD7093F
      125R5841S1BXD70121F
      126R6592S3BXD7059M
      127R6328S3BXD7187F
      128R5967S2BXD7164M
      129R5969S2BXD7364F
      130R5800S1BXD73120M
      131R6646S3BXD7440F
      132R6524S3BXD7472M
      133R6445S3BXD7585F
      134R5843S1BXD75103F
      135R5845S1BXD75103M
      136R6604S3BXD7764F
      137R6513S3BXD7772M
      138R6582S3BXD78144F
      139R6563S3BXD7895M
      140R6645S44BXD7966F
      141R5806S1BXD7978M
      142R5847S1BXD8089F
      143R5852S1BXD8079M
      144R6562S3BXD8199F
      145R6468S3BXD8165M
      146R6560S3BXD8285F
      147R6512S3BXD8368F
      148R5810S1BXD83139M
      149R6510S3BXD8487F
      150R5970S2BXD84107F
      151R6603S3BXD8499M
      152R6517S3BXD8558F
      153R6718S14BXD8586M
      154R5812S1BXD8661F
      155R5814S1BXD8659M
      156R5816S1BXD87112F
      157R6488S3BXD87137M
      158R6580S3BXD88125F
      159R5977S2BXD8968F
      160R5979S2BXD8979M
      161R5978S2BXD8979M
      162R5818S1BXD90106F
      163R5820S1BXD90131M
      164R6343S3BXD9262F
      165R5984S2BXD9255M
      166R6581S3BXD93173M
      167R6557S3BXD93126M
      168R6509S3BXD9559F
      169R5822S1BXD9589M
      170R6640S44BXD9670F
      171R6514S3BXD9664M
      172R6506S3BXD9778F
      173R5849S1BXD97130F
      174R6591S3BXD97122M
      175R5990S2BXD9865F
      176R6596S3BXD9867M
      177R5993S2BXD9974F
      178R5995S2BXD9950M
      179R6607S3BXD10075F
      180R6411S3BXD100104M
      181R6508S3BXD10159F
      182R5593S1BXD10159M
      183R6523S3BXD10260F
      184R6466S3BXD10250M
      185R6404S3BXD10372F
      186R6609S3BXD10357M
      187R6555S3C57BL/10J73M
      188R5596S1C57BL/10J73M
      189R5597S1C57BL/6ByJ51F
      190R5598S1C57BL/6ByJ69M
      191R5600S1C57BL/6J79F
      192R5599S1C57BL/6J60F
      193R6451S3C57BL/6J77M
      194R6410S3C57BL/6J85M
      195R5603S1C57BLKS/J66F
      196R5604S1C57BLKS/J66M
      197R5996S2CBA/CaJ66F
      198R6349S3CBA/CaJ66M
      199R6458S3D2B6F164F
      200R6353S3D2B6F160M
      201R5605S1DBA/2J79F
      202R6446S3DBA/2J83M
      203R6597S3FVB/NJ60F
      204R5643S1FVB/NJ60F
      205R6598S3FVB/NJ60M
      206R5606S1ILS74F
      207R5607S1ILS74M
      208R5610S1ISS97M
      209R6627S3KK/HlJ64F
      210R6444S3KK/HlJ65M
      211R5702S1KK/HlJ61M
      212R5613S1LG/J63F
      213R5704S1LG/J65M
      214R5614S1LP/J65F
      215R5615S1LP/J65M
      216R6599S3MOLF/EiJ60F
      217R6606S3MOLF/EiJ60M
      218R6544S3NOD/LtJ77F
      219R5709S1NOD/LtJ58M
      220R6601S3NZB/BlNJ61F
      221R5711S1NZB/BlNJ61F
      222R6427S3NZB/BlNJ58M
      223R6150S2NZO/HlLtJ71F
      224R6155S2NZW/LacJ65F
      225R5654S1NZW/LacJ60M
      226R5721S1PL/J59M
      227R5616S1PWD/PhJ60M
      228R5725S1PWK/PhJ121M
      229R6174S2SJL/J63F
      230R6350S3SJL/J65M
      231R6419S3WSB/EiJ60F
      232R5620S1WSB/EiJ60M
      +
      +
      + +
        +
      +
    16. +
    diff --git a/general/datasets/Uthsc_spl_rma_1210f/summary.rtf b/general/datasets/Uthsc_spl_rma_1210f/summary.rtf new file mode 100644 index 0000000..d9478f8 --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1210f/summary.rtf @@ -0,0 +1,3 @@ +

    This is a near final release of a spleen gene expression data set generated by a DOD-funded consortium (Byrne, Kotb, Williams, and Lu). Please contact Lu Lu or Robert Williams regarding status of this data set. The initial data enterted in 2010 had many errors described below. The data set is much improved and has no known errors of strain assignment.

    + +

    Animals were generated at UTHSC by Lu Lu and colleagues. The spleen of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna").

    diff --git a/general/datasets/Uthsc_spl_rma_1210m/cases.rtf b/general/datasets/Uthsc_spl_rma_1210m/cases.rtf new file mode 100644 index 0000000..7fa108f --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1210m/cases.rtf @@ -0,0 +1,3 @@ +

    Cases. A total of 111 strains, including 81 BXD strains, both parental strains (C57BL/6J and DBA/2J) and both reciprocal F1 hybrids (B6D2F1 and D2B6F1), and 26 other common inbred strains were quantified. In most cases, two arrays were processed per strain--one for males and one for females. All tissue and RNA was extracted by Lu Lu and colleagues. Samples were pooled by sex and usually include at least two cases per sex and strain.

    + +

    Sex Balance. XX strains have matched male and female samples. XX strains have male only samples (BXDX, XX, XX, XXX and XXX). XX strains have only female samples (BXDXX, XX, and XX.) Please review the expression data for Xist probe set 10606178. This non-coding RNA is expressed highly only in females and can be used to check the sex of a sample or pool of tissue. Ddx3y probe set 10608138 can also be used. This is a Y chromosome gene that is expressed abundantly in male samples and at background levels in female samples.

    diff --git a/general/datasets/Uthsc_spl_rma_1210m/experiment-design.rtf b/general/datasets/Uthsc_spl_rma_1210m/experiment-design.rtf new file mode 100644 index 0000000..a0aeba6 --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1210m/experiment-design.rtf @@ -0,0 +1,3 @@ +

    RNA Processing. Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + +

    Array Processing: All arrays were processed by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. The spleen was dissected by both Dr. Lu Lu and colleagues and Dr. Abdeltawab and colleagues. All arrays were run together (interleaved) as a single large batch.

    diff --git a/general/datasets/Uthsc_spl_rma_1210m/experiment-type.rtf b/general/datasets/Uthsc_spl_rma_1210m/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1210m/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Uthsc_spl_rma_1210m/notes.rtf b/general/datasets/Uthsc_spl_rma_1210m/notes.rtf new file mode 100644 index 0000000..c7bb873 --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1210m/notes.rtf @@ -0,0 +1,4 @@ +

    Data Status and Use. This is a provisional release that will soon be replaced by a final corrected data set. In the interim this data set is open for exploration and use for focused analysis of single genes. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data regarding the best citation.
    +This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please see the GeneNetwork data sharing policy for more background on data use.

    + +

    Contact. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data.

    diff --git a/general/datasets/Uthsc_spl_rma_1210m/processing.rtf b/general/datasets/Uthsc_spl_rma_1210m/processing.rtf new file mode 100644 index 0000000..deaf264 --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1210m/processing.rtf @@ -0,0 +1,1932 @@ +

    Data Processing. Array data sets were generated by the vendors GCOS system. Expression values were logged and then were further normalized and rescaled so that the mean value for each array data set is 8 units with a standard deviation of 2 units. Data were processed by Arthur Centeno.

    + +

    Batch Effects. This data set required some correction for batch effects and the data in this initial release incorporate any additional corrections. There are several additional confounder-like factors that should be considered:

    + +
      +
    1. Sex imbalance in the sample: use probe sets for Xist as correction in partial correlation
    2. +
    3. Background noise factors: examine and use probe sets with very low expression using the search "mean=(3.900 4.135)". This will extract the probe sets with the lowest expression. (Note that the number 54 is less than the total number of cases in this data set; important in computing principal components.) Add these probe sets to your collection window and then compute the correlation matrix. Use the first few principal components as surrogates for nuisance factors in partial correlation analysis. The first principal component of the lowest probe sets in this spleen data set accounts of XX% of the the variance. Mapping of this noise trait can be used to evaluate the effects of shared noise on QTL results. The first principal component in the spleen data set can be mapped as a trait.
    4. +
    + +

    Data Release. This data set was first uploaded into GeneNetwork by Arthur Centeno, October 11, 2010 and made accessible without a password to all users on November 1, 2010. The initial data release had numerous strain identification errors that have now largely been fixed. Based on an analysis of the top 20 Mendelian loci, the following 21 strains were likely to have been incorrectly identified or assigned in the current release:

    + +
      +
    1. BXD8, e.g., Probe set 10450161, 1036098. 10338684
    2. +
    3. BXD13, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10342568,
    4. +
    5. BXD21 (may be ok, only one probe set 10338684 is problematic)
    6. +
    7. BXD23 (may be ok, only two probe sets 10421128, 10419465 is problematic)
    8. +
    9. BXD36 (may be ok, only one probe set 10421128 is problematic)
    10. +
    11. BXD40, e.g., Probe set 10341070
    12. +
    13. BXD43, e.g., Probe set 10450161, 1036098, 10338684
    14. +
    15. BXD48, e.g., Probe set 1036098, 10402390, 10514896, 10592493, 10357381, 10342568, 10571444, 10419465
    16. +
    17. BXD62, e.g., Probe set 1036098, 1036098, 10402390, 10514896, 10592493, 10421128, 10571444
    18. +
    19. BXD68 (may be ok, only one probe set 10338684 is problematic)
    20. +
    21. BXD69, e.g., Probe set 10450161
    22. +
    23. BXD73, e.g., Probe set 10341070, 1036098, 10402390, 10514896, 10587633, 10342568, 10421128
    24. +
    25. BXD74, e.g., Probe set 10402390
    26. +
    27. BXD80, e.g., Probe set 10341070, 1036098, 10592493, 10400109, 10338684, 10342568, 10421128, 10419465
    28. +
    29. BXD83, e.g., Probe set 10450161, 10338684
    30. +
    31. BXD87 (may be ok, only one probe set 10421128 is problematic)
    32. +
    33. BXD89, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10357381, 10419465
    34. +
    35. BXD93, e.g., Probe set 10402390, 10357381
    36. +
    37. BALB/cByJ, e.g., Probe set 10388042, 1036098, 10587633, 10357381, 10342568, 10421128
    38. +
    39. LP/J, e.g., Probe set 10592493
    40. +
    41. DBA/2J, e.g., Probe set 10592493
    42. +
    + +

    Data Evaluation Summary

    + +
      +
    1. Before correction: eQLTs with LOD >10 (LRS>46.1): n = 638
    2. +
    3. After strain assignment correction: eQLTs with LOD >10 (LRS>46.1): n = 820
    4. +
    5. Before correction: eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 237.9
    6. +
    7. After correction: eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 278.1
    8. +
    9. Lowest mean value: Trait ID 10344361, mean = 3.998
    10. +
    11. Highest mean value: Trait ID 10598025, mean = 14.475 (MT-ND1)
    12. +
    13. Greatest sex difference: Trait ID: 10606178 (Xist)
    14. +
    15. Great variation within and among strains: Trait ID 10454192 (Ttr +

      Table 1 (please confirm that these assignments are after correction)

      + +
      + + + + + + +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      IndexArray IDPhaseStrainAgeSex
      1R5583S1129P3/J65F
      2R5584S1129P3/J66M
      3R5585S1129S1/SvImJ66F
      4R5586S1129S1/SvImJ66M
      5R5587S1129X1/SvJ65F
      6R5588S1129X1/SvJ66M
      7R6348S3B6D2F167F
      8R6347S3B6D2F162F
      9R5590S1B6D2F179M
      10R5662S1BALB/cByJ59F
      11R5664S1BALB/cByJ59M
      12R5591S1BALB/cJ51F
      13R5592S1BALB/cJ51M
      14R6154S2BTBR T+ tf/J60F
      15R6516S3BXD182F
      16R6584S3BXD195M
      17R5759S1BXD2N/AF
      18R5837S1BXD2106M
      19R5874S2BXD586F
      20R6554S3BXD560M
      21R6359S3BXD672F
      22R5777S1BXD6149M
      23R6364S3BXD876F
      24R5637S1BXD871F
      25R6365S3BXD876M
      26R5746S1BXD970F
      27R5981S2BXD967M
      28R5980S2BXD967M
      29R6182S2BXD1184F
      30R6486S3BXD1158M
      31R6711S24BXD1271F
      32R6608S3BXD1248F
      33R5885S2BXD1244M
      34R5755S1BXD13160F
      35R5887S2BXD1353M
      36R6180S2BXD1470F
      37R5669S1BXD1491M
      38R6456S3BXD1560F
      39R6622S3BXD1560F
      40R6626S3BXD1560M
      41R6181S2BXD1674F
      42R6515S3BXD1664M
      43R5673S1BXD1880F
      44R5674S1BXD1865M
      45R6553S3BXD19158F
      46R6551S3BXD1960M
      47R6643S44BXD2059F
      48R6595S3BXD2060M
      49R5735S1BXD2164F
      50R5892S2BXD2199M
      51R5896S2BXD2260F
      52R6414S3BXD2273M
      53R6550S3BXD2374F
      54R6586S3BXD23102F
      55R5630S1BXD2471F
      56R6356S3BXD2457M
      57R6162S2BXD2567F
      58R6625S3BXD2567F
      59R6642S44BXD2558M
      60R5761S1BXD27N/AF
      61R5763S1BXD2790M
      62R6621S3BXD28113F
      63R6548S3BXD2860M
      64R6547S3BXD2960F
      65R6453S3BXD3148F
      66R6452S3BXD3148M
      67R6583S3BXD3260F
      68R5765S1BXD3271M
      69R5689S1BXD3365F
      70R6450S3BXD3355M
      71R5767S1BXD3472F
      72R5900S2BXD3470M
      73R6588S3BXD3661F
      74R6490S3BXD3663M
      75R6417S3BXD3864F
      76R6439S3BXD3872M
      77R5769S1BXD39N/AF
      78R5771S1BXD3974M
      79R5773S1BXD40N/AF
      80R5775S1BXD40N/AM
      81R6494S3BXD4172F
      82R5910S2BXD4279F
      83R6493S3BXD4269M
      84R6341S3BXD4359F
      85R6401S3BXD4399M
      86R5916S2BXD4379M
      87R5839S1BXD44141F
      88R5779S1BXD44124M
      89R6405S3BXD4558F
      90R6610S3BXD4555M
      91R5922S2BXD4864F
      92R5925S2BXD4860M
      93R6719S14BXD4958F
      94R6485S3BXD4979M
      95R5781S1BXD5061F
      96R6464S3BXD5165F
      97R6585S3BXD5163M
      98R6500S3BXD5558F
      99R5938S2BXD5593M
      100R6504S3BXD5658F
      101R6503S3BXD5658M
      102R5783S1BXD60111F
      103R5784S1BXD6085M
      104R5786S1BXD6186F
      105R6449S3BXD6165M
      106R6716S14BXD6254F
      107R5790S1BXD62115M
      108R6519S3BXD6354F
      109R6717S14BXD6370M
      110R5792S1BXD64167F
      111R6641S44BXD6468M
      112R6630S3BXD6468M
      113R6477S3BXD6558F
      114R6628S3BXD6570M
      115R6511S3BXD6670F
      116R6448S3BXD6661M
      117R5794S1BXD66144M
      118R6502S3BXD6766F
      119R6545S3BXD6761M
      120R6337S3BXD6856F
      121R6594S3BXD6864M
      122R5796S1BXD6985F
      123R5798S1BXD6998M
      124R6402S3BXD7093F
      125R5841S1BXD70121F
      126R6592S3BXD7059M
      127R6328S3BXD7187F
      128R5967S2BXD7164M
      129R5969S2BXD7364F
      130R5800S1BXD73120M
      131R6646S3BXD7440F
      132R6524S3BXD7472M
      133R6445S3BXD7585F
      134R5843S1BXD75103F
      135R5845S1BXD75103M
      136R6604S3BXD7764F
      137R6513S3BXD7772M
      138R6582S3BXD78144F
      139R6563S3BXD7895M
      140R6645S44BXD7966F
      141R5806S1BXD7978M
      142R5847S1BXD8089F
      143R5852S1BXD8079M
      144R6562S3BXD8199F
      145R6468S3BXD8165M
      146R6560S3BXD8285F
      147R6512S3BXD8368F
      148R5810S1BXD83139M
      149R6510S3BXD8487F
      150R5970S2BXD84107F
      151R6603S3BXD8499M
      152R6517S3BXD8558F
      153R6718S14BXD8586M
      154R5812S1BXD8661F
      155R5814S1BXD8659M
      156R5816S1BXD87112F
      157R6488S3BXD87137M
      158R6580S3BXD88125F
      159R5977S2BXD8968F
      160R5979S2BXD8979M
      161R5978S2BXD8979M
      162R5818S1BXD90106F
      163R5820S1BXD90131M
      164R6343S3BXD9262F
      165R5984S2BXD9255M
      166R6581S3BXD93173M
      167R6557S3BXD93126M
      168R6509S3BXD9559F
      169R5822S1BXD9589M
      170R6640S44BXD9670F
      171R6514S3BXD9664M
      172R6506S3BXD9778F
      173R5849S1BXD97130F
      174R6591S3BXD97122M
      175R5990S2BXD9865F
      176R6596S3BXD9867M
      177R5993S2BXD9974F
      178R5995S2BXD9950M
      179R6607S3BXD10075F
      180R6411S3BXD100104M
      181R6508S3BXD10159F
      182R5593S1BXD10159M
      183R6523S3BXD10260F
      184R6466S3BXD10250M
      185R6404S3BXD10372F
      186R6609S3BXD10357M
      187R6555S3C57BL/10J73M
      188R5596S1C57BL/10J73M
      189R5597S1C57BL/6ByJ51F
      190R5598S1C57BL/6ByJ69M
      191R5600S1C57BL/6J79F
      192R5599S1C57BL/6J60F
      193R6451S3C57BL/6J77M
      194R6410S3C57BL/6J85M
      195R5603S1C57BLKS/J66F
      196R5604S1C57BLKS/J66M
      197R5996S2CBA/CaJ66F
      198R6349S3CBA/CaJ66M
      199R6458S3D2B6F164F
      200R6353S3D2B6F160M
      201R5605S1DBA/2J79F
      202R6446S3DBA/2J83M
      203R6597S3FVB/NJ60F
      204R5643S1FVB/NJ60F
      205R6598S3FVB/NJ60M
      206R5606S1ILS74F
      207R5607S1ILS74M
      208R5610S1ISS97M
      209R6627S3KK/HlJ64F
      210R6444S3KK/HlJ65M
      211R5702S1KK/HlJ61M
      212R5613S1LG/J63F
      213R5704S1LG/J65M
      214R5614S1LP/J65F
      215R5615S1LP/J65M
      216R6599S3MOLF/EiJ60F
      217R6606S3MOLF/EiJ60M
      218R6544S3NOD/LtJ77F
      219R5709S1NOD/LtJ58M
      220R6601S3NZB/BlNJ61F
      221R5711S1NZB/BlNJ61F
      222R6427S3NZB/BlNJ58M
      223R6150S2NZO/HlLtJ71F
      224R6155S2NZW/LacJ65F
      225R5654S1NZW/LacJ60M
      226R5721S1PL/J59M
      227R5616S1PWD/PhJ60M
      228R5725S1PWK/PhJ121M
      229R6174S2SJL/J63F
      230R6350S3SJL/J65M
      231R6419S3WSB/EiJ60F
      232R5620S1WSB/EiJ60M
      +
      +
      + +
        +
      +
    16. +
    diff --git a/general/datasets/Uthsc_spl_rma_1210m/summary.rtf b/general/datasets/Uthsc_spl_rma_1210m/summary.rtf new file mode 100644 index 0000000..d9478f8 --- /dev/null +++ b/general/datasets/Uthsc_spl_rma_1210m/summary.rtf @@ -0,0 +1,3 @@ +

    This is a near final release of a spleen gene expression data set generated by a DOD-funded consortium (Byrne, Kotb, Williams, and Lu). Please contact Lu Lu or Robert Williams regarding status of this data set. The initial data enterted in 2010 had many errors described below. The data set is much improved and has no known errors of strain assignment.

    + +

    Animals were generated at UTHSC by Lu Lu and colleagues. The spleen of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna").

    diff --git a/general/datasets/Uthsc_spl_rmaex_1210/cases.rtf b/general/datasets/Uthsc_spl_rmaex_1210/cases.rtf new file mode 100644 index 0000000..7fa108f --- /dev/null +++ b/general/datasets/Uthsc_spl_rmaex_1210/cases.rtf @@ -0,0 +1,3 @@ +

    Cases. A total of 111 strains, including 81 BXD strains, both parental strains (C57BL/6J and DBA/2J) and both reciprocal F1 hybrids (B6D2F1 and D2B6F1), and 26 other common inbred strains were quantified. In most cases, two arrays were processed per strain--one for males and one for females. All tissue and RNA was extracted by Lu Lu and colleagues. Samples were pooled by sex and usually include at least two cases per sex and strain.

    + +

    Sex Balance. XX strains have matched male and female samples. XX strains have male only samples (BXDX, XX, XX, XXX and XXX). XX strains have only female samples (BXDXX, XX, and XX.) Please review the expression data for Xist probe set 10606178. This non-coding RNA is expressed highly only in females and can be used to check the sex of a sample or pool of tissue. Ddx3y probe set 10608138 can also be used. This is a Y chromosome gene that is expressed abundantly in male samples and at background levels in female samples.

    diff --git a/general/datasets/Uthsc_spl_rmaex_1210/experiment-design.rtf b/general/datasets/Uthsc_spl_rmaex_1210/experiment-design.rtf new file mode 100644 index 0000000..a0aeba6 --- /dev/null +++ b/general/datasets/Uthsc_spl_rmaex_1210/experiment-design.rtf @@ -0,0 +1,3 @@ +

    RNA Processing. Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + +

    Array Processing: All arrays were processed by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. The spleen was dissected by both Dr. Lu Lu and colleagues and Dr. Abdeltawab and colleagues. All arrays were run together (interleaved) as a single large batch.

    diff --git a/general/datasets/Uthsc_spl_rmaex_1210/notes.rtf b/general/datasets/Uthsc_spl_rmaex_1210/notes.rtf new file mode 100644 index 0000000..c7bb873 --- /dev/null +++ b/general/datasets/Uthsc_spl_rmaex_1210/notes.rtf @@ -0,0 +1,4 @@ +

    Data Status and Use. This is a provisional release that will soon be replaced by a final corrected data set. In the interim this data set is open for exploration and use for focused analysis of single genes. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data regarding the best citation.
    +This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please see the GeneNetwork data sharing policy for more background on data use.

    + +

    Contact. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data.

    diff --git a/general/datasets/Uthsc_spl_rmaex_1210/processing.rtf b/general/datasets/Uthsc_spl_rmaex_1210/processing.rtf new file mode 100644 index 0000000..deaf264 --- /dev/null +++ b/general/datasets/Uthsc_spl_rmaex_1210/processing.rtf @@ -0,0 +1,1932 @@ +

    Data Processing. Array data sets were generated by the vendors GCOS system. Expression values were logged and then were further normalized and rescaled so that the mean value for each array data set is 8 units with a standard deviation of 2 units. Data were processed by Arthur Centeno.

    + +

    Batch Effects. This data set required some correction for batch effects and the data in this initial release incorporate any additional corrections. There are several additional confounder-like factors that should be considered:

    + +
      +
    1. Sex imbalance in the sample: use probe sets for Xist as correction in partial correlation
    2. +
    3. Background noise factors: examine and use probe sets with very low expression using the search "mean=(3.900 4.135)". This will extract the probe sets with the lowest expression. (Note that the number 54 is less than the total number of cases in this data set; important in computing principal components.) Add these probe sets to your collection window and then compute the correlation matrix. Use the first few principal components as surrogates for nuisance factors in partial correlation analysis. The first principal component of the lowest probe sets in this spleen data set accounts of XX% of the the variance. Mapping of this noise trait can be used to evaluate the effects of shared noise on QTL results. The first principal component in the spleen data set can be mapped as a trait.
    4. +
    + +

    Data Release. This data set was first uploaded into GeneNetwork by Arthur Centeno, October 11, 2010 and made accessible without a password to all users on November 1, 2010. The initial data release had numerous strain identification errors that have now largely been fixed. Based on an analysis of the top 20 Mendelian loci, the following 21 strains were likely to have been incorrectly identified or assigned in the current release:

    + +
      +
    1. BXD8, e.g., Probe set 10450161, 1036098. 10338684
    2. +
    3. BXD13, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10342568,
    4. +
    5. BXD21 (may be ok, only one probe set 10338684 is problematic)
    6. +
    7. BXD23 (may be ok, only two probe sets 10421128, 10419465 is problematic)
    8. +
    9. BXD36 (may be ok, only one probe set 10421128 is problematic)
    10. +
    11. BXD40, e.g., Probe set 10341070
    12. +
    13. BXD43, e.g., Probe set 10450161, 1036098, 10338684
    14. +
    15. BXD48, e.g., Probe set 1036098, 10402390, 10514896, 10592493, 10357381, 10342568, 10571444, 10419465
    16. +
    17. BXD62, e.g., Probe set 1036098, 1036098, 10402390, 10514896, 10592493, 10421128, 10571444
    18. +
    19. BXD68 (may be ok, only one probe set 10338684 is problematic)
    20. +
    21. BXD69, e.g., Probe set 10450161
    22. +
    23. BXD73, e.g., Probe set 10341070, 1036098, 10402390, 10514896, 10587633, 10342568, 10421128
    24. +
    25. BXD74, e.g., Probe set 10402390
    26. +
    27. BXD80, e.g., Probe set 10341070, 1036098, 10592493, 10400109, 10338684, 10342568, 10421128, 10419465
    28. +
    29. BXD83, e.g., Probe set 10450161, 10338684
    30. +
    31. BXD87 (may be ok, only one probe set 10421128 is problematic)
    32. +
    33. BXD89, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10357381, 10419465
    34. +
    35. BXD93, e.g., Probe set 10402390, 10357381
    36. +
    37. BALB/cByJ, e.g., Probe set 10388042, 1036098, 10587633, 10357381, 10342568, 10421128
    38. +
    39. LP/J, e.g., Probe set 10592493
    40. +
    41. DBA/2J, e.g., Probe set 10592493
    42. +
    + +

    Data Evaluation Summary

    + +
      +
    1. Before correction: eQLTs with LOD >10 (LRS>46.1): n = 638
    2. +
    3. After strain assignment correction: eQLTs with LOD >10 (LRS>46.1): n = 820
    4. +
    5. Before correction: eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 237.9
    6. +
    7. After correction: eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 278.1
    8. +
    9. Lowest mean value: Trait ID 10344361, mean = 3.998
    10. +
    11. Highest mean value: Trait ID 10598025, mean = 14.475 (MT-ND1)
    12. +
    13. Greatest sex difference: Trait ID: 10606178 (Xist)
    14. +
    15. Great variation within and among strains: Trait ID 10454192 (Ttr +

      Table 1 (please confirm that these assignments are after correction)

      + +
      + + + + + + +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      IndexArray IDPhaseStrainAgeSex
      1R5583S1129P3/J65F
      2R5584S1129P3/J66M
      3R5585S1129S1/SvImJ66F
      4R5586S1129S1/SvImJ66M
      5R5587S1129X1/SvJ65F
      6R5588S1129X1/SvJ66M
      7R6348S3B6D2F167F
      8R6347S3B6D2F162F
      9R5590S1B6D2F179M
      10R5662S1BALB/cByJ59F
      11R5664S1BALB/cByJ59M
      12R5591S1BALB/cJ51F
      13R5592S1BALB/cJ51M
      14R6154S2BTBR T+ tf/J60F
      15R6516S3BXD182F
      16R6584S3BXD195M
      17R5759S1BXD2N/AF
      18R5837S1BXD2106M
      19R5874S2BXD586F
      20R6554S3BXD560M
      21R6359S3BXD672F
      22R5777S1BXD6149M
      23R6364S3BXD876F
      24R5637S1BXD871F
      25R6365S3BXD876M
      26R5746S1BXD970F
      27R5981S2BXD967M
      28R5980S2BXD967M
      29R6182S2BXD1184F
      30R6486S3BXD1158M
      31R6711S24BXD1271F
      32R6608S3BXD1248F
      33R5885S2BXD1244M
      34R5755S1BXD13160F
      35R5887S2BXD1353M
      36R6180S2BXD1470F
      37R5669S1BXD1491M
      38R6456S3BXD1560F
      39R6622S3BXD1560F
      40R6626S3BXD1560M
      41R6181S2BXD1674F
      42R6515S3BXD1664M
      43R5673S1BXD1880F
      44R5674S1BXD1865M
      45R6553S3BXD19158F
      46R6551S3BXD1960M
      47R6643S44BXD2059F
      48R6595S3BXD2060M
      49R5735S1BXD2164F
      50R5892S2BXD2199M
      51R5896S2BXD2260F
      52R6414S3BXD2273M
      53R6550S3BXD2374F
      54R6586S3BXD23102F
      55R5630S1BXD2471F
      56R6356S3BXD2457M
      57R6162S2BXD2567F
      58R6625S3BXD2567F
      59R6642S44BXD2558M
      60R5761S1BXD27N/AF
      61R5763S1BXD2790M
      62R6621S3BXD28113F
      63R6548S3BXD2860M
      64R6547S3BXD2960F
      65R6453S3BXD3148F
      66R6452S3BXD3148M
      67R6583S3BXD3260F
      68R5765S1BXD3271M
      69R5689S1BXD3365F
      70R6450S3BXD3355M
      71R5767S1BXD3472F
      72R5900S2BXD3470M
      73R6588S3BXD3661F
      74R6490S3BXD3663M
      75R6417S3BXD3864F
      76R6439S3BXD3872M
      77R5769S1BXD39N/AF
      78R5771S1BXD3974M
      79R5773S1BXD40N/AF
      80R5775S1BXD40N/AM
      81R6494S3BXD4172F
      82R5910S2BXD4279F
      83R6493S3BXD4269M
      84R6341S3BXD4359F
      85R6401S3BXD4399M
      86R5916S2BXD4379M
      87R5839S1BXD44141F
      88R5779S1BXD44124M
      89R6405S3BXD4558F
      90R6610S3BXD4555M
      91R5922S2BXD4864F
      92R5925S2BXD4860M
      93R6719S14BXD4958F
      94R6485S3BXD4979M
      95R5781S1BXD5061F
      96R6464S3BXD5165F
      97R6585S3BXD5163M
      98R6500S3BXD5558F
      99R5938S2BXD5593M
      100R6504S3BXD5658F
      101R6503S3BXD5658M
      102R5783S1BXD60111F
      103R5784S1BXD6085M
      104R5786S1BXD6186F
      105R6449S3BXD6165M
      106R6716S14BXD6254F
      107R5790S1BXD62115M
      108R6519S3BXD6354F
      109R6717S14BXD6370M
      110R5792S1BXD64167F
      111R6641S44BXD6468M
      112R6630S3BXD6468M
      113R6477S3BXD6558F
      114R6628S3BXD6570M
      115R6511S3BXD6670F
      116R6448S3BXD6661M
      117R5794S1BXD66144M
      118R6502S3BXD6766F
      119R6545S3BXD6761M
      120R6337S3BXD6856F
      121R6594S3BXD6864M
      122R5796S1BXD6985F
      123R5798S1BXD6998M
      124R6402S3BXD7093F
      125R5841S1BXD70121F
      126R6592S3BXD7059M
      127R6328S3BXD7187F
      128R5967S2BXD7164M
      129R5969S2BXD7364F
      130R5800S1BXD73120M
      131R6646S3BXD7440F
      132R6524S3BXD7472M
      133R6445S3BXD7585F
      134R5843S1BXD75103F
      135R5845S1BXD75103M
      136R6604S3BXD7764F
      137R6513S3BXD7772M
      138R6582S3BXD78144F
      139R6563S3BXD7895M
      140R6645S44BXD7966F
      141R5806S1BXD7978M
      142R5847S1BXD8089F
      143R5852S1BXD8079M
      144R6562S3BXD8199F
      145R6468S3BXD8165M
      146R6560S3BXD8285F
      147R6512S3BXD8368F
      148R5810S1BXD83139M
      149R6510S3BXD8487F
      150R5970S2BXD84107F
      151R6603S3BXD8499M
      152R6517S3BXD8558F
      153R6718S14BXD8586M
      154R5812S1BXD8661F
      155R5814S1BXD8659M
      156R5816S1BXD87112F
      157R6488S3BXD87137M
      158R6580S3BXD88125F
      159R5977S2BXD8968F
      160R5979S2BXD8979M
      161R5978S2BXD8979M
      162R5818S1BXD90106F
      163R5820S1BXD90131M
      164R6343S3BXD9262F
      165R5984S2BXD9255M
      166R6581S3BXD93173M
      167R6557S3BXD93126M
      168R6509S3BXD9559F
      169R5822S1BXD9589M
      170R6640S44BXD9670F
      171R6514S3BXD9664M
      172R6506S3BXD9778F
      173R5849S1BXD97130F
      174R6591S3BXD97122M
      175R5990S2BXD9865F
      176R6596S3BXD9867M
      177R5993S2BXD9974F
      178R5995S2BXD9950M
      179R6607S3BXD10075F
      180R6411S3BXD100104M
      181R6508S3BXD10159F
      182R5593S1BXD10159M
      183R6523S3BXD10260F
      184R6466S3BXD10250M
      185R6404S3BXD10372F
      186R6609S3BXD10357M
      187R6555S3C57BL/10J73M
      188R5596S1C57BL/10J73M
      189R5597S1C57BL/6ByJ51F
      190R5598S1C57BL/6ByJ69M
      191R5600S1C57BL/6J79F
      192R5599S1C57BL/6J60F
      193R6451S3C57BL/6J77M
      194R6410S3C57BL/6J85M
      195R5603S1C57BLKS/J66F
      196R5604S1C57BLKS/J66M
      197R5996S2CBA/CaJ66F
      198R6349S3CBA/CaJ66M
      199R6458S3D2B6F164F
      200R6353S3D2B6F160M
      201R5605S1DBA/2J79F
      202R6446S3DBA/2J83M
      203R6597S3FVB/NJ60F
      204R5643S1FVB/NJ60F
      205R6598S3FVB/NJ60M
      206R5606S1ILS74F
      207R5607S1ILS74M
      208R5610S1ISS97M
      209R6627S3KK/HlJ64F
      210R6444S3KK/HlJ65M
      211R5702S1KK/HlJ61M
      212R5613S1LG/J63F
      213R5704S1LG/J65M
      214R5614S1LP/J65F
      215R5615S1LP/J65M
      216R6599S3MOLF/EiJ60F
      217R6606S3MOLF/EiJ60M
      218R6544S3NOD/LtJ77F
      219R5709S1NOD/LtJ58M
      220R6601S3NZB/BlNJ61F
      221R5711S1NZB/BlNJ61F
      222R6427S3NZB/BlNJ58M
      223R6150S2NZO/HlLtJ71F
      224R6155S2NZW/LacJ65F
      225R5654S1NZW/LacJ60M
      226R5721S1PL/J59M
      227R5616S1PWD/PhJ60M
      228R5725S1PWK/PhJ121M
      229R6174S2SJL/J63F
      230R6350S3SJL/J65M
      231R6419S3WSB/EiJ60F
      232R5620S1WSB/EiJ60M
      +
      +
      + +
        +
      +
    16. +
    diff --git a/general/datasets/Uthsc_spl_rmaex_1210/summary.rtf b/general/datasets/Uthsc_spl_rmaex_1210/summary.rtf new file mode 100644 index 0000000..d9478f8 --- /dev/null +++ b/general/datasets/Uthsc_spl_rmaex_1210/summary.rtf @@ -0,0 +1,3 @@ +

    This is a near final release of a spleen gene expression data set generated by a DOD-funded consortium (Byrne, Kotb, Williams, and Lu). Please contact Lu Lu or Robert Williams regarding status of this data set. The initial data enterted in 2010 had many errors described below. The data set is much improved and has no known errors of strain assignment.

    + +

    Animals were generated at UTHSC by Lu Lu and colleagues. The spleen of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna").

    diff --git a/general/datasets/Uthsc_spls1_rma_1210/cases.rtf b/general/datasets/Uthsc_spls1_rma_1210/cases.rtf new file mode 100644 index 0000000..7fa108f --- /dev/null +++ b/general/datasets/Uthsc_spls1_rma_1210/cases.rtf @@ -0,0 +1,3 @@ +

    Cases. A total of 111 strains, including 81 BXD strains, both parental strains (C57BL/6J and DBA/2J) and both reciprocal F1 hybrids (B6D2F1 and D2B6F1), and 26 other common inbred strains were quantified. In most cases, two arrays were processed per strain--one for males and one for females. All tissue and RNA was extracted by Lu Lu and colleagues. Samples were pooled by sex and usually include at least two cases per sex and strain.

    + +

    Sex Balance. XX strains have matched male and female samples. XX strains have male only samples (BXDX, XX, XX, XXX and XXX). XX strains have only female samples (BXDXX, XX, and XX.) Please review the expression data for Xist probe set 10606178. This non-coding RNA is expressed highly only in females and can be used to check the sex of a sample or pool of tissue. Ddx3y probe set 10608138 can also be used. This is a Y chromosome gene that is expressed abundantly in male samples and at background levels in female samples.

    diff --git a/general/datasets/Uthsc_spls1_rma_1210/experiment-design.rtf b/general/datasets/Uthsc_spls1_rma_1210/experiment-design.rtf new file mode 100644 index 0000000..a0aeba6 --- /dev/null +++ b/general/datasets/Uthsc_spls1_rma_1210/experiment-design.rtf @@ -0,0 +1,3 @@ +

    RNA Processing. Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + +

    Array Processing: All arrays were processed by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. The spleen was dissected by both Dr. Lu Lu and colleagues and Dr. Abdeltawab and colleagues. All arrays were run together (interleaved) as a single large batch.

    diff --git a/general/datasets/Uthsc_spls1_rma_1210/notes.rtf b/general/datasets/Uthsc_spls1_rma_1210/notes.rtf new file mode 100644 index 0000000..c7bb873 --- /dev/null +++ b/general/datasets/Uthsc_spls1_rma_1210/notes.rtf @@ -0,0 +1,4 @@ +

    Data Status and Use. This is a provisional release that will soon be replaced by a final corrected data set. In the interim this data set is open for exploration and use for focused analysis of single genes. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data regarding the best citation.
    +This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please see the GeneNetwork data sharing policy for more background on data use.

    + +

    Contact. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data.

    diff --git a/general/datasets/Uthsc_spls1_rma_1210/processing.rtf b/general/datasets/Uthsc_spls1_rma_1210/processing.rtf new file mode 100644 index 0000000..deaf264 --- /dev/null +++ b/general/datasets/Uthsc_spls1_rma_1210/processing.rtf @@ -0,0 +1,1932 @@ +

    Data Processing. Array data sets were generated by the vendors GCOS system. Expression values were logged and then were further normalized and rescaled so that the mean value for each array data set is 8 units with a standard deviation of 2 units. Data were processed by Arthur Centeno.

    + +

    Batch Effects. This data set required some correction for batch effects and the data in this initial release incorporate any additional corrections. There are several additional confounder-like factors that should be considered:

    + +
      +
    1. Sex imbalance in the sample: use probe sets for Xist as correction in partial correlation
    2. +
    3. Background noise factors: examine and use probe sets with very low expression using the search "mean=(3.900 4.135)". This will extract the probe sets with the lowest expression. (Note that the number 54 is less than the total number of cases in this data set; important in computing principal components.) Add these probe sets to your collection window and then compute the correlation matrix. Use the first few principal components as surrogates for nuisance factors in partial correlation analysis. The first principal component of the lowest probe sets in this spleen data set accounts of XX% of the the variance. Mapping of this noise trait can be used to evaluate the effects of shared noise on QTL results. The first principal component in the spleen data set can be mapped as a trait.
    4. +
    + +

    Data Release. This data set was first uploaded into GeneNetwork by Arthur Centeno, October 11, 2010 and made accessible without a password to all users on November 1, 2010. The initial data release had numerous strain identification errors that have now largely been fixed. Based on an analysis of the top 20 Mendelian loci, the following 21 strains were likely to have been incorrectly identified or assigned in the current release:

    + +
      +
    1. BXD8, e.g., Probe set 10450161, 1036098. 10338684
    2. +
    3. BXD13, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10342568,
    4. +
    5. BXD21 (may be ok, only one probe set 10338684 is problematic)
    6. +
    7. BXD23 (may be ok, only two probe sets 10421128, 10419465 is problematic)
    8. +
    9. BXD36 (may be ok, only one probe set 10421128 is problematic)
    10. +
    11. BXD40, e.g., Probe set 10341070
    12. +
    13. BXD43, e.g., Probe set 10450161, 1036098, 10338684
    14. +
    15. BXD48, e.g., Probe set 1036098, 10402390, 10514896, 10592493, 10357381, 10342568, 10571444, 10419465
    16. +
    17. BXD62, e.g., Probe set 1036098, 1036098, 10402390, 10514896, 10592493, 10421128, 10571444
    18. +
    19. BXD68 (may be ok, only one probe set 10338684 is problematic)
    20. +
    21. BXD69, e.g., Probe set 10450161
    22. +
    23. BXD73, e.g., Probe set 10341070, 1036098, 10402390, 10514896, 10587633, 10342568, 10421128
    24. +
    25. BXD74, e.g., Probe set 10402390
    26. +
    27. BXD80, e.g., Probe set 10341070, 1036098, 10592493, 10400109, 10338684, 10342568, 10421128, 10419465
    28. +
    29. BXD83, e.g., Probe set 10450161, 10338684
    30. +
    31. BXD87 (may be ok, only one probe set 10421128 is problematic)
    32. +
    33. BXD89, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10357381, 10419465
    34. +
    35. BXD93, e.g., Probe set 10402390, 10357381
    36. +
    37. BALB/cByJ, e.g., Probe set 10388042, 1036098, 10587633, 10357381, 10342568, 10421128
    38. +
    39. LP/J, e.g., Probe set 10592493
    40. +
    41. DBA/2J, e.g., Probe set 10592493
    42. +
    + +

    Data Evaluation Summary

    + +
      +
    1. Before correction: eQLTs with LOD >10 (LRS>46.1): n = 638
    2. +
    3. After strain assignment correction: eQLTs with LOD >10 (LRS>46.1): n = 820
    4. +
    5. Before correction: eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 237.9
    6. +
    7. After correction: eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 278.1
    8. +
    9. Lowest mean value: Trait ID 10344361, mean = 3.998
    10. +
    11. Highest mean value: Trait ID 10598025, mean = 14.475 (MT-ND1)
    12. +
    13. Greatest sex difference: Trait ID: 10606178 (Xist)
    14. +
    15. Great variation within and among strains: Trait ID 10454192 (Ttr +

      Table 1 (please confirm that these assignments are after correction)

      + +
      + + + + + + +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      IndexArray IDPhaseStrainAgeSex
      1R5583S1129P3/J65F
      2R5584S1129P3/J66M
      3R5585S1129S1/SvImJ66F
      4R5586S1129S1/SvImJ66M
      5R5587S1129X1/SvJ65F
      6R5588S1129X1/SvJ66M
      7R6348S3B6D2F167F
      8R6347S3B6D2F162F
      9R5590S1B6D2F179M
      10R5662S1BALB/cByJ59F
      11R5664S1BALB/cByJ59M
      12R5591S1BALB/cJ51F
      13R5592S1BALB/cJ51M
      14R6154S2BTBR T+ tf/J60F
      15R6516S3BXD182F
      16R6584S3BXD195M
      17R5759S1BXD2N/AF
      18R5837S1BXD2106M
      19R5874S2BXD586F
      20R6554S3BXD560M
      21R6359S3BXD672F
      22R5777S1BXD6149M
      23R6364S3BXD876F
      24R5637S1BXD871F
      25R6365S3BXD876M
      26R5746S1BXD970F
      27R5981S2BXD967M
      28R5980S2BXD967M
      29R6182S2BXD1184F
      30R6486S3BXD1158M
      31R6711S24BXD1271F
      32R6608S3BXD1248F
      33R5885S2BXD1244M
      34R5755S1BXD13160F
      35R5887S2BXD1353M
      36R6180S2BXD1470F
      37R5669S1BXD1491M
      38R6456S3BXD1560F
      39R6622S3BXD1560F
      40R6626S3BXD1560M
      41R6181S2BXD1674F
      42R6515S3BXD1664M
      43R5673S1BXD1880F
      44R5674S1BXD1865M
      45R6553S3BXD19158F
      46R6551S3BXD1960M
      47R6643S44BXD2059F
      48R6595S3BXD2060M
      49R5735S1BXD2164F
      50R5892S2BXD2199M
      51R5896S2BXD2260F
      52R6414S3BXD2273M
      53R6550S3BXD2374F
      54R6586S3BXD23102F
      55R5630S1BXD2471F
      56R6356S3BXD2457M
      57R6162S2BXD2567F
      58R6625S3BXD2567F
      59R6642S44BXD2558M
      60R5761S1BXD27N/AF
      61R5763S1BXD2790M
      62R6621S3BXD28113F
      63R6548S3BXD2860M
      64R6547S3BXD2960F
      65R6453S3BXD3148F
      66R6452S3BXD3148M
      67R6583S3BXD3260F
      68R5765S1BXD3271M
      69R5689S1BXD3365F
      70R6450S3BXD3355M
      71R5767S1BXD3472F
      72R5900S2BXD3470M
      73R6588S3BXD3661F
      74R6490S3BXD3663M
      75R6417S3BXD3864F
      76R6439S3BXD3872M
      77R5769S1BXD39N/AF
      78R5771S1BXD3974M
      79R5773S1BXD40N/AF
      80R5775S1BXD40N/AM
      81R6494S3BXD4172F
      82R5910S2BXD4279F
      83R6493S3BXD4269M
      84R6341S3BXD4359F
      85R6401S3BXD4399M
      86R5916S2BXD4379M
      87R5839S1BXD44141F
      88R5779S1BXD44124M
      89R6405S3BXD4558F
      90R6610S3BXD4555M
      91R5922S2BXD4864F
      92R5925S2BXD4860M
      93R6719S14BXD4958F
      94R6485S3BXD4979M
      95R5781S1BXD5061F
      96R6464S3BXD5165F
      97R6585S3BXD5163M
      98R6500S3BXD5558F
      99R5938S2BXD5593M
      100R6504S3BXD5658F
      101R6503S3BXD5658M
      102R5783S1BXD60111F
      103R5784S1BXD6085M
      104R5786S1BXD6186F
      105R6449S3BXD6165M
      106R6716S14BXD6254F
      107R5790S1BXD62115M
      108R6519S3BXD6354F
      109R6717S14BXD6370M
      110R5792S1BXD64167F
      111R6641S44BXD6468M
      112R6630S3BXD6468M
      113R6477S3BXD6558F
      114R6628S3BXD6570M
      115R6511S3BXD6670F
      116R6448S3BXD6661M
      117R5794S1BXD66144M
      118R6502S3BXD6766F
      119R6545S3BXD6761M
      120R6337S3BXD6856F
      121R6594S3BXD6864M
      122R5796S1BXD6985F
      123R5798S1BXD6998M
      124R6402S3BXD7093F
      125R5841S1BXD70121F
      126R6592S3BXD7059M
      127R6328S3BXD7187F
      128R5967S2BXD7164M
      129R5969S2BXD7364F
      130R5800S1BXD73120M
      131R6646S3BXD7440F
      132R6524S3BXD7472M
      133R6445S3BXD7585F
      134R5843S1BXD75103F
      135R5845S1BXD75103M
      136R6604S3BXD7764F
      137R6513S3BXD7772M
      138R6582S3BXD78144F
      139R6563S3BXD7895M
      140R6645S44BXD7966F
      141R5806S1BXD7978M
      142R5847S1BXD8089F
      143R5852S1BXD8079M
      144R6562S3BXD8199F
      145R6468S3BXD8165M
      146R6560S3BXD8285F
      147R6512S3BXD8368F
      148R5810S1BXD83139M
      149R6510S3BXD8487F
      150R5970S2BXD84107F
      151R6603S3BXD8499M
      152R6517S3BXD8558F
      153R6718S14BXD8586M
      154R5812S1BXD8661F
      155R5814S1BXD8659M
      156R5816S1BXD87112F
      157R6488S3BXD87137M
      158R6580S3BXD88125F
      159R5977S2BXD8968F
      160R5979S2BXD8979M
      161R5978S2BXD8979M
      162R5818S1BXD90106F
      163R5820S1BXD90131M
      164R6343S3BXD9262F
      165R5984S2BXD9255M
      166R6581S3BXD93173M
      167R6557S3BXD93126M
      168R6509S3BXD9559F
      169R5822S1BXD9589M
      170R6640S44BXD9670F
      171R6514S3BXD9664M
      172R6506S3BXD9778F
      173R5849S1BXD97130F
      174R6591S3BXD97122M
      175R5990S2BXD9865F
      176R6596S3BXD9867M
      177R5993S2BXD9974F
      178R5995S2BXD9950M
      179R6607S3BXD10075F
      180R6411S3BXD100104M
      181R6508S3BXD10159F
      182R5593S1BXD10159M
      183R6523S3BXD10260F
      184R6466S3BXD10250M
      185R6404S3BXD10372F
      186R6609S3BXD10357M
      187R6555S3C57BL/10J73M
      188R5596S1C57BL/10J73M
      189R5597S1C57BL/6ByJ51F
      190R5598S1C57BL/6ByJ69M
      191R5600S1C57BL/6J79F
      192R5599S1C57BL/6J60F
      193R6451S3C57BL/6J77M
      194R6410S3C57BL/6J85M
      195R5603S1C57BLKS/J66F
      196R5604S1C57BLKS/J66M
      197R5996S2CBA/CaJ66F
      198R6349S3CBA/CaJ66M
      199R6458S3D2B6F164F
      200R6353S3D2B6F160M
      201R5605S1DBA/2J79F
      202R6446S3DBA/2J83M
      203R6597S3FVB/NJ60F
      204R5643S1FVB/NJ60F
      205R6598S3FVB/NJ60M
      206R5606S1ILS74F
      207R5607S1ILS74M
      208R5610S1ISS97M
      209R6627S3KK/HlJ64F
      210R6444S3KK/HlJ65M
      211R5702S1KK/HlJ61M
      212R5613S1LG/J63F
      213R5704S1LG/J65M
      214R5614S1LP/J65F
      215R5615S1LP/J65M
      216R6599S3MOLF/EiJ60F
      217R6606S3MOLF/EiJ60M
      218R6544S3NOD/LtJ77F
      219R5709S1NOD/LtJ58M
      220R6601S3NZB/BlNJ61F
      221R5711S1NZB/BlNJ61F
      222R6427S3NZB/BlNJ58M
      223R6150S2NZO/HlLtJ71F
      224R6155S2NZW/LacJ65F
      225R5654S1NZW/LacJ60M
      226R5721S1PL/J59M
      227R5616S1PWD/PhJ60M
      228R5725S1PWK/PhJ121M
      229R6174S2SJL/J63F
      230R6350S3SJL/J65M
      231R6419S3WSB/EiJ60F
      232R5620S1WSB/EiJ60M
      +
      +
      + +
        +
      +
    16. +
    diff --git a/general/datasets/Uthsc_spls1_rma_1210/summary.rtf b/general/datasets/Uthsc_spls1_rma_1210/summary.rtf new file mode 100644 index 0000000..d9478f8 --- /dev/null +++ b/general/datasets/Uthsc_spls1_rma_1210/summary.rtf @@ -0,0 +1,3 @@ +

    This is a near final release of a spleen gene expression data set generated by a DOD-funded consortium (Byrne, Kotb, Williams, and Lu). Please contact Lu Lu or Robert Williams regarding status of this data set. The initial data enterted in 2010 had many errors described below. The data set is much improved and has no known errors of strain assignment.

    + +

    Animals were generated at UTHSC by Lu Lu and colleagues. The spleen of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna").

    diff --git a/general/datasets/Uthsc_spls2_rma_1210/cases.rtf b/general/datasets/Uthsc_spls2_rma_1210/cases.rtf new file mode 100644 index 0000000..7fa108f --- /dev/null +++ b/general/datasets/Uthsc_spls2_rma_1210/cases.rtf @@ -0,0 +1,3 @@ +

    Cases. A total of 111 strains, including 81 BXD strains, both parental strains (C57BL/6J and DBA/2J) and both reciprocal F1 hybrids (B6D2F1 and D2B6F1), and 26 other common inbred strains were quantified. In most cases, two arrays were processed per strain--one for males and one for females. All tissue and RNA was extracted by Lu Lu and colleagues. Samples were pooled by sex and usually include at least two cases per sex and strain.

    + +

    Sex Balance. XX strains have matched male and female samples. XX strains have male only samples (BXDX, XX, XX, XXX and XXX). XX strains have only female samples (BXDXX, XX, and XX.) Please review the expression data for Xist probe set 10606178. This non-coding RNA is expressed highly only in females and can be used to check the sex of a sample or pool of tissue. Ddx3y probe set 10608138 can also be used. This is a Y chromosome gene that is expressed abundantly in male samples and at background levels in female samples.

    diff --git a/general/datasets/Uthsc_spls2_rma_1210/experiment-design.rtf b/general/datasets/Uthsc_spls2_rma_1210/experiment-design.rtf new file mode 100644 index 0000000..a0aeba6 --- /dev/null +++ b/general/datasets/Uthsc_spls2_rma_1210/experiment-design.rtf @@ -0,0 +1,3 @@ +

    RNA Processing. Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + +

    Array Processing: All arrays were processed by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. The spleen was dissected by both Dr. Lu Lu and colleagues and Dr. Abdeltawab and colleagues. All arrays were run together (interleaved) as a single large batch.

    diff --git a/general/datasets/Uthsc_spls2_rma_1210/notes.rtf b/general/datasets/Uthsc_spls2_rma_1210/notes.rtf new file mode 100644 index 0000000..c7bb873 --- /dev/null +++ b/general/datasets/Uthsc_spls2_rma_1210/notes.rtf @@ -0,0 +1,4 @@ +

    Data Status and Use. This is a provisional release that will soon be replaced by a final corrected data set. In the interim this data set is open for exploration and use for focused analysis of single genes. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data regarding the best citation.
    +This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please see the GeneNetwork data sharing policy for more background on data use.

    + +

    Contact. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data.

    diff --git a/general/datasets/Uthsc_spls2_rma_1210/processing.rtf b/general/datasets/Uthsc_spls2_rma_1210/processing.rtf new file mode 100644 index 0000000..deaf264 --- /dev/null +++ b/general/datasets/Uthsc_spls2_rma_1210/processing.rtf @@ -0,0 +1,1932 @@ +

    Data Processing. Array data sets were generated by the vendors GCOS system. Expression values were logged and then were further normalized and rescaled so that the mean value for each array data set is 8 units with a standard deviation of 2 units. Data were processed by Arthur Centeno.

    + +

    Batch Effects. This data set required some correction for batch effects and the data in this initial release incorporate any additional corrections. There are several additional confounder-like factors that should be considered:

    + +
      +
    1. Sex imbalance in the sample: use probe sets for Xist as correction in partial correlation
    2. +
    3. Background noise factors: examine and use probe sets with very low expression using the search "mean=(3.900 4.135)". This will extract the probe sets with the lowest expression. (Note that the number 54 is less than the total number of cases in this data set; important in computing principal components.) Add these probe sets to your collection window and then compute the correlation matrix. Use the first few principal components as surrogates for nuisance factors in partial correlation analysis. The first principal component of the lowest probe sets in this spleen data set accounts of XX% of the the variance. Mapping of this noise trait can be used to evaluate the effects of shared noise on QTL results. The first principal component in the spleen data set can be mapped as a trait.
    4. +
    + +

    Data Release. This data set was first uploaded into GeneNetwork by Arthur Centeno, October 11, 2010 and made accessible without a password to all users on November 1, 2010. The initial data release had numerous strain identification errors that have now largely been fixed. Based on an analysis of the top 20 Mendelian loci, the following 21 strains were likely to have been incorrectly identified or assigned in the current release:

    + +
      +
    1. BXD8, e.g., Probe set 10450161, 1036098. 10338684
    2. +
    3. BXD13, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10342568,
    4. +
    5. BXD21 (may be ok, only one probe set 10338684 is problematic)
    6. +
    7. BXD23 (may be ok, only two probe sets 10421128, 10419465 is problematic)
    8. +
    9. BXD36 (may be ok, only one probe set 10421128 is problematic)
    10. +
    11. BXD40, e.g., Probe set 10341070
    12. +
    13. BXD43, e.g., Probe set 10450161, 1036098, 10338684
    14. +
    15. BXD48, e.g., Probe set 1036098, 10402390, 10514896, 10592493, 10357381, 10342568, 10571444, 10419465
    16. +
    17. BXD62, e.g., Probe set 1036098, 1036098, 10402390, 10514896, 10592493, 10421128, 10571444
    18. +
    19. BXD68 (may be ok, only one probe set 10338684 is problematic)
    20. +
    21. BXD69, e.g., Probe set 10450161
    22. +
    23. BXD73, e.g., Probe set 10341070, 1036098, 10402390, 10514896, 10587633, 10342568, 10421128
    24. +
    25. BXD74, e.g., Probe set 10402390
    26. +
    27. BXD80, e.g., Probe set 10341070, 1036098, 10592493, 10400109, 10338684, 10342568, 10421128, 10419465
    28. +
    29. BXD83, e.g., Probe set 10450161, 10338684
    30. +
    31. BXD87 (may be ok, only one probe set 10421128 is problematic)
    32. +
    33. BXD89, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10357381, 10419465
    34. +
    35. BXD93, e.g., Probe set 10402390, 10357381
    36. +
    37. BALB/cByJ, e.g., Probe set 10388042, 1036098, 10587633, 10357381, 10342568, 10421128
    38. +
    39. LP/J, e.g., Probe set 10592493
    40. +
    41. DBA/2J, e.g., Probe set 10592493
    42. +
    + +

    Data Evaluation Summary

    + +
      +
    1. Before correction: eQLTs with LOD >10 (LRS>46.1): n = 638
    2. +
    3. After strain assignment correction: eQLTs with LOD >10 (LRS>46.1): n = 820
    4. +
    5. Before correction: eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 237.9
    6. +
    7. After correction: eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 278.1
    8. +
    9. Lowest mean value: Trait ID 10344361, mean = 3.998
    10. +
    11. Highest mean value: Trait ID 10598025, mean = 14.475 (MT-ND1)
    12. +
    13. Greatest sex difference: Trait ID: 10606178 (Xist)
    14. +
    15. Great variation within and among strains: Trait ID 10454192 (Ttr +

      Table 1 (please confirm that these assignments are after correction)

      + +
      + + + + + + +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      IndexArray IDPhaseStrainAgeSex
      1R5583S1129P3/J65F
      2R5584S1129P3/J66M
      3R5585S1129S1/SvImJ66F
      4R5586S1129S1/SvImJ66M
      5R5587S1129X1/SvJ65F
      6R5588S1129X1/SvJ66M
      7R6348S3B6D2F167F
      8R6347S3B6D2F162F
      9R5590S1B6D2F179M
      10R5662S1BALB/cByJ59F
      11R5664S1BALB/cByJ59M
      12R5591S1BALB/cJ51F
      13R5592S1BALB/cJ51M
      14R6154S2BTBR T+ tf/J60F
      15R6516S3BXD182F
      16R6584S3BXD195M
      17R5759S1BXD2N/AF
      18R5837S1BXD2106M
      19R5874S2BXD586F
      20R6554S3BXD560M
      21R6359S3BXD672F
      22R5777S1BXD6149M
      23R6364S3BXD876F
      24R5637S1BXD871F
      25R6365S3BXD876M
      26R5746S1BXD970F
      27R5981S2BXD967M
      28R5980S2BXD967M
      29R6182S2BXD1184F
      30R6486S3BXD1158M
      31R6711S24BXD1271F
      32R6608S3BXD1248F
      33R5885S2BXD1244M
      34R5755S1BXD13160F
      35R5887S2BXD1353M
      36R6180S2BXD1470F
      37R5669S1BXD1491M
      38R6456S3BXD1560F
      39R6622S3BXD1560F
      40R6626S3BXD1560M
      41R6181S2BXD1674F
      42R6515S3BXD1664M
      43R5673S1BXD1880F
      44R5674S1BXD1865M
      45R6553S3BXD19158F
      46R6551S3BXD1960M
      47R6643S44BXD2059F
      48R6595S3BXD2060M
      49R5735S1BXD2164F
      50R5892S2BXD2199M
      51R5896S2BXD2260F
      52R6414S3BXD2273M
      53R6550S3BXD2374F
      54R6586S3BXD23102F
      55R5630S1BXD2471F
      56R6356S3BXD2457M
      57R6162S2BXD2567F
      58R6625S3BXD2567F
      59R6642S44BXD2558M
      60R5761S1BXD27N/AF
      61R5763S1BXD2790M
      62R6621S3BXD28113F
      63R6548S3BXD2860M
      64R6547S3BXD2960F
      65R6453S3BXD3148F
      66R6452S3BXD3148M
      67R6583S3BXD3260F
      68R5765S1BXD3271M
      69R5689S1BXD3365F
      70R6450S3BXD3355M
      71R5767S1BXD3472F
      72R5900S2BXD3470M
      73R6588S3BXD3661F
      74R6490S3BXD3663M
      75R6417S3BXD3864F
      76R6439S3BXD3872M
      77R5769S1BXD39N/AF
      78R5771S1BXD3974M
      79R5773S1BXD40N/AF
      80R5775S1BXD40N/AM
      81R6494S3BXD4172F
      82R5910S2BXD4279F
      83R6493S3BXD4269M
      84R6341S3BXD4359F
      85R6401S3BXD4399M
      86R5916S2BXD4379M
      87R5839S1BXD44141F
      88R5779S1BXD44124M
      89R6405S3BXD4558F
      90R6610S3BXD4555M
      91R5922S2BXD4864F
      92R5925S2BXD4860M
      93R6719S14BXD4958F
      94R6485S3BXD4979M
      95R5781S1BXD5061F
      96R6464S3BXD5165F
      97R6585S3BXD5163M
      98R6500S3BXD5558F
      99R5938S2BXD5593M
      100R6504S3BXD5658F
      101R6503S3BXD5658M
      102R5783S1BXD60111F
      103R5784S1BXD6085M
      104R5786S1BXD6186F
      105R6449S3BXD6165M
      106R6716S14BXD6254F
      107R5790S1BXD62115M
      108R6519S3BXD6354F
      109R6717S14BXD6370M
      110R5792S1BXD64167F
      111R6641S44BXD6468M
      112R6630S3BXD6468M
      113R6477S3BXD6558F
      114R6628S3BXD6570M
      115R6511S3BXD6670F
      116R6448S3BXD6661M
      117R5794S1BXD66144M
      118R6502S3BXD6766F
      119R6545S3BXD6761M
      120R6337S3BXD6856F
      121R6594S3BXD6864M
      122R5796S1BXD6985F
      123R5798S1BXD6998M
      124R6402S3BXD7093F
      125R5841S1BXD70121F
      126R6592S3BXD7059M
      127R6328S3BXD7187F
      128R5967S2BXD7164M
      129R5969S2BXD7364F
      130R5800S1BXD73120M
      131R6646S3BXD7440F
      132R6524S3BXD7472M
      133R6445S3BXD7585F
      134R5843S1BXD75103F
      135R5845S1BXD75103M
      136R6604S3BXD7764F
      137R6513S3BXD7772M
      138R6582S3BXD78144F
      139R6563S3BXD7895M
      140R6645S44BXD7966F
      141R5806S1BXD7978M
      142R5847S1BXD8089F
      143R5852S1BXD8079M
      144R6562S3BXD8199F
      145R6468S3BXD8165M
      146R6560S3BXD8285F
      147R6512S3BXD8368F
      148R5810S1BXD83139M
      149R6510S3BXD8487F
      150R5970S2BXD84107F
      151R6603S3BXD8499M
      152R6517S3BXD8558F
      153R6718S14BXD8586M
      154R5812S1BXD8661F
      155R5814S1BXD8659M
      156R5816S1BXD87112F
      157R6488S3BXD87137M
      158R6580S3BXD88125F
      159R5977S2BXD8968F
      160R5979S2BXD8979M
      161R5978S2BXD8979M
      162R5818S1BXD90106F
      163R5820S1BXD90131M
      164R6343S3BXD9262F
      165R5984S2BXD9255M
      166R6581S3BXD93173M
      167R6557S3BXD93126M
      168R6509S3BXD9559F
      169R5822S1BXD9589M
      170R6640S44BXD9670F
      171R6514S3BXD9664M
      172R6506S3BXD9778F
      173R5849S1BXD97130F
      174R6591S3BXD97122M
      175R5990S2BXD9865F
      176R6596S3BXD9867M
      177R5993S2BXD9974F
      178R5995S2BXD9950M
      179R6607S3BXD10075F
      180R6411S3BXD100104M
      181R6508S3BXD10159F
      182R5593S1BXD10159M
      183R6523S3BXD10260F
      184R6466S3BXD10250M
      185R6404S3BXD10372F
      186R6609S3BXD10357M
      187R6555S3C57BL/10J73M
      188R5596S1C57BL/10J73M
      189R5597S1C57BL/6ByJ51F
      190R5598S1C57BL/6ByJ69M
      191R5600S1C57BL/6J79F
      192R5599S1C57BL/6J60F
      193R6451S3C57BL/6J77M
      194R6410S3C57BL/6J85M
      195R5603S1C57BLKS/J66F
      196R5604S1C57BLKS/J66M
      197R5996S2CBA/CaJ66F
      198R6349S3CBA/CaJ66M
      199R6458S3D2B6F164F
      200R6353S3D2B6F160M
      201R5605S1DBA/2J79F
      202R6446S3DBA/2J83M
      203R6597S3FVB/NJ60F
      204R5643S1FVB/NJ60F
      205R6598S3FVB/NJ60M
      206R5606S1ILS74F
      207R5607S1ILS74M
      208R5610S1ISS97M
      209R6627S3KK/HlJ64F
      210R6444S3KK/HlJ65M
      211R5702S1KK/HlJ61M
      212R5613S1LG/J63F
      213R5704S1LG/J65M
      214R5614S1LP/J65F
      215R5615S1LP/J65M
      216R6599S3MOLF/EiJ60F
      217R6606S3MOLF/EiJ60M
      218R6544S3NOD/LtJ77F
      219R5709S1NOD/LtJ58M
      220R6601S3NZB/BlNJ61F
      221R5711S1NZB/BlNJ61F
      222R6427S3NZB/BlNJ58M
      223R6150S2NZO/HlLtJ71F
      224R6155S2NZW/LacJ65F
      225R5654S1NZW/LacJ60M
      226R5721S1PL/J59M
      227R5616S1PWD/PhJ60M
      228R5725S1PWK/PhJ121M
      229R6174S2SJL/J63F
      230R6350S3SJL/J65M
      231R6419S3WSB/EiJ60F
      232R5620S1WSB/EiJ60M
      +
      +
      + +
        +
      +
    16. +
    diff --git a/general/datasets/Uthsc_spls2_rma_1210/summary.rtf b/general/datasets/Uthsc_spls2_rma_1210/summary.rtf new file mode 100644 index 0000000..d9478f8 --- /dev/null +++ b/general/datasets/Uthsc_spls2_rma_1210/summary.rtf @@ -0,0 +1,3 @@ +

    This is a near final release of a spleen gene expression data set generated by a DOD-funded consortium (Byrne, Kotb, Williams, and Lu). Please contact Lu Lu or Robert Williams regarding status of this data set. The initial data enterted in 2010 had many errors described below. The data set is much improved and has no known errors of strain assignment.

    + +

    Animals were generated at UTHSC by Lu Lu and colleagues. The spleen of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna").

    diff --git a/general/datasets/Uthsc_str_rankinv_1210/summary.rtf b/general/datasets/Uthsc_str_rankinv_1210/summary.rtf new file mode 100644 index 0000000..cc6ac0f --- /dev/null +++ b/general/datasets/Uthsc_str_rankinv_1210/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 42, Name: HQF BXD Striatum ILM6.1 (Dec10) \ No newline at end of file diff --git a/general/datasets/Uthsc_striatum_rankinv_1210/summary.rtf b/general/datasets/Uthsc_striatum_rankinv_1210/summary.rtf new file mode 100644 index 0000000..cc6ac0f --- /dev/null +++ b/general/datasets/Uthsc_striatum_rankinv_1210/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 42, Name: HQF BXD Striatum ILM6.1 (Dec10) \ No newline at end of file diff --git a/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/acknowledgment.rtf b/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/acknowledgment.rtf new file mode 100644 index 0000000..1853348 --- /dev/null +++ b/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/acknowledgment.rtf @@ -0,0 +1 @@ +

    We thank Varigenix and Charle River Laboratory for their donation of BXD cyropreserved hepatcytes. We thank Jesse Ingels for preparing RNA samples. We thank Lorne Rose and the UTHSC Molecular Resource Center for processing RNA samples and generating array data. We thank Arthur Centeno for data entry. We thank the UTHSC CITG and the UT-ORNL Governor's chair for support of microarray analysis.

    diff --git a/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/cases.rtf b/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/cases.rtf new file mode 100644 index 0000000..e06c56f --- /dev/null +++ b/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/cases.rtf @@ -0,0 +1,266 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Sample IDVarigenix StrainSexRNA Concentrations
    + ng/ul
    260/280260/230Agilent
    + Concentration(ng/ul)
    RIN
    V1BXD32M1414.82.092.213,0629.3
    V2BXD1M1608.92.112.243,1029.3
    V3BXD5M1263.912.12.092,4608.5
    V4BXD31M1793.952.12.223,3878.5
    V5BXD8M1193.212.12.172,2939.3
    V6BXD18M1041.052.132.172,1159.2
    V7BXD42M398.281.992.281,5198.3
    V8BXD29M477.372.022.241,3018.1
    V9BXD21M414.622.271,1748.3
    V10BXD27M438.612.022.271,1008.1
    V11BXD16M436.212.012.278688.5
    V12BXD19M489.122.012.261,2778
    V13BXD22M1032.892.092.222,0607.8
    V14BXD38M510.242.012.221,2138
    V15BXD34M1021.262.092.241,5148.2
    V16BXD20M330.8522.279018.1
    V17BXD15M1220.542.12.211,9098.1
    V18BXD6M1001.042.092.21,5238.3
    V19BXD13M1241.882.12.211,7708.2
    V20BXD40M1032.042.082.221,9858.2
    V21BXD14M881.622.112.194818.7
    V22BXD2M1069.092.082.221,5368.2
    V23BXD28M452.622.262,5677.9
    V24BXD11M930.722.072.219998.5
    V25BXD39M1177.272.072.238388.7
    diff --git a/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/citation.rtf b/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/citation.rtf new file mode 100644 index 0000000..09eb6d1 --- /dev/null +++ b/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/citation.rtf @@ -0,0 +1 @@ +

    In progress. 

    diff --git a/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/contributors.rtf b/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/contributors.rtf new file mode 100644 index 0000000..bfa5fbf --- /dev/null +++ b/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/contributors.rtf @@ -0,0 +1 @@ +

    Robert W. Williams, Roberrt E. Scott and colleagues. Cells were donated to Williams group by Varigenix Inc. and CRL Inc.

    diff --git a/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/experiment-design.rtf b/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/experiment-design.rtf new file mode 100644 index 0000000..323648a --- /dev/null +++ b/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/experiment-design.rtf @@ -0,0 +1,3 @@ +

    Control hepatocyte mRNA expression data prior to any treatment for young adult male BXD strains. This is esssentially the mRNA state of frozen hepatocytes.

    + +

     

    diff --git a/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/platform.rtf b/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/platform.rtf new file mode 100644 index 0000000..61c48c5 --- /dev/null +++ b/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/platform.rtf @@ -0,0 +1 @@ +

    Affy Mouse Gene 1.0 ST (GPL6246)

    diff --git a/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/processing.rtf b/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/processing.rtf new file mode 100644 index 0000000..662571f --- /dev/null +++ b/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/processing.rtf @@ -0,0 +1 @@ +

    Standard 2z+8 of log2 data. RMA data were log2 transformed (adding an olffset of 1 to avoid negative values). Variance was stablized (i.e. each array was converted to a set of Z scores). Z scores were then multipled by 2.  Mean Z  was then shifted from 0 to to 8 units per array.

    diff --git a/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/summary.rtf b/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/summary.rtf new file mode 100644 index 0000000..8e4cabf --- /dev/null +++ b/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/summary.rtf @@ -0,0 +1 @@ +

    mRNA levels in cryopreserved BXD strain hepatotcytes (males at 60 days of age) immediately after thawing to 4 deg C. This is the "frozen state" mRNA status.

    diff --git a/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/tissue.rtf b/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/tissue.rtf new file mode 100644 index 0000000..94ad98a --- /dev/null +++ b/general/datasets/Uthsc_vgx_mmbxdhepatocytesrma1014/tissue.rtf @@ -0,0 +1,9 @@ +

     

    + +

    Hepatocytes prepared by Rob Kaiser at CRL Piedmont in Spring of 2011. Held in liquid nitrogen (vapor phase) until use Fall 2014 at UTHSC.

    + +

    One vial of hepatocytes in 1 ml of freeze media was wiped with 70% ETOH, quick thawed by swift agitation in a 37 degree C water bath until a small amount of ice remained in the vial. Contents of the vial were removed with a sterile 1000 ul pipette tip and added to a 5 ml sterile polypropylene tube on ice containing 3 ml of ice-cold sterile 1x PBS. sitting in ice. One ml of sterile ice-cold 1x PBS was added to the original vial to remove any remaining cells and added to the 5 ml tube on ice. This process was quickly repeated with three more vials of cells. Four 5 ml tubes were centrifuged at 8,000 rpm at 4 degrees C for 4 minutes to pellet hepatocytes. PBS diluted freeze media was completely removed from the cell pellet. Entire process for sets of vials took about 7 minutes until RNA lysis buffer was added. 

    + +

    The QIAgen AllPrep DNA/RNA mini kit was used in conjunction with the QIAcube for purification of DNA and RNA from the hepatocytes. 600 ul of kit lysis buffer was added to pelleted cells, along with one 5 mm sterile stainless steel bead and cells were completely disrupted using the TissueLyser. The QIAcube protocol was used first for DNA extraction (held at -80 deg C for future use) and the flow-through containing total RNA was then used for the second purification.

    + +

    Any residual DNA was removed from the RNA before Agilent quantification of concentration and RIN, using the QIAgen DNase I reagent, followed by ethanol precipitation and resuspension of DNA-free total  RNA in 50 ul RNAse free water.

    diff --git a/general/datasets/Uthscwgu88bfmg1013/summary.rtf b/general/datasets/Uthscwgu88bfmg1013/summary.rtf new file mode 100644 index 0000000..5798608 --- /dev/null +++ b/general/datasets/Uthscwgu88bfmg1013/summary.rtf @@ -0,0 +1 @@ +

    This group of datasets is confidential. Please refer to the contact information above.

    diff --git a/general/datasets/Utk_bxdspl_vst_0110/contributors.rtf b/general/datasets/Utk_bxdspl_vst_0110/contributors.rtf new file mode 100644 index 0000000..39f7e80 --- /dev/null +++ b/general/datasets/Utk_bxdspl_vst_0110/contributors.rtf @@ -0,0 +1 @@ +

    Lynch RM, Voy BH

    diff --git a/general/datasets/Utk_bxdspl_vst_0110/experiment-design.rtf b/general/datasets/Utk_bxdspl_vst_0110/experiment-design.rtf new file mode 100644 index 0000000..3166cb9 --- /dev/null +++ b/general/datasets/Utk_bxdspl_vst_0110/experiment-design.rtf @@ -0,0 +1 @@ +

    Spleen gene expression was analyzed from 38 BXD strains. Adult mice (8-12 weeks) were euthanized by cervical dislocation and spleens were harvested and stabilized in RNAlater. Total RNA was extracted and gene expression profiling was performed on the Illumina Sentrix mouse-6 gene expression arrays v1.1. Each BXD sample profiled consisted of a pool of equal amounts of RNA from two individuals of the same sex and strain (approximately 15ug per strain). In addition, flow cytometry was used for the immunophenotyping of male and female mice (average of four mice/sex/strain) from 41 BXD strains (spleen expression profiling was performed on 34 of these strains) and the parental strains. Lymphoctes were identified as CD3+, CD79+, CD4+, or CD8+ to identify T cells, B cells, T helper cells, and cytotoxic T cells, respectively. These data are presented as percentage of lymphoctes with those cell surface markers (e.g. CD3%, CD79%, CD4%, CD8%). Lymphocyte subpopulations are also represented as natural log-transformed ratios (e.g. LN T:B, LN CD4:CD8). In addition, the median expression of MHCII on B cells is reported (LN MHC Med). The immunophenotype data is available in the supplementary file.

    diff --git a/general/datasets/Utk_bxdspl_vst_0110/summary.rtf b/general/datasets/Utk_bxdspl_vst_0110/summary.rtf new file mode 100644 index 0000000..c456b82 --- /dev/null +++ b/general/datasets/Utk_bxdspl_vst_0110/summary.rtf @@ -0,0 +1 @@ +

    The immune system plays a pivotal role in susceptibility to and progression of a variety of diseases. Due to its strong genetic basis, heritable differences in immune function may contribute to differential disease susceptibility between individuals. Genetic reference populations, such as the BXD (C57BL/6J X DBA/2J) panel of recombinant inbred (RI) mouse strains, provide a unique model through which to integrate baseline phenotypes in healthy individuals with heritable risk for disease because of the ability to combine data collected from these populations across multiple studies and time. We performed basic immunophenotyping (e.g. percentage of circulating B and T lymphocytes and CD4+ and CD8+ T cell subpopulations) in peripheral blood of healthy mice from 41 BXD RI strains to define the phenotypic variation in this model system and to characterize the genetic architecture that unlerlies these traits. Significant QTL models that explained the majority (50-77%) of phenotypic variance were derived for each trait and for the T:B cell and CD4+:CD8+ ratios. Combining QTL mapping with spleen gene expression data uncovered two quantitative trait transcripts (QTTs), Ptprk and Acp1, that which are candidates for heritable differences in the relative abundance of helper and cytotoxic T cells. These data will be valuable in extracting genetic correlates of the immune system in the BXD panel. In addition, they will be a useful resource in prospective, phenotype-driven model selection to test hypotheses about differential disease or environmental susceptibility between individuals with baseline differences in the composition of the immune system.

    diff --git a/general/datasets/Uva_hiv_1tg_hip_rlog_0720/acknowledgment.rtf b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/acknowledgment.rtf new file mode 100644 index 0000000..2349291 --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/acknowledgment.rtf @@ -0,0 +1 @@ +

    We thank Drs. David L. Bronson and Louaine L. Spriggs for their excellent editing of this manuscript.

    diff --git a/general/datasets/Uva_hiv_1tg_hip_rlog_0720/cases.rtf b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/cases.rtf new file mode 100644 index 0000000..a9015ee --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/cases.rtf @@ -0,0 +1 @@ +

    The Animal Care and Use Committee of both the Seton Hall University and University of Virginia approved this study. Adult male HIV-1Tg rats and F344 background control rats (n = 12 per group) were purchased from Harlan Inc. (Indianapolis, IN). All rats were double housed in standard plastic cages and maintained in a temperature-controlled environment with a 12 h light/dark cycle and fed a standard rat diet and water ad libitum. The animals were monitored daily, and their cage bedding was changed twice a week. All animals were participants in a previously reported behavioral study [31]. All experimental procedures were conducted during the light cycle in accordance with the Animal Care and Use Committees of both participating institutions.

    diff --git a/general/datasets/Uva_hiv_1tg_hip_rlog_0720/citation.rtf b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/citation.rtf new file mode 100644 index 0000000..50481b4 --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/citation.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Uva_hiv_1tg_hip_rlog_0720/contributors.rtf b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/contributors.rtf new file mode 100644 index 0000000..17e9d8c --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/contributors.rtf @@ -0,0 +1,3 @@ +

    Conceived and designed the experiments: MDL SLC. Performed the experiments: JC SW SS MV. Analyzed the data: JC SW JW JZM. Wrote the paper: MDL JC SW JW JZM SLC.

    + +

    Li MDCao JWang SWang JSarkar SVigorito MMa JZChang SL

    diff --git a/general/datasets/Uva_hiv_1tg_hip_rlog_0720/experiment-design.rtf b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/experiment-design.rtf new file mode 100644 index 0000000..a31cc4a --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/experiment-design.rtf @@ -0,0 +1 @@ +

    144 RNA samples (2 strains, 2 treatments, 3 regions, and 12 animals per group) were analyzed.

    diff --git a/general/datasets/Uva_hiv_1tg_hip_rlog_0720/notes.rtf b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/notes.rtf new file mode 100644 index 0000000..da785f4 --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/notes.rtf @@ -0,0 +1 @@ +

    https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0059582

    diff --git a/general/datasets/Uva_hiv_1tg_hip_rlog_0720/platform.rtf b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/platform.rtf new file mode 100644 index 0000000..d55c8e4 --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/platform.rtf @@ -0,0 +1 @@ +

    GPL14844Illumina HiSeq 2000 (Rattus norvegicus)

    diff --git a/general/datasets/Uva_hiv_1tg_hip_rlog_0720/processing.rtf b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/processing.rtf new file mode 100644 index 0000000..b0cb37b --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/processing.rtf @@ -0,0 +1,5 @@ +

    The extraction of 50-bp length paired-end reads was achieved using CASAVA (Illumina Pipeline v1.38). For each sample, reads with a quality score of ≥Q30 that passed filtering were used to generate a complete FASTQ file, which was then mapped to UCSC Rat reference [build Rn4] (ftp://ftp.cbcb.umd.edu/pub/data/bowtie_indexes/rn4.ebwt.zip) using TopHat with the default parameter setting of 40 alignments per read and up to 2 mismatches per alignment. The sequence alignment files (BAM) were analyzed using RSeQC package [36] for quality control analysis, which includes the mRNA fragment insert size, base quality distribution, reads mapping distribution, and splicing distribution analysis.

    + +

    + +

    The resulting aligned reads were then analyzed with Cufflinks suite (http://cufflinks.cbcb.umd.edu[37], which assembles the aligned reads into transcripts and measures their relative abundance. The expression of each transcript was quantified as the number of reads mapping to a gene divided by the gene length in kilobases and the total number of mapped reads in millions, which is called fragments per kilobase of exon per million fragments mapped (FPKM). All the junctions identified by Cufflink were compared on the basis of the junction and splicing site provided by reference transcript annotation GTF files to identify known and novel junctions. Then, Cuffcompare merged all the transcripts from different samples to a final transcript annotation GTF file, reported changes in the relative abundance of transcripts sharing a common transcription start site, and indicated the relative abundance of the primary transcripts of each gene crossing all the samples.

    diff --git a/general/datasets/Uva_hiv_1tg_hip_rlog_0720/specifics.rtf b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/specifics.rtf new file mode 100644 index 0000000..421629b --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/specifics.rtf @@ -0,0 +1 @@ +Hippocampus. rlog normalization \ No newline at end of file diff --git a/general/datasets/Uva_hiv_1tg_hip_rlog_0720/summary.rtf b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/summary.rtf new file mode 100644 index 0000000..7bfa259 --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/summary.rtf @@ -0,0 +1,3 @@ +

    Purpose: The study was designed to determine expression differences in brain regions of F344 and HIV-1 Transgenic rats by using RNA-sq analysis. Methods: 144 RNA samples (2 strains, 2 treatments, 3 regions, and 12 animals per group) were analyzed. Following deep-sequencing analysis of 50-bp paired-end reads of RNA-Seq, we used Bowtie/Tophat/Cufflinks suites to align these reads into transcripts based on the Rn4 rat reference genome and to measure the relative abundance of each transcript. MATLAB was used to conduct all statistical analysis. qRT–PCR validation was performed using TaqMan and SYBR Green assays fo soem representative genes. Results: Statistical and bioinformatic analyses on each brain region in the two strains revealed that immune response- and neurotransmission-related pathways were altered in the HIV-1Tg rats, with brain region differences. Other neuronal survival-related pathways, including those encoding myelin proteins, growth factors, and translation regulators, were altered in the HIV-1Tg rats in a brain region-dependent manner. After nicotine expousure, 20% of the altered genes in the HIV-1Tg rat were affected by nicotine in each brain region, with the expression of most restored. Analysis of the restored genes showed distinct pathways corrected by nicotine in different brain regions of HIV-1Tg rats.

    + +

    Conclusions: The abnormal gene expression pattern discovered in HIV-1Tg rats suggest mechanisms underlying the deficits in learning and memory and vulnerability to drug addiction and other psychiatric disorders observed in HIV positive patients. The gene expression pattern in the HIV-1Tg rats after nicotine exposure indicate that cholinergic modulators such as nicotine may have beneficial effects on HIV-1-induced neurologic deficits.

    diff --git a/general/datasets/Uva_hiv_1tg_hip_rlog_0720/tissue.rtf b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/tissue.rtf new file mode 100644 index 0000000..b65b5d6 --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_hip_rlog_0720/tissue.rtf @@ -0,0 +1 @@ +

    Using a rat brain matrix, slices of approximately 1 mm were taken from each brain, and the slices that contained the PFC, HIP, and dorsal STR were identified according to a rat brain atlas [35]. Tissues from specific regions of interest were collected bilaterally from each brain using a 3.00-mm Harris Micro-Punch (GE Healthcare Life Sciences, Piscataway, NJ, USA) and stored at −80°C until use.

    diff --git a/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/acknowledgment.rtf b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/acknowledgment.rtf new file mode 100644 index 0000000..2349291 --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/acknowledgment.rtf @@ -0,0 +1 @@ +

    We thank Drs. David L. Bronson and Louaine L. Spriggs for their excellent editing of this manuscript.

    diff --git a/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/cases.rtf b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/cases.rtf new file mode 100644 index 0000000..a9015ee --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/cases.rtf @@ -0,0 +1 @@ +

    The Animal Care and Use Committee of both the Seton Hall University and University of Virginia approved this study. Adult male HIV-1Tg rats and F344 background control rats (n = 12 per group) were purchased from Harlan Inc. (Indianapolis, IN). All rats were double housed in standard plastic cages and maintained in a temperature-controlled environment with a 12 h light/dark cycle and fed a standard rat diet and water ad libitum. The animals were monitored daily, and their cage bedding was changed twice a week. All animals were participants in a previously reported behavioral study [31]. All experimental procedures were conducted during the light cycle in accordance with the Animal Care and Use Committees of both participating institutions.

    diff --git a/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/citation.rtf b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/citation.rtf new file mode 100644 index 0000000..50481b4 --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/citation.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/contributors.rtf b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/contributors.rtf new file mode 100644 index 0000000..17e9d8c --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/contributors.rtf @@ -0,0 +1,3 @@ +

    Conceived and designed the experiments: MDL SLC. Performed the experiments: JC SW SS MV. Analyzed the data: JC SW JW JZM. Wrote the paper: MDL JC SW JW JZM SLC.

    + +

    Li MDCao JWang SWang JSarkar SVigorito MMa JZChang SL

    diff --git a/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/experiment-design.rtf b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/experiment-design.rtf new file mode 100644 index 0000000..a31cc4a --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/experiment-design.rtf @@ -0,0 +1 @@ +

    144 RNA samples (2 strains, 2 treatments, 3 regions, and 12 animals per group) were analyzed.

    diff --git a/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/notes.rtf b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/notes.rtf new file mode 100644 index 0000000..da785f4 --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/notes.rtf @@ -0,0 +1 @@ +

    https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0059582

    diff --git a/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/platform.rtf b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/platform.rtf new file mode 100644 index 0000000..d55c8e4 --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/platform.rtf @@ -0,0 +1 @@ +

    GPL14844Illumina HiSeq 2000 (Rattus norvegicus)

    diff --git a/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/processing.rtf b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/processing.rtf new file mode 100644 index 0000000..b0cb37b --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/processing.rtf @@ -0,0 +1,5 @@ +

    The extraction of 50-bp length paired-end reads was achieved using CASAVA (Illumina Pipeline v1.38). For each sample, reads with a quality score of ≥Q30 that passed filtering were used to generate a complete FASTQ file, which was then mapped to UCSC Rat reference [build Rn4] (ftp://ftp.cbcb.umd.edu/pub/data/bowtie_indexes/rn4.ebwt.zip) using TopHat with the default parameter setting of 40 alignments per read and up to 2 mismatches per alignment. The sequence alignment files (BAM) were analyzed using RSeQC package [36] for quality control analysis, which includes the mRNA fragment insert size, base quality distribution, reads mapping distribution, and splicing distribution analysis.

    + +

    + +

    The resulting aligned reads were then analyzed with Cufflinks suite (http://cufflinks.cbcb.umd.edu[37], which assembles the aligned reads into transcripts and measures their relative abundance. The expression of each transcript was quantified as the number of reads mapping to a gene divided by the gene length in kilobases and the total number of mapped reads in millions, which is called fragments per kilobase of exon per million fragments mapped (FPKM). All the junctions identified by Cufflink were compared on the basis of the junction and splicing site provided by reference transcript annotation GTF files to identify known and novel junctions. Then, Cuffcompare merged all the transcripts from different samples to a final transcript annotation GTF file, reported changes in the relative abundance of transcripts sharing a common transcription start site, and indicated the relative abundance of the primary transcripts of each gene crossing all the samples.

    diff --git a/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/specifics.rtf b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/specifics.rtf new file mode 100644 index 0000000..d27a33b --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/specifics.rtf @@ -0,0 +1 @@ +Prefrontal Cortex. rlog normalization \ No newline at end of file diff --git a/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/summary.rtf b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/summary.rtf new file mode 100644 index 0000000..7bfa259 --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/summary.rtf @@ -0,0 +1,3 @@ +

    Purpose: The study was designed to determine expression differences in brain regions of F344 and HIV-1 Transgenic rats by using RNA-sq analysis. Methods: 144 RNA samples (2 strains, 2 treatments, 3 regions, and 12 animals per group) were analyzed. Following deep-sequencing analysis of 50-bp paired-end reads of RNA-Seq, we used Bowtie/Tophat/Cufflinks suites to align these reads into transcripts based on the Rn4 rat reference genome and to measure the relative abundance of each transcript. MATLAB was used to conduct all statistical analysis. qRT–PCR validation was performed using TaqMan and SYBR Green assays fo soem representative genes. Results: Statistical and bioinformatic analyses on each brain region in the two strains revealed that immune response- and neurotransmission-related pathways were altered in the HIV-1Tg rats, with brain region differences. Other neuronal survival-related pathways, including those encoding myelin proteins, growth factors, and translation regulators, were altered in the HIV-1Tg rats in a brain region-dependent manner. After nicotine expousure, 20% of the altered genes in the HIV-1Tg rat were affected by nicotine in each brain region, with the expression of most restored. Analysis of the restored genes showed distinct pathways corrected by nicotine in different brain regions of HIV-1Tg rats.

    + +

    Conclusions: The abnormal gene expression pattern discovered in HIV-1Tg rats suggest mechanisms underlying the deficits in learning and memory and vulnerability to drug addiction and other psychiatric disorders observed in HIV positive patients. The gene expression pattern in the HIV-1Tg rats after nicotine exposure indicate that cholinergic modulators such as nicotine may have beneficial effects on HIV-1-induced neurologic deficits.

    diff --git a/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/tissue.rtf b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/tissue.rtf new file mode 100644 index 0000000..b65b5d6 --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_pfc_rlog_0720/tissue.rtf @@ -0,0 +1 @@ +

    Using a rat brain matrix, slices of approximately 1 mm were taken from each brain, and the slices that contained the PFC, HIP, and dorsal STR were identified according to a rat brain atlas [35]. Tissues from specific regions of interest were collected bilaterally from each brain using a 3.00-mm Harris Micro-Punch (GE Healthcare Life Sciences, Piscataway, NJ, USA) and stored at −80°C until use.

    diff --git a/general/datasets/Uva_hiv_1tg_str_rlog_0720/acknowledgment.rtf b/general/datasets/Uva_hiv_1tg_str_rlog_0720/acknowledgment.rtf new file mode 100644 index 0000000..2349291 --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_str_rlog_0720/acknowledgment.rtf @@ -0,0 +1 @@ +

    We thank Drs. David L. Bronson and Louaine L. Spriggs for their excellent editing of this manuscript.

    diff --git a/general/datasets/Uva_hiv_1tg_str_rlog_0720/cases.rtf b/general/datasets/Uva_hiv_1tg_str_rlog_0720/cases.rtf new file mode 100644 index 0000000..a9015ee --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_str_rlog_0720/cases.rtf @@ -0,0 +1 @@ +

    The Animal Care and Use Committee of both the Seton Hall University and University of Virginia approved this study. Adult male HIV-1Tg rats and F344 background control rats (n = 12 per group) were purchased from Harlan Inc. (Indianapolis, IN). All rats were double housed in standard plastic cages and maintained in a temperature-controlled environment with a 12 h light/dark cycle and fed a standard rat diet and water ad libitum. The animals were monitored daily, and their cage bedding was changed twice a week. All animals were participants in a previously reported behavioral study [31]. All experimental procedures were conducted during the light cycle in accordance with the Animal Care and Use Committees of both participating institutions.

    diff --git a/general/datasets/Uva_hiv_1tg_str_rlog_0720/citation.rtf b/general/datasets/Uva_hiv_1tg_str_rlog_0720/citation.rtf new file mode 100644 index 0000000..50481b4 --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_str_rlog_0720/citation.rtf @@ -0,0 +1,4 @@ + diff --git a/general/datasets/Uva_hiv_1tg_str_rlog_0720/contributors.rtf b/general/datasets/Uva_hiv_1tg_str_rlog_0720/contributors.rtf new file mode 100644 index 0000000..17e9d8c --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_str_rlog_0720/contributors.rtf @@ -0,0 +1,3 @@ +

    Conceived and designed the experiments: MDL SLC. Performed the experiments: JC SW SS MV. Analyzed the data: JC SW JW JZM. Wrote the paper: MDL JC SW JW JZM SLC.

    + +

    Li MDCao JWang SWang JSarkar SVigorito MMa JZChang SL

    diff --git a/general/datasets/Uva_hiv_1tg_str_rlog_0720/experiment-design.rtf b/general/datasets/Uva_hiv_1tg_str_rlog_0720/experiment-design.rtf new file mode 100644 index 0000000..a31cc4a --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_str_rlog_0720/experiment-design.rtf @@ -0,0 +1 @@ +

    144 RNA samples (2 strains, 2 treatments, 3 regions, and 12 animals per group) were analyzed.

    diff --git a/general/datasets/Uva_hiv_1tg_str_rlog_0720/notes.rtf b/general/datasets/Uva_hiv_1tg_str_rlog_0720/notes.rtf new file mode 100644 index 0000000..da785f4 --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_str_rlog_0720/notes.rtf @@ -0,0 +1 @@ +

    https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0059582

    diff --git a/general/datasets/Uva_hiv_1tg_str_rlog_0720/platform.rtf b/general/datasets/Uva_hiv_1tg_str_rlog_0720/platform.rtf new file mode 100644 index 0000000..d55c8e4 --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_str_rlog_0720/platform.rtf @@ -0,0 +1 @@ +

    GPL14844Illumina HiSeq 2000 (Rattus norvegicus)

    diff --git a/general/datasets/Uva_hiv_1tg_str_rlog_0720/processing.rtf b/general/datasets/Uva_hiv_1tg_str_rlog_0720/processing.rtf new file mode 100644 index 0000000..b0cb37b --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_str_rlog_0720/processing.rtf @@ -0,0 +1,5 @@ +

    The extraction of 50-bp length paired-end reads was achieved using CASAVA (Illumina Pipeline v1.38). For each sample, reads with a quality score of ≥Q30 that passed filtering were used to generate a complete FASTQ file, which was then mapped to UCSC Rat reference [build Rn4] (ftp://ftp.cbcb.umd.edu/pub/data/bowtie_indexes/rn4.ebwt.zip) using TopHat with the default parameter setting of 40 alignments per read and up to 2 mismatches per alignment. The sequence alignment files (BAM) were analyzed using RSeQC package [36] for quality control analysis, which includes the mRNA fragment insert size, base quality distribution, reads mapping distribution, and splicing distribution analysis.

    + +

    + +

    The resulting aligned reads were then analyzed with Cufflinks suite (http://cufflinks.cbcb.umd.edu[37], which assembles the aligned reads into transcripts and measures their relative abundance. The expression of each transcript was quantified as the number of reads mapping to a gene divided by the gene length in kilobases and the total number of mapped reads in millions, which is called fragments per kilobase of exon per million fragments mapped (FPKM). All the junctions identified by Cufflink were compared on the basis of the junction and splicing site provided by reference transcript annotation GTF files to identify known and novel junctions. Then, Cuffcompare merged all the transcripts from different samples to a final transcript annotation GTF file, reported changes in the relative abundance of transcripts sharing a common transcription start site, and indicated the relative abundance of the primary transcripts of each gene crossing all the samples.

    diff --git a/general/datasets/Uva_hiv_1tg_str_rlog_0720/specifics.rtf b/general/datasets/Uva_hiv_1tg_str_rlog_0720/specifics.rtf new file mode 100644 index 0000000..2a10692 --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_str_rlog_0720/specifics.rtf @@ -0,0 +1 @@ +Striatum. rlog normalization \ No newline at end of file diff --git a/general/datasets/Uva_hiv_1tg_str_rlog_0720/summary.rtf b/general/datasets/Uva_hiv_1tg_str_rlog_0720/summary.rtf new file mode 100644 index 0000000..7bfa259 --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_str_rlog_0720/summary.rtf @@ -0,0 +1,3 @@ +

    Purpose: The study was designed to determine expression differences in brain regions of F344 and HIV-1 Transgenic rats by using RNA-sq analysis. Methods: 144 RNA samples (2 strains, 2 treatments, 3 regions, and 12 animals per group) were analyzed. Following deep-sequencing analysis of 50-bp paired-end reads of RNA-Seq, we used Bowtie/Tophat/Cufflinks suites to align these reads into transcripts based on the Rn4 rat reference genome and to measure the relative abundance of each transcript. MATLAB was used to conduct all statistical analysis. qRT–PCR validation was performed using TaqMan and SYBR Green assays fo soem representative genes. Results: Statistical and bioinformatic analyses on each brain region in the two strains revealed that immune response- and neurotransmission-related pathways were altered in the HIV-1Tg rats, with brain region differences. Other neuronal survival-related pathways, including those encoding myelin proteins, growth factors, and translation regulators, were altered in the HIV-1Tg rats in a brain region-dependent manner. After nicotine expousure, 20% of the altered genes in the HIV-1Tg rat were affected by nicotine in each brain region, with the expression of most restored. Analysis of the restored genes showed distinct pathways corrected by nicotine in different brain regions of HIV-1Tg rats.

    + +

    Conclusions: The abnormal gene expression pattern discovered in HIV-1Tg rats suggest mechanisms underlying the deficits in learning and memory and vulnerability to drug addiction and other psychiatric disorders observed in HIV positive patients. The gene expression pattern in the HIV-1Tg rats after nicotine exposure indicate that cholinergic modulators such as nicotine may have beneficial effects on HIV-1-induced neurologic deficits.

    diff --git a/general/datasets/Uva_hiv_1tg_str_rlog_0720/tissue.rtf b/general/datasets/Uva_hiv_1tg_str_rlog_0720/tissue.rtf new file mode 100644 index 0000000..b65b5d6 --- /dev/null +++ b/general/datasets/Uva_hiv_1tg_str_rlog_0720/tissue.rtf @@ -0,0 +1 @@ +

    Using a rat brain matrix, slices of approximately 1 mm were taken from each brain, and the slices that contained the PFC, HIP, and dorsal STR were identified according to a rat brain atlas [35]. Tissues from specific regions of interest were collected bilaterally from each brain using a 3.00-mm Harris Micro-Punch (GE Healthcare Life Sciences, Piscataway, NJ, USA) and stored at −80°C until use.

    diff --git a/general/datasets/VCU_BXD_Nac_CIE_AirZ_0416/summary.rtf b/general/datasets/VCU_BXD_Nac_CIE_AirZ_0416/summary.rtf deleted file mode 100644 index c82b72c..0000000 --- a/general/datasets/VCU_BXD_Nac_CIE_AirZ_0416/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Summary of DatasetId 161, Name: VCU BXD NAc EtOH vs CIE Air M430 2.0 (Jan13)

    diff --git a/general/datasets/VCU_BXD_Nac_CIE_Air_0416/summary.rtf b/general/datasets/VCU_BXD_Nac_CIE_Air_0416/summary.rtf deleted file mode 100644 index c82b72c..0000000 --- a/general/datasets/VCU_BXD_Nac_CIE_Air_0416/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Summary of DatasetId 161, Name: VCU BXD NAc EtOH vs CIE Air M430 2.0 (Jan13)

    diff --git a/general/datasets/VCU_BXD_Nac_CIE_EtZ_0416/summary.rtf b/general/datasets/VCU_BXD_Nac_CIE_EtZ_0416/summary.rtf deleted file mode 100644 index c82b72c..0000000 --- a/general/datasets/VCU_BXD_Nac_CIE_EtZ_0416/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Summary of DatasetId 161, Name: VCU BXD NAc EtOH vs CIE Air M430 2.0 (Jan13)

    diff --git a/general/datasets/VCU_BXD_Nac_CIE_Et_0416/summary.rtf b/general/datasets/VCU_BXD_Nac_CIE_Et_0416/summary.rtf deleted file mode 100644 index c82b72c..0000000 --- a/general/datasets/VCU_BXD_Nac_CIE_Et_0416/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Summary of DatasetId 161, Name: VCU BXD NAc EtOH vs CIE Air M430 2.0 (Jan13)

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/acknowledgment.rtf b/general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/acknowledgment.rtf deleted file mode 100644 index 4463223..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Data were generated with funds to Michael F Miles from the NIAAA.

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/cases.rtf b/general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/cases.rtf deleted file mode 100644 index a9b6489..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This BXD data set provides estimates of mRNA expression in the prefrontal cortex following ethanol treatment across 27 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 468 adult male animals obtained from Jackson Laboratory and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and treatment with 1.8g/kg ethanol in the light-dark transition model of anxiety. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the prefrontal cortex following ethanol treatment using the Robust Multichip Average (RMA) method.

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/experiment-design.rtf b/general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/experiment-design.rtf deleted file mode 100644 index 05c600b..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/experiment-design.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    This data set was generated concurrently with the VCU saline prefrontal cortex BXD RMA data and therefore consisted of 64 microarrays processed in 5 groups of 8 to 16 microarrays during the month of September 2006. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects.

    - -

    Many of the techniques used to generate this data set are described in a recent publication in the Journal of Neuroscience.

    - -

    Animals were injected intraperitoneally (IP) with saline or 1.8 g/kg of ethanol. As part of a parallel study of ethanol induced anxiolysis, all mice underwent behavioral testing that included 15 minutes of restraint in a 50 mL conical tube followed by 10 minutes in a light-dark chamber. Mice were killed by cervical dislocation four hours following IP injection. Immediately thereafter, brains were extracted and chilled for 1 minute in iced phosphate buffer before being microdissected into 8 constituent regions, including the medial prefrontal cortex. Samples were randomly assigned to batch groups prior to total RNA extraction, cRNA synthesis and hybridization. Each microarray represent a pooling of 4-5 animals.

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/platform.rtf b/general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/platform.rtf deleted file mode 100644 index ec67993..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    [Mouse430_2] Affymetrix Mouse Genome 430 2.0 Array

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/summary.rtf b/general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/summary.rtf deleted file mode 100644 index ff7c56f..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    In order to elucidate the molecular mechanisms underlying individual variation in sensitivity to ethanol we profiled the prefrontal cortex transcriptomes of two inbred strains that exhibit divergent responses to acute ethanol, the C57BL6/J (B6) and DBA/2J (D2) strains, as well as 27 members of the BXD recombinant inbred panel, which was derived from a B6 x D2 cross. With this dataset we were able to identify several gene co-expression networks that were robustly altered by acute ethanol across the BXD panel. These ethanol-responsive gene-enriched networks were heavily populated by genes regulating synaptic transmission and neuroplasticity, and showed strong genetic linkage to discreet chromosomal loci. Network-based measurements of node importance identified several hub genes as established regulators of ethanol response phenotypes, while other hubs represent novel candidate modulators of ethanol responses.

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/tissue.rtf b/general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/tissue.rtf deleted file mode 100644 index 6473075..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_AirZ_0416/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    All animals were obtained at 8-9 weeks of age from the Jackson Laboratory (Bar Harbor, ME) and were treated, behaviorally tested and brains dissected by Alex Putman and colleagues at VCU. Following an hour acclimation period to the behavioral room, animals were restrained for 15 minutes, immediately injected (I.P.) with either saline (0.9%) or 1.8g/kg ethanol, and 5 minutes later placed in the light-dark box for a 10-minute test session. All behavioral testing occurred between 10 AM and 1 PM during the light phase over a 12 month period beginning August 2005. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected. Prefrontal cortex tissue was isolated by microdissection using a wedge-shaped slice taken from a 4 mm thick brain slice extending rostrally from the optic chiasm. The wedge was centered on the inter-hemispheric fissure and extending 2 mm laterally on each side and ventrally to just above the corpus callosum. This tissue and all other brain regions were dissected in less than 5 minutes per mouse and were immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation. A pool of dissected tissue from 3 mice of the same strain was used to generate RNA samples. All RNA samples were extracted at VCU by Alex Putman during October 2006 and the order of RNA isolation was randomized across all strains and treatment groups (since saline treated animals were processed concurrently).

    - -

    GEO Accession: GSE28515

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_Air_0416/acknowledgment.rtf b/general/datasets/VCU_BXD_PFC_CIE_Air_0416/acknowledgment.rtf deleted file mode 100644 index 4463223..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_Air_0416/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Data were generated with funds to Michael F Miles from the NIAAA.

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_Air_0416/cases.rtf b/general/datasets/VCU_BXD_PFC_CIE_Air_0416/cases.rtf deleted file mode 100644 index a9b6489..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_Air_0416/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This BXD data set provides estimates of mRNA expression in the prefrontal cortex following ethanol treatment across 27 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 468 adult male animals obtained from Jackson Laboratory and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and treatment with 1.8g/kg ethanol in the light-dark transition model of anxiety. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the prefrontal cortex following ethanol treatment using the Robust Multichip Average (RMA) method.

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_Air_0416/experiment-design.rtf b/general/datasets/VCU_BXD_PFC_CIE_Air_0416/experiment-design.rtf deleted file mode 100644 index 05c600b..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_Air_0416/experiment-design.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    This data set was generated concurrently with the VCU saline prefrontal cortex BXD RMA data and therefore consisted of 64 microarrays processed in 5 groups of 8 to 16 microarrays during the month of September 2006. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects.

    - -

    Many of the techniques used to generate this data set are described in a recent publication in the Journal of Neuroscience.

    - -

    Animals were injected intraperitoneally (IP) with saline or 1.8 g/kg of ethanol. As part of a parallel study of ethanol induced anxiolysis, all mice underwent behavioral testing that included 15 minutes of restraint in a 50 mL conical tube followed by 10 minutes in a light-dark chamber. Mice were killed by cervical dislocation four hours following IP injection. Immediately thereafter, brains were extracted and chilled for 1 minute in iced phosphate buffer before being microdissected into 8 constituent regions, including the medial prefrontal cortex. Samples were randomly assigned to batch groups prior to total RNA extraction, cRNA synthesis and hybridization. Each microarray represent a pooling of 4-5 animals.

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_Air_0416/platform.rtf b/general/datasets/VCU_BXD_PFC_CIE_Air_0416/platform.rtf deleted file mode 100644 index ec67993..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_Air_0416/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    [Mouse430_2] Affymetrix Mouse Genome 430 2.0 Array

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_Air_0416/summary.rtf b/general/datasets/VCU_BXD_PFC_CIE_Air_0416/summary.rtf deleted file mode 100644 index ff7c56f..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_Air_0416/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    In order to elucidate the molecular mechanisms underlying individual variation in sensitivity to ethanol we profiled the prefrontal cortex transcriptomes of two inbred strains that exhibit divergent responses to acute ethanol, the C57BL6/J (B6) and DBA/2J (D2) strains, as well as 27 members of the BXD recombinant inbred panel, which was derived from a B6 x D2 cross. With this dataset we were able to identify several gene co-expression networks that were robustly altered by acute ethanol across the BXD panel. These ethanol-responsive gene-enriched networks were heavily populated by genes regulating synaptic transmission and neuroplasticity, and showed strong genetic linkage to discreet chromosomal loci. Network-based measurements of node importance identified several hub genes as established regulators of ethanol response phenotypes, while other hubs represent novel candidate modulators of ethanol responses.

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_Air_0416/tissue.rtf b/general/datasets/VCU_BXD_PFC_CIE_Air_0416/tissue.rtf deleted file mode 100644 index 6473075..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_Air_0416/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    All animals were obtained at 8-9 weeks of age from the Jackson Laboratory (Bar Harbor, ME) and were treated, behaviorally tested and brains dissected by Alex Putman and colleagues at VCU. Following an hour acclimation period to the behavioral room, animals were restrained for 15 minutes, immediately injected (I.P.) with either saline (0.9%) or 1.8g/kg ethanol, and 5 minutes later placed in the light-dark box for a 10-minute test session. All behavioral testing occurred between 10 AM and 1 PM during the light phase over a 12 month period beginning August 2005. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected. Prefrontal cortex tissue was isolated by microdissection using a wedge-shaped slice taken from a 4 mm thick brain slice extending rostrally from the optic chiasm. The wedge was centered on the inter-hemispheric fissure and extending 2 mm laterally on each side and ventrally to just above the corpus callosum. This tissue and all other brain regions were dissected in less than 5 minutes per mouse and were immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation. A pool of dissected tissue from 3 mice of the same strain was used to generate RNA samples. All RNA samples were extracted at VCU by Alex Putman during October 2006 and the order of RNA isolation was randomized across all strains and treatment groups (since saline treated animals were processed concurrently).

    - -

    GEO Accession: GSE28515

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/acknowledgment.rtf b/general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/acknowledgment.rtf deleted file mode 100644 index 4463223..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Data were generated with funds to Michael F Miles from the NIAAA.

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/cases.rtf b/general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/cases.rtf deleted file mode 100644 index a9b6489..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This BXD data set provides estimates of mRNA expression in the prefrontal cortex following ethanol treatment across 27 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 468 adult male animals obtained from Jackson Laboratory and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and treatment with 1.8g/kg ethanol in the light-dark transition model of anxiety. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the prefrontal cortex following ethanol treatment using the Robust Multichip Average (RMA) method.

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/experiment-design.rtf b/general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/experiment-design.rtf deleted file mode 100644 index 05c600b..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/experiment-design.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    This data set was generated concurrently with the VCU saline prefrontal cortex BXD RMA data and therefore consisted of 64 microarrays processed in 5 groups of 8 to 16 microarrays during the month of September 2006. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects.

    - -

    Many of the techniques used to generate this data set are described in a recent publication in the Journal of Neuroscience.

    - -

    Animals were injected intraperitoneally (IP) with saline or 1.8 g/kg of ethanol. As part of a parallel study of ethanol induced anxiolysis, all mice underwent behavioral testing that included 15 minutes of restraint in a 50 mL conical tube followed by 10 minutes in a light-dark chamber. Mice were killed by cervical dislocation four hours following IP injection. Immediately thereafter, brains were extracted and chilled for 1 minute in iced phosphate buffer before being microdissected into 8 constituent regions, including the medial prefrontal cortex. Samples were randomly assigned to batch groups prior to total RNA extraction, cRNA synthesis and hybridization. Each microarray represent a pooling of 4-5 animals.

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/platform.rtf b/general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/platform.rtf deleted file mode 100644 index ec67993..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    [Mouse430_2] Affymetrix Mouse Genome 430 2.0 Array

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/summary.rtf b/general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/summary.rtf deleted file mode 100644 index ff7c56f..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    In order to elucidate the molecular mechanisms underlying individual variation in sensitivity to ethanol we profiled the prefrontal cortex transcriptomes of two inbred strains that exhibit divergent responses to acute ethanol, the C57BL6/J (B6) and DBA/2J (D2) strains, as well as 27 members of the BXD recombinant inbred panel, which was derived from a B6 x D2 cross. With this dataset we were able to identify several gene co-expression networks that were robustly altered by acute ethanol across the BXD panel. These ethanol-responsive gene-enriched networks were heavily populated by genes regulating synaptic transmission and neuroplasticity, and showed strong genetic linkage to discreet chromosomal loci. Network-based measurements of node importance identified several hub genes as established regulators of ethanol response phenotypes, while other hubs represent novel candidate modulators of ethanol responses.

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/tissue.rtf b/general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/tissue.rtf deleted file mode 100644 index 6473075..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_EtZ_0416/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    All animals were obtained at 8-9 weeks of age from the Jackson Laboratory (Bar Harbor, ME) and were treated, behaviorally tested and brains dissected by Alex Putman and colleagues at VCU. Following an hour acclimation period to the behavioral room, animals were restrained for 15 minutes, immediately injected (I.P.) with either saline (0.9%) or 1.8g/kg ethanol, and 5 minutes later placed in the light-dark box for a 10-minute test session. All behavioral testing occurred between 10 AM and 1 PM during the light phase over a 12 month period beginning August 2005. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected. Prefrontal cortex tissue was isolated by microdissection using a wedge-shaped slice taken from a 4 mm thick brain slice extending rostrally from the optic chiasm. The wedge was centered on the inter-hemispheric fissure and extending 2 mm laterally on each side and ventrally to just above the corpus callosum. This tissue and all other brain regions were dissected in less than 5 minutes per mouse and were immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation. A pool of dissected tissue from 3 mice of the same strain was used to generate RNA samples. All RNA samples were extracted at VCU by Alex Putman during October 2006 and the order of RNA isolation was randomized across all strains and treatment groups (since saline treated animals were processed concurrently).

    - -

    GEO Accession: GSE28515

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_Et_0416/acknowledgment.rtf b/general/datasets/VCU_BXD_PFC_CIE_Et_0416/acknowledgment.rtf deleted file mode 100644 index 4463223..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_Et_0416/acknowledgment.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Data were generated with funds to Michael F Miles from the NIAAA.

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_Et_0416/cases.rtf b/general/datasets/VCU_BXD_PFC_CIE_Et_0416/cases.rtf deleted file mode 100644 index a9b6489..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_Et_0416/cases.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This BXD data set provides estimates of mRNA expression in the prefrontal cortex following ethanol treatment across 27 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 468 adult male animals obtained from Jackson Laboratory and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and treatment with 1.8g/kg ethanol in the light-dark transition model of anxiety. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the prefrontal cortex following ethanol treatment using the Robust Multichip Average (RMA) method.

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_Et_0416/experiment-design.rtf b/general/datasets/VCU_BXD_PFC_CIE_Et_0416/experiment-design.rtf deleted file mode 100644 index 05c600b..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_Et_0416/experiment-design.rtf +++ /dev/null @@ -1,5 +0,0 @@ -

    This data set was generated concurrently with the VCU saline prefrontal cortex BXD RMA data and therefore consisted of 64 microarrays processed in 5 groups of 8 to 16 microarrays during the month of September 2006. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects.

    - -

    Many of the techniques used to generate this data set are described in a recent publication in the Journal of Neuroscience.

    - -

    Animals were injected intraperitoneally (IP) with saline or 1.8 g/kg of ethanol. As part of a parallel study of ethanol induced anxiolysis, all mice underwent behavioral testing that included 15 minutes of restraint in a 50 mL conical tube followed by 10 minutes in a light-dark chamber. Mice were killed by cervical dislocation four hours following IP injection. Immediately thereafter, brains were extracted and chilled for 1 minute in iced phosphate buffer before being microdissected into 8 constituent regions, including the medial prefrontal cortex. Samples were randomly assigned to batch groups prior to total RNA extraction, cRNA synthesis and hybridization. Each microarray represent a pooling of 4-5 animals.

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_Et_0416/platform.rtf b/general/datasets/VCU_BXD_PFC_CIE_Et_0416/platform.rtf deleted file mode 100644 index ec67993..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_Et_0416/platform.rtf +++ /dev/null @@ -1 +0,0 @@ -

    [Mouse430_2] Affymetrix Mouse Genome 430 2.0 Array

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_Et_0416/summary.rtf b/general/datasets/VCU_BXD_PFC_CIE_Et_0416/summary.rtf deleted file mode 100644 index ff7c56f..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_Et_0416/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    In order to elucidate the molecular mechanisms underlying individual variation in sensitivity to ethanol we profiled the prefrontal cortex transcriptomes of two inbred strains that exhibit divergent responses to acute ethanol, the C57BL6/J (B6) and DBA/2J (D2) strains, as well as 27 members of the BXD recombinant inbred panel, which was derived from a B6 x D2 cross. With this dataset we were able to identify several gene co-expression networks that were robustly altered by acute ethanol across the BXD panel. These ethanol-responsive gene-enriched networks were heavily populated by genes regulating synaptic transmission and neuroplasticity, and showed strong genetic linkage to discreet chromosomal loci. Network-based measurements of node importance identified several hub genes as established regulators of ethanol response phenotypes, while other hubs represent novel candidate modulators of ethanol responses.

    diff --git a/general/datasets/VCU_BXD_PFC_CIE_Et_0416/tissue.rtf b/general/datasets/VCU_BXD_PFC_CIE_Et_0416/tissue.rtf deleted file mode 100644 index 6473075..0000000 --- a/general/datasets/VCU_BXD_PFC_CIE_Et_0416/tissue.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    All animals were obtained at 8-9 weeks of age from the Jackson Laboratory (Bar Harbor, ME) and were treated, behaviorally tested and brains dissected by Alex Putman and colleagues at VCU. Following an hour acclimation period to the behavioral room, animals were restrained for 15 minutes, immediately injected (I.P.) with either saline (0.9%) or 1.8g/kg ethanol, and 5 minutes later placed in the light-dark box for a 10-minute test session. All behavioral testing occurred between 10 AM and 1 PM during the light phase over a 12 month period beginning August 2005. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected. Prefrontal cortex tissue was isolated by microdissection using a wedge-shaped slice taken from a 4 mm thick brain slice extending rostrally from the optic chiasm. The wedge was centered on the inter-hemispheric fissure and extending 2 mm laterally on each side and ventrally to just above the corpus callosum. This tissue and all other brain regions were dissected in less than 5 minutes per mouse and were immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation. A pool of dissected tissue from 3 mice of the same strain was used to generate RNA samples. All RNA samples were extracted at VCU by Alex Putman during October 2006 and the order of RNA isolation was randomized across all strains and treatment groups (since saline treated animals were processed concurrently).

    - -

    GEO Accession: GSE28515

    diff --git a/general/datasets/VCU_NAc_Air_0113_R/summary.rtf b/general/datasets/VCU_NAc_Air_0113_R/summary.rtf deleted file mode 100644 index c82b72c..0000000 --- a/general/datasets/VCU_NAc_Air_0113_R/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Summary of DatasetId 161, Name: VCU BXD NAc EtOH vs CIE Air M430 2.0 (Jan13)

    diff --git a/general/datasets/VCU_NAc_Et_0113_R/summary.rtf b/general/datasets/VCU_NAc_Et_0113_R/summary.rtf deleted file mode 100644 index c82b72c..0000000 --- a/general/datasets/VCU_NAc_Et_0113_R/summary.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Summary of DatasetId 161, Name: VCU BXD NAc EtOH vs CIE Air M430 2.0 (Jan13)

    diff --git a/general/datasets/Vcu_bxd_nac_cie_air_0416/summary.rtf b/general/datasets/Vcu_bxd_nac_cie_air_0416/summary.rtf new file mode 100644 index 0000000..c82b72c --- /dev/null +++ b/general/datasets/Vcu_bxd_nac_cie_air_0416/summary.rtf @@ -0,0 +1 @@ +

    Summary of DatasetId 161, Name: VCU BXD NAc EtOH vs CIE Air M430 2.0 (Jan13)

    diff --git a/general/datasets/Vcu_bxd_nac_cie_airz_0416/summary.rtf b/general/datasets/Vcu_bxd_nac_cie_airz_0416/summary.rtf new file mode 100644 index 0000000..c82b72c --- /dev/null +++ b/general/datasets/Vcu_bxd_nac_cie_airz_0416/summary.rtf @@ -0,0 +1 @@ +

    Summary of DatasetId 161, Name: VCU BXD NAc EtOH vs CIE Air M430 2.0 (Jan13)

    diff --git a/general/datasets/Vcu_bxd_nac_cie_et_0416/summary.rtf b/general/datasets/Vcu_bxd_nac_cie_et_0416/summary.rtf new file mode 100644 index 0000000..c82b72c --- /dev/null +++ b/general/datasets/Vcu_bxd_nac_cie_et_0416/summary.rtf @@ -0,0 +1 @@ +

    Summary of DatasetId 161, Name: VCU BXD NAc EtOH vs CIE Air M430 2.0 (Jan13)

    diff --git a/general/datasets/Vcu_bxd_nac_cie_etz_0416/summary.rtf b/general/datasets/Vcu_bxd_nac_cie_etz_0416/summary.rtf new file mode 100644 index 0000000..c82b72c --- /dev/null +++ b/general/datasets/Vcu_bxd_nac_cie_etz_0416/summary.rtf @@ -0,0 +1 @@ +

    Summary of DatasetId 161, Name: VCU BXD NAc EtOH vs CIE Air M430 2.0 (Jan13)

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_air_0416/acknowledgment.rtf b/general/datasets/Vcu_bxd_pfc_cie_air_0416/acknowledgment.rtf new file mode 100644 index 0000000..4463223 --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_air_0416/acknowledgment.rtf @@ -0,0 +1 @@ +

    Data were generated with funds to Michael F Miles from the NIAAA.

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_air_0416/cases.rtf b/general/datasets/Vcu_bxd_pfc_cie_air_0416/cases.rtf new file mode 100644 index 0000000..a9b6489 --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_air_0416/cases.rtf @@ -0,0 +1 @@ +

    This BXD data set provides estimates of mRNA expression in the prefrontal cortex following ethanol treatment across 27 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 468 adult male animals obtained from Jackson Laboratory and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and treatment with 1.8g/kg ethanol in the light-dark transition model of anxiety. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the prefrontal cortex following ethanol treatment using the Robust Multichip Average (RMA) method.

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_air_0416/contributors.rtf b/general/datasets/Vcu_bxd_pfc_cie_air_0416/contributors.rtf new file mode 100644 index 0000000..6bb60a8 --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_air_0416/contributors.rtf @@ -0,0 +1 @@ +

    Miles MF, Putman AH, Vorster PJ, Wolen AR

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_air_0416/experiment-design.rtf b/general/datasets/Vcu_bxd_pfc_cie_air_0416/experiment-design.rtf new file mode 100644 index 0000000..05c600b --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_air_0416/experiment-design.rtf @@ -0,0 +1,5 @@ +

    This data set was generated concurrently with the VCU saline prefrontal cortex BXD RMA data and therefore consisted of 64 microarrays processed in 5 groups of 8 to 16 microarrays during the month of September 2006. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects.

    + +

    Many of the techniques used to generate this data set are described in a recent publication in the Journal of Neuroscience.

    + +

    Animals were injected intraperitoneally (IP) with saline or 1.8 g/kg of ethanol. As part of a parallel study of ethanol induced anxiolysis, all mice underwent behavioral testing that included 15 minutes of restraint in a 50 mL conical tube followed by 10 minutes in a light-dark chamber. Mice were killed by cervical dislocation four hours following IP injection. Immediately thereafter, brains were extracted and chilled for 1 minute in iced phosphate buffer before being microdissected into 8 constituent regions, including the medial prefrontal cortex. Samples were randomly assigned to batch groups prior to total RNA extraction, cRNA synthesis and hybridization. Each microarray represent a pooling of 4-5 animals.

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_air_0416/platform.rtf b/general/datasets/Vcu_bxd_pfc_cie_air_0416/platform.rtf new file mode 100644 index 0000000..ec67993 --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_air_0416/platform.rtf @@ -0,0 +1 @@ +

    [Mouse430_2] Affymetrix Mouse Genome 430 2.0 Array

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_air_0416/summary.rtf b/general/datasets/Vcu_bxd_pfc_cie_air_0416/summary.rtf new file mode 100644 index 0000000..ff7c56f --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_air_0416/summary.rtf @@ -0,0 +1 @@ +

    In order to elucidate the molecular mechanisms underlying individual variation in sensitivity to ethanol we profiled the prefrontal cortex transcriptomes of two inbred strains that exhibit divergent responses to acute ethanol, the C57BL6/J (B6) and DBA/2J (D2) strains, as well as 27 members of the BXD recombinant inbred panel, which was derived from a B6 x D2 cross. With this dataset we were able to identify several gene co-expression networks that were robustly altered by acute ethanol across the BXD panel. These ethanol-responsive gene-enriched networks were heavily populated by genes regulating synaptic transmission and neuroplasticity, and showed strong genetic linkage to discreet chromosomal loci. Network-based measurements of node importance identified several hub genes as established regulators of ethanol response phenotypes, while other hubs represent novel candidate modulators of ethanol responses.

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_air_0416/tissue.rtf b/general/datasets/Vcu_bxd_pfc_cie_air_0416/tissue.rtf new file mode 100644 index 0000000..6473075 --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_air_0416/tissue.rtf @@ -0,0 +1,3 @@ +

    All animals were obtained at 8-9 weeks of age from the Jackson Laboratory (Bar Harbor, ME) and were treated, behaviorally tested and brains dissected by Alex Putman and colleagues at VCU. Following an hour acclimation period to the behavioral room, animals were restrained for 15 minutes, immediately injected (I.P.) with either saline (0.9%) or 1.8g/kg ethanol, and 5 minutes later placed in the light-dark box for a 10-minute test session. All behavioral testing occurred between 10 AM and 1 PM during the light phase over a 12 month period beginning August 2005. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected. Prefrontal cortex tissue was isolated by microdissection using a wedge-shaped slice taken from a 4 mm thick brain slice extending rostrally from the optic chiasm. The wedge was centered on the inter-hemispheric fissure and extending 2 mm laterally on each side and ventrally to just above the corpus callosum. This tissue and all other brain regions were dissected in less than 5 minutes per mouse and were immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation. A pool of dissected tissue from 3 mice of the same strain was used to generate RNA samples. All RNA samples were extracted at VCU by Alex Putman during October 2006 and the order of RNA isolation was randomized across all strains and treatment groups (since saline treated animals were processed concurrently).

    + +

    GEO Accession: GSE28515

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_airz_0416/acknowledgment.rtf b/general/datasets/Vcu_bxd_pfc_cie_airz_0416/acknowledgment.rtf new file mode 100644 index 0000000..4463223 --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_airz_0416/acknowledgment.rtf @@ -0,0 +1 @@ +

    Data were generated with funds to Michael F Miles from the NIAAA.

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_airz_0416/cases.rtf b/general/datasets/Vcu_bxd_pfc_cie_airz_0416/cases.rtf new file mode 100644 index 0000000..a9b6489 --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_airz_0416/cases.rtf @@ -0,0 +1 @@ +

    This BXD data set provides estimates of mRNA expression in the prefrontal cortex following ethanol treatment across 27 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 468 adult male animals obtained from Jackson Laboratory and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and treatment with 1.8g/kg ethanol in the light-dark transition model of anxiety. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the prefrontal cortex following ethanol treatment using the Robust Multichip Average (RMA) method.

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_airz_0416/contributors.rtf b/general/datasets/Vcu_bxd_pfc_cie_airz_0416/contributors.rtf new file mode 100644 index 0000000..6bb60a8 --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_airz_0416/contributors.rtf @@ -0,0 +1 @@ +

    Miles MF, Putman AH, Vorster PJ, Wolen AR

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_airz_0416/experiment-design.rtf b/general/datasets/Vcu_bxd_pfc_cie_airz_0416/experiment-design.rtf new file mode 100644 index 0000000..05c600b --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_airz_0416/experiment-design.rtf @@ -0,0 +1,5 @@ +

    This data set was generated concurrently with the VCU saline prefrontal cortex BXD RMA data and therefore consisted of 64 microarrays processed in 5 groups of 8 to 16 microarrays during the month of September 2006. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects.

    + +

    Many of the techniques used to generate this data set are described in a recent publication in the Journal of Neuroscience.

    + +

    Animals were injected intraperitoneally (IP) with saline or 1.8 g/kg of ethanol. As part of a parallel study of ethanol induced anxiolysis, all mice underwent behavioral testing that included 15 minutes of restraint in a 50 mL conical tube followed by 10 minutes in a light-dark chamber. Mice were killed by cervical dislocation four hours following IP injection. Immediately thereafter, brains were extracted and chilled for 1 minute in iced phosphate buffer before being microdissected into 8 constituent regions, including the medial prefrontal cortex. Samples were randomly assigned to batch groups prior to total RNA extraction, cRNA synthesis and hybridization. Each microarray represent a pooling of 4-5 animals.

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_airz_0416/platform.rtf b/general/datasets/Vcu_bxd_pfc_cie_airz_0416/platform.rtf new file mode 100644 index 0000000..ec67993 --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_airz_0416/platform.rtf @@ -0,0 +1 @@ +

    [Mouse430_2] Affymetrix Mouse Genome 430 2.0 Array

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_airz_0416/summary.rtf b/general/datasets/Vcu_bxd_pfc_cie_airz_0416/summary.rtf new file mode 100644 index 0000000..ff7c56f --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_airz_0416/summary.rtf @@ -0,0 +1 @@ +

    In order to elucidate the molecular mechanisms underlying individual variation in sensitivity to ethanol we profiled the prefrontal cortex transcriptomes of two inbred strains that exhibit divergent responses to acute ethanol, the C57BL6/J (B6) and DBA/2J (D2) strains, as well as 27 members of the BXD recombinant inbred panel, which was derived from a B6 x D2 cross. With this dataset we were able to identify several gene co-expression networks that were robustly altered by acute ethanol across the BXD panel. These ethanol-responsive gene-enriched networks were heavily populated by genes regulating synaptic transmission and neuroplasticity, and showed strong genetic linkage to discreet chromosomal loci. Network-based measurements of node importance identified several hub genes as established regulators of ethanol response phenotypes, while other hubs represent novel candidate modulators of ethanol responses.

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_airz_0416/tissue.rtf b/general/datasets/Vcu_bxd_pfc_cie_airz_0416/tissue.rtf new file mode 100644 index 0000000..6473075 --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_airz_0416/tissue.rtf @@ -0,0 +1,3 @@ +

    All animals were obtained at 8-9 weeks of age from the Jackson Laboratory (Bar Harbor, ME) and were treated, behaviorally tested and brains dissected by Alex Putman and colleagues at VCU. Following an hour acclimation period to the behavioral room, animals were restrained for 15 minutes, immediately injected (I.P.) with either saline (0.9%) or 1.8g/kg ethanol, and 5 minutes later placed in the light-dark box for a 10-minute test session. All behavioral testing occurred between 10 AM and 1 PM during the light phase over a 12 month period beginning August 2005. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected. Prefrontal cortex tissue was isolated by microdissection using a wedge-shaped slice taken from a 4 mm thick brain slice extending rostrally from the optic chiasm. The wedge was centered on the inter-hemispheric fissure and extending 2 mm laterally on each side and ventrally to just above the corpus callosum. This tissue and all other brain regions were dissected in less than 5 minutes per mouse and were immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation. A pool of dissected tissue from 3 mice of the same strain was used to generate RNA samples. All RNA samples were extracted at VCU by Alex Putman during October 2006 and the order of RNA isolation was randomized across all strains and treatment groups (since saline treated animals were processed concurrently).

    + +

    GEO Accession: GSE28515

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_et_0416/acknowledgment.rtf b/general/datasets/Vcu_bxd_pfc_cie_et_0416/acknowledgment.rtf new file mode 100644 index 0000000..4463223 --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_et_0416/acknowledgment.rtf @@ -0,0 +1 @@ +

    Data were generated with funds to Michael F Miles from the NIAAA.

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_et_0416/cases.rtf b/general/datasets/Vcu_bxd_pfc_cie_et_0416/cases.rtf new file mode 100644 index 0000000..a9b6489 --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_et_0416/cases.rtf @@ -0,0 +1 @@ +

    This BXD data set provides estimates of mRNA expression in the prefrontal cortex following ethanol treatment across 27 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 468 adult male animals obtained from Jackson Laboratory and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and treatment with 1.8g/kg ethanol in the light-dark transition model of anxiety. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the prefrontal cortex following ethanol treatment using the Robust Multichip Average (RMA) method.

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_et_0416/contributors.rtf b/general/datasets/Vcu_bxd_pfc_cie_et_0416/contributors.rtf new file mode 100644 index 0000000..6bb60a8 --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_et_0416/contributors.rtf @@ -0,0 +1 @@ +

    Miles MF, Putman AH, Vorster PJ, Wolen AR

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_et_0416/experiment-design.rtf b/general/datasets/Vcu_bxd_pfc_cie_et_0416/experiment-design.rtf new file mode 100644 index 0000000..05c600b --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_et_0416/experiment-design.rtf @@ -0,0 +1,5 @@ +

    This data set was generated concurrently with the VCU saline prefrontal cortex BXD RMA data and therefore consisted of 64 microarrays processed in 5 groups of 8 to 16 microarrays during the month of September 2006. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects.

    + +

    Many of the techniques used to generate this data set are described in a recent publication in the Journal of Neuroscience.

    + +

    Animals were injected intraperitoneally (IP) with saline or 1.8 g/kg of ethanol. As part of a parallel study of ethanol induced anxiolysis, all mice underwent behavioral testing that included 15 minutes of restraint in a 50 mL conical tube followed by 10 minutes in a light-dark chamber. Mice were killed by cervical dislocation four hours following IP injection. Immediately thereafter, brains were extracted and chilled for 1 minute in iced phosphate buffer before being microdissected into 8 constituent regions, including the medial prefrontal cortex. Samples were randomly assigned to batch groups prior to total RNA extraction, cRNA synthesis and hybridization. Each microarray represent a pooling of 4-5 animals.

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_et_0416/platform.rtf b/general/datasets/Vcu_bxd_pfc_cie_et_0416/platform.rtf new file mode 100644 index 0000000..ec67993 --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_et_0416/platform.rtf @@ -0,0 +1 @@ +

    [Mouse430_2] Affymetrix Mouse Genome 430 2.0 Array

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_et_0416/summary.rtf b/general/datasets/Vcu_bxd_pfc_cie_et_0416/summary.rtf new file mode 100644 index 0000000..ff7c56f --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_et_0416/summary.rtf @@ -0,0 +1 @@ +

    In order to elucidate the molecular mechanisms underlying individual variation in sensitivity to ethanol we profiled the prefrontal cortex transcriptomes of two inbred strains that exhibit divergent responses to acute ethanol, the C57BL6/J (B6) and DBA/2J (D2) strains, as well as 27 members of the BXD recombinant inbred panel, which was derived from a B6 x D2 cross. With this dataset we were able to identify several gene co-expression networks that were robustly altered by acute ethanol across the BXD panel. These ethanol-responsive gene-enriched networks were heavily populated by genes regulating synaptic transmission and neuroplasticity, and showed strong genetic linkage to discreet chromosomal loci. Network-based measurements of node importance identified several hub genes as established regulators of ethanol response phenotypes, while other hubs represent novel candidate modulators of ethanol responses.

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_et_0416/tissue.rtf b/general/datasets/Vcu_bxd_pfc_cie_et_0416/tissue.rtf new file mode 100644 index 0000000..6473075 --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_et_0416/tissue.rtf @@ -0,0 +1,3 @@ +

    All animals were obtained at 8-9 weeks of age from the Jackson Laboratory (Bar Harbor, ME) and were treated, behaviorally tested and brains dissected by Alex Putman and colleagues at VCU. Following an hour acclimation period to the behavioral room, animals were restrained for 15 minutes, immediately injected (I.P.) with either saline (0.9%) or 1.8g/kg ethanol, and 5 minutes later placed in the light-dark box for a 10-minute test session. All behavioral testing occurred between 10 AM and 1 PM during the light phase over a 12 month period beginning August 2005. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected. Prefrontal cortex tissue was isolated by microdissection using a wedge-shaped slice taken from a 4 mm thick brain slice extending rostrally from the optic chiasm. The wedge was centered on the inter-hemispheric fissure and extending 2 mm laterally on each side and ventrally to just above the corpus callosum. This tissue and all other brain regions were dissected in less than 5 minutes per mouse and were immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation. A pool of dissected tissue from 3 mice of the same strain was used to generate RNA samples. All RNA samples were extracted at VCU by Alex Putman during October 2006 and the order of RNA isolation was randomized across all strains and treatment groups (since saline treated animals were processed concurrently).

    + +

    GEO Accession: GSE28515

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_etz_0416/acknowledgment.rtf b/general/datasets/Vcu_bxd_pfc_cie_etz_0416/acknowledgment.rtf new file mode 100644 index 0000000..4463223 --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_etz_0416/acknowledgment.rtf @@ -0,0 +1 @@ +

    Data were generated with funds to Michael F Miles from the NIAAA.

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_etz_0416/cases.rtf b/general/datasets/Vcu_bxd_pfc_cie_etz_0416/cases.rtf new file mode 100644 index 0000000..a9b6489 --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_etz_0416/cases.rtf @@ -0,0 +1 @@ +

    This BXD data set provides estimates of mRNA expression in the prefrontal cortex following ethanol treatment across 27 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 468 adult male animals obtained from Jackson Laboratory and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and treatment with 1.8g/kg ethanol in the light-dark transition model of anxiety. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the prefrontal cortex following ethanol treatment using the Robust Multichip Average (RMA) method.

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_etz_0416/contributors.rtf b/general/datasets/Vcu_bxd_pfc_cie_etz_0416/contributors.rtf new file mode 100644 index 0000000..6bb60a8 --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_etz_0416/contributors.rtf @@ -0,0 +1 @@ +

    Miles MF, Putman AH, Vorster PJ, Wolen AR

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_etz_0416/experiment-design.rtf b/general/datasets/Vcu_bxd_pfc_cie_etz_0416/experiment-design.rtf new file mode 100644 index 0000000..05c600b --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_etz_0416/experiment-design.rtf @@ -0,0 +1,5 @@ +

    This data set was generated concurrently with the VCU saline prefrontal cortex BXD RMA data and therefore consisted of 64 microarrays processed in 5 groups of 8 to 16 microarrays during the month of September 2006. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects.

    + +

    Many of the techniques used to generate this data set are described in a recent publication in the Journal of Neuroscience.

    + +

    Animals were injected intraperitoneally (IP) with saline or 1.8 g/kg of ethanol. As part of a parallel study of ethanol induced anxiolysis, all mice underwent behavioral testing that included 15 minutes of restraint in a 50 mL conical tube followed by 10 minutes in a light-dark chamber. Mice were killed by cervical dislocation four hours following IP injection. Immediately thereafter, brains were extracted and chilled for 1 minute in iced phosphate buffer before being microdissected into 8 constituent regions, including the medial prefrontal cortex. Samples were randomly assigned to batch groups prior to total RNA extraction, cRNA synthesis and hybridization. Each microarray represent a pooling of 4-5 animals.

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_etz_0416/platform.rtf b/general/datasets/Vcu_bxd_pfc_cie_etz_0416/platform.rtf new file mode 100644 index 0000000..ec67993 --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_etz_0416/platform.rtf @@ -0,0 +1 @@ +

    [Mouse430_2] Affymetrix Mouse Genome 430 2.0 Array

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_etz_0416/summary.rtf b/general/datasets/Vcu_bxd_pfc_cie_etz_0416/summary.rtf new file mode 100644 index 0000000..ff7c56f --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_etz_0416/summary.rtf @@ -0,0 +1 @@ +

    In order to elucidate the molecular mechanisms underlying individual variation in sensitivity to ethanol we profiled the prefrontal cortex transcriptomes of two inbred strains that exhibit divergent responses to acute ethanol, the C57BL6/J (B6) and DBA/2J (D2) strains, as well as 27 members of the BXD recombinant inbred panel, which was derived from a B6 x D2 cross. With this dataset we were able to identify several gene co-expression networks that were robustly altered by acute ethanol across the BXD panel. These ethanol-responsive gene-enriched networks were heavily populated by genes regulating synaptic transmission and neuroplasticity, and showed strong genetic linkage to discreet chromosomal loci. Network-based measurements of node importance identified several hub genes as established regulators of ethanol response phenotypes, while other hubs represent novel candidate modulators of ethanol responses.

    diff --git a/general/datasets/Vcu_bxd_pfc_cie_etz_0416/tissue.rtf b/general/datasets/Vcu_bxd_pfc_cie_etz_0416/tissue.rtf new file mode 100644 index 0000000..6473075 --- /dev/null +++ b/general/datasets/Vcu_bxd_pfc_cie_etz_0416/tissue.rtf @@ -0,0 +1,3 @@ +

    All animals were obtained at 8-9 weeks of age from the Jackson Laboratory (Bar Harbor, ME) and were treated, behaviorally tested and brains dissected by Alex Putman and colleagues at VCU. Following an hour acclimation period to the behavioral room, animals were restrained for 15 minutes, immediately injected (I.P.) with either saline (0.9%) or 1.8g/kg ethanol, and 5 minutes later placed in the light-dark box for a 10-minute test session. All behavioral testing occurred between 10 AM and 1 PM during the light phase over a 12 month period beginning August 2005. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected. Prefrontal cortex tissue was isolated by microdissection using a wedge-shaped slice taken from a 4 mm thick brain slice extending rostrally from the optic chiasm. The wedge was centered on the inter-hemispheric fissure and extending 2 mm laterally on each side and ventrally to just above the corpus callosum. This tissue and all other brain regions were dissected in less than 5 minutes per mouse and were immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation. A pool of dissected tissue from 3 mice of the same strain was used to generate RNA samples. All RNA samples were extracted at VCU by Alex Putman during October 2006 and the order of RNA isolation was randomized across all strains and treatment groups (since saline treated animals were processed concurrently).

    + +

    GEO Accession: GSE28515

    diff --git a/general/datasets/Vcu_nac_air_0113_r/summary.rtf b/general/datasets/Vcu_nac_air_0113_r/summary.rtf new file mode 100644 index 0000000..c82b72c --- /dev/null +++ b/general/datasets/Vcu_nac_air_0113_r/summary.rtf @@ -0,0 +1 @@ +

    Summary of DatasetId 161, Name: VCU BXD NAc EtOH vs CIE Air M430 2.0 (Jan13)

    diff --git a/general/datasets/Vcu_nac_ave_0113_ss/summary.rtf b/general/datasets/Vcu_nac_ave_0113_ss/summary.rtf new file mode 100644 index 0000000..c82b72c --- /dev/null +++ b/general/datasets/Vcu_nac_ave_0113_ss/summary.rtf @@ -0,0 +1 @@ +

    Summary of DatasetId 161, Name: VCU BXD NAc EtOH vs CIE Air M430 2.0 (Jan13)

    diff --git a/general/datasets/Vcu_nac_et_0113_r/summary.rtf b/general/datasets/Vcu_nac_et_0113_r/summary.rtf new file mode 100644 index 0000000..c82b72c --- /dev/null +++ b/general/datasets/Vcu_nac_et_0113_r/summary.rtf @@ -0,0 +1 @@ +

    Summary of DatasetId 161, Name: VCU BXD NAc EtOH vs CIE Air M430 2.0 (Jan13)

    diff --git a/general/datasets/Vcu_pf_air_0111_r/acknowledgment.rtf b/general/datasets/Vcu_pf_air_0111_r/acknowledgment.rtf new file mode 100644 index 0000000..4463223 --- /dev/null +++ b/general/datasets/Vcu_pf_air_0111_r/acknowledgment.rtf @@ -0,0 +1 @@ +

    Data were generated with funds to Michael F Miles from the NIAAA.

    diff --git a/general/datasets/Vcu_pf_air_0111_r/cases.rtf b/general/datasets/Vcu_pf_air_0111_r/cases.rtf new file mode 100644 index 0000000..a9b6489 --- /dev/null +++ b/general/datasets/Vcu_pf_air_0111_r/cases.rtf @@ -0,0 +1 @@ +

    This BXD data set provides estimates of mRNA expression in the prefrontal cortex following ethanol treatment across 27 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 468 adult male animals obtained from Jackson Laboratory and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and treatment with 1.8g/kg ethanol in the light-dark transition model of anxiety. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the prefrontal cortex following ethanol treatment using the Robust Multichip Average (RMA) method.

    diff --git a/general/datasets/Vcu_pf_air_0111_r/contributors.rtf b/general/datasets/Vcu_pf_air_0111_r/contributors.rtf new file mode 100644 index 0000000..6bb60a8 --- /dev/null +++ b/general/datasets/Vcu_pf_air_0111_r/contributors.rtf @@ -0,0 +1 @@ +

    Miles MF, Putman AH, Vorster PJ, Wolen AR

    diff --git a/general/datasets/Vcu_pf_air_0111_r/experiment-design.rtf b/general/datasets/Vcu_pf_air_0111_r/experiment-design.rtf new file mode 100644 index 0000000..05c600b --- /dev/null +++ b/general/datasets/Vcu_pf_air_0111_r/experiment-design.rtf @@ -0,0 +1,5 @@ +

    This data set was generated concurrently with the VCU saline prefrontal cortex BXD RMA data and therefore consisted of 64 microarrays processed in 5 groups of 8 to 16 microarrays during the month of September 2006. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects.

    + +

    Many of the techniques used to generate this data set are described in a recent publication in the Journal of Neuroscience.

    + +

    Animals were injected intraperitoneally (IP) with saline or 1.8 g/kg of ethanol. As part of a parallel study of ethanol induced anxiolysis, all mice underwent behavioral testing that included 15 minutes of restraint in a 50 mL conical tube followed by 10 minutes in a light-dark chamber. Mice were killed by cervical dislocation four hours following IP injection. Immediately thereafter, brains were extracted and chilled for 1 minute in iced phosphate buffer before being microdissected into 8 constituent regions, including the medial prefrontal cortex. Samples were randomly assigned to batch groups prior to total RNA extraction, cRNA synthesis and hybridization. Each microarray represent a pooling of 4-5 animals.

    diff --git a/general/datasets/Vcu_pf_air_0111_r/experiment-type.rtf b/general/datasets/Vcu_pf_air_0111_r/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Vcu_pf_air_0111_r/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Vcu_pf_air_0111_r/platform.rtf b/general/datasets/Vcu_pf_air_0111_r/platform.rtf new file mode 100644 index 0000000..ec67993 --- /dev/null +++ b/general/datasets/Vcu_pf_air_0111_r/platform.rtf @@ -0,0 +1 @@ +

    [Mouse430_2] Affymetrix Mouse Genome 430 2.0 Array

    diff --git a/general/datasets/Vcu_pf_air_0111_r/summary.rtf b/general/datasets/Vcu_pf_air_0111_r/summary.rtf new file mode 100644 index 0000000..ff7c56f --- /dev/null +++ b/general/datasets/Vcu_pf_air_0111_r/summary.rtf @@ -0,0 +1 @@ +

    In order to elucidate the molecular mechanisms underlying individual variation in sensitivity to ethanol we profiled the prefrontal cortex transcriptomes of two inbred strains that exhibit divergent responses to acute ethanol, the C57BL6/J (B6) and DBA/2J (D2) strains, as well as 27 members of the BXD recombinant inbred panel, which was derived from a B6 x D2 cross. With this dataset we were able to identify several gene co-expression networks that were robustly altered by acute ethanol across the BXD panel. These ethanol-responsive gene-enriched networks were heavily populated by genes regulating synaptic transmission and neuroplasticity, and showed strong genetic linkage to discreet chromosomal loci. Network-based measurements of node importance identified several hub genes as established regulators of ethanol response phenotypes, while other hubs represent novel candidate modulators of ethanol responses.

    diff --git a/general/datasets/Vcu_pf_air_0111_r/tissue.rtf b/general/datasets/Vcu_pf_air_0111_r/tissue.rtf new file mode 100644 index 0000000..6473075 --- /dev/null +++ b/general/datasets/Vcu_pf_air_0111_r/tissue.rtf @@ -0,0 +1,3 @@ +

    All animals were obtained at 8-9 weeks of age from the Jackson Laboratory (Bar Harbor, ME) and were treated, behaviorally tested and brains dissected by Alex Putman and colleagues at VCU. Following an hour acclimation period to the behavioral room, animals were restrained for 15 minutes, immediately injected (I.P.) with either saline (0.9%) or 1.8g/kg ethanol, and 5 minutes later placed in the light-dark box for a 10-minute test session. All behavioral testing occurred between 10 AM and 1 PM during the light phase over a 12 month period beginning August 2005. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected. Prefrontal cortex tissue was isolated by microdissection using a wedge-shaped slice taken from a 4 mm thick brain slice extending rostrally from the optic chiasm. The wedge was centered on the inter-hemispheric fissure and extending 2 mm laterally on each side and ventrally to just above the corpus callosum. This tissue and all other brain regions were dissected in less than 5 minutes per mouse and were immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation. A pool of dissected tissue from 3 mice of the same strain was used to generate RNA samples. All RNA samples were extracted at VCU by Alex Putman during October 2006 and the order of RNA isolation was randomized across all strains and treatment groups (since saline treated animals were processed concurrently).

    + +

    GEO Accession: GSE28515

    diff --git a/general/datasets/Vcu_pf_ave_0111_ss/acknowledgment.rtf b/general/datasets/Vcu_pf_ave_0111_ss/acknowledgment.rtf new file mode 100644 index 0000000..4463223 --- /dev/null +++ b/general/datasets/Vcu_pf_ave_0111_ss/acknowledgment.rtf @@ -0,0 +1 @@ +

    Data were generated with funds to Michael F Miles from the NIAAA.

    diff --git a/general/datasets/Vcu_pf_ave_0111_ss/cases.rtf b/general/datasets/Vcu_pf_ave_0111_ss/cases.rtf new file mode 100644 index 0000000..a9b6489 --- /dev/null +++ b/general/datasets/Vcu_pf_ave_0111_ss/cases.rtf @@ -0,0 +1 @@ +

    This BXD data set provides estimates of mRNA expression in the prefrontal cortex following ethanol treatment across 27 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 468 adult male animals obtained from Jackson Laboratory and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and treatment with 1.8g/kg ethanol in the light-dark transition model of anxiety. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the prefrontal cortex following ethanol treatment using the Robust Multichip Average (RMA) method.

    diff --git a/general/datasets/Vcu_pf_ave_0111_ss/contributors.rtf b/general/datasets/Vcu_pf_ave_0111_ss/contributors.rtf new file mode 100644 index 0000000..6bb60a8 --- /dev/null +++ b/general/datasets/Vcu_pf_ave_0111_ss/contributors.rtf @@ -0,0 +1 @@ +

    Miles MF, Putman AH, Vorster PJ, Wolen AR

    diff --git a/general/datasets/Vcu_pf_ave_0111_ss/experiment-design.rtf b/general/datasets/Vcu_pf_ave_0111_ss/experiment-design.rtf new file mode 100644 index 0000000..05c600b --- /dev/null +++ b/general/datasets/Vcu_pf_ave_0111_ss/experiment-design.rtf @@ -0,0 +1,5 @@ +

    This data set was generated concurrently with the VCU saline prefrontal cortex BXD RMA data and therefore consisted of 64 microarrays processed in 5 groups of 8 to 16 microarrays during the month of September 2006. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects.

    + +

    Many of the techniques used to generate this data set are described in a recent publication in the Journal of Neuroscience.

    + +

    Animals were injected intraperitoneally (IP) with saline or 1.8 g/kg of ethanol. As part of a parallel study of ethanol induced anxiolysis, all mice underwent behavioral testing that included 15 minutes of restraint in a 50 mL conical tube followed by 10 minutes in a light-dark chamber. Mice were killed by cervical dislocation four hours following IP injection. Immediately thereafter, brains were extracted and chilled for 1 minute in iced phosphate buffer before being microdissected into 8 constituent regions, including the medial prefrontal cortex. Samples were randomly assigned to batch groups prior to total RNA extraction, cRNA synthesis and hybridization. Each microarray represent a pooling of 4-5 animals.

    diff --git a/general/datasets/Vcu_pf_ave_0111_ss/experiment-type.rtf b/general/datasets/Vcu_pf_ave_0111_ss/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Vcu_pf_ave_0111_ss/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Vcu_pf_ave_0111_ss/platform.rtf b/general/datasets/Vcu_pf_ave_0111_ss/platform.rtf new file mode 100644 index 0000000..ec67993 --- /dev/null +++ b/general/datasets/Vcu_pf_ave_0111_ss/platform.rtf @@ -0,0 +1 @@ +

    [Mouse430_2] Affymetrix Mouse Genome 430 2.0 Array

    diff --git a/general/datasets/Vcu_pf_ave_0111_ss/summary.rtf b/general/datasets/Vcu_pf_ave_0111_ss/summary.rtf new file mode 100644 index 0000000..ff7c56f --- /dev/null +++ b/general/datasets/Vcu_pf_ave_0111_ss/summary.rtf @@ -0,0 +1 @@ +

    In order to elucidate the molecular mechanisms underlying individual variation in sensitivity to ethanol we profiled the prefrontal cortex transcriptomes of two inbred strains that exhibit divergent responses to acute ethanol, the C57BL6/J (B6) and DBA/2J (D2) strains, as well as 27 members of the BXD recombinant inbred panel, which was derived from a B6 x D2 cross. With this dataset we were able to identify several gene co-expression networks that were robustly altered by acute ethanol across the BXD panel. These ethanol-responsive gene-enriched networks were heavily populated by genes regulating synaptic transmission and neuroplasticity, and showed strong genetic linkage to discreet chromosomal loci. Network-based measurements of node importance identified several hub genes as established regulators of ethanol response phenotypes, while other hubs represent novel candidate modulators of ethanol responses.

    diff --git a/general/datasets/Vcu_pf_ave_0111_ss/tissue.rtf b/general/datasets/Vcu_pf_ave_0111_ss/tissue.rtf new file mode 100644 index 0000000..6473075 --- /dev/null +++ b/general/datasets/Vcu_pf_ave_0111_ss/tissue.rtf @@ -0,0 +1,3 @@ +

    All animals were obtained at 8-9 weeks of age from the Jackson Laboratory (Bar Harbor, ME) and were treated, behaviorally tested and brains dissected by Alex Putman and colleagues at VCU. Following an hour acclimation period to the behavioral room, animals were restrained for 15 minutes, immediately injected (I.P.) with either saline (0.9%) or 1.8g/kg ethanol, and 5 minutes later placed in the light-dark box for a 10-minute test session. All behavioral testing occurred between 10 AM and 1 PM during the light phase over a 12 month period beginning August 2005. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected. Prefrontal cortex tissue was isolated by microdissection using a wedge-shaped slice taken from a 4 mm thick brain slice extending rostrally from the optic chiasm. The wedge was centered on the inter-hemispheric fissure and extending 2 mm laterally on each side and ventrally to just above the corpus callosum. This tissue and all other brain regions were dissected in less than 5 minutes per mouse and were immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation. A pool of dissected tissue from 3 mice of the same strain was used to generate RNA samples. All RNA samples were extracted at VCU by Alex Putman during October 2006 and the order of RNA isolation was randomized across all strains and treatment groups (since saline treated animals were processed concurrently).

    + +

    GEO Accession: GSE28515

    diff --git a/general/datasets/Vcu_pf_et_0111_r/acknowledgment.rtf b/general/datasets/Vcu_pf_et_0111_r/acknowledgment.rtf new file mode 100644 index 0000000..4463223 --- /dev/null +++ b/general/datasets/Vcu_pf_et_0111_r/acknowledgment.rtf @@ -0,0 +1 @@ +

    Data were generated with funds to Michael F Miles from the NIAAA.

    diff --git a/general/datasets/Vcu_pf_et_0111_r/cases.rtf b/general/datasets/Vcu_pf_et_0111_r/cases.rtf new file mode 100644 index 0000000..a9b6489 --- /dev/null +++ b/general/datasets/Vcu_pf_et_0111_r/cases.rtf @@ -0,0 +1 @@ +

    This BXD data set provides estimates of mRNA expression in the prefrontal cortex following ethanol treatment across 27 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 468 adult male animals obtained from Jackson Laboratory and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and treatment with 1.8g/kg ethanol in the light-dark transition model of anxiety. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the prefrontal cortex following ethanol treatment using the Robust Multichip Average (RMA) method.

    diff --git a/general/datasets/Vcu_pf_et_0111_r/contributors.rtf b/general/datasets/Vcu_pf_et_0111_r/contributors.rtf new file mode 100644 index 0000000..6bb60a8 --- /dev/null +++ b/general/datasets/Vcu_pf_et_0111_r/contributors.rtf @@ -0,0 +1 @@ +

    Miles MF, Putman AH, Vorster PJ, Wolen AR

    diff --git a/general/datasets/Vcu_pf_et_0111_r/experiment-design.rtf b/general/datasets/Vcu_pf_et_0111_r/experiment-design.rtf new file mode 100644 index 0000000..05c600b --- /dev/null +++ b/general/datasets/Vcu_pf_et_0111_r/experiment-design.rtf @@ -0,0 +1,5 @@ +

    This data set was generated concurrently with the VCU saline prefrontal cortex BXD RMA data and therefore consisted of 64 microarrays processed in 5 groups of 8 to 16 microarrays during the month of September 2006. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects.

    + +

    Many of the techniques used to generate this data set are described in a recent publication in the Journal of Neuroscience.

    + +

    Animals were injected intraperitoneally (IP) with saline or 1.8 g/kg of ethanol. As part of a parallel study of ethanol induced anxiolysis, all mice underwent behavioral testing that included 15 minutes of restraint in a 50 mL conical tube followed by 10 minutes in a light-dark chamber. Mice were killed by cervical dislocation four hours following IP injection. Immediately thereafter, brains were extracted and chilled for 1 minute in iced phosphate buffer before being microdissected into 8 constituent regions, including the medial prefrontal cortex. Samples were randomly assigned to batch groups prior to total RNA extraction, cRNA synthesis and hybridization. Each microarray represent a pooling of 4-5 animals.

    diff --git a/general/datasets/Vcu_pf_et_0111_r/experiment-type.rtf b/general/datasets/Vcu_pf_et_0111_r/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Vcu_pf_et_0111_r/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Vcu_pf_et_0111_r/platform.rtf b/general/datasets/Vcu_pf_et_0111_r/platform.rtf new file mode 100644 index 0000000..ec67993 --- /dev/null +++ b/general/datasets/Vcu_pf_et_0111_r/platform.rtf @@ -0,0 +1 @@ +

    [Mouse430_2] Affymetrix Mouse Genome 430 2.0 Array

    diff --git a/general/datasets/Vcu_pf_et_0111_r/summary.rtf b/general/datasets/Vcu_pf_et_0111_r/summary.rtf new file mode 100644 index 0000000..ff7c56f --- /dev/null +++ b/general/datasets/Vcu_pf_et_0111_r/summary.rtf @@ -0,0 +1 @@ +

    In order to elucidate the molecular mechanisms underlying individual variation in sensitivity to ethanol we profiled the prefrontal cortex transcriptomes of two inbred strains that exhibit divergent responses to acute ethanol, the C57BL6/J (B6) and DBA/2J (D2) strains, as well as 27 members of the BXD recombinant inbred panel, which was derived from a B6 x D2 cross. With this dataset we were able to identify several gene co-expression networks that were robustly altered by acute ethanol across the BXD panel. These ethanol-responsive gene-enriched networks were heavily populated by genes regulating synaptic transmission and neuroplasticity, and showed strong genetic linkage to discreet chromosomal loci. Network-based measurements of node importance identified several hub genes as established regulators of ethanol response phenotypes, while other hubs represent novel candidate modulators of ethanol responses.

    diff --git a/general/datasets/Vcu_pf_et_0111_r/tissue.rtf b/general/datasets/Vcu_pf_et_0111_r/tissue.rtf new file mode 100644 index 0000000..6473075 --- /dev/null +++ b/general/datasets/Vcu_pf_et_0111_r/tissue.rtf @@ -0,0 +1,3 @@ +

    All animals were obtained at 8-9 weeks of age from the Jackson Laboratory (Bar Harbor, ME) and were treated, behaviorally tested and brains dissected by Alex Putman and colleagues at VCU. Following an hour acclimation period to the behavioral room, animals were restrained for 15 minutes, immediately injected (I.P.) with either saline (0.9%) or 1.8g/kg ethanol, and 5 minutes later placed in the light-dark box for a 10-minute test session. All behavioral testing occurred between 10 AM and 1 PM during the light phase over a 12 month period beginning August 2005. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected. Prefrontal cortex tissue was isolated by microdissection using a wedge-shaped slice taken from a 4 mm thick brain slice extending rostrally from the optic chiasm. The wedge was centered on the inter-hemispheric fissure and extending 2 mm laterally on each side and ventrally to just above the corpus callosum. This tissue and all other brain regions were dissected in less than 5 minutes per mouse and were immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation. A pool of dissected tissue from 3 mice of the same strain was used to generate RNA samples. All RNA samples were extracted at VCU by Alex Putman during October 2006 and the order of RNA isolation was randomized across all strains and treatment groups (since saline treated animals were processed concurrently).

    + +

    GEO Accession: GSE28515

    diff --git a/general/datasets/Vcuet_vs_sal_0806_r/summary.rtf b/general/datasets/Vcuet_vs_sal_0806_r/summary.rtf new file mode 100644 index 0000000..36e8ee4 --- /dev/null +++ b/general/datasets/Vcuet_vs_sal_0806_r/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 33, Name: VCU LXS PFC Et vs Sal M430A 2.0 (Aug06) \ No newline at end of file diff --git a/general/datasets/Vcuetoh_0609_r/experiment-type.rtf b/general/datasets/Vcuetoh_0609_r/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Vcuetoh_0609_r/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Vcuetoh_0609_r/notes.rtf b/general/datasets/Vcuetoh_0609_r/notes.rtf new file mode 100644 index 0000000..3b773ce --- /dev/null +++ b/general/datasets/Vcuetoh_0609_r/notes.rtf @@ -0,0 +1 @@ +

    All samples were processed by Nate Bruce at VCU between April and May 2009. The BioRad Experion RNA analyzer and used to assess total RNA integrity and verify equal molar ratios of 18S and 28S ribosomal RNA. All RNA Quality Index (RQI) calculations were > 8. Standard Affymetrix reagents and protocols were used for generation of cDNA and biotinylated cRNA from total RNA samples. Integrity of cRNA was checked by Experion analysis prior to microarray hybridizations. All probes exceeded a maximum size of 3000 nt for the upper border of the cRNA size distribution.

    diff --git a/general/datasets/Vcuetoh_0609_r/platform.rtf b/general/datasets/Vcuetoh_0609_r/platform.rtf new file mode 100644 index 0000000..b7370c8 --- /dev/null +++ b/general/datasets/Vcuetoh_0609_r/platform.rtf @@ -0,0 +1 @@ +

    GEO: GPL1261 Affymetrix GeneChip Mouse Genome 430 2.0 Array

    diff --git a/general/datasets/Vcuetoh_0609_r/specifics.rtf b/general/datasets/Vcuetoh_0609_r/specifics.rtf new file mode 100644 index 0000000..bab9fcf --- /dev/null +++ b/general/datasets/Vcuetoh_0609_r/specifics.rtf @@ -0,0 +1 @@ +Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the VTA in response to ethanol. \ No newline at end of file diff --git a/general/datasets/Vcuetoh_0609_r/summary.rtf b/general/datasets/Vcuetoh_0609_r/summary.rtf new file mode 100644 index 0000000..ad6106d --- /dev/null +++ b/general/datasets/Vcuetoh_0609_r/summary.rtf @@ -0,0 +1,3 @@ +

    This BXD data set provides estimates of ventral tegmental area (VTA) mRNA expression in response to ethanol (1.8 g/kg x 4 hours) across 35 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 596 adult male animals obtained from Jackson Laboratory (27 classical BXD strains) or Oak Ridge National Laboratory (extended BXD series) and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and ethanol (IP) treatment in the light-dark transition model of anxiety.

    + +

    All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the VTA in response to ethanol or saline and transforming these data using the S-score method to compare ethanol vs. saline expression from pairs of arrays for each strain (Kerns et al., Methods 31:274, 2003). The S-score is a method developed for Affymetrix oligonucleotide arrays that is particularly suited to comparing expression on 2 or a small number of chips. The S-score output for each probeset is not an indication of expression magnitude but rather, the change in expression between compared arrays. The S-score is essentially a z-score centered around zero with positive S-scores reflecting increased gene expression with ethanol and negative scores reflecting ethanol-induced decreases in expression. Larger magnitude S-scores show more significant changes in expression and are generally correlated with the fold-change.

    diff --git a/general/datasets/Vcuetoh_0806_r/summary.rtf b/general/datasets/Vcuetoh_0806_r/summary.rtf new file mode 100644 index 0000000..36e8ee4 --- /dev/null +++ b/general/datasets/Vcuetoh_0806_r/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 33, Name: VCU LXS PFC Et vs Sal M430A 2.0 (Aug06) \ No newline at end of file diff --git a/general/datasets/Vcuetoh_1007_r/experiment-design.rtf b/general/datasets/Vcuetoh_1007_r/experiment-design.rtf new file mode 100644 index 0000000..9826853 --- /dev/null +++ b/general/datasets/Vcuetoh_1007_r/experiment-design.rtf @@ -0,0 +1 @@ +

    Acute ethanol injection. Please ad dose, route, age, timing, etc. 

    diff --git a/general/datasets/Vcuetoh_1007_r/processing.rtf b/general/datasets/Vcuetoh_1007_r/processing.rtf new file mode 100644 index 0000000..692987b --- /dev/null +++ b/general/datasets/Vcuetoh_1007_r/processing.rtf @@ -0,0 +1 @@ +

    These data use the S-score algorithm of Miles and colleagues (PMIDs: 16574698, 16545131, 14597311, 11902839) to evaluate the magnitude of change between the control condition and the ethanol-treated animals.  Positive S-score values reflect increased expression with ethanol, negative S-scores reflect decreased expression after ethanol treatment.

    diff --git a/general/datasets/Vcuetoh_1007_r/summary.rtf b/general/datasets/Vcuetoh_1007_r/summary.rtf new file mode 100644 index 0000000..479039b --- /dev/null +++ b/general/datasets/Vcuetoh_1007_r/summary.rtf @@ -0,0 +1,3 @@ +

    Summary of DatasetId 44, Name: VCU BXD NA Et vs Sal M430 2.0 (Oct07).

    + +

    Data set generated by Dr. Michael Miles at Virginia Commonwealth University <mfmiles@vcu.edu>. 

    diff --git a/general/datasets/Vcuetoh_1206_r/acknowledgment.rtf b/general/datasets/Vcuetoh_1206_r/acknowledgment.rtf new file mode 100644 index 0000000..4463223 --- /dev/null +++ b/general/datasets/Vcuetoh_1206_r/acknowledgment.rtf @@ -0,0 +1 @@ +

    Data were generated with funds to Michael F Miles from the NIAAA.

    diff --git a/general/datasets/Vcuetoh_1206_r/cases.rtf b/general/datasets/Vcuetoh_1206_r/cases.rtf new file mode 100644 index 0000000..a9b6489 --- /dev/null +++ b/general/datasets/Vcuetoh_1206_r/cases.rtf @@ -0,0 +1 @@ +

    This BXD data set provides estimates of mRNA expression in the prefrontal cortex following ethanol treatment across 27 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 468 adult male animals obtained from Jackson Laboratory and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and treatment with 1.8g/kg ethanol in the light-dark transition model of anxiety. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the prefrontal cortex following ethanol treatment using the Robust Multichip Average (RMA) method.

    diff --git a/general/datasets/Vcuetoh_1206_r/contributors.rtf b/general/datasets/Vcuetoh_1206_r/contributors.rtf new file mode 100644 index 0000000..6bb60a8 --- /dev/null +++ b/general/datasets/Vcuetoh_1206_r/contributors.rtf @@ -0,0 +1 @@ +

    Miles MF, Putman AH, Vorster PJ, Wolen AR

    diff --git a/general/datasets/Vcuetoh_1206_r/experiment-design.rtf b/general/datasets/Vcuetoh_1206_r/experiment-design.rtf new file mode 100644 index 0000000..05c600b --- /dev/null +++ b/general/datasets/Vcuetoh_1206_r/experiment-design.rtf @@ -0,0 +1,5 @@ +

    This data set was generated concurrently with the VCU saline prefrontal cortex BXD RMA data and therefore consisted of 64 microarrays processed in 5 groups of 8 to 16 microarrays during the month of September 2006. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects.

    + +

    Many of the techniques used to generate this data set are described in a recent publication in the Journal of Neuroscience.

    + +

    Animals were injected intraperitoneally (IP) with saline or 1.8 g/kg of ethanol. As part of a parallel study of ethanol induced anxiolysis, all mice underwent behavioral testing that included 15 minutes of restraint in a 50 mL conical tube followed by 10 minutes in a light-dark chamber. Mice were killed by cervical dislocation four hours following IP injection. Immediately thereafter, brains were extracted and chilled for 1 minute in iced phosphate buffer before being microdissected into 8 constituent regions, including the medial prefrontal cortex. Samples were randomly assigned to batch groups prior to total RNA extraction, cRNA synthesis and hybridization. Each microarray represent a pooling of 4-5 animals.

    diff --git a/general/datasets/Vcuetoh_1206_r/experiment-type.rtf b/general/datasets/Vcuetoh_1206_r/experiment-type.rtf new file mode 100644 index 0000000..17271ac --- /dev/null +++ b/general/datasets/Vcuetoh_1206_r/experiment-type.rtf @@ -0,0 +1,2 @@ +This data set was generated concurrently with the VCU saline prefrontal cortex BXD RMA data and therefore consisted of 64 microarrays processed in 5 groups of 8 to 16 microarrays during the month of September 2006. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects. +

    Many of the techniques used to generate this data set are described in a recent publication in the Journal of Neuroscience.

    \ No newline at end of file diff --git a/general/datasets/Vcuetoh_1206_r/platform.rtf b/general/datasets/Vcuetoh_1206_r/platform.rtf new file mode 100644 index 0000000..ec67993 --- /dev/null +++ b/general/datasets/Vcuetoh_1206_r/platform.rtf @@ -0,0 +1 @@ +

    [Mouse430_2] Affymetrix Mouse Genome 430 2.0 Array

    diff --git a/general/datasets/Vcuetoh_1206_r/summary.rtf b/general/datasets/Vcuetoh_1206_r/summary.rtf new file mode 100644 index 0000000..ff7c56f --- /dev/null +++ b/general/datasets/Vcuetoh_1206_r/summary.rtf @@ -0,0 +1 @@ +

    In order to elucidate the molecular mechanisms underlying individual variation in sensitivity to ethanol we profiled the prefrontal cortex transcriptomes of two inbred strains that exhibit divergent responses to acute ethanol, the C57BL6/J (B6) and DBA/2J (D2) strains, as well as 27 members of the BXD recombinant inbred panel, which was derived from a B6 x D2 cross. With this dataset we were able to identify several gene co-expression networks that were robustly altered by acute ethanol across the BXD panel. These ethanol-responsive gene-enriched networks were heavily populated by genes regulating synaptic transmission and neuroplasticity, and showed strong genetic linkage to discreet chromosomal loci. Network-based measurements of node importance identified several hub genes as established regulators of ethanol response phenotypes, while other hubs represent novel candidate modulators of ethanol responses.

    diff --git a/general/datasets/Vcuetoh_1206_r/tissue.rtf b/general/datasets/Vcuetoh_1206_r/tissue.rtf new file mode 100644 index 0000000..6473075 --- /dev/null +++ b/general/datasets/Vcuetoh_1206_r/tissue.rtf @@ -0,0 +1,3 @@ +

    All animals were obtained at 8-9 weeks of age from the Jackson Laboratory (Bar Harbor, ME) and were treated, behaviorally tested and brains dissected by Alex Putman and colleagues at VCU. Following an hour acclimation period to the behavioral room, animals were restrained for 15 minutes, immediately injected (I.P.) with either saline (0.9%) or 1.8g/kg ethanol, and 5 minutes later placed in the light-dark box for a 10-minute test session. All behavioral testing occurred between 10 AM and 1 PM during the light phase over a 12 month period beginning August 2005. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected. Prefrontal cortex tissue was isolated by microdissection using a wedge-shaped slice taken from a 4 mm thick brain slice extending rostrally from the optic chiasm. The wedge was centered on the inter-hemispheric fissure and extending 2 mm laterally on each side and ventrally to just above the corpus callosum. This tissue and all other brain regions were dissected in less than 5 minutes per mouse and were immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation. A pool of dissected tissue from 3 mice of the same strain was used to generate RNA samples. All RNA samples were extracted at VCU by Alex Putman during October 2006 and the order of RNA isolation was randomized across all strains and treatment groups (since saline treated animals were processed concurrently).

    + +

    GEO Accession: GSE28515

    diff --git a/general/datasets/Vcuetvssal_0609_r/experiment-type.rtf b/general/datasets/Vcuetvssal_0609_r/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Vcuetvssal_0609_r/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Vcuetvssal_0609_r/notes.rtf b/general/datasets/Vcuetvssal_0609_r/notes.rtf new file mode 100644 index 0000000..3b773ce --- /dev/null +++ b/general/datasets/Vcuetvssal_0609_r/notes.rtf @@ -0,0 +1 @@ +

    All samples were processed by Nate Bruce at VCU between April and May 2009. The BioRad Experion RNA analyzer and used to assess total RNA integrity and verify equal molar ratios of 18S and 28S ribosomal RNA. All RNA Quality Index (RQI) calculations were > 8. Standard Affymetrix reagents and protocols were used for generation of cDNA and biotinylated cRNA from total RNA samples. Integrity of cRNA was checked by Experion analysis prior to microarray hybridizations. All probes exceeded a maximum size of 3000 nt for the upper border of the cRNA size distribution.

    diff --git a/general/datasets/Vcuetvssal_0609_r/platform.rtf b/general/datasets/Vcuetvssal_0609_r/platform.rtf new file mode 100644 index 0000000..b7370c8 --- /dev/null +++ b/general/datasets/Vcuetvssal_0609_r/platform.rtf @@ -0,0 +1 @@ +

    GEO: GPL1261 Affymetrix GeneChip Mouse Genome 430 2.0 Array

    diff --git a/general/datasets/Vcuetvssal_0609_r/specifics.rtf b/general/datasets/Vcuetvssal_0609_r/specifics.rtf new file mode 100644 index 0000000..5222820 --- /dev/null +++ b/general/datasets/Vcuetvssal_0609_r/specifics.rtf @@ -0,0 +1 @@ +Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the VTA in response to ethanol or saline and transforming these data using the S-score method to compare ethanol vs. saline expression from pairs of arrays for each strain (Kerns et al., Methods 31:274, 2003). \ No newline at end of file diff --git a/general/datasets/Vcuetvssal_0609_r/summary.rtf b/general/datasets/Vcuetvssal_0609_r/summary.rtf new file mode 100644 index 0000000..ad6106d --- /dev/null +++ b/general/datasets/Vcuetvssal_0609_r/summary.rtf @@ -0,0 +1,3 @@ +

    This BXD data set provides estimates of ventral tegmental area (VTA) mRNA expression in response to ethanol (1.8 g/kg x 4 hours) across 35 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 596 adult male animals obtained from Jackson Laboratory (27 classical BXD strains) or Oak Ridge National Laboratory (extended BXD series) and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and ethanol (IP) treatment in the light-dark transition model of anxiety.

    + +

    All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the VTA in response to ethanol or saline and transforming these data using the S-score method to compare ethanol vs. saline expression from pairs of arrays for each strain (Kerns et al., Methods 31:274, 2003). The S-score is a method developed for Affymetrix oligonucleotide arrays that is particularly suited to comparing expression on 2 or a small number of chips. The S-score output for each probeset is not an indication of expression magnitude but rather, the change in expression between compared arrays. The S-score is essentially a z-score centered around zero with positive S-scores reflecting increased gene expression with ethanol and negative scores reflecting ethanol-induced decreases in expression. Larger magnitude S-scores show more significant changes in expression and are generally correlated with the fold-change.

    diff --git a/general/datasets/Vcusal_0609_r/experiment-type.rtf b/general/datasets/Vcusal_0609_r/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Vcusal_0609_r/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Vcusal_0609_r/notes.rtf b/general/datasets/Vcusal_0609_r/notes.rtf new file mode 100644 index 0000000..3b773ce --- /dev/null +++ b/general/datasets/Vcusal_0609_r/notes.rtf @@ -0,0 +1 @@ +

    All samples were processed by Nate Bruce at VCU between April and May 2009. The BioRad Experion RNA analyzer and used to assess total RNA integrity and verify equal molar ratios of 18S and 28S ribosomal RNA. All RNA Quality Index (RQI) calculations were > 8. Standard Affymetrix reagents and protocols were used for generation of cDNA and biotinylated cRNA from total RNA samples. Integrity of cRNA was checked by Experion analysis prior to microarray hybridizations. All probes exceeded a maximum size of 3000 nt for the upper border of the cRNA size distribution.

    diff --git a/general/datasets/Vcusal_0609_r/platform.rtf b/general/datasets/Vcusal_0609_r/platform.rtf new file mode 100644 index 0000000..b7370c8 --- /dev/null +++ b/general/datasets/Vcusal_0609_r/platform.rtf @@ -0,0 +1 @@ +

    GEO: GPL1261 Affymetrix GeneChip Mouse Genome 430 2.0 Array

    diff --git a/general/datasets/Vcusal_0609_r/specifics.rtf b/general/datasets/Vcusal_0609_r/specifics.rtf new file mode 100644 index 0000000..cb1ae5d --- /dev/null +++ b/general/datasets/Vcusal_0609_r/specifics.rtf @@ -0,0 +1 @@ +

    Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the VTA in response to saline.

    diff --git a/general/datasets/Vcusal_0609_r/summary.rtf b/general/datasets/Vcusal_0609_r/summary.rtf new file mode 100644 index 0000000..ad6106d --- /dev/null +++ b/general/datasets/Vcusal_0609_r/summary.rtf @@ -0,0 +1,3 @@ +

    This BXD data set provides estimates of ventral tegmental area (VTA) mRNA expression in response to ethanol (1.8 g/kg x 4 hours) across 35 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 596 adult male animals obtained from Jackson Laboratory (27 classical BXD strains) or Oak Ridge National Laboratory (extended BXD series) and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and ethanol (IP) treatment in the light-dark transition model of anxiety.

    + +

    All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the VTA in response to ethanol or saline and transforming these data using the S-score method to compare ethanol vs. saline expression from pairs of arrays for each strain (Kerns et al., Methods 31:274, 2003). The S-score is a method developed for Affymetrix oligonucleotide arrays that is particularly suited to comparing expression on 2 or a small number of chips. The S-score output for each probeset is not an indication of expression magnitude but rather, the change in expression between compared arrays. The S-score is essentially a z-score centered around zero with positive S-scores reflecting increased gene expression with ethanol and negative scores reflecting ethanol-induced decreases in expression. Larger magnitude S-scores show more significant changes in expression and are generally correlated with the fold-change.

    diff --git a/general/datasets/Vcusal_0806_r/summary.rtf b/general/datasets/Vcusal_0806_r/summary.rtf new file mode 100644 index 0000000..36e8ee4 --- /dev/null +++ b/general/datasets/Vcusal_0806_r/summary.rtf @@ -0,0 +1 @@ +Summary of DatasetId 33, Name: VCU LXS PFC Et vs Sal M430A 2.0 (Aug06) \ No newline at end of file diff --git a/general/datasets/Vcusal_1006_r/acknowledgment.rtf b/general/datasets/Vcusal_1006_r/acknowledgment.rtf new file mode 100644 index 0000000..4463223 --- /dev/null +++ b/general/datasets/Vcusal_1006_r/acknowledgment.rtf @@ -0,0 +1 @@ +

    Data were generated with funds to Michael F Miles from the NIAAA.

    diff --git a/general/datasets/Vcusal_1006_r/cases.rtf b/general/datasets/Vcusal_1006_r/cases.rtf new file mode 100644 index 0000000..a9b6489 --- /dev/null +++ b/general/datasets/Vcusal_1006_r/cases.rtf @@ -0,0 +1 @@ +

    This BXD data set provides estimates of mRNA expression in the prefrontal cortex following ethanol treatment across 27 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 468 adult male animals obtained from Jackson Laboratory and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and treatment with 1.8g/kg ethanol in the light-dark transition model of anxiety. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the prefrontal cortex following ethanol treatment using the Robust Multichip Average (RMA) method.

    diff --git a/general/datasets/Vcusal_1006_r/contributors.rtf b/general/datasets/Vcusal_1006_r/contributors.rtf new file mode 100644 index 0000000..6bb60a8 --- /dev/null +++ b/general/datasets/Vcusal_1006_r/contributors.rtf @@ -0,0 +1 @@ +

    Miles MF, Putman AH, Vorster PJ, Wolen AR

    diff --git a/general/datasets/Vcusal_1006_r/experiment-design.rtf b/general/datasets/Vcusal_1006_r/experiment-design.rtf new file mode 100644 index 0000000..05c600b --- /dev/null +++ b/general/datasets/Vcusal_1006_r/experiment-design.rtf @@ -0,0 +1,5 @@ +

    This data set was generated concurrently with the VCU saline prefrontal cortex BXD RMA data and therefore consisted of 64 microarrays processed in 5 groups of 8 to 16 microarrays during the month of September 2006. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects.

    + +

    Many of the techniques used to generate this data set are described in a recent publication in the Journal of Neuroscience.

    + +

    Animals were injected intraperitoneally (IP) with saline or 1.8 g/kg of ethanol. As part of a parallel study of ethanol induced anxiolysis, all mice underwent behavioral testing that included 15 minutes of restraint in a 50 mL conical tube followed by 10 minutes in a light-dark chamber. Mice were killed by cervical dislocation four hours following IP injection. Immediately thereafter, brains were extracted and chilled for 1 minute in iced phosphate buffer before being microdissected into 8 constituent regions, including the medial prefrontal cortex. Samples were randomly assigned to batch groups prior to total RNA extraction, cRNA synthesis and hybridization. Each microarray represent a pooling of 4-5 animals.

    diff --git a/general/datasets/Vcusal_1006_r/experiment-type.rtf b/general/datasets/Vcusal_1006_r/experiment-type.rtf new file mode 100644 index 0000000..8df9efa --- /dev/null +++ b/general/datasets/Vcusal_1006_r/experiment-type.rtf @@ -0,0 +1,5 @@ +This BXD data set provides estimates of ethanol-responsive mRNA expression in the prefrontal cortex across 27 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 468 adult male animals obtained from Jackson Laboratory and raised in a standard laboratory environment. An average of 8 males per strain was used to measure the anxiety-like behavior in response to restraint and treatment with either saline or 1.8g/kg ethanol in the light-dark transition model of anxiety. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). + +All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the prefrontal cortex in response to ethanol or saline and transforming these data using the S-score method to compare ethanol vs. saline expression from pairs of arrays for each strain (Kerns et al., Methods 31:274, 2003). The S-score is a method developed for Affymetrix oligonucleotide arrays that is particularly suited to comparing expression on 2 or a small number of chips (Zhang et al., 2002). The S-score output for each probeset is not an indication of expression magnitude but rather, the change in expression between compared arrays. The S-score is essentially a z-score centered around zero with positive S-scores reflecting increased gene expression with ethanol and negative scores reflecting ethanol-induced decreases in expression. Larger magnitude S-scores show more significant changes in expression and are generally correlated with the "fold-change". + +Zhang, L., et al., 2002. A new algorithm for analysis of oligonucleotide arrays: application to expression profiling in mouse brain regions. J Mol Biol. 317, 225-35. \ No newline at end of file diff --git a/general/datasets/Vcusal_1006_r/platform.rtf b/general/datasets/Vcusal_1006_r/platform.rtf new file mode 100644 index 0000000..ec67993 --- /dev/null +++ b/general/datasets/Vcusal_1006_r/platform.rtf @@ -0,0 +1 @@ +

    [Mouse430_2] Affymetrix Mouse Genome 430 2.0 Array

    diff --git a/general/datasets/Vcusal_1006_r/summary.rtf b/general/datasets/Vcusal_1006_r/summary.rtf new file mode 100644 index 0000000..ff7c56f --- /dev/null +++ b/general/datasets/Vcusal_1006_r/summary.rtf @@ -0,0 +1 @@ +

    In order to elucidate the molecular mechanisms underlying individual variation in sensitivity to ethanol we profiled the prefrontal cortex transcriptomes of two inbred strains that exhibit divergent responses to acute ethanol, the C57BL6/J (B6) and DBA/2J (D2) strains, as well as 27 members of the BXD recombinant inbred panel, which was derived from a B6 x D2 cross. With this dataset we were able to identify several gene co-expression networks that were robustly altered by acute ethanol across the BXD panel. These ethanol-responsive gene-enriched networks were heavily populated by genes regulating synaptic transmission and neuroplasticity, and showed strong genetic linkage to discreet chromosomal loci. Network-based measurements of node importance identified several hub genes as established regulators of ethanol response phenotypes, while other hubs represent novel candidate modulators of ethanol responses.

    diff --git a/general/datasets/Vcusal_1006_r/tissue.rtf b/general/datasets/Vcusal_1006_r/tissue.rtf new file mode 100644 index 0000000..6473075 --- /dev/null +++ b/general/datasets/Vcusal_1006_r/tissue.rtf @@ -0,0 +1,3 @@ +

    All animals were obtained at 8-9 weeks of age from the Jackson Laboratory (Bar Harbor, ME) and were treated, behaviorally tested and brains dissected by Alex Putman and colleagues at VCU. Following an hour acclimation period to the behavioral room, animals were restrained for 15 minutes, immediately injected (I.P.) with either saline (0.9%) or 1.8g/kg ethanol, and 5 minutes later placed in the light-dark box for a 10-minute test session. All behavioral testing occurred between 10 AM and 1 PM during the light phase over a 12 month period beginning August 2005. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected. Prefrontal cortex tissue was isolated by microdissection using a wedge-shaped slice taken from a 4 mm thick brain slice extending rostrally from the optic chiasm. The wedge was centered on the inter-hemispheric fissure and extending 2 mm laterally on each side and ventrally to just above the corpus callosum. This tissue and all other brain regions were dissected in less than 5 minutes per mouse and were immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation. A pool of dissected tissue from 3 mice of the same strain was used to generate RNA samples. All RNA samples were extracted at VCU by Alex Putman during October 2006 and the order of RNA isolation was randomized across all strains and treatment groups (since saline treated animals were processed concurrently).

    + +

    GEO Accession: GSE28515

    diff --git a/general/datasets/Vcusal_1007_r/experiment-design.rtf b/general/datasets/Vcusal_1007_r/experiment-design.rtf new file mode 100644 index 0000000..9826853 --- /dev/null +++ b/general/datasets/Vcusal_1007_r/experiment-design.rtf @@ -0,0 +1 @@ +

    Acute ethanol injection. Please ad dose, route, age, timing, etc. 

    diff --git a/general/datasets/Vcusal_1007_r/processing.rtf b/general/datasets/Vcusal_1007_r/processing.rtf new file mode 100644 index 0000000..692987b --- /dev/null +++ b/general/datasets/Vcusal_1007_r/processing.rtf @@ -0,0 +1 @@ +

    These data use the S-score algorithm of Miles and colleagues (PMIDs: 16574698, 16545131, 14597311, 11902839) to evaluate the magnitude of change between the control condition and the ethanol-treated animals.  Positive S-score values reflect increased expression with ethanol, negative S-scores reflect decreased expression after ethanol treatment.

    diff --git a/general/datasets/Vcusal_1007_r/summary.rtf b/general/datasets/Vcusal_1007_r/summary.rtf new file mode 100644 index 0000000..479039b --- /dev/null +++ b/general/datasets/Vcusal_1007_r/summary.rtf @@ -0,0 +1,3 @@ +

    Summary of DatasetId 44, Name: VCU BXD NA Et vs Sal M430 2.0 (Oct07).

    + +

    Data set generated by Dr. Michael Miles at Virginia Commonwealth University <mfmiles@vcu.edu>. 

    diff --git a/general/datasets/Vcusal_1206_r/acknowledgment.rtf b/general/datasets/Vcusal_1206_r/acknowledgment.rtf new file mode 100644 index 0000000..4463223 --- /dev/null +++ b/general/datasets/Vcusal_1206_r/acknowledgment.rtf @@ -0,0 +1 @@ +

    Data were generated with funds to Michael F Miles from the NIAAA.

    diff --git a/general/datasets/Vcusal_1206_r/cases.rtf b/general/datasets/Vcusal_1206_r/cases.rtf new file mode 100644 index 0000000..a9b6489 --- /dev/null +++ b/general/datasets/Vcusal_1206_r/cases.rtf @@ -0,0 +1 @@ +

    This BXD data set provides estimates of mRNA expression in the prefrontal cortex following ethanol treatment across 27 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 468 adult male animals obtained from Jackson Laboratory and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and treatment with 1.8g/kg ethanol in the light-dark transition model of anxiety. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the prefrontal cortex following ethanol treatment using the Robust Multichip Average (RMA) method.

    diff --git a/general/datasets/Vcusal_1206_r/contributors.rtf b/general/datasets/Vcusal_1206_r/contributors.rtf new file mode 100644 index 0000000..6bb60a8 --- /dev/null +++ b/general/datasets/Vcusal_1206_r/contributors.rtf @@ -0,0 +1 @@ +

    Miles MF, Putman AH, Vorster PJ, Wolen AR

    diff --git a/general/datasets/Vcusal_1206_r/experiment-design.rtf b/general/datasets/Vcusal_1206_r/experiment-design.rtf new file mode 100644 index 0000000..05c600b --- /dev/null +++ b/general/datasets/Vcusal_1206_r/experiment-design.rtf @@ -0,0 +1,5 @@ +

    This data set was generated concurrently with the VCU saline prefrontal cortex BXD RMA data and therefore consisted of 64 microarrays processed in 5 groups of 8 to 16 microarrays during the month of September 2006. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects.

    + +

    Many of the techniques used to generate this data set are described in a recent publication in the Journal of Neuroscience.

    + +

    Animals were injected intraperitoneally (IP) with saline or 1.8 g/kg of ethanol. As part of a parallel study of ethanol induced anxiolysis, all mice underwent behavioral testing that included 15 minutes of restraint in a 50 mL conical tube followed by 10 minutes in a light-dark chamber. Mice were killed by cervical dislocation four hours following IP injection. Immediately thereafter, brains were extracted and chilled for 1 minute in iced phosphate buffer before being microdissected into 8 constituent regions, including the medial prefrontal cortex. Samples were randomly assigned to batch groups prior to total RNA extraction, cRNA synthesis and hybridization. Each microarray represent a pooling of 4-5 animals.

    diff --git a/general/datasets/Vcusal_1206_r/experiment-type.rtf b/general/datasets/Vcusal_1206_r/experiment-type.rtf new file mode 100644 index 0000000..4af1832 --- /dev/null +++ b/general/datasets/Vcusal_1206_r/experiment-type.rtf @@ -0,0 +1 @@ +None \ No newline at end of file diff --git a/general/datasets/Vcusal_1206_r/platform.rtf b/general/datasets/Vcusal_1206_r/platform.rtf new file mode 100644 index 0000000..ec67993 --- /dev/null +++ b/general/datasets/Vcusal_1206_r/platform.rtf @@ -0,0 +1 @@ +

    [Mouse430_2] Affymetrix Mouse Genome 430 2.0 Array

    diff --git a/general/datasets/Vcusal_1206_r/summary.rtf b/general/datasets/Vcusal_1206_r/summary.rtf new file mode 100644 index 0000000..ff7c56f --- /dev/null +++ b/general/datasets/Vcusal_1206_r/summary.rtf @@ -0,0 +1 @@ +

    In order to elucidate the molecular mechanisms underlying individual variation in sensitivity to ethanol we profiled the prefrontal cortex transcriptomes of two inbred strains that exhibit divergent responses to acute ethanol, the C57BL6/J (B6) and DBA/2J (D2) strains, as well as 27 members of the BXD recombinant inbred panel, which was derived from a B6 x D2 cross. With this dataset we were able to identify several gene co-expression networks that were robustly altered by acute ethanol across the BXD panel. These ethanol-responsive gene-enriched networks were heavily populated by genes regulating synaptic transmission and neuroplasticity, and showed strong genetic linkage to discreet chromosomal loci. Network-based measurements of node importance identified several hub genes as established regulators of ethanol response phenotypes, while other hubs represent novel candidate modulators of ethanol responses.

    diff --git a/general/datasets/Vcusal_1206_r/tissue.rtf b/general/datasets/Vcusal_1206_r/tissue.rtf new file mode 100644 index 0000000..6473075 --- /dev/null +++ b/general/datasets/Vcusal_1206_r/tissue.rtf @@ -0,0 +1,3 @@ +

    All animals were obtained at 8-9 weeks of age from the Jackson Laboratory (Bar Harbor, ME) and were treated, behaviorally tested and brains dissected by Alex Putman and colleagues at VCU. Following an hour acclimation period to the behavioral room, animals were restrained for 15 minutes, immediately injected (I.P.) with either saline (0.9%) or 1.8g/kg ethanol, and 5 minutes later placed in the light-dark box for a 10-minute test session. All behavioral testing occurred between 10 AM and 1 PM during the light phase over a 12 month period beginning August 2005. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected. Prefrontal cortex tissue was isolated by microdissection using a wedge-shaped slice taken from a 4 mm thick brain slice extending rostrally from the optic chiasm. The wedge was centered on the inter-hemispheric fissure and extending 2 mm laterally on each side and ventrally to just above the corpus callosum. This tissue and all other brain regions were dissected in less than 5 minutes per mouse and were immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation. A pool of dissected tissue from 3 mice of the same strain was used to generate RNA samples. All RNA samples were extracted at VCU by Alex Putman during October 2006 and the order of RNA isolation was randomized across all strains and treatment groups (since saline treated animals were processed concurrently).

    + +

    GEO Accession: GSE28515

    diff --git a/general/datasets/Vcusalo_1007_r/experiment-design.rtf b/general/datasets/Vcusalo_1007_r/experiment-design.rtf new file mode 100644 index 0000000..9826853 --- /dev/null +++ b/general/datasets/Vcusalo_1007_r/experiment-design.rtf @@ -0,0 +1 @@ +

    Acute ethanol injection. Please ad dose, route, age, timing, etc. 

    diff --git a/general/datasets/Vcusalo_1007_r/processing.rtf b/general/datasets/Vcusalo_1007_r/processing.rtf new file mode 100644 index 0000000..692987b --- /dev/null +++ b/general/datasets/Vcusalo_1007_r/processing.rtf @@ -0,0 +1 @@ +

    These data use the S-score algorithm of Miles and colleagues (PMIDs: 16574698, 16545131, 14597311, 11902839) to evaluate the magnitude of change between the control condition and the ethanol-treated animals.  Positive S-score values reflect increased expression with ethanol, negative S-scores reflect decreased expression after ethanol treatment.

    diff --git a/general/datasets/Vcusalo_1007_r/summary.rtf b/general/datasets/Vcusalo_1007_r/summary.rtf new file mode 100644 index 0000000..479039b --- /dev/null +++ b/general/datasets/Vcusalo_1007_r/summary.rtf @@ -0,0 +1,3 @@ +

    Summary of DatasetId 44, Name: VCU BXD NA Et vs Sal M430 2.0 (Oct07).

    + +

    Data set generated by Dr. Michael Miles at Virginia Commonwealth University <mfmiles@vcu.edu>. 

    diff --git a/general/datasets/Vubxdmousemidbrainq0512/cases.rtf b/general/datasets/Vubxdmousemidbrainq0512/cases.rtf new file mode 100644 index 0000000..4a8704a --- /dev/null +++ b/general/datasets/Vubxdmousemidbrainq0512/cases.rtf @@ -0,0 +1,795 @@ + +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Index Sample ID Sex Strain Assignment L14
    1916-DCA-68MBXD1
    2916-DCA-165MBXD1
    3916-DCA-147MBXD1
    4916-DCA-114MBXD1
    5916-DCA-107MBXD11
    6916-DCA-187MBXD11
    7916-DCA-67MBXD11
    8916-DCA-158MBXD12
    9916-DCA-35MBXD12
    10916-DCA-36MBXD12
    11916-DCA-140MBXD14
    12916-DCA-45MBXD14
    13916-DCA-99MBXD14
    14916-DCA-191MBXD14
    15916-DCA-79MBXD15
    16916-DCA-38MBXD15
    17916-DCA-41MBXD15
    18916-DCA-88MBXD15
    19916-DCA-141MBXD16
    20916-DCA-97MBXD16
    21916-DCA-18MBXD16
    22916-DCA-179MBXD16
    23916-DCA-16MBXD18
    24916-DCA-23MBXD18
    25916-DCA-12MBXD18
    26916-DCA-175MBXD18
    27916-DCA-8MBXD19
    28916-DCA-174MBXD19
    29916-DCA-78MBXD19
    30916-DCA-24MBXD19
    31916-DCA-105MBXD2
    32916-DCA-57MBXD2
    33916-DCA-166MBXD2
    34916-DCA-181MBXD2
    35916-DCA-100MBXD20
    36916-DCA-82MBXD20
    37916-DCA-72MBXD20
    38916-DCA-131MBXD20
    39916-DCA-63MBXD21
    40916-DCA-13MBXD21
    41916-DCA-15MBXD21
    42916-DCA-109MBXD22
    43916-DCA-101MBXD22
    44916-DCA-69MBXD22
    45916-DCA-104MBXD22
    46916-DCA-125MBXD24
    47916-DCA-33MBXD24
    48916-DCA-108MBXD24
    49916-DCA-44MBXD24
    50916-DCA-80MBXD27
    51916-DCA-151MBXD28
    52916-DCA-47MBXD28
    53916-DCA-27MBXD28
    54916-DCA-154MBXD28
    55916-DCA-71MBXD29
    56916-DCA-54MBXD29
    57916-DCA-122MBXD29
    58916-DCA-51.1MBXD29
    59916-DCA-144MBXD31
    60916-DCA-76MBXD31
    61916-DCA-164MBXD31
    62916-DCA-37MBXD32
    63916-DCA-89MBXD32
    64916-DCA-25MBXD32
    65916-DCA-160MBXD33
    66916-DCA-65MBXD33
    67916-DCA-128MBXD33
    68916-DCA-73MBXD34
    69916-DCA-103MBXD34
    70916-DCA-137MBXD34
    71916-DCA-29MBXD38
    72916-DCA-112MBXD38
    73916-DCA-84MBXD38
    74916-DCA-132MBXD38
    75916-DCA-156MBXD38
    76916-DCA-130MBXD39
    77916-DCA-117MBXD39
    78916-DCA-111MBXD39
    79916-DCA-14MBXD40
    80916-DCA-188MBXD40
    81916-DCA-192MBXD40
    82916-DCA-90MBXD40
    83916-DCA-52MBXD42
    84916-DCA-2MBXD42
    85916-DCA-126MBXD42
    86916-DCA-81MBXD42
    87916-DCA-118MBXD44
    88916-DCA-42MBXD44
    89916-DCA-92MBXD44
    90916-DCA-39MBXD49
    91916-DCA-98MBXD49
    92916-DCA-83MBXD49
    93916-DCA-85MBXD5
    94916-DCA-6MBXD5
    95916-DCA-142MBXD5
    96916-DCA-11MBXD55
    97916-DCA-121MBXD55
    98916-DCA-77MBXD55
    99916-DCA-123MBXD6
    100916-DCA-28MBXD6
    101916-DCA-161MBXD6
    102916-DCA-124MBXD6
    103916-DCA-189MBXD62
    104916-DCA-143MBXD62
    105916-DCA-116MBXD62
    106916-DCA-159MBXD73
    107916-DCA-40MBXD73
    108916-DCA-169MBXD73
    109916-DCA-120MBXD8
    110916-DCA-64MBXD8
    111916-DCA-93MBXD8
    112916-DCA-148MBXD86
    113916-DCA-55MBXD86
    114916-DCA-170MBXD86
    115916-DCA-50MBXD89
    116916-DCA-127MBXD89
    117916-DCA-32MBXD89
    118916-DCA-62MBXD89
    119916-DCA-53MBXD9
    120916-DCA-138MBXD9
    121916-DCA-180MBXD9
    122916-DCA-46MBXD9
    123916-DCA-74MBXD96
    124916-DCA-110MBXD96
    125916-DCA-94MBXD96
    126916-DCA-49MBXD96
    127916-DCA-119MBXD98
    128916-DCA-135MBXD98
    129916-DCA-58MBXD98
    +
    +
    diff --git a/general/datasets/Vubxdmousemidbrainq0512/experiment-type.rtf b/general/datasets/Vubxdmousemidbrainq0512/experiment-type.rtf new file mode 100644 index 0000000..5e8a770 --- /dev/null +++ b/general/datasets/Vubxdmousemidbrainq0512/experiment-type.rtf @@ -0,0 +1 @@ +Baseline/control/normative gene expression in the murine midbrain under standard vivarium conditions. \ No newline at end of file diff --git a/general/datasets/Vubxdmousemidbrainq0512/summary.rtf b/general/datasets/Vubxdmousemidbrainq0512/summary.rtf new file mode 100644 index 0000000..7ed558d --- /dev/null +++ b/general/datasets/Vubxdmousemidbrainq0512/summary.rtf @@ -0,0 +1 @@ +

    Summary of DatasetId 141, Name: VU BXD Midbrain Agilent SurePrint G3 Mouse GE (May12)

    diff --git a/general/datasets/gn10/acknowledgment.rtf b/general/datasets/gn10/acknowledgment.rtf deleted file mode 100644 index 5098d32..0000000 --- a/general/datasets/gn10/acknowledgment.rtf +++ /dev/null @@ -1,3 +0,0 @@ -

    Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant and from funds from NEI grant to Dr. Eldon Geisert (R01EY017841), an NEI Vision Core grant (EY14080) and an Unrestricted Grant from Research To Prevent Blindness.

    - -

    We thank Dr. Ted Choi, Chief Scientific Director of Predictive Biology, Inc. (past director of molecular genetics at Deltagen Inc.) for providing us with eye samples from several interesting DeltaGen knockouts.

    diff --git a/general/datasets/gn10/cases.rtf b/general/datasets/gn10/cases.rtf deleted file mode 100644 index 552d4a5..0000000 --- a/general/datasets/gn10/cases.rtf +++ /dev/null @@ -1,57 +0,0 @@ -

    This is the complete and final HEIMED data set. HEIMED consists of expression data for 103 genetically defined lines of mice with standard errors of the mean. Almost all animals are young adults between 50 and 80 days of age (Table 1, maximum age is 123 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, reciprocal F1s between C57BL/6J and DBA/2J, and several mutant and knockout lines. We have combined all common strains, F1 hybrids, and mutants into a group called the Mouse Diversity Panel (MDP). Four lines, namely, C57BL/6J (B6), DBA/2J (D2), and the pair of B6D2F1 and D2B6F1 hybrids are common to both the MDP and the BXD set. This is a breakdown of cases that are part of HEIMED:

    - -
      -
    1. 68 BXD strains. The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. Only one of these strains, BXD24 (know also known as BXD24b), has retinal degeneration (a spontaneous mutation). The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA.
    2. -
    3. 35 MDP lines, including 26 inbred strains representing closely related substrains (e.g, BALB/cJ and BALB/cByJ), many of the most widely used common Mus musculus domesticus inbred strains (e.g., C57BL/6J and 129S1/SvImJ), inbred but wild-derived representatives of common subspecies (Mus musculus domesticus, e.g, WSB/EiJ; M. musculus musculus, e.g., CZECHII/EiJ; M. musculus molossinus, e.g., MOLF/EiJ; M. musculus castaneus, e.g., CAST/EiJ); and even one different species of mouse (Mus spicilegus, PANCEVO/EiJ). The MDP also includes the reciprocal F1 hybrids (B6D2F1 and D2B6F1) and the following 6 KO lines and the Nyx-nob mutant:
    4. -
    5. 6 knockouts (KO), including a KO of Rpe65, and 5 DeltaGen Inc. knockout lines provided by Dr. Ted Choi. These KO lines have had a bacterial lacZ construct inserted into the gene. The endogenous promoter drives expression of beta-galactosidase. RT-PCR analysis detects a gene transcript in most tissues. The following KOs from DeltaGen were studied: Gabra1, Gabbr1, Gnb1, Gpr19, and Clcn3. We also included one spontaneous mutant of the nyctalopin (Nyx no b wave "nob") gene (Pardue et al., 1998) that is on a BALB/cByJ background.
    6. -
    - -

    Rod photoreceptor degeneration in inbred mice: Six strains of mice included in HEIMED suffer from severe loss of photoreceptors (mainly rods) and have the equivalent of night blindness in human patients. The death of photoreceptors in these strains occurs by one to two months of age and is often caused by the retinal degeneration 1 (rd1) mutant allele in the rod cyclic-GMP phosphodiesterase 6 beta subunit gene (Pde6b). The following strains are known to have photoreceptor degeneration: C3H/HeJ, FVB/NJ, MOLF/EiJ, SJL/J and BXD24/TyJ. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEIMED data set.

    - -

    As expected (Dickerson LW et al., 2002) and as judged from the absence of rhodopsin expression, one of the DeltaGen KO lines (chloride ion channel 3, Clcn3) also has retinal degeneration: B6129P2F2N1-Clcn3. Degeneration in this strain is likely to include all rods and all cones. The cone defect is obvious from the decrease in expression of Gnat2, a gene associated with cones and achromatopsia in mice and humans.

    - -

    Lines of mice were selected using the following criteria:

    - - - -

    We have included all eight parents of the Collaborative Cross (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/LtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ) in the MDP. Fourteen MDP strains have been partially sequenced by Perlegen for the NIEHS, including including 129S1/SvImJ, A/J, AKR/J, BALB/cByJ, C3H/HeJ, CAST/EiJ, DBA/2J, FVB/NJ, KK/HlJ, MOLF/EiJ, NOD/LtJ, NZW/LacJ, PWD/PhJ, and WSB/EiJ (see the GeneNetwork SNP Browser for data, details, and see Perlegen's excellent data resources and browser).

    - -
      -
    1. 129S1/SvImJ : Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene. It is also a cone photoreceptor function loss 3 mutant (Cpfl3 allele) of the Gnat2 gene that is a model for achromatopsia (JAX Stock Number: 002448)
    2. -
    3. A/J: Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase (Tyr c allele) albino mutant. This strain is particularly sensitive to light-induced photoreceptor loss (Danciger et al., 2007). (JAX Stock Number: 000646)
    4. -
    5. BALB/cByJ: Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project old group A list. A tyrosinase (Tyr c allele) albino mutant and also a tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. Small brain, not aggressive (JAX Stock Number: 001026)
    6. -
    7. BALB/cJ: Phenome Project A list. A tyrosinase (Tyr c allele) albino mutant and also a tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. Large brain and aggressive (JAX Stock Number: 000651)
    8. -
    9. BXSB/MpJ: A white-bellied agouti strains with interesting autoimmune disease restricted to males that is associated with a mutation in the Yaa gene that causes glomerulonephritis, a dramatic increase in number of peripheral monocytes, and pre-B-cell deficiency (JAX Stock Number: 000740)
    10. -
    11. C3H/HeJ: The Heston (He) substrain with a wildtype agouti (A allele) coat color. Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project old group A list. Important to note for this eye expression dataset, C3H/HeJ is a Pdeb6 rd1 mutant with near total photoreceptor loss at as early as postnatal day 30. Also a Tlr4 mutant that is endotoxin resistant. (JAX Stock Number: 000659)
    12. -
    13. C57BL/6J: Sequenced by NIH/NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list. Single most widely used inbred strain of mouse. (JAX Stock Number: 000664)
    14. -
    15. C57BLKS/J: Black Kaliss strain (non-agouti a allele) derived from C57BL/6J, but genetically contaminated at some point mainly with DBA/2J and then reinbred. Now at the Jackson Laboratory. (JAX Stock Number: 000662)
    16. -
    17. CAST/EiJ: A wild-derived inbred Mus musculus castaneus strain. Samples of this subspecies were captured in Southeast Asia. One of three wild-derived strains in the Collaborative Cross sequenced by NIEHS; Phenome Project A list. CAST/Ei and CAST/EiJ are the same strain. The addition of the "J" is trivial and was added when stock were transferred from Dr. Eicher's lab to the Jackson Laboratory production facility in about 2004. (JAX Stock Number: 000928)
    18. -
    19. CBA/CaJ: Agouti strain from the Jackson Laboratory. Wildtype pigment genes. (JAX Stock Number: 000654)
    20. -
    21. CZECHII/EiJ: Czech 2 is a wild-derived inbred strain M. musculus musculus strain. Samples of this subspecies were caught in the Czech Republic and inbred at the Jackson Laboratory by Eva Eicher. White-bellied agouti. (JAX Stock Number: 001144).
    22. -
    23. DBA/2J: The dilute, brown, agouti (dba) strain is the oldest inbred strain of mouse. Inbreeding was started in 1909 by Little. A tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. A myosin 5a (Myo5a d) dilute allele mutant. Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project old A group list. (JAX Stock Number: 000671)
    24. -
    25. FVB/NJ: Friend's leukemia virus B (FVB) strain. Sequenced by Perlegen/NIEHS and Celera. Tyr c locus albino and a Pdeb6 rd1 mutant derived from Swiss mice at NIH. This has been the most common strain used to make transgenic mice due to large and easily injected oocytes; Phenome Project A list (JAX Stock Number: 001800).
    26. -
    27. KK/HlJ: K Kondo's (KK) Kasukabe strain is a homozygous age-related hearing loss (ahl) allele mutant of the Cdh23 gene. A Tyr c locus albino strain. Males have a form of type 2 diabetes. Sequenced by Perlegen/NIEHS. (JAX Stock Number: 002106)
    28. -
    29. LG/J: Large (LG) strain. Paternal parent of the Large-by-Small set of RI strains made by James Cheverud and colleagues (the LGXSM panel, not to be confused with the LongXShort or LXS panel). A Tyr c locus albino strain. (JAX Stock Number: 000675)
    30. -
    31. LP/J: White-bellied agouit strain with a piebald mutation in the endothelin receptor type B Ednrb gene from at the Jackson Laboratory. Some reduction in melanocytes in choroid of eye due to neural creast migration abnormalities. (JAX Stock Number: 000676)
    32. -
    33. MOLF/EiJ: A wild-derived inbred strain derived from M. musculus molossinus samples camputered in Fukuoka, Japan. This strain has the retinal degeneration rd1 allele in Pde6b. There appears to have been some genetic contamination of this strain with conventional inbred strains in the past several decades (F. Pardo, personal communication to RWW, August 2006). However, the strain is currently fully inbred. (JAX Stock Number: 000550)
    34. -
    35. NOD/LtJ: Non-obese diabetic strain, originally from M. Hattori in Kyoto, Japan. This is the Edward Leiter (Lt) substrain from the Jackson Laboratory. Collaborative Cross strain sequenced by NIEHS; Phenome Project B list. Homozygous age-related hearing loss (ahl) allele mutant of the Cdh23 gene. A Tyr c locus albino strain. (JAX Stock Number: 001976)
    36. -
    37. NZO/HlLtJ: New Zealand Obese strain. This is a severely obese and hypertensive strain. Males often develop a type 2 diabetes. Collaborative Cross strain. Agouti coat color. (JAX Stock Number: 002105)
    38. -
    39. NZB/BlNJ: New Zealand Black inbred strain from Bielschowsky (BL, substrain is "B lowercase L N", not "BiN") now maintained at the Jackson Laboratory. (JAX Stock Number: 000648)
    40. -
    41. NZW/LacJ: New Zealand White strain from the Laboratory Animal Center (Carshalton, UK), now maintained at the Jackson Laboratory. Carries the Tyr c locus albino mutation, the pink-eye dilution mutation in the Oca2 or p locus, and the brown allele at Tyrp1. (JAX Stock Number: 001058)
    42. -
    43. PANCEVO/EiJ: PANCEVO/EiJ is a wild-derived inbred strain from the Mus spicilegus samples caught in the Pancevo, Serbia. This species of mouse is also known as the Steppe mouse (taxon identifier 10103). M. spicilegus is a colonial mound-building species. No known ocular or retina mutations, but the expression level of Gnat2 is low in this strain, either due to a 3' UTR length variant or possible achromatosia (cone degeneration) (JAX Stock Number: 001384)
    44. -
    45. PWD/PhJ: A wild-derived Mus musculus musculus agouti strain inbred from samples caught near Prague, Czech Republic. Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues. (JAX Stock Number: 004660)
    46. -
    47. PWK/PhJ: A wild-derived Mus musculus musculus inbred strain from samples caught near Lhotka, Czech Republic. Collaborative Cross strain; Phenome Project D list. (JAX Stock Number: 003715)
    48. -
    49. SJL/J: Swiss Webster inbred strain from Jim Lambert's lab at the Jackson Laboratory. This strain has the retinal degeneration rd1 allele in Pde6b. It also carries both the Tyr c albino mutation and the pink-eye dilution mutation in the Oca2 or p locus. Highly aggressive males. (JAX Stock Number: 000686)
    50. -
    51. WSB/EiJ: Watkin Star line B (or "wild son-of-a-bitch") is a wild-derived Mus musculus domesticus inbred strain from samples caught in Maryland, USA. A Collaborative Cross strain sequenced by NIEHS; Phenome Project C list (JAX Stock Number: 001145)
    52. -
    53. B6D2F1 and D2B6F1 (also listed as BDF1 and DBF1 in some graphs and tables): F1 hybrids generated by crossing C57BL/6J with DBA/2J. These black reciprocal F1 can be used to detect dominance effects. Comparison of the two reciprocal F1s can be used to detect parental origin (imprinting) effects. The D2B6F1 animals are currently available from the Jackson Laboratory as a special order.) (JAX Stock Number for B6D2F1 hybrids obtained from the Jackson Laboratory, aka B6D2F1/J 100006)
    54. -
    - -

    Most of the common inbred strains harbor mutations in genes the control pigmentation (Silvers, 2008 and material above in this INFO file). These gene include the albino and chinchilla alleles of the tyrosinase gene (Tyr, or human OCA1), the brown allele of the tyrosinase related protein 1 (Tyrp1), the pink-eye dilution allele of Oca2 (probe set 1418211), the non-agouti (black) and white-bellied alleles of the agouti signaling protein Asip, the steel allele of Kitlg, the dilute allele of Myo5a (probe set 1419754), and the piebald allele of Ednrb. In some of these cases, effects of the mutation are easily detected at the transcript level (Tyrp1, Oca2, and Myo5a), but in the other cases (Tyr, Asip, Ednrb, and Kitlg), mutations do not leave a strong imprint on expression.

    diff --git a/general/datasets/gn10/experiment-design.rtf b/general/datasets/gn10/experiment-design.rtf deleted file mode 100644 index 1ebe0ad..0000000 --- a/general/datasets/gn10/experiment-design.rtf +++ /dev/null @@ -1 +0,0 @@ -

    Expression profiling by array

    diff --git a/general/datasets/gn10/notes.rtf b/general/datasets/gn10/notes.rtf deleted file mode 100644 index 7a26eb5..0000000 --- a/general/datasets/gn10/notes.rtf +++ /dev/null @@ -1 +0,0 @@ -

    This data set is available as a bulk download in several formats. The data are available as either strain means or the individual arrays. Due to the involved normalization procedures required to correct for batch effects we strongly recommend not using the raw CEL files without special statistical procedures.

    diff --git a/general/datasets/gn10/platform.rtf b/general/datasets/gn10/platform.rtf deleted file mode 100644 index 9024a99..0000000 --- a/general/datasets/gn10/platform.rtf +++ /dev/null @@ -1,11 +0,0 @@ -

    Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many probes overlap and target the same transcript). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequences as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

    - -

    As part of the development of HEIMED, we have manually annotated individual probe sets by sequence alignment to the mouse genome and transcriptome. Approximately 13,000 probe sets that have comparatively high expression in eye and CNS were curated by one of the authors (RWW) and now have specific information on the part of the transcript targeted by each probe set. The other 33,000 transcripts have corresponding data that was generated by Xusheng Wang using computational methods (BLAT analysis combined with annotated genome sequence).

    - -

    One example may help explain how to exploit this annotation. The four probe sets for rhodopsin include information on the target location. Only the first probe set targets the last two coding exons. The other three probe sets target different parts of the 3’ UTR (mid, distal, and far distal regions). The probe sets can be reordered by from high to low expression using the Sort By function in Search Results pages. In the case of rhodopsin, the probe set that targets that last two coding exons and proximal parts of the 3’ UTR also has the highest expression . Finally, the HEIMED gene descriptions have been customized to help vision researchers. In the case of rhodopsin, the description appended after the gene name reads “rod photoreceptor pigment, retinitis pigmentosa-associated”. For less well known genes this kind of annotation can be extremely useful. For example, the more verbose annotation for Cerkl reads “neuronal survival and apoptosis-related, retinal ganglion cell expressed, retinitis pigmentosa 26); alternative 3' UTR of short form message, intron 2”.

    - -

     

    - -

    - -

    Legend: Distribution of expression values for all probe sets in HEIMED.

    diff --git a/general/datasets/gn10/processing.rtf b/general/datasets/gn10/processing.rtf deleted file mode 100644 index 4349e60..0000000 --- a/general/datasets/gn10/processing.rtf +++ /dev/null @@ -1,3381 +0,0 @@ -

    Range of Gene Expression in the Eye. Expression of transcripts in the HEIMED and most other GN data sets is measured on a log2 scale. Each unit corresponding approximately to a 2-fold difference in hybridization signal intensity. To simplify comparisons among different data sets and cases, log2 RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units (variance stabilized). Values of all 45,101 probe sets in this data set range from a low of 4.8 (Tcf15, probe set 1420281_at) to a high of 15.5 (crystallin gamma C, Crygc, probe set 1422674_s_at). This corresponds to 10.7 units or a 1 to 1700 dynamic range of expression (2^10.73).

    - -

    We used pooled RNA samples of whole eyes, usually two independent pools--one male, one female pool--for most lines of mice. This data set was processed using the RMA protocol. A total of 2223 probes sets are associated with LRS values greater than 46 (LOD >10).

    - -

    We calibrated this log intensity scale using Affymetrix spike-in control probe sets. These 18 control probe sets target exogenous bacterial mRNAs that are added to each sample (a graded dose spike cocktail) during preparation at concentrations of 1.5, 5, 25, and 100 pM. (To find these probe sets, search GN’s ALL search field using the string “AFFX pM”.) A value of 6 or less is equivalent to an mRNA concentration of under 0.4 pM, a value of 8 is equivalent to ~1.5 pM, 9.5 is equivalent to ~5 pM, 11.5 is equivalent to ~25 pM, 13.5 is equivalent to ~100 pM, and a value of 15.5 is equivalent to an mRNA concentration of 400 pM or greater.

    - -

    This range can be converted to the mRNA molecules per cell in the eye assuming that a value of 8 is equivalent to about 1 mRNA copy per cell (Kanno et al. 2006, see http://www.biomedcentral.com/1471-2164/7/64). Since the expression of rhodopsin mRNA is normally 15 units, we predict that there are 27 or ~128 Rho mRNAs per cell in the whole eye and ~256 in rods themselves (assuming that rods make up about half of all cells in the eye). For this purpose it may be useful to know that a normal mouse eye contains between 6 and 8 million rod photoreceptors (Guo, Lu, and Williams; GN BXD Phenotype ID 11024).

    - -

    Note that some probe sets with very low expression still provide reliable data. For example, probe set 1440397_at (Cacna2d1) has expression of only 5.5 units (a value that would be declared as "absent" using conventional Affymetrix procedures), but the values for this calcium channel transcript are associated with a very strong cis QTL with an LRS of 79 (LOD = 17). This strong linkage is definitely not due to chance since the probability of the expression data mapping precisely to the location of the parent gene itself is about 10e-16. This indicates a high signal to noise ratio and the detection of significant strain variation of the correct transcript.

    - -

    The standard error of the mean for the HEIMED data set is computed for 2 to 6 biological replicates. The standard error of such small samples tends to systematically underestimate the population standard error. With n = 2 the underestimate is about 25%, whereas for n = 6 the underestimate is 5%. Gurland and Tripathi (1971) provide a correction and equation for this effect (see Sokal and Rohlf, Biometry, 2nd ed., 1981, p 53 for an equation of the correction factor for small samples of n < 20.) Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. The CEL files were processed using the RMA protocol. We processed the first three batches together. The last batch was processed separately and merged as described below.

    - - - -

    After RMA processing using Biobase affy10 build running under R version 2.7.1, all array data sets were rank-order normalized. This second round of quantile normalization removes much residual non-linearity across arrays and forces every array to have the same distribution of values as the mean of all arrays. Comparative array data quality was then evaluated in DataDesk. Outlier arrays were flagged by visual inspection in DataDesk, usually by means of an analysis of scatter plots and more quantitatively by generating a correlation matrix of all arrays. Those arrays with mean correlation <0.96 versus all other arrays indicates trouble or a biological outlier). In some cases, outliers were expected, such as samples from strains with retinal degeneration (FVB/NJ, NOD/LtJ, MOLF/EiJ, C3H/HeJ and BXD24), samples from wild subspecies such as WSB/EiJ, CAST/EiJ, PWD/PhJ, and PWK/PhJ, and knockouts. However, when arrays were anomolous both within strain and across strains, they were often simply discarded. The assumption is that anomolous data are much more likely due to experimental and technical errors than to informative biological variation. Approximately 10% of arrays were discarded.

    - -

    After this process, the acceptable set of arrays was renormalized using all step as above, starting with the original RMA procedure, etc.

    - -

    We reviewed the data set using a new method developed by RW Williams, Jeremy Peirce, and Hongqiang Li. For the full set of arrays that passed standard QC protocols described above, we computed the strain means for the BXD strains, B6, D2, and F1s. Using this set of strain means we then computed LRS scores for all 45101 probe sets and counted the number of transcripts that generated QTLs with LRS values greater than 50. This value (e.g., 1800) represented the QTL harvest for the full data set. We then dropped a single array from the data set, recomputed strain means, and recomputed the number of transcripts with LRS scores great than 50. This value is expected to typically reduce the number of QTLs that reach the criterion level (e.g., 1750 QTLs > 50). This process was repeated for every array to obtain an array-specific difference value--the effect of removing that array on the total QTL count. For example, the loss of a single array might cause a decrease in 50 QTLs. Values ranged from approximately -90 (good arrays) to +40 (bad arrays). This procedure is similar in some ways to a jackknife protocol, although we are not using this procedure to esimate an error term, but rather as a method to polish a data set.

    - -

    During this process we discovered that nearly 20 arrays in the batch 2 had been mislabeled at some point in processing. We computed the correct strain membership of each array using a large number of Mendelian probe sets (more than 50) and comparing their match to standard SNP and microsatellite markers and the original array data set of November 2005. This allowed us to rescue a large number of arrays that were of high quality.

    - -

    A third batch of approximately 40 arrays were processed by Yan Jiao and Weikuan Gu in August 2006. These complete data set assembled by Hongqiang Li. This process again included a correction for a batch effect.

    - -

    For the June 2006 data set Hongqiang Li used a new batch correction method that stabilizes the range of expression in each batch. For each of the three large batches, we extracted the minumum and maximum raw probe expression (CEL file level) value. We then adjusted raw probe values in each batch to have the same range as the first and largest batch (batch 1) using a simple linear interpolation. These procedures generated new correct CEL files which were then used with RMA to generate final probe set estimates.

    - -

    For the final fourth batch of arrays (Sept 2008) Arthur Centeno and Rob Williams corrected for a systematic difference in probe set expression values between original arrays run in 2005 and 2006 and the new arrays added in 2008 (n = 45 acceptable arrays). This difference is due to unknown technical batch effects that are probably associated with labeling, hybridization, and scanning. We performed a simple correction to normalize values of the new set of arrays to those of the old set (batches 1 through 3). No changes were made to any values of the previous three batches. We corrected only the probe set level (RMA) values and not the CEL files. For this final batch, we corrected for the difference (offset) in probe set expression between the first three batches arrays run in 2005 and 2006 (a total of 174 acceptable arrays) and the new batch (n = 47 acceptable arrays). This difference is due to unknown technical effects that are probably related to various steps in labeling, hybridization, and scanning. The correction was applied as follows: (1) RWW selected 51 high quality arrays with similar expression characteristics (r = 0.97 or better between pairs of arrays) in the old data set (from batches 1, 2, and 3) and 34 high quality arrays in the final batch. RWW used scatterplots of full RMA transcriptome data sets to review many pairs of arrays within these new and old array batches. Strains with retinal degeneration or unusual eye gene expression characteristics were excluded from these selected subsets. The average expression values for each probe set were then computed for both the old and new array subsets. The offset value (old minus new) was added to each probe set across all 47 new arrays. This processes forces the average probe set in the new arrays to be very close to that of the previous arrays.

    - -

    Table 2: Sample tube ID, strain, original CEL filename, and Affymetrix quality control values. Columns labeled Scale factor, Background Average, Present, Absent, Marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files.

    - -

     

    - - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    2R2533E.1129S1/SvImJR2533E.1.CEL2.119457.90%40.50%1.60%1.370.781Y
    3R0754E.1A/JR0754E.1.CEL2.728659.80%38.70%1.50%1.360.761Y
    4R4521EB6129P2F2N1-Clcn3R4521E.CEL4.8338.763.30%35.30%1.40%1.250.774 
    5R4522EB6129P2F2N1-Clcn3R4522E.CEL5.7637.3662.90%35.70%1.40%1.370.834 
    6R4523EB6129P2F2N1-Clcn3R4523E.CEL4.8840.4263.90%34.70%1.40%1.270.774 
    7R4526EB6129P2F2N1-Gabbr1R4526E.CEL3.8444.1865.00%33.70%1.30%1.340.784Y
    8R4509EB6129P2F2N1-Gabbr1R4509E.CEL7.4534.7658.90%39.70%1.40%1.450.834 
    9R4510EB6129P2F2N1-Gabbr1R4510E.CEL8.4437.4457.40%41.10%1.50%1.350.834 
    10R4511EB6129P2F2N1-Gabbr1R4511E.CEL5.9142.0261.40%37.20%1.40%1.410.834 
    11R4524EB6129P2F2N1-Gabbr1R4524E.CEL5.4942.3462.40%36.20%1.40%1.290.784Y
    12R4525EB6129P2F2N1-Gabbr1R4525E.CEL4.6941.363.10%35.50%1.40%1.270.84Y
    13R4515EB6129P2F2N1-Gabra1R4515E.CEL5.7541.7662.80%35.80%1.40%1.410.814Y
    14R4516EB6129P2F2N1-Gabra1R4516E.CEL7.0740.7360.20%38.40%1.40%1.320.874Y
    15R4517EB6129P2F2N1-Gabra1R4517E.CEL5.4538.0962.70%35.80%1.40%1.340.824Y
    16R4512EB6129P2F2N1-Gnb5R4512E.CEL6.5638.0259.90%38.70%1.50%1.330.834 
    17R4513EB6129P2F2N1-Gnb5R4513E.CEL4.1541.663.40%35.10%1.50%1.340.824 
    18R4514EB6129P2F2N1-Gnb5R4514E.CEL5.8639.261.20%37.30%1.50%1.340.814 
    19R4518EB6129P2F2N1-Gpr19R4518E.CEL5.5838.962.60%36.00%1.30%1.390.794Y
    20R4519EB6129P2F2N1-Gpr19R4519E.CEL5.9541.9161.30%37.30%1.40%1.350.844Y
    21R2601E.1B6D2F1R2601E.1.CEL2.559258.90%39.60%1.50%1.440.781Y
    22R2602E.1B6D2F1R2602E.1.CEL2.68459.70%38.80%1.50%1.370.781Y
    23R1676E.1BALB/cByJR1676E.1.CEL2.699858.90%39.60%1.50%1.460.741 
    24R1672E.1BALB/cByJR1672E.1.CEL2.2211159.90%38.60%1.50%1.260.81Y
    25R4530EBALB/cJR4530E.CEL6.3737.5360.80%37.80%1.40%1.30.844Y
    26R4529EBALB/cJR4529E.CEL5.7141.3360.50%38.00%1.50%1.480.84Y
    27R2704E.2BXD1R2704E.2.CEL2.066139.6156.60%41.90%1.50%1.310.812 
    28R2707E.3BXD1R2707E.3.CEL18056.40%42.10%1.50%1.430.793 
    29R1231E.2BXD2R1231E.2.CEL2.197138.7357.30%41.30%1.40%1.410.772 
    30R2598E.1BXD2R2598E.1.CEL1.9910660.90%37.60%1.50%1.270.781Y
    31R2591E.1BXD5R2591E.1.CEL1.713658.50%40.00%1.50%1.330.781Y
    32R2714E.2BXD5R2714E.2.CEL1.404144.3560.60%37.90%1.50%1.430.792 
    33R2570E.1BXD6R2570E.1.CEL1.998758.50%40.00%1.50%1.460.761Y
    34R2694E.2BXD6R2694E.2.CEL1.98397.2361.60%37.10%1.30%1.390.822 
    35R2538E.1BXD8R2538E.1.CEL1.9110261.20%37.30%1.50%1.520.791Y
    36R2709E.2BXD8R2709E.2.CEL1.9999.7960.90%37.60%1.50%1.420.762 
    37R2708E.2BXD9R2708E.2.CEL1.966126.4657.70%40.70%1.50%1.40.842 
    38R2569E.1BXD9R2569E.1.CEL1.758755.10%43.40%1.50%2.823.141 
    39R2581E.1BXD11R2581E.1.CEL1.948962.10%36.40%1.60%1.550.811Y
    40R2612E.2BXD11R2612E.2.CEL1.83142.0358.20%40.50%1.40%1.780.812 
    41R2742E.2BXD12R2742E.2.CEL2.127134.1457.00%41.60%1.40%1.640.782 
    42R2543E.1BXD12R2543E.1.CEL1.6111858.60%39.90%1.60%1.430.771Y
    43R2586E.1BXD13R2586E.1.CEL2.017456.40%42.00%1.60%2.853.811 
    44R877E.2BXD13R877E.2.CEL1.558125.6361.20%37.50%1.20%1.420.812 
    45R2557E.1BXD14R2557E.1.CEL1.839962.50%36.10%1.40%1.310.781Y
    46R1128E.2BXD14R1128E.2.CEL1.9111559.90%38.80%1.40%1.20.821Y
    47R2701E.3BXD15R2701E.3.CEL18860.60%37.90%1.40%1.50.773 
    48R2716E.2BXD15R2716E.2.CEL2.015150.8356.40%42.10%1.60%1.420.812 
    49R2711E.2BXD16R2711E.2.CEL1.953118.5359.00%39.60%1.50%1.450.82 
    50R2567E.1BXD16R2567E.1.CEL2.248256.70%41.60%1.70%1.370.751 
    51R2720E.2BXD18R2720E.2.CEL2.3299.9359.50%39.00%1.50%1.330.772 
    52R2559E.1BXD18R2559E.1.CEL1.6510460.80%37.70%1.50%1.270.781Y
    53R2560E.1BXD19R2560E.1.CEL1.799860.90%37.50%1.60%1.350.81Y
    54R2713E.2BXD19R2713E.2.CEL1.67120.8260.20%38.30%1.50%1.450.82 
    55R2584E.1BXD20R2584E.1.CEL2.078459.30%39.10%1.60%1.40.761Y
    56R2731E.2BXD20R2731E.2.CEL1.82514759.00%39.50%1.50%1.40.82 
    57R2702E.2BXD21R2702E.2.CEL1.811128.6559.40%39.10%1.40%1.260.82 
    58R2541E2.1BXD21R2541E2.1.CEL2.6312556.00%42.40%1.50%1.290.781 
    59R2553E.1BXD22R2553E.1.CEL1.9511159.90%38.50%1.50%1.280.761Y
    60R2700E.2BXD22R2700E.2.CEL1.858102.9661.50%37.10%1.30%1.480.792 
    61R2558E-2.1BXD23R2558E-2.1.CEL2.233125.0558.60%39.90%1.50%1.430.772 
    62R1086E.2BXD23R1086E.2.CEL2.233125.0558.60%39.90%1.50%1.430.772 
    63R2719E.2BXD24R2719E.2.CEL1.47140.3861.50%37.20%1.30%1.380.792 
    64R2589E2.1BXD24R2589E2.1.CEL2.6111257.50%40.90%1.60%1.240.81 
    65R2573E-2.1BXD25R2573E-2.1.CEL3.157257.90%40.70%1.40%1.770.971 
    66R2683E.2BXD25R2683E.2.CEL1.777115.6458.30%40.30%1.40%2.010.792 
    67R2703E.2BXD27R2703E.2.CEL1.263134.7862.60%36.10%1.40%1.440.782 
    68R2729E.3BXD27R2729E.3.CEL18757.90%40.60%1.50%1.560.843Y
    69R2562E.3BXD28R2562E.3.CEL1.6511659.90%38.40%1.70%1.370.793Y
    70R2721E.2BXD28R2721E.2.CEL2.065157.3956.10%42.40%1.50%1.310.812 
    71R2561E.3BXD29R2561E.3.CEL17753.30%45.40%1.40%3.3619.663 
    72R1258E.2BXD31R1258E.2.CEL2.063117.0959.00%39.50%1.50%1.540.782 
    73R2597E.1BXD31R2597E.1.CEL2.379460.30%38.30%1.50%1.340.771Y
    74R2563E.1BXD32R2563E.1.CEL1.5510261.90%36.70%1.40%1.50.81 
    75R1216E.2BXD32R1216E.2.CEL2.23111.9958.80%39.80%1.40%1.350.792 
    76R2542E.1BXD33R2542E.1.CEL2.139756.50%41.80%1.60%1.910.931 
    77R857E.2BXD33R857E.2.CEL1.737113.9861.90%36.70%1.30%1.60.772 
    78R1451E.2BXD34R1451E.2.CEL1.843140.0559.00%39.50%1.50%1.420.812Y
    79R2585E.1BXD34R2585E.1.CEL2.647558.30%40.00%1.70%1.250.771 
    80R2698E.3BXD36R2698E.3.CEL18659.70%39.00%1.30%1.460.783 
    81R2705E.3BXD36R2705E.3.CEL18660.20%38.40%1.40%1.460.773 
    82R2710E.2BXD38R2710E.2.CEL2.112122.158.80%39.80%1.40%1.370.782 
    83R2532E.1BXD38R2532E.1.CEL2.049459.80%38.70%1.50%1.370.81Y
    84R2574E.1BXD39R2574E.1.CEL1.989161.20%37.30%1.50%1.390.781 
    85R2695E.2BXD39R2695E.2.CEL1.638122.760.80%37.80%1.50%1.420.82 
    86R2699E.2BXD40R2699E.2.CEL1.827105.2361.70%36.90%1.40%1.420.812 
    87R2590E.1BXD40R2590E.1.CEL2.717759.10%39.30%1.50%1.40.771Y
    88R2696E.2BXD42R2696E.2.CEL1.622118.9562.00%36.60%1.50%1.530.792 
    89R2596E.1BXD42R2596E.1.CEL2.6310859.00%39.60%1.50%1.240.81 
    90R994E.2BXD43R994E.2.CEL1.966113.1260.80%37.80%1.40%1.660.82 
    91R2607E.1BXD43R2607E.1.CEL2.4311558.60%40.00%1.40%1.310.761Y
    92R2594E.1BXD44R2594E.1.CEL1.7711759.80%38.80%1.40%1.350.851 
    93R2610E.2BXD44R2610E.2.CEL1.814142.9159.00%39.50%1.50%1.350.82 
    94R2732E.2BXD45R2732E.2.CEL2.154122.4556.50%42.10%1.40%1.80.832 
    95R2592E.1BXD45R2592E.1.CEL1.8510660.10%38.60%1.30%1.430.851Y
    96R967E.2BXD48R967E.2.CEL1.948130.9557.30%41.20%1.50%1.630.812 
    97R2606E.1BXD48R2606E.1.CEL2.5610658.90%39.70%1.40%1.350.831Y
    98R2933E.3BXD50R2933E.3.CEL17252.90%45.60%1.50%2.450.983 
    99R2937E.3BXD50R2937E.3.CEL18956.90%41.60%1.40%1.810.823 
    100R2603E.1BXD51R2603E.1.CEL2.4911557.70%40.80%1.50%1.240.791 
    101R1042E.2BXD51R1042E.2.CEL2.352104.1258.70%39.90%1.40%1.530.822 
    102R2980E.3BXD55R2980E.3.CEL18256.90%41.70%1.50%1.770.843 
    103R2690E.2BXD55R2690E.2.CEL1.887164.0156.10%42.30%1.60%1.430.82 
    104R4176EBXD56R4176E.CEL4.7543.0863.00%35.60%1.30%1.390.814Y
    105R4175EBXD56R4175E.CEL638.4961.30%37.30%1.40%1.470.814Y
    106R1006E.3BXD60R1006E.3.CEL19854.90%43.70%1.50%2.70.863 
    107R2725E.2BXD60R2725E.2.CEL1.551148.0159.80%38.80%1.40%1.430.792 
    108R1074E.3BXD60R1074E.3.CEL111855.50%43.10%1.40%1.960.813 
    109R2534E2.1BXD61R2534E2.1.CEL2.4711857.90%40.60%1.50%1.420.791 
    110R2684E.2BXD61R2684E.2.CEL2.01131.0357.00%41.50%1.50%1.340.782 
    111R1107E.3BXD62R1107E.3.CEL18355.20%43.40%1.40%2.430.933 
    112R2681E.2BXD62R2681E.2.CEL2.086148.2457.20%41.30%1.50%1.290.812 
    113R965E.3BXD62R965E.3.CEL193.5553.30%45.20%1.50%3.110.943 
    114R1425E.2BXD63R1425E.2.CEL1.713659.30%39.30%1.40%1.430.822 
    115R2576E.3BXD63R2576E.3.CEL18461.30%37.40%1.40%1.480.763 
    116R943E-2.2BXD64R943E-2.2.CEL1.591141.3460.10%38.40%1.50%1.320.762 
    117R2611E.1BXD64R2611E.1.CEL2.299258.00%40.50%1.50%1.571.061 
    118R2689E.2BXD65R2689E.2.CEL1.721142.4459.90%38.60%1.50%1.380.762 
    119R2583E.1BXD65R2583E.1.CEL2.497056.90%41.50%1.60%1.671.011 
    120R2728E.2BXD66R2728E.2.CEL1.714137.4559.40%39.00%1.60%1.380.792 
    121R2536E2.1BXD66R2536E2.1.CEL2.7410956.10%42.30%1.70%1.280.791 
    122R1207E.2BXD66R1207E.2.CEL1.681136.8660.40%38.10%1.50%1.450.772 
    123R1192E.2BXD67R1192E.2.CEL2.126123.3757.90%40.60%1.50%1.50.82 
    124R2727E.3BXD67R2727E.3.CEL182.5556.10%42.40%1.50%1.970.872 
    125R2691E.3BXD67R2691E.3.CEL19054.80%43.80%1.50%2.610.813 
    126R2551E.1BXD68R2551E.1.CEL2.499254.30%44.10%1.60%2.911.551 
    127R2726E.2BXD68R2726E.2.CEL1.811153.0958.70%39.80%1.50%1.390.782 
    128R2593E.1BXD69R2593E.1.CEL1.6712859.20%39.50%1.30%1.470.921Y
    129R975E.2BXD70R975E.2.CEL1.841137.9758.00%40.50%1.40%1.360.792 
    130R2537E2.1BXD70R2537E2.1.CEL2.939958.00%40.50%1.60%1.290.751 
    131R4531EBXD71R4531E.CEL4.7743.4862.40%36.30%1.40%1.230.774Y
    132R4532EBXD71R4532E.CEL5.8940.6860.90%37.60%1.50%1.240.794Y
    133R2779E.2BXD73R2779E.2.CEL1.746121.1159.60%39.00%1.40%1.50.82 
    134R3024E.3BXD73R3024E.3.CEL178.0551.70%46.60%1.70%2.30.943 
    135R2565E.1BXD75R2565E.1.CEL1.7910258.00%40.50%1.50%2.313.471 
    136R1397E-re.2BXD75R1397E-re.2.CEL1.449189.7159.60%39.00%1.40%1.390.822 
    137R2687E.3BXD77R2687E.3.CEL18058.00%40.60%1.40%1.570.83Y
    138R2717E.2BXD77R2717E.2.CEL1.79784.4361.60%36.90%1.40%1.490.762 
    139R1421E.3BXD77R1421E.3.CEL19452.40%46.20%1.40%2.290.823 
    140R2579E.1BXD80R2579E.1.CEL2.427259.20%39.40%1.50%1.730.821 
    141R2686E.2BXD80R2686E.2.CEL2.342119.6356.00%42.60%1.50%1.380.792 
    142R2956E.3BXD83R2956E.3.CEL18455.40%43.20%1.40%1.390.843 
    143R2960E.3BXD83R2960E.3.CEL18056.60%41.90%1.50%1.50.823Y
    144R2922E.3BXD84R2922E.3.CEL19157.80%40.80%1.50%1.470.833Y
    145R2895E.3BXD84R2895E.3.CEL17558.30%40.20%1.50%1.560.773Y
    146R2692E.2BXD85R2692E.2.CEL1.423160.8760.20%38.30%1.40%1.460.792 
    147R2715E.2BXD85R2715E.2.CEL1.488142.661.20%37.30%1.40%1.50.782 
    148R1405E.2BXD86R1405E.2.CEL2.351119.3456.40%42.20%1.40%1.640.812 
    149R1225E.3BXD86R1225E.3.CEL17153.90%44.60%1.40%3.21.613 
    150R2724E.2BXD87R2724E.2.CEL1.906113.7160.70%37.90%1.40%1.450.792 
    151R2540E.1BXD87R2540E.1.CEL2.339361.10%37.40%1.40%1.220.811Y
    152R1433E.2BXD89R1433E.2.CEL12.24157.70%40.80%1.50%1.410.782 
    153R2546E.1BXD89R2546E.1.CEL1.999658.60%39.70%1.70%1.470.781 
    154R2578E2.1BXD90R2578E2.1.CEL2.799258.60%39.80%1.60%1.520.771Y
    155R859E.2BXD90R859E.2.CEL1.847152.2257.90%40.70%1.40%1.360.772 
    156R2682E.2BXD92R2682E.2.CEL1.547156.3160.40%38.20%1.40%1.370.772 
    157R1388E.3BXD92R1388E.3.CEL16360.00%38.60%1.40%1.851.033 
    158R1322E.3BXD92R1322E.3.CEL18055.90%42.60%1.50%1.750.743 
    159R2733E.2BXD96R2733E.2.CEL1.7113.9962.10%36.60%1.30%1.40.782 
    160R2554E.1BXD96R2554E.1.CEL2.189360.20%38.30%1.50%1.460.771Y
    161R2649E.2BXD97R2649E.2.CEL2.343119.0457.50%41.20%1.40%1.530.82 
    162R2577E.1BXD97R2577E.1.CEL2.077759.50%39.10%1.40%1.871.291 
    163R2645E.3BXD98R2645E.3.CEL18859.40%39.20%1.50%1.590.813Y
    164R2688E.2BXD98R2688E.2.CEL1.772145.2458.50%40.00%1.50%1.480.812 
    165R4533EBXD99R4533E.CEL137.6960.30%38.20%1.40%1.330.894Y
    166R4534EBXD99R4534E.CEL5.6936.6262.90%35.70%1.40%1.160.84Y
    167R2885E.3BXSB/MpJR2885E.3.CEL17658.10%40.60%1.30%1.881.063 
    168R2883E.3BXSB/MpJR2883E.3.CEL17156.40%42.00%1.50%1.590.843Y
    169R1700E.1C3H/HeJR1700E.1.CEL2.986960.80%37.90%1.40%1.480.781 
    170R1704E.1C3H/HeJR1704E.1.CEL2.588860.10%38.60%1.30%1.380.841 
    171R2605E.1C57BL/6JR2605E.1.CEL1.8213160.50%38.20%1.30%1.320.81Y
    172R0871EC57BL/6JR0871E.CEL6.2437.3861.90%36.70%1.40%1.410.84Y
    173R0872E.1C57BL/6JR0872E.1.CEL3.138958.90%39.60%1.50%1.30.791Y
    174R0872EC57BL/6JR0872E.CEL3.12888.5858.90%39.60%1.50%1.30.791 
    175R4507EC57BL/6J-NyxR4507E.CEL8.1337.559.30%39.30%1.40%1.320.84Y
    176R4508EC57BL/6J-NyxR4508E.CEL6.3337.2660.90%37.80%1.30%1.240.824Y
    177R4505EC57BL/6J-Rpe65R4505E.CEL5.9837.4861.80%36.80%1.40%1.450.854Y
    178R4506EC57BL/6J-Rpe65R4506E.CEL6.9437.961.10%37.50%1.30%1.50.834Y
    179R4535EC57BLKS/JR4535E.CEL6.5937.2861.20%37.30%1.40%1.260.834Y
    180R4536EC57BLKS/JR4536E.CEL140.7160.30%38.20%1.50%1.250.774Y
    181R2564E.1CAST/EiJR2564E.1.CEL1.948958.50%39.90%1.60%1.60.771 
    182R2580E.1CAST/EiJR2580E.1.CEL2.099558.20%40.10%1.70%1.40.761 
    183R4537ECBA/CaJR4537E.CEL138.4560.60%37.90%1.50%1.630.824Y
    184R4538ECBA/CaJR4538E.CEL5.8939.1861.70%36.90%1.40%1.450.84Y
    185R4539ECZECHII/EiJR4539E.CEL7.7337.158.30%40.10%1.50%1.70.954Y
    186R4540ECZECHII/EiJR4540E.CEL11.0436.6953.00%45.30%1.70%1.831.324 
    187R2600E.1D2B6F1R2600E.1.CEL2.479558.10%40.20%1.70%1.410.781Y
    188R2604E.1D2B6F1R2604E.1.CEL2.669059.40%39.20%1.50%1.280.791Y
    189R1002E.3DBA/2JR1002E.3.CEL110254.80%43.70%1.50%2.840.833 
    190R4541EDBA/2JR4541E.CEL143.461.40%37.00%1.50%1.370.734Y
    191R959E.3DBA/2JR959E.3.CEL189.9753.20%45.30%1.50%3.661.094 
    192R2572E.1DBA/2JR2572E.1.CEL2.417955.50%42.90%1.60%1.370.791 
    193R4542EDBA/2JR4542E.CEL5.739.9561.00%37.40%1.50%1.230.814Y
    194R2771E.3FVB/NJR2771E.3.CEL17055.30%43.20%1.50%1.690.833 
    195R2772E.3FVB/NJR2772E.3.CEL17655.20%43.40%1.40%2.131.023 
    196R2636E.1KK/HlJR2636E.1.CEL2.619358.90%39.50%1.50%1.390.761Y
    197R2637E.1KK/HlJR2637E.1.CEL2.1910359.40%39.00%1.50%1.30.791Y
    198R0999E.1LG/JR0999E.1.CEL2.458259.40%39.10%1.50%1.380.791Y
    199R1004E.1LG/JR1004E.1.CEL2.449258.70%39.80%1.50%1.380.791Y
    200R4543ELP/JR4543E.CEL6.5741.9960.30%38.20%1.50%1.280.754Y
    201R4544ELP/JR4544E.CEL4.5639.962.40%36.10%1.50%1.230.774Y
    202R2858E.3MOLF/EiJR2858E.3.CEL16453.80%44.70%1.50%1.590.953 
    203R2919.3MOLF/EiJR2919.3.CEL16452.40%46.00%1.60%2.151.073 
    204R1688E.1NOD/LtJR1688E.1.CEL2.669858.60%39.90%1.50%1.260.81Y
    205R2566E-2.1NOD/LtJR2566E-2.1.CEL3.036959.80%38.80%1.50%1.380.751Y
    206R4545ENZB/BlNJR4545E.CEL4.2343.4862.10%36.40%1.50%1.330.764Y
    207R4546ENZB/BlNJR4546E.CEL6.2744.2259.40%39.10%1.50%1.170.824Y
    208R2535E.1NZO/HlLtJR2535E.1.CEL1.898660.40%38.20%1.40%1.410.851 
    209R2550E.1NZO/HlLtJR2550E.1.CEL1.798760.70%37.80%1.50%1.520.821 
    210R2817E.3NZW/LacJR2817E.3.CEL15950.90%47.60%1.50%3.591.483 
    211R2810ENZW/LacJR2810E.CEL       3 
    212R2810E.3NZW/LacJR2810E.3.CEL17457.00%41.70%1.40%2.151.034Y
    213R4547EPANCEVO/EiJR4547E.CEL5.2751.3457.20%41.10%1.70%1.70.834 
    214R4548EPANCEVO/EiJR4548E.CEL10.5437.3950.30%48.00%1.70%1.681.094 
    215R2635E.1PWD/PhJR2635E.1.CEL3.728054.20%44.10%1.70%1.530.851 
    216R2634E.1PWD/PhJR2634E.1.CEL3.299055.90%42.50%1.60%1.570.811 
    217R2544E.1PWK/PhJR2544E.1.CEL2.210854.90%43.50%1.70%1.360.821 
    218R2549E.1PWK/PhJR2549E.1.CEL2.288457.30%41.20%1.50%1.570.831 
    219R4550ESJL/JR4550E.CEL5.3540.4462.30%36.20%1.40%1.240.794 
    220R2368E.1WSB/EiJR2368E.1.CEL2.578659.50%39.10%1.40%1.290.741Y
    221R2547E.1WSB/EiJR2547E.1.CEL2.149058.20%40.10%1.60%1.320.771Y
    -
    diff --git a/general/datasets/gn10/summary.rtf b/general/datasets/gn10/summary.rtf deleted file mode 100644 index 44b7e23..0000000 --- a/general/datasets/gn10/summary.rtf +++ /dev/null @@ -1,12 +0,0 @@ -

    FINAL RECOMMENDED EYE DATA SET. The HEIMED September 2008 RMA data release provides estimates of gene expression in whole eyes of 103 lines of young adult mice generated using 221 Affymetrix M430 2.0 arrays. This data set is intended for exploration of the genetics and genomics of the mouse eye, retina, lens, retinal pigment epithelium, cornea, iris and choroid. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). We used pooled RNA samples, usually two independent pools--one male, one female pool--for most lines of mice. This data set was processed using the RMA protocol. A total of 2223 probes sets are associated with LRS values greater than 46 (LOD >10).

    - -

    Users of these mouse eye data may also find the following complementary resources extremely useful:

    - -
      -
    1. NEIBank collection of ESTs and SAGE data.
    2. -
    3. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases
    4. -
    5. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5.
    6. -
    7. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus.
    8. -
    9. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430).
    10. -
    11. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0.
    12. -
    diff --git a/general/datasets/gn10/tissue.rtf b/general/datasets/gn10/tissue.rtf deleted file mode 100644 index 9b6ee0f..0000000 --- a/general/datasets/gn10/tissue.rtf +++ /dev/null @@ -1,2058 +0,0 @@ -

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube.

    - -

    Each array was hybridized with a pool of cRNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

    - -

    Dissecting and preparing eyes for RNA extraction

    - -
      -
    1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below).
    2. -
    3. Store RNA in 75% ethanol at –80 deg. C until use.
    4. -
    - -

    Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we:

    - -
      -
    1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue)
    2. -
    3. allowed the homogenate to stand for 5 min at room temperature
    4. -
    5. added 0.2 ml of chloroform per 1 ml RNA STAT-60
    6. -
    7. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min
    8. -
    9. centrifuged at 12,000 G for 15 min
    10. -
    11. transfered the aqueous phase to a fresh tube
    12. -
    13. added 0.5 ml of isopropanol per 1 ml RNA STAT-60
    14. -
    15. vortexed and allowed sample to stand at room temperature for 5-10 min
    16. -
    17. centrifuged at 12,000 G for 10-15 min
    18. -
    19. removed the supernatant and washed the RNA pellet with 75% ethanol
    20. -
    21. stored the pellet in 75% ethanol at -80 deg C until use
    22. -
    - -

    Sample Processing. All samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center led by Dr. Weikuan Gu. All arrays were processed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. C until use (roughly one third) or were used immediately for hybridization.

    - -

    Dealing with ocular pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations taken from brown and beige colored mice tend to have faint residual pigmentation that affects hybridization signal. To address this problem, Dr. Yan Jiao purified total RNA using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204) all four batches.

    - -

    Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well balanced sample of males and females, in general without within-strain-by-sex replication. Two strains are represented by a single male sample pool (BXD29 and A/J). Four lines are represented by two or three male sample pools (all of the five DeltaGen KO line). The SJL/J may be a single mixed sex sample. Users can study possible sex effects by comparing any results of expression data to that of a surrogate measurement that summarizes the overall sex balance of HEIMED. To do this just compare your data to those of probe sets 1427262_at (Xist, high in females) and probe set 1426438_at (Ddx3y, high in males). These two sex-specific probes are quantitative surrogates for the sex balance in this data set.

    - -

    Technical duplicates: One sample, highlighted in the tables below, is a technical duplicate. The pair of technical duplicates were both of high quality. For statistical analysis, they should be combined and treated as single biological sample.

    - -

    Batch structure: This data set consists of four batches (Table 2, far right column). The final September 2008 data set consists of a total of 221 arrays and 220 independent samples.

    - -
      -
    1. Batch 1: November 2005, n = 78 arrays original arrays of which 76 were accepted into this final data set.
    2. -
    3. Batch 2: January 2006, n = 62 arrays of which 62 were accepted.
    4. -
    5. Batch 3: August 2006, n = 39 arrays of which 36 were accepted. (These three batches, including some arrays that were eventually dropped from the final 2008 data set, were combined to form the September 2006 data set.)
    6. -
    7. Batch 4: Summer 2008, n = 53 arrays of which 47 were accepted.
    8. -
    - -

    Table 1: HEIMED case IDs, including sample tube ID, strain, age, sex, and source of mice (see Table 2 for information on array quality control)

    - -

     

    - - - - - - - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    2R2533E.1GDP129S1/SvImJ60MUTHSC RW
    3R0754E.1GDPA/J60MJAX
    4R4521EKOB6129P2F2N1-Clcn369MTChoi_Deltagen
    5R4522EKOB6129P2F2N1-Clcn369MTChoi_Deltagen
    6R4523EKOB6129P2F2N1-Clcn367MTChoi_Deltagen
    7R4526EKOB6129P2F2N1-Gabbr116FTChoi_Deltagen
    8R4509EKOB6129P2F2N1-Gabbr116MTChoi_Deltagen
    9R4510EKOB6129P2F2N1-Gabbr119MTChoi_Deltagen
    10R4511EKOB6129P2F2N1-Gabbr120MTChoi_Deltagen
    11R4524EKOB6129P2F2N1-Gabbr119MTChoi_Deltagen
    12R4525EKOB6129P2F2N1-Gabbr122MTChoi_Deltagen
    13R4515EKOB6129P2F2N1-Gabra167MTChoi_Deltagen
    14R4516EKOB6129P2F2N1-Gabra169MTChoi_Deltagen
    15R4517EKOB6129P2F2N1-Gabra167MTChoi_Deltagen
    16R4512EKOB6129P2F2N1-Gnb522FTChoi_Deltagen
    17R4513EKOB6129P2F2N1-Gnb525MTChoi_Deltagen
    18R4514EKOB6129P2F2N1-Gnb522MTChoi_Deltagen
    19R4518EKOB6129P2F2N1-Gpr1970MTChoi_Deltagen
    20R4519EKOB6129P2F2N1-Gpr1968MTChoi_Deltagen
    21R2601E.1GDP BXDB6D2F173FUTHSC RW
    22R2602E.1GDP BXDB6D2F173MUTHSC RW
    23R1676E.1GDPBALB/cByJ83FJAX
    24R1672E.1GDPBALB/cByJ83MJAX
    25R4530EGDPBALB/cJ66FJAX
    26R4529EGDPBALB/cJ66MJAX
    27R2704E.2BXDBXD159FUTHSC RW
    28R2707E.3BXDBXD159MBIDMC GR
    29R1231E.2BXDBXD264FUTHSC RW
    30R2598E.1BXDBXD261MUTHSC RW
    31R2591E.1BXDBXD560FBIDMC GR
    32R2714E.2BXDBXD558MUTHSC RW
    33R2570E.1BXDBXD665FUTHSC RW
    34R2694E.2BXDBXD658MUTHSC RW
    35R2538E.1BXDBXD877FUTHSC RW
    36R2709E.2BXDBXD861MUTHSC RW
    37R2708E.2BXDBXD960FUTHSC RW
    38R2569E.1BXDBXD967MUTHSC RW
    39R2581E.1BXDBXD1165FUTHSC RW
    40R2612E.2BXDBXD1170MUTHSC RW
    41R2742E.2BXDBXD1271FUTHSC RW
    42R2543E.1BXDBXD1263MUTHSC RW
    43R2586E.1BXDBXD1360FBIDMC GR
    44R877E.2BXDBXD1376MUTHSC RW
    45R2557E.1BXDBXD1460FBIDMC GR
    46R1128E.2BXDBXD1465MUTHSC RW
    47R2701E.3BXDBXD1560FBIDMC GR
    48R2716E.2BXDBXD1560MUTHSC RW
    49R2711E.2BXDBXD1661FUTHSC RW
    50R2567E.1BXDBXD1660MBIDMC GR
    51R2720E.2BXDBXD1859FUTHSC RW
    52R2559E.1BXDBXD1859MBIDMC GR
    53R2560E.1BXDBXD1960FBIDMC GR
    54R2713E.2BXDBXD1960MUTHSC RW
    55R2584E.1BXDBXD2059FBIDMC GR
    56R2731E.2BXDBXD2060MUTHSC RW
    57R2702E.2BXDBXD2159FUTHSC RW
    58R2541E2.1BXDBXD2161MUTHSC RW
    59R2553E.1BXDBXD2258FBIDMC GR
    60R2700E.2BXDBXD2259MUTHSC RW
    61R2558E-2.1BXDBXD2360FBIDMC GR
    62R1086E.2BXDBXD2355MUTHSC RW
    63R2719E.2BXDBXD24123FUTHSC RW
    64R2589E2.1BXDBXD2459MBIDMC GR
    65R2573E-2.1BXDBXD2567FUAB
    66R2683E.2BXDBXD2558MUTHSC RW
    67R2703E.2BXDBXD2760FUTHSC RW
    68R2729E.3BXDBXD2768MUTHSC RW
    69R2562E.3BXDBXD2860FBIDMC GR
    70R2721E.2BXDBXD2860MUTHSC RW
    71R2561E.3BXDBXD2960MBIDMC GR
    72R1258E.2BXDBXD3157FUTHSC RW
    73R2597E.1BXDBXD3161MBIDMC GR
    74R2563E.1BXDBXD3263FUTHSC RW
    75R1216E.2BXDBXD3276MUTHSC RW
    76R2542E.1BXDBXD3367FUTHSC RW
    77R857E.2BXDBXD3377MUTHSC RW
    78R1451E.2BXDBXD3461FUTHSC RW
    79R2585E.1BXDBXD3460MBIDMC GR
    80R2698E.3BXDBXD3658FBIDMC GR
    81R2705E.3BXDBXD3657MBIDMC GR
    82R2710E.2BXDBXD3855FUTHSC RW
    83R2532E.1BXDBXD3862MUTHSC RW
    84R2574E.1BXDBXD3970FUTHSC RW
    85R2695E.2BXDBXD3959MUTHSC RW
    86R2699E.2BXDBXD4059FUTHSC RW
    87R2590E.1BXDBXD4060MBIDMC GR
    88R2696E.2BXDBXD4258FUTHSC RW
    89R2596E.1BXDBXD4259MBIDMC GR
    90R994E.2BXDBXD4360FUTHSC RW
    91R2607E.1BXDBXD4367MUTHSC RW
    92R2594E.1BXDBXD4463FUTHSC RW
    93R2610E.2BXDBXD4468MUTHSC RW
    94R2732E.2BXDBXD4563FUTHSC RW
    95R2592E.1BXDBXD4562MUTHSC RW
    96R967E.2BXDBXD4864FUTHSC RW
    97R2606E.1BXDBXD4878MUTHSC RW
    98R2933E.3BXDBXD5061FUTHSC RW
    99R2937E.3BXDBXD5061MUTHSC RW
    100R2603E.1BXDBXD5166FUTHSC RW
    101R1042E.2BXDBXD5162MUTHSC RW
    102R2980E.3BXDBXD5576FUTHSC RW
    103R2690E.2BXDBXD5565MUTHSC RW
    104R4176EBXDBXD5667FUTHSC RW
    105R4175EBXDBXD5653MUTHSC RW
    106R1006E.3BXDBXD6060FUTHSC RW
    107R2725E.2BXDBXD6061FUTHSC RW
    108R1074E.3BXDBXD6059MUTHSC RW
    109R2534E2.1BXDBXD6170FUTHSC RW
    110R2684E.2BXDBXD6162MUTHSC RW
    111R1107E.3BXDBXD6254FUTHSC RW
    112R2681E.2BXDBXD6262MUTHSC RW
    113R965E.3BXDBXD6254MUTHSC RW
    114R1425E.2BXDBXD6361FUTHSC RW
    115R2576E.3BXDBXD6370MUTHSC RW
    116R943E-2.2BXDBXD6456FUTHSC RW
    117R2611E.1BXDBXD6468MUTHSC RW
    118R2689E.2BXDBXD6563FUTHSC RW
    119R2583E.1BXDBXD6560MUTHSC RW
    120R2728E.2BXDBXD6667FUTHSC RW
    121R2536E2.1BXDBXD6664FUTHSC RW
    122R1207E.2BXDBXD6683MUTHSC RW
    123R1192E.2BXDBXD6764FUTHSC RW
    124R2727E.3BXDBXD6765FUTHSC RW
    125R2691E.3BXDBXD6765MUTHSC RW
    126R2551E.1BXDBXD6867FUTHSC RW
    127R2726E.2BXDBXD6864MUTHSC RW
    128R2593E.1BXDBXD6959FUTHSC RW
    129R975E.2BXDBXD7064FUTHSC RW
    130R2537E2.1BXDBXD7059MUTHSC RW
    131R4531EBXDBXD7187FUTHSC RW
    132R4532EBXDBXD7186MUTHSC RW
    133R2779E.2BXDBXD7364FUTHSC RW
    134R3024E.3BXDBXD7354MUTHSC RW
    135R2565E.1BXDBXD7561FUTHSC RW
    136R1397E-re.2BXDBXD7558MUTHSC RW
    137R2687E.3BXDBXD7760FUTHSC RW
    138R2717E.2BXDBXD77107MUTHSC RW
    139R1421E.3BXDBXD7762MUTHSC RW
    140R2579E.1BXDBXD8065FUTHSC RW
    141R2686E.2BXDBXD8061MUTHSC RW
    142R2956E.3BXDBXD8358FUTHSC RW
    143R2960E.3BXDBXD8358MUTHSC RW
    144R2922E.3BXDBXD8461FUTHSC RW
    145R2895E.3BXDBXD8467MUTHSC RW
    146R2692E.2BXDBXD8563FUTHSC RW
    147R2715E.2BXDBXD8591MUTHSC RW
    148R1405E.2BXDBXD8658FUTHSC RW
    149R1225E.3BXDBXD8658MUTHSC RW
    150R2724E.2BXDBXD8763FUTHSC RW
    151R2540E.1BXDBXD8763MUTHSC RW
    152R1433E.2BXDBXD8963FUTHSC RW
    153R2546E.1BXDBXD8966MUTHSC RW
    154R2578E2.1BXDBXD9061FUTHSC RW
    155R859E.2BXDBXD9072MUTHSC RW
    156R2682E.2BXDBXD9266FUTHSC RW
    157R1388E.3BXDBXD9262FUTHSC RW
    158R1322E.3BXDBXD9255MUTHSC RW
    159R2733E.2BXDBXD9667FUTHSC RW
    160R2554E.1BXDBXD9667MUTHSC RW
    161R2649E.2BXDBXD9774FUTHSC RW
    162R2577E.1BXDBXD9755MUTHSC RW
    163R2645E.3BXDBXD9866FUTHSC RW
    164R2688E.2BXDBXD9867MUTHSC RW
    165R4533EBXDBXD9980FUTHSC RW
    166R4534EBXDBXD9991MUTHSC RW
    167R2885E.3GDPBXSB/MpJ61FBIDMC GR
    168R2883E.3GDPBXSB/MpJ61MBIDMC GR
    169R1700E.1GDPC3H/HeJ83FUTHSC RW
    170R1704E.1GDPC3H/HeJ83MUTHSC RW
    171R2605E.1GDP BXDC57BL/6J79FUTHSC RW
    172R0871EGDP BXDC57BL/6J65FUTHSC RW
    173R0872E.1GDP BXDC57BL/6J66MUTHSC RW
    174R0872EGDP BXDC57BL/6J66MUTHSC RW
    175R4507EKOC57BL/6J-Nyx57MGeisert
    176R4508EKOC57BL/6J-Nyx57MGeisert
    177R4505EKOC57BL/6J-Rpe6557FGeisert
    178R4506EKOC57BL/6J-Rpe6557FGeisert
    179R4535EGDPC57BLKS/J66FJAX
    180R4536EGDPC57BLKS/J66MJAX
    181R2564E.1GDPCAST/EiJ64FJAX
    182R2580E.1GDPCAST/EiJ64MJAX
    183R4537EGDPCBA/CaJ66FJAX
    184R4538EGDPCBA/CaJ66MJAX
    185R4539EGDPCZECHII/EiJ66FJAX
    186R4540EGDPCZECHII/EiJ66MJAX
    187R2600E.1GDP BXDD2B6F172FUTHSC RW
    188R2604E.1GDP BXDD2B6F169MUTHSC RW
    189R1002E.3GDP BXDDBA/2J72FUTHSC RW
    190R4541EGDP BXDDBA/2J65FJAX
    191R959E.3GDP BXDDBA/2J60MUTHSC RW
    192R2572E.1GDP BXDDBA/2J65MUTHSC RW
    193R4542EGDP BXDDBA/2J59MJAX
    194R2771E.3GDPFVB/NJ60FBIDMC GR
    195R2772E.3GDPFVB/NJ60MBIDMC GR
    196R2636E.1GDPKK/HlJ64FUTHSC RW
    197R2637E.1GDPKK/HlJ64MUTHSC RW
    198R0999E.1GDPLG/J57FUTHSC RW
    199R1004E.1GDPLG/J65MUTHSC RW
    200R4543EGDPLP/J65FJAX
    201R4544EGDPLP/J65MJAX
    202R2858E.3GDPMOLF/EiJ60FBIDMC GR
    203R2919.3GDPMOLF/EiJ60MBIDMC GR
    204R1688E.1GDPNOD/LtJ66FJAX
    205R2566E-2.1GDPNOD/LtJ76MUTHSC RW
    206R4545EGDPNZB/BlNJ61FBIDMC GR
    207R4546EGDPNZB/BlNJ58MBIDMC GR
    208R2535E.1GDPNZO/HlLtJ62FJAX
    209R2550E.1GDPNZO/HlLtJ96MJAX
    210R2817E.3GDPNZW/LacJ65FBIDMC GR
    211R2810EGDPNZW/LacJ60MBIDMC GR
    212R2810E.3GDPNZW/LacJ60MBIDMC GR
    213R4547EGDPPANCEVO/EiJ68FJAX
    214R4548EGDPPANCEVO/EiJ68MJAX
    215R2635E.1GDPPWD/PhJ62FJAX
    216R2634E.1GDPPWD/PhJ62MJAX
    217R2544E.1GDPPWK/PhJ63FJAX
    218R2549E.1GDPPWK/PhJ83MJAX
    219R4550EGDPSJL/J65M+FJAX
    220R2368E.1GDPWSB/EiJ67FUTHSC RW
    221R2547E.1GDPWSB/EiJ67MUTHSC RW
    -
    diff --git a/general/datasets/luCA_GSE23352HLT0613/summary.rtf b/general/datasets/luCA_GSE23352HLT0613/summary.rtf deleted file mode 100644 index 9cb9538..0000000 --- a/general/datasets/luCA_GSE23352HLT0613/summary.rtf +++ /dev/null @@ -1,15 +0,0 @@ -

    This SuperSeries is composed of the following SubSeries:

    - - - - - - - - - - - - - -
    GSE23352 Whole-genome gene expression profiles of non-tumorous human lung tissues: Laval set
    GSE23529 Whole-genome gene expression profiles of non-tumorous human lung tissues: UBC set
    GSE23545 Whole-genome gene expression profiles of non-tumorous human lung tissues: GRNG set
    diff --git a/general/datasets/none/summary.rtf b/general/datasets/none/summary.rtf deleted file mode 100644 index 5c22bc2..0000000 --- a/general/datasets/none/summary.rtf +++ /dev/null @@ -1,40 +0,0 @@ -

    Question: I have generated some phenotype data that I would like to put into GeneNetwork. How should I name my traits?
    -
    -Answer: Phenotype trait names in GeneNetwork should have this general form when possible:

    - -
      -
    1. Your description should start with very short list of "approved" general category and ontology terms. These terms are used to subdivide the entire collection of phenotypes by system, organ, or level of analysis. Some examples may help: "Central nervous system", "Immune system", "Metabolism", "Development", or "Urogenital system". Capitalize this list as you would a standard English sentence. Separate terms by commas and then end the terms with a colon. For example, "Central nervous system, pharmacology, endocrinology:" is a valid set of three terms. These terms do not really describe your trait, but are used by you and other users to figure out how many traits there are in specific categories.
      -
      - Before making up your own terms, please review the current terms in GeneNetwork and find some terms/ontology categories that look good to you. If you have questions contact one of us on the GeneNetwork development team.
    2. -
    3. After the colon start with your description of the phenotype you have generated. For example: "Ethanol response..." or "Anxiety assay...", "Brain weight...". The first letter should almost always be capitalized.
    4. -
    5. Do not start with a generic uninformative word such as "Mean", "Maximum", "Mechanical", "Count", "Number", "Difference", "Baseline", "Induction", "Decrease", "New", "Adjusted", "Distance", "Right", "Left", "Bilateral", "Time", "Total", "Percentage", "Percent". The reason is that the traits should be alphabetized and categorized in a conceptually useful way; not by something "dumb" like the "total" or "percent".
    6. -
    7. Do not start with a specific instrumental assay such as "Morris water maze" or "Dowel test..." or "Porsolt test behavior". Many of these tests will be unknown to other users. Try to use a term that reflects the intent of the assay (Motor coordination test, Learning and memory assay, Allergic airway response). This may be difficult, particularly for tests such as the Porsolt swim test and the Morris water maze that measure aspects of many different traits (anxiety, activity level, spatial navigation, visual acuity etc). But in the interest of clarity of intent rather than precision of measurement, please follow this suggestion. The actual assay instrument can be listed after the primary and secondary trait descriptions.
    8. -
    9. Many traits can be difficult to categorize in a consistent way. For example a trait such as "ventral midbrain copper level in males" could be labeled "copper level in the ventral midbrain." There is no right or wrong way to do this, but the convention should be to choose the order that you think will be most useful to other users in terms of comprehension and consistency with other existing phenotypes. Review related phenotypes before you start naming your own. You will find good and bad examples.
    10. -
    11. Dose and route of drug delivery. If the phenotype is a pharmacological phenotype, whenever practical enter the doses and routes of injection in parentheses after the name of the general trait. For example, "Cocaine response (40 mg/kg ip)". We would prefer to use "ip" and "iv" rather than i.p. and i.v., but this is not a strong preference. If a protocol requires multiple treatments, please include them if possible. For example, "Cocaine response (3 x 3.2 mg/kg ip, Days 2, 3, 4),...").
    12. -
    13. Series of more precise definitions of the phenotype and the subject(s) will often follow with commas used as separators. If possible make this understandable to almost any user, even at the risk of being wordy. -

      For example, "Cocaine response (3 x 3.2 mg/kg ip, Days 2, 3, and 4), conditioned place preference (CPP), change in time in cocaine-paired compartment relative to baseline (Day 5 minus Day 1) for 50 to 90-day-old males and females [sec]"

      -
    14. -
    15. Sex. If the data are for males please write out "in males" or "of male" or "for males". Do not just add a comma such as " , males" or "(M)". This should usually go at the end of the description.
    16. -
    17. Age and condition of subjects can be added if you think it is essential or helpful. However, do not bother with a generic addition "adult" since that is what most users will reasonably assume. If you would like to add an age range then use this format "in 100 to 200-day-old males and females" or "of 3 to 4-month-old males".
    18. -
    19. Mandatory units of measurement between square brackets [min] or [sec] or [n bream breaks/10 min test]. If you are using an ordinal scale, then describe the scale within the brackets. If the units are simply a ratio or percentage then use [ratio] or [%].
    20. -
    - -

    Other advice on trait descriptions:

    - -
      -
    1. Do Not Capitalize Each Word in a Description. (e.g, Ethanol Response, Distance traveled after saline - Distance traveled after ethanol for males and females [cm in a 0-5 min test period] )
    2. -
    3. Do not use "-" as a minus sign. The dash is too confusing and may sometimes be used as a hyphen. Spell out "minus"
    4. -
    5. No not use ALL CAP in a trait description (e.g., TOTAL)
    6. -
    7. Do use commas when appropriate. For example, Morphine response severity of abdominal constriction for males needs a comma between "response" and "severity"
    8. -
    9. Do not use extraneous words such as "time SPENT on rotarod". "time on rotarod" is good enough.
    10. -
    11. Do not start with text or abbreviations that will not be understandable to all users, such as "RSS female and male..."
    12. -
    13. Please us a space between a number and the units: Prepulse inhibition at 70 dB for females (not 70db). Please use the correct form of the abbreviation.
    14. -
    15. Use American spelling. [RWW, September 10, 2009]
    16. -
    - -

    Examples of accepted phenotype descriptions: (by Amelie Baud. Wellcome Trust Centre for Human Genetics, Oxford, UK.)

    - -
      -
    1. Central nervous system, behavior: Anxiety assay, locomotor activity in novel cage between minutes 25 and 30 in novel cage, normalized by Box-Cox transformation [cm]
    2. -
    3. Metabolism: Glycemia (intraperitoneal glucose tolerance test), area under the curve between minutes 0 and 120 after injection, normalized by Box-Cox transformation [mM.min-1]
    4. -
    -- cgit v1.2.3